]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-exp.y
Fix a GDB assert failure on windows
[thirdparty/binutils-gdb.git] / gdb / ada-exp.y
1 /* YACC parser for Ada expressions, for GDB.
2 Copyright (C) 1986-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse an Ada expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <string.h>
40 #include <ctype.h>
41 #include "expression.h"
42 #include "value.h"
43 #include "parser-defs.h"
44 #include "language.h"
45 #include "ada-lang.h"
46 #include "bfd.h" /* Required by objfiles.h. */
47 #include "symfile.h" /* Required by objfiles.h. */
48 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
49 #include "frame.h"
50 #include "block.h"
51
52 #define parse_type builtin_type (parse_gdbarch)
53
54 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
55 as well as gratuitiously global symbol names, so we can have multiple
56 yacc generated parsers in gdb. These are only the variables
57 produced by yacc. If other parser generators (bison, byacc, etc) produce
58 additional global names that conflict at link time, then those parser
59 generators need to be fixed instead of adding those names to this list. */
60
61 /* NOTE: This is clumsy, especially since BISON and FLEX provide --prefix
62 options. I presume we are maintaining it to accommodate systems
63 without BISON? (PNH) */
64
65 #define yymaxdepth ada_maxdepth
66 #define yyparse _ada_parse /* ada_parse calls this after initialization */
67 #define yylex ada_lex
68 #define yyerror ada_error
69 #define yylval ada_lval
70 #define yychar ada_char
71 #define yydebug ada_debug
72 #define yypact ada_pact
73 #define yyr1 ada_r1
74 #define yyr2 ada_r2
75 #define yydef ada_def
76 #define yychk ada_chk
77 #define yypgo ada_pgo
78 #define yyact ada_act
79 #define yyexca ada_exca
80 #define yyerrflag ada_errflag
81 #define yynerrs ada_nerrs
82 #define yyps ada_ps
83 #define yypv ada_pv
84 #define yys ada_s
85 #define yy_yys ada_yys
86 #define yystate ada_state
87 #define yytmp ada_tmp
88 #define yyv ada_v
89 #define yy_yyv ada_yyv
90 #define yyval ada_val
91 #define yylloc ada_lloc
92 #define yyreds ada_reds /* With YYDEBUG defined */
93 #define yytoks ada_toks /* With YYDEBUG defined */
94 #define yyname ada_name /* With YYDEBUG defined */
95 #define yyrule ada_rule /* With YYDEBUG defined */
96 #define yyss ada_yyss
97 #define yysslim ada_yysslim
98 #define yyssp ada_yyssp
99 #define yystacksize ada_yystacksize
100 #define yyvs ada_yyvs
101 #define yyvsp ada_yyvsp
102
103 #ifndef YYDEBUG
104 #define YYDEBUG 1 /* Default to yydebug support */
105 #endif
106
107 #define YYFPRINTF parser_fprintf
108
109 struct name_info {
110 struct symbol *sym;
111 struct minimal_symbol *msym;
112 struct block *block;
113 struct stoken stoken;
114 };
115
116 static struct stoken empty_stoken = { "", 0 };
117
118 /* If expression is in the context of TYPE'(...), then TYPE, else
119 * NULL. */
120 static struct type *type_qualifier;
121
122 int yyparse (void);
123
124 static int yylex (void);
125
126 void yyerror (char *);
127
128 static void write_int (LONGEST, struct type *);
129
130 static void write_object_renaming (const struct block *, const char *, int,
131 const char *, int);
132
133 static struct type* write_var_or_type (const struct block *, struct stoken);
134
135 static void write_name_assoc (struct stoken);
136
137 static void write_exp_op_with_string (enum exp_opcode, struct stoken);
138
139 static struct block *block_lookup (struct block *, const char *);
140
141 static LONGEST convert_char_literal (struct type *, LONGEST);
142
143 static void write_ambiguous_var (const struct block *, char *, int);
144
145 static struct type *type_int (void);
146
147 static struct type *type_long (void);
148
149 static struct type *type_long_long (void);
150
151 static struct type *type_float (void);
152
153 static struct type *type_double (void);
154
155 static struct type *type_long_double (void);
156
157 static struct type *type_char (void);
158
159 static struct type *type_boolean (void);
160
161 static struct type *type_system_address (void);
162
163 %}
164
165 %union
166 {
167 LONGEST lval;
168 struct {
169 LONGEST val;
170 struct type *type;
171 } typed_val;
172 struct {
173 DOUBLEST dval;
174 struct type *type;
175 } typed_val_float;
176 struct type *tval;
177 struct stoken sval;
178 struct block *bval;
179 struct internalvar *ivar;
180 }
181
182 %type <lval> positional_list component_groups component_associations
183 %type <lval> aggregate_component_list
184 %type <tval> var_or_type
185
186 %token <typed_val> INT NULL_PTR CHARLIT
187 %token <typed_val_float> FLOAT
188 %token TRUEKEYWORD FALSEKEYWORD
189 %token COLONCOLON
190 %token <sval> STRING NAME DOT_ID
191 %type <bval> block
192 %type <lval> arglist tick_arglist
193
194 %type <tval> save_qualifier
195
