]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
New common function "startswith"
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum domain;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (startswith (field_name + len, "___")
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && !startswith (p, mapping->decoded); mapping += 1)
1007 ;
1008 if (mapping->encoded == NULL)
1009 error (_("invalid Ada operator name: %s"), p);
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
1014 else
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
1019 }
1020
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
1023 }
1024
1025 /* Return NAME folded to lower case, or, if surrounded by single
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
1029 char *
1030 ada_fold_name (const char *name)
1031 {
1032 static char *fold_buffer = NULL;
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1037
1038 if (name[0] == '\'')
1039 {
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
1042 }
1043 else
1044 {
1045 int i;
1046
1047 for (i = 0; i <= len; i += 1)
1048 fold_buffer[i] = tolower (name[i]);
1049 }
1050
1051 return fold_buffer;
1052 }
1053
1054 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056 static int
1057 is_lower_alphanum (const char c)
1058 {
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060 }
1061
1062 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
1069
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074 static void
1075 ada_remove_trailing_digits (const char *encoded, int *len)
1076 {
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
1080
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
1087 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1088 *len = i - 2;
1089 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1090 *len = i - 1;
1091 }
1092 }
1093
1094 /* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097 static void
1098 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099 {
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
1105 the 'P' suffix. The second calls the first one after handling
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114 }
1115
1116 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118 static void
1119 ada_remove_Xbn_suffix (const char *encoded, int *len)
1120 {
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134 }
1135
1136 /* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
1139
1140 The resulting string is valid until the next call of ada_decode.
1141 If the string is unchanged by decoding, the original string pointer
1142 is returned. */
1143
1144 const char *
1145 ada_decode (const char *encoded)
1146 {
1147 int i, j;
1148 int len0;
1149 const char *p;
1150 char *decoded;
1151 int at_start_name;
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
1154
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
1158 if (startswith (encoded, "_ada_"))
1159 encoded += 5;
1160
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
1164 if (encoded[0] == '_' || encoded[0] == '<')
1165 goto Suppress;
1166
1167 len0 = strlen (encoded);
1168
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
1171
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
1178 {
1179 if (p[3] == 'X')
1180 len0 = p - encoded;
1181 else
1182 goto Suppress;
1183 }
1184
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
1189 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1190 len0 -= 3;
1191
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
1196 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1197 len0 -= 2;
1198
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
1202 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1203 len0 -= 1;
1204
1205 /* Make decoded big enough for possible expansion by operator name. */
1206
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
1209
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1213 {
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
1222 }
1223
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
1233 /* Is this a symbol function? */
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
1237
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
1255 at_start_name = 0;
1256
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
1260 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1261 i += 2;
1262
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
1285 of subprograms created by the compiler for each entry. The first
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1350 {
1351 /* Replace '__' by '.'. */
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
1357 else
1358 {
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
1365 }
1366 decoded[j] = '\000';
1367
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
1373 goto Suppress;
1374
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
1379
1380 Suppress:
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
1385 else
1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1387 return decoded;
1388
1389 }
1390
1391 /* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396 static struct htab *decoded_names_store;
1397
1398 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
1403 GSYMBOL).
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
1406 when a decoded name is cached in it. */
1407
1408 const char *
1409 ada_decode_symbol (const struct general_symbol_info *arg)
1410 {
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
1414
1415 if (!gsymbol->ada_mangled)
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
1418 struct obstack *obstack = gsymbol->language_specific.obstack;
1419
1420 gsymbol->ada_mangled = 1;
1421
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
1425 {
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
1433
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
1438 }
1439
1440 return *resultp;
1441 }
1442
1443 static char *
1444 ada_la_decode (const char *encoded, int options)
1445 {
1446 return xstrdup (ada_decode (encoded));
1447 }
1448
1449 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
1455
1456 static int
1457 match_name (const char *sym_name, const char *name, int wild)
1458 {
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
1462 return wild_match (sym_name, name) == 0;
1463 else
1464 {
1465 int len_name = strlen (name);
1466
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
1469 || (startswith (sym_name, "_ada_")
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
1472 }
1473 }
1474 \f
1475
1476 /* Arrays */
1477
1478 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501 void
1502 ada_fixup_array_indexes_type (struct type *index_desc_type)
1503 {
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531 }
1532
1533 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1534
1535 static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538 };
1539
1540 /* Maximum number of array dimensions we are prepared to handle. */
1541
1542 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1543
1544
1545 /* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
1547
1548 /* The descriptor or array type, if any, indicated by TYPE; removes
1549 level of indirection, if needed. */
1550
1551 static struct type *
1552 desc_base_type (struct type *type)
1553 {
1554 if (type == NULL)
1555 return NULL;
1556 type = ada_check_typedef (type);
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1564 else
1565 return type;
1566 }
1567
1568 /* True iff TYPE indicates a "thin" array pointer type. */
1569
1570 static int
1571 is_thin_pntr (struct type *type)
1572 {
1573 return
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576 }
1577
1578 /* The descriptor type for thin pointer type TYPE. */
1579
1580 static struct type *
1581 thin_descriptor_type (struct type *type)
1582 {
1583 struct type *base_type = desc_base_type (type);
1584
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
1589 else
1590 {
1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1592
1593 if (alt_type == NULL)
1594 return base_type;
1595 else
1596 return alt_type;
1597 }
1598 }
1599
1600 /* A pointer to the array data for thin-pointer value VAL. */
1601
1602 static struct value *
1603 thin_data_pntr (struct value *val)
1604 {
1605 struct type *type = ada_check_typedef (value_type (val));
1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1607
1608 data_type = lookup_pointer_type (data_type);
1609
1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1611 return value_cast (data_type, value_copy (val));
1612 else
1613 return value_from_longest (data_type, value_address (val));
1614 }
1615
1616 /* True iff TYPE indicates a "thick" array pointer type. */
1617
1618 static int
1619 is_thick_pntr (struct type *type)
1620 {
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
1628
1629 static struct type *
1630 desc_bounds_type (struct type *type)
1631 {
1632 struct type *r;
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
1642 return NULL;
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
1645 return ada_check_typedef (r);
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1652 }
1653 return NULL;
1654 }
1655
1656 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
1659 static struct value *
1660 desc_bounds (struct value *arr)
1661 {
1662 struct type *type = ada_check_typedef (value_type (arr));
1663
1664 if (is_thin_pntr (type))
1665 {
1666 struct type *bounds_type =
1667 desc_bounds_type (thin_descriptor_type (type));
1668 LONGEST addr;
1669
1670 if (bounds_type == NULL)
1671 error (_("Bad GNAT array descriptor"));
1672
1673 /* NOTE: The following calculation is not really kosher, but
1674 since desc_type is an XVE-encoded type (and shouldn't be),
1675 the correct calculation is a real pain. FIXME (and fix GCC). */
1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1677 addr = value_as_long (arr);
1678 else
1679 addr = value_address (arr);
1680
1681 return
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
1684 }
1685
1686 else if (is_thick_pntr (type))
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
1707 else
1708 return NULL;
1709 }
1710
1711 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
1714 static int
1715 fat_pntr_bounds_bitpos (struct type *type)
1716 {
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718 }
1719
1720 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1721 size of the field containing the address of the bounds data. */
1722
1723 static int
1724 fat_pntr_bounds_bitsize (struct type *type)
1725 {
1726 type = desc_base_type (type);
1727
1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1732 }
1733
1734 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
1738
1739 static struct type *
1740 desc_data_target_type (struct type *type)
1741 {
1742 type = desc_base_type (type);
1743
1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
1745 if (is_thin_pntr (type))
1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1747 else if (is_thick_pntr (type))
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1754 }
1755
1756 return NULL;
1757 }
1758
1759 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
1761
1762 static struct value *
1763 desc_data (struct value *arr)
1764 {
1765 struct type *type = value_type (arr);
1766
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1771 _("Bad GNAT array descriptor"));
1772 else
1773 return NULL;
1774 }
1775
1776
1777 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1778 position of the field containing the address of the data. */
1779
1780 static int
1781 fat_pntr_data_bitpos (struct type *type)
1782 {
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784 }
1785
1786 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1787 size of the field containing the address of the data. */
1788
1789 static int
1790 fat_pntr_data_bitsize (struct type *type)
1791 {
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
1796 else
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static struct value *
1805 desc_one_bound (struct value *bounds, int i, int which)
1806 {
1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1808 _("Bad GNAT array descriptor bounds"));
1809 }
1810
1811 /* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
1815 static int
1816 desc_bound_bitpos (struct type *type, int i, int which)
1817 {
1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1819 }
1820
1821 /* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
1825 static int
1826 desc_bound_bitsize (struct type *type, int i, int which)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1834 }
1835
1836 /* If TYPE is the type of an array-bounds structure, the type of its
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
1839 static struct type *
1840 desc_index_type (struct type *type, int i)
1841 {
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
1847 return NULL;
1848 }
1849
1850 /* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
1853 static int
1854 desc_arity (struct type *type)
1855 {
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861 }
1862
1863 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
1867 static int
1868 ada_is_direct_array_type (struct type *type)
1869 {
1870 if (type == NULL)
1871 return 0;
1872 type = ada_check_typedef (type);
1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1874 || ada_is_array_descriptor_type (type));
1875 }
1876
1877 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1878 * to one. */
1879
1880 static int
1881 ada_is_array_type (struct type *type)
1882 {
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888 }
1889
1890 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1891
1892 int
1893 ada_is_simple_array_type (struct type *type)
1894 {
1895 if (type == NULL)
1896 return 0;
1897 type = ada_check_typedef (type);
1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
1902 }
1903
1904 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
1906 int
1907 ada_is_array_descriptor_type (struct type *type)
1908 {
1909 struct type *data_type = desc_data_target_type (type);
1910
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
1917 }
1918
1919 /* Non-zero iff type is a partially mal-formed GNAT array
1920 descriptor. FIXME: This is to compensate for some problems with
1921 debugging output from GNAT. Re-examine periodically to see if it
1922 is still needed. */
1923
1924 int
1925 ada_is_bogus_array_descriptor (struct type *type)
1926 {
1927 return
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
1933 }
1934
1935
1936 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1937 (fat pointer) returns the type of the array data described---specifically,
1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1939 in from the descriptor; otherwise, they are left unspecified. If
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
1942 a descriptor. */
1943 struct type *
1944 ada_type_of_array (struct value *arr, int bounds)
1945 {
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
1948
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
1951
1952 if (!bounds)
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
1963 else
1964 {
1965 struct type *elt_type;
1966 int arity;
1967 struct value *descriptor;
1968
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
1971
1972 if (elt_type == NULL || arity == 0)
1973 return ada_check_typedef (value_type (arr));
1974
1975 descriptor = desc_bounds (arr);
1976 if (value_as_long (descriptor) == 0)
1977 return NULL;
1978 while (arity > 0)
1979 {
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
1984
1985 arity -= 1;
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
1989 elt_type = create_array_type (array_type, elt_type, range_type);
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
2011 }
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
2022 struct value *
2023 ada_coerce_to_simple_array_ptr (struct value *arr)
2024 {
2025 if (ada_is_array_descriptor_type (value_type (arr)))
2026 {
2027 struct type *arrType = ada_type_of_array (arr, 1);
2028
2029 if (arrType == NULL)
2030 return NULL;
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
2041 be ARR itself if it already is in the proper form). */
2042
2043 struct value *
2044 ada_coerce_to_simple_array (struct value *arr)
2045 {
2046 if (ada_is_array_descriptor_type (value_type (arr)))
2047 {
2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2049
2050 if (arrVal == NULL)
2051 error (_("Bounds unavailable for null array pointer."));
2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2053 return value_ind (arrVal);
2054 }
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
2057 else
2058 return arr;
2059 }
2060
2061 /* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
2063 packing). For other types, is the identity. */
2064
2065 struct type *
2066 ada_coerce_to_simple_array_type (struct type *type)
2067 {
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
2070
2071 if (ada_is_array_descriptor_type (type))
2072 return ada_check_typedef (desc_data_target_type (type));
2073
2074 return type;
2075 }
2076
2077 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
2079 static int
2080 ada_is_packed_array_type (struct type *type)
2081 {
2082 if (type == NULL)
2083 return 0;
2084 type = desc_base_type (type);
2085 type = ada_check_typedef (type);
2086 return
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089 }
2090
2091 /* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094 int
2095 ada_is_constrained_packed_array_type (struct type *type)
2096 {
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099 }
2100
2101 /* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104 static int
2105 ada_is_unconstrained_packed_array_type (struct type *type)
2106 {
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109 }
2110
2111 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114 static long
2115 decode_packed_array_bitsize (struct type *type)
2116 {
2117 const char *raw_name;
2118 const char *tail;
2119 long bits;
2120
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
2135 gdb_assert (tail != NULL);
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145 }
2146
2147 /* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2154 in bits.
2155
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
2163
2164 static struct type *
2165 constrained_packed_array_type (struct type *type, long *elt_bits)
2166 {
2167 struct type *new_elt_type;
2168 struct type *new_type;
2169 struct type *index_type_desc;
2170 struct type *index_type;
2171 LONGEST low_bound, high_bound;
2172
2173 type = ada_check_typedef (type);
2174 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2175 return type;
2176
2177 index_type_desc = ada_find_parallel_type (type, "___XA");
2178 if (index_type_desc)
2179 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2180 NULL);
2181 else
2182 index_type = TYPE_INDEX_TYPE (type);
2183
2184 new_type = alloc_type_copy (type);
2185 new_elt_type =
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2187 elt_bits);
2188 create_array_type (new_type, new_elt_type, index_type);
2189 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2190 TYPE_NAME (new_type) = ada_type_name (type);
2191
2192 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type)))
2194 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2195 low_bound = high_bound = 0;
2196 if (high_bound < low_bound)
2197 *elt_bits = TYPE_LENGTH (new_type) = 0;
2198 else
2199 {
2200 *elt_bits *= (high_bound - low_bound + 1);
2201 TYPE_LENGTH (new_type) =
2202 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2203 }
2204
2205 TYPE_FIXED_INSTANCE (new_type) = 1;
2206 return new_type;
2207 }
2208
2209 /* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
2211
2212 static struct type *
2213 decode_constrained_packed_array_type (struct type *type)
2214 {
2215 const char *raw_name = ada_type_name (ada_check_typedef (type));
2216 char *name;
2217 const char *tail;
2218 struct type *shadow_type;
2219 long bits;
2220
2221 if (!raw_name)
2222 raw_name = ada_type_name (desc_base_type (type));
2223
2224 if (!raw_name)
2225 return NULL;
2226
2227 name = (char *) alloca (strlen (raw_name) + 1);
2228 tail = strstr (raw_name, "___XP");
2229 type = desc_base_type (type);
2230
2231 memcpy (name, raw_name, tail - raw_name);
2232 name[tail - raw_name] = '\000';
2233
2234 shadow_type = ada_find_parallel_type_with_name (type, name);
2235
2236 if (shadow_type == NULL)
2237 {
2238 lim_warning (_("could not find bounds information on packed array"));
2239 return NULL;
2240 }
2241 CHECK_TYPEDEF (shadow_type);
2242
2243 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2244 {
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
2247 return NULL;
2248 }
2249
2250 bits = decode_packed_array_bitsize (type);
2251 return constrained_packed_array_type (shadow_type, &bits);
2252 }
2253
2254 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
2258 type length is set appropriately. */
2259
2260 static struct value *
2261 decode_constrained_packed_array (struct value *arr)
2262 {
2263 struct type *type;
2264
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr = coerce_ref (arr);
2273 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2274 arr = value_ind (arr);
2275
2276 type = decode_constrained_packed_array_type (value_type (arr));
2277 if (type == NULL)
2278 {
2279 error (_("can't unpack array"));
2280 return NULL;
2281 }
2282
2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2284 && ada_is_modular_type (value_type (arr)))
2285 {
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size, bit_pos;
2291 ULONGEST mod;
2292
2293 mod = ada_modulus (value_type (arr)) - 1;
2294 bit_size = 0;
2295 while (mod > 0)
2296 {
2297 bit_size += 1;
2298 mod >>= 1;
2299 }
2300 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2301 arr = ada_value_primitive_packed_val (arr, NULL,
2302 bit_pos / HOST_CHAR_BIT,
2303 bit_pos % HOST_CHAR_BIT,
2304 bit_size,
2305 type);
2306 }
2307
2308 return coerce_unspec_val_to_type (arr, type);
2309 }
2310
2311
2312 /* The value of the element of packed array ARR at the ARITY indices
2313 given in IND. ARR must be a simple array. */
2314
2315 static struct value *
2316 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2317 {
2318 int i;
2319 int bits, elt_off, bit_off;
2320 long elt_total_bit_offset;
2321 struct type *elt_type;
2322 struct value *v;
2323
2324 bits = 0;
2325 elt_total_bit_offset = 0;
2326 elt_type = ada_check_typedef (value_type (arr));
2327 for (i = 0; i < arity; i += 1)
2328 {
2329 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2330 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2331 error
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
2334 else
2335 {
2336 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2337 LONGEST lowerbound, upperbound;
2338 LONGEST idx;
2339
2340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2341 {
2342 lim_warning (_("don't know bounds of array"));
2343 lowerbound = upperbound = 0;
2344 }
2345
2346 idx = pos_atr (ind[i]);
2347 if (idx < lowerbound || idx > upperbound)
2348 lim_warning (_("packed array index %ld out of bounds"),
2349 (long) idx);
2350 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2351 elt_total_bit_offset += (idx - lowerbound) * bits;
2352 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2353 }
2354 }
2355 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2356 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2357
2358 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2359 bits, elt_type);
2360 return v;
2361 }
2362
2363 /* Non-zero iff TYPE includes negative integer values. */
2364
2365 static int
2366 has_negatives (struct type *type)
2367 {
2368 switch (TYPE_CODE (type))
2369 {
2370 default:
2371 return 0;
2372 case TYPE_CODE_INT:
2373 return !TYPE_UNSIGNED (type);
2374 case TYPE_CODE_RANGE:
2375 return TYPE_LOW_BOUND (type) < 0;
2376 }
2377 }
2378
2379
2380 /* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2383 assigning through the result will set the field fetched from.
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2388
2389 struct value *
2390 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2391 long offset, int bit_offset, int bit_size,
2392 struct type *type)
2393 {
2394 struct value *v;
2395 int src, /* Index into the source area */
2396 targ, /* Index into the target area */
2397 srcBitsLeft, /* Number of source bits left to move */
2398 nsrc, ntarg, /* Number of source and target bytes */
2399 unusedLS, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize; /* Number of meaningful bits in accum */
2402 unsigned char *bytes; /* First byte containing data to unpack */
2403 unsigned char *unpacked;
2404 unsigned long accum; /* Staging area for bits being transferred */
2405 unsigned char sign;
2406 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
2409 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2410
2411 type = ada_check_typedef (type);
2412
2413 if (obj == NULL)
2414 {
2415 v = allocate_value (type);
2416 bytes = (unsigned char *) (valaddr + offset);
2417 }
2418 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2419 {
2420 v = value_at (type, value_address (obj));
2421 type = value_type (v);
2422 bytes = (unsigned char *) alloca (len);
2423 read_memory (value_address (v) + offset, bytes, len);
2424 }
2425 else
2426 {
2427 v = allocate_value (type);
2428 bytes = (unsigned char *) value_contents (obj) + offset;
2429 }
2430
2431 if (obj != NULL)
2432 {
2433 long new_offset = offset;
2434
2435 set_value_component_location (v, obj);
2436 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2437 set_value_bitsize (v, bit_size);
2438 if (value_bitpos (v) >= HOST_CHAR_BIT)
2439 {
2440 ++new_offset;
2441 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2442 }
2443 set_value_offset (v, new_offset);
2444
2445 /* Also set the parent value. This is needed when trying to
2446 assign a new value (in inferior memory). */
2447 set_value_parent (v, obj);
2448 }
2449 else
2450 set_value_bitsize (v, bit_size);
2451 unpacked = (unsigned char *) value_contents (v);
2452
2453 srcBitsLeft = bit_size;
2454 nsrc = len;
2455 ntarg = TYPE_LENGTH (type);
2456 sign = 0;
2457 if (bit_size == 0)
2458 {
2459 memset (unpacked, 0, TYPE_LENGTH (type));
2460 return v;
2461 }
2462 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2463 {
2464 src = len - 1;
2465 if (has_negatives (type)
2466 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2467 sign = ~0;
2468
2469 unusedLS =
2470 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2471 % HOST_CHAR_BIT;
2472
2473 switch (TYPE_CODE (type))
2474 {
2475 case TYPE_CODE_ARRAY:
2476 case TYPE_CODE_UNION:
2477 case TYPE_CODE_STRUCT:
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 ntarg = targ + 1;
2485 break;
2486 default:
2487 accumSize = 0;
2488 targ = TYPE_LENGTH (type) - 1;
2489 break;
2490 }
2491 }
2492 else
2493 {
2494 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2495
2496 src = targ = 0;
2497 unusedLS = bit_offset;
2498 accumSize = 0;
2499
2500 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2501 sign = ~0;
2502 }
2503
2504 accum = 0;
2505 while (nsrc > 0)
2506 {
2507 /* Mask for removing bits of the next source byte that are not
2508 part of the value. */
2509 unsigned int unusedMSMask =
2510 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2511 1;
2512 /* Sign-extend bits for this byte. */
2513 unsigned int signMask = sign & ~unusedMSMask;
2514
2515 accum |=
2516 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2517 accumSize += HOST_CHAR_BIT - unusedLS;
2518 if (accumSize >= HOST_CHAR_BIT)
2519 {
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
2526 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2527 unusedLS = 0;
2528 nsrc -= 1;
2529 src += delta;
2530 }
2531 while (ntarg > 0)
2532 {
2533 accum |= sign << accumSize;
2534 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2535 accumSize -= HOST_CHAR_BIT;
2536 accum >>= HOST_CHAR_BIT;
2537 ntarg -= 1;
2538 targ += delta;
2539 }
2540
2541 return v;
2542 }
2543
2544 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2545 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2546 not overlap. */
2547 static void
2548 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2549 int src_offset, int n, int bits_big_endian_p)
2550 {
2551 unsigned int accum, mask;
2552 int accum_bits, chunk_size;
2553
2554 target += targ_offset / HOST_CHAR_BIT;
2555 targ_offset %= HOST_CHAR_BIT;
2556 source += src_offset / HOST_CHAR_BIT;
2557 src_offset %= HOST_CHAR_BIT;
2558 if (bits_big_endian_p)
2559 {
2560 accum = (unsigned char) *source;
2561 source += 1;
2562 accum_bits = HOST_CHAR_BIT - src_offset;
2563
2564 while (n > 0)
2565 {
2566 int unused_right;
2567
2568 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2569 accum_bits += HOST_CHAR_BIT;
2570 source += 1;
2571 chunk_size = HOST_CHAR_BIT - targ_offset;
2572 if (chunk_size > n)
2573 chunk_size = n;
2574 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2575 mask = ((1 << chunk_size) - 1) << unused_right;
2576 *target =
2577 (*target & ~mask)
2578 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2579 n -= chunk_size;
2580 accum_bits -= chunk_size;
2581 target += 1;
2582 targ_offset = 0;
2583 }
2584 }
2585 else
2586 {
2587 accum = (unsigned char) *source >> src_offset;
2588 source += 1;
2589 accum_bits = HOST_CHAR_BIT - src_offset;
2590
2591 while (n > 0)
2592 {
2593 accum = accum + ((unsigned char) *source << accum_bits);
2594 accum_bits += HOST_CHAR_BIT;
2595 source += 1;
2596 chunk_size = HOST_CHAR_BIT - targ_offset;
2597 if (chunk_size > n)
2598 chunk_size = n;
2599 mask = ((1 << chunk_size) - 1) << targ_offset;
2600 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2601 n -= chunk_size;
2602 accum_bits -= chunk_size;
2603 accum >>= chunk_size;
2604 target += 1;
2605 targ_offset = 0;
2606 }
2607 }
2608 }
2609
2610 /* Store the contents of FROMVAL into the location of TOVAL.
2611 Return a new value with the location of TOVAL and contents of
2612 FROMVAL. Handles assignment into packed fields that have
2613 floating-point or non-scalar types. */
2614
2615 static struct value *
2616 ada_value_assign (struct value *toval, struct value *fromval)
2617 {
2618 struct type *type = value_type (toval);
2619 int bits = value_bitsize (toval);
2620
2621 toval = ada_coerce_ref (toval);
2622 fromval = ada_coerce_ref (fromval);
2623
2624 if (ada_is_direct_array_type (value_type (toval)))
2625 toval = ada_coerce_to_simple_array (toval);
2626 if (ada_is_direct_array_type (value_type (fromval)))
2627 fromval = ada_coerce_to_simple_array (fromval);
2628
2629 if (!deprecated_value_modifiable (toval))
2630 error (_("Left operand of assignment is not a modifiable lvalue."));
2631
2632 if (VALUE_LVAL (toval) == lval_memory
2633 && bits > 0
2634 && (TYPE_CODE (type) == TYPE_CODE_FLT
2635 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2636 {
2637 int len = (value_bitpos (toval)
2638 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2639 int from_size;
2640 gdb_byte *buffer = alloca (len);
2641 struct value *val;
2642 CORE_ADDR to_addr = value_address (toval);
2643
2644 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2645 fromval = value_cast (type, fromval);
2646
2647 read_memory (to_addr, buffer, len);
2648 from_size = value_bitsize (fromval);
2649 if (from_size == 0)
2650 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2651 if (gdbarch_bits_big_endian (get_type_arch (type)))
2652 move_bits (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_size - bits, bits, 1);
2654 else
2655 move_bits (buffer, value_bitpos (toval),
2656 value_contents (fromval), 0, bits, 0);
2657 write_memory_with_notification (to_addr, buffer, len);
2658
2659 val = value_copy (toval);
2660 memcpy (value_contents_raw (val), value_contents (fromval),
2661 TYPE_LENGTH (type));
2662 deprecated_set_value_type (val, type);
2663
2664 return val;
2665 }
2666
2667 return value_assign (toval, fromval);
2668 }
2669
2670
2671 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2672 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2673 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2674 * COMPONENT, and not the inferior's memory. The current contents
2675 * of COMPONENT are ignored. */
2676 static void
2677 value_assign_to_component (struct value *container, struct value *component,
2678 struct value *val)
2679 {
2680 LONGEST offset_in_container =
2681 (LONGEST) (value_address (component) - value_address (container));
2682 int bit_offset_in_container =
2683 value_bitpos (component) - value_bitpos (container);
2684 int bits;
2685
2686 val = value_cast (value_type (component), val);
2687
2688 if (value_bitsize (component) == 0)
2689 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2690 else
2691 bits = value_bitsize (component);
2692
2693 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2694 move_bits (value_contents_writeable (container) + offset_in_container,
2695 value_bitpos (container) + bit_offset_in_container,
2696 value_contents (val),
2697 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2698 bits, 1);
2699 else
2700 move_bits (value_contents_writeable (container) + offset_in_container,
2701 value_bitpos (container) + bit_offset_in_container,
2702 value_contents (val), 0, bits, 0);
2703 }
2704
2705 /* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
2707 thereto. */
2708
2709 struct value *
2710 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2711 {
2712 int k;
2713 struct value *elt;
2714 struct type *elt_type;
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
2718 elt_type = ada_check_typedef (value_type (elt));
2719 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
2725 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2726 error (_("too many subscripts (%d expected)"), k);
2727 elt = value_subscript (elt, pos_atr (ind[k]));
2728 }
2729 return elt;
2730 }
2731
2732 /* Assuming ARR is a pointer to a GDB array, the value of the element
2733 of *ARR at the ARITY indices given in IND.
2734 Does not read the entire array into memory. */
2735
2736 static struct value *
2737 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2738 {
2739 int k;
2740 struct type *type
2741 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 LONGEST lwb, upb;
2746
2747 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2750 value_copy (arr));
2751 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2752 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2753 type = TYPE_TARGET_TYPE (type);
2754 }
2755
2756 return value_ind (arr);
2757 }
2758
2759 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2760 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2761 elements starting at index LOW. The lower bound of this array is LOW, as
2762 per Ada rules. */
2763 static struct value *
2764 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2765 int low, int high)
2766 {
2767 struct type *type0 = ada_check_typedef (type);
2768 CORE_ADDR base = value_as_address (array_ptr)
2769 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2770 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2771 struct type *index_type
2772 = create_static_range_type (NULL,
2773 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2774 low, high);
2775 struct type *slice_type =
2776 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2777
2778 return value_at_lazy (slice_type, base);
2779 }
2780
2781
2782 static struct value *
2783 ada_value_slice (struct value *array, int low, int high)
2784 {
2785 struct type *type = ada_check_typedef (value_type (array));
2786 struct type *index_type
2787 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2788 struct type *slice_type =
2789 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2790
2791 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2792 }
2793
2794 /* If type is a record type in the form of a standard GNAT array
2795 descriptor, returns the number of dimensions for type. If arr is a
2796 simple array, returns the number of "array of"s that prefix its
2797 type designation. Otherwise, returns 0. */
2798
2799 int
2800 ada_array_arity (struct type *type)
2801 {
2802 int arity;
2803
2804 if (type == NULL)
2805 return 0;
2806
2807 type = desc_base_type (type);
2808
2809 arity = 0;
2810 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2811 return desc_arity (desc_bounds_type (type));
2812 else
2813 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2814 {
2815 arity += 1;
2816 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2817 }
2818
2819 return arity;
2820 }
2821
2822 /* If TYPE is a record type in the form of a standard GNAT array
2823 descriptor or a simple array type, returns the element type for
2824 TYPE after indexing by NINDICES indices, or by all indices if
2825 NINDICES is -1. Otherwise, returns NULL. */
2826
2827 struct type *
2828 ada_array_element_type (struct type *type, int nindices)
2829 {
2830 type = desc_base_type (type);
2831
2832 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2833 {
2834 int k;
2835 struct type *p_array_type;
2836
2837 p_array_type = desc_data_target_type (type);
2838
2839 k = ada_array_arity (type);
2840 if (k == 0)
2841 return NULL;
2842
2843 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2844 if (nindices >= 0 && k > nindices)
2845 k = nindices;
2846 while (k > 0 && p_array_type != NULL)
2847 {
2848 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2849 k -= 1;
2850 }
2851 return p_array_type;
2852 }
2853 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2854 {
2855 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2856 {
2857 type = TYPE_TARGET_TYPE (type);
2858 nindices -= 1;
2859 }
2860 return type;
2861 }
2862
2863 return NULL;
2864 }
2865
2866 /* The type of nth index in arrays of given type (n numbering from 1).
2867 Does not examine memory. Throws an error if N is invalid or TYPE
2868 is not an array type. NAME is the name of the Ada attribute being
2869 evaluated ('range, 'first, 'last, or 'length); it is used in building
2870 the error message. */
2871
2872 static struct type *
2873 ada_index_type (struct type *type, int n, const char *name)
2874 {
2875 struct type *result_type;
2876
2877 type = desc_base_type (type);
2878
2879 if (n < 0 || n > ada_array_arity (type))
2880 error (_("invalid dimension number to '%s"), name);
2881
2882 if (ada_is_simple_array_type (type))
2883 {
2884 int i;
2885
2886 for (i = 1; i < n; i += 1)
2887 type = TYPE_TARGET_TYPE (type);
2888 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2889 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2890 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2891 perhaps stabsread.c would make more sense. */
2892 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2893 result_type = NULL;
2894 }
2895 else
2896 {
2897 result_type = desc_index_type (desc_bounds_type (type), n);
2898 if (result_type == NULL)
2899 error (_("attempt to take bound of something that is not an array"));
2900 }
2901
2902 return result_type;
2903 }
2904
2905 /* Given that arr is an array type, returns the lower bound of the
2906 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2907 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2908 array-descriptor type. It works for other arrays with bounds supplied
2909 by run-time quantities other than discriminants. */
2910
2911 static LONGEST
2912 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2913 {
2914 struct type *type, *index_type_desc, *index_type;
2915 int i;
2916
2917 gdb_assert (which == 0 || which == 1);
2918
2919 if (ada_is_constrained_packed_array_type (arr_type))
2920 arr_type = decode_constrained_packed_array_type (arr_type);
2921
2922 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2923 return (LONGEST) - which;
2924
2925 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2926 type = TYPE_TARGET_TYPE (arr_type);
2927 else
2928 type = arr_type;
2929
2930 if (TYPE_FIXED_INSTANCE (type))
2931 {
2932 /* The array has already been fixed, so we do not need to
2933 check the parallel ___XA type again. That encoding has
2934 already been applied, so ignore it now. */
2935 index_type_desc = NULL;
2936 }
2937 else
2938 {
2939 index_type_desc = ada_find_parallel_type (type, "___XA");
2940 ada_fixup_array_indexes_type (index_type_desc);
2941 }
2942
2943 if (index_type_desc != NULL)
2944 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2945 NULL);
2946 else
2947 {
2948 struct type *elt_type = check_typedef (type);
2949
2950 for (i = 1; i < n; i++)
2951 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2952
2953 index_type = TYPE_INDEX_TYPE (elt_type);
2954 }
2955
2956 return
2957 (LONGEST) (which == 0
2958 ? ada_discrete_type_low_bound (index_type)
2959 : ada_discrete_type_high_bound (index_type));
2960 }
2961
2962 /* Given that arr is an array value, returns the lower bound of the
2963 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2964 WHICH is 1. This routine will also work for arrays with bounds
2965 supplied by run-time quantities other than discriminants. */
2966
2967 static LONGEST
2968 ada_array_bound (struct value *arr, int n, int which)
2969 {
2970 struct type *arr_type;
2971
2972 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2973 arr = value_ind (arr);
2974 arr_type = value_enclosing_type (arr);
2975
2976 if (ada_is_constrained_packed_array_type (arr_type))
2977 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2978 else if (ada_is_simple_array_type (arr_type))
2979 return ada_array_bound_from_type (arr_type, n, which);
2980 else
2981 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2982 }
2983
2984 /* Given that arr is an array value, returns the length of the
2985 nth index. This routine will also work for arrays with bounds
2986 supplied by run-time quantities other than discriminants.
2987 Does not work for arrays indexed by enumeration types with representation
2988 clauses at the moment. */
2989
2990 static LONGEST
2991 ada_array_length (struct value *arr, int n)
2992 {
2993 struct type *arr_type;
2994
2995 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2996 arr = value_ind (arr);
2997 arr_type = value_enclosing_type (arr);
2998
2999 if (ada_is_constrained_packed_array_type (arr_type))
3000 return ada_array_length (decode_constrained_packed_array (arr), n);
3001
3002 if (ada_is_simple_array_type (arr_type))
3003 return (ada_array_bound_from_type (arr_type, n, 1)
3004 - ada_array_bound_from_type (arr_type, n, 0) + 1);
3005 else
3006 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3007 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
3008 }
3009
3010 /* An empty array whose type is that of ARR_TYPE (an array type),
3011 with bounds LOW to LOW-1. */
3012
3013 static struct value *
3014 empty_array (struct type *arr_type, int low)
3015 {
3016 struct type *arr_type0 = ada_check_typedef (arr_type);
3017 struct type *index_type
3018 = create_static_range_type
3019 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3020 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3021
3022 return allocate_value (create_array_type (NULL, elt_type, index_type));
3023 }
3024 \f
3025
3026 /* Name resolution */
3027
3028 /* The "decoded" name for the user-definable Ada operator corresponding
3029 to OP. */
3030
3031 static const char *
3032 ada_decoded_op_name (enum exp_opcode op)
3033 {
3034 int i;
3035
3036 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3037 {
3038 if (ada_opname_table[i].op == op)
3039 return ada_opname_table[i].decoded;
3040 }
3041 error (_("Could not find operator name for opcode"));
3042 }
3043
3044
3045 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3046 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3047 undefined namespace) and converts operators that are
3048 user-defined into appropriate function calls. If CONTEXT_TYPE is
3049 non-null, it provides a preferred result type [at the moment, only
3050 type void has any effect---causing procedures to be preferred over
3051 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3052 return type is preferred. May change (expand) *EXP. */
3053
3054 static void
3055 resolve (struct expression **expp, int void_context_p)
3056 {
3057 struct type *context_type = NULL;
3058 int pc = 0;
3059
3060 if (void_context_p)
3061 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3062
3063 resolve_subexp (expp, &pc, 1, context_type);
3064 }
3065
3066 /* Resolve the operator of the subexpression beginning at
3067 position *POS of *EXPP. "Resolving" consists of replacing
3068 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3069 with their resolutions, replacing built-in operators with
3070 function calls to user-defined operators, where appropriate, and,
3071 when DEPROCEDURE_P is non-zero, converting function-valued variables
3072 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3073 are as in ada_resolve, above. */
3074
3075 static struct value *
3076 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3077 struct type *context_type)
3078 {
3079 int pc = *pos;
3080 int i;
3081 struct expression *exp; /* Convenience: == *expp. */
3082 enum exp_opcode op = (*expp)->elts[pc].opcode;
3083 struct value **argvec; /* Vector of operand types (alloca'ed). */
3084 int nargs; /* Number of operands. */
3085 int oplen;
3086
3087 argvec = NULL;
3088 nargs = 0;
3089 exp = *expp;
3090
3091 /* Pass one: resolve operands, saving their types and updating *pos,
3092 if needed. */
3093 switch (op)
3094 {
3095 case OP_FUNCALL:
3096 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3097 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3098 *pos += 7;
3099 else
3100 {
3101 *pos += 3;
3102 resolve_subexp (expp, pos, 0, NULL);
3103 }
3104 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3105 break;
3106
3107 case UNOP_ADDR:
3108 *pos += 1;
3109 resolve_subexp (expp, pos, 0, NULL);
3110 break;
3111
3112 case UNOP_QUAL:
3113 *pos += 3;
3114 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3115 break;
3116
3117 case OP_ATR_MODULUS:
3118 case OP_ATR_SIZE:
3119 case OP_ATR_TAG:
3120 case OP_ATR_FIRST:
3121 case OP_ATR_LAST:
3122 case OP_ATR_LENGTH:
3123 case OP_ATR_POS:
3124 case OP_ATR_VAL:
3125 case OP_ATR_MIN:
3126 case OP_ATR_MAX:
3127 case TERNOP_IN_RANGE:
3128 case BINOP_IN_BOUNDS:
3129 case UNOP_IN_RANGE:
3130 case OP_AGGREGATE:
3131 case OP_OTHERS:
3132 case OP_CHOICES:
3133 case OP_POSITIONAL:
3134 case OP_DISCRETE_RANGE:
3135 case OP_NAME:
3136 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3137 *pos += oplen;
3138 break;
3139
3140 case BINOP_ASSIGN:
3141 {
3142 struct value *arg1;
3143
3144 *pos += 1;
3145 arg1 = resolve_subexp (expp, pos, 0, NULL);
3146 if (arg1 == NULL)
3147 resolve_subexp (expp, pos, 1, NULL);
3148 else
3149 resolve_subexp (expp, pos, 1, value_type (arg1));
3150 break;
3151 }
3152
3153 case UNOP_CAST:
3154 *pos += 3;
3155 nargs = 1;
3156 break;
3157
3158 case BINOP_ADD:
3159 case BINOP_SUB:
3160 case BINOP_MUL:
3161 case BINOP_DIV:
3162 case BINOP_REM:
3163 case BINOP_MOD:
3164 case BINOP_EXP:
3165 case BINOP_CONCAT:
3166 case BINOP_LOGICAL_AND:
3167 case BINOP_LOGICAL_OR:
3168 case BINOP_BITWISE_AND:
3169 case BINOP_BITWISE_IOR:
3170 case BINOP_BITWISE_XOR:
3171
3172 case BINOP_EQUAL:
3173 case BINOP_NOTEQUAL:
3174 case BINOP_LESS:
3175 case BINOP_GTR:
3176 case BINOP_LEQ:
3177 case BINOP_GEQ:
3178
3179 case BINOP_REPEAT:
3180 case BINOP_SUBSCRIPT:
3181 case BINOP_COMMA:
3182 *pos += 1;
3183 nargs = 2;
3184 break;
3185
3186 case UNOP_NEG:
3187 case UNOP_PLUS:
3188 case UNOP_LOGICAL_NOT:
3189 case UNOP_ABS:
3190 case UNOP_IND:
3191 *pos += 1;
3192 nargs = 1;
3193 break;
3194
3195 case OP_LONG:
3196 case OP_DOUBLE:
3197 case OP_VAR_VALUE:
3198 *pos += 4;
3199 break;
3200
3201 case OP_TYPE:
3202 case OP_BOOL:
3203 case OP_LAST:
3204 case OP_INTERNALVAR:
3205 *pos += 3;
3206 break;
3207
3208 case UNOP_MEMVAL:
3209 *pos += 3;
3210 nargs = 1;
3211 break;
3212
3213 case OP_REGISTER:
3214 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3215 break;
3216
3217 case STRUCTOP_STRUCT:
3218 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3219 nargs = 1;
3220 break;
3221
3222 case TERNOP_SLICE:
3223 *pos += 1;
3224 nargs = 3;
3225 break;
3226
3227 case OP_STRING:
3228 break;
3229
3230 default:
3231 error (_("Unexpected operator during name resolution"));
3232 }
3233
3234 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3235 for (i = 0; i < nargs; i += 1)
3236 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3237 argvec[i] = NULL;
3238 exp = *expp;
3239
3240 /* Pass two: perform any resolution on principal operator. */
3241 switch (op)
3242 {
3243 default:
3244 break;
3245
3246 case OP_VAR_VALUE:
3247 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3248 {
3249 struct ada_symbol_info *candidates;
3250 int n_candidates;
3251
3252 n_candidates =
3253 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3254 (exp->elts[pc + 2].symbol),
3255 exp->elts[pc + 1].block, VAR_DOMAIN,
3256 &candidates);
3257
3258 if (n_candidates > 1)
3259 {
3260 /* Types tend to get re-introduced locally, so if there
3261 are any local symbols that are not types, first filter
3262 out all types. */
3263 int j;
3264 for (j = 0; j < n_candidates; j += 1)
3265 switch (SYMBOL_CLASS (candidates[j].sym))
3266 {
3267 case LOC_REGISTER:
3268 case LOC_ARG:
3269 case LOC_REF_ARG:
3270 case LOC_REGPARM_ADDR:
3271 case LOC_LOCAL:
3272 case LOC_COMPUTED:
3273 goto FoundNonType;
3274 default:
3275 break;
3276 }
3277 FoundNonType:
3278 if (j < n_candidates)
3279 {
3280 j = 0;
3281 while (j < n_candidates)
3282 {
3283 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3284 {
3285 candidates[j] = candidates[n_candidates - 1];
3286 n_candidates -= 1;
3287 }
3288 else
3289 j += 1;
3290 }
3291 }
3292 }
3293
3294 if (n_candidates == 0)
3295 error (_("No definition found for %s"),
3296 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3297 else if (n_candidates == 1)
3298 i = 0;
3299 else if (deprocedure_p
3300 && !is_nonfunction (candidates, n_candidates))
3301 {
3302 i = ada_resolve_function
3303 (candidates, n_candidates, NULL, 0,
3304 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3305 context_type);
3306 if (i < 0)
3307 error (_("Could not find a match for %s"),
3308 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3309 }
3310 else
3311 {
3312 printf_filtered (_("Multiple matches for %s\n"),
3313 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3314 user_select_syms (candidates, n_candidates, 1);
3315 i = 0;
3316 }
3317
3318 exp->elts[pc + 1].block = candidates[i].block;
3319 exp->elts[pc + 2].symbol = candidates[i].sym;
3320 if (innermost_block == NULL
3321 || contained_in (candidates[i].block, innermost_block))
3322 innermost_block = candidates[i].block;
3323 }
3324
3325 if (deprocedure_p
3326 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3327 == TYPE_CODE_FUNC))
3328 {
3329 replace_operator_with_call (expp, pc, 0, 0,
3330 exp->elts[pc + 2].symbol,
3331 exp->elts[pc + 1].block);
3332 exp = *expp;
3333 }
3334 break;
3335
3336 case OP_FUNCALL:
3337 {
3338 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3339 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3340 {
3341 struct ada_symbol_info *candidates;
3342 int n_candidates;
3343
3344 n_candidates =
3345 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3346 (exp->elts[pc + 5].symbol),
3347 exp->elts[pc + 4].block, VAR_DOMAIN,
3348 &candidates);
3349 if (n_candidates == 1)
3350 i = 0;
3351 else
3352 {
3353 i = ada_resolve_function
3354 (candidates, n_candidates,
3355 argvec, nargs,
3356 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3357 context_type);
3358 if (i < 0)
3359 error (_("Could not find a match for %s"),
3360 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3361 }
3362
3363 exp->elts[pc + 4].block = candidates[i].block;
3364 exp->elts[pc + 5].symbol = candidates[i].sym;
3365 if (innermost_block == NULL
3366 || contained_in (candidates[i].block, innermost_block))
3367 innermost_block = candidates[i].block;
3368 }
3369 }
3370 break;
3371 case BINOP_ADD:
3372 case BINOP_SUB:
3373 case BINOP_MUL:
3374 case BINOP_DIV:
3375 case BINOP_REM:
3376 case BINOP_MOD:
3377 case BINOP_CONCAT:
3378 case BINOP_BITWISE_AND:
3379 case BINOP_BITWISE_IOR:
3380 case BINOP_BITWISE_XOR:
3381 case BINOP_EQUAL:
3382 case BINOP_NOTEQUAL:
3383 case BINOP_LESS:
3384 case BINOP_GTR:
3385 case BINOP_LEQ:
3386 case BINOP_GEQ:
3387 case BINOP_EXP:
3388 case UNOP_NEG:
3389 case UNOP_PLUS:
3390 case UNOP_LOGICAL_NOT:
3391 case UNOP_ABS:
3392 if (possible_user_operator_p (op, argvec))
3393 {
3394 struct ada_symbol_info *candidates;
3395 int n_candidates;
3396
3397 n_candidates =
3398 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3399 (struct block *) NULL, VAR_DOMAIN,
3400 &candidates);
3401 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3402 ada_decoded_op_name (op), NULL);
3403 if (i < 0)
3404 break;
3405
3406 replace_operator_with_call (expp, pc, nargs, 1,
3407 candidates[i].sym, candidates[i].block);
3408 exp = *expp;
3409 }
3410 break;
3411
3412 case OP_TYPE:
3413 case OP_REGISTER:
3414 return NULL;
3415 }
3416
3417 *pos = pc;
3418 return evaluate_subexp_type (exp, pos);
3419 }
3420
3421 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3422 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3423 a non-pointer. */
3424 /* The term "match" here is rather loose. The match is heuristic and
3425 liberal. */
3426
3427 static int
3428 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3429 {
3430 ftype = ada_check_typedef (ftype);
3431 atype = ada_check_typedef (atype);
3432
3433 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3434 ftype = TYPE_TARGET_TYPE (ftype);
3435 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3436 atype = TYPE_TARGET_TYPE (atype);
3437
3438 switch (TYPE_CODE (ftype))
3439 {
3440 default:
3441 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3442 case TYPE_CODE_PTR:
3443 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3444 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3445 TYPE_TARGET_TYPE (atype), 0);
3446 else
3447 return (may_deref
3448 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3449 case TYPE_CODE_INT:
3450 case TYPE_CODE_ENUM:
3451 case TYPE_CODE_RANGE:
3452 switch (TYPE_CODE (atype))
3453 {
3454 case TYPE_CODE_INT:
3455 case TYPE_CODE_ENUM:
3456 case TYPE_CODE_RANGE:
3457 return 1;
3458 default:
3459 return 0;
3460 }
3461
3462 case TYPE_CODE_ARRAY:
3463 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3464 || ada_is_array_descriptor_type (atype));
3465
3466 case TYPE_CODE_STRUCT:
3467 if (ada_is_array_descriptor_type (ftype))
3468 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3469 || ada_is_array_descriptor_type (atype));
3470 else
3471 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3472 && !ada_is_array_descriptor_type (atype));
3473
3474 case TYPE_CODE_UNION:
3475 case TYPE_CODE_FLT:
3476 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3477 }
3478 }
3479
3480 /* Return non-zero if the formals of FUNC "sufficiently match" the
3481 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3482 may also be an enumeral, in which case it is treated as a 0-
3483 argument function. */
3484
3485 static int
3486 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3487 {
3488 int i;
3489 struct type *func_type = SYMBOL_TYPE (func);
3490
3491 if (SYMBOL_CLASS (func) == LOC_CONST
3492 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3493 return (n_actuals == 0);
3494 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3495 return 0;
3496
3497 if (TYPE_NFIELDS (func_type) != n_actuals)
3498 return 0;
3499
3500 for (i = 0; i < n_actuals; i += 1)
3501 {
3502 if (actuals[i] == NULL)
3503 return 0;
3504 else
3505 {
3506 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3507 i));
3508 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3509
3510 if (!ada_type_match (ftype, atype, 1))
3511 return 0;
3512 }
3513 }
3514 return 1;
3515 }
3516
3517 /* False iff function type FUNC_TYPE definitely does not produce a value
3518 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3519 FUNC_TYPE is not a valid function type with a non-null return type
3520 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3521
3522 static int
3523 return_match (struct type *func_type, struct type *context_type)
3524 {
3525 struct type *return_type;
3526
3527 if (func_type == NULL)
3528 return 1;
3529
3530 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3531 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3532 else
3533 return_type = get_base_type (func_type);
3534 if (return_type == NULL)
3535 return 1;
3536
3537 context_type = get_base_type (context_type);
3538
3539 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3540 return context_type == NULL || return_type == context_type;
3541 else if (context_type == NULL)
3542 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3543 else
3544 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3545 }
3546
3547
3548 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3549 function (if any) that matches the types of the NARGS arguments in
3550 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3551 that returns that type, then eliminate matches that don't. If
3552 CONTEXT_TYPE is void and there is at least one match that does not
3553 return void, eliminate all matches that do.
