]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
gdb: Remove LANG_MAGIC
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *, int,
129 innermost_block_tracker *);
130
131 static void replace_operator_with_call (expression_up *, int, int, int,
132 struct symbol *, const struct block *);
133
134 static int possible_user_operator_p (enum exp_opcode, struct value **);
135
136 static const char *ada_op_name (enum exp_opcode);
137
138 static const char *ada_decoded_op_name (enum exp_opcode);
139
140 static int numeric_type_p (struct type *);
141
142 static int integer_type_p (struct type *);
143
144 static int scalar_type_p (struct type *);
145
146 static int discrete_type_p (struct type *);
147
148 static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 const char **,
150 int *,
151 const char **);
152
153 static struct symbol *find_old_style_renaming_symbol (const char *,
154 const struct block *);
155
156 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
157 int, int);
158
159 static struct value *evaluate_subexp_type (struct expression *, int *);
160
161 static struct type *ada_find_parallel_type_with_name (struct type *,
162 const char *);
163
164 static int is_dynamic_field (struct type *, int);
165
166 static struct type *to_fixed_variant_branch_type (struct type *,
167 const gdb_byte *,
168 CORE_ADDR, struct value *);
169
170 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171
172 static struct type *to_fixed_range_type (struct type *, struct value *);
173
174 static struct type *to_static_fixed_type (struct type *);
175 static struct type *static_unwrap_type (struct type *type);
176
177 static struct value *unwrap_value (struct value *);
178
179 static struct type *constrained_packed_array_type (struct type *, long *);
180
181 static struct type *decode_constrained_packed_array_type (struct type *);
182
183 static long decode_packed_array_bitsize (struct type *);
184
185 static struct value *decode_constrained_packed_array (struct value *);
186
187 static int ada_is_packed_array_type (struct type *);
188
189 static int ada_is_unconstrained_packed_array_type (struct type *);
190
191 static struct value *value_subscript_packed (struct value *, int,
192 struct value **);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static bool wild_match (const char *name, const char *patn);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static int ada_resolve_function (struct block_symbol *, int,
228 struct value **, int, const char *,
229 struct type *, int);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static struct value *ada_index_struct_field (int, struct value *, int,
237 struct type *);
238
239 static struct value *assign_aggregate (struct value *, struct value *,
240 struct expression *,
241 int *, enum noside);
242
243 static void aggregate_assign_from_choices (struct value *, struct value *,
244 struct expression *,
245 int *, LONGEST *, int *,
246 int, LONGEST, LONGEST);
247
248 static void aggregate_assign_positional (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *, int,
251 LONGEST, LONGEST);
252
253
254 static void aggregate_assign_others (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int, LONGEST, LONGEST);
257
258
259 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
260
261
262 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
263 int *, enum noside);
264
265 static void ada_forward_operator_length (struct expression *, int, int *,
266 int *);
267
268 static struct type *ada_find_any_type (const char *name);
269
270 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
271 (const lookup_name_info &lookup_name);
272
273 \f
274
275 /* The result of a symbol lookup to be stored in our symbol cache. */
276
277 struct cache_entry
278 {
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
282 domain_enum domain;
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291 };
292
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302 #define HASH_SIZE 1009
303
304 struct ada_symbol_cache
305 {
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311 };
312
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit;
317
318 static const char ada_completer_word_break_characters[] =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (const char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (const char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = ((struct ada_pspace_data *)
459 program_space_data (pspace, ada_pspace_data_handle));
460 if (data == NULL)
461 {
462 data = XCNEW (struct ada_pspace_data);
463 set_program_space_data (pspace, ada_pspace_data_handle, data);
464 }
465
466 return data;
467 }
468
469 /* The cleanup callback for this module's per-program-space data. */
470
471 static void
472 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473 {
474 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
475
476 if (pspace_data->sym_cache != NULL)
477 ada_free_symbol_cache (pspace_data->sym_cache);
478 xfree (pspace_data);
479 }
480
481 /* Utilities */
482
483 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
484 all typedef layers have been peeled. Otherwise, return TYPE.
485
486 Normally, we really expect a typedef type to only have 1 typedef layer.
487 In other words, we really expect the target type of a typedef type to be
488 a non-typedef type. This is particularly true for Ada units, because
489 the language does not have a typedef vs not-typedef distinction.
490 In that respect, the Ada compiler has been trying to eliminate as many
491 typedef definitions in the debugging information, since they generally
492 do not bring any extra information (we still use typedef under certain
493 circumstances related mostly to the GNAT encoding).
494
495 Unfortunately, we have seen situations where the debugging information
496 generated by the compiler leads to such multiple typedef layers. For
497 instance, consider the following example with stabs:
498
499 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
500 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501
502 This is an error in the debugging information which causes type
503 pck__float_array___XUP to be defined twice, and the second time,
504 it is defined as a typedef of a typedef.
505
506 This is on the fringe of legality as far as debugging information is
507 concerned, and certainly unexpected. But it is easy to handle these
508 situations correctly, so we can afford to be lenient in this case. */
509
510 static struct type *
511 ada_typedef_target_type (struct type *type)
512 {
513 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
514 type = TYPE_TARGET_TYPE (type);
515 return type;
516 }
517
518 /* Given DECODED_NAME a string holding a symbol name in its
519 decoded form (ie using the Ada dotted notation), returns
520 its unqualified name. */
521
522 static const char *
523 ada_unqualified_name (const char *decoded_name)
524 {
525 const char *result;
526
527 /* If the decoded name starts with '<', it means that the encoded
528 name does not follow standard naming conventions, and thus that
529 it is not your typical Ada symbol name. Trying to unqualify it
530 is therefore pointless and possibly erroneous. */
531 if (decoded_name[0] == '<')
532 return decoded_name;
533
534 result = strrchr (decoded_name, '.');
535 if (result != NULL)
536 result++; /* Skip the dot... */
537 else
538 result = decoded_name;
539
540 return result;
541 }
542
543 /* Return a string starting with '<', followed by STR, and '>'. */
544
545 static std::string
546 add_angle_brackets (const char *str)
547 {
548 return string_printf ("<%s>", str);
549 }
550
551 static const char *
552 ada_get_gdb_completer_word_break_characters (void)
553 {
554 return ada_completer_word_break_characters;
555 }
556
557 /* Print an array element index using the Ada syntax. */
558
559 static void
560 ada_print_array_index (struct value *index_value, struct ui_file *stream,
561 const struct value_print_options *options)
562 {
563 LA_VALUE_PRINT (index_value, stream, options);
564 fprintf_filtered (stream, " => ");
565 }
566
567 /* la_watch_location_expression for Ada. */
568
569 gdb::unique_xmalloc_ptr<char>
570 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571 {
572 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
573 std::string name = type_to_string (type);
574 return gdb::unique_xmalloc_ptr<char>
575 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
576 }
577
578 /* Assuming VECT points to an array of *SIZE objects of size
579 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
580 updating *SIZE as necessary and returning the (new) array. */
581
582 void *
583 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
584 {
585 if (*size < min_size)
586 {
587 *size *= 2;
588 if (*size < min_size)
589 *size = min_size;
590 vect = xrealloc (vect, *size * element_size);
591 }
592 return vect;
593 }
594
595 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
596 suffix of FIELD_NAME beginning "___". */
597
598 static int
599 field_name_match (const char *field_name, const char *target)
600 {
601 int len = strlen (target);
602
603 return
604 (strncmp (field_name, target, len) == 0
605 && (field_name[len] == '\0'
606 || (startswith (field_name + len, "___")
607 && strcmp (field_name + strlen (field_name) - 6,
608 "___XVN") != 0)));
609 }
610
611
612 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
613 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
614 and return its index. This function also handles fields whose name
615 have ___ suffixes because the compiler sometimes alters their name
616 by adding such a suffix to represent fields with certain constraints.
617 If the field could not be found, return a negative number if
618 MAYBE_MISSING is set. Otherwise raise an error. */
619
620 int
621 ada_get_field_index (const struct type *type, const char *field_name,
622 int maybe_missing)
623 {
624 int fieldno;
625 struct type *struct_type = check_typedef ((struct type *) type);
626
627 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
628 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
629 return fieldno;
630
631 if (!maybe_missing)
632 error (_("Unable to find field %s in struct %s. Aborting"),
633 field_name, TYPE_NAME (struct_type));
634
635 return -1;
636 }
637
638 /* The length of the prefix of NAME prior to any "___" suffix. */
639
640 int
641 ada_name_prefix_len (const char *name)
642 {
643 if (name == NULL)
644 return 0;
645 else
646 {
647 const char *p = strstr (name, "___");
648
649 if (p == NULL)
650 return strlen (name);
651 else
652 return p - name;
653 }
654 }
655
656 /* Return non-zero if SUFFIX is a suffix of STR.
657 Return zero if STR is null. */
658
659 static int
660 is_suffix (const char *str, const char *suffix)
661 {
662 int len1, len2;
663
664 if (str == NULL)
665 return 0;
666 len1 = strlen (str);
667 len2 = strlen (suffix);
668 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 }
670
671 /* The contents of value VAL, treated as a value of type TYPE. The
672 result is an lval in memory if VAL is. */
673
674 static struct value *
675 coerce_unspec_val_to_type (struct value *val, struct type *type)
676 {
677 type = ada_check_typedef (type);
678 if (value_type (val) == type)
679 return val;
680 else
681 {
682 struct value *result;
683
684 /* Make sure that the object size is not unreasonable before
685 trying to allocate some memory for it. */
686 ada_ensure_varsize_limit (type);
687
688 if (value_lazy (val)
689 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
690 result = allocate_value_lazy (type);
691 else
692 {
693 result = allocate_value (type);
694 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
695 }
696 set_value_component_location (result, val);
697 set_value_bitsize (result, value_bitsize (val));
698 set_value_bitpos (result, value_bitpos (val));
699 set_value_address (result, value_address (val));
700 return result;
701 }
702 }
703
704 static const gdb_byte *
705 cond_offset_host (const gdb_byte *valaddr, long offset)
706 {
707 if (valaddr == NULL)
708 return NULL;
709 else
710 return valaddr + offset;
711 }
712
713 static CORE_ADDR
714 cond_offset_target (CORE_ADDR address, long offset)
715 {
716 if (address == 0)
717 return 0;
718 else
719 return address + offset;
720 }
721
722 /* Issue a warning (as for the definition of warning in utils.c, but
723 with exactly one argument rather than ...), unless the limit on the
724 number of warnings has passed during the evaluation of the current
725 expression. */
726
727 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
728 provided by "complaint". */
729 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730
731 static void
732 lim_warning (const char *format, ...)
733 {
734 va_list args;
735
736 va_start (args, format);
737 warnings_issued += 1;
738 if (warnings_issued <= warning_limit)
739 vwarning (format, args);
740
741 va_end (args);
742 }
743
744 /* Issue an error if the size of an object of type T is unreasonable,
745 i.e. if it would be a bad idea to allocate a value of this type in
746 GDB. */
747
748 void
749 ada_ensure_varsize_limit (const struct type *type)
750 {
751 if (TYPE_LENGTH (type) > varsize_limit)
752 error (_("object size is larger than varsize-limit"));
753 }
754
755 /* Maximum value of a SIZE-byte signed integer type. */
756 static LONGEST
757 max_of_size (int size)
758 {
759 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
760
761 return top_bit | (top_bit - 1);
762 }
763
764 /* Minimum value of a SIZE-byte signed integer type. */
765 static LONGEST
766 min_of_size (int size)
767 {
768 return -max_of_size (size) - 1;
769 }
770
771 /* Maximum value of a SIZE-byte unsigned integer type. */
772 static ULONGEST
773 umax_of_size (int size)
774 {
775 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
776
777 return top_bit | (top_bit - 1);
778 }
779
780 /* Maximum value of integral type T, as a signed quantity. */
781 static LONGEST
782 max_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 else
787 return max_of_size (TYPE_LENGTH (t));
788 }
789
790 /* Minimum value of integral type T, as a signed quantity. */
791 static LONGEST
792 min_of_type (struct type *t)
793 {
794 if (TYPE_UNSIGNED (t))
795 return 0;
796 else
797 return min_of_size (TYPE_LENGTH (t));
798 }
799
800 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
801 LONGEST
802 ada_discrete_type_high_bound (struct type *type)
803 {
804 type = resolve_dynamic_type (type, NULL, 0);
805 switch (TYPE_CODE (type))
806 {
807 case TYPE_CODE_RANGE:
808 return TYPE_HIGH_BOUND (type);
809 case TYPE_CODE_ENUM:
810 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
811 case TYPE_CODE_BOOL:
812 return 1;
813 case TYPE_CODE_CHAR:
814 case TYPE_CODE_INT:
815 return max_of_type (type);
816 default:
817 error (_("Unexpected type in ada_discrete_type_high_bound."));
818 }
819 }
820
821 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
822 LONGEST
823 ada_discrete_type_low_bound (struct type *type)
824 {
825 type = resolve_dynamic_type (type, NULL, 0);
826 switch (TYPE_CODE (type))
827 {
828 case TYPE_CODE_RANGE:
829 return TYPE_LOW_BOUND (type);
830 case TYPE_CODE_ENUM:
831 return TYPE_FIELD_ENUMVAL (type, 0);
832 case TYPE_CODE_BOOL:
833 return 0;
834 case TYPE_CODE_CHAR:
835 case TYPE_CODE_INT:
836 return min_of_type (type);
837 default:
838 error (_("Unexpected type in ada_discrete_type_low_bound."));
839 }
840 }
841
842 /* The identity on non-range types. For range types, the underlying
843 non-range scalar type. */
844
845 static struct type *
846 get_base_type (struct type *type)
847 {
848 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 {
850 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 return type;
852 type = TYPE_TARGET_TYPE (type);
853 }
854 return type;
855 }
856
857 /* Return a decoded version of the given VALUE. This means returning
858 a value whose type is obtained by applying all the GNAT-specific
859 encondings, making the resulting type a static but standard description
860 of the initial type. */
861
862 struct value *
863 ada_get_decoded_value (struct value *value)
864 {
865 struct type *type = ada_check_typedef (value_type (value));
866
867 if (ada_is_array_descriptor_type (type)
868 || (ada_is_constrained_packed_array_type (type)
869 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 {
871 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
872 value = ada_coerce_to_simple_array_ptr (value);
873 else
874 value = ada_coerce_to_simple_array (value);
875 }
876 else
877 value = ada_to_fixed_value (value);
878
879 return value;
880 }
881
882 /* Same as ada_get_decoded_value, but with the given TYPE.
883 Because there is no associated actual value for this type,
884 the resulting type might be a best-effort approximation in
885 the case of dynamic types. */
886
887 struct type *
888 ada_get_decoded_type (struct type *type)
889 {
890 type = to_static_fixed_type (type);
891 if (ada_is_constrained_packed_array_type (type))
892 type = ada_coerce_to_simple_array_type (type);
893 return type;
894 }
895
896 \f
897
898 /* Language Selection */
899
900 /* If the main program is in Ada, return language_ada, otherwise return LANG
901 (the main program is in Ada iif the adainit symbol is found). */
902
903 enum language
904 ada_update_initial_language (enum language lang)
905 {
906 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
907 (struct objfile *) NULL).minsym != NULL)
908 return language_ada;
909
910 return lang;
911 }
912
913 /* If the main procedure is written in Ada, then return its name.
914 The result is good until the next call. Return NULL if the main
915 procedure doesn't appear to be in Ada. */
916
917 char *
918 ada_main_name (void)
919 {
920 struct bound_minimal_symbol msym;
921 static gdb::unique_xmalloc_ptr<char> main_program_name;
922
923 /* For Ada, the name of the main procedure is stored in a specific
924 string constant, generated by the binder. Look for that symbol,
925 extract its address, and then read that string. If we didn't find
926 that string, then most probably the main procedure is not written
927 in Ada. */
928 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929
930 if (msym.minsym != NULL)
931 {
932 CORE_ADDR main_program_name_addr;
933 int err_code;
934
935 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
936 if (main_program_name_addr == 0)
937 error (_("Invalid address for Ada main program name."));
938
939 target_read_string (main_program_name_addr, &main_program_name,
940 1024, &err_code);
941
942 if (err_code != 0)
943 return NULL;
944 return main_program_name.get ();
945 }
946
947 /* The main procedure doesn't seem to be in Ada. */
948 return NULL;
949 }
950 \f
951 /* Symbols */
952
953 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 of NULLs. */
955
956 const struct ada_opname_map ada_opname_table[] = {
957 {"Oadd", "\"+\"", BINOP_ADD},
958 {"Osubtract", "\"-\"", BINOP_SUB},
959 {"Omultiply", "\"*\"", BINOP_MUL},
960 {"Odivide", "\"/\"", BINOP_DIV},
961 {"Omod", "\"mod\"", BINOP_MOD},
962 {"Orem", "\"rem\"", BINOP_REM},
963 {"Oexpon", "\"**\"", BINOP_EXP},
964 {"Olt", "\"<\"", BINOP_LESS},
965 {"Ole", "\"<=\"", BINOP_LEQ},
966 {"Ogt", "\">\"", BINOP_GTR},
967 {"Oge", "\">=\"", BINOP_GEQ},
968 {"Oeq", "\"=\"", BINOP_EQUAL},
969 {"One", "\"/=\"", BINOP_NOTEQUAL},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
973 {"Oconcat", "\"&\"", BINOP_CONCAT},
974 {"Oabs", "\"abs\"", UNOP_ABS},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
976 {"Oadd", "\"+\"", UNOP_PLUS},
977 {"Osubtract", "\"-\"", UNOP_NEG},
978 {NULL, NULL}
979 };
980
981 /* The "encoded" form of DECODED, according to GNAT conventions. The
982 result is valid until the next call to ada_encode. If
983 THROW_ERRORS, throw an error if invalid operator name is found.
984 Otherwise, return NULL in that case. */
985
986 static char *
987 ada_encode_1 (const char *decoded, bool throw_errors)
988 {
989 static char *encoding_buffer = NULL;
990 static size_t encoding_buffer_size = 0;
991 const char *p;
992 int k;
993
994 if (decoded == NULL)
995 return NULL;
996
997 GROW_VECT (encoding_buffer, encoding_buffer_size,
998 2 * strlen (decoded) + 10);
999
1000 k = 0;
1001 for (p = decoded; *p != '\0'; p += 1)
1002 {
1003 if (*p == '.')
1004 {
1005 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1006 k += 2;
1007 }
1008 else if (*p == '"')
1009 {
1010 const struct ada_opname_map *mapping;
1011
1012 for (mapping = ada_opname_table;
1013 mapping->encoded != NULL
1014 && !startswith (p, mapping->decoded); mapping += 1)
1015 ;
1016 if (mapping->encoded == NULL)
1017 {
1018 if (throw_errors)
1019 error (_("invalid Ada operator name: %s"), p);
1020 else
1021 return NULL;
1022 }
1023 strcpy (encoding_buffer + k, mapping->encoded);
1024 k += strlen (mapping->encoded);
1025 break;
1026 }
1027 else
1028 {
1029 encoding_buffer[k] = *p;
1030 k += 1;
1031 }
1032 }
1033
1034 encoding_buffer[k] = '\0';
1035 return encoding_buffer;
1036 }
1037
1038 /* The "encoded" form of DECODED, according to GNAT conventions.
1039 The result is valid until the next call to ada_encode. */
1040
1041 char *
1042 ada_encode (const char *decoded)
1043 {
1044 return ada_encode_1 (decoded, true);
1045 }
1046
1047 /* Return NAME folded to lower case, or, if surrounded by single
1048 quotes, unfolded, but with the quotes stripped away. Result good
1049 to next call. */
1050
1051 char *
1052 ada_fold_name (const char *name)
1053 {
1054 static char *fold_buffer = NULL;
1055 static size_t fold_buffer_size = 0;
1056
1057 int len = strlen (name);
1058 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059
1060 if (name[0] == '\'')
1061 {
1062 strncpy (fold_buffer, name + 1, len - 2);
1063 fold_buffer[len - 2] = '\000';
1064 }
1065 else
1066 {
1067 int i;
1068
1069 for (i = 0; i <= len; i += 1)
1070 fold_buffer[i] = tolower (name[i]);
1071 }
1072
1073 return fold_buffer;
1074 }
1075
1076 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1077
1078 static int
1079 is_lower_alphanum (const char c)
1080 {
1081 return (isdigit (c) || (isalpha (c) && islower (c)));
1082 }
1083
1084 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1085 This function saves in LEN the length of that same symbol name but
1086 without either of these suffixes:
1087 . .{DIGIT}+
1088 . ${DIGIT}+
1089 . ___{DIGIT}+
1090 . __{DIGIT}+.
1091
1092 These are suffixes introduced by the compiler for entities such as
1093 nested subprogram for instance, in order to avoid name clashes.
1094 They do not serve any purpose for the debugger. */
1095
1096 static void
1097 ada_remove_trailing_digits (const char *encoded, int *len)
1098 {
1099 if (*len > 1 && isdigit (encoded[*len - 1]))
1100 {
1101 int i = *len - 2;
1102
1103 while (i > 0 && isdigit (encoded[i]))
1104 i--;
1105 if (i >= 0 && encoded[i] == '.')
1106 *len = i;
1107 else if (i >= 0 && encoded[i] == '$')
1108 *len = i;
1109 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 *len = i - 2;
1111 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1112 *len = i - 1;
1113 }
1114 }
1115
1116 /* Remove the suffix introduced by the compiler for protected object
1117 subprograms. */
1118
1119 static void
1120 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 {
1122 /* Remove trailing N. */
1123
1124 /* Protected entry subprograms are broken into two
1125 separate subprograms: The first one is unprotected, and has
1126 a 'N' suffix; the second is the protected version, and has
1127 the 'P' suffix. The second calls the first one after handling
1128 the protection. Since the P subprograms are internally generated,
1129 we leave these names undecoded, giving the user a clue that this
1130 entity is internal. */
1131
1132 if (*len > 1
1133 && encoded[*len - 1] == 'N'
1134 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1135 *len = *len - 1;
1136 }
1137
1138 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1139
1140 static void
1141 ada_remove_Xbn_suffix (const char *encoded, int *len)
1142 {
1143 int i = *len - 1;
1144
1145 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1146 i--;
1147
1148 if (encoded[i] != 'X')
1149 return;
1150
1151 if (i == 0)
1152 return;
1153
1154 if (isalnum (encoded[i-1]))
1155 *len = i;
1156 }
1157
1158 /* If ENCODED follows the GNAT entity encoding conventions, then return
1159 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1160 replaced by ENCODED.
1161
1162 The resulting string is valid until the next call of ada_decode.
1163 If the string is unchanged by decoding, the original string pointer
1164 is returned. */
1165
1166 const char *
1167 ada_decode (const char *encoded)
1168 {
1169 int i, j;
1170 int len0;
1171 const char *p;
1172 char *decoded;
1173 int at_start_name;
1174 static char *decoding_buffer = NULL;
1175 static size_t decoding_buffer_size = 0;
1176
1177 /* With function descriptors on PPC64, the value of a symbol named
1178 ".FN", if it exists, is the entry point of the function "FN". */
1179 if (encoded[0] == '.')
1180 encoded += 1;
1181
1182 /* The name of the Ada main procedure starts with "_ada_".
1183 This prefix is not part of the decoded name, so skip this part
1184 if we see this prefix. */
1185 if (startswith (encoded, "_ada_"))
1186 encoded += 5;
1187
1188 /* If the name starts with '_', then it is not a properly encoded
1189 name, so do not attempt to decode it. Similarly, if the name
1190 starts with '<', the name should not be decoded. */
1191 if (encoded[0] == '_' || encoded[0] == '<')
1192 goto Suppress;
1193
1194 len0 = strlen (encoded);
1195
1196 ada_remove_trailing_digits (encoded, &len0);
1197 ada_remove_po_subprogram_suffix (encoded, &len0);
1198
1199 /* Remove the ___X.* suffix if present. Do not forget to verify that
1200 the suffix is located before the current "end" of ENCODED. We want
1201 to avoid re-matching parts of ENCODED that have previously been
1202 marked as discarded (by decrementing LEN0). */
1203 p = strstr (encoded, "___");
1204 if (p != NULL && p - encoded < len0 - 3)
1205 {
1206 if (p[3] == 'X')
1207 len0 = p - encoded;
1208 else
1209 goto Suppress;
1210 }
1211
1212 /* Remove any trailing TKB suffix. It tells us that this symbol
1213 is for the body of a task, but that information does not actually
1214 appear in the decoded name. */
1215
1216 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1217 len0 -= 3;
1218
1219 /* Remove any trailing TB suffix. The TB suffix is slightly different
1220 from the TKB suffix because it is used for non-anonymous task
1221 bodies. */
1222
1223 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1224 len0 -= 2;
1225
1226 /* Remove trailing "B" suffixes. */
1227 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228
1229 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1230 len0 -= 1;
1231
1232 /* Make decoded big enough for possible expansion by operator name. */
1233
1234 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1235 decoded = decoding_buffer;
1236
1237 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238
1239 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1240 {
1241 i = len0 - 2;
1242 while ((i >= 0 && isdigit (encoded[i]))
1243 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 i -= 1;
1245 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 len0 = i - 1;
1247 else if (encoded[i] == '$')
1248 len0 = i;
1249 }
1250
1251 /* The first few characters that are not alphabetic are not part
1252 of any encoding we use, so we can copy them over verbatim. */
1253
1254 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1255 decoded[j] = encoded[i];
1256
1257 at_start_name = 1;
1258 while (i < len0)
1259 {
1260 /* Is this a symbol function? */
1261 if (at_start_name && encoded[i] == 'O')
1262 {
1263 int k;
1264
1265 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 {
1267 int op_len = strlen (ada_opname_table[k].encoded);
1268 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 op_len - 1) == 0)
1270 && !isalnum (encoded[i + op_len]))
1271 {
1272 strcpy (decoded + j, ada_opname_table[k].decoded);
1273 at_start_name = 0;
1274 i += op_len;
1275 j += strlen (ada_opname_table[k].decoded);
1276 break;
1277 }
1278 }
1279 if (ada_opname_table[k].encoded != NULL)
1280 continue;
1281 }
1282 at_start_name = 0;
1283
1284 /* Replace "TK__" with "__", which will eventually be translated
1285 into "." (just below). */
1286
1287 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1288 i += 2;
1289
1290 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1291 be translated into "." (just below). These are internal names
1292 generated for anonymous blocks inside which our symbol is nested. */
1293
1294 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1295 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1296 && isdigit (encoded [i+4]))
1297 {
1298 int k = i + 5;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++; /* Skip any extra digit. */
1302
1303 /* Double-check that the "__B_{DIGITS}+" sequence we found
1304 is indeed followed by "__". */
1305 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1306 i = k;
1307 }
1308
1309 /* Remove _E{DIGITS}+[sb] */
1310
1311 /* Just as for protected object subprograms, there are 2 categories
1312 of subprograms created by the compiler for each entry. The first
1313 one implements the actual entry code, and has a suffix following
1314 the convention above; the second one implements the barrier and
1315 uses the same convention as above, except that the 'E' is replaced
1316 by a 'B'.
1317
1318 Just as above, we do not decode the name of barrier functions
1319 to give the user a clue that the code he is debugging has been
1320 internally generated. */
1321
1322 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1323 && isdigit (encoded[i+2]))
1324 {
1325 int k = i + 3;
1326
1327 while (k < len0 && isdigit (encoded[k]))
1328 k++;
1329
1330 if (k < len0
1331 && (encoded[k] == 'b' || encoded[k] == 's'))
1332 {
1333 k++;
1334 /* Just as an extra precaution, make sure that if this
1335 suffix is followed by anything else, it is a '_'.
1336 Otherwise, we matched this sequence by accident. */
1337 if (k == len0
1338 || (k < len0 && encoded[k] == '_'))
1339 i = k;
1340 }
1341 }
1342
1343 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1344 the GNAT front-end in protected object subprograms. */
1345
1346 if (i < len0 + 3
1347 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 {
1349 /* Backtrack a bit up until we reach either the begining of
1350 the encoded name, or "__". Make sure that we only find
1351 digits or lowercase characters. */
1352 const char *ptr = encoded + i - 1;
1353
1354 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1355 ptr--;
1356 if (ptr < encoded
1357 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1358 i++;
1359 }
1360
1361 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 {
1363 /* This is a X[bn]* sequence not separated from the previous
1364 part of the name with a non-alpha-numeric character (in other
1365 words, immediately following an alpha-numeric character), then
1366 verify that it is placed at the end of the encoded name. If
1367 not, then the encoding is not valid and we should abort the
1368 decoding. Otherwise, just skip it, it is used in body-nested
1369 package names. */
1370 do
1371 i += 1;
1372 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1373 if (i < len0)
1374 goto Suppress;
1375 }
1376 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1377 {
1378 /* Replace '__' by '.'. */
1379 decoded[j] = '.';
1380 at_start_name = 1;
1381 i += 2;
1382 j += 1;
1383 }
1384 else
1385 {
1386 /* It's a character part of the decoded name, so just copy it
1387 over. */
1388 decoded[j] = encoded[i];
1389 i += 1;
1390 j += 1;
1391 }
1392 }
1393 decoded[j] = '\000';
1394
1395 /* Decoded names should never contain any uppercase character.
1396 Double-check this, and abort the decoding if we find one. */
1397
1398 for (i = 0; decoded[i] != '\0'; i += 1)
1399 if (isupper (decoded[i]) || decoded[i] == ' ')
1400 goto Suppress;
1401
1402 if (strcmp (decoded, encoded) == 0)
1403 return encoded;
1404 else
1405 return decoded;
1406
1407 Suppress:
1408 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1409 decoded = decoding_buffer;
1410 if (encoded[0] == '<')
1411 strcpy (decoded, encoded);
1412 else
1413 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1414 return decoded;
1415
1416 }
1417
1418 /* Table for keeping permanent unique copies of decoded names. Once
1419 allocated, names in this table are never released. While this is a
1420 storage leak, it should not be significant unless there are massive
1421 changes in the set of decoded names in successive versions of a
1422 symbol table loaded during a single session. */
1423 static struct htab *decoded_names_store;
1424
1425 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1426 in the language-specific part of GSYMBOL, if it has not been
1427 previously computed. Tries to save the decoded name in the same
1428 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1429 in any case, the decoded symbol has a lifetime at least that of
1430 GSYMBOL).
1431 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1432 const, but nevertheless modified to a semantically equivalent form
1433 when a decoded name is cached in it. */
1434
1435 const char *
1436 ada_decode_symbol (const struct general_symbol_info *arg)
1437 {
1438 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1439 const char **resultp =
1440 &gsymbol->language_specific.demangled_name;
1441
1442 if (!gsymbol->ada_mangled)
1443 {
1444 const char *decoded = ada_decode (gsymbol->name);
1445 struct obstack *obstack = gsymbol->language_specific.obstack;
1446
1447 gsymbol->ada_mangled = 1;
1448
1449 if (obstack != NULL)
1450 *resultp
1451 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1452 else
1453 {
1454 /* Sometimes, we can't find a corresponding objfile, in
1455 which case, we put the result on the heap. Since we only
1456 decode when needed, we hope this usually does not cause a
1457 significant memory leak (FIXME). */
1458
1459 char **slot = (char **) htab_find_slot (decoded_names_store,
1460 decoded, INSERT);
1461
1462 if (*slot == NULL)
1463 *slot = xstrdup (decoded);
1464 *resultp = *slot;
1465 }
1466 }
1467
1468 return *resultp;
1469 }
1470
1471 static char *
1472 ada_la_decode (const char *encoded, int options)
1473 {
1474 return xstrdup (ada_decode (encoded));
1475 }
1476
1477 /* Implement la_sniff_from_mangled_name for Ada. */
1478
1479 static int
1480 ada_sniff_from_mangled_name (const char *mangled, char **out)
1481 {
1482 const char *demangled = ada_decode (mangled);
1483
1484 *out = NULL;
1485
1486 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 {
1488 /* Set the gsymbol language to Ada, but still return 0.
1489 Two reasons for that:
1490
1491 1. For Ada, we prefer computing the symbol's decoded name
1492 on the fly rather than pre-compute it, in order to save
1493 memory (Ada projects are typically very large).
1494
1495 2. There are some areas in the definition of the GNAT
1496 encoding where, with a bit of bad luck, we might be able
1497 to decode a non-Ada symbol, generating an incorrect
1498 demangled name (Eg: names ending with "TB" for instance
1499 are identified as task bodies and so stripped from
1500 the decoded name returned).
1501
1502 Returning 1, here, but not setting *DEMANGLED, helps us get a
1503 little bit of the best of both worlds. Because we're last,
1504 we should not affect any of the other languages that were
1505 able to demangle the symbol before us; we get to correctly
1506 tag Ada symbols as such; and even if we incorrectly tagged a
1507 non-Ada symbol, which should be rare, any routing through the
1508 Ada language should be transparent (Ada tries to behave much
1509 like C/C++ with non-Ada symbols). */
1510 return 1;
1511 }
1512
1513 return 0;
1514 }
1515
1516 \f
1517
1518 /* Arrays */
1519
1520 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1521 generated by the GNAT compiler to describe the index type used
1522 for each dimension of an array, check whether it follows the latest
1523 known encoding. If not, fix it up to conform to the latest encoding.
1524 Otherwise, do nothing. This function also does nothing if
1525 INDEX_DESC_TYPE is NULL.
1526
1527 The GNAT encoding used to describle the array index type evolved a bit.
1528 Initially, the information would be provided through the name of each
1529 field of the structure type only, while the type of these fields was
1530 described as unspecified and irrelevant. The debugger was then expected
1531 to perform a global type lookup using the name of that field in order
1532 to get access to the full index type description. Because these global
1533 lookups can be very expensive, the encoding was later enhanced to make
1534 the global lookup unnecessary by defining the field type as being
1535 the full index type description.
1536
1537 The purpose of this routine is to allow us to support older versions
1538 of the compiler by detecting the use of the older encoding, and by
1539 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1540 we essentially replace each field's meaningless type by the associated
1541 index subtype). */
1542
1543 void
1544 ada_fixup_array_indexes_type (struct type *index_desc_type)
1545 {
1546 int i;
1547
1548 if (index_desc_type == NULL)
1549 return;
1550 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551
1552 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1553 to check one field only, no need to check them all). If not, return
1554 now.
1555
1556 If our INDEX_DESC_TYPE was generated using the older encoding,
1557 the field type should be a meaningless integer type whose name
1558 is not equal to the field name. */
1559 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1560 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1561 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1562 return;
1563
1564 /* Fixup each field of INDEX_DESC_TYPE. */
1565 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 {
1567 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1568 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1569
1570 if (raw_type)
1571 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1572 }
1573 }
1574
1575 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1576
1577 static const char *bound_name[] = {
1578 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1579 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1580 };
1581
1582 /* Maximum number of array dimensions we are prepared to handle. */
1583
1584 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1585
1586
1587 /* The desc_* routines return primitive portions of array descriptors
1588 (fat pointers). */
1589
1590 /* The descriptor or array type, if any, indicated by TYPE; removes
1591 level of indirection, if needed. */
1592
1593 static struct type *
1594 desc_base_type (struct type *type)
1595 {
1596 if (type == NULL)
1597 return NULL;
1598 type = ada_check_typedef (type);
1599 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1600 type = ada_typedef_target_type (type);
1601
1602 if (type != NULL
1603 && (TYPE_CODE (type) == TYPE_CODE_PTR
1604 || TYPE_CODE (type) == TYPE_CODE_REF))
1605 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1606 else
1607 return type;
1608 }
1609
1610 /* True iff TYPE indicates a "thin" array pointer type. */
1611
1612 static int
1613 is_thin_pntr (struct type *type)
1614 {
1615 return
1616 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1617 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1618 }
1619
1620 /* The descriptor type for thin pointer type TYPE. */
1621
1622 static struct type *
1623 thin_descriptor_type (struct type *type)
1624 {
1625 struct type *base_type = desc_base_type (type);
1626
1627 if (base_type == NULL)
1628 return NULL;
1629 if (is_suffix (ada_type_name (base_type), "___XVE"))
1630 return base_type;
1631 else
1632 {
1633 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1634
1635 if (alt_type == NULL)
1636 return base_type;
1637 else
1638 return alt_type;
1639 }
1640 }
1641
1642 /* A pointer to the array data for thin-pointer value VAL. */
1643
1644 static struct value *
1645 thin_data_pntr (struct value *val)
1646 {
1647 struct type *type = ada_check_typedef (value_type (val));
1648 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1649
1650 data_type = lookup_pointer_type (data_type);
1651
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 return value_cast (data_type, value_copy (val));
1654 else
1655 return value_from_longest (data_type, value_address (val));
1656 }
1657
1658 /* True iff TYPE indicates a "thick" array pointer type. */
1659
1660 static int
1661 is_thick_pntr (struct type *type)
1662 {
1663 type = desc_base_type (type);
1664 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1665 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1666 }
1667
1668 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1669 pointer to one, the type of its bounds data; otherwise, NULL. */
1670
1671 static struct type *
1672 desc_bounds_type (struct type *type)
1673 {
1674 struct type *r;
1675
1676 type = desc_base_type (type);
1677
1678 if (type == NULL)
1679 return NULL;
1680 else if (is_thin_pntr (type))
1681 {
1682 type = thin_descriptor_type (type);
1683 if (type == NULL)
1684 return NULL;
1685 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (r);
1688 }
1689 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 {
1691 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 if (r != NULL)
1693 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1694 }
1695 return NULL;
1696 }
1697
1698 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1699 one, a pointer to its bounds data. Otherwise NULL. */
1700
1701 static struct value *
1702 desc_bounds (struct value *arr)
1703 {
1704 struct type *type = ada_check_typedef (value_type (arr));
1705
1706 if (is_thin_pntr (type))
1707 {
1708 struct type *bounds_type =
1709 desc_bounds_type (thin_descriptor_type (type));
1710 LONGEST addr;
1711
1712 if (bounds_type == NULL)
1713 error (_("Bad GNAT array descriptor"));
1714
1715 /* NOTE: The following calculation is not really kosher, but
1716 since desc_type is an XVE-encoded type (and shouldn't be),
1717 the correct calculation is a real pain. FIXME (and fix GCC). */
1718 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1719 addr = value_as_long (arr);
1720 else
1721 addr = value_address (arr);
1722
1723 return
1724 value_from_longest (lookup_pointer_type (bounds_type),
1725 addr - TYPE_LENGTH (bounds_type));
1726 }
1727
1728 else if (is_thick_pntr (type))
1729 {
1730 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1731 _("Bad GNAT array descriptor"));
1732 struct type *p_bounds_type = value_type (p_bounds);
1733
1734 if (p_bounds_type
1735 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 {
1737 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738
1739 if (TYPE_STUB (target_type))
1740 p_bounds = value_cast (lookup_pointer_type
1741 (ada_check_typedef (target_type)),
1742 p_bounds);
1743 }
1744 else
1745 error (_("Bad GNAT array descriptor"));
1746
1747 return p_bounds;
1748 }
1749 else
1750 return NULL;
1751 }
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the bounds data. */
1755
1756 static int
1757 fat_pntr_bounds_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the bounds data. */
1764
1765 static int
1766 fat_pntr_bounds_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 1);
1772 else
1773 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1774 }
1775
1776 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1777 pointer to one, the type of its array data (a array-with-no-bounds type);
1778 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1779 data. */
1780
1781 static struct type *
1782 desc_data_target_type (struct type *type)
1783 {
1784 type = desc_base_type (type);
1785
1786 /* NOTE: The following is bogus; see comment in desc_bounds. */
1787 if (is_thin_pntr (type))
1788 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1789 else if (is_thick_pntr (type))
1790 {
1791 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1792
1793 if (data_type
1794 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1795 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1796 }
1797
1798 return NULL;
1799 }
1800
1801 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1802 its array data. */
1803
1804 static struct value *
1805 desc_data (struct value *arr)
1806 {
1807 struct type *type = value_type (arr);
1808
1809 if (is_thin_pntr (type))
1810 return thin_data_pntr (arr);
1811 else if (is_thick_pntr (type))
1812 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1813 _("Bad GNAT array descriptor"));
1814 else
1815 return NULL;
1816 }
1817
1818
1819 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1820 position of the field containing the address of the data. */
1821
1822 static int
1823 fat_pntr_data_bitpos (struct type *type)
1824 {
1825 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1826 }
1827
1828 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1829 size of the field containing the address of the data. */
1830
1831 static int
1832 fat_pntr_data_bitsize (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 0);
1838 else
1839 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1840 }
1841
1842 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1843 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1844 bound, if WHICH is 1. The first bound is I=1. */
1845
1846 static struct value *
1847 desc_one_bound (struct value *bounds, int i, int which)
1848 {
1849 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1850 _("Bad GNAT array descriptor bounds"));
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit position
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitpos (struct type *type, int i, int which)
1859 {
1860 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1861 }
1862
1863 /* If BOUNDS is an array-bounds structure type, return the bit field size
1864 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1865 bound, if WHICH is 1. The first bound is I=1. */
1866
1867 static int
1868 desc_bound_bitsize (struct type *type, int i, int which)
1869 {
1870 type = desc_base_type (type);
1871
1872 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1873 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 else
1875 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1876 }
1877
1878 /* If TYPE is the type of an array-bounds structure, the type of its
1879 Ith bound (numbering from 1). Otherwise, NULL. */
1880
1881 static struct type *
1882 desc_index_type (struct type *type, int i)
1883 {
1884 type = desc_base_type (type);
1885
1886 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1887 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1888 else
1889 return NULL;
1890 }
1891
1892 /* The number of index positions in the array-bounds type TYPE.
1893 Return 0 if TYPE is NULL. */
1894
1895 static int
1896 desc_arity (struct type *type)
1897 {
1898 type = desc_base_type (type);
1899
1900 if (type != NULL)
1901 return TYPE_NFIELDS (type) / 2;
1902 return 0;
1903 }
1904
1905 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1906 an array descriptor type (representing an unconstrained array
1907 type). */
1908
1909 static int
1910 ada_is_direct_array_type (struct type *type)
1911 {
1912 if (type == NULL)
1913 return 0;
1914 type = ada_check_typedef (type);
1915 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1916 || ada_is_array_descriptor_type (type));
1917 }
1918
1919 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1920 * to one. */
1921
1922 static int
1923 ada_is_array_type (struct type *type)
1924 {
1925 while (type != NULL
1926 && (TYPE_CODE (type) == TYPE_CODE_PTR
1927 || TYPE_CODE (type) == TYPE_CODE_REF))
1928 type = TYPE_TARGET_TYPE (type);
1929 return ada_is_direct_array_type (type);
1930 }
1931
1932 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1933
1934 int
1935 ada_is_simple_array_type (struct type *type)
1936 {
1937 if (type == NULL)
1938 return 0;
1939 type = ada_check_typedef (type);
1940 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1941 || (TYPE_CODE (type) == TYPE_CODE_PTR
1942 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1943 == TYPE_CODE_ARRAY));
1944 }
1945
1946 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1947
1948 int
1949 ada_is_array_descriptor_type (struct type *type)
1950 {
1951 struct type *data_type = desc_data_target_type (type);
1952
1953 if (type == NULL)
1954 return 0;
1955 type = ada_check_typedef (type);
1956 return (data_type != NULL
1957 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1958 && desc_arity (desc_bounds_type (type)) > 0);
1959 }
1960
1961 /* Non-zero iff type is a partially mal-formed GNAT array
1962 descriptor. FIXME: This is to compensate for some problems with
1963 debugging output from GNAT. Re-examine periodically to see if it
1964 is still needed. */
1965
1966 int
1967 ada_is_bogus_array_descriptor (struct type *type)
1968 {
1969 return
1970 type != NULL
1971 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1972 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1973 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1974 && !ada_is_array_descriptor_type (type);
1975 }
1976
1977
1978 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1979 (fat pointer) returns the type of the array data described---specifically,
1980 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1981 in from the descriptor; otherwise, they are left unspecified. If
1982 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1983 returns NULL. The result is simply the type of ARR if ARR is not
1984 a descriptor. */
1985 struct type *
1986 ada_type_of_array (struct value *arr, int bounds)
1987 {
1988 if (ada_is_constrained_packed_array_type (value_type (arr)))
1989 return decode_constrained_packed_array_type (value_type (arr));
1990
1991 if (!ada_is_array_descriptor_type (value_type (arr)))
1992 return value_type (arr);
1993
1994 if (!bounds)
1995 {
1996 struct type *array_type =
1997 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998
1999 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2000 TYPE_FIELD_BITSIZE (array_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002
2003 return array_type;
2004 }
2005 else
2006 {
2007 struct type *elt_type;
2008 int arity;
2009 struct value *descriptor;
2010
2011 elt_type = ada_array_element_type (value_type (arr), -1);
2012 arity = ada_array_arity (value_type (arr));
2013
2014 if (elt_type == NULL || arity == 0)
2015 return ada_check_typedef (value_type (arr));
2016
2017 descriptor = desc_bounds (arr);
2018 if (value_as_long (descriptor) == 0)
2019 return NULL;
2020 while (arity > 0)
2021 {
2022 struct type *range_type = alloc_type_copy (value_type (arr));
2023 struct type *array_type = alloc_type_copy (value_type (arr));
2024 struct value *low = desc_one_bound (descriptor, arity, 0);
2025 struct value *high = desc_one_bound (descriptor, arity, 1);
2026
2027 arity -= 1;
2028 create_static_range_type (range_type, value_type (low),
2029 longest_to_int (value_as_long (low)),
2030 longest_to_int (value_as_long (high)));
2031 elt_type = create_array_type (array_type, elt_type, range_type);
2032
2033 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2034 {
2035 /* We need to store the element packed bitsize, as well as
2036 recompute the array size, because it was previously
2037 computed based on the unpacked element size. */
2038 LONGEST lo = value_as_long (low);
2039 LONGEST hi = value_as_long (high);
2040
2041 TYPE_FIELD_BITSIZE (elt_type, 0) =
2042 decode_packed_array_bitsize (value_type (arr));
2043 /* If the array has no element, then the size is already
2044 zero, and does not need to be recomputed. */
2045 if (lo < hi)
2046 {
2047 int array_bitsize =
2048 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049
2050 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2051 }
2052 }
2053 }
2054
2055 return lookup_pointer_type (elt_type);
2056 }
2057 }
2058
2059 /* If ARR does not represent an array, returns ARR unchanged.
2060 Otherwise, returns either a standard GDB array with bounds set
2061 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2062 GDB array. Returns NULL if ARR is a null fat pointer. */
2063
2064 struct value *
2065 ada_coerce_to_simple_array_ptr (struct value *arr)
2066 {
2067 if (ada_is_array_descriptor_type (value_type (arr)))
2068 {
2069 struct type *arrType = ada_type_of_array (arr, 1);
2070
2071 if (arrType == NULL)
2072 return NULL;
2073 return value_cast (arrType, value_copy (desc_data (arr)));
2074 }
2075 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2076 return decode_constrained_packed_array (arr);
2077 else
2078 return arr;
2079 }
2080
2081 /* If ARR does not represent an array, returns ARR unchanged.
2082 Otherwise, returns a standard GDB array describing ARR (which may
2083 be ARR itself if it already is in the proper form). */
2084
2085 struct value *
2086 ada_coerce_to_simple_array (struct value *arr)
2087 {
2088 if (ada_is_array_descriptor_type (value_type (arr)))
2089 {
2090 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2091
2092 if (arrVal == NULL)
2093 error (_("Bounds unavailable for null array pointer."));
2094 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2095 return value_ind (arrVal);
2096 }
2097 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array (arr);
2099 else
2100 return arr;
2101 }
2102
2103 /* If TYPE represents a GNAT array type, return it translated to an
2104 ordinary GDB array type (possibly with BITSIZE fields indicating
2105 packing). For other types, is the identity. */
2106
2107 struct type *
2108 ada_coerce_to_simple_array_type (struct type *type)
2109 {
2110 if (ada_is_constrained_packed_array_type (type))
2111 return decode_constrained_packed_array_type (type);
2112
2113 if (ada_is_array_descriptor_type (type))
2114 return ada_check_typedef (desc_data_target_type (type));
2115
2116 return type;
2117 }
2118
2119 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2120
2121 static int
2122 ada_is_packed_array_type (struct type *type)
2123 {
2124 if (type == NULL)
2125 return 0;
2126 type = desc_base_type (type);
2127 type = ada_check_typedef (type);
2128 return
2129 ada_type_name (type) != NULL
2130 && strstr (ada_type_name (type), "___XP") != NULL;
2131 }
2132
2133 /* Non-zero iff TYPE represents a standard GNAT constrained
2134 packed-array type. */
2135
2136 int
2137 ada_is_constrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && !ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Non-zero iff TYPE represents an array descriptor for a
2144 unconstrained packed-array type. */
2145
2146 static int
2147 ada_is_unconstrained_packed_array_type (struct type *type)
2148 {
2149 return ada_is_packed_array_type (type)
2150 && ada_is_array_descriptor_type (type);
2151 }
2152
2153 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2154 return the size of its elements in bits. */
2155
2156 static long
2157 decode_packed_array_bitsize (struct type *type)
2158 {
2159 const char *raw_name;
2160 const char *tail;
2161 long bits;
2162
2163 /* Access to arrays implemented as fat pointers are encoded as a typedef
2164 of the fat pointer type. We need the name of the fat pointer type
2165 to do the decoding, so strip the typedef layer. */
2166 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2167 type = ada_typedef_target_type (type);
2168
2169 raw_name = ada_type_name (ada_check_typedef (type));
2170 if (!raw_name)
2171 raw_name = ada_type_name (desc_base_type (type));
2172
2173 if (!raw_name)
2174 return 0;
2175
2176 tail = strstr (raw_name, "___XP");
2177 gdb_assert (tail != NULL);
2178
2179 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2180 {
2181 lim_warning
2182 (_("could not understand bit size information on packed array"));
2183 return 0;
2184 }
2185
2186 return bits;
2187 }
2188
2189 /* Given that TYPE is a standard GDB array type with all bounds filled
2190 in, and that the element size of its ultimate scalar constituents
2191 (that is, either its elements, or, if it is an array of arrays, its
2192 elements' elements, etc.) is *ELT_BITS, return an identical type,
2193 but with the bit sizes of its elements (and those of any
2194 constituent arrays) recorded in the BITSIZE components of its
2195 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2196 in bits.
2197
2198 Note that, for arrays whose index type has an XA encoding where
2199 a bound references a record discriminant, getting that discriminant,
2200 and therefore the actual value of that bound, is not possible
2201 because none of the given parameters gives us access to the record.
