]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
gdb/regformats: remove unused regformats/reg-*.dat
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494 #define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
497 /* Assuming VECT points to an array of *SIZE objects of size
498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
499 updating *SIZE as necessary and returning the (new) array. */
500
501 static void *
502 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
503 {
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
508 *size = min_size;
509 vect = xrealloc (vect, *size * element_size);
510 }
511 return vect;
512 }
513
514 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
515 suffix of FIELD_NAME beginning "___". */
516
517 static int
518 field_name_match (const char *field_name, const char *target)
519 {
520 int len = strlen (target);
521
522 return
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
525 || (startswith (field_name + len, "___")
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
528 }
529
530
531 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
538
539 int
540 ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542 {
543 int fieldno;
544 struct type *struct_type = check_typedef ((struct type *) type);
545
546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
548 return fieldno;
549
550 if (!maybe_missing)
551 error (_("Unable to find field %s in struct %s. Aborting"),
552 field_name, struct_type->name ());
553
554 return -1;
555 }
556
557 /* The length of the prefix of NAME prior to any "___" suffix. */
558
559 int
560 ada_name_prefix_len (const char *name)
561 {
562 if (name == NULL)
563 return 0;
564 else
565 {
566 const char *p = strstr (name, "___");
567
568 if (p == NULL)
569 return strlen (name);
570 else
571 return p - name;
572 }
573 }
574
575 /* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
578 static int
579 is_suffix (const char *str, const char *suffix)
580 {
581 int len1, len2;
582
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
588 }
589
590 /* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
592
593 static struct value *
594 coerce_unspec_val_to_type (struct value *val, struct type *type)
595 {
596 type = ada_check_typedef (type);
597 if (value_type (val) == type)
598 return val;
599 else
600 {
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
605 ada_ensure_varsize_limit (type);
606
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
614 }
615 set_value_component_location (result, val);
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
620 return result;
621 }
622 }
623
624 static const gdb_byte *
625 cond_offset_host (const gdb_byte *valaddr, long offset)
626 {
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631 }
632
633 static CORE_ADDR
634 cond_offset_target (CORE_ADDR address, long offset)
635 {
636 if (address == 0)
637 return 0;
638 else
639 return address + offset;
640 }
641
642 /* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
646
647 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
649 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
650
651 static void
652 lim_warning (const char *format, ...)
653 {
654 va_list args;
655
656 va_start (args, format);
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
659 vwarning (format, args);
660
661 va_end (args);
662 }
663
664 /* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
668 void
669 ada_ensure_varsize_limit (const struct type *type)
670 {
671 if (TYPE_LENGTH (type) > varsize_limit)
672 error (_("object size is larger than varsize-limit"));
673 }
674
675 /* Maximum value of a SIZE-byte signed integer type. */
676 static LONGEST
677 max_of_size (int size)
678 {
679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
680
681 return top_bit | (top_bit - 1);
682 }
683
684 /* Minimum value of a SIZE-byte signed integer type. */
685 static LONGEST
686 min_of_size (int size)
687 {
688 return -max_of_size (size) - 1;
689 }
690
691 /* Maximum value of a SIZE-byte unsigned integer type. */
692 static ULONGEST
693 umax_of_size (int size)
694 {
695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
696
697 return top_bit | (top_bit - 1);
698 }
699
700 /* Maximum value of integral type T, as a signed quantity. */
701 static LONGEST
702 max_of_type (struct type *t)
703 {
704 if (TYPE_UNSIGNED (t))
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708 }
709
710 /* Minimum value of integral type T, as a signed quantity. */
711 static LONGEST
712 min_of_type (struct type *t)
713 {
714 if (TYPE_UNSIGNED (t))
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
718 }
719
720 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
721 LONGEST
722 ada_discrete_type_high_bound (struct type *type)
723 {
724 type = resolve_dynamic_type (type, {}, 0);
725 switch (type->code ())
726 {
727 case TYPE_CODE_RANGE:
728 return TYPE_HIGH_BOUND (type);
729 case TYPE_CODE_ENUM:
730 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
731 case TYPE_CODE_BOOL:
732 return 1;
733 case TYPE_CODE_CHAR:
734 case TYPE_CODE_INT:
735 return max_of_type (type);
736 default:
737 error (_("Unexpected type in ada_discrete_type_high_bound."));
738 }
739 }
740
741 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
742 LONGEST
743 ada_discrete_type_low_bound (struct type *type)
744 {
745 type = resolve_dynamic_type (type, {}, 0);
746 switch (type->code ())
747 {
748 case TYPE_CODE_RANGE:
749 return TYPE_LOW_BOUND (type);
750 case TYPE_CODE_ENUM:
751 return TYPE_FIELD_ENUMVAL (type, 0);
752 case TYPE_CODE_BOOL:
753 return 0;
754 case TYPE_CODE_CHAR:
755 case TYPE_CODE_INT:
756 return min_of_type (type);
757 default:
758 error (_("Unexpected type in ada_discrete_type_low_bound."));
759 }
760 }
761
762 /* The identity on non-range types. For range types, the underlying
763 non-range scalar type. */
764
765 static struct type *
766 get_base_type (struct type *type)
767 {
768 while (type != NULL && type->code () == TYPE_CODE_RANGE)
769 {
770 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
771 return type;
772 type = TYPE_TARGET_TYPE (type);
773 }
774 return type;
775 }
776
777 /* Return a decoded version of the given VALUE. This means returning
778 a value whose type is obtained by applying all the GNAT-specific
779 encodings, making the resulting type a static but standard description
780 of the initial type. */
781
782 struct value *
783 ada_get_decoded_value (struct value *value)
784 {
785 struct type *type = ada_check_typedef (value_type (value));
786
787 if (ada_is_array_descriptor_type (type)
788 || (ada_is_constrained_packed_array_type (type)
789 && type->code () != TYPE_CODE_PTR))
790 {
791 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
792 value = ada_coerce_to_simple_array_ptr (value);
793 else
794 value = ada_coerce_to_simple_array (value);
795 }
796 else
797 value = ada_to_fixed_value (value);
798
799 return value;
800 }
801
802 /* Same as ada_get_decoded_value, but with the given TYPE.
803 Because there is no associated actual value for this type,
804 the resulting type might be a best-effort approximation in
805 the case of dynamic types. */
806
807 struct type *
808 ada_get_decoded_type (struct type *type)
809 {
810 type = to_static_fixed_type (type);
811 if (ada_is_constrained_packed_array_type (type))
812 type = ada_coerce_to_simple_array_type (type);
813 return type;
814 }
815
816 \f
817
818 /* Language Selection */
819
820 /* If the main program is in Ada, return language_ada, otherwise return LANG
821 (the main program is in Ada iif the adainit symbol is found). */
822
823 static enum language
824 ada_update_initial_language (enum language lang)
825 {
826 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
827 return language_ada;
828
829 return lang;
830 }
831
832 /* If the main procedure is written in Ada, then return its name.
833 The result is good until the next call. Return NULL if the main
834 procedure doesn't appear to be in Ada. */
835
836 char *
837 ada_main_name (void)
838 {
839 struct bound_minimal_symbol msym;
840 static gdb::unique_xmalloc_ptr<char> main_program_name;
841
842 /* For Ada, the name of the main procedure is stored in a specific
843 string constant, generated by the binder. Look for that symbol,
844 extract its address, and then read that string. If we didn't find
845 that string, then most probably the main procedure is not written
846 in Ada. */
847 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
848
849 if (msym.minsym != NULL)
850 {
851 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
852 if (main_program_name_addr == 0)
853 error (_("Invalid address for Ada main program name."));
854
855 main_program_name = target_read_string (main_program_name_addr, 1024);
856 return main_program_name.get ();
857 }
858
859 /* The main procedure doesn't seem to be in Ada. */
860 return NULL;
861 }
862 \f
863 /* Symbols */
864
865 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
866 of NULLs. */
867
868 const struct ada_opname_map ada_opname_table[] = {
869 {"Oadd", "\"+\"", BINOP_ADD},
870 {"Osubtract", "\"-\"", BINOP_SUB},
871 {"Omultiply", "\"*\"", BINOP_MUL},
872 {"Odivide", "\"/\"", BINOP_DIV},
873 {"Omod", "\"mod\"", BINOP_MOD},
874 {"Orem", "\"rem\"", BINOP_REM},
875 {"Oexpon", "\"**\"", BINOP_EXP},
876 {"Olt", "\"<\"", BINOP_LESS},
877 {"Ole", "\"<=\"", BINOP_LEQ},
878 {"Ogt", "\">\"", BINOP_GTR},
879 {"Oge", "\">=\"", BINOP_GEQ},
880 {"Oeq", "\"=\"", BINOP_EQUAL},
881 {"One", "\"/=\"", BINOP_NOTEQUAL},
882 {"Oand", "\"and\"", BINOP_BITWISE_AND},
883 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
884 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
885 {"Oconcat", "\"&\"", BINOP_CONCAT},
886 {"Oabs", "\"abs\"", UNOP_ABS},
887 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
888 {"Oadd", "\"+\"", UNOP_PLUS},
889 {"Osubtract", "\"-\"", UNOP_NEG},
890 {NULL, NULL}
891 };
892
893 /* The "encoded" form of DECODED, according to GNAT conventions. The
894 result is valid until the next call to ada_encode. If
895 THROW_ERRORS, throw an error if invalid operator name is found.
896 Otherwise, return NULL in that case. */
897
898 static char *
899 ada_encode_1 (const char *decoded, bool throw_errors)
900 {
901 static char *encoding_buffer = NULL;
902 static size_t encoding_buffer_size = 0;
903 const char *p;
904 int k;
905
906 if (decoded == NULL)
907 return NULL;
908
909 GROW_VECT (encoding_buffer, encoding_buffer_size,
910 2 * strlen (decoded) + 10);
911
912 k = 0;
913 for (p = decoded; *p != '\0'; p += 1)
914 {
915 if (*p == '.')
916 {
917 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
918 k += 2;
919 }
920 else if (*p == '"')
921 {
922 const struct ada_opname_map *mapping;
923
924 for (mapping = ada_opname_table;
925 mapping->encoded != NULL
926 && !startswith (p, mapping->decoded); mapping += 1)
927 ;
928 if (mapping->encoded == NULL)
929 {
930 if (throw_errors)
931 error (_("invalid Ada operator name: %s"), p);
932 else
933 return NULL;
934 }
935 strcpy (encoding_buffer + k, mapping->encoded);
936 k += strlen (mapping->encoded);
937 break;
938 }
939 else
940 {
941 encoding_buffer[k] = *p;
942 k += 1;
943 }
944 }
945
946 encoding_buffer[k] = '\0';
947 return encoding_buffer;
948 }
949
950 /* The "encoded" form of DECODED, according to GNAT conventions.
951 The result is valid until the next call to ada_encode. */
952
953 char *
954 ada_encode (const char *decoded)
955 {
956 return ada_encode_1 (decoded, true);
957 }
958
959 /* Return NAME folded to lower case, or, if surrounded by single
960 quotes, unfolded, but with the quotes stripped away. Result good
961 to next call. */
962
963 static char *
964 ada_fold_name (gdb::string_view name)
965 {
966 static char *fold_buffer = NULL;
967 static size_t fold_buffer_size = 0;
968
969 int len = name.size ();
970 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
971
972 if (name[0] == '\'')
973 {
974 strncpy (fold_buffer, name.data () + 1, len - 2);
975 fold_buffer[len - 2] = '\000';
976 }
977 else
978 {
979 int i;
980
981 for (i = 0; i <= len; i += 1)
982 fold_buffer[i] = tolower (name[i]);
983 }
984
985 return fold_buffer;
986 }
987
988 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
989
990 static int
991 is_lower_alphanum (const char c)
992 {
993 return (isdigit (c) || (isalpha (c) && islower (c)));
994 }
995
996 /* ENCODED is the linkage name of a symbol and LEN contains its length.
997 This function saves in LEN the length of that same symbol name but
998 without either of these suffixes:
999 . .{DIGIT}+
1000 . ${DIGIT}+
1001 . ___{DIGIT}+
1002 . __{DIGIT}+.
1003
1004 These are suffixes introduced by the compiler for entities such as
1005 nested subprogram for instance, in order to avoid name clashes.
1006 They do not serve any purpose for the debugger. */
1007
1008 static void
1009 ada_remove_trailing_digits (const char *encoded, int *len)
1010 {
1011 if (*len > 1 && isdigit (encoded[*len - 1]))
1012 {
1013 int i = *len - 2;
1014
1015 while (i > 0 && isdigit (encoded[i]))
1016 i--;
1017 if (i >= 0 && encoded[i] == '.')
1018 *len = i;
1019 else if (i >= 0 && encoded[i] == '$')
1020 *len = i;
1021 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1022 *len = i - 2;
1023 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1024 *len = i - 1;
1025 }
1026 }
1027
1028 /* Remove the suffix introduced by the compiler for protected object
1029 subprograms. */
1030
1031 static void
1032 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1033 {
1034 /* Remove trailing N. */
1035
1036 /* Protected entry subprograms are broken into two
1037 separate subprograms: The first one is unprotected, and has
1038 a 'N' suffix; the second is the protected version, and has
1039 the 'P' suffix. The second calls the first one after handling
1040 the protection. Since the P subprograms are internally generated,
1041 we leave these names undecoded, giving the user a clue that this
1042 entity is internal. */
1043
1044 if (*len > 1
1045 && encoded[*len - 1] == 'N'
1046 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1047 *len = *len - 1;
1048 }
1049
1050 /* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED. */
1053
1054 std::string
1055 ada_decode (const char *encoded)
1056 {
1057 int i, j;
1058 int len0;
1059 const char *p;
1060 int at_start_name;
1061 std::string decoded;
1062
1063 /* With function descriptors on PPC64, the value of a symbol named
1064 ".FN", if it exists, is the entry point of the function "FN". */
1065 if (encoded[0] == '.')
1066 encoded += 1;
1067
1068 /* The name of the Ada main procedure starts with "_ada_".
1069 This prefix is not part of the decoded name, so skip this part
1070 if we see this prefix. */
1071 if (startswith (encoded, "_ada_"))
1072 encoded += 5;
1073
1074 /* If the name starts with '_', then it is not a properly encoded
1075 name, so do not attempt to decode it. Similarly, if the name
1076 starts with '<', the name should not be decoded. */
1077 if (encoded[0] == '_' || encoded[0] == '<')
1078 goto Suppress;
1079
1080 len0 = strlen (encoded);
1081
1082 ada_remove_trailing_digits (encoded, &len0);
1083 ada_remove_po_subprogram_suffix (encoded, &len0);
1084
1085 /* Remove the ___X.* suffix if present. Do not forget to verify that
1086 the suffix is located before the current "end" of ENCODED. We want
1087 to avoid re-matching parts of ENCODED that have previously been
1088 marked as discarded (by decrementing LEN0). */
1089 p = strstr (encoded, "___");
1090 if (p != NULL && p - encoded < len0 - 3)
1091 {
1092 if (p[3] == 'X')
1093 len0 = p - encoded;
1094 else
1095 goto Suppress;
1096 }
1097
1098 /* Remove any trailing TKB suffix. It tells us that this symbol
1099 is for the body of a task, but that information does not actually
1100 appear in the decoded name. */
1101
1102 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1103 len0 -= 3;
1104
1105 /* Remove any trailing TB suffix. The TB suffix is slightly different
1106 from the TKB suffix because it is used for non-anonymous task
1107 bodies. */
1108
1109 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1110 len0 -= 2;
1111
1112 /* Remove trailing "B" suffixes. */
1113 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1114
1115 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1116 len0 -= 1;
1117
1118 /* Make decoded big enough for possible expansion by operator name. */
1119
1120 decoded.resize (2 * len0 + 1, 'X');
1121
1122 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1123
1124 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1125 {
1126 i = len0 - 2;
1127 while ((i >= 0 && isdigit (encoded[i]))
1128 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1129 i -= 1;
1130 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1131 len0 = i - 1;
1132 else if (encoded[i] == '$')
1133 len0 = i;
1134 }
1135
1136 /* The first few characters that are not alphabetic are not part
1137 of any encoding we use, so we can copy them over verbatim. */
1138
1139 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1140 decoded[j] = encoded[i];
1141
1142 at_start_name = 1;
1143 while (i < len0)
1144 {
1145 /* Is this a symbol function? */
1146 if (at_start_name && encoded[i] == 'O')
1147 {
1148 int k;
1149
1150 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1151 {
1152 int op_len = strlen (ada_opname_table[k].encoded);
1153 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1154 op_len - 1) == 0)
1155 && !isalnum (encoded[i + op_len]))
1156 {
1157 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1158 at_start_name = 0;
1159 i += op_len;
1160 j += strlen (ada_opname_table[k].decoded);
1161 break;
1162 }
1163 }
1164 if (ada_opname_table[k].encoded != NULL)
1165 continue;
1166 }
1167 at_start_name = 0;
1168
1169 /* Replace "TK__" with "__", which will eventually be translated
1170 into "." (just below). */
1171
1172 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1173 i += 2;
1174
1175 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1176 be translated into "." (just below). These are internal names
1177 generated for anonymous blocks inside which our symbol is nested. */
1178
1179 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1180 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1181 && isdigit (encoded [i+4]))
1182 {
1183 int k = i + 5;
1184
1185 while (k < len0 && isdigit (encoded[k]))
1186 k++; /* Skip any extra digit. */
1187
1188 /* Double-check that the "__B_{DIGITS}+" sequence we found
1189 is indeed followed by "__". */
1190 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1191 i = k;
1192 }
1193
1194 /* Remove _E{DIGITS}+[sb] */
1195
1196 /* Just as for protected object subprograms, there are 2 categories
1197 of subprograms created by the compiler for each entry. The first
1198 one implements the actual entry code, and has a suffix following
1199 the convention above; the second one implements the barrier and
1200 uses the same convention as above, except that the 'E' is replaced
1201 by a 'B'.
1202
1203 Just as above, we do not decode the name of barrier functions
1204 to give the user a clue that the code he is debugging has been
1205 internally generated. */
1206
1207 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1208 && isdigit (encoded[i+2]))
1209 {
1210 int k = i + 3;
1211
1212 while (k < len0 && isdigit (encoded[k]))
1213 k++;
1214
1215 if (k < len0
1216 && (encoded[k] == 'b' || encoded[k] == 's'))
1217 {
1218 k++;
1219 /* Just as an extra precaution, make sure that if this
1220 suffix is followed by anything else, it is a '_'.
1221 Otherwise, we matched this sequence by accident. */
1222 if (k == len0
1223 || (k < len0 && encoded[k] == '_'))
1224 i = k;
1225 }
1226 }
1227
1228 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1229 the GNAT front-end in protected object subprograms. */
1230
1231 if (i < len0 + 3
1232 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1233 {
1234 /* Backtrack a bit up until we reach either the begining of
1235 the encoded name, or "__". Make sure that we only find
1236 digits or lowercase characters. */
1237 const char *ptr = encoded + i - 1;
1238
1239 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1240 ptr--;
1241 if (ptr < encoded
1242 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1243 i++;
1244 }
1245
1246 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1247 {
1248 /* This is a X[bn]* sequence not separated from the previous
1249 part of the name with a non-alpha-numeric character (in other
1250 words, immediately following an alpha-numeric character), then
1251 verify that it is placed at the end of the encoded name. If
1252 not, then the encoding is not valid and we should abort the
1253 decoding. Otherwise, just skip it, it is used in body-nested
1254 package names. */
1255 do
1256 i += 1;
1257 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1258 if (i < len0)
1259 goto Suppress;
1260 }
1261 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1262 {
1263 /* Replace '__' by '.'. */
1264 decoded[j] = '.';
1265 at_start_name = 1;
1266 i += 2;
1267 j += 1;
1268 }
1269 else
1270 {
1271 /* It's a character part of the decoded name, so just copy it
1272 over. */
1273 decoded[j] = encoded[i];
1274 i += 1;
1275 j += 1;
1276 }
1277 }
1278 decoded.resize (j);
1279
1280 /* Decoded names should never contain any uppercase character.
1281 Double-check this, and abort the decoding if we find one. */
1282
1283 for (i = 0; i < decoded.length(); ++i)
1284 if (isupper (decoded[i]) || decoded[i] == ' ')
1285 goto Suppress;
1286
1287 return decoded;
1288
1289 Suppress:
1290 if (encoded[0] == '<')
1291 decoded = encoded;
1292 else
1293 decoded = '<' + std::string(encoded) + '>';
1294 return decoded;
1295
1296 }
1297
1298 /* Table for keeping permanent unique copies of decoded names. Once
1299 allocated, names in this table are never released. While this is a
1300 storage leak, it should not be significant unless there are massive
1301 changes in the set of decoded names in successive versions of a
1302 symbol table loaded during a single session. */
1303 static struct htab *decoded_names_store;
1304
1305 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1306 in the language-specific part of GSYMBOL, if it has not been
1307 previously computed. Tries to save the decoded name in the same
1308 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1309 in any case, the decoded symbol has a lifetime at least that of
1310 GSYMBOL).
1311 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1312 const, but nevertheless modified to a semantically equivalent form
1313 when a decoded name is cached in it. */
1314
1315 const char *
1316 ada_decode_symbol (const struct general_symbol_info *arg)
1317 {
1318 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1319 const char **resultp =
1320 &gsymbol->language_specific.demangled_name;
1321
1322 if (!gsymbol->ada_mangled)
1323 {
1324 std::string decoded = ada_decode (gsymbol->linkage_name ());
1325 struct obstack *obstack = gsymbol->language_specific.obstack;
1326
1327 gsymbol->ada_mangled = 1;
1328
1329 if (obstack != NULL)
1330 *resultp = obstack_strdup (obstack, decoded.c_str ());
1331 else
1332 {
1333 /* Sometimes, we can't find a corresponding objfile, in
1334 which case, we put the result on the heap. Since we only
1335 decode when needed, we hope this usually does not cause a
1336 significant memory leak (FIXME). */
1337
1338 char **slot = (char **) htab_find_slot (decoded_names_store,
1339 decoded.c_str (), INSERT);
1340
1341 if (*slot == NULL)
1342 *slot = xstrdup (decoded.c_str ());
1343 *resultp = *slot;
1344 }
1345 }
1346
1347 return *resultp;
1348 }
1349
1350 static char *
1351 ada_la_decode (const char *encoded, int options)
1352 {
1353 return xstrdup (ada_decode (encoded).c_str ());
1354 }
1355
1356 \f
1357
1358 /* Arrays */
1359
1360 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1361 generated by the GNAT compiler to describe the index type used
1362 for each dimension of an array, check whether it follows the latest
1363 known encoding. If not, fix it up to conform to the latest encoding.