3554
3555 Asks the user if there is more than one match remaining. Returns -1
3556 if there is no such symbol or none is selected. NAME is used
3557 solely for messages. May re-arrange and modify SYMS in
3558 the process; the index returned is for the modified vector. */
3559
3560 static int
3561 ada_resolve_function (struct ada_symbol_info syms[],
3562 int nsyms, struct value **args, int nargs,
3563 const char *name, struct type *context_type)
3564 {
3565 int fallback;
3566 int k;
3567 int m; /* Number of hits */
3568
3569 m = 0;
3570 /* In the first pass of the loop, we only accept functions matching
3571 context_type. If none are found, we add a second pass of the loop
3572 where every function is accepted. */
3573 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3574 {
3575 for (k = 0; k < nsyms; k += 1)
3576 {
3577 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3578
3579 if (ada_args_match (syms[k].sym, args, nargs)
3580 && (fallback || return_match (type, context_type)))
3581 {
3582 syms[m] = syms[k];
3583 m += 1;
3584 }
3585 }
3586 }
3587
3588 if (m == 0)
3589 return -1;
3590 else if (m > 1)
3591 {
3592 printf_filtered (_("Multiple matches for %s\n"), name);
3593 user_select_syms (syms, m, 1);
3594 return 0;
3595 }
3596 return 0;
3597 }
3598
3599 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3600 in a listing of choices during disambiguation (see sort_choices, below).
3601 The idea is that overloadings of a subprogram name from the
3602 same package should sort in their source order. We settle for ordering
3603 such symbols by their trailing number (__N or $N). */
3604
3605 static int
3606 encoded_ordered_before (const char *N0, const char *N1)
3607 {
3608 if (N1 == NULL)
3609 return 0;
3610 else if (N0 == NULL)
3611 return 1;
3612 else
3613 {
3614 int k0, k1;
3615
3616 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3617 ;
3618 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3619 ;
3620 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3621 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3622 {
3623 int n0, n1;
3624
3625 n0 = k0;
3626 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3627 n0 -= 1;
3628 n1 = k1;
3629 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3630 n1 -= 1;
3631 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3632 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3633 }
3634 return (strcmp (N0, N1) < 0);
3635 }
3636 }
3637
3638 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3639 encoded names. */
3640
3641 static void
3642 sort_choices (struct ada_symbol_info syms[], int nsyms)
3643 {
3644 int i;
3645
3646 for (i = 1; i < nsyms; i += 1)
3647 {
3648 struct ada_symbol_info sym = syms[i];
3649 int j;
3650
3651 for (j = i - 1; j >= 0; j -= 1)
3652 {
3653 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3654 SYMBOL_LINKAGE_NAME (sym.sym)))
3655 break;
3656 syms[j + 1] = syms[j];
3657 }
3658 syms[j + 1] = sym;
3659 }
3660 }
3661
3662 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3663 by asking the user (if necessary), returning the number selected,
3664 and setting the first elements of SYMS items. Error if no symbols
3665 selected. */
3666
3667 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3668 to be re-integrated one of these days. */
3669
3670 int
3671 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3672 {
3673 int i;
3674 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3675 int n_chosen;
3676 int first_choice = (max_results == 1) ? 1 : 2;
3677 const char *select_mode = multiple_symbols_select_mode ();
3678
3679 if (max_results < 1)
3680 error (_("Request to select 0 symbols!"));
3681 if (nsyms <= 1)
3682 return nsyms;
3683
3684 if (select_mode == multiple_symbols_cancel)
3685 error (_("\
3686 canceled because the command is ambiguous\n\
3687 See set/show multiple-symbol."));
3688
3689 /* If select_mode is "all", then return all possible symbols.
3690 Only do that if more than one symbol can be selected, of course.
3691 Otherwise, display the menu as usual. */
3692 if (select_mode == multiple_symbols_all && max_results > 1)
3693 return nsyms;
3694
3695 printf_unfiltered (_("[0] cancel\n"));
3696 if (max_results > 1)
3697 printf_unfiltered (_("[1] all\n"));
3698
3699 sort_choices (syms, nsyms);
3700
3701 for (i = 0; i < nsyms; i += 1)
3702 {
3703 if (syms[i].sym == NULL)
3704 continue;
3705
3706 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3707 {
3708 struct symtab_and_line sal =
3709 find_function_start_sal (syms[i].sym, 1);
3710
3711 if (sal.symtab == NULL)
3712 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3713 i + first_choice,
3714 SYMBOL_PRINT_NAME (syms[i].sym),
3715 sal.line);
3716 else
3717 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3718 SYMBOL_PRINT_NAME (syms[i].sym),
3719 symtab_to_filename_for_display (sal.symtab),
3720 sal.line);
3721 continue;
3722 }
3723 else
3724 {
3725 int is_enumeral =
3726 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3727 && SYMBOL_TYPE (syms[i].sym) != NULL
3728 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3729 struct symtab *symtab = NULL;
3730
3731 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3732 symtab = symbol_symtab (syms[i].sym);
3733
3734 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3735 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3736 i + first_choice,
3737 SYMBOL_PRINT_NAME (syms[i].sym),
3738 symtab_to_filename_for_display (symtab),
3739 SYMBOL_LINE (syms[i].sym));
3740 else if (is_enumeral
3741 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3742 {
3743 printf_unfiltered (("[%d] "), i + first_choice);
3744 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3745 gdb_stdout, -1, 0, &type_print_raw_options);
3746 printf_unfiltered (_("'(%s) (enumeral)\n"),
3747 SYMBOL_PRINT_NAME (syms[i].sym));
3748 }
3749 else if (symtab != NULL)
3750 printf_unfiltered (is_enumeral
3751 ? _("[%d] %s in %s (enumeral)\n")
3752 : _("[%d] %s at %s:?\n"),
3753 i + first_choice,
3754 SYMBOL_PRINT_NAME (syms[i].sym),
3755 symtab_to_filename_for_display (symtab));
3756 else
3757 printf_unfiltered (is_enumeral
3758 ? _("[%d] %s (enumeral)\n")
3759 : _("[%d] %s at ?\n"),
3760 i + first_choice,
3761 SYMBOL_PRINT_NAME (syms[i].sym));
3762 }
3763 }
3764
3765 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3766 "overload-choice");
3767
3768 for (i = 0; i < n_chosen; i += 1)
3769 syms[i] = syms[chosen[i]];
3770
3771 return n_chosen;
3772 }
3773
3774 /* Read and validate a set of numeric choices from the user in the
3775 range 0 .. N_CHOICES-1. Place the results in increasing
3776 order in CHOICES[0 .. N-1], and return N.
3777
3778 The user types choices as a sequence of numbers on one line
3779 separated by blanks, encoding them as follows:
3780
3781 + A choice of 0 means to cancel the selection, throwing an error.
3782 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3783 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3784
3785 The user is not allowed to choose more than MAX_RESULTS values.
3786
3787 ANNOTATION_SUFFIX, if present, is used to annotate the input
3788 prompts (for use with the -f switch). */
3789
3790 int
3791 get_selections (int *choices, int n_choices, int max_results,
3792 int is_all_choice, char *annotation_suffix)
3793 {
3794 char *args;
3795 char *prompt;
3796 int n_chosen;
3797 int first_choice = is_all_choice ? 2 : 1;
3798
3799 prompt = getenv ("PS2");
3800 if (prompt == NULL)
3801 prompt = "> ";
3802
3803 args = command_line_input (prompt, 0, annotation_suffix);
3804
3805 if (args == NULL)
3806 error_no_arg (_("one or more choice numbers"));
3807
3808 n_chosen = 0;
3809
3810 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3811 order, as given in args. Choices are validated. */
3812 while (1)
3813 {
3814 char *args2;
3815 int choice, j;
3816
3817 args = skip_spaces (args);
3818 if (*args == '\0' && n_chosen == 0)
3819 error_no_arg (_("one or more choice numbers"));
3820 else if (*args == '\0')
3821 break;
3822
3823 choice = strtol (args, &args2, 10);
3824 if (args == args2 || choice < 0
3825 || choice > n_choices + first_choice - 1)
3826 error (_("Argument must be choice number"));
3827 args = args2;
3828
3829 if (choice == 0)
3830 error (_("cancelled"));
3831
3832 if (choice < first_choice)
3833 {
3834 n_chosen = n_choices;
3835 for (j = 0; j < n_choices; j += 1)
3836 choices[j] = j;
3837 break;
3838 }
3839 choice -= first_choice;
3840
3841 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3842 {
3843 }
3844
3845 if (j < 0 || choice != choices[j])
3846 {
3847 int k;
3848
3849 for (k = n_chosen - 1; k > j; k -= 1)
3850 choices[k + 1] = choices[k];
3851 choices[j + 1] = choice;
3852 n_chosen += 1;
3853 }
3854 }
3855
3856 if (n_chosen > max_results)
3857 error (_("Select no more than %d of the above"), max_results);
3858
3859 return n_chosen;
3860 }
3861
3862 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3863 on the function identified by SYM and BLOCK, and taking NARGS
3864 arguments. Update *EXPP as needed to hold more space. */
3865
3866 static void
3867 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3868 int oplen, struct symbol *sym,
3869 const struct block *block)
3870 {
3871 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3872 symbol, -oplen for operator being replaced). */
3873 struct expression *newexp = (struct expression *)
3874 xzalloc (sizeof (struct expression)
3875 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3876 struct expression *exp = *expp;
3877
3878 newexp->nelts = exp->nelts + 7 - oplen;
3879 newexp->language_defn = exp->language_defn;
3880 newexp->gdbarch = exp->gdbarch;
3881 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3882 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3883 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3884
3885 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3886 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3887
3888 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3889 newexp->elts[pc + 4].block = block;
3890 newexp->elts[pc + 5].symbol = sym;
3891
3892 *expp = newexp;
3893 xfree (exp);
3894 }
3895
3896 /* Type-class predicates */
3897
3898 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3899 or FLOAT). */
3900
3901 static int
3902 numeric_type_p (struct type *type)
3903 {
3904 if (type == NULL)
3905 return 0;
3906 else
3907 {
3908 switch (TYPE_CODE (type))
3909 {
3910 case TYPE_CODE_INT:
3911 case TYPE_CODE_FLT:
3912 return 1;
3913 case TYPE_CODE_RANGE:
3914 return (type == TYPE_TARGET_TYPE (type)
3915 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3916 default:
3917 return 0;
3918 }
3919 }
3920 }
3921
3922 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3923
3924 static int
3925 integer_type_p (struct type *type)
3926 {
3927 if (type == NULL)
3928 return 0;
3929 else
3930 {
3931 switch (TYPE_CODE (type))
3932 {
3933 case TYPE_CODE_INT:
3934 return 1;
3935 case TYPE_CODE_RANGE:
3936 return (type == TYPE_TARGET_TYPE (type)
3937 || integer_type_p (TYPE_TARGET_TYPE (type)));
3938 default:
3939 return 0;
3940 }
3941 }
3942 }
3943
3944 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3945
3946 static int
3947 scalar_type_p (struct type *type)
3948 {
3949 if (type == NULL)
3950 return 0;
3951 else
3952 {
3953 switch (TYPE_CODE (type))
3954 {
3955 case TYPE_CODE_INT:
3956 case TYPE_CODE_RANGE:
3957 case TYPE_CODE_ENUM:
3958 case TYPE_CODE_FLT:
3959 return 1;
3960 default:
3961 return 0;
3962 }
3963 }
3964 }
3965
3966 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3967
3968 static int
3969 discrete_type_p (struct type *type)
3970 {
3971 if (type == NULL)
3972 return 0;
3973 else
3974 {
3975 switch (TYPE_CODE (type))
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_ENUM:
3980 case TYPE_CODE_BOOL:
3981 return 1;
3982 default:
3983 return 0;
3984 }
3985 }
3986 }
3987
3988 /* Returns non-zero if OP with operands in the vector ARGS could be
3989 a user-defined function. Errs on the side of pre-defined operators
3990 (i.e., result 0). */
3991
3992 static int
3993 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3994 {
3995 struct type *type0 =
3996 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3997 struct type *type1 =
3998 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3999
4000 if (type0 == NULL)
4001 return 0;
4002
4003 switch (op)
4004 {
4005 default:
4006 return 0;
4007
4008 case BINOP_ADD:
4009 case BINOP_SUB:
4010 case BINOP_MUL:
4011 case BINOP_DIV:
4012 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4013
4014 case BINOP_REM:
4015 case BINOP_MOD:
4016 case BINOP_BITWISE_AND:
4017 case BINOP_BITWISE_IOR:
4018 case BINOP_BITWISE_XOR:
4019 return (!(integer_type_p (type0) && integer_type_p (type1)));
4020
4021 case BINOP_EQUAL:
4022 case BINOP_NOTEQUAL:
4023 case BINOP_LESS:
4024 case BINOP_GTR:
4025 case BINOP_LEQ:
4026 case BINOP_GEQ:
4027 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4028
4029 case BINOP_CONCAT:
4030 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4031
4032 case BINOP_EXP:
4033 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4034
4035 case UNOP_NEG:
4036 case UNOP_PLUS:
4037 case UNOP_LOGICAL_NOT:
4038 case UNOP_ABS:
4039 return (!numeric_type_p (type0));
4040
4041 }
4042 }
4043 \f
4044 /* Renaming */
4045
4046 /* NOTES:
4047
4048 1. In the following, we assume that a renaming type's name may
4049 have an ___XD suffix. It would be nice if this went away at some
4050 point.
4051 2. We handle both the (old) purely type-based representation of
4052 renamings and the (new) variable-based encoding. At some point,
4053 it is devoutly to be hoped that the former goes away
4054 (FIXME: hilfinger-2007-07-09).
4055 3. Subprogram renamings are not implemented, although the XRS
4056 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4057
4058 /* If SYM encodes a renaming,
4059
4060 <renaming> renames <renamed entity>,
4061
4062 sets *LEN to the length of the renamed entity's name,
4063 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4064 the string describing the subcomponent selected from the renamed
4065 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4066 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4067 are undefined). Otherwise, returns a value indicating the category
4068 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4069 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4070 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4071 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4072 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4073 may be NULL, in which case they are not assigned.
4074
4075 [Currently, however, GCC does not generate subprogram renamings.] */
4076
4077 enum ada_renaming_category
4078 ada_parse_renaming (struct symbol *sym,
4079 const char **renamed_entity, int *len,
4080 const char **renaming_expr)
4081 {
4082 enum ada_renaming_category kind;
4083 const char *info;
4084 const char *suffix;
4085
4086 if (sym == NULL)
4087 return ADA_NOT_RENAMING;
4088 switch (SYMBOL_CLASS (sym))
4089 {
4090 default:
4091 return ADA_NOT_RENAMING;
4092 case LOC_TYPEDEF:
4093 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4094 renamed_entity, len, renaming_expr);
4095 case LOC_LOCAL:
4096 case LOC_STATIC:
4097 case LOC_COMPUTED:
4098 case LOC_OPTIMIZED_OUT:
4099 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4100 if (info == NULL)
4101 return ADA_NOT_RENAMING;
4102 switch (info[5])
4103 {
4104 case '_':
4105 kind = ADA_OBJECT_RENAMING;
4106 info += 6;
4107 break;
4108 case 'E':
4109 kind = ADA_EXCEPTION_RENAMING;
4110 info += 7;
4111 break;
4112 case 'P':
4113 kind = ADA_PACKAGE_RENAMING;
4114 info += 7;
4115 break;
4116 case 'S':
4117 kind = ADA_SUBPROGRAM_RENAMING;
4118 info += 7;
4119 break;
4120 default:
4121 return ADA_NOT_RENAMING;
4122 }
4123 }
4124
4125 if (renamed_entity != NULL)
4126 *renamed_entity = info;
4127 suffix = strstr (info, "___XE");
4128 if (suffix == NULL || suffix == info)
4129 return ADA_NOT_RENAMING;
4130 if (len != NULL)
4131 *len = strlen (info) - strlen (suffix);
4132 suffix += 5;
4133 if (renaming_expr != NULL)
4134 *renaming_expr = suffix;
4135 return kind;
4136 }
4137
4138 /* Assuming TYPE encodes a renaming according to the old encoding in
4139 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4140 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4141 ADA_NOT_RENAMING otherwise. */
4142 static enum ada_renaming_category
4143 parse_old_style_renaming (struct type *type,
4144 const char **renamed_entity, int *len,
4145 const char **renaming_expr)
4146 {
4147 enum ada_renaming_category kind;
4148 const char *name;
4149 const char *info;
4150 const char *suffix;
4151
4152 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4153 || TYPE_NFIELDS (type) != 1)
4154 return ADA_NOT_RENAMING;
4155
4156 name = type_name_no_tag (type);
4157 if (name == NULL)
4158 return ADA_NOT_RENAMING;
4159
4160 name = strstr (name, "___XR");
4161 if (name == NULL)
4162 return ADA_NOT_RENAMING;
4163 switch (name[5])
4164 {
4165 case '\0':
4166 case '_':
4167 kind = ADA_OBJECT_RENAMING;
4168 break;
4169 case 'E':
4170 kind = ADA_EXCEPTION_RENAMING;
4171 break;
4172 case 'P':
4173 kind = ADA_PACKAGE_RENAMING;
4174 break;
4175 case 'S':
4176 kind = ADA_SUBPROGRAM_RENAMING;
4177 break;
4178 default:
4179 return ADA_NOT_RENAMING;
4180 }
4181
4182 info = TYPE_FIELD_NAME (type, 0);
4183 if (info == NULL)
4184 return ADA_NOT_RENAMING;
4185 if (renamed_entity != NULL)
4186 *renamed_entity = info;
4187 suffix = strstr (info, "___XE");
4188 if (renaming_expr != NULL)
4189 *renaming_expr = suffix + 5;
4190 if (suffix == NULL || suffix == info)
4191 return ADA_NOT_RENAMING;
4192 if (len != NULL)
4193 *len = suffix - info;
4194 return kind;
4195 }
4196
4197 /* Compute the value of the given RENAMING_SYM, which is expected to
4198 be a symbol encoding a renaming expression. BLOCK is the block
4199 used to evaluate the renaming. */
4200
4201 static struct value *
4202 ada_read_renaming_var_value (struct symbol *renaming_sym,
4203 const struct block *block)
4204 {
4205 const char *sym_name;
4206 struct expression *expr;
4207 struct value *value;
4208 struct cleanup *old_chain = NULL;
4209
4210 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4211 expr = parse_exp_1 (&sym_name, 0, block, 0);
4212 old_chain = make_cleanup (free_current_contents, &expr);
4213 value = evaluate_expression (expr);
4214
4215 do_cleanups (old_chain);
4216 return value;
4217 }
4218 \f
4219
4220 /* Evaluation: Function Calls */
4221
4222 /* Return an lvalue containing the value VAL. This is the identity on
4223 lvalues, and otherwise has the side-effect of allocating memory
4224 in the inferior where a copy of the value contents is copied. */
4225
4226 static struct value *
4227 ensure_lval (struct value *val)
4228 {
4229 if (VALUE_LVAL (val) == not_lval
4230 || VALUE_LVAL (val) == lval_internalvar)
4231 {
4232 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4233 const CORE_ADDR addr =
4234 value_as_long (value_allocate_space_in_inferior (len));
4235
4236 set_value_address (val, addr);
4237 VALUE_LVAL (val) = lval_memory;
4238 write_memory (addr, value_contents (val), len);
4239 }
4240
4241 return val;
4242 }
4243
4244 /* Return the value ACTUAL, converted to be an appropriate value for a
4245 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4246 allocating any necessary descriptors (fat pointers), or copies of
4247 values not residing in memory, updating it as needed. */
4248
4249 struct value *
4250 ada_convert_actual (struct value *actual, struct type *formal_type0)
4251 {
4252 struct type *actual_type = ada_check_typedef (value_type (actual));
4253 struct type *formal_type = ada_check_typedef (formal_type0);
4254 struct type *formal_target =
4255 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4256 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4257 struct type *actual_target =
4258 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4259 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4260
4261 if (ada_is_array_descriptor_type (formal_target)
4262 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4263 return make_array_descriptor (formal_type, actual);
4264 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4265 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4266 {
4267 struct value *result;
4268
4269 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4270 && ada_is_array_descriptor_type (actual_target))
4271 result = desc_data (actual);
4272 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4273 {
4274 if (VALUE_LVAL (actual) != lval_memory)
4275 {
4276 struct value *val;
4277
4278 actual_type = ada_check_typedef (value_type (actual));
4279 val = allocate_value (actual_type);
4280 memcpy ((char *) value_contents_raw (val),
4281 (char *) value_contents (actual),
4282 TYPE_LENGTH (actual_type));
4283 actual = ensure_lval (val);
4284 }
4285 result = value_addr (actual);
4286 }
4287 else
4288 return actual;
4289 return value_cast_pointers (formal_type, result, 0);
4290 }
4291 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4292 return ada_value_ind (actual);
4293
4294 return actual;
4295 }
4296
4297 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4298 type TYPE. This is usually an inefficient no-op except on some targets
4299 (such as AVR) where the representation of a pointer and an address
4300 differs. */
4301
4302 static CORE_ADDR
4303 value_pointer (struct value *value, struct type *type)
4304 {
4305 struct gdbarch *gdbarch = get_type_arch (type);
4306 unsigned len = TYPE_LENGTH (type);
4307 gdb_byte *buf = alloca (len);
4308 CORE_ADDR addr;
4309
4310 addr = value_address (value);
4311 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4312 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4313 return addr;
4314 }
4315
4316
4317 /* Push a descriptor of type TYPE for array value ARR on the stack at
4318 *SP, updating *SP to reflect the new descriptor. Return either
4319 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4320 to-descriptor type rather than a descriptor type), a struct value *
4321 representing a pointer to this descriptor. */
4322
4323 static struct value *
4324 make_array_descriptor (struct type *type, struct value *arr)
4325 {
4326 struct type *bounds_type = desc_bounds_type (type);
4327 struct type *desc_type = desc_base_type (type);
4328 struct value *descriptor = allocate_value (desc_type);
4329 struct value *bounds = allocate_value (bounds_type);
4330 int i;
4331
4332 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4333 i > 0; i -= 1)
4334 {
4335 modify_field (value_type (bounds), value_contents_writeable (bounds),
4336 ada_array_bound (arr, i, 0),
4337 desc_bound_bitpos (bounds_type, i, 0),
4338 desc_bound_bitsize (bounds_type, i, 0));
4339 modify_field (value_type (bounds), value_contents_writeable (bounds),
4340 ada_array_bound (arr, i, 1),
4341 desc_bound_bitpos (bounds_type, i, 1),
4342 desc_bound_bitsize (bounds_type, i, 1));
4343 }
4344
4345 bounds = ensure_lval (bounds);
4346
4347 modify_field (value_type (descriptor),
4348 value_contents_writeable (descriptor),
4349 value_pointer (ensure_lval (arr),
4350 TYPE_FIELD_TYPE (desc_type, 0)),
4351 fat_pntr_data_bitpos (desc_type),
4352 fat_pntr_data_bitsize (desc_type));
4353
4354 modify_field (value_type (descriptor),
4355 value_contents_writeable (descriptor),
4356 value_pointer (bounds,
4357 TYPE_FIELD_TYPE (desc_type, 1)),
4358 fat_pntr_bounds_bitpos (desc_type),
4359 fat_pntr_bounds_bitsize (desc_type));
4360
4361 descriptor = ensure_lval (descriptor);
4362
4363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4364 return value_addr (descriptor);
4365 else
4366 return descriptor;
4367 }
4368 \f
4369 /* Symbol Cache Module */
4370
4371 /* Performance measurements made as of 2010-01-15 indicate that
4372 this cache does bring some noticeable improvements. Depending
4373 on the type of entity being printed, the cache can make it as much
4374 as an order of magnitude faster than without it.
4375
4376 The descriptive type DWARF extension has significantly reduced
4377 the need for this cache, at least when DWARF is being used. However,
4378 even in this case, some expensive name-based symbol searches are still
4379 sometimes necessary - to find an XVZ variable, mostly. */
4380
4381 /* Initialize the contents of SYM_CACHE. */
4382
4383 static void
4384 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4385 {
4386 obstack_init (&sym_cache->cache_space);
4387 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4388 }
4389
4390 /* Free the memory used by SYM_CACHE. */
4391
4392 static void
4393 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4394 {
4395 obstack_free (&sym_cache->cache_space, NULL);
4396 xfree (sym_cache);
4397 }
4398
4399 /* Return the symbol cache associated to the given program space PSPACE.
4400 If not allocated for this PSPACE yet, allocate and initialize one. */
4401
4402 static struct ada_symbol_cache *
4403 ada_get_symbol_cache (struct program_space *pspace)
4404 {
4405 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4406
4407 if (pspace_data->sym_cache == NULL)
4408 {
4409 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4410 ada_init_symbol_cache (pspace_data->sym_cache);
4411 }
4412
4413 return pspace_data->sym_cache;
4414 }
4415
4416 /* Clear all entries from the symbol cache. */
4417
4418 static void
4419 ada_clear_symbol_cache (void)
4420 {
4421 struct ada_symbol_cache *sym_cache
4422 = ada_get_symbol_cache (current_program_space);
4423
4424 obstack_free (&sym_cache->cache_space, NULL);
4425 ada_init_symbol_cache (sym_cache);
4426 }
4427
4428 /* Search our cache for an entry matching NAME and DOMAIN.
4429 Return it if found, or NULL otherwise. */
4430
4431 static struct cache_entry **
4432 find_entry (const char *name, domain_enum domain)
4433 {
4434 struct ada_symbol_cache *sym_cache
4435 = ada_get_symbol_cache (current_program_space);
4436 int h = msymbol_hash (name) % HASH_SIZE;
4437 struct cache_entry **e;
4438
4439 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4440 {
4441 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4442 return e;
4443 }
4444 return NULL;
4445 }
4446
4447 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4448 Return 1 if found, 0 otherwise.
4449
4450 If an entry was found and SYM is not NULL, set *SYM to the entry's
4451 SYM. Same principle for BLOCK if not NULL. */
4452
4453 static int
4454 lookup_cached_symbol (const char *name, domain_enum domain,
4455 struct symbol **sym, const struct block **block)
4456 {
4457 struct cache_entry **e = find_entry (name, domain);
4458
4459 if (e == NULL)
4460 return 0;
4461 if (sym != NULL)
4462 *sym = (*e)->sym;
4463 if (block != NULL)
4464 *block = (*e)->block;
4465 return 1;
4466 }
4467
4468 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4469 in domain DOMAIN, save this result in our symbol cache. */
4470
4471 static void
4472 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4473 const struct block *block)
4474 {
4475 struct ada_symbol_cache *sym_cache
4476 = ada_get_symbol_cache (current_program_space);
4477 int h;
4478 char *copy;
4479 struct cache_entry *e;
4480
4481 /* Symbols for builtin types don't have a block.
4482 For now don't cache such symbols. */
4483 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4484 return;
4485
4486 /* If the symbol is a local symbol, then do not cache it, as a search
4487 for that symbol depends on the context. To determine whether
4488 the symbol is local or not, we check the block where we found it
4489 against the global and static blocks of its associated symtab. */
4490 if (sym
4491 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4492 GLOBAL_BLOCK) != block
4493 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4494 STATIC_BLOCK) != block)
4495 return;
4496
4497 h = msymbol_hash (name) % HASH_SIZE;
4498 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4499 sizeof (*e));
4500 e->next = sym_cache->root[h];
4501 sym_cache->root[h] = e;
4502 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4503 strcpy (copy, name);
4504 e->sym = sym;
4505 e->domain = domain;
4506 e->block = block;
4507 }
4508 \f
4509 /* Symbol Lookup */
4510
4511 /* Return nonzero if wild matching should be used when searching for
4512 all symbols matching LOOKUP_NAME.
4513
4514 LOOKUP_NAME is expected to be a symbol name after transformation
4515 for Ada lookups (see ada_name_for_lookup). */
4516
4517 static int
4518 should_use_wild_match (const char *lookup_name)
4519 {
4520 return (strstr (lookup_name, "__") == NULL);
4521 }
4522
4523 /* Return the result of a standard (literal, C-like) lookup of NAME in
4524 given DOMAIN, visible from lexical block BLOCK. */
4525
4526 static struct symbol *
4527 standard_lookup (const char *name, const struct block *block,
4528 domain_enum domain)
4529 {
4530 /* Initialize it just to avoid a GCC false warning. */
4531 struct symbol *sym = NULL;
4532
4533 if (lookup_cached_symbol (name, domain, &sym, NULL))
4534 return sym;
4535 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4536 cache_symbol (name, domain, sym, block_found);
4537 return sym;
4538 }
4539
4540
4541 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4542 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4543 since they contend in overloading in the same way. */
4544 static int
4545 is_nonfunction (struct ada_symbol_info syms[], int n)
4546 {
4547 int i;
4548
4549 for (i = 0; i < n; i += 1)
4550 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4551 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4552 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4553 return 1;
4554
4555 return 0;
4556 }
4557
4558 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4559 struct types. Otherwise, they may not. */
4560
4561 static int
4562 equiv_types (struct type *type0, struct type *type1)
4563 {
4564 if (type0 == type1)
4565 return 1;
4566 if (type0 == NULL || type1 == NULL
4567 || TYPE_CODE (type0) != TYPE_CODE (type1))
4568 return 0;
4569 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4570 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4571 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4572 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4573 return 1;
4574
4575 return 0;
4576 }
4577
4578 /* True iff SYM0 represents the same entity as SYM1, or one that is
4579 no more defined than that of SYM1. */
4580
4581 static int
4582 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4583 {
4584 if (sym0 == sym1)
4585 return 1;
4586 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4587 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4588 return 0;
4589
4590 switch (SYMBOL_CLASS (sym0))
4591 {
4592 case LOC_UNDEF:
4593 return 1;
4594 case LOC_TYPEDEF:
4595 {
4596 struct type *type0 = SYMBOL_TYPE (sym0);
4597 struct type *type1 = SYMBOL_TYPE (sym1);
4598 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4599 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4600 int len0 = strlen (name0);
4601
4602 return
4603 TYPE_CODE (type0) == TYPE_CODE (type1)
4604 && (equiv_types (type0, type1)
4605 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4606 && startswith (name1 + len0, "___XV")));
4607 }
4608 case LOC_CONST:
4609 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4610 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4611 default:
4612 return 0;
4613 }
4614 }
4615
4616 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4617 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4618
4619 static void
4620 add_defn_to_vec (struct obstack *obstackp,
4621 struct symbol *sym,
4622 const struct block *block)
4623 {
4624 int i;
4625 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4626
4627 /* Do not try to complete stub types, as the debugger is probably
4628 already scanning all symbols matching a certain name at the
4629 time when this function is called. Trying to replace the stub
4630 type by its associated full type will cause us to restart a scan
4631 which may lead to an infinite recursion. Instead, the client
4632 collecting the matching symbols will end up collecting several
4633 matches, with at least one of them complete. It can then filter
4634 out the stub ones if needed. */
4635
4636 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4637 {
4638 if (lesseq_defined_than (sym, prevDefns[i].sym))
4639 return;
4640 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4641 {
4642 prevDefns[i].sym = sym;
4643 prevDefns[i].block = block;
4644 return;
4645 }
4646 }
4647
4648 {
4649 struct ada_symbol_info info;
4650
4651 info.sym = sym;
4652 info.block = block;
4653 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4654 }
4655 }
4656
4657 /* Number of ada_symbol_info structures currently collected in
4658 current vector in *OBSTACKP. */
4659
4660 static int
4661 num_defns_collected (struct obstack *obstackp)
4662 {
4663 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4664 }
4665
4666 /* Vector of ada_symbol_info structures currently collected in current
4667 vector in *OBSTACKP. If FINISH, close off the vector and return
4668 its final address. */
4669
4670 static struct ada_symbol_info *
4671 defns_collected (struct obstack *obstackp, int finish)
4672 {
4673 if (finish)
4674 return obstack_finish (obstackp);
4675 else
4676 return (struct ada_symbol_info *) obstack_base (obstackp);
4677 }
4678
4679 /* Return a bound minimal symbol matching NAME according to Ada
4680 decoding rules. Returns an invalid symbol if there is no such
4681 minimal symbol. Names prefixed with "standard__" are handled
4682 specially: "standard__" is first stripped off, and only static and
4683 global symbols are searched. */
4684
4685 struct bound_minimal_symbol
4686 ada_lookup_simple_minsym (const char *name)
4687 {
4688 struct bound_minimal_symbol result;
4689 struct objfile *objfile;
4690 struct minimal_symbol *msymbol;
4691 const int wild_match_p = should_use_wild_match (name);
4692
4693 memset (&result, 0, sizeof (result));
4694
4695 /* Special case: If the user specifies a symbol name inside package
4696 Standard, do a non-wild matching of the symbol name without
4697 the "standard__" prefix. This was primarily introduced in order
4698 to allow the user to specifically access the standard exceptions
4699 using, for instance, Standard.Constraint_Error when Constraint_Error
4700 is ambiguous (due to the user defining its own Constraint_Error
4701 entity inside its program). */
4702 if (startswith (name, "standard__"))
4703 name += sizeof ("standard__") - 1;
4704
4705 ALL_MSYMBOLS (objfile, msymbol)
4706 {
4707 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4708 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4709 {
4710 result.minsym = msymbol;
4711 result.objfile = objfile;
4712 break;
4713 }
4714 }
4715
4716 return result;
4717 }
4718
4719 /* For all subprograms that statically enclose the subprogram of the
4720 selected frame, add symbols matching identifier NAME in DOMAIN
4721 and their blocks to the list of data in OBSTACKP, as for
4722 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4723 with a wildcard prefix. */
4724
4725 static void
4726 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4727 const char *name, domain_enum domain,
4728 int wild_match_p)
4729 {
4730 }
4731
4732 /* True if TYPE is definitely an artificial type supplied to a symbol
4733 for which no debugging information was given in the symbol file. */
4734
4735 static int
4736 is_nondebugging_type (struct type *type)
4737 {
4738 const char *name = ada_type_name (type);
4739
4740 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4741 }
4742
4743 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4744 that are deemed "identical" for practical purposes.
4745
4746 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4747 types and that their number of enumerals is identical (in other
4748 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4749
4750 static int
4751 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4752 {
4753 int i;
4754
4755 /* The heuristic we use here is fairly conservative. We consider
4756 that 2 enumerate types are identical if they have the same
4757 number of enumerals and that all enumerals have the same
4758 underlying value and name. */
4759
4760 /* All enums in the type should have an identical underlying value. */
4761 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4762 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4763 return 0;
4764
4765 /* All enumerals should also have the same name (modulo any numerical
4766 suffix). */
4767 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4768 {
4769 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4770 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4771 int len_1 = strlen (name_1);
4772 int len_2 = strlen (name_2);
4773
4774 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4775 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4776 if (len_1 != len_2
4777 || strncmp (TYPE_FIELD_NAME (type1, i),
4778 TYPE_FIELD_NAME (type2, i),
4779 len_1) != 0)
4780 return 0;
4781 }
4782
4783 return 1;
4784 }
4785
4786 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4787 that are deemed "identical" for practical purposes. Sometimes,
4788 enumerals are not strictly identical, but their types are so similar
4789 that they can be considered identical.
4790
4791 For instance, consider the following code:
4792
4793 type Color is (Black, Red, Green, Blue, White);
4794 type RGB_Color is new Color range Red .. Blue;
4795
4796 Type RGB_Color is a subrange of an implicit type which is a copy
4797 of type Color. If we call that implicit type RGB_ColorB ("B" is
4798 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4799 As a result, when an expression references any of the enumeral
4800 by name (Eg. "print green"), the expression is technically
4801 ambiguous and the user should be asked to disambiguate. But
4802 doing so would only hinder the user, since it wouldn't matter
4803 what choice he makes, the outcome would always be the same.
4804 So, for practical purposes, we consider them as the same. */
4805
4806 static int
4807 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4808 {
4809 int i;
4810
4811 /* Before performing a thorough comparison check of each type,
4812 we perform a series of inexpensive checks. We expect that these
4813 checks will quickly fail in the vast majority of cases, and thus
4814 help prevent the unnecessary use of a more expensive comparison.
4815 Said comparison also expects us to make some of these checks
4816 (see ada_identical_enum_types_p). */
4817
4818 /* Quick check: All symbols should have an enum type. */
4819 for (i = 0; i < nsyms; i++)
4820 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4821 return 0;
4822
4823 /* Quick check: They should all have the same value. */
4824 for (i = 1; i < nsyms; i++)
4825 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4826 return 0;
4827
4828 /* Quick check: They should all have the same number of enumerals. */
4829 for (i = 1; i < nsyms; i++)
4830 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4831 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4832 return 0;
4833
4834 /* All the sanity checks passed, so we might have a set of
4835 identical enumeration types. Perform a more complete
4836 comparison of the type of each symbol. */
4837 for (i = 1; i < nsyms; i++)
4838 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4839 SYMBOL_TYPE (syms[0].sym)))
4840 return 0;
4841
4842 return 1;
4843 }
4844
4845 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4846 duplicate other symbols in the list (The only case I know of where
4847 this happens is when object files containing stabs-in-ecoff are
4848 linked with files containing ordinary ecoff debugging symbols (or no
4849 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4850 Returns the number of items in the modified list. */
4851
4852 static int
4853 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4854 {
4855 int i, j;
4856
4857 /* We should never be called with less than 2 symbols, as there
4858 cannot be any extra symbol in that case. But it's easy to
4859 handle, since we have nothing to do in that case. */
4860 if (nsyms < 2)
4861 return nsyms;
4862
4863 i = 0;
4864 while (i < nsyms)
4865 {
4866 int remove_p = 0;
4867
4868 /* If two symbols have the same name and one of them is a stub type,
4869 the get rid of the stub. */
4870
4871 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4872 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4873 {
4874 for (j = 0; j < nsyms; j++)
4875 {
4876 if (j != i
4877 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4878 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4879 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4880 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4881 remove_p = 1;
4882 }
4883 }
4884
4885 /* Two symbols with the same name, same class and same address
4886 should be identical. */
4887
4888 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4889 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4890 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4891 {
4892 for (j = 0; j < nsyms; j += 1)
4893 {
4894 if (i != j
4895 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4896 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4897 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4898 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4899 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4900 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4901 remove_p = 1;
4902 }
4903 }
4904
4905 if (remove_p)
4906 {
4907 for (j = i + 1; j < nsyms; j += 1)
4908 syms[j - 1] = syms[j];
4909 nsyms -= 1;
4910 }
4911
4912 i += 1;
4913 }
4914
4915 /* If all the remaining symbols are identical enumerals, then
4916 just keep the first one and discard the rest.