196 %token DOT_ALL
197
198 /* Special type cases, put in to allow the parser to distinguish different
199 legal basetypes. */
200 %token <sval> SPECIAL_VARIABLE
201
202 %nonassoc ASSIGN
203 %left _AND_ OR XOR THEN ELSE
204 %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
205 %left '@'
206 %left '+' '-' '&'
207 %left UNARY
208 %left '*' '/' MOD REM
209 %right STARSTAR ABS NOT
210
211 /* Artificial token to give NAME => ... and NAME | priority over reducing
212 NAME to <primary> and to give <primary>' priority over reducing <primary>
213 to <simple_exp>. */
214 %nonassoc VAR
215
216 %nonassoc ARROW '|'
217
218 %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
219 %right TICK_MAX TICK_MIN TICK_MODULUS
220 %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
221 /* The following are right-associative only so that reductions at this
222 precedence have lower precedence than '.' and '('. The syntax still
223 forces a.b.c, e.g., to be LEFT-associated. */
224 %right '.' '(' '[' DOT_ID DOT_ALL
225
226 %token NEW OTHERS
227
228 \f
229 %%
230
231 start : exp1
232 ;
233
234 /* Expressions, including the sequencing operator. */
235 exp1 : exp
236 | exp1 ';' exp
237 { write_exp_elt_opcode (BINOP_COMMA); }
238 | primary ASSIGN exp /* Extension for convenience */
239 { write_exp_elt_opcode (BINOP_ASSIGN); }
240 ;
241
242 /* Expressions, not including the sequencing operator. */
243 primary : primary DOT_ALL
244 { write_exp_elt_opcode (UNOP_IND); }
245 ;
246
247 primary : primary DOT_ID
248 { write_exp_op_with_string (STRUCTOP_STRUCT, $2); }
249 ;
250
251 primary : primary '(' arglist ')'
252 {
253 write_exp_elt_opcode (OP_FUNCALL);
254 write_exp_elt_longcst ($3);
255 write_exp_elt_opcode (OP_FUNCALL);
256 }
257 | var_or_type '(' arglist ')'
258 {
259 if ($1 != NULL)
260 {
261 if ($3 != 1)
262 error (_("Invalid conversion"));
263 write_exp_elt_opcode (UNOP_CAST);
264 write_exp_elt_type ($1);
265 write_exp_elt_opcode (UNOP_CAST);
266 }
267 else
268 {
269 write_exp_elt_opcode (OP_FUNCALL);
270 write_exp_elt_longcst ($3);
271 write_exp_elt_opcode (OP_FUNCALL);
272 }
273 }
274 ;
275
276 primary : var_or_type '\'' save_qualifier { type_qualifier = $1; }
277 '(' exp ')'
278 {
279 if ($1 == NULL)
280 error (_("Type required for qualification"));
281 write_exp_elt_opcode (UNOP_QUAL);
282 write_exp_elt_type ($1);
283 write_exp_elt_opcode (UNOP_QUAL);
284 type_qualifier = $3;
285 }
286 ;
287
288 save_qualifier : { $$ = type_qualifier; }
289 ;
290
291 primary :
292 primary '(' simple_exp DOTDOT simple_exp ')'
293 { write_exp_elt_opcode (TERNOP_SLICE); }
294 | var_or_type '(' simple_exp DOTDOT simple_exp ')'
295 { if ($1 == NULL)
296 write_exp_elt_opcode (TERNOP_SLICE);
297 else
298 error (_("Cannot slice a type"));
299 }
300 ;
301
302 primary : '(' exp1 ')' { }
303 ;
304
305 /* The following rule causes a conflict with the type conversion
306 var_or_type (exp)
307 To get around it, we give '(' higher priority and add bridge rules for
308 var_or_type (exp, exp, ...)
309 var_or_type (exp .. exp)
310 We also have the action for var_or_type(exp) generate a function call
311 when the first symbol does not denote a type. */
312
313 primary : var_or_type %prec VAR
314 { if ($1 != NULL)
315 {
316 write_exp_elt_opcode (OP_TYPE);
317 write_exp_elt_type ($1);
318 write_exp_elt_opcode (OP_TYPE);
319 }
320 }
321 ;
322
323 primary : SPECIAL_VARIABLE /* Various GDB extensions */
324 { write_dollar_variable ($1); }
325 ;
326
327 primary : aggregate
328 ;
329
330 simple_exp : primary
331 ;
332
333 simple_exp : '-' simple_exp %prec UNARY
334 { write_exp_elt_opcode (UNOP_NEG); }
335 ;
336
337 simple_exp : '+' simple_exp %prec UNARY
338 { write_exp_elt_opcode (UNOP_PLUS); }
339 ;
340
341 simple_exp : NOT simple_exp %prec UNARY
342 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
343 ;
344
345 simple_exp : ABS simple_exp %prec UNARY
346 { write_exp_elt_opcode (UNOP_ABS); }
347 ;
348
349 arglist : { $$ = 0; }
350 ;
351
352 arglist : exp
353 { $$ = 1; }
354 | NAME ARROW exp
355 { $$ = 1; }
356 | arglist ',' exp
357 { $$ = $1 + 1; }
358 | arglist ',' NAME ARROW exp
359 { $$ = $1 + 1; }
360 ;
361
362 primary : '{' var_or_type '}' primary %prec '.'
363 /* GDB extension */
364 {
365 if ($2 == NULL)
366 error (_("Type required within braces in coercion"));
367 write_exp_elt_opcode (UNOP_MEMVAL);
368 write_exp_elt_type ($2);
369 write_exp_elt_opcode (UNOP_MEMVAL);
370 }
371 ;
372
373 /* Binary operators in order of decreasing precedence. */
374
375 simple_exp : simple_exp STARSTAR simple_exp
376 { write_exp_elt_opcode (BINOP_EXP); }
377 ;
378
379 simple_exp : simple_exp '*' simple_exp
380 { write_exp_elt_opcode (BINOP_MUL); }
381 ;
382
383 simple_exp : simple_exp '/' simple_exp
384 { write_exp_elt_opcode (BINOP_DIV); }
385 ;
386
387 simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