2202 This function assumes that it is OK in the context where it is being
2203 used to return an array whose bounds are still dynamic and where
2204 the length is arbitrary. */
2205
2206 static struct type *
2207 constrained_packed_array_type (struct type *type, long *elt_bits)
2208 {
2209 struct type *new_elt_type;
2210 struct type *new_type;
2211 struct type *index_type_desc;
2212 struct type *index_type;
2213 LONGEST low_bound, high_bound;
2214
2215 type = ada_check_typedef (type);
2216 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2217 return type;
2218
2219 index_type_desc = ada_find_parallel_type (type, "___XA");
2220 if (index_type_desc)
2221 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2222 NULL);
2223 else
2224 index_type = TYPE_INDEX_TYPE (type);
2225
2226 new_type = alloc_type_copy (type);
2227 new_elt_type =
2228 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 elt_bits);
2230 create_array_type (new_type, new_elt_type, index_type);
2231 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2232 TYPE_NAME (new_type) = ada_type_name (type);
2233
2234 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2235 && is_dynamic_type (check_typedef (index_type)))
2236 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2237 low_bound = high_bound = 0;
2238 if (high_bound < low_bound)
2239 *elt_bits = TYPE_LENGTH (new_type) = 0;
2240 else
2241 {
2242 *elt_bits *= (high_bound - low_bound + 1);
2243 TYPE_LENGTH (new_type) =
2244 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2245 }
2246
2247 TYPE_FIXED_INSTANCE (new_type) = 1;
2248 return new_type;
2249 }
2250
2251 /* The array type encoded by TYPE, where
2252 ada_is_constrained_packed_array_type (TYPE). */
2253
2254 static struct type *
2255 decode_constrained_packed_array_type (struct type *type)
2256 {
2257 const char *raw_name = ada_type_name (ada_check_typedef (type));
2258 char *name;
2259 const char *tail;
2260 struct type *shadow_type;
2261 long bits;
2262
2263 if (!raw_name)
2264 raw_name = ada_type_name (desc_base_type (type));
2265
2266 if (!raw_name)
2267 return NULL;
2268
2269 name = (char *) alloca (strlen (raw_name) + 1);
2270 tail = strstr (raw_name, "___XP");
2271 type = desc_base_type (type);
2272
2273 memcpy (name, raw_name, tail - raw_name);
2274 name[tail - raw_name] = '\000';
2275
2276 shadow_type = ada_find_parallel_type_with_name (type, name);
2277
2278 if (shadow_type == NULL)
2279 {
2280 lim_warning (_("could not find bounds information on packed array"));
2281 return NULL;
2282 }
2283 shadow_type = check_typedef (shadow_type);
2284
2285 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 {
2287 lim_warning (_("could not understand bounds "
2288 "information on packed array"));
2289 return NULL;
2290 }
2291
2292 bits = decode_packed_array_bitsize (type);
2293 return constrained_packed_array_type (shadow_type, &bits);
2294 }
2295
2296 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2297 array, returns a simple array that denotes that array. Its type is a
2298 standard GDB array type except that the BITSIZEs of the array
2299 target types are set to the number of bits in each element, and the
2300 type length is set appropriately. */
2301
2302 static struct value *
2303 decode_constrained_packed_array (struct value *arr)
2304 {
2305 struct type *type;
2306
2307 /* If our value is a pointer, then dereference it. Likewise if
2308 the value is a reference. Make sure that this operation does not
2309 cause the target type to be fixed, as this would indirectly cause
2310 this array to be decoded. The rest of the routine assumes that
2311 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2312 and "value_ind" routines to perform the dereferencing, as opposed
2313 to using "ada_coerce_ref" or "ada_value_ind". */
2314 arr = coerce_ref (arr);
2315 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2316 arr = value_ind (arr);
2317
2318 type = decode_constrained_packed_array_type (value_type (arr));
2319 if (type == NULL)
2320 {
2321 error (_("can't unpack array"));
2322 return NULL;
2323 }
2324
2325 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2326 && ada_is_modular_type (value_type (arr)))
2327 {
2328 /* This is a (right-justified) modular type representing a packed
2329 array with no wrapper. In order to interpret the value through
2330 the (left-justified) packed array type we just built, we must
2331 first left-justify it. */
2332 int bit_size, bit_pos;
2333 ULONGEST mod;
2334
2335 mod = ada_modulus (value_type (arr)) - 1;
2336 bit_size = 0;
2337 while (mod > 0)
2338 {
2339 bit_size += 1;
2340 mod >>= 1;
2341 }
2342 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2343 arr = ada_value_primitive_packed_val (arr, NULL,
2344 bit_pos / HOST_CHAR_BIT,
2345 bit_pos % HOST_CHAR_BIT,
2346 bit_size,
2347 type);
2348 }
2349
2350 return coerce_unspec_val_to_type (arr, type);
2351 }
2352
2353
2354 /* The value of the element of packed array ARR at the ARITY indices
2355 given in IND. ARR must be a simple array. */
2356
2357 static struct value *
2358 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2359 {
2360 int i;
2361 int bits, elt_off, bit_off;
2362 long elt_total_bit_offset;
2363 struct type *elt_type;
2364 struct value *v;
2365
2366 bits = 0;
2367 elt_total_bit_offset = 0;
2368 elt_type = ada_check_typedef (value_type (arr));
2369 for (i = 0; i < arity; i += 1)
2370 {
2371 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2372 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 error
2374 (_("attempt to do packed indexing of "
2375 "something other than a packed array"));
2376 else
2377 {
2378 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2379 LONGEST lowerbound, upperbound;
2380 LONGEST idx;
2381
2382 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 {
2384 lim_warning (_("don't know bounds of array"));
2385 lowerbound = upperbound = 0;
2386 }
2387
2388 idx = pos_atr (ind[i]);
2389 if (idx < lowerbound || idx > upperbound)
2390 lim_warning (_("packed array index %ld out of bounds"),
2391 (long) idx);
2392 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2393 elt_total_bit_offset += (idx - lowerbound) * bits;
2394 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2395 }
2396 }
2397 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2398 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2399
2400 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2401 bits, elt_type);
2402 return v;
2403 }
2404
2405 /* Non-zero iff TYPE includes negative integer values. */
2406
2407 static int
2408 has_negatives (struct type *type)
2409 {
2410 switch (TYPE_CODE (type))
2411 {
2412 default:
2413 return 0;
2414 case TYPE_CODE_INT:
2415 return !TYPE_UNSIGNED (type);
2416 case TYPE_CODE_RANGE:
2417 return TYPE_LOW_BOUND (type) < 0;
2418 }
2419 }
2420
2421 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2422 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2423 the unpacked buffer.
2424
2425 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2426 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427
2428 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2429 zero otherwise.
2430
2431 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2432
2433 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2434
2435 static void
2436 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2437 gdb_byte *unpacked, int unpacked_len,
2438 int is_big_endian, int is_signed_type,
2439 int is_scalar)
2440 {
2441 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2442 int src_idx; /* Index into the source area */
2443 int src_bytes_left; /* Number of source bytes left to process. */
2444 int srcBitsLeft; /* Number of source bits left to move */
2445 int unusedLS; /* Number of bits in next significant
2446 byte of source that are unused */
2447
2448 int unpacked_idx; /* Index into the unpacked buffer */
2449 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450
2451 unsigned long accum; /* Staging area for bits being transferred */
2452 int accumSize; /* Number of meaningful bits in accum */
2453 unsigned char sign;
2454
2455 /* Transmit bytes from least to most significant; delta is the direction
2456 the indices move. */
2457 int delta = is_big_endian ? -1 : 1;
2458
2459 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 bits from SRC. .*/
2461 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2462 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2463 bit_size, unpacked_len);
2464
2465 srcBitsLeft = bit_size;
2466 src_bytes_left = src_len;
2467 unpacked_bytes_left = unpacked_len;
2468 sign = 0;
2469
2470 if (is_big_endian)
2471 {
2472 src_idx = src_len - 1;
2473 if (is_signed_type
2474 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2475 sign = ~0;
2476
2477 unusedLS =
2478 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2479 % HOST_CHAR_BIT;
2480
2481 if (is_scalar)
2482 {
2483 accumSize = 0;
2484 unpacked_idx = unpacked_len - 1;
2485 }
2486 else
2487 {
2488 /* Non-scalar values must be aligned at a byte boundary... */
2489 accumSize =
2490 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2491 /* ... And are placed at the beginning (most-significant) bytes
2492 of the target. */
2493 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2494 unpacked_bytes_left = unpacked_idx + 1;
2495 }
2496 }
2497 else
2498 {
2499 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500
2501 src_idx = unpacked_idx = 0;
2502 unusedLS = bit_offset;
2503 accumSize = 0;
2504
2505 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2506 sign = ~0;
2507 }
2508
2509 accum = 0;
2510 while (src_bytes_left > 0)
2511 {
2512 /* Mask for removing bits of the next source byte that are not
2513 part of the value. */
2514 unsigned int unusedMSMask =
2515 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 1;
2517 /* Sign-extend bits for this byte. */
2518 unsigned int signMask = sign & ~unusedMSMask;
2519
2520 accum |=
2521 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2522 accumSize += HOST_CHAR_BIT - unusedLS;
2523 if (accumSize >= HOST_CHAR_BIT)
2524 {
2525 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2526 accumSize -= HOST_CHAR_BIT;
2527 accum >>= HOST_CHAR_BIT;
2528 unpacked_bytes_left -= 1;
2529 unpacked_idx += delta;
2530 }
2531 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 unusedLS = 0;
2533 src_bytes_left -= 1;
2534 src_idx += delta;
2535 }
2536 while (unpacked_bytes_left > 0)
2537 {
2538 accum |= sign << accumSize;
2539 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2540 accumSize -= HOST_CHAR_BIT;
2541 if (accumSize < 0)
2542 accumSize = 0;
2543 accum >>= HOST_CHAR_BIT;
2544 unpacked_bytes_left -= 1;
2545 unpacked_idx += delta;
2546 }
2547 }
2548
2549 /* Create a new value of type TYPE from the contents of OBJ starting
2550 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2551 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2552 assigning through the result will set the field fetched from.
2553 VALADDR is ignored unless OBJ is NULL, in which case,
2554 VALADDR+OFFSET must address the start of storage containing the
2555 packed value. The value returned in this case is never an lval.
2556 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2557
2558 struct value *
2559 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2560 long offset, int bit_offset, int bit_size,
2561 struct type *type)
2562 {
2563 struct value *v;
2564 const gdb_byte *src; /* First byte containing data to unpack */
2565 gdb_byte *unpacked;
2566 const int is_scalar = is_scalar_type (type);
2567 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2568 gdb::byte_vector staging;
2569
2570 type = ada_check_typedef (type);
2571
2572 if (obj == NULL)
2573 src = valaddr + offset;
2574 else
2575 src = value_contents (obj) + offset;
2576
2577 if (is_dynamic_type (type))
2578 {
2579 /* The length of TYPE might by dynamic, so we need to resolve
2580 TYPE in order to know its actual size, which we then use
2581 to create the contents buffer of the value we return.
2582 The difficulty is that the data containing our object is
2583 packed, and therefore maybe not at a byte boundary. So, what
2584 we do, is unpack the data into a byte-aligned buffer, and then
2585 use that buffer as our object's value for resolving the type. */
2586 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2587 staging.resize (staging_len);
2588
2589 ada_unpack_from_contents (src, bit_offset, bit_size,
2590 staging.data (), staging.size (),
2591 is_big_endian, has_negatives (type),
2592 is_scalar);
2593 type = resolve_dynamic_type (type, staging.data (), 0);
2594 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 {
2596 /* This happens when the length of the object is dynamic,
2597 and is actually smaller than the space reserved for it.
2598 For instance, in an array of variant records, the bit_size
2599 we're given is the array stride, which is constant and
2600 normally equal to the maximum size of its element.
2601 But, in reality, each element only actually spans a portion
2602 of that stride. */
2603 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2604 }
2605 }
2606
2607 if (obj == NULL)
2608 {
2609 v = allocate_value (type);
2610 src = valaddr + offset;
2611 }
2612 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 {
2614 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2615 gdb_byte *buf;
2616
2617 v = value_at (type, value_address (obj) + offset);
2618 buf = (gdb_byte *) alloca (src_len);
2619 read_memory (value_address (v), buf, src_len);
2620 src = buf;
2621 }
2622 else
2623 {
2624 v = allocate_value (type);
2625 src = value_contents (obj) + offset;
2626 }
2627
2628 if (obj != NULL)
2629 {
2630 long new_offset = offset;
2631
2632 set_value_component_location (v, obj);
2633 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2634 set_value_bitsize (v, bit_size);
2635 if (value_bitpos (v) >= HOST_CHAR_BIT)
2636 {
2637 ++new_offset;
2638 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 }
2640 set_value_offset (v, new_offset);
2641
2642 /* Also set the parent value. This is needed when trying to
2643 assign a new value (in inferior memory). */
2644 set_value_parent (v, obj);
2645 }
2646 else
2647 set_value_bitsize (v, bit_size);
2648 unpacked = value_contents_writeable (v);
2649
2650 if (bit_size == 0)
2651 {
2652 memset (unpacked, 0, TYPE_LENGTH (type));
2653 return v;
2654 }
2655
2656 if (staging.size () == TYPE_LENGTH (type))
2657 {
2658 /* Small short-cut: If we've unpacked the data into a buffer
2659 of the same size as TYPE's length, then we can reuse that,
2660 instead of doing the unpacking again. */
2661 memcpy (unpacked, staging.data (), staging.size ());
2662 }
2663 else
2664 ada_unpack_from_contents (src, bit_offset, bit_size,
2665 unpacked, TYPE_LENGTH (type),
2666 is_big_endian, has_negatives (type), is_scalar);
2667
2668 return v;
2669 }
2670
2671 /* Store the contents of FROMVAL into the location of TOVAL.
2672 Return a new value with the location of TOVAL and contents of
2673 FROMVAL. Handles assignment into packed fields that have
2674 floating-point or non-scalar types. */
2675
2676 static struct value *
2677 ada_value_assign (struct value *toval, struct value *fromval)
2678 {
2679 struct type *type = value_type (toval);
2680 int bits = value_bitsize (toval);
2681
2682 toval = ada_coerce_ref (toval);
2683 fromval = ada_coerce_ref (fromval);
2684
2685 if (ada_is_direct_array_type (value_type (toval)))
2686 toval = ada_coerce_to_simple_array (toval);
2687 if (ada_is_direct_array_type (value_type (fromval)))
2688 fromval = ada_coerce_to_simple_array (fromval);
2689
2690 if (!deprecated_value_modifiable (toval))
2691 error (_("Left operand of assignment is not a modifiable lvalue."));
2692
2693 if (VALUE_LVAL (toval) == lval_memory
2694 && bits > 0
2695 && (TYPE_CODE (type) == TYPE_CODE_FLT
2696 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2697 {
2698 int len = (value_bitpos (toval)
2699 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2700 int from_size;
2701 gdb_byte *buffer = (gdb_byte *) alloca (len);
2702 struct value *val;
2703 CORE_ADDR to_addr = value_address (toval);
2704
2705 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2706 fromval = value_cast (type, fromval);
2707
2708 read_memory (to_addr, buffer, len);
2709 from_size = value_bitsize (fromval);
2710 if (from_size == 0)
2711 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2712 if (gdbarch_bits_big_endian (get_type_arch (type)))
2713 copy_bitwise (buffer, value_bitpos (toval),
2714 value_contents (fromval), from_size - bits, bits, 1);
2715 else
2716 copy_bitwise (buffer, value_bitpos (toval),
2717 value_contents (fromval), 0, bits, 0);
2718 write_memory_with_notification (to_addr, buffer, len);
2719
2720 val = value_copy (toval);
2721 memcpy (value_contents_raw (val), value_contents (fromval),
2722 TYPE_LENGTH (type));
2723 deprecated_set_value_type (val, type);
2724
2725 return val;
2726 }
2727
2728 return value_assign (toval, fromval);
2729 }
2730
2731
2732 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2733 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2734 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2735 COMPONENT, and not the inferior's memory. The current contents
2736 of COMPONENT are ignored.
2737
2738 Although not part of the initial design, this function also works
2739 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2740 had a null address, and COMPONENT had an address which is equal to
2741 its offset inside CONTAINER. */
2742
2743 static void
2744 value_assign_to_component (struct value *container, struct value *component,
2745 struct value *val)
2746 {
2747 LONGEST offset_in_container =
2748 (LONGEST) (value_address (component) - value_address (container));
2749 int bit_offset_in_container =
2750 value_bitpos (component) - value_bitpos (container);
2751 int bits;
2752
2753 val = value_cast (value_type (component), val);
2754
2755 if (value_bitsize (component) == 0)
2756 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 else
2758 bits = value_bitsize (component);
2759
2760 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2761 {
2762 int src_offset;
2763
2764 if (is_scalar_type (check_typedef (value_type (component))))
2765 src_offset
2766 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2767 else
2768 src_offset = 0;
2769 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2770 value_bitpos (container) + bit_offset_in_container,
2771 value_contents (val), src_offset, bits, 1);
2772 }
2773 else
2774 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2775 value_bitpos (container) + bit_offset_in_container,
2776 value_contents (val), 0, bits, 0);
2777 }
2778
2779 /* Determine if TYPE is an access to an unconstrained array. */
2780
2781 bool
2782 ada_is_access_to_unconstrained_array (struct type *type)
2783 {
2784 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2785 && is_thick_pntr (ada_typedef_target_type (type)));
2786 }
2787
2788 /* The value of the element of array ARR at the ARITY indices given in IND.
2789 ARR may be either a simple array, GNAT array descriptor, or pointer
2790 thereto. */
2791
2792 struct value *
2793 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2794 {
2795 int k;
2796 struct value *elt;
2797 struct type *elt_type;
2798
2799 elt = ada_coerce_to_simple_array (arr);
2800
2801 elt_type = ada_check_typedef (value_type (elt));
2802 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2803 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2804 return value_subscript_packed (elt, arity, ind);
2805
2806 for (k = 0; k < arity; k += 1)
2807 {
2808 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809
2810 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2811 error (_("too many subscripts (%d expected)"), k);
2812
2813 elt = value_subscript (elt, pos_atr (ind[k]));
2814
2815 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2816 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 {
2818 /* The element is a typedef to an unconstrained array,
2819 except that the value_subscript call stripped the
2820 typedef layer. The typedef layer is GNAT's way to
2821 specify that the element is, at the source level, an
2822 access to the unconstrained array, rather than the
2823 unconstrained array. So, we need to restore that
2824 typedef layer, which we can do by forcing the element's
2825 type back to its original type. Otherwise, the returned
2826 value is going to be printed as the array, rather
2827 than as an access. Another symptom of the same issue
2828 would be that an expression trying to dereference the
2829 element would also be improperly rejected. */
2830 deprecated_set_value_type (elt, saved_elt_type);
2831 }
2832
2833 elt_type = ada_check_typedef (value_type (elt));
2834 }
2835
2836 return elt;
2837 }
2838
2839 /* Assuming ARR is a pointer to a GDB array, the value of the element
2840 of *ARR at the ARITY indices given in IND.
2841 Does not read the entire array into memory.
2842
2843 Note: Unlike what one would expect, this function is used instead of
2844 ada_value_subscript for basically all non-packed array types. The reason
2845 for this is that a side effect of doing our own pointer arithmetics instead
2846 of relying on value_subscript is that there is no implicit typedef peeling.
2847 This is important for arrays of array accesses, where it allows us to
2848 preserve the fact that the array's element is an array access, where the
2849 access part os encoded in a typedef layer. */
2850
2851 static struct value *
2852 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2853 {
2854 int k;
2855 struct value *array_ind = ada_value_ind (arr);
2856 struct type *type
2857 = check_typedef (value_enclosing_type (array_ind));
2858
2859 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2860 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2861 return value_subscript_packed (array_ind, arity, ind);
2862
2863 for (k = 0; k < arity; k += 1)
2864 {
2865 LONGEST lwb, upb;
2866 struct value *lwb_value;
2867
2868 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2869 error (_("too many subscripts (%d expected)"), k);
2870 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2871 value_copy (arr));
2872 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2873 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2874 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2875 type = TYPE_TARGET_TYPE (type);
2876 }
2877
2878 return value_ind (arr);
2879 }
2880
2881 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2882 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2883 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2884 this array is LOW, as per Ada rules. */
2885 static struct value *
2886 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2887 int low, int high)
2888 {
2889 struct type *type0 = ada_check_typedef (type);
2890 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2891 struct type *index_type
2892 = create_static_range_type (NULL, base_index_type, low, high);
2893 struct type *slice_type = create_array_type_with_stride
2894 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2895 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2896 TYPE_FIELD_BITSIZE (type0, 0));
2897 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2898 LONGEST base_low_pos, low_pos;
2899 CORE_ADDR base;
2900
2901 if (!discrete_position (base_index_type, low, &low_pos)
2902 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 {
2904 warning (_("unable to get positions in slice, use bounds instead"));
2905 low_pos = low;
2906 base_low_pos = base_low;
2907 }
2908
2909 base = value_as_address (array_ptr)
2910 + ((low_pos - base_low_pos)
2911 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2912 return value_at_lazy (slice_type, base);
2913 }
2914
2915
2916 static struct value *
2917 ada_value_slice (struct value *array, int low, int high)
2918 {
2919 struct type *type = ada_check_typedef (value_type (array));
2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2921 struct type *index_type
2922 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2923 struct type *slice_type = create_array_type_with_stride
2924 (NULL, TYPE_TARGET_TYPE (type), index_type,
2925 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2926 TYPE_FIELD_BITSIZE (type, 0));
2927 LONGEST low_pos, high_pos;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, high, &high_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 high_pos = high;
2935 }
2936
2937 return value_cast (slice_type,
2938 value_slice (array, low, high_pos - low_pos + 1));
2939 }
2940
2941 /* If type is a record type in the form of a standard GNAT array
2942 descriptor, returns the number of dimensions for type. If arr is a
2943 simple array, returns the number of "array of"s that prefix its
2944 type designation. Otherwise, returns 0. */
2945
2946 int
2947 ada_array_arity (struct type *type)
2948 {
2949 int arity;
2950
2951 if (type == NULL)
2952 return 0;
2953
2954 type = desc_base_type (type);
2955
2956 arity = 0;
2957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2958 return desc_arity (desc_bounds_type (type));
2959 else
2960 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2961 {
2962 arity += 1;
2963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2964 }
2965
2966 return arity;
2967 }
2968
2969 /* If TYPE is a record type in the form of a standard GNAT array
2970 descriptor or a simple array type, returns the element type for
2971 TYPE after indexing by NINDICES indices, or by all indices if
2972 NINDICES is -1. Otherwise, returns NULL. */
2973
2974 struct type *
2975 ada_array_element_type (struct type *type, int nindices)
2976 {
2977 type = desc_base_type (type);
2978
2979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2980 {
2981 int k;
2982 struct type *p_array_type;
2983
2984 p_array_type = desc_data_target_type (type);
2985
2986 k = ada_array_arity (type);
2987 if (k == 0)
2988 return NULL;
2989
2990 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2991 if (nindices >= 0 && k > nindices)
2992 k = nindices;
2993 while (k > 0 && p_array_type != NULL)
2994 {
2995 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2996 k -= 1;
2997 }
2998 return p_array_type;
2999 }
3000 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 {
3002 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3003 {
3004 type = TYPE_TARGET_TYPE (type);
3005 nindices -= 1;
3006 }
3007 return type;
3008 }
3009
3010 return NULL;
3011 }
3012
3013 /* The type of nth index in arrays of given type (n numbering from 1).
3014 Does not examine memory. Throws an error if N is invalid or TYPE
3015 is not an array type. NAME is the name of the Ada attribute being
3016 evaluated ('range, 'first, 'last, or 'length); it is used in building
3017 the error message. */
3018
3019 static struct type *
3020 ada_index_type (struct type *type, int n, const char *name)
3021 {
3022 struct type *result_type;
3023
3024 type = desc_base_type (type);
3025
3026 if (n < 0 || n > ada_array_arity (type))
3027 error (_("invalid dimension number to '%s"), name);
3028
3029 if (ada_is_simple_array_type (type))
3030 {
3031 int i;
3032
3033 for (i = 1; i < n; i += 1)
3034 type = TYPE_TARGET_TYPE (type);
3035 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3036 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3037 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3038 perhaps stabsread.c would make more sense. */
3039 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3040 result_type = NULL;
3041 }
3042 else
3043 {
3044 result_type = desc_index_type (desc_bounds_type (type), n);
3045 if (result_type == NULL)
3046 error (_("attempt to take bound of something that is not an array"));
3047 }
3048
3049 return result_type;
3050 }
3051
3052 /* Given that arr is an array type, returns the lower bound of the
3053 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3054 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3055 array-descriptor type. It works for other arrays with bounds supplied
3056 by run-time quantities other than discriminants. */
3057
3058 static LONGEST
3059 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3060 {
3061 struct type *type, *index_type_desc, *index_type;
3062 int i;
3063
3064 gdb_assert (which == 0 || which == 1);
3065
3066 if (ada_is_constrained_packed_array_type (arr_type))
3067 arr_type = decode_constrained_packed_array_type (arr_type);
3068
3069 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3070 return (LONGEST) - which;
3071
3072 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3073 type = TYPE_TARGET_TYPE (arr_type);
3074 else
3075 type = arr_type;
3076
3077 if (TYPE_FIXED_INSTANCE (type))
3078 {
3079 /* The array has already been fixed, so we do not need to
3080 check the parallel ___XA type again. That encoding has
3081 already been applied, so ignore it now. */
3082 index_type_desc = NULL;
3083 }
3084 else
3085 {
3086 index_type_desc = ada_find_parallel_type (type, "___XA");
3087 ada_fixup_array_indexes_type (index_type_desc);
3088 }
3089
3090 if (index_type_desc != NULL)
3091 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3092 NULL);
3093 else
3094 {
3095 struct type *elt_type = check_typedef (type);
3096
3097 for (i = 1; i < n; i++)
3098 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099
3100 index_type = TYPE_INDEX_TYPE (elt_type);
3101 }
3102
3103 return
3104 (LONGEST) (which == 0
3105 ? ada_discrete_type_low_bound (index_type)
3106 : ada_discrete_type_high_bound (index_type));
3107 }
3108
3109 /* Given that arr is an array value, returns the lower bound of the
3110 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3111 WHICH is 1. This routine will also work for arrays with bounds
3112 supplied by run-time quantities other than discriminants. */
3113
3114 static LONGEST
3115 ada_array_bound (struct value *arr, int n, int which)
3116 {
3117 struct type *arr_type;
3118
3119 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3120 arr = value_ind (arr);
3121 arr_type = value_enclosing_type (arr);
3122
3123 if (ada_is_constrained_packed_array_type (arr_type))
3124 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3125 else if (ada_is_simple_array_type (arr_type))
3126 return ada_array_bound_from_type (arr_type, n, which);
3127 else
3128 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3129 }
3130
3131 /* Given that arr is an array value, returns the length of the
3132 nth index. This routine will also work for arrays with bounds
3133 supplied by run-time quantities other than discriminants.
3134 Does not work for arrays indexed by enumeration types with representation
3135 clauses at the moment. */
3136
3137 static LONGEST
3138 ada_array_length (struct value *arr, int n)
3139 {
3140 struct type *arr_type, *index_type;
3141 int low, high;
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
3146
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_length (decode_constrained_packed_array (arr), n);
3149
3150 if (ada_is_simple_array_type (arr_type))
3151 {
3152 low = ada_array_bound_from_type (arr_type, n, 0);
3153 high = ada_array_bound_from_type (arr_type, n, 1);
3154 }
3155 else
3156 {
3157 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3158 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3159 }
3160
3161 arr_type = check_typedef (arr_type);
3162 index_type = ada_index_type (arr_type, n, "length");
3163 if (index_type != NULL)
3164 {
3165 struct type *base_type;
3166 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3167 base_type = TYPE_TARGET_TYPE (index_type);
3168 else
3169 base_type = index_type;
3170
3171 low = pos_atr (value_from_longest (base_type, low));
3172 high = pos_atr (value_from_longest (base_type, high));
3173 }
3174 return high - low + 1;
3175 }
3176
3177 /* An array whose type is that of ARR_TYPE (an array type), with
3178 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3179 less than LOW, then LOW-1 is used. */
3180
3181 static struct value *
3182 empty_array (struct type *arr_type, int low, int high)
3183 {
3184 struct type *arr_type0 = ada_check_typedef (arr_type);
3185 struct type *index_type
3186 = create_static_range_type
3187 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3188 high < low ? low - 1 : high);
3189 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3190
3191 return allocate_value (create_array_type (NULL, elt_type, index_type));
3192 }
3193 \f
3194
3195 /* Name resolution */
3196
3197 /* The "decoded" name for the user-definable Ada operator corresponding
3198 to OP. */
3199
3200 static const char *
3201 ada_decoded_op_name (enum exp_opcode op)
3202 {
3203 int i;
3204
3205 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3206 {
3207 if (ada_opname_table[i].op == op)
3208 return ada_opname_table[i].decoded;
3209 }
3210 error (_("Could not find operator name for opcode"));
3211 }
3212
3213
3214 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3215 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3216 undefined namespace) and converts operators that are
3217 user-defined into appropriate function calls. If CONTEXT_TYPE is
3218 non-null, it provides a preferred result type [at the moment, only
3219 type void has any effect---causing procedures to be preferred over
3220 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3221 return type is preferred. May change (expand) *EXP. */
3222
3223 static void
3224 resolve (expression_up *expp, int void_context_p, int parse_completion,
3225 innermost_block_tracker *tracker)
3226 {
3227 struct type *context_type = NULL;
3228 int pc = 0;
3229
3230 if (void_context_p)
3231 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3232
3233 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3234 }
3235
3236 /* Resolve the operator of the subexpression beginning at
3237 position *POS of *EXPP. "Resolving" consists of replacing
3238 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3239 with their resolutions, replacing built-in operators with
3240 function calls to user-defined operators, where appropriate, and,
3241 when DEPROCEDURE_P is non-zero, converting function-valued variables
3242 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3243 are as in ada_resolve, above. */
3244
3245 static struct value *
3246 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3247 struct type *context_type, int parse_completion,
3248 innermost_block_tracker *tracker)
3249 {
3250 int pc = *pos;
3251 int i;
3252 struct expression *exp; /* Convenience: == *expp. */
3253 enum exp_opcode op = (*expp)->elts[pc].opcode;
3254 struct value **argvec; /* Vector of operand types (alloca'ed). */
3255 int nargs; /* Number of operands. */
3256 int oplen;
3257
3258 argvec = NULL;
3259 nargs = 0;
3260 exp = expp->get ();
3261
3262 /* Pass one: resolve operands, saving their types and updating *pos,
3263 if needed. */
3264 switch (op)
3265 {
3266 case OP_FUNCALL:
3267 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3268 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3269 *pos += 7;
3270 else
3271 {
3272 *pos += 3;
3273 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3274 }
3275 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3276 break;
3277
3278 case UNOP_ADDR:
3279 *pos += 1;
3280 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3281 break;
3282
3283 case UNOP_QUAL:
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3286 parse_completion, tracker);
3287 break;
3288
3289 case OP_ATR_MODULUS:
3290 case OP_ATR_SIZE:
3291 case OP_ATR_TAG:
3292 case OP_ATR_FIRST:
3293 case OP_ATR_LAST:
3294 case OP_ATR_LENGTH:
3295 case OP_ATR_POS:
3296 case OP_ATR_VAL:
3297 case OP_ATR_MIN:
3298 case OP_ATR_MAX:
3299 case TERNOP_IN_RANGE:
3300 case BINOP_IN_BOUNDS:
3301 case UNOP_IN_RANGE:
3302 case OP_AGGREGATE:
3303 case OP_OTHERS:
3304 case OP_CHOICES:
3305 case OP_POSITIONAL:
3306 case OP_DISCRETE_RANGE:
3307 case OP_NAME:
3308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3309 *pos += oplen;
3310 break;
3311
3312 case BINOP_ASSIGN:
3313 {
3314 struct value *arg1;
3315
3316 *pos += 1;
3317 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3318 if (arg1 == NULL)
3319 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3320 else
3321 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3322 tracker);
3323 break;
3324 }
3325
3326 case UNOP_CAST:
3327 *pos += 3;
3328 nargs = 1;
3329 break;
3330
3331 case BINOP_ADD:
3332 case BINOP_SUB:
3333 case BINOP_MUL:
3334 case BINOP_DIV:
3335 case BINOP_REM:
3336 case BINOP_MOD:
3337 case BINOP_EXP:
3338 case BINOP_CONCAT:
3339 case BINOP_LOGICAL_AND:
3340 case BINOP_LOGICAL_OR:
3341 case BINOP_BITWISE_AND:
3342 case BINOP_BITWISE_IOR:
3343 case BINOP_BITWISE_XOR:
3344
3345 case BINOP_EQUAL:
3346 case BINOP_NOTEQUAL:
3347 case BINOP_LESS:
3348 case BINOP_GTR:
3349 case BINOP_LEQ:
3350 case BINOP_GEQ:
3351
3352 case BINOP_REPEAT:
3353 case BINOP_SUBSCRIPT:
3354 case BINOP_COMMA:
3355 *pos += 1;
3356 nargs = 2;
3357 break;
3358
3359 case UNOP_NEG:
3360 case UNOP_PLUS:
3361 case UNOP_LOGICAL_NOT:
3362 case UNOP_ABS:
3363 case UNOP_IND:
3364 *pos += 1;
3365 nargs = 1;
3366 break;
3367
3368 case OP_LONG:
3369 case OP_FLOAT:
3370 case OP_VAR_VALUE:
3371 case OP_VAR_MSYM_VALUE:
3372 *pos += 4;
3373 break;
3374
3375 case OP_TYPE:
3376 case OP_BOOL:
3377 case OP_LAST:
3378 case OP_INTERNALVAR:
3379 *pos += 3;
3380 break;
3381
3382 case UNOP_MEMVAL:
3383 *pos += 3;
3384 nargs = 1;
3385 break;
3386
3387 case OP_REGISTER:
3388 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 break;
3390
3391 case STRUCTOP_STRUCT:
3392 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3393 nargs = 1;
3394 break;
3395
3396 case TERNOP_SLICE:
3397 *pos += 1;
3398 nargs = 3;
3399 break;
3400
3401 case OP_STRING:
3402 break;
3403
3404 default:
3405 error (_("Unexpected operator during name resolution"));
3406 }
3407
3408 argvec = XALLOCAVEC (struct value *, nargs + 1);
3409 for (i = 0; i < nargs; i += 1)
3410 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3411 tracker);
3412 argvec[i] = NULL;
3413 exp = expp->get ();
3414
3415 /* Pass two: perform any resolution on principal operator. */
3416 switch (op)
3417 {
3418 default:
3419 break;
3420
3421 case OP_VAR_VALUE:
3422 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3423 {
3424 std::vector<struct block_symbol> candidates;
3425 int n_candidates;
3426
3427 n_candidates =
3428 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3429 (exp->elts[pc + 2].symbol),
3430 exp->elts[pc + 1].block, VAR_DOMAIN,
3431 &candidates);
3432
3433 if (n_candidates > 1)
3434 {
3435 /* Types tend to get re-introduced locally, so if there
3436 are any local symbols that are not types, first filter
3437 out all types. */
3438 int j;
3439 for (j = 0; j < n_candidates; j += 1)
3440 switch (SYMBOL_CLASS (candidates[j].symbol))
3441 {
3442 case LOC_REGISTER:
3443 case LOC_ARG:
3444 case LOC_REF_ARG:
3445 case LOC_REGPARM_ADDR:
3446 case LOC_LOCAL:
3447 case LOC_COMPUTED:
3448 goto FoundNonType;
3449 default:
3450 break;
3451 }
3452 FoundNonType:
3453 if (j < n_candidates)
3454 {
3455 j = 0;
3456 while (j < n_candidates)
3457 {
3458 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3459 {
3460 candidates[j] = candidates[n_candidates - 1];
3461 n_candidates -= 1;
3462 }
3463 else
3464 j += 1;
3465 }
3466 }
3467 }
3468
3469 if (n_candidates == 0)
3470 error (_("No definition found for %s"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 else if (n_candidates == 1)
3473 i = 0;
3474 else if (deprocedure_p
3475 && !is_nonfunction (candidates.data (), n_candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates.data (), n_candidates, NULL, 0,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 }
3485 else
3486 {
3487 printf_filtered (_("Multiple matches for %s\n"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 user_select_syms (candidates.data (), n_candidates, 1);
3490 i = 0;
3491 }
3492
3493 exp->elts[pc + 1].block = candidates[i].block;
3494 exp->elts[pc + 2].symbol = candidates[i].symbol;
3495 tracker->update (candidates[i]);
3496 }
3497
3498 if (deprocedure_p
3499 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3500 == TYPE_CODE_FUNC))
3501 {
3502 replace_operator_with_call (expp, pc, 0, 4,
3503 exp->elts[pc + 2].symbol,
3504 exp->elts[pc + 1].block);
3505 exp = expp->get ();
3506 }
3507 break;
3508
3509 case OP_FUNCALL:
3510 {
3511 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3512 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3513 {
3514 std::vector<struct block_symbol> candidates;
3515 int n_candidates;
3516
3517 n_candidates =
3518 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3519 (exp->elts[pc + 5].symbol),
3520 exp->elts[pc + 4].block, VAR_DOMAIN,
3521 &candidates);
3522
3523 if (n_candidates == 1)
3524 i = 0;
3525 else
3526 {
3527 i = ada_resolve_function
3528 (candidates.data (), n_candidates,
3529 argvec, nargs,
3530 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3531 context_type, parse_completion);
3532 if (i < 0)
3533 error (_("Could not find a match for %s"),
3534 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3535 }
3536
3537 exp->elts[pc + 4].block = candidates[i].block;
3538 exp->elts[pc + 5].symbol = candidates[i].symbol;
3539 tracker->update (candidates[i]);
3540 }
3541 }
3542 break;
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_CONCAT:
3550 case BINOP_BITWISE_AND:
3551 case BINOP_BITWISE_IOR:
3552 case BINOP_BITWISE_XOR:
3553 case BINOP_EQUAL:
3554 case BINOP_NOTEQUAL:
3555 case BINOP_LESS:
3556 case BINOP_GTR:
3557 case BINOP_LEQ:
3558 case BINOP_GEQ:
3559 case BINOP_EXP:
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 if (possible_user_operator_p (op, argvec))
3565 {
3566 std::vector<struct block_symbol> candidates;
3567 int n_candidates;
3568
3569 n_candidates =
3570 ada_lookup_symbol_list (ada_decoded_op_name (op),
3571 NULL, VAR_DOMAIN,
3572 &candidates);
3573
3574 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3575 nargs, ada_decoded_op_name (op), NULL,
3576 parse_completion);
3577 if (i < 0)
3578 break;
3579
3580 replace_operator_with_call (expp, pc, nargs, 1,
3581 candidates[i].symbol,
3582 candidates[i].block);
3583 exp = expp->get ();
3584 }
3585 break;
3586
3587 case OP_TYPE:
3588 case OP_REGISTER:
3589 return NULL;
3590 }
3591
3592 *pos = pc;
3593 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3594 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3595 exp->elts[pc + 1].objfile,
3596 exp->elts[pc + 2].msymbol);
3597 else
3598 return evaluate_subexp_type (exp, pos);
3599 }
3600
3601 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3602 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3603 a non-pointer. */
3604 /* The term "match" here is rather loose. The match is heuristic and
3605 liberal. */
3606
3607 static int
3608 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3609 {
3610 ftype = ada_check_typedef (ftype);
3611 atype = ada_check_typedef (atype);
3612
3613 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3614 ftype = TYPE_TARGET_TYPE (ftype);
3615 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3616 atype = TYPE_TARGET_TYPE (atype);
3617
3618 switch (TYPE_CODE (ftype))
3619 {
3620 default:
3621 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3622 case TYPE_CODE_PTR:
3623 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3624 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3625 TYPE_TARGET_TYPE (atype), 0);
3626 else
3627 return (may_deref
3628 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3629 case TYPE_CODE_INT:
3630 case TYPE_CODE_ENUM:
3631 case TYPE_CODE_RANGE:
3632 switch (TYPE_CODE (atype))
3633 {
3634 case TYPE_CODE_INT:
3635 case TYPE_CODE_ENUM:
3636 case TYPE_CODE_RANGE:
3637 return 1;
3638 default:
3639 return 0;
3640 }
3641
3642 case TYPE_CODE_ARRAY:
3643 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3644 || ada_is_array_descriptor_type (atype));
3645
3646 case TYPE_CODE_STRUCT:
3647 if (ada_is_array_descriptor_type (ftype))
3648 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3649 || ada_is_array_descriptor_type (atype));
3650 else
3651 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3652 && !ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_UNION:
3655 case TYPE_CODE_FLT:
3656 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3657 }
3658 }
3659
3660 /* Return non-zero if the formals of FUNC "sufficiently match" the
3661 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3662 may also be an enumeral, in which case it is treated as a 0-
3663 argument function. */
3664
3665 static int
3666 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3667 {
3668 int i;
3669 struct type *func_type = SYMBOL_TYPE (func);
3670
3671 if (SYMBOL_CLASS (func) == LOC_CONST
3672 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3673 return (n_actuals == 0);
3674 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3675 return 0;
3676
3677 if (TYPE_NFIELDS (func_type) != n_actuals)
3678 return 0;
3679
3680 for (i = 0; i < n_actuals; i += 1)
3681 {
3682 if (actuals[i] == NULL)
3683 return 0;
3684 else
3685 {
3686 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3687 i));
3688 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3689
3690 if (!ada_type_match (ftype, atype, 1))
3691 return 0;
3692 }
3693 }
3694 return 1;
3695 }
3696
3697 /* False iff function type FUNC_TYPE definitely does not produce a value
3698 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3699 FUNC_TYPE is not a valid function type with a non-null return type
3700 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3701
3702 static int
3703 return_match (struct type *func_type, struct type *context_type)
3704 {
3705 struct type *return_type;
3706
3707 if (func_type == NULL)
3708 return 1;
3709
3710 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3711 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3712 else
3713 return_type = get_base_type (func_type);
3714 if (return_type == NULL)
3715 return 1;
3716
3717 context_type = get_base_type (context_type);
3718
3719 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3720 return context_type == NULL || return_type == context_type;
3721 else if (context_type == NULL)
3722 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3723 else
3724 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3725 }
3726
3727
3728 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3729 function (if any) that matches the types of the NARGS arguments in
3730 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3731 that returns that type, then eliminate matches that don't. If
3732 CONTEXT_TYPE is void and there is at least one match that does not
3733 return void, eliminate all matches that do.
3734
3735 Asks the user if there is more than one match remaining. Returns -1
3736 if there is no such symbol or none is selected. NAME is used
3737 solely for messages. May re-arrange and modify SYMS in
3738 the process; the index returned is for the modified vector. */
3739
3740 static int
3741 ada_resolve_function (struct block_symbol syms[],
3742 int nsyms, struct value **args, int nargs,
3743 const char *name, struct type *context_type,
3744 int parse_completion)
3745 {
3746 int fallback;
3747 int k;
3748 int m; /* Number of hits */
3749
3750 m = 0;
3751 /* In the first pass of the loop, we only accept functions matching
3752 context_type. If none are found, we add a second pass of the loop
3753 where every function is accepted. */
3754 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3755 {
3756 for (k = 0; k < nsyms; k += 1)
3757 {
3758 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3759
3760 if (ada_args_match (syms[k].symbol, args, nargs)
3761 && (fallback || return_match (type, context_type)))
3762 {
3763 syms[m] = syms[k];
3764 m += 1;
3765 }
3766 }
3767 }
3768
3769 /* If we got multiple matches, ask the user which one to use. Don't do this
3770 interactive thing during completion, though, as the purpose of the
3771 completion is providing a list of all possible matches. Prompting the
3772 user to filter it down would be completely unexpected in this case. */
3773 if (m == 0)
3774 return -1;
3775 else if (m > 1 && !parse_completion)
3776 {
3777 printf_filtered (_("Multiple matches for %s\n"), name);
3778 user_select_syms (syms, m, 1);
3779 return 0;
3780 }
3781 return 0;
3782 }
3783
3784 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3785 in a listing of choices during disambiguation (see sort_choices, below).
3786 The idea is that overloadings of a subprogram name from the
3787 same package should sort in their source order. We settle for ordering
3788 such symbols by their trailing number (__N or $N). */
3789
3790 static int
3791 encoded_ordered_before (const char *N0, const char *N1)
3792 {
3793 if (N1 == NULL)
3794 return 0;
3795 else if (N0 == NULL)
3796 return 1;
3797 else
3798 {
3799 int k0, k1;
3800
3801 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3802 ;
3803 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3804 ;
3805 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3806 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3807 {
3808 int n0, n1;
3809
3810 n0 = k0;
3811 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3812 n0 -= 1;
3813 n1 = k1;
3814 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3815 n1 -= 1;
3816 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3817 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3818 }
3819 return (strcmp (N0, N1) < 0);
3820 }
3821 }
3822
3823 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3824 encoded names. */
3825
3826 static void
3827 sort_choices (struct block_symbol syms[], int nsyms)
3828 {
3829 int i;
3830
3831 for (i = 1; i < nsyms; i += 1)
3832 {
3833 struct block_symbol sym = syms[i];
3834 int j;
3835
3836 for (j = i - 1; j >= 0; j -= 1)
3837 {
3838 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3839 SYMBOL_LINKAGE_NAME (sym.symbol)))
3840 break;
3841 syms[j + 1] = syms[j];
3842 }
3843 syms[j + 1] = sym;
3844 }
3845 }
3846
3847 /* Whether GDB should display formals and return types for functions in the
3848 overloads selection menu. */
3849 static int print_signatures = 1;
3850
3851 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3852 all but functions, the signature is just the name of the symbol. For
3853 functions, this is the name of the function, the list of types for formals
3854 and the return type (if any). */
3855
3856 static void
3857 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3858 const struct type_print_options *flags)
3859 {
3860 struct type *type = SYMBOL_TYPE (sym);
3861
3862 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3863 if (!print_signatures
3864 || type == NULL
3865 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3866 return;
3867
3868 if (TYPE_NFIELDS (type) > 0)
3869 {
3870 int i;
3871
3872 fprintf_filtered (stream, " (");
3873 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3874 {
3875 if (i > 0)
3876 fprintf_filtered (stream, "; ");
3877 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3878 flags);
3879 }
3880 fprintf_filtered (stream, ")");
3881 }
3882 if (TYPE_TARGET_TYPE (type) != NULL
3883 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3884 {
3885 fprintf_filtered (stream, " return ");
3886 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3887 }
3888 }
3889
3890 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3891 by asking the user (if necessary), returning the number selected,
3892 and setting the first elements of SYMS items. Error if no symbols
3893 selected. */
3894
3895 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3896 to be re-integrated one of these days. */
3897
3898 int
3899 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3900 {
3901 int i;
3902 int *chosen = XALLOCAVEC (int , nsyms);
3903 int n_chosen;
3904 int first_choice = (max_results == 1) ? 1 : 2;
3905 const char *select_mode = multiple_symbols_select_mode ();
3906
3907 if (max_results < 1)
3908 error (_("Request to select 0 symbols!"));
3909 if (nsyms <= 1)
3910 return nsyms;
3911
3912 if (select_mode == multiple_symbols_cancel)
3913 error (_("\
3914 canceled because the command is ambiguous\n\
3915 See set/show multiple-symbol."));
3916
3917 /* If select_mode is "all", then return all possible symbols.
3918 Only do that if more than one symbol can be selected, of course.
3919 Otherwise, display the menu as usual. */
3920 if (select_mode == multiple_symbols_all && max_results > 1)
3921 return nsyms;
3922
3923 printf_filtered (_("[0] cancel\n"));
3924 if (max_results > 1)
3925 printf_filtered (_("[1] all\n"));
3926
3927 sort_choices (syms, nsyms);
3928
3929 for (i = 0; i < nsyms; i += 1)
3930 {
3931 if (syms[i].symbol == NULL)
3932 continue;
3933
3934 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3935 {
3936 struct symtab_and_line sal =
3937 find_function_start_sal (syms[i].symbol, 1);
3938
3939 printf_filtered ("[%d] ", i + first_choice);
3940 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3941 &type_print_raw_options);
3942 if (sal.symtab == NULL)
3943 printf_filtered (_(" at <no source file available>:%d\n"),
3944 sal.line);
3945 else
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (sal.symtab),
3948 sal.line);
3949 continue;
3950 }
3951 else
3952 {
3953 int is_enumeral =
3954 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3955 && SYMBOL_TYPE (syms[i].symbol) != NULL
3956 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3957 struct symtab *symtab = NULL;
3958
3959 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3960 symtab = symbol_symtab (syms[i].symbol);
3961
3962 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3963 {
3964 printf_filtered ("[%d] ", i + first_choice);
3965 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3966 &type_print_raw_options);
3967 printf_filtered (_(" at %s:%d\n"),
3968 symtab_to_filename_for_display (symtab),
3969 SYMBOL_LINE (syms[i].symbol));
3970 }
3971 else if (is_enumeral
3972 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3973 {
3974 printf_filtered (("[%d] "), i + first_choice);
3975 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3976 gdb_stdout, -1, 0, &type_print_raw_options);
3977 printf_filtered (_("'(%s) (enumeral)\n"),
3978 SYMBOL_PRINT_NAME (syms[i].symbol));
3979 }
3980 else
3981 {
3982 printf_filtered ("[%d] ", i + first_choice);
3983 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3984 &type_print_raw_options);
3985
3986 if (symtab != NULL)
3987 printf_filtered (is_enumeral
3988 ? _(" in %s (enumeral)\n")
3989 : _(" at %s:?\n"),
3990 symtab_to_filename_for_display (symtab));
3991 else
3992 printf_filtered (is_enumeral
3993 ? _(" (enumeral)\n")
3994 : _(" at ?\n"));
3995 }
3996 }
3997 }
3998
3999 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4000 "overload-choice");
4001
4002 for (i = 0; i < n_chosen; i += 1)
4003 syms[i] = syms[chosen[i]];
4004
4005 return n_chosen;
4006 }
4007
4008 /* Read and validate a set of numeric choices from the user in the
4009 range 0 .. N_CHOICES-1. Place the results in increasing
4010 order in CHOICES[0 .. N-1], and return N.
4011
4012 The user types choices as a sequence of numbers on one line
4013 separated by blanks, encoding them as follows:
4014
4015 + A choice of 0 means to cancel the selection, throwing an error.