1364 Otherwise, do nothing. This function also does nothing if
1365 INDEX_DESC_TYPE is NULL.
1366
1367 The GNAT encoding used to describe the array index type evolved a bit.
1368 Initially, the information would be provided through the name of each
1369 field of the structure type only, while the type of these fields was
1370 described as unspecified and irrelevant. The debugger was then expected
1371 to perform a global type lookup using the name of that field in order
1372 to get access to the full index type description. Because these global
1373 lookups can be very expensive, the encoding was later enhanced to make
1374 the global lookup unnecessary by defining the field type as being
1375 the full index type description.
1376
1377 The purpose of this routine is to allow us to support older versions
1378 of the compiler by detecting the use of the older encoding, and by
1379 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1380 we essentially replace each field's meaningless type by the associated
1381 index subtype). */
1382
1383 void
1384 ada_fixup_array_indexes_type (struct type *index_desc_type)
1385 {
1386 int i;
1387
1388 if (index_desc_type == NULL)
1389 return;
1390 gdb_assert (index_desc_type->num_fields () > 0);
1391
1392 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1393 to check one field only, no need to check them all). If not, return
1394 now.
1395
1396 If our INDEX_DESC_TYPE was generated using the older encoding,
1397 the field type should be a meaningless integer type whose name
1398 is not equal to the field name. */
1399 if (index_desc_type->field (0).type ()->name () != NULL
1400 && strcmp (index_desc_type->field (0).type ()->name (),
1401 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1402 return;
1403
1404 /* Fixup each field of INDEX_DESC_TYPE. */
1405 for (i = 0; i < index_desc_type->num_fields (); i++)
1406 {
1407 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1408 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1409
1410 if (raw_type)
1411 index_desc_type->field (i).set_type (raw_type);
1412 }
1413 }
1414
1415 /* The desc_* routines return primitive portions of array descriptors
1416 (fat pointers). */
1417
1418 /* The descriptor or array type, if any, indicated by TYPE; removes
1419 level of indirection, if needed. */
1420
1421 static struct type *
1422 desc_base_type (struct type *type)
1423 {
1424 if (type == NULL)
1425 return NULL;
1426 type = ada_check_typedef (type);
1427 if (type->code () == TYPE_CODE_TYPEDEF)
1428 type = ada_typedef_target_type (type);
1429
1430 if (type != NULL
1431 && (type->code () == TYPE_CODE_PTR
1432 || type->code () == TYPE_CODE_REF))
1433 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1434 else
1435 return type;
1436 }
1437
1438 /* True iff TYPE indicates a "thin" array pointer type. */
1439
1440 static int
1441 is_thin_pntr (struct type *type)
1442 {
1443 return
1444 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1445 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1446 }
1447
1448 /* The descriptor type for thin pointer type TYPE. */
1449
1450 static struct type *
1451 thin_descriptor_type (struct type *type)
1452 {
1453 struct type *base_type = desc_base_type (type);
1454
1455 if (base_type == NULL)
1456 return NULL;
1457 if (is_suffix (ada_type_name (base_type), "___XVE"))
1458 return base_type;
1459 else
1460 {
1461 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1462
1463 if (alt_type == NULL)
1464 return base_type;
1465 else
1466 return alt_type;
1467 }
1468 }
1469
1470 /* A pointer to the array data for thin-pointer value VAL. */
1471
1472 static struct value *
1473 thin_data_pntr (struct value *val)
1474 {
1475 struct type *type = ada_check_typedef (value_type (val));
1476 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1477
1478 data_type = lookup_pointer_type (data_type);
1479
1480 if (type->code () == TYPE_CODE_PTR)
1481 return value_cast (data_type, value_copy (val));
1482 else
1483 return value_from_longest (data_type, value_address (val));
1484 }
1485
1486 /* True iff TYPE indicates a "thick" array pointer type. */
1487
1488 static int
1489 is_thick_pntr (struct type *type)
1490 {
1491 type = desc_base_type (type);
1492 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1493 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1494 }
1495
1496 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1497 pointer to one, the type of its bounds data; otherwise, NULL. */
1498
1499 static struct type *
1500 desc_bounds_type (struct type *type)
1501 {
1502 struct type *r;
1503
1504 type = desc_base_type (type);
1505
1506 if (type == NULL)
1507 return NULL;
1508 else if (is_thin_pntr (type))
1509 {
1510 type = thin_descriptor_type (type);
1511 if (type == NULL)
1512 return NULL;
1513 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1514 if (r != NULL)
1515 return ada_check_typedef (r);
1516 }
1517 else if (type->code () == TYPE_CODE_STRUCT)
1518 {
1519 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1520 if (r != NULL)
1521 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1522 }
1523 return NULL;
1524 }
1525
1526 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1527 one, a pointer to its bounds data. Otherwise NULL. */
1528
1529 static struct value *
1530 desc_bounds (struct value *arr)
1531 {
1532 struct type *type = ada_check_typedef (value_type (arr));
1533
1534 if (is_thin_pntr (type))
1535 {
1536 struct type *bounds_type =
1537 desc_bounds_type (thin_descriptor_type (type));
1538 LONGEST addr;
1539
1540 if (bounds_type == NULL)
1541 error (_("Bad GNAT array descriptor"));
1542
1543 /* NOTE: The following calculation is not really kosher, but
1544 since desc_type is an XVE-encoded type (and shouldn't be),
1545 the correct calculation is a real pain. FIXME (and fix GCC). */
1546 if (type->code () == TYPE_CODE_PTR)
1547 addr = value_as_long (arr);
1548 else
1549 addr = value_address (arr);
1550
1551 return
1552 value_from_longest (lookup_pointer_type (bounds_type),
1553 addr - TYPE_LENGTH (bounds_type));
1554 }
1555
1556 else if (is_thick_pntr (type))
1557 {
1558 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1559 _("Bad GNAT array descriptor"));
1560 struct type *p_bounds_type = value_type (p_bounds);
1561
1562 if (p_bounds_type
1563 && p_bounds_type->code () == TYPE_CODE_PTR)
1564 {
1565 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1566
1567 if (TYPE_STUB (target_type))
1568 p_bounds = value_cast (lookup_pointer_type
1569 (ada_check_typedef (target_type)),
1570 p_bounds);
1571 }
1572 else
1573 error (_("Bad GNAT array descriptor"));
1574
1575 return p_bounds;
1576 }
1577 else
1578 return NULL;
1579 }
1580
1581 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1582 position of the field containing the address of the bounds data. */
1583
1584 static int
1585 fat_pntr_bounds_bitpos (struct type *type)
1586 {
1587 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1588 }
1589
1590 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1591 size of the field containing the address of the bounds data. */
1592
1593 static int
1594 fat_pntr_bounds_bitsize (struct type *type)
1595 {
1596 type = desc_base_type (type);
1597
1598 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1599 return TYPE_FIELD_BITSIZE (type, 1);
1600 else
1601 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its array data (a array-with-no-bounds type);
1606 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1607 data. */
1608
1609 static struct type *
1610 desc_data_target_type (struct type *type)
1611 {
1612 type = desc_base_type (type);
1613
1614 /* NOTE: The following is bogus; see comment in desc_bounds. */
1615 if (is_thin_pntr (type))
1616 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1617 else if (is_thick_pntr (type))
1618 {
1619 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1620
1621 if (data_type
1622 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1623 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1624 }
1625
1626 return NULL;
1627 }
1628
1629 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1630 its array data. */
1631
1632 static struct value *
1633 desc_data (struct value *arr)
1634 {
1635 struct type *type = value_type (arr);
1636
1637 if (is_thin_pntr (type))
1638 return thin_data_pntr (arr);
1639 else if (is_thick_pntr (type))
1640 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1641 _("Bad GNAT array descriptor"));
1642 else
1643 return NULL;
1644 }
1645
1646
1647 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1648 position of the field containing the address of the data. */
1649
1650 static int
1651 fat_pntr_data_bitpos (struct type *type)
1652 {
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1654 }
1655
1656 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1657 size of the field containing the address of the data. */
1658
1659 static int
1660 fat_pntr_data_bitsize (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663
1664 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1665 return TYPE_FIELD_BITSIZE (type, 0);
1666 else
1667 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1668 }
1669
1670 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1671 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1672 bound, if WHICH is 1. The first bound is I=1. */
1673
1674 static struct value *
1675 desc_one_bound (struct value *bounds, int i, int which)
1676 {
1677 char bound_name[20];
1678 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1679 which ? 'U' : 'L', i - 1);
1680 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1681 _("Bad GNAT array descriptor bounds"));
1682 }
1683
1684 /* If BOUNDS is an array-bounds structure type, return the bit position
1685 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1686 bound, if WHICH is 1. The first bound is I=1. */
1687
1688 static int
1689 desc_bound_bitpos (struct type *type, int i, int which)
1690 {
1691 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure type, return the bit field size
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static int
1699 desc_bound_bitsize (struct type *type, int i, int which)
1700 {
1701 type = desc_base_type (type);
1702
1703 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1704 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1705 else
1706 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1707 }
1708
1709 /* If TYPE is the type of an array-bounds structure, the type of its
1710 Ith bound (numbering from 1). Otherwise, NULL. */
1711
1712 static struct type *
1713 desc_index_type (struct type *type, int i)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (type->code () == TYPE_CODE_STRUCT)
1718 {
1719 char bound_name[20];
1720 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1721 return lookup_struct_elt_type (type, bound_name, 1);
1722 }
1723 else
1724 return NULL;
1725 }
1726
1727 /* The number of index positions in the array-bounds type TYPE.
1728 Return 0 if TYPE is NULL. */
1729
1730 static int
1731 desc_arity (struct type *type)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (type != NULL)
1736 return type->num_fields () / 2;
1737 return 0;
1738 }
1739
1740 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1741 an array descriptor type (representing an unconstrained array
1742 type). */
1743
1744 static int
1745 ada_is_direct_array_type (struct type *type)
1746 {
1747 if (type == NULL)
1748 return 0;
1749 type = ada_check_typedef (type);
1750 return (type->code () == TYPE_CODE_ARRAY
1751 || ada_is_array_descriptor_type (type));
1752 }
1753
1754 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1755 * to one. */
1756
1757 static int
1758 ada_is_array_type (struct type *type)
1759 {
1760 while (type != NULL
1761 && (type->code () == TYPE_CODE_PTR
1762 || type->code () == TYPE_CODE_REF))
1763 type = TYPE_TARGET_TYPE (type);
1764 return ada_is_direct_array_type (type);
1765 }
1766
1767 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1768
1769 int
1770 ada_is_simple_array_type (struct type *type)
1771 {
1772 if (type == NULL)
1773 return 0;
1774 type = ada_check_typedef (type);
1775 return (type->code () == TYPE_CODE_ARRAY
1776 || (type->code () == TYPE_CODE_PTR
1777 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1778 == TYPE_CODE_ARRAY)));
1779 }
1780
1781 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1782
1783 int
1784 ada_is_array_descriptor_type (struct type *type)
1785 {
1786 struct type *data_type = desc_data_target_type (type);
1787
1788 if (type == NULL)
1789 return 0;
1790 type = ada_check_typedef (type);
1791 return (data_type != NULL
1792 && data_type->code () == TYPE_CODE_ARRAY
1793 && desc_arity (desc_bounds_type (type)) > 0);
1794 }
1795
1796 /* Non-zero iff type is a partially mal-formed GNAT array
1797 descriptor. FIXME: This is to compensate for some problems with
1798 debugging output from GNAT. Re-examine periodically to see if it
1799 is still needed. */
1800
1801 int
1802 ada_is_bogus_array_descriptor (struct type *type)
1803 {
1804 return
1805 type != NULL
1806 && type->code () == TYPE_CODE_STRUCT
1807 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1808 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1809 && !ada_is_array_descriptor_type (type);
1810 }
1811
1812
1813 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1814 (fat pointer) returns the type of the array data described---specifically,
1815 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1816 in from the descriptor; otherwise, they are left unspecified. If
1817 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1818 returns NULL. The result is simply the type of ARR if ARR is not
1819 a descriptor. */
1820
1821 static struct type *
1822 ada_type_of_array (struct value *arr, int bounds)
1823 {
1824 if (ada_is_constrained_packed_array_type (value_type (arr)))
1825 return decode_constrained_packed_array_type (value_type (arr));
1826
1827 if (!ada_is_array_descriptor_type (value_type (arr)))
1828 return value_type (arr);
1829
1830 if (!bounds)
1831 {
1832 struct type *array_type =
1833 ada_check_typedef (desc_data_target_type (value_type (arr)));
1834
1835 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1836 TYPE_FIELD_BITSIZE (array_type, 0) =
1837 decode_packed_array_bitsize (value_type (arr));
1838
1839 return array_type;
1840 }
1841 else
1842 {
1843 struct type *elt_type;
1844 int arity;
1845 struct value *descriptor;
1846
1847 elt_type = ada_array_element_type (value_type (arr), -1);
1848 arity = ada_array_arity (value_type (arr));
1849
1850 if (elt_type == NULL || arity == 0)
1851 return ada_check_typedef (value_type (arr));
1852
1853 descriptor = desc_bounds (arr);
1854 if (value_as_long (descriptor) == 0)
1855 return NULL;
1856 while (arity > 0)
1857 {
1858 struct type *range_type = alloc_type_copy (value_type (arr));
1859 struct type *array_type = alloc_type_copy (value_type (arr));
1860 struct value *low = desc_one_bound (descriptor, arity, 0);
1861 struct value *high = desc_one_bound (descriptor, arity, 1);
1862
1863 arity -= 1;
1864 create_static_range_type (range_type, value_type (low),
1865 longest_to_int (value_as_long (low)),
1866 longest_to_int (value_as_long (high)));
1867 elt_type = create_array_type (array_type, elt_type, range_type);
1868
1869 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1870 {
1871 /* We need to store the element packed bitsize, as well as
1872 recompute the array size, because it was previously
1873 computed based on the unpacked element size. */
1874 LONGEST lo = value_as_long (low);
1875 LONGEST hi = value_as_long (high);
1876
1877 TYPE_FIELD_BITSIZE (elt_type, 0) =
1878 decode_packed_array_bitsize (value_type (arr));
1879 /* If the array has no element, then the size is already
1880 zero, and does not need to be recomputed. */
1881 if (lo < hi)
1882 {
1883 int array_bitsize =
1884 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1885
1886 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1887 }
1888 }
1889 }
1890
1891 return lookup_pointer_type (elt_type);
1892 }
1893 }
1894
1895 /* If ARR does not represent an array, returns ARR unchanged.
1896 Otherwise, returns either a standard GDB array with bounds set
1897 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1898 GDB array. Returns NULL if ARR is a null fat pointer. */
1899
1900 struct value *
1901 ada_coerce_to_simple_array_ptr (struct value *arr)
1902 {
1903 if (ada_is_array_descriptor_type (value_type (arr)))
1904 {
1905 struct type *arrType = ada_type_of_array (arr, 1);
1906
1907 if (arrType == NULL)
1908 return NULL;
1909 return value_cast (arrType, value_copy (desc_data (arr)));
1910 }
1911 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1912 return decode_constrained_packed_array (arr);
1913 else
1914 return arr;
1915 }
1916
1917 /* If ARR does not represent an array, returns ARR unchanged.
1918 Otherwise, returns a standard GDB array describing ARR (which may
1919 be ARR itself if it already is in the proper form). */
1920
1921 struct value *
1922 ada_coerce_to_simple_array (struct value *arr)
1923 {
1924 if (ada_is_array_descriptor_type (value_type (arr)))
1925 {
1926 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1927
1928 if (arrVal == NULL)
1929 error (_("Bounds unavailable for null array pointer."));
1930 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1931 return value_ind (arrVal);
1932 }
1933 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1934 return decode_constrained_packed_array (arr);
1935 else
1936 return arr;
1937 }
1938
1939 /* If TYPE represents a GNAT array type, return it translated to an
1940 ordinary GDB array type (possibly with BITSIZE fields indicating
1941 packing). For other types, is the identity. */
1942
1943 struct type *
1944 ada_coerce_to_simple_array_type (struct type *type)
1945 {
1946 if (ada_is_constrained_packed_array_type (type))
1947 return decode_constrained_packed_array_type (type);
1948
1949 if (ada_is_array_descriptor_type (type))
1950 return ada_check_typedef (desc_data_target_type (type));
1951
1952 return type;
1953 }
1954
1955 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1956
1957 static int
1958 ada_is_packed_array_type (struct type *type)
1959 {
1960 if (type == NULL)
1961 return 0;
1962 type = desc_base_type (type);
1963 type = ada_check_typedef (type);
1964 return
1965 ada_type_name (type) != NULL
1966 && strstr (ada_type_name (type), "___XP") != NULL;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT constrained
1970 packed-array type. */
1971
1972 int
1973 ada_is_constrained_packed_array_type (struct type *type)
1974 {
1975 return ada_is_packed_array_type (type)
1976 && !ada_is_array_descriptor_type (type);
1977 }
1978
1979 /* Non-zero iff TYPE represents an array descriptor for a
1980 unconstrained packed-array type. */
1981
1982 static int
1983 ada_is_unconstrained_packed_array_type (struct type *type)
1984 {
1985 return ada_is_packed_array_type (type)
1986 && ada_is_array_descriptor_type (type);
1987 }
1988
1989 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1990 return the size of its elements in bits. */
1991
1992 static long
1993 decode_packed_array_bitsize (struct type *type)
1994 {
1995 const char *raw_name;
1996 const char *tail;
1997 long bits;
1998
1999 /* Access to arrays implemented as fat pointers are encoded as a typedef
2000 of the fat pointer type. We need the name of the fat pointer type
2001 to do the decoding, so strip the typedef layer. */
2002 if (type->code () == TYPE_CODE_TYPEDEF)
2003 type = ada_typedef_target_type (type);
2004
2005 raw_name = ada_type_name (ada_check_typedef (type));
2006 if (!raw_name)
2007 raw_name = ada_type_name (desc_base_type (type));
2008
2009 if (!raw_name)
2010 return 0;
2011
2012 tail = strstr (raw_name, "___XP");
2013 gdb_assert (tail != NULL);
2014
2015 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2016 {
2017 lim_warning
2018 (_("could not understand bit size information on packed array"));
2019 return 0;
2020 }
2021
2022 return bits;
2023 }
2024
2025 /* Given that TYPE is a standard GDB array type with all bounds filled
2026 in, and that the element size of its ultimate scalar constituents
2027 (that is, either its elements, or, if it is an array of arrays, its
2028 elements' elements, etc.) is *ELT_BITS, return an identical type,
2029 but with the bit sizes of its elements (and those of any
2030 constituent arrays) recorded in the BITSIZE components of its
2031 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2032 in bits.
2033
2034 Note that, for arrays whose index type has an XA encoding where
2035 a bound references a record discriminant, getting that discriminant,
2036 and therefore the actual value of that bound, is not possible
2037 because none of the given parameters gives us access to the record.
2038 This function assumes that it is OK in the context where it is being
2039 used to return an array whose bounds are still dynamic and where
2040 the length is arbitrary. */
2041
2042 static struct type *
2043 constrained_packed_array_type (struct type *type, long *elt_bits)
2044 {
2045 struct type *new_elt_type;
2046 struct type *new_type;
2047 struct type *index_type_desc;
2048 struct type *index_type;
2049 LONGEST low_bound, high_bound;
2050
2051 type = ada_check_typedef (type);
2052 if (type->code () != TYPE_CODE_ARRAY)
2053 return type;
2054
2055 index_type_desc = ada_find_parallel_type (type, "___XA");
2056 if (index_type_desc)
2057 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2058 NULL);
2059 else
2060 index_type = type->index_type ();
2061
2062 new_type = alloc_type_copy (type);
2063 new_elt_type =
2064 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2065 elt_bits);
2066 create_array_type (new_type, new_elt_type, index_type);
2067 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2068 new_type->set_name (ada_type_name (type));
2069
2070 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2071 && is_dynamic_type (check_typedef (index_type)))
2072 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
2076 else
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
2079 TYPE_LENGTH (new_type) =
2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2081 }
2082
2083 TYPE_FIXED_INSTANCE (new_type) = 1;
2084 return new_type;
2085 }
2086
2087 /* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
2089
2090 static struct type *
2091 decode_constrained_packed_array_type (struct type *type)
2092 {
2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
2094 char *name;
2095 const char *tail;
2096 struct type *shadow_type;
2097 long bits;
2098
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
2107 type = desc_base_type (type);
2108
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
2115 {
2116 lim_warning (_("could not find bounds information on packed array"));
2117 return NULL;
2118 }
2119 shadow_type = check_typedef (shadow_type);
2120
2121 if (shadow_type->code () != TYPE_CODE_ARRAY)
2122 {
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
2125 return NULL;
2126 }
2127
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
2130 }
2131
2132 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
2136 type length is set appropriately. */
2137
2138 static struct value *
2139 decode_constrained_packed_array (struct value *arr)
2140 {
2141 struct type *type;
2142
2143 /* If our value is a pointer, then dereference it. Likewise if
2144 the value is a reference. Make sure that this operation does not
2145 cause the target type to be fixed, as this would indirectly cause
2146 this array to be decoded. The rest of the routine assumes that
2147 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2148 and "value_ind" routines to perform the dereferencing, as opposed
2149 to using "ada_coerce_ref" or "ada_value_ind". */
2150 arr = coerce_ref (arr);
2151 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2152 arr = value_ind (arr);
2153
2154 type = decode_constrained_packed_array_type (value_type (arr));
2155 if (type == NULL)
2156 {
2157 error (_("can't unpack array"));
2158 return NULL;
2159 }
2160
2161 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2162 && ada_is_modular_type (value_type (arr)))
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
2171 mod = ada_modulus (value_type (arr)) - 1;
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
2186 return coerce_unspec_val_to_type (arr, type);
2187 }
2188
2189
2190 /* The value of the element of packed array ARR at the ARITY indices
2191 given in IND. ARR must be a simple array. */
2192
2193 static struct value *
2194 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2195 {
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
2199 struct type *elt_type;
2200 struct value *v;
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
2204 elt_type = ada_check_typedef (value_type (arr));
2205 for (i = 0; i < arity; i += 1)
2206 {
2207 if (elt_type->code () != TYPE_CODE_ARRAY
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
2212 else
2213 {
2214 struct type *range_type = elt_type->index_type ();
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
2220 lim_warning (_("don't know bounds of array"));
2221 lowerbound = upperbound = 0;
2222 }
2223
2224 idx = pos_atr (ind[i]);
2225 if (idx < lowerbound || idx > upperbound)
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2231 }
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2237 bits, elt_type);
2238 return v;
2239 }
2240
2241 /* Non-zero iff TYPE includes negative integer values. */
2242
2243 static int
2244 has_negatives (struct type *type)
2245 {
2246 switch (type->code ())
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
2253 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2254 }
2255 }
2256
2257 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2258 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2259 the unpacked buffer.
2260
2261 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2262 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2263
2264 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2265 zero otherwise.