388 { write_exp_elt_opcode (BINOP_REM); }
389 ;
390
391 simple_exp : simple_exp MOD simple_exp
392 { write_exp_elt_opcode (BINOP_MOD); }
393 ;
394
395 simple_exp : simple_exp '@' simple_exp /* GDB extension */
396 { write_exp_elt_opcode (BINOP_REPEAT); }
397 ;
398
399 simple_exp : simple_exp '+' simple_exp
400 { write_exp_elt_opcode (BINOP_ADD); }
401 ;
402
403 simple_exp : simple_exp '&' simple_exp
404 { write_exp_elt_opcode (BINOP_CONCAT); }
405 ;
406
407 simple_exp : simple_exp '-' simple_exp
408 { write_exp_elt_opcode (BINOP_SUB); }
409 ;
410
411 relation : simple_exp
412 ;
413
414 relation : simple_exp '=' simple_exp
415 { write_exp_elt_opcode (BINOP_EQUAL); }
416 ;
417
418 relation : simple_exp NOTEQUAL simple_exp
419 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
420 ;
421
422 relation : simple_exp LEQ simple_exp
423 { write_exp_elt_opcode (BINOP_LEQ); }
424 ;
425
426 relation : simple_exp IN simple_exp DOTDOT simple_exp
427 { write_exp_elt_opcode (TERNOP_IN_RANGE); }
428 | simple_exp IN primary TICK_RANGE tick_arglist
429 { write_exp_elt_opcode (BINOP_IN_BOUNDS);
430 write_exp_elt_longcst ((LONGEST) $5);
431 write_exp_elt_opcode (BINOP_IN_BOUNDS);
432 }
433 | simple_exp IN var_or_type %prec TICK_ACCESS
434 {
435 if ($3 == NULL)
436 error (_("Right operand of 'in' must be type"));
437 write_exp_elt_opcode (UNOP_IN_RANGE);
438 write_exp_elt_type ($3);
439 write_exp_elt_opcode (UNOP_IN_RANGE);
440 }
441 | simple_exp NOT IN simple_exp DOTDOT simple_exp
442 { write_exp_elt_opcode (TERNOP_IN_RANGE);
443 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
444 }
445 | simple_exp NOT IN primary TICK_RANGE tick_arglist
446 { write_exp_elt_opcode (BINOP_IN_BOUNDS);
447 write_exp_elt_longcst ((LONGEST) $6);
448 write_exp_elt_opcode (BINOP_IN_BOUNDS);
449 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
450 }
451 | simple_exp NOT IN var_or_type %prec TICK_ACCESS
452 {
453 if ($4 == NULL)
454 error (_("Right operand of 'in' must be type"));
455 write_exp_elt_opcode (UNOP_IN_RANGE);
456 write_exp_elt_type ($4);
457 write_exp_elt_opcode (UNOP_IN_RANGE);
458 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
459 }
460 ;
461
462 relation : simple_exp GEQ simple_exp
463 { write_exp_elt_opcode (BINOP_GEQ); }
464 ;
465
466 relation : simple_exp '<' simple_exp
467 { write_exp_elt_opcode (BINOP_LESS); }
468 ;
469
470 relation : simple_exp '>' simple_exp
471 { write_exp_elt_opcode (BINOP_GTR); }
472 ;
473
474 exp : relation
475 | and_exp
476 | and_then_exp
477 | or_exp
478 | or_else_exp
479 | xor_exp
480 ;
481
482 and_exp :
483 relation _AND_ relation
484 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
485 | and_exp _AND_ relation
486 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
487 ;
488
489 and_then_exp :
490 relation _AND_ THEN relation
491 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
492 | and_then_exp _AND_ THEN relation
493 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
494 ;
495
496 or_exp :
497 relation OR relation
498 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
499 | or_exp OR relation
500 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
501 ;
502
503 or_else_exp :
504 relation OR ELSE relation
505 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
506 | or_else_exp OR ELSE relation
507 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
508 ;
509
510 xor_exp : relation XOR relation
511 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
512 | xor_exp XOR relation
513 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
514 ;
515
516 /* Primaries can denote types (OP_TYPE). In cases such as
517 primary TICK_ADDRESS, where a type would be invalid, it will be
518 caught when evaluate_subexp in ada-lang.c tries to evaluate the
519 primary, expecting a value. Precedence rules resolve the ambiguity
520 in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A
521 construct such as aType'access'access will again cause an error when
522 aType'access evaluates to a type that evaluate_subexp attempts to
523 evaluate. */
524 primary : primary TICK_ACCESS
525 { write_exp_elt_opcode (UNOP_ADDR); }
526 | primary TICK_ADDRESS
527 { write_exp_elt_opcode (UNOP_ADDR);
528 write_exp_elt_opcode (UNOP_CAST);
529 write_exp_elt_type (type_system_address ());
530 write_exp_elt_opcode (UNOP_CAST);
531 }
532 | primary TICK_FIRST tick_arglist
533 { write_int ($3, type_int ());
534 write_exp_elt_opcode (OP_ATR_FIRST); }
535 | primary TICK_LAST tick_arglist
536 { write_int ($3, type_int ());
537 write_exp_elt_opcode (OP_ATR_LAST); }
538 | primary TICK_LENGTH tick_arglist
539 { write_int ($3, type_int ());
540 write_exp_elt_opcode (OP_ATR_LENGTH); }
541 | primary TICK_SIZE
542 { write_exp_elt_opcode (OP_ATR_SIZE); }
543 | primary TICK_TAG
544 { write_exp_elt_opcode (OP_ATR_TAG); }