4917
4918 Unlike what we did previously, we do not discard any entry
4919 unless they are ALL identical. This is because the symbol
4920 comparison is not a strict comparison, but rather a practical
4921 comparison. If all symbols are considered identical, then
4922 we can just go ahead and use the first one and discard the rest.
4923 But if we cannot reduce the list to a single element, we have
4924 to ask the user to disambiguate anyways. And if we have to
4925 present a multiple-choice menu, it's less confusing if the list
4926 isn't missing some choices that were identical and yet distinct. */
4927 if (symbols_are_identical_enums (syms, nsyms))
4928 nsyms = 1;
4929
4930 return nsyms;
4931 }
4932
4933 /* Given a type that corresponds to a renaming entity, use the type name
4934 to extract the scope (package name or function name, fully qualified,
4935 and following the GNAT encoding convention) where this renaming has been
4936 defined. The string returned needs to be deallocated after use. */
4937
4938 static char *
4939 xget_renaming_scope (struct type *renaming_type)
4940 {
4941 /* The renaming types adhere to the following convention:
4942 <scope>__<rename>___<XR extension>.
4943 So, to extract the scope, we search for the "___XR" extension,
4944 and then backtrack until we find the first "__". */
4945
4946 const char *name = type_name_no_tag (renaming_type);
4947 char *suffix = strstr (name, "___XR");
4948 char *last;
4949 int scope_len;
4950 char *scope;
4951
4952 /* Now, backtrack a bit until we find the first "__". Start looking
4953 at suffix - 3, as the <rename> part is at least one character long. */
4954
4955 for (last = suffix - 3; last > name; last--)
4956 if (last[0] == '_' && last[1] == '_')
4957 break;
4958
4959 /* Make a copy of scope and return it. */
4960
4961 scope_len = last - name;
4962 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4963
4964 strncpy (scope, name, scope_len);
4965 scope[scope_len] = '\0';
4966
4967 return scope;
4968 }
4969
4970 /* Return nonzero if NAME corresponds to a package name. */
4971
4972 static int
4973 is_package_name (const char *name)
4974 {
4975 /* Here, We take advantage of the fact that no symbols are generated
4976 for packages, while symbols are generated for each function.
4977 So the condition for NAME represent a package becomes equivalent
4978 to NAME not existing in our list of symbols. There is only one
4979 small complication with library-level functions (see below). */
4980
4981 char *fun_name;
4982
4983 /* If it is a function that has not been defined at library level,
4984 then we should be able to look it up in the symbols. */
4985 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4986 return 0;
4987
4988 /* Library-level function names start with "_ada_". See if function
4989 "_ada_" followed by NAME can be found. */
4990
4991 /* Do a quick check that NAME does not contain "__", since library-level
4992 functions names cannot contain "__" in them. */
4993 if (strstr (name, "__") != NULL)
4994 return 0;
4995
4996 fun_name = xstrprintf ("_ada_%s", name);
4997
4998 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4999 }
5000
5001 /* Return nonzero if SYM corresponds to a renaming entity that is
5002 not visible from FUNCTION_NAME. */
5003
5004 static int
5005 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5006 {
5007 char *scope;
5008 struct cleanup *old_chain;
5009
5010 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5011 return 0;
5012
5013 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5014 old_chain = make_cleanup (xfree, scope);
5015
5016 /* If the rename has been defined in a package, then it is visible. */
5017 if (is_package_name (scope))
5018 {
5019 do_cleanups (old_chain);
5020 return 0;
5021 }
5022
5023 /* Check that the rename is in the current function scope by checking
5024 that its name starts with SCOPE. */
5025
5026 /* If the function name starts with "_ada_", it means that it is
5027 a library-level function. Strip this prefix before doing the
5028 comparison, as the encoding for the renaming does not contain
5029 this prefix. */
5030 if (startswith (function_name, "_ada_"))
5031 function_name += 5;
5032
5033 {
5034 int is_invisible = !startswith (function_name, scope);
5035
5036 do_cleanups (old_chain);
5037 return is_invisible;
5038 }
5039 }
5040
5041 /* Remove entries from SYMS that corresponds to a renaming entity that
5042 is not visible from the function associated with CURRENT_BLOCK or
5043 that is superfluous due to the presence of more specific renaming
5044 information. Places surviving symbols in the initial entries of
5045 SYMS and returns the number of surviving symbols.
5046
5047 Rationale:
5048 First, in cases where an object renaming is implemented as a
5049 reference variable, GNAT may produce both the actual reference
5050 variable and the renaming encoding. In this case, we discard the
5051 latter.
5052
5053 Second, GNAT emits a type following a specified encoding for each renaming
5054 entity. Unfortunately, STABS currently does not support the definition
5055 of types that are local to a given lexical block, so all renamings types
5056 are emitted at library level. As a consequence, if an application
5057 contains two renaming entities using the same name, and a user tries to
5058 print the value of one of these entities, the result of the ada symbol
5059 lookup will also contain the wrong renaming type.
5060
5061 This function partially covers for this limitation by attempting to
5062 remove from the SYMS list renaming symbols that should be visible
5063 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5064 method with the current information available. The implementation
5065 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5066
5067 - When the user tries to print a rename in a function while there
5068 is another rename entity defined in a package: Normally, the
5069 rename in the function has precedence over the rename in the
5070 package, so the latter should be removed from the list. This is
5071 currently not the case.
5072
5073 - This function will incorrectly remove valid renames if
5074 the CURRENT_BLOCK corresponds to a function which symbol name
5075 has been changed by an "Export" pragma. As a consequence,
5076 the user will be unable to print such rename entities. */
5077
5078 static int
5079 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5080 int nsyms, const struct block *current_block)
5081 {
5082 struct symbol *current_function;
5083 const char *current_function_name;
5084 int i;
5085 int is_new_style_renaming;
5086
5087 /* If there is both a renaming foo___XR... encoded as a variable and
5088 a simple variable foo in the same block, discard the latter.
5089 First, zero out such symbols, then compress. */
5090 is_new_style_renaming = 0;
5091 for (i = 0; i < nsyms; i += 1)
5092 {
5093 struct symbol *sym = syms[i].sym;
5094 const struct block *block = syms[i].block;
5095 const char *name;
5096 const char *suffix;
5097
5098 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5099 continue;
5100 name = SYMBOL_LINKAGE_NAME (sym);
5101 suffix = strstr (name, "___XR");
5102
5103 if (suffix != NULL)
5104 {
5105 int name_len = suffix - name;
5106 int j;
5107
5108 is_new_style_renaming = 1;
5109 for (j = 0; j < nsyms; j += 1)
5110 if (i != j && syms[j].sym != NULL
5111 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5112 name_len) == 0
5113 && block == syms[j].block)
5114 syms[j].sym = NULL;
5115 }
5116 }
5117 if (is_new_style_renaming)
5118 {
5119 int j, k;
5120
5121 for (j = k = 0; j < nsyms; j += 1)
5122 if (syms[j].sym != NULL)
5123 {
5124 syms[k] = syms[j];
5125 k += 1;
5126 }
5127 return k;
5128 }
5129
5130 /* Extract the function name associated to CURRENT_BLOCK.
5131 Abort if unable to do so. */
5132
5133 if (current_block == NULL)
5134 return nsyms;
5135
5136 current_function = block_linkage_function (current_block);
5137 if (current_function == NULL)
5138 return nsyms;
5139
5140 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5141 if (current_function_name == NULL)
5142 return nsyms;
5143
5144 /* Check each of the symbols, and remove it from the list if it is
5145 a type corresponding to a renaming that is out of the scope of
5146 the current block. */
5147
5148 i = 0;
5149 while (i < nsyms)
5150 {
5151 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5152 == ADA_OBJECT_RENAMING
5153 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5154 {
5155 int j;
5156
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161 else
5162 i += 1;
5163 }
5164
5165 return nsyms;
5166 }
5167
5168 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5169 whose name and domain match NAME and DOMAIN respectively.
5170 If no match was found, then extend the search to "enclosing"
5171 routines (in other words, if we're inside a nested function,
5172 search the symbols defined inside the enclosing functions).
5173 If WILD_MATCH_P is nonzero, perform the naming matching in
5174 "wild" mode (see function "wild_match" for more info).
5175
5176 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5177
5178 static void
5179 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5180 const struct block *block, domain_enum domain,
5181 int wild_match_p)
5182 {
5183 int block_depth = 0;
5184
5185 while (block != NULL)
5186 {
5187 block_depth += 1;
5188 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5189 wild_match_p);
5190
5191 /* If we found a non-function match, assume that's the one. */
5192 if (is_nonfunction (defns_collected (obstackp, 0),
5193 num_defns_collected (obstackp)))
5194 return;
5195
5196 block = BLOCK_SUPERBLOCK (block);
5197 }
5198
5199 /* If no luck so far, try to find NAME as a local symbol in some lexically
5200 enclosing subprogram. */
5201 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5202 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5203 }
5204
5205 /* An object of this type is used as the user_data argument when
5206 calling the map_matching_symbols method. */
5207
5208 struct match_data
5209 {
5210 struct objfile *objfile;
5211 struct obstack *obstackp;
5212 struct symbol *arg_sym;
5213 int found_sym;
5214 };
5215
5216 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5217 to a list of symbols. DATA0 is a pointer to a struct match_data *
5218 containing the obstack that collects the symbol list, the file that SYM
5219 must come from, a flag indicating whether a non-argument symbol has
5220 been found in the current block, and the last argument symbol
5221 passed in SYM within the current block (if any). When SYM is null,
5222 marking the end of a block, the argument symbol is added if no
5223 other has been found. */
5224
5225 static int
5226 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5227 {
5228 struct match_data *data = (struct match_data *) data0;
5229
5230 if (sym == NULL)
5231 {
5232 if (!data->found_sym && data->arg_sym != NULL)
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (data->arg_sym, data->objfile),
5235 block);
5236 data->found_sym = 0;
5237 data->arg_sym = NULL;
5238 }
5239 else
5240 {
5241 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5242 return 0;
5243 else if (SYMBOL_IS_ARGUMENT (sym))
5244 data->arg_sym = sym;
5245 else
5246 {
5247 data->found_sym = 1;
5248 add_defn_to_vec (data->obstackp,
5249 fixup_symbol_section (sym, data->objfile),
5250 block);
5251 }
5252 }
5253 return 0;
5254 }
5255
5256 /* Implements compare_names, but only applying the comparision using
5257 the given CASING. */
5258
5259 static int
5260 compare_names_with_case (const char *string1, const char *string2,
5261 enum case_sensitivity casing)
5262 {
5263 while (*string1 != '\0' && *string2 != '\0')
5264 {
5265 char c1, c2;
5266
5267 if (isspace (*string1) || isspace (*string2))
5268 return strcmp_iw_ordered (string1, string2);
5269
5270 if (casing == case_sensitive_off)
5271 {
5272 c1 = tolower (*string1);
5273 c2 = tolower (*string2);
5274 }
5275 else
5276 {
5277 c1 = *string1;
5278 c2 = *string2;
5279 }
5280 if (c1 != c2)
5281 break;
5282
5283 string1 += 1;
5284 string2 += 1;
5285 }
5286
5287 switch (*string1)
5288 {
5289 case '(':
5290 return strcmp_iw_ordered (string1, string2);
5291 case '_':
5292 if (*string2 == '\0')
5293 {
5294 if (is_name_suffix (string1))
5295 return 0;
5296 else
5297 return 1;
5298 }
5299 /* FALLTHROUGH */
5300 default:
5301 if (*string2 == '(')
5302 return strcmp_iw_ordered (string1, string2);
5303 else
5304 {
5305 if (casing == case_sensitive_off)
5306 return tolower (*string1) - tolower (*string2);
5307 else
5308 return *string1 - *string2;
5309 }
5310 }
5311 }
5312
5313 /* Compare STRING1 to STRING2, with results as for strcmp.
5314 Compatible with strcmp_iw_ordered in that...
5315
5316 strcmp_iw_ordered (STRING1, STRING2) <= 0
5317
5318 ... implies...
5319
5320 compare_names (STRING1, STRING2) <= 0
5321
5322 (they may differ as to what symbols compare equal). */
5323
5324 static int
5325 compare_names (const char *string1, const char *string2)
5326 {
5327 int result;
5328
5329 /* Similar to what strcmp_iw_ordered does, we need to perform
5330 a case-insensitive comparison first, and only resort to
5331 a second, case-sensitive, comparison if the first one was
5332 not sufficient to differentiate the two strings. */
5333
5334 result = compare_names_with_case (string1, string2, case_sensitive_off);
5335 if (result == 0)
5336 result = compare_names_with_case (string1, string2, case_sensitive_on);
5337
5338 return result;
5339 }
5340
5341 /* Add to OBSTACKP all non-local symbols whose name and domain match
5342 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5343 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5344
5345 static void
5346 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5347 domain_enum domain, int global,
5348 int is_wild_match)
5349 {
5350 struct objfile *objfile;
5351 struct match_data data;
5352
5353 memset (&data, 0, sizeof data);
5354 data.obstackp = obstackp;
5355
5356 ALL_OBJFILES (objfile)
5357 {
5358 data.objfile = objfile;
5359
5360 if (is_wild_match)
5361 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5362 aux_add_nonlocal_symbols, &data,
5363 wild_match, NULL);
5364 else
5365 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5366 aux_add_nonlocal_symbols, &data,
5367 full_match, compare_names);
5368 }
5369
5370 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5371 {
5372 ALL_OBJFILES (objfile)
5373 {
5374 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5375 strcpy (name1, "_ada_");
5376 strcpy (name1 + sizeof ("_ada_") - 1, name);
5377 data.objfile = objfile;
5378 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5379 global,
5380 aux_add_nonlocal_symbols,
5381 &data,
5382 full_match, compare_names);
5383 }
5384 }
5385 }
5386
5387 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5388 non-zero, enclosing scope and in global scopes, returning the number of
5389 matches.
5390 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5391 indicating the symbols found and the blocks and symbol tables (if
5392 any) in which they were found. This vector is transient---good only to
5393 the next call of ada_lookup_symbol_list.
5394
5395 When full_search is non-zero, any non-function/non-enumeral
5396 symbol match within the nest of blocks whose innermost member is BLOCK0,
5397 is the one match returned (no other matches in that or
5398 enclosing blocks is returned). If there are any matches in or
5399 surrounding BLOCK0, then these alone are returned.
5400
5401 Names prefixed with "standard__" are handled specially: "standard__"
5402 is first stripped off, and only static and global symbols are searched. */
5403
5404 static int
5405 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5406 domain_enum domain,
5407 struct ada_symbol_info **results,
5408 int full_search)
5409 {
5410 struct symbol *sym;
5411 const struct block *block;
5412 const char *name;
5413 const int wild_match_p = should_use_wild_match (name0);
5414 int syms_from_global_search = 0;
5415 int ndefns;
5416
5417 obstack_free (&symbol_list_obstack, NULL);
5418 obstack_init (&symbol_list_obstack);
5419
5420 /* Search specified block and its superiors. */
5421
5422 name = name0;
5423 block = block0;
5424
5425 /* Special case: If the user specifies a symbol name inside package
5426 Standard, do a non-wild matching of the symbol name without
5427 the "standard__" prefix. This was primarily introduced in order
5428 to allow the user to specifically access the standard exceptions
5429 using, for instance, Standard.Constraint_Error when Constraint_Error
5430 is ambiguous (due to the user defining its own Constraint_Error
5431 entity inside its program). */
5432 if (startswith (name0, "standard__"))
5433 {
5434 block = NULL;
5435 name = name0 + sizeof ("standard__") - 1;
5436 }
5437
5438 /* Check the non-global symbols. If we have ANY match, then we're done. */
5439
5440 if (block != NULL)
5441 {
5442 if (full_search)
5443 {
5444 ada_add_local_symbols (&symbol_list_obstack, name, block,
5445 domain, wild_match_p);
5446 }
5447 else
5448 {
5449 /* In the !full_search case we're are being called by
5450 ada_iterate_over_symbols, and we don't want to search
5451 superblocks. */
5452 ada_add_block_symbols (&symbol_list_obstack, block, name,
5453 domain, NULL, wild_match_p);
5454 }
5455 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5456 goto done;
5457 }
5458
5459 /* No non-global symbols found. Check our cache to see if we have
5460 already performed this search before. If we have, then return
5461 the same result. */
5462
5463 if (lookup_cached_symbol (name0, domain, &sym, &block))
5464 {
5465 if (sym != NULL)
5466 add_defn_to_vec (&symbol_list_obstack, sym, block);
5467 goto done;
5468 }
5469
5470 syms_from_global_search = 1;
5471
5472 /* Search symbols from all global blocks. */
5473
5474 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1,
5475 wild_match_p);
5476
5477 /* Now add symbols from all per-file blocks if we've gotten no hits
5478 (not strictly correct, but perhaps better than an error). */
5479
5480 if (num_defns_collected (&symbol_list_obstack) == 0)
5481 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0,
5482 wild_match_p);
5483
5484 done:
5485 ndefns = num_defns_collected (&symbol_list_obstack);
5486 *results = defns_collected (&symbol_list_obstack, 1);
5487
5488 ndefns = remove_extra_symbols (*results, ndefns);
5489
5490 if (ndefns == 0 && full_search && syms_from_global_search)
5491 cache_symbol (name0, domain, NULL, NULL);
5492
5493 if (ndefns == 1 && full_search && syms_from_global_search)
5494 cache_symbol (name0, domain, (*results)[0].sym, (*results)[0].block);
5495
5496 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5497
5498 return ndefns;
5499 }
5500
5501 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5502 in global scopes, returning the number of matches, and setting *RESULTS
5503 to a vector of (SYM,BLOCK) tuples.
5504 See ada_lookup_symbol_list_worker for further details. */
5505
5506 int
5507 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5508 domain_enum domain, struct ada_symbol_info **results)
5509 {
5510 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5511 }
5512
5513 /* Implementation of the la_iterate_over_symbols method. */
5514
5515 static void
5516 ada_iterate_over_symbols (const struct block *block,
5517 const char *name, domain_enum domain,
5518 symbol_found_callback_ftype *callback,
5519 void *data)
5520 {
5521 int ndefs, i;
5522 struct ada_symbol_info *results;
5523
5524 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5525 for (i = 0; i < ndefs; ++i)
5526 {
5527 if (! (*callback) (results[i].sym, data))
5528 break;
5529 }
5530 }
5531
5532 /* If NAME is the name of an entity, return a string that should
5533 be used to look that entity up in Ada units. This string should
5534 be deallocated after use using xfree.
5535
5536 NAME can have any form that the "break" or "print" commands might
5537 recognize. In other words, it does not have to be the "natural"
5538 name, or the "encoded" name. */
5539
5540 char *
5541 ada_name_for_lookup (const char *name)
5542 {
5543 char *canon;
5544 int nlen = strlen (name);
5545
5546 if (name[0] == '<' && name[nlen - 1] == '>')
5547 {
5548 canon = xmalloc (nlen - 1);
5549 memcpy (canon, name + 1, nlen - 2);
5550 canon[nlen - 2] = '\0';
5551 }
5552 else
5553 canon = xstrdup (ada_encode (ada_fold_name (name)));
5554 return canon;
5555 }
5556
5557 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5558 to 1, but choosing the first symbol found if there are multiple
5559 choices.
5560
5561 The result is stored in *INFO, which must be non-NULL.
5562 If no match is found, INFO->SYM is set to NULL. */
5563
5564 void
5565 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5566 domain_enum domain,
5567 struct ada_symbol_info *info)
5568 {
5569 struct ada_symbol_info *candidates;
5570 int n_candidates;
5571
5572 gdb_assert (info != NULL);
5573 memset (info, 0, sizeof (struct ada_symbol_info));
5574
5575 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5576 if (n_candidates == 0)
5577 return;
5578
5579 *info = candidates[0];
5580 info->sym = fixup_symbol_section (info->sym, NULL);
5581 }
5582
5583 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5584 scope and in global scopes, or NULL if none. NAME is folded and
5585 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5586 choosing the first symbol if there are multiple choices.
5587 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5588
5589 struct symbol *
5590 ada_lookup_symbol (const char *name, const struct block *block0,
5591 domain_enum domain, int *is_a_field_of_this)
5592 {
5593 struct ada_symbol_info info;
5594
5595 if (is_a_field_of_this != NULL)
5596 *is_a_field_of_this = 0;
5597
5598 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5599 block0, domain, &info);
5600 return info.sym;
5601 }
5602
5603 static struct symbol *
5604 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5605 const char *name,
5606 const struct block *block,
5607 const domain_enum domain)
5608 {
5609 struct symbol *sym;
5610
5611 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5612 if (sym != NULL)
5613 return sym;
5614
5615 /* If we haven't found a match at this point, try the primitive
5616 types. In other languages, this search is performed before
5617 searching for global symbols in order to short-circuit that
5618 global-symbol search if it happens that the name corresponds
5619 to a primitive type. But we cannot do the same in Ada, because
5620 it is perfectly legitimate for a program to declare a type which
5621 has the same name as a standard type. If looking up a type in
5622 that situation, we have traditionally ignored the primitive type
5623 in favor of user-defined types. This is why, unlike most other
5624 languages, we search the primitive types this late and only after
5625 having searched the global symbols without success. */
5626
5627 if (domain == VAR_DOMAIN)
5628 {
5629 struct gdbarch *gdbarch;
5630
5631 if (block == NULL)
5632 gdbarch = target_gdbarch ();
5633 else
5634 gdbarch = block_gdbarch (block);
5635 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5636 if (sym != NULL)
5637 return sym;
5638 }
5639
5640 return NULL;
5641 }
5642
5643
5644 /* True iff STR is a possible encoded suffix of a normal Ada name
5645 that is to be ignored for matching purposes. Suffixes of parallel
5646 names (e.g., XVE) are not included here. Currently, the possible suffixes
5647 are given by any of the regular expressions:
5648
5649 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5650 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5651 TKB [subprogram suffix for task bodies]
5652 _E[0-9]+[bs]$ [protected object entry suffixes]
5653 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5654
5655 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5656 match is performed. This sequence is used to differentiate homonyms,
5657 is an optional part of a valid name suffix. */
5658
5659 static int
5660 is_name_suffix (const char *str)
5661 {
5662 int k;
5663 const char *matching;
5664 const int len = strlen (str);
5665
5666 /* Skip optional leading __[0-9]+. */
5667
5668 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5669 {
5670 str += 3;
5671 while (isdigit (str[0]))
5672 str += 1;
5673 }
5674
5675 /* [.$][0-9]+ */
5676
5677 if (str[0] == '.' || str[0] == '$')
5678 {
5679 matching = str + 1;
5680 while (isdigit (matching[0]))
5681 matching += 1;
5682 if (matching[0] == '\0')
5683 return 1;
5684 }
5685
5686 /* ___[0-9]+ */
5687
5688 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5689 {
5690 matching = str + 3;
5691 while (isdigit (matching[0]))
5692 matching += 1;
5693 if (matching[0] == '\0')
5694 return 1;
5695 }
5696
5697 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5698
5699 if (strcmp (str, "TKB") == 0)
5700 return 1;
5701
5702 #if 0
5703 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5704 with a N at the end. Unfortunately, the compiler uses the same
5705 convention for other internal types it creates. So treating
5706 all entity names that end with an "N" as a name suffix causes
5707 some regressions. For instance, consider the case of an enumerated
5708 type. To support the 'Image attribute, it creates an array whose
5709 name ends with N.
5710 Having a single character like this as a suffix carrying some
5711 information is a bit risky. Perhaps we should change the encoding
5712 to be something like "_N" instead. In the meantime, do not do
5713 the following check. */
5714 /* Protected Object Subprograms */
5715 if (len == 1 && str [0] == 'N')
5716 return 1;
5717 #endif
5718
5719 /* _E[0-9]+[bs]$ */
5720 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5721 {
5722 matching = str + 3;
5723 while (isdigit (matching[0]))
5724 matching += 1;
5725 if ((matching[0] == 'b' || matching[0] == 's')
5726 && matching [1] == '\0')
5727 return 1;
5728 }
5729
5730 /* ??? We should not modify STR directly, as we are doing below. This
5731 is fine in this case, but may become problematic later if we find
5732 that this alternative did not work, and want to try matching
5733 another one from the begining of STR. Since we modified it, we
5734 won't be able to find the begining of the string anymore! */
5735 if (str[0] == 'X')
5736 {
5737 str += 1;
5738 while (str[0] != '_' && str[0] != '\0')
5739 {
5740 if (str[0] != 'n' && str[0] != 'b')
5741 return 0;
5742 str += 1;
5743 }
5744 }
5745
5746 if (str[0] == '\000')
5747 return 1;
5748
5749 if (str[0] == '_')
5750 {
5751 if (str[1] != '_' || str[2] == '\000')
5752 return 0;
5753 if (str[2] == '_')
5754 {
5755 if (strcmp (str + 3, "JM") == 0)
5756 return 1;
5757 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5758 the LJM suffix in favor of the JM one. But we will
5759 still accept LJM as a valid suffix for a reasonable
5760 amount of time, just to allow ourselves to debug programs
5761 compiled using an older version of GNAT. */
5762 if (strcmp (str + 3, "LJM") == 0)
5763 return 1;
5764 if (str[3] != 'X')
5765 return 0;
5766 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5767 || str[4] == 'U' || str[4] == 'P')
5768 return 1;
5769 if (str[4] == 'R' && str[5] != 'T')
5770 return 1;
5771 return 0;
5772 }
5773 if (!isdigit (str[2]))
5774 return 0;
5775 for (k = 3; str[k] != '\0'; k += 1)
5776 if (!isdigit (str[k]) && str[k] != '_')
5777 return 0;
5778 return 1;
5779 }
5780 if (str[0] == '$' && isdigit (str[1]))
5781 {
5782 for (k = 2; str[k] != '\0'; k += 1)
5783 if (!isdigit (str[k]) && str[k] != '_')
5784 return 0;
5785 return 1;
5786 }
5787 return 0;
5788 }
5789
5790 /* Return non-zero if the string starting at NAME and ending before
5791 NAME_END contains no capital letters. */
5792
5793 static int
5794 is_valid_name_for_wild_match (const char *name0)
5795 {
5796 const char *decoded_name = ada_decode (name0);
5797 int i;
5798
5799 /* If the decoded name starts with an angle bracket, it means that
5800 NAME0 does not follow the GNAT encoding format. It should then
5801 not be allowed as a possible wild match. */
5802 if (decoded_name[0] == '<')
5803 return 0;
5804
5805 for (i=0; decoded_name[i] != '\0'; i++)
5806 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5807 return 0;
5808
5809 return 1;
5810 }
5811
5812 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5813 that could start a simple name. Assumes that *NAMEP points into
5814 the string beginning at NAME0. */
5815
5816 static int
5817 advance_wild_match (const char **namep, const char *name0, int target0)
5818 {
5819 const char *name = *namep;
5820
5821 while (1)
5822 {
5823 int t0, t1;
5824
5825 t0 = *name;
5826 if (t0 == '_')
5827 {
5828 t1 = name[1];
5829 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5830 {
5831 name += 1;
5832 if (name == name0 + 5 && startswith (name0, "_ada"))
5833 break;
5834 else
5835 name += 1;
5836 }
5837 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5838 || name[2] == target0))
5839 {
5840 name += 2;
5841 break;
5842 }
5843 else
5844 return 0;
5845 }
5846 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5847 name += 1;
5848 else
5849 return 0;
5850 }
5851
5852 *namep = name;
5853 return 1;
5854 }
5855
5856 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5857 informational suffixes of NAME (i.e., for which is_name_suffix is
5858 true). Assumes that PATN is a lower-cased Ada simple name. */
5859
5860 static int
5861 wild_match (const char *name, const char *patn)
5862 {
5863 const char *p;
5864 const char *name0 = name;
5865
5866 while (1)
5867 {
5868 const char *match = name;
5869
5870 if (*name == *patn)
5871 {
5872 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5873 if (*p != *name)
5874 break;
5875 if (*p == '\0' && is_name_suffix (name))
5876 return match != name0 && !is_valid_name_for_wild_match (name0);
5877
5878 if (name[-1] == '_')
5879 name -= 1;
5880 }
5881 if (!advance_wild_match (&name, name0, *patn))
5882 return 1;
5883 }
5884 }
5885
5886 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5887 informational suffix. */
5888
5889 static int
5890 full_match (const char *sym_name, const char *search_name)
5891 {
5892 return !match_name (sym_name, search_name, 0);
5893 }
5894
5895
5896 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5897 vector *defn_symbols, updating the list of symbols in OBSTACKP
5898 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5899 OBJFILE is the section containing BLOCK. */
5900
5901 static void
5902 ada_add_block_symbols (struct obstack *obstackp,
5903 const struct block *block, const char *name,
5904 domain_enum domain, struct objfile *objfile,
5905 int wild)
5906 {
5907 struct block_iterator iter;
5908 int name_len = strlen (name);
5909 /* A matching argument symbol, if any. */
5910 struct symbol *arg_sym;
5911 /* Set true when we find a matching non-argument symbol. */
5912 int found_sym;
5913 struct symbol *sym;
5914
5915 arg_sym = NULL;
5916 found_sym = 0;
5917 if (wild)
5918 {
5919 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5920 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5921 {
5922 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5923 SYMBOL_DOMAIN (sym), domain)
5924 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5925 {
5926 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5927 continue;
5928 else if (SYMBOL_IS_ARGUMENT (sym))
5929 arg_sym = sym;
5930 else
5931 {
5932 found_sym = 1;
5933 add_defn_to_vec (obstackp,
5934 fixup_symbol_section (sym, objfile),
5935 block);
5936 }
5937 }
5938 }
5939 }
5940 else
5941 {
5942 for (sym = block_iter_match_first (block, name, full_match, &iter);
5943 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5944 {
5945 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5946 SYMBOL_DOMAIN (sym), domain))
5947 {
5948 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5949 {
5950 if (SYMBOL_IS_ARGUMENT (sym))
5951 arg_sym = sym;
5952 else
5953 {
5954 found_sym = 1;
5955 add_defn_to_vec (obstackp,
5956 fixup_symbol_section (sym, objfile),
5957 block);
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 if (!found_sym && arg_sym != NULL)
5965 {
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (arg_sym, objfile),
5968 block);
5969 }
5970
5971 if (!wild)
5972 {
5973 arg_sym = NULL;
5974 found_sym = 0;
5975
5976 ALL_BLOCK_SYMBOLS (block, iter, sym)
5977 {
5978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5979 SYMBOL_DOMAIN (sym), domain))
5980 {
5981 int cmp;
5982
5983 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5984 if (cmp == 0)
5985 {
5986 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
5987 if (cmp == 0)
5988 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5989 name_len);
5990 }
5991
5992 if (cmp == 0
5993 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5994 {
5995 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5996 {
5997 if (SYMBOL_IS_ARGUMENT (sym))
5998 arg_sym = sym;
5999 else
6000 {
6001 found_sym = 1;
6002 add_defn_to_vec (obstackp,
6003 fixup_symbol_section (sym, objfile),
6004 block);
6005 }
6006 }
6007 }
6008 }
6009 }
6010
6011 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6012 They aren't parameters, right? */
6013 if (!found_sym && arg_sym != NULL)
6014 {
6015 add_defn_to_vec (obstackp,
6016 fixup_symbol_section (arg_sym, objfile),
6017 block);
6018 }
6019 }
6020 }
6021 \f
6022
6023 /* Symbol Completion */
6024
6025 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6026 name in a form that's appropriate for the completion. The result
6027 does not need to be deallocated, but is only good until the next call.
6028
6029 TEXT_LEN is equal to the length of TEXT.
6030 Perform a wild match if WILD_MATCH_P is set.
6031 ENCODED_P should be set if TEXT represents the start of a symbol name
6032 in its encoded form. */
6033
6034 static const char *
6035 symbol_completion_match (const char *sym_name,
6036 const char *text, int text_len,
6037 int wild_match_p, int encoded_p)
6038 {
6039 const int verbatim_match = (text[0] == '<');
6040 int match = 0;
6041
6042 if (verbatim_match)
6043 {
6044 /* Strip the leading angle bracket. */
6045 text = text + 1;
6046 text_len--;
6047 }
6048
6049 /* First, test against the fully qualified name of the symbol. */
6050
6051 if (strncmp (sym_name, text, text_len) == 0)
6052 match = 1;
6053
6054 if (match && !encoded_p)
6055 {
6056 /* One needed check before declaring a positive match is to verify
6057 that iff we are doing a verbatim match, the decoded version
6058 of the symbol name starts with '<'. Otherwise, this symbol name
6059 is not a suitable completion. */
6060 const char *sym_name_copy = sym_name;
6061 int has_angle_bracket;
6062
6063 sym_name = ada_decode (sym_name);
6064 has_angle_bracket = (sym_name[0] == '<');
6065 match = (has_angle_bracket == verbatim_match);
6066 sym_name = sym_name_copy;
6067 }
6068
6069 if (match && !verbatim_match)
6070 {
6071 /* When doing non-verbatim match, another check that needs to
6072 be done is to verify that the potentially matching symbol name
6073 does not include capital letters, because the ada-mode would
6074 not be able to understand these symbol names without the
6075 angle bracket notation. */
6076 const char *tmp;
6077
6078 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6079 if (*tmp != '\0')
6080 match = 0;
6081 }
6082
6083 /* Second: Try wild matching... */
6084
6085 if (!match && wild_match_p)
6086 {
6087 /* Since we are doing wild matching, this means that TEXT
6088 may represent an unqualified symbol name. We therefore must
6089 also compare TEXT against the unqualified name of the symbol. */
6090 sym_name = ada_unqualified_name (ada_decode (sym_name));
6091
6092 if (strncmp (sym_name, text, text_len) == 0)
6093 match = 1;
6094 }
6095
6096 /* Finally: If we found a mach, prepare the result to return. */
6097
6098 if (!match)
6099 return NULL;
6100
6101 if (verbatim_match)
6102 sym_name = add_angle_brackets (sym_name);
6103
6104 if (!encoded_p)
6105 sym_name = ada_decode (sym_name);
6106
6107 return sym_name;
6108 }
6109
6110 /* A companion function to ada_make_symbol_completion_list().
6111 Check if SYM_NAME represents a symbol which name would be suitable
6112 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6113 it is appended at the end of the given string vector SV.
6114
6115 ORIG_TEXT is the string original string from the user command
6116 that needs to be completed. WORD is the entire command on which
6117 completion should be performed. These two parameters are used to
6118 determine which part of the symbol name should be added to the
6119 completion vector.
6120 if WILD_MATCH_P is set, then wild matching is performed.
6121 ENCODED_P should be set if TEXT represents a symbol name in its
6122 encoded formed (in which case the completion should also be
6123 encoded). */
6124
6125 static void
6126 symbol_completion_add (VEC(char_ptr) **sv,
6127 const char *sym_name,
6128 const char *text, int text_len,
6129 const char *orig_text, const char *word,
6130 int wild_match_p, int encoded_p)
6131 {
6132 const char *match = symbol_completion_match (sym_name, text, text_len,
6133 wild_match_p, encoded_p);
6134 char *completion;
6135
6136 if (match == NULL)
6137 return;
6138
6139 /* We found a match, so add the appropriate completion to the given
6140 string vector. */
6141
6142 if (word == orig_text)
6143 {
6144 completion = xmalloc (strlen (match) + 5);
6145 strcpy (completion, match);
6146 }
6147 else if (word > orig_text)
6148 {
6149 /* Return some portion of sym_name. */
6150 completion = xmalloc (strlen (match) + 5);
6151 strcpy (completion, match + (word - orig_text));
6152 }
6153 else
6154 {
6155 /* Return some of ORIG_TEXT plus sym_name. */
6156 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6157 strncpy (completion, word, orig_text - word);
6158 completion[orig_text - word] = '\0';
6159 strcat (completion, match);
6160 }
6161
6162 VEC_safe_push (char_ptr, *sv, completion);
6163 }
6164
6165 /* An object of this type is passed as the user_data argument to the
6166 expand_symtabs_matching method. */
6167 struct add_partial_datum
6168 {
6169 VEC(char_ptr) **completions;
6170 const char *text;
6171 int text_len;
6172 const char *text0;
6173 const char *word;
6174 int wild_match;
6175 int encoded;
6176 };
6177
6178 /* A callback for expand_symtabs_matching. */
6179
6180 static int
6181 ada_complete_symbol_matcher (const char *name, void *user_data)
6182 {
6183 struct add_partial_datum *data = user_data;
6184
6185 return symbol_completion_match (name, data->text, data->text_len,
6186 data->wild_match, data->encoded) != NULL;
6187 }
6188
6189 /* Return a list of possible symbol names completing TEXT0. WORD is
6190 the entire command on which completion is made. */
6191
6192 static VEC (char_ptr) *
6193 ada_make_symbol_completion_list (const char *text0, const char *word,
6194 enum type_code code)
6195 {
6196 char *text;
6197 int text_len;
6198 int wild_match_p;
6199 int encoded_p;
6200 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6201 struct symbol *sym;
6202 struct compunit_symtab *s;
6203 struct minimal_symbol *msymbol;
6204 struct objfile *objfile;
6205 const struct block *b, *surrounding_static_block = 0;
6206 int i;
6207 struct block_iterator iter;
6208 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6209
6210 gdb_assert (code == TYPE_CODE_UNDEF);
6211
6212 if (text0[0] == '<')
6213 {
6214 text = xstrdup (text0);
6215 make_cleanup (xfree, text);
6216 text_len = strlen (text);
6217 wild_match_p = 0;
6218 encoded_p = 1;
6219 }
6220 else
6221 {
6222 text = xstrdup (ada_encode (text0));
6223 make_cleanup (xfree, text);
6224 text_len = strlen (text);
6225 for (i = 0; i < text_len; i++)
6226 text[i] = tolower (text[i]);
6227
6228 encoded_p = (strstr (text0, "__") != NULL);
6229 /* If the name contains a ".", then the user is entering a fully
6230 qualified entity name, and the match must not be done in wild
6231 mode. Similarly, if the user wants to complete what looks like
6232 an encoded name, the match must not be done in wild mode. */
6233 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6234 }
6235
6236 /* First, look at the partial symtab symbols. */
6237 {
6238 struct add_partial_datum data;
6239
6240 data.completions = &completions;
6241 data.text = text;
6242 data.text_len = text_len;
6243 data.text0 = text0;
6244 data.word = word;
6245 data.wild_match = wild_match_p;
6246 data.encoded = encoded_p;
6247 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6248 ALL_DOMAIN, &data);
6249 }
6250
6251 /* At this point scan through the misc symbol vectors and add each
6252 symbol you find to the list. Eventually we want to ignore
6253 anything that isn't a text symbol (everything else will be
6254 handled by the psymtab code above). */
6255
6256 ALL_MSYMBOLS (objfile, msymbol)
6257 {
6258 QUIT;
6259 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6260 text, text_len, text0, word, wild_match_p,
6261 encoded_p);
6262 }
6263
6264 /* Search upwards from currently selected frame (so that we can
6265 complete on local vars. */
6266
6267 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6268 {
6269 if (!BLOCK_SUPERBLOCK (b))
6270 surrounding_static_block = b; /* For elmin of dups */
6271
6272 ALL_BLOCK_SYMBOLS (b, iter, sym)
6273 {
6274 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6275 text, text_len, text0, word,
6276 wild_match_p, encoded_p);
6277 }
6278 }
6279
6280 /* Go through the symtabs and check the externs and statics for
6281 symbols which match. */
6282
6283 ALL_COMPUNITS (objfile, s)
6284 {
6285 QUIT;
6286 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6287 ALL_BLOCK_SYMBOLS (b, iter, sym)
6288 {
6289 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6290 text, text_len, text0, word,
6291 wild_match_p, encoded_p);
6292 }
6293 }
6294
6295 ALL_COMPUNITS (objfile, s)
6296 {
6297 QUIT;
6298 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6299 /* Don't do this block twice. */
6300 if (b == surrounding_static_block)
6301 continue;
6302 ALL_BLOCK_SYMBOLS (b, iter, sym)
6303 {
6304 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6305 text, text_len, text0, word,
6306 wild_match_p, encoded_p);
6307 }
6308 }
6309
6310 do_cleanups (old_chain);
6311 return completions;
6312 }
6313
6314 /* Field Access */
6315
6316 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6317 for tagged types. */
6318
6319 static int
6320 ada_is_dispatch_table_ptr_type (struct type *type)
6321 {
6322 const char *name;
6323
6324 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6325 return 0;
6326
6327 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6328 if (name == NULL)
6329 return 0;
6330
6331 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6332 }
6333
6334 /* Return non-zero if TYPE is an interface tag. */
6335
6336 static int
6337 ada_is_interface_tag (struct type *type)
6338 {
6339 const char *name = TYPE_NAME (type);
6340
6341 if (name == NULL)
6342 return 0;
6343
6344 return (strcmp (name, "ada__tags__interface_tag") == 0);
6345 }
6346
6347 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6348 to be invisible to users. */
6349
6350 int
6351 ada_is_ignored_field (struct type *type, int field_num)
6352 {
6353 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6354 return 1;
6355
6356 /* Check the name of that field. */
6357 {
6358 const char *name = TYPE_FIELD_NAME (type, field_num);
6359
6360 /* Anonymous field names should not be printed.
6361 brobecker/2007-02-20: I don't think this can actually happen
6362 but we don't want to print the value of annonymous fields anyway. */
6363 if (name == NULL)
6364 return 1;
6365
6366 /* Normally, fields whose name start with an underscore ("_")
6367 are fields that have been internally generated by the compiler,
6368 and thus should not be printed. The "_parent" field is special,
6369 however: This is a field internally generated by the compiler
6370 for tagged types, and it contains the components inherited from
6371 the parent type. This field should not be printed as is, but
6372 should not be ignored either. */
6373 if (name[0] == '_' && !startswith (name, "_parent"))
6374 return 1;
6375 }
6376
6377 /* If this is the dispatch table of a tagged type or an interface tag,
6378 then ignore. */
6379 if (ada_is_tagged_type (type, 1)
6380 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6381 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6382 return 1;
6383
6384 /* Not a special field, so it should not be ignored. */
6385 return 0;
6386 }
6387
6388 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6389 pointer or reference type whose ultimate target has a tag field. */
6390
6391 int
6392 ada_is_tagged_type (struct type *type, int refok)
6393 {
6394 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6395 }
6396
6397 /* True iff TYPE represents the type of X'Tag */
6398
6399 int
6400 ada_is_tag_type (struct type *type)
6401 {
6402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6403 return 0;
6404 else
6405 {
6406 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6407
6408 return (name != NULL
6409 && strcmp (name, "ada__tags__dispatch_table") == 0);
6410 }
6411 }
6412
6413 /* The type of the tag on VAL. */
6414
6415 struct type *
6416 ada_tag_type (struct value *val)
6417 {
6418 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6419 }
6420
6421 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6422 retired at Ada 05). */
6423
6424 static int
6425 is_ada95_tag (struct value *tag)
6426 {
6427 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6428 }
6429
6430 /* The value of the tag on VAL. */
6431
6432 struct value *
6433 ada_value_tag (struct value *val)
6434 {
6435 return ada_value_struct_elt (val, "_tag", 0);
6436 }
6437
6438 /* The value of the tag on the object of type TYPE whose contents are
6439 saved at VALADDR, if it is non-null, or is at memory address
6440 ADDRESS. */
6441
6442 static struct value *
6443 value_tag_from_contents_and_address (struct type *type,
6444 const gdb_byte *valaddr,
6445 CORE_ADDR address)
6446 {
6447 int tag_byte_offset;
6448 struct type *tag_type;
6449
6450 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6451 NULL, NULL, NULL))
6452 {
6453 const gdb_byte *valaddr1 = ((valaddr == NULL)
6454 ? NULL
6455 : valaddr + tag_byte_offset);
6456 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6457
6458 return value_from_contents_and_address (tag_type, valaddr1, address1);
6459 }
6460 return NULL;
6461 }
6462
6463 static struct type *
6464 type_from_tag (struct value *tag)
6465 {
6466 const char *type_name = ada_tag_name (tag);
6467
6468 if (type_name != NULL)
6469 return ada_find_any_type (ada_encode (type_name));
6470 return NULL;
6471 }
6472
6473 /* Given a value OBJ of a tagged type, return a value of this
6474 type at the base address of the object. The base address, as
6475 defined in Ada.Tags, it is the address of the primary tag of
6476 the object, and therefore where the field values of its full
6477 view can be fetched. */
6478
6479 struct value *
6480 ada_tag_value_at_base_address (struct value *obj)
6481 {
6482 volatile struct gdb_exception e;
6483 struct value *val;
6484 LONGEST offset_to_top = 0;
6485 struct type *ptr_type, *obj_type;
6486 struct value *tag;
6487 CORE_ADDR base_address;
6488
6489 obj_type = value_type (obj);
6490
6491 /* It is the responsability of the caller to deref pointers. */
6492
6493 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6494 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6495 return obj;
6496
6497 tag = ada_value_tag (obj);
6498 if (!tag)
6499 return obj;
6500
6501 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6502
6503 if (is_ada95_tag (tag))
6504 return obj;
6505
6506 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6507 ptr_type = lookup_pointer_type (ptr_type);
6508 val = value_cast (ptr_type, tag);
6509 if (!val)
6510 return obj;
6511
6512 /* It is perfectly possible that an exception be raised while
6513 trying to determine the base address, just like for the tag;
6514 see ada_tag_name for more details. We do not print the error
6515 message for the same reason. */
6516
6517 TRY_CATCH (e, RETURN_MASK_ERROR)
6518 {
6519 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6520 }
6521
6522 if (e.reason < 0)
6523 return obj;
6524
6525 /* If offset is null, nothing to do. */
6526
6527 if (offset_to_top == 0)
6528 return obj;
6529
6530 /* -1 is a special case in Ada.Tags; however, what should be done
6531 is not quite clear from the documentation. So do nothing for
6532 now. */
6533
6534 if (offset_to_top == -1)
6535 return obj;
6536
6537 base_address = value_address (obj) - offset_to_top;
6538 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6539
6540 /* Make sure that we have a proper tag at the new address.