4016 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4017 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4018
4019 The user is not allowed to choose more than MAX_RESULTS values.
4020
4021 ANNOTATION_SUFFIX, if present, is used to annotate the input
4022 prompts (for use with the -f switch). */
4023
4024 int
4025 get_selections (int *choices, int n_choices, int max_results,
4026 int is_all_choice, const char *annotation_suffix)
4027 {
4028 char *args;
4029 const char *prompt;
4030 int n_chosen;
4031 int first_choice = is_all_choice ? 2 : 1;
4032
4033 prompt = getenv ("PS2");
4034 if (prompt == NULL)
4035 prompt = "> ";
4036
4037 args = command_line_input (prompt, annotation_suffix);
4038
4039 if (args == NULL)
4040 error_no_arg (_("one or more choice numbers"));
4041
4042 n_chosen = 0;
4043
4044 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4045 order, as given in args. Choices are validated. */
4046 while (1)
4047 {
4048 char *args2;
4049 int choice, j;
4050
4051 args = skip_spaces (args);
4052 if (*args == '\0' && n_chosen == 0)
4053 error_no_arg (_("one or more choice numbers"));
4054 else if (*args == '\0')
4055 break;
4056
4057 choice = strtol (args, &args2, 10);
4058 if (args == args2 || choice < 0
4059 || choice > n_choices + first_choice - 1)
4060 error (_("Argument must be choice number"));
4061 args = args2;
4062
4063 if (choice == 0)
4064 error (_("cancelled"));
4065
4066 if (choice < first_choice)
4067 {
4068 n_chosen = n_choices;
4069 for (j = 0; j < n_choices; j += 1)
4070 choices[j] = j;
4071 break;
4072 }
4073 choice -= first_choice;
4074
4075 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4076 {
4077 }
4078
4079 if (j < 0 || choice != choices[j])
4080 {
4081 int k;
4082
4083 for (k = n_chosen - 1; k > j; k -= 1)
4084 choices[k + 1] = choices[k];
4085 choices[j + 1] = choice;
4086 n_chosen += 1;
4087 }
4088 }
4089
4090 if (n_chosen > max_results)
4091 error (_("Select no more than %d of the above"), max_results);
4092
4093 return n_chosen;
4094 }
4095
4096 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4097 on the function identified by SYM and BLOCK, and taking NARGS
4098 arguments. Update *EXPP as needed to hold more space. */
4099
4100 static void
4101 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4102 int oplen, struct symbol *sym,
4103 const struct block *block)
4104 {
4105 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4106 symbol, -oplen for operator being replaced). */
4107 struct expression *newexp = (struct expression *)
4108 xzalloc (sizeof (struct expression)
4109 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4110 struct expression *exp = expp->get ();
4111
4112 newexp->nelts = exp->nelts + 7 - oplen;
4113 newexp->language_defn = exp->language_defn;
4114 newexp->gdbarch = exp->gdbarch;
4115 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4116 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4117 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4118
4119 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4120 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4121
4122 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4123 newexp->elts[pc + 4].block = block;
4124 newexp->elts[pc + 5].symbol = sym;
4125
4126 expp->reset (newexp);
4127 }
4128
4129 /* Type-class predicates */
4130
4131 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4132 or FLOAT). */
4133
4134 static int
4135 numeric_type_p (struct type *type)
4136 {
4137 if (type == NULL)
4138 return 0;
4139 else
4140 {
4141 switch (TYPE_CODE (type))
4142 {
4143 case TYPE_CODE_INT:
4144 case TYPE_CODE_FLT:
4145 return 1;
4146 case TYPE_CODE_RANGE:
4147 return (type == TYPE_TARGET_TYPE (type)
4148 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4149 default:
4150 return 0;
4151 }
4152 }
4153 }
4154
4155 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4156
4157 static int
4158 integer_type_p (struct type *type)
4159 {
4160 if (type == NULL)
4161 return 0;
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4165 {
4166 case TYPE_CODE_INT:
4167 return 1;
4168 case TYPE_CODE_RANGE:
4169 return (type == TYPE_TARGET_TYPE (type)
4170 || integer_type_p (TYPE_TARGET_TYPE (type)));
4171 default:
4172 return 0;
4173 }
4174 }
4175 }
4176
4177 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4178
4179 static int
4180 scalar_type_p (struct type *type)
4181 {
4182 if (type == NULL)
4183 return 0;
4184 else
4185 {
4186 switch (TYPE_CODE (type))
4187 {
4188 case TYPE_CODE_INT:
4189 case TYPE_CODE_RANGE:
4190 case TYPE_CODE_ENUM:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 default:
4194 return 0;
4195 }
4196 }
4197 }
4198
4199 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4200
4201 static int
4202 discrete_type_p (struct type *type)
4203 {
4204 if (type == NULL)
4205 return 0;
4206 else
4207 {
4208 switch (TYPE_CODE (type))
4209 {
4210 case TYPE_CODE_INT:
4211 case TYPE_CODE_RANGE:
4212 case TYPE_CODE_ENUM:
4213 case TYPE_CODE_BOOL:
4214 return 1;
4215 default:
4216 return 0;
4217 }
4218 }
4219 }
4220
4221 /* Returns non-zero if OP with operands in the vector ARGS could be
4222 a user-defined function. Errs on the side of pre-defined operators
4223 (i.e., result 0). */
4224
4225 static int
4226 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4227 {
4228 struct type *type0 =
4229 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4230 struct type *type1 =
4231 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4232
4233 if (type0 == NULL)
4234 return 0;
4235
4236 switch (op)
4237 {
4238 default:
4239 return 0;
4240
4241 case BINOP_ADD:
4242 case BINOP_SUB:
4243 case BINOP_MUL:
4244 case BINOP_DIV:
4245 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4246
4247 case BINOP_REM:
4248 case BINOP_MOD:
4249 case BINOP_BITWISE_AND:
4250 case BINOP_BITWISE_IOR:
4251 case BINOP_BITWISE_XOR:
4252 return (!(integer_type_p (type0) && integer_type_p (type1)));
4253
4254 case BINOP_EQUAL:
4255 case BINOP_NOTEQUAL:
4256 case BINOP_LESS:
4257 case BINOP_GTR:
4258 case BINOP_LEQ:
4259 case BINOP_GEQ:
4260 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4261
4262 case BINOP_CONCAT:
4263 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4264
4265 case BINOP_EXP:
4266 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4267
4268 case UNOP_NEG:
4269 case UNOP_PLUS:
4270 case UNOP_LOGICAL_NOT:
4271 case UNOP_ABS:
4272 return (!numeric_type_p (type0));
4273
4274 }
4275 }
4276 \f
4277 /* Renaming */
4278
4279 /* NOTES:
4280
4281 1. In the following, we assume that a renaming type's name may
4282 have an ___XD suffix. It would be nice if this went away at some
4283 point.
4284 2. We handle both the (old) purely type-based representation of
4285 renamings and the (new) variable-based encoding. At some point,
4286 it is devoutly to be hoped that the former goes away
4287 (FIXME: hilfinger-2007-07-09).
4288 3. Subprogram renamings are not implemented, although the XRS
4289 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4290
4291 /* If SYM encodes a renaming,
4292
4293 <renaming> renames <renamed entity>,
4294
4295 sets *LEN to the length of the renamed entity's name,
4296 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4297 the string describing the subcomponent selected from the renamed
4298 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4299 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4300 are undefined). Otherwise, returns a value indicating the category
4301 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4302 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4303 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4304 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4305 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4306 may be NULL, in which case they are not assigned.
4307
4308 [Currently, however, GCC does not generate subprogram renamings.] */
4309
4310 enum ada_renaming_category
4311 ada_parse_renaming (struct symbol *sym,
4312 const char **renamed_entity, int *len,
4313 const char **renaming_expr)
4314 {
4315 enum ada_renaming_category kind;
4316 const char *info;
4317 const char *suffix;
4318
4319 if (sym == NULL)
4320 return ADA_NOT_RENAMING;
4321 switch (SYMBOL_CLASS (sym))
4322 {
4323 default:
4324 return ADA_NOT_RENAMING;
4325 case LOC_TYPEDEF:
4326 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4327 renamed_entity, len, renaming_expr);
4328 case LOC_LOCAL:
4329 case LOC_STATIC:
4330 case LOC_COMPUTED:
4331 case LOC_OPTIMIZED_OUT:
4332 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4333 if (info == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (info[5])
4336 {
4337 case '_':
4338 kind = ADA_OBJECT_RENAMING;
4339 info += 6;
4340 break;
4341 case 'E':
4342 kind = ADA_EXCEPTION_RENAMING;
4343 info += 7;
4344 break;
4345 case 'P':
4346 kind = ADA_PACKAGE_RENAMING;
4347 info += 7;
4348 break;
4349 case 'S':
4350 kind = ADA_SUBPROGRAM_RENAMING;
4351 info += 7;
4352 break;
4353 default:
4354 return ADA_NOT_RENAMING;
4355 }
4356 }
4357
4358 if (renamed_entity != NULL)
4359 *renamed_entity = info;
4360 suffix = strstr (info, "___XE");
4361 if (suffix == NULL || suffix == info)
4362 return ADA_NOT_RENAMING;
4363 if (len != NULL)
4364 *len = strlen (info) - strlen (suffix);
4365 suffix += 5;
4366 if (renaming_expr != NULL)
4367 *renaming_expr = suffix;
4368 return kind;
4369 }
4370
4371 /* Assuming TYPE encodes a renaming according to the old encoding in
4372 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4373 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4374 ADA_NOT_RENAMING otherwise. */
4375 static enum ada_renaming_category
4376 parse_old_style_renaming (struct type *type,
4377 const char **renamed_entity, int *len,
4378 const char **renaming_expr)
4379 {
4380 enum ada_renaming_category kind;
4381 const char *name;
4382 const char *info;
4383 const char *suffix;
4384
4385 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4386 || TYPE_NFIELDS (type) != 1)
4387 return ADA_NOT_RENAMING;
4388
4389 name = TYPE_NAME (type);
4390 if (name == NULL)
4391 return ADA_NOT_RENAMING;
4392
4393 name = strstr (name, "___XR");
4394 if (name == NULL)
4395 return ADA_NOT_RENAMING;
4396 switch (name[5])
4397 {
4398 case '\0':
4399 case '_':
4400 kind = ADA_OBJECT_RENAMING;
4401 break;
4402 case 'E':
4403 kind = ADA_EXCEPTION_RENAMING;
4404 break;
4405 case 'P':
4406 kind = ADA_PACKAGE_RENAMING;
4407 break;
4408 case 'S':
4409 kind = ADA_SUBPROGRAM_RENAMING;
4410 break;
4411 default:
4412 return ADA_NOT_RENAMING;
4413 }
4414
4415 info = TYPE_FIELD_NAME (type, 0);
4416 if (info == NULL)
4417 return ADA_NOT_RENAMING;
4418 if (renamed_entity != NULL)
4419 *renamed_entity = info;
4420 suffix = strstr (info, "___XE");
4421 if (renaming_expr != NULL)
4422 *renaming_expr = suffix + 5;
4423 if (suffix == NULL || suffix == info)
4424 return ADA_NOT_RENAMING;
4425 if (len != NULL)
4426 *len = suffix - info;
4427 return kind;
4428 }
4429
4430 /* Compute the value of the given RENAMING_SYM, which is expected to
4431 be a symbol encoding a renaming expression. BLOCK is the block
4432 used to evaluate the renaming. */
4433
4434 static struct value *
4435 ada_read_renaming_var_value (struct symbol *renaming_sym,
4436 const struct block *block)
4437 {
4438 const char *sym_name;
4439
4440 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4441 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4442 return evaluate_expression (expr.get ());
4443 }
4444 \f
4445
4446 /* Evaluation: Function Calls */
4447
4448 /* Return an lvalue containing the value VAL. This is the identity on
4449 lvalues, and otherwise has the side-effect of allocating memory
4450 in the inferior where a copy of the value contents is copied. */
4451
4452 static struct value *
4453 ensure_lval (struct value *val)
4454 {
4455 if (VALUE_LVAL (val) == not_lval
4456 || VALUE_LVAL (val) == lval_internalvar)
4457 {
4458 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4459 const CORE_ADDR addr =
4460 value_as_long (value_allocate_space_in_inferior (len));
4461
4462 VALUE_LVAL (val) = lval_memory;
4463 set_value_address (val, addr);
4464 write_memory (addr, value_contents (val), len);
4465 }
4466
4467 return val;
4468 }
4469
4470 /* Return the value ACTUAL, converted to be an appropriate value for a
4471 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4472 allocating any necessary descriptors (fat pointers), or copies of
4473 values not residing in memory, updating it as needed. */
4474
4475 struct value *
4476 ada_convert_actual (struct value *actual, struct type *formal_type0)
4477 {
4478 struct type *actual_type = ada_check_typedef (value_type (actual));
4479 struct type *formal_type = ada_check_typedef (formal_type0);
4480 struct type *formal_target =
4481 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4482 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4483 struct type *actual_target =
4484 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4486
4487 if (ada_is_array_descriptor_type (formal_target)
4488 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4489 return make_array_descriptor (formal_type, actual);
4490 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4491 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4492 {
4493 struct value *result;
4494
4495 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4496 && ada_is_array_descriptor_type (actual_target))
4497 result = desc_data (actual);
4498 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4499 {
4500 if (VALUE_LVAL (actual) != lval_memory)
4501 {
4502 struct value *val;
4503
4504 actual_type = ada_check_typedef (value_type (actual));
4505 val = allocate_value (actual_type);
4506 memcpy ((char *) value_contents_raw (val),
4507 (char *) value_contents (actual),
4508 TYPE_LENGTH (actual_type));
4509 actual = ensure_lval (val);
4510 }
4511 result = value_addr (actual);
4512 }
4513 else
4514 return actual;
4515 return value_cast_pointers (formal_type, result, 0);
4516 }
4517 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4518 return ada_value_ind (actual);
4519 else if (ada_is_aligner_type (formal_type))
4520 {
4521 /* We need to turn this parameter into an aligner type
4522 as well. */
4523 struct value *aligner = allocate_value (formal_type);
4524 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4525
4526 value_assign_to_component (aligner, component, actual);
4527 return aligner;
4528 }
4529
4530 return actual;
4531 }
4532
4533 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4534 type TYPE. This is usually an inefficient no-op except on some targets
4535 (such as AVR) where the representation of a pointer and an address
4536 differs. */
4537
4538 static CORE_ADDR
4539 value_pointer (struct value *value, struct type *type)
4540 {
4541 struct gdbarch *gdbarch = get_type_arch (type);
4542 unsigned len = TYPE_LENGTH (type);
4543 gdb_byte *buf = (gdb_byte *) alloca (len);
4544 CORE_ADDR addr;
4545
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4549 return addr;
4550 }
4551
4552
4553 /* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
4558
4559 static struct value *
4560 make_array_descriptor (struct type *type, struct value *arr)
4561 {
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
4566 int i;
4567
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4569 i > 0; i -= 1)
4570 {
4571 modify_field (value_type (bounds), value_contents_writeable (bounds),
4572 ada_array_bound (arr, i, 0),
4573 desc_bound_bitpos (bounds_type, i, 0),
4574 desc_bound_bitsize (bounds_type, i, 0));
4575 modify_field (value_type (bounds), value_contents_writeable (bounds),
4576 ada_array_bound (arr, i, 1),
4577 desc_bound_bitpos (bounds_type, i, 1),
4578 desc_bound_bitsize (bounds_type, i, 1));
4579 }
4580
4581 bounds = ensure_lval (bounds);
4582
4583 modify_field (value_type (descriptor),
4584 value_contents_writeable (descriptor),
4585 value_pointer (ensure_lval (arr),
4586 TYPE_FIELD_TYPE (desc_type, 0)),
4587 fat_pntr_data_bitpos (desc_type),
4588 fat_pntr_data_bitsize (desc_type));
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (bounds,
4593 TYPE_FIELD_TYPE (desc_type, 1)),
4594 fat_pntr_bounds_bitpos (desc_type),
4595 fat_pntr_bounds_bitsize (desc_type));
4596
4597 descriptor = ensure_lval (descriptor);
4598
4599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4600 return value_addr (descriptor);
4601 else
4602 return descriptor;
4603 }
4604 \f
4605 /* Symbol Cache Module */
4606
4607 /* Performance measurements made as of 2010-01-15 indicate that
4608 this cache does bring some noticeable improvements. Depending
4609 on the type of entity being printed, the cache can make it as much
4610 as an order of magnitude faster than without it.
4611
4612 The descriptive type DWARF extension has significantly reduced
4613 the need for this cache, at least when DWARF is being used. However,
4614 even in this case, some expensive name-based symbol searches are still
4615 sometimes necessary - to find an XVZ variable, mostly. */
4616
4617 /* Initialize the contents of SYM_CACHE. */
4618
4619 static void
4620 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4621 {
4622 obstack_init (&sym_cache->cache_space);
4623 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4624 }
4625
4626 /* Free the memory used by SYM_CACHE. */
4627
4628 static void
4629 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4630 {
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 xfree (sym_cache);
4633 }
4634
4635 /* Return the symbol cache associated to the given program space PSPACE.
4636 If not allocated for this PSPACE yet, allocate and initialize one. */
4637
4638 static struct ada_symbol_cache *
4639 ada_get_symbol_cache (struct program_space *pspace)
4640 {
4641 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4642
4643 if (pspace_data->sym_cache == NULL)
4644 {
4645 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4646 ada_init_symbol_cache (pspace_data->sym_cache);
4647 }
4648
4649 return pspace_data->sym_cache;
4650 }
4651
4652 /* Clear all entries from the symbol cache. */
4653
4654 static void
4655 ada_clear_symbol_cache (void)
4656 {
4657 struct ada_symbol_cache *sym_cache
4658 = ada_get_symbol_cache (current_program_space);
4659
4660 obstack_free (&sym_cache->cache_space, NULL);
4661 ada_init_symbol_cache (sym_cache);
4662 }
4663
4664 /* Search our cache for an entry matching NAME and DOMAIN.
4665 Return it if found, or NULL otherwise. */
4666
4667 static struct cache_entry **
4668 find_entry (const char *name, domain_enum domain)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672 int h = msymbol_hash (name) % HASH_SIZE;
4673 struct cache_entry **e;
4674
4675 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4676 {
4677 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4678 return e;
4679 }
4680 return NULL;
4681 }
4682
4683 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4684 Return 1 if found, 0 otherwise.
4685
4686 If an entry was found and SYM is not NULL, set *SYM to the entry's
4687 SYM. Same principle for BLOCK if not NULL. */
4688
4689 static int
4690 lookup_cached_symbol (const char *name, domain_enum domain,
4691 struct symbol **sym, const struct block **block)
4692 {
4693 struct cache_entry **e = find_entry (name, domain);
4694
4695 if (e == NULL)
4696 return 0;
4697 if (sym != NULL)
4698 *sym = (*e)->sym;
4699 if (block != NULL)
4700 *block = (*e)->block;
4701 return 1;
4702 }
4703
4704 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4705 in domain DOMAIN, save this result in our symbol cache. */
4706
4707 static void
4708 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4709 const struct block *block)
4710 {
4711 struct ada_symbol_cache *sym_cache
4712 = ada_get_symbol_cache (current_program_space);
4713 int h;
4714 char *copy;
4715 struct cache_entry *e;
4716
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4720 return;
4721
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4726 if (sym
4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4728 GLOBAL_BLOCK) != block
4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4730 STATIC_BLOCK) != block)
4731 return;
4732
4733 h = msymbol_hash (name) % HASH_SIZE;
4734 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4735 e->next = sym_cache->root[h];
4736 sym_cache->root[h] = e;
4737 e->name = copy
4738 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4739 strcpy (copy, name);
4740 e->sym = sym;
4741 e->domain = domain;
4742 e->block = block;
4743 }
4744 \f
4745 /* Symbol Lookup */
4746
4747 /* Return the symbol name match type that should be used used when
4748 searching for all symbols matching LOOKUP_NAME.
4749
4750 LOOKUP_NAME is expected to be a symbol name after transformation
4751 for Ada lookups. */
4752
4753 static symbol_name_match_type
4754 name_match_type_from_name (const char *lookup_name)
4755 {
4756 return (strstr (lookup_name, "__") == NULL
4757 ? symbol_name_match_type::WILD
4758 : symbol_name_match_type::FULL);
4759 }
4760
4761 /* Return the result of a standard (literal, C-like) lookup of NAME in
4762 given DOMAIN, visible from lexical block BLOCK. */
4763
4764 static struct symbol *
4765 standard_lookup (const char *name, const struct block *block,
4766 domain_enum domain)
4767 {
4768 /* Initialize it just to avoid a GCC false warning. */
4769 struct block_symbol sym = {};
4770
4771 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 return sym.symbol;
4773 ada_lookup_encoded_symbol (name, block, domain, &sym);
4774 cache_symbol (name, domain, sym.symbol, sym.block);
4775 return sym.symbol;
4776 }
4777
4778
4779 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4780 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4781 since they contend in overloading in the same way. */
4782 static int
4783 is_nonfunction (struct block_symbol syms[], int n)
4784 {
4785 int i;
4786
4787 for (i = 0; i < n; i += 1)
4788 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4789 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4790 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4791 return 1;
4792
4793 return 0;
4794 }
4795
4796 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4797 struct types. Otherwise, they may not. */
4798
4799 static int
4800 equiv_types (struct type *type0, struct type *type1)
4801 {
4802 if (type0 == type1)
4803 return 1;
4804 if (type0 == NULL || type1 == NULL
4805 || TYPE_CODE (type0) != TYPE_CODE (type1))
4806 return 0;
4807 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4808 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4809 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4810 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4811 return 1;
4812
4813 return 0;
4814 }
4815
4816 /* True iff SYM0 represents the same entity as SYM1, or one that is
4817 no more defined than that of SYM1. */
4818
4819 static int
4820 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4821 {
4822 if (sym0 == sym1)
4823 return 1;
4824 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4825 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4826 return 0;
4827
4828 switch (SYMBOL_CLASS (sym0))
4829 {
4830 case LOC_UNDEF:
4831 return 1;
4832 case LOC_TYPEDEF:
4833 {
4834 struct type *type0 = SYMBOL_TYPE (sym0);
4835 struct type *type1 = SYMBOL_TYPE (sym1);
4836 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4837 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4838 int len0 = strlen (name0);
4839
4840 return
4841 TYPE_CODE (type0) == TYPE_CODE (type1)
4842 && (equiv_types (type0, type1)
4843 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4844 && startswith (name1 + len0, "___XV")));
4845 }
4846 case LOC_CONST:
4847 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4848 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4849 default:
4850 return 0;
4851 }
4852 }
4853
4854 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4855 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4856
4857 static void
4858 add_defn_to_vec (struct obstack *obstackp,
4859 struct symbol *sym,
4860 const struct block *block)
4861 {
4862 int i;
4863 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4864
4865 /* Do not try to complete stub types, as the debugger is probably
4866 already scanning all symbols matching a certain name at the
4867 time when this function is called. Trying to replace the stub
4868 type by its associated full type will cause us to restart a scan
4869 which may lead to an infinite recursion. Instead, the client
4870 collecting the matching symbols will end up collecting several
4871 matches, with at least one of them complete. It can then filter
4872 out the stub ones if needed. */
4873
4874 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4875 {
4876 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4877 return;
4878 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4879 {
4880 prevDefns[i].symbol = sym;
4881 prevDefns[i].block = block;
4882 return;
4883 }
4884 }
4885
4886 {
4887 struct block_symbol info;
4888
4889 info.symbol = sym;
4890 info.block = block;
4891 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4892 }
4893 }
4894
4895 /* Number of block_symbol structures currently collected in current vector in
4896 OBSTACKP. */
4897
4898 static int
4899 num_defns_collected (struct obstack *obstackp)
4900 {
4901 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4902 }
4903
4904 /* Vector of block_symbol structures currently collected in current vector in
4905 OBSTACKP. If FINISH, close off the vector and return its final address. */
4906
4907 static struct block_symbol *
4908 defns_collected (struct obstack *obstackp, int finish)
4909 {
4910 if (finish)
4911 return (struct block_symbol *) obstack_finish (obstackp);
4912 else
4913 return (struct block_symbol *) obstack_base (obstackp);
4914 }
4915
4916 /* Return a bound minimal symbol matching NAME according to Ada
4917 decoding rules. Returns an invalid symbol if there is no such
4918 minimal symbol. Names prefixed with "standard__" are handled
4919 specially: "standard__" is first stripped off, and only static and
4920 global symbols are searched. */
4921
4922 struct bound_minimal_symbol
4923 ada_lookup_simple_minsym (const char *name)
4924 {
4925 struct bound_minimal_symbol result;
4926
4927 memset (&result, 0, sizeof (result));
4928
4929 symbol_name_match_type match_type = name_match_type_from_name (name);
4930 lookup_name_info lookup_name (name, match_type);
4931
4932 symbol_name_matcher_ftype *match_name
4933 = ada_get_symbol_name_matcher (lookup_name);
4934
4935 for (objfile *objfile : current_program_space->objfiles ())
4936 {
4937 for (minimal_symbol *msymbol : objfile->msymbols ())
4938 {
4939 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4940 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4941 {
4942 result.minsym = msymbol;
4943 result.objfile = objfile;
4944 break;
4945 }
4946 }
4947 }
4948
4949 return result;
4950 }
4951
4952 /* For all subprograms that statically enclose the subprogram of the
4953 selected frame, add symbols matching identifier NAME in DOMAIN
4954 and their blocks to the list of data in OBSTACKP, as for
4955 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4956 with a wildcard prefix. */
4957
4958 static void
4959 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4960 const lookup_name_info &lookup_name,
4961 domain_enum domain)
4962 {
4963 }
4964
4965 /* True if TYPE is definitely an artificial type supplied to a symbol
4966 for which no debugging information was given in the symbol file. */
4967
4968 static int
4969 is_nondebugging_type (struct type *type)
4970 {
4971 const char *name = ada_type_name (type);
4972
4973 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4974 }
4975
4976 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4977 that are deemed "identical" for practical purposes.
4978
4979 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4980 types and that their number of enumerals is identical (in other
4981 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4982
4983 static int
4984 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4985 {
4986 int i;
4987
4988 /* The heuristic we use here is fairly conservative. We consider
4989 that 2 enumerate types are identical if they have the same
4990 number of enumerals and that all enumerals have the same
4991 underlying value and name. */
4992
4993 /* All enums in the type should have an identical underlying value. */
4994 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4995 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4996 return 0;
4997
4998 /* All enumerals should also have the same name (modulo any numerical
4999 suffix). */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 {
5002 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5003 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5004 int len_1 = strlen (name_1);
5005 int len_2 = strlen (name_2);
5006
5007 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5009 if (len_1 != len_2
5010 || strncmp (TYPE_FIELD_NAME (type1, i),
5011 TYPE_FIELD_NAME (type2, i),
5012 len_1) != 0)
5013 return 0;
5014 }
5015
5016 return 1;
5017 }
5018
5019 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5020 that are deemed "identical" for practical purposes. Sometimes,
5021 enumerals are not strictly identical, but their types are so similar
5022 that they can be considered identical.
5023
5024 For instance, consider the following code:
5025
5026 type Color is (Black, Red, Green, Blue, White);
5027 type RGB_Color is new Color range Red .. Blue;
5028
5029 Type RGB_Color is a subrange of an implicit type which is a copy
5030 of type Color. If we call that implicit type RGB_ColorB ("B" is
5031 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5032 As a result, when an expression references any of the enumeral
5033 by name (Eg. "print green"), the expression is technically
5034 ambiguous and the user should be asked to disambiguate. But
5035 doing so would only hinder the user, since it wouldn't matter
5036 what choice he makes, the outcome would always be the same.
5037 So, for practical purposes, we consider them as the same. */
5038
5039 static int
5040 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5041 {
5042 int i;
5043
5044 /* Before performing a thorough comparison check of each type,
5045 we perform a series of inexpensive checks. We expect that these
5046 checks will quickly fail in the vast majority of cases, and thus
5047 help prevent the unnecessary use of a more expensive comparison.
5048 Said comparison also expects us to make some of these checks
5049 (see ada_identical_enum_types_p). */
5050
5051 /* Quick check: All symbols should have an enum type. */
5052 for (i = 0; i < syms.size (); i++)
5053 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5054 return 0;
5055
5056 /* Quick check: They should all have the same value. */
5057 for (i = 1; i < syms.size (); i++)
5058 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5059 return 0;
5060
5061 /* Quick check: They should all have the same number of enumerals. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5064 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5065 return 0;
5066
5067 /* All the sanity checks passed, so we might have a set of
5068 identical enumeration types. Perform a more complete
5069 comparison of the type of each symbol. */
5070 for (i = 1; i < syms.size (); i++)
5071 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5072 SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 return 1;
5076 }
5077
5078 /* Remove any non-debugging symbols in SYMS that definitely
5079 duplicate other symbols in the list (The only case I know of where
5080 this happens is when object files containing stabs-in-ecoff are
5081 linked with files containing ordinary ecoff debugging symbols (or no
5082 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5083 Returns the number of items in the modified list. */
5084
5085 static int
5086 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5087 {
5088 int i, j;
5089
5090 /* We should never be called with less than 2 symbols, as there
5091 cannot be any extra symbol in that case. But it's easy to
5092 handle, since we have nothing to do in that case. */
5093 if (syms->size () < 2)
5094 return syms->size ();
5095
5096 i = 0;
5097 while (i < syms->size ())
5098 {
5099 int remove_p = 0;
5100
5101 /* If two symbols have the same name and one of them is a stub type,
5102 the get rid of the stub. */
5103
5104 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5105 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5106 {
5107 for (j = 0; j < syms->size (); j++)
5108 {
5109 if (j != i
5110 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5112 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5113 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5114 remove_p = 1;
5115 }
5116 }
5117
5118 /* Two symbols with the same name, same class and same address
5119 should be identical. */
5120
5121 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5122 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5123 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5124 {
5125 for (j = 0; j < syms->size (); j += 1)
5126 {
5127 if (i != j
5128 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5130 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5131 && SYMBOL_CLASS ((*syms)[i].symbol)
5132 == SYMBOL_CLASS ((*syms)[j].symbol)
5133 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5134 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5135 remove_p = 1;
5136 }
5137 }
5138
5139 if (remove_p)
5140 syms->erase (syms->begin () + i);
5141
5142 i += 1;
5143 }
5144
5145 /* If all the remaining symbols are identical enumerals, then
5146 just keep the first one and discard the rest.
5147
5148 Unlike what we did previously, we do not discard any entry
5149 unless they are ALL identical. This is because the symbol
5150 comparison is not a strict comparison, but rather a practical
5151 comparison. If all symbols are considered identical, then
5152 we can just go ahead and use the first one and discard the rest.
5153 But if we cannot reduce the list to a single element, we have
5154 to ask the user to disambiguate anyways. And if we have to
5155 present a multiple-choice menu, it's less confusing if the list
5156 isn't missing some choices that were identical and yet distinct. */
5157 if (symbols_are_identical_enums (*syms))
5158 syms->resize (1);
5159
5160 return syms->size ();
5161 }
5162
5163 /* Given a type that corresponds to a renaming entity, use the type name
5164 to extract the scope (package name or function name, fully qualified,
5165 and following the GNAT encoding convention) where this renaming has been
5166 defined. */
5167
5168 static std::string
5169 xget_renaming_scope (struct type *renaming_type)
5170 {
5171 /* The renaming types adhere to the following convention:
5172 <scope>__<rename>___<XR extension>.
5173 So, to extract the scope, we search for the "___XR" extension,
5174 and then backtrack until we find the first "__". */
5175
5176 const char *name = TYPE_NAME (renaming_type);
5177 const char *suffix = strstr (name, "___XR");
5178 const char *last;
5179
5180 /* Now, backtrack a bit until we find the first "__". Start looking
5181 at suffix - 3, as the <rename> part is at least one character long. */
5182
5183 for (last = suffix - 3; last > name; last--)
5184 if (last[0] == '_' && last[1] == '_')
5185 break;
5186
5187 /* Make a copy of scope and return it. */
5188 return std::string (name, last);
5189 }
5190
5191 /* Return nonzero if NAME corresponds to a package name. */
5192
5193 static int
5194 is_package_name (const char *name)
5195 {
5196 /* Here, We take advantage of the fact that no symbols are generated
5197 for packages, while symbols are generated for each function.
5198 So the condition for NAME represent a package becomes equivalent
5199 to NAME not existing in our list of symbols. There is only one
5200 small complication with library-level functions (see below). */
5201
5202 /* If it is a function that has not been defined at library level,
5203 then we should be able to look it up in the symbols. */
5204 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5205 return 0;
5206
5207 /* Library-level function names start with "_ada_". See if function
5208 "_ada_" followed by NAME can be found. */
5209
5210 /* Do a quick check that NAME does not contain "__", since library-level
5211 functions names cannot contain "__" in them. */
5212 if (strstr (name, "__") != NULL)
5213 return 0;
5214
5215 std::string fun_name = string_printf ("_ada_%s", name);
5216
5217 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5218 }
5219
5220 /* Return nonzero if SYM corresponds to a renaming entity that is
5221 not visible from FUNCTION_NAME. */
5222
5223 static int
5224 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5225 {
5226 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5227 return 0;
5228
5229 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5230
5231 /* If the rename has been defined in a package, then it is visible. */
5232 if (is_package_name (scope.c_str ()))
5233 return 0;
5234
5235 /* Check that the rename is in the current function scope by checking
5236 that its name starts with SCOPE. */
5237
5238 /* If the function name starts with "_ada_", it means that it is
5239 a library-level function. Strip this prefix before doing the
5240 comparison, as the encoding for the renaming does not contain
5241 this prefix. */
5242 if (startswith (function_name, "_ada_"))
5243 function_name += 5;
5244
5245 return !startswith (function_name, scope.c_str ());
5246 }
5247
5248 /* Remove entries from SYMS that corresponds to a renaming entity that
5249 is not visible from the function associated with CURRENT_BLOCK or
5250 that is superfluous due to the presence of more specific renaming
5251 information. Places surviving symbols in the initial entries of
5252 SYMS and returns the number of surviving symbols.
5253
5254 Rationale:
5255 First, in cases where an object renaming is implemented as a
5256 reference variable, GNAT may produce both the actual reference
5257 variable and the renaming encoding. In this case, we discard the
5258 latter.
5259
5260 Second, GNAT emits a type following a specified encoding for each renaming
5261 entity. Unfortunately, STABS currently does not support the definition
5262 of types that are local to a given lexical block, so all renamings types
5263 are emitted at library level. As a consequence, if an application
5264 contains two renaming entities using the same name, and a user tries to
5265 print the value of one of these entities, the result of the ada symbol
5266 lookup will also contain the wrong renaming type.
5267
5268 This function partially covers for this limitation by attempting to
5269 remove from the SYMS list renaming symbols that should be visible
5270 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5271 method with the current information available. The implementation
5272 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5273
5274 - When the user tries to print a rename in a function while there
5275 is another rename entity defined in a package: Normally, the
5276 rename in the function has precedence over the rename in the
5277 package, so the latter should be removed from the list. This is
5278 currently not the case.
5279
5280 - This function will incorrectly remove valid renames if
5281 the CURRENT_BLOCK corresponds to a function which symbol name
5282 has been changed by an "Export" pragma. As a consequence,
5283 the user will be unable to print such rename entities. */
5284
5285 static int
5286 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5287 const struct block *current_block)
5288 {
5289 struct symbol *current_function;
5290 const char *current_function_name;
5291 int i;
5292 int is_new_style_renaming;
5293
5294 /* If there is both a renaming foo___XR... encoded as a variable and
5295 a simple variable foo in the same block, discard the latter.
5296 First, zero out such symbols, then compress. */
5297 is_new_style_renaming = 0;
5298 for (i = 0; i < syms->size (); i += 1)
5299 {
5300 struct symbol *sym = (*syms)[i].symbol;
5301 const struct block *block = (*syms)[i].block;
5302 const char *name;
5303 const char *suffix;
5304
5305 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5306 continue;
5307 name = SYMBOL_LINKAGE_NAME (sym);
5308 suffix = strstr (name, "___XR");
5309
5310 if (suffix != NULL)
5311 {
5312 int name_len = suffix - name;
5313 int j;
5314
5315 is_new_style_renaming = 1;
5316 for (j = 0; j < syms->size (); j += 1)
5317 if (i != j && (*syms)[j].symbol != NULL
5318 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5319 name_len) == 0
5320 && block == (*syms)[j].block)
5321 (*syms)[j].symbol = NULL;
5322 }
5323 }
5324 if (is_new_style_renaming)
5325 {
5326 int j, k;
5327
5328 for (j = k = 0; j < syms->size (); j += 1)
5329 if ((*syms)[j].symbol != NULL)
5330 {
5331 (*syms)[k] = (*syms)[j];
5332 k += 1;
5333 }
5334 return k;
5335 }
5336
5337 /* Extract the function name associated to CURRENT_BLOCK.
5338 Abort if unable to do so. */
5339
5340 if (current_block == NULL)
5341 return syms->size ();
5342
5343 current_function = block_linkage_function (current_block);
5344 if (current_function == NULL)
5345 return syms->size ();
5346
5347 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5348 if (current_function_name == NULL)
5349 return syms->size ();
5350
5351 /* Check each of the symbols, and remove it from the list if it is
5352 a type corresponding to a renaming that is out of the scope of
5353 the current block. */
5354
5355 i = 0;
5356 while (i < syms->size ())
5357 {
5358 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5359 == ADA_OBJECT_RENAMING
5360 && old_renaming_is_invisible ((*syms)[i].symbol,
5361 current_function_name))
5362 syms->erase (syms->begin () + i);
5363 else
5364 i += 1;
5365 }
5366
5367 return syms->size ();
5368 }
5369
5370 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5371 whose name and domain match NAME and DOMAIN respectively.
5372 If no match was found, then extend the search to "enclosing"
5373 routines (in other words, if we're inside a nested function,
5374 search the symbols defined inside the enclosing functions).
5375 If WILD_MATCH_P is nonzero, perform the naming matching in
5376 "wild" mode (see function "wild_match" for more info).
5377
5378 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5379
5380 static void
5381 ada_add_local_symbols (struct obstack *obstackp,
5382 const lookup_name_info &lookup_name,
5383 const struct block *block, domain_enum domain)
5384 {
5385 int block_depth = 0;
5386
5387 while (block != NULL)
5388 {
5389 block_depth += 1;
5390 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5391
5392 /* If we found a non-function match, assume that's the one. */
5393 if (is_nonfunction (defns_collected (obstackp, 0),
5394 num_defns_collected (obstackp)))
5395 return;
5396
5397 block = BLOCK_SUPERBLOCK (block);
5398 }
5399
5400 /* If no luck so far, try to find NAME as a local symbol in some lexically
5401 enclosing subprogram. */
5402 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5403 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5404 }
5405
5406 /* An object of this type is used as the user_data argument when
5407 calling the map_matching_symbols method. */
5408
5409 struct match_data
5410 {
5411 struct objfile *objfile;
5412 struct obstack *obstackp;
5413 struct symbol *arg_sym;
5414 int found_sym;
5415 };
5416
5417 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5418 to a list of symbols. DATA0 is a pointer to a struct match_data *
5419 containing the obstack that collects the symbol list, the file that SYM
5420 must come from, a flag indicating whether a non-argument symbol has
5421 been found in the current block, and the last argument symbol
5422 passed in SYM within the current block (if any). When SYM is null,
5423 marking the end of a block, the argument symbol is added if no
5424 other has been found. */
5425
5426 static int
5427 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5428 void *data0)
5429 {
5430 struct match_data *data = (struct match_data *) data0;
5431
5432 if (sym == NULL)
5433 {
5434 if (!data->found_sym && data->arg_sym != NULL)
5435 add_defn_to_vec (data->obstackp,
5436 fixup_symbol_section (data->arg_sym, data->objfile),
5437 block);
5438 data->found_sym = 0;
5439 data->arg_sym = NULL;
5440 }
5441 else
5442 {
5443 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5444 return 0;
5445 else if (SYMBOL_IS_ARGUMENT (sym))
5446 data->arg_sym = sym;
5447 else
5448 {
5449 data->found_sym = 1;
5450 add_defn_to_vec (data->obstackp,
5451 fixup_symbol_section (sym, data->objfile),
5452 block);
5453 }
5454 }
5455 return 0;
5456 }
5457
5458 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
5461
5462 static int
5463 ada_add_block_renamings (struct obstack *obstackp,
5464 const struct block *block,
5465 const lookup_name_info &lookup_name,
5466 domain_enum domain)
5467 {
5468 struct using_direct *renaming;
5469 int defns_mark = num_defns_collected (obstackp);
5470
5471 symbol_name_matcher_ftype *name_match
5472 = ada_get_symbol_name_matcher (lookup_name);
5473
5474 for (renaming = block_using (block);
5475 renaming != NULL;
5476 renaming = renaming->next)
5477 {
5478 const char *r_name;
5479
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5482
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming->searched
5486 || (renaming->import_src != NULL
5487 && renaming->import_src[0] != '\0')
5488 || (renaming->import_dest != NULL
5489 && renaming->import_dest[0] != '\0'))
5490 continue;
5491 renaming->searched = 1;
5492
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name = (renaming->alias != NULL
5501 ? renaming->alias
5502 : renaming->declaration);
5503 if (name_match (r_name, lookup_name, NULL))
5504 {
5505 lookup_name_info decl_lookup_name (renaming->declaration,
5506 lookup_name.match_type ());
5507 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5508 1, NULL);
5509 }
5510 renaming->searched = 0;
5511 }
5512 return num_defns_collected (obstackp) != defns_mark;
5513 }
5514
5515 /* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5517
5518 static int
5519 compare_names_with_case (const char *string1, const char *string2,
5520 enum case_sensitivity casing)
5521 {
5522 while (*string1 != '\0' && *string2 != '\0')
5523 {
5524 char c1, c2;
5525
5526 if (isspace (*string1) || isspace (*string2))
5527 return strcmp_iw_ordered (string1, string2);
5528
5529 if (casing == case_sensitive_off)
5530 {
5531 c1 = tolower (*string1);
5532 c2 = tolower (*string2);
5533 }
5534 else
5535 {
5536 c1 = *string1;
5537 c2 = *string2;
5538 }
5539 if (c1 != c2)
5540 break;
5541
5542 string1 += 1;
5543 string2 += 1;
5544 }
5545
5546 switch (*string1)
5547 {
5548 case '(':
5549 return strcmp_iw_ordered (string1, string2);
5550 case '_':
5551 if (*string2 == '\0')
5552 {
5553 if (is_name_suffix (string1))
5554 return 0;
5555 else
5556 return 1;
5557 }
5558 /* FALLTHROUGH */
5559 default:
5560 if (*string2 == '(')
5561 return strcmp_iw_ordered (string1, string2);
5562 else
5563 {
5564 if (casing == case_sensitive_off)
5565 return tolower (*string1) - tolower (*string2);
5566 else
5567 return *string1 - *string2;
5568 }
5569 }
5570 }
5571
5572 /* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5574
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5576
5577 ... implies...
5578
5579 compare_names (STRING1, STRING2) <= 0
5580
5581 (they may differ as to what symbols compare equal). */
5582
5583 static int
5584 compare_names (const char *string1, const char *string2)
5585 {
5586 int result;
5587
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5592
5593 result = compare_names_with_case (string1, string2, case_sensitive_off);
5594 if (result == 0)
5595 result = compare_names_with_case (string1, string2, case_sensitive_on);
5596
5597 return result;
5598 }
5599
5600 /* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5602
5603 static const char *
5604 ada_lookup_name (const lookup_name_info &lookup_name)
5605 {
5606 return lookup_name.ada ().lookup_name ().c_str ();
5607 }
5608
5609 /* Add to OBSTACKP all non-local symbols whose name and domain match
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
5613
5614 static void
5615 add_nonlocal_symbols (struct obstack *obstackp,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain, int global)
5618 {
5619 struct match_data data;
5620
5621 memset (&data, 0, sizeof data);
5622 data.obstackp = obstackp;
5623
5624 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5625
5626 for (objfile *objfile : current_program_space->objfiles ())
5627 {
5628 data.objfile = objfile;
5629
5630 if (is_wild_match)
5631 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5632 domain, global,
5633 aux_add_nonlocal_symbols, &data,
5634 symbol_name_match_type::WILD,
5635 NULL);
5636 else
5637 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5638 domain, global,
5639 aux_add_nonlocal_symbols, &data,
5640 symbol_name_match_type::FULL,
5641 compare_names);
5642
5643 for (compunit_symtab *cu : objfile->compunits ())
5644 {
5645 const struct block *global_block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5647
5648 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5649 domain))
5650 data.found_sym = 1;
5651 }
5652 }
5653
5654 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5655 {
5656 const char *name = ada_lookup_name (lookup_name);
5657 std::string name1 = std::string ("<_ada_") + name + '>';
5658
5659 for (objfile *objfile : current_program_space->objfiles ())
5660 {
5661 data.objfile = objfile;
5662 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5663 domain, global,
5664 aux_add_nonlocal_symbols,
5665 &data,
5666 symbol_name_match_type::FULL,
5667 compare_names);
5668 }
5669 }
5670 }
5671
5672 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5673 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5674 returning the number of matches. Add these to OBSTACKP.
5675
5676 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5677 symbol match within the nest of blocks whose innermost member is BLOCK,
5678 is the one match returned (no other matches in that or
5679 enclosing blocks is returned). If there are any matches in or
5680 surrounding BLOCK, then these alone are returned.
5681
5682 Names prefixed with "standard__" are handled specially:
5683 "standard__" is first stripped off (by the lookup_name
5684 constructor), and only static and global symbols are searched.
5685
5686 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5687 to lookup global symbols. */
5688
5689 static void
5690 ada_add_all_symbols (struct obstack *obstackp,
5691 const struct block *block,
5692 const lookup_name_info &lookup_name,
5693 domain_enum domain,
5694 int full_search,
5695 int *made_global_lookup_p)
5696 {
5697 struct symbol *sym;
5698
5699 if (made_global_lookup_p)
5700 *made_global_lookup_p = 0;
5701
5702 /* Special case: If the user specifies a symbol name inside package
5703 Standard, do a non-wild matching of the symbol name without
5704 the "standard__" prefix. This was primarily introduced in order
5705 to allow the user to specifically access the standard exceptions
5706 using, for instance, Standard.Constraint_Error when Constraint_Error
5707 is ambiguous (due to the user defining its own Constraint_Error
5708 entity inside its program). */
5709 if (lookup_name.ada ().standard_p ())
5710 block = NULL;
5711
5712 /* Check the non-global symbols. If we have ANY match, then we're done. */
5713
5714 if (block != NULL)
5715 {
5716 if (full_search)
5717 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5718 else
5719 {
5720 /* In the !full_search case we're are being called by
5721 ada_iterate_over_symbols, and we don't want to search
5722 superblocks. */
5723 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5724 }
5725 if (num_defns_collected (obstackp) > 0 || !full_search)
5726 return;
5727 }
5728
5729 /* No non-global symbols found. Check our cache to see if we have
5730 already performed this search before. If we have, then return
5731 the same result. */
5732
5733 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5734 domain, &sym, &block))
5735 {
5736 if (sym != NULL)
5737 add_defn_to_vec (obstackp, sym, block);
5738 return;
5739 }
5740
5741 if (made_global_lookup_p)
5742 *made_global_lookup_p = 1;
5743
5744 /* Search symbols from all global blocks. */
5745
5746 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5747
5748 /* Now add symbols from all per-file blocks if we've gotten no hits
5749 (not strictly correct, but perhaps better than an error). */
5750
5751 if (num_defns_collected (obstackp) == 0)
5752 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5753 }
5754
5755 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5756 is non-zero, enclosing scope and in global scopes, returning the number of
5757 matches.
5758 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5759 found and the blocks and symbol tables (if any) in which they were
5760 found.
5761
5762 When full_search is non-zero, any non-function/non-enumeral
5763 symbol match within the nest of blocks whose innermost member is BLOCK,
5764 is the one match returned (no other matches in that or
5765 enclosing blocks is returned). If there are any matches in or
5766 surrounding BLOCK, then these alone are returned.
5767
5768 Names prefixed with "standard__" are handled specially: "standard__"
5769 is first stripped off, and only static and global symbols are searched. */
5770
5771 static int
5772 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5773 const struct block *block,
5774 domain_enum domain,
5775 std::vector<struct block_symbol> *results,
5776 int full_search)
5777 {
5778 int syms_from_global_search;
5779 int ndefns;
5780 auto_obstack obstack;
5781
5782 ada_add_all_symbols (&obstack, block, lookup_name,
5783 domain, full_search, &syms_from_global_search);
5784
5785 ndefns = num_defns_collected (&obstack);
5786
5787 struct block_symbol *base = defns_collected (&obstack, 1);
5788 for (int i = 0; i < ndefns; ++i)
5789 results->push_back (base[i]);
5790
5791 ndefns = remove_extra_symbols (results);
5792
5793 if (ndefns == 0 && full_search && syms_from_global_search)
5794 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5795
5796 if (ndefns == 1 && full_search && syms_from_global_search)
5797 cache_symbol (ada_lookup_name (lookup_name), domain,
5798 (*results)[0].symbol, (*results)[0].block);
5799
5800 ndefns = remove_irrelevant_renamings (results, block);
5801
5802 return ndefns;
5803 }
5804
5805 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5806 in global scopes, returning the number of matches, and filling *RESULTS
5807 with (SYM,BLOCK) tuples.
5808
5809 See ada_lookup_symbol_list_worker for further details. */
5810
5811 int
5812 ada_lookup_symbol_list (const char *name, const struct block *block,
5813 domain_enum domain,
5814 std::vector<struct block_symbol> *results)
5815 {
5816 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5817 lookup_name_info lookup_name (name, name_match_type);
5818
5819 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5820 }
5821
5822 /* Implementation of the la_iterate_over_symbols method. */
5823
5824 static void
5825 ada_iterate_over_symbols
5826 (const struct block *block, const lookup_name_info &name,
5827 domain_enum domain,
5828 gdb::function_view<symbol_found_callback_ftype> callback)
5829 {
5830 int ndefs, i;
5831 std::vector<struct block_symbol> results;
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5834
5835 for (i = 0; i < ndefs; ++i)
5836 {
5837 if (!callback (&results[i]))
5838 break;
5839 }
5840 }
5841
5842 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5843 to 1, but choosing the first symbol found if there are multiple
5844 choices.
5845
5846 The result is stored in *INFO, which must be non-NULL.
5847 If no match is found, INFO->SYM is set to NULL. */
5848
5849 void
5850 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5851 domain_enum domain,
5852 struct block_symbol *info)
5853 {
5854 /* Since we already have an encoded name, wrap it in '<>' to force a
5855 verbatim match. Otherwise, if the name happens to not look like
5856 an encoded name (because it doesn't include a "__"),
5857 ada_lookup_name_info would re-encode/fold it again, and that
5858 would e.g., incorrectly lowercase object renaming names like
5859 "R28b" -> "r28b". */
5860 std::string verbatim = std::string ("<") + name + '>';
5861
5862 gdb_assert (info != NULL);
5863 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5864 }
5865
5866 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5867 scope and in global scopes, or NULL if none. NAME is folded and
5868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5869 choosing the first symbol if there are multiple choices.