545 | opt_type_prefix TICK_MIN '(' exp ',' exp ')'
546 { write_exp_elt_opcode (OP_ATR_MIN); }
547 | opt_type_prefix TICK_MAX '(' exp ',' exp ')'
548 { write_exp_elt_opcode (OP_ATR_MAX); }
549 | opt_type_prefix TICK_POS '(' exp ')'
550 { write_exp_elt_opcode (OP_ATR_POS); }
551 | type_prefix TICK_VAL '(' exp ')'
552 { write_exp_elt_opcode (OP_ATR_VAL); }
553 | type_prefix TICK_MODULUS
554 { write_exp_elt_opcode (OP_ATR_MODULUS); }
555 ;
556
557 tick_arglist : %prec '('
558 { $$ = 1; }
559 | '(' INT ')'
560 { $$ = $2.val; }
561 ;
562
563 type_prefix :
564 var_or_type
565 {
566 if ($1 == NULL)
567 error (_("Prefix must be type"));
568 write_exp_elt_opcode (OP_TYPE);
569 write_exp_elt_type ($1);
570 write_exp_elt_opcode (OP_TYPE); }
571 ;
572
573 opt_type_prefix :
574 type_prefix
575 | /* EMPTY */
576 { write_exp_elt_opcode (OP_TYPE);
577 write_exp_elt_type (parse_type->builtin_void);
578 write_exp_elt_opcode (OP_TYPE); }
579 ;
580
581
582 primary : INT
583 { write_int ((LONGEST) $1.val, $1.type); }
584 ;
585
586 primary : CHARLIT
587 { write_int (convert_char_literal (type_qualifier, $1.val),
588 (type_qualifier == NULL)
589 ? $1.type : type_qualifier);
590 }
591 ;
592
593 primary : FLOAT
594 { write_exp_elt_opcode (OP_DOUBLE);
595 write_exp_elt_type ($1.type);
596 write_exp_elt_dblcst ($1.dval);
597 write_exp_elt_opcode (OP_DOUBLE);
598 }
599 ;
600
601 primary : NULL_PTR
602 { write_int (0, type_int ()); }
603 ;
604
605 primary : STRING
606 {
607 write_exp_op_with_string (OP_STRING, $1);
608 }
609 ;
610
611 primary : TRUEKEYWORD
612 { write_int (1, type_boolean ()); }
613 | FALSEKEYWORD
614 { write_int (0, type_boolean ()); }
615 ;
616
617 primary : NEW NAME
618 { error (_("NEW not implemented.")); }
619 ;
620
621 var_or_type: NAME %prec VAR
622 { $$ = write_var_or_type (NULL, $1); }
623 | block NAME %prec VAR
624 { $$ = write_var_or_type ($1, $2); }
625 | NAME TICK_ACCESS
626 {
627 $$ = write_var_or_type (NULL, $1);
628 if ($$ == NULL)
629 write_exp_elt_opcode (UNOP_ADDR);
630 else
631 $$ = lookup_pointer_type ($$);
632 }
633 | block NAME TICK_ACCESS
634 {
635 $$ = write_var_or_type ($1, $2);
636 if ($$ == NULL)
637 write_exp_elt_opcode (UNOP_ADDR);
638 else
639 $$ = lookup_pointer_type ($$);
640 }
641 ;
642
643 /* GDB extension */
644 block : NAME COLONCOLON
645 { $$ = block_lookup (NULL, $1.ptr); }
646 | block NAME COLONCOLON
647 { $$ = block_lookup ($1, $2.ptr); }
648 ;
649
650 aggregate :
651 '(' aggregate_component_list ')'
652 {
653 write_exp_elt_opcode (OP_AGGREGATE);
654 write_exp_elt_longcst ($2);
655 write_exp_elt_opcode (OP_AGGREGATE);
656 }
657 ;
658
659 aggregate_component_list :
660 component_groups { $$ = $1; }
661 | positional_list exp
662 { write_exp_elt_opcode (OP_POSITIONAL);
663 write_exp_elt_longcst ($1);
664 write_exp_elt_opcode (OP_POSITIONAL);
665 $$ = $1 + 1;
666 }
667 | positional_list component_groups
668 { $$ = $1 + $2; }
669 ;
670
671 positional_list :
672 exp ','
673 { write_exp_elt_opcode (OP_POSITIONAL);
674 write_exp_elt_longcst (0);
675 write_exp_elt_opcode (OP_POSITIONAL);
676 $$ = 1;
677 }
678 | positional_list exp ','
679 { write_exp_elt_opcode (OP_POSITIONAL);
680 write_exp_elt_longcst ($1);
681 write_exp_elt_opcode (OP_POSITIONAL);
682 $$ = $1 + 1;
683 }
684 ;
685
686 component_groups:
687 others { $$ = 1; }
688 | component_group { $$ = 1; }
689 | component_group ',' component_groups
690 { $$ = $3 + 1; }
691 ;
692
693 others : OTHERS ARROW exp
694 { write_exp_elt_opcode (OP_OTHERS); }
695 ;
696
697 component_group :
698 component_associations
699 {
700 write_exp_elt_opcode (OP_CHOICES);
701 write_exp_elt_longcst ($1);
702 write_exp_elt_opcode (OP_CHOICES);
703 }
704 ;
705
706 /* We use this somewhat obscure definition in order to handle NAME => and
707 NAME | differently from exp => and exp |. ARROW and '|' have a precedence
708 above that of the reduction of NAME to var_or_type. By delaying
709 decisions until after the => or '|', we convert the ambiguity to a
710 resolved shift/reduce conflict. */
711 component_associations :
712 NAME ARROW
713 { write_name_assoc ($1); }
714 exp { $$ = 1; }
715 | simple_exp ARROW exp
716 { $$ = 1; }
717 | simple_exp DOTDOT simple_exp ARROW
718 { write_exp_elt_opcode (OP_DISCRETE_RANGE);
719 write_exp_op_with_string (OP_NAME, empty_stoken);
720 }
721 exp { $$ = 1; }
722 | NAME '|'
723 { write_name_assoc ($1); }
724 component_associations { $$ = $4 + 1; }
725 | simple_exp '|'
726 component_associations { $$ = $3 + 1; }
727 | simple_exp DOTDOT simple_exp '|'
728 { write_exp_elt_opcode (OP_DISCRETE_RANGE); }
729 component_associations { $$ = $6 + 1; }
730 ;
731
732 /* Some extensions borrowed from C, for the benefit of those who find they
733 can't get used to Ada notation in GDB. */
734
735 primary : '*' primary %prec '.'
736 { write_exp_elt_opcode (UNOP_IND); }
737 | '&' primary %prec '.'