6541 Otherwise, offset_to_top is bogus (which can happen when
6542 the object is not initialized yet). */
6543
6544 if (!tag)
6545 return obj;
6546
6547 obj_type = type_from_tag (tag);
6548
6549 if (!obj_type)
6550 return obj;
6551
6552 return value_from_contents_and_address (obj_type, NULL, base_address);
6553 }
6554
6555 /* Return the "ada__tags__type_specific_data" type. */
6556
6557 static struct type *
6558 ada_get_tsd_type (struct inferior *inf)
6559 {
6560 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6561
6562 if (data->tsd_type == 0)
6563 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6564 return data->tsd_type;
6565 }
6566
6567 /* Return the TSD (type-specific data) associated to the given TAG.
6568 TAG is assumed to be the tag of a tagged-type entity.
6569
6570 May return NULL if we are unable to get the TSD. */
6571
6572 static struct value *
6573 ada_get_tsd_from_tag (struct value *tag)
6574 {
6575 struct value *val;
6576 struct type *type;
6577
6578 /* First option: The TSD is simply stored as a field of our TAG.
6579 Only older versions of GNAT would use this format, but we have
6580 to test it first, because there are no visible markers for
6581 the current approach except the absence of that field. */
6582
6583 val = ada_value_struct_elt (tag, "tsd", 1);
6584 if (val)
6585 return val;
6586
6587 /* Try the second representation for the dispatch table (in which
6588 there is no explicit 'tsd' field in the referent of the tag pointer,
6589 and instead the tsd pointer is stored just before the dispatch
6590 table. */
6591
6592 type = ada_get_tsd_type (current_inferior());
6593 if (type == NULL)
6594 return NULL;
6595 type = lookup_pointer_type (lookup_pointer_type (type));
6596 val = value_cast (type, tag);
6597 if (val == NULL)
6598 return NULL;
6599 return value_ind (value_ptradd (val, -1));
6600 }
6601
6602 /* Given the TSD of a tag (type-specific data), return a string
6603 containing the name of the associated type.
6604
6605 The returned value is good until the next call. May return NULL
6606 if we are unable to determine the tag name. */
6607
6608 static char *
6609 ada_tag_name_from_tsd (struct value *tsd)
6610 {
6611 static char name[1024];
6612 char *p;
6613 struct value *val;
6614
6615 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6616 if (val == NULL)
6617 return NULL;
6618 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6619 for (p = name; *p != '\0'; p += 1)
6620 if (isalpha (*p))
6621 *p = tolower (*p);
6622 return name;
6623 }
6624
6625 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6626 a C string.
6627
6628 Return NULL if the TAG is not an Ada tag, or if we were unable to
6629 determine the name of that tag. The result is good until the next
6630 call. */
6631
6632 const char *
6633 ada_tag_name (struct value *tag)
6634 {
6635 volatile struct gdb_exception e;
6636 char *name = NULL;
6637
6638 if (!ada_is_tag_type (value_type (tag)))
6639 return NULL;
6640
6641 /* It is perfectly possible that an exception be raised while trying
6642 to determine the TAG's name, even under normal circumstances:
6643 The associated variable may be uninitialized or corrupted, for
6644 instance. We do not let any exception propagate past this point.
6645 instead we return NULL.
6646
6647 We also do not print the error message either (which often is very
6648 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6649 the caller print a more meaningful message if necessary. */
6650 TRY_CATCH (e, RETURN_MASK_ERROR)
6651 {
6652 struct value *tsd = ada_get_tsd_from_tag (tag);
6653
6654 if (tsd != NULL)
6655 name = ada_tag_name_from_tsd (tsd);
6656 }
6657
6658 return name;
6659 }
6660
6661 /* The parent type of TYPE, or NULL if none. */
6662
6663 struct type *
6664 ada_parent_type (struct type *type)
6665 {
6666 int i;
6667
6668 type = ada_check_typedef (type);
6669
6670 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6671 return NULL;
6672
6673 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6674 if (ada_is_parent_field (type, i))
6675 {
6676 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6677
6678 /* If the _parent field is a pointer, then dereference it. */
6679 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6680 parent_type = TYPE_TARGET_TYPE (parent_type);
6681 /* If there is a parallel XVS type, get the actual base type. */
6682 parent_type = ada_get_base_type (parent_type);
6683
6684 return ada_check_typedef (parent_type);
6685 }
6686
6687 return NULL;
6688 }
6689
6690 /* True iff field number FIELD_NUM of structure type TYPE contains the
6691 parent-type (inherited) fields of a derived type. Assumes TYPE is
6692 a structure type with at least FIELD_NUM+1 fields. */
6693
6694 int
6695 ada_is_parent_field (struct type *type, int field_num)
6696 {
6697 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6698
6699 return (name != NULL
6700 && (startswith (name, "PARENT")
6701 || startswith (name, "_parent")));
6702 }
6703
6704 /* True iff field number FIELD_NUM of structure type TYPE is a
6705 transparent wrapper field (which should be silently traversed when doing
6706 field selection and flattened when printing). Assumes TYPE is a
6707 structure type with at least FIELD_NUM+1 fields. Such fields are always
6708 structures. */
6709
6710 int
6711 ada_is_wrapper_field (struct type *type, int field_num)
6712 {
6713 const char *name = TYPE_FIELD_NAME (type, field_num);
6714
6715 return (name != NULL
6716 && (startswith (name, "PARENT")
6717 || strcmp (name, "REP") == 0
6718 || startswith (name, "_parent")
6719 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6720 }
6721
6722 /* True iff field number FIELD_NUM of structure or union type TYPE
6723 is a variant wrapper. Assumes TYPE is a structure type with at least
6724 FIELD_NUM+1 fields. */
6725
6726 int
6727 ada_is_variant_part (struct type *type, int field_num)
6728 {
6729 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6730
6731 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6732 || (is_dynamic_field (type, field_num)
6733 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6734 == TYPE_CODE_UNION)));
6735 }
6736
6737 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6738 whose discriminants are contained in the record type OUTER_TYPE,
6739 returns the type of the controlling discriminant for the variant.
6740 May return NULL if the type could not be found. */
6741
6742 struct type *
6743 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6744 {
6745 char *name = ada_variant_discrim_name (var_type);
6746
6747 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6748 }
6749
6750 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6751 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6752 represents a 'when others' clause; otherwise 0. */
6753
6754 int
6755 ada_is_others_clause (struct type *type, int field_num)
6756 {
6757 const char *name = TYPE_FIELD_NAME (type, field_num);
6758
6759 return (name != NULL && name[0] == 'O');
6760 }
6761
6762 /* Assuming that TYPE0 is the type of the variant part of a record,
6763 returns the name of the discriminant controlling the variant.
6764 The value is valid until the next call to ada_variant_discrim_name. */
6765
6766 char *
6767 ada_variant_discrim_name (struct type *type0)
6768 {
6769 static char *result = NULL;
6770 static size_t result_len = 0;
6771 struct type *type;
6772 const char *name;
6773 const char *discrim_end;
6774 const char *discrim_start;
6775
6776 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6777 type = TYPE_TARGET_TYPE (type0);
6778 else
6779 type = type0;
6780
6781 name = ada_type_name (type);
6782
6783 if (name == NULL || name[0] == '\000')
6784 return "";
6785
6786 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6787 discrim_end -= 1)
6788 {
6789 if (startswith (discrim_end, "___XVN"))
6790 break;
6791 }
6792 if (discrim_end == name)
6793 return "";
6794
6795 for (discrim_start = discrim_end; discrim_start != name + 3;
6796 discrim_start -= 1)
6797 {
6798 if (discrim_start == name + 1)
6799 return "";
6800 if ((discrim_start > name + 3
6801 && startswith (discrim_start - 3, "___"))
6802 || discrim_start[-1] == '.')
6803 break;
6804 }
6805
6806 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6807 strncpy (result, discrim_start, discrim_end - discrim_start);
6808 result[discrim_end - discrim_start] = '\0';
6809 return result;
6810 }
6811
6812 /* Scan STR for a subtype-encoded number, beginning at position K.
6813 Put the position of the character just past the number scanned in
6814 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6815 Return 1 if there was a valid number at the given position, and 0
6816 otherwise. A "subtype-encoded" number consists of the absolute value
6817 in decimal, followed by the letter 'm' to indicate a negative number.
6818 Assumes 0m does not occur. */
6819
6820 int
6821 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6822 {
6823 ULONGEST RU;
6824
6825 if (!isdigit (str[k]))
6826 return 0;
6827
6828 /* Do it the hard way so as not to make any assumption about
6829 the relationship of unsigned long (%lu scan format code) and
6830 LONGEST. */
6831 RU = 0;
6832 while (isdigit (str[k]))
6833 {
6834 RU = RU * 10 + (str[k] - '0');
6835 k += 1;
6836 }
6837
6838 if (str[k] == 'm')
6839 {
6840 if (R != NULL)
6841 *R = (-(LONGEST) (RU - 1)) - 1;
6842 k += 1;
6843 }
6844 else if (R != NULL)
6845 *R = (LONGEST) RU;
6846
6847 /* NOTE on the above: Technically, C does not say what the results of
6848 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6849 number representable as a LONGEST (although either would probably work
6850 in most implementations). When RU>0, the locution in the then branch
6851 above is always equivalent to the negative of RU. */
6852
6853 if (new_k != NULL)
6854 *new_k = k;
6855 return 1;
6856 }
6857
6858 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6859 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6860 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6861
6862 int
6863 ada_in_variant (LONGEST val, struct type *type, int field_num)
6864 {
6865 const char *name = TYPE_FIELD_NAME (type, field_num);
6866 int p;
6867
6868 p = 0;
6869 while (1)
6870 {
6871 switch (name[p])
6872 {
6873 case '\0':
6874 return 0;
6875 case 'S':
6876 {
6877 LONGEST W;
6878
6879 if (!ada_scan_number (name, p + 1, &W, &p))
6880 return 0;
6881 if (val == W)
6882 return 1;
6883 break;
6884 }
6885 case 'R':
6886 {
6887 LONGEST L, U;
6888
6889 if (!ada_scan_number (name, p + 1, &L, &p)
6890 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6891 return 0;
6892 if (val >= L && val <= U)
6893 return 1;
6894 break;
6895 }
6896 case 'O':
6897 return 1;
6898 default:
6899 return 0;
6900 }
6901 }
6902 }
6903
6904 /* FIXME: Lots of redundancy below. Try to consolidate. */
6905
6906 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6907 ARG_TYPE, extract and return the value of one of its (non-static)
6908 fields. FIELDNO says which field. Differs from value_primitive_field
6909 only in that it can handle packed values of arbitrary type. */
6910
6911 static struct value *
6912 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6913 struct type *arg_type)
6914 {
6915 struct type *type;
6916
6917 arg_type = ada_check_typedef (arg_type);
6918 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6919
6920 /* Handle packed fields. */
6921
6922 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6923 {
6924 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6925 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6926
6927 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6928 offset + bit_pos / 8,
6929 bit_pos % 8, bit_size, type);
6930 }
6931 else
6932 return value_primitive_field (arg1, offset, fieldno, arg_type);
6933 }
6934
6935 /* Find field with name NAME in object of type TYPE. If found,
6936 set the following for each argument that is non-null:
6937 - *FIELD_TYPE_P to the field's type;
6938 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6939 an object of that type;
6940 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6941 - *BIT_SIZE_P to its size in bits if the field is packed, and
6942 0 otherwise;
6943 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6944 fields up to but not including the desired field, or by the total
6945 number of fields if not found. A NULL value of NAME never
6946 matches; the function just counts visible fields in this case.
6947
6948 Returns 1 if found, 0 otherwise. */
6949
6950 static int
6951 find_struct_field (const char *name, struct type *type, int offset,
6952 struct type **field_type_p,
6953 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6954 int *index_p)
6955 {
6956 int i;
6957
6958 type = ada_check_typedef (type);
6959
6960 if (field_type_p != NULL)
6961 *field_type_p = NULL;
6962 if (byte_offset_p != NULL)
6963 *byte_offset_p = 0;
6964 if (bit_offset_p != NULL)
6965 *bit_offset_p = 0;
6966 if (bit_size_p != NULL)
6967 *bit_size_p = 0;
6968
6969 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6970 {
6971 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6972 int fld_offset = offset + bit_pos / 8;
6973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6974
6975 if (t_field_name == NULL)
6976 continue;
6977
6978 else if (name != NULL && field_name_match (t_field_name, name))
6979 {
6980 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6981
6982 if (field_type_p != NULL)
6983 *field_type_p = TYPE_FIELD_TYPE (type, i);
6984 if (byte_offset_p != NULL)
6985 *byte_offset_p = fld_offset;
6986 if (bit_offset_p != NULL)
6987 *bit_offset_p = bit_pos % 8;
6988 if (bit_size_p != NULL)
6989 *bit_size_p = bit_size;
6990 return 1;
6991 }
6992 else if (ada_is_wrapper_field (type, i))
6993 {
6994 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6995 field_type_p, byte_offset_p, bit_offset_p,
6996 bit_size_p, index_p))
6997 return 1;
6998 }
6999 else if (ada_is_variant_part (type, i))
7000 {
7001 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7002 fixed type?? */
7003 int j;
7004 struct type *field_type
7005 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7006
7007 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7008 {
7009 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7010 fld_offset
7011 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7012 field_type_p, byte_offset_p,
7013 bit_offset_p, bit_size_p, index_p))
7014 return 1;
7015 }
7016 }
7017 else if (index_p != NULL)
7018 *index_p += 1;
7019 }
7020 return 0;
7021 }
7022
7023 /* Number of user-visible fields in record type TYPE. */
7024
7025 static int
7026 num_visible_fields (struct type *type)
7027 {
7028 int n;
7029
7030 n = 0;
7031 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7032 return n;
7033 }
7034
7035 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7036 and search in it assuming it has (class) type TYPE.
7037 If found, return value, else return NULL.
7038
7039 Searches recursively through wrapper fields (e.g., '_parent'). */
7040
7041 static struct value *
7042 ada_search_struct_field (char *name, struct value *arg, int offset,
7043 struct type *type)
7044 {
7045 int i;
7046
7047 type = ada_check_typedef (type);
7048 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7049 {
7050 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7051
7052 if (t_field_name == NULL)
7053 continue;
7054
7055 else if (field_name_match (t_field_name, name))
7056 return ada_value_primitive_field (arg, offset, i, type);
7057
7058 else if (ada_is_wrapper_field (type, i))
7059 {
7060 struct value *v = /* Do not let indent join lines here. */
7061 ada_search_struct_field (name, arg,
7062 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7063 TYPE_FIELD_TYPE (type, i));
7064
7065 if (v != NULL)
7066 return v;
7067 }
7068
7069 else if (ada_is_variant_part (type, i))
7070 {
7071 /* PNH: Do we ever get here? See find_struct_field. */
7072 int j;
7073 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7074 i));
7075 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7076
7077 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7078 {
7079 struct value *v = ada_search_struct_field /* Force line
7080 break. */
7081 (name, arg,
7082 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7083 TYPE_FIELD_TYPE (field_type, j));
7084
7085 if (v != NULL)
7086 return v;
7087 }
7088 }
7089 }
7090 return NULL;
7091 }
7092
7093 static struct value *ada_index_struct_field_1 (int *, struct value *,
7094 int, struct type *);
7095
7096
7097 /* Return field #INDEX in ARG, where the index is that returned by
7098 * find_struct_field through its INDEX_P argument. Adjust the address
7099 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7100 * If found, return value, else return NULL. */
7101
7102 static struct value *
7103 ada_index_struct_field (int index, struct value *arg, int offset,
7104 struct type *type)
7105 {
7106 return ada_index_struct_field_1 (&index, arg, offset, type);
7107 }
7108
7109
7110 /* Auxiliary function for ada_index_struct_field. Like
7111 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7112 * *INDEX_P. */
7113
7114 static struct value *
7115 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7116 struct type *type)
7117 {
7118 int i;
7119 type = ada_check_typedef (type);
7120
7121 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7122 {
7123 if (TYPE_FIELD_NAME (type, i) == NULL)
7124 continue;
7125 else if (ada_is_wrapper_field (type, i))
7126 {
7127 struct value *v = /* Do not let indent join lines here. */
7128 ada_index_struct_field_1 (index_p, arg,
7129 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7130 TYPE_FIELD_TYPE (type, i));
7131
7132 if (v != NULL)
7133 return v;
7134 }
7135
7136 else if (ada_is_variant_part (type, i))
7137 {
7138 /* PNH: Do we ever get here? See ada_search_struct_field,
7139 find_struct_field. */
7140 error (_("Cannot assign this kind of variant record"));
7141 }
7142 else if (*index_p == 0)
7143 return ada_value_primitive_field (arg, offset, i, type);
7144 else
7145 *index_p -= 1;
7146 }
7147 return NULL;
7148 }
7149
7150 /* Given ARG, a value of type (pointer or reference to a)*
7151 structure/union, extract the component named NAME from the ultimate
7152 target structure/union and return it as a value with its
7153 appropriate type.
7154
7155 The routine searches for NAME among all members of the structure itself
7156 and (recursively) among all members of any wrapper members
7157 (e.g., '_parent').
7158
7159 If NO_ERR, then simply return NULL in case of error, rather than
7160 calling error. */
7161
7162 struct value *
7163 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7164 {
7165 struct type *t, *t1;
7166 struct value *v;
7167
7168 v = NULL;
7169 t1 = t = ada_check_typedef (value_type (arg));
7170 if (TYPE_CODE (t) == TYPE_CODE_REF)
7171 {
7172 t1 = TYPE_TARGET_TYPE (t);
7173 if (t1 == NULL)
7174 goto BadValue;
7175 t1 = ada_check_typedef (t1);
7176 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7177 {
7178 arg = coerce_ref (arg);
7179 t = t1;
7180 }
7181 }
7182
7183 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7184 {
7185 t1 = TYPE_TARGET_TYPE (t);
7186 if (t1 == NULL)
7187 goto BadValue;
7188 t1 = ada_check_typedef (t1);
7189 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7190 {
7191 arg = value_ind (arg);
7192 t = t1;
7193 }
7194 else
7195 break;
7196 }
7197
7198 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7199 goto BadValue;
7200
7201 if (t1 == t)
7202 v = ada_search_struct_field (name, arg, 0, t);
7203 else
7204 {
7205 int bit_offset, bit_size, byte_offset;
7206 struct type *field_type;
7207 CORE_ADDR address;
7208
7209 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7210 address = value_address (ada_value_ind (arg));
7211 else
7212 address = value_address (ada_coerce_ref (arg));
7213
7214 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7215 if (find_struct_field (name, t1, 0,
7216 &field_type, &byte_offset, &bit_offset,
7217 &bit_size, NULL))
7218 {
7219 if (bit_size != 0)
7220 {
7221 if (TYPE_CODE (t) == TYPE_CODE_REF)
7222 arg = ada_coerce_ref (arg);
7223 else
7224 arg = ada_value_ind (arg);
7225 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7226 bit_offset, bit_size,
7227 field_type);
7228 }
7229 else
7230 v = value_at_lazy (field_type, address + byte_offset);
7231 }
7232 }
7233
7234 if (v != NULL || no_err)
7235 return v;
7236 else
7237 error (_("There is no member named %s."), name);
7238
7239 BadValue:
7240 if (no_err)
7241 return NULL;
7242 else
7243 error (_("Attempt to extract a component of "
7244 "a value that is not a record."));
7245 }
7246
7247 /* Given a type TYPE, look up the type of the component of type named NAME.
7248 If DISPP is non-null, add its byte displacement from the beginning of a
7249 structure (pointed to by a value) of type TYPE to *DISPP (does not
7250 work for packed fields).
7251
7252 Matches any field whose name has NAME as a prefix, possibly
7253 followed by "___".
7254
7255 TYPE can be either a struct or union. If REFOK, TYPE may also
7256 be a (pointer or reference)+ to a struct or union, and the
7257 ultimate target type will be searched.
7258
7259 Looks recursively into variant clauses and parent types.
7260
7261 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7262 TYPE is not a type of the right kind. */
7263
7264 static struct type *
7265 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7266 int noerr, int *dispp)
7267 {
7268 int i;
7269
7270 if (name == NULL)
7271 goto BadName;
7272
7273 if (refok && type != NULL)
7274 while (1)
7275 {
7276 type = ada_check_typedef (type);
7277 if (TYPE_CODE (type) != TYPE_CODE_PTR
7278 && TYPE_CODE (type) != TYPE_CODE_REF)
7279 break;
7280 type = TYPE_TARGET_TYPE (type);
7281 }
7282
7283 if (type == NULL
7284 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7285 && TYPE_CODE (type) != TYPE_CODE_UNION))
7286 {
7287 if (noerr)
7288 return NULL;
7289 else
7290 {
7291 target_terminal_ours ();
7292 gdb_flush (gdb_stdout);
7293 if (type == NULL)
7294 error (_("Type (null) is not a structure or union type"));
7295 else
7296 {
7297 /* XXX: type_sprint */
7298 fprintf_unfiltered (gdb_stderr, _("Type "));
7299 type_print (type, "", gdb_stderr, -1);
7300 error (_(" is not a structure or union type"));
7301 }
7302 }
7303 }
7304
7305 type = to_static_fixed_type (type);
7306
7307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7308 {
7309 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7310 struct type *t;
7311 int disp;
7312
7313 if (t_field_name == NULL)
7314 continue;
7315
7316 else if (field_name_match (t_field_name, name))
7317 {
7318 if (dispp != NULL)
7319 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7320 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7321 }
7322
7323 else if (ada_is_wrapper_field (type, i))
7324 {
7325 disp = 0;
7326 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7327 0, 1, &disp);
7328 if (t != NULL)
7329 {
7330 if (dispp != NULL)
7331 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7332 return t;
7333 }
7334 }
7335
7336 else if (ada_is_variant_part (type, i))
7337 {
7338 int j;
7339 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7340 i));
7341
7342 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7343 {
7344 /* FIXME pnh 2008/01/26: We check for a field that is
7345 NOT wrapped in a struct, since the compiler sometimes
7346 generates these for unchecked variant types. Revisit
7347 if the compiler changes this practice. */
7348 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7349 disp = 0;
7350 if (v_field_name != NULL
7351 && field_name_match (v_field_name, name))
7352 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7353 else
7354 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7355 j),
7356 name, 0, 1, &disp);
7357
7358 if (t != NULL)
7359 {
7360 if (dispp != NULL)
7361 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7362 return t;
7363 }
7364 }
7365 }
7366
7367 }
7368
7369 BadName:
7370 if (!noerr)
7371 {
7372 target_terminal_ours ();
7373 gdb_flush (gdb_stdout);
7374 if (name == NULL)
7375 {
7376 /* XXX: type_sprint */
7377 fprintf_unfiltered (gdb_stderr, _("Type "));
7378 type_print (type, "", gdb_stderr, -1);
7379 error (_(" has no component named <null>"));
7380 }
7381 else
7382 {
7383 /* XXX: type_sprint */
7384 fprintf_unfiltered (gdb_stderr, _("Type "));
7385 type_print (type, "", gdb_stderr, -1);
7386 error (_(" has no component named %s"), name);
7387 }
7388 }
7389
7390 return NULL;
7391 }
7392
7393 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7394 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7395 represents an unchecked union (that is, the variant part of a
7396 record that is named in an Unchecked_Union pragma). */
7397
7398 static int
7399 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7400 {
7401 char *discrim_name = ada_variant_discrim_name (var_type);
7402
7403 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7404 == NULL);
7405 }
7406
7407
7408 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7409 within a value of type OUTER_TYPE that is stored in GDB at
7410 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7411 numbering from 0) is applicable. Returns -1 if none are. */
7412
7413 int
7414 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7415 const gdb_byte *outer_valaddr)
7416 {
7417 int others_clause;
7418 int i;
7419 char *discrim_name = ada_variant_discrim_name (var_type);
7420 struct value *outer;
7421 struct value *discrim;
7422 LONGEST discrim_val;
7423
7424 /* Using plain value_from_contents_and_address here causes problems
7425 because we will end up trying to resolve a type that is currently
7426 being constructed. */
7427 outer = value_from_contents_and_address_unresolved (outer_type,
7428 outer_valaddr, 0);
7429 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7430 if (discrim == NULL)
7431 return -1;
7432 discrim_val = value_as_long (discrim);
7433
7434 others_clause = -1;
7435 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7436 {
7437 if (ada_is_others_clause (var_type, i))
7438 others_clause = i;
7439 else if (ada_in_variant (discrim_val, var_type, i))
7440 return i;
7441 }
7442
7443 return others_clause;
7444 }
7445 \f
7446
7447
7448 /* Dynamic-Sized Records */
7449
7450 /* Strategy: The type ostensibly attached to a value with dynamic size
7451 (i.e., a size that is not statically recorded in the debugging
7452 data) does not accurately reflect the size or layout of the value.
7453 Our strategy is to convert these values to values with accurate,
7454 conventional types that are constructed on the fly. */
7455
7456 /* There is a subtle and tricky problem here. In general, we cannot
7457 determine the size of dynamic records without its data. However,
7458 the 'struct value' data structure, which GDB uses to represent
7459 quantities in the inferior process (the target), requires the size
7460 of the type at the time of its allocation in order to reserve space
7461 for GDB's internal copy of the data. That's why the
7462 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7463 rather than struct value*s.
7464
7465 However, GDB's internal history variables ($1, $2, etc.) are
7466 struct value*s containing internal copies of the data that are not, in
7467 general, the same as the data at their corresponding addresses in
7468 the target. Fortunately, the types we give to these values are all
7469 conventional, fixed-size types (as per the strategy described
7470 above), so that we don't usually have to perform the
7471 'to_fixed_xxx_type' conversions to look at their values.
7472 Unfortunately, there is one exception: if one of the internal
7473 history variables is an array whose elements are unconstrained
7474 records, then we will need to create distinct fixed types for each
7475 element selected. */
7476
7477 /* The upshot of all of this is that many routines take a (type, host
7478 address, target address) triple as arguments to represent a value.
7479 The host address, if non-null, is supposed to contain an internal
7480 copy of the relevant data; otherwise, the program is to consult the
7481 target at the target address. */
7482
7483 /* Assuming that VAL0 represents a pointer value, the result of
7484 dereferencing it. Differs from value_ind in its treatment of
7485 dynamic-sized types. */
7486
7487 struct value *
7488 ada_value_ind (struct value *val0)
7489 {
7490 struct value *val = value_ind (val0);
7491
7492 if (ada_is_tagged_type (value_type (val), 0))
7493 val = ada_tag_value_at_base_address (val);
7494
7495 return ada_to_fixed_value (val);
7496 }
7497
7498 /* The value resulting from dereferencing any "reference to"
7499 qualifiers on VAL0. */
7500
7501 static struct value *
7502 ada_coerce_ref (struct value *val0)
7503 {
7504 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7505 {
7506 struct value *val = val0;
7507
7508 val = coerce_ref (val);
7509
7510 if (ada_is_tagged_type (value_type (val), 0))
7511 val = ada_tag_value_at_base_address (val);
7512
7513 return ada_to_fixed_value (val);
7514 }
7515 else
7516 return val0;
7517 }
7518
7519 /* Return OFF rounded upward if necessary to a multiple of
7520 ALIGNMENT (a power of 2). */
7521
7522 static unsigned int
7523 align_value (unsigned int off, unsigned int alignment)
7524 {
7525 return (off + alignment - 1) & ~(alignment - 1);
7526 }
7527
7528 /* Return the bit alignment required for field #F of template type TYPE. */
7529
7530 static unsigned int
7531 field_alignment (struct type *type, int f)
7532 {
7533 const char *name = TYPE_FIELD_NAME (type, f);
7534 int len;
7535 int align_offset;
7536
7537 /* The field name should never be null, unless the debugging information
7538 is somehow malformed. In this case, we assume the field does not
7539 require any alignment. */
7540 if (name == NULL)
7541 return 1;
7542
7543 len = strlen (name);
7544
7545 if (!isdigit (name[len - 1]))
7546 return 1;
7547
7548 if (isdigit (name[len - 2]))
7549 align_offset = len - 2;
7550 else
7551 align_offset = len - 1;
7552
7553 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7554 return TARGET_CHAR_BIT;
7555
7556 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7557 }
7558
7559 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7560
7561 static struct symbol *
7562 ada_find_any_type_symbol (const char *name)
7563 {
7564 struct symbol *sym;
7565
7566 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7567 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7568 return sym;
7569
7570 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7571 return sym;
7572 }
7573
7574 /* Find a type named NAME. Ignores ambiguity. This routine will look
7575 solely for types defined by debug info, it will not search the GDB
7576 primitive types. */
7577
7578 static struct type *
7579 ada_find_any_type (const char *name)
7580 {
7581 struct symbol *sym = ada_find_any_type_symbol (name);
7582
7583 if (sym != NULL)
7584 return SYMBOL_TYPE (sym);
7585
7586 return NULL;
7587 }
7588
7589 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7590 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7591 symbol, in which case it is returned. Otherwise, this looks for
7592 symbols whose name is that of NAME_SYM suffixed with "___XR".
7593 Return symbol if found, and NULL otherwise. */
7594
7595 struct symbol *
7596 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7597 {
7598 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7599 struct symbol *sym;
7600
7601 if (strstr (name, "___XR") != NULL)
7602 return name_sym;
7603
7604 sym = find_old_style_renaming_symbol (name, block);
7605
7606 if (sym != NULL)
7607 return sym;
7608
7609 /* Not right yet. FIXME pnh 7/20/2007. */
7610 sym = ada_find_any_type_symbol (name);
7611 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7612 return sym;
7613 else
7614 return NULL;
7615 }
7616
7617 static struct symbol *
7618 find_old_style_renaming_symbol (const char *name, const struct block *block)
7619 {
7620 const struct symbol *function_sym = block_linkage_function (block);
7621 char *rename;
7622
7623 if (function_sym != NULL)
7624 {
7625 /* If the symbol is defined inside a function, NAME is not fully
7626 qualified. This means we need to prepend the function name
7627 as well as adding the ``___XR'' suffix to build the name of
7628 the associated renaming symbol. */
7629 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7630 /* Function names sometimes contain suffixes used
7631 for instance to qualify nested subprograms. When building
7632 the XR type name, we need to make sure that this suffix is
7633 not included. So do not include any suffix in the function
7634 name length below. */
7635 int function_name_len = ada_name_prefix_len (function_name);
7636 const int rename_len = function_name_len + 2 /* "__" */
7637 + strlen (name) + 6 /* "___XR\0" */ ;
7638
7639 /* Strip the suffix if necessary. */
7640 ada_remove_trailing_digits (function_name, &function_name_len);
7641 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7642 ada_remove_Xbn_suffix (function_name, &function_name_len);
7643
7644 /* Library-level functions are a special case, as GNAT adds
7645 a ``_ada_'' prefix to the function name to avoid namespace
7646 pollution. However, the renaming symbols themselves do not
7647 have this prefix, so we need to skip this prefix if present. */
7648 if (function_name_len > 5 /* "_ada_" */
7649 && strstr (function_name, "_ada_") == function_name)
7650 {
7651 function_name += 5;
7652 function_name_len -= 5;
7653 }
7654
7655 rename = (char *) alloca (rename_len * sizeof (char));
7656 strncpy (rename, function_name, function_name_len);
7657 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7658 "__%s___XR", name);
7659 }
7660 else
7661 {
7662 const int rename_len = strlen (name) + 6;
7663
7664 rename = (char *) alloca (rename_len * sizeof (char));
7665 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7666 }
7667
7668 return ada_find_any_type_symbol (rename);
7669 }
7670
7671 /* Because of GNAT encoding conventions, several GDB symbols may match a
7672 given type name. If the type denoted by TYPE0 is to be preferred to
7673 that of TYPE1 for purposes of type printing, return non-zero;
7674 otherwise return 0. */
7675
7676 int
7677 ada_prefer_type (struct type *type0, struct type *type1)
7678 {
7679 if (type1 == NULL)
7680 return 1;
7681 else if (type0 == NULL)
7682 return 0;
7683 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7684 return 1;
7685 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7686 return 0;
7687 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7688 return 1;
7689 else if (ada_is_constrained_packed_array_type (type0))
7690 return 1;
7691 else if (ada_is_array_descriptor_type (type0)
7692 && !ada_is_array_descriptor_type (type1))
7693 return 1;
7694 else
7695 {
7696 const char *type0_name = type_name_no_tag (type0);
7697 const char *type1_name = type_name_no_tag (type1);
7698
7699 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7700 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7701 return 1;
7702 }
7703 return 0;
7704 }
7705
7706 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7707 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7708
7709 const char *
7710 ada_type_name (struct type *type)
7711 {
7712 if (type == NULL)
7713 return NULL;
7714 else if (TYPE_NAME (type) != NULL)
7715 return TYPE_NAME (type);
7716 else
7717 return TYPE_TAG_NAME (type);
7718 }
7719
7720 /* Search the list of "descriptive" types associated to TYPE for a type
7721 whose name is NAME. */
7722
7723 static struct type *
7724 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7725 {
7726 struct type *result;
7727
7728 if (ada_ignore_descriptive_types_p)
7729 return NULL;
7730
7731 /* If there no descriptive-type info, then there is no parallel type
7732 to be found. */
7733 if (!HAVE_GNAT_AUX_INFO (type))
7734 return NULL;
7735
7736 result = TYPE_DESCRIPTIVE_TYPE (type);
7737 while (result != NULL)
7738 {
7739 const char *result_name = ada_type_name (result);
7740
7741 if (result_name == NULL)
7742 {
7743 warning (_("unexpected null name on descriptive type"));
7744 return NULL;
7745 }
7746
7747 /* If the names match, stop. */
7748 if (strcmp (result_name, name) == 0)
7749 break;
7750
7751 /* Otherwise, look at the next item on the list, if any. */
7752 if (HAVE_GNAT_AUX_INFO (result))
7753 result = TYPE_DESCRIPTIVE_TYPE (result);
7754 else
7755 result = NULL;
7756 }
7757
7758 /* If we didn't find a match, see whether this is a packed array. With
7759 older compilers, the descriptive type information is either absent or
7760 irrelevant when it comes to packed arrays so the above lookup fails.
7761 Fall back to using a parallel lookup by name in this case. */
7762 if (result == NULL && ada_is_constrained_packed_array_type (type))
7763 return ada_find_any_type (name);
7764
7765 return result;
7766 }
7767
7768 /* Find a parallel type to TYPE with the specified NAME, using the
7769 descriptive type taken from the debugging information, if available,
7770 and otherwise using the (slower) name-based method. */
7771
7772 static struct type *
7773 ada_find_parallel_type_with_name (struct type *type, const char *name)
7774 {
7775 struct type *result = NULL;
7776
7777 if (HAVE_GNAT_AUX_INFO (type))
7778 result = find_parallel_type_by_descriptive_type (type, name);
7779 else
7780 result = ada_find_any_type (name);
7781
7782 return result;
7783 }
7784
7785 /* Same as above, but specify the name of the parallel type by appending
7786 SUFFIX to the name of TYPE. */
7787
7788 struct type *
7789 ada_find_parallel_type (struct type *type, const char *suffix)
7790 {
7791 char *name;
7792 const char *type_name = ada_type_name (type);
7793 int len;
7794
7795 if (type_name == NULL)
7796 return NULL;
7797
7798 len = strlen (type_name);
7799
7800 name = (char *) alloca (len + strlen (suffix) + 1);
7801
7802 strcpy (name, type_name);
7803 strcpy (name + len, suffix);
7804
7805 return ada_find_parallel_type_with_name (type, name);
7806 }
7807
7808 /* If TYPE is a variable-size record type, return the corresponding template
7809 type describing its fields. Otherwise, return NULL. */
7810
7811 static struct type *
7812 dynamic_template_type (struct type *type)
7813 {
7814 type = ada_check_typedef (type);
7815
7816 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7817 || ada_type_name (type) == NULL)
7818 return NULL;
7819 else
7820 {
7821 int len = strlen (ada_type_name (type));
7822
7823 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7824 return type;
7825 else
7826 return ada_find_parallel_type (type, "___XVE");
7827 }
7828 }
7829
7830 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7831 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7832
7833 static int
7834 is_dynamic_field (struct type *templ_type, int field_num)
7835 {
7836 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7837
7838 return name != NULL
7839 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7840 && strstr (name, "___XVL") != NULL;
7841 }
7842
7843 /* The index of the variant field of TYPE, or -1 if TYPE does not
7844 represent a variant record type. */
7845
7846 static int
7847 variant_field_index (struct type *type)
7848 {
7849 int f;
7850
7851 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7852 return -1;
7853
7854 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7855 {
7856 if (ada_is_variant_part (type, f))
7857 return f;
7858 }
7859 return -1;
7860 }
7861
7862 /* A record type with no fields. */
7863
7864 static struct type *
7865 empty_record (struct type *templ)
7866 {
7867 struct type *type = alloc_type_copy (templ);
7868
7869 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7870 TYPE_NFIELDS (type) = 0;
7871 TYPE_FIELDS (type) = NULL;
7872 INIT_CPLUS_SPECIFIC (type);
7873 TYPE_NAME (type) = "<empty>";
7874 TYPE_TAG_NAME (type) = NULL;
7875 TYPE_LENGTH (type) = 0;
7876 return type;
7877 }
7878
7879 /* An ordinary record type (with fixed-length fields) that describes
7880 the value of type TYPE at VALADDR or ADDRESS (see comments at
7881 the beginning of this section) VAL according to GNAT conventions.
7882 DVAL0 should describe the (portion of a) record that contains any
7883 necessary discriminants. It should be NULL if value_type (VAL) is
7884 an outer-level type (i.e., as opposed to a branch of a variant.) A
7885 variant field (unless unchecked) is replaced by a particular branch
7886 of the variant.
7887
7888 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7889 length are not statically known are discarded. As a consequence,
7890 VALADDR, ADDRESS and DVAL0 are ignored.
7891
7892 NOTE: Limitations: For now, we assume that dynamic fields and
7893 variants occupy whole numbers of bytes. However, they need not be
7894 byte-aligned. */
7895
7896 struct type *
7897 ada_template_to_fixed_record_type_1 (struct type *type,
7898 const gdb_byte *valaddr,
7899 CORE_ADDR address, struct value *dval0,
7900 int keep_dynamic_fields)
7901 {
7902 struct value *mark = value_mark ();
7903 struct value *dval;
7904 struct type *rtype;
7905 int nfields, bit_len;
7906 int variant_field;
7907 long off;
7908 int fld_bit_len;
7909 int f;
7910
7911 /* Compute the number of fields in this record type that are going
7912 to be processed: unless keep_dynamic_fields, this includes only
7913 fields whose position and length are static will be processed. */
7914 if (keep_dynamic_fields)
7915 nfields = TYPE_NFIELDS (type);
7916 else
7917 {
7918 nfields = 0;
7919 while (nfields < TYPE_NFIELDS (type)
7920 && !ada_is_variant_part (type, nfields)
7921 && !is_dynamic_field (type, nfields))
7922 nfields++;
7923 }
7924
7925 rtype = alloc_type_copy (type);
7926 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7927 INIT_CPLUS_SPECIFIC (rtype);
7928 TYPE_NFIELDS (rtype) = nfields;
7929 TYPE_FIELDS (rtype) = (struct field *)
7930 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7931 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7932 TYPE_NAME (rtype) = ada_type_name (type);
7933 TYPE_TAG_NAME (rtype) = NULL;
7934 TYPE_FIXED_INSTANCE (rtype) = 1;
7935
7936 off = 0;
7937 bit_len = 0;
7938 variant_field = -1;
7939
7940 for (f = 0; f < nfields; f += 1)
7941 {
7942 off = align_value (off, field_alignment (type, f))
7943 + TYPE_FIELD_BITPOS (type, f);
7944 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7945 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7946
7947 if (ada_is_variant_part (type, f))
7948 {
7949 variant_field = f;
7950 fld_bit_len = 0;
7951 }
7952 else if (is_dynamic_field (type, f))
7953 {
7954 const gdb_byte *field_valaddr = valaddr;
7955 CORE_ADDR field_address = address;
7956 struct type *field_type =
7957 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7958
7959 if (dval0 == NULL)
7960 {
7961 /* rtype's length is computed based on the run-time
7962 value of discriminants. If the discriminants are not
7963 initialized, the type size may be completely bogus and
7964 GDB may fail to allocate a value for it. So check the
7965 size first before creating the value. */
7966 ada_ensure_varsize_limit (rtype);
7967 /* Using plain value_from_contents_and_address here
7968 causes problems because we will end up trying to
7969 resolve a type that is currently being
7970 constructed. */
7971 dval = value_from_contents_and_address_unresolved (rtype,
7972 valaddr,
7973 address);
7974 rtype = value_type (dval);
7975 }
7976 else
7977 dval = dval0;
7978
7979 /* If the type referenced by this field is an aligner type, we need
7980 to unwrap that aligner type, because its size might not be set.
7981 Keeping the aligner type would cause us to compute the wrong
7982 size for this field, impacting the offset of the all the fields
7983 that follow this one. */
7984 if (ada_is_aligner_type (field_type))
7985 {
7986 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7987
7988 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7989 field_address = cond_offset_target (field_address, field_offset);
7990 field_type = ada_aligned_type (field_type);
7991 }
7992
7993 field_valaddr = cond_offset_host (field_valaddr,
7994 off / TARGET_CHAR_BIT);
7995 field_address = cond_offset_target (field_address,
7996 off / TARGET_CHAR_BIT);
7997
7998 /* Get the fixed type of the field. Note that, in this case,
7999 we do not want to get the real type out of the tag: if
8000 the current field is the parent part of a tagged record,
8001 we will get the tag of the object. Clearly wrong: the real
8002 type of the parent is not the real type of the child. We
8003 would end up in an infinite loop. */
8004 field_type = ada_get_base_type (field_type);
8005 field_type = ada_to_fixed_type (field_type, field_valaddr,
8006 field_address, dval, 0);
8007 /* If the field size is already larger than the maximum
8008 object size, then the record itself will necessarily
8009 be larger than the maximum object size. We need to make
8010 this check now, because the size might be so ridiculously
8011 large (due to an uninitialized variable in the inferior)
8012 that it would cause an overflow when adding it to the
8013 record size. */
8014 ada_ensure_varsize_limit (field_type);
8015
8016 TYPE_FIELD_TYPE (rtype, f) = field_type;
8017 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8018 /* The multiplication can potentially overflow. But because
8019 the field length has been size-checked just above, and
8020 assuming that the maximum size is a reasonable value,
8021 an overflow should not happen in practice. So rather than
8022 adding overflow recovery code to this already complex code,
8023 we just assume that it's not going to happen. */
8024 fld_bit_len =
8025 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8026 }
8027 else
8028 {
8029 /* Note: If this field's type is a typedef, it is important
8030 to preserve the typedef layer.