2266
2267 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2268
2269 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2270
2271 static void
2272 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2273 gdb_byte *unpacked, int unpacked_len,
2274 int is_big_endian, int is_signed_type,
2275 int is_scalar)
2276 {
2277 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2278 int src_idx; /* Index into the source area */
2279 int src_bytes_left; /* Number of source bytes left to process. */
2280 int srcBitsLeft; /* Number of source bits left to move */
2281 int unusedLS; /* Number of bits in next significant
2282 byte of source that are unused */
2283
2284 int unpacked_idx; /* Index into the unpacked buffer */
2285 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2286
2287 unsigned long accum; /* Staging area for bits being transferred */
2288 int accumSize; /* Number of meaningful bits in accum */
2289 unsigned char sign;
2290
2291 /* Transmit bytes from least to most significant; delta is the direction
2292 the indices move. */
2293 int delta = is_big_endian ? -1 : 1;
2294
2295 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2296 bits from SRC. .*/
2297 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2298 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2299 bit_size, unpacked_len);
2300
2301 srcBitsLeft = bit_size;
2302 src_bytes_left = src_len;
2303 unpacked_bytes_left = unpacked_len;
2304 sign = 0;
2305
2306 if (is_big_endian)
2307 {
2308 src_idx = src_len - 1;
2309 if (is_signed_type
2310 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2311 sign = ~0;
2312
2313 unusedLS =
2314 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2315 % HOST_CHAR_BIT;
2316
2317 if (is_scalar)
2318 {
2319 accumSize = 0;
2320 unpacked_idx = unpacked_len - 1;
2321 }
2322 else
2323 {
2324 /* Non-scalar values must be aligned at a byte boundary... */
2325 accumSize =
2326 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2327 /* ... And are placed at the beginning (most-significant) bytes
2328 of the target. */
2329 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2330 unpacked_bytes_left = unpacked_idx + 1;
2331 }
2332 }
2333 else
2334 {
2335 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2336
2337 src_idx = unpacked_idx = 0;
2338 unusedLS = bit_offset;
2339 accumSize = 0;
2340
2341 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2342 sign = ~0;
2343 }
2344
2345 accum = 0;
2346 while (src_bytes_left > 0)
2347 {
2348 /* Mask for removing bits of the next source byte that are not
2349 part of the value. */
2350 unsigned int unusedMSMask =
2351 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2352 1;
2353 /* Sign-extend bits for this byte. */
2354 unsigned int signMask = sign & ~unusedMSMask;
2355
2356 accum |=
2357 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2358 accumSize += HOST_CHAR_BIT - unusedLS;
2359 if (accumSize >= HOST_CHAR_BIT)
2360 {
2361 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 unpacked_bytes_left -= 1;
2365 unpacked_idx += delta;
2366 }
2367 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2368 unusedLS = 0;
2369 src_bytes_left -= 1;
2370 src_idx += delta;
2371 }
2372 while (unpacked_bytes_left > 0)
2373 {
2374 accum |= sign << accumSize;
2375 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2376 accumSize -= HOST_CHAR_BIT;
2377 if (accumSize < 0)
2378 accumSize = 0;
2379 accum >>= HOST_CHAR_BIT;
2380 unpacked_bytes_left -= 1;
2381 unpacked_idx += delta;
2382 }
2383 }
2384
2385 /* Create a new value of type TYPE from the contents of OBJ starting
2386 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2387 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2388 assigning through the result will set the field fetched from.
2389 VALADDR is ignored unless OBJ is NULL, in which case,
2390 VALADDR+OFFSET must address the start of storage containing the
2391 packed value. The value returned in this case is never an lval.
2392 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2393
2394 struct value *
2395 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2396 long offset, int bit_offset, int bit_size,
2397 struct type *type)
2398 {
2399 struct value *v;
2400 const gdb_byte *src; /* First byte containing data to unpack */
2401 gdb_byte *unpacked;
2402 const int is_scalar = is_scalar_type (type);
2403 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2404 gdb::byte_vector staging;
2405
2406 type = ada_check_typedef (type);
2407
2408 if (obj == NULL)
2409 src = valaddr + offset;
2410 else
2411 src = value_contents (obj) + offset;
2412
2413 if (is_dynamic_type (type))
2414 {
2415 /* The length of TYPE might by dynamic, so we need to resolve
2416 TYPE in order to know its actual size, which we then use
2417 to create the contents buffer of the value we return.
2418 The difficulty is that the data containing our object is
2419 packed, and therefore maybe not at a byte boundary. So, what
2420 we do, is unpack the data into a byte-aligned buffer, and then
2421 use that buffer as our object's value for resolving the type. */
2422 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2423 staging.resize (staging_len);
2424
2425 ada_unpack_from_contents (src, bit_offset, bit_size,
2426 staging.data (), staging.size (),
2427 is_big_endian, has_negatives (type),
2428 is_scalar);
2429 type = resolve_dynamic_type (type, staging, 0);
2430 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2431 {
2432 /* This happens when the length of the object is dynamic,
2433 and is actually smaller than the space reserved for it.
2434 For instance, in an array of variant records, the bit_size
2435 we're given is the array stride, which is constant and
2436 normally equal to the maximum size of its element.
2437 But, in reality, each element only actually spans a portion
2438 of that stride. */
2439 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2440 }
2441 }
2442
2443 if (obj == NULL)
2444 {
2445 v = allocate_value (type);
2446 src = valaddr + offset;
2447 }
2448 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2449 {
2450 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2451 gdb_byte *buf;
2452
2453 v = value_at (type, value_address (obj) + offset);
2454 buf = (gdb_byte *) alloca (src_len);
2455 read_memory (value_address (v), buf, src_len);
2456 src = buf;
2457 }
2458 else
2459 {
2460 v = allocate_value (type);
2461 src = value_contents (obj) + offset;
2462 }
2463
2464 if (obj != NULL)
2465 {
2466 long new_offset = offset;
2467
2468 set_value_component_location (v, obj);
2469 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2470 set_value_bitsize (v, bit_size);
2471 if (value_bitpos (v) >= HOST_CHAR_BIT)
2472 {
2473 ++new_offset;
2474 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2475 }
2476 set_value_offset (v, new_offset);
2477
2478 /* Also set the parent value. This is needed when trying to
2479 assign a new value (in inferior memory). */
2480 set_value_parent (v, obj);
2481 }
2482 else
2483 set_value_bitsize (v, bit_size);
2484 unpacked = value_contents_writeable (v);
2485
2486 if (bit_size == 0)
2487 {
2488 memset (unpacked, 0, TYPE_LENGTH (type));
2489 return v;
2490 }
2491
2492 if (staging.size () == TYPE_LENGTH (type))
2493 {
2494 /* Small short-cut: If we've unpacked the data into a buffer
2495 of the same size as TYPE's length, then we can reuse that,
2496 instead of doing the unpacking again. */
2497 memcpy (unpacked, staging.data (), staging.size ());
2498 }
2499 else
2500 ada_unpack_from_contents (src, bit_offset, bit_size,
2501 unpacked, TYPE_LENGTH (type),
2502 is_big_endian, has_negatives (type), is_scalar);
2503
2504 return v;
2505 }
2506
2507 /* Store the contents of FROMVAL into the location of TOVAL.
2508 Return a new value with the location of TOVAL and contents of
2509 FROMVAL. Handles assignment into packed fields that have
2510 floating-point or non-scalar types. */
2511
2512 static struct value *
2513 ada_value_assign (struct value *toval, struct value *fromval)
2514 {
2515 struct type *type = value_type (toval);
2516 int bits = value_bitsize (toval);
2517
2518 toval = ada_coerce_ref (toval);
2519 fromval = ada_coerce_ref (fromval);
2520
2521 if (ada_is_direct_array_type (value_type (toval)))
2522 toval = ada_coerce_to_simple_array (toval);
2523 if (ada_is_direct_array_type (value_type (fromval)))
2524 fromval = ada_coerce_to_simple_array (fromval);
2525
2526 if (!deprecated_value_modifiable (toval))
2527 error (_("Left operand of assignment is not a modifiable lvalue."));
2528
2529 if (VALUE_LVAL (toval) == lval_memory
2530 && bits > 0
2531 && (type->code () == TYPE_CODE_FLT
2532 || type->code () == TYPE_CODE_STRUCT))
2533 {
2534 int len = (value_bitpos (toval)
2535 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2536 int from_size;
2537 gdb_byte *buffer = (gdb_byte *) alloca (len);
2538 struct value *val;
2539 CORE_ADDR to_addr = value_address (toval);
2540
2541 if (type->code () == TYPE_CODE_FLT)
2542 fromval = value_cast (type, fromval);
2543
2544 read_memory (to_addr, buffer, len);
2545 from_size = value_bitsize (fromval);
2546 if (from_size == 0)
2547 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2548
2549 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2550 ULONGEST from_offset = 0;
2551 if (is_big_endian && is_scalar_type (value_type (fromval)))
2552 from_offset = from_size - bits;
2553 copy_bitwise (buffer, value_bitpos (toval),
2554 value_contents (fromval), from_offset,
2555 bits, is_big_endian);
2556 write_memory_with_notification (to_addr, buffer, len);
2557
2558 val = value_copy (toval);
2559 memcpy (value_contents_raw (val), value_contents (fromval),
2560 TYPE_LENGTH (type));
2561 deprecated_set_value_type (val, type);
2562
2563 return val;
2564 }
2565
2566 return value_assign (toval, fromval);
2567 }
2568
2569
2570 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2571 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2572 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2573 COMPONENT, and not the inferior's memory. The current contents
2574 of COMPONENT are ignored.
2575
2576 Although not part of the initial design, this function also works
2577 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2578 had a null address, and COMPONENT had an address which is equal to
2579 its offset inside CONTAINER. */
2580
2581 static void
2582 value_assign_to_component (struct value *container, struct value *component,
2583 struct value *val)
2584 {
2585 LONGEST offset_in_container =
2586 (LONGEST) (value_address (component) - value_address (container));
2587 int bit_offset_in_container =
2588 value_bitpos (component) - value_bitpos (container);
2589 int bits;
2590
2591 val = value_cast (value_type (component), val);
2592
2593 if (value_bitsize (component) == 0)
2594 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2595 else
2596 bits = value_bitsize (component);
2597
2598 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2599 {
2600 int src_offset;
2601
2602 if (is_scalar_type (check_typedef (value_type (component))))
2603 src_offset
2604 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2605 else
2606 src_offset = 0;
2607 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2608 value_bitpos (container) + bit_offset_in_container,
2609 value_contents (val), src_offset, bits, 1);
2610 }
2611 else
2612 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2613 value_bitpos (container) + bit_offset_in_container,
2614 value_contents (val), 0, bits, 0);
2615 }
2616
2617 /* Determine if TYPE is an access to an unconstrained array. */
2618
2619 bool
2620 ada_is_access_to_unconstrained_array (struct type *type)
2621 {
2622 return (type->code () == TYPE_CODE_TYPEDEF
2623 && is_thick_pntr (ada_typedef_target_type (type)));
2624 }
2625
2626 /* The value of the element of array ARR at the ARITY indices given in IND.
2627 ARR may be either a simple array, GNAT array descriptor, or pointer
2628 thereto. */
2629
2630 struct value *
2631 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2632 {
2633 int k;
2634 struct value *elt;
2635 struct type *elt_type;
2636
2637 elt = ada_coerce_to_simple_array (arr);
2638
2639 elt_type = ada_check_typedef (value_type (elt));
2640 if (elt_type->code () == TYPE_CODE_ARRAY
2641 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2642 return value_subscript_packed (elt, arity, ind);
2643
2644 for (k = 0; k < arity; k += 1)
2645 {
2646 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2647
2648 if (elt_type->code () != TYPE_CODE_ARRAY)
2649 error (_("too many subscripts (%d expected)"), k);
2650
2651 elt = value_subscript (elt, pos_atr (ind[k]));
2652
2653 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2654 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2655 {
2656 /* The element is a typedef to an unconstrained array,
2657 except that the value_subscript call stripped the
2658 typedef layer. The typedef layer is GNAT's way to
2659 specify that the element is, at the source level, an
2660 access to the unconstrained array, rather than the
2661 unconstrained array. So, we need to restore that
2662 typedef layer, which we can do by forcing the element's
2663 type back to its original type. Otherwise, the returned
2664 value is going to be printed as the array, rather
2665 than as an access. Another symptom of the same issue
2666 would be that an expression trying to dereference the
2667 element would also be improperly rejected. */
2668 deprecated_set_value_type (elt, saved_elt_type);
2669 }
2670
2671 elt_type = ada_check_typedef (value_type (elt));
2672 }
2673
2674 return elt;
2675 }
2676
2677 /* Assuming ARR is a pointer to a GDB array, the value of the element
2678 of *ARR at the ARITY indices given in IND.
2679 Does not read the entire array into memory.
2680
2681 Note: Unlike what one would expect, this function is used instead of
2682 ada_value_subscript for basically all non-packed array types. The reason
2683 for this is that a side effect of doing our own pointer arithmetics instead
2684 of relying on value_subscript is that there is no implicit typedef peeling.
2685 This is important for arrays of array accesses, where it allows us to
2686 preserve the fact that the array's element is an array access, where the
2687 access part os encoded in a typedef layer. */
2688
2689 static struct value *
2690 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2691 {
2692 int k;
2693 struct value *array_ind = ada_value_ind (arr);
2694 struct type *type
2695 = check_typedef (value_enclosing_type (array_ind));
2696
2697 if (type->code () == TYPE_CODE_ARRAY
2698 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2699 return value_subscript_packed (array_ind, arity, ind);
2700
2701 for (k = 0; k < arity; k += 1)
2702 {
2703 LONGEST lwb, upb;
2704
2705 if (type->code () != TYPE_CODE_ARRAY)
2706 error (_("too many subscripts (%d expected)"), k);
2707 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2708 value_copy (arr));
2709 get_discrete_bounds (type->index_type (), &lwb, &upb);
2710 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2711 type = TYPE_TARGET_TYPE (type);
2712 }
2713
2714 return value_ind (arr);
2715 }
2716
2717 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2718 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2719 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2720 this array is LOW, as per Ada rules. */
2721 static struct value *
2722 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2723 int low, int high)
2724 {
2725 struct type *type0 = ada_check_typedef (type);
2726 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2727 struct type *index_type
2728 = create_static_range_type (NULL, base_index_type, low, high);
2729 struct type *slice_type = create_array_type_with_stride
2730 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2731 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2732 TYPE_FIELD_BITSIZE (type0, 0));
2733 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2734 LONGEST base_low_pos, low_pos;
2735 CORE_ADDR base;
2736
2737 if (!discrete_position (base_index_type, low, &low_pos)
2738 || !discrete_position (base_index_type, base_low, &base_low_pos))
2739 {
2740 warning (_("unable to get positions in slice, use bounds instead"));
2741 low_pos = low;
2742 base_low_pos = base_low;
2743 }
2744
2745 base = value_as_address (array_ptr)
2746 + ((low_pos - base_low_pos)
2747 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2748 return value_at_lazy (slice_type, base);
2749 }
2750
2751
2752 static struct value *
2753 ada_value_slice (struct value *array, int low, int high)
2754 {
2755 struct type *type = ada_check_typedef (value_type (array));
2756 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2757 struct type *index_type
2758 = create_static_range_type (NULL, type->index_type (), low, high);
2759 struct type *slice_type = create_array_type_with_stride
2760 (NULL, TYPE_TARGET_TYPE (type), index_type,
2761 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2762 TYPE_FIELD_BITSIZE (type, 0));
2763 LONGEST low_pos, high_pos;
2764
2765 if (!discrete_position (base_index_type, low, &low_pos)
2766 || !discrete_position (base_index_type, high, &high_pos))
2767 {
2768 warning (_("unable to get positions in slice, use bounds instead"));
2769 low_pos = low;
2770 high_pos = high;
2771 }
2772
2773 return value_cast (slice_type,
2774 value_slice (array, low, high_pos - low_pos + 1));
2775 }
2776
2777 /* If type is a record type in the form of a standard GNAT array
2778 descriptor, returns the number of dimensions for type. If arr is a
2779 simple array, returns the number of "array of"s that prefix its
2780 type designation. Otherwise, returns 0. */
2781
2782 int
2783 ada_array_arity (struct type *type)
2784 {
2785 int arity;
2786
2787 if (type == NULL)
2788 return 0;
2789
2790 type = desc_base_type (type);
2791
2792 arity = 0;
2793 if (type->code () == TYPE_CODE_STRUCT)
2794 return desc_arity (desc_bounds_type (type));
2795 else
2796 while (type->code () == TYPE_CODE_ARRAY)
2797 {
2798 arity += 1;
2799 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2800 }
2801
2802 return arity;
2803 }
2804
2805 /* If TYPE is a record type in the form of a standard GNAT array
2806 descriptor or a simple array type, returns the element type for
2807 TYPE after indexing by NINDICES indices, or by all indices if
2808 NINDICES is -1. Otherwise, returns NULL. */
2809
2810 struct type *
2811 ada_array_element_type (struct type *type, int nindices)
2812 {
2813 type = desc_base_type (type);
2814
2815 if (type->code () == TYPE_CODE_STRUCT)
2816 {
2817 int k;
2818 struct type *p_array_type;
2819
2820 p_array_type = desc_data_target_type (type);
2821
2822 k = ada_array_arity (type);
2823 if (k == 0)
2824 return NULL;
2825
2826 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2827 if (nindices >= 0 && k > nindices)
2828 k = nindices;
2829 while (k > 0 && p_array_type != NULL)
2830 {
2831 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2832 k -= 1;
2833 }
2834 return p_array_type;
2835 }
2836 else if (type->code () == TYPE_CODE_ARRAY)
2837 {
2838 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2839 {
2840 type = TYPE_TARGET_TYPE (type);
2841 nindices -= 1;
2842 }
2843 return type;
2844 }
2845
2846 return NULL;
2847 }
2848
2849 /* The type of nth index in arrays of given type (n numbering from 1).
2850 Does not examine memory. Throws an error if N is invalid or TYPE
2851 is not an array type. NAME is the name of the Ada attribute being
2852 evaluated ('range, 'first, 'last, or 'length); it is used in building
2853 the error message. */
2854
2855 static struct type *
2856 ada_index_type (struct type *type, int n, const char *name)
2857 {
2858 struct type *result_type;
2859
2860 type = desc_base_type (type);
2861
2862 if (n < 0 || n > ada_array_arity (type))
2863 error (_("invalid dimension number to '%s"), name);
2864
2865 if (ada_is_simple_array_type (type))
2866 {
2867 int i;
2868
2869 for (i = 1; i < n; i += 1)
2870 type = TYPE_TARGET_TYPE (type);
2871 result_type = TYPE_TARGET_TYPE (type->index_type ());
2872 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2873 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2874 perhaps stabsread.c would make more sense. */
2875 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2876 result_type = NULL;
2877 }
2878 else
2879 {
2880 result_type = desc_index_type (desc_bounds_type (type), n);
2881 if (result_type == NULL)
2882 error (_("attempt to take bound of something that is not an array"));
2883 }
2884
2885 return result_type;
2886 }
2887
2888 /* Given that arr is an array type, returns the lower bound of the
2889 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2890 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2891 array-descriptor type. It works for other arrays with bounds supplied
2892 by run-time quantities other than discriminants. */
2893
2894 static LONGEST
2895 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2896 {
2897 struct type *type, *index_type_desc, *index_type;
2898 int i;
2899
2900 gdb_assert (which == 0 || which == 1);
2901
2902 if (ada_is_constrained_packed_array_type (arr_type))
2903 arr_type = decode_constrained_packed_array_type (arr_type);
2904
2905 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2906 return (LONGEST) - which;
2907
2908 if (arr_type->code () == TYPE_CODE_PTR)
2909 type = TYPE_TARGET_TYPE (arr_type);
2910 else
2911 type = arr_type;
2912
2913 if (TYPE_FIXED_INSTANCE (type))
2914 {
2915 /* The array has already been fixed, so we do not need to
2916 check the parallel ___XA type again. That encoding has
2917 already been applied, so ignore it now. */
2918 index_type_desc = NULL;
2919 }
2920 else
2921 {
2922 index_type_desc = ada_find_parallel_type (type, "___XA");
2923 ada_fixup_array_indexes_type (index_type_desc);
2924 }
2925
2926 if (index_type_desc != NULL)
2927 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2928 NULL);
2929 else
2930 {
2931 struct type *elt_type = check_typedef (type);
2932
2933 for (i = 1; i < n; i++)
2934 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2935
2936 index_type = elt_type->index_type ();
2937 }
2938
2939 return
2940 (LONGEST) (which == 0
2941 ? ada_discrete_type_low_bound (index_type)
2942 : ada_discrete_type_high_bound (index_type));
2943 }
2944
2945 /* Given that arr is an array value, returns the lower bound of the
2946 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2947 WHICH is 1. This routine will also work for arrays with bounds
2948 supplied by run-time quantities other than discriminants. */
2949
2950 static LONGEST
2951 ada_array_bound (struct value *arr, int n, int which)
2952 {
2953 struct type *arr_type;
2954
2955 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2956 arr = value_ind (arr);
2957 arr_type = value_enclosing_type (arr);
2958
2959 if (ada_is_constrained_packed_array_type (arr_type))
2960 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2961 else if (ada_is_simple_array_type (arr_type))
2962 return ada_array_bound_from_type (arr_type, n, which);
2963 else
2964 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2965 }
2966
2967 /* Given that arr is an array value, returns the length of the
2968 nth index. This routine will also work for arrays with bounds
2969 supplied by run-time quantities other than discriminants.
2970 Does not work for arrays indexed by enumeration types with representation
2971 clauses at the moment. */
2972
2973 static LONGEST
2974 ada_array_length (struct value *arr, int n)
2975 {
2976 struct type *arr_type, *index_type;
2977 int low, high;
2978
2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_length (decode_constrained_packed_array (arr), n);
2985
2986 if (ada_is_simple_array_type (arr_type))
2987 {
2988 low = ada_array_bound_from_type (arr_type, n, 0);
2989 high = ada_array_bound_from_type (arr_type, n, 1);
2990 }
2991 else
2992 {
2993 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
2994 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
2995 }
2996
2997 arr_type = check_typedef (arr_type);
2998 index_type = ada_index_type (arr_type, n, "length");
2999 if (index_type != NULL)
3000 {
3001 struct type *base_type;
3002 if (index_type->code () == TYPE_CODE_RANGE)
3003 base_type = TYPE_TARGET_TYPE (index_type);
3004 else
3005 base_type = index_type;
3006
3007 low = pos_atr (value_from_longest (base_type, low));
3008 high = pos_atr (value_from_longest (base_type, high));
3009 }
3010 return high - low + 1;
3011 }
3012
3013 /* An array whose type is that of ARR_TYPE (an array type), with
3014 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3015 less than LOW, then LOW-1 is used. */
3016
3017 static struct value *
3018 empty_array (struct type *arr_type, int low, int high)
3019 {
3020 struct type *arr_type0 = ada_check_typedef (arr_type);
3021 struct type *index_type
3022 = create_static_range_type
3023 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3024 high < low ? low - 1 : high);
3025 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3026
3027 return allocate_value (create_array_type (NULL, elt_type, index_type));
3028 }
3029 \f
3030
3031 /* Name resolution */
3032
3033 /* The "decoded" name for the user-definable Ada operator corresponding
3034 to OP. */
3035
3036 static const char *
3037 ada_decoded_op_name (enum exp_opcode op)
3038 {
3039 int i;
3040
3041 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3042 {
3043 if (ada_opname_table[i].op == op)
3044 return ada_opname_table[i].decoded;
3045 }
3046 error (_("Could not find operator name for opcode"));
3047 }
3048
3049 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3050 in a listing of choices during disambiguation (see sort_choices, below).