5870 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5871
5872 struct block_symbol
5873 ada_lookup_symbol (const char *name, const struct block *block0,
5874 domain_enum domain, int *is_a_field_of_this)
5875 {
5876 if (is_a_field_of_this != NULL)
5877 *is_a_field_of_this = 0;
5878
5879 std::vector<struct block_symbol> candidates;
5880 int n_candidates;
5881
5882 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5883
5884 if (n_candidates == 0)
5885 return {};
5886
5887 block_symbol info = candidates[0];
5888 info.symbol = fixup_symbol_section (info.symbol, NULL);
5889 return info;
5890 }
5891
5892 static struct block_symbol
5893 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5894 const char *name,
5895 const struct block *block,
5896 const domain_enum domain)
5897 {
5898 struct block_symbol sym;
5899
5900 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5901 if (sym.symbol != NULL)
5902 return sym;
5903
5904 /* If we haven't found a match at this point, try the primitive
5905 types. In other languages, this search is performed before
5906 searching for global symbols in order to short-circuit that
5907 global-symbol search if it happens that the name corresponds
5908 to a primitive type. But we cannot do the same in Ada, because
5909 it is perfectly legitimate for a program to declare a type which
5910 has the same name as a standard type. If looking up a type in
5911 that situation, we have traditionally ignored the primitive type
5912 in favor of user-defined types. This is why, unlike most other
5913 languages, we search the primitive types this late and only after
5914 having searched the global symbols without success. */
5915
5916 if (domain == VAR_DOMAIN)
5917 {
5918 struct gdbarch *gdbarch;
5919
5920 if (block == NULL)
5921 gdbarch = target_gdbarch ();
5922 else
5923 gdbarch = block_gdbarch (block);
5924 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5925 if (sym.symbol != NULL)
5926 return sym;
5927 }
5928
5929 return {};
5930 }
5931
5932
5933 /* True iff STR is a possible encoded suffix of a normal Ada name
5934 that is to be ignored for matching purposes. Suffixes of parallel
5935 names (e.g., XVE) are not included here. Currently, the possible suffixes
5936 are given by any of the regular expressions:
5937
5938 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5939 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5940 TKB [subprogram suffix for task bodies]
5941 _E[0-9]+[bs]$ [protected object entry suffixes]
5942 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5943
5944 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5945 match is performed. This sequence is used to differentiate homonyms,
5946 is an optional part of a valid name suffix. */
5947
5948 static int
5949 is_name_suffix (const char *str)
5950 {
5951 int k;
5952 const char *matching;
5953 const int len = strlen (str);
5954
5955 /* Skip optional leading __[0-9]+. */
5956
5957 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5958 {
5959 str += 3;
5960 while (isdigit (str[0]))
5961 str += 1;
5962 }
5963
5964 /* [.$][0-9]+ */
5965
5966 if (str[0] == '.' || str[0] == '$')
5967 {
5968 matching = str + 1;
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
5975 /* ___[0-9]+ */
5976
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5978 {
5979 matching = str + 3;
5980 while (isdigit (matching[0]))
5981 matching += 1;
5982 if (matching[0] == '\0')
5983 return 1;
5984 }
5985
5986 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5987
5988 if (strcmp (str, "TKB") == 0)
5989 return 1;
5990
5991 #if 0
5992 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5993 with a N at the end. Unfortunately, the compiler uses the same
5994 convention for other internal types it creates. So treating
5995 all entity names that end with an "N" as a name suffix causes
5996 some regressions. For instance, consider the case of an enumerated
5997 type. To support the 'Image attribute, it creates an array whose
5998 name ends with N.
5999 Having a single character like this as a suffix carrying some
6000 information is a bit risky. Perhaps we should change the encoding
6001 to be something like "_N" instead. In the meantime, do not do
6002 the following check. */
6003 /* Protected Object Subprograms */
6004 if (len == 1 && str [0] == 'N')
6005 return 1;
6006 #endif
6007
6008 /* _E[0-9]+[bs]$ */
6009 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6010 {
6011 matching = str + 3;
6012 while (isdigit (matching[0]))
6013 matching += 1;
6014 if ((matching[0] == 'b' || matching[0] == 's')
6015 && matching [1] == '\0')
6016 return 1;
6017 }
6018
6019 /* ??? We should not modify STR directly, as we are doing below. This
6020 is fine in this case, but may become problematic later if we find
6021 that this alternative did not work, and want to try matching
6022 another one from the begining of STR. Since we modified it, we
6023 won't be able to find the begining of the string anymore! */
6024 if (str[0] == 'X')
6025 {
6026 str += 1;
6027 while (str[0] != '_' && str[0] != '\0')
6028 {
6029 if (str[0] != 'n' && str[0] != 'b')
6030 return 0;
6031 str += 1;
6032 }
6033 }
6034
6035 if (str[0] == '\000')
6036 return 1;
6037
6038 if (str[0] == '_')
6039 {
6040 if (str[1] != '_' || str[2] == '\000')
6041 return 0;
6042 if (str[2] == '_')
6043 {
6044 if (strcmp (str + 3, "JM") == 0)
6045 return 1;
6046 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6047 the LJM suffix in favor of the JM one. But we will
6048 still accept LJM as a valid suffix for a reasonable
6049 amount of time, just to allow ourselves to debug programs
6050 compiled using an older version of GNAT. */
6051 if (strcmp (str + 3, "LJM") == 0)
6052 return 1;
6053 if (str[3] != 'X')
6054 return 0;
6055 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6056 || str[4] == 'U' || str[4] == 'P')
6057 return 1;
6058 if (str[4] == 'R' && str[5] != 'T')
6059 return 1;
6060 return 0;
6061 }
6062 if (!isdigit (str[2]))
6063 return 0;
6064 for (k = 3; str[k] != '\0'; k += 1)
6065 if (!isdigit (str[k]) && str[k] != '_')
6066 return 0;
6067 return 1;
6068 }
6069 if (str[0] == '$' && isdigit (str[1]))
6070 {
6071 for (k = 2; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
6074 return 1;
6075 }
6076 return 0;
6077 }
6078
6079 /* Return non-zero if the string starting at NAME and ending before
6080 NAME_END contains no capital letters. */
6081
6082 static int
6083 is_valid_name_for_wild_match (const char *name0)
6084 {
6085 const char *decoded_name = ada_decode (name0);
6086 int i;
6087
6088 /* If the decoded name starts with an angle bracket, it means that
6089 NAME0 does not follow the GNAT encoding format. It should then
6090 not be allowed as a possible wild match. */
6091 if (decoded_name[0] == '<')
6092 return 0;
6093
6094 for (i=0; decoded_name[i] != '\0'; i++)
6095 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6096 return 0;
6097
6098 return 1;
6099 }
6100
6101 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6102 that could start a simple name. Assumes that *NAMEP points into
6103 the string beginning at NAME0. */
6104
6105 static int
6106 advance_wild_match (const char **namep, const char *name0, int target0)
6107 {
6108 const char *name = *namep;
6109
6110 while (1)
6111 {
6112 int t0, t1;
6113
6114 t0 = *name;
6115 if (t0 == '_')
6116 {
6117 t1 = name[1];
6118 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6119 {
6120 name += 1;
6121 if (name == name0 + 5 && startswith (name0, "_ada"))
6122 break;
6123 else
6124 name += 1;
6125 }
6126 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6127 || name[2] == target0))
6128 {
6129 name += 2;
6130 break;
6131 }
6132 else
6133 return 0;
6134 }
6135 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6136 name += 1;
6137 else
6138 return 0;
6139 }
6140
6141 *namep = name;
6142 return 1;
6143 }
6144
6145 /* Return true iff NAME encodes a name of the form prefix.PATN.
6146 Ignores any informational suffixes of NAME (i.e., for which
6147 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6148 simple name. */
6149
6150 static bool
6151 wild_match (const char *name, const char *patn)
6152 {
6153 const char *p;
6154 const char *name0 = name;
6155
6156 while (1)
6157 {
6158 const char *match = name;
6159
6160 if (*name == *patn)
6161 {
6162 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6163 if (*p != *name)
6164 break;
6165 if (*p == '\0' && is_name_suffix (name))
6166 return match == name0 || is_valid_name_for_wild_match (name0);
6167
6168 if (name[-1] == '_')
6169 name -= 1;
6170 }
6171 if (!advance_wild_match (&name, name0, *patn))
6172 return false;
6173 }
6174 }
6175
6176 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6177 any trailing suffixes that encode debugging information or leading
6178 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6179 information that is ignored). */
6180
6181 static bool
6182 full_match (const char *sym_name, const char *search_name)
6183 {
6184 size_t search_name_len = strlen (search_name);
6185
6186 if (strncmp (sym_name, search_name, search_name_len) == 0
6187 && is_name_suffix (sym_name + search_name_len))
6188 return true;
6189
6190 if (startswith (sym_name, "_ada_")
6191 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6192 && is_name_suffix (sym_name + search_name_len + 5))
6193 return true;
6194
6195 return false;
6196 }
6197
6198 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6199 *defn_symbols, updating the list of symbols in OBSTACKP (if
6200 necessary). OBJFILE is the section containing BLOCK. */
6201
6202 static void
6203 ada_add_block_symbols (struct obstack *obstackp,
6204 const struct block *block,
6205 const lookup_name_info &lookup_name,
6206 domain_enum domain, struct objfile *objfile)
6207 {
6208 struct block_iterator iter;
6209 /* A matching argument symbol, if any. */
6210 struct symbol *arg_sym;
6211 /* Set true when we find a matching non-argument symbol. */
6212 int found_sym;
6213 struct symbol *sym;
6214
6215 arg_sym = NULL;
6216 found_sym = 0;
6217 for (sym = block_iter_match_first (block, lookup_name, &iter);
6218 sym != NULL;
6219 sym = block_iter_match_next (lookup_name, &iter))
6220 {
6221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6222 SYMBOL_DOMAIN (sym), domain))
6223 {
6224 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6225 {
6226 if (SYMBOL_IS_ARGUMENT (sym))
6227 arg_sym = sym;
6228 else
6229 {
6230 found_sym = 1;
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (sym, objfile),
6233 block);
6234 }
6235 }
6236 }
6237 }
6238
6239 /* Handle renamings. */
6240
6241 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6242 found_sym = 1;
6243
6244 if (!found_sym && arg_sym != NULL)
6245 {
6246 add_defn_to_vec (obstackp,
6247 fixup_symbol_section (arg_sym, objfile),
6248 block);
6249 }
6250
6251 if (!lookup_name.ada ().wild_match_p ())
6252 {
6253 arg_sym = NULL;
6254 found_sym = 0;
6255 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6256 const char *name = ada_lookup_name.c_str ();
6257 size_t name_len = ada_lookup_name.size ();
6258
6259 ALL_BLOCK_SYMBOLS (block, iter, sym)
6260 {
6261 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6262 SYMBOL_DOMAIN (sym), domain))
6263 {
6264 int cmp;
6265
6266 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6267 if (cmp == 0)
6268 {
6269 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6270 if (cmp == 0)
6271 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6272 name_len);
6273 }
6274
6275 if (cmp == 0
6276 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6277 {
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
6290 }
6291 }
6292 }
6293
6294 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6295 They aren't parameters, right? */
6296 if (!found_sym && arg_sym != NULL)
6297 {
6298 add_defn_to_vec (obstackp,
6299 fixup_symbol_section (arg_sym, objfile),
6300 block);
6301 }
6302 }
6303 }
6304 \f
6305
6306 /* Symbol Completion */
6307
6308 /* See symtab.h. */
6309
6310 bool
6311 ada_lookup_name_info::matches
6312 (const char *sym_name,
6313 symbol_name_match_type match_type,
6314 completion_match_result *comp_match_res) const
6315 {
6316 bool match = false;
6317 const char *text = m_encoded_name.c_str ();
6318 size_t text_len = m_encoded_name.size ();
6319
6320 /* First, test against the fully qualified name of the symbol. */
6321
6322 if (strncmp (sym_name, text, text_len) == 0)
6323 match = true;
6324
6325 if (match && !m_encoded_p)
6326 {
6327 /* One needed check before declaring a positive match is to verify
6328 that iff we are doing a verbatim match, the decoded version
6329 of the symbol name starts with '<'. Otherwise, this symbol name
6330 is not a suitable completion. */
6331 const char *sym_name_copy = sym_name;
6332 bool has_angle_bracket;
6333
6334 sym_name = ada_decode (sym_name);
6335 has_angle_bracket = (sym_name[0] == '<');
6336 match = (has_angle_bracket == m_verbatim_p);
6337 sym_name = sym_name_copy;
6338 }
6339
6340 if (match && !m_verbatim_p)
6341 {
6342 /* When doing non-verbatim match, another check that needs to
6343 be done is to verify that the potentially matching symbol name
6344 does not include capital letters, because the ada-mode would
6345 not be able to understand these symbol names without the
6346 angle bracket notation. */
6347 const char *tmp;
6348
6349 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6350 if (*tmp != '\0')
6351 match = false;
6352 }
6353
6354 /* Second: Try wild matching... */
6355
6356 if (!match && m_wild_match_p)
6357 {
6358 /* Since we are doing wild matching, this means that TEXT
6359 may represent an unqualified symbol name. We therefore must
6360 also compare TEXT against the unqualified name of the symbol. */
6361 sym_name = ada_unqualified_name (ada_decode (sym_name));
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
6364 match = true;
6365 }
6366
6367 /* Finally: If we found a match, prepare the result to return. */
6368
6369 if (!match)
6370 return false;
6371
6372 if (comp_match_res != NULL)
6373 {
6374 std::string &match_str = comp_match_res->match.storage ();
6375
6376 if (!m_encoded_p)
6377 match_str = ada_decode (sym_name);
6378 else
6379 {
6380 if (m_verbatim_p)
6381 match_str = add_angle_brackets (sym_name);
6382 else
6383 match_str = sym_name;
6384
6385 }
6386
6387 comp_match_res->set_match (match_str.c_str ());
6388 }
6389
6390 return true;
6391 }
6392
6393 /* Add the list of possible symbol names completing TEXT to TRACKER.
6394 WORD is the entire command on which completion is made. */
6395
6396 static void
6397 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6398 complete_symbol_mode mode,
6399 symbol_name_match_type name_match_type,
6400 const char *text, const char *word,
6401 enum type_code code)
6402 {
6403 struct symbol *sym;
6404 const struct block *b, *surrounding_static_block = 0;
6405 struct block_iterator iter;
6406
6407 gdb_assert (code == TYPE_CODE_UNDEF);
6408
6409 lookup_name_info lookup_name (text, name_match_type, true);
6410
6411 /* First, look at the partial symtab symbols. */
6412 expand_symtabs_matching (NULL,
6413 lookup_name,
6414 NULL,
6415 NULL,
6416 ALL_DOMAIN);
6417
6418 /* At this point scan through the misc symbol vectors and add each
6419 symbol you find to the list. Eventually we want to ignore
6420 anything that isn't a text symbol (everything else will be
6421 handled by the psymtab code above). */
6422
6423 for (objfile *objfile : current_program_space->objfiles ())
6424 {
6425 for (minimal_symbol *msymbol : objfile->msymbols ())
6426 {
6427 QUIT;
6428
6429 if (completion_skip_symbol (mode, msymbol))
6430 continue;
6431
6432 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6433
6434 /* Ada minimal symbols won't have their language set to Ada. If
6435 we let completion_list_add_name compare using the
6436 default/C-like matcher, then when completing e.g., symbols in a
6437 package named "pck", we'd match internal Ada symbols like
6438 "pckS", which are invalid in an Ada expression, unless you wrap
6439 them in '<' '>' to request a verbatim match.
6440
6441 Unfortunately, some Ada encoded names successfully demangle as
6442 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6443 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6444 with the wrong language set. Paper over that issue here. */
6445 if (symbol_language == language_auto
6446 || symbol_language == language_cplus)
6447 symbol_language = language_ada;
6448
6449 completion_list_add_name (tracker,
6450 symbol_language,
6451 MSYMBOL_LINKAGE_NAME (msymbol),
6452 lookup_name, text, word);
6453 }
6454 }
6455
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6458
6459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6460 {
6461 if (!BLOCK_SUPERBLOCK (b))
6462 surrounding_static_block = b; /* For elmin of dups */
6463
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
6468
6469 completion_list_add_name (tracker,
6470 SYMBOL_LANGUAGE (sym),
6471 SYMBOL_LINKAGE_NAME (sym),
6472 lookup_name, text, word);
6473 }
6474 }
6475
6476 /* Go through the symtabs and check the externs and statics for
6477 symbols which match. */
6478
6479 for (objfile *objfile : current_program_space->objfiles ())
6480 {
6481 for (compunit_symtab *s : objfile->compunits ())
6482 {
6483 QUIT;
6484 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6485 ALL_BLOCK_SYMBOLS (b, iter, sym)
6486 {
6487 if (completion_skip_symbol (mode, sym))
6488 continue;
6489
6490 completion_list_add_name (tracker,
6491 SYMBOL_LANGUAGE (sym),
6492 SYMBOL_LINKAGE_NAME (sym),
6493 lookup_name, text, word);
6494 }
6495 }
6496 }
6497
6498 for (objfile *objfile : current_program_space->objfiles ())
6499 {
6500 for (compunit_symtab *s : objfile->compunits ())
6501 {
6502 QUIT;
6503 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6504 /* Don't do this block twice. */
6505 if (b == surrounding_static_block)
6506 continue;
6507 ALL_BLOCK_SYMBOLS (b, iter, sym)
6508 {
6509 if (completion_skip_symbol (mode, sym))
6510 continue;
6511
6512 completion_list_add_name (tracker,
6513 SYMBOL_LANGUAGE (sym),
6514 SYMBOL_LINKAGE_NAME (sym),
6515 lookup_name, text, word);
6516 }
6517 }
6518 }
6519 }
6520
6521 /* Field Access */
6522
6523 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6524 for tagged types. */
6525
6526 static int
6527 ada_is_dispatch_table_ptr_type (struct type *type)
6528 {
6529 const char *name;
6530
6531 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6532 return 0;
6533
6534 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6535 if (name == NULL)
6536 return 0;
6537
6538 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6539 }
6540
6541 /* Return non-zero if TYPE is an interface tag. */
6542
6543 static int
6544 ada_is_interface_tag (struct type *type)
6545 {
6546 const char *name = TYPE_NAME (type);
6547
6548 if (name == NULL)
6549 return 0;
6550
6551 return (strcmp (name, "ada__tags__interface_tag") == 0);
6552 }
6553
6554 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6555 to be invisible to users. */
6556
6557 int
6558 ada_is_ignored_field (struct type *type, int field_num)
6559 {
6560 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6561 return 1;
6562
6563 /* Check the name of that field. */
6564 {
6565 const char *name = TYPE_FIELD_NAME (type, field_num);
6566
6567 /* Anonymous field names should not be printed.
6568 brobecker/2007-02-20: I don't think this can actually happen
6569 but we don't want to print the value of annonymous fields anyway. */
6570 if (name == NULL)
6571 return 1;
6572
6573 /* Normally, fields whose name start with an underscore ("_")
6574 are fields that have been internally generated by the compiler,
6575 and thus should not be printed. The "_parent" field is special,
6576 however: This is a field internally generated by the compiler
6577 for tagged types, and it contains the components inherited from
6578 the parent type. This field should not be printed as is, but
6579 should not be ignored either. */
6580 if (name[0] == '_' && !startswith (name, "_parent"))
6581 return 1;
6582 }
6583
6584 /* If this is the dispatch table of a tagged type or an interface tag,
6585 then ignore. */
6586 if (ada_is_tagged_type (type, 1)
6587 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6588 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6589 return 1;
6590
6591 /* Not a special field, so it should not be ignored. */
6592 return 0;
6593 }
6594
6595 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6596 pointer or reference type whose ultimate target has a tag field. */
6597
6598 int
6599 ada_is_tagged_type (struct type *type, int refok)
6600 {
6601 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6602 }
6603
6604 /* True iff TYPE represents the type of X'Tag */
6605
6606 int
6607 ada_is_tag_type (struct type *type)
6608 {
6609 type = ada_check_typedef (type);
6610
6611 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6612 return 0;
6613 else
6614 {
6615 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6616
6617 return (name != NULL
6618 && strcmp (name, "ada__tags__dispatch_table") == 0);
6619 }
6620 }
6621
6622 /* The type of the tag on VAL. */
6623
6624 struct type *
6625 ada_tag_type (struct value *val)
6626 {
6627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6628 }
6629
6630 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6631 retired at Ada 05). */
6632
6633 static int
6634 is_ada95_tag (struct value *tag)
6635 {
6636 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6637 }
6638
6639 /* The value of the tag on VAL. */
6640
6641 struct value *
6642 ada_value_tag (struct value *val)
6643 {
6644 return ada_value_struct_elt (val, "_tag", 0);
6645 }
6646
6647 /* The value of the tag on the object of type TYPE whose contents are
6648 saved at VALADDR, if it is non-null, or is at memory address
6649 ADDRESS. */
6650
6651 static struct value *
6652 value_tag_from_contents_and_address (struct type *type,
6653 const gdb_byte *valaddr,
6654 CORE_ADDR address)
6655 {
6656 int tag_byte_offset;
6657 struct type *tag_type;
6658
6659 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6660 NULL, NULL, NULL))
6661 {
6662 const gdb_byte *valaddr1 = ((valaddr == NULL)
6663 ? NULL
6664 : valaddr + tag_byte_offset);
6665 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6666
6667 return value_from_contents_and_address (tag_type, valaddr1, address1);
6668 }
6669 return NULL;
6670 }
6671
6672 static struct type *
6673 type_from_tag (struct value *tag)
6674 {
6675 const char *type_name = ada_tag_name (tag);
6676
6677 if (type_name != NULL)
6678 return ada_find_any_type (ada_encode (type_name));
6679 return NULL;
6680 }
6681
6682 /* Given a value OBJ of a tagged type, return a value of this
6683 type at the base address of the object. The base address, as
6684 defined in Ada.Tags, it is the address of the primary tag of
6685 the object, and therefore where the field values of its full
6686 view can be fetched. */
6687
6688 struct value *
6689 ada_tag_value_at_base_address (struct value *obj)
6690 {
6691 struct value *val;
6692 LONGEST offset_to_top = 0;
6693 struct type *ptr_type, *obj_type;
6694 struct value *tag;
6695 CORE_ADDR base_address;
6696
6697 obj_type = value_type (obj);
6698
6699 /* It is the responsability of the caller to deref pointers. */
6700
6701 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6702 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6703 return obj;
6704
6705 tag = ada_value_tag (obj);
6706 if (!tag)
6707 return obj;
6708
6709 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6710
6711 if (is_ada95_tag (tag))
6712 return obj;
6713
6714 ptr_type = language_lookup_primitive_type
6715 (language_def (language_ada), target_gdbarch(), "storage_offset");
6716 ptr_type = lookup_pointer_type (ptr_type);
6717 val = value_cast (ptr_type, tag);
6718 if (!val)
6719 return obj;
6720
6721 /* It is perfectly possible that an exception be raised while
6722 trying to determine the base address, just like for the tag;
6723 see ada_tag_name for more details. We do not print the error
6724 message for the same reason. */
6725
6726 try
6727 {
6728 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6729 }
6730
6731 catch (const gdb_exception_error &e)
6732 {
6733 return obj;
6734 }
6735
6736 /* If offset is null, nothing to do. */
6737
6738 if (offset_to_top == 0)
6739 return obj;
6740
6741 /* -1 is a special case in Ada.Tags; however, what should be done
6742 is not quite clear from the documentation. So do nothing for
6743 now. */
6744
6745 if (offset_to_top == -1)
6746 return obj;
6747
6748 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6749 from the base address. This was however incompatible with
6750 C++ dispatch table: C++ uses a *negative* value to *add*
6751 to the base address. Ada's convention has therefore been
6752 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6753 use the same convention. Here, we support both cases by
6754 checking the sign of OFFSET_TO_TOP. */
6755
6756 if (offset_to_top > 0)
6757 offset_to_top = -offset_to_top;
6758
6759 base_address = value_address (obj) + offset_to_top;
6760 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6761
6762 /* Make sure that we have a proper tag at the new address.
6763 Otherwise, offset_to_top is bogus (which can happen when
6764 the object is not initialized yet). */
6765
6766 if (!tag)
6767 return obj;
6768
6769 obj_type = type_from_tag (tag);
6770
6771 if (!obj_type)
6772 return obj;
6773
6774 return value_from_contents_and_address (obj_type, NULL, base_address);
6775 }
6776
6777 /* Return the "ada__tags__type_specific_data" type. */
6778
6779 static struct type *
6780 ada_get_tsd_type (struct inferior *inf)
6781 {
6782 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6783
6784 if (data->tsd_type == 0)
6785 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6786 return data->tsd_type;
6787 }
6788
6789 /* Return the TSD (type-specific data) associated to the given TAG.
6790 TAG is assumed to be the tag of a tagged-type entity.
6791
6792 May return NULL if we are unable to get the TSD. */
6793
6794 static struct value *
6795 ada_get_tsd_from_tag (struct value *tag)
6796 {
6797 struct value *val;
6798 struct type *type;
6799
6800 /* First option: The TSD is simply stored as a field of our TAG.
6801 Only older versions of GNAT would use this format, but we have
6802 to test it first, because there are no visible markers for
6803 the current approach except the absence of that field. */
6804
6805 val = ada_value_struct_elt (tag, "tsd", 1);
6806 if (val)
6807 return val;
6808
6809 /* Try the second representation for the dispatch table (in which
6810 there is no explicit 'tsd' field in the referent of the tag pointer,
6811 and instead the tsd pointer is stored just before the dispatch
6812 table. */
6813
6814 type = ada_get_tsd_type (current_inferior());
6815 if (type == NULL)
6816 return NULL;
6817 type = lookup_pointer_type (lookup_pointer_type (type));
6818 val = value_cast (type, tag);
6819 if (val == NULL)
6820 return NULL;
6821 return value_ind (value_ptradd (val, -1));
6822 }
6823
6824 /* Given the TSD of a tag (type-specific data), return a string
6825 containing the name of the associated type.
6826
6827 The returned value is good until the next call. May return NULL
6828 if we are unable to determine the tag name. */
6829
6830 static char *
6831 ada_tag_name_from_tsd (struct value *tsd)
6832 {
6833 static char name[1024];
6834 char *p;
6835 struct value *val;
6836
6837 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6838 if (val == NULL)
6839 return NULL;
6840 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6841 for (p = name; *p != '\0'; p += 1)
6842 if (isalpha (*p))
6843 *p = tolower (*p);
6844 return name;
6845 }
6846
6847 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6848 a C string.
6849
6850 Return NULL if the TAG is not an Ada tag, or if we were unable to
6851 determine the name of that tag. The result is good until the next
6852 call. */
6853
6854 const char *
6855 ada_tag_name (struct value *tag)
6856 {
6857 char *name = NULL;
6858
6859 if (!ada_is_tag_type (value_type (tag)))
6860 return NULL;
6861
6862 /* It is perfectly possible that an exception be raised while trying
6863 to determine the TAG's name, even under normal circumstances:
6864 The associated variable may be uninitialized or corrupted, for
6865 instance. We do not let any exception propagate past this point.
6866 instead we return NULL.
6867
6868 We also do not print the error message either (which often is very
6869 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6870 the caller print a more meaningful message if necessary. */
6871 try
6872 {
6873 struct value *tsd = ada_get_tsd_from_tag (tag);
6874
6875 if (tsd != NULL)
6876 name = ada_tag_name_from_tsd (tsd);
6877 }
6878 catch (const gdb_exception_error &e)
6879 {
6880 }
6881
6882 return name;
6883 }
6884
6885 /* The parent type of TYPE, or NULL if none. */
6886
6887 struct type *
6888 ada_parent_type (struct type *type)
6889 {
6890 int i;
6891
6892 type = ada_check_typedef (type);
6893
6894 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6895 return NULL;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6898 if (ada_is_parent_field (type, i))
6899 {
6900 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6901
6902 /* If the _parent field is a pointer, then dereference it. */
6903 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6904 parent_type = TYPE_TARGET_TYPE (parent_type);
6905 /* If there is a parallel XVS type, get the actual base type. */
6906 parent_type = ada_get_base_type (parent_type);
6907
6908 return ada_check_typedef (parent_type);
6909 }
6910
6911 return NULL;
6912 }
6913
6914 /* True iff field number FIELD_NUM of structure type TYPE contains the
6915 parent-type (inherited) fields of a derived type. Assumes TYPE is
6916 a structure type with at least FIELD_NUM+1 fields. */
6917
6918 int
6919 ada_is_parent_field (struct type *type, int field_num)
6920 {
6921 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6922
6923 return (name != NULL
6924 && (startswith (name, "PARENT")
6925 || startswith (name, "_parent")));
6926 }
6927
6928 /* True iff field number FIELD_NUM of structure type TYPE is a
6929 transparent wrapper field (which should be silently traversed when doing
6930 field selection and flattened when printing). Assumes TYPE is a
6931 structure type with at least FIELD_NUM+1 fields. Such fields are always
6932 structures. */
6933
6934 int
6935 ada_is_wrapper_field (struct type *type, int field_num)
6936 {
6937 const char *name = TYPE_FIELD_NAME (type, field_num);
6938
6939 if (name != NULL && strcmp (name, "RETVAL") == 0)
6940 {
6941 /* This happens in functions with "out" or "in out" parameters
6942 which are passed by copy. For such functions, GNAT describes
6943 the function's return type as being a struct where the return
6944 value is in a field called RETVAL, and where the other "out"
6945 or "in out" parameters are fields of that struct. This is not
6946 a wrapper. */
6947 return 0;
6948 }
6949
6950 return (name != NULL
6951 && (startswith (name, "PARENT")
6952 || strcmp (name, "REP") == 0
6953 || startswith (name, "_parent")
6954 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6955 }
6956
6957 /* True iff field number FIELD_NUM of structure or union type TYPE
6958 is a variant wrapper. Assumes TYPE is a structure type with at least
6959 FIELD_NUM+1 fields. */
6960
6961 int
6962 ada_is_variant_part (struct type *type, int field_num)
6963 {
6964 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6965
6966 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6967 || (is_dynamic_field (type, field_num)
6968 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6969 == TYPE_CODE_UNION)));
6970 }
6971
6972 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6973 whose discriminants are contained in the record type OUTER_TYPE,
6974 returns the type of the controlling discriminant for the variant.
6975 May return NULL if the type could not be found. */
6976
6977 struct type *
6978 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6979 {
6980 const char *name = ada_variant_discrim_name (var_type);
6981
6982 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6983 }
6984
6985 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6986 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6987 represents a 'when others' clause; otherwise 0. */
6988
6989 int
6990 ada_is_others_clause (struct type *type, int field_num)
6991 {
6992 const char *name = TYPE_FIELD_NAME (type, field_num);
6993
6994 return (name != NULL && name[0] == 'O');
6995 }
6996
6997 /* Assuming that TYPE0 is the type of the variant part of a record,
6998 returns the name of the discriminant controlling the variant.
6999 The value is valid until the next call to ada_variant_discrim_name. */
7000
7001 const char *
7002 ada_variant_discrim_name (struct type *type0)
7003 {
7004 static char *result = NULL;
7005 static size_t result_len = 0;
7006 struct type *type;
7007 const char *name;
7008 const char *discrim_end;
7009 const char *discrim_start;
7010
7011 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7012 type = TYPE_TARGET_TYPE (type0);
7013 else
7014 type = type0;
7015
7016 name = ada_type_name (type);
7017
7018 if (name == NULL || name[0] == '\000')
7019 return "";
7020
7021 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7022 discrim_end -= 1)
7023 {
7024 if (startswith (discrim_end, "___XVN"))
7025 break;
7026 }
7027 if (discrim_end == name)
7028 return "";
7029
7030 for (discrim_start = discrim_end; discrim_start != name + 3;
7031 discrim_start -= 1)
7032 {
7033 if (discrim_start == name + 1)
7034 return "";
7035 if ((discrim_start > name + 3
7036 && startswith (discrim_start - 3, "___"))
7037 || discrim_start[-1] == '.')
7038 break;
7039 }
7040
7041 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7042 strncpy (result, discrim_start, discrim_end - discrim_start);
7043 result[discrim_end - discrim_start] = '\0';
7044 return result;
7045 }
7046
7047 /* Scan STR for a subtype-encoded number, beginning at position K.
7048 Put the position of the character just past the number scanned in
7049 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7050 Return 1 if there was a valid number at the given position, and 0
7051 otherwise. A "subtype-encoded" number consists of the absolute value
7052 in decimal, followed by the letter 'm' to indicate a negative number.
7053 Assumes 0m does not occur. */
7054
7055 int
7056 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7057 {
7058 ULONGEST RU;
7059
7060 if (!isdigit (str[k]))
7061 return 0;
7062
7063 /* Do it the hard way so as not to make any assumption about
7064 the relationship of unsigned long (%lu scan format code) and
7065 LONGEST. */
7066 RU = 0;
7067 while (isdigit (str[k]))
7068 {
7069 RU = RU * 10 + (str[k] - '0');
7070 k += 1;
7071 }
7072
7073 if (str[k] == 'm')
7074 {
7075 if (R != NULL)
7076 *R = (-(LONGEST) (RU - 1)) - 1;
7077 k += 1;
7078 }
7079 else if (R != NULL)
7080 *R = (LONGEST) RU;
7081
7082 /* NOTE on the above: Technically, C does not say what the results of
7083 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7084 number representable as a LONGEST (although either would probably work
7085 in most implementations). When RU>0, the locution in the then branch
7086 above is always equivalent to the negative of RU. */
7087
7088 if (new_k != NULL)
7089 *new_k = k;
7090 return 1;
7091 }
7092
7093 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7094 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7095 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7096
7097 int
7098 ada_in_variant (LONGEST val, struct type *type, int field_num)
7099 {
7100 const char *name = TYPE_FIELD_NAME (type, field_num);
7101 int p;
7102
7103 p = 0;
7104 while (1)
7105 {
7106 switch (name[p])
7107 {
7108 case '\0':
7109 return 0;
7110 case 'S':
7111 {
7112 LONGEST W;
7113
7114 if (!ada_scan_number (name, p + 1, &W, &p))
7115 return 0;
7116 if (val == W)
7117 return 1;
7118 break;
7119 }
7120 case 'R':
7121 {
7122 LONGEST L, U;
7123
7124 if (!ada_scan_number (name, p + 1, &L, &p)
7125 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7126 return 0;
7127 if (val >= L && val <= U)
7128 return 1;
7129 break;
7130 }
7131 case 'O':
7132 return 1;
7133 default:
7134 return 0;
7135 }
7136 }
7137 }
7138
7139 /* FIXME: Lots of redundancy below. Try to consolidate. */
7140
7141 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7142 ARG_TYPE, extract and return the value of one of its (non-static)
7143 fields. FIELDNO says which field. Differs from value_primitive_field
7144 only in that it can handle packed values of arbitrary type. */
7145
7146 static struct value *
7147 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7148 struct type *arg_type)
7149 {
7150 struct type *type;
7151
7152 arg_type = ada_check_typedef (arg_type);
7153 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7154
7155 /* Handle packed fields. */
7156
7157 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7158 {
7159 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7160 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7161
7162 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7163 offset + bit_pos / 8,
7164 bit_pos % 8, bit_size, type);
7165 }
7166 else
7167 return value_primitive_field (arg1, offset, fieldno, arg_type);
7168 }
7169
7170 /* Find field with name NAME in object of type TYPE. If found,
7171 set the following for each argument that is non-null:
7172 - *FIELD_TYPE_P to the field's type;
7173 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7174 an object of that type;
7175 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7176 - *BIT_SIZE_P to its size in bits if the field is packed, and
7177 0 otherwise;
7178 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7179 fields up to but not including the desired field, or by the total
7180 number of fields if not found. A NULL value of NAME never
7181 matches; the function just counts visible fields in this case.
7182
7183 Notice that we need to handle when a tagged record hierarchy
7184 has some components with the same name, like in this scenario:
7185
7186 type Top_T is tagged record
7187 N : Integer := 1;
7188 U : Integer := 974;
7189 A : Integer := 48;
7190 end record;
7191
7192 type Middle_T is new Top.Top_T with record
7193 N : Character := 'a';
7194 C : Integer := 3;
7195 end record;
7196
7197 type Bottom_T is new Middle.Middle_T with record
7198 N : Float := 4.0;
7199 C : Character := '5';
7200 X : Integer := 6;
7201 A : Character := 'J';
7202 end record;
7203
7204 Let's say we now have a variable declared and initialized as follow:
7205
7206 TC : Top_A := new Bottom_T;
7207
7208 And then we use this variable to call this function
7209
7210 procedure Assign (Obj: in out Top_T; TV : Integer);
7211
7212 as follow:
7213
7214 Assign (Top_T (B), 12);
7215
7216 Now, we're in the debugger, and we're inside that procedure
7217 then and we want to print the value of obj.c:
7218
7219 Usually, the tagged record or one of the parent type owns the
7220 component to print and there's no issue but in this particular
7221 case, what does it mean to ask for Obj.C? Since the actual
7222 type for object is type Bottom_T, it could mean two things: type
7223 component C from the Middle_T view, but also component C from
7224 Bottom_T. So in that "undefined" case, when the component is
7225 not found in the non-resolved type (which includes all the
7226 components of the parent type), then resolve it and see if we
7227 get better luck once expanded.
7228
7229 In the case of homonyms in the derived tagged type, we don't
7230 guaranty anything, and pick the one that's easiest for us
7231 to program.
7232
7233 Returns 1 if found, 0 otherwise. */
7234
7235 static int
7236 find_struct_field (const char *name, struct type *type, int offset,
7237 struct type **field_type_p,
7238 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7239 int *index_p)
7240 {
7241 int i;
7242 int parent_offset = -1;
7243
7244 type = ada_check_typedef (type);
7245
7246 if (field_type_p != NULL)
7247 *field_type_p = NULL;
7248 if (byte_offset_p != NULL)
7249 *byte_offset_p = 0;
7250 if (bit_offset_p != NULL)
7251 *bit_offset_p = 0;
7252 if (bit_size_p != NULL)
7253 *bit_size_p = 0;
7254
7255 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7256 {
7257 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7258 int fld_offset = offset + bit_pos / 8;
7259 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7260
7261 if (t_field_name == NULL)
7262 continue;
7263
7264 else if (ada_is_parent_field (type, i))
7265 {
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7273
7274 parent_offset = i;
7275 continue;
7276 }
7277
7278 else if (name != NULL && field_name_match (t_field_name, name))
7279 {
7280 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7281
7282 if (field_type_p != NULL)
7283 *field_type_p = TYPE_FIELD_TYPE (type, i);
7284 if (byte_offset_p != NULL)
7285 *byte_offset_p = fld_offset;
7286 if (bit_offset_p != NULL)
7287 *bit_offset_p = bit_pos % 8;
7288 if (bit_size_p != NULL)
7289 *bit_size_p = bit_size;
7290 return 1;
7291 }
7292 else if (ada_is_wrapper_field (type, i))
7293 {
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7295 field_type_p, byte_offset_p, bit_offset_p,
7296 bit_size_p, index_p))
7297 return 1;
7298 }
7299 else if (ada_is_variant_part (type, i))
7300 {
7301 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7302 fixed type?? */
7303 int j;
7304 struct type *field_type
7305 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7306
7307 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7308 {
7309 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7310 fld_offset
7311 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7312 field_type_p, byte_offset_p,
7313 bit_offset_p, bit_size_p, index_p))
7314 return 1;
7315 }
7316 }
7317 else if (index_p != NULL)
7318 *index_p += 1;
7319 }
7320
7321 /* Field not found so far. If this is a tagged type which
7322 has a parent, try finding that field in the parent now. */
7323
7324 if (parent_offset != -1)
7325 {
7326 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7327 int fld_offset = offset + bit_pos / 8;
7328
7329 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7330 fld_offset, field_type_p, byte_offset_p,
7331 bit_offset_p, bit_size_p, index_p))
7332 return 1;
7333 }
7334
7335 return 0;
7336 }
7337
7338 /* Number of user-visible fields in record type TYPE. */
7339
7340 static int
7341 num_visible_fields (struct type *type)
7342 {
7343 int n;
7344
7345 n = 0;
7346 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7347 return n;
7348 }
7349
7350 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7351 and search in it assuming it has (class) type TYPE.
7352 If found, return value, else return NULL.
7353
7354 Searches recursively through wrapper fields (e.g., '_parent').
7355
7356 In the case of homonyms in the tagged types, please refer to the
7357 long explanation in find_struct_field's function documentation. */
7358
7359 static struct value *
7360 ada_search_struct_field (const char *name, struct value *arg, int offset,
7361 struct type *type)
7362 {
7363 int i;
7364 int parent_offset = -1;
7365
7366 type = ada_check_typedef (type);
7367 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7368 {
7369 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7370
7371 if (t_field_name == NULL)
7372 continue;
7373
7374 else if (ada_is_parent_field (type, i))
7375 {
7376 /* This is a field pointing us to the parent type of a tagged
7377 type. As hinted in this function's documentation, we give
7378 preference to fields in the current record first, so what
7379 we do here is just record the index of this field before
7380 we skip it. If it turns out we couldn't find our field
7381 in the current record, then we'll get back to it and search
7382 inside it whether the field might exist in the parent. */
7383
7384 parent_offset = i;
7385 continue;
7386 }
7387
7388 else if (field_name_match (t_field_name, name))
7389 return ada_value_primitive_field (arg, offset, i, type);
7390
7391 else if (ada_is_wrapper_field (type, i))
7392 {
7393 struct value *v = /* Do not let indent join lines here. */
7394 ada_search_struct_field (name, arg,
7395 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7396 TYPE_FIELD_TYPE (type, i));
7397
7398 if (v != NULL)
7399 return v;
7400 }
7401
7402 else if (ada_is_variant_part (type, i))
7403 {
7404 /* PNH: Do we ever get here? See find_struct_field. */
7405 int j;
7406 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7407 i));
7408 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7409
7410 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7411 {
7412 struct value *v = ada_search_struct_field /* Force line
7413 break. */
7414 (name, arg,
7415 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7416 TYPE_FIELD_TYPE (field_type, j));
7417
7418 if (v != NULL)
7419 return v;
7420 }
7421 }
7422 }
7423
7424 /* Field not found so far. If this is a tagged type which
7425 has a parent, try finding that field in the parent now. */
7426
7427 if (parent_offset != -1)
7428 {
7429 struct value *v = ada_search_struct_field (
7430 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7431 TYPE_FIELD_TYPE (type, parent_offset));
7432
7433 if (v != NULL)
7434 return v;
7435 }
7436
7437 return NULL;
7438 }
7439
7440 static struct value *ada_index_struct_field_1 (int *, struct value *,
7441 int, struct type *);
7442
7443
7444 /* Return field #INDEX in ARG, where the index is that returned by
7445 * find_struct_field through its INDEX_P argument. Adjust the address
7446 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7447 * If found, return value, else return NULL. */
7448
7449 static struct value *
7450 ada_index_struct_field (int index, struct value *arg, int offset,
7451 struct type *type)
7452 {
7453 return ada_index_struct_field_1 (&index, arg, offset, type);
7454 }
7455
7456
7457 /* Auxiliary function for ada_index_struct_field. Like
7458 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7459 * *INDEX_P. */
7460
7461 static struct value *
7462 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7463 struct type *type)
7464 {
7465 int i;
7466 type = ada_check_typedef (type);
7467
7468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7469 {
7470 if (TYPE_FIELD_NAME (type, i) == NULL)
7471 continue;
7472 else if (ada_is_wrapper_field (type, i))
7473 {
7474 struct value *v = /* Do not let indent join lines here. */
7475 ada_index_struct_field_1 (index_p, arg,
7476 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7477 TYPE_FIELD_TYPE (type, i));
7478
7479 if (v != NULL)
7480 return v;
7481 }
7482
7483 else if (ada_is_variant_part (type, i))
7484 {
7485 /* PNH: Do we ever get here? See ada_search_struct_field,
7486 find_struct_field. */
7487 error (_("Cannot assign this kind of variant record"));
7488 }
7489 else if (*index_p == 0)
7490 return ada_value_primitive_field (arg, offset, i, type);
7491 else
7492 *index_p -= 1;
7493 }
7494 return NULL;
7495 }
7496
7497 /* Given ARG, a value of type (pointer or reference to a)*
7498 structure/union, extract the component named NAME from the ultimate
7499 target structure/union and return it as a value with its
7500 appropriate type.
7501
7502 The routine searches for NAME among all members of the structure itself
7503 and (recursively) among all members of any wrapper members
7504 (e.g., '_parent').
7505
7506 If NO_ERR, then simply return NULL in case of error, rather than
7507 calling error. */
7508
7509 struct value *
7510 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7511 {
7512 struct type *t, *t1;
7513 struct value *v;
7514 int check_tag;
7515
7516 v = NULL;
7517 t1 = t = ada_check_typedef (value_type (arg));
7518 if (TYPE_CODE (t) == TYPE_CODE_REF)
7519 {
7520 t1 = TYPE_TARGET_TYPE (t);
7521 if (t1 == NULL)
7522 goto BadValue;
7523 t1 = ada_check_typedef (t1);
7524 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7525 {
7526 arg = coerce_ref (arg);
7527 t = t1;
7528 }
7529 }
7530
7531 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7532 {
7533 t1 = TYPE_TARGET_TYPE (t);
7534 if (t1 == NULL)
7535 goto BadValue;
7536 t1 = ada_check_typedef (t1);
7537 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7538 {
7539 arg = value_ind (arg);
7540 t = t1;
7541 }
7542 else
7543 break;
7544 }
7545
7546 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7547 goto BadValue;
7548
7549 if (t1 == t)
7550 v = ada_search_struct_field (name, arg, 0, t);
7551 else
7552 {
7553 int bit_offset, bit_size, byte_offset;
7554 struct type *field_type;
7555 CORE_ADDR address;
7556
7557 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7558 address = value_address (ada_value_ind (arg));
7559 else
7560 address = value_address (ada_coerce_ref (arg));
7561
7562 /* Check to see if this is a tagged type. We also need to handle
7563 the case where the type is a reference to a tagged type, but
7564 we have to be careful to exclude pointers to tagged types.
7565 The latter should be shown as usual (as a pointer), whereas
7566 a reference should mostly be transparent to the user. */
7567
7568 if (ada_is_tagged_type (t1, 0)
7569 || (TYPE_CODE (t1) == TYPE_CODE_REF
7570 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7571 {
7572 /* We first try to find the searched field in the current type.
7573 If not found then let's look in the fixed type. */
7574
7575 if (!find_struct_field (name, t1, 0,
7576 &field_type, &byte_offset, &bit_offset,
7577 &bit_size, NULL))
7578 check_tag = 1;
7579 else
7580 check_tag = 0;
7581 }
7582 else
7583 check_tag = 0;
7584
7585 /* Convert to fixed type in all cases, so that we have proper
7586 offsets to each field in unconstrained record types. */
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7588 address, NULL, check_tag);
7589
7590 if (find_struct_field (name, t1, 0,
7591 &field_type, &byte_offset, &bit_offset,
7592 &bit_size, NULL))
7593 {
7594 if (bit_size != 0)
7595 {
7596 if (TYPE_CODE (t) == TYPE_CODE_REF)
7597 arg = ada_coerce_ref (arg);
7598 else
7599 arg = ada_value_ind (arg);
7600 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7601 bit_offset, bit_size,
7602 field_type);
7603 }
7604 else
7605 v = value_at_lazy (field_type, address + byte_offset);
7606 }
7607 }
7608
7609 if (v != NULL || no_err)
7610 return v;
7611 else
7612 error (_("There is no member named %s."), name);
7613
7614 BadValue:
7615 if (no_err)
7616 return NULL;
7617 else
7618 error (_("Attempt to extract a component of "
7619 "a value that is not a record."));
7620 }
7621
7622 /* Return a string representation of type TYPE. */
7623
7624 static std::string
7625 type_as_string (struct type *type)
7626 {
7627 string_file tmp_stream;
7628
7629 type_print (type, "", &tmp_stream, -1);
7630
7631 return std::move (tmp_stream.string ());
7632 }
7633
7634 /* Given a type TYPE, look up the type of the component of type named NAME.
7635 If DISPP is non-null, add its byte displacement from the beginning of a
7636 structure (pointed to by a value) of type TYPE to *DISPP (does not
7637 work for packed fields).
7638
7639 Matches any field whose name has NAME as a prefix, possibly
7640 followed by "___".
7641
7642 TYPE can be either a struct or union. If REFOK, TYPE may also
7643 be a (pointer or reference)+ to a struct or union, and the
7644 ultimate target type will be searched.
7645
7646 Looks recursively into variant clauses and parent types.
7647
7648 In the case of homonyms in the tagged types, please refer to the
7649 long explanation in find_struct_field's function documentation.
7650
7651 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7652 TYPE is not a type of the right kind. */
7653
7654 static struct type *
7655 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7656 int noerr)
7657 {
7658 int i;
7659 int parent_offset = -1;
7660
7661 if (name == NULL)
7662 goto BadName;
7663
7664 if (refok && type != NULL)
7665 while (1)
7666 {
7667 type = ada_check_typedef (type);
7668 if (TYPE_CODE (type) != TYPE_CODE_PTR
7669 && TYPE_CODE (type) != TYPE_CODE_REF)
7670 break;
7671 type = TYPE_TARGET_TYPE (type);
7672 }
7673
7674 if (type == NULL
7675 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7676 && TYPE_CODE (type) != TYPE_CODE_UNION))
7677 {
7678 if (noerr)
7679 return NULL;
7680
7681 error (_("Type %s is not a structure or union type"),
7682 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7683 }
7684
7685 type = to_static_fixed_type (type);
7686
7687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7688 {
7689 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7690 struct type *t;
7691
7692 if (t_field_name == NULL)
7693 continue;
7694
7695 else if (ada_is_parent_field (type, i))
7696 {
7697 /* This is a field pointing us to the parent type of a tagged
7698 type. As hinted in this function's documentation, we give
7699 preference to fields in the current record first, so what
7700 we do here is just record the index of this field before
7701 we skip it. If it turns out we couldn't find our field
7702 in the current record, then we'll get back to it and search
7703 inside it whether the field might exist in the parent. */
7704
7705 parent_offset = i;
7706 continue;
7707 }
7708
7709 else if (field_name_match (t_field_name, name))
7710 return TYPE_FIELD_TYPE (type, i);
7711
7712 else if (ada_is_wrapper_field (type, i))
7713 {
7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7715 0, 1);
7716 if (t != NULL)
7717 return t;
7718 }
7719
7720 else if (ada_is_variant_part (type, i))
7721 {
7722 int j;
7723 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7724 i));
7725
7726 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7727 {
7728 /* FIXME pnh 2008/01/26: We check for a field that is
7729 NOT wrapped in a struct, since the compiler sometimes
7730 generates these for unchecked variant types. Revisit
7731 if the compiler changes this practice. */
7732 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7733
7734 if (v_field_name != NULL
7735 && field_name_match (v_field_name, name))
7736 t = TYPE_FIELD_TYPE (field_type, j);
7737 else
7738 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7739 j),
7740 name, 0, 1);
7741
7742 if (t != NULL)
7743 return t;
7744 }
7745 }
7746
7747 }
7748
7749 /* Field not found so far. If this is a tagged type which
7750 has a parent, try finding that field in the parent now. */
7751
7752 if (parent_offset != -1)
7753 {
7754 struct type *t;
7755
7756 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7757 name, 0, 1);
7758 if (t != NULL)
7759 return t;
7760 }
7761
7762 BadName:
7763 if (!noerr)
7764 {
7765 const char *name_str = name != NULL ? name : _("<null>");
7766
7767 error (_("Type %s has no component named %s"),
7768 type_as_string (type).c_str (), name_str);
7769 }
7770
7771 return NULL;
7772 }
7773
7774 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7776 represents an unchecked union (that is, the variant part of a
7777 record that is named in an Unchecked_Union pragma). */
7778
7779 static int
7780 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7781 {
7782 const char *discrim_name = ada_variant_discrim_name (var_type);
7783
7784 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7785 }
7786
7787
7788 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE that is stored in GDB at
7790 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7791 numbering from 0) is applicable. Returns -1 if none are. */
7792
7793 int
7794 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7795 const gdb_byte *outer_valaddr)
7796 {
7797 int others_clause;
7798 int i;
7799 const char *discrim_name = ada_variant_discrim_name (var_type);
7800 struct value *outer;
7801 struct value *discrim;
7802 LONGEST discrim_val;
7803
7804 /* Using plain value_from_contents_and_address here causes problems
7805 because we will end up trying to resolve a type that is currently
7806 being constructed. */
7807 outer = value_from_contents_and_address_unresolved (outer_type,
7808 outer_valaddr, 0);
7809 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7810 if (discrim == NULL)
7811 return -1;
7812 discrim_val = value_as_long (discrim);
7813
7814 others_clause = -1;
7815 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7816 {
7817 if (ada_is_others_clause (var_type, i))
7818 others_clause = i;
7819 else if (ada_in_variant (discrim_val, var_type, i))
7820 return i;
7821 }
7822
7823 return others_clause;
7824 }
7825 \f
7826
7827
7828 /* Dynamic-Sized Records */
7829
7830 /* Strategy: The type ostensibly attached to a value with dynamic size
7831 (i.e., a size that is not statically recorded in the debugging
7832 data) does not accurately reflect the size or layout of the value.