8031
8032 Otherwise, we might be transforming a typedef to a fat
8033 pointer (encoding a pointer to an unconstrained array),
8034 into a basic fat pointer (encoding an unconstrained
8035 array). As both types are implemented using the same
8036 structure, the typedef is the only clue which allows us
8037 to distinguish between the two options. Stripping it
8038 would prevent us from printing this field appropriately. */
8039 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8040 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8041 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8042 fld_bit_len =
8043 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8044 else
8045 {
8046 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8047
8048 /* We need to be careful of typedefs when computing
8049 the length of our field. If this is a typedef,
8050 get the length of the target type, not the length
8051 of the typedef. */
8052 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8053 field_type = ada_typedef_target_type (field_type);
8054
8055 fld_bit_len =
8056 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8057 }
8058 }
8059 if (off + fld_bit_len > bit_len)
8060 bit_len = off + fld_bit_len;
8061 off += fld_bit_len;
8062 TYPE_LENGTH (rtype) =
8063 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8064 }
8065
8066 /* We handle the variant part, if any, at the end because of certain
8067 odd cases in which it is re-ordered so as NOT to be the last field of
8068 the record. This can happen in the presence of representation
8069 clauses. */
8070 if (variant_field >= 0)
8071 {
8072 struct type *branch_type;
8073
8074 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8075
8076 if (dval0 == NULL)
8077 {
8078 /* Using plain value_from_contents_and_address here causes
8079 problems because we will end up trying to resolve a type
8080 that is currently being constructed. */
8081 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8082 address);
8083 rtype = value_type (dval);
8084 }
8085 else
8086 dval = dval0;
8087
8088 branch_type =
8089 to_fixed_variant_branch_type
8090 (TYPE_FIELD_TYPE (type, variant_field),
8091 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8092 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8093 if (branch_type == NULL)
8094 {
8095 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8096 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8097 TYPE_NFIELDS (rtype) -= 1;
8098 }
8099 else
8100 {
8101 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8102 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8103 fld_bit_len =
8104 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8105 TARGET_CHAR_BIT;
8106 if (off + fld_bit_len > bit_len)
8107 bit_len = off + fld_bit_len;
8108 TYPE_LENGTH (rtype) =
8109 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8110 }
8111 }
8112
8113 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8114 should contain the alignment of that record, which should be a strictly
8115 positive value. If null or negative, then something is wrong, most
8116 probably in the debug info. In that case, we don't round up the size
8117 of the resulting type. If this record is not part of another structure,
8118 the current RTYPE length might be good enough for our purposes. */
8119 if (TYPE_LENGTH (type) <= 0)
8120 {
8121 if (TYPE_NAME (rtype))
8122 warning (_("Invalid type size for `%s' detected: %d."),
8123 TYPE_NAME (rtype), TYPE_LENGTH (type));
8124 else
8125 warning (_("Invalid type size for <unnamed> detected: %d."),
8126 TYPE_LENGTH (type));
8127 }
8128 else
8129 {
8130 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8131 TYPE_LENGTH (type));
8132 }
8133
8134 value_free_to_mark (mark);
8135 if (TYPE_LENGTH (rtype) > varsize_limit)
8136 error (_("record type with dynamic size is larger than varsize-limit"));
8137 return rtype;
8138 }
8139
8140 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8141 of 1. */
8142
8143 static struct type *
8144 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8145 CORE_ADDR address, struct value *dval0)
8146 {
8147 return ada_template_to_fixed_record_type_1 (type, valaddr,
8148 address, dval0, 1);
8149 }
8150
8151 /* An ordinary record type in which ___XVL-convention fields and
8152 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8153 static approximations, containing all possible fields. Uses
8154 no runtime values. Useless for use in values, but that's OK,
8155 since the results are used only for type determinations. Works on both
8156 structs and unions. Representation note: to save space, we memorize
8157 the result of this function in the TYPE_TARGET_TYPE of the
8158 template type. */
8159
8160 static struct type *
8161 template_to_static_fixed_type (struct type *type0)
8162 {
8163 struct type *type;
8164 int nfields;
8165 int f;
8166
8167 if (TYPE_TARGET_TYPE (type0) != NULL)
8168 return TYPE_TARGET_TYPE (type0);
8169
8170 nfields = TYPE_NFIELDS (type0);
8171 type = type0;
8172
8173 for (f = 0; f < nfields; f += 1)
8174 {
8175 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8176 struct type *new_type;
8177
8178 if (is_dynamic_field (type0, f))
8179 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8180 else
8181 new_type = static_unwrap_type (field_type);
8182 if (type == type0 && new_type != field_type)
8183 {
8184 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8185 TYPE_CODE (type) = TYPE_CODE (type0);
8186 INIT_CPLUS_SPECIFIC (type);
8187 TYPE_NFIELDS (type) = nfields;
8188 TYPE_FIELDS (type) = (struct field *)
8189 TYPE_ALLOC (type, nfields * sizeof (struct field));
8190 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8191 sizeof (struct field) * nfields);
8192 TYPE_NAME (type) = ada_type_name (type0);
8193 TYPE_TAG_NAME (type) = NULL;
8194 TYPE_FIXED_INSTANCE (type) = 1;
8195 TYPE_LENGTH (type) = 0;
8196 }
8197 TYPE_FIELD_TYPE (type, f) = new_type;
8198 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8199 }
8200 return type;
8201 }
8202
8203 /* Given an object of type TYPE whose contents are at VALADDR and
8204 whose address in memory is ADDRESS, returns a revision of TYPE,
8205 which should be a non-dynamic-sized record, in which the variant
8206 part, if any, is replaced with the appropriate branch. Looks
8207 for discriminant values in DVAL0, which can be NULL if the record
8208 contains the necessary discriminant values. */
8209
8210 static struct type *
8211 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8212 CORE_ADDR address, struct value *dval0)
8213 {
8214 struct value *mark = value_mark ();
8215 struct value *dval;
8216 struct type *rtype;
8217 struct type *branch_type;
8218 int nfields = TYPE_NFIELDS (type);
8219 int variant_field = variant_field_index (type);
8220
8221 if (variant_field == -1)
8222 return type;
8223
8224 if (dval0 == NULL)
8225 {
8226 dval = value_from_contents_and_address (type, valaddr, address);
8227 type = value_type (dval);
8228 }
8229 else
8230 dval = dval0;
8231
8232 rtype = alloc_type_copy (type);
8233 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8234 INIT_CPLUS_SPECIFIC (rtype);
8235 TYPE_NFIELDS (rtype) = nfields;
8236 TYPE_FIELDS (rtype) =
8237 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8238 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8239 sizeof (struct field) * nfields);
8240 TYPE_NAME (rtype) = ada_type_name (type);
8241 TYPE_TAG_NAME (rtype) = NULL;
8242 TYPE_FIXED_INSTANCE (rtype) = 1;
8243 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8244
8245 branch_type = to_fixed_variant_branch_type
8246 (TYPE_FIELD_TYPE (type, variant_field),
8247 cond_offset_host (valaddr,
8248 TYPE_FIELD_BITPOS (type, variant_field)
8249 / TARGET_CHAR_BIT),
8250 cond_offset_target (address,
8251 TYPE_FIELD_BITPOS (type, variant_field)
8252 / TARGET_CHAR_BIT), dval);
8253 if (branch_type == NULL)
8254 {
8255 int f;
8256
8257 for (f = variant_field + 1; f < nfields; f += 1)
8258 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8259 TYPE_NFIELDS (rtype) -= 1;
8260 }
8261 else
8262 {
8263 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8264 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8265 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8266 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8267 }
8268 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8269
8270 value_free_to_mark (mark);
8271 return rtype;
8272 }
8273
8274 /* An ordinary record type (with fixed-length fields) that describes
8275 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8276 beginning of this section]. Any necessary discriminants' values
8277 should be in DVAL, a record value; it may be NULL if the object
8278 at ADDR itself contains any necessary discriminant values.
8279 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8280 values from the record are needed. Except in the case that DVAL,
8281 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8282 unchecked) is replaced by a particular branch of the variant.
8283
8284 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8285 is questionable and may be removed. It can arise during the
8286 processing of an unconstrained-array-of-record type where all the
8287 variant branches have exactly the same size. This is because in
8288 such cases, the compiler does not bother to use the XVS convention
8289 when encoding the record. I am currently dubious of this
8290 shortcut and suspect the compiler should be altered. FIXME. */
8291
8292 static struct type *
8293 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8294 CORE_ADDR address, struct value *dval)
8295 {
8296 struct type *templ_type;
8297
8298 if (TYPE_FIXED_INSTANCE (type0))
8299 return type0;
8300
8301 templ_type = dynamic_template_type (type0);
8302
8303 if (templ_type != NULL)
8304 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8305 else if (variant_field_index (type0) >= 0)
8306 {
8307 if (dval == NULL && valaddr == NULL && address == 0)
8308 return type0;
8309 return to_record_with_fixed_variant_part (type0, valaddr, address,
8310 dval);
8311 }
8312 else
8313 {
8314 TYPE_FIXED_INSTANCE (type0) = 1;
8315 return type0;
8316 }
8317
8318 }
8319
8320 /* An ordinary record type (with fixed-length fields) that describes
8321 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8322 union type. Any necessary discriminants' values should be in DVAL,
8323 a record value. That is, this routine selects the appropriate
8324 branch of the union at ADDR according to the discriminant value
8325 indicated in the union's type name. Returns VAR_TYPE0 itself if
8326 it represents a variant subject to a pragma Unchecked_Union. */
8327
8328 static struct type *
8329 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8330 CORE_ADDR address, struct value *dval)
8331 {
8332 int which;
8333 struct type *templ_type;
8334 struct type *var_type;
8335
8336 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8337 var_type = TYPE_TARGET_TYPE (var_type0);
8338 else
8339 var_type = var_type0;
8340
8341 templ_type = ada_find_parallel_type (var_type, "___XVU");
8342
8343 if (templ_type != NULL)
8344 var_type = templ_type;
8345
8346 if (is_unchecked_variant (var_type, value_type (dval)))
8347 return var_type0;
8348 which =
8349 ada_which_variant_applies (var_type,
8350 value_type (dval), value_contents (dval));
8351
8352 if (which < 0)
8353 return empty_record (var_type);
8354 else if (is_dynamic_field (var_type, which))
8355 return to_fixed_record_type
8356 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8357 valaddr, address, dval);
8358 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8359 return
8360 to_fixed_record_type
8361 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8362 else
8363 return TYPE_FIELD_TYPE (var_type, which);
8364 }
8365
8366 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8367 ENCODING_TYPE, a type following the GNAT conventions for discrete
8368 type encodings, only carries redundant information. */
8369
8370 static int
8371 ada_is_redundant_range_encoding (struct type *range_type,
8372 struct type *encoding_type)
8373 {
8374 struct type *fixed_range_type;
8375 char *bounds_str;
8376 int n;
8377 LONGEST lo, hi;
8378
8379 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8380
8381 if (TYPE_CODE (get_base_type (range_type))
8382 != TYPE_CODE (get_base_type (encoding_type)))
8383 {
8384 /* The compiler probably used a simple base type to describe
8385 the range type instead of the range's actual base type,
8386 expecting us to get the real base type from the encoding
8387 anyway. In this situation, the encoding cannot be ignored
8388 as redundant. */
8389 return 0;
8390 }
8391
8392 if (is_dynamic_type (range_type))
8393 return 0;
8394
8395 if (TYPE_NAME (encoding_type) == NULL)
8396 return 0;
8397
8398 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8399 if (bounds_str == NULL)
8400 return 0;
8401
8402 n = 8; /* Skip "___XDLU_". */
8403 if (!ada_scan_number (bounds_str, n, &lo, &n))
8404 return 0;
8405 if (TYPE_LOW_BOUND (range_type) != lo)
8406 return 0;
8407
8408 n += 2; /* Skip the "__" separator between the two bounds. */
8409 if (!ada_scan_number (bounds_str, n, &hi, &n))
8410 return 0;
8411 if (TYPE_HIGH_BOUND (range_type) != hi)
8412 return 0;
8413
8414 return 1;
8415 }
8416
8417 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8418 a type following the GNAT encoding for describing array type
8419 indices, only carries redundant information. */
8420
8421 static int
8422 ada_is_redundant_index_type_desc (struct type *array_type,
8423 struct type *desc_type)
8424 {
8425 struct type *this_layer = check_typedef (array_type);
8426 int i;
8427
8428 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8429 {
8430 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8431 TYPE_FIELD_TYPE (desc_type, i)))
8432 return 0;
8433 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8434 }
8435
8436 return 1;
8437 }
8438
8439 /* Assuming that TYPE0 is an array type describing the type of a value
8440 at ADDR, and that DVAL describes a record containing any
8441 discriminants used in TYPE0, returns a type for the value that
8442 contains no dynamic components (that is, no components whose sizes
8443 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8444 true, gives an error message if the resulting type's size is over
8445 varsize_limit. */
8446
8447 static struct type *
8448 to_fixed_array_type (struct type *type0, struct value *dval,
8449 int ignore_too_big)
8450 {
8451 struct type *index_type_desc;
8452 struct type *result;
8453 int constrained_packed_array_p;
8454
8455 type0 = ada_check_typedef (type0);
8456 if (TYPE_FIXED_INSTANCE (type0))
8457 return type0;
8458
8459 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8460 if (constrained_packed_array_p)
8461 type0 = decode_constrained_packed_array_type (type0);
8462
8463 index_type_desc = ada_find_parallel_type (type0, "___XA");
8464 ada_fixup_array_indexes_type (index_type_desc);
8465 if (index_type_desc != NULL
8466 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8467 {
8468 /* Ignore this ___XA parallel type, as it does not bring any
8469 useful information. This allows us to avoid creating fixed
8470 versions of the array's index types, which would be identical
8471 to the original ones. This, in turn, can also help avoid
8472 the creation of fixed versions of the array itself. */
8473 index_type_desc = NULL;
8474 }
8475
8476 if (index_type_desc == NULL)
8477 {
8478 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8479
8480 /* NOTE: elt_type---the fixed version of elt_type0---should never
8481 depend on the contents of the array in properly constructed
8482 debugging data. */
8483 /* Create a fixed version of the array element type.
8484 We're not providing the address of an element here,
8485 and thus the actual object value cannot be inspected to do
8486 the conversion. This should not be a problem, since arrays of
8487 unconstrained objects are not allowed. In particular, all
8488 the elements of an array of a tagged type should all be of
8489 the same type specified in the debugging info. No need to
8490 consult the object tag. */
8491 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8492
8493 /* Make sure we always create a new array type when dealing with
8494 packed array types, since we're going to fix-up the array
8495 type length and element bitsize a little further down. */
8496 if (elt_type0 == elt_type && !constrained_packed_array_p)
8497 result = type0;
8498 else
8499 result = create_array_type (alloc_type_copy (type0),
8500 elt_type, TYPE_INDEX_TYPE (type0));
8501 }
8502 else
8503 {
8504 int i;
8505 struct type *elt_type0;
8506
8507 elt_type0 = type0;
8508 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8509 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8510
8511 /* NOTE: result---the fixed version of elt_type0---should never
8512 depend on the contents of the array in properly constructed
8513 debugging data. */
8514 /* Create a fixed version of the array element type.
8515 We're not providing the address of an element here,
8516 and thus the actual object value cannot be inspected to do
8517 the conversion. This should not be a problem, since arrays of
8518 unconstrained objects are not allowed. In particular, all
8519 the elements of an array of a tagged type should all be of
8520 the same type specified in the debugging info. No need to
8521 consult the object tag. */
8522 result =
8523 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8524
8525 elt_type0 = type0;
8526 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8527 {
8528 struct type *range_type =
8529 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8530
8531 result = create_array_type (alloc_type_copy (elt_type0),
8532 result, range_type);
8533 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8534 }
8535 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8536 error (_("array type with dynamic size is larger than varsize-limit"));
8537 }
8538
8539 /* We want to preserve the type name. This can be useful when
8540 trying to get the type name of a value that has already been
8541 printed (for instance, if the user did "print VAR; whatis $". */
8542 TYPE_NAME (result) = TYPE_NAME (type0);
8543
8544 if (constrained_packed_array_p)
8545 {
8546 /* So far, the resulting type has been created as if the original
8547 type was a regular (non-packed) array type. As a result, the
8548 bitsize of the array elements needs to be set again, and the array
8549 length needs to be recomputed based on that bitsize. */
8550 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8551 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8552
8553 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8554 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8555 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8556 TYPE_LENGTH (result)++;
8557 }
8558
8559 TYPE_FIXED_INSTANCE (result) = 1;
8560 return result;
8561 }
8562
8563
8564 /* A standard type (containing no dynamically sized components)
8565 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8566 DVAL describes a record containing any discriminants used in TYPE0,
8567 and may be NULL if there are none, or if the object of type TYPE at
8568 ADDRESS or in VALADDR contains these discriminants.
8569
8570 If CHECK_TAG is not null, in the case of tagged types, this function
8571 attempts to locate the object's tag and use it to compute the actual
8572 type. However, when ADDRESS is null, we cannot use it to determine the
8573 location of the tag, and therefore compute the tagged type's actual type.
8574 So we return the tagged type without consulting the tag. */
8575
8576 static struct type *
8577 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8578 CORE_ADDR address, struct value *dval, int check_tag)
8579 {
8580 type = ada_check_typedef (type);
8581 switch (TYPE_CODE (type))
8582 {
8583 default:
8584 return type;
8585 case TYPE_CODE_STRUCT:
8586 {
8587 struct type *static_type = to_static_fixed_type (type);
8588 struct type *fixed_record_type =
8589 to_fixed_record_type (type, valaddr, address, NULL);
8590
8591 /* If STATIC_TYPE is a tagged type and we know the object's address,
8592 then we can determine its tag, and compute the object's actual
8593 type from there. Note that we have to use the fixed record
8594 type (the parent part of the record may have dynamic fields
8595 and the way the location of _tag is expressed may depend on
8596 them). */
8597
8598 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8599 {
8600 struct value *tag =
8601 value_tag_from_contents_and_address
8602 (fixed_record_type,
8603 valaddr,
8604 address);
8605 struct type *real_type = type_from_tag (tag);
8606 struct value *obj =
8607 value_from_contents_and_address (fixed_record_type,
8608 valaddr,
8609 address);
8610 fixed_record_type = value_type (obj);
8611 if (real_type != NULL)
8612 return to_fixed_record_type
8613 (real_type, NULL,
8614 value_address (ada_tag_value_at_base_address (obj)), NULL);
8615 }
8616
8617 /* Check to see if there is a parallel ___XVZ variable.
8618 If there is, then it provides the actual size of our type. */
8619 else if (ada_type_name (fixed_record_type) != NULL)
8620 {
8621 const char *name = ada_type_name (fixed_record_type);
8622 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8623 int xvz_found = 0;
8624 LONGEST size;
8625
8626 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8627 size = get_int_var_value (xvz_name, &xvz_found);
8628 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8629 {
8630 fixed_record_type = copy_type (fixed_record_type);
8631 TYPE_LENGTH (fixed_record_type) = size;
8632
8633 /* The FIXED_RECORD_TYPE may have be a stub. We have
8634 observed this when the debugging info is STABS, and
8635 apparently it is something that is hard to fix.
8636
8637 In practice, we don't need the actual type definition
8638 at all, because the presence of the XVZ variable allows us
8639 to assume that there must be a XVS type as well, which we
8640 should be able to use later, when we need the actual type
8641 definition.
8642
8643 In the meantime, pretend that the "fixed" type we are
8644 returning is NOT a stub, because this can cause trouble
8645 when using this type to create new types targeting it.
8646 Indeed, the associated creation routines often check
8647 whether the target type is a stub and will try to replace
8648 it, thus using a type with the wrong size. This, in turn,
8649 might cause the new type to have the wrong size too.
8650 Consider the case of an array, for instance, where the size
8651 of the array is computed from the number of elements in
8652 our array multiplied by the size of its element. */
8653 TYPE_STUB (fixed_record_type) = 0;
8654 }
8655 }
8656 return fixed_record_type;
8657 }
8658 case TYPE_CODE_ARRAY:
8659 return to_fixed_array_type (type, dval, 1);
8660 case TYPE_CODE_UNION:
8661 if (dval == NULL)
8662 return type;
8663 else
8664 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8665 }
8666 }
8667
8668 /* The same as ada_to_fixed_type_1, except that it preserves the type
8669 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8670
8671 The typedef layer needs be preserved in order to differentiate between
8672 arrays and array pointers when both types are implemented using the same
8673 fat pointer. In the array pointer case, the pointer is encoded as
8674 a typedef of the pointer type. For instance, considering:
8675
8676 type String_Access is access String;
8677 S1 : String_Access := null;
8678
8679 To the debugger, S1 is defined as a typedef of type String. But
8680 to the user, it is a pointer. So if the user tries to print S1,
8681 we should not dereference the array, but print the array address
8682 instead.
8683
8684 If we didn't preserve the typedef layer, we would lose the fact that
8685 the type is to be presented as a pointer (needs de-reference before
8686 being printed). And we would also use the source-level type name. */
8687
8688 struct type *
8689 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8690 CORE_ADDR address, struct value *dval, int check_tag)
8691
8692 {
8693 struct type *fixed_type =
8694 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8695
8696 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8697 then preserve the typedef layer.
8698
8699 Implementation note: We can only check the main-type portion of
8700 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8701 from TYPE now returns a type that has the same instance flags
8702 as TYPE. For instance, if TYPE is a "typedef const", and its
8703 target type is a "struct", then the typedef elimination will return
8704 a "const" version of the target type. See check_typedef for more
8705 details about how the typedef layer elimination is done.
8706
8707 brobecker/2010-11-19: It seems to me that the only case where it is
8708 useful to preserve the typedef layer is when dealing with fat pointers.
8709 Perhaps, we could add a check for that and preserve the typedef layer
8710 only in that situation. But this seems unecessary so far, probably
8711 because we call check_typedef/ada_check_typedef pretty much everywhere.
8712 */
8713 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8714 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8715 == TYPE_MAIN_TYPE (fixed_type)))
8716 return type;
8717
8718 return fixed_type;
8719 }
8720
8721 /* A standard (static-sized) type corresponding as well as possible to
8722 TYPE0, but based on no runtime data. */
8723
8724 static struct type *
8725 to_static_fixed_type (struct type *type0)
8726 {
8727 struct type *type;
8728
8729 if (type0 == NULL)
8730 return NULL;
8731
8732 if (TYPE_FIXED_INSTANCE (type0))
8733 return type0;
8734
8735 type0 = ada_check_typedef (type0);
8736
8737 switch (TYPE_CODE (type0))
8738 {
8739 default:
8740 return type0;
8741 case TYPE_CODE_STRUCT:
8742 type = dynamic_template_type (type0);
8743 if (type != NULL)
8744 return template_to_static_fixed_type (type);
8745 else
8746 return template_to_static_fixed_type (type0);
8747 case TYPE_CODE_UNION:
8748 type = ada_find_parallel_type (type0, "___XVU");
8749 if (type != NULL)
8750 return template_to_static_fixed_type (type);
8751 else
8752 return template_to_static_fixed_type (type0);
8753 }
8754 }
8755
8756 /* A static approximation of TYPE with all type wrappers removed. */
8757
8758 static struct type *
8759 static_unwrap_type (struct type *type)
8760 {
8761 if (ada_is_aligner_type (type))
8762 {
8763 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8764 if (ada_type_name (type1) == NULL)
8765 TYPE_NAME (type1) = ada_type_name (type);
8766
8767 return static_unwrap_type (type1);
8768 }
8769 else
8770 {
8771 struct type *raw_real_type = ada_get_base_type (type);
8772
8773 if (raw_real_type == type)
8774 return type;
8775 else
8776 return to_static_fixed_type (raw_real_type);
8777 }
8778 }
8779
8780 /* In some cases, incomplete and private types require
8781 cross-references that are not resolved as records (for example,
8782 type Foo;
8783 type FooP is access Foo;
8784 V: FooP;
8785 type Foo is array ...;
8786 ). In these cases, since there is no mechanism for producing
8787 cross-references to such types, we instead substitute for FooP a
8788 stub enumeration type that is nowhere resolved, and whose tag is
8789 the name of the actual type. Call these types "non-record stubs". */
8790
8791 /* A type equivalent to TYPE that is not a non-record stub, if one
8792 exists, otherwise TYPE. */
8793
8794 struct type *
8795 ada_check_typedef (struct type *type)
8796 {
8797 if (type == NULL)
8798 return NULL;
8799
8800 /* If our type is a typedef type of a fat pointer, then we're done.
8801 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8802 what allows us to distinguish between fat pointers that represent
8803 array types, and fat pointers that represent array access types
8804 (in both cases, the compiler implements them as fat pointers). */
8805 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8806 && is_thick_pntr (ada_typedef_target_type (type)))
8807 return type;
8808
8809 CHECK_TYPEDEF (type);
8810 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8811 || !TYPE_STUB (type)
8812 || TYPE_TAG_NAME (type) == NULL)
8813 return type;
8814 else
8815 {
8816 const char *name = TYPE_TAG_NAME (type);
8817 struct type *type1 = ada_find_any_type (name);
8818
8819 if (type1 == NULL)
8820 return type;
8821
8822 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8823 stubs pointing to arrays, as we don't create symbols for array
8824 types, only for the typedef-to-array types). If that's the case,
8825 strip the typedef layer. */
8826 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8827 type1 = ada_check_typedef (type1);
8828
8829 return type1;
8830 }
8831 }
8832
8833 /* A value representing the data at VALADDR/ADDRESS as described by
8834 type TYPE0, but with a standard (static-sized) type that correctly
8835 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8836 type, then return VAL0 [this feature is simply to avoid redundant
8837 creation of struct values]. */
8838
8839 static struct value *
8840 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8841 struct value *val0)
8842 {
8843 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8844
8845 if (type == type0 && val0 != NULL)
8846 return val0;
8847 else
8848 return value_from_contents_and_address (type, 0, address);
8849 }
8850
8851 /* A value representing VAL, but with a standard (static-sized) type
8852 that correctly describes it. Does not necessarily create a new
8853 value. */
8854
8855 struct value *
8856 ada_to_fixed_value (struct value *val)
8857 {
8858 val = unwrap_value (val);
8859 val = ada_to_fixed_value_create (value_type (val),
8860 value_address (val),
8861 val);
8862 return val;
8863 }
8864 \f
8865
8866 /* Attributes */
8867
8868 /* Table mapping attribute numbers to names.
8869 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8870
8871 static const char *attribute_names[] = {
8872 "<?>",
8873
8874 "first",
8875 "last",
8876 "length",
8877 "image",
8878 "max",
8879 "min",
8880 "modulus",
8881 "pos",
8882 "size",
8883 "tag",
8884 "val",
8885 0
8886 };
8887
8888 const char *
8889 ada_attribute_name (enum exp_opcode n)
8890 {
8891 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8892 return attribute_names[n - OP_ATR_FIRST + 1];
8893 else
8894 return attribute_names[0];
8895 }
8896
8897 /* Evaluate the 'POS attribute applied to ARG. */
8898
8899 static LONGEST
8900 pos_atr (struct value *arg)
8901 {
8902 struct value *val = coerce_ref (arg);
8903 struct type *type = value_type (val);
8904
8905 if (!discrete_type_p (type))
8906 error (_("'POS only defined on discrete types"));
8907
8908 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8909 {
8910 int i;
8911 LONGEST v = value_as_long (val);
8912
8913 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8914 {
8915 if (v == TYPE_FIELD_ENUMVAL (type, i))
8916 return i;
8917 }
8918 error (_("enumeration value is invalid: can't find 'POS"));
8919 }
8920 else
8921 return value_as_long (val);
8922 }
8923
8924 static struct value *
8925 value_pos_atr (struct type *type, struct value *arg)
8926 {
8927 return value_from_longest (type, pos_atr (arg));
8928 }
8929
8930 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8931
8932 static struct value *
8933 value_val_atr (struct type *type, struct value *arg)
8934 {
8935 if (!discrete_type_p (type))
8936 error (_("'VAL only defined on discrete types"));
8937 if (!integer_type_p (value_type (arg)))
8938 error (_("'VAL requires integral argument"));
8939
8940 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8941 {
8942 long pos = value_as_long (arg);
8943
8944 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8945 error (_("argument to 'VAL out of range"));
8946 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8947 }
8948 else
8949 return value_from_longest (type, value_as_long (arg));
8950 }
8951 \f
8952
8953 /* Evaluation */
8954
8955 /* True if TYPE appears to be an Ada character type.
8956 [At the moment, this is true only for Character and Wide_Character;
8957 It is a heuristic test that could stand improvement]. */
8958
8959 int
8960 ada_is_character_type (struct type *type)
8961 {
8962 const char *name;
8963
8964 /* If the type code says it's a character, then assume it really is,
8965 and don't check any further. */
8966 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8967 return 1;
8968
8969 /* Otherwise, assume it's a character type iff it is a discrete type
8970 with a known character type name. */
8971 name = ada_type_name (type);
8972 return (name != NULL
8973 && (TYPE_CODE (type) == TYPE_CODE_INT
8974 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8975 && (strcmp (name, "character") == 0
8976 || strcmp (name, "wide_character") == 0
8977 || strcmp (name, "wide_wide_character") == 0
8978 || strcmp (name, "unsigned char") == 0));
8979 }
8980
8981 /* True if TYPE appears to be an Ada string type. */
8982
8983 int
8984 ada_is_string_type (struct type *type)
8985 {
8986 type = ada_check_typedef (type);
8987 if (type != NULL
8988 && TYPE_CODE (type) != TYPE_CODE_PTR
8989 && (ada_is_simple_array_type (type)
8990 || ada_is_array_descriptor_type (type))
8991 && ada_array_arity (type) == 1)
8992 {
8993 struct type *elttype = ada_array_element_type (type, 1);
8994
8995 return ada_is_character_type (elttype);
8996 }
8997 else
8998 return 0;
8999 }
9000
9001 /* The compiler sometimes provides a parallel XVS type for a given
9002 PAD type. Normally, it is safe to follow the PAD type directly,
9003 but older versions of the compiler have a bug that causes the offset
9004 of its "F" field to be wrong. Following that field in that case
9005 would lead to incorrect results, but this can be worked around
9006 by ignoring the PAD type and using the associated XVS type instead.
9007
9008 Set to True if the debugger should trust the contents of PAD types.
9009 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9010 static int trust_pad_over_xvs = 1;
9011
9012 /* True if TYPE is a struct type introduced by the compiler to force the
9013 alignment of a value. Such types have a single field with a
9014 distinctive name. */
9015
9016 int
9017 ada_is_aligner_type (struct type *type)
9018 {
9019 type = ada_check_typedef (type);
9020
9021 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9022 return 0;
9023
9024 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9025 && TYPE_NFIELDS (type) == 1
9026 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9027 }
9028
9029 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9030 the parallel type. */
9031
9032 struct type *
9033 ada_get_base_type (struct type *raw_type)
9034 {
9035 struct type *real_type_namer;
9036 struct type *raw_real_type;
9037
9038 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9039 return raw_type;
9040
9041 if (ada_is_aligner_type (raw_type))
9042 /* The encoding specifies that we should always use the aligner type.
9043 So, even if this aligner type has an associated XVS type, we should
9044 simply ignore it.
9045
9046 According to the compiler gurus, an XVS type parallel to an aligner
9047 type may exist because of a stabs limitation. In stabs, aligner
9048 types are empty because the field has a variable-sized type, and
9049 thus cannot actually be used as an aligner type. As a result,
9050 we need the associated parallel XVS type to decode the type.
9051 Since the policy in the compiler is to not change the internal
9052 representation based on the debugging info format, we sometimes
9053 end up having a redundant XVS type parallel to the aligner type. */
9054 return raw_type;
9055
9056 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9057 if (real_type_namer == NULL
9058 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9059 || TYPE_NFIELDS (real_type_namer) != 1)
9060 return raw_type;
9061
9062 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9063 {
9064 /* This is an older encoding form where the base type needs to be
9065 looked up by name. We prefer the newer enconding because it is
9066 more efficient. */
9067 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9068 if (raw_real_type == NULL)
9069 return raw_type;
9070 else
9071 return raw_real_type;
9072 }
9073
9074 /* The field in our XVS type is a reference to the base type. */
9075 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9076 }
9077
9078 /* The type of value designated by TYPE, with all aligners removed. */
9079
9080 struct type *
9081 ada_aligned_type (struct type *type)
9082 {
9083 if (ada_is_aligner_type (type))
9084 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9085 else
9086 return ada_get_base_type (type);
9087 }
9088
9089
9090 /* The address of the aligned value in an object at address VALADDR
9091 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9092
9093 const gdb_byte *
9094 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9095 {
9096 if (ada_is_aligner_type (type))
9097 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9098 valaddr +
9099 TYPE_FIELD_BITPOS (type,
9100 0) / TARGET_CHAR_BIT);
9101 else
9102 return valaddr;
9103 }
9104
9105
9106
9107 /* The printed representation of an enumeration literal with encoded
9108 name NAME. The value is good to the next call of ada_enum_name. */
9109 const char *
9110 ada_enum_name (const char *name)
9111 {
9112 static char *result;
9113 static size_t result_len = 0;
9114 char *tmp;
9115
9116 /* First, unqualify the enumeration name:
9117 1. Search for the last '.' character. If we find one, then skip
9118 all the preceding characters, the unqualified name starts
9119 right after that dot.
9120 2. Otherwise, we may be debugging on a target where the compiler
9121 translates dots into "__". Search forward for double underscores,
9122 but stop searching when we hit an overloading suffix, which is
9123 of the form "__" followed by digits. */
9124
9125 tmp = strrchr (name, '.');
9126 if (tmp != NULL)
9127 name = tmp + 1;
9128 else
9129 {
9130 while ((tmp = strstr (name, "__")) != NULL)
9131 {
9132 if (isdigit (tmp[2]))
9133 break;
9134 else
9135 name = tmp + 2;
9136 }
9137 }
9138
9139 if (name[0] == 'Q')
9140 {
9141 int v;
9142
9143 if (name[1] == 'U' || name[1] == 'W')
9144 {
9145 if (sscanf (name + 2, "%x", &v) != 1)
9146 return name;
9147 }
9148 else
9149 return name;
9150
9151 GROW_VECT (result, result_len, 16);
9152 if (isascii (v) && isprint (v))
9153 xsnprintf (result, result_len, "'%c'", v);
9154 else if (name[1] == 'U')
9155 xsnprintf (result, result_len, "[\"%02x\"]", v);
9156 else
9157 xsnprintf (result, result_len, "[\"%04x\"]", v);
9158
9159 return result;
9160 }
9161 else
9162 {
9163 tmp = strstr (name, "__");
9164 if (tmp == NULL)
9165 tmp = strstr (name, "$");
9166 if (tmp != NULL)
9167 {
9168 GROW_VECT (result, result_len, tmp - name + 1);
9169 strncpy (result, name, tmp - name);
9170 result[tmp - name] = '\0';
9171 return result;
9172 }
9173
9174 return name;
9175 }
9176 }
9177
9178 /* Evaluate the subexpression of EXP starting at *POS as for
9179 evaluate_type, updating *POS to point just past the evaluated
9180 expression. */
9181
9182 static struct value *
9183 evaluate_subexp_type (struct expression *exp, int *pos)
9184 {
9185 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9186 }
9187
9188 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9189 value it wraps. */
9190
9191 static struct value *
9192 unwrap_value (struct value *val)
9193 {
9194 struct type *type = ada_check_typedef (value_type (val));
9195
9196 if (ada_is_aligner_type (type))
9197 {
9198 struct value *v = ada_value_struct_elt (val, "F", 0);
9199 struct type *val_type = ada_check_typedef (value_type (v));
9200
9201 if (ada_type_name (val_type) == NULL)
9202 TYPE_NAME (val_type) = ada_type_name (type);
9203
9204 return unwrap_value (v);
9205 }
9206 else
9207 {
9208 struct type *raw_real_type =
9209 ada_check_typedef (ada_get_base_type (type));
9210
9211 /* If there is no parallel XVS or XVE type, then the value is
9212 already unwrapped. Return it without further modification. */
9213 if ((type == raw_real_type)
9214 && ada_find_parallel_type (type, "___XVE") == NULL)
9215 return val;
9216
9217 return
9218 coerce_unspec_val_to_type
9219 (val, ada_to_fixed_type (raw_real_type, 0,
9220 value_address (val),
9221 NULL, 1));
9222 }
9223 }
9224
9225 static struct value *
9226 cast_to_fixed (struct type *type, struct value *arg)
9227 {
9228 LONGEST val;
9229
9230 if (type == value_type (arg))
9231 return arg;
9232 else if (ada_is_fixed_point_type (value_type (arg)))
9233 val = ada_float_to_fixed (type,
9234 ada_fixed_to_float (value_type (arg),
9235 value_as_long (arg)));
9236 else
9237 {
9238 DOUBLEST argd = value_as_double (arg);
9239
9240 val = ada_float_to_fixed (type, argd);
9241 }
9242
9243 return value_from_longest (type, val);
9244 }
9245
9246 static struct value *
9247 cast_from_fixed (struct type *type, struct value *arg)
9248 {
9249 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9250 value_as_long (arg));
9251
9252 return value_from_double (type, val);
9253 }
9254
9255 /* Given two array types T1 and T2, return nonzero iff both arrays
9256 contain the same number of elements. */
9257
9258 static int
9259 ada_same_array_size_p (struct type *t1, struct type *t2)
9260 {
9261 LONGEST lo1, hi1, lo2, hi2;
9262
9263 /* Get the array bounds in order to verify that the size of
9264 the two arrays match. */
9265 if (!get_array_bounds (t1, &lo1, &hi1)
9266 || !get_array_bounds (t2, &lo2, &hi2))
9267 error (_("unable to determine array bounds"));
9268
9269 /* To make things easier for size comparison, normalize a bit
9270 the case of empty arrays by making sure that the difference
9271 between upper bound and lower bound is always -1. */
9272 if (lo1 > hi1)
9273 hi1 = lo1 - 1;
9274 if (lo2 > hi2)
9275 hi2 = lo2 - 1;
9276
9277 return (hi1 - lo1 == hi2 - lo2);
9278 }
9279
9280 /* Assuming that VAL is an array of integrals, and TYPE represents
9281 an array with the same number of elements, but with wider integral
9282 elements, return an array "casted" to TYPE. In practice, this
9283 means that the returned array is built by casting each element
9284 of the original array into TYPE's (wider) element type. */
9285
9286 static struct value *
9287 ada_promote_array_of_integrals (struct type *type, struct value *val)
9288 {
9289 struct type *elt_type = TYPE_TARGET_TYPE (type);
9290 LONGEST lo, hi;
9291 struct value *res;
9292 LONGEST i;
9293
9294 /* Verify that both val and type are arrays of scalars, and
9295 that the size of val's elements is smaller than the size
9296 of type's element. */
9297 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9298 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9299 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9300 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9301 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9302 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9303
9304 if (!get_array_bounds (type, &lo, &hi))
9305 error (_("unable to determine array bounds"));
9306
9307 res = allocate_value (type);
9308
9309 /* Promote each array element. */
9310 for (i = 0; i < hi - lo + 1; i++)
9311 {
9312 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9313
9314 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9315 value_contents_all (elt), TYPE_LENGTH (elt_type));
9316 }
9317
9318 return res;
9319 }
9320
9321 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9322 return the converted value. */
9323
9324 static struct value *
9325 coerce_for_assign (struct type *type, struct value *val)
9326 {
9327 struct type *type2 = value_type (val);
9328
9329 if (type == type2)
9330 return val;
9331
9332 type2 = ada_check_typedef (type2);
9333 type = ada_check_typedef (type);
9334
9335 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9336 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9337 {
9338 val = ada_value_ind (val);
9339 type2 = value_type (val);
9340 }
9341
9342 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9343 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9344 {
9345 if (!ada_same_array_size_p (type, type2))
9346 error (_("cannot assign arrays of different length"));
9347
9348 if (is_integral_type (TYPE_TARGET_TYPE (type))
9349 && is_integral_type (TYPE_TARGET_TYPE (type2))
9350 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9351 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9352 {
9353 /* Allow implicit promotion of the array elements to
9354 a wider type. */
9355 return ada_promote_array_of_integrals (type, val);
9356 }
9357
9358 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9359 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9360 error (_("Incompatible types in assignment"));
9361 deprecated_set_value_type (val, type);
9362 }
9363 return val;
9364 }
9365
9366 static struct value *
9367 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9368 {
9369 struct value *val;
9370 struct type *type1, *type2;
9371 LONGEST v, v1, v2;
9372
9373 arg1 = coerce_ref (arg1);
9374 arg2 = coerce_ref (arg2);
9375 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9376 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9377
9378 if (TYPE_CODE (type1) != TYPE_CODE_INT
9379 || TYPE_CODE (type2) != TYPE_CODE_INT)
9380 return value_binop (arg1, arg2, op);
9381
9382 switch (op)
9383 {
9384 case BINOP_MOD:
9385 case BINOP_DIV:
9386 case BINOP_REM:
9387 break;
9388 default:
9389 return value_binop (arg1, arg2, op);
9390 }
9391
9392 v2 = value_as_long (arg2);
9393 if (v2 == 0)
9394 error (_("second operand of %s must not be zero."), op_string (op));
9395
9396 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9397 return value_binop (arg1, arg2, op);
9398
9399 v1 = value_as_long (arg1);
9400 switch (op)
9401 {
9402 case BINOP_DIV:
9403 v = v1 / v2;
9404 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9405 v += v > 0 ? -1 : 1;
9406 break;
9407 case BINOP_REM:
9408 v = v1 % v2;
9409 if (v * v1 < 0)
9410 v -= v2;
9411 break;
9412 default:
9413 /* Should not reach this point. */
9414 v = 0;
9415 }
9416
9417 val = allocate_value (type1);
9418 store_unsigned_integer (value_contents_raw (val),
9419 TYPE_LENGTH (value_type (val)),
9420 gdbarch_byte_order (get_type_arch (type1)), v);
9421 return val;
9422 }
9423
9424 static int
9425 ada_value_equal (struct value *arg1, struct value *arg2)
9426 {
9427 if (ada_is_direct_array_type (value_type (arg1))
9428 || ada_is_direct_array_type (value_type (arg2)))
9429 {
9430 /* Automatically dereference any array reference before
9431 we attempt to perform the comparison. */
9432 arg1 = ada_coerce_ref (arg1);
9433 arg2 = ada_coerce_ref (arg2);
9434
9435 arg1 = ada_coerce_to_simple_array (arg1);
9436 arg2 = ada_coerce_to_simple_array (arg2);
9437 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9438 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9439 error (_("Attempt to compare array with non-array"));
9440 /* FIXME: The following works only for types whose
9441 representations use all bits (no padding or undefined bits)
9442 and do not have user-defined equality. */
9443 return
9444 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9445 && memcmp (value_contents (arg1), value_contents (arg2),
9446 TYPE_LENGTH (value_type (arg1))) == 0;
9447 }
9448 return value_equal (arg1, arg2);
9449 }
9450
9451 /* Total number of component associations in the aggregate starting at
9452 index PC in EXP. Assumes that index PC is the start of an
9453 OP_AGGREGATE. */
9454
9455 static int
9456 num_component_specs (struct expression *exp, int pc)
9457 {
9458 int n, m, i;
9459
9460 m = exp->elts[pc + 1].longconst;
9461 pc += 3;
9462 n = 0;
9463 for (i = 0; i < m; i += 1)
9464 {
9465 switch (exp->elts[pc].opcode)
9466 {
9467 default:
9468 n += 1;
9469 break;
9470 case OP_CHOICES:
9471 n += exp->elts[pc + 1].longconst;
9472 break;
9473 }
9474 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9475 }
9476 return n;
9477 }
9478
9479 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9480 component of LHS (a simple array or a record), updating *POS past
9481 the expression, assuming that LHS is contained in CONTAINER. Does
9482 not modify the inferior's memory, nor does it modify LHS (unless
9483 LHS == CONTAINER). */
9484
9485 static void
9486 assign_component (struct value *container, struct value *lhs, LONGEST index,
9487 struct expression *exp, int *pos)
9488 {
9489 struct value *mark = value_mark ();
9490 struct value *elt;
9491
9492 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9493 {
9494 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9495 struct value *index_val = value_from_longest (index_type, index);
9496
9497 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9498 }
9499 else
9500 {
9501 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9502 elt = ada_to_fixed_value (elt);
9503 }
9504
9505 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9506 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9507 else
9508 value_assign_to_component (container, elt,
9509 ada_evaluate_subexp (NULL, exp, pos,
9510 EVAL_NORMAL));
9511
9512 value_free_to_mark (mark);
9513 }
9514
9515 /* Assuming that LHS represents an lvalue having a record or array
9516 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9517 of that aggregate's value to LHS, advancing *POS past the
9518 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9519 lvalue containing LHS (possibly LHS itself). Does not modify
9520 the inferior's memory, nor does it modify the contents of
9521 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9522
9523 static struct value *
9524 assign_aggregate (struct value *container,
9525 struct value *lhs, struct expression *exp,
9526 int *pos, enum noside noside)
9527 {
9528 struct type *lhs_type;
9529 int n = exp->elts[*pos+1].longconst;
9530 LONGEST low_index, high_index;
9531 int num_specs;
9532 LONGEST *indices;
9533 int max_indices, num_indices;
9534 int i;
9535
9536 *pos += 3;
9537 if (noside != EVAL_NORMAL)
9538 {
9539 for (i = 0; i < n; i += 1)
9540 ada_evaluate_subexp (NULL, exp, pos, noside);
9541 return container;
9542 }
9543
9544 container = ada_coerce_ref (container);
9545 if (ada_is_direct_array_type (value_type (container)))
9546 container = ada_coerce_to_simple_array (container);
9547 lhs = ada_coerce_ref (lhs);
9548 if (!deprecated_value_modifiable (lhs))
9549 error (_("Left operand of assignment is not a modifiable lvalue."));
9550
9551 lhs_type = value_type (lhs);
9552 if (ada_is_direct_array_type (lhs_type))
9553 {
9554 lhs = ada_coerce_to_simple_array (lhs);
9555 lhs_type = value_type (lhs);
9556 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9557 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9558 }
9559 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9560 {
9561 low_index = 0;
9562 high_index = num_visible_fields (lhs_type) - 1;
9563 }
9564 else
9565 error (_("Left-hand side must be array or record."));
9566
9567 num_specs = num_component_specs (exp, *pos - 3);
9568 max_indices = 4 * num_specs + 4;
9569 indices = alloca (max_indices * sizeof (indices[0]));
9570 indices[0] = indices[1] = low_index - 1;
9571 indices[2] = indices[3] = high_index + 1;
9572 num_indices = 4;
9573
9574 for (i = 0; i < n; i += 1)
9575 {
9576 switch (exp->elts[*pos].opcode)
9577 {
9578 case OP_CHOICES:
9579 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9580 &num_indices, max_indices,
9581 low_index, high_index);
9582 break;
9583 case OP_POSITIONAL:
9584 aggregate_assign_positional (container, lhs, exp, pos, indices,
9585 &num_indices, max_indices,
9586 low_index, high_index);
9587 break;
9588 case OP_OTHERS:
9589 if (i != n-1)
9590 error (_("Misplaced 'others' clause"));
9591 aggregate_assign_others (container, lhs, exp, pos, indices,
9592 num_indices, low_index, high_index);
9593 break;
9594 default:
9595 error (_("Internal error: bad aggregate clause"));
9596 }
9597 }
9598
9599 return container;
9600 }
9601
9602 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9603 construct at *POS, updating *POS past the construct, given that
9604 the positions are relative to lower bound LOW, where HIGH is the
9605 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9606 updating *NUM_INDICES as needed. CONTAINER is as for
9607 assign_aggregate. */
9608 static void
9609 aggregate_assign_positional (struct value *container,
9610 struct value *lhs, struct expression *exp,
9611 int *pos, LONGEST *indices, int *num_indices,
9612 int max_indices, LONGEST low, LONGEST high)
9613 {
9614 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9615
9616 if (ind - 1 == high)
9617 warning (_("Extra components in aggregate ignored."));
9618 if (ind <= high)
9619 {
9620 add_component_interval (ind, ind, indices, num_indices, max_indices);
9621 *pos += 3;
9622 assign_component (container, lhs, ind, exp, pos);
9623 }
9624 else
9625 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9626 }
9627
9628 /* Assign into the components of LHS indexed by the OP_CHOICES
9629 construct at *POS, updating *POS past the construct, given that
9630 the allowable indices are LOW..HIGH. Record the indices assigned
9631 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9632 needed. CONTAINER is as for assign_aggregate. */
9633 static void
9634 aggregate_assign_from_choices (struct value *container,
9635 struct value *lhs, struct expression *exp,
9636 int *pos, LONGEST *indices, int *num_indices,
9637 int max_indices, LONGEST low, LONGEST high)
9638 {
9639 int j;
9640 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9641 int choice_pos, expr_pc;
9642 int is_array = ada_is_direct_array_type (value_type (lhs));
9643
9644 choice_pos = *pos += 3;
9645
9646 for (j = 0; j < n_choices; j += 1)
9647 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9648 expr_pc = *pos;
9649 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9650
9651 for (j = 0; j < n_choices; j += 1)
9652 {
9653 LONGEST lower, upper;
9654 enum exp_opcode op = exp->elts[choice_pos].opcode;
9655
9656 if (op == OP_DISCRETE_RANGE)
9657 {
9658 choice_pos += 1;
9659 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9660 EVAL_NORMAL));
9661 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9662 EVAL_NORMAL));
9663 }
9664 else if (is_array)
9665 {
9666 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9667 EVAL_NORMAL));
9668 upper = lower;
9669 }
9670 else
9671 {
9672 int ind;
9673 const char *name;
9674
9675 switch (op)
9676 {
9677 case OP_NAME:
9678 name = &exp->elts[choice_pos + 2].string;
9679 break;
9680 case OP_VAR_VALUE:
9681 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9682 break;
9683 default:
9684 error (_("Invalid record component association."));
9685 }
9686 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9687 ind = 0;
9688 if (! find_struct_field (name, value_type (lhs), 0,
9689 NULL, NULL, NULL, NULL, &ind))
9690 error (_("Unknown component name: %s."), name);
9691 lower = upper = ind;
9692 }
9693
9694 if (lower <= upper && (lower < low || upper > high))
9695 error (_("Index in component association out of bounds."));
9696
9697 add_component_interval (lower, upper, indices, num_indices,
9698 max_indices);
9699 while (lower <= upper)
9700 {
9701 int pos1;
9702
9703 pos1 = expr_pc;
9704 assign_component (container, lhs, lower, exp, &pos1);
9705 lower += 1;
9706 }
9707 }
9708 }
9709
9710 /* Assign the value of the expression in the OP_OTHERS construct in
9711 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9712 have not been previously assigned. The index intervals already assigned
9713 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9714 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9715 static void
9716 aggregate_assign_others (struct value *container,
9717 struct value *lhs, struct expression *exp,
9718 int *pos, LONGEST *indices, int num_indices,
9719 LONGEST low, LONGEST high)
9720 {
9721 int i;
9722 int expr_pc = *pos + 1;
9723
9724 for (i = 0; i < num_indices - 2; i += 2)
9725 {
9726 LONGEST ind;
9727
9728 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9729 {
9730 int localpos;
9731
9732 localpos = expr_pc;
9733 assign_component (container, lhs, ind, exp, &localpos);
9734 }
9735 }
9736 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9737 }
9738
9739 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9740 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9741 modifying *SIZE as needed. It is an error if *SIZE exceeds
9742 MAX_SIZE. The resulting intervals do not overlap. */
9743 static void
9744 add_component_interval (LONGEST low, LONGEST high,
9745 LONGEST* indices, int *size, int max_size)
9746 {
9747 int i, j;
9748
9749 for (i = 0; i < *size; i += 2) {
9750 if (high >= indices[i] && low <= indices[i + 1])
9751 {
9752 int kh;
9753
9754 for (kh = i + 2; kh < *size; kh += 2)
9755 if (high < indices[kh])
9756 break;
9757 if (low < indices[i])
9758 indices[i] = low;
9759 indices[i + 1] = indices[kh - 1];
9760 if (high > indices[i + 1])
9761 indices[i + 1] = high;
9762 memcpy (indices + i + 2, indices + kh, *size - kh);
9763 *size -= kh - i - 2;
9764 return;
9765 }
9766 else if (high < indices[i])
9767 break;
9768 }
9769
9770 if (*size == max_size)
9771 error (_("Internal error: miscounted aggregate components."));
9772 *size += 2;
9773 for (j = *size-1; j >= i+2; j -= 1)
9774 indices[j] = indices[j - 2];
9775 indices[i] = low;
9776 indices[i + 1] = high;
9777 }
9778
9779 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9780 is different. */
9781
9782 static struct value *
9783 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9784 {
9785 if (type == ada_check_typedef (value_type (arg2)))
9786 return arg2;
9787
9788 if (ada_is_fixed_point_type (type))
9789 return (cast_to_fixed (type, arg2));
9790
9791 if (ada_is_fixed_point_type (value_type (arg2)))
9792 return cast_from_fixed (type, arg2);
9793
9794 return value_cast (type, arg2);
9795 }
9796
9797 /* Evaluating Ada expressions, and printing their result.