738 { write_exp_elt_opcode (UNOP_ADDR); }
739 | primary '[' exp ']'
740 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
741 ;
742
743 %%
744
745 /* yylex defined in ada-lex.c: Reads one token, getting characters */
746 /* through lexptr. */
747
748 /* Remap normal flex interface names (yylex) as well as gratuitiously */
749 /* global symbol names, so we can have multiple flex-generated parsers */
750 /* in gdb. */
751
752 /* (See note above on previous definitions for YACC.) */
753
754 #define yy_create_buffer ada_yy_create_buffer
755 #define yy_delete_buffer ada_yy_delete_buffer
756 #define yy_init_buffer ada_yy_init_buffer
757 #define yy_load_buffer_state ada_yy_load_buffer_state
758 #define yy_switch_to_buffer ada_yy_switch_to_buffer
759 #define yyrestart ada_yyrestart
760 #define yytext ada_yytext
761 #define yywrap ada_yywrap
762
763 static struct obstack temp_parse_space;
764
765 /* The following kludge was found necessary to prevent conflicts between */
766 /* defs.h and non-standard stdlib.h files. */
767 #define qsort __qsort__dummy
768 #include "ada-lex.c"
769
770 int
771 ada_parse (void)
772 {
773 lexer_init (yyin); /* (Re-)initialize lexer. */
774 type_qualifier = NULL;
775 obstack_free (&temp_parse_space, NULL);
776 obstack_init (&temp_parse_space);
777
778 return _ada_parse ();
779 }
780
781 void
782 yyerror (char *msg)
783 {
784 error (_("Error in expression, near `%s'."), lexptr);
785 }
786
787 /* Emit expression to access an instance of SYM, in block BLOCK (if
788 * non-NULL), and with :: qualification ORIG_LEFT_CONTEXT. */
789 static void
790 write_var_from_sym (const struct block *orig_left_context,
791 const struct block *block,
792 struct symbol *sym)
793 {
794 if (orig_left_context == NULL && symbol_read_needs_frame (sym))
795 {
796 if (innermost_block == 0
797 || contained_in (block, innermost_block))
798 innermost_block = block;
799 }
800
801 write_exp_elt_opcode (OP_VAR_VALUE);
802 write_exp_elt_block (block);
803 write_exp_elt_sym (sym);
804 write_exp_elt_opcode (OP_VAR_VALUE);
805 }
806
807 /* Write integer or boolean constant ARG of type TYPE. */
808
809 static void
810 write_int (LONGEST arg, struct type *type)
811 {
812 write_exp_elt_opcode (OP_LONG);
813 write_exp_elt_type (type);
814 write_exp_elt_longcst (arg);
815 write_exp_elt_opcode (OP_LONG);
816 }
817
818 /* Write an OPCODE, string, OPCODE sequence to the current expression. */
819 static void
820 write_exp_op_with_string (enum exp_opcode opcode, struct stoken token)
821 {
822 write_exp_elt_opcode (opcode);
823 write_exp_string (token);
824 write_exp_elt_opcode (opcode);
825 }
826
827 /* Emit expression corresponding to the renamed object named
828 * designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
829 * context of ORIG_LEFT_CONTEXT, to which is applied the operations
830 * encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of
831 * cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it
832 * defaults to the currently selected block. ORIG_SYMBOL is the
833 * symbol that originally encoded the renaming. It is needed only
834 * because its prefix also qualifies any index variables used to index
835 * or slice an array. It should not be necessary once we go to the
836 * new encoding entirely (FIXME pnh 7/20/2007). */
837
838 static void
839 write_object_renaming (const struct block *orig_left_context,
840 const char *renamed_entity, int renamed_entity_len,
841 const char *renaming_expr, int max_depth)
842 {
843 char *name;
844 enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;
845 struct ada_symbol_info sym_info;
846
847 if (max_depth <= 0)
848 error (_("Could not find renamed symbol"));
849
850 if (orig_left_context == NULL)
851 orig_left_context = get_selected_block (NULL);
852
853 name = obstack_copy0 (&temp_parse_space, renamed_entity, renamed_entity_len);
854 ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN, &sym_info);
855 if (sym_info.sym == NULL)
856 error (_("Could not find renamed variable: %s"), ada_decode (name));
857 else if (SYMBOL_CLASS (sym_info.sym) == LOC_TYPEDEF)
858 /* We have a renaming of an old-style renaming symbol. Don't
859 trust the block information. */
860 sym_info.block = orig_left_context;
861
862 {
863 const char *inner_renamed_entity;
864 int inner_renamed_entity_len;
865 const char *inner_renaming_expr;
866
867 switch (ada_parse_renaming (sym_info.sym, &inner_renamed_entity,
868 &inner_renamed_entity_len,
869 &inner_renaming_expr))
870 {
871 case ADA_NOT_RENAMING:
872 write_var_from_sym (orig_left_context, sym_info.block, sym_info.sym);
873 break;
874 case ADA_OBJECT_RENAMING:
875 write_object_renaming (sym_info.block,
876 inner_renamed_entity, inner_renamed_entity_len,
877 inner_renaming_expr, max_depth - 1);
878 break;
879 default:
880 goto BadEncoding;
881 }
882 }
883
884 slice_state = SIMPLE_INDEX;
885 while (*renaming_expr == 'X')
886 {
887 renaming_expr += 1;
888
889 switch (*renaming_expr) {
890 case 'A':
891 renaming_expr += 1;
892 write_exp_elt_opcode (UNOP_IND);
893 break;
894 case 'L':
895 slice_state = LOWER_BOUND;
896 /* FALLTHROUGH */
897 case 'S':
898 renaming_expr += 1;
899 if (isdigit (*renaming_expr))
900 {
901 char *next;
902 long val = strtol (renaming_expr, &next, 10);
903 if (next == renaming_expr)
904 goto BadEncoding;
905 renaming_expr = next;
906 write_exp_elt_opcode (OP_LONG);
907 write_exp_elt_type (type_int ());
908 write_exp_elt_longcst ((LONGEST) val);
909 write_exp_elt_opcode (OP_LONG);
910 }
911 else
912 {
913 const char *end;
914 char *index_name;
915 struct ada_symbol_info index_sym_info;
916
917 end = strchr (renaming_expr, 'X');
918 if (end == NULL)
919 end = renaming_expr + strlen (renaming_expr);
920
921 index_name =
922 obstack_copy0 (&temp_parse_space, renaming_expr,