7833 Our strategy is to convert these values to values with accurate,
7834 conventional types that are constructed on the fly. */
7835
7836 /* There is a subtle and tricky problem here. In general, we cannot
7837 determine the size of dynamic records without its data. However,
7838 the 'struct value' data structure, which GDB uses to represent
7839 quantities in the inferior process (the target), requires the size
7840 of the type at the time of its allocation in order to reserve space
7841 for GDB's internal copy of the data. That's why the
7842 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7843 rather than struct value*s.
7844
7845 However, GDB's internal history variables ($1, $2, etc.) are
7846 struct value*s containing internal copies of the data that are not, in
7847 general, the same as the data at their corresponding addresses in
7848 the target. Fortunately, the types we give to these values are all
7849 conventional, fixed-size types (as per the strategy described
7850 above), so that we don't usually have to perform the
7851 'to_fixed_xxx_type' conversions to look at their values.
7852 Unfortunately, there is one exception: if one of the internal
7853 history variables is an array whose elements are unconstrained
7854 records, then we will need to create distinct fixed types for each
7855 element selected. */
7856
7857 /* The upshot of all of this is that many routines take a (type, host
7858 address, target address) triple as arguments to represent a value.
7859 The host address, if non-null, is supposed to contain an internal
7860 copy of the relevant data; otherwise, the program is to consult the
7861 target at the target address. */
7862
7863 /* Assuming that VAL0 represents a pointer value, the result of
7864 dereferencing it. Differs from value_ind in its treatment of
7865 dynamic-sized types. */
7866
7867 struct value *
7868 ada_value_ind (struct value *val0)
7869 {
7870 struct value *val = value_ind (val0);
7871
7872 if (ada_is_tagged_type (value_type (val), 0))
7873 val = ada_tag_value_at_base_address (val);
7874
7875 return ada_to_fixed_value (val);
7876 }
7877
7878 /* The value resulting from dereferencing any "reference to"
7879 qualifiers on VAL0. */
7880
7881 static struct value *
7882 ada_coerce_ref (struct value *val0)
7883 {
7884 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7885 {
7886 struct value *val = val0;
7887
7888 val = coerce_ref (val);
7889
7890 if (ada_is_tagged_type (value_type (val), 0))
7891 val = ada_tag_value_at_base_address (val);
7892
7893 return ada_to_fixed_value (val);
7894 }
7895 else
7896 return val0;
7897 }
7898
7899 /* Return OFF rounded upward if necessary to a multiple of
7900 ALIGNMENT (a power of 2). */
7901
7902 static unsigned int
7903 align_value (unsigned int off, unsigned int alignment)
7904 {
7905 return (off + alignment - 1) & ~(alignment - 1);
7906 }
7907
7908 /* Return the bit alignment required for field #F of template type TYPE. */
7909
7910 static unsigned int
7911 field_alignment (struct type *type, int f)
7912 {
7913 const char *name = TYPE_FIELD_NAME (type, f);
7914 int len;
7915 int align_offset;
7916
7917 /* The field name should never be null, unless the debugging information
7918 is somehow malformed. In this case, we assume the field does not
7919 require any alignment. */
7920 if (name == NULL)
7921 return 1;
7922
7923 len = strlen (name);
7924
7925 if (!isdigit (name[len - 1]))
7926 return 1;
7927
7928 if (isdigit (name[len - 2]))
7929 align_offset = len - 2;
7930 else
7931 align_offset = len - 1;
7932
7933 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7934 return TARGET_CHAR_BIT;
7935
7936 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7937 }
7938
7939 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7940
7941 static struct symbol *
7942 ada_find_any_type_symbol (const char *name)
7943 {
7944 struct symbol *sym;
7945
7946 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7947 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7948 return sym;
7949
7950 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7951 return sym;
7952 }
7953
7954 /* Find a type named NAME. Ignores ambiguity. This routine will look
7955 solely for types defined by debug info, it will not search the GDB
7956 primitive types. */
7957
7958 static struct type *
7959 ada_find_any_type (const char *name)
7960 {
7961 struct symbol *sym = ada_find_any_type_symbol (name);
7962
7963 if (sym != NULL)
7964 return SYMBOL_TYPE (sym);
7965
7966 return NULL;
7967 }
7968
7969 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7970 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7971 symbol, in which case it is returned. Otherwise, this looks for
7972 symbols whose name is that of NAME_SYM suffixed with "___XR".
7973 Return symbol if found, and NULL otherwise. */
7974
7975 struct symbol *
7976 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7977 {
7978 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7979 struct symbol *sym;
7980
7981 if (strstr (name, "___XR") != NULL)
7982 return name_sym;
7983
7984 sym = find_old_style_renaming_symbol (name, block);
7985
7986 if (sym != NULL)
7987 return sym;
7988
7989 /* Not right yet. FIXME pnh 7/20/2007. */
7990 sym = ada_find_any_type_symbol (name);
7991 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7992 return sym;
7993 else
7994 return NULL;
7995 }
7996
7997 static struct symbol *
7998 find_old_style_renaming_symbol (const char *name, const struct block *block)
7999 {
8000 const struct symbol *function_sym = block_linkage_function (block);
8001 char *rename;
8002
8003 if (function_sym != NULL)
8004 {
8005 /* If the symbol is defined inside a function, NAME is not fully
8006 qualified. This means we need to prepend the function name
8007 as well as adding the ``___XR'' suffix to build the name of
8008 the associated renaming symbol. */
8009 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8010 /* Function names sometimes contain suffixes used
8011 for instance to qualify nested subprograms. When building
8012 the XR type name, we need to make sure that this suffix is
8013 not included. So do not include any suffix in the function
8014 name length below. */
8015 int function_name_len = ada_name_prefix_len (function_name);
8016 const int rename_len = function_name_len + 2 /* "__" */
8017 + strlen (name) + 6 /* "___XR\0" */ ;
8018
8019 /* Strip the suffix if necessary. */
8020 ada_remove_trailing_digits (function_name, &function_name_len);
8021 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8022 ada_remove_Xbn_suffix (function_name, &function_name_len);
8023
8024 /* Library-level functions are a special case, as GNAT adds
8025 a ``_ada_'' prefix to the function name to avoid namespace
8026 pollution. However, the renaming symbols themselves do not
8027 have this prefix, so we need to skip this prefix if present. */
8028 if (function_name_len > 5 /* "_ada_" */
8029 && strstr (function_name, "_ada_") == function_name)
8030 {
8031 function_name += 5;
8032 function_name_len -= 5;
8033 }
8034
8035 rename = (char *) alloca (rename_len * sizeof (char));
8036 strncpy (rename, function_name, function_name_len);
8037 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8038 "__%s___XR", name);
8039 }
8040 else
8041 {
8042 const int rename_len = strlen (name) + 6;
8043
8044 rename = (char *) alloca (rename_len * sizeof (char));
8045 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8046 }
8047
8048 return ada_find_any_type_symbol (rename);
8049 }
8050
8051 /* Because of GNAT encoding conventions, several GDB symbols may match a
8052 given type name. If the type denoted by TYPE0 is to be preferred to
8053 that of TYPE1 for purposes of type printing, return non-zero;
8054 otherwise return 0. */
8055
8056 int
8057 ada_prefer_type (struct type *type0, struct type *type1)
8058 {
8059 if (type1 == NULL)
8060 return 1;
8061 else if (type0 == NULL)
8062 return 0;
8063 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8064 return 1;
8065 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8066 return 0;
8067 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8068 return 1;
8069 else if (ada_is_constrained_packed_array_type (type0))
8070 return 1;
8071 else if (ada_is_array_descriptor_type (type0)
8072 && !ada_is_array_descriptor_type (type1))
8073 return 1;
8074 else
8075 {
8076 const char *type0_name = TYPE_NAME (type0);
8077 const char *type1_name = TYPE_NAME (type1);
8078
8079 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8080 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8081 return 1;
8082 }
8083 return 0;
8084 }
8085
8086 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8087 null. */
8088
8089 const char *
8090 ada_type_name (struct type *type)
8091 {
8092 if (type == NULL)
8093 return NULL;
8094 return TYPE_NAME (type);
8095 }
8096
8097 /* Search the list of "descriptive" types associated to TYPE for a type
8098 whose name is NAME. */
8099
8100 static struct type *
8101 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8102 {
8103 struct type *result, *tmp;
8104
8105 if (ada_ignore_descriptive_types_p)
8106 return NULL;
8107
8108 /* If there no descriptive-type info, then there is no parallel type
8109 to be found. */
8110 if (!HAVE_GNAT_AUX_INFO (type))
8111 return NULL;
8112
8113 result = TYPE_DESCRIPTIVE_TYPE (type);
8114 while (result != NULL)
8115 {
8116 const char *result_name = ada_type_name (result);
8117
8118 if (result_name == NULL)
8119 {
8120 warning (_("unexpected null name on descriptive type"));
8121 return NULL;
8122 }
8123
8124 /* If the names match, stop. */
8125 if (strcmp (result_name, name) == 0)
8126 break;
8127
8128 /* Otherwise, look at the next item on the list, if any. */
8129 if (HAVE_GNAT_AUX_INFO (result))
8130 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8131 else
8132 tmp = NULL;
8133
8134 /* If not found either, try after having resolved the typedef. */
8135 if (tmp != NULL)
8136 result = tmp;
8137 else
8138 {
8139 result = check_typedef (result);
8140 if (HAVE_GNAT_AUX_INFO (result))
8141 result = TYPE_DESCRIPTIVE_TYPE (result);
8142 else
8143 result = NULL;
8144 }
8145 }
8146
8147 /* If we didn't find a match, see whether this is a packed array. With
8148 older compilers, the descriptive type information is either absent or
8149 irrelevant when it comes to packed arrays so the above lookup fails.
8150 Fall back to using a parallel lookup by name in this case. */
8151 if (result == NULL && ada_is_constrained_packed_array_type (type))
8152 return ada_find_any_type (name);
8153
8154 return result;
8155 }
8156
8157 /* Find a parallel type to TYPE with the specified NAME, using the
8158 descriptive type taken from the debugging information, if available,
8159 and otherwise using the (slower) name-based method. */
8160
8161 static struct type *
8162 ada_find_parallel_type_with_name (struct type *type, const char *name)
8163 {
8164 struct type *result = NULL;
8165
8166 if (HAVE_GNAT_AUX_INFO (type))
8167 result = find_parallel_type_by_descriptive_type (type, name);
8168 else
8169 result = ada_find_any_type (name);
8170
8171 return result;
8172 }
8173
8174 /* Same as above, but specify the name of the parallel type by appending
8175 SUFFIX to the name of TYPE. */
8176
8177 struct type *
8178 ada_find_parallel_type (struct type *type, const char *suffix)
8179 {
8180 char *name;
8181 const char *type_name = ada_type_name (type);
8182 int len;
8183
8184 if (type_name == NULL)
8185 return NULL;
8186
8187 len = strlen (type_name);
8188
8189 name = (char *) alloca (len + strlen (suffix) + 1);
8190
8191 strcpy (name, type_name);
8192 strcpy (name + len, suffix);
8193
8194 return ada_find_parallel_type_with_name (type, name);
8195 }
8196
8197 /* If TYPE is a variable-size record type, return the corresponding template
8198 type describing its fields. Otherwise, return NULL. */
8199
8200 static struct type *
8201 dynamic_template_type (struct type *type)
8202 {
8203 type = ada_check_typedef (type);
8204
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8206 || ada_type_name (type) == NULL)
8207 return NULL;
8208 else
8209 {
8210 int len = strlen (ada_type_name (type));
8211
8212 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8213 return type;
8214 else
8215 return ada_find_parallel_type (type, "___XVE");
8216 }
8217 }
8218
8219 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8220 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8221
8222 static int
8223 is_dynamic_field (struct type *templ_type, int field_num)
8224 {
8225 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8226
8227 return name != NULL
8228 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8229 && strstr (name, "___XVL") != NULL;
8230 }
8231
8232 /* The index of the variant field of TYPE, or -1 if TYPE does not
8233 represent a variant record type. */
8234
8235 static int
8236 variant_field_index (struct type *type)
8237 {
8238 int f;
8239
8240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8241 return -1;
8242
8243 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8244 {
8245 if (ada_is_variant_part (type, f))
8246 return f;
8247 }
8248 return -1;
8249 }
8250
8251 /* A record type with no fields. */
8252
8253 static struct type *
8254 empty_record (struct type *templ)
8255 {
8256 struct type *type = alloc_type_copy (templ);
8257
8258 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8259 TYPE_NFIELDS (type) = 0;
8260 TYPE_FIELDS (type) = NULL;
8261 INIT_CPLUS_SPECIFIC (type);
8262 TYPE_NAME (type) = "<empty>";
8263 TYPE_LENGTH (type) = 0;
8264 return type;
8265 }
8266
8267 /* An ordinary record type (with fixed-length fields) that describes
8268 the value of type TYPE at VALADDR or ADDRESS (see comments at
8269 the beginning of this section) VAL according to GNAT conventions.
8270 DVAL0 should describe the (portion of a) record that contains any
8271 necessary discriminants. It should be NULL if value_type (VAL) is
8272 an outer-level type (i.e., as opposed to a branch of a variant.) A
8273 variant field (unless unchecked) is replaced by a particular branch
8274 of the variant.
8275
8276 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8277 length are not statically known are discarded. As a consequence,
8278 VALADDR, ADDRESS and DVAL0 are ignored.
8279
8280 NOTE: Limitations: For now, we assume that dynamic fields and
8281 variants occupy whole numbers of bytes. However, they need not be
8282 byte-aligned. */
8283
8284 struct type *
8285 ada_template_to_fixed_record_type_1 (struct type *type,
8286 const gdb_byte *valaddr,
8287 CORE_ADDR address, struct value *dval0,
8288 int keep_dynamic_fields)
8289 {
8290 struct value *mark = value_mark ();
8291 struct value *dval;
8292 struct type *rtype;
8293 int nfields, bit_len;
8294 int variant_field;
8295 long off;
8296 int fld_bit_len;
8297 int f;
8298
8299 /* Compute the number of fields in this record type that are going
8300 to be processed: unless keep_dynamic_fields, this includes only
8301 fields whose position and length are static will be processed. */
8302 if (keep_dynamic_fields)
8303 nfields = TYPE_NFIELDS (type);
8304 else
8305 {
8306 nfields = 0;
8307 while (nfields < TYPE_NFIELDS (type)
8308 && !ada_is_variant_part (type, nfields)
8309 && !is_dynamic_field (type, nfields))
8310 nfields++;
8311 }
8312
8313 rtype = alloc_type_copy (type);
8314 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8315 INIT_CPLUS_SPECIFIC (rtype);
8316 TYPE_NFIELDS (rtype) = nfields;
8317 TYPE_FIELDS (rtype) = (struct field *)
8318 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8319 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8320 TYPE_NAME (rtype) = ada_type_name (type);
8321 TYPE_FIXED_INSTANCE (rtype) = 1;
8322
8323 off = 0;
8324 bit_len = 0;
8325 variant_field = -1;
8326
8327 for (f = 0; f < nfields; f += 1)
8328 {
8329 off = align_value (off, field_alignment (type, f))
8330 + TYPE_FIELD_BITPOS (type, f);
8331 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8332 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8333
8334 if (ada_is_variant_part (type, f))
8335 {
8336 variant_field = f;
8337 fld_bit_len = 0;
8338 }
8339 else if (is_dynamic_field (type, f))
8340 {
8341 const gdb_byte *field_valaddr = valaddr;
8342 CORE_ADDR field_address = address;
8343 struct type *field_type =
8344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8345
8346 if (dval0 == NULL)
8347 {
8348 /* rtype's length is computed based on the run-time
8349 value of discriminants. If the discriminants are not
8350 initialized, the type size may be completely bogus and
8351 GDB may fail to allocate a value for it. So check the
8352 size first before creating the value. */
8353 ada_ensure_varsize_limit (rtype);
8354 /* Using plain value_from_contents_and_address here
8355 causes problems because we will end up trying to
8356 resolve a type that is currently being
8357 constructed. */
8358 dval = value_from_contents_and_address_unresolved (rtype,
8359 valaddr,
8360 address);
8361 rtype = value_type (dval);
8362 }
8363 else
8364 dval = dval0;
8365
8366 /* If the type referenced by this field is an aligner type, we need
8367 to unwrap that aligner type, because its size might not be set.
8368 Keeping the aligner type would cause us to compute the wrong
8369 size for this field, impacting the offset of the all the fields
8370 that follow this one. */
8371 if (ada_is_aligner_type (field_type))
8372 {
8373 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8374
8375 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8376 field_address = cond_offset_target (field_address, field_offset);
8377 field_type = ada_aligned_type (field_type);
8378 }
8379
8380 field_valaddr = cond_offset_host (field_valaddr,
8381 off / TARGET_CHAR_BIT);
8382 field_address = cond_offset_target (field_address,
8383 off / TARGET_CHAR_BIT);
8384
8385 /* Get the fixed type of the field. Note that, in this case,
8386 we do not want to get the real type out of the tag: if
8387 the current field is the parent part of a tagged record,
8388 we will get the tag of the object. Clearly wrong: the real
8389 type of the parent is not the real type of the child. We
8390 would end up in an infinite loop. */
8391 field_type = ada_get_base_type (field_type);
8392 field_type = ada_to_fixed_type (field_type, field_valaddr,
8393 field_address, dval, 0);
8394 /* If the field size is already larger than the maximum
8395 object size, then the record itself will necessarily
8396 be larger than the maximum object size. We need to make
8397 this check now, because the size might be so ridiculously
8398 large (due to an uninitialized variable in the inferior)
8399 that it would cause an overflow when adding it to the
8400 record size. */
8401 ada_ensure_varsize_limit (field_type);
8402
8403 TYPE_FIELD_TYPE (rtype, f) = field_type;
8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8405 /* The multiplication can potentially overflow. But because
8406 the field length has been size-checked just above, and
8407 assuming that the maximum size is a reasonable value,
8408 an overflow should not happen in practice. So rather than
8409 adding overflow recovery code to this already complex code,
8410 we just assume that it's not going to happen. */
8411 fld_bit_len =
8412 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8413 }
8414 else
8415 {
8416 /* Note: If this field's type is a typedef, it is important
8417 to preserve the typedef layer.
8418
8419 Otherwise, we might be transforming a typedef to a fat
8420 pointer (encoding a pointer to an unconstrained array),
8421 into a basic fat pointer (encoding an unconstrained
8422 array). As both types are implemented using the same
8423 structure, the typedef is the only clue which allows us
8424 to distinguish between the two options. Stripping it
8425 would prevent us from printing this field appropriately. */
8426 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8427 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8428 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8429 fld_bit_len =
8430 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8431 else
8432 {
8433 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8434
8435 /* We need to be careful of typedefs when computing
8436 the length of our field. If this is a typedef,
8437 get the length of the target type, not the length
8438 of the typedef. */
8439 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8440 field_type = ada_typedef_target_type (field_type);
8441
8442 fld_bit_len =
8443 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8444 }
8445 }
8446 if (off + fld_bit_len > bit_len)
8447 bit_len = off + fld_bit_len;
8448 off += fld_bit_len;
8449 TYPE_LENGTH (rtype) =
8450 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8451 }
8452
8453 /* We handle the variant part, if any, at the end because of certain
8454 odd cases in which it is re-ordered so as NOT to be the last field of
8455 the record. This can happen in the presence of representation
8456 clauses. */
8457 if (variant_field >= 0)
8458 {
8459 struct type *branch_type;
8460
8461 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8462
8463 if (dval0 == NULL)
8464 {
8465 /* Using plain value_from_contents_and_address here causes
8466 problems because we will end up trying to resolve a type
8467 that is currently being constructed. */
8468 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8469 address);
8470 rtype = value_type (dval);
8471 }
8472 else
8473 dval = dval0;
8474
8475 branch_type =
8476 to_fixed_variant_branch_type
8477 (TYPE_FIELD_TYPE (type, variant_field),
8478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8480 if (branch_type == NULL)
8481 {
8482 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8483 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8484 TYPE_NFIELDS (rtype) -= 1;
8485 }
8486 else
8487 {
8488 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8489 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8490 fld_bit_len =
8491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8492 TARGET_CHAR_BIT;
8493 if (off + fld_bit_len > bit_len)
8494 bit_len = off + fld_bit_len;
8495 TYPE_LENGTH (rtype) =
8496 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8497 }
8498 }
8499
8500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8501 should contain the alignment of that record, which should be a strictly
8502 positive value. If null or negative, then something is wrong, most
8503 probably in the debug info. In that case, we don't round up the size
8504 of the resulting type. If this record is not part of another structure,
8505 the current RTYPE length might be good enough for our purposes. */
8506 if (TYPE_LENGTH (type) <= 0)
8507 {
8508 if (TYPE_NAME (rtype))
8509 warning (_("Invalid type size for `%s' detected: %s."),
8510 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8511 else
8512 warning (_("Invalid type size for <unnamed> detected: %s."),
8513 pulongest (TYPE_LENGTH (type)));
8514 }
8515 else
8516 {
8517 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8518 TYPE_LENGTH (type));
8519 }
8520
8521 value_free_to_mark (mark);
8522 if (TYPE_LENGTH (rtype) > varsize_limit)
8523 error (_("record type with dynamic size is larger than varsize-limit"));
8524 return rtype;
8525 }
8526
8527 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8528 of 1. */
8529
8530 static struct type *
8531 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8532 CORE_ADDR address, struct value *dval0)
8533 {
8534 return ada_template_to_fixed_record_type_1 (type, valaddr,
8535 address, dval0, 1);
8536 }
8537
8538 /* An ordinary record type in which ___XVL-convention fields and
8539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8540 static approximations, containing all possible fields. Uses
8541 no runtime values. Useless for use in values, but that's OK,
8542 since the results are used only for type determinations. Works on both
8543 structs and unions. Representation note: to save space, we memorize
8544 the result of this function in the TYPE_TARGET_TYPE of the
8545 template type. */
8546
8547 static struct type *
8548 template_to_static_fixed_type (struct type *type0)
8549 {
8550 struct type *type;
8551 int nfields;
8552 int f;
8553
8554 /* No need no do anything if the input type is already fixed. */
8555 if (TYPE_FIXED_INSTANCE (type0))
8556 return type0;
8557
8558 /* Likewise if we already have computed the static approximation. */
8559 if (TYPE_TARGET_TYPE (type0) != NULL)
8560 return TYPE_TARGET_TYPE (type0);
8561
8562 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8563 type = type0;
8564 nfields = TYPE_NFIELDS (type0);
8565
8566 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8567 recompute all over next time. */
8568 TYPE_TARGET_TYPE (type0) = type;
8569
8570 for (f = 0; f < nfields; f += 1)
8571 {
8572 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8573 struct type *new_type;
8574
8575 if (is_dynamic_field (type0, f))
8576 {
8577 field_type = ada_check_typedef (field_type);
8578 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8579 }
8580 else
8581 new_type = static_unwrap_type (field_type);
8582
8583 if (new_type != field_type)
8584 {
8585 /* Clone TYPE0 only the first time we get a new field type. */
8586 if (type == type0)
8587 {
8588 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8589 TYPE_CODE (type) = TYPE_CODE (type0);
8590 INIT_CPLUS_SPECIFIC (type);
8591 TYPE_NFIELDS (type) = nfields;
8592 TYPE_FIELDS (type) = (struct field *)
8593 TYPE_ALLOC (type, nfields * sizeof (struct field));
8594 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8595 sizeof (struct field) * nfields);
8596 TYPE_NAME (type) = ada_type_name (type0);
8597 TYPE_FIXED_INSTANCE (type) = 1;
8598 TYPE_LENGTH (type) = 0;
8599 }
8600 TYPE_FIELD_TYPE (type, f) = new_type;
8601 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8602 }
8603 }
8604
8605 return type;
8606 }
8607
8608 /* Given an object of type TYPE whose contents are at VALADDR and
8609 whose address in memory is ADDRESS, returns a revision of TYPE,
8610 which should be a non-dynamic-sized record, in which the variant
8611 part, if any, is replaced with the appropriate branch. Looks
8612 for discriminant values in DVAL0, which can be NULL if the record
8613 contains the necessary discriminant values. */
8614
8615 static struct type *
8616 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8617 CORE_ADDR address, struct value *dval0)
8618 {
8619 struct value *mark = value_mark ();
8620 struct value *dval;
8621 struct type *rtype;
8622 struct type *branch_type;
8623 int nfields = TYPE_NFIELDS (type);
8624 int variant_field = variant_field_index (type);
8625
8626 if (variant_field == -1)
8627 return type;
8628
8629 if (dval0 == NULL)
8630 {
8631 dval = value_from_contents_and_address (type, valaddr, address);
8632 type = value_type (dval);
8633 }
8634 else
8635 dval = dval0;
8636
8637 rtype = alloc_type_copy (type);
8638 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8639 INIT_CPLUS_SPECIFIC (rtype);
8640 TYPE_NFIELDS (rtype) = nfields;
8641 TYPE_FIELDS (rtype) =
8642 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8643 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8644 sizeof (struct field) * nfields);
8645 TYPE_NAME (rtype) = ada_type_name (type);
8646 TYPE_FIXED_INSTANCE (rtype) = 1;
8647 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8648
8649 branch_type = to_fixed_variant_branch_type
8650 (TYPE_FIELD_TYPE (type, variant_field),
8651 cond_offset_host (valaddr,
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT),
8654 cond_offset_target (address,
8655 TYPE_FIELD_BITPOS (type, variant_field)
8656 / TARGET_CHAR_BIT), dval);
8657 if (branch_type == NULL)
8658 {
8659 int f;
8660
8661 for (f = variant_field + 1; f < nfields; f += 1)
8662 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8663 TYPE_NFIELDS (rtype) -= 1;
8664 }
8665 else
8666 {
8667 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8668 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8669 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8670 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8671 }
8672 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8673
8674 value_free_to_mark (mark);
8675 return rtype;
8676 }
8677
8678 /* An ordinary record type (with fixed-length fields) that describes
8679 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8680 beginning of this section]. Any necessary discriminants' values
8681 should be in DVAL, a record value; it may be NULL if the object
8682 at ADDR itself contains any necessary discriminant values.
8683 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8684 values from the record are needed. Except in the case that DVAL,
8685 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8686 unchecked) is replaced by a particular branch of the variant.
8687
8688 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8689 is questionable and may be removed. It can arise during the
8690 processing of an unconstrained-array-of-record type where all the
8691 variant branches have exactly the same size. This is because in
8692 such cases, the compiler does not bother to use the XVS convention
8693 when encoding the record. I am currently dubious of this
8694 shortcut and suspect the compiler should be altered. FIXME. */
8695
8696 static struct type *
8697 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8698 CORE_ADDR address, struct value *dval)
8699 {
8700 struct type *templ_type;
8701
8702 if (TYPE_FIXED_INSTANCE (type0))
8703 return type0;
8704
8705 templ_type = dynamic_template_type (type0);
8706
8707 if (templ_type != NULL)
8708 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8709 else if (variant_field_index (type0) >= 0)
8710 {
8711 if (dval == NULL && valaddr == NULL && address == 0)
8712 return type0;
8713 return to_record_with_fixed_variant_part (type0, valaddr, address,
8714 dval);
8715 }
8716 else
8717 {
8718 TYPE_FIXED_INSTANCE (type0) = 1;
8719 return type0;
8720 }
8721
8722 }
8723
8724 /* An ordinary record type (with fixed-length fields) that describes
8725 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8726 union type. Any necessary discriminants' values should be in DVAL,
8727 a record value. That is, this routine selects the appropriate
8728 branch of the union at ADDR according to the discriminant value
8729 indicated in the union's type name. Returns VAR_TYPE0 itself if
8730 it represents a variant subject to a pragma Unchecked_Union. */
8731
8732 static struct type *
8733 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8734 CORE_ADDR address, struct value *dval)
8735 {
8736 int which;
8737 struct type *templ_type;
8738 struct type *var_type;
8739
8740 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8741 var_type = TYPE_TARGET_TYPE (var_type0);
8742 else
8743 var_type = var_type0;
8744
8745 templ_type = ada_find_parallel_type (var_type, "___XVU");
8746
8747 if (templ_type != NULL)
8748 var_type = templ_type;
8749
8750 if (is_unchecked_variant (var_type, value_type (dval)))
8751 return var_type0;
8752 which =
8753 ada_which_variant_applies (var_type,
8754 value_type (dval), value_contents (dval));
8755
8756 if (which < 0)
8757 return empty_record (var_type);
8758 else if (is_dynamic_field (var_type, which))
8759 return to_fixed_record_type
8760 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8761 valaddr, address, dval);
8762 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8763 return
8764 to_fixed_record_type
8765 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8766 else
8767 return TYPE_FIELD_TYPE (var_type, which);
8768 }
8769
8770 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8771 ENCODING_TYPE, a type following the GNAT conventions for discrete
8772 type encodings, only carries redundant information. */
8773
8774 static int
8775 ada_is_redundant_range_encoding (struct type *range_type,
8776 struct type *encoding_type)
8777 {
8778 const char *bounds_str;
8779 int n;
8780 LONGEST lo, hi;
8781
8782 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8783
8784 if (TYPE_CODE (get_base_type (range_type))
8785 != TYPE_CODE (get_base_type (encoding_type)))
8786 {
8787 /* The compiler probably used a simple base type to describe
8788 the range type instead of the range's actual base type,
8789 expecting us to get the real base type from the encoding
8790 anyway. In this situation, the encoding cannot be ignored
8791 as redundant. */
8792 return 0;
8793 }
8794
8795 if (is_dynamic_type (range_type))
8796 return 0;
8797
8798 if (TYPE_NAME (encoding_type) == NULL)
8799 return 0;
8800
8801 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8802 if (bounds_str == NULL)
8803 return 0;
8804
8805 n = 8; /* Skip "___XDLU_". */
8806 if (!ada_scan_number (bounds_str, n, &lo, &n))
8807 return 0;
8808 if (TYPE_LOW_BOUND (range_type) != lo)
8809 return 0;
8810
8811 n += 2; /* Skip the "__" separator between the two bounds. */
8812 if (!ada_scan_number (bounds_str, n, &hi, &n))
8813 return 0;
8814 if (TYPE_HIGH_BOUND (range_type) != hi)
8815 return 0;
8816
8817 return 1;
8818 }
8819
8820 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8821 a type following the GNAT encoding for describing array type
8822 indices, only carries redundant information. */
8823
8824 static int
8825 ada_is_redundant_index_type_desc (struct type *array_type,
8826 struct type *desc_type)
8827 {
8828 struct type *this_layer = check_typedef (array_type);
8829 int i;
8830
8831 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8832 {
8833 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8834 TYPE_FIELD_TYPE (desc_type, i)))
8835 return 0;
8836 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8837 }
8838
8839 return 1;
8840 }
8841
8842 /* Assuming that TYPE0 is an array type describing the type of a value
8843 at ADDR, and that DVAL describes a record containing any
8844 discriminants used in TYPE0, returns a type for the value that
8845 contains no dynamic components (that is, no components whose sizes
8846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8847 true, gives an error message if the resulting type's size is over
8848 varsize_limit. */
8849
8850 static struct type *
8851 to_fixed_array_type (struct type *type0, struct value *dval,
8852 int ignore_too_big)
8853 {
8854 struct type *index_type_desc;
8855 struct type *result;
8856 int constrained_packed_array_p;
8857 static const char *xa_suffix = "___XA";
8858
8859 type0 = ada_check_typedef (type0);
8860 if (TYPE_FIXED_INSTANCE (type0))
8861 return type0;
8862
8863 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8864 if (constrained_packed_array_p)
8865 type0 = decode_constrained_packed_array_type (type0);
8866
8867 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8868
8869 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8870 encoding suffixed with 'P' may still be generated. If so,
8871 it should be used to find the XA type. */
8872
8873 if (index_type_desc == NULL)
8874 {
8875 const char *type_name = ada_type_name (type0);
8876
8877 if (type_name != NULL)
8878 {
8879 const int len = strlen (type_name);
8880 char *name = (char *) alloca (len + strlen (xa_suffix));
8881
8882 if (type_name[len - 1] == 'P')
8883 {
8884 strcpy (name, type_name);
8885 strcpy (name + len - 1, xa_suffix);
8886 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8887 }
8888 }
8889 }
8890
8891 ada_fixup_array_indexes_type (index_type_desc);
8892 if (index_type_desc != NULL
8893 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8894 {
8895 /* Ignore this ___XA parallel type, as it does not bring any
8896 useful information. This allows us to avoid creating fixed
8897 versions of the array's index types, which would be identical
8898 to the original ones. This, in turn, can also help avoid
8899 the creation of fixed versions of the array itself. */
8900 index_type_desc = NULL;
8901 }
8902
8903 if (index_type_desc == NULL)
8904 {
8905 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8906
8907 /* NOTE: elt_type---the fixed version of elt_type0---should never
8908 depend on the contents of the array in properly constructed
8909 debugging data. */
8910 /* Create a fixed version of the array element type.
8911 We're not providing the address of an element here,
8912 and thus the actual object value cannot be inspected to do
8913 the conversion. This should not be a problem, since arrays of
8914 unconstrained objects are not allowed. In particular, all
8915 the elements of an array of a tagged type should all be of
8916 the same type specified in the debugging info. No need to
8917 consult the object tag. */
8918 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8919
8920 /* Make sure we always create a new array type when dealing with
8921 packed array types, since we're going to fix-up the array
8922 type length and element bitsize a little further down. */
8923 if (elt_type0 == elt_type && !constrained_packed_array_p)
8924 result = type0;
8925 else
8926 result = create_array_type (alloc_type_copy (type0),
8927 elt_type, TYPE_INDEX_TYPE (type0));
8928 }
8929 else
8930 {
8931 int i;
8932 struct type *elt_type0;
8933
8934 elt_type0 = type0;
8935 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8937
8938 /* NOTE: result---the fixed version of elt_type0---should never
8939 depend on the contents of the array in properly constructed
8940 debugging data. */
8941 /* Create a fixed version of the array element type.
8942 We're not providing the address of an element here,
8943 and thus the actual object value cannot be inspected to do
8944 the conversion. This should not be a problem, since arrays of
8945 unconstrained objects are not allowed. In particular, all
8946 the elements of an array of a tagged type should all be of
8947 the same type specified in the debugging info. No need to
8948 consult the object tag. */
8949 result =
8950 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8951
8952 elt_type0 = type0;
8953 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8954 {
8955 struct type *range_type =
8956 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8957
8958 result = create_array_type (alloc_type_copy (elt_type0),
8959 result, range_type);
8960 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8961 }
8962 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8963 error (_("array type with dynamic size is larger than varsize-limit"));
8964 }
8965
8966 /* We want to preserve the type name. This can be useful when
8967 trying to get the type name of a value that has already been
8968 printed (for instance, if the user did "print VAR; whatis $". */
8969 TYPE_NAME (result) = TYPE_NAME (type0);
8970
8971 if (constrained_packed_array_p)
8972 {
8973 /* So far, the resulting type has been created as if the original
8974 type was a regular (non-packed) array type. As a result, the
8975 bitsize of the array elements needs to be set again, and the array
8976 length needs to be recomputed based on that bitsize. */
8977 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8978 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8979
8980 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8981 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8982 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8983 TYPE_LENGTH (result)++;
8984 }
8985
8986 TYPE_FIXED_INSTANCE (result) = 1;
8987 return result;
8988 }
8989
8990
8991 /* A standard type (containing no dynamically sized components)
8992 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8993 DVAL describes a record containing any discriminants used in TYPE0,
8994 and may be NULL if there are none, or if the object of type TYPE at
8995 ADDRESS or in VALADDR contains these discriminants.
8996
8997 If CHECK_TAG is not null, in the case of tagged types, this function
8998 attempts to locate the object's tag and use it to compute the actual
8999 type. However, when ADDRESS is null, we cannot use it to determine the
9000 location of the tag, and therefore compute the tagged type's actual type.
9001 So we return the tagged type without consulting the tag. */
9002
9003 static struct type *
9004 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9005 CORE_ADDR address, struct value *dval, int check_tag)
9006 {
9007 type = ada_check_typedef (type);
9008 switch (TYPE_CODE (type))
9009 {
9010 default:
9011 return type;
9012 case TYPE_CODE_STRUCT:
9013 {
9014 struct type *static_type = to_static_fixed_type (type);
9015 struct type *fixed_record_type =
9016 to_fixed_record_type (type, valaddr, address, NULL);
9017
9018 /* If STATIC_TYPE is a tagged type and we know the object's address,
9019 then we can determine its tag, and compute the object's actual
9020 type from there. Note that we have to use the fixed record
9021 type (the parent part of the record may have dynamic fields
9022 and the way the location of _tag is expressed may depend on
9023 them). */
9024
9025 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9026 {
9027 struct value *tag =
9028 value_tag_from_contents_and_address
9029 (fixed_record_type,
9030 valaddr,
9031 address);
9032 struct type *real_type = type_from_tag (tag);
9033 struct value *obj =
9034 value_from_contents_and_address (fixed_record_type,
9035 valaddr,
9036 address);
9037 fixed_record_type = value_type (obj);
9038 if (real_type != NULL)
9039 return to_fixed_record_type
9040 (real_type, NULL,
9041 value_address (ada_tag_value_at_base_address (obj)), NULL);
9042 }
9043
9044 /* Check to see if there is a parallel ___XVZ variable.
9045 If there is, then it provides the actual size of our type. */
9046 else if (ada_type_name (fixed_record_type) != NULL)
9047 {
9048 const char *name = ada_type_name (fixed_record_type);
9049 char *xvz_name
9050 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9051 bool xvz_found = false;
9052 LONGEST size;
9053
9054 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9055 try
9056 {
9057 xvz_found = get_int_var_value (xvz_name, size);
9058 }
9059 catch (const gdb_exception_error &except)
9060 {
9061 /* We found the variable, but somehow failed to read
9062 its value. Rethrow the same error, but with a little
9063 bit more information, to help the user understand
9064 what went wrong (Eg: the variable might have been
9065 optimized out). */
9066 throw_error (except.error,
9067 _("unable to read value of %s (%s)"),
9068 xvz_name, except.what ());
9069 }
9070
9071 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9072 {
9073 fixed_record_type = copy_type (fixed_record_type);
9074 TYPE_LENGTH (fixed_record_type) = size;
9075
9076 /* The FIXED_RECORD_TYPE may have be a stub. We have
9077 observed this when the debugging info is STABS, and
9078 apparently it is something that is hard to fix.
9079
9080 In practice, we don't need the actual type definition
9081 at all, because the presence of the XVZ variable allows us
9082 to assume that there must be a XVS type as well, which we
9083 should be able to use later, when we need the actual type
9084 definition.
9085
9086 In the meantime, pretend that the "fixed" type we are
9087 returning is NOT a stub, because this can cause trouble
9088 when using this type to create new types targeting it.
9089 Indeed, the associated creation routines often check
9090 whether the target type is a stub and will try to replace
9091 it, thus using a type with the wrong size. This, in turn,
9092 might cause the new type to have the wrong size too.
9093 Consider the case of an array, for instance, where the size
9094 of the array is computed from the number of elements in
9095 our array multiplied by the size of its element. */
9096 TYPE_STUB (fixed_record_type) = 0;
9097 }
9098 }
9099 return fixed_record_type;
9100 }
9101 case TYPE_CODE_ARRAY:
9102 return to_fixed_array_type (type, dval, 1);
9103 case TYPE_CODE_UNION:
9104 if (dval == NULL)
9105 return type;
9106 else
9107 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9108 }
9109 }
9110
9111 /* The same as ada_to_fixed_type_1, except that it preserves the type
9112 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9113
9114 The typedef layer needs be preserved in order to differentiate between
9115 arrays and array pointers when both types are implemented using the same
9116 fat pointer. In the array pointer case, the pointer is encoded as
9117 a typedef of the pointer type. For instance, considering:
9118
9119 type String_Access is access String;
9120 S1 : String_Access := null;
9121
9122 To the debugger, S1 is defined as a typedef of type String. But
9123 to the user, it is a pointer. So if the user tries to print S1,
9124 we should not dereference the array, but print the array address
9125 instead.
9126
9127 If we didn't preserve the typedef layer, we would lose the fact that
9128 the type is to be presented as a pointer (needs de-reference before
9129 being printed). And we would also use the source-level type name. */
9130
9131 struct type *
9132 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9133 CORE_ADDR address, struct value *dval, int check_tag)
9134
9135 {
9136 struct type *fixed_type =
9137 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9138
9139 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9140 then preserve the typedef layer.
9141
9142 Implementation note: We can only check the main-type portion of
9143 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9144 from TYPE now returns a type that has the same instance flags
9145 as TYPE. For instance, if TYPE is a "typedef const", and its
9146 target type is a "struct", then the typedef elimination will return
9147 a "const" version of the target type. See check_typedef for more
9148 details about how the typedef layer elimination is done.
9149
9150 brobecker/2010-11-19: It seems to me that the only case where it is
9151 useful to preserve the typedef layer is when dealing with fat pointers.
9152 Perhaps, we could add a check for that and preserve the typedef layer
9153 only in that situation. But this seems unecessary so far, probably
9154 because we call check_typedef/ada_check_typedef pretty much everywhere.
9155 */
9156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9157 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9158 == TYPE_MAIN_TYPE (fixed_type)))
9159 return type;
9160
9161 return fixed_type;
9162 }
9163
9164 /* A standard (static-sized) type corresponding as well as possible to
9165 TYPE0, but based on no runtime data. */
9166
9167 static struct type *
9168 to_static_fixed_type (struct type *type0)
9169 {
9170 struct type *type;
9171
9172 if (type0 == NULL)
9173 return NULL;
9174
9175 if (TYPE_FIXED_INSTANCE (type0))
9176 return type0;
9177
9178 type0 = ada_check_typedef (type0);
9179
9180 switch (TYPE_CODE (type0))
9181 {
9182 default:
9183 return type0;
9184 case TYPE_CODE_STRUCT:
9185 type = dynamic_template_type (type0);
9186 if (type != NULL)
9187 return template_to_static_fixed_type (type);
9188 else
9189 return template_to_static_fixed_type (type0);
9190 case TYPE_CODE_UNION:
9191 type = ada_find_parallel_type (type0, "___XVU");
9192 if (type != NULL)
9193 return template_to_static_fixed_type (type);
9194 else
9195 return template_to_static_fixed_type (type0);
9196 }
9197 }
9198
9199 /* A static approximation of TYPE with all type wrappers removed. */
9200
9201 static struct type *
9202 static_unwrap_type (struct type *type)
9203 {
9204 if (ada_is_aligner_type (type))
9205 {
9206 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9207 if (ada_type_name (type1) == NULL)
9208 TYPE_NAME (type1) = ada_type_name (type);
9209
9210 return static_unwrap_type (type1);
9211 }
9212 else
9213 {
9214 struct type *raw_real_type = ada_get_base_type (type);
9215
9216 if (raw_real_type == type)
9217 return type;
9218 else
9219 return to_static_fixed_type (raw_real_type);
9220 }
9221 }
9222
9223 /* In some cases, incomplete and private types require
9224 cross-references that are not resolved as records (for example,
9225 type Foo;
9226 type FooP is access Foo;
9227 V: FooP;
9228 type Foo is array ...;
9229 ). In these cases, since there is no mechanism for producing
9230 cross-references to such types, we instead substitute for FooP a
9231 stub enumeration type that is nowhere resolved, and whose tag is
9232 the name of the actual type. Call these types "non-record stubs". */
9233
9234 /* A type equivalent to TYPE that is not a non-record stub, if one
9235 exists, otherwise TYPE. */
9236
9237 struct type *
9238 ada_check_typedef (struct type *type)
9239 {
9240 if (type == NULL)
9241 return NULL;
9242
9243 /* If our type is an access to an unconstrained array, which is encoded
9244 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9245 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9246 what allows us to distinguish between fat pointers that represent
9247 array types, and fat pointers that represent array access types
9248 (in both cases, the compiler implements them as fat pointers). */
9249 if (ada_is_access_to_unconstrained_array (type))
9250 return type;
9251
9252 type = check_typedef (type);
9253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9254 || !TYPE_STUB (type)
9255 || TYPE_NAME (type) == NULL)
9256 return type;
9257 else
9258 {
9259 const char *name = TYPE_NAME (type);
9260 struct type *type1 = ada_find_any_type (name);
9261
9262 if (type1 == NULL)
9263 return type;
9264
9265 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9266 stubs pointing to arrays, as we don't create symbols for array
9267 types, only for the typedef-to-array types). If that's the case,
9268 strip the typedef layer. */
9269 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9270 type1 = ada_check_typedef (type1);
9271
9272 return type1;
9273 }
9274 }
9275
9276 /* A value representing the data at VALADDR/ADDRESS as described by
9277 type TYPE0, but with a standard (static-sized) type that correctly
9278 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9279 type, then return VAL0 [this feature is simply to avoid redundant
9280 creation of struct values]. */
9281
9282 static struct value *
9283 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9284 struct value *val0)
9285 {
9286 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9287
9288 if (type == type0 && val0 != NULL)
9289 return val0;
9290
9291 if (VALUE_LVAL (val0) != lval_memory)
9292 {
9293 /* Our value does not live in memory; it could be a convenience
9294 variable, for instance. Create a not_lval value using val0's
9295 contents. */
9296 return value_from_contents (type, value_contents (val0));
9297 }
9298
9299 return value_from_contents_and_address (type, 0, address);
9300 }
9301
9302 /* A value representing VAL, but with a standard (static-sized) type
9303 that correctly describes it. Does not necessarily create a new
9304 value. */
9305
9306 struct value *
9307 ada_to_fixed_value (struct value *val)
9308 {
9309 val = unwrap_value (val);
9310 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9311 return val;
9312 }
9313 \f
9314
9315 /* Attributes */
9316
9317 /* Table mapping attribute numbers to names.
9318 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9319
9320 static const char *attribute_names[] = {
9321 "<?>",
9322
9323 "first",
9324 "last",
9325 "length",
9326 "image",
9327 "max",
9328 "min",
9329 "modulus",
9330 "pos",
9331 "size",
9332 "tag",
9333 "val",
9334 0
9335 };
9336
9337 const char *
9338 ada_attribute_name (enum exp_opcode n)
9339 {
9340 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9341 return attribute_names[n - OP_ATR_FIRST + 1];
9342 else
9343 return attribute_names[0];
9344 }
9345
9346 /* Evaluate the 'POS attribute applied to ARG. */
9347
9348 static LONGEST
9349 pos_atr (struct value *arg)
9350 {
9351 struct value *val = coerce_ref (arg);
9352 struct type *type = value_type (val);
9353 LONGEST result;
9354
9355 if (!discrete_type_p (type))
9356 error (_("'POS only defined on discrete types"));
9357
9358 if (!discrete_position (type, value_as_long (val), &result))
9359 error (_("enumeration value is invalid: can't find 'POS"));
9360
9361 return result;
9362 }
9363
9364 static struct value *
9365 value_pos_atr (struct type *type, struct value *arg)
9366 {
9367 return value_from_longest (type, pos_atr (arg));
9368 }
9369
9370 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9371
9372 static struct value *
9373 value_val_atr (struct type *type, struct value *arg)
9374 {
9375 if (!discrete_type_p (type))
9376 error (_("'VAL only defined on discrete types"));
9377 if (!integer_type_p (value_type (arg)))
9378 error (_("'VAL requires integral argument"));
9379
9380 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9381 {
9382 long pos = value_as_long (arg);
9383
9384 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9385 error (_("argument to 'VAL out of range"));
9386 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9387 }
9388 else
9389 return value_from_longest (type, value_as_long (arg));
9390 }
9391 \f
9392
9393 /* Evaluation */
9394
9395 /* True if TYPE appears to be an Ada character type.
9396 [At the moment, this is true only for Character and Wide_Character;
9397 It is a heuristic test that could stand improvement]. */
9398
9399 int
9400 ada_is_character_type (struct type *type)
9401 {
9402 const char *name;
9403
9404 /* If the type code says it's a character, then assume it really is,
9405 and don't check any further. */
9406 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9407 return 1;
9408
9409 /* Otherwise, assume it's a character type iff it is a discrete type
9410 with a known character type name. */
9411 name = ada_type_name (type);
9412 return (name != NULL
9413 && (TYPE_CODE (type) == TYPE_CODE_INT
9414 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9415 && (strcmp (name, "character") == 0
9416 || strcmp (name, "wide_character") == 0
9417 || strcmp (name, "wide_wide_character") == 0
9418 || strcmp (name, "unsigned char") == 0));
9419 }
9420
9421 /* True if TYPE appears to be an Ada string type. */
9422
9423 int
9424 ada_is_string_type (struct type *type)
9425 {
9426 type = ada_check_typedef (type);
9427 if (type != NULL
9428 && TYPE_CODE (type) != TYPE_CODE_PTR
9429 && (ada_is_simple_array_type (type)
9430 || ada_is_array_descriptor_type (type))
9431 && ada_array_arity (type) == 1)
9432 {
9433 struct type *elttype = ada_array_element_type (type, 1);
9434
9435 return ada_is_character_type (elttype);
9436 }
9437 else
9438 return 0;
9439 }
9440
9441 /* The compiler sometimes provides a parallel XVS type for a given
9442 PAD type. Normally, it is safe to follow the PAD type directly,
9443 but older versions of the compiler have a bug that causes the offset
9444 of its "F" field to be wrong. Following that field in that case
9445 would lead to incorrect results, but this can be worked around
9446 by ignoring the PAD type and using the associated XVS type instead.