3051 The idea is that overloadings of a subprogram name from the
3052 same package should sort in their source order. We settle for ordering
3053 such symbols by their trailing number (__N or $N). */
3054
3055 static int
3056 encoded_ordered_before (const char *N0, const char *N1)
3057 {
3058 if (N1 == NULL)
3059 return 0;
3060 else if (N0 == NULL)
3061 return 1;
3062 else
3063 {
3064 int k0, k1;
3065
3066 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3067 ;
3068 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3069 ;
3070 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3071 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3072 {
3073 int n0, n1;
3074
3075 n0 = k0;
3076 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3077 n0 -= 1;
3078 n1 = k1;
3079 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3080 n1 -= 1;
3081 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3082 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3083 }
3084 return (strcmp (N0, N1) < 0);
3085 }
3086 }
3087
3088 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3089 encoded names. */
3090
3091 static void
3092 sort_choices (struct block_symbol syms[], int nsyms)
3093 {
3094 int i;
3095
3096 for (i = 1; i < nsyms; i += 1)
3097 {
3098 struct block_symbol sym = syms[i];
3099 int j;
3100
3101 for (j = i - 1; j >= 0; j -= 1)
3102 {
3103 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3104 sym.symbol->linkage_name ()))
3105 break;
3106 syms[j + 1] = syms[j];
3107 }
3108 syms[j + 1] = sym;
3109 }
3110 }
3111
3112 /* Whether GDB should display formals and return types for functions in the
3113 overloads selection menu. */
3114 static bool print_signatures = true;
3115
3116 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3117 all but functions, the signature is just the name of the symbol. For
3118 functions, this is the name of the function, the list of types for formals
3119 and the return type (if any). */
3120
3121 static void
3122 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3123 const struct type_print_options *flags)
3124 {
3125 struct type *type = SYMBOL_TYPE (sym);
3126
3127 fprintf_filtered (stream, "%s", sym->print_name ());
3128 if (!print_signatures
3129 || type == NULL
3130 || type->code () != TYPE_CODE_FUNC)
3131 return;
3132
3133 if (type->num_fields () > 0)
3134 {
3135 int i;
3136
3137 fprintf_filtered (stream, " (");
3138 for (i = 0; i < type->num_fields (); ++i)
3139 {
3140 if (i > 0)
3141 fprintf_filtered (stream, "; ");
3142 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3143 flags);
3144 }
3145 fprintf_filtered (stream, ")");
3146 }
3147 if (TYPE_TARGET_TYPE (type) != NULL
3148 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3149 {
3150 fprintf_filtered (stream, " return ");
3151 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3152 }
3153 }
3154
3155 /* Read and validate a set of numeric choices from the user in the
3156 range 0 .. N_CHOICES-1. Place the results in increasing
3157 order in CHOICES[0 .. N-1], and return N.
3158
3159 The user types choices as a sequence of numbers on one line
3160 separated by blanks, encoding them as follows:
3161
3162 + A choice of 0 means to cancel the selection, throwing an error.
3163 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3164 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3165
3166 The user is not allowed to choose more than MAX_RESULTS values.
3167
3168 ANNOTATION_SUFFIX, if present, is used to annotate the input
3169 prompts (for use with the -f switch). */
3170
3171 static int
3172 get_selections (int *choices, int n_choices, int max_results,
3173 int is_all_choice, const char *annotation_suffix)
3174 {
3175 const char *args;
3176 const char *prompt;
3177 int n_chosen;
3178 int first_choice = is_all_choice ? 2 : 1;
3179
3180 prompt = getenv ("PS2");
3181 if (prompt == NULL)
3182 prompt = "> ";
3183
3184 args = command_line_input (prompt, annotation_suffix);
3185
3186 if (args == NULL)
3187 error_no_arg (_("one or more choice numbers"));
3188
3189 n_chosen = 0;
3190
3191 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3192 order, as given in args. Choices are validated. */
3193 while (1)
3194 {
3195 char *args2;
3196 int choice, j;
3197
3198 args = skip_spaces (args);
3199 if (*args == '\0' && n_chosen == 0)
3200 error_no_arg (_("one or more choice numbers"));
3201 else if (*args == '\0')
3202 break;
3203
3204 choice = strtol (args, &args2, 10);
3205 if (args == args2 || choice < 0
3206 || choice > n_choices + first_choice - 1)
3207 error (_("Argument must be choice number"));
3208 args = args2;
3209
3210 if (choice == 0)
3211 error (_("cancelled"));
3212
3213 if (choice < first_choice)
3214 {
3215 n_chosen = n_choices;
3216 for (j = 0; j < n_choices; j += 1)
3217 choices[j] = j;
3218 break;
3219 }
3220 choice -= first_choice;
3221
3222 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3223 {
3224 }
3225
3226 if (j < 0 || choice != choices[j])
3227 {
3228 int k;
3229
3230 for (k = n_chosen - 1; k > j; k -= 1)
3231 choices[k + 1] = choices[k];
3232 choices[j + 1] = choice;
3233 n_chosen += 1;
3234 }
3235 }
3236
3237 if (n_chosen > max_results)
3238 error (_("Select no more than %d of the above"), max_results);
3239
3240 return n_chosen;
3241 }
3242
3243 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3244 by asking the user (if necessary), returning the number selected,
3245 and setting the first elements of SYMS items. Error if no symbols
3246 selected. */
3247
3248 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3249 to be re-integrated one of these days. */
3250
3251 static int
3252 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3253 {
3254 int i;
3255 int *chosen = XALLOCAVEC (int , nsyms);
3256 int n_chosen;
3257 int first_choice = (max_results == 1) ? 1 : 2;
3258 const char *select_mode = multiple_symbols_select_mode ();
3259
3260 if (max_results < 1)
3261 error (_("Request to select 0 symbols!"));
3262 if (nsyms <= 1)
3263 return nsyms;
3264
3265 if (select_mode == multiple_symbols_cancel)
3266 error (_("\
3267 canceled because the command is ambiguous\n\
3268 See set/show multiple-symbol."));
3269
3270 /* If select_mode is "all", then return all possible symbols.
3271 Only do that if more than one symbol can be selected, of course.
3272 Otherwise, display the menu as usual. */
3273 if (select_mode == multiple_symbols_all && max_results > 1)
3274 return nsyms;
3275
3276 printf_filtered (_("[0] cancel\n"));
3277 if (max_results > 1)
3278 printf_filtered (_("[1] all\n"));
3279
3280 sort_choices (syms, nsyms);
3281
3282 for (i = 0; i < nsyms; i += 1)
3283 {
3284 if (syms[i].symbol == NULL)
3285 continue;
3286
3287 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3288 {
3289 struct symtab_and_line sal =
3290 find_function_start_sal (syms[i].symbol, 1);
3291
3292 printf_filtered ("[%d] ", i + first_choice);
3293 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3294 &type_print_raw_options);
3295 if (sal.symtab == NULL)
3296 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3297 metadata_style.style ().ptr (), nullptr, sal.line);
3298 else
3299 printf_filtered
3300 (_(" at %ps:%d\n"),
3301 styled_string (file_name_style.style (),
3302 symtab_to_filename_for_display (sal.symtab)),
3303 sal.line);
3304 continue;
3305 }
3306 else
3307 {
3308 int is_enumeral =
3309 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3310 && SYMBOL_TYPE (syms[i].symbol) != NULL
3311 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3312 struct symtab *symtab = NULL;
3313
3314 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3315 symtab = symbol_symtab (syms[i].symbol);
3316
3317 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3318 {
3319 printf_filtered ("[%d] ", i + first_choice);
3320 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3321 &type_print_raw_options);
3322 printf_filtered (_(" at %s:%d\n"),
3323 symtab_to_filename_for_display (symtab),
3324 SYMBOL_LINE (syms[i].symbol));
3325 }
3326 else if (is_enumeral
3327 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3328 {
3329 printf_filtered (("[%d] "), i + first_choice);
3330 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3331 gdb_stdout, -1, 0, &type_print_raw_options);
3332 printf_filtered (_("'(%s) (enumeral)\n"),
3333 syms[i].symbol->print_name ());
3334 }
3335 else
3336 {
3337 printf_filtered ("[%d] ", i + first_choice);
3338 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3339 &type_print_raw_options);
3340
3341 if (symtab != NULL)
3342 printf_filtered (is_enumeral
3343 ? _(" in %s (enumeral)\n")
3344 : _(" at %s:?\n"),
3345 symtab_to_filename_for_display (symtab));
3346 else
3347 printf_filtered (is_enumeral
3348 ? _(" (enumeral)\n")
3349 : _(" at ?\n"));
3350 }
3351 }
3352 }
3353
3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3355 "overload-choice");
3356
3357 for (i = 0; i < n_chosen; i += 1)
3358 syms[i] = syms[chosen[i]];
3359
3360 return n_chosen;
3361 }
3362
3363 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3364 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3365 undefined namespace) and converts operators that are
3366 user-defined into appropriate function calls. If CONTEXT_TYPE is
3367 non-null, it provides a preferred result type [at the moment, only
3368 type void has any effect---causing procedures to be preferred over
3369 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3370 return type is preferred. May change (expand) *EXP. */
3371
3372 static void
3373 resolve (expression_up *expp, int void_context_p, int parse_completion,
3374 innermost_block_tracker *tracker)
3375 {
3376 struct type *context_type = NULL;
3377 int pc = 0;
3378
3379 if (void_context_p)
3380 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3381
3382 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3383 }
3384
3385 /* Resolve the operator of the subexpression beginning at
3386 position *POS of *EXPP. "Resolving" consists of replacing
3387 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3388 with their resolutions, replacing built-in operators with
3389 function calls to user-defined operators, where appropriate, and,
3390 when DEPROCEDURE_P is non-zero, converting function-valued variables
3391 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3392 are as in ada_resolve, above. */
3393
3394 static struct value *
3395 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3396 struct type *context_type, int parse_completion,
3397 innermost_block_tracker *tracker)
3398 {
3399 int pc = *pos;
3400 int i;
3401 struct expression *exp; /* Convenience: == *expp. */
3402 enum exp_opcode op = (*expp)->elts[pc].opcode;
3403 struct value **argvec; /* Vector of operand types (alloca'ed). */
3404 int nargs; /* Number of operands. */
3405 int oplen;
3406
3407 argvec = NULL;
3408 nargs = 0;
3409 exp = expp->get ();
3410
3411 /* Pass one: resolve operands, saving their types and updating *pos,
3412 if needed. */
3413 switch (op)
3414 {
3415 case OP_FUNCALL:
3416 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3417 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3418 *pos += 7;
3419 else
3420 {
3421 *pos += 3;
3422 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3423 }
3424 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3425 break;
3426
3427 case UNOP_ADDR:
3428 *pos += 1;
3429 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3430 break;
3431
3432 case UNOP_QUAL:
3433 *pos += 3;
3434 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3435 parse_completion, tracker);
3436 break;
3437
3438 case OP_ATR_MODULUS:
3439 case OP_ATR_SIZE:
3440 case OP_ATR_TAG:
3441 case OP_ATR_FIRST:
3442 case OP_ATR_LAST:
3443 case OP_ATR_LENGTH:
3444 case OP_ATR_POS:
3445 case OP_ATR_VAL:
3446 case OP_ATR_MIN:
3447 case OP_ATR_MAX:
3448 case TERNOP_IN_RANGE:
3449 case BINOP_IN_BOUNDS:
3450 case UNOP_IN_RANGE:
3451 case OP_AGGREGATE:
3452 case OP_OTHERS:
3453 case OP_CHOICES:
3454 case OP_POSITIONAL:
3455 case OP_DISCRETE_RANGE:
3456 case OP_NAME:
3457 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3458 *pos += oplen;
3459 break;
3460
3461 case BINOP_ASSIGN:
3462 {
3463 struct value *arg1;
3464
3465 *pos += 1;
3466 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3467 if (arg1 == NULL)
3468 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3469 else
3470 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3471 tracker);
3472 break;
3473 }
3474
3475 case UNOP_CAST:
3476 *pos += 3;
3477 nargs = 1;
3478 break;
3479
3480 case BINOP_ADD:
3481 case BINOP_SUB:
3482 case BINOP_MUL:
3483 case BINOP_DIV:
3484 case BINOP_REM:
3485 case BINOP_MOD:
3486 case BINOP_EXP:
3487 case BINOP_CONCAT:
3488 case BINOP_LOGICAL_AND:
3489 case BINOP_LOGICAL_OR:
3490 case BINOP_BITWISE_AND:
3491 case BINOP_BITWISE_IOR:
3492 case BINOP_BITWISE_XOR:
3493
3494 case BINOP_EQUAL:
3495 case BINOP_NOTEQUAL:
3496 case BINOP_LESS:
3497 case BINOP_GTR:
3498 case BINOP_LEQ:
3499 case BINOP_GEQ:
3500
3501 case BINOP_REPEAT:
3502 case BINOP_SUBSCRIPT:
3503 case BINOP_COMMA:
3504 *pos += 1;
3505 nargs = 2;
3506 break;
3507
3508 case UNOP_NEG:
3509 case UNOP_PLUS:
3510 case UNOP_LOGICAL_NOT:
3511 case UNOP_ABS:
3512 case UNOP_IND:
3513 *pos += 1;
3514 nargs = 1;
3515 break;
3516
3517 case OP_LONG:
3518 case OP_FLOAT:
3519 case OP_VAR_VALUE:
3520 case OP_VAR_MSYM_VALUE:
3521 *pos += 4;
3522 break;
3523
3524 case OP_TYPE:
3525 case OP_BOOL:
3526 case OP_LAST:
3527 case OP_INTERNALVAR:
3528 *pos += 3;
3529 break;
3530
3531 case UNOP_MEMVAL:
3532 *pos += 3;
3533 nargs = 1;
3534 break;
3535
3536 case OP_REGISTER:
3537 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3538 break;
3539
3540 case STRUCTOP_STRUCT:
3541 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3542 nargs = 1;
3543 break;
3544
3545 case TERNOP_SLICE:
3546 *pos += 1;
3547 nargs = 3;
3548 break;
3549
3550 case OP_STRING:
3551 break;
3552
3553 default:
3554 error (_("Unexpected operator during name resolution"));
3555 }
3556
3557 argvec = XALLOCAVEC (struct value *, nargs + 1);
3558 for (i = 0; i < nargs; i += 1)
3559 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3560 tracker);
3561 argvec[i] = NULL;
3562 exp = expp->get ();
3563
3564 /* Pass two: perform any resolution on principal operator. */
3565 switch (op)
3566 {
3567 default:
3568 break;
3569
3570 case OP_VAR_VALUE:
3571 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3572 {
3573 std::vector<struct block_symbol> candidates;
3574 int n_candidates;
3575
3576 n_candidates =
3577 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3578 exp->elts[pc + 1].block, VAR_DOMAIN,
3579 &candidates);
3580
3581 if (n_candidates > 1)
3582 {
3583 /* Types tend to get re-introduced locally, so if there
3584 are any local symbols that are not types, first filter
3585 out all types. */
3586 int j;
3587 for (j = 0; j < n_candidates; j += 1)
3588 switch (SYMBOL_CLASS (candidates[j].symbol))
3589 {
3590 case LOC_REGISTER:
3591 case LOC_ARG:
3592 case LOC_REF_ARG:
3593 case LOC_REGPARM_ADDR:
3594 case LOC_LOCAL:
3595 case LOC_COMPUTED:
3596 goto FoundNonType;
3597 default:
3598 break;
3599 }
3600 FoundNonType:
3601 if (j < n_candidates)
3602 {
3603 j = 0;
3604 while (j < n_candidates)
3605 {
3606 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3607 {
3608 candidates[j] = candidates[n_candidates - 1];
3609 n_candidates -= 1;
3610 }
3611 else
3612 j += 1;
3613 }
3614 }
3615 }
3616
3617 if (n_candidates == 0)
3618 error (_("No definition found for %s"),
3619 exp->elts[pc + 2].symbol->print_name ());
3620 else if (n_candidates == 1)
3621 i = 0;
3622 else if (deprocedure_p
3623 && !is_nonfunction (candidates.data (), n_candidates))
3624 {
3625 i = ada_resolve_function
3626 (candidates.data (), n_candidates, NULL, 0,
3627 exp->elts[pc + 2].symbol->linkage_name (),
3628 context_type, parse_completion);
3629 if (i < 0)
3630 error (_("Could not find a match for %s"),
3631 exp->elts[pc + 2].symbol->print_name ());
3632 }
3633 else
3634 {
3635 printf_filtered (_("Multiple matches for %s\n"),
3636 exp->elts[pc + 2].symbol->print_name ());
3637 user_select_syms (candidates.data (), n_candidates, 1);
3638 i = 0;
3639 }
3640
3641 exp->elts[pc + 1].block = candidates[i].block;
3642 exp->elts[pc + 2].symbol = candidates[i].symbol;
3643 tracker->update (candidates[i]);
3644 }
3645
3646 if (deprocedure_p
3647 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3648 == TYPE_CODE_FUNC))
3649 {
3650 replace_operator_with_call (expp, pc, 0, 4,
3651 exp->elts[pc + 2].symbol,
3652 exp->elts[pc + 1].block);
3653 exp = expp->get ();
3654 }
3655 break;
3656
3657 case OP_FUNCALL:
3658 {
3659 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3660 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3661 {
3662 std::vector<struct block_symbol> candidates;
3663 int n_candidates;
3664
3665 n_candidates =
3666 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3667 exp->elts[pc + 4].block, VAR_DOMAIN,
3668 &candidates);
3669
3670 if (n_candidates == 1)
3671 i = 0;
3672 else
3673 {
3674 i = ada_resolve_function
3675 (candidates.data (), n_candidates,
3676 argvec, nargs,
3677 exp->elts[pc + 5].symbol->linkage_name (),
3678 context_type, parse_completion);
3679 if (i < 0)
3680 error (_("Could not find a match for %s"),
3681 exp->elts[pc + 5].symbol->print_name ());
3682 }
3683
3684 exp->elts[pc + 4].block = candidates[i].block;
3685 exp->elts[pc + 5].symbol = candidates[i].symbol;
3686 tracker->update (candidates[i]);
3687 }
3688 }
3689 break;
3690 case BINOP_ADD:
3691 case BINOP_SUB:
3692 case BINOP_MUL:
3693 case BINOP_DIV:
3694 case BINOP_REM:
3695 case BINOP_MOD:
3696 case BINOP_CONCAT:
3697 case BINOP_BITWISE_AND:
3698 case BINOP_BITWISE_IOR:
3699 case BINOP_BITWISE_XOR:
3700 case BINOP_EQUAL:
3701 case BINOP_NOTEQUAL:
3702 case BINOP_LESS:
3703 case BINOP_GTR:
3704 case BINOP_LEQ:
3705 case BINOP_GEQ:
3706 case BINOP_EXP:
3707 case UNOP_NEG:
3708 case UNOP_PLUS:
3709 case UNOP_LOGICAL_NOT:
3710 case UNOP_ABS:
3711 if (possible_user_operator_p (op, argvec))
3712 {
3713 std::vector<struct block_symbol> candidates;
3714 int n_candidates;
3715
3716 n_candidates =
3717 ada_lookup_symbol_list (ada_decoded_op_name (op),
3718 NULL, VAR_DOMAIN,
3719 &candidates);
3720
3721 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3722 nargs, ada_decoded_op_name (op), NULL,
3723 parse_completion);
3724 if (i < 0)
3725 break;
3726
3727 replace_operator_with_call (expp, pc, nargs, 1,
3728 candidates[i].symbol,
3729 candidates[i].block);
3730 exp = expp->get ();
3731 }
3732 break;
3733
3734 case OP_TYPE:
3735 case OP_REGISTER:
3736 return NULL;
3737 }
3738
3739 *pos = pc;
3740 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3741 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3742 exp->elts[pc + 1].objfile,
3743 exp->elts[pc + 2].msymbol);
3744 else
3745 return evaluate_subexp_type (exp, pos);
3746 }
3747
3748 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3749 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3750 a non-pointer. */
3751 /* The term "match" here is rather loose. The match is heuristic and
3752 liberal. */
3753
3754 static int
3755 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3756 {
3757 ftype = ada_check_typedef (ftype);
3758 atype = ada_check_typedef (atype);
3759
3760 if (ftype->code () == TYPE_CODE_REF)
3761 ftype = TYPE_TARGET_TYPE (ftype);
3762 if (atype->code () == TYPE_CODE_REF)
3763 atype = TYPE_TARGET_TYPE (atype);
3764
3765 switch (ftype->code ())
3766 {
3767 default:
3768 return ftype->code () == atype->code ();
3769 case TYPE_CODE_PTR:
3770 if (atype->code () == TYPE_CODE_PTR)
3771 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3772 TYPE_TARGET_TYPE (atype), 0);
3773 else
3774 return (may_deref
3775 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_ENUM:
3778 case TYPE_CODE_RANGE:
3779 switch (atype->code ())
3780 {
3781 case TYPE_CODE_INT:
3782 case TYPE_CODE_ENUM:
3783 case TYPE_CODE_RANGE:
3784 return 1;
3785 default:
3786 return 0;
3787 }
3788
3789 case TYPE_CODE_ARRAY:
3790 return (atype->code () == TYPE_CODE_ARRAY
3791 || ada_is_array_descriptor_type (atype));
3792
3793 case TYPE_CODE_STRUCT:
3794 if (ada_is_array_descriptor_type (ftype))
3795 return (atype->code () == TYPE_CODE_ARRAY
3796 || ada_is_array_descriptor_type (atype));
3797 else
3798 return (atype->code () == TYPE_CODE_STRUCT
3799 && !ada_is_array_descriptor_type (atype));
3800
3801 case TYPE_CODE_UNION:
3802 case TYPE_CODE_FLT:
3803 return (atype->code () == ftype->code ());
3804 }
3805 }
3806
3807 /* Return non-zero if the formals of FUNC "sufficiently match" the
3808 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3809 may also be an enumeral, in which case it is treated as a 0-
3810 argument function. */
3811
3812 static int
3813 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3814 {
3815 int i;
3816 struct type *func_type = SYMBOL_TYPE (func);
3817
3818 if (SYMBOL_CLASS (func) == LOC_CONST
3819 && func_type->code () == TYPE_CODE_ENUM)
3820 return (n_actuals == 0);
3821 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3822 return 0;
3823
3824 if (func_type->num_fields () != n_actuals)
3825 return 0;
3826
3827 for (i = 0; i < n_actuals; i += 1)
3828 {
3829 if (actuals[i] == NULL)
3830 return 0;
3831 else
3832 {
3833 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3834 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3835
3836 if (!ada_type_match (ftype, atype, 1))
3837 return 0;
3838 }
3839 }
3840 return 1;
3841 }
3842
3843 /* False iff function type FUNC_TYPE definitely does not produce a value
3844 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3845 FUNC_TYPE is not a valid function type with a non-null return type
3846 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3847
3848 static int
3849 return_match (struct type *func_type, struct type *context_type)
3850 {
3851 struct type *return_type;
3852
3853 if (func_type == NULL)
3854 return 1;
3855
3856 if (func_type->code () == TYPE_CODE_FUNC)
3857 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3858 else
3859 return_type = get_base_type (func_type);
3860 if (return_type == NULL)
3861 return 1;
3862
3863 context_type = get_base_type (context_type);
3864
3865 if (return_type->code () == TYPE_CODE_ENUM)
3866 return context_type == NULL || return_type == context_type;
3867 else if (context_type == NULL)
3868 return return_type->code () != TYPE_CODE_VOID;
3869 else
3870 return return_type->code () == context_type->code ();
3871 }
3872
3873
3874 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3875 function (if any) that matches the types of the NARGS arguments in
3876 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3877 that returns that type, then eliminate matches that don't. If
3878 CONTEXT_TYPE is void and there is at least one match that does not
3879 return void, eliminate all matches that do.