9798 ------------------------------------------------------
9799
9800 1. Introduction:
9801 ----------------
9802
9803 We usually evaluate an Ada expression in order to print its value.
9804 We also evaluate an expression in order to print its type, which
9805 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9806 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9807 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9808 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9809 similar.
9810
9811 Evaluating expressions is a little more complicated for Ada entities
9812 than it is for entities in languages such as C. The main reason for
9813 this is that Ada provides types whose definition might be dynamic.
9814 One example of such types is variant records. Or another example
9815 would be an array whose bounds can only be known at run time.
9816
9817 The following description is a general guide as to what should be
9818 done (and what should NOT be done) in order to evaluate an expression
9819 involving such types, and when. This does not cover how the semantic
9820 information is encoded by GNAT as this is covered separatly. For the
9821 document used as the reference for the GNAT encoding, see exp_dbug.ads
9822 in the GNAT sources.
9823
9824 Ideally, we should embed each part of this description next to its
9825 associated code. Unfortunately, the amount of code is so vast right
9826 now that it's hard to see whether the code handling a particular
9827 situation might be duplicated or not. One day, when the code is
9828 cleaned up, this guide might become redundant with the comments
9829 inserted in the code, and we might want to remove it.
9830
9831 2. ``Fixing'' an Entity, the Simple Case:
9832 -----------------------------------------
9833
9834 When evaluating Ada expressions, the tricky issue is that they may
9835 reference entities whose type contents and size are not statically
9836 known. Consider for instance a variant record:
9837
9838 type Rec (Empty : Boolean := True) is record
9839 case Empty is
9840 when True => null;
9841 when False => Value : Integer;
9842 end case;
9843 end record;
9844 Yes : Rec := (Empty => False, Value => 1);
9845 No : Rec := (empty => True);
9846
9847 The size and contents of that record depends on the value of the
9848 descriminant (Rec.Empty). At this point, neither the debugging
9849 information nor the associated type structure in GDB are able to
9850 express such dynamic types. So what the debugger does is to create
9851 "fixed" versions of the type that applies to the specific object.
9852 We also informally refer to this opperation as "fixing" an object,
9853 which means creating its associated fixed type.
9854
9855 Example: when printing the value of variable "Yes" above, its fixed
9856 type would look like this:
9857
9858 type Rec is record
9859 Empty : Boolean;
9860 Value : Integer;
9861 end record;
9862
9863 On the other hand, if we printed the value of "No", its fixed type
9864 would become:
9865
9866 type Rec is record
9867 Empty : Boolean;
9868 end record;
9869
9870 Things become a little more complicated when trying to fix an entity
9871 with a dynamic type that directly contains another dynamic type,
9872 such as an array of variant records, for instance. There are
9873 two possible cases: Arrays, and records.
9874
9875 3. ``Fixing'' Arrays:
9876 ---------------------
9877
9878 The type structure in GDB describes an array in terms of its bounds,
9879 and the type of its elements. By design, all elements in the array
9880 have the same type and we cannot represent an array of variant elements
9881 using the current type structure in GDB. When fixing an array,
9882 we cannot fix the array element, as we would potentially need one
9883 fixed type per element of the array. As a result, the best we can do
9884 when fixing an array is to produce an array whose bounds and size
9885 are correct (allowing us to read it from memory), but without having
9886 touched its element type. Fixing each element will be done later,
9887 when (if) necessary.
9888
9889 Arrays are a little simpler to handle than records, because the same
9890 amount of memory is allocated for each element of the array, even if
9891 the amount of space actually used by each element differs from element
9892 to element. Consider for instance the following array of type Rec:
9893
9894 type Rec_Array is array (1 .. 2) of Rec;
9895
9896 The actual amount of memory occupied by each element might be different
9897 from element to element, depending on the value of their discriminant.
9898 But the amount of space reserved for each element in the array remains
9899 fixed regardless. So we simply need to compute that size using
9900 the debugging information available, from which we can then determine
9901 the array size (we multiply the number of elements of the array by
9902 the size of each element).
9903
9904 The simplest case is when we have an array of a constrained element
9905 type. For instance, consider the following type declarations:
9906
9907 type Bounded_String (Max_Size : Integer) is
9908 Length : Integer;
9909 Buffer : String (1 .. Max_Size);
9910 end record;
9911 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9912
9913 In this case, the compiler describes the array as an array of
9914 variable-size elements (identified by its XVS suffix) for which
9915 the size can be read in the parallel XVZ variable.
9916
9917 In the case of an array of an unconstrained element type, the compiler
9918 wraps the array element inside a private PAD type. This type should not
9919 be shown to the user, and must be "unwrap"'ed before printing. Note
9920 that we also use the adjective "aligner" in our code to designate
9921 these wrapper types.
9922
9923 In some cases, the size allocated for each element is statically
9924 known. In that case, the PAD type already has the correct size,
9925 and the array element should remain unfixed.
9926
9927 But there are cases when this size is not statically known.
9928 For instance, assuming that "Five" is an integer variable:
9929
9930 type Dynamic is array (1 .. Five) of Integer;
9931 type Wrapper (Has_Length : Boolean := False) is record
9932 Data : Dynamic;
9933 case Has_Length is
9934 when True => Length : Integer;
9935 when False => null;
9936 end case;
9937 end record;
9938 type Wrapper_Array is array (1 .. 2) of Wrapper;
9939
9940 Hello : Wrapper_Array := (others => (Has_Length => True,
9941 Data => (others => 17),
9942 Length => 1));
9943
9944
9945 The debugging info would describe variable Hello as being an
9946 array of a PAD type. The size of that PAD type is not statically
9947 known, but can be determined using a parallel XVZ variable.
9948 In that case, a copy of the PAD type with the correct size should
9949 be used for the fixed array.
9950
9951 3. ``Fixing'' record type objects:
9952 ----------------------------------
9953
9954 Things are slightly different from arrays in the case of dynamic
9955 record types. In this case, in order to compute the associated
9956 fixed type, we need to determine the size and offset of each of
9957 its components. This, in turn, requires us to compute the fixed
9958 type of each of these components.
9959
9960 Consider for instance the example:
9961
9962 type Bounded_String (Max_Size : Natural) is record
9963 Str : String (1 .. Max_Size);
9964 Length : Natural;
9965 end record;
9966 My_String : Bounded_String (Max_Size => 10);
9967
9968 In that case, the position of field "Length" depends on the size
9969 of field Str, which itself depends on the value of the Max_Size
9970 discriminant. In order to fix the type of variable My_String,
9971 we need to fix the type of field Str. Therefore, fixing a variant
9972 record requires us to fix each of its components.
9973
9974 However, if a component does not have a dynamic size, the component
9975 should not be fixed. In particular, fields that use a PAD type
9976 should not fixed. Here is an example where this might happen
9977 (assuming type Rec above):
9978
9979 type Container (Big : Boolean) is record
9980 First : Rec;
9981 After : Integer;
9982 case Big is
9983 when True => Another : Integer;
9984 when False => null;
9985 end case;
9986 end record;
9987 My_Container : Container := (Big => False,
9988 First => (Empty => True),
9989 After => 42);
9990
9991 In that example, the compiler creates a PAD type for component First,
9992 whose size is constant, and then positions the component After just
9993 right after it. The offset of component After is therefore constant
9994 in this case.
9995
9996 The debugger computes the position of each field based on an algorithm
9997 that uses, among other things, the actual position and size of the field
9998 preceding it. Let's now imagine that the user is trying to print
9999 the value of My_Container. If the type fixing was recursive, we would
10000 end up computing the offset of field After based on the size of the
10001 fixed version of field First. And since in our example First has
10002 only one actual field, the size of the fixed type is actually smaller
10003 than the amount of space allocated to that field, and thus we would
10004 compute the wrong offset of field After.
10005
10006 To make things more complicated, we need to watch out for dynamic
10007 components of variant records (identified by the ___XVL suffix in
10008 the component name). Even if the target type is a PAD type, the size
10009 of that type might not be statically known. So the PAD type needs
10010 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10011 we might end up with the wrong size for our component. This can be
10012 observed with the following type declarations:
10013
10014 type Octal is new Integer range 0 .. 7;
10015 type Octal_Array is array (Positive range <>) of Octal;
10016 pragma Pack (Octal_Array);
10017
10018 type Octal_Buffer (Size : Positive) is record
10019 Buffer : Octal_Array (1 .. Size);
10020 Length : Integer;
10021 end record;
10022
10023 In that case, Buffer is a PAD type whose size is unset and needs
10024 to be computed by fixing the unwrapped type.
10025
10026 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10027 ----------------------------------------------------------
10028
10029 Lastly, when should the sub-elements of an entity that remained unfixed
10030 thus far, be actually fixed?
10031
10032 The answer is: Only when referencing that element. For instance
10033 when selecting one component of a record, this specific component
10034 should be fixed at that point in time. Or when printing the value
10035 of a record, each component should be fixed before its value gets
10036 printed. Similarly for arrays, the element of the array should be
10037 fixed when printing each element of the array, or when extracting
10038 one element out of that array. On the other hand, fixing should
10039 not be performed on the elements when taking a slice of an array!
10040
10041 Note that one of the side-effects of miscomputing the offset and
10042 size of each field is that we end up also miscomputing the size
10043 of the containing type. This can have adverse results when computing
10044 the value of an entity. GDB fetches the value of an entity based
10045 on the size of its type, and thus a wrong size causes GDB to fetch
10046 the wrong amount of memory. In the case where the computed size is
10047 too small, GDB fetches too little data to print the value of our
10048 entiry. Results in this case as unpredicatble, as we usually read
10049 past the buffer containing the data =:-o. */
10050
10051 /* Implement the evaluate_exp routine in the exp_descriptor structure
10052 for the Ada language. */
10053
10054 static struct value *
10055 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10056 int *pos, enum noside noside)
10057 {
10058 enum exp_opcode op;
10059 int tem;
10060 int pc;
10061 int preeval_pos;
10062 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10063 struct type *type;
10064 int nargs, oplen;
10065 struct value **argvec;
10066
10067 pc = *pos;
10068 *pos += 1;
10069 op = exp->elts[pc].opcode;
10070
10071 switch (op)
10072 {
10073 default:
10074 *pos -= 1;
10075 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10076
10077 if (noside == EVAL_NORMAL)
10078 arg1 = unwrap_value (arg1);
10079
10080 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10081 then we need to perform the conversion manually, because
10082 evaluate_subexp_standard doesn't do it. This conversion is
10083 necessary in Ada because the different kinds of float/fixed
10084 types in Ada have different representations.
10085
10086 Similarly, we need to perform the conversion from OP_LONG
10087 ourselves. */
10088 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10089 arg1 = ada_value_cast (expect_type, arg1, noside);
10090
10091 return arg1;
10092
10093 case OP_STRING:
10094 {
10095 struct value *result;
10096
10097 *pos -= 1;
10098 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10099 /* The result type will have code OP_STRING, bashed there from
10100 OP_ARRAY. Bash it back. */
10101 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10102 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10103 return result;
10104 }
10105
10106 case UNOP_CAST:
10107 (*pos) += 2;
10108 type = exp->elts[pc + 1].type;
10109 arg1 = evaluate_subexp (type, exp, pos, noside);
10110 if (noside == EVAL_SKIP)
10111 goto nosideret;
10112 arg1 = ada_value_cast (type, arg1, noside);
10113 return arg1;
10114
10115 case UNOP_QUAL:
10116 (*pos) += 2;
10117 type = exp->elts[pc + 1].type;
10118 return ada_evaluate_subexp (type, exp, pos, noside);
10119
10120 case BINOP_ASSIGN:
10121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10122 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10123 {
10124 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10125 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10126 return arg1;
10127 return ada_value_assign (arg1, arg1);
10128 }
10129 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10130 except if the lhs of our assignment is a convenience variable.
10131 In the case of assigning to a convenience variable, the lhs
10132 should be exactly the result of the evaluation of the rhs. */
10133 type = value_type (arg1);
10134 if (VALUE_LVAL (arg1) == lval_internalvar)
10135 type = NULL;
10136 arg2 = evaluate_subexp (type, exp, pos, noside);
10137 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10138 return arg1;
10139 if (ada_is_fixed_point_type (value_type (arg1)))
10140 arg2 = cast_to_fixed (value_type (arg1), arg2);
10141 else if (ada_is_fixed_point_type (value_type (arg2)))
10142 error
10143 (_("Fixed-point values must be assigned to fixed-point variables"));
10144 else
10145 arg2 = coerce_for_assign (value_type (arg1), arg2);
10146 return ada_value_assign (arg1, arg2);
10147
10148 case BINOP_ADD:
10149 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10150 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10151 if (noside == EVAL_SKIP)
10152 goto nosideret;
10153 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10154 return (value_from_longest
10155 (value_type (arg1),
10156 value_as_long (arg1) + value_as_long (arg2)));
10157 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10158 return (value_from_longest
10159 (value_type (arg2),
10160 value_as_long (arg1) + value_as_long (arg2)));
10161 if ((ada_is_fixed_point_type (value_type (arg1))
10162 || ada_is_fixed_point_type (value_type (arg2)))
10163 && value_type (arg1) != value_type (arg2))
10164 error (_("Operands of fixed-point addition must have the same type"));
10165 /* Do the addition, and cast the result to the type of the first
10166 argument. We cannot cast the result to a reference type, so if
10167 ARG1 is a reference type, find its underlying type. */
10168 type = value_type (arg1);
10169 while (TYPE_CODE (type) == TYPE_CODE_REF)
10170 type = TYPE_TARGET_TYPE (type);
10171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10172 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10173
10174 case BINOP_SUB:
10175 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10176 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10177 if (noside == EVAL_SKIP)
10178 goto nosideret;
10179 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10180 return (value_from_longest
10181 (value_type (arg1),
10182 value_as_long (arg1) - value_as_long (arg2)));
10183 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10184 return (value_from_longest
10185 (value_type (arg2),
10186 value_as_long (arg1) - value_as_long (arg2)));
10187 if ((ada_is_fixed_point_type (value_type (arg1))
10188 || ada_is_fixed_point_type (value_type (arg2)))
10189 && value_type (arg1) != value_type (arg2))
10190 error (_("Operands of fixed-point subtraction "
10191 "must have the same type"));
10192 /* Do the substraction, and cast the result to the type of the first
10193 argument. We cannot cast the result to a reference type, so if
10194 ARG1 is a reference type, find its underlying type. */
10195 type = value_type (arg1);
10196 while (TYPE_CODE (type) == TYPE_CODE_REF)
10197 type = TYPE_TARGET_TYPE (type);
10198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10199 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10200
10201 case BINOP_MUL:
10202 case BINOP_DIV:
10203 case BINOP_REM:
10204 case BINOP_MOD:
10205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10207 if (noside == EVAL_SKIP)
10208 goto nosideret;
10209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10210 {
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 return value_zero (value_type (arg1), not_lval);
10213 }
10214 else
10215 {
10216 type = builtin_type (exp->gdbarch)->builtin_double;
10217 if (ada_is_fixed_point_type (value_type (arg1)))
10218 arg1 = cast_from_fixed (type, arg1);
10219 if (ada_is_fixed_point_type (value_type (arg2)))
10220 arg2 = cast_from_fixed (type, arg2);
10221 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10222 return ada_value_binop (arg1, arg2, op);
10223 }
10224
10225 case BINOP_EQUAL:
10226 case BINOP_NOTEQUAL:
10227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10228 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10229 if (noside == EVAL_SKIP)
10230 goto nosideret;
10231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10232 tem = 0;
10233 else
10234 {
10235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10236 tem = ada_value_equal (arg1, arg2);
10237 }
10238 if (op == BINOP_NOTEQUAL)
10239 tem = !tem;
10240 type = language_bool_type (exp->language_defn, exp->gdbarch);
10241 return value_from_longest (type, (LONGEST) tem);
10242
10243 case UNOP_NEG:
10244 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10245 if (noside == EVAL_SKIP)
10246 goto nosideret;
10247 else if (ada_is_fixed_point_type (value_type (arg1)))
10248 return value_cast (value_type (arg1), value_neg (arg1));
10249 else
10250 {
10251 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10252 return value_neg (arg1);
10253 }
10254
10255 case BINOP_LOGICAL_AND:
10256 case BINOP_LOGICAL_OR:
10257 case UNOP_LOGICAL_NOT:
10258 {
10259 struct value *val;
10260
10261 *pos -= 1;
10262 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10263 type = language_bool_type (exp->language_defn, exp->gdbarch);
10264 return value_cast (type, val);
10265 }
10266
10267 case BINOP_BITWISE_AND:
10268 case BINOP_BITWISE_IOR:
10269 case BINOP_BITWISE_XOR:
10270 {
10271 struct value *val;
10272
10273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10274 *pos = pc;
10275 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10276
10277 return value_cast (value_type (arg1), val);
10278 }
10279
10280 case OP_VAR_VALUE:
10281 *pos -= 1;
10282
10283 if (noside == EVAL_SKIP)
10284 {
10285 *pos += 4;
10286 goto nosideret;
10287 }
10288
10289 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10290 /* Only encountered when an unresolved symbol occurs in a
10291 context other than a function call, in which case, it is
10292 invalid. */
10293 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10294 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10295
10296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10297 {
10298 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10299 /* Check to see if this is a tagged type. We also need to handle
10300 the case where the type is a reference to a tagged type, but
10301 we have to be careful to exclude pointers to tagged types.
10302 The latter should be shown as usual (as a pointer), whereas
10303 a reference should mostly be transparent to the user. */
10304 if (ada_is_tagged_type (type, 0)
10305 || (TYPE_CODE (type) == TYPE_CODE_REF
10306 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10307 {
10308 /* Tagged types are a little special in the fact that the real
10309 type is dynamic and can only be determined by inspecting the
10310 object's tag. This means that we need to get the object's
10311 value first (EVAL_NORMAL) and then extract the actual object
10312 type from its tag.
10313
10314 Note that we cannot skip the final step where we extract
10315 the object type from its tag, because the EVAL_NORMAL phase
10316 results in dynamic components being resolved into fixed ones.
10317 This can cause problems when trying to print the type
10318 description of tagged types whose parent has a dynamic size:
10319 We use the type name of the "_parent" component in order
10320 to print the name of the ancestor type in the type description.
10321 If that component had a dynamic size, the resolution into
10322 a fixed type would result in the loss of that type name,
10323 thus preventing us from printing the name of the ancestor
10324 type in the type description. */
10325 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10326
10327 if (TYPE_CODE (type) != TYPE_CODE_REF)
10328 {
10329 struct type *actual_type;
10330
10331 actual_type = type_from_tag (ada_value_tag (arg1));
10332 if (actual_type == NULL)
10333 /* If, for some reason, we were unable to determine
10334 the actual type from the tag, then use the static
10335 approximation that we just computed as a fallback.
10336 This can happen if the debugging information is
10337 incomplete, for instance. */
10338 actual_type = type;
10339 return value_zero (actual_type, not_lval);
10340 }
10341 else
10342 {
10343 /* In the case of a ref, ada_coerce_ref takes care
10344 of determining the actual type. But the evaluation
10345 should return a ref as it should be valid to ask
10346 for its address; so rebuild a ref after coerce. */
10347 arg1 = ada_coerce_ref (arg1);
10348 return value_ref (arg1);
10349 }
10350 }
10351
10352 /* Records and unions for which GNAT encodings have been
10353 generated need to be statically fixed as well.
10354 Otherwise, non-static fixing produces a type where
10355 all dynamic properties are removed, which prevents "ptype"
10356 from being able to completely describe the type.
10357 For instance, a case statement in a variant record would be
10358 replaced by the relevant components based on the actual
10359 value of the discriminants. */
10360 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10361 && dynamic_template_type (type) != NULL)
10362 || (TYPE_CODE (type) == TYPE_CODE_UNION
10363 && ada_find_parallel_type (type, "___XVU") != NULL))
10364 {
10365 *pos += 4;
10366 return value_zero (to_static_fixed_type (type), not_lval);
10367 }
10368 }
10369
10370 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10371 return ada_to_fixed_value (arg1);
10372
10373 case OP_FUNCALL:
10374 (*pos) += 2;
10375
10376 /* Allocate arg vector, including space for the function to be
10377 called in argvec[0] and a terminating NULL. */
10378 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10379 argvec =
10380 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10381
10382 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10383 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10384 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10385 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10386 else
10387 {
10388 for (tem = 0; tem <= nargs; tem += 1)
10389 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10390 argvec[tem] = 0;
10391
10392 if (noside == EVAL_SKIP)
10393 goto nosideret;
10394 }
10395
10396 if (ada_is_constrained_packed_array_type
10397 (desc_base_type (value_type (argvec[0]))))
10398 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10399 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10400 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10401 /* This is a packed array that has already been fixed, and
10402 therefore already coerced to a simple array. Nothing further
10403 to do. */
10404 ;
10405 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10406 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10407 && VALUE_LVAL (argvec[0]) == lval_memory))
10408 argvec[0] = value_addr (argvec[0]);
10409
10410 type = ada_check_typedef (value_type (argvec[0]));
10411
10412 /* Ada allows us to implicitly dereference arrays when subscripting
10413 them. So, if this is an array typedef (encoding use for array
10414 access types encoded as fat pointers), strip it now. */
10415 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10416 type = ada_typedef_target_type (type);
10417
10418 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10419 {
10420 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10421 {
10422 case TYPE_CODE_FUNC:
10423 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10424 break;
10425 case TYPE_CODE_ARRAY:
10426 break;
10427 case TYPE_CODE_STRUCT:
10428 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10429 argvec[0] = ada_value_ind (argvec[0]);
10430 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10431 break;
10432 default:
10433 error (_("cannot subscript or call something of type `%s'"),
10434 ada_type_name (value_type (argvec[0])));
10435 break;
10436 }
10437 }
10438
10439 switch (TYPE_CODE (type))
10440 {
10441 case TYPE_CODE_FUNC:
10442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10443 {
10444 struct type *rtype = TYPE_TARGET_TYPE (type);
10445
10446 if (TYPE_GNU_IFUNC (type))
10447 return allocate_value (TYPE_TARGET_TYPE (rtype));
10448 return allocate_value (rtype);
10449 }
10450 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10451 case TYPE_CODE_INTERNAL_FUNCTION:
10452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10453 /* We don't know anything about what the internal
10454 function might return, but we have to return
10455 something. */
10456 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10457 not_lval);
10458 else
10459 return call_internal_function (exp->gdbarch, exp->language_defn,
10460 argvec[0], nargs, argvec + 1);
10461
10462 case TYPE_CODE_STRUCT:
10463 {
10464 int arity;
10465
10466 arity = ada_array_arity (type);
10467 type = ada_array_element_type (type, nargs);
10468 if (type == NULL)
10469 error (_("cannot subscript or call a record"));
10470 if (arity != nargs)
10471 error (_("wrong number of subscripts; expecting %d"), arity);
10472 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10473 return value_zero (ada_aligned_type (type), lval_memory);
10474 return
10475 unwrap_value (ada_value_subscript
10476 (argvec[0], nargs, argvec + 1));
10477 }
10478 case TYPE_CODE_ARRAY:
10479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10480 {
10481 type = ada_array_element_type (type, nargs);
10482 if (type == NULL)
10483 error (_("element type of array unknown"));
10484 else
10485 return value_zero (ada_aligned_type (type), lval_memory);
10486 }
10487 return
10488 unwrap_value (ada_value_subscript
10489 (ada_coerce_to_simple_array (argvec[0]),
10490 nargs, argvec + 1));
10491 case TYPE_CODE_PTR: /* Pointer to array */
10492 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10493 {
10494 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10495 type = ada_array_element_type (type, nargs);
10496 if (type == NULL)
10497 error (_("element type of array unknown"));
10498 else
10499 return value_zero (ada_aligned_type (type), lval_memory);
10500 }
10501 return
10502 unwrap_value (ada_value_ptr_subscript (argvec[0],
10503 nargs, argvec + 1));
10504
10505 default:
10506 error (_("Attempt to index or call something other than an "
10507 "array or function"));
10508 }
10509
10510 case TERNOP_SLICE:
10511 {
10512 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10513 struct value *low_bound_val =
10514 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10515 struct value *high_bound_val =
10516 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10517 LONGEST low_bound;
10518 LONGEST high_bound;
10519
10520 low_bound_val = coerce_ref (low_bound_val);
10521 high_bound_val = coerce_ref (high_bound_val);
10522 low_bound = pos_atr (low_bound_val);
10523 high_bound = pos_atr (high_bound_val);
10524
10525 if (noside == EVAL_SKIP)
10526 goto nosideret;
10527
10528 /* If this is a reference to an aligner type, then remove all
10529 the aligners. */
10530 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10531 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10532 TYPE_TARGET_TYPE (value_type (array)) =
10533 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10534
10535 if (ada_is_constrained_packed_array_type (value_type (array)))
10536 error (_("cannot slice a packed array"));
10537
10538 /* If this is a reference to an array or an array lvalue,
10539 convert to a pointer. */
10540 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10541 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10542 && VALUE_LVAL (array) == lval_memory))
10543 array = value_addr (array);
10544
10545 if (noside == EVAL_AVOID_SIDE_EFFECTS
10546 && ada_is_array_descriptor_type (ada_check_typedef
10547 (value_type (array))))
10548 return empty_array (ada_type_of_array (array, 0), low_bound);
10549
10550 array = ada_coerce_to_simple_array_ptr (array);
10551
10552 /* If we have more than one level of pointer indirection,
10553 dereference the value until we get only one level. */
10554 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10555 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10556 == TYPE_CODE_PTR))
10557 array = value_ind (array);
10558
10559 /* Make sure we really do have an array type before going further,
10560 to avoid a SEGV when trying to get the index type or the target
10561 type later down the road if the debug info generated by
10562 the compiler is incorrect or incomplete. */
10563 if (!ada_is_simple_array_type (value_type (array)))
10564 error (_("cannot take slice of non-array"));
10565
10566 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10567 == TYPE_CODE_PTR)
10568 {
10569 struct type *type0 = ada_check_typedef (value_type (array));
10570
10571 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10572 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10573 else
10574 {
10575 struct type *arr_type0 =
10576 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10577
10578 return ada_value_slice_from_ptr (array, arr_type0,
10579 longest_to_int (low_bound),
10580 longest_to_int (high_bound));
10581 }
10582 }
10583 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10584 return array;
10585 else if (high_bound < low_bound)
10586 return empty_array (value_type (array), low_bound);
10587 else
10588 return ada_value_slice (array, longest_to_int (low_bound),
10589 longest_to_int (high_bound));
10590 }
10591
10592 case UNOP_IN_RANGE:
10593 (*pos) += 2;
10594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10595 type = check_typedef (exp->elts[pc + 1].type);
10596
10597 if (noside == EVAL_SKIP)
10598 goto nosideret;
10599
10600 switch (TYPE_CODE (type))
10601 {
10602 default:
10603 lim_warning (_("Membership test incompletely implemented; "
10604 "always returns true"));
10605 type = language_bool_type (exp->language_defn, exp->gdbarch);
10606 return value_from_longest (type, (LONGEST) 1);
10607
10608 case TYPE_CODE_RANGE:
10609 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10610 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10611 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10612 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10613 type = language_bool_type (exp->language_defn, exp->gdbarch);
10614 return
10615 value_from_longest (type,
10616 (value_less (arg1, arg3)
10617 || value_equal (arg1, arg3))
10618 && (value_less (arg2, arg1)
10619 || value_equal (arg2, arg1)));
10620 }
10621
10622 case BINOP_IN_BOUNDS:
10623 (*pos) += 2;
10624 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10625 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10626
10627 if (noside == EVAL_SKIP)
10628 goto nosideret;
10629
10630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10631 {
10632 type = language_bool_type (exp->language_defn, exp->gdbarch);
10633 return value_zero (type, not_lval);
10634 }
10635
10636 tem = longest_to_int (exp->elts[pc + 1].longconst);
10637
10638 type = ada_index_type (value_type (arg2), tem, "range");
10639 if (!type)
10640 type = value_type (arg1);
10641
10642 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10643 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10644
10645 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10646 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10647 type = language_bool_type (exp->language_defn, exp->gdbarch);
10648 return
10649 value_from_longest (type,
10650 (value_less (arg1, arg3)
10651 || value_equal (arg1, arg3))
10652 && (value_less (arg2, arg1)
10653 || value_equal (arg2, arg1)));
10654
10655 case TERNOP_IN_RANGE:
10656 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10657 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10658 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10659
10660 if (noside == EVAL_SKIP)
10661 goto nosideret;
10662
10663 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10665 type = language_bool_type (exp->language_defn, exp->gdbarch);
10666 return
10667 value_from_longest (type,
10668 (value_less (arg1, arg3)
10669 || value_equal (arg1, arg3))
10670 && (value_less (arg2, arg1)
10671 || value_equal (arg2, arg1)));
10672
10673 case OP_ATR_FIRST:
10674 case OP_ATR_LAST:
10675 case OP_ATR_LENGTH:
10676 {
10677 struct type *type_arg;
10678
10679 if (exp->elts[*pos].opcode == OP_TYPE)
10680 {
10681 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10682 arg1 = NULL;
10683 type_arg = check_typedef (exp->elts[pc + 2].type);
10684 }
10685 else
10686 {
10687 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10688 type_arg = NULL;
10689 }
10690
10691 if (exp->elts[*pos].opcode != OP_LONG)
10692 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10693 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10694 *pos += 4;
10695
10696 if (noside == EVAL_SKIP)
10697 goto nosideret;
10698
10699 if (type_arg == NULL)
10700 {
10701 arg1 = ada_coerce_ref (arg1);
10702
10703 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10704 arg1 = ada_coerce_to_simple_array (arg1);
10705
10706 if (op == OP_ATR_LENGTH)
10707 type = builtin_type (exp->gdbarch)->builtin_int;
10708 else
10709 {
10710 type = ada_index_type (value_type (arg1), tem,
10711 ada_attribute_name (op));
10712 if (type == NULL)
10713 type = builtin_type (exp->gdbarch)->builtin_int;
10714 }
10715
10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10717 return allocate_value (type);
10718
10719 switch (op)
10720 {
10721 default: /* Should never happen. */
10722 error (_("unexpected attribute encountered"));
10723 case OP_ATR_FIRST:
10724 return value_from_longest
10725 (type, ada_array_bound (arg1, tem, 0));
10726 case OP_ATR_LAST:
10727 return value_from_longest
10728 (type, ada_array_bound (arg1, tem, 1));
10729 case OP_ATR_LENGTH:
10730 return value_from_longest
10731 (type, ada_array_length (arg1, tem));
10732 }
10733 }
10734 else if (discrete_type_p (type_arg))
10735 {
10736 struct type *range_type;
10737 const char *name = ada_type_name (type_arg);
10738
10739 range_type = NULL;
10740 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10741 range_type = to_fixed_range_type (type_arg, NULL);
10742 if (range_type == NULL)
10743 range_type = type_arg;
10744 switch (op)
10745 {
10746 default:
10747 error (_("unexpected attribute encountered"));
10748 case OP_ATR_FIRST:
10749 return value_from_longest
10750 (range_type, ada_discrete_type_low_bound (range_type));
10751 case OP_ATR_LAST:
10752 return value_from_longest
10753 (range_type, ada_discrete_type_high_bound (range_type));
10754 case OP_ATR_LENGTH:
10755 error (_("the 'length attribute applies only to array types"));
10756 }
10757 }
10758 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10759 error (_("unimplemented type attribute"));
10760 else
10761 {
10762 LONGEST low, high;
10763
10764 if (ada_is_constrained_packed_array_type (type_arg))
10765 type_arg = decode_constrained_packed_array_type (type_arg);
10766
10767 if (op == OP_ATR_LENGTH)
10768 type = builtin_type (exp->gdbarch)->builtin_int;
10769 else
10770 {
10771 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10772 if (type == NULL)
10773 type = builtin_type (exp->gdbarch)->builtin_int;
10774 }
10775
10776 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10777 return allocate_value (type);
10778
10779 switch (op)
10780 {
10781 default:
10782 error (_("unexpected attribute encountered"));
10783 case OP_ATR_FIRST:
10784 low = ada_array_bound_from_type (type_arg, tem, 0);
10785 return value_from_longest (type, low);
10786 case OP_ATR_LAST:
10787 high = ada_array_bound_from_type (type_arg, tem, 1);
10788 return value_from_longest (type, high);
10789 case OP_ATR_LENGTH:
10790 low = ada_array_bound_from_type (type_arg, tem, 0);
10791 high = ada_array_bound_from_type (type_arg, tem, 1);
10792 return value_from_longest (type, high - low + 1);
10793 }
10794 }
10795 }
10796
10797 case OP_ATR_TAG:
10798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10799 if (noside == EVAL_SKIP)
10800 goto nosideret;
10801
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10803 return value_zero (ada_tag_type (arg1), not_lval);
10804
10805 return ada_value_tag (arg1);
10806
10807 case OP_ATR_MIN:
10808 case OP_ATR_MAX:
10809 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10811 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10812 if (noside == EVAL_SKIP)
10813 goto nosideret;
10814 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 return value_zero (value_type (arg1), not_lval);
10816 else
10817 {
10818 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10819 return value_binop (arg1, arg2,
10820 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10821 }
10822
10823 case OP_ATR_MODULUS:
10824 {
10825 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10826
10827 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10828 if (noside == EVAL_SKIP)
10829 goto nosideret;
10830
10831 if (!ada_is_modular_type (type_arg))
10832 error (_("'modulus must be applied to modular type"));
10833
10834 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10835 ada_modulus (type_arg));
10836 }
10837
10838
10839 case OP_ATR_POS:
10840 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10841 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 if (noside == EVAL_SKIP)
10843 goto nosideret;
10844 type = builtin_type (exp->gdbarch)->builtin_int;
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846 return value_zero (type, not_lval);
10847 else
10848 return value_pos_atr (type, arg1);
10849
10850 case OP_ATR_SIZE:
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 type = value_type (arg1);
10853
10854 /* If the argument is a reference, then dereference its type, since
10855 the user is really asking for the size of the actual object,
10856 not the size of the pointer. */
10857 if (TYPE_CODE (type) == TYPE_CODE_REF)
10858 type = TYPE_TARGET_TYPE (type);
10859
10860 if (noside == EVAL_SKIP)
10861 goto nosideret;
10862 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10863 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10864 else
10865 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10866 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10867
10868 case OP_ATR_VAL:
10869 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10871 type = exp->elts[pc + 2].type;
10872 if (noside == EVAL_SKIP)
10873 goto nosideret;
10874 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10875 return value_zero (type, not_lval);
10876 else
10877 return value_val_atr (type, arg1);
10878
10879 case BINOP_EXP:
10880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 if (noside == EVAL_SKIP)
10883 goto nosideret;
10884 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10885 return value_zero (value_type (arg1), not_lval);
10886 else
10887 {
10888 /* For integer exponentiation operations,
10889 only promote the first argument. */
10890 if (is_integral_type (value_type (arg2)))
10891 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10892 else
10893 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10894
10895 return value_binop (arg1, arg2, op);
10896 }
10897
10898 case UNOP_PLUS:
10899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902 else
10903 return arg1;
10904
10905 case UNOP_ABS:
10906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10907 if (noside == EVAL_SKIP)
10908 goto nosideret;
10909 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10910 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10911 return value_neg (arg1);
10912 else
10913 return arg1;
10914
10915 case UNOP_IND:
10916 preeval_pos = *pos;
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 if (noside == EVAL_SKIP)
10919 goto nosideret;
10920 type = ada_check_typedef (value_type (arg1));
10921 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10922 {
10923 if (ada_is_array_descriptor_type (type))
10924 /* GDB allows dereferencing GNAT array descriptors. */
10925 {
10926 struct type *arrType = ada_type_of_array (arg1, 0);
10927
10928 if (arrType == NULL)
10929 error (_("Attempt to dereference null array pointer."));
10930 return value_at_lazy (arrType, 0);
10931 }
10932 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10933 || TYPE_CODE (type) == TYPE_CODE_REF
10934 /* In C you can dereference an array to get the 1st elt. */
10935 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10936 {
10937 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10938 only be determined by inspecting the object's tag.