923 end - renaming_expr);
924 renaming_expr = end;
925
926 ada_lookup_encoded_symbol (index_name, NULL, VAR_DOMAIN,
927 &index_sym_info);
928 if (index_sym_info.sym == NULL)
929 error (_("Could not find %s"), index_name);
930 else if (SYMBOL_CLASS (index_sym_info.sym) == LOC_TYPEDEF)
931 /* Index is an old-style renaming symbol. */
932 index_sym_info.block = orig_left_context;
933 write_var_from_sym (NULL, index_sym_info.block,
934 index_sym_info.sym);
935 }
936 if (slice_state == SIMPLE_INDEX)
937 {
938 write_exp_elt_opcode (OP_FUNCALL);
939 write_exp_elt_longcst ((LONGEST) 1);
940 write_exp_elt_opcode (OP_FUNCALL);
941 }
942 else if (slice_state == LOWER_BOUND)
943 slice_state = UPPER_BOUND;
944 else if (slice_state == UPPER_BOUND)
945 {
946 write_exp_elt_opcode (TERNOP_SLICE);
947 slice_state = SIMPLE_INDEX;
948 }
949 break;
950
951 case 'R':
952 {
953 struct stoken field_name;
954 const char *end;
955 char *buf;
956
957 renaming_expr += 1;
958
959 if (slice_state != SIMPLE_INDEX)
960 goto BadEncoding;
961 end = strchr (renaming_expr, 'X');
962 if (end == NULL)
963 end = renaming_expr + strlen (renaming_expr);
964 field_name.length = end - renaming_expr;
965 buf = malloc (end - renaming_expr + 1);
966 field_name.ptr = buf;
967 strncpy (buf, renaming_expr, end - renaming_expr);
968 buf[end - renaming_expr] = '\000';
969 renaming_expr = end;
970 write_exp_op_with_string (STRUCTOP_STRUCT, field_name);
971 break;
972 }
973
974 default:
975 goto BadEncoding;
976 }
977 }
978 if (slice_state == SIMPLE_INDEX)
979 return;
980
981 BadEncoding:
982 error (_("Internal error in encoding of renaming declaration"));
983 }
984
985 static struct block*
986 block_lookup (struct block *context, const char *raw_name)
987 {
988 const char *name;
989 struct ada_symbol_info *syms;
990 int nsyms;
991 struct symtab *symtab;
992
993 if (raw_name[0] == '\'')
994 {
995 raw_name += 1;
996 name = raw_name;
997 }
998 else
999 name = ada_encode (raw_name);
1000
1001 nsyms = ada_lookup_symbol_list (name, context, VAR_DOMAIN, &syms);
1002 if (context == NULL
1003 && (nsyms == 0 || SYMBOL_CLASS (syms[0].sym) != LOC_BLOCK))
1004 symtab = lookup_symtab (name);
1005 else
1006 symtab = NULL;
1007
1008 if (symtab != NULL)
1009 return BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1010 else if (nsyms == 0 || SYMBOL_CLASS (syms[0].sym) != LOC_BLOCK)
1011 {
1012 if (context == NULL)
1013 error (_("No file or function \"%s\"."), raw_name);
1014 else
1015 error (_("No function \"%s\" in specified context."), raw_name);
1016 }
1017 else
1018 {
1019 if (nsyms > 1)
1020 warning (_("Function name \"%s\" ambiguous here"), raw_name);
1021 return SYMBOL_BLOCK_VALUE (syms[0].sym);
1022 }
1023 }
1024
1025 static struct symbol*
1026 select_possible_type_sym (struct ada_symbol_info *syms, int nsyms)
1027 {
1028 int i;
1029 int preferred_index;
1030 struct type *preferred_type;
1031
1032 preferred_index = -1; preferred_type = NULL;
1033 for (i = 0; i < nsyms; i += 1)
1034 switch (SYMBOL_CLASS (syms[i].sym))
1035 {
1036 case LOC_TYPEDEF:
1037 if (ada_prefer_type (SYMBOL_TYPE (syms[i].sym), preferred_type))
1038 {
1039 preferred_index = i;
1040 preferred_type = SYMBOL_TYPE (syms[i].sym);
1041 }
1042 break;
1043 case LOC_REGISTER:
1044 case LOC_ARG:
1045 case LOC_REF_ARG:
1046 case LOC_REGPARM_ADDR:
1047 case LOC_LOCAL:
1048 case LOC_COMPUTED:
1049 return NULL;
1050 default:
1051 break;
1052 }
1053 if (preferred_type == NULL)
1054 return NULL;
1055 return syms[preferred_index].sym;
1056 }
1057
1058 static struct type*
1059 find_primitive_type (char *name)
1060 {
1061 struct type *type;
1062 type = language_lookup_primitive_type_by_name (parse_language,
1063 parse_gdbarch,
1064 name);
1065 if (type == NULL && strcmp ("system__address", name) == 0)
1066 type = type_system_address ();
1067
1068 if (type != NULL)
1069 {
1070 /* Check to see if we have a regular definition of this
1071 type that just didn't happen to have been read yet. */
1072 struct symbol *sym;
1073 char *expanded_name =
1074 (char *) alloca (strlen (name) + sizeof ("standard__"));
1075 strcpy (expanded_name, "standard__");
1076 strcat (expanded_name, name);
1077 sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN, NULL);
1078 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1079 type = SYMBOL_TYPE (sym);
1080 }
1081
1082 return type;
1083 }
1084
1085 static int
1086 chop_selector (char *name, int end)
1087 {
1088 int i;
1089 for (i = end - 1; i > 0; i -= 1)
1090 if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
1091 return i;
1092 return -1;
1093 }
1094
1095 /* If NAME is a string beginning with a separator (either '__', or
1096 '.'), chop this separator and return the result; else, return
1097 NAME. */
1098
1099 static char *
1100 chop_separator (char *name)
1101 {
1102 if (*name == '.')
1103 return name + 1;
1104
1105 if (name[0] == '_' && name[1] == '_')
1106 return name + 2;
1107
1108 return name;
1109 }
1110
1111 /* Given that SELS is a string of the form (<sep><identifier>)*, where
1112 <sep> is '__' or '.', write the indicated sequence of
1113 STRUCTOP_STRUCT expression operators. */
1114 static void
1115 write_selectors (char *sels)
1116 {
1117 while (*sels != '\0')
1118 {
1119 struct stoken field_name;
1120 char *p = chop_separator (sels);
1121 sels = p;
1122 while (*sels != '\0' && *sels != '.'
1123 && (sels[0] != '_' || sels[1] != '_'))
1124 sels += 1;
1125 field_name.length = sels - p;
1126 field_name.ptr = p;
1127 write_exp_op_with_string (STRUCTOP_STRUCT, field_name);
1128 }
1129 }
1130
1131 /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
1132 NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes
1133 a temporary symbol that is valid until the next call to ada_parse.