3880
3881 Asks the user if there is more than one match remaining. Returns -1
3882 if there is no such symbol or none is selected. NAME is used
3883 solely for messages. May re-arrange and modify SYMS in
3884 the process; the index returned is for the modified vector. */
3885
3886 static int
3887 ada_resolve_function (struct block_symbol syms[],
3888 int nsyms, struct value **args, int nargs,
3889 const char *name, struct type *context_type,
3890 int parse_completion)
3891 {
3892 int fallback;
3893 int k;
3894 int m; /* Number of hits */
3895
3896 m = 0;
3897 /* In the first pass of the loop, we only accept functions matching
3898 context_type. If none are found, we add a second pass of the loop
3899 where every function is accepted. */
3900 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3901 {
3902 for (k = 0; k < nsyms; k += 1)
3903 {
3904 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3905
3906 if (ada_args_match (syms[k].symbol, args, nargs)
3907 && (fallback || return_match (type, context_type)))
3908 {
3909 syms[m] = syms[k];
3910 m += 1;
3911 }
3912 }
3913 }
3914
3915 /* If we got multiple matches, ask the user which one to use. Don't do this
3916 interactive thing during completion, though, as the purpose of the
3917 completion is providing a list of all possible matches. Prompting the
3918 user to filter it down would be completely unexpected in this case. */
3919 if (m == 0)
3920 return -1;
3921 else if (m > 1 && !parse_completion)
3922 {
3923 printf_filtered (_("Multiple matches for %s\n"), name);
3924 user_select_syms (syms, m, 1);
3925 return 0;
3926 }
3927 return 0;
3928 }
3929
3930 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3931 on the function identified by SYM and BLOCK, and taking NARGS
3932 arguments. Update *EXPP as needed to hold more space. */
3933
3934 static void
3935 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3936 int oplen, struct symbol *sym,
3937 const struct block *block)
3938 {
3939 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3940 symbol, -oplen for operator being replaced). */
3941 struct expression *newexp = (struct expression *)
3942 xzalloc (sizeof (struct expression)
3943 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3944 struct expression *exp = expp->get ();
3945
3946 newexp->nelts = exp->nelts + 7 - oplen;
3947 newexp->language_defn = exp->language_defn;
3948 newexp->gdbarch = exp->gdbarch;
3949 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3950 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3951 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3952
3953 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3954 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3955
3956 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3957 newexp->elts[pc + 4].block = block;
3958 newexp->elts[pc + 5].symbol = sym;
3959
3960 expp->reset (newexp);
3961 }
3962
3963 /* Type-class predicates */
3964
3965 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3966 or FLOAT). */
3967
3968 static int
3969 numeric_type_p (struct type *type)
3970 {
3971 if (type == NULL)
3972 return 0;
3973 else
3974 {
3975 switch (type->code ())
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_FLT:
3979 return 1;
3980 case TYPE_CODE_RANGE:
3981 return (type == TYPE_TARGET_TYPE (type)
3982 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3983 default:
3984 return 0;
3985 }
3986 }
3987 }
3988
3989 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3990
3991 static int
3992 integer_type_p (struct type *type)
3993 {
3994 if (type == NULL)
3995 return 0;
3996 else
3997 {
3998 switch (type->code ())
3999 {
4000 case TYPE_CODE_INT:
4001 return 1;
4002 case TYPE_CODE_RANGE:
4003 return (type == TYPE_TARGET_TYPE (type)
4004 || integer_type_p (TYPE_TARGET_TYPE (type)));
4005 default:
4006 return 0;
4007 }
4008 }
4009 }
4010
4011 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4012
4013 static int
4014 scalar_type_p (struct type *type)
4015 {
4016 if (type == NULL)
4017 return 0;
4018 else
4019 {
4020 switch (type->code ())
4021 {
4022 case TYPE_CODE_INT:
4023 case TYPE_CODE_RANGE:
4024 case TYPE_CODE_ENUM:
4025 case TYPE_CODE_FLT:
4026 return 1;
4027 default:
4028 return 0;
4029 }
4030 }
4031 }
4032
4033 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4034
4035 static int
4036 discrete_type_p (struct type *type)
4037 {
4038 if (type == NULL)
4039 return 0;
4040 else
4041 {
4042 switch (type->code ())
4043 {
4044 case TYPE_CODE_INT:
4045 case TYPE_CODE_RANGE:
4046 case TYPE_CODE_ENUM:
4047 case TYPE_CODE_BOOL:
4048 return 1;
4049 default:
4050 return 0;
4051 }
4052 }
4053 }
4054
4055 /* Returns non-zero if OP with operands in the vector ARGS could be
4056 a user-defined function. Errs on the side of pre-defined operators
4057 (i.e., result 0). */
4058
4059 static int
4060 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4061 {
4062 struct type *type0 =
4063 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4064 struct type *type1 =
4065 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4066
4067 if (type0 == NULL)
4068 return 0;
4069
4070 switch (op)
4071 {
4072 default:
4073 return 0;
4074
4075 case BINOP_ADD:
4076 case BINOP_SUB:
4077 case BINOP_MUL:
4078 case BINOP_DIV:
4079 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4080
4081 case BINOP_REM:
4082 case BINOP_MOD:
4083 case BINOP_BITWISE_AND:
4084 case BINOP_BITWISE_IOR:
4085 case BINOP_BITWISE_XOR:
4086 return (!(integer_type_p (type0) && integer_type_p (type1)));
4087
4088 case BINOP_EQUAL:
4089 case BINOP_NOTEQUAL:
4090 case BINOP_LESS:
4091 case BINOP_GTR:
4092 case BINOP_LEQ:
4093 case BINOP_GEQ:
4094 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4095
4096 case BINOP_CONCAT:
4097 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4098
4099 case BINOP_EXP:
4100 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4101
4102 case UNOP_NEG:
4103 case UNOP_PLUS:
4104 case UNOP_LOGICAL_NOT:
4105 case UNOP_ABS:
4106 return (!numeric_type_p (type0));
4107
4108 }
4109 }
4110 \f
4111 /* Renaming */
4112
4113 /* NOTES:
4114
4115 1. In the following, we assume that a renaming type's name may
4116 have an ___XD suffix. It would be nice if this went away at some
4117 point.
4118 2. We handle both the (old) purely type-based representation of
4119 renamings and the (new) variable-based encoding. At some point,
4120 it is devoutly to be hoped that the former goes away
4121 (FIXME: hilfinger-2007-07-09).
4122 3. Subprogram renamings are not implemented, although the XRS
4123 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4124
4125 /* If SYM encodes a renaming,
4126
4127 <renaming> renames <renamed entity>,
4128
4129 sets *LEN to the length of the renamed entity's name,
4130 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4131 the string describing the subcomponent selected from the renamed
4132 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4133 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4134 are undefined). Otherwise, returns a value indicating the category
4135 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4136 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4137 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4138 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4139 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4140 may be NULL, in which case they are not assigned.
4141
4142 [Currently, however, GCC does not generate subprogram renamings.] */
4143
4144 enum ada_renaming_category
4145 ada_parse_renaming (struct symbol *sym,
4146 const char **renamed_entity, int *len,
4147 const char **renaming_expr)
4148 {
4149 enum ada_renaming_category kind;
4150 const char *info;
4151 const char *suffix;
4152
4153 if (sym == NULL)
4154 return ADA_NOT_RENAMING;
4155 switch (SYMBOL_CLASS (sym))
4156 {
4157 default:
4158 return ADA_NOT_RENAMING;
4159 case LOC_LOCAL:
4160 case LOC_STATIC:
4161 case LOC_COMPUTED:
4162 case LOC_OPTIMIZED_OUT:
4163 info = strstr (sym->linkage_name (), "___XR");
4164 if (info == NULL)
4165 return ADA_NOT_RENAMING;
4166 switch (info[5])
4167 {
4168 case '_':
4169 kind = ADA_OBJECT_RENAMING;
4170 info += 6;
4171 break;
4172 case 'E':
4173 kind = ADA_EXCEPTION_RENAMING;
4174 info += 7;
4175 break;
4176 case 'P':
4177 kind = ADA_PACKAGE_RENAMING;
4178 info += 7;
4179 break;
4180 case 'S':
4181 kind = ADA_SUBPROGRAM_RENAMING;
4182 info += 7;
4183 break;
4184 default:
4185 return ADA_NOT_RENAMING;
4186 }
4187 }
4188
4189 if (renamed_entity != NULL)
4190 *renamed_entity = info;
4191 suffix = strstr (info, "___XE");
4192 if (suffix == NULL || suffix == info)
4193 return ADA_NOT_RENAMING;
4194 if (len != NULL)
4195 *len = strlen (info) - strlen (suffix);
4196 suffix += 5;
4197 if (renaming_expr != NULL)
4198 *renaming_expr = suffix;
4199 return kind;
4200 }
4201
4202 /* Compute the value of the given RENAMING_SYM, which is expected to
4203 be a symbol encoding a renaming expression. BLOCK is the block
4204 used to evaluate the renaming. */
4205
4206 static struct value *
4207 ada_read_renaming_var_value (struct symbol *renaming_sym,
4208 const struct block *block)
4209 {
4210 const char *sym_name;
4211
4212 sym_name = renaming_sym->linkage_name ();
4213 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4214 return evaluate_expression (expr.get ());
4215 }
4216 \f
4217
4218 /* Evaluation: Function Calls */
4219
4220 /* Return an lvalue containing the value VAL. This is the identity on
4221 lvalues, and otherwise has the side-effect of allocating memory
4222 in the inferior where a copy of the value contents is copied. */
4223
4224 static struct value *
4225 ensure_lval (struct value *val)
4226 {
4227 if (VALUE_LVAL (val) == not_lval
4228 || VALUE_LVAL (val) == lval_internalvar)
4229 {
4230 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4231 const CORE_ADDR addr =
4232 value_as_long (value_allocate_space_in_inferior (len));
4233
4234 VALUE_LVAL (val) = lval_memory;
4235 set_value_address (val, addr);
4236 write_memory (addr, value_contents (val), len);
4237 }
4238
4239 return val;
4240 }
4241
4242 /* Given ARG, a value of type (pointer or reference to a)*
4243 structure/union, extract the component named NAME from the ultimate
4244 target structure/union and return it as a value with its
4245 appropriate type.
4246
4247 The routine searches for NAME among all members of the structure itself
4248 and (recursively) among all members of any wrapper members
4249 (e.g., '_parent').
4250
4251 If NO_ERR, then simply return NULL in case of error, rather than
4252 calling error. */
4253
4254 static struct value *
4255 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4256 {
4257 struct type *t, *t1;
4258 struct value *v;
4259 int check_tag;
4260
4261 v = NULL;
4262 t1 = t = ada_check_typedef (value_type (arg));
4263 if (t->code () == TYPE_CODE_REF)
4264 {
4265 t1 = TYPE_TARGET_TYPE (t);
4266 if (t1 == NULL)
4267 goto BadValue;
4268 t1 = ada_check_typedef (t1);
4269 if (t1->code () == TYPE_CODE_PTR)
4270 {
4271 arg = coerce_ref (arg);
4272 t = t1;
4273 }
4274 }
4275
4276 while (t->code () == TYPE_CODE_PTR)
4277 {
4278 t1 = TYPE_TARGET_TYPE (t);
4279 if (t1 == NULL)
4280 goto BadValue;
4281 t1 = ada_check_typedef (t1);
4282 if (t1->code () == TYPE_CODE_PTR)
4283 {
4284 arg = value_ind (arg);
4285 t = t1;
4286 }
4287 else
4288 break;
4289 }
4290
4291 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4292 goto BadValue;
4293
4294 if (t1 == t)
4295 v = ada_search_struct_field (name, arg, 0, t);
4296 else
4297 {
4298 int bit_offset, bit_size, byte_offset;
4299 struct type *field_type;
4300 CORE_ADDR address;
4301
4302 if (t->code () == TYPE_CODE_PTR)
4303 address = value_address (ada_value_ind (arg));
4304 else
4305 address = value_address (ada_coerce_ref (arg));
4306
4307 /* Check to see if this is a tagged type. We also need to handle
4308 the case where the type is a reference to a tagged type, but
4309 we have to be careful to exclude pointers to tagged types.
4310 The latter should be shown as usual (as a pointer), whereas
4311 a reference should mostly be transparent to the user. */
4312
4313 if (ada_is_tagged_type (t1, 0)
4314 || (t1->code () == TYPE_CODE_REF
4315 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4316 {
4317 /* We first try to find the searched field in the current type.
4318 If not found then let's look in the fixed type. */
4319
4320 if (!find_struct_field (name, t1, 0,
4321 &field_type, &byte_offset, &bit_offset,
4322 &bit_size, NULL))
4323 check_tag = 1;
4324 else
4325 check_tag = 0;
4326 }
4327 else
4328 check_tag = 0;
4329
4330 /* Convert to fixed type in all cases, so that we have proper
4331 offsets to each field in unconstrained record types. */
4332 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4333 address, NULL, check_tag);
4334
4335 if (find_struct_field (name, t1, 0,
4336 &field_type, &byte_offset, &bit_offset,
4337 &bit_size, NULL))
4338 {
4339 if (bit_size != 0)
4340 {
4341 if (t->code () == TYPE_CODE_REF)
4342 arg = ada_coerce_ref (arg);
4343 else
4344 arg = ada_value_ind (arg);
4345 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4346 bit_offset, bit_size,
4347 field_type);
4348 }
4349 else
4350 v = value_at_lazy (field_type, address + byte_offset);
4351 }
4352 }
4353
4354 if (v != NULL || no_err)
4355 return v;
4356 else
4357 error (_("There is no member named %s."), name);
4358
4359 BadValue:
4360 if (no_err)
4361 return NULL;
4362 else
4363 error (_("Attempt to extract a component of "
4364 "a value that is not a record."));
4365 }
4366
4367 /* Return the value ACTUAL, converted to be an appropriate value for a
4368 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4369 allocating any necessary descriptors (fat pointers), or copies of
4370 values not residing in memory, updating it as needed. */
4371
4372 struct value *
4373 ada_convert_actual (struct value *actual, struct type *formal_type0)
4374 {
4375 struct type *actual_type = ada_check_typedef (value_type (actual));
4376 struct type *formal_type = ada_check_typedef (formal_type0);
4377 struct type *formal_target =
4378 formal_type->code () == TYPE_CODE_PTR
4379 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4380 struct type *actual_target =
4381 actual_type->code () == TYPE_CODE_PTR
4382 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4383
4384 if (ada_is_array_descriptor_type (formal_target)
4385 && actual_target->code () == TYPE_CODE_ARRAY)
4386 return make_array_descriptor (formal_type, actual);
4387 else if (formal_type->code () == TYPE_CODE_PTR
4388 || formal_type->code () == TYPE_CODE_REF)
4389 {
4390 struct value *result;
4391
4392 if (formal_target->code () == TYPE_CODE_ARRAY
4393 && ada_is_array_descriptor_type (actual_target))
4394 result = desc_data (actual);
4395 else if (formal_type->code () != TYPE_CODE_PTR)
4396 {
4397 if (VALUE_LVAL (actual) != lval_memory)
4398 {
4399 struct value *val;
4400
4401 actual_type = ada_check_typedef (value_type (actual));
4402 val = allocate_value (actual_type);
4403 memcpy ((char *) value_contents_raw (val),
4404 (char *) value_contents (actual),
4405 TYPE_LENGTH (actual_type));
4406 actual = ensure_lval (val);
4407 }
4408 result = value_addr (actual);
4409 }
4410 else
4411 return actual;
4412 return value_cast_pointers (formal_type, result, 0);
4413 }
4414 else if (actual_type->code () == TYPE_CODE_PTR)
4415 return ada_value_ind (actual);
4416 else if (ada_is_aligner_type (formal_type))
4417 {
4418 /* We need to turn this parameter into an aligner type
4419 as well. */
4420 struct value *aligner = allocate_value (formal_type);
4421 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4422
4423 value_assign_to_component (aligner, component, actual);
4424 return aligner;
4425 }
4426
4427 return actual;
4428 }
4429
4430 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4431 type TYPE. This is usually an inefficient no-op except on some targets
4432 (such as AVR) where the representation of a pointer and an address
4433 differs. */
4434
4435 static CORE_ADDR
4436 value_pointer (struct value *value, struct type *type)
4437 {
4438 struct gdbarch *gdbarch = get_type_arch (type);
4439 unsigned len = TYPE_LENGTH (type);
4440 gdb_byte *buf = (gdb_byte *) alloca (len);
4441 CORE_ADDR addr;
4442
4443 addr = value_address (value);
4444 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4445 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4446 return addr;
4447 }
4448
4449
4450 /* Push a descriptor of type TYPE for array value ARR on the stack at
4451 *SP, updating *SP to reflect the new descriptor. Return either
4452 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4453 to-descriptor type rather than a descriptor type), a struct value *
4454 representing a pointer to this descriptor. */
4455
4456 static struct value *
4457 make_array_descriptor (struct type *type, struct value *arr)
4458 {
4459 struct type *bounds_type = desc_bounds_type (type);
4460 struct type *desc_type = desc_base_type (type);
4461 struct value *descriptor = allocate_value (desc_type);
4462 struct value *bounds = allocate_value (bounds_type);
4463 int i;
4464
4465 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4466 i > 0; i -= 1)
4467 {
4468 modify_field (value_type (bounds), value_contents_writeable (bounds),
4469 ada_array_bound (arr, i, 0),
4470 desc_bound_bitpos (bounds_type, i, 0),
4471 desc_bound_bitsize (bounds_type, i, 0));
4472 modify_field (value_type (bounds), value_contents_writeable (bounds),
4473 ada_array_bound (arr, i, 1),
4474 desc_bound_bitpos (bounds_type, i, 1),
4475 desc_bound_bitsize (bounds_type, i, 1));
4476 }
4477
4478 bounds = ensure_lval (bounds);
4479
4480 modify_field (value_type (descriptor),
4481 value_contents_writeable (descriptor),
4482 value_pointer (ensure_lval (arr),
4483 desc_type->field (0).type ()),
4484 fat_pntr_data_bitpos (desc_type),
4485 fat_pntr_data_bitsize (desc_type));
4486
4487 modify_field (value_type (descriptor),
4488 value_contents_writeable (descriptor),
4489 value_pointer (bounds,
4490 desc_type->field (1).type ()),
4491 fat_pntr_bounds_bitpos (desc_type),
4492 fat_pntr_bounds_bitsize (desc_type));
4493
4494 descriptor = ensure_lval (descriptor);
4495
4496 if (type->code () == TYPE_CODE_PTR)
4497 return value_addr (descriptor);
4498 else
4499 return descriptor;
4500 }
4501 \f
4502 /* Symbol Cache Module */
4503
4504 /* Performance measurements made as of 2010-01-15 indicate that
4505 this cache does bring some noticeable improvements. Depending
4506 on the type of entity being printed, the cache can make it as much
4507 as an order of magnitude faster than without it.
4508
4509 The descriptive type DWARF extension has significantly reduced
4510 the need for this cache, at least when DWARF is being used. However,
4511 even in this case, some expensive name-based symbol searches are still
4512 sometimes necessary - to find an XVZ variable, mostly. */
4513
4514 /* Initialize the contents of SYM_CACHE. */
4515
4516 static void
4517 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4518 {
4519 obstack_init (&sym_cache->cache_space);
4520 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4521 }
4522
4523 /* Free the memory used by SYM_CACHE. */
4524
4525 static void
4526 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4527 {
4528 obstack_free (&sym_cache->cache_space, NULL);
4529 xfree (sym_cache);
4530 }
4531
4532 /* Return the symbol cache associated to the given program space PSPACE.
4533 If not allocated for this PSPACE yet, allocate and initialize one. */
4534
4535 static struct ada_symbol_cache *
4536 ada_get_symbol_cache (struct program_space *pspace)
4537 {
4538 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4539
4540 if (pspace_data->sym_cache == NULL)
4541 {
4542 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4543 ada_init_symbol_cache (pspace_data->sym_cache);
4544 }
4545
4546 return pspace_data->sym_cache;
4547 }
4548
4549 /* Clear all entries from the symbol cache. */
4550
4551 static void
4552 ada_clear_symbol_cache (void)
4553 {
4554 struct ada_symbol_cache *sym_cache
4555 = ada_get_symbol_cache (current_program_space);
4556
4557 obstack_free (&sym_cache->cache_space, NULL);
4558 ada_init_symbol_cache (sym_cache);
4559 }
4560
4561 /* Search our cache for an entry matching NAME and DOMAIN.
4562 Return it if found, or NULL otherwise. */
4563
4564 static struct cache_entry **
4565 find_entry (const char *name, domain_enum domain)
4566 {
4567 struct ada_symbol_cache *sym_cache
4568 = ada_get_symbol_cache (current_program_space);
4569 int h = msymbol_hash (name) % HASH_SIZE;
4570 struct cache_entry **e;
4571
4572 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4573 {
4574 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4575 return e;
4576 }
4577 return NULL;
4578 }
4579
4580 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4581 Return 1 if found, 0 otherwise.
4582
4583 If an entry was found and SYM is not NULL, set *SYM to the entry's
4584 SYM. Same principle for BLOCK if not NULL. */
4585
4586 static int
4587 lookup_cached_symbol (const char *name, domain_enum domain,
4588 struct symbol **sym, const struct block **block)
4589 {
4590 struct cache_entry **e = find_entry (name, domain);
4591
4592 if (e == NULL)
4593 return 0;
4594 if (sym != NULL)
4595 *sym = (*e)->sym;
4596 if (block != NULL)
4597 *block = (*e)->block;
4598 return 1;
4599 }
4600
4601 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4602 in domain DOMAIN, save this result in our symbol cache. */
4603
4604 static void
4605 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4606 const struct block *block)
4607 {
4608 struct ada_symbol_cache *sym_cache
4609 = ada_get_symbol_cache (current_program_space);
4610 int h;
4611 struct cache_entry *e;
4612
4613 /* Symbols for builtin types don't have a block.