10939 This means that we need to evaluate completely the
10940 expression in order to get its type. */
10941
10942 if ((TYPE_CODE (type) == TYPE_CODE_REF
10943 || TYPE_CODE (type) == TYPE_CODE_PTR)
10944 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10945 {
10946 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10947 EVAL_NORMAL);
10948 type = value_type (ada_value_ind (arg1));
10949 }
10950 else
10951 {
10952 type = to_static_fixed_type
10953 (ada_aligned_type
10954 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10955 }
10956 ada_ensure_varsize_limit (type);
10957 return value_zero (type, lval_memory);
10958 }
10959 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10960 {
10961 /* GDB allows dereferencing an int. */
10962 if (expect_type == NULL)
10963 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10964 lval_memory);
10965 else
10966 {
10967 expect_type =
10968 to_static_fixed_type (ada_aligned_type (expect_type));
10969 return value_zero (expect_type, lval_memory);
10970 }
10971 }
10972 else
10973 error (_("Attempt to take contents of a non-pointer value."));
10974 }
10975 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10976 type = ada_check_typedef (value_type (arg1));
10977
10978 if (TYPE_CODE (type) == TYPE_CODE_INT)
10979 /* GDB allows dereferencing an int. If we were given
10980 the expect_type, then use that as the target type.
10981 Otherwise, assume that the target type is an int. */
10982 {
10983 if (expect_type != NULL)
10984 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10985 arg1));
10986 else
10987 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10988 (CORE_ADDR) value_as_address (arg1));
10989 }
10990
10991 if (ada_is_array_descriptor_type (type))
10992 /* GDB allows dereferencing GNAT array descriptors. */
10993 return ada_coerce_to_simple_array (arg1);
10994 else
10995 return ada_value_ind (arg1);
10996
10997 case STRUCTOP_STRUCT:
10998 tem = longest_to_int (exp->elts[pc + 1].longconst);
10999 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11000 preeval_pos = *pos;
11001 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11002 if (noside == EVAL_SKIP)
11003 goto nosideret;
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11005 {
11006 struct type *type1 = value_type (arg1);
11007
11008 if (ada_is_tagged_type (type1, 1))
11009 {
11010 type = ada_lookup_struct_elt_type (type1,
11011 &exp->elts[pc + 2].string,
11012 1, 1, NULL);
11013
11014 /* If the field is not found, check if it exists in the
11015 extension of this object's type. This means that we
11016 need to evaluate completely the expression. */
11017
11018 if (type == NULL)
11019 {
11020 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11021 EVAL_NORMAL);
11022 arg1 = ada_value_struct_elt (arg1,
11023 &exp->elts[pc + 2].string,
11024 0);
11025 arg1 = unwrap_value (arg1);
11026 type = value_type (ada_to_fixed_value (arg1));
11027 }
11028 }
11029 else
11030 type =
11031 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11032 0, NULL);
11033
11034 return value_zero (ada_aligned_type (type), lval_memory);
11035 }
11036 else
11037 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11038 arg1 = unwrap_value (arg1);
11039 return ada_to_fixed_value (arg1);
11040
11041 case OP_TYPE:
11042 /* The value is not supposed to be used. This is here to make it
11043 easier to accommodate expressions that contain types. */
11044 (*pos) += 2;
11045 if (noside == EVAL_SKIP)
11046 goto nosideret;
11047 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11048 return allocate_value (exp->elts[pc + 1].type);
11049 else
11050 error (_("Attempt to use a type name as an expression"));
11051
11052 case OP_AGGREGATE:
11053 case OP_CHOICES:
11054 case OP_OTHERS:
11055 case OP_DISCRETE_RANGE:
11056 case OP_POSITIONAL:
11057 case OP_NAME:
11058 if (noside == EVAL_NORMAL)
11059 switch (op)
11060 {
11061 case OP_NAME:
11062 error (_("Undefined name, ambiguous name, or renaming used in "
11063 "component association: %s."), &exp->elts[pc+2].string);
11064 case OP_AGGREGATE:
11065 error (_("Aggregates only allowed on the right of an assignment"));
11066 default:
11067 internal_error (__FILE__, __LINE__,
11068 _("aggregate apparently mangled"));
11069 }
11070
11071 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11072 *pos += oplen - 1;
11073 for (tem = 0; tem < nargs; tem += 1)
11074 ada_evaluate_subexp (NULL, exp, pos, noside);
11075 goto nosideret;
11076 }
11077
11078 nosideret:
11079 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11080 }
11081 \f
11082
11083 /* Fixed point */
11084
11085 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11086 type name that encodes the 'small and 'delta information.
11087 Otherwise, return NULL. */
11088
11089 static const char *
11090 fixed_type_info (struct type *type)
11091 {
11092 const char *name = ada_type_name (type);
11093 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11094
11095 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11096 {
11097 const char *tail = strstr (name, "___XF_");
11098
11099 if (tail == NULL)
11100 return NULL;
11101 else
11102 return tail + 5;
11103 }
11104 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11105 return fixed_type_info (TYPE_TARGET_TYPE (type));
11106 else
11107 return NULL;
11108 }
11109
11110 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11111
11112 int
11113 ada_is_fixed_point_type (struct type *type)
11114 {
11115 return fixed_type_info (type) != NULL;
11116 }
11117
11118 /* Return non-zero iff TYPE represents a System.Address type. */
11119
11120 int
11121 ada_is_system_address_type (struct type *type)
11122 {
11123 return (TYPE_NAME (type)
11124 && strcmp (TYPE_NAME (type), "system__address") == 0);
11125 }
11126
11127 /* Assuming that TYPE is the representation of an Ada fixed-point
11128 type, return its delta, or -1 if the type is malformed and the
11129 delta cannot be determined. */
11130
11131 DOUBLEST
11132 ada_delta (struct type *type)
11133 {
11134 const char *encoding = fixed_type_info (type);
11135 DOUBLEST num, den;
11136
11137 /* Strictly speaking, num and den are encoded as integer. However,
11138 they may not fit into a long, and they will have to be converted
11139 to DOUBLEST anyway. So scan them as DOUBLEST. */
11140 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11141 &num, &den) < 2)
11142 return -1.0;
11143 else
11144 return num / den;
11145 }
11146
11147 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11148 factor ('SMALL value) associated with the type. */
11149
11150 static DOUBLEST
11151 scaling_factor (struct type *type)
11152 {
11153 const char *encoding = fixed_type_info (type);
11154 DOUBLEST num0, den0, num1, den1;
11155 int n;
11156
11157 /* Strictly speaking, num's and den's are encoded as integer. However,
11158 they may not fit into a long, and they will have to be converted
11159 to DOUBLEST anyway. So scan them as DOUBLEST. */
11160 n = sscanf (encoding,
11161 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11162 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11163 &num0, &den0, &num1, &den1);
11164
11165 if (n < 2)
11166 return 1.0;
11167 else if (n == 4)
11168 return num1 / den1;
11169 else
11170 return num0 / den0;
11171 }
11172
11173
11174 /* Assuming that X is the representation of a value of fixed-point
11175 type TYPE, return its floating-point equivalent. */
11176
11177 DOUBLEST
11178 ada_fixed_to_float (struct type *type, LONGEST x)
11179 {
11180 return (DOUBLEST) x *scaling_factor (type);
11181 }
11182
11183 /* The representation of a fixed-point value of type TYPE
11184 corresponding to the value X. */
11185
11186 LONGEST
11187 ada_float_to_fixed (struct type *type, DOUBLEST x)
11188 {
11189 return (LONGEST) (x / scaling_factor (type) + 0.5);
11190 }
11191
11192 \f
11193
11194 /* Range types */
11195
11196 /* Scan STR beginning at position K for a discriminant name, and
11197 return the value of that discriminant field of DVAL in *PX. If
11198 PNEW_K is not null, put the position of the character beyond the
11199 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11200 not alter *PX and *PNEW_K if unsuccessful. */
11201
11202 static int
11203 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11204 int *pnew_k)
11205 {
11206 static char *bound_buffer = NULL;
11207 static size_t bound_buffer_len = 0;
11208 char *bound;
11209 char *pend;
11210 struct value *bound_val;
11211
11212 if (dval == NULL || str == NULL || str[k] == '\0')
11213 return 0;
11214
11215 pend = strstr (str + k, "__");
11216 if (pend == NULL)
11217 {
11218 bound = str + k;
11219 k += strlen (bound);
11220 }
11221 else
11222 {
11223 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11224 bound = bound_buffer;
11225 strncpy (bound_buffer, str + k, pend - (str + k));
11226 bound[pend - (str + k)] = '\0';
11227 k = pend - str;
11228 }
11229
11230 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11231 if (bound_val == NULL)
11232 return 0;
11233
11234 *px = value_as_long (bound_val);
11235 if (pnew_k != NULL)
11236 *pnew_k = k;
11237 return 1;
11238 }
11239
11240 /* Value of variable named NAME in the current environment. If
11241 no such variable found, then if ERR_MSG is null, returns 0, and
11242 otherwise causes an error with message ERR_MSG. */
11243
11244 static struct value *
11245 get_var_value (char *name, char *err_msg)
11246 {
11247 struct ada_symbol_info *syms;
11248 int nsyms;
11249
11250 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11251 &syms);
11252
11253 if (nsyms != 1)
11254 {
11255 if (err_msg == NULL)
11256 return 0;
11257 else
11258 error (("%s"), err_msg);
11259 }
11260
11261 return value_of_variable (syms[0].sym, syms[0].block);
11262 }
11263
11264 /* Value of integer variable named NAME in the current environment. If
11265 no such variable found, returns 0, and sets *FLAG to 0. If
11266 successful, sets *FLAG to 1. */
11267
11268 LONGEST
11269 get_int_var_value (char *name, int *flag)
11270 {
11271 struct value *var_val = get_var_value (name, 0);
11272
11273 if (var_val == 0)
11274 {
11275 if (flag != NULL)
11276 *flag = 0;
11277 return 0;
11278 }
11279 else
11280 {
11281 if (flag != NULL)
11282 *flag = 1;
11283 return value_as_long (var_val);
11284 }
11285 }
11286
11287
11288 /* Return a range type whose base type is that of the range type named
11289 NAME in the current environment, and whose bounds are calculated
11290 from NAME according to the GNAT range encoding conventions.
11291 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11292 corresponding range type from debug information; fall back to using it
11293 if symbol lookup fails. If a new type must be created, allocate it
11294 like ORIG_TYPE was. The bounds information, in general, is encoded
11295 in NAME, the base type given in the named range type. */
11296
11297 static struct type *
11298 to_fixed_range_type (struct type *raw_type, struct value *dval)
11299 {
11300 const char *name;
11301 struct type *base_type;
11302 char *subtype_info;
11303
11304 gdb_assert (raw_type != NULL);
11305 gdb_assert (TYPE_NAME (raw_type) != NULL);
11306
11307 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11308 base_type = TYPE_TARGET_TYPE (raw_type);
11309 else
11310 base_type = raw_type;
11311
11312 name = TYPE_NAME (raw_type);
11313 subtype_info = strstr (name, "___XD");
11314 if (subtype_info == NULL)
11315 {
11316 LONGEST L = ada_discrete_type_low_bound (raw_type);
11317 LONGEST U = ada_discrete_type_high_bound (raw_type);
11318
11319 if (L < INT_MIN || U > INT_MAX)
11320 return raw_type;
11321 else
11322 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11323 L, U);
11324 }
11325 else
11326 {
11327 static char *name_buf = NULL;
11328 static size_t name_len = 0;
11329 int prefix_len = subtype_info - name;
11330 LONGEST L, U;
11331 struct type *type;
11332 char *bounds_str;
11333 int n;
11334
11335 GROW_VECT (name_buf, name_len, prefix_len + 5);
11336 strncpy (name_buf, name, prefix_len);
11337 name_buf[prefix_len] = '\0';
11338
11339 subtype_info += 5;
11340 bounds_str = strchr (subtype_info, '_');
11341 n = 1;
11342
11343 if (*subtype_info == 'L')
11344 {
11345 if (!ada_scan_number (bounds_str, n, &L, &n)
11346 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11347 return raw_type;
11348 if (bounds_str[n] == '_')
11349 n += 2;
11350 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11351 n += 1;
11352 subtype_info += 1;
11353 }
11354 else
11355 {
11356 int ok;
11357
11358 strcpy (name_buf + prefix_len, "___L");
11359 L = get_int_var_value (name_buf, &ok);
11360 if (!ok)
11361 {
11362 lim_warning (_("Unknown lower bound, using 1."));
11363 L = 1;
11364 }
11365 }
11366
11367 if (*subtype_info == 'U')
11368 {
11369 if (!ada_scan_number (bounds_str, n, &U, &n)
11370 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11371 return raw_type;
11372 }
11373 else
11374 {
11375 int ok;
11376
11377 strcpy (name_buf + prefix_len, "___U");
11378 U = get_int_var_value (name_buf, &ok);
11379 if (!ok)
11380 {
11381 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11382 U = L;
11383 }
11384 }
11385
11386 type = create_static_range_type (alloc_type_copy (raw_type),
11387 base_type, L, U);
11388 TYPE_NAME (type) = name;
11389 return type;
11390 }
11391 }
11392
11393 /* True iff NAME is the name of a range type. */
11394
11395 int
11396 ada_is_range_type_name (const char *name)
11397 {
11398 return (name != NULL && strstr (name, "___XD"));
11399 }
11400 \f
11401
11402 /* Modular types */
11403
11404 /* True iff TYPE is an Ada modular type. */
11405
11406 int
11407 ada_is_modular_type (struct type *type)
11408 {
11409 struct type *subranged_type = get_base_type (type);
11410
11411 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11412 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11413 && TYPE_UNSIGNED (subranged_type));
11414 }
11415
11416 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11417
11418 ULONGEST
11419 ada_modulus (struct type *type)
11420 {
11421 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11422 }
11423 \f
11424
11425 /* Ada exception catchpoint support:
11426 ---------------------------------
11427
11428 We support 3 kinds of exception catchpoints:
11429 . catchpoints on Ada exceptions
11430 . catchpoints on unhandled Ada exceptions
11431 . catchpoints on failed assertions
11432
11433 Exceptions raised during failed assertions, or unhandled exceptions
11434 could perfectly be caught with the general catchpoint on Ada exceptions.
11435 However, we can easily differentiate these two special cases, and having
11436 the option to distinguish these two cases from the rest can be useful
11437 to zero-in on certain situations.
11438
11439 Exception catchpoints are a specialized form of breakpoint,
11440 since they rely on inserting breakpoints inside known routines
11441 of the GNAT runtime. The implementation therefore uses a standard
11442 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11443 of breakpoint_ops.
11444
11445 Support in the runtime for exception catchpoints have been changed
11446 a few times already, and these changes affect the implementation
11447 of these catchpoints. In order to be able to support several
11448 variants of the runtime, we use a sniffer that will determine
11449 the runtime variant used by the program being debugged. */
11450
11451 /* Ada's standard exceptions.
11452
11453 The Ada 83 standard also defined Numeric_Error. But there so many
11454 situations where it was unclear from the Ada 83 Reference Manual
11455 (RM) whether Constraint_Error or Numeric_Error should be raised,
11456 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11457 Interpretation saying that anytime the RM says that Numeric_Error
11458 should be raised, the implementation may raise Constraint_Error.
11459 Ada 95 went one step further and pretty much removed Numeric_Error
11460 from the list of standard exceptions (it made it a renaming of
11461 Constraint_Error, to help preserve compatibility when compiling
11462 an Ada83 compiler). As such, we do not include Numeric_Error from
11463 this list of standard exceptions. */
11464
11465 static char *standard_exc[] = {
11466 "constraint_error",
11467 "program_error",
11468 "storage_error",
11469 "tasking_error"
11470 };
11471
11472 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11473
11474 /* A structure that describes how to support exception catchpoints
11475 for a given executable. */
11476
11477 struct exception_support_info
11478 {
11479 /* The name of the symbol to break on in order to insert
11480 a catchpoint on exceptions. */
11481 const char *catch_exception_sym;
11482
11483 /* The name of the symbol to break on in order to insert
11484 a catchpoint on unhandled exceptions. */
11485 const char *catch_exception_unhandled_sym;
11486
11487 /* The name of the symbol to break on in order to insert
11488 a catchpoint on failed assertions. */
11489 const char *catch_assert_sym;
11490
11491 /* Assuming that the inferior just triggered an unhandled exception
11492 catchpoint, this function is responsible for returning the address
11493 in inferior memory where the name of that exception is stored.
11494 Return zero if the address could not be computed. */
11495 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11496 };
11497
11498 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11499 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11500
11501 /* The following exception support info structure describes how to
11502 implement exception catchpoints with the latest version of the
11503 Ada runtime (as of 2007-03-06). */
11504
11505 static const struct exception_support_info default_exception_support_info =
11506 {
11507 "__gnat_debug_raise_exception", /* catch_exception_sym */
11508 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11509 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11510 ada_unhandled_exception_name_addr
11511 };
11512
11513 /* The following exception support info structure describes how to
11514 implement exception catchpoints with a slightly older version
11515 of the Ada runtime. */
11516
11517 static const struct exception_support_info exception_support_info_fallback =
11518 {
11519 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11520 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11521 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11522 ada_unhandled_exception_name_addr_from_raise
11523 };
11524
11525 /* Return nonzero if we can detect the exception support routines
11526 described in EINFO.
11527
11528 This function errors out if an abnormal situation is detected
11529 (for instance, if we find the exception support routines, but
11530 that support is found to be incomplete). */
11531
11532 static int
11533 ada_has_this_exception_support (const struct exception_support_info *einfo)
11534 {
11535 struct symbol *sym;
11536
11537 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11538 that should be compiled with debugging information. As a result, we
11539 expect to find that symbol in the symtabs. */
11540
11541 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11542 if (sym == NULL)
11543 {
11544 /* Perhaps we did not find our symbol because the Ada runtime was
11545 compiled without debugging info, or simply stripped of it.
11546 It happens on some GNU/Linux distributions for instance, where
11547 users have to install a separate debug package in order to get
11548 the runtime's debugging info. In that situation, let the user
11549 know why we cannot insert an Ada exception catchpoint.
11550
11551 Note: Just for the purpose of inserting our Ada exception
11552 catchpoint, we could rely purely on the associated minimal symbol.
11553 But we would be operating in degraded mode anyway, since we are
11554 still lacking the debugging info needed later on to extract
11555 the name of the exception being raised (this name is printed in
11556 the catchpoint message, and is also used when trying to catch
11557 a specific exception). We do not handle this case for now. */
11558 struct bound_minimal_symbol msym
11559 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11560
11561 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11562 error (_("Your Ada runtime appears to be missing some debugging "
11563 "information.\nCannot insert Ada exception catchpoint "
11564 "in this configuration."));
11565
11566 return 0;
11567 }
11568
11569 /* Make sure that the symbol we found corresponds to a function. */
11570
11571 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11572 error (_("Symbol \"%s\" is not a function (class = %d)"),
11573 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11574
11575 return 1;
11576 }
11577
11578 /* Inspect the Ada runtime and determine which exception info structure
11579 should be used to provide support for exception catchpoints.
11580
11581 This function will always set the per-inferior exception_info,
11582 or raise an error. */
11583
11584 static void
11585 ada_exception_support_info_sniffer (void)
11586 {
11587 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11588
11589 /* If the exception info is already known, then no need to recompute it. */
11590 if (data->exception_info != NULL)
11591 return;
11592
11593 /* Check the latest (default) exception support info. */
11594 if (ada_has_this_exception_support (&default_exception_support_info))
11595 {
11596 data->exception_info = &default_exception_support_info;
11597 return;
11598 }
11599
11600 /* Try our fallback exception suport info. */
11601 if (ada_has_this_exception_support (&exception_support_info_fallback))
11602 {
11603 data->exception_info = &exception_support_info_fallback;
11604 return;
11605 }
11606
11607 /* Sometimes, it is normal for us to not be able to find the routine
11608 we are looking for. This happens when the program is linked with
11609 the shared version of the GNAT runtime, and the program has not been
11610 started yet. Inform the user of these two possible causes if
11611 applicable. */
11612
11613 if (ada_update_initial_language (language_unknown) != language_ada)
11614 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11615
11616 /* If the symbol does not exist, then check that the program is
11617 already started, to make sure that shared libraries have been
11618 loaded. If it is not started, this may mean that the symbol is
11619 in a shared library. */
11620
11621 if (ptid_get_pid (inferior_ptid) == 0)
11622 error (_("Unable to insert catchpoint. Try to start the program first."));
11623
11624 /* At this point, we know that we are debugging an Ada program and
11625 that the inferior has been started, but we still are not able to
11626 find the run-time symbols. That can mean that we are in
11627 configurable run time mode, or that a-except as been optimized
11628 out by the linker... In any case, at this point it is not worth
11629 supporting this feature. */
11630
11631 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11632 }
11633
11634 /* True iff FRAME is very likely to be that of a function that is
11635 part of the runtime system. This is all very heuristic, but is
11636 intended to be used as advice as to what frames are uninteresting
11637 to most users. */
11638
11639 static int
11640 is_known_support_routine (struct frame_info *frame)
11641 {
11642 struct symtab_and_line sal;
11643 char *func_name;
11644 enum language func_lang;
11645 int i;
11646 const char *fullname;
11647
11648 /* If this code does not have any debugging information (no symtab),
11649 This cannot be any user code. */
11650
11651 find_frame_sal (frame, &sal);
11652 if (sal.symtab == NULL)
11653 return 1;
11654
11655 /* If there is a symtab, but the associated source file cannot be
11656 located, then assume this is not user code: Selecting a frame
11657 for which we cannot display the code would not be very helpful
11658 for the user. This should also take care of case such as VxWorks
11659 where the kernel has some debugging info provided for a few units. */
11660
11661 fullname = symtab_to_fullname (sal.symtab);
11662 if (access (fullname, R_OK) != 0)
11663 return 1;
11664
11665 /* Check the unit filename againt the Ada runtime file naming.
11666 We also check the name of the objfile against the name of some
11667 known system libraries that sometimes come with debugging info
11668 too. */
11669
11670 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11671 {
11672 re_comp (known_runtime_file_name_patterns[i]);
11673 if (re_exec (lbasename (sal.symtab->filename)))
11674 return 1;
11675 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11676 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11677 return 1;
11678 }
11679
11680 /* Check whether the function is a GNAT-generated entity. */
11681
11682 find_frame_funname (frame, &func_name, &func_lang, NULL);
11683 if (func_name == NULL)
11684 return 1;
11685
11686 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11687 {
11688 re_comp (known_auxiliary_function_name_patterns[i]);
11689 if (re_exec (func_name))
11690 {
11691 xfree (func_name);
11692 return 1;
11693 }
11694 }
11695
11696 xfree (func_name);
11697 return 0;
11698 }
11699
11700 /* Find the first frame that contains debugging information and that is not
11701 part of the Ada run-time, starting from FI and moving upward. */
11702
11703 void
11704 ada_find_printable_frame (struct frame_info *fi)
11705 {
11706 for (; fi != NULL; fi = get_prev_frame (fi))
11707 {
11708 if (!is_known_support_routine (fi))
11709 {
11710 select_frame (fi);
11711 break;
11712 }
11713 }
11714
11715 }
11716
11717 /* Assuming that the inferior just triggered an unhandled exception
11718 catchpoint, return the address in inferior memory where the name
11719 of the exception is stored.
11720
11721 Return zero if the address could not be computed. */
11722
11723 static CORE_ADDR
11724 ada_unhandled_exception_name_addr (void)
11725 {
11726 return parse_and_eval_address ("e.full_name");
11727 }
11728
11729 /* Same as ada_unhandled_exception_name_addr, except that this function
11730 should be used when the inferior uses an older version of the runtime,
11731 where the exception name needs to be extracted from a specific frame
11732 several frames up in the callstack. */
11733
11734 static CORE_ADDR
11735 ada_unhandled_exception_name_addr_from_raise (void)
11736 {
11737 int frame_level;
11738 struct frame_info *fi;
11739 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11740 struct cleanup *old_chain;
11741
11742 /* To determine the name of this exception, we need to select
11743 the frame corresponding to RAISE_SYM_NAME. This frame is
11744 at least 3 levels up, so we simply skip the first 3 frames
11745 without checking the name of their associated function. */
11746 fi = get_current_frame ();
11747 for (frame_level = 0; frame_level < 3; frame_level += 1)
11748 if (fi != NULL)
11749 fi = get_prev_frame (fi);
11750
11751 old_chain = make_cleanup (null_cleanup, NULL);
11752 while (fi != NULL)
11753 {
11754 char *func_name;
11755 enum language func_lang;
11756
11757 find_frame_funname (fi, &func_name, &func_lang, NULL);
11758 if (func_name != NULL)
11759 {
11760 make_cleanup (xfree, func_name);
11761
11762 if (strcmp (func_name,
11763 data->exception_info->catch_exception_sym) == 0)
11764 break; /* We found the frame we were looking for... */
11765 fi = get_prev_frame (fi);
11766 }
11767 }
11768 do_cleanups (old_chain);
11769
11770 if (fi == NULL)
11771 return 0;
11772
11773 select_frame (fi);
11774 return parse_and_eval_address ("id.full_name");
11775 }
11776
11777 /* Assuming the inferior just triggered an Ada exception catchpoint
11778 (of any type), return the address in inferior memory where the name
11779 of the exception is stored, if applicable.
11780
11781 Return zero if the address could not be computed, or if not relevant. */
11782
11783 static CORE_ADDR
11784 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11785 struct breakpoint *b)
11786 {
11787 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11788
11789 switch (ex)
11790 {
11791 case ada_catch_exception:
11792 return (parse_and_eval_address ("e.full_name"));
11793 break;
11794
11795 case ada_catch_exception_unhandled:
11796 return data->exception_info->unhandled_exception_name_addr ();
11797 break;
11798
11799 case ada_catch_assert:
11800 return 0; /* Exception name is not relevant in this case. */
11801 break;
11802
11803 default:
11804 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11805 break;
11806 }
11807
11808 return 0; /* Should never be reached. */
11809 }
11810
11811 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11812 any error that ada_exception_name_addr_1 might cause to be thrown.
11813 When an error is intercepted, a warning with the error message is printed,
11814 and zero is returned. */
11815
11816 static CORE_ADDR
11817 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11818 struct breakpoint *b)
11819 {
11820 volatile struct gdb_exception e;
11821 CORE_ADDR result = 0;
11822
11823 TRY_CATCH (e, RETURN_MASK_ERROR)
11824 {
11825 result = ada_exception_name_addr_1 (ex, b);
11826 }
11827
11828 if (e.reason < 0)
11829 {
11830 warning (_("failed to get exception name: %s"), e.message);
11831 return 0;
11832 }
11833
11834 return result;
11835 }
11836
11837 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11838
11839 /* Ada catchpoints.
11840
11841 In the case of catchpoints on Ada exceptions, the catchpoint will
11842 stop the target on every exception the program throws. When a user
11843 specifies the name of a specific exception, we translate this
11844 request into a condition expression (in text form), and then parse
11845 it into an expression stored in each of the catchpoint's locations.
11846 We then use this condition to check whether the exception that was
11847 raised is the one the user is interested in. If not, then the
11848 target is resumed again. We store the name of the requested
11849 exception, in order to be able to re-set the condition expression
11850 when symbols change. */
11851
11852 /* An instance of this type is used to represent an Ada catchpoint
11853 breakpoint location. It includes a "struct bp_location" as a kind
11854 of base class; users downcast to "struct bp_location *" when
11855 needed. */
11856
11857 struct ada_catchpoint_location
11858 {
11859 /* The base class. */
11860 struct bp_location base;
11861
11862 /* The condition that checks whether the exception that was raised
11863 is the specific exception the user specified on catchpoint
11864 creation. */
11865 struct expression *excep_cond_expr;
11866 };
11867
11868 /* Implement the DTOR method in the bp_location_ops structure for all
11869 Ada exception catchpoint kinds. */
11870
11871 static void
11872 ada_catchpoint_location_dtor (struct bp_location *bl)
11873 {
11874 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11875
11876 xfree (al->excep_cond_expr);
11877 }
11878
11879 /* The vtable to be used in Ada catchpoint locations. */
11880
11881 static const struct bp_location_ops ada_catchpoint_location_ops =
11882 {
11883 ada_catchpoint_location_dtor
11884 };
11885
11886 /* An instance of this type is used to represent an Ada catchpoint.
11887 It includes a "struct breakpoint" as a kind of base class; users
11888 downcast to "struct breakpoint *" when needed. */
11889
11890 struct ada_catchpoint
11891 {
11892 /* The base class. */
11893 struct breakpoint base;
11894
11895 /* The name of the specific exception the user specified. */
11896 char *excep_string;
11897 };
11898
11899 /* Parse the exception condition string in the context of each of the
11900 catchpoint's locations, and store them for later evaluation. */
11901
11902 static void
11903 create_excep_cond_exprs (struct ada_catchpoint *c)
11904 {
11905 struct cleanup *old_chain;
11906 struct bp_location *bl;
11907 char *cond_string;
11908
11909 /* Nothing to do if there's no specific exception to catch. */
11910 if (c->excep_string == NULL)
11911 return;
11912
11913 /* Same if there are no locations... */
11914 if (c->base.loc == NULL)
11915 return;
11916
11917 /* Compute the condition expression in text form, from the specific
11918 expection we want to catch. */
11919 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11920 old_chain = make_cleanup (xfree, cond_string);
11921
11922 /* Iterate over all the catchpoint's locations, and parse an
11923 expression for each. */
11924 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11925 {
11926 struct ada_catchpoint_location *ada_loc
11927 = (struct ada_catchpoint_location *) bl;
11928 struct expression *exp = NULL;
11929
11930 if (!bl->shlib_disabled)
11931 {
11932 volatile struct gdb_exception e;
11933 const char *s;
11934
11935 s = cond_string;
11936 TRY_CATCH (e, RETURN_MASK_ERROR)
11937 {
11938 exp = parse_exp_1 (&s, bl->address,
11939 block_for_pc (bl->address), 0);
11940 }
11941 if (e.reason < 0)
11942 {
11943 warning (_("failed to reevaluate internal exception condition "
11944 "for catchpoint %d: %s"),
11945 c->base.number, e.message);
11946 /* There is a bug in GCC on sparc-solaris when building with
11947 optimization which causes EXP to change unexpectedly
11948 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11949 The problem should be fixed starting with GCC 4.9.
11950 In the meantime, work around it by forcing EXP back
11951 to NULL. */
11952 exp = NULL;
11953 }
11954 }
11955
11956 ada_loc->excep_cond_expr = exp;
11957 }
11958
11959 do_cleanups (old_chain);
11960 }
11961
11962 /* Implement the DTOR method in the breakpoint_ops structure for all
11963 exception catchpoint kinds. */
11964
11965 static void
11966 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11967 {
11968 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11969
11970 xfree (c->excep_string);
11971
11972 bkpt_breakpoint_ops.dtor (b);
11973 }
11974
11975 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11976 structure for all exception catchpoint kinds. */
11977
11978 static struct bp_location *
11979 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11980 struct breakpoint *self)
11981 {
11982 struct ada_catchpoint_location *loc;
11983
11984 loc = XNEW (struct ada_catchpoint_location);
11985 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11986 loc->excep_cond_expr = NULL;
11987 return &loc->base;
11988 }
11989
11990 /* Implement the RE_SET method in the breakpoint_ops structure for all
11991 exception catchpoint kinds. */
11992
11993 static void
11994 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11995 {
11996 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11997
11998 /* Call the base class's method. This updates the catchpoint's
11999 locations. */
12000 bkpt_breakpoint_ops.re_set (b);
12001
12002 /* Reparse the exception conditional expressions. One for each
12003 location. */
12004 create_excep_cond_exprs (c);
12005 }
12006
12007 /* Returns true if we should stop for this breakpoint hit. If the
12008 user specified a specific exception, we only want to cause a stop
12009 if the program thrown that exception. */
12010
12011 static int
12012 should_stop_exception (const struct bp_location *bl)
12013 {
12014 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12015 const struct ada_catchpoint_location *ada_loc
12016 = (const struct ada_catchpoint_location *) bl;
12017 volatile struct gdb_exception ex;
12018 int stop;
12019
12020 /* With no specific exception, should always stop. */
12021 if (c->excep_string == NULL)
12022 return 1;
12023
12024 if (ada_loc->excep_cond_expr == NULL)
12025 {
12026 /* We will have a NULL expression if back when we were creating
12027 the expressions, this location's had failed to parse. */
12028 return 1;
12029 }
12030
12031 stop = 1;
12032 TRY_CATCH (ex, RETURN_MASK_ALL)
12033 {
12034 struct value *mark;
12035
12036 mark = value_mark ();
12037 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12038 value_free_to_mark (mark);
12039 }
12040 if (ex.reason < 0)
12041 exception_fprintf (gdb_stderr, ex,
12042 _("Error in testing exception condition:\n"));
12043 return stop;
12044 }
12045
12046 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12047 for all exception catchpoint kinds. */
12048
12049 static void
12050 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12051 {
12052 bs->stop = should_stop_exception (bs->bp_location_at);
12053 }
12054
12055 /* Implement the PRINT_IT method in the breakpoint_ops structure
12056 for all exception catchpoint kinds. */
12057
12058 static enum print_stop_action
12059 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12060 {
12061 struct ui_out *uiout = current_uiout;
12062 struct breakpoint *b = bs->breakpoint_at;
12063
12064 annotate_catchpoint (b->number);
12065
12066 if (ui_out_is_mi_like_p (uiout))
12067 {
12068 ui_out_field_string (uiout, "reason",
12069 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12070 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12071 }
12072
12073 ui_out_text (uiout,
12074 b->disposition == disp_del ? "\nTemporary catchpoint "
12075 : "\nCatchpoint ");
12076 ui_out_field_int (uiout, "bkptno", b->number);
12077 ui_out_text (uiout, ", ");
12078
12079 switch (ex)
12080 {
12081 case ada_catch_exception:
12082 case ada_catch_exception_unhandled:
12083 {
12084 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12085 char exception_name[256];
12086
12087 if (addr != 0)
12088 {
12089 read_memory (addr, (gdb_byte *) exception_name,
12090 sizeof (exception_name) - 1);
12091 exception_name [sizeof (exception_name) - 1] = '\0';
12092 }
12093 else
12094 {
12095 /* For some reason, we were unable to read the exception
12096 name. This could happen if the Runtime was compiled
12097 without debugging info, for instance. In that case,
12098 just replace the exception name by the generic string
12099 "exception" - it will read as "an exception" in the
12100 notification we are about to print. */
12101 memcpy (exception_name, "exception", sizeof ("exception"));
12102 }
12103 /* In the case of unhandled exception breakpoints, we print
12104 the exception name as "unhandled EXCEPTION_NAME", to make
12105 it clearer to the user which kind of catchpoint just got
12106 hit. We used ui_out_text to make sure that this extra
12107 info does not pollute the exception name in the MI case. */
12108 if (ex == ada_catch_exception_unhandled)
12109 ui_out_text (uiout, "unhandled ");
12110 ui_out_field_string (uiout, "exception-name", exception_name);
12111 }
12112 break;
12113 case ada_catch_assert:
12114 /* In this case, the name of the exception is not really
12115 important. Just print "failed assertion" to make it clearer
12116 that his program just hit an assertion-failure catchpoint.
12117 We used ui_out_text because this info does not belong in
12118 the MI output. */
12119 ui_out_text (uiout, "failed assertion");
12120 break;
12121 }
12122 ui_out_text (uiout, " at ");
12123 ada_find_printable_frame (get_current_frame ());
12124
12125 return PRINT_SRC_AND_LOC;
12126 }
12127
12128 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12129 for all exception catchpoint kinds. */
12130
12131 static void
12132 print_one_exception (enum ada_exception_catchpoint_kind ex,
12133 struct breakpoint *b, struct bp_location **last_loc)
12134 {
12135 struct ui_out *uiout = current_uiout;
12136 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12137 struct value_print_options opts;
12138
12139 get_user_print_options (&opts);
12140 if (opts.addressprint)
12141 {
12142 annotate_field (4);
12143 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12144 }
12145
12146 annotate_field (5);
12147 *last_loc = b->loc;
12148 switch (ex)
12149 {
12150 case ada_catch_exception:
12151 if (c->excep_string != NULL)
12152 {
12153 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12154
12155 ui_out_field_string (uiout, "what", msg);
12156 xfree (msg);
12157 }
12158 else
12159 ui_out_field_string (uiout, "what", "all Ada exceptions");
12160
12161 break;
12162
12163 case ada_catch_exception_unhandled:
12164 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12165 break;
12166
12167 case ada_catch_assert:
12168 ui_out_field_string (uiout, "what", "failed Ada assertions");
12169 break;
12170
12171 default:
12172 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12173 break;
12174 }
12175 }
12176
12177 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12178 for all exception catchpoint kinds. */
12179
12180 static void
12181 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12182 struct breakpoint *b)
12183 {
12184 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12185 struct ui_out *uiout = current_uiout;
12186
12187 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12188 : _("Catchpoint "));
12189 ui_out_field_int (uiout, "bkptno", b->number);
12190 ui_out_text (uiout, ": ");
12191
12192 switch (ex)
12193 {
12194 case ada_catch_exception:
12195 if (c->excep_string != NULL)
12196 {
12197 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12198 struct cleanup *old_chain = make_cleanup (xfree, info);
12199
12200 ui_out_text (uiout, info);
12201 do_cleanups (old_chain);
12202 }
12203 else
12204 ui_out_text (uiout, _("all Ada exceptions"));
12205 break;
12206
12207 case ada_catch_exception_unhandled:
12208 ui_out_text (uiout, _("unhandled Ada exceptions"));
12209 break;
12210
12211 case ada_catch_assert:
12212 ui_out_text (uiout, _("failed Ada assertions"));
12213 break;
12214
12215 default:
12216 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12217 break;
12218 }
12219 }
12220
12221 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12222 for all exception catchpoint kinds. */
12223
12224 static void
12225 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12226 struct breakpoint *b, struct ui_file *fp)
12227 {
12228 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12229
12230 switch (ex)
12231 {
12232 case ada_catch_exception:
12233 fprintf_filtered (fp, "catch exception");
12234 if (c->excep_string != NULL)
12235 fprintf_filtered (fp, " %s", c->excep_string);
12236 break;
12237
12238 case ada_catch_exception_unhandled:
12239 fprintf_filtered (fp, "catch exception unhandled");
12240 break;
12241
12242 case ada_catch_assert:
12243 fprintf_filtered (fp, "catch assert");
12244 break;
12245
12246 default:
12247 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12248 }
12249 print_recreate_thread (b, fp);
12250 }
12251
12252 /* Virtual table for "catch exception" breakpoints. */
12253
12254 static void
12255 dtor_catch_exception (struct breakpoint *b)
12256 {
12257 dtor_exception (ada_catch_exception, b);
12258 }
12259
12260 static struct bp_location *
12261 allocate_location_catch_exception (struct breakpoint *self)
12262 {
12263 return allocate_location_exception (ada_catch_exception, self);
12264 }
12265
12266 static void
12267 re_set_catch_exception (struct breakpoint *b)
12268 {
12269 re_set_exception (ada_catch_exception, b);
12270 }
12271
12272 static void
12273 check_status_catch_exception (bpstat bs)
12274 {
12275 check_status_exception (ada_catch_exception, bs);
12276 }
12277
12278 static enum print_stop_action
12279 print_it_catch_exception (bpstat bs)
12280 {
12281 return print_it_exception (ada_catch_exception, bs);
12282 }
12283
12284 static void
12285 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12286 {
12287 print_one_exception (ada_catch_exception, b, last_loc);
12288 }
12289
12290 static void
12291 print_mention_catch_exception (struct breakpoint *b)
12292 {
12293 print_mention_exception (ada_catch_exception, b);
12294 }
12295
12296 static void
12297 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12298 {
12299 print_recreate_exception (ada_catch_exception, b, fp);
12300 }
12301
12302 static struct breakpoint_ops catch_exception_breakpoint_ops;
12303
12304 /* Virtual table for "catch exception unhandled" breakpoints. */
12305
12306 static void
12307 dtor_catch_exception_unhandled (struct breakpoint *b)
12308 {
12309 dtor_exception (ada_catch_exception_unhandled, b);
12310 }
12311
12312 static struct bp_location *
12313 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12314 {
12315 return allocate_location_exception (ada_catch_exception_unhandled, self);
12316 }
12317
12318 static void
12319 re_set_catch_exception_unhandled (struct breakpoint *b)
12320 {
12321 re_set_exception (ada_catch_exception_unhandled, b);
12322 }
12323
12324 static void
12325 check_status_catch_exception_unhandled (bpstat bs)
12326 {
12327 check_status_exception (ada_catch_exception_unhandled, bs);
12328 }
12329
12330 static enum print_stop_action
12331 print_it_catch_exception_unhandled (bpstat bs)
12332 {
12333 return print_it_exception (ada_catch_exception_unhandled, bs);
12334 }
12335
12336 static void
12337 print_one_catch_exception_unhandled (struct breakpoint *b,
12338 struct bp_location **last_loc)
12339 {
12340 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12341 }
12342
12343 static void
12344 print_mention_catch_exception_unhandled (struct breakpoint *b)
12345 {
12346 print_mention_exception (ada_catch_exception_unhandled, b);
12347 }
12348
12349 static void
12350 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12351 struct ui_file *fp)
12352 {
12353 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12354 }
12355
12356 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12357
12358 /* Virtual table for "catch assert" breakpoints. */
12359
12360 static void
12361 dtor_catch_assert (struct breakpoint *b)
12362 {
12363 dtor_exception (ada_catch_assert, b);
12364 }
12365
12366 static struct bp_location *
12367 allocate_location_catch_assert (struct breakpoint *self)
12368 {
12369 return allocate_location_exception (ada_catch_assert, self);
12370 }
12371
12372 static void
12373 re_set_catch_assert (struct breakpoint *b)
12374 {
12375 re_set_exception (ada_catch_assert, b);
12376 }
12377
12378 static void
12379 check_status_catch_assert (bpstat bs)
12380 {
12381 check_status_exception (ada_catch_assert, bs);
12382 }
12383
12384 static enum print_stop_action
12385 print_it_catch_assert (bpstat bs)
12386 {
12387 return print_it_exception (ada_catch_assert, bs);
12388 }
12389
12390 static void
12391 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12392 {
12393 print_one_exception (ada_catch_assert, b, last_loc);
12394 }
12395
12396 static void
12397 print_mention_catch_assert (struct breakpoint *b)
12398 {
12399 print_mention_exception (ada_catch_assert, b);
12400 }
12401
12402 static void
12403 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12404 {
12405 print_recreate_exception (ada_catch_assert, b, fp);
12406 }
12407
12408 static struct breakpoint_ops catch_assert_breakpoint_ops;
12409
12410 /* Return a newly allocated copy of the first space-separated token
12411 in ARGSP, and then adjust ARGSP to point immediately after that
12412 token.