1134 */
1135 static void
1136 write_ambiguous_var (const struct block *block, char *name, int len)
1137 {
1138 struct symbol *sym =
1139 obstack_alloc (&temp_parse_space, sizeof (struct symbol));
1140 memset (sym, 0, sizeof (struct symbol));
1141 SYMBOL_DOMAIN (sym) = UNDEF_DOMAIN;
1142 SYMBOL_LINKAGE_NAME (sym) = obstack_copy0 (&temp_parse_space, name, len);
1143 SYMBOL_LANGUAGE (sym) = language_ada;
1144
1145 write_exp_elt_opcode (OP_VAR_VALUE);
1146 write_exp_elt_block (block);
1147 write_exp_elt_sym (sym);
1148 write_exp_elt_opcode (OP_VAR_VALUE);
1149 }
1150
1151 /* A convenient wrapper around ada_get_field_index that takes
1152 a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
1153 of a NUL-terminated field name. */
1154
1155 static int
1156 ada_nget_field_index (const struct type *type, const char *field_name0,
1157 int field_name_len, int maybe_missing)
1158 {
1159 char *field_name = alloca ((field_name_len + 1) * sizeof (char));
1160
1161 strncpy (field_name, field_name0, field_name_len);
1162 field_name[field_name_len] = '\0';
1163 return ada_get_field_index (type, field_name, maybe_missing);
1164 }
1165
1166 /* If encoded_field_name is the name of a field inside symbol SYM,
1167 then return the type of that field. Otherwise, return NULL.
1168
1169 This function is actually recursive, so if ENCODED_FIELD_NAME
1170 doesn't match one of the fields of our symbol, then try to see
1171 if ENCODED_FIELD_NAME could not be a succession of field names
1172 (in other words, the user entered an expression of the form
1173 TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
1174 each field name sequentially to obtain the desired field type.
1175 In case of failure, we return NULL. */
1176
1177 static struct type *
1178 get_symbol_field_type (struct symbol *sym, char *encoded_field_name)
1179 {
1180 char *field_name = encoded_field_name;
1181 char *subfield_name;
1182 struct type *type = SYMBOL_TYPE (sym);
1183 int fieldno;
1184
1185 if (type == NULL || field_name == NULL)
1186 return NULL;
1187 type = check_typedef (type);
1188
1189 while (field_name[0] != '\0')
1190 {
1191 field_name = chop_separator (field_name);
1192
1193 fieldno = ada_get_field_index (type, field_name, 1);
1194 if (fieldno >= 0)
1195 return TYPE_FIELD_TYPE (type, fieldno);
1196
1197 subfield_name = field_name;
1198 while (*subfield_name != '\0' && *subfield_name != '.'
1199 && (subfield_name[0] != '_' || subfield_name[1] != '_'))
1200 subfield_name += 1;
1201
1202 if (subfield_name[0] == '\0')
1203 return NULL;
1204
1205 fieldno = ada_nget_field_index (type, field_name,
1206 subfield_name - field_name, 1);
1207 if (fieldno < 0)
1208 return NULL;
1209
1210 type = TYPE_FIELD_TYPE (type, fieldno);
1211 field_name = subfield_name;
1212 }
1213
1214 return NULL;
1215 }
1216
1217 /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or
1218 expression_block_context if NULL). If it denotes a type, return
1219 that type. Otherwise, write expression code to evaluate it as an
1220 object and return NULL. In this second case, NAME0 will, in general,
1221 have the form <name>(.<selector_name>)*, where <name> is an object
1222 or renaming encoded in the debugging data. Calls error if no
1223 prefix <name> matches a name in the debugging data (i.e., matches
1224 either a complete name or, as a wild-card match, the final
1225 identifier). */
1226
1227 static struct type*
1228 write_var_or_type (const struct block *block, struct stoken name0)
1229 {
1230 int depth;
1231 char *encoded_name;
1232 int name_len;
1233
1234 if (block == NULL)
1235 block = expression_context_block;
1236
1237 encoded_name = ada_encode (name0.ptr);
1238 name_len = strlen (encoded_name);
1239 encoded_name = obstack_copy0 (&temp_parse_space, encoded_name, name_len);
1240 for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
1241 {
1242 int tail_index;
1243
1244 tail_index = name_len;
1245 while (tail_index > 0)
1246 {
1247 int nsyms;
1248 struct ada_symbol_info *syms;
1249 struct symbol *type_sym;
1250 struct symbol *renaming_sym;
1251 const char* renaming;
1252 int renaming_len;
1253 const char* renaming_expr;
1254 int terminator = encoded_name[tail_index];
1255
1256 encoded_name[tail_index] = '\0';
1257 nsyms = ada_lookup_symbol_list (encoded_name, block,
1258 VAR_DOMAIN, &syms);
1259 encoded_name[tail_index] = terminator;
1260
1261 /* A single symbol may rename a package or object. */
1262
1263 /* This should go away when we move entirely to new version.
1264 FIXME pnh 7/20/2007. */
1265 if (nsyms == 1)
1266 {
1267 struct symbol *ren_sym =
1268 ada_find_renaming_symbol (syms[0].sym, syms[0].block);
1269
1270 if (ren_sym != NULL)
1271 syms[0].sym = ren_sym;
1272 }
1273
1274 type_sym = select_possible_type_sym (syms, nsyms);
1275
1276 if (type_sym != NULL)
1277 renaming_sym = type_sym;
1278 else if (nsyms == 1)
1279 renaming_sym = syms[0].sym;
1280 else
1281 renaming_sym = NULL;
1282
1283 switch (ada_parse_renaming (renaming_sym, &renaming,
1284 &renaming_len, &renaming_expr))
1285 {
1286 case ADA_NOT_RENAMING:
1287 break;
1288 case ADA_PACKAGE_RENAMING:
1289 case ADA_EXCEPTION_RENAMING:
1290 case ADA_SUBPROGRAM_RENAMING:
1291 {
1292 char *new_name
1293 = obstack_alloc (&temp_parse_space,
1294 renaming_len + name_len - tail_index + 1);
1295 strncpy (new_name, renaming, renaming_len);
1296 strcpy (new_name + renaming_len, encoded_name + tail_index);
1297 encoded_name = new_name;
1298 name_len = renaming_len + name_len - tail_index;
1299 goto TryAfterRenaming;
1300 }
1301 case ADA_OBJECT_RENAMING:
1302 write_object_renaming (block, renaming, renaming_len,
1303 renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
1304 write_selectors (encoded_name + tail_index);
1305 return NULL;
1306 default:
1307 internal_error (__FILE__, __LINE__,
1308 _("impossible value from ada_parse_renaming"));
1309 }
1310
1311 if (type_sym != NULL)
1312 {
1313 struct type *field_type;
1314
1315 if (tail_index == name_len)
1316 return SYMBOL_TYPE (type_sym);
1317
1318 /* We have some extraneous characters after the type name.