4614 For now don't cache such symbols. */
4615 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4616 return;
4617
4618 /* If the symbol is a local symbol, then do not cache it, as a search
4619 for that symbol depends on the context. To determine whether
4620 the symbol is local or not, we check the block where we found it
4621 against the global and static blocks of its associated symtab. */
4622 if (sym
4623 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4624 GLOBAL_BLOCK) != block
4625 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4626 STATIC_BLOCK) != block)
4627 return;
4628
4629 h = msymbol_hash (name) % HASH_SIZE;
4630 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4631 e->next = sym_cache->root[h];
4632 sym_cache->root[h] = e;
4633 e->name = obstack_strdup (&sym_cache->cache_space, name);
4634 e->sym = sym;
4635 e->domain = domain;
4636 e->block = block;
4637 }
4638 \f
4639 /* Symbol Lookup */
4640
4641 /* Return the symbol name match type that should be used used when
4642 searching for all symbols matching LOOKUP_NAME.
4643
4644 LOOKUP_NAME is expected to be a symbol name after transformation
4645 for Ada lookups. */
4646
4647 static symbol_name_match_type
4648 name_match_type_from_name (const char *lookup_name)
4649 {
4650 return (strstr (lookup_name, "__") == NULL
4651 ? symbol_name_match_type::WILD
4652 : symbol_name_match_type::FULL);
4653 }
4654
4655 /* Return the result of a standard (literal, C-like) lookup of NAME in
4656 given DOMAIN, visible from lexical block BLOCK. */
4657
4658 static struct symbol *
4659 standard_lookup (const char *name, const struct block *block,
4660 domain_enum domain)
4661 {
4662 /* Initialize it just to avoid a GCC false warning. */
4663 struct block_symbol sym = {};
4664
4665 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4666 return sym.symbol;
4667 ada_lookup_encoded_symbol (name, block, domain, &sym);
4668 cache_symbol (name, domain, sym.symbol, sym.block);
4669 return sym.symbol;
4670 }
4671
4672
4673 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4674 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4675 since they contend in overloading in the same way. */
4676 static int
4677 is_nonfunction (struct block_symbol syms[], int n)
4678 {
4679 int i;
4680
4681 for (i = 0; i < n; i += 1)
4682 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4683 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4684 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4685 return 1;
4686
4687 return 0;
4688 }
4689
4690 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4691 struct types. Otherwise, they may not. */
4692
4693 static int
4694 equiv_types (struct type *type0, struct type *type1)
4695 {
4696 if (type0 == type1)
4697 return 1;
4698 if (type0 == NULL || type1 == NULL
4699 || type0->code () != type1->code ())
4700 return 0;
4701 if ((type0->code () == TYPE_CODE_STRUCT
4702 || type0->code () == TYPE_CODE_ENUM)
4703 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4704 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4705 return 1;
4706
4707 return 0;
4708 }
4709
4710 /* True iff SYM0 represents the same entity as SYM1, or one that is
4711 no more defined than that of SYM1. */
4712
4713 static int
4714 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4715 {
4716 if (sym0 == sym1)
4717 return 1;
4718 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4719 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4720 return 0;
4721
4722 switch (SYMBOL_CLASS (sym0))
4723 {
4724 case LOC_UNDEF:
4725 return 1;
4726 case LOC_TYPEDEF:
4727 {
4728 struct type *type0 = SYMBOL_TYPE (sym0);
4729 struct type *type1 = SYMBOL_TYPE (sym1);
4730 const char *name0 = sym0->linkage_name ();
4731 const char *name1 = sym1->linkage_name ();
4732 int len0 = strlen (name0);
4733
4734 return
4735 type0->code () == type1->code ()
4736 && (equiv_types (type0, type1)
4737 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4738 && startswith (name1 + len0, "___XV")));
4739 }
4740 case LOC_CONST:
4741 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4742 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4743
4744 case LOC_STATIC:
4745 {
4746 const char *name0 = sym0->linkage_name ();
4747 const char *name1 = sym1->linkage_name ();
4748 return (strcmp (name0, name1) == 0
4749 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4750 }
4751
4752 default:
4753 return 0;
4754 }
4755 }
4756
4757 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4758 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4759
4760 static void
4761 add_defn_to_vec (struct obstack *obstackp,
4762 struct symbol *sym,
4763 const struct block *block)
4764 {
4765 int i;
4766 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4767
4768 /* Do not try to complete stub types, as the debugger is probably
4769 already scanning all symbols matching a certain name at the
4770 time when this function is called. Trying to replace the stub
4771 type by its associated full type will cause us to restart a scan
4772 which may lead to an infinite recursion. Instead, the client
4773 collecting the matching symbols will end up collecting several
4774 matches, with at least one of them complete. It can then filter
4775 out the stub ones if needed. */
4776
4777 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4778 {
4779 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4780 return;
4781 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4782 {
4783 prevDefns[i].symbol = sym;
4784 prevDefns[i].block = block;
4785 return;
4786 }
4787 }
4788
4789 {
4790 struct block_symbol info;
4791
4792 info.symbol = sym;
4793 info.block = block;
4794 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4795 }
4796 }
4797
4798 /* Number of block_symbol structures currently collected in current vector in
4799 OBSTACKP. */
4800
4801 static int
4802 num_defns_collected (struct obstack *obstackp)
4803 {
4804 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4805 }
4806
4807 /* Vector of block_symbol structures currently collected in current vector in
4808 OBSTACKP. If FINISH, close off the vector and return its final address. */
4809
4810 static struct block_symbol *
4811 defns_collected (struct obstack *obstackp, int finish)
4812 {
4813 if (finish)
4814 return (struct block_symbol *) obstack_finish (obstackp);
4815 else
4816 return (struct block_symbol *) obstack_base (obstackp);
4817 }
4818
4819 /* Return a bound minimal symbol matching NAME according to Ada
4820 decoding rules. Returns an invalid symbol if there is no such
4821 minimal symbol. Names prefixed with "standard__" are handled
4822 specially: "standard__" is first stripped off, and only static and
4823 global symbols are searched. */
4824
4825 struct bound_minimal_symbol
4826 ada_lookup_simple_minsym (const char *name)
4827 {
4828 struct bound_minimal_symbol result;
4829
4830 memset (&result, 0, sizeof (result));
4831
4832 symbol_name_match_type match_type = name_match_type_from_name (name);
4833 lookup_name_info lookup_name (name, match_type);
4834
4835 symbol_name_matcher_ftype *match_name
4836 = ada_get_symbol_name_matcher (lookup_name);
4837
4838 for (objfile *objfile : current_program_space->objfiles ())
4839 {
4840 for (minimal_symbol *msymbol : objfile->msymbols ())
4841 {
4842 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4843 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4844 {
4845 result.minsym = msymbol;
4846 result.objfile = objfile;
4847 break;
4848 }
4849 }
4850 }
4851
4852 return result;
4853 }
4854
4855 /* For all subprograms that statically enclose the subprogram of the
4856 selected frame, add symbols matching identifier NAME in DOMAIN
4857 and their blocks to the list of data in OBSTACKP, as for
4858 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4859 with a wildcard prefix. */
4860
4861 static void
4862 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4863 const lookup_name_info &lookup_name,
4864 domain_enum domain)
4865 {
4866 }
4867
4868 /* True if TYPE is definitely an artificial type supplied to a symbol
4869 for which no debugging information was given in the symbol file. */
4870
4871 static int
4872 is_nondebugging_type (struct type *type)
4873 {
4874 const char *name = ada_type_name (type);
4875
4876 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4877 }
4878
4879 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4880 that are deemed "identical" for practical purposes.
4881
4882 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4883 types and that their number of enumerals is identical (in other
4884 words, type1->num_fields () == type2->num_fields ()). */
4885
4886 static int
4887 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4888 {
4889 int i;
4890
4891 /* The heuristic we use here is fairly conservative. We consider
4892 that 2 enumerate types are identical if they have the same
4893 number of enumerals and that all enumerals have the same
4894 underlying value and name. */
4895
4896 /* All enums in the type should have an identical underlying value. */
4897 for (i = 0; i < type1->num_fields (); i++)
4898 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4899 return 0;
4900
4901 /* All enumerals should also have the same name (modulo any numerical
4902 suffix). */
4903 for (i = 0; i < type1->num_fields (); i++)
4904 {
4905 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4906 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4907 int len_1 = strlen (name_1);
4908 int len_2 = strlen (name_2);
4909
4910 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4911 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4912 if (len_1 != len_2
4913 || strncmp (TYPE_FIELD_NAME (type1, i),
4914 TYPE_FIELD_NAME (type2, i),
4915 len_1) != 0)
4916 return 0;
4917 }
4918
4919 return 1;
4920 }
4921
4922 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4923 that are deemed "identical" for practical purposes. Sometimes,
4924 enumerals are not strictly identical, but their types are so similar
4925 that they can be considered identical.
4926
4927 For instance, consider the following code:
4928
4929 type Color is (Black, Red, Green, Blue, White);
4930 type RGB_Color is new Color range Red .. Blue;
4931
4932 Type RGB_Color is a subrange of an implicit type which is a copy
4933 of type Color. If we call that implicit type RGB_ColorB ("B" is
4934 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4935 As a result, when an expression references any of the enumeral
4936 by name (Eg. "print green"), the expression is technically
4937 ambiguous and the user should be asked to disambiguate. But
4938 doing so would only hinder the user, since it wouldn't matter
4939 what choice he makes, the outcome would always be the same.
4940 So, for practical purposes, we consider them as the same. */
4941
4942 static int
4943 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4944 {
4945 int i;
4946
4947 /* Before performing a thorough comparison check of each type,
4948 we perform a series of inexpensive checks. We expect that these
4949 checks will quickly fail in the vast majority of cases, and thus
4950 help prevent the unnecessary use of a more expensive comparison.
4951 Said comparison also expects us to make some of these checks
4952 (see ada_identical_enum_types_p). */
4953
4954 /* Quick check: All symbols should have an enum type. */
4955 for (i = 0; i < syms.size (); i++)
4956 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4957 return 0;
4958
4959 /* Quick check: They should all have the same value. */
4960 for (i = 1; i < syms.size (); i++)
4961 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4962 return 0;
4963
4964 /* Quick check: They should all have the same number of enumerals. */
4965 for (i = 1; i < syms.size (); i++)
4966 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4967 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4968 return 0;
4969
4970 /* All the sanity checks passed, so we might have a set of
4971 identical enumeration types. Perform a more complete
4972 comparison of the type of each symbol. */
4973 for (i = 1; i < syms.size (); i++)
4974 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4975 SYMBOL_TYPE (syms[0].symbol)))
4976 return 0;
4977
4978 return 1;
4979 }
4980
4981 /* Remove any non-debugging symbols in SYMS that definitely
4982 duplicate other symbols in the list (The only case I know of where
4983 this happens is when object files containing stabs-in-ecoff are
4984 linked with files containing ordinary ecoff debugging symbols (or no
4985 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4986 Returns the number of items in the modified list. */
4987
4988 static int
4989 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4990 {
4991 int i, j;
4992
4993 /* We should never be called with less than 2 symbols, as there
4994 cannot be any extra symbol in that case. But it's easy to
4995 handle, since we have nothing to do in that case. */
4996 if (syms->size () < 2)
4997 return syms->size ();
4998
4999 i = 0;
5000 while (i < syms->size ())
5001 {
5002 int remove_p = 0;
5003
5004 /* If two symbols have the same name and one of them is a stub type,
5005 the get rid of the stub. */
5006
5007 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5008 && (*syms)[i].symbol->linkage_name () != NULL)
5009 {
5010 for (j = 0; j < syms->size (); j++)
5011 {
5012 if (j != i
5013 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5014 && (*syms)[j].symbol->linkage_name () != NULL
5015 && strcmp ((*syms)[i].symbol->linkage_name (),
5016 (*syms)[j].symbol->linkage_name ()) == 0)
5017 remove_p = 1;
5018 }
5019 }
5020
5021 /* Two symbols with the same name, same class and same address
5022 should be identical. */
5023
5024 else if ((*syms)[i].symbol->linkage_name () != NULL
5025 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5026 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5027 {
5028 for (j = 0; j < syms->size (); j += 1)
5029 {
5030 if (i != j
5031 && (*syms)[j].symbol->linkage_name () != NULL
5032 && strcmp ((*syms)[i].symbol->linkage_name (),
5033 (*syms)[j].symbol->linkage_name ()) == 0
5034 && SYMBOL_CLASS ((*syms)[i].symbol)
5035 == SYMBOL_CLASS ((*syms)[j].symbol)
5036 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5037 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5038 remove_p = 1;
5039 }
5040 }
5041
5042 if (remove_p)
5043 syms->erase (syms->begin () + i);
5044
5045 i += 1;
5046 }
5047
5048 /* If all the remaining symbols are identical enumerals, then
5049 just keep the first one and discard the rest.
5050
5051 Unlike what we did previously, we do not discard any entry
5052 unless they are ALL identical. This is because the symbol
5053 comparison is not a strict comparison, but rather a practical
5054 comparison. If all symbols are considered identical, then
5055 we can just go ahead and use the first one and discard the rest.
5056 But if we cannot reduce the list to a single element, we have
5057 to ask the user to disambiguate anyways. And if we have to
5058 present a multiple-choice menu, it's less confusing if the list
5059 isn't missing some choices that were identical and yet distinct. */
5060 if (symbols_are_identical_enums (*syms))
5061 syms->resize (1);
5062
5063 return syms->size ();
5064 }
5065
5066 /* Given a type that corresponds to a renaming entity, use the type name
5067 to extract the scope (package name or function name, fully qualified,
5068 and following the GNAT encoding convention) where this renaming has been
5069 defined. */
5070
5071 static std::string
5072 xget_renaming_scope (struct type *renaming_type)
5073 {
5074 /* The renaming types adhere to the following convention:
5075 <scope>__<rename>___<XR extension>.
5076 So, to extract the scope, we search for the "___XR" extension,
5077 and then backtrack until we find the first "__". */
5078
5079 const char *name = renaming_type->name ();
5080 const char *suffix = strstr (name, "___XR");
5081 const char *last;
5082
5083 /* Now, backtrack a bit until we find the first "__". Start looking
5084 at suffix - 3, as the <rename> part is at least one character long. */
5085
5086 for (last = suffix - 3; last > name; last--)
5087 if (last[0] == '_' && last[1] == '_')
5088 break;
5089
5090 /* Make a copy of scope and return it. */
5091 return std::string (name, last);
5092 }
5093
5094 /* Return nonzero if NAME corresponds to a package name. */
5095
5096 static int
5097 is_package_name (const char *name)
5098 {
5099 /* Here, We take advantage of the fact that no symbols are generated
5100 for packages, while symbols are generated for each function.
5101 So the condition for NAME represent a package becomes equivalent
5102 to NAME not existing in our list of symbols. There is only one
5103 small complication with library-level functions (see below). */
5104
5105 /* If it is a function that has not been defined at library level,
5106 then we should be able to look it up in the symbols. */
5107 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5108 return 0;
5109
5110 /* Library-level function names start with "_ada_". See if function
5111 "_ada_" followed by NAME can be found. */
5112
5113 /* Do a quick check that NAME does not contain "__", since library-level
5114 functions names cannot contain "__" in them. */
5115 if (strstr (name, "__") != NULL)
5116 return 0;
5117
5118 std::string fun_name = string_printf ("_ada_%s", name);
5119
5120 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5121 }
5122
5123 /* Return nonzero if SYM corresponds to a renaming entity that is
5124 not visible from FUNCTION_NAME. */
5125
5126 static int
5127 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5128 {
5129 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5130 return 0;
5131
5132 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5133
5134 /* If the rename has been defined in a package, then it is visible. */
5135 if (is_package_name (scope.c_str ()))
5136 return 0;
5137
5138 /* Check that the rename is in the current function scope by checking
5139 that its name starts with SCOPE. */
5140
5141 /* If the function name starts with "_ada_", it means that it is
5142 a library-level function. Strip this prefix before doing the
5143 comparison, as the encoding for the renaming does not contain
5144 this prefix. */
5145 if (startswith (function_name, "_ada_"))
5146 function_name += 5;
5147
5148 return !startswith (function_name, scope.c_str ());
5149 }
5150
5151 /* Remove entries from SYMS that corresponds to a renaming entity that
5152 is not visible from the function associated with CURRENT_BLOCK or
5153 that is superfluous due to the presence of more specific renaming
5154 information. Places surviving symbols in the initial entries of
5155 SYMS and returns the number of surviving symbols.
5156
5157 Rationale:
5158 First, in cases where an object renaming is implemented as a
5159 reference variable, GNAT may produce both the actual reference
5160 variable and the renaming encoding. In this case, we discard the
5161 latter.
5162
5163 Second, GNAT emits a type following a specified encoding for each renaming
5164 entity. Unfortunately, STABS currently does not support the definition
5165 of types that are local to a given lexical block, so all renamings types
5166 are emitted at library level. As a consequence, if an application
5167 contains two renaming entities using the same name, and a user tries to
5168 print the value of one of these entities, the result of the ada symbol
5169 lookup will also contain the wrong renaming type.
5170
5171 This function partially covers for this limitation by attempting to
5172 remove from the SYMS list renaming symbols that should be visible
5173 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5174 method with the current information available. The implementation
5175 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5176
5177 - When the user tries to print a rename in a function while there
5178 is another rename entity defined in a package: Normally, the
5179 rename in the function has precedence over the rename in the
5180 package, so the latter should be removed from the list. This is
5181 currently not the case.
5182
5183 - This function will incorrectly remove valid renames if
5184 the CURRENT_BLOCK corresponds to a function which symbol name
5185 has been changed by an "Export" pragma. As a consequence,
5186 the user will be unable to print such rename entities. */
5187
5188 static int
5189 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5190 const struct block *current_block)
5191 {
5192 struct symbol *current_function;
5193 const char *current_function_name;
5194 int i;
5195 int is_new_style_renaming;
5196
5197 /* If there is both a renaming foo___XR... encoded as a variable and
5198 a simple variable foo in the same block, discard the latter.
5199 First, zero out such symbols, then compress. */
5200 is_new_style_renaming = 0;
5201 for (i = 0; i < syms->size (); i += 1)
5202 {
5203 struct symbol *sym = (*syms)[i].symbol;
5204 const struct block *block = (*syms)[i].block;
5205 const char *name;
5206 const char *suffix;
5207
5208 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5209 continue;
5210 name = sym->linkage_name ();
5211 suffix = strstr (name, "___XR");
5212
5213 if (suffix != NULL)
5214 {
5215 int name_len = suffix - name;
5216 int j;
5217
5218 is_new_style_renaming = 1;
5219 for (j = 0; j < syms->size (); j += 1)
5220 if (i != j && (*syms)[j].symbol != NULL
5221 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5222 name_len) == 0
5223 && block == (*syms)[j].block)
5224 (*syms)[j].symbol = NULL;
5225 }
5226 }
5227 if (is_new_style_renaming)
5228 {
5229 int j, k;
5230
5231 for (j = k = 0; j < syms->size (); j += 1)
5232 if ((*syms)[j].symbol != NULL)
5233 {
5234 (*syms)[k] = (*syms)[j];
5235 k += 1;
5236 }
5237 return k;
5238 }
5239
5240 /* Extract the function name associated to CURRENT_BLOCK.
5241 Abort if unable to do so. */
5242
5243 if (current_block == NULL)
5244 return syms->size ();
5245
5246 current_function = block_linkage_function (current_block);
5247 if (current_function == NULL)
5248 return syms->size ();
5249
5250 current_function_name = current_function->linkage_name ();
5251 if (current_function_name == NULL)
5252 return syms->size ();
5253
5254 /* Check each of the symbols, and remove it from the list if it is
5255 a type corresponding to a renaming that is out of the scope of
5256 the current block. */
5257
5258 i = 0;
5259 while (i < syms->size ())
5260 {
5261 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5262 == ADA_OBJECT_RENAMING
5263 && old_renaming_is_invisible ((*syms)[i].symbol,
5264 current_function_name))
5265 syms->erase (syms->begin () + i);
5266 else
5267 i += 1;
5268 }
5269
5270 return syms->size ();
5271 }
5272
5273 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5274 whose name and domain match NAME and DOMAIN respectively.
5275 If no match was found, then extend the search to "enclosing"
5276 routines (in other words, if we're inside a nested function,
5277 search the symbols defined inside the enclosing functions).
5278 If WILD_MATCH_P is nonzero, perform the naming matching in
5279 "wild" mode (see function "wild_match" for more info).
5280
5281 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5282
5283 static void
5284 ada_add_local_symbols (struct obstack *obstackp,
5285 const lookup_name_info &lookup_name,
5286 const struct block *block, domain_enum domain)
5287 {
5288 int block_depth = 0;
5289
5290 while (block != NULL)
5291 {
5292 block_depth += 1;
5293 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5294
5295 /* If we found a non-function match, assume that's the one. */
5296 if (is_nonfunction (defns_collected (obstackp, 0),
5297 num_defns_collected (obstackp)))
5298 return;
5299
5300 block = BLOCK_SUPERBLOCK (block);
5301 }
5302
5303 /* If no luck so far, try to find NAME as a local symbol in some lexically
5304 enclosing subprogram. */
5305 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5306 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5307 }
5308
5309 /* An object of this type is used as the user_data argument when
5310 calling the map_matching_symbols method. */
5311
5312 struct match_data
5313 {
5314 struct objfile *objfile;
5315 struct obstack *obstackp;
5316 struct symbol *arg_sym;
5317 int found_sym;
5318 };
5319
5320 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5321 to a list of symbols. DATA is a pointer to a struct match_data *
5322 containing the obstack that collects the symbol list, the file that SYM
5323 must come from, a flag indicating whether a non-argument symbol has
5324 been found in the current block, and the last argument symbol
5325 passed in SYM within the current block (if any). When SYM is null,
5326 marking the end of a block, the argument symbol is added if no
5327 other has been found. */
5328
5329 static bool
5330 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5331 struct match_data *data)
5332 {
5333 const struct block *block = bsym->block;
5334 struct symbol *sym = bsym->symbol;
5335
5336 if (sym == NULL)
5337 {
5338 if (!data->found_sym && data->arg_sym != NULL)
5339 add_defn_to_vec (data->obstackp,
5340 fixup_symbol_section (data->arg_sym, data->objfile),
5341 block);
5342 data->found_sym = 0;
5343 data->arg_sym = NULL;
5344 }
5345 else
5346 {
5347 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5348 return true;
5349 else if (SYMBOL_IS_ARGUMENT (sym))
5350 data->arg_sym = sym;
5351 else
5352 {
5353 data->found_sym = 1;
5354 add_defn_to_vec (data->obstackp,
5355 fixup_symbol_section (sym, data->objfile),
5356 block);
5357 }
5358 }
5359 return true;
5360 }
5361
5362 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5363 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5364 symbols to OBSTACKP. Return whether we found such symbols. */
5365
5366 static int
5367 ada_add_block_renamings (struct obstack *obstackp,
5368 const struct block *block,
5369 const lookup_name_info &lookup_name,
5370 domain_enum domain)
5371 {
5372 struct using_direct *renaming;
5373 int defns_mark = num_defns_collected (obstackp);
5374
5375 symbol_name_matcher_ftype *name_match
5376 = ada_get_symbol_name_matcher (lookup_name);
5377
5378 for (renaming = block_using (block);
5379 renaming != NULL;
5380 renaming = renaming->next)
5381 {
5382 const char *r_name;
5383
5384 /* Avoid infinite recursions: skip this renaming if we are actually
5385 already traversing it.