12413
12414 Return NULL if ARGPS does not contain any more tokens. */
12415
12416 static char *
12417 ada_get_next_arg (char **argsp)
12418 {
12419 char *args = *argsp;
12420 char *end;
12421 char *result;
12422
12423 args = skip_spaces (args);
12424 if (args[0] == '\0')
12425 return NULL; /* No more arguments. */
12426
12427 /* Find the end of the current argument. */
12428
12429 end = skip_to_space (args);
12430
12431 /* Adjust ARGSP to point to the start of the next argument. */
12432
12433 *argsp = end;
12434
12435 /* Make a copy of the current argument and return it. */
12436
12437 result = xmalloc (end - args + 1);
12438 strncpy (result, args, end - args);
12439 result[end - args] = '\0';
12440
12441 return result;
12442 }
12443
12444 /* Split the arguments specified in a "catch exception" command.
12445 Set EX to the appropriate catchpoint type.
12446 Set EXCEP_STRING to the name of the specific exception if
12447 specified by the user.
12448 If a condition is found at the end of the arguments, the condition
12449 expression is stored in COND_STRING (memory must be deallocated
12450 after use). Otherwise COND_STRING is set to NULL. */
12451
12452 static void
12453 catch_ada_exception_command_split (char *args,
12454 enum ada_exception_catchpoint_kind *ex,
12455 char **excep_string,
12456 char **cond_string)
12457 {
12458 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12459 char *exception_name;
12460 char *cond = NULL;
12461
12462 exception_name = ada_get_next_arg (&args);
12463 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12464 {
12465 /* This is not an exception name; this is the start of a condition
12466 expression for a catchpoint on all exceptions. So, "un-get"
12467 this token, and set exception_name to NULL. */
12468 xfree (exception_name);
12469 exception_name = NULL;
12470 args -= 2;
12471 }
12472 make_cleanup (xfree, exception_name);
12473
12474 /* Check to see if we have a condition. */
12475
12476 args = skip_spaces (args);
12477 if (startswith (args, "if")
12478 && (isspace (args[2]) || args[2] == '\0'))
12479 {
12480 args += 2;
12481 args = skip_spaces (args);
12482
12483 if (args[0] == '\0')
12484 error (_("Condition missing after `if' keyword"));
12485 cond = xstrdup (args);
12486 make_cleanup (xfree, cond);
12487
12488 args += strlen (args);
12489 }
12490
12491 /* Check that we do not have any more arguments. Anything else
12492 is unexpected. */
12493
12494 if (args[0] != '\0')
12495 error (_("Junk at end of expression"));
12496
12497 discard_cleanups (old_chain);
12498
12499 if (exception_name == NULL)
12500 {
12501 /* Catch all exceptions. */
12502 *ex = ada_catch_exception;
12503 *excep_string = NULL;
12504 }
12505 else if (strcmp (exception_name, "unhandled") == 0)
12506 {
12507 /* Catch unhandled exceptions. */
12508 *ex = ada_catch_exception_unhandled;
12509 *excep_string = NULL;
12510 }
12511 else
12512 {
12513 /* Catch a specific exception. */
12514 *ex = ada_catch_exception;
12515 *excep_string = exception_name;
12516 }
12517 *cond_string = cond;
12518 }
12519
12520 /* Return the name of the symbol on which we should break in order to
12521 implement a catchpoint of the EX kind. */
12522
12523 static const char *
12524 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12525 {
12526 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12527
12528 gdb_assert (data->exception_info != NULL);
12529
12530 switch (ex)
12531 {
12532 case ada_catch_exception:
12533 return (data->exception_info->catch_exception_sym);
12534 break;
12535 case ada_catch_exception_unhandled:
12536 return (data->exception_info->catch_exception_unhandled_sym);
12537 break;
12538 case ada_catch_assert:
12539 return (data->exception_info->catch_assert_sym);
12540 break;
12541 default:
12542 internal_error (__FILE__, __LINE__,
12543 _("unexpected catchpoint kind (%d)"), ex);
12544 }
12545 }
12546
12547 /* Return the breakpoint ops "virtual table" used for catchpoints
12548 of the EX kind. */
12549
12550 static const struct breakpoint_ops *
12551 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12552 {
12553 switch (ex)
12554 {
12555 case ada_catch_exception:
12556 return (&catch_exception_breakpoint_ops);
12557 break;
12558 case ada_catch_exception_unhandled:
12559 return (&catch_exception_unhandled_breakpoint_ops);
12560 break;
12561 case ada_catch_assert:
12562 return (&catch_assert_breakpoint_ops);
12563 break;
12564 default:
12565 internal_error (__FILE__, __LINE__,
12566 _("unexpected catchpoint kind (%d)"), ex);
12567 }
12568 }
12569
12570 /* Return the condition that will be used to match the current exception
12571 being raised with the exception that the user wants to catch. This
12572 assumes that this condition is used when the inferior just triggered
12573 an exception catchpoint.
12574
12575 The string returned is a newly allocated string that needs to be
12576 deallocated later. */
12577
12578 static char *
12579 ada_exception_catchpoint_cond_string (const char *excep_string)
12580 {
12581 int i;
12582
12583 /* The standard exceptions are a special case. They are defined in
12584 runtime units that have been compiled without debugging info; if
12585 EXCEP_STRING is the not-fully-qualified name of a standard
12586 exception (e.g. "constraint_error") then, during the evaluation
12587 of the condition expression, the symbol lookup on this name would
12588 *not* return this standard exception. The catchpoint condition
12589 may then be set only on user-defined exceptions which have the
12590 same not-fully-qualified name (e.g. my_package.constraint_error).
12591
12592 To avoid this unexcepted behavior, these standard exceptions are
12593 systematically prefixed by "standard". This means that "catch
12594 exception constraint_error" is rewritten into "catch exception
12595 standard.constraint_error".
12596
12597 If an exception named contraint_error is defined in another package of
12598 the inferior program, then the only way to specify this exception as a
12599 breakpoint condition is to use its fully-qualified named:
12600 e.g. my_package.constraint_error. */
12601
12602 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12603 {
12604 if (strcmp (standard_exc [i], excep_string) == 0)
12605 {
12606 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12607 excep_string);
12608 }
12609 }
12610 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12611 }
12612
12613 /* Return the symtab_and_line that should be used to insert an exception
12614 catchpoint of the TYPE kind.
12615
12616 EXCEP_STRING should contain the name of a specific exception that
12617 the catchpoint should catch, or NULL otherwise.
12618
12619 ADDR_STRING returns the name of the function where the real
12620 breakpoint that implements the catchpoints is set, depending on the
12621 type of catchpoint we need to create. */
12622
12623 static struct symtab_and_line
12624 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12625 char **addr_string, const struct breakpoint_ops **ops)
12626 {
12627 const char *sym_name;
12628 struct symbol *sym;
12629
12630 /* First, find out which exception support info to use. */
12631 ada_exception_support_info_sniffer ();
12632
12633 /* Then lookup the function on which we will break in order to catch
12634 the Ada exceptions requested by the user. */
12635 sym_name = ada_exception_sym_name (ex);
12636 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12637
12638 /* We can assume that SYM is not NULL at this stage. If the symbol
12639 did not exist, ada_exception_support_info_sniffer would have
12640 raised an exception.
12641
12642 Also, ada_exception_support_info_sniffer should have already
12643 verified that SYM is a function symbol. */
12644 gdb_assert (sym != NULL);
12645 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12646
12647 /* Set ADDR_STRING. */
12648 *addr_string = xstrdup (sym_name);
12649
12650 /* Set OPS. */
12651 *ops = ada_exception_breakpoint_ops (ex);
12652
12653 return find_function_start_sal (sym, 1);
12654 }
12655
12656 /* Create an Ada exception catchpoint.
12657
12658 EX_KIND is the kind of exception catchpoint to be created.
12659
12660 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12661 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12662 of the exception to which this catchpoint applies. When not NULL,
12663 the string must be allocated on the heap, and its deallocation
12664 is no longer the responsibility of the caller.
12665
12666 COND_STRING, if not NULL, is the catchpoint condition. This string
12667 must be allocated on the heap, and its deallocation is no longer
12668 the responsibility of the caller.
12669
12670 TEMPFLAG, if nonzero, means that the underlying breakpoint
12671 should be temporary.
12672
12673 FROM_TTY is the usual argument passed to all commands implementations. */
12674
12675 void
12676 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12677 enum ada_exception_catchpoint_kind ex_kind,
12678 char *excep_string,
12679 char *cond_string,
12680 int tempflag,
12681 int disabled,
12682 int from_tty)
12683 {
12684 struct ada_catchpoint *c;
12685 char *addr_string = NULL;
12686 const struct breakpoint_ops *ops = NULL;
12687 struct symtab_and_line sal
12688 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12689
12690 c = XNEW (struct ada_catchpoint);
12691 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12692 ops, tempflag, disabled, from_tty);
12693 c->excep_string = excep_string;
12694 create_excep_cond_exprs (c);
12695 if (cond_string != NULL)
12696 set_breakpoint_condition (&c->base, cond_string, from_tty);
12697 install_breakpoint (0, &c->base, 1);
12698 }
12699
12700 /* Implement the "catch exception" command. */
12701
12702 static void
12703 catch_ada_exception_command (char *arg, int from_tty,
12704 struct cmd_list_element *command)
12705 {
12706 struct gdbarch *gdbarch = get_current_arch ();
12707 int tempflag;
12708 enum ada_exception_catchpoint_kind ex_kind;
12709 char *excep_string = NULL;
12710 char *cond_string = NULL;
12711
12712 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12713
12714 if (!arg)
12715 arg = "";
12716 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12717 &cond_string);
12718 create_ada_exception_catchpoint (gdbarch, ex_kind,
12719 excep_string, cond_string,
12720 tempflag, 1 /* enabled */,
12721 from_tty);
12722 }
12723
12724 /* Split the arguments specified in a "catch assert" command.
12725
12726 ARGS contains the command's arguments (or the empty string if
12727 no arguments were passed).
12728
12729 If ARGS contains a condition, set COND_STRING to that condition
12730 (the memory needs to be deallocated after use). */
12731
12732 static void
12733 catch_ada_assert_command_split (char *args, char **cond_string)
12734 {
12735 args = skip_spaces (args);
12736
12737 /* Check whether a condition was provided. */
12738 if (startswith (args, "if")
12739 && (isspace (args[2]) || args[2] == '\0'))
12740 {
12741 args += 2;
12742 args = skip_spaces (args);
12743 if (args[0] == '\0')
12744 error (_("condition missing after `if' keyword"));
12745 *cond_string = xstrdup (args);
12746 }
12747
12748 /* Otherwise, there should be no other argument at the end of
12749 the command. */
12750 else if (args[0] != '\0')
12751 error (_("Junk at end of arguments."));
12752 }
12753
12754 /* Implement the "catch assert" command. */
12755
12756 static void
12757 catch_assert_command (char *arg, int from_tty,
12758 struct cmd_list_element *command)
12759 {
12760 struct gdbarch *gdbarch = get_current_arch ();
12761 int tempflag;
12762 char *cond_string = NULL;
12763
12764 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12765
12766 if (!arg)
12767 arg = "";
12768 catch_ada_assert_command_split (arg, &cond_string);
12769 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12770 NULL, cond_string,
12771 tempflag, 1 /* enabled */,
12772 from_tty);
12773 }
12774
12775 /* Return non-zero if the symbol SYM is an Ada exception object. */
12776
12777 static int
12778 ada_is_exception_sym (struct symbol *sym)
12779 {
12780 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12781
12782 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12783 && SYMBOL_CLASS (sym) != LOC_BLOCK
12784 && SYMBOL_CLASS (sym) != LOC_CONST
12785 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12786 && type_name != NULL && strcmp (type_name, "exception") == 0);
12787 }
12788
12789 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12790 Ada exception object. This matches all exceptions except the ones
12791 defined by the Ada language. */
12792
12793 static int
12794 ada_is_non_standard_exception_sym (struct symbol *sym)
12795 {
12796 int i;
12797
12798 if (!ada_is_exception_sym (sym))
12799 return 0;
12800
12801 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12802 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12803 return 0; /* A standard exception. */
12804
12805 /* Numeric_Error is also a standard exception, so exclude it.
12806 See the STANDARD_EXC description for more details as to why
12807 this exception is not listed in that array. */
12808 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12809 return 0;
12810
12811 return 1;
12812 }
12813
12814 /* A helper function for qsort, comparing two struct ada_exc_info
12815 objects.
12816
12817 The comparison is determined first by exception name, and then
12818 by exception address. */
12819
12820 static int
12821 compare_ada_exception_info (const void *a, const void *b)
12822 {
12823 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12824 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12825 int result;
12826
12827 result = strcmp (exc_a->name, exc_b->name);
12828 if (result != 0)
12829 return result;
12830
12831 if (exc_a->addr < exc_b->addr)
12832 return -1;
12833 if (exc_a->addr > exc_b->addr)
12834 return 1;
12835
12836 return 0;
12837 }
12838
12839 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12840 routine, but keeping the first SKIP elements untouched.
12841
12842 All duplicates are also removed. */
12843
12844 static void
12845 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12846 int skip)
12847 {
12848 struct ada_exc_info *to_sort
12849 = VEC_address (ada_exc_info, *exceptions) + skip;
12850 int to_sort_len
12851 = VEC_length (ada_exc_info, *exceptions) - skip;
12852 int i, j;
12853
12854 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12855 compare_ada_exception_info);
12856
12857 for (i = 1, j = 1; i < to_sort_len; i++)
12858 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12859 to_sort[j++] = to_sort[i];
12860 to_sort_len = j;
12861 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12862 }
12863
12864 /* A function intended as the "name_matcher" callback in the struct
12865 quick_symbol_functions' expand_symtabs_matching method.
12866
12867 SEARCH_NAME is the symbol's search name.
12868
12869 If USER_DATA is not NULL, it is a pointer to a regext_t object
12870 used to match the symbol (by natural name). Otherwise, when USER_DATA
12871 is null, no filtering is performed, and all symbols are a positive
12872 match. */
12873
12874 static int
12875 ada_exc_search_name_matches (const char *search_name, void *user_data)
12876 {
12877 regex_t *preg = user_data;
12878
12879 if (preg == NULL)
12880 return 1;
12881
12882 /* In Ada, the symbol "search name" is a linkage name, whereas
12883 the regular expression used to do the matching refers to
12884 the natural name. So match against the decoded name. */
12885 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12886 }
12887
12888 /* Add all exceptions defined by the Ada standard whose name match
12889 a regular expression.
12890
12891 If PREG is not NULL, then this regexp_t object is used to
12892 perform the symbol name matching. Otherwise, no name-based
12893 filtering is performed.
12894
12895 EXCEPTIONS is a vector of exceptions to which matching exceptions
12896 gets pushed. */
12897
12898 static void
12899 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12900 {
12901 int i;
12902
12903 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12904 {
12905 if (preg == NULL
12906 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12907 {
12908 struct bound_minimal_symbol msymbol
12909 = ada_lookup_simple_minsym (standard_exc[i]);
12910
12911 if (msymbol.minsym != NULL)
12912 {
12913 struct ada_exc_info info
12914 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12915
12916 VEC_safe_push (ada_exc_info, *exceptions, &info);
12917 }
12918 }
12919 }
12920 }
12921
12922 /* Add all Ada exceptions defined locally and accessible from the given
12923 FRAME.
12924
12925 If PREG is not NULL, then this regexp_t object is used to
12926 perform the symbol name matching. Otherwise, no name-based
12927 filtering is performed.
12928
12929 EXCEPTIONS is a vector of exceptions to which matching exceptions
12930 gets pushed. */
12931
12932 static void
12933 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12934 VEC(ada_exc_info) **exceptions)
12935 {
12936 const struct block *block = get_frame_block (frame, 0);
12937
12938 while (block != 0)
12939 {
12940 struct block_iterator iter;
12941 struct symbol *sym;
12942
12943 ALL_BLOCK_SYMBOLS (block, iter, sym)
12944 {
12945 switch (SYMBOL_CLASS (sym))
12946 {
12947 case LOC_TYPEDEF:
12948 case LOC_BLOCK:
12949 case LOC_CONST:
12950 break;
12951 default:
12952 if (ada_is_exception_sym (sym))
12953 {
12954 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12955 SYMBOL_VALUE_ADDRESS (sym)};
12956
12957 VEC_safe_push (ada_exc_info, *exceptions, &info);
12958 }
12959 }
12960 }
12961 if (BLOCK_FUNCTION (block) != NULL)
12962 break;
12963 block = BLOCK_SUPERBLOCK (block);
12964 }
12965 }
12966
12967 /* Add all exceptions defined globally whose name name match
12968 a regular expression, excluding standard exceptions.
12969
12970 The reason we exclude standard exceptions is that they need
12971 to be handled separately: Standard exceptions are defined inside
12972 a runtime unit which is normally not compiled with debugging info,
12973 and thus usually do not show up in our symbol search. However,
12974 if the unit was in fact built with debugging info, we need to
12975 exclude them because they would duplicate the entry we found
12976 during the special loop that specifically searches for those
12977 standard exceptions.
12978
12979 If PREG is not NULL, then this regexp_t object is used to
12980 perform the symbol name matching. Otherwise, no name-based
12981 filtering is performed.
12982
12983 EXCEPTIONS is a vector of exceptions to which matching exceptions
12984 gets pushed. */
12985
12986 static void
12987 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12988 {
12989 struct objfile *objfile;
12990 struct compunit_symtab *s;
12991
12992 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
12993 VARIABLES_DOMAIN, preg);
12994
12995 ALL_COMPUNITS (objfile, s)
12996 {
12997 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12998 int i;
12999
13000 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13001 {
13002 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13003 struct block_iterator iter;
13004 struct symbol *sym;
13005
13006 ALL_BLOCK_SYMBOLS (b, iter, sym)
13007 if (ada_is_non_standard_exception_sym (sym)
13008 && (preg == NULL
13009 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13010 0, NULL, 0) == 0))
13011 {
13012 struct ada_exc_info info
13013 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13014
13015 VEC_safe_push (ada_exc_info, *exceptions, &info);
13016 }
13017 }
13018 }
13019 }
13020
13021 /* Implements ada_exceptions_list with the regular expression passed
13022 as a regex_t, rather than a string.
13023
13024 If not NULL, PREG is used to filter out exceptions whose names
13025 do not match. Otherwise, all exceptions are listed. */
13026
13027 static VEC(ada_exc_info) *
13028 ada_exceptions_list_1 (regex_t *preg)
13029 {
13030 VEC(ada_exc_info) *result = NULL;
13031 struct cleanup *old_chain
13032 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13033 int prev_len;
13034
13035 /* First, list the known standard exceptions. These exceptions
13036 need to be handled separately, as they are usually defined in
13037 runtime units that have been compiled without debugging info. */
13038
13039 ada_add_standard_exceptions (preg, &result);
13040
13041 /* Next, find all exceptions whose scope is local and accessible
13042 from the currently selected frame. */
13043
13044 if (has_stack_frames ())
13045 {
13046 prev_len = VEC_length (ada_exc_info, result);
13047 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13048 &result);
13049 if (VEC_length (ada_exc_info, result) > prev_len)
13050 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13051 }
13052
13053 /* Add all exceptions whose scope is global. */
13054
13055 prev_len = VEC_length (ada_exc_info, result);
13056 ada_add_global_exceptions (preg, &result);
13057 if (VEC_length (ada_exc_info, result) > prev_len)
13058 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13059
13060 discard_cleanups (old_chain);
13061 return result;
13062 }
13063
13064 /* Return a vector of ada_exc_info.
13065
13066 If REGEXP is NULL, all exceptions are included in the result.
13067 Otherwise, it should contain a valid regular expression,
13068 and only the exceptions whose names match that regular expression
13069 are included in the result.
13070
13071 The exceptions are sorted in the following order:
13072 - Standard exceptions (defined by the Ada language), in
13073 alphabetical order;
13074 - Exceptions only visible from the current frame, in
13075 alphabetical order;
13076 - Exceptions whose scope is global, in alphabetical order. */
13077
13078 VEC(ada_exc_info) *
13079 ada_exceptions_list (const char *regexp)
13080 {
13081 VEC(ada_exc_info) *result = NULL;
13082 struct cleanup *old_chain = NULL;
13083 regex_t reg;
13084
13085 if (regexp != NULL)
13086 old_chain = compile_rx_or_error (&reg, regexp,
13087 _("invalid regular expression"));
13088
13089 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13090
13091 if (old_chain != NULL)
13092 do_cleanups (old_chain);
13093 return result;
13094 }
13095
13096 /* Implement the "info exceptions" command. */
13097
13098 static void
13099 info_exceptions_command (char *regexp, int from_tty)
13100 {
13101 VEC(ada_exc_info) *exceptions;
13102 struct cleanup *cleanup;
13103 struct gdbarch *gdbarch = get_current_arch ();
13104 int ix;
13105 struct ada_exc_info *info;
13106
13107 exceptions = ada_exceptions_list (regexp);
13108 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13109
13110 if (regexp != NULL)
13111 printf_filtered
13112 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13113 else
13114 printf_filtered (_("All defined Ada exceptions:\n"));
13115
13116 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13117 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13118
13119 do_cleanups (cleanup);
13120 }
13121
13122 /* Operators */
13123 /* Information about operators given special treatment in functions
13124 below. */
13125 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13126
13127 #define ADA_OPERATORS \
13128 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13129 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13130 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13131 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13132 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13133 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13134 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13135 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13136 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13137 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13138 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13139 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13140 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13141 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13142 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13143 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13144 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13145 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13146 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13147
13148 static void
13149 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13150 int *argsp)
13151 {
13152 switch (exp->elts[pc - 1].opcode)
13153 {
13154 default:
13155 operator_length_standard (exp, pc, oplenp, argsp);
13156 break;
13157
13158 #define OP_DEFN(op, len, args, binop) \
13159 case op: *oplenp = len; *argsp = args; break;
13160 ADA_OPERATORS;
13161 #undef OP_DEFN
13162
13163 case OP_AGGREGATE:
13164 *oplenp = 3;
13165 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13166 break;
13167
13168 case OP_CHOICES:
13169 *oplenp = 3;
13170 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13171 break;
13172 }
13173 }
13174
13175 /* Implementation of the exp_descriptor method operator_check. */
13176
13177 static int
13178 ada_operator_check (struct expression *exp, int pos,
13179 int (*objfile_func) (struct objfile *objfile, void *data),
13180 void *data)
13181 {
13182 const union exp_element *const elts = exp->elts;
13183 struct type *type = NULL;
13184
13185 switch (elts[pos].opcode)
13186 {
13187 case UNOP_IN_RANGE:
13188 case UNOP_QUAL:
13189 type = elts[pos + 1].type;
13190 break;
13191
13192 default:
13193 return operator_check_standard (exp, pos, objfile_func, data);
13194 }
13195
13196 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13197
13198 if (type && TYPE_OBJFILE (type)
13199 && (*objfile_func) (TYPE_OBJFILE (type), data))
13200 return 1;
13201
13202 return 0;
13203 }
13204
13205 static char *
13206 ada_op_name (enum exp_opcode opcode)
13207 {
13208 switch (opcode)
13209 {
13210 default:
13211 return op_name_standard (opcode);
13212
13213 #define OP_DEFN(op, len, args, binop) case op: return #op;
13214 ADA_OPERATORS;
13215 #undef OP_DEFN
13216
13217 case OP_AGGREGATE:
13218 return "OP_AGGREGATE";
13219 case OP_CHOICES:
13220 return "OP_CHOICES";
13221 case OP_NAME:
13222 return "OP_NAME";
13223 }
13224 }
13225
13226 /* As for operator_length, but assumes PC is pointing at the first
13227 element of the operator, and gives meaningful results only for the
13228 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13229
13230 static void
13231 ada_forward_operator_length (struct expression *exp, int pc,
13232 int *oplenp, int *argsp)
13233 {
13234 switch (exp->elts[pc].opcode)
13235 {
13236 default:
13237 *oplenp = *argsp = 0;
13238 break;
13239
13240 #define OP_DEFN(op, len, args, binop) \
13241 case op: *oplenp = len; *argsp = args; break;
13242 ADA_OPERATORS;
13243 #undef OP_DEFN
13244
13245 case OP_AGGREGATE:
13246 *oplenp = 3;
13247 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13248 break;
13249
13250 case OP_CHOICES:
13251 *oplenp = 3;
13252 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13253 break;
13254
13255 case OP_STRING:
13256 case OP_NAME:
13257 {
13258 int len = longest_to_int (exp->elts[pc + 1].longconst);
13259
13260 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13261 *argsp = 0;
13262 break;
13263 }
13264 }
13265 }
13266
13267 static int
13268 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13269 {
13270 enum exp_opcode op = exp->elts[elt].opcode;
13271 int oplen, nargs;
13272 int pc = elt;
13273 int i;
13274
13275 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13276
13277 switch (op)
13278 {
13279 /* Ada attributes ('Foo). */
13280 case OP_ATR_FIRST:
13281 case OP_ATR_LAST:
13282 case OP_ATR_LENGTH:
13283 case OP_ATR_IMAGE:
13284 case OP_ATR_MAX:
13285 case OP_ATR_MIN:
13286 case OP_ATR_MODULUS:
13287 case OP_ATR_POS:
13288 case OP_ATR_SIZE:
13289 case OP_ATR_TAG:
13290 case OP_ATR_VAL:
13291 break;
13292
13293 case UNOP_IN_RANGE:
13294 case UNOP_QUAL:
13295 /* XXX: gdb_sprint_host_address, type_sprint */
13296 fprintf_filtered (stream, _("Type @"));
13297 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13298 fprintf_filtered (stream, " (");
13299 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13300 fprintf_filtered (stream, ")");
13301 break;
13302 case BINOP_IN_BOUNDS:
13303 fprintf_filtered (stream, " (%d)",
13304 longest_to_int (exp->elts[pc + 2].longconst));
13305 break;
13306 case TERNOP_IN_RANGE:
13307 break;
13308
13309 case OP_AGGREGATE:
13310 case OP_OTHERS:
13311 case OP_DISCRETE_RANGE:
13312 case OP_POSITIONAL:
13313 case OP_CHOICES:
13314 break;
13315
13316 case OP_NAME:
13317 case OP_STRING:
13318 {
13319 char *name = &exp->elts[elt + 2].string;
13320 int len = longest_to_int (exp->elts[elt + 1].longconst);
13321
13322 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13323 break;
13324 }
13325
13326 default:
13327 return dump_subexp_body_standard (exp, stream, elt);
13328 }
13329
13330 elt += oplen;
13331 for (i = 0; i < nargs; i += 1)
13332 elt = dump_subexp (exp, stream, elt);
13333
13334 return elt;
13335 }
13336
13337 /* The Ada extension of print_subexp (q.v.). */
13338
13339 static void
13340 ada_print_subexp (struct expression *exp, int *pos,
13341 struct ui_file *stream, enum precedence prec)
13342 {
13343 int oplen, nargs, i;
13344 int pc = *pos;
13345 enum exp_opcode op = exp->elts[pc].opcode;
13346
13347 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13348
13349 *pos += oplen;
13350 switch (op)
13351 {
13352 default:
13353 *pos -= oplen;
13354 print_subexp_standard (exp, pos, stream, prec);
13355 return;
13356
13357 case OP_VAR_VALUE:
13358 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13359 return;
13360
13361 case BINOP_IN_BOUNDS:
13362 /* XXX: sprint_subexp */
13363 print_subexp (exp, pos, stream, PREC_SUFFIX);
13364 fputs_filtered (" in ", stream);
13365 print_subexp (exp, pos, stream, PREC_SUFFIX);
13366 fputs_filtered ("'range", stream);
13367 if (exp->elts[pc + 1].longconst > 1)
13368 fprintf_filtered (stream, "(%ld)",
13369 (long) exp->elts[pc + 1].longconst);
13370 return;
13371
13372 case TERNOP_IN_RANGE:
13373 if (prec >= PREC_EQUAL)
13374 fputs_filtered ("(", stream);
13375 /* XXX: sprint_subexp */
13376 print_subexp (exp, pos, stream, PREC_SUFFIX);
13377 fputs_filtered (" in ", stream);
13378 print_subexp (exp, pos, stream, PREC_EQUAL);
13379 fputs_filtered (" .. ", stream);
13380 print_subexp (exp, pos, stream, PREC_EQUAL);
13381 if (prec >= PREC_EQUAL)
13382 fputs_filtered (")", stream);
13383 return;
13384
13385 case OP_ATR_FIRST:
13386 case OP_ATR_LAST:
13387 case OP_ATR_LENGTH:
13388 case OP_ATR_IMAGE:
13389 case OP_ATR_MAX:
13390 case OP_ATR_MIN:
13391 case OP_ATR_MODULUS:
13392 case OP_ATR_POS:
13393 case OP_ATR_SIZE:
13394 case OP_ATR_TAG:
13395 case OP_ATR_VAL:
13396 if (exp->elts[*pos].opcode == OP_TYPE)
13397 {
13398 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13399 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13400 &type_print_raw_options);
13401 *pos += 3;
13402 }
13403 else
13404 print_subexp (exp, pos, stream, PREC_SUFFIX);
13405 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13406 if (nargs > 1)
13407 {
13408 int tem;
13409
13410 for (tem = 1; tem < nargs; tem += 1)
13411 {
13412 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13413 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13414 }
13415 fputs_filtered (")", stream);
13416 }
13417 return;
13418
13419 case UNOP_QUAL:
13420 type_print (exp->elts[pc + 1].type, "", stream, 0);
13421 fputs_filtered ("'(", stream);
13422 print_subexp (exp, pos, stream, PREC_PREFIX);
13423 fputs_filtered (")", stream);
13424 return;
13425
13426 case UNOP_IN_RANGE:
13427 /* XXX: sprint_subexp */
13428 print_subexp (exp, pos, stream, PREC_SUFFIX);
13429 fputs_filtered (" in ", stream);
13430 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13431 &type_print_raw_options);
13432 return;
13433
13434 case OP_DISCRETE_RANGE:
13435 print_subexp (exp, pos, stream, PREC_SUFFIX);
13436 fputs_filtered ("..", stream);
13437 print_subexp (exp, pos, stream, PREC_SUFFIX);
13438 return;
13439
13440 case OP_OTHERS:
13441 fputs_filtered ("others => ", stream);
13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
13443 return;
13444
13445 case OP_CHOICES:
13446 for (i = 0; i < nargs-1; i += 1)
13447 {
13448 if (i > 0)
13449 fputs_filtered ("|", stream);
13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
13451 }
13452 fputs_filtered (" => ", stream);
13453 print_subexp (exp, pos, stream, PREC_SUFFIX);
13454 return;
13455
13456 case OP_POSITIONAL:
13457 print_subexp (exp, pos, stream, PREC_SUFFIX);
13458 return;
13459
13460 case OP_AGGREGATE:
13461 fputs_filtered ("(", stream);
13462 for (i = 0; i < nargs; i += 1)
13463 {
13464 if (i > 0)
13465 fputs_filtered (", ", stream);
13466 print_subexp (exp, pos, stream, PREC_SUFFIX);
13467 }
13468 fputs_filtered (")", stream);
13469 return;
13470 }
13471 }
13472
13473 /* Table mapping opcodes into strings for printing operators
13474 and precedences of the operators. */
13475
13476 static const struct op_print ada_op_print_tab[] = {
13477 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13478 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13479 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13480 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13481 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13482 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13483 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13484 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13485 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13486 {">=", BINOP_GEQ, PREC_ORDER, 0},
13487 {">", BINOP_GTR, PREC_ORDER, 0},
13488 {"<", BINOP_LESS, PREC_ORDER, 0},
13489 {">>", BINOP_RSH, PREC_SHIFT, 0},
13490 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13491 {"+", BINOP_ADD, PREC_ADD, 0},
13492 {"-", BINOP_SUB, PREC_ADD, 0},
13493 {"&", BINOP_CONCAT, PREC_ADD, 0},
13494 {"*", BINOP_MUL, PREC_MUL, 0},
13495 {"/", BINOP_DIV, PREC_MUL, 0},
13496 {"rem", BINOP_REM, PREC_MUL, 0},
13497 {"mod", BINOP_MOD, PREC_MUL, 0},
13498 {"**", BINOP_EXP, PREC_REPEAT, 0},
13499 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13500 {"-", UNOP_NEG, PREC_PREFIX, 0},
13501 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13502 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13503 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13504 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13505 {".all", UNOP_IND, PREC_SUFFIX, 1},
13506 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13507 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13508 {NULL, 0, 0, 0}
13509 };
13510 \f
13511 enum ada_primitive_types {
13512 ada_primitive_type_int,
13513 ada_primitive_type_long,
13514 ada_primitive_type_short,
13515 ada_primitive_type_char,
13516 ada_primitive_type_float,
13517 ada_primitive_type_double,
13518 ada_primitive_type_void,
13519 ada_primitive_type_long_long,
13520 ada_primitive_type_long_double,
13521 ada_primitive_type_natural,
13522 ada_primitive_type_positive,
13523 ada_primitive_type_system_address,
13524 nr_ada_primitive_types
13525 };
13526
13527 static void
13528 ada_language_arch_info (struct gdbarch *gdbarch,
13529 struct language_arch_info *lai)
13530 {
13531 const struct builtin_type *builtin = builtin_type (gdbarch);
13532
13533 lai->primitive_type_vector
13534 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13535 struct type *);
13536
13537 lai->primitive_type_vector [ada_primitive_type_int]
13538 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13539 0, "integer");
13540 lai->primitive_type_vector [ada_primitive_type_long]
13541 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13542 0, "long_integer");
13543 lai->primitive_type_vector [ada_primitive_type_short]
13544 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13545 0, "short_integer");
13546 lai->string_char_type
13547 = lai->primitive_type_vector [ada_primitive_type_char]
13548 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13549 lai->primitive_type_vector [ada_primitive_type_float]
13550 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13551 "float", NULL);
13552 lai->primitive_type_vector [ada_primitive_type_double]
13553 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13554 "long_float", NULL);
13555 lai->primitive_type_vector [ada_primitive_type_long_long]
13556 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13557 0, "long_long_integer");
13558 lai->primitive_type_vector [ada_primitive_type_long_double]
13559 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13560 "long_long_float", NULL);
13561 lai->primitive_type_vector [ada_primitive_type_natural]
13562 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13563 0, "natural");
13564 lai->primitive_type_vector [ada_primitive_type_positive]
13565 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13566 0, "positive");
13567 lai->primitive_type_vector [ada_primitive_type_void]
13568 = builtin->builtin_void;
13569
13570 lai->primitive_type_vector [ada_primitive_type_system_address]
13571 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13572 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13573 = "system__address";
13574
13575 lai->bool_type_symbol = NULL;
13576 lai->bool_type_default = builtin->builtin_bool;
13577 }
13578 \f
13579 /* Language vector */
13580
13581 /* Not really used, but needed in the ada_language_defn. */
13582
13583 static void
13584 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13585 {
13586 ada_emit_char (c, type, stream, quoter, 1);
13587 }
13588
13589 static int
13590 parse (struct parser_state *ps)
13591 {
13592 warnings_issued = 0;
13593 return ada_parse (ps);
13594 }
13595
13596 static const struct exp_descriptor ada_exp_descriptor = {
13597 ada_print_subexp,
13598 ada_operator_length,
13599 ada_operator_check,
13600 ada_op_name,
13601 ada_dump_subexp_body,
13602 ada_evaluate_subexp
13603 };
13604
13605 /* Implement the "la_get_symbol_name_cmp" language_defn method
13606 for Ada. */
13607
13608 static symbol_name_cmp_ftype
13609 ada_get_symbol_name_cmp (const char *lookup_name)
13610 {
13611 if (should_use_wild_match (lookup_name))
13612 return wild_match;
13613 else
13614 return compare_names;
13615 }
13616
13617 /* Implement the "la_read_var_value" language_defn method for Ada. */
13618
13619 static struct value *
13620 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13621 {
13622 const struct block *frame_block = NULL;
13623 struct symbol *renaming_sym = NULL;
13624
13625 /* The only case where default_read_var_value is not sufficient
13626 is when VAR is a renaming... */
13627 if (frame)
13628 frame_block = get_frame_block (frame, NULL);
13629 if (frame_block)
13630 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13631 if (renaming_sym != NULL)
13632 return ada_read_renaming_var_value (renaming_sym, frame_block);
13633
13634 /* This is a typical case where we expect the default_read_var_value
13635 function to work. */
13636 return default_read_var_value (var, frame);
13637 }
13638
13639 const struct language_defn ada_language_defn = {
13640 "ada", /* Language name */
13641 "Ada",
13642 language_ada,
13643 range_check_off,
13644 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13645 that's not quite what this means. */
13646 array_row_major,
13647 macro_expansion_no,
13648 &ada_exp_descriptor,
13649 parse,
13650 ada_error,
13651 resolve,
13652 ada_printchar, /* Print a character constant */
13653 ada_printstr, /* Function to print string constant */
13654 emit_char, /* Function to print single char (not used) */
13655 ada_print_type, /* Print a type using appropriate syntax */
13656 ada_print_typedef, /* Print a typedef using appropriate syntax */
13657 ada_val_print, /* Print a value using appropriate syntax */
13658 ada_value_print, /* Print a top-level value */
13659 ada_read_var_value, /* la_read_var_value */
13660 NULL, /* Language specific skip_trampoline */
13661 NULL, /* name_of_this */
13662 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13663 basic_lookup_transparent_type, /* lookup_transparent_type */
13664 ada_la_decode, /* Language specific symbol demangler */
13665 NULL, /* Language specific
13666 class_name_from_physname */
13667 ada_op_print_tab, /* expression operators for printing */
13668 0, /* c-style arrays */
13669 1, /* String lower bound */
13670 ada_get_gdb_completer_word_break_characters,
13671 ada_make_symbol_completion_list,
13672 ada_language_arch_info,
13673 ada_print_array_index,
13674 default_pass_by_reference,
13675 c_get_string,
13676 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13677 ada_iterate_over_symbols,
13678 &ada_varobj_ops,
13679 NULL,
13680 NULL,
13681 LANG_MAGIC
13682 };
13683
13684 /* Provide a prototype to silence -Wmissing-prototypes. */
13685 extern initialize_file_ftype _initialize_ada_language;
13686
13687 /* Command-list for the "set/show ada" prefix command. */
13688 static struct cmd_list_element *set_ada_list;
13689 static struct cmd_list_element *show_ada_list;
13690
13691 /* Implement the "set ada" prefix command. */
13692
13693 static void
13694 set_ada_command (char *arg, int from_tty)
13695 {
13696 printf_unfiltered (_(\
13697 "\"set ada\" must be followed by the name of a setting.\n"));
13698 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13699 }
13700
13701 /* Implement the "show ada" prefix command. */
13702
13703 static void
13704 show_ada_command (char *args, int from_tty)
13705 {
13706 cmd_show_list (show_ada_list, from_tty, "");
13707 }
13708
13709 static void
13710 initialize_ada_catchpoint_ops (void)
13711 {
13712 struct breakpoint_ops *ops;
13713
13714 initialize_breakpoint_ops ();
13715
13716 ops = &catch_exception_breakpoint_ops;
13717 *ops = bkpt_breakpoint_ops;
13718 ops->dtor = dtor_catch_exception;
13719 ops->allocate_location = allocate_location_catch_exception;
13720 ops->re_set = re_set_catch_exception;
13721 ops->check_status = check_status_catch_exception;
13722 ops->print_it = print_it_catch_exception;
13723 ops->print_one = print_one_catch_exception;
13724 ops->print_mention = print_mention_catch_exception;
13725 ops->print_recreate = print_recreate_catch_exception;
13726
13727 ops = &catch_exception_unhandled_breakpoint_ops;
13728 *ops = bkpt_breakpoint_ops;
13729 ops->dtor = dtor_catch_exception_unhandled;
13730 ops->allocate_location = allocate_location_catch_exception_unhandled;
13731 ops->re_set = re_set_catch_exception_unhandled;
13732 ops->check_status = check_status_catch_exception_unhandled;
13733 ops->print_it = print_it_catch_exception_unhandled;
13734 ops->print_one = print_one_catch_exception_unhandled;
13735 ops->print_mention = print_mention_catch_exception_unhandled;
13736 ops->print_recreate = print_recreate_catch_exception_unhandled;
13737
13738 ops = &catch_assert_breakpoint_ops;
13739 *ops = bkpt_breakpoint_ops;
13740 ops->dtor = dtor_catch_assert;
13741 ops->allocate_location = allocate_location_catch_assert;
13742 ops->re_set = re_set_catch_assert;
13743 ops->check_status = check_status_catch_assert;
13744 ops->print_it = print_it_catch_assert;
13745 ops->print_one = print_one_catch_assert;
13746 ops->print_mention = print_mention_catch_assert;
13747 ops->print_recreate = print_recreate_catch_assert;
13748 }
13749
13750 /* This module's 'new_objfile' observer. */
13751
13752 static void
13753 ada_new_objfile_observer (struct objfile *objfile)
13754 {
13755 ada_clear_symbol_cache ();
13756 }
13757
13758 /* This module's 'free_objfile' observer. */
13759
13760 static void
13761 ada_free_objfile_observer (struct objfile *objfile)
13762 {
13763 ada_clear_symbol_cache ();
13764 }
13765
13766 void
13767 _initialize_ada_language (void)
13768 {
13769 add_language (&ada_language_defn);
13770
13771 initialize_ada_catchpoint_ops ();
13772
13773 add_prefix_cmd ("ada", no_class, set_ada_command,
13774 _("Prefix command for changing Ada-specfic settings"),
13775 &set_ada_list, "set ada ", 0, &setlist);
13776
13777 add_prefix_cmd ("ada", no_class, show_ada_command,
13778 _("Generic command for showing Ada-specific settings."),
13779 &show_ada_list, "show ada ", 0, &showlist);
13780
13781 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13782 &trust_pad_over_xvs, _("\
13783 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13784 Show whether an optimization trusting PAD types over XVS types is activated"),
13785 _("\
13786 This is related to the encoding used by the GNAT compiler. The debugger\n\
13787 should normally trust the contents of PAD types, but certain older versions\n\
13788 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13789 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13790 work around this bug. It is always safe to turn this option \"off\", but\n\
13791 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13792 this option to \"off\" unless necessary."),
13793 NULL, NULL, &set_ada_list, &show_ada_list);
13794
13795 add_catch_command ("exception", _("\
13796 Catch Ada exceptions, when raised.\n\
13797 With an argument, catch only exceptions with the given name."),
13798 catch_ada_exception_command,
13799 NULL,
13800 CATCH_PERMANENT,
13801 CATCH_TEMPORARY);
13802 add_catch_command ("assert", _("\
13803 Catch failed Ada assertions, when raised.\n\
13804 With an argument, catch only exceptions with the given name."),
13805 catch_assert_command,
13806 NULL,
13807 CATCH_PERMANENT,
13808 CATCH_TEMPORARY);
13809
13810 varsize_limit = 65536;
13811
13812 add_info ("exceptions", info_exceptions_command,
13813 _("\
13814 List all Ada exception names.\n\
13815 If a regular expression is passed as an argument, only those matching\n\
13816 the regular expression are listed."));
13817
13818 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13819 _("Set Ada maintenance-related variables."),
13820 &maint_set_ada_cmdlist, "maintenance set ada ",
13821 0/*allow-unknown*/, &maintenance_set_cmdlist);
13822
13823 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13824 _("Show Ada maintenance-related variables"),
13825 &maint_show_ada_cmdlist, "maintenance show ada ",
13826 0/*allow-unknown*/, &maintenance_show_cmdlist);
13827
13828 add_setshow_boolean_cmd
13829 ("ignore-descriptive-types", class_maintenance,
13830 &ada_ignore_descriptive_types_p,
13831 _("Set whether descriptive types generated by GNAT should be ignored."),
13832 _("Show whether descriptive types generated by GNAT should be ignored."),
13833 _("\
13834 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13835 DWARF attribute."),
13836 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13837
13838 obstack_init (&symbol_list_obstack);
13839
13840 decoded_names_store = htab_create_alloc
13841 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13842 NULL, xcalloc, xfree);
13843
13844 /* The ada-lang observers. */
13845 observer_attach_new_objfile (ada_new_objfile_observer);
13846 observer_attach_free_objfile (ada_free_objfile_observer);
13847 observer_attach_inferior_exit (ada_inferior_exit);
13848
13849 /* Setup various context-specific data. */
13850 ada_inferior_data
13851 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13852 ada_pspace_data_handle
13853 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13854 }