1319 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
1320 then try to get the type of FIELDN. */
1321 field_type
1322 = get_symbol_field_type (type_sym, encoded_name + tail_index);
1323 if (field_type != NULL)
1324 return field_type;
1325 else
1326 error (_("Invalid attempt to select from type: \"%s\"."),
1327 name0.ptr);
1328 }
1329 else if (tail_index == name_len && nsyms == 0)
1330 {
1331 struct type *type = find_primitive_type (encoded_name);
1332
1333 if (type != NULL)
1334 return type;
1335 }
1336
1337 if (nsyms == 1)
1338 {
1339 write_var_from_sym (block, syms[0].block, syms[0].sym);
1340 write_selectors (encoded_name + tail_index);
1341 return NULL;
1342 }
1343 else if (nsyms == 0)
1344 {
1345 struct bound_minimal_symbol msym
1346 = ada_lookup_simple_minsym (encoded_name);
1347 if (msym.minsym != NULL)
1348 {
1349 write_exp_msymbol (msym);
1350 /* Maybe cause error here rather than later? FIXME? */
1351 write_selectors (encoded_name + tail_index);
1352 return NULL;
1353 }
1354
1355 if (tail_index == name_len
1356 && strncmp (encoded_name, "standard__",
1357 sizeof ("standard__") - 1) == 0)
1358 error (_("No definition of \"%s\" found."), name0.ptr);
1359
1360 tail_index = chop_selector (encoded_name, tail_index);
1361 }
1362 else
1363 {
1364 write_ambiguous_var (block, encoded_name, tail_index);
1365 write_selectors (encoded_name + tail_index);
1366 return NULL;
1367 }
1368 }
1369
1370 if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
1371 error (_("No symbol table is loaded. Use the \"file\" command."));
1372 if (block == expression_context_block)
1373 error (_("No definition of \"%s\" in current context."), name0.ptr);
1374 else
1375 error (_("No definition of \"%s\" in specified context."), name0.ptr);
1376
1377 TryAfterRenaming: ;
1378 }
1379
1380 error (_("Could not find renamed symbol \"%s\""), name0.ptr);
1381
1382 }
1383
1384 /* Write a left side of a component association (e.g., NAME in NAME =>
1385 exp). If NAME has the form of a selected component, write it as an
1386 ordinary expression. If it is a simple variable that unambiguously
1387 corresponds to exactly one symbol that does not denote a type or an
1388 object renaming, also write it normally as an OP_VAR_VALUE.
1389 Otherwise, write it as an OP_NAME.
1390
1391 Unfortunately, we don't know at this point whether NAME is supposed
1392 to denote a record component name or the value of an array index.
1393 Therefore, it is not appropriate to disambiguate an ambiguous name
1394 as we normally would, nor to replace a renaming with its referent.
1395 As a result, in the (one hopes) rare case that one writes an
1396 aggregate such as (R => 42) where R renames an object or is an
1397 ambiguous name, one must write instead ((R) => 42). */
1398
1399 static void
1400 write_name_assoc (struct stoken name)
1401 {
1402 if (strchr (name.ptr, '.') == NULL)
1403 {
1404 struct ada_symbol_info *syms;
1405 int nsyms = ada_lookup_symbol_list (name.ptr, expression_context_block,
1406 VAR_DOMAIN, &syms);
1407 if (nsyms != 1 || SYMBOL_CLASS (syms[0].sym) == LOC_TYPEDEF)
1408 write_exp_op_with_string (OP_NAME, name);
1409 else
1410 write_var_from_sym (NULL, syms[0].block, syms[0].sym);
1411 }
1412 else
1413 if (write_var_or_type (NULL, name) != NULL)
1414 error (_("Invalid use of type."));
1415 }
1416
1417 /* Convert the character literal whose ASCII value would be VAL to the
1418 appropriate value of type TYPE, if there is a translation.
1419 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
1420 the literal 'A' (VAL == 65), returns 0. */
1421
1422 static LONGEST
1423 convert_char_literal (struct type *type, LONGEST val)
1424 {
1425 char name[7];
1426 int f;
1427
1428 if (type == NULL)
1429 return val;
1430 type = check_typedef (type);
1431 if (TYPE_CODE (type) != TYPE_CODE_ENUM)
1432 return val;
1433
1434 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
1435 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
1436 {
1437 if (strcmp (name, TYPE_FIELD_NAME (type, f)) == 0)
1438 return TYPE_FIELD_ENUMVAL (type, f);
1439 }
1440 return val;
1441 }
1442
1443 static struct type *
1444 type_int (void)
1445 {
1446 return parse_type->builtin_int;
1447 }
1448
1449 static struct type *
1450 type_long (void)
1451 {
1452 return parse_type->builtin_long;
1453 }
1454
1455 static struct type *
1456 type_long_long (void)
1457 {
1458 return parse_type->builtin_long_long;
1459 }
1460
1461 static struct type *
1462 type_float (void)
1463 {
1464 return parse_type->builtin_float;
1465 }
1466
1467 static struct type *
1468 type_double (void)
1469 {
1470 return parse_type->builtin_double;
1471 }
1472
1473 static struct type *
1474 type_long_double (void)
1475 {
1476 return parse_type->builtin_long_double;
1477 }
1478
1479 static struct type *
1480 type_char (void)
1481 {
1482 return language_string_char_type (parse_language, parse_gdbarch);
1483 }
1484
1485 static struct type *
1486 type_boolean (void)
1487 {
1488 return parse_type->builtin_bool;
1489 }
1490
1491 static struct type *
1492 type_system_address (void)
1493 {
1494 struct type *type
1495 = language_lookup_primitive_type_by_name (parse_language,
1496 parse_gdbarch,
1497 "system__address");
1498 return type != NULL ? type : parse_type->builtin_data_ptr;
1499 }
1500
1501 /* Provide a prototype to silence -Wmissing-prototypes. */
1502 extern initialize_file_ftype _initialize_ada_exp;
1503
1504 void
1505 _initialize_ada_exp (void)
1506 {
1507 obstack_init (&temp_parse_space);
1508 }