5386
5387 Currently, symbol lookup in Ada don't use the namespace machinery from
5388 C++/Fortran support: skip namespace imports that use them. */
5389 if (renaming->searched
5390 || (renaming->import_src != NULL
5391 && renaming->import_src[0] != '\0')
5392 || (renaming->import_dest != NULL
5393 && renaming->import_dest[0] != '\0'))
5394 continue;
5395 renaming->searched = 1;
5396
5397 /* TODO: here, we perform another name-based symbol lookup, which can
5398 pull its own multiple overloads. In theory, we should be able to do
5399 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5400 not a simple name. But in order to do this, we would need to enhance
5401 the DWARF reader to associate a symbol to this renaming, instead of a
5402 name. So, for now, we do something simpler: re-use the C++/Fortran
5403 namespace machinery. */
5404 r_name = (renaming->alias != NULL
5405 ? renaming->alias
5406 : renaming->declaration);
5407 if (name_match (r_name, lookup_name, NULL))
5408 {
5409 lookup_name_info decl_lookup_name (renaming->declaration,
5410 lookup_name.match_type ());
5411 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5412 1, NULL);
5413 }
5414 renaming->searched = 0;
5415 }
5416 return num_defns_collected (obstackp) != defns_mark;
5417 }
5418
5419 /* Implements compare_names, but only applying the comparision using
5420 the given CASING. */
5421
5422 static int
5423 compare_names_with_case (const char *string1, const char *string2,
5424 enum case_sensitivity casing)
5425 {
5426 while (*string1 != '\0' && *string2 != '\0')
5427 {
5428 char c1, c2;
5429
5430 if (isspace (*string1) || isspace (*string2))
5431 return strcmp_iw_ordered (string1, string2);
5432
5433 if (casing == case_sensitive_off)
5434 {
5435 c1 = tolower (*string1);
5436 c2 = tolower (*string2);
5437 }
5438 else
5439 {
5440 c1 = *string1;
5441 c2 = *string2;
5442 }
5443 if (c1 != c2)
5444 break;
5445
5446 string1 += 1;
5447 string2 += 1;
5448 }
5449
5450 switch (*string1)
5451 {
5452 case '(':
5453 return strcmp_iw_ordered (string1, string2);
5454 case '_':
5455 if (*string2 == '\0')
5456 {
5457 if (is_name_suffix (string1))
5458 return 0;
5459 else
5460 return 1;
5461 }
5462 /* FALLTHROUGH */
5463 default:
5464 if (*string2 == '(')
5465 return strcmp_iw_ordered (string1, string2);
5466 else
5467 {
5468 if (casing == case_sensitive_off)
5469 return tolower (*string1) - tolower (*string2);
5470 else
5471 return *string1 - *string2;
5472 }
5473 }
5474 }
5475
5476 /* Compare STRING1 to STRING2, with results as for strcmp.
5477 Compatible with strcmp_iw_ordered in that...
5478
5479 strcmp_iw_ordered (STRING1, STRING2) <= 0
5480
5481 ... implies...
5482
5483 compare_names (STRING1, STRING2) <= 0
5484
5485 (they may differ as to what symbols compare equal). */
5486
5487 static int
5488 compare_names (const char *string1, const char *string2)
5489 {
5490 int result;
5491
5492 /* Similar to what strcmp_iw_ordered does, we need to perform
5493 a case-insensitive comparison first, and only resort to
5494 a second, case-sensitive, comparison if the first one was
5495 not sufficient to differentiate the two strings. */
5496
5497 result = compare_names_with_case (string1, string2, case_sensitive_off);
5498 if (result == 0)
5499 result = compare_names_with_case (string1, string2, case_sensitive_on);
5500
5501 return result;
5502 }
5503
5504 /* Convenience function to get at the Ada encoded lookup name for
5505 LOOKUP_NAME, as a C string. */
5506
5507 static const char *
5508 ada_lookup_name (const lookup_name_info &lookup_name)
5509 {
5510 return lookup_name.ada ().lookup_name ().c_str ();
5511 }
5512
5513 /* Add to OBSTACKP all non-local symbols whose name and domain match
5514 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5515 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5516 symbols otherwise. */
5517
5518 static void
5519 add_nonlocal_symbols (struct obstack *obstackp,
5520 const lookup_name_info &lookup_name,
5521 domain_enum domain, int global)
5522 {
5523 struct match_data data;
5524
5525 memset (&data, 0, sizeof data);
5526 data.obstackp = obstackp;
5527
5528 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5529
5530 auto callback = [&] (struct block_symbol *bsym)
5531 {
5532 return aux_add_nonlocal_symbols (bsym, &data);
5533 };
5534
5535 for (objfile *objfile : current_program_space->objfiles ())
5536 {
5537 data.objfile = objfile;
5538
5539 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5540 domain, global, callback,
5541 (is_wild_match
5542 ? NULL : compare_names));
5543
5544 for (compunit_symtab *cu : objfile->compunits ())
5545 {
5546 const struct block *global_block
5547 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5548
5549 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5550 domain))
5551 data.found_sym = 1;
5552 }
5553 }
5554
5555 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5556 {
5557 const char *name = ada_lookup_name (lookup_name);
5558 std::string bracket_name = std::string ("<_ada_") + name + '>';
5559 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5560
5561 for (objfile *objfile : current_program_space->objfiles ())
5562 {
5563 data.objfile = objfile;
5564 objfile->sf->qf->map_matching_symbols (objfile, name1,
5565 domain, global, callback,
5566 compare_names);
5567 }
5568 }
5569 }
5570
5571 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5572 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5573 returning the number of matches. Add these to OBSTACKP.
5574
5575 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5576 symbol match within the nest of blocks whose innermost member is BLOCK,
5577 is the one match returned (no other matches in that or
5578 enclosing blocks is returned). If there are any matches in or
5579 surrounding BLOCK, then these alone are returned.
5580
5581 Names prefixed with "standard__" are handled specially:
5582 "standard__" is first stripped off (by the lookup_name
5583 constructor), and only static and global symbols are searched.
5584
5585 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5586 to lookup global symbols. */
5587
5588 static void
5589 ada_add_all_symbols (struct obstack *obstackp,
5590 const struct block *block,
5591 const lookup_name_info &lookup_name,
5592 domain_enum domain,
5593 int full_search,
5594 int *made_global_lookup_p)
5595 {
5596 struct symbol *sym;
5597
5598 if (made_global_lookup_p)
5599 *made_global_lookup_p = 0;
5600
5601 /* Special case: If the user specifies a symbol name inside package
5602 Standard, do a non-wild matching of the symbol name without
5603 the "standard__" prefix. This was primarily introduced in order
5604 to allow the user to specifically access the standard exceptions
5605 using, for instance, Standard.Constraint_Error when Constraint_Error
5606 is ambiguous (due to the user defining its own Constraint_Error
5607 entity inside its program). */
5608 if (lookup_name.ada ().standard_p ())
5609 block = NULL;
5610
5611 /* Check the non-global symbols. If we have ANY match, then we're done. */
5612
5613 if (block != NULL)
5614 {
5615 if (full_search)
5616 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5617 else
5618 {
5619 /* In the !full_search case we're are being called by
5620 iterate_over_symbols, and we don't want to search
5621 superblocks. */
5622 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5623 }
5624 if (num_defns_collected (obstackp) > 0 || !full_search)
5625 return;
5626 }
5627
5628 /* No non-global symbols found. Check our cache to see if we have
5629 already performed this search before. If we have, then return
5630 the same result. */
5631
5632 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5633 domain, &sym, &block))
5634 {
5635 if (sym != NULL)
5636 add_defn_to_vec (obstackp, sym, block);
5637 return;
5638 }
5639
5640 if (made_global_lookup_p)
5641 *made_global_lookup_p = 1;
5642
5643 /* Search symbols from all global blocks. */
5644
5645 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5646
5647 /* Now add symbols from all per-file blocks if we've gotten no hits
5648 (not strictly correct, but perhaps better than an error). */
5649
5650 if (num_defns_collected (obstackp) == 0)
5651 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5652 }
5653
5654 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5655 is non-zero, enclosing scope and in global scopes, returning the number of
5656 matches.
5657 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5658 found and the blocks and symbol tables (if any) in which they were
5659 found.
5660
5661 When full_search is non-zero, any non-function/non-enumeral
5662 symbol match within the nest of blocks whose innermost member is BLOCK,
5663 is the one match returned (no other matches in that or
5664 enclosing blocks is returned). If there are any matches in or
5665 surrounding BLOCK, then these alone are returned.
5666
5667 Names prefixed with "standard__" are handled specially: "standard__"
5668 is first stripped off, and only static and global symbols are searched. */
5669
5670 static int
5671 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5672 const struct block *block,
5673 domain_enum domain,
5674 std::vector<struct block_symbol> *results,
5675 int full_search)
5676 {
5677 int syms_from_global_search;
5678 int ndefns;
5679 auto_obstack obstack;
5680
5681 ada_add_all_symbols (&obstack, block, lookup_name,
5682 domain, full_search, &syms_from_global_search);
5683
5684 ndefns = num_defns_collected (&obstack);
5685
5686 struct block_symbol *base = defns_collected (&obstack, 1);
5687 for (int i = 0; i < ndefns; ++i)
5688 results->push_back (base[i]);
5689
5690 ndefns = remove_extra_symbols (results);
5691
5692 if (ndefns == 0 && full_search && syms_from_global_search)
5693 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5694
5695 if (ndefns == 1 && full_search && syms_from_global_search)
5696 cache_symbol (ada_lookup_name (lookup_name), domain,
5697 (*results)[0].symbol, (*results)[0].block);
5698
5699 ndefns = remove_irrelevant_renamings (results, block);
5700
5701 return ndefns;
5702 }
5703
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5705 in global scopes, returning the number of matches, and filling *RESULTS
5706 with (SYM,BLOCK) tuples.
5707
5708 See ada_lookup_symbol_list_worker for further details. */
5709
5710 int
5711 ada_lookup_symbol_list (const char *name, const struct block *block,
5712 domain_enum domain,
5713 std::vector<struct block_symbol> *results)
5714 {
5715 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5716 lookup_name_info lookup_name (name, name_match_type);
5717
5718 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5719 }
5720
5721 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5722 to 1, but choosing the first symbol found if there are multiple
5723 choices.
5724
5725 The result is stored in *INFO, which must be non-NULL.
5726 If no match is found, INFO->SYM is set to NULL. */
5727
5728 void
5729 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5730 domain_enum domain,
5731 struct block_symbol *info)
5732 {
5733 /* Since we already have an encoded name, wrap it in '<>' to force a
5734 verbatim match. Otherwise, if the name happens to not look like
5735 an encoded name (because it doesn't include a "__"),
5736 ada_lookup_name_info would re-encode/fold it again, and that
5737 would e.g., incorrectly lowercase object renaming names like
5738 "R28b" -> "r28b". */
5739 std::string verbatim = std::string ("<") + name + '>';
5740
5741 gdb_assert (info != NULL);
5742 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5743 }
5744
5745 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5746 scope and in global scopes, or NULL if none. NAME is folded and
5747 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5748 choosing the first symbol if there are multiple choices. */
5749
5750 struct block_symbol
5751 ada_lookup_symbol (const char *name, const struct block *block0,
5752 domain_enum domain)
5753 {
5754 std::vector<struct block_symbol> candidates;
5755 int n_candidates;
5756
5757 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5758
5759 if (n_candidates == 0)
5760 return {};
5761
5762 block_symbol info = candidates[0];
5763 info.symbol = fixup_symbol_section (info.symbol, NULL);
5764 return info;
5765 }
5766
5767
5768 /* True iff STR is a possible encoded suffix of a normal Ada name
5769 that is to be ignored for matching purposes. Suffixes of parallel
5770 names (e.g., XVE) are not included here. Currently, the possible suffixes
5771 are given by any of the regular expressions:
5772
5773 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5774 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5775 TKB [subprogram suffix for task bodies]
5776 _E[0-9]+[bs]$ [protected object entry suffixes]
5777 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5778
5779 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5780 match is performed. This sequence is used to differentiate homonyms,
5781 is an optional part of a valid name suffix. */
5782
5783 static int
5784 is_name_suffix (const char *str)
5785 {
5786 int k;
5787 const char *matching;
5788 const int len = strlen (str);
5789
5790 /* Skip optional leading __[0-9]+. */
5791
5792 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5793 {
5794 str += 3;
5795 while (isdigit (str[0]))
5796 str += 1;
5797 }
5798
5799 /* [.$][0-9]+ */
5800
5801 if (str[0] == '.' || str[0] == '$')
5802 {
5803 matching = str + 1;
5804 while (isdigit (matching[0]))
5805 matching += 1;
5806 if (matching[0] == '\0')
5807 return 1;
5808 }
5809
5810 /* ___[0-9]+ */
5811
5812 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5813 {
5814 matching = str + 3;
5815 while (isdigit (matching[0]))
5816 matching += 1;
5817 if (matching[0] == '\0')
5818 return 1;
5819 }
5820
5821 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5822
5823 if (strcmp (str, "TKB") == 0)
5824 return 1;
5825
5826 #if 0
5827 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5828 with a N at the end. Unfortunately, the compiler uses the same
5829 convention for other internal types it creates. So treating
5830 all entity names that end with an "N" as a name suffix causes
5831 some regressions. For instance, consider the case of an enumerated
5832 type. To support the 'Image attribute, it creates an array whose
5833 name ends with N.
5834 Having a single character like this as a suffix carrying some
5835 information is a bit risky. Perhaps we should change the encoding
5836 to be something like "_N" instead. In the meantime, do not do
5837 the following check. */
5838 /* Protected Object Subprograms */
5839 if (len == 1 && str [0] == 'N')
5840 return 1;
5841 #endif
5842
5843 /* _E[0-9]+[bs]$ */
5844 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5845 {
5846 matching = str + 3;
5847 while (isdigit (matching[0]))
5848 matching += 1;
5849 if ((matching[0] == 'b' || matching[0] == 's')
5850 && matching [1] == '\0')
5851 return 1;
5852 }
5853
5854 /* ??? We should not modify STR directly, as we are doing below. This
5855 is fine in this case, but may become problematic later if we find
5856 that this alternative did not work, and want to try matching
5857 another one from the begining of STR. Since we modified it, we
5858 won't be able to find the begining of the string anymore! */
5859 if (str[0] == 'X')
5860 {
5861 str += 1;
5862 while (str[0] != '_' && str[0] != '\0')
5863 {
5864 if (str[0] != 'n' && str[0] != 'b')
5865 return 0;
5866 str += 1;
5867 }
5868 }
5869
5870 if (str[0] == '\000')
5871 return 1;
5872
5873 if (str[0] == '_')
5874 {
5875 if (str[1] != '_' || str[2] == '\000')
5876 return 0;
5877 if (str[2] == '_')
5878 {
5879 if (strcmp (str + 3, "JM") == 0)
5880 return 1;
5881 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5882 the LJM suffix in favor of the JM one. But we will
5883 still accept LJM as a valid suffix for a reasonable
5884 amount of time, just to allow ourselves to debug programs
5885 compiled using an older version of GNAT. */
5886 if (strcmp (str + 3, "LJM") == 0)
5887 return 1;
5888 if (str[3] != 'X')
5889 return 0;
5890 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5891 || str[4] == 'U' || str[4] == 'P')
5892 return 1;
5893 if (str[4] == 'R' && str[5] != 'T')
5894 return 1;
5895 return 0;
5896 }
5897 if (!isdigit (str[2]))
5898 return 0;
5899 for (k = 3; str[k] != '\0'; k += 1)
5900 if (!isdigit (str[k]) && str[k] != '_')
5901 return 0;
5902 return 1;
5903 }
5904 if (str[0] == '$' && isdigit (str[1]))
5905 {
5906 for (k = 2; str[k] != '\0'; k += 1)
5907 if (!isdigit (str[k]) && str[k] != '_')
5908 return 0;
5909 return 1;
5910 }
5911 return 0;
5912 }
5913
5914 /* Return non-zero if the string starting at NAME and ending before
5915 NAME_END contains no capital letters. */
5916
5917 static int
5918 is_valid_name_for_wild_match (const char *name0)
5919 {
5920 std::string decoded_name = ada_decode (name0);
5921 int i;
5922
5923 /* If the decoded name starts with an angle bracket, it means that
5924 NAME0 does not follow the GNAT encoding format. It should then
5925 not be allowed as a possible wild match. */
5926 if (decoded_name[0] == '<')
5927 return 0;
5928
5929 for (i=0; decoded_name[i] != '\0'; i++)
5930 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5931 return 0;
5932
5933 return 1;
5934 }
5935
5936 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5937 that could start a simple name. Assumes that *NAMEP points into
5938 the string beginning at NAME0. */
5939
5940 static int
5941 advance_wild_match (const char **namep, const char *name0, int target0)
5942 {
5943 const char *name = *namep;
5944
5945 while (1)
5946 {
5947 int t0, t1;
5948
5949 t0 = *name;
5950 if (t0 == '_')
5951 {
5952 t1 = name[1];
5953 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5954 {
5955 name += 1;
5956 if (name == name0 + 5 && startswith (name0, "_ada"))
5957 break;
5958 else
5959 name += 1;
5960 }
5961 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5962 || name[2] == target0))
5963 {
5964 name += 2;
5965 break;
5966 }
5967 else
5968 return 0;
5969 }
5970 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5971 name += 1;
5972 else
5973 return 0;
5974 }
5975
5976 *namep = name;
5977 return 1;
5978 }
5979
5980 /* Return true iff NAME encodes a name of the form prefix.PATN.
5981 Ignores any informational suffixes of NAME (i.e., for which
5982 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5983 simple name. */
5984
5985 static bool
5986 wild_match (const char *name, const char *patn)
5987 {
5988 const char *p;
5989 const char *name0 = name;
5990
5991 while (1)
5992 {
5993 const char *match = name;
5994
5995 if (*name == *patn)
5996 {
5997 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5998 if (*p != *name)
5999 break;
6000 if (*p == '\0' && is_name_suffix (name))
6001 return match == name0 || is_valid_name_for_wild_match (name0);
6002
6003 if (name[-1] == '_')
6004 name -= 1;
6005 }
6006 if (!advance_wild_match (&name, name0, *patn))
6007 return false;
6008 }
6009 }
6010
6011 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6012 any trailing suffixes that encode debugging information or leading
6013 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6014 information that is ignored). */
6015
6016 static bool
6017 full_match (const char *sym_name, const char *search_name)
6018 {
6019 size_t search_name_len = strlen (search_name);
6020
6021 if (strncmp (sym_name, search_name, search_name_len) == 0
6022 && is_name_suffix (sym_name + search_name_len))
6023 return true;
6024
6025 if (startswith (sym_name, "_ada_")
6026 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6027 && is_name_suffix (sym_name + search_name_len + 5))
6028 return true;
6029
6030 return false;
6031 }
6032
6033 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6034 *defn_symbols, updating the list of symbols in OBSTACKP (if
6035 necessary). OBJFILE is the section containing BLOCK. */
6036
6037 static void
6038 ada_add_block_symbols (struct obstack *obstackp,
6039 const struct block *block,
6040 const lookup_name_info &lookup_name,
6041 domain_enum domain, struct objfile *objfile)
6042 {
6043 struct block_iterator iter;
6044 /* A matching argument symbol, if any. */
6045 struct symbol *arg_sym;
6046 /* Set true when we find a matching non-argument symbol. */
6047 int found_sym;
6048 struct symbol *sym;
6049
6050 arg_sym = NULL;
6051 found_sym = 0;
6052 for (sym = block_iter_match_first (block, lookup_name, &iter);
6053 sym != NULL;
6054 sym = block_iter_match_next (lookup_name, &iter))
6055 {
6056 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6057 {
6058 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6059 {
6060 if (SYMBOL_IS_ARGUMENT (sym))
6061 arg_sym = sym;
6062 else
6063 {
6064 found_sym = 1;
6065 add_defn_to_vec (obstackp,
6066 fixup_symbol_section (sym, objfile),
6067 block);
6068 }
6069 }
6070 }
6071 }
6072
6073 /* Handle renamings. */
6074
6075 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6076 found_sym = 1;
6077
6078 if (!found_sym && arg_sym != NULL)
6079 {
6080 add_defn_to_vec (obstackp,
6081 fixup_symbol_section (arg_sym, objfile),
6082 block);
6083 }
6084
6085 if (!lookup_name.ada ().wild_match_p ())
6086 {
6087 arg_sym = NULL;
6088 found_sym = 0;
6089 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6090 const char *name = ada_lookup_name.c_str ();
6091 size_t name_len = ada_lookup_name.size ();
6092
6093 ALL_BLOCK_SYMBOLS (block, iter, sym)
6094 {
6095 if (symbol_matches_domain (sym->language (),
6096 SYMBOL_DOMAIN (sym), domain))
6097 {
6098 int cmp;
6099
6100 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6101 if (cmp == 0)
6102 {
6103 cmp = !startswith (sym->linkage_name (), "_ada_");
6104 if (cmp == 0)
6105 cmp = strncmp (name, sym->linkage_name () + 5,
6106 name_len);
6107 }
6108
6109 if (cmp == 0
6110 && is_name_suffix (sym->linkage_name () + name_len + 5))
6111 {
6112 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6113 {
6114 if (SYMBOL_IS_ARGUMENT (sym))
6115 arg_sym = sym;
6116 else
6117 {
6118 found_sym = 1;
6119 add_defn_to_vec (obstackp,
6120 fixup_symbol_section (sym, objfile),
6121 block);
6122 }
6123 }
6124 }
6125 }
6126 }
6127
6128 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6129 They aren't parameters, right? */
6130 if (!found_sym && arg_sym != NULL)
6131 {
6132 add_defn_to_vec (obstackp,
6133 fixup_symbol_section (arg_sym, objfile),
6134 block);
6135 }
6136 }
6137 }
6138 \f
6139
6140 /* Symbol Completion */
6141
6142 /* See symtab.h. */
6143
6144 bool
6145 ada_lookup_name_info::matches
6146 (const char *sym_name,
6147 symbol_name_match_type match_type,
6148 completion_match_result *comp_match_res) const
6149 {
6150 bool match = false;
6151 const char *text = m_encoded_name.c_str ();
6152 size_t text_len = m_encoded_name.size ();
6153
6154 /* First, test against the fully qualified name of the symbol. */
6155
6156 if (strncmp (sym_name, text, text_len) == 0)
6157 match = true;
6158
6159 std::string decoded_name = ada_decode (sym_name);
6160 if (match && !m_encoded_p)
6161 {
6162 /* One needed check before declaring a positive match is to verify
6163 that iff we are doing a verbatim match, the decoded version
6164 of the symbol name starts with '<'. Otherwise, this symbol name
6165 is not a suitable completion. */
6166
6167 bool has_angle_bracket = (decoded_name[0] == '<');
6168 match = (has_angle_bracket == m_verbatim_p);
6169 }
6170
6171 if (match && !m_verbatim_p)
6172 {
6173 /* When doing non-verbatim match, another check that needs to
6174 be done is to verify that the potentially matching symbol name
6175 does not include capital letters, because the ada-mode would
6176 not be able to understand these symbol names without the
6177 angle bracket notation. */
6178 const char *tmp;
6179
6180 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6181 if (*tmp != '\0')
6182 match = false;
6183 }
6184
6185 /* Second: Try wild matching... */
6186
6187 if (!match && m_wild_match_p)
6188 {
6189 /* Since we are doing wild matching, this means that TEXT
6190 may represent an unqualified symbol name. We therefore must
6191 also compare TEXT against the unqualified name of the symbol. */
6192 sym_name = ada_unqualified_name (decoded_name.c_str ());
6193
6194 if (strncmp (sym_name, text, text_len) == 0)
6195 match = true;
6196 }
6197
6198 /* Finally: If we found a match, prepare the result to return. */
6199
6200 if (!match)
6201 return false;
6202
6203 if (comp_match_res != NULL)
6204 {
6205 std::string &match_str = comp_match_res->match.storage ();
6206
6207 if (!m_encoded_p)
6208 match_str = ada_decode (sym_name);
6209 else
6210 {
6211 if (m_verbatim_p)
6212 match_str = add_angle_brackets (sym_name);
6213 else
6214 match_str = sym_name;
6215
6216 }
6217
6218 comp_match_res->set_match (match_str.c_str ());
6219 }
6220
6221 return true;
6222 }
6223
6224 /* Field Access */
6225
6226 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6227 for tagged types. */
6228
6229 static int
6230 ada_is_dispatch_table_ptr_type (struct type *type)
6231 {
6232 const char *name;
6233
6234 if (type->code () != TYPE_CODE_PTR)
6235 return 0;
6236
6237 name = TYPE_TARGET_TYPE (type)->name ();
6238 if (name == NULL)
6239 return 0;
6240
6241 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6242 }
6243
6244 /* Return non-zero if TYPE is an interface tag. */
6245
6246 static int
6247 ada_is_interface_tag (struct type *type)
6248 {
6249 const char *name = type->name ();
6250
6251 if (name == NULL)
6252 return 0;
6253
6254 return (strcmp (name, "ada__tags__interface_tag") == 0);
6255 }
6256
6257 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6258 to be invisible to users. */
6259
6260 int
6261 ada_is_ignored_field (struct type *type, int field_num)
6262 {
6263 if (field_num < 0 || field_num > type->num_fields ())
6264 return 1;
6265
6266 /* Check the name of that field. */
6267 {
6268 const char *name = TYPE_FIELD_NAME (type, field_num);
6269
6270 /* Anonymous field names should not be printed.