9447
9448 Set to True if the debugger should trust the contents of PAD types.
9449 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9450 static int trust_pad_over_xvs = 1;
9451
9452 /* True if TYPE is a struct type introduced by the compiler to force the
9453 alignment of a value. Such types have a single field with a
9454 distinctive name. */
9455
9456 int
9457 ada_is_aligner_type (struct type *type)
9458 {
9459 type = ada_check_typedef (type);
9460
9461 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9462 return 0;
9463
9464 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9465 && TYPE_NFIELDS (type) == 1
9466 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9467 }
9468
9469 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9470 the parallel type. */
9471
9472 struct type *
9473 ada_get_base_type (struct type *raw_type)
9474 {
9475 struct type *real_type_namer;
9476 struct type *raw_real_type;
9477
9478 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9479 return raw_type;
9480
9481 if (ada_is_aligner_type (raw_type))
9482 /* The encoding specifies that we should always use the aligner type.
9483 So, even if this aligner type has an associated XVS type, we should
9484 simply ignore it.
9485
9486 According to the compiler gurus, an XVS type parallel to an aligner
9487 type may exist because of a stabs limitation. In stabs, aligner
9488 types are empty because the field has a variable-sized type, and
9489 thus cannot actually be used as an aligner type. As a result,
9490 we need the associated parallel XVS type to decode the type.
9491 Since the policy in the compiler is to not change the internal
9492 representation based on the debugging info format, we sometimes
9493 end up having a redundant XVS type parallel to the aligner type. */
9494 return raw_type;
9495
9496 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9497 if (real_type_namer == NULL
9498 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9499 || TYPE_NFIELDS (real_type_namer) != 1)
9500 return raw_type;
9501
9502 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9503 {
9504 /* This is an older encoding form where the base type needs to be
9505 looked up by name. We prefer the newer enconding because it is
9506 more efficient. */
9507 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9508 if (raw_real_type == NULL)
9509 return raw_type;
9510 else
9511 return raw_real_type;
9512 }
9513
9514 /* The field in our XVS type is a reference to the base type. */
9515 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9516 }
9517
9518 /* The type of value designated by TYPE, with all aligners removed. */
9519
9520 struct type *
9521 ada_aligned_type (struct type *type)
9522 {
9523 if (ada_is_aligner_type (type))
9524 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9525 else
9526 return ada_get_base_type (type);
9527 }
9528
9529
9530 /* The address of the aligned value in an object at address VALADDR
9531 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9532
9533 const gdb_byte *
9534 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9535 {
9536 if (ada_is_aligner_type (type))
9537 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9538 valaddr +
9539 TYPE_FIELD_BITPOS (type,
9540 0) / TARGET_CHAR_BIT);
9541 else
9542 return valaddr;
9543 }
9544
9545
9546
9547 /* The printed representation of an enumeration literal with encoded
9548 name NAME. The value is good to the next call of ada_enum_name. */
9549 const char *
9550 ada_enum_name (const char *name)
9551 {
9552 static char *result;
9553 static size_t result_len = 0;
9554 const char *tmp;
9555
9556 /* First, unqualify the enumeration name:
9557 1. Search for the last '.' character. If we find one, then skip
9558 all the preceding characters, the unqualified name starts
9559 right after that dot.
9560 2. Otherwise, we may be debugging on a target where the compiler
9561 translates dots into "__". Search forward for double underscores,
9562 but stop searching when we hit an overloading suffix, which is
9563 of the form "__" followed by digits. */
9564
9565 tmp = strrchr (name, '.');
9566 if (tmp != NULL)
9567 name = tmp + 1;
9568 else
9569 {
9570 while ((tmp = strstr (name, "__")) != NULL)
9571 {
9572 if (isdigit (tmp[2]))
9573 break;
9574 else
9575 name = tmp + 2;
9576 }
9577 }
9578
9579 if (name[0] == 'Q')
9580 {
9581 int v;
9582
9583 if (name[1] == 'U' || name[1] == 'W')
9584 {
9585 if (sscanf (name + 2, "%x", &v) != 1)
9586 return name;
9587 }
9588 else
9589 return name;
9590
9591 GROW_VECT (result, result_len, 16);
9592 if (isascii (v) && isprint (v))
9593 xsnprintf (result, result_len, "'%c'", v);
9594 else if (name[1] == 'U')
9595 xsnprintf (result, result_len, "[\"%02x\"]", v);
9596 else
9597 xsnprintf (result, result_len, "[\"%04x\"]", v);
9598
9599 return result;
9600 }
9601 else
9602 {
9603 tmp = strstr (name, "__");
9604 if (tmp == NULL)
9605 tmp = strstr (name, "$");
9606 if (tmp != NULL)
9607 {
9608 GROW_VECT (result, result_len, tmp - name + 1);
9609 strncpy (result, name, tmp - name);
9610 result[tmp - name] = '\0';
9611 return result;
9612 }
9613
9614 return name;
9615 }
9616 }
9617
9618 /* Evaluate the subexpression of EXP starting at *POS as for
9619 evaluate_type, updating *POS to point just past the evaluated
9620 expression. */
9621
9622 static struct value *
9623 evaluate_subexp_type (struct expression *exp, int *pos)
9624 {
9625 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9626 }
9627
9628 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9629 value it wraps. */
9630
9631 static struct value *
9632 unwrap_value (struct value *val)
9633 {
9634 struct type *type = ada_check_typedef (value_type (val));
9635
9636 if (ada_is_aligner_type (type))
9637 {
9638 struct value *v = ada_value_struct_elt (val, "F", 0);
9639 struct type *val_type = ada_check_typedef (value_type (v));
9640
9641 if (ada_type_name (val_type) == NULL)
9642 TYPE_NAME (val_type) = ada_type_name (type);
9643
9644 return unwrap_value (v);
9645 }
9646 else
9647 {
9648 struct type *raw_real_type =
9649 ada_check_typedef (ada_get_base_type (type));
9650
9651 /* If there is no parallel XVS or XVE type, then the value is
9652 already unwrapped. Return it without further modification. */
9653 if ((type == raw_real_type)
9654 && ada_find_parallel_type (type, "___XVE") == NULL)
9655 return val;
9656
9657 return
9658 coerce_unspec_val_to_type
9659 (val, ada_to_fixed_type (raw_real_type, 0,
9660 value_address (val),
9661 NULL, 1));
9662 }
9663 }
9664
9665 static struct value *
9666 cast_from_fixed (struct type *type, struct value *arg)
9667 {
9668 struct value *scale = ada_scaling_factor (value_type (arg));
9669 arg = value_cast (value_type (scale), arg);
9670
9671 arg = value_binop (arg, scale, BINOP_MUL);
9672 return value_cast (type, arg);
9673 }
9674
9675 static struct value *
9676 cast_to_fixed (struct type *type, struct value *arg)
9677 {
9678 if (type == value_type (arg))
9679 return arg;
9680
9681 struct value *scale = ada_scaling_factor (type);
9682 if (ada_is_fixed_point_type (value_type (arg)))
9683 arg = cast_from_fixed (value_type (scale), arg);
9684 else
9685 arg = value_cast (value_type (scale), arg);
9686
9687 arg = value_binop (arg, scale, BINOP_DIV);
9688 return value_cast (type, arg);
9689 }
9690
9691 /* Given two array types T1 and T2, return nonzero iff both arrays
9692 contain the same number of elements. */
9693
9694 static int
9695 ada_same_array_size_p (struct type *t1, struct type *t2)
9696 {
9697 LONGEST lo1, hi1, lo2, hi2;
9698
9699 /* Get the array bounds in order to verify that the size of
9700 the two arrays match. */
9701 if (!get_array_bounds (t1, &lo1, &hi1)
9702 || !get_array_bounds (t2, &lo2, &hi2))
9703 error (_("unable to determine array bounds"));
9704
9705 /* To make things easier for size comparison, normalize a bit
9706 the case of empty arrays by making sure that the difference
9707 between upper bound and lower bound is always -1. */
9708 if (lo1 > hi1)
9709 hi1 = lo1 - 1;
9710 if (lo2 > hi2)
9711 hi2 = lo2 - 1;
9712
9713 return (hi1 - lo1 == hi2 - lo2);
9714 }
9715
9716 /* Assuming that VAL is an array of integrals, and TYPE represents
9717 an array with the same number of elements, but with wider integral
9718 elements, return an array "casted" to TYPE. In practice, this
9719 means that the returned array is built by casting each element
9720 of the original array into TYPE's (wider) element type. */
9721
9722 static struct value *
9723 ada_promote_array_of_integrals (struct type *type, struct value *val)
9724 {
9725 struct type *elt_type = TYPE_TARGET_TYPE (type);
9726 LONGEST lo, hi;
9727 struct value *res;
9728 LONGEST i;
9729
9730 /* Verify that both val and type are arrays of scalars, and
9731 that the size of val's elements is smaller than the size
9732 of type's element. */
9733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9734 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9735 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9736 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9737 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9738 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9739
9740 if (!get_array_bounds (type, &lo, &hi))
9741 error (_("unable to determine array bounds"));
9742
9743 res = allocate_value (type);
9744
9745 /* Promote each array element. */
9746 for (i = 0; i < hi - lo + 1; i++)
9747 {
9748 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9749
9750 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9751 value_contents_all (elt), TYPE_LENGTH (elt_type));
9752 }
9753
9754 return res;
9755 }
9756
9757 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9758 return the converted value. */
9759
9760 static struct value *
9761 coerce_for_assign (struct type *type, struct value *val)
9762 {
9763 struct type *type2 = value_type (val);
9764
9765 if (type == type2)
9766 return val;
9767
9768 type2 = ada_check_typedef (type2);
9769 type = ada_check_typedef (type);
9770
9771 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9772 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9773 {
9774 val = ada_value_ind (val);
9775 type2 = value_type (val);
9776 }
9777
9778 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9779 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9780 {
9781 if (!ada_same_array_size_p (type, type2))
9782 error (_("cannot assign arrays of different length"));
9783
9784 if (is_integral_type (TYPE_TARGET_TYPE (type))
9785 && is_integral_type (TYPE_TARGET_TYPE (type2))
9786 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9787 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9788 {
9789 /* Allow implicit promotion of the array elements to
9790 a wider type. */
9791 return ada_promote_array_of_integrals (type, val);
9792 }
9793
9794 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9795 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9796 error (_("Incompatible types in assignment"));
9797 deprecated_set_value_type (val, type);
9798 }
9799 return val;
9800 }
9801
9802 static struct value *
9803 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9804 {
9805 struct value *val;
9806 struct type *type1, *type2;
9807 LONGEST v, v1, v2;
9808
9809 arg1 = coerce_ref (arg1);
9810 arg2 = coerce_ref (arg2);
9811 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9812 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9813
9814 if (TYPE_CODE (type1) != TYPE_CODE_INT
9815 || TYPE_CODE (type2) != TYPE_CODE_INT)
9816 return value_binop (arg1, arg2, op);
9817
9818 switch (op)
9819 {
9820 case BINOP_MOD:
9821 case BINOP_DIV:
9822 case BINOP_REM:
9823 break;
9824 default:
9825 return value_binop (arg1, arg2, op);
9826 }
9827
9828 v2 = value_as_long (arg2);
9829 if (v2 == 0)
9830 error (_("second operand of %s must not be zero."), op_string (op));
9831
9832 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9833 return value_binop (arg1, arg2, op);
9834
9835 v1 = value_as_long (arg1);
9836 switch (op)
9837 {
9838 case BINOP_DIV:
9839 v = v1 / v2;
9840 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9841 v += v > 0 ? -1 : 1;
9842 break;
9843 case BINOP_REM:
9844 v = v1 % v2;
9845 if (v * v1 < 0)
9846 v -= v2;
9847 break;
9848 default:
9849 /* Should not reach this point. */
9850 v = 0;
9851 }
9852
9853 val = allocate_value (type1);
9854 store_unsigned_integer (value_contents_raw (val),
9855 TYPE_LENGTH (value_type (val)),
9856 gdbarch_byte_order (get_type_arch (type1)), v);
9857 return val;
9858 }
9859
9860 static int
9861 ada_value_equal (struct value *arg1, struct value *arg2)
9862 {
9863 if (ada_is_direct_array_type (value_type (arg1))
9864 || ada_is_direct_array_type (value_type (arg2)))
9865 {
9866 struct type *arg1_type, *arg2_type;
9867
9868 /* Automatically dereference any array reference before
9869 we attempt to perform the comparison. */
9870 arg1 = ada_coerce_ref (arg1);
9871 arg2 = ada_coerce_ref (arg2);
9872
9873 arg1 = ada_coerce_to_simple_array (arg1);
9874 arg2 = ada_coerce_to_simple_array (arg2);
9875
9876 arg1_type = ada_check_typedef (value_type (arg1));
9877 arg2_type = ada_check_typedef (value_type (arg2));
9878
9879 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9880 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9881 error (_("Attempt to compare array with non-array"));
9882 /* FIXME: The following works only for types whose
9883 representations use all bits (no padding or undefined bits)
9884 and do not have user-defined equality. */
9885 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9886 && memcmp (value_contents (arg1), value_contents (arg2),
9887 TYPE_LENGTH (arg1_type)) == 0);
9888 }
9889 return value_equal (arg1, arg2);
9890 }
9891
9892 /* Total number of component associations in the aggregate starting at
9893 index PC in EXP. Assumes that index PC is the start of an
9894 OP_AGGREGATE. */
9895
9896 static int
9897 num_component_specs (struct expression *exp, int pc)
9898 {
9899 int n, m, i;
9900
9901 m = exp->elts[pc + 1].longconst;
9902 pc += 3;
9903 n = 0;
9904 for (i = 0; i < m; i += 1)
9905 {
9906 switch (exp->elts[pc].opcode)
9907 {
9908 default:
9909 n += 1;
9910 break;
9911 case OP_CHOICES:
9912 n += exp->elts[pc + 1].longconst;
9913 break;
9914 }
9915 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9916 }
9917 return n;
9918 }
9919
9920 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9921 component of LHS (a simple array or a record), updating *POS past
9922 the expression, assuming that LHS is contained in CONTAINER. Does
9923 not modify the inferior's memory, nor does it modify LHS (unless
9924 LHS == CONTAINER). */
9925
9926 static void
9927 assign_component (struct value *container, struct value *lhs, LONGEST index,
9928 struct expression *exp, int *pos)
9929 {
9930 struct value *mark = value_mark ();
9931 struct value *elt;
9932 struct type *lhs_type = check_typedef (value_type (lhs));
9933
9934 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9935 {
9936 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9937 struct value *index_val = value_from_longest (index_type, index);
9938
9939 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9940 }
9941 else
9942 {
9943 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9944 elt = ada_to_fixed_value (elt);
9945 }
9946
9947 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9948 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9949 else
9950 value_assign_to_component (container, elt,
9951 ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953
9954 value_free_to_mark (mark);
9955 }
9956
9957 /* Assuming that LHS represents an lvalue having a record or array
9958 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9959 of that aggregate's value to LHS, advancing *POS past the
9960 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9961 lvalue containing LHS (possibly LHS itself). Does not modify
9962 the inferior's memory, nor does it modify the contents of
9963 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9964
9965 static struct value *
9966 assign_aggregate (struct value *container,
9967 struct value *lhs, struct expression *exp,
9968 int *pos, enum noside noside)
9969 {
9970 struct type *lhs_type;
9971 int n = exp->elts[*pos+1].longconst;
9972 LONGEST low_index, high_index;
9973 int num_specs;
9974 LONGEST *indices;
9975 int max_indices, num_indices;
9976 int i;
9977
9978 *pos += 3;
9979 if (noside != EVAL_NORMAL)
9980 {
9981 for (i = 0; i < n; i += 1)
9982 ada_evaluate_subexp (NULL, exp, pos, noside);
9983 return container;
9984 }
9985
9986 container = ada_coerce_ref (container);
9987 if (ada_is_direct_array_type (value_type (container)))
9988 container = ada_coerce_to_simple_array (container);
9989 lhs = ada_coerce_ref (lhs);
9990 if (!deprecated_value_modifiable (lhs))
9991 error (_("Left operand of assignment is not a modifiable lvalue."));
9992
9993 lhs_type = check_typedef (value_type (lhs));
9994 if (ada_is_direct_array_type (lhs_type))
9995 {
9996 lhs = ada_coerce_to_simple_array (lhs);
9997 lhs_type = check_typedef (value_type (lhs));
9998 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9999 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10000 }
10001 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10002 {
10003 low_index = 0;
10004 high_index = num_visible_fields (lhs_type) - 1;
10005 }
10006 else
10007 error (_("Left-hand side must be array or record."));
10008
10009 num_specs = num_component_specs (exp, *pos - 3);
10010 max_indices = 4 * num_specs + 4;
10011 indices = XALLOCAVEC (LONGEST, max_indices);
10012 indices[0] = indices[1] = low_index - 1;
10013 indices[2] = indices[3] = high_index + 1;
10014 num_indices = 4;
10015
10016 for (i = 0; i < n; i += 1)
10017 {
10018 switch (exp->elts[*pos].opcode)
10019 {
10020 case OP_CHOICES:
10021 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10024 break;
10025 case OP_POSITIONAL:
10026 aggregate_assign_positional (container, lhs, exp, pos, indices,
10027 &num_indices, max_indices,
10028 low_index, high_index);
10029 break;
10030 case OP_OTHERS:
10031 if (i != n-1)
10032 error (_("Misplaced 'others' clause"));
10033 aggregate_assign_others (container, lhs, exp, pos, indices,
10034 num_indices, low_index, high_index);
10035 break;
10036 default:
10037 error (_("Internal error: bad aggregate clause"));
10038 }
10039 }
10040
10041 return container;
10042 }
10043
10044 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10045 construct at *POS, updating *POS past the construct, given that
10046 the positions are relative to lower bound LOW, where HIGH is the
10047 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10048 updating *NUM_INDICES as needed. CONTAINER is as for
10049 assign_aggregate. */
10050 static void
10051 aggregate_assign_positional (struct value *container,
10052 struct value *lhs, struct expression *exp,
10053 int *pos, LONGEST *indices, int *num_indices,
10054 int max_indices, LONGEST low, LONGEST high)
10055 {
10056 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10057
10058 if (ind - 1 == high)
10059 warning (_("Extra components in aggregate ignored."));
10060 if (ind <= high)
10061 {
10062 add_component_interval (ind, ind, indices, num_indices, max_indices);
10063 *pos += 3;
10064 assign_component (container, lhs, ind, exp, pos);
10065 }
10066 else
10067 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10068 }
10069
10070 /* Assign into the components of LHS indexed by the OP_CHOICES
10071 construct at *POS, updating *POS past the construct, given that
10072 the allowable indices are LOW..HIGH. Record the indices assigned
10073 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10074 needed. CONTAINER is as for assign_aggregate. */
10075 static void
10076 aggregate_assign_from_choices (struct value *container,
10077 struct value *lhs, struct expression *exp,
10078 int *pos, LONGEST *indices, int *num_indices,
10079 int max_indices, LONGEST low, LONGEST high)
10080 {
10081 int j;
10082 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10083 int choice_pos, expr_pc;
10084 int is_array = ada_is_direct_array_type (value_type (lhs));
10085
10086 choice_pos = *pos += 3;
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10090 expr_pc = *pos;
10091 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10092
10093 for (j = 0; j < n_choices; j += 1)
10094 {
10095 LONGEST lower, upper;
10096 enum exp_opcode op = exp->elts[choice_pos].opcode;
10097
10098 if (op == OP_DISCRETE_RANGE)
10099 {
10100 choice_pos += 1;
10101 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10102 EVAL_NORMAL));
10103 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10104 EVAL_NORMAL));
10105 }
10106 else if (is_array)
10107 {
10108 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10109 EVAL_NORMAL));
10110 upper = lower;
10111 }
10112 else
10113 {
10114 int ind;
10115 const char *name;
10116
10117 switch (op)
10118 {
10119 case OP_NAME:
10120 name = &exp->elts[choice_pos + 2].string;
10121 break;
10122 case OP_VAR_VALUE:
10123 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10124 break;
10125 default:
10126 error (_("Invalid record component association."));
10127 }
10128 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10129 ind = 0;
10130 if (! find_struct_field (name, value_type (lhs), 0,
10131 NULL, NULL, NULL, NULL, &ind))
10132 error (_("Unknown component name: %s."), name);
10133 lower = upper = ind;
10134 }
10135
10136 if (lower <= upper && (lower < low || upper > high))
10137 error (_("Index in component association out of bounds."));
10138
10139 add_component_interval (lower, upper, indices, num_indices,
10140 max_indices);
10141 while (lower <= upper)
10142 {
10143 int pos1;
10144
10145 pos1 = expr_pc;
10146 assign_component (container, lhs, lower, exp, &pos1);
10147 lower += 1;
10148 }
10149 }
10150 }
10151
10152 /* Assign the value of the expression in the OP_OTHERS construct in
10153 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10154 have not been previously assigned. The index intervals already assigned
10155 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10156 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10157 static void
10158 aggregate_assign_others (struct value *container,
10159 struct value *lhs, struct expression *exp,
10160 int *pos, LONGEST *indices, int num_indices,
10161 LONGEST low, LONGEST high)
10162 {
10163 int i;
10164 int expr_pc = *pos + 1;
10165
10166 for (i = 0; i < num_indices - 2; i += 2)
10167 {
10168 LONGEST ind;
10169
10170 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10171 {
10172 int localpos;
10173
10174 localpos = expr_pc;
10175 assign_component (container, lhs, ind, exp, &localpos);
10176 }
10177 }
10178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10179 }
10180
10181 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10182 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10183 modifying *SIZE as needed. It is an error if *SIZE exceeds
10184 MAX_SIZE. The resulting intervals do not overlap. */
10185 static void
10186 add_component_interval (LONGEST low, LONGEST high,
10187 LONGEST* indices, int *size, int max_size)
10188 {
10189 int i, j;
10190
10191 for (i = 0; i < *size; i += 2) {
10192 if (high >= indices[i] && low <= indices[i + 1])
10193 {
10194 int kh;
10195
10196 for (kh = i + 2; kh < *size; kh += 2)
10197 if (high < indices[kh])
10198 break;
10199 if (low < indices[i])
10200 indices[i] = low;
10201 indices[i + 1] = indices[kh - 1];
10202 if (high > indices[i + 1])
10203 indices[i + 1] = high;
10204 memcpy (indices + i + 2, indices + kh, *size - kh);
10205 *size -= kh - i - 2;
10206 return;
10207 }
10208 else if (high < indices[i])
10209 break;
10210 }
10211
10212 if (*size == max_size)
10213 error (_("Internal error: miscounted aggregate components."));
10214 *size += 2;
10215 for (j = *size-1; j >= i+2; j -= 1)
10216 indices[j] = indices[j - 2];
10217 indices[i] = low;
10218 indices[i + 1] = high;
10219 }
10220
10221 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10222 is different. */
10223
10224 static struct value *
10225 ada_value_cast (struct type *type, struct value *arg2)
10226 {
10227 if (type == ada_check_typedef (value_type (arg2)))
10228 return arg2;
10229
10230 if (ada_is_fixed_point_type (type))
10231 return cast_to_fixed (type, arg2);
10232
10233 if (ada_is_fixed_point_type (value_type (arg2)))
10234 return cast_from_fixed (type, arg2);
10235
10236 return value_cast (type, arg2);
10237 }
10238
10239 /* Evaluating Ada expressions, and printing their result.
10240 ------------------------------------------------------
10241
10242 1. Introduction:
10243 ----------------
10244
10245 We usually evaluate an Ada expression in order to print its value.
10246 We also evaluate an expression in order to print its type, which
10247 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10248 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10249 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10250 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10251 similar.
10252
10253 Evaluating expressions is a little more complicated for Ada entities
10254 than it is for entities in languages such as C. The main reason for
10255 this is that Ada provides types whose definition might be dynamic.
10256 One example of such types is variant records. Or another example
10257 would be an array whose bounds can only be known at run time.
10258
10259 The following description is a general guide as to what should be
10260 done (and what should NOT be done) in order to evaluate an expression
10261 involving such types, and when. This does not cover how the semantic
10262 information is encoded by GNAT as this is covered separatly. For the
10263 document used as the reference for the GNAT encoding, see exp_dbug.ads
10264 in the GNAT sources.
10265
10266 Ideally, we should embed each part of this description next to its
10267 associated code. Unfortunately, the amount of code is so vast right
10268 now that it's hard to see whether the code handling a particular
10269 situation might be duplicated or not. One day, when the code is
10270 cleaned up, this guide might become redundant with the comments
10271 inserted in the code, and we might want to remove it.
10272
10273 2. ``Fixing'' an Entity, the Simple Case:
10274 -----------------------------------------
10275
10276 When evaluating Ada expressions, the tricky issue is that they may
10277 reference entities whose type contents and size are not statically
10278 known. Consider for instance a variant record:
10279
10280 type Rec (Empty : Boolean := True) is record
10281 case Empty is
10282 when True => null;
10283 when False => Value : Integer;
10284 end case;
10285 end record;
10286 Yes : Rec := (Empty => False, Value => 1);
10287 No : Rec := (empty => True);
10288
10289 The size and contents of that record depends on the value of the
10290 descriminant (Rec.Empty). At this point, neither the debugging
10291 information nor the associated type structure in GDB are able to
10292 express such dynamic types. So what the debugger does is to create
10293 "fixed" versions of the type that applies to the specific object.
10294 We also informally refer to this opperation as "fixing" an object,
10295 which means creating its associated fixed type.
10296
10297 Example: when printing the value of variable "Yes" above, its fixed
10298 type would look like this:
10299
10300 type Rec is record
10301 Empty : Boolean;
10302 Value : Integer;
10303 end record;
10304
10305 On the other hand, if we printed the value of "No", its fixed type
10306 would become:
10307
10308 type Rec is record
10309 Empty : Boolean;
10310 end record;
10311
10312 Things become a little more complicated when trying to fix an entity
10313 with a dynamic type that directly contains another dynamic type,
10314 such as an array of variant records, for instance. There are
10315 two possible cases: Arrays, and records.
10316
10317 3. ``Fixing'' Arrays:
10318 ---------------------
10319
10320 The type structure in GDB describes an array in terms of its bounds,
10321 and the type of its elements. By design, all elements in the array
10322 have the same type and we cannot represent an array of variant elements
10323 using the current type structure in GDB. When fixing an array,
10324 we cannot fix the array element, as we would potentially need one
10325 fixed type per element of the array. As a result, the best we can do
10326 when fixing an array is to produce an array whose bounds and size
10327 are correct (allowing us to read it from memory), but without having
10328 touched its element type. Fixing each element will be done later,
10329 when (if) necessary.
10330
10331 Arrays are a little simpler to handle than records, because the same
10332 amount of memory is allocated for each element of the array, even if
10333 the amount of space actually used by each element differs from element
10334 to element. Consider for instance the following array of type Rec:
10335
10336 type Rec_Array is array (1 .. 2) of Rec;
10337
10338 The actual amount of memory occupied by each element might be different
10339 from element to element, depending on the value of their discriminant.
10340 But the amount of space reserved for each element in the array remains
10341 fixed regardless. So we simply need to compute that size using
10342 the debugging information available, from which we can then determine
10343 the array size (we multiply the number of elements of the array by
10344 the size of each element).
10345
10346 The simplest case is when we have an array of a constrained element
10347 type. For instance, consider the following type declarations:
10348
10349 type Bounded_String (Max_Size : Integer) is
10350 Length : Integer;
10351 Buffer : String (1 .. Max_Size);
10352 end record;
10353 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10354
10355 In this case, the compiler describes the array as an array of
10356 variable-size elements (identified by its XVS suffix) for which
10357 the size can be read in the parallel XVZ variable.
10358
10359 In the case of an array of an unconstrained element type, the compiler
10360 wraps the array element inside a private PAD type. This type should not
10361 be shown to the user, and must be "unwrap"'ed before printing. Note
10362 that we also use the adjective "aligner" in our code to designate
10363 these wrapper types.
10364
10365 In some cases, the size allocated for each element is statically
10366 known. In that case, the PAD type already has the correct size,
10367 and the array element should remain unfixed.
10368
10369 But there are cases when this size is not statically known.
10370 For instance, assuming that "Five" is an integer variable:
10371
10372 type Dynamic is array (1 .. Five) of Integer;
10373 type Wrapper (Has_Length : Boolean := False) is record
10374 Data : Dynamic;
10375 case Has_Length is
10376 when True => Length : Integer;
10377 when False => null;
10378 end case;
10379 end record;
10380 type Wrapper_Array is array (1 .. 2) of Wrapper;
10381
10382 Hello : Wrapper_Array := (others => (Has_Length => True,
10383 Data => (others => 17),
10384 Length => 1));
10385
10386
10387 The debugging info would describe variable Hello as being an
10388 array of a PAD type. The size of that PAD type is not statically
10389 known, but can be determined using a parallel XVZ variable.
10390 In that case, a copy of the PAD type with the correct size should
10391 be used for the fixed array.
10392
10393 3. ``Fixing'' record type objects:
10394 ----------------------------------
10395
10396 Things are slightly different from arrays in the case of dynamic
10397 record types. In this case, in order to compute the associated
10398 fixed type, we need to determine the size and offset of each of
10399 its components. This, in turn, requires us to compute the fixed
10400 type of each of these components.
10401
10402 Consider for instance the example:
10403
10404 type Bounded_String (Max_Size : Natural) is record
10405 Str : String (1 .. Max_Size);
10406 Length : Natural;
10407 end record;
10408 My_String : Bounded_String (Max_Size => 10);
10409
10410 In that case, the position of field "Length" depends on the size
10411 of field Str, which itself depends on the value of the Max_Size
10412 discriminant. In order to fix the type of variable My_String,
10413 we need to fix the type of field Str. Therefore, fixing a variant
10414 record requires us to fix each of its components.
10415
10416 However, if a component does not have a dynamic size, the component
10417 should not be fixed. In particular, fields that use a PAD type
10418 should not fixed. Here is an example where this might happen
10419 (assuming type Rec above):
10420
10421 type Container (Big : Boolean) is record
10422 First : Rec;
10423 After : Integer;
10424 case Big is
10425 when True => Another : Integer;
10426 when False => null;
10427 end case;
10428 end record;
10429 My_Container : Container := (Big => False,
10430 First => (Empty => True),
10431 After => 42);
10432
10433 In that example, the compiler creates a PAD type for component First,
10434 whose size is constant, and then positions the component After just
10435 right after it. The offset of component After is therefore constant
10436 in this case.
10437
10438 The debugger computes the position of each field based on an algorithm
10439 that uses, among other things, the actual position and size of the field
10440 preceding it. Let's now imagine that the user is trying to print
10441 the value of My_Container. If the type fixing was recursive, we would
10442 end up computing the offset of field After based on the size of the
10443 fixed version of field First. And since in our example First has
10444 only one actual field, the size of the fixed type is actually smaller
10445 than the amount of space allocated to that field, and thus we would
10446 compute the wrong offset of field After.
10447
10448 To make things more complicated, we need to watch out for dynamic
10449 components of variant records (identified by the ___XVL suffix in
10450 the component name). Even if the target type is a PAD type, the size
10451 of that type might not be statically known. So the PAD type needs
10452 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10453 we might end up with the wrong size for our component. This can be
10454 observed with the following type declarations:
10455
10456 type Octal is new Integer range 0 .. 7;
10457 type Octal_Array is array (Positive range <>) of Octal;
10458 pragma Pack (Octal_Array);
10459
10460 type Octal_Buffer (Size : Positive) is record
10461 Buffer : Octal_Array (1 .. Size);
10462 Length : Integer;
10463 end record;
10464
10465 In that case, Buffer is a PAD type whose size is unset and needs
10466 to be computed by fixing the unwrapped type.
10467
10468 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10469 ----------------------------------------------------------
10470
10471 Lastly, when should the sub-elements of an entity that remained unfixed
10472 thus far, be actually fixed?
10473
10474 The answer is: Only when referencing that element. For instance
10475 when selecting one component of a record, this specific component
10476 should be fixed at that point in time. Or when printing the value
10477 of a record, each component should be fixed before its value gets
10478 printed. Similarly for arrays, the element of the array should be
10479 fixed when printing each element of the array, or when extracting
10480 one element out of that array. On the other hand, fixing should
10481 not be performed on the elements when taking a slice of an array!
10482
10483 Note that one of the side effects of miscomputing the offset and
10484 size of each field is that we end up also miscomputing the size
10485 of the containing type. This can have adverse results when computing
10486 the value of an entity. GDB fetches the value of an entity based
10487 on the size of its type, and thus a wrong size causes GDB to fetch
10488 the wrong amount of memory. In the case where the computed size is
10489 too small, GDB fetches too little data to print the value of our
10490 entity. Results in this case are unpredictable, as we usually read
10491 past the buffer containing the data =:-o. */
10492
10493 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10494 for that subexpression cast to TO_TYPE. Advance *POS over the
10495 subexpression. */
10496
10497 static value *
10498 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10499 enum noside noside, struct type *to_type)
10500 {
10501 int pc = *pos;
10502
10503 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10504 || exp->elts[pc].opcode == OP_VAR_VALUE)
10505 {
10506 (*pos) += 4;
10507
10508 value *val;
10509 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10510 {
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 return value_zero (to_type, not_lval);
10513
10514 val = evaluate_var_msym_value (noside,
10515 exp->elts[pc + 1].objfile,
10516 exp->elts[pc + 2].msymbol);
10517 }
10518 else
10519 val = evaluate_var_value (noside,
10520 exp->elts[pc + 1].block,
10521 exp->elts[pc + 2].symbol);
10522
10523 if (noside == EVAL_SKIP)
10524 return eval_skip_value (exp);
10525
10526 val = ada_value_cast (to_type, val);
10527
10528 /* Follow the Ada language semantics that do not allow taking
10529 an address of the result of a cast (view conversion in Ada). */
10530 if (VALUE_LVAL (val) == lval_memory)
10531 {
10532 if (value_lazy (val))
10533 value_fetch_lazy (val);
10534 VALUE_LVAL (val) = not_lval;
10535 }
10536 return val;
10537 }
10538
10539 value *val = evaluate_subexp (to_type, exp, pos, noside);
10540 if (noside == EVAL_SKIP)
10541 return eval_skip_value (exp);
10542 return ada_value_cast (to_type, val);
10543 }
10544
10545 /* Implement the evaluate_exp routine in the exp_descriptor structure
10546 for the Ada language. */
10547
10548 static struct value *
10549 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10550 int *pos, enum noside noside)
10551 {
10552 enum exp_opcode op;
10553 int tem;
10554 int pc;
10555 int preeval_pos;
10556 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10557 struct type *type;
10558 int nargs, oplen;
10559 struct value **argvec;
10560
10561 pc = *pos;
10562 *pos += 1;
10563 op = exp->elts[pc].opcode;
10564
10565 switch (op)
10566 {
10567 default:
10568 *pos -= 1;
10569 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10570
10571 if (noside == EVAL_NORMAL)
10572 arg1 = unwrap_value (arg1);
10573
10574 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10575 then we need to perform the conversion manually, because
10576 evaluate_subexp_standard doesn't do it. This conversion is
10577 necessary in Ada because the different kinds of float/fixed
10578 types in Ada have different representations.
10579
10580 Similarly, we need to perform the conversion from OP_LONG
10581 ourselves. */
10582 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10583 arg1 = ada_value_cast (expect_type, arg1);
10584
10585 return arg1;
10586
10587 case OP_STRING:
10588 {
10589 struct value *result;
10590
10591 *pos -= 1;
10592 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593 /* The result type will have code OP_STRING, bashed there from
10594 OP_ARRAY. Bash it back. */
10595 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10596 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10597 return result;
10598 }
10599
10600 case UNOP_CAST:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
10603 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10604
10605 case UNOP_QUAL:
10606 (*pos) += 2;
10607 type = exp->elts[pc + 1].type;
10608 return ada_evaluate_subexp (type, exp, pos, noside);
10609
10610 case BINOP_ASSIGN:
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10612 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10613 {
10614 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10615 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10616 return arg1;
10617 return ada_value_assign (arg1, arg1);
10618 }
10619 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10620 except if the lhs of our assignment is a convenience variable.
10621 In the case of assigning to a convenience variable, the lhs
10622 should be exactly the result of the evaluation of the rhs. */
10623 type = value_type (arg1);
10624 if (VALUE_LVAL (arg1) == lval_internalvar)
10625 type = NULL;
10626 arg2 = evaluate_subexp (type, exp, pos, noside);
10627 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10628 return arg1;
10629 if (ada_is_fixed_point_type (value_type (arg1)))
10630 arg2 = cast_to_fixed (value_type (arg1), arg2);
10631 else if (ada_is_fixed_point_type (value_type (arg2)))
10632 error
10633 (_("Fixed-point values must be assigned to fixed-point variables"));
10634 else
10635 arg2 = coerce_for_assign (value_type (arg1), arg2);
10636 return ada_value_assign (arg1, arg2);
10637
10638 case BINOP_ADD:
10639 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10640 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10641 if (noside == EVAL_SKIP)
10642 goto nosideret;
10643 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10644 return (value_from_longest
10645 (value_type (arg1),
10646 value_as_long (arg1) + value_as_long (arg2)));
10647 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10648 return (value_from_longest
10649 (value_type (arg2),
10650 value_as_long (arg1) + value_as_long (arg2)));
10651 if ((ada_is_fixed_point_type (value_type (arg1))
10652 || ada_is_fixed_point_type (value_type (arg2)))
10653 && value_type (arg1) != value_type (arg2))
10654 error (_("Operands of fixed-point addition must have the same type"));
10655 /* Do the addition, and cast the result to the type of the first
10656 argument. We cannot cast the result to a reference type, so if
10657 ARG1 is a reference type, find its underlying type. */
10658 type = value_type (arg1);
10659 while (TYPE_CODE (type) == TYPE_CODE_REF)
10660 type = TYPE_TARGET_TYPE (type);
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10662 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10663
10664 case BINOP_SUB:
10665 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10666 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10667 if (noside == EVAL_SKIP)
10668 goto nosideret;
10669 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10670 return (value_from_longest
10671 (value_type (arg1),
10672 value_as_long (arg1) - value_as_long (arg2)));
10673 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10674 return (value_from_longest
10675 (value_type (arg2),
10676 value_as_long (arg1) - value_as_long (arg2)));
10677 if ((ada_is_fixed_point_type (value_type (arg1))
10678 || ada_is_fixed_point_type (value_type (arg2)))
10679 && value_type (arg1) != value_type (arg2))
10680 error (_("Operands of fixed-point subtraction "
10681 "must have the same type"));
10682 /* Do the substraction, and cast the result to the type of the first
10683 argument. We cannot cast the result to a reference type, so if
10684 ARG1 is a reference type, find its underlying type. */
10685 type = value_type (arg1);
10686 while (TYPE_CODE (type) == TYPE_CODE_REF)
10687 type = TYPE_TARGET_TYPE (type);
10688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10689 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10690
10691 case BINOP_MUL:
10692 case BINOP_DIV:
10693 case BINOP_REM:
10694 case BINOP_MOD:
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 if (noside == EVAL_SKIP)
10698 goto nosideret;
10699 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 {
10701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10702 return value_zero (value_type (arg1), not_lval);
10703 }
10704 else
10705 {
10706 type = builtin_type (exp->gdbarch)->builtin_double;
10707 if (ada_is_fixed_point_type (value_type (arg1)))
10708 arg1 = cast_from_fixed (type, arg1);
10709 if (ada_is_fixed_point_type (value_type (arg2)))
10710 arg2 = cast_from_fixed (type, arg2);
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10712 return ada_value_binop (arg1, arg2, op);
10713 }
10714
10715 case BINOP_EQUAL:
10716 case BINOP_NOTEQUAL:
10717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10718 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10719 if (noside == EVAL_SKIP)
10720 goto nosideret;
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 tem = 0;
10723 else
10724 {
10725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10726 tem = ada_value_equal (arg1, arg2);
10727 }
10728 if (op == BINOP_NOTEQUAL)
10729 tem = !tem;
10730 type = language_bool_type (exp->language_defn, exp->gdbarch);
10731 return value_from_longest (type, (LONGEST) tem);
10732
10733 case UNOP_NEG:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
10737 else if (ada_is_fixed_point_type (value_type (arg1)))
10738 return value_cast (value_type (arg1), value_neg (arg1));
10739 else
10740 {
10741 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10742 return value_neg (arg1);
10743 }
10744
10745 case BINOP_LOGICAL_AND:
10746 case BINOP_LOGICAL_OR:
10747 case UNOP_LOGICAL_NOT:
10748 {
10749 struct value *val;
10750
10751 *pos -= 1;
10752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10753 type = language_bool_type (exp->language_defn, exp->gdbarch);
10754 return value_cast (type, val);
10755 }
10756
10757 case BINOP_BITWISE_AND:
10758 case BINOP_BITWISE_IOR:
10759 case BINOP_BITWISE_XOR:
10760 {
10761 struct value *val;
10762
10763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10764 *pos = pc;
10765 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10766
10767 return value_cast (value_type (arg1), val);
10768 }
10769
10770 case OP_VAR_VALUE:
10771 *pos -= 1;
10772
10773 if (noside == EVAL_SKIP)
10774 {
10775 *pos += 4;
10776 goto nosideret;
10777 }
10778
10779 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10780 /* Only encountered when an unresolved symbol occurs in a
10781 context other than a function call, in which case, it is
10782 invalid. */
10783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10785
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 {
10788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10789 /* Check to see if this is a tagged type. We also need to handle
10790 the case where the type is a reference to a tagged type, but
10791 we have to be careful to exclude pointers to tagged types.
10792 The latter should be shown as usual (as a pointer), whereas
10793 a reference should mostly be transparent to the user. */
10794 if (ada_is_tagged_type (type, 0)
10795 || (TYPE_CODE (type) == TYPE_CODE_REF
10796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10797 {
10798 /* Tagged types are a little special in the fact that the real
10799 type is dynamic and can only be determined by inspecting the
10800 object's tag. This means that we need to get the object's
10801 value first (EVAL_NORMAL) and then extract the actual object
10802 type from its tag.
10803
10804 Note that we cannot skip the final step where we extract
10805 the object type from its tag, because the EVAL_NORMAL phase
10806 results in dynamic components being resolved into fixed ones.
10807 This can cause problems when trying to print the type
10808 description of tagged types whose parent has a dynamic size:
10809 We use the type name of the "_parent" component in order
10810 to print the name of the ancestor type in the type description.
10811 If that component had a dynamic size, the resolution into
10812 a fixed type would result in the loss of that type name,
10813 thus preventing us from printing the name of the ancestor
10814 type in the type description. */
10815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10816
10817 if (TYPE_CODE (type) != TYPE_CODE_REF)
10818 {
10819 struct type *actual_type;
10820
10821 actual_type = type_from_tag (ada_value_tag (arg1));
10822 if (actual_type == NULL)
10823 /* If, for some reason, we were unable to determine
10824 the actual type from the tag, then use the static
10825 approximation that we just computed as a fallback.
10826 This can happen if the debugging information is
10827 incomplete, for instance. */
10828 actual_type = type;
10829 return value_zero (actual_type, not_lval);
10830 }
10831 else
10832 {
10833 /* In the case of a ref, ada_coerce_ref takes care
10834 of determining the actual type. But the evaluation
10835 should return a ref as it should be valid to ask
10836 for its address; so rebuild a ref after coerce. */
10837 arg1 = ada_coerce_ref (arg1);
10838 return value_ref (arg1, TYPE_CODE_REF);
10839 }
10840 }
10841
10842 /* Records and unions for which GNAT encodings have been
10843 generated need to be statically fixed as well.
10844 Otherwise, non-static fixing produces a type where
10845 all dynamic properties are removed, which prevents "ptype"
10846 from being able to completely describe the type.
10847 For instance, a case statement in a variant record would be
10848 replaced by the relevant components based on the actual
10849 value of the discriminants. */
10850 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10851 && dynamic_template_type (type) != NULL)
10852 || (TYPE_CODE (type) == TYPE_CODE_UNION
10853 && ada_find_parallel_type (type, "___XVU") != NULL))
10854 {
10855 *pos += 4;
10856 return value_zero (to_static_fixed_type (type), not_lval);
10857 }
10858 }
10859
10860 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10861 return ada_to_fixed_value (arg1);
10862
10863 case OP_FUNCALL:
10864 (*pos) += 2;
10865
10866 /* Allocate arg vector, including space for the function to be
10867 called in argvec[0] and a terminating NULL. */
10868 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10869 argvec = XALLOCAVEC (struct value *, nargs + 2);
10870
10871 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10872 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10875 else
10876 {
10877 for (tem = 0; tem <= nargs; tem += 1)
10878 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 argvec[tem] = 0;
10880
10881 if (noside == EVAL_SKIP)
10882 goto nosideret;
10883 }
10884
10885 if (ada_is_constrained_packed_array_type
10886 (desc_base_type (value_type (argvec[0]))))
10887 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10889 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10890 /* This is a packed array that has already been fixed, and
10891 therefore already coerced to a simple array. Nothing further
10892 to do. */
10893 ;
10894 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10895 {
10896 /* Make sure we dereference references so that all the code below
10897 feels like it's really handling the referenced value. Wrapping
10898 types (for alignment) may be there, so make sure we strip them as
10899 well. */
10900 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10901 }
10902 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10903 && VALUE_LVAL (argvec[0]) == lval_memory)
10904 argvec[0] = value_addr (argvec[0]);
10905
10906 type = ada_check_typedef (value_type (argvec[0]));
10907
10908 /* Ada allows us to implicitly dereference arrays when subscripting
10909 them. So, if this is an array typedef (encoding use for array
10910 access types encoded as fat pointers), strip it now. */
10911 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10912 type = ada_typedef_target_type (type);
10913
10914 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10915 {
10916 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10917 {
10918 case TYPE_CODE_FUNC:
10919 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10920 break;
10921 case TYPE_CODE_ARRAY:
10922 break;
10923 case TYPE_CODE_STRUCT:
10924 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10925 argvec[0] = ada_value_ind (argvec[0]);
10926 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10927 break;
10928 default:
10929 error (_("cannot subscript or call something of type `%s'"),
10930 ada_type_name (value_type (argvec[0])));
10931 break;
10932 }
10933 }
10934
10935 switch (TYPE_CODE (type))
10936 {
10937 case TYPE_CODE_FUNC:
10938 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10939 {
10940 if (TYPE_TARGET_TYPE (type) == NULL)
10941 error_call_unknown_return_type (NULL);
10942 return allocate_value (TYPE_TARGET_TYPE (type));
10943 }
10944 return call_function_by_hand (argvec[0], NULL,
10945 gdb::make_array_view (argvec + 1,
10946 nargs));
10947 case TYPE_CODE_INTERNAL_FUNCTION:
10948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 /* We don't know anything about what the internal
10950 function might return, but we have to return
10951 something. */
10952 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10953 not_lval);
10954 else
10955 return call_internal_function (exp->gdbarch, exp->language_defn,
10956 argvec[0], nargs, argvec + 1);
10957
10958 case TYPE_CODE_STRUCT:
10959 {
10960 int arity;
10961
10962 arity = ada_array_arity (type);
10963 type = ada_array_element_type (type, nargs);
10964 if (type == NULL)
10965 error (_("cannot subscript or call a record"));
10966 if (arity != nargs)
10967 error (_("wrong number of subscripts; expecting %d"), arity);
10968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10969 return value_zero (ada_aligned_type (type), lval_memory);
10970 return
10971 unwrap_value (ada_value_subscript
10972 (argvec[0], nargs, argvec + 1));
10973 }
10974 case TYPE_CODE_ARRAY:
10975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10976 {
10977 type = ada_array_element_type (type, nargs);
10978 if (type == NULL)
10979 error (_("element type of array unknown"));
10980 else
10981 return value_zero (ada_aligned_type (type), lval_memory);
10982 }
10983 return
10984 unwrap_value (ada_value_subscript
10985 (ada_coerce_to_simple_array (argvec[0]),
10986 nargs, argvec + 1));
10987 case TYPE_CODE_PTR: /* Pointer to array */
10988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 {
10990 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10991 type = ada_array_element_type (type, nargs);
10992 if (type == NULL)
10993 error (_("element type of array unknown"));
10994 else
10995 return value_zero (ada_aligned_type (type), lval_memory);
10996 }
10997 return
10998 unwrap_value (ada_value_ptr_subscript (argvec[0],
10999 nargs, argvec + 1));
11000
11001 default:
11002 error (_("Attempt to index or call something other than an "
11003 "array or function"));
11004 }
11005
11006 case TERNOP_SLICE:
11007 {
11008 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 struct value *low_bound_val =
11010 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 struct value *high_bound_val =
11012 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11013 LONGEST low_bound;
11014 LONGEST high_bound;
11015
11016 low_bound_val = coerce_ref (low_bound_val);
11017 high_bound_val = coerce_ref (high_bound_val);
11018 low_bound = value_as_long (low_bound_val);
11019 high_bound = value_as_long (high_bound_val);
11020
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
11024 /* If this is a reference to an aligner type, then remove all
11025 the aligners. */
11026 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11027 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11028 TYPE_TARGET_TYPE (value_type (array)) =
11029 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11030
11031 if (ada_is_constrained_packed_array_type (value_type (array)))
11032 error (_("cannot slice a packed array"));
11033
11034 /* If this is a reference to an array or an array lvalue,
11035 convert to a pointer. */
11036 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11037 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11038 && VALUE_LVAL (array) == lval_memory))
11039 array = value_addr (array);
11040
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS
11042 && ada_is_array_descriptor_type (ada_check_typedef
11043 (value_type (array))))
11044 return empty_array (ada_type_of_array (array, 0), low_bound,
11045 high_bound);
11046
11047 array = ada_coerce_to_simple_array_ptr (array);
11048
11049 /* If we have more than one level of pointer indirection,
11050 dereference the value until we get only one level. */
11051 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11052 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11053 == TYPE_CODE_PTR))
11054 array = value_ind (array);
11055
11056 /* Make sure we really do have an array type before going further,
11057 to avoid a SEGV when trying to get the index type or the target
11058 type later down the road if the debug info generated by
11059 the compiler is incorrect or incomplete. */
11060 if (!ada_is_simple_array_type (value_type (array)))
11061 error (_("cannot take slice of non-array"));
11062
11063 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11064 == TYPE_CODE_PTR)
11065 {
11066 struct type *type0 = ada_check_typedef (value_type (array));
11067
11068 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11069 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11070 else
11071 {
11072 struct type *arr_type0 =
11073 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11074
11075 return ada_value_slice_from_ptr (array, arr_type0,
11076 longest_to_int (low_bound),
11077 longest_to_int (high_bound));
11078 }
11079 }
11080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11081 return array;
11082 else if (high_bound < low_bound)
11083 return empty_array (value_type (array), low_bound, high_bound);
11084 else
11085 return ada_value_slice (array, longest_to_int (low_bound),
11086 longest_to_int (high_bound));
11087 }
11088
11089 case UNOP_IN_RANGE:
11090 (*pos) += 2;
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11092 type = check_typedef (exp->elts[pc + 1].type);
11093
11094 if (noside == EVAL_SKIP)
11095 goto nosideret;
11096
11097 switch (TYPE_CODE (type))
11098 {
11099 default:
11100 lim_warning (_("Membership test incompletely implemented; "
11101 "always returns true"));
11102 type = language_bool_type (exp->language_defn, exp->gdbarch);
11103 return value_from_longest (type, (LONGEST) 1);
11104
11105 case TYPE_CODE_RANGE:
11106 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11107 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11110 type = language_bool_type (exp->language_defn, exp->gdbarch);
11111 return
11112 value_from_longest (type,
11113 (value_less (arg1, arg3)
11114 || value_equal (arg1, arg3))
11115 && (value_less (arg2, arg1)
11116 || value_equal (arg2, arg1)));
11117 }
11118
11119 case BINOP_IN_BOUNDS:
11120 (*pos) += 2;
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11123
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
11126
11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11128 {
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return value_zero (type, not_lval);
11131 }
11132
11133 tem = longest_to_int (exp->elts[pc + 1].longconst);
11134
11135 type = ada_index_type (value_type (arg2), tem, "range");
11136 if (!type)
11137 type = value_type (arg1);
11138
11139 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11140 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11141
11142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11144 type = language_bool_type (exp->language_defn, exp->gdbarch);
11145 return
11146 value_from_longest (type,
11147 (value_less (arg1, arg3)
11148 || value_equal (arg1, arg3))
11149 && (value_less (arg2, arg1)
11150 || value_equal (arg2, arg1)));
11151
11152 case TERNOP_IN_RANGE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156
11157 if (noside == EVAL_SKIP)
11158 goto nosideret;
11159
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
11163 return
11164 value_from_longest (type,
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11169
11170 case OP_ATR_FIRST:
11171 case OP_ATR_LAST:
11172 case OP_ATR_LENGTH:
11173 {
11174 struct type *type_arg;
11175
11176 if (exp->elts[*pos].opcode == OP_TYPE)
11177 {
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11179 arg1 = NULL;
11180 type_arg = check_typedef (exp->elts[pc + 2].type);
11181 }
11182 else
11183 {
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 type_arg = NULL;
11186 }
11187
11188 if (exp->elts[*pos].opcode != OP_LONG)
11189 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11190 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11191 *pos += 4;
11192
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195
11196 if (type_arg == NULL)
11197 {
11198 arg1 = ada_coerce_ref (arg1);
11199
11200 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11201 arg1 = ada_coerce_to_simple_array (arg1);
11202
11203 if (op == OP_ATR_LENGTH)
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11205 else
11206 {
11207 type = ada_index_type (value_type (arg1), tem,
11208 ada_attribute_name (op));
11209 if (type == NULL)
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 }
11212
11213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11214 return allocate_value (type);
11215
11216 switch (op)
11217 {
11218 default: /* Should never happen. */
11219 error (_("unexpected attribute encountered"));
11220 case OP_ATR_FIRST:
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 0));
11223 case OP_ATR_LAST:
11224 return value_from_longest
11225 (type, ada_array_bound (arg1, tem, 1));
11226 case OP_ATR_LENGTH:
11227 return value_from_longest
11228 (type, ada_array_length (arg1, tem));
11229 }
11230 }
11231 else if (discrete_type_p (type_arg))
11232 {
11233 struct type *range_type;
11234 const char *name = ada_type_name (type_arg);
11235
11236 range_type = NULL;
11237 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11238 range_type = to_fixed_range_type (type_arg, NULL);
11239 if (range_type == NULL)
11240 range_type = type_arg;
11241 switch (op)
11242 {
11243 default:
11244 error (_("unexpected attribute encountered"));
11245 case OP_ATR_FIRST:
11246 return value_from_longest
11247 (range_type, ada_discrete_type_low_bound (range_type));
11248 case OP_ATR_LAST:
11249 return value_from_longest
11250 (range_type, ada_discrete_type_high_bound (range_type));
11251 case OP_ATR_LENGTH:
11252 error (_("the 'length attribute applies only to array types"));
11253 }
11254 }
11255 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11256 error (_("unimplemented type attribute"));
11257 else
11258 {
11259 LONGEST low, high;
11260
11261 if (ada_is_constrained_packed_array_type (type_arg))
11262 type_arg = decode_constrained_packed_array_type (type_arg);
11263
11264 if (op == OP_ATR_LENGTH)
11265 type = builtin_type (exp->gdbarch)->builtin_int;
11266 else
11267 {
11268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11269 if (type == NULL)
11270 type = builtin_type (exp->gdbarch)->builtin_int;
11271 }
11272
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return allocate_value (type);
11275
11276 switch (op)
11277 {
11278 default:
11279 error (_("unexpected attribute encountered"));
11280 case OP_ATR_FIRST:
11281 low = ada_array_bound_from_type (type_arg, tem, 0);
11282 return value_from_longest (type, low);
11283 case OP_ATR_LAST:
11284 high = ada_array_bound_from_type (type_arg, tem, 1);
11285 return value_from_longest (type, high);
11286 case OP_ATR_LENGTH:
11287 low = ada_array_bound_from_type (type_arg, tem, 0);
11288 high = ada_array_bound_from_type (type_arg, tem, 1);
11289 return value_from_longest (type, high - low + 1);
11290 }
11291 }
11292 }
11293
11294 case OP_ATR_TAG:
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 if (noside == EVAL_SKIP)
11297 goto nosideret;
11298
11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11300 return value_zero (ada_tag_type (arg1), not_lval);
11301
11302 return ada_value_tag (arg1);
11303
11304 case OP_ATR_MIN:
11305 case OP_ATR_MAX:
11306 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309 if (noside == EVAL_SKIP)
11310 goto nosideret;
11311 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11312 return value_zero (value_type (arg1), not_lval);
11313 else
11314 {
11315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11316 return value_binop (arg1, arg2,
11317 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11318 }
11319
11320 case OP_ATR_MODULUS:
11321 {
11322 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11323
11324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11325 if (noside == EVAL_SKIP)
11326 goto nosideret;
11327
11328 if (!ada_is_modular_type (type_arg))
11329 error (_("'modulus must be applied to modular type"));
11330
11331 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11332 ada_modulus (type_arg));
11333 }
11334
11335
11336 case OP_ATR_POS:
11337 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
11340 goto nosideret;
11341 type = builtin_type (exp->gdbarch)->builtin_int;
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return value_zero (type, not_lval);
11344 else
11345 return value_pos_atr (type, arg1);
11346
11347 case OP_ATR_SIZE:
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 type = value_type (arg1);
11350
11351 /* If the argument is a reference, then dereference its type, since
11352 the user is really asking for the size of the actual object,
11353 not the size of the pointer. */
11354 if (TYPE_CODE (type) == TYPE_CODE_REF)
11355 type = TYPE_TARGET_TYPE (type);
11356
11357 if (noside == EVAL_SKIP)
11358 goto nosideret;
11359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11361 else
11362 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11363 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11364
11365 case OP_ATR_VAL:
11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 type = exp->elts[pc + 2].type;
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 return value_zero (type, not_lval);
11373 else
11374 return value_val_atr (type, arg1);
11375
11376 case BINOP_EXP:
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11379 if (noside == EVAL_SKIP)
11380 goto nosideret;
11381 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11382 return value_zero (value_type (arg1), not_lval);
11383 else
11384 {
11385 /* For integer exponentiation operations,
11386 only promote the first argument. */
11387 if (is_integral_type (value_type (arg2)))
11388 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11389 else
11390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11391
11392 return value_binop (arg1, arg2, op);
11393 }
11394
11395 case UNOP_PLUS:
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else
11400 return arg1;
11401
11402 case UNOP_ABS:
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11404 if (noside == EVAL_SKIP)
11405 goto nosideret;
11406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11407 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11408 return value_neg (arg1);
11409 else
11410 return arg1;
11411
11412 case UNOP_IND:
11413 preeval_pos = *pos;
11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11415 if (noside == EVAL_SKIP)
11416 goto nosideret;
11417 type = ada_check_typedef (value_type (arg1));
11418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11419 {
11420 if (ada_is_array_descriptor_type (type))
11421 /* GDB allows dereferencing GNAT array descriptors. */
11422 {
11423 struct type *arrType = ada_type_of_array (arg1, 0);
11424
11425 if (arrType == NULL)
11426 error (_("Attempt to dereference null array pointer."));
11427 return value_at_lazy (arrType, 0);
11428 }
11429 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11430 || TYPE_CODE (type) == TYPE_CODE_REF
11431 /* In C you can dereference an array to get the 1st elt. */
11432 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11433 {
11434 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11435 only be determined by inspecting the object's tag.
11436 This means that we need to evaluate completely the
11437 expression in order to get its type. */
11438
11439 if ((TYPE_CODE (type) == TYPE_CODE_REF
11440 || TYPE_CODE (type) == TYPE_CODE_PTR)
11441 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11442 {
11443 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11444 EVAL_NORMAL);
11445 type = value_type (ada_value_ind (arg1));
11446 }
11447 else
11448 {
11449 type = to_static_fixed_type
11450 (ada_aligned_type
11451 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11452 }
11453 ada_ensure_varsize_limit (type);
11454 return value_zero (type, lval_memory);
11455 }
11456 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11457 {
11458 /* GDB allows dereferencing an int. */
11459 if (expect_type == NULL)
11460 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11461 lval_memory);
11462 else
11463 {
11464 expect_type =
11465 to_static_fixed_type (ada_aligned_type (expect_type));
11466 return value_zero (expect_type, lval_memory);
11467 }
11468 }
11469 else
11470 error (_("Attempt to take contents of a non-pointer value."));
11471 }
11472 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11473 type = ada_check_typedef (value_type (arg1));
11474
11475 if (TYPE_CODE (type) == TYPE_CODE_INT)
11476 /* GDB allows dereferencing an int. If we were given
11477 the expect_type, then use that as the target type.
11478 Otherwise, assume that the target type is an int. */
11479 {
11480 if (expect_type != NULL)
11481 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11482 arg1));
11483 else
11484 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11485 (CORE_ADDR) value_as_address (arg1));
11486 }
11487
11488 if (ada_is_array_descriptor_type (type))
11489 /* GDB allows dereferencing GNAT array descriptors. */
11490 return ada_coerce_to_simple_array (arg1);
11491 else
11492 return ada_value_ind (arg1);
11493
11494 case STRUCTOP_STRUCT:
11495 tem = longest_to_int (exp->elts[pc + 1].longconst);
11496 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11497 preeval_pos = *pos;
11498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11499 if (noside == EVAL_SKIP)
11500 goto nosideret;
11501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11502 {
11503 struct type *type1 = value_type (arg1);
11504
11505 if (ada_is_tagged_type (type1, 1))
11506 {
11507 type = ada_lookup_struct_elt_type (type1,
11508 &exp->elts[pc + 2].string,
11509 1, 1);
11510
11511 /* If the field is not found, check if it exists in the
11512 extension of this object's type. This means that we
11513 need to evaluate completely the expression. */
11514
11515 if (type == NULL)
11516 {
11517 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11518 EVAL_NORMAL);
11519 arg1 = ada_value_struct_elt (arg1,
11520 &exp->elts[pc + 2].string,
11521 0);
11522 arg1 = unwrap_value (arg1);
11523 type = value_type (ada_to_fixed_value (arg1));
11524 }
11525 }
11526 else
11527 type =
11528 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11529 0);
11530
11531 return value_zero (ada_aligned_type (type), lval_memory);
11532 }
11533 else
11534 {
11535 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11536 arg1 = unwrap_value (arg1);
11537 return ada_to_fixed_value (arg1);
11538 }
11539
11540 case OP_TYPE:
11541 /* The value is not supposed to be used. This is here to make it
11542 easier to accommodate expressions that contain types. */
11543 (*pos) += 2;
11544 if (noside == EVAL_SKIP)
11545 goto nosideret;
11546 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11547 return allocate_value (exp->elts[pc + 1].type);
11548 else
11549 error (_("Attempt to use a type name as an expression"));
11550
11551 case OP_AGGREGATE:
11552 case OP_CHOICES:
11553 case OP_OTHERS:
11554 case OP_DISCRETE_RANGE:
11555 case OP_POSITIONAL:
11556 case OP_NAME:
11557 if (noside == EVAL_NORMAL)
11558 switch (op)
11559 {
11560 case OP_NAME:
11561 error (_("Undefined name, ambiguous name, or renaming used in "
11562 "component association: %s."), &exp->elts[pc+2].string);
11563 case OP_AGGREGATE:
11564 error (_("Aggregates only allowed on the right of an assignment"));
11565 default:
11566 internal_error (__FILE__, __LINE__,
11567 _("aggregate apparently mangled"));
11568 }
11569
11570 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11571 *pos += oplen - 1;
11572 for (tem = 0; tem < nargs; tem += 1)
11573 ada_evaluate_subexp (NULL, exp, pos, noside);
11574 goto nosideret;
11575 }
11576
11577 nosideret:
11578 return eval_skip_value (exp);
11579 }
11580 \f
11581
11582 /* Fixed point */
11583
11584 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11585 type name that encodes the 'small and 'delta information.
11586 Otherwise, return NULL. */
11587
11588 static const char *
11589 fixed_type_info (struct type *type)
11590 {
11591 const char *name = ada_type_name (type);
11592 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11593
11594 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11595 {
11596 const char *tail = strstr (name, "___XF_");
11597
11598 if (tail == NULL)
11599 return NULL;
11600 else
11601 return tail + 5;
11602 }
11603 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11604 return fixed_type_info (TYPE_TARGET_TYPE (type));
11605 else
11606 return NULL;
11607 }
11608
11609 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11610
11611 int
11612 ada_is_fixed_point_type (struct type *type)
11613 {
11614 return fixed_type_info (type) != NULL;
11615 }
11616
11617 /* Return non-zero iff TYPE represents a System.Address type. */
11618
11619 int
11620 ada_is_system_address_type (struct type *type)
11621 {
11622 return (TYPE_NAME (type)
11623 && strcmp (TYPE_NAME (type), "system__address") == 0);
11624 }
11625
11626 /* Assuming that TYPE is the representation of an Ada fixed-point
11627 type, return the target floating-point type to be used to represent
11628 of this type during internal computation. */
11629
11630 static struct type *
11631 ada_scaling_type (struct type *type)
11632 {
11633 return builtin_type (get_type_arch (type))->builtin_long_double;
11634 }
11635
11636 /* Assuming that TYPE is the representation of an Ada fixed-point
11637 type, return its delta, or NULL if the type is malformed and the
11638 delta cannot be determined. */
11639
11640 struct value *
11641 ada_delta (struct type *type)
11642 {
11643 const char *encoding = fixed_type_info (type);
11644 struct type *scale_type = ada_scaling_type (type);
11645
11646 long long num, den;
11647
11648 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11649 return nullptr;
11650 else
11651 return value_binop (value_from_longest (scale_type, num),
11652 value_from_longest (scale_type, den), BINOP_DIV);
11653 }
11654
11655 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11656 factor ('SMALL value) associated with the type. */
11657
11658 struct value *
11659 ada_scaling_factor (struct type *type)
11660 {
11661 const char *encoding = fixed_type_info (type);
11662 struct type *scale_type = ada_scaling_type (type);
11663
11664 long long num0, den0, num1, den1;
11665 int n;
11666
11667 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11668 &num0, &den0, &num1, &den1);
11669
11670 if (n < 2)
11671 return value_from_longest (scale_type, 1);
11672 else if (n == 4)
11673 return value_binop (value_from_longest (scale_type, num1),
11674 value_from_longest (scale_type, den1), BINOP_DIV);
11675 else
11676 return value_binop (value_from_longest (scale_type, num0),
11677 value_from_longest (scale_type, den0), BINOP_DIV);
11678 }
11679
11680 \f
11681
11682 /* Range types */
11683
11684 /* Scan STR beginning at position K for a discriminant name, and
11685 return the value of that discriminant field of DVAL in *PX. If
11686 PNEW_K is not null, put the position of the character beyond the
11687 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11688 not alter *PX and *PNEW_K if unsuccessful. */
11689
11690 static int
11691 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11692 int *pnew_k)
11693 {
11694 static char *bound_buffer = NULL;
11695 static size_t bound_buffer_len = 0;
11696 const char *pstart, *pend, *bound;
11697 struct value *bound_val;
11698
11699 if (dval == NULL || str == NULL || str[k] == '\0')
11700 return 0;
11701
11702 pstart = str + k;
11703 pend = strstr (pstart, "__");
11704 if (pend == NULL)
11705 {
11706 bound = pstart;
11707 k += strlen (bound);
11708 }
11709 else
11710 {
11711 int len = pend - pstart;
11712
11713 /* Strip __ and beyond. */
11714 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11715 strncpy (bound_buffer, pstart, len);
11716 bound_buffer[len] = '\0';
11717
11718 bound = bound_buffer;
11719 k = pend - str;
11720 }
11721
11722 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11723 if (bound_val == NULL)
11724 return 0;
11725
11726 *px = value_as_long (bound_val);
11727 if (pnew_k != NULL)
11728 *pnew_k = k;
11729 return 1;
11730 }
11731
11732 /* Value of variable named NAME in the current environment. If
11733 no such variable found, then if ERR_MSG is null, returns 0, and
11734 otherwise causes an error with message ERR_MSG. */
11735
11736 static struct value *
11737 get_var_value (const char *name, const char *err_msg)
11738 {
11739 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11740
11741 std::vector<struct block_symbol> syms;
11742 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11743 get_selected_block (0),
11744 VAR_DOMAIN, &syms, 1);
11745
11746 if (nsyms != 1)
11747 {
11748 if (err_msg == NULL)
11749 return 0;
11750 else
11751 error (("%s"), err_msg);
11752 }
11753
11754 return value_of_variable (syms[0].symbol, syms[0].block);
11755 }
11756
11757 /* Value of integer variable named NAME in the current environment.
11758 If no such variable is found, returns false. Otherwise, sets VALUE
11759 to the variable's value and returns true. */
11760
11761 bool
11762 get_int_var_value (const char *name, LONGEST &value)
11763 {
11764 struct value *var_val = get_var_value (name, 0);
11765
11766 if (var_val == 0)
11767 return false;
11768
11769 value = value_as_long (var_val);
11770 return true;
11771 }
11772
11773
11774 /* Return a range type whose base type is that of the range type named
11775 NAME in the current environment, and whose bounds are calculated
11776 from NAME according to the GNAT range encoding conventions.
11777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11778 corresponding range type from debug information; fall back to using it
11779 if symbol lookup fails. If a new type must be created, allocate it
11780 like ORIG_TYPE was. The bounds information, in general, is encoded
11781 in NAME, the base type given in the named range type. */
11782
11783 static struct type *
11784 to_fixed_range_type (struct type *raw_type, struct value *dval)
11785 {
11786 const char *name;
11787 struct type *base_type;
11788 const char *subtype_info;
11789
11790 gdb_assert (raw_type != NULL);
11791 gdb_assert (TYPE_NAME (raw_type) != NULL);
11792
11793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11794 base_type = TYPE_TARGET_TYPE (raw_type);
11795 else
11796 base_type = raw_type;
11797
11798 name = TYPE_NAME (raw_type);
11799 subtype_info = strstr (name, "___XD");
11800 if (subtype_info == NULL)
11801 {
11802 LONGEST L = ada_discrete_type_low_bound (raw_type);
11803 LONGEST U = ada_discrete_type_high_bound (raw_type);
11804
11805 if (L < INT_MIN || U > INT_MAX)
11806 return raw_type;
11807 else
11808 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11809 L, U);
11810 }
11811 else
11812 {
11813 static char *name_buf = NULL;
11814 static size_t name_len = 0;
11815 int prefix_len = subtype_info - name;
11816 LONGEST L, U;
11817 struct type *type;
11818 const char *bounds_str;
11819 int n;
11820
11821 GROW_VECT (name_buf, name_len, prefix_len + 5);
11822 strncpy (name_buf, name, prefix_len);
11823 name_buf[prefix_len] = '\0';
11824
11825 subtype_info += 5;
11826 bounds_str = strchr (subtype_info, '_');
11827 n = 1;
11828
11829 if (*subtype_info == 'L')
11830 {
11831 if (!ada_scan_number (bounds_str, n, &L, &n)
11832 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11833 return raw_type;
11834 if (bounds_str[n] == '_')
11835 n += 2;
11836 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11837 n += 1;
11838 subtype_info += 1;
11839 }
11840 else
11841 {
11842 strcpy (name_buf + prefix_len, "___L");
11843 if (!get_int_var_value (name_buf, L))
11844 {
11845 lim_warning (_("Unknown lower bound, using 1."));
11846 L = 1;
11847 }
11848 }
11849
11850 if (*subtype_info == 'U')
11851 {
11852 if (!ada_scan_number (bounds_str, n, &U, &n)
11853 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11854 return raw_type;
11855 }
11856 else
11857 {
11858 strcpy (name_buf + prefix_len, "___U");
11859 if (!get_int_var_value (name_buf, U))
11860 {
11861 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11862 U = L;
11863 }
11864 }
11865
11866 type = create_static_range_type (alloc_type_copy (raw_type),
11867 base_type, L, U);
11868 /* create_static_range_type alters the resulting type's length
11869 to match the size of the base_type, which is not what we want.
11870 Set it back to the original range type's length. */
11871 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11872 TYPE_NAME (type) = name;
11873 return type;
11874 }
11875 }
11876
11877 /* True iff NAME is the name of a range type. */
11878
11879 int
11880 ada_is_range_type_name (const char *name)
11881 {
11882 return (name != NULL && strstr (name, "___XD"));
11883 }
11884 \f
11885
11886 /* Modular types */
11887
11888 /* True iff TYPE is an Ada modular type. */
11889
11890 int
11891 ada_is_modular_type (struct type *type)
11892 {
11893 struct type *subranged_type = get_base_type (type);
11894
11895 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11896 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11897 && TYPE_UNSIGNED (subranged_type));
11898 }
11899
11900 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11901
11902 ULONGEST
11903 ada_modulus (struct type *type)
11904 {
11905 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11906 }
11907 \f
11908
11909 /* Ada exception catchpoint support:
11910 ---------------------------------
11911
11912 We support 3 kinds of exception catchpoints:
11913 . catchpoints on Ada exceptions
11914 . catchpoints on unhandled Ada exceptions
11915 . catchpoints on failed assertions
11916
11917 Exceptions raised during failed assertions, or unhandled exceptions
11918 could perfectly be caught with the general catchpoint on Ada exceptions.
11919 However, we can easily differentiate these two special cases, and having
11920 the option to distinguish these two cases from the rest can be useful
11921 to zero-in on certain situations.
11922
11923 Exception catchpoints are a specialized form of breakpoint,
11924 since they rely on inserting breakpoints inside known routines
11925 of the GNAT runtime. The implementation therefore uses a standard
11926 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11927 of breakpoint_ops.
11928
11929 Support in the runtime for exception catchpoints have been changed
11930 a few times already, and these changes affect the implementation
11931 of these catchpoints. In order to be able to support several
11932 variants of the runtime, we use a sniffer that will determine
11933 the runtime variant used by the program being debugged. */
11934
11935 /* Ada's standard exceptions.
11936
11937 The Ada 83 standard also defined Numeric_Error. But there so many
11938 situations where it was unclear from the Ada 83 Reference Manual
11939 (RM) whether Constraint_Error or Numeric_Error should be raised,
11940 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11941 Interpretation saying that anytime the RM says that Numeric_Error
11942 should be raised, the implementation may raise Constraint_Error.
11943 Ada 95 went one step further and pretty much removed Numeric_Error
11944 from the list of standard exceptions (it made it a renaming of
11945 Constraint_Error, to help preserve compatibility when compiling
11946 an Ada83 compiler). As such, we do not include Numeric_Error from
11947 this list of standard exceptions. */
11948
11949 static const char *standard_exc[] = {
11950 "constraint_error",
11951 "program_error",
11952 "storage_error",
11953 "tasking_error"
11954 };
11955
11956 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11957
11958 /* A structure that describes how to support exception catchpoints
11959 for a given executable. */
11960
11961 struct exception_support_info
11962 {
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exceptions. */
11965 const char *catch_exception_sym;
11966
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on unhandled exceptions. */
11969 const char *catch_exception_unhandled_sym;
11970
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on failed assertions. */
11973 const char *catch_assert_sym;
11974
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on exception handling. */
11977 const char *catch_handlers_sym;
11978
11979 /* Assuming that the inferior just triggered an unhandled exception
11980 catchpoint, this function is responsible for returning the address
11981 in inferior memory where the name of that exception is stored.
11982 Return zero if the address could not be computed. */
11983 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11984 };
11985
11986 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11987 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11988
11989 /* The following exception support info structure describes how to
11990 implement exception catchpoints with the latest version of the
11991 Ada runtime (as of 2007-03-06). */
11992
11993 static const struct exception_support_info default_exception_support_info =
11994 {
11995 "__gnat_debug_raise_exception", /* catch_exception_sym */
11996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11997 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11998 "__gnat_begin_handler", /* catch_handlers_sym */
11999 ada_unhandled_exception_name_addr
12000 };
12001
12002 /* The following exception support info structure describes how to
12003 implement exception catchpoints with a slightly older version
12004 of the Ada runtime. */
12005
12006 static const struct exception_support_info exception_support_info_fallback =
12007 {
12008 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12009 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12010 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12011 "__gnat_begin_handler", /* catch_handlers_sym */
12012 ada_unhandled_exception_name_addr_from_raise
12013 };
12014
12015 /* Return nonzero if we can detect the exception support routines
12016 described in EINFO.
12017
12018 This function errors out if an abnormal situation is detected
12019 (for instance, if we find the exception support routines, but
12020 that support is found to be incomplete). */
12021
12022 static int
12023 ada_has_this_exception_support (const struct exception_support_info *einfo)
12024 {
12025 struct symbol *sym;
12026
12027 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12028 that should be compiled with debugging information. As a result, we
12029 expect to find that symbol in the symtabs. */
12030
12031 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12032 if (sym == NULL)
12033 {
12034 /* Perhaps we did not find our symbol because the Ada runtime was
12035 compiled without debugging info, or simply stripped of it.
12036 It happens on some GNU/Linux distributions for instance, where
12037 users have to install a separate debug package in order to get
12038 the runtime's debugging info. In that situation, let the user
12039 know why we cannot insert an Ada exception catchpoint.
12040
12041 Note: Just for the purpose of inserting our Ada exception
12042 catchpoint, we could rely purely on the associated minimal symbol.
12043 But we would be operating in degraded mode anyway, since we are
12044 still lacking the debugging info needed later on to extract
12045 the name of the exception being raised (this name is printed in
12046 the catchpoint message, and is also used when trying to catch
12047 a specific exception). We do not handle this case for now. */
12048 struct bound_minimal_symbol msym
12049 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12050
12051 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12052 error (_("Your Ada runtime appears to be missing some debugging "
12053 "information.\nCannot insert Ada exception catchpoint "
12054 "in this configuration."));
12055
12056 return 0;
12057 }
12058
12059 /* Make sure that the symbol we found corresponds to a function. */
12060
12061 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12062 error (_("Symbol \"%s\" is not a function (class = %d)"),
12063 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12064
12065 return 1;
12066 }
12067
12068 /* Inspect the Ada runtime and determine which exception info structure
12069 should be used to provide support for exception catchpoints.
12070
12071 This function will always set the per-inferior exception_info,
12072 or raise an error. */
12073
12074 static void
12075 ada_exception_support_info_sniffer (void)
12076 {
12077 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12078
12079 /* If the exception info is already known, then no need to recompute it. */
12080 if (data->exception_info != NULL)
12081 return;
12082
12083 /* Check the latest (default) exception support info. */
12084 if (ada_has_this_exception_support (&default_exception_support_info))
12085 {
12086 data->exception_info = &default_exception_support_info;
12087 return;
12088 }
12089
12090 /* Try our fallback exception suport info. */
12091 if (ada_has_this_exception_support (&exception_support_info_fallback))
12092 {
12093 data->exception_info = &exception_support_info_fallback;
12094 return;
12095 }
12096
12097 /* Sometimes, it is normal for us to not be able to find the routine
12098 we are looking for. This happens when the program is linked with
12099 the shared version of the GNAT runtime, and the program has not been
12100 started yet. Inform the user of these two possible causes if
12101 applicable. */
12102
12103 if (ada_update_initial_language (language_unknown) != language_ada)
12104 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12105
12106 /* If the symbol does not exist, then check that the program is
12107 already started, to make sure that shared libraries have been
12108 loaded. If it is not started, this may mean that the symbol is
12109 in a shared library. */
12110
12111 if (inferior_ptid.pid () == 0)
12112 error (_("Unable to insert catchpoint. Try to start the program first."));
12113
12114 /* At this point, we know that we are debugging an Ada program and
12115 that the inferior has been started, but we still are not able to
12116 find the run-time symbols. That can mean that we are in
12117 configurable run time mode, or that a-except as been optimized
12118 out by the linker... In any case, at this point it is not worth
12119 supporting this feature. */
12120
12121 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12122 }
12123
12124 /* True iff FRAME is very likely to be that of a function that is
12125 part of the runtime system. This is all very heuristic, but is
12126 intended to be used as advice as to what frames are uninteresting
12127 to most users. */
12128
12129 static int
12130 is_known_support_routine (struct frame_info *frame)
12131 {
12132 enum language func_lang;
12133 int i;
12134 const char *fullname;
12135
12136 /* If this code does not have any debugging information (no symtab),
12137 This cannot be any user code. */
12138
12139 symtab_and_line sal = find_frame_sal (frame);
12140 if (sal.symtab == NULL)
12141 return 1;
12142
12143 /* If there is a symtab, but the associated source file cannot be
12144 located, then assume this is not user code: Selecting a frame
12145 for which we cannot display the code would not be very helpful
12146 for the user. This should also take care of case such as VxWorks
12147 where the kernel has some debugging info provided for a few units. */
12148
12149 fullname = symtab_to_fullname (sal.symtab);
12150 if (access (fullname, R_OK) != 0)
12151 return 1;
12152
12153 /* Check the unit filename againt the Ada runtime file naming.
12154 We also check the name of the objfile against the name of some
12155 known system libraries that sometimes come with debugging info
12156 too. */
12157
12158 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12159 {
12160 re_comp (known_runtime_file_name_patterns[i]);
12161 if (re_exec (lbasename (sal.symtab->filename)))
12162 return 1;
12163 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12164 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12165 return 1;
12166 }
12167
12168 /* Check whether the function is a GNAT-generated entity. */
12169
12170 gdb::unique_xmalloc_ptr<char> func_name
12171 = find_frame_funname (frame, &func_lang, NULL);
12172 if (func_name == NULL)
12173 return 1;
12174
12175 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12176 {
12177 re_comp (known_auxiliary_function_name_patterns[i]);
12178 if (re_exec (func_name.get ()))
12179 return 1;
12180 }
12181
12182 return 0;
12183 }
12184
12185 /* Find the first frame that contains debugging information and that is not
12186 part of the Ada run-time, starting from FI and moving upward. */
12187
12188 void
12189 ada_find_printable_frame (struct frame_info *fi)
12190 {
12191 for (; fi != NULL; fi = get_prev_frame (fi))
12192 {
12193 if (!is_known_support_routine (fi))
12194 {
12195 select_frame (fi);
12196 break;
12197 }
12198 }
12199
12200 }
12201
12202 /* Assuming that the inferior just triggered an unhandled exception
12203 catchpoint, return the address in inferior memory where the name
12204 of the exception is stored.
12205
12206 Return zero if the address could not be computed. */
12207
12208 static CORE_ADDR
12209 ada_unhandled_exception_name_addr (void)
12210 {
12211 return parse_and_eval_address ("e.full_name");
12212 }
12213
12214 /* Same as ada_unhandled_exception_name_addr, except that this function
12215 should be used when the inferior uses an older version of the runtime,
12216 where the exception name needs to be extracted from a specific frame
12217 several frames up in the callstack. */
12218
12219 static CORE_ADDR
12220 ada_unhandled_exception_name_addr_from_raise (void)
12221 {
12222 int frame_level;
12223 struct frame_info *fi;
12224 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12225
12226 /* To determine the name of this exception, we need to select
12227 the frame corresponding to RAISE_SYM_NAME. This frame is
12228 at least 3 levels up, so we simply skip the first 3 frames
12229 without checking the name of their associated function. */
12230 fi = get_current_frame ();
12231 for (frame_level = 0; frame_level < 3; frame_level += 1)
12232 if (fi != NULL)
12233 fi = get_prev_frame (fi);
12234
12235 while (fi != NULL)
12236 {
12237 enum language func_lang;
12238
12239 gdb::unique_xmalloc_ptr<char> func_name
12240 = find_frame_funname (fi, &func_lang, NULL);
12241 if (func_name != NULL)
12242 {
12243 if (strcmp (func_name.get (),
12244 data->exception_info->catch_exception_sym) == 0)
12245 break; /* We found the frame we were looking for... */
12246 }
12247 fi = get_prev_frame (fi);
12248 }
12249
12250 if (fi == NULL)
12251 return 0;
12252
12253 select_frame (fi);
12254 return parse_and_eval_address ("id.full_name");
12255 }
12256
12257 /* Assuming the inferior just triggered an Ada exception catchpoint
12258 (of any type), return the address in inferior memory where the name
12259 of the exception is stored, if applicable.
12260
12261 Assumes the selected frame is the current frame.
12262
12263 Return zero if the address could not be computed, or if not relevant. */
12264
12265 static CORE_ADDR
12266 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12267 struct breakpoint *b)
12268 {
12269 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12270
12271 switch (ex)
12272 {
12273 case ada_catch_exception:
12274 return (parse_and_eval_address ("e.full_name"));
12275 break;
12276
12277 case ada_catch_exception_unhandled:
12278 return data->exception_info->unhandled_exception_name_addr ();
12279 break;
12280
12281 case ada_catch_handlers:
12282 return 0; /* The runtimes does not provide access to the exception
12283 name. */
12284 break;
12285
12286 case ada_catch_assert:
12287 return 0; /* Exception name is not relevant in this case. */
12288 break;
12289
12290 default:
12291 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12292 break;
12293 }
12294
12295 return 0; /* Should never be reached. */
12296 }
12297
12298 /* Assuming the inferior is stopped at an exception catchpoint,
12299 return the message which was associated to the exception, if
12300 available. Return NULL if the message could not be retrieved.
12301
12302 Note: The exception message can be associated to an exception
12303 either through the use of the Raise_Exception function, or
12304 more simply (Ada 2005 and later), via:
12305
12306 raise Exception_Name with "exception message";
12307
12308 */
12309
12310 static gdb::unique_xmalloc_ptr<char>
12311 ada_exception_message_1 (void)
12312 {
12313 struct value *e_msg_val;
12314 int e_msg_len;
12315
12316 /* For runtimes that support this feature, the exception message
12317 is passed as an unbounded string argument called "message". */
12318 e_msg_val = parse_and_eval ("message");
12319 if (e_msg_val == NULL)
12320 return NULL; /* Exception message not supported. */
12321
12322 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12323 gdb_assert (e_msg_val != NULL);
12324 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12325
12326 /* If the message string is empty, then treat it as if there was
12327 no exception message. */
12328 if (e_msg_len <= 0)
12329 return NULL;
12330
12331 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12332 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12333 e_msg.get ()[e_msg_len] = '\0';
12334
12335 return e_msg;
12336 }
12337
12338 /* Same as ada_exception_message_1, except that all exceptions are
12339 contained here (returning NULL instead). */
12340
12341 static gdb::unique_xmalloc_ptr<char>
12342 ada_exception_message (void)
12343 {
12344 gdb::unique_xmalloc_ptr<char> e_msg;
12345
12346 try
12347 {
12348 e_msg = ada_exception_message_1 ();
12349 }
12350 catch (const gdb_exception_error &e)
12351 {
12352 e_msg.reset (nullptr);
12353 }
12354
12355 return e_msg;
12356 }
12357
12358 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12359 any error that ada_exception_name_addr_1 might cause to be thrown.
12360 When an error is intercepted, a warning with the error message is printed,
12361 and zero is returned. */
12362
12363 static CORE_ADDR
12364 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12365 struct breakpoint *b)
12366 {
12367 CORE_ADDR result = 0;
12368
12369 try
12370 {
12371 result = ada_exception_name_addr_1 (ex, b);
12372 }
12373
12374 catch (const gdb_exception_error &e)
12375 {
12376 warning (_("failed to get exception name: %s"), e.what ());
12377 return 0;
12378 }
12379
12380 return result;
12381 }
12382
12383 static std::string ada_exception_catchpoint_cond_string
12384 (const char *excep_string,
12385 enum ada_exception_catchpoint_kind ex);
12386
12387 /* Ada catchpoints.
12388
12389 In the case of catchpoints on Ada exceptions, the catchpoint will
12390 stop the target on every exception the program throws. When a user
12391 specifies the name of a specific exception, we translate this
12392 request into a condition expression (in text form), and then parse
12393 it into an expression stored in each of the catchpoint's locations.
12394 We then use this condition to check whether the exception that was
12395 raised is the one the user is interested in. If not, then the
12396 target is resumed again. We store the name of the requested
12397 exception, in order to be able to re-set the condition expression
12398 when symbols change. */
12399
12400 /* An instance of this type is used to represent an Ada catchpoint
12401 breakpoint location. */
12402
12403 class ada_catchpoint_location : public bp_location
12404 {
12405 public:
12406 ada_catchpoint_location (breakpoint *owner)
12407 : bp_location (owner)
12408 {}
12409
12410 /* The condition that checks whether the exception that was raised
12411 is the specific exception the user specified on catchpoint
12412 creation. */
12413 expression_up excep_cond_expr;
12414 };
12415
12416 /* An instance of this type is used to represent an Ada catchpoint. */
12417
12418 struct ada_catchpoint : public breakpoint
12419 {
12420 /* The name of the specific exception the user specified. */
12421 std::string excep_string;
12422 };
12423
12424 /* Parse the exception condition string in the context of each of the
12425 catchpoint's locations, and store them for later evaluation. */
12426
12427 static void
12428 create_excep_cond_exprs (struct ada_catchpoint *c,
12429 enum ada_exception_catchpoint_kind ex)
12430 {
12431 struct bp_location *bl;
12432
12433 /* Nothing to do if there's no specific exception to catch. */
12434 if (c->excep_string.empty ())
12435 return;
12436
12437 /* Same if there are no locations... */
12438 if (c->loc == NULL)
12439 return;
12440
12441 /* Compute the condition expression in text form, from the specific
12442 expection we want to catch. */
12443 std::string cond_string
12444 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12445
12446 /* Iterate over all the catchpoint's locations, and parse an
12447 expression for each. */
12448 for (bl = c->loc; bl != NULL; bl = bl->next)
12449 {
12450 struct ada_catchpoint_location *ada_loc
12451 = (struct ada_catchpoint_location *) bl;
12452 expression_up exp;
12453
12454 if (!bl->shlib_disabled)
12455 {
12456 const char *s;
12457
12458 s = cond_string.c_str ();
12459 try
12460 {
12461 exp = parse_exp_1 (&s, bl->address,
12462 block_for_pc (bl->address),
12463 0);
12464 }
12465 catch (const gdb_exception_error &e)
12466 {
12467 warning (_("failed to reevaluate internal exception condition "
12468 "for catchpoint %d: %s"),
12469 c->number, e.what ());
12470 }
12471 }
12472
12473 ada_loc->excep_cond_expr = std::move (exp);
12474 }
12475 }
12476
12477 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12478 structure for all exception catchpoint kinds. */
12479
12480 static struct bp_location *
12481 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12482 struct breakpoint *self)
12483 {
12484 return new ada_catchpoint_location (self);
12485 }
12486
12487 /* Implement the RE_SET method in the breakpoint_ops structure for all
12488 exception catchpoint kinds. */
12489
12490 static void
12491 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12492 {
12493 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12494
12495 /* Call the base class's method. This updates the catchpoint's
12496 locations. */
12497 bkpt_breakpoint_ops.re_set (b);
12498
12499 /* Reparse the exception conditional expressions. One for each
12500 location. */
12501 create_excep_cond_exprs (c, ex);
12502 }
12503
12504 /* Returns true if we should stop for this breakpoint hit. If the
12505 user specified a specific exception, we only want to cause a stop
12506 if the program thrown that exception. */
12507
12508 static int
12509 should_stop_exception (const struct bp_location *bl)
12510 {
12511 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12512 const struct ada_catchpoint_location *ada_loc
12513 = (const struct ada_catchpoint_location *) bl;
12514 int stop;
12515
12516 /* With no specific exception, should always stop. */
12517 if (c->excep_string.empty ())
12518 return 1;
12519
12520 if (ada_loc->excep_cond_expr == NULL)
12521 {
12522 /* We will have a NULL expression if back when we were creating
12523 the expressions, this location's had failed to parse. */
12524 return 1;
12525 }
12526
12527 stop = 1;
12528 try
12529 {
12530 struct value *mark;
12531
12532 mark = value_mark ();
12533 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12534 value_free_to_mark (mark);
12535 }
12536 catch (const gdb_exception &ex)
12537 {
12538 exception_fprintf (gdb_stderr, ex,
12539 _("Error in testing exception condition:\n"));
12540 }
12541
12542 return stop;
12543 }
12544
12545 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12546 for all exception catchpoint kinds. */
12547
12548 static void
12549 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12550 {
12551 bs->stop = should_stop_exception (bs->bp_location_at);
12552 }
12553
12554 /* Implement the PRINT_IT method in the breakpoint_ops structure
12555 for all exception catchpoint kinds. */
12556
12557 static enum print_stop_action
12558 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12559 {
12560 struct ui_out *uiout = current_uiout;
12561 struct breakpoint *b = bs->breakpoint_at;
12562
12563 annotate_catchpoint (b->number);
12564
12565 if (uiout->is_mi_like_p ())
12566 {
12567 uiout->field_string ("reason",
12568 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12569 uiout->field_string ("disp", bpdisp_text (b->disposition));
12570 }
12571
12572 uiout->text (b->disposition == disp_del
12573 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12574 uiout->field_int ("bkptno", b->number);
12575 uiout->text (", ");
12576
12577 /* ada_exception_name_addr relies on the selected frame being the
12578 current frame. Need to do this here because this function may be
12579 called more than once when printing a stop, and below, we'll
12580 select the first frame past the Ada run-time (see
12581 ada_find_printable_frame). */
12582 select_frame (get_current_frame ());
12583
12584 switch (ex)
12585 {
12586 case ada_catch_exception:
12587 case ada_catch_exception_unhandled:
12588 case ada_catch_handlers:
12589 {
12590 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12591 char exception_name[256];
12592
12593 if (addr != 0)
12594 {
12595 read_memory (addr, (gdb_byte *) exception_name,
12596 sizeof (exception_name) - 1);
12597 exception_name [sizeof (exception_name) - 1] = '\0';
12598 }
12599 else
12600 {
12601 /* For some reason, we were unable to read the exception
12602 name. This could happen if the Runtime was compiled
12603 without debugging info, for instance. In that case,
12604 just replace the exception name by the generic string
12605 "exception" - it will read as "an exception" in the
12606 notification we are about to print. */
12607 memcpy (exception_name, "exception", sizeof ("exception"));
12608 }
12609 /* In the case of unhandled exception breakpoints, we print
12610 the exception name as "unhandled EXCEPTION_NAME", to make
12611 it clearer to the user which kind of catchpoint just got
12612 hit. We used ui_out_text to make sure that this extra
12613 info does not pollute the exception name in the MI case. */
12614 if (ex == ada_catch_exception_unhandled)
12615 uiout->text ("unhandled ");
12616 uiout->field_string ("exception-name", exception_name);
12617 }
12618 break;
12619 case ada_catch_assert:
12620 /* In this case, the name of the exception is not really
12621 important. Just print "failed assertion" to make it clearer
12622 that his program just hit an assertion-failure catchpoint.
12623 We used ui_out_text because this info does not belong in
12624 the MI output. */
12625 uiout->text ("failed assertion");
12626 break;
12627 }
12628
12629 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12630 if (exception_message != NULL)
12631 {
12632 uiout->text (" (");
12633 uiout->field_string ("exception-message", exception_message.get ());
12634 uiout->text (")");
12635 }
12636
12637 uiout->text (" at ");
12638 ada_find_printable_frame (get_current_frame ());
12639
12640 return PRINT_SRC_AND_LOC;
12641 }
12642
12643 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12644 for all exception catchpoint kinds. */
12645
12646 static void
12647 print_one_exception (enum ada_exception_catchpoint_kind ex,
12648 struct breakpoint *b, struct bp_location **last_loc)
12649 {
12650 struct ui_out *uiout = current_uiout;
12651 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12652 struct value_print_options opts;
12653
12654 get_user_print_options (&opts);
12655 if (opts.addressprint)
12656 {
12657 annotate_field (4);
12658 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12659 }
12660
12661 annotate_field (5);
12662 *last_loc = b->loc;
12663 switch (ex)
12664 {
12665 case ada_catch_exception:
12666 if (!c->excep_string.empty ())
12667 {
12668 std::string msg = string_printf (_("`%s' Ada exception"),
12669 c->excep_string.c_str ());
12670
12671 uiout->field_string ("what", msg);
12672 }
12673 else
12674 uiout->field_string ("what", "all Ada exceptions");
12675
12676 break;
12677
12678 case ada_catch_exception_unhandled:
12679 uiout->field_string ("what", "unhandled Ada exceptions");
12680 break;
12681
12682 case ada_catch_handlers:
12683 if (!c->excep_string.empty ())
12684 {
12685 uiout->field_fmt ("what",
12686 _("`%s' Ada exception handlers"),
12687 c->excep_string.c_str ());
12688 }
12689 else
12690 uiout->field_string ("what", "all Ada exceptions handlers");
12691 break;
12692
12693 case ada_catch_assert:
12694 uiout->field_string ("what", "failed Ada assertions");
12695 break;
12696
12697 default:
12698 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12699 break;
12700 }
12701 }
12702
12703 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12704 for all exception catchpoint kinds. */
12705
12706 static void
12707 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12708 struct breakpoint *b)
12709 {
12710 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12711 struct ui_out *uiout = current_uiout;
12712
12713 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12714 : _("Catchpoint "));
12715 uiout->field_int ("bkptno", b->number);
12716 uiout->text (": ");
12717
12718 switch (ex)
12719 {
12720 case ada_catch_exception:
12721 if (!c->excep_string.empty ())
12722 {
12723 std::string info = string_printf (_("`%s' Ada exception"),
12724 c->excep_string.c_str ());
12725 uiout->text (info.c_str ());
12726 }
12727 else
12728 uiout->text (_("all Ada exceptions"));
12729 break;
12730
12731 case ada_catch_exception_unhandled:
12732 uiout->text (_("unhandled Ada exceptions"));
12733 break;
12734
12735 case ada_catch_handlers:
12736 if (!c->excep_string.empty ())
12737 {
12738 std::string info
12739 = string_printf (_("`%s' Ada exception handlers"),
12740 c->excep_string.c_str ());
12741 uiout->text (info.c_str ());
12742 }
12743 else
12744 uiout->text (_("all Ada exceptions handlers"));
12745 break;
12746
12747 case ada_catch_assert:
12748 uiout->text (_("failed Ada assertions"));
12749 break;
12750
12751 default:
12752 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12753 break;
12754 }
12755 }
12756
12757 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12759
12760 static void
12761 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12762 struct breakpoint *b, struct ui_file *fp)
12763 {
12764 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12765
12766 switch (ex)
12767 {
12768 case ada_catch_exception:
12769 fprintf_filtered (fp, "catch exception");
12770 if (!c->excep_string.empty ())
12771 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12772 break;
12773
12774 case ada_catch_exception_unhandled:
12775 fprintf_filtered (fp, "catch exception unhandled");
12776 break;
12777
12778 case ada_catch_handlers:
12779 fprintf_filtered (fp, "catch handlers");
12780 break;
12781
12782 case ada_catch_assert:
12783 fprintf_filtered (fp, "catch assert");
12784 break;
12785
12786 default:
12787 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12788 }
12789 print_recreate_thread (b, fp);
12790 }
12791
12792 /* Virtual table for "catch exception" breakpoints. */
12793
12794 static struct bp_location *
12795 allocate_location_catch_exception (struct breakpoint *self)
12796 {
12797 return allocate_location_exception (ada_catch_exception, self);
12798 }
12799
12800 static void
12801 re_set_catch_exception (struct breakpoint *b)
12802 {
12803 re_set_exception (ada_catch_exception, b);
12804 }
12805
12806 static void
12807 check_status_catch_exception (bpstat bs)
12808 {
12809 check_status_exception (ada_catch_exception, bs);
12810 }
12811
12812 static enum print_stop_action
12813 print_it_catch_exception (bpstat bs)
12814 {
12815 return print_it_exception (ada_catch_exception, bs);
12816 }
12817
12818 static void
12819 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12820 {
12821 print_one_exception (ada_catch_exception, b, last_loc);
12822 }
12823
12824 static void
12825 print_mention_catch_exception (struct breakpoint *b)
12826 {
12827 print_mention_exception (ada_catch_exception, b);
12828 }
12829
12830 static void
12831 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12832 {
12833 print_recreate_exception (ada_catch_exception, b, fp);
12834 }
12835
12836 static struct breakpoint_ops catch_exception_breakpoint_ops;
12837
12838 /* Virtual table for "catch exception unhandled" breakpoints. */
12839
12840 static struct bp_location *
12841 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12842 {
12843 return allocate_location_exception (ada_catch_exception_unhandled, self);
12844 }
12845
12846 static void
12847 re_set_catch_exception_unhandled (struct breakpoint *b)
12848 {
12849 re_set_exception (ada_catch_exception_unhandled, b);
12850 }
12851
12852 static void
12853 check_status_catch_exception_unhandled (bpstat bs)
12854 {
12855 check_status_exception (ada_catch_exception_unhandled, bs);
12856 }
12857
12858 static enum print_stop_action
12859 print_it_catch_exception_unhandled (bpstat bs)
12860 {
12861 return print_it_exception (ada_catch_exception_unhandled, bs);
12862 }
12863
12864 static void
12865 print_one_catch_exception_unhandled (struct breakpoint *b,
12866 struct bp_location **last_loc)
12867 {
12868 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12869 }
12870
12871 static void
12872 print_mention_catch_exception_unhandled (struct breakpoint *b)
12873 {
12874 print_mention_exception (ada_catch_exception_unhandled, b);
12875 }
12876
12877 static void
12878 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12879 struct ui_file *fp)
12880 {
12881 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12882 }
12883
12884 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12885
12886 /* Virtual table for "catch assert" breakpoints. */
12887
12888 static struct bp_location *
12889 allocate_location_catch_assert (struct breakpoint *self)
12890 {
12891 return allocate_location_exception (ada_catch_assert, self);
12892 }
12893
12894 static void
12895 re_set_catch_assert (struct breakpoint *b)
12896 {
12897 re_set_exception (ada_catch_assert, b);
12898 }
12899
12900 static void
12901 check_status_catch_assert (bpstat bs)
12902 {
12903 check_status_exception (ada_catch_assert, bs);
12904 }
12905
12906 static enum print_stop_action
12907 print_it_catch_assert (bpstat bs)
12908 {
12909 return print_it_exception (ada_catch_assert, bs);
12910 }
12911
12912 static void
12913 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12914 {
12915 print_one_exception (ada_catch_assert, b, last_loc);
12916 }
12917
12918 static void
12919 print_mention_catch_assert (struct breakpoint *b)
12920 {
12921 print_mention_exception (ada_catch_assert, b);
12922 }
12923
12924 static void
12925 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12926 {
12927 print_recreate_exception (ada_catch_assert, b, fp);
12928 }
12929
12930 static struct breakpoint_ops catch_assert_breakpoint_ops;
12931
12932 /* Virtual table for "catch handlers" breakpoints. */
12933
12934 static struct bp_location *
12935 allocate_location_catch_handlers (struct breakpoint *self)
12936 {
12937 return allocate_location_exception (ada_catch_handlers, self);
12938 }
12939
12940 static void
12941 re_set_catch_handlers (struct breakpoint *b)
12942 {
12943 re_set_exception (ada_catch_handlers, b);
12944 }
12945
12946 static void
12947 check_status_catch_handlers (bpstat bs)
12948 {
12949 check_status_exception (ada_catch_handlers, bs);
12950 }
12951
12952 static enum print_stop_action
12953 print_it_catch_handlers (bpstat bs)
12954 {
12955 return print_it_exception (ada_catch_handlers, bs);
12956 }
12957
12958 static void
12959 print_one_catch_handlers (struct breakpoint *b,
12960 struct bp_location **last_loc)
12961 {
12962 print_one_exception (ada_catch_handlers, b, last_loc);
12963 }
12964
12965 static void
12966 print_mention_catch_handlers (struct breakpoint *b)
12967 {
12968 print_mention_exception (ada_catch_handlers, b);
12969 }
12970
12971 static void
12972 print_recreate_catch_handlers (struct breakpoint *b,
12973 struct ui_file *fp)
12974 {
12975 print_recreate_exception (ada_catch_handlers, b, fp);
12976 }
12977
12978 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12979
12980 /* Split the arguments specified in a "catch exception" command.
12981 Set EX to the appropriate catchpoint type.
12982 Set EXCEP_STRING to the name of the specific exception if
12983 specified by the user.
12984 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12985 "catch handlers" command. False otherwise.
12986 If a condition is found at the end of the arguments, the condition
12987 expression is stored in COND_STRING (memory must be deallocated
12988 after use). Otherwise COND_STRING is set to NULL. */
12989
12990 static void
12991 catch_ada_exception_command_split (const char *args,
12992 bool is_catch_handlers_cmd,
12993 enum ada_exception_catchpoint_kind *ex,
12994 std::string *excep_string,
12995 std::string *cond_string)
12996 {
12997 std::string exception_name;
12998
12999 exception_name = extract_arg (&args);
13000 if (exception_name == "if")
13001 {
13002 /* This is not an exception name; this is the start of a condition
13003 expression for a catchpoint on all exceptions. So, "un-get"
13004 this token, and set exception_name to NULL. */
13005 exception_name.clear ();
13006 args -= 2;
13007 }
13008
13009 /* Check to see if we have a condition. */
13010
13011 args = skip_spaces (args);
13012 if (startswith (args, "if")
13013 && (isspace (args[2]) || args[2] == '\0'))
13014 {
13015 args += 2;
13016 args = skip_spaces (args);
13017
13018 if (args[0] == '\0')
13019 error (_("Condition missing after `if' keyword"));
13020 *cond_string = args;
13021
13022 args += strlen (args);
13023 }
13024
13025 /* Check that we do not have any more arguments. Anything else
13026 is unexpected. */
13027
13028 if (args[0] != '\0')
13029 error (_("Junk at end of expression"));
13030
13031 if (is_catch_handlers_cmd)
13032 {
13033 /* Catch handling of exceptions. */
13034 *ex = ada_catch_handlers;
13035 *excep_string = exception_name;
13036 }
13037 else if (exception_name.empty ())
13038 {
13039 /* Catch all exceptions. */
13040 *ex = ada_catch_exception;
13041 excep_string->clear ();
13042 }
13043 else if (exception_name == "unhandled")
13044 {
13045 /* Catch unhandled exceptions. */
13046 *ex = ada_catch_exception_unhandled;
13047 excep_string->clear ();
13048 }
13049 else
13050 {
13051 /* Catch a specific exception. */
13052 *ex = ada_catch_exception;
13053 *excep_string = exception_name;
13054 }
13055 }
13056
13057 /* Return the name of the symbol on which we should break in order to
13058 implement a catchpoint of the EX kind. */
13059
13060 static const char *
13061 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13062 {
13063 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13064
13065 gdb_assert (data->exception_info != NULL);
13066
13067 switch (ex)
13068 {
13069 case ada_catch_exception:
13070 return (data->exception_info->catch_exception_sym);
13071 break;
13072 case ada_catch_exception_unhandled:
13073 return (data->exception_info->catch_exception_unhandled_sym);
13074 break;
13075 case ada_catch_assert:
13076 return (data->exception_info->catch_assert_sym);
13077 break;
13078 case ada_catch_handlers:
13079 return (data->exception_info->catch_handlers_sym);
13080 break;
13081 default:
13082 internal_error (__FILE__, __LINE__,
13083 _("unexpected catchpoint kind (%d)"), ex);
13084 }
13085 }
13086
13087 /* Return the breakpoint ops "virtual table" used for catchpoints
13088 of the EX kind. */
13089
13090 static const struct breakpoint_ops *
13091 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13092 {
13093 switch (ex)
13094 {
13095 case ada_catch_exception:
13096 return (&catch_exception_breakpoint_ops);
13097 break;
13098 case ada_catch_exception_unhandled:
13099 return (&catch_exception_unhandled_breakpoint_ops);
13100 break;
13101 case ada_catch_assert:
13102 return (&catch_assert_breakpoint_ops);
13103 break;
13104 case ada_catch_handlers:
13105 return (&catch_handlers_breakpoint_ops);
13106 break;
13107 default:
13108 internal_error (__FILE__, __LINE__,
13109 _("unexpected catchpoint kind (%d)"), ex);
13110 }
13111 }
13112
13113 /* Return the condition that will be used to match the current exception
13114 being raised with the exception that the user wants to catch. This
13115 assumes that this condition is used when the inferior just triggered
13116 an exception catchpoint.
13117 EX: the type of catchpoints used for catching Ada exceptions. */
13118
13119 static std::string
13120 ada_exception_catchpoint_cond_string (const char *excep_string,
13121 enum ada_exception_catchpoint_kind ex)
13122 {
13123 int i;
13124 bool is_standard_exc = false;
13125 std::string result;
13126
13127 if (ex == ada_catch_handlers)
13128 {
13129 /* For exception handlers catchpoints, the condition string does
13130 not use the same parameter as for the other exceptions. */
13131 result = ("long_integer (GNAT_GCC_exception_Access"
13132 "(gcc_exception).all.occurrence.id)");
13133 }
13134 else
13135 result = "long_integer (e)";
13136
13137 /* The standard exceptions are a special case. They are defined in
13138 runtime units that have been compiled without debugging info; if
13139 EXCEP_STRING is the not-fully-qualified name of a standard
13140 exception (e.g. "constraint_error") then, during the evaluation
13141 of the condition expression, the symbol lookup on this name would
13142 *not* return this standard exception. The catchpoint condition
13143 may then be set only on user-defined exceptions which have the
13144 same not-fully-qualified name (e.g. my_package.constraint_error).
13145
13146 To avoid this unexcepted behavior, these standard exceptions are
13147 systematically prefixed by "standard". This means that "catch
13148 exception constraint_error" is rewritten into "catch exception
13149 standard.constraint_error".
13150
13151 If an exception named contraint_error is defined in another package of
13152 the inferior program, then the only way to specify this exception as a
13153 breakpoint condition is to use its fully-qualified named:
13154 e.g. my_package.constraint_error. */
13155
13156 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13157 {
13158 if (strcmp (standard_exc [i], excep_string) == 0)
13159 {
13160 is_standard_exc = true;
13161 break;
13162 }
13163 }
13164
13165 result += " = ";
13166
13167 if (is_standard_exc)
13168 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13169 else
13170 string_appendf (result, "long_integer (&%s)", excep_string);
13171
13172 return result;
13173 }
13174
13175 /* Return the symtab_and_line that should be used to insert an exception
13176 catchpoint of the TYPE kind.
13177
13178 ADDR_STRING returns the name of the function where the real
13179 breakpoint that implements the catchpoints is set, depending on the
13180 type of catchpoint we need to create. */
13181
13182 static struct symtab_and_line
13183 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13184 std::string *addr_string, const struct breakpoint_ops **ops)
13185 {
13186 const char *sym_name;
13187 struct symbol *sym;
13188
13189 /* First, find out which exception support info to use. */
13190 ada_exception_support_info_sniffer ();
13191
13192 /* Then lookup the function on which we will break in order to catch
13193 the Ada exceptions requested by the user. */
13194 sym_name = ada_exception_sym_name (ex);
13195 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13196
13197 if (sym == NULL)
13198 error (_("Catchpoint symbol not found: %s"), sym_name);
13199
13200 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13201 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13202
13203 /* Set ADDR_STRING. */
13204 *addr_string = sym_name;
13205
13206 /* Set OPS. */
13207 *ops = ada_exception_breakpoint_ops (ex);
13208
13209 return find_function_start_sal (sym, 1);
13210 }
13211
13212 /* Create an Ada exception catchpoint.
13213
13214 EX_KIND is the kind of exception catchpoint to be created.
13215
13216 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13217 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13218 of the exception to which this catchpoint applies.
13219
13220 COND_STRING, if not empty, is the catchpoint condition.
13221
13222 TEMPFLAG, if nonzero, means that the underlying breakpoint
13223 should be temporary.
13224
13225 FROM_TTY is the usual argument passed to all commands implementations. */
13226
13227 void
13228 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13229 enum ada_exception_catchpoint_kind ex_kind,
13230 const std::string &excep_string,
13231 const std::string &cond_string,
13232 int tempflag,
13233 int disabled,
13234 int from_tty)
13235 {
13236 std::string addr_string;
13237 const struct breakpoint_ops *ops = NULL;
13238 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13239
13240 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13241 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13242 ops, tempflag, disabled, from_tty);
13243 c->excep_string = excep_string;
13244 create_excep_cond_exprs (c.get (), ex_kind);
13245 if (!cond_string.empty ())
13246 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13247 install_breakpoint (0, std::move (c), 1);
13248 }
13249
13250 /* Implement the "catch exception" command. */
13251
13252 static void
13253 catch_ada_exception_command (const char *arg_entry, int from_tty,
13254 struct cmd_list_element *command)
13255 {
13256 const char *arg = arg_entry;
13257 struct gdbarch *gdbarch = get_current_arch ();
13258 int tempflag;
13259 enum ada_exception_catchpoint_kind ex_kind;
13260 std::string excep_string;
13261 std::string cond_string;
13262
13263 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13264
13265 if (!arg)
13266 arg = "";
13267 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13268 &cond_string);
13269 create_ada_exception_catchpoint (gdbarch, ex_kind,
13270 excep_string, cond_string,
13271 tempflag, 1 /* enabled */,
13272 from_tty);
13273 }
13274
13275 /* Implement the "catch handlers" command. */
13276
13277 static void
13278 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13279 struct cmd_list_element *command)
13280 {
13281 const char *arg = arg_entry;
13282 struct gdbarch *gdbarch = get_current_arch ();
13283 int tempflag;
13284 enum ada_exception_catchpoint_kind ex_kind;
13285 std::string excep_string;
13286 std::string cond_string;
13287
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13289
13290 if (!arg)
13291 arg = "";
13292 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13293 &cond_string);
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
13296 tempflag, 1 /* enabled */,
13297 from_tty);
13298 }
13299
13300 /* Split the arguments specified in a "catch assert" command.
13301
13302 ARGS contains the command's arguments (or the empty string if
13303 no arguments were passed).
13304
13305 If ARGS contains a condition, set COND_STRING to that condition
13306 (the memory needs to be deallocated after use). */
13307
13308 static void
13309 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13310 {
13311 args = skip_spaces (args);
13312
13313 /* Check whether a condition was provided. */
13314 if (startswith (args, "if")
13315 && (isspace (args[2]) || args[2] == '\0'))
13316 {
13317 args += 2;
13318 args = skip_spaces (args);
13319 if (args[0] == '\0')
13320 error (_("condition missing after `if' keyword"));
13321 cond_string.assign (args);
13322 }
13323
13324 /* Otherwise, there should be no other argument at the end of
13325 the command. */
13326 else if (args[0] != '\0')
13327 error (_("Junk at end of arguments."));
13328 }
13329
13330 /* Implement the "catch assert" command. */
13331
13332 static void
13333 catch_assert_command (const char *arg_entry, int from_tty,
13334 struct cmd_list_element *command)
13335 {
13336 const char *arg = arg_entry;
13337 struct gdbarch *gdbarch = get_current_arch ();
13338 int tempflag;
13339 std::string cond_string;
13340
13341 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13342
13343 if (!arg)
13344 arg = "";
13345 catch_ada_assert_command_split (arg, cond_string);
13346 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13347 "", cond_string,
13348 tempflag, 1 /* enabled */,
13349 from_tty);
13350 }
13351
13352 /* Return non-zero if the symbol SYM is an Ada exception object. */
13353
13354 static int
13355 ada_is_exception_sym (struct symbol *sym)
13356 {
13357 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13358
13359 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13360 && SYMBOL_CLASS (sym) != LOC_BLOCK
13361 && SYMBOL_CLASS (sym) != LOC_CONST
13362 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13363 && type_name != NULL && strcmp (type_name, "exception") == 0);
13364 }
13365
13366 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13367 Ada exception object. This matches all exceptions except the ones
13368 defined by the Ada language. */
13369
13370 static int
13371 ada_is_non_standard_exception_sym (struct symbol *sym)
13372 {
13373 int i;
13374
13375 if (!ada_is_exception_sym (sym))
13376 return 0;
13377
13378 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13379 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13380 return 0; /* A standard exception. */
13381
13382 /* Numeric_Error is also a standard exception, so exclude it.
13383 See the STANDARD_EXC description for more details as to why
13384 this exception is not listed in that array. */
13385 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13386 return 0;
13387
13388 return 1;
13389 }
13390
13391 /* A helper function for std::sort, comparing two struct ada_exc_info
13392 objects.
13393
13394 The comparison is determined first by exception name, and then
13395 by exception address. */
13396
13397 bool
13398 ada_exc_info::operator< (const ada_exc_info &other) const
13399 {
13400 int result;
13401
13402 result = strcmp (name, other.name);
13403 if (result < 0)
13404 return true;
13405 if (result == 0 && addr < other.addr)
13406 return true;
13407 return false;
13408 }
13409
13410 bool
13411 ada_exc_info::operator== (const ada_exc_info &other) const
13412 {
13413 return addr == other.addr && strcmp (name, other.name) == 0;
13414 }
13415
13416 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13417 routine, but keeping the first SKIP elements untouched.
13418
13419 All duplicates are also removed. */
13420
13421 static void
13422 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13423 int skip)
13424 {
13425 std::sort (exceptions->begin () + skip, exceptions->end ());
13426 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13427 exceptions->end ());
13428 }
13429
13430 /* Add all exceptions defined by the Ada standard whose name match
13431 a regular expression.
13432
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13436
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13438 gets pushed. */
13439
13440 static void
13441 ada_add_standard_exceptions (compiled_regex *preg,
13442 std::vector<ada_exc_info> *exceptions)
13443 {
13444 int i;
13445
13446 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13447 {
13448 if (preg == NULL
13449 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13450 {
13451 struct bound_minimal_symbol msymbol
13452 = ada_lookup_simple_minsym (standard_exc[i]);
13453
13454 if (msymbol.minsym != NULL)
13455 {
13456 struct ada_exc_info info
13457 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13458
13459 exceptions->push_back (info);
13460 }
13461 }
13462 }
13463 }
13464
13465 /* Add all Ada exceptions defined locally and accessible from the given
13466 FRAME.
13467
13468 If PREG is not NULL, then this regexp_t object is used to
13469 perform the symbol name matching. Otherwise, no name-based
13470 filtering is performed.
13471
13472 EXCEPTIONS is a vector of exceptions to which matching exceptions
13473 gets pushed. */
13474
13475 static void
13476 ada_add_exceptions_from_frame (compiled_regex *preg,
13477 struct frame_info *frame,
13478 std::vector<ada_exc_info> *exceptions)
13479 {
13480 const struct block *block = get_frame_block (frame, 0);
13481
13482 while (block != 0)
13483 {
13484 struct block_iterator iter;
13485 struct symbol *sym;
13486
13487 ALL_BLOCK_SYMBOLS (block, iter, sym)
13488 {
13489 switch (SYMBOL_CLASS (sym))
13490 {
13491 case LOC_TYPEDEF:
13492 case LOC_BLOCK:
13493 case LOC_CONST:
13494 break;
13495 default:
13496 if (ada_is_exception_sym (sym))
13497 {
13498 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13499 SYMBOL_VALUE_ADDRESS (sym)};
13500
13501 exceptions->push_back (info);
13502 }
13503 }
13504 }
13505 if (BLOCK_FUNCTION (block) != NULL)
13506 break;
13507 block = BLOCK_SUPERBLOCK (block);
13508 }
13509 }
13510
13511 /* Return true if NAME matches PREG or if PREG is NULL. */
13512
13513 static bool
13514 name_matches_regex (const char *name, compiled_regex *preg)
13515 {
13516 return (preg == NULL
13517 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13518 }
13519
13520 /* Add all exceptions defined globally whose name name match
13521 a regular expression, excluding standard exceptions.
13522
13523 The reason we exclude standard exceptions is that they need
13524 to be handled separately: Standard exceptions are defined inside
13525 a runtime unit which is normally not compiled with debugging info,
13526 and thus usually do not show up in our symbol search. However,
13527 if the unit was in fact built with debugging info, we need to
13528 exclude them because they would duplicate the entry we found
13529 during the special loop that specifically searches for those
13530 standard exceptions.
13531
13532 If PREG is not NULL, then this regexp_t object is used to
13533 perform the symbol name matching. Otherwise, no name-based
13534 filtering is performed.
13535
13536 EXCEPTIONS is a vector of exceptions to which matching exceptions
13537 gets pushed. */
13538
13539 static void
13540 ada_add_global_exceptions (compiled_regex *preg,
13541 std::vector<ada_exc_info> *exceptions)
13542 {
13543 /* In Ada, the symbol "search name" is a linkage name, whereas the
13544 regular expression used to do the matching refers to the natural
13545 name. So match against the decoded name. */
13546 expand_symtabs_matching (NULL,
13547 lookup_name_info::match_any (),
13548 [&] (const char *search_name)
13549 {
13550 const char *decoded = ada_decode (search_name);
13551 return name_matches_regex (decoded, preg);
13552 },
13553 NULL,
13554 VARIABLES_DOMAIN);
13555
13556 for (objfile *objfile : current_program_space->objfiles ())
13557 {
13558 for (compunit_symtab *s : objfile->compunits ())
13559 {
13560 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13561 int i;
13562
13563 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13564 {
13565 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13566 struct block_iterator iter;
13567 struct symbol *sym;
13568
13569 ALL_BLOCK_SYMBOLS (b, iter, sym)
13570 if (ada_is_non_standard_exception_sym (sym)
13571 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13572 {
13573 struct ada_exc_info info
13574 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13575
13576 exceptions->push_back (info);
13577 }
13578 }
13579 }
13580 }
13581 }
13582
13583 /* Implements ada_exceptions_list with the regular expression passed
13584 as a regex_t, rather than a string.
13585
13586 If not NULL, PREG is used to filter out exceptions whose names
13587 do not match. Otherwise, all exceptions are listed. */
13588
13589 static std::vector<ada_exc_info>
13590 ada_exceptions_list_1 (compiled_regex *preg)
13591 {
13592 std::vector<ada_exc_info> result;
13593 int prev_len;
13594
13595 /* First, list the known standard exceptions. These exceptions
13596 need to be handled separately, as they are usually defined in
13597 runtime units that have been compiled without debugging info. */
13598
13599 ada_add_standard_exceptions (preg, &result);
13600
13601 /* Next, find all exceptions whose scope is local and accessible
13602 from the currently selected frame. */
13603
13604 if (has_stack_frames ())
13605 {
13606 prev_len = result.size ();
13607 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13608 &result);
13609 if (result.size () > prev_len)
13610 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13611 }
13612
13613 /* Add all exceptions whose scope is global. */
13614
13615 prev_len = result.size ();
13616 ada_add_global_exceptions (preg, &result);
13617 if (result.size () > prev_len)
13618 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13619
13620 return result;
13621 }
13622
13623 /* Return a vector of ada_exc_info.
13624
13625 If REGEXP is NULL, all exceptions are included in the result.
13626 Otherwise, it should contain a valid regular expression,
13627 and only the exceptions whose names match that regular expression
13628 are included in the result.
13629
13630 The exceptions are sorted in the following order:
13631 - Standard exceptions (defined by the Ada language), in
13632 alphabetical order;
13633 - Exceptions only visible from the current frame, in
13634 alphabetical order;
13635 - Exceptions whose scope is global, in alphabetical order. */
13636
13637 std::vector<ada_exc_info>
13638 ada_exceptions_list (const char *regexp)
13639 {
13640 if (regexp == NULL)
13641 return ada_exceptions_list_1 (NULL);
13642
13643 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13644 return ada_exceptions_list_1 (&reg);
13645 }
13646
13647 /* Implement the "info exceptions" command. */
13648
13649 static void
13650 info_exceptions_command (const char *regexp, int from_tty)
13651 {
13652 struct gdbarch *gdbarch = get_current_arch ();
13653
13654 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13655
13656 if (regexp != NULL)
13657 printf_filtered
13658 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13659 else
13660 printf_filtered (_("All defined Ada exceptions:\n"));
13661
13662 for (const ada_exc_info &info : exceptions)
13663 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13664 }
13665
13666 /* Operators */
13667 /* Information about operators given special treatment in functions
13668 below. */
13669 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13670
13671 #define ADA_OPERATORS \
13672 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13673 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13674 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13675 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13682 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13686 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13687 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13688 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13689 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13690 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13691
13692 static void
13693 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13694 int *argsp)
13695 {
13696 switch (exp->elts[pc - 1].opcode)
13697 {
13698 default:
13699 operator_length_standard (exp, pc, oplenp, argsp);
13700 break;
13701
13702 #define OP_DEFN(op, len, args, binop) \
13703 case op: *oplenp = len; *argsp = args; break;
13704 ADA_OPERATORS;
13705 #undef OP_DEFN
13706
13707 case OP_AGGREGATE:
13708 *oplenp = 3;
13709 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13710 break;
13711
13712 case OP_CHOICES:
13713 *oplenp = 3;
13714 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13715 break;
13716 }
13717 }
13718
13719 /* Implementation of the exp_descriptor method operator_check. */
13720
13721 static int
13722 ada_operator_check (struct expression *exp, int pos,
13723 int (*objfile_func) (struct objfile *objfile, void *data),
13724 void *data)
13725 {
13726 const union exp_element *const elts = exp->elts;
13727 struct type *type = NULL;
13728
13729 switch (elts[pos].opcode)
13730 {
13731 case UNOP_IN_RANGE:
13732 case UNOP_QUAL:
13733 type = elts[pos + 1].type;
13734 break;
13735
13736 default:
13737 return operator_check_standard (exp, pos, objfile_func, data);
13738 }
13739
13740 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13741
13742 if (type && TYPE_OBJFILE (type)
13743 && (*objfile_func) (TYPE_OBJFILE (type), data))
13744 return 1;
13745
13746 return 0;
13747 }
13748
13749 static const char *
13750 ada_op_name (enum exp_opcode opcode)
13751 {
13752 switch (opcode)
13753 {
13754 default:
13755 return op_name_standard (opcode);
13756
13757 #define OP_DEFN(op, len, args, binop) case op: return #op;
13758 ADA_OPERATORS;
13759 #undef OP_DEFN
13760
13761 case OP_AGGREGATE:
13762 return "OP_AGGREGATE";
13763 case OP_CHOICES:
13764 return "OP_CHOICES";
13765 case OP_NAME:
13766 return "OP_NAME";
13767 }
13768 }
13769
13770 /* As for operator_length, but assumes PC is pointing at the first
13771 element of the operator, and gives meaningful results only for the
13772 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13773
13774 static void
13775 ada_forward_operator_length (struct expression *exp, int pc,
13776 int *oplenp, int *argsp)
13777 {
13778 switch (exp->elts[pc].opcode)
13779 {
13780 default:
13781 *oplenp = *argsp = 0;
13782 break;
13783
13784 #define OP_DEFN(op, len, args, binop) \
13785 case op: *oplenp = len; *argsp = args; break;
13786 ADA_OPERATORS;
13787 #undef OP_DEFN
13788
13789 case OP_AGGREGATE:
13790 *oplenp = 3;
13791 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13792 break;
13793
13794 case OP_CHOICES:
13795 *oplenp = 3;
13796 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13797 break;
13798
13799 case OP_STRING:
13800 case OP_NAME:
13801 {
13802 int len = longest_to_int (exp->elts[pc + 1].longconst);
13803
13804 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13805 *argsp = 0;
13806 break;
13807 }
13808 }
13809 }
13810
13811 static int
13812 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13813 {
13814 enum exp_opcode op = exp->elts[elt].opcode;
13815 int oplen, nargs;
13816 int pc = elt;
13817 int i;
13818
13819 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13820
13821 switch (op)
13822 {
13823 /* Ada attributes ('Foo). */
13824 case OP_ATR_FIRST:
13825 case OP_ATR_LAST:
13826 case OP_ATR_LENGTH:
13827 case OP_ATR_IMAGE:
13828 case OP_ATR_MAX:
13829 case OP_ATR_MIN:
13830 case OP_ATR_MODULUS:
13831 case OP_ATR_POS:
13832 case OP_ATR_SIZE:
13833 case OP_ATR_TAG:
13834 case OP_ATR_VAL:
13835 break;
13836
13837 case UNOP_IN_RANGE:
13838 case UNOP_QUAL:
13839 /* XXX: gdb_sprint_host_address, type_sprint */
13840 fprintf_filtered (stream, _("Type @"));
13841 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13842 fprintf_filtered (stream, " (");
13843 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13844 fprintf_filtered (stream, ")");
13845 break;
13846 case BINOP_IN_BOUNDS:
13847 fprintf_filtered (stream, " (%d)",
13848 longest_to_int (exp->elts[pc + 2].longconst));
13849 break;
13850 case TERNOP_IN_RANGE:
13851 break;
13852
13853 case OP_AGGREGATE:
13854 case OP_OTHERS:
13855 case OP_DISCRETE_RANGE:
13856 case OP_POSITIONAL:
13857 case OP_CHOICES:
13858 break;
13859
13860 case OP_NAME:
13861 case OP_STRING:
13862 {
13863 char *name = &exp->elts[elt + 2].string;
13864 int len = longest_to_int (exp->elts[elt + 1].longconst);
13865
13866 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13867 break;
13868 }
13869
13870 default:
13871 return dump_subexp_body_standard (exp, stream, elt);
13872 }
13873
13874 elt += oplen;
13875 for (i = 0; i < nargs; i += 1)
13876 elt = dump_subexp (exp, stream, elt);
13877
13878 return elt;
13879 }
13880
13881 /* The Ada extension of print_subexp (q.v.). */
13882
13883 static void
13884 ada_print_subexp (struct expression *exp, int *pos,
13885 struct ui_file *stream, enum precedence prec)
13886 {
13887 int oplen, nargs, i;
13888 int pc = *pos;
13889 enum exp_opcode op = exp->elts[pc].opcode;
13890
13891 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13892
13893 *pos += oplen;
13894 switch (op)
13895 {
13896 default:
13897 *pos -= oplen;
13898 print_subexp_standard (exp, pos, stream, prec);
13899 return;
13900
13901 case OP_VAR_VALUE:
13902 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13903 return;
13904
13905 case BINOP_IN_BOUNDS:
13906 /* XXX: sprint_subexp */
13907 print_subexp (exp, pos, stream, PREC_SUFFIX);
13908 fputs_filtered (" in ", stream);
13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
13910 fputs_filtered ("'range", stream);
13911 if (exp->elts[pc + 1].longconst > 1)
13912 fprintf_filtered (stream, "(%ld)",
13913 (long) exp->elts[pc + 1].longconst);
13914 return;
13915
13916 case TERNOP_IN_RANGE:
13917 if (prec >= PREC_EQUAL)
13918 fputs_filtered ("(", stream);
13919 /* XXX: sprint_subexp */
13920 print_subexp (exp, pos, stream, PREC_SUFFIX);
13921 fputs_filtered (" in ", stream);
13922 print_subexp (exp, pos, stream, PREC_EQUAL);
13923 fputs_filtered (" .. ", stream);
13924 print_subexp (exp, pos, stream, PREC_EQUAL);
13925 if (prec >= PREC_EQUAL)
13926 fputs_filtered (")", stream);
13927 return;
13928
13929 case OP_ATR_FIRST:
13930 case OP_ATR_LAST:
13931 case OP_ATR_LENGTH:
13932 case OP_ATR_IMAGE:
13933 case OP_ATR_MAX:
13934 case OP_ATR_MIN:
13935 case OP_ATR_MODULUS:
13936 case OP_ATR_POS:
13937 case OP_ATR_SIZE:
13938 case OP_ATR_TAG:
13939 case OP_ATR_VAL:
13940 if (exp->elts[*pos].opcode == OP_TYPE)
13941 {
13942 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13943 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13944 &type_print_raw_options);
13945 *pos += 3;
13946 }
13947 else
13948 print_subexp (exp, pos, stream, PREC_SUFFIX);
13949 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13950 if (nargs > 1)
13951 {
13952 int tem;
13953
13954 for (tem = 1; tem < nargs; tem += 1)
13955 {
13956 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13957 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13958 }
13959 fputs_filtered (")", stream);
13960 }
13961 return;
13962
13963 case UNOP_QUAL:
13964 type_print (exp->elts[pc + 1].type, "", stream, 0);
13965 fputs_filtered ("'(", stream);
13966 print_subexp (exp, pos, stream, PREC_PREFIX);
13967 fputs_filtered (")", stream);
13968 return;
13969
13970 case UNOP_IN_RANGE:
13971 /* XXX: sprint_subexp */
13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
13973 fputs_filtered (" in ", stream);
13974 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13975 &type_print_raw_options);
13976 return;
13977
13978 case OP_DISCRETE_RANGE:
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered ("..", stream);
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_OTHERS:
13985 fputs_filtered ("others => ", stream);
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 return;
13988
13989 case OP_CHOICES:
13990 for (i = 0; i < nargs-1; i += 1)
13991 {
13992 if (i > 0)
13993 fputs_filtered ("|", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 }
13996 fputs_filtered (" => ", stream);
13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 return;
13999
14000 case OP_POSITIONAL:
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 return;
14003
14004 case OP_AGGREGATE:
14005 fputs_filtered ("(", stream);
14006 for (i = 0; i < nargs; i += 1)
14007 {
14008 if (i > 0)
14009 fputs_filtered (", ", stream);
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 }
14012 fputs_filtered (")", stream);
14013 return;
14014 }
14015 }
14016
14017 /* Table mapping opcodes into strings for printing operators
14018 and precedences of the operators. */
14019
14020 static const struct op_print ada_op_print_tab[] = {
14021 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14022 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14023 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14024 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14025 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14026 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14027 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14028 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14029 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14030 {">=", BINOP_GEQ, PREC_ORDER, 0},
14031 {">", BINOP_GTR, PREC_ORDER, 0},
14032 {"<", BINOP_LESS, PREC_ORDER, 0},
14033 {">>", BINOP_RSH, PREC_SHIFT, 0},
14034 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14035 {"+", BINOP_ADD, PREC_ADD, 0},
14036 {"-", BINOP_SUB, PREC_ADD, 0},
14037 {"&", BINOP_CONCAT, PREC_ADD, 0},
14038 {"*", BINOP_MUL, PREC_MUL, 0},
14039 {"/", BINOP_DIV, PREC_MUL, 0},
14040 {"rem", BINOP_REM, PREC_MUL, 0},
14041 {"mod", BINOP_MOD, PREC_MUL, 0},
14042 {"**", BINOP_EXP, PREC_REPEAT, 0},
14043 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14044 {"-", UNOP_NEG, PREC_PREFIX, 0},
14045 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14046 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14047 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14048 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14049 {".all", UNOP_IND, PREC_SUFFIX, 1},
14050 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14051 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14052 {NULL, OP_NULL, PREC_SUFFIX, 0}
14053 };
14054 \f
14055 enum ada_primitive_types {
14056 ada_primitive_type_int,
14057 ada_primitive_type_long,
14058 ada_primitive_type_short,
14059 ada_primitive_type_char,
14060 ada_primitive_type_float,
14061 ada_primitive_type_double,
14062 ada_primitive_type_void,
14063 ada_primitive_type_long_long,
14064 ada_primitive_type_long_double,
14065 ada_primitive_type_natural,
14066 ada_primitive_type_positive,
14067 ada_primitive_type_system_address,
14068 ada_primitive_type_storage_offset,
14069 nr_ada_primitive_types
14070 };
14071
14072 static void
14073 ada_language_arch_info (struct gdbarch *gdbarch,
14074 struct language_arch_info *lai)
14075 {
14076 const struct builtin_type *builtin = builtin_type (gdbarch);
14077
14078 lai->primitive_type_vector
14079 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14080 struct type *);
14081
14082 lai->primitive_type_vector [ada_primitive_type_int]
14083 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14084 0, "integer");
14085 lai->primitive_type_vector [ada_primitive_type_long]
14086 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14087 0, "long_integer");
14088 lai->primitive_type_vector [ada_primitive_type_short]
14089 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14090 0, "short_integer");
14091 lai->string_char_type
14092 = lai->primitive_type_vector [ada_primitive_type_char]
14093 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14094 lai->primitive_type_vector [ada_primitive_type_float]
14095 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14096 "float", gdbarch_float_format (gdbarch));
14097 lai->primitive_type_vector [ada_primitive_type_double]
14098 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14099 "long_float", gdbarch_double_format (gdbarch));
14100 lai->primitive_type_vector [ada_primitive_type_long_long]
14101 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14102 0, "long_long_integer");
14103 lai->primitive_type_vector [ada_primitive_type_long_double]
14104 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14105 "long_long_float", gdbarch_long_double_format (gdbarch));
14106 lai->primitive_type_vector [ada_primitive_type_natural]
14107 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14108 0, "natural");
14109 lai->primitive_type_vector [ada_primitive_type_positive]
14110 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14111 0, "positive");
14112 lai->primitive_type_vector [ada_primitive_type_void]
14113 = builtin->builtin_void;
14114
14115 lai->primitive_type_vector [ada_primitive_type_system_address]
14116 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14117 "void"));
14118 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14119 = "system__address";
14120
14121 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14122 type. This is a signed integral type whose size is the same as
14123 the size of addresses. */
14124 {
14125 unsigned int addr_length = TYPE_LENGTH
14126 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14127
14128 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14129 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14130 "storage_offset");
14131 }
14132
14133 lai->bool_type_symbol = NULL;
14134 lai->bool_type_default = builtin->builtin_bool;
14135 }
14136 \f
14137 /* Language vector */
14138
14139 /* Not really used, but needed in the ada_language_defn. */
14140
14141 static void
14142 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14143 {
14144 ada_emit_char (c, type, stream, quoter, 1);
14145 }
14146
14147 static int
14148 parse (struct parser_state *ps)
14149 {
14150 warnings_issued = 0;
14151 return ada_parse (ps);
14152 }
14153
14154 static const struct exp_descriptor ada_exp_descriptor = {
14155 ada_print_subexp,
14156 ada_operator_length,
14157 ada_operator_check,
14158 ada_op_name,
14159 ada_dump_subexp_body,
14160 ada_evaluate_subexp
14161 };
14162
14163 /* symbol_name_matcher_ftype adapter for wild_match. */
14164
14165 static bool
14166 do_wild_match (const char *symbol_search_name,
14167 const lookup_name_info &lookup_name,
14168 completion_match_result *comp_match_res)
14169 {
14170 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14171 }
14172
14173 /* symbol_name_matcher_ftype adapter for full_match. */
14174
14175 static bool
14176 do_full_match (const char *symbol_search_name,
14177 const lookup_name_info &lookup_name,
14178 completion_match_result *comp_match_res)
14179 {
14180 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14181 }
14182
14183 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14184
14185 static bool
14186 do_exact_match (const char *symbol_search_name,
14187 const lookup_name_info &lookup_name,
14188 completion_match_result *comp_match_res)
14189 {
14190 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14191 }
14192
14193 /* Build the Ada lookup name for LOOKUP_NAME. */
14194
14195 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14196 {
14197 const std::string &user_name = lookup_name.name ();
14198
14199 if (user_name[0] == '<')
14200 {
14201 if (user_name.back () == '>')
14202 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14203 else
14204 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14205 m_encoded_p = true;
14206 m_verbatim_p = true;
14207 m_wild_match_p = false;
14208 m_standard_p = false;
14209 }
14210 else
14211 {
14212 m_verbatim_p = false;
14213
14214 m_encoded_p = user_name.find ("__") != std::string::npos;
14215
14216 if (!m_encoded_p)
14217 {
14218 const char *folded = ada_fold_name (user_name.c_str ());
14219 const char *encoded = ada_encode_1 (folded, false);
14220 if (encoded != NULL)
14221 m_encoded_name = encoded;
14222 else
14223 m_encoded_name = user_name;
14224 }
14225 else
14226 m_encoded_name = user_name;
14227
14228 /* Handle the 'package Standard' special case. See description
14229 of m_standard_p. */
14230 if (startswith (m_encoded_name.c_str (), "standard__"))
14231 {
14232 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14233 m_standard_p = true;
14234 }
14235 else
14236 m_standard_p = false;
14237
14238 /* If the name contains a ".", then the user is entering a fully
14239 qualified entity name, and the match must not be done in wild
14240 mode. Similarly, if the user wants to complete what looks
14241 like an encoded name, the match must not be done in wild
14242 mode. Also, in the standard__ special case always do
14243 non-wild matching. */
14244 m_wild_match_p
14245 = (lookup_name.match_type () != symbol_name_match_type::FULL
14246 && !m_encoded_p
14247 && !m_standard_p
14248 && user_name.find ('.') == std::string::npos);
14249 }
14250 }
14251
14252 /* symbol_name_matcher_ftype method for Ada. This only handles
14253 completion mode. */
14254
14255 static bool
14256 ada_symbol_name_matches (const char *symbol_search_name,
14257 const lookup_name_info &lookup_name,
14258 completion_match_result *comp_match_res)
14259 {
14260 return lookup_name.ada ().matches (symbol_search_name,
14261 lookup_name.match_type (),
14262 comp_match_res);
14263 }
14264
14265 /* A name matcher that matches the symbol name exactly, with
14266 strcmp. */
14267
14268 static bool
14269 literal_symbol_name_matcher (const char *symbol_search_name,
14270 const lookup_name_info &lookup_name,
14271 completion_match_result *comp_match_res)
14272 {
14273 const std::string &name = lookup_name.name ();
14274
14275 int cmp = (lookup_name.completion_mode ()
14276 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14277 : strcmp (symbol_search_name, name.c_str ()));
14278 if (cmp == 0)
14279 {
14280 if (comp_match_res != NULL)
14281 comp_match_res->set_match (symbol_search_name);
14282 return true;
14283 }
14284 else
14285 return false;
14286 }
14287
14288 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14289 Ada. */
14290
14291 static symbol_name_matcher_ftype *
14292 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14293 {
14294 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14295 return literal_symbol_name_matcher;
14296
14297 if (lookup_name.completion_mode ())
14298 return ada_symbol_name_matches;
14299 else
14300 {
14301 if (lookup_name.ada ().wild_match_p ())
14302 return do_wild_match;
14303 else if (lookup_name.ada ().verbatim_p ())
14304 return do_exact_match;
14305 else
14306 return do_full_match;
14307 }
14308 }
14309
14310 /* Implement the "la_read_var_value" language_defn method for Ada. */
14311
14312 static struct value *
14313 ada_read_var_value (struct symbol *var, const struct block *var_block,
14314 struct frame_info *frame)
14315 {
14316 const struct block *frame_block = NULL;
14317 struct symbol *renaming_sym = NULL;
14318
14319 /* The only case where default_read_var_value is not sufficient
14320 is when VAR is a renaming... */
14321 if (frame)
14322 frame_block = get_frame_block (frame, NULL);
14323 if (frame_block)
14324 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14325 if (renaming_sym != NULL)
14326 return ada_read_renaming_var_value (renaming_sym, frame_block);
14327
14328 /* This is a typical case where we expect the default_read_var_value
14329 function to work. */
14330 return default_read_var_value (var, var_block, frame);
14331 }
14332
14333 static const char *ada_extensions[] =
14334 {
14335 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14336 };
14337
14338 extern const struct language_defn ada_language_defn = {
14339 "ada", /* Language name */
14340 "Ada",
14341 language_ada,
14342 range_check_off,
14343 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14344 that's not quite what this means. */
14345 array_row_major,
14346 macro_expansion_no,
14347 ada_extensions,
14348 &ada_exp_descriptor,
14349 parse,
14350 resolve,
14351 ada_printchar, /* Print a character constant */
14352 ada_printstr, /* Function to print string constant */
14353 emit_char, /* Function to print single char (not used) */
14354 ada_print_type, /* Print a type using appropriate syntax */
14355 ada_print_typedef, /* Print a typedef using appropriate syntax */
14356 ada_val_print, /* Print a value using appropriate syntax */
14357 ada_value_print, /* Print a top-level value */
14358 ada_read_var_value, /* la_read_var_value */
14359 NULL, /* Language specific skip_trampoline */
14360 NULL, /* name_of_this */
14361 true, /* la_store_sym_names_in_linkage_form_p */
14362 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14363 basic_lookup_transparent_type, /* lookup_transparent_type */
14364 ada_la_decode, /* Language specific symbol demangler */
14365 ada_sniff_from_mangled_name,
14366 NULL, /* Language specific
14367 class_name_from_physname */
14368 ada_op_print_tab, /* expression operators for printing */
14369 0, /* c-style arrays */
14370 1, /* String lower bound */
14371 ada_get_gdb_completer_word_break_characters,
14372 ada_collect_symbol_completion_matches,
14373 ada_language_arch_info,
14374 ada_print_array_index,
14375 default_pass_by_reference,
14376 c_get_string,
14377 ada_watch_location_expression,
14378 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14379 ada_iterate_over_symbols,
14380 default_search_name_hash,
14381 &ada_varobj_ops,
14382 NULL,
14383 NULL
14384 };
14385
14386 /* Command-list for the "set/show ada" prefix command. */
14387 static struct cmd_list_element *set_ada_list;
14388 static struct cmd_list_element *show_ada_list;
14389
14390 /* Implement the "set ada" prefix command. */
14391
14392 static void
14393 set_ada_command (const char *arg, int from_tty)
14394 {
14395 printf_unfiltered (_(\
14396 "\"set ada\" must be followed by the name of a setting.\n"));
14397 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14398 }
14399
14400 /* Implement the "show ada" prefix command. */
14401
14402 static void
14403 show_ada_command (const char *args, int from_tty)
14404 {
14405 cmd_show_list (show_ada_list, from_tty, "");
14406 }
14407
14408 static void
14409 initialize_ada_catchpoint_ops (void)
14410 {
14411 struct breakpoint_ops *ops;
14412
14413 initialize_breakpoint_ops ();
14414
14415 ops = &catch_exception_breakpoint_ops;
14416 *ops = bkpt_breakpoint_ops;
14417 ops->allocate_location = allocate_location_catch_exception;
14418 ops->re_set = re_set_catch_exception;
14419 ops->check_status = check_status_catch_exception;
14420 ops->print_it = print_it_catch_exception;
14421 ops->print_one = print_one_catch_exception;
14422 ops->print_mention = print_mention_catch_exception;
14423 ops->print_recreate = print_recreate_catch_exception;
14424
14425 ops = &catch_exception_unhandled_breakpoint_ops;
14426 *ops = bkpt_breakpoint_ops;
14427 ops->allocate_location = allocate_location_catch_exception_unhandled;
14428 ops->re_set = re_set_catch_exception_unhandled;
14429 ops->check_status = check_status_catch_exception_unhandled;
14430 ops->print_it = print_it_catch_exception_unhandled;
14431 ops->print_one = print_one_catch_exception_unhandled;
14432 ops->print_mention = print_mention_catch_exception_unhandled;
14433 ops->print_recreate = print_recreate_catch_exception_unhandled;
14434
14435 ops = &catch_assert_breakpoint_ops;
14436 *ops = bkpt_breakpoint_ops;
14437 ops->allocate_location = allocate_location_catch_assert;
14438 ops->re_set = re_set_catch_assert;
14439 ops->check_status = check_status_catch_assert;
14440 ops->print_it = print_it_catch_assert;
14441 ops->print_one = print_one_catch_assert;
14442 ops->print_mention = print_mention_catch_assert;
14443 ops->print_recreate = print_recreate_catch_assert;
14444
14445 ops = &catch_handlers_breakpoint_ops;
14446 *ops = bkpt_breakpoint_ops;
14447 ops->allocate_location = allocate_location_catch_handlers;
14448 ops->re_set = re_set_catch_handlers;
14449 ops->check_status = check_status_catch_handlers;
14450 ops->print_it = print_it_catch_handlers;
14451 ops->print_one = print_one_catch_handlers;
14452 ops->print_mention = print_mention_catch_handlers;
14453 ops->print_recreate = print_recreate_catch_handlers;
14454 }
14455
14456 /* This module's 'new_objfile' observer. */
14457
14458 static void
14459 ada_new_objfile_observer (struct objfile *objfile)
14460 {
14461 ada_clear_symbol_cache ();
14462 }
14463
14464 /* This module's 'free_objfile' observer. */
14465
14466 static void
14467 ada_free_objfile_observer (struct objfile *objfile)
14468 {
14469 ada_clear_symbol_cache ();
14470 }
14471
14472 void
14473 _initialize_ada_language (void)
14474 {
14475 initialize_ada_catchpoint_ops ();
14476
14477 add_prefix_cmd ("ada", no_class, set_ada_command,
14478 _("Prefix command for changing Ada-specific settings"),
14479 &set_ada_list, "set ada ", 0, &setlist);
14480
14481 add_prefix_cmd ("ada", no_class, show_ada_command,
14482 _("Generic command for showing Ada-specific settings."),
14483 &show_ada_list, "show ada ", 0, &showlist);
14484
14485 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14486 &trust_pad_over_xvs, _("\
14487 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14488 Show whether an optimization trusting PAD types over XVS types is activated"),
14489 _("\
14490 This is related to the encoding used by the GNAT compiler. The debugger\n\
14491 should normally trust the contents of PAD types, but certain older versions\n\
14492 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14493 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14494 work around this bug. It is always safe to turn this option \"off\", but\n\
14495 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14496 this option to \"off\" unless necessary."),
14497 NULL, NULL, &set_ada_list, &show_ada_list);
14498
14499 add_setshow_boolean_cmd ("print-signatures", class_vars,
14500 &print_signatures, _("\
14501 Enable or disable the output of formal and return types for functions in the \
14502 overloads selection menu"), _("\
14503 Show whether the output of formal and return types for functions in the \
14504 overloads selection menu is activated"),
14505 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14506
14507 add_catch_command ("exception", _("\
14508 Catch Ada exceptions, when raised.\n\
14509 Usage: catch exception [ ARG ]\n\
14510 \n\
14511 Without any argument, stop when any Ada exception is raised.\n\
14512 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14513 being raised does not have a handler (and will therefore lead to the task's\n\
14514 termination).\n\
14515 Otherwise, the catchpoint only stops when the name of the exception being\n\
14516 raised is the same as ARG."),
14517 catch_ada_exception_command,
14518 NULL,
14519 CATCH_PERMANENT,
14520 CATCH_TEMPORARY);
14521
14522 add_catch_command ("handlers", _("\
14523 Catch Ada exceptions, when handled.\n\
14524 With an argument, catch only exceptions with the given name."),
14525 catch_ada_handlers_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
14529 add_catch_command ("assert", _("\
14530 Catch failed Ada assertions, when raised.\n\
14531 With an argument, catch only exceptions with the given name."),
14532 catch_assert_command,
14533 NULL,
14534 CATCH_PERMANENT,
14535 CATCH_TEMPORARY);
14536
14537 varsize_limit = 65536;
14538 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14539 &varsize_limit, _("\
14540 Set the maximum number of bytes allowed in a variable-size object."), _("\
14541 Show the maximum number of bytes allowed in a variable-size object."), _("\
14542 Attempts to access an object whose size is not a compile-time constant\n\
14543 and exceeds this limit will cause an error."),
14544 NULL, NULL, &setlist, &showlist);
14545
14546 add_info ("exceptions", info_exceptions_command,
14547 _("\
14548 List all Ada exception names.\n\
14549 If a regular expression is passed as an argument, only those matching\n\
14550 the regular expression are listed."));
14551
14552 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14553 _("Set Ada maintenance-related variables."),
14554 &maint_set_ada_cmdlist, "maintenance set ada ",
14555 0/*allow-unknown*/, &maintenance_set_cmdlist);
14556
14557 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14558 _("Show Ada maintenance-related variables"),
14559 &maint_show_ada_cmdlist, "maintenance show ada ",
14560 0/*allow-unknown*/, &maintenance_show_cmdlist);
14561
14562 add_setshow_boolean_cmd
14563 ("ignore-descriptive-types", class_maintenance,
14564 &ada_ignore_descriptive_types_p,
14565 _("Set whether descriptive types generated by GNAT should be ignored."),
14566 _("Show whether descriptive types generated by GNAT should be ignored."),
14567 _("\
14568 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14569 DWARF attribute."),
14570 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14571
14572 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14573 NULL, xcalloc, xfree);
14574
14575 /* The ada-lang observers. */
14576 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14577 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14578 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14579
14580 /* Setup various context-specific data. */
14581 ada_inferior_data
14582 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14583 ada_pspace_data_handle
14584 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14585 }