6271 brobecker/2007-02-20: I don't think this can actually happen
6272 but we don't want to print the value of anonymous fields anyway. */
6273 if (name == NULL)
6274 return 1;
6275
6276 /* Normally, fields whose name start with an underscore ("_")
6277 are fields that have been internally generated by the compiler,
6278 and thus should not be printed. The "_parent" field is special,
6279 however: This is a field internally generated by the compiler
6280 for tagged types, and it contains the components inherited from
6281 the parent type. This field should not be printed as is, but
6282 should not be ignored either. */
6283 if (name[0] == '_' && !startswith (name, "_parent"))
6284 return 1;
6285 }
6286
6287 /* If this is the dispatch table of a tagged type or an interface tag,
6288 then ignore. */
6289 if (ada_is_tagged_type (type, 1)
6290 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6291 || ada_is_interface_tag (type->field (field_num).type ())))
6292 return 1;
6293
6294 /* Not a special field, so it should not be ignored. */
6295 return 0;
6296 }
6297
6298 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6299 pointer or reference type whose ultimate target has a tag field. */
6300
6301 int
6302 ada_is_tagged_type (struct type *type, int refok)
6303 {
6304 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6305 }
6306
6307 /* True iff TYPE represents the type of X'Tag */
6308
6309 int
6310 ada_is_tag_type (struct type *type)
6311 {
6312 type = ada_check_typedef (type);
6313
6314 if (type == NULL || type->code () != TYPE_CODE_PTR)
6315 return 0;
6316 else
6317 {
6318 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6319
6320 return (name != NULL
6321 && strcmp (name, "ada__tags__dispatch_table") == 0);
6322 }
6323 }
6324
6325 /* The type of the tag on VAL. */
6326
6327 static struct type *
6328 ada_tag_type (struct value *val)
6329 {
6330 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6331 }
6332
6333 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6334 retired at Ada 05). */
6335
6336 static int
6337 is_ada95_tag (struct value *tag)
6338 {
6339 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6340 }
6341
6342 /* The value of the tag on VAL. */
6343
6344 static struct value *
6345 ada_value_tag (struct value *val)
6346 {
6347 return ada_value_struct_elt (val, "_tag", 0);
6348 }
6349
6350 /* The value of the tag on the object of type TYPE whose contents are
6351 saved at VALADDR, if it is non-null, or is at memory address
6352 ADDRESS. */
6353
6354 static struct value *
6355 value_tag_from_contents_and_address (struct type *type,
6356 const gdb_byte *valaddr,
6357 CORE_ADDR address)
6358 {
6359 int tag_byte_offset;
6360 struct type *tag_type;
6361
6362 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6363 NULL, NULL, NULL))
6364 {
6365 const gdb_byte *valaddr1 = ((valaddr == NULL)
6366 ? NULL
6367 : valaddr + tag_byte_offset);
6368 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6369
6370 return value_from_contents_and_address (tag_type, valaddr1, address1);
6371 }
6372 return NULL;
6373 }
6374
6375 static struct type *
6376 type_from_tag (struct value *tag)
6377 {
6378 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6379
6380 if (type_name != NULL)
6381 return ada_find_any_type (ada_encode (type_name.get ()));
6382 return NULL;
6383 }
6384
6385 /* Given a value OBJ of a tagged type, return a value of this
6386 type at the base address of the object. The base address, as
6387 defined in Ada.Tags, it is the address of the primary tag of
6388 the object, and therefore where the field values of its full
6389 view can be fetched. */
6390
6391 struct value *
6392 ada_tag_value_at_base_address (struct value *obj)
6393 {
6394 struct value *val;
6395 LONGEST offset_to_top = 0;
6396 struct type *ptr_type, *obj_type;
6397 struct value *tag;
6398 CORE_ADDR base_address;
6399
6400 obj_type = value_type (obj);
6401
6402 /* It is the responsability of the caller to deref pointers. */
6403
6404 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6405 return obj;
6406
6407 tag = ada_value_tag (obj);
6408 if (!tag)
6409 return obj;
6410
6411 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6412
6413 if (is_ada95_tag (tag))
6414 return obj;
6415
6416 ptr_type = language_lookup_primitive_type
6417 (language_def (language_ada), target_gdbarch(), "storage_offset");
6418 ptr_type = lookup_pointer_type (ptr_type);
6419 val = value_cast (ptr_type, tag);
6420 if (!val)
6421 return obj;
6422
6423 /* It is perfectly possible that an exception be raised while
6424 trying to determine the base address, just like for the tag;
6425 see ada_tag_name for more details. We do not print the error
6426 message for the same reason. */
6427
6428 try
6429 {
6430 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6431 }
6432
6433 catch (const gdb_exception_error &e)
6434 {
6435 return obj;
6436 }
6437
6438 /* If offset is null, nothing to do. */
6439
6440 if (offset_to_top == 0)
6441 return obj;
6442
6443 /* -1 is a special case in Ada.Tags; however, what should be done
6444 is not quite clear from the documentation. So do nothing for
6445 now. */
6446
6447 if (offset_to_top == -1)
6448 return obj;
6449
6450 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6451 from the base address. This was however incompatible with
6452 C++ dispatch table: C++ uses a *negative* value to *add*
6453 to the base address. Ada's convention has therefore been
6454 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6455 use the same convention. Here, we support both cases by
6456 checking the sign of OFFSET_TO_TOP. */
6457
6458 if (offset_to_top > 0)
6459 offset_to_top = -offset_to_top;
6460
6461 base_address = value_address (obj) + offset_to_top;
6462 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6463
6464 /* Make sure that we have a proper tag at the new address.
6465 Otherwise, offset_to_top is bogus (which can happen when
6466 the object is not initialized yet). */
6467
6468 if (!tag)
6469 return obj;
6470
6471 obj_type = type_from_tag (tag);
6472
6473 if (!obj_type)
6474 return obj;
6475
6476 return value_from_contents_and_address (obj_type, NULL, base_address);
6477 }
6478
6479 /* Return the "ada__tags__type_specific_data" type. */
6480
6481 static struct type *
6482 ada_get_tsd_type (struct inferior *inf)
6483 {
6484 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6485
6486 if (data->tsd_type == 0)
6487 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6488 return data->tsd_type;
6489 }
6490
6491 /* Return the TSD (type-specific data) associated to the given TAG.
6492 TAG is assumed to be the tag of a tagged-type entity.
6493
6494 May return NULL if we are unable to get the TSD. */
6495
6496 static struct value *
6497 ada_get_tsd_from_tag (struct value *tag)
6498 {
6499 struct value *val;
6500 struct type *type;
6501
6502 /* First option: The TSD is simply stored as a field of our TAG.
6503 Only older versions of GNAT would use this format, but we have
6504 to test it first, because there are no visible markers for
6505 the current approach except the absence of that field. */
6506
6507 val = ada_value_struct_elt (tag, "tsd", 1);
6508 if (val)
6509 return val;
6510
6511 /* Try the second representation for the dispatch table (in which
6512 there is no explicit 'tsd' field in the referent of the tag pointer,
6513 and instead the tsd pointer is stored just before the dispatch
6514 table. */
6515
6516 type = ada_get_tsd_type (current_inferior());
6517 if (type == NULL)
6518 return NULL;
6519 type = lookup_pointer_type (lookup_pointer_type (type));
6520 val = value_cast (type, tag);
6521 if (val == NULL)
6522 return NULL;
6523 return value_ind (value_ptradd (val, -1));
6524 }
6525
6526 /* Given the TSD of a tag (type-specific data), return a string
6527 containing the name of the associated type.
6528
6529 May return NULL if we are unable to determine the tag name. */
6530
6531 static gdb::unique_xmalloc_ptr<char>
6532 ada_tag_name_from_tsd (struct value *tsd)
6533 {
6534 char *p;
6535 struct value *val;
6536
6537 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6538 if (val == NULL)
6539 return NULL;
6540 gdb::unique_xmalloc_ptr<char> buffer
6541 = target_read_string (value_as_address (val), INT_MAX);
6542 if (buffer == nullptr)
6543 return nullptr;
6544
6545 for (p = buffer.get (); *p != '\0'; ++p)
6546 {
6547 if (isalpha (*p))
6548 *p = tolower (*p);
6549 }
6550
6551 return buffer;
6552 }
6553
6554 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6555 a C string.
6556
6557 Return NULL if the TAG is not an Ada tag, or if we were unable to
6558 determine the name of that tag. */
6559
6560 gdb::unique_xmalloc_ptr<char>
6561 ada_tag_name (struct value *tag)
6562 {
6563 gdb::unique_xmalloc_ptr<char> name;
6564
6565 if (!ada_is_tag_type (value_type (tag)))
6566 return NULL;
6567
6568 /* It is perfectly possible that an exception be raised while trying
6569 to determine the TAG's name, even under normal circumstances:
6570 The associated variable may be uninitialized or corrupted, for
6571 instance. We do not let any exception propagate past this point.
6572 instead we return NULL.
6573
6574 We also do not print the error message either (which often is very
6575 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6576 the caller print a more meaningful message if necessary. */
6577 try
6578 {
6579 struct value *tsd = ada_get_tsd_from_tag (tag);
6580
6581 if (tsd != NULL)
6582 name = ada_tag_name_from_tsd (tsd);
6583 }
6584 catch (const gdb_exception_error &e)
6585 {
6586 }
6587
6588 return name;
6589 }
6590
6591 /* The parent type of TYPE, or NULL if none. */
6592
6593 struct type *
6594 ada_parent_type (struct type *type)
6595 {
6596 int i;
6597
6598 type = ada_check_typedef (type);
6599
6600 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6601 return NULL;
6602
6603 for (i = 0; i < type->num_fields (); i += 1)
6604 if (ada_is_parent_field (type, i))
6605 {
6606 struct type *parent_type = type->field (i).type ();
6607
6608 /* If the _parent field is a pointer, then dereference it. */
6609 if (parent_type->code () == TYPE_CODE_PTR)
6610 parent_type = TYPE_TARGET_TYPE (parent_type);
6611 /* If there is a parallel XVS type, get the actual base type. */
6612 parent_type = ada_get_base_type (parent_type);
6613
6614 return ada_check_typedef (parent_type);
6615 }
6616
6617 return NULL;
6618 }
6619
6620 /* True iff field number FIELD_NUM of structure type TYPE contains the
6621 parent-type (inherited) fields of a derived type. Assumes TYPE is
6622 a structure type with at least FIELD_NUM+1 fields. */
6623
6624 int
6625 ada_is_parent_field (struct type *type, int field_num)
6626 {
6627 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6628
6629 return (name != NULL
6630 && (startswith (name, "PARENT")
6631 || startswith (name, "_parent")));
6632 }
6633
6634 /* True iff field number FIELD_NUM of structure type TYPE is a
6635 transparent wrapper field (which should be silently traversed when doing
6636 field selection and flattened when printing). Assumes TYPE is a
6637 structure type with at least FIELD_NUM+1 fields. Such fields are always
6638 structures. */
6639
6640 int
6641 ada_is_wrapper_field (struct type *type, int field_num)
6642 {
6643 const char *name = TYPE_FIELD_NAME (type, field_num);
6644
6645 if (name != NULL && strcmp (name, "RETVAL") == 0)
6646 {
6647 /* This happens in functions with "out" or "in out" parameters
6648 which are passed by copy. For such functions, GNAT describes
6649 the function's return type as being a struct where the return
6650 value is in a field called RETVAL, and where the other "out"
6651 or "in out" parameters are fields of that struct. This is not
6652 a wrapper. */
6653 return 0;
6654 }
6655
6656 return (name != NULL
6657 && (startswith (name, "PARENT")
6658 || strcmp (name, "REP") == 0
6659 || startswith (name, "_parent")
6660 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6661 }
6662
6663 /* True iff field number FIELD_NUM of structure or union type TYPE
6664 is a variant wrapper. Assumes TYPE is a structure type with at least
6665 FIELD_NUM+1 fields. */
6666
6667 int
6668 ada_is_variant_part (struct type *type, int field_num)
6669 {
6670 /* Only Ada types are eligible. */
6671 if (!ADA_TYPE_P (type))
6672 return 0;
6673
6674 struct type *field_type = type->field (field_num).type ();
6675
6676 return (field_type->code () == TYPE_CODE_UNION
6677 || (is_dynamic_field (type, field_num)
6678 && (TYPE_TARGET_TYPE (field_type)->code ()
6679 == TYPE_CODE_UNION)));
6680 }
6681
6682 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6683 whose discriminants are contained in the record type OUTER_TYPE,
6684 returns the type of the controlling discriminant for the variant.
6685 May return NULL if the type could not be found. */
6686
6687 struct type *
6688 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6689 {
6690 const char *name = ada_variant_discrim_name (var_type);
6691
6692 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6693 }
6694
6695 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6696 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6697 represents a 'when others' clause; otherwise 0. */
6698
6699 static int
6700 ada_is_others_clause (struct type *type, int field_num)
6701 {
6702 const char *name = TYPE_FIELD_NAME (type, field_num);
6703
6704 return (name != NULL && name[0] == 'O');
6705 }
6706
6707 /* Assuming that TYPE0 is the type of the variant part of a record,
6708 returns the name of the discriminant controlling the variant.
6709 The value is valid until the next call to ada_variant_discrim_name. */
6710
6711 const char *
6712 ada_variant_discrim_name (struct type *type0)
6713 {
6714 static char *result = NULL;
6715 static size_t result_len = 0;
6716 struct type *type;
6717 const char *name;
6718 const char *discrim_end;
6719 const char *discrim_start;
6720
6721 if (type0->code () == TYPE_CODE_PTR)
6722 type = TYPE_TARGET_TYPE (type0);
6723 else
6724 type = type0;
6725
6726 name = ada_type_name (type);
6727
6728 if (name == NULL || name[0] == '\000')
6729 return "";
6730
6731 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6732 discrim_end -= 1)
6733 {
6734 if (startswith (discrim_end, "___XVN"))
6735 break;
6736 }
6737 if (discrim_end == name)
6738 return "";
6739
6740 for (discrim_start = discrim_end; discrim_start != name + 3;
6741 discrim_start -= 1)
6742 {
6743 if (discrim_start == name + 1)
6744 return "";
6745 if ((discrim_start > name + 3
6746 && startswith (discrim_start - 3, "___"))
6747 || discrim_start[-1] == '.')
6748 break;
6749 }
6750
6751 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6752 strncpy (result, discrim_start, discrim_end - discrim_start);
6753 result[discrim_end - discrim_start] = '\0';
6754 return result;
6755 }
6756
6757 /* Scan STR for a subtype-encoded number, beginning at position K.
6758 Put the position of the character just past the number scanned in
6759 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6760 Return 1 if there was a valid number at the given position, and 0
6761 otherwise. A "subtype-encoded" number consists of the absolute value
6762 in decimal, followed by the letter 'm' to indicate a negative number.
6763 Assumes 0m does not occur. */
6764
6765 int
6766 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6767 {
6768 ULONGEST RU;
6769
6770 if (!isdigit (str[k]))
6771 return 0;
6772
6773 /* Do it the hard way so as not to make any assumption about
6774 the relationship of unsigned long (%lu scan format code) and
6775 LONGEST. */
6776 RU = 0;
6777 while (isdigit (str[k]))
6778 {
6779 RU = RU * 10 + (str[k] - '0');
6780 k += 1;
6781 }
6782
6783 if (str[k] == 'm')
6784 {
6785 if (R != NULL)
6786 *R = (-(LONGEST) (RU - 1)) - 1;
6787 k += 1;
6788 }
6789 else if (R != NULL)
6790 *R = (LONGEST) RU;
6791
6792 /* NOTE on the above: Technically, C does not say what the results of
6793 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6794 number representable as a LONGEST (although either would probably work
6795 in most implementations). When RU>0, the locution in the then branch
6796 above is always equivalent to the negative of RU. */
6797
6798 if (new_k != NULL)
6799 *new_k = k;
6800 return 1;
6801 }
6802
6803 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6804 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6805 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6806
6807 static int
6808 ada_in_variant (LONGEST val, struct type *type, int field_num)
6809 {
6810 const char *name = TYPE_FIELD_NAME (type, field_num);
6811 int p;
6812
6813 p = 0;
6814 while (1)
6815 {
6816 switch (name[p])
6817 {
6818 case '\0':
6819 return 0;
6820 case 'S':
6821 {
6822 LONGEST W;
6823
6824 if (!ada_scan_number (name, p + 1, &W, &p))
6825 return 0;
6826 if (val == W)
6827 return 1;
6828 break;
6829 }
6830 case 'R':
6831 {
6832 LONGEST L, U;
6833
6834 if (!ada_scan_number (name, p + 1, &L, &p)
6835 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6836 return 0;
6837 if (val >= L && val <= U)
6838 return 1;
6839 break;
6840 }
6841 case 'O':
6842 return 1;
6843 default:
6844 return 0;
6845 }
6846 }
6847 }
6848
6849 /* FIXME: Lots of redundancy below. Try to consolidate. */
6850
6851 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6852 ARG_TYPE, extract and return the value of one of its (non-static)
6853 fields. FIELDNO says which field. Differs from value_primitive_field
6854 only in that it can handle packed values of arbitrary type. */
6855
6856 struct value *
6857 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6858 struct type *arg_type)
6859 {
6860 struct type *type;
6861
6862 arg_type = ada_check_typedef (arg_type);
6863 type = arg_type->field (fieldno).type ();
6864
6865 /* Handle packed fields. It might be that the field is not packed
6866 relative to its containing structure, but the structure itself is
6867 packed; in this case we must take the bit-field path. */
6868 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6869 {
6870 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6871 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6872
6873 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6874 offset + bit_pos / 8,
6875 bit_pos % 8, bit_size, type);
6876 }
6877 else
6878 return value_primitive_field (arg1, offset, fieldno, arg_type);
6879 }
6880
6881 /* Find field with name NAME in object of type TYPE. If found,
6882 set the following for each argument that is non-null:
6883 - *FIELD_TYPE_P to the field's type;
6884 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6885 an object of that type;
6886 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6887 - *BIT_SIZE_P to its size in bits if the field is packed, and
6888 0 otherwise;
6889 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6890 fields up to but not including the desired field, or by the total
6891 number of fields if not found. A NULL value of NAME never
6892 matches; the function just counts visible fields in this case.
6893
6894 Notice that we need to handle when a tagged record hierarchy
6895 has some components with the same name, like in this scenario:
6896
6897 type Top_T is tagged record
6898 N : Integer := 1;
6899 U : Integer := 974;
6900 A : Integer := 48;
6901 end record;
6902
6903 type Middle_T is new Top.Top_T with record
6904 N : Character := 'a';
6905 C : Integer := 3;
6906 end record;
6907
6908 type Bottom_T is new Middle.Middle_T with record
6909 N : Float := 4.0;
6910 C : Character := '5';
6911 X : Integer := 6;
6912 A : Character := 'J';
6913 end record;
6914
6915 Let's say we now have a variable declared and initialized as follow:
6916
6917 TC : Top_A := new Bottom_T;
6918
6919 And then we use this variable to call this function
6920
6921 procedure Assign (Obj: in out Top_T; TV : Integer);
6922
6923 as follow:
6924
6925 Assign (Top_T (B), 12);
6926
6927 Now, we're in the debugger, and we're inside that procedure
6928 then and we want to print the value of obj.c:
6929
6930 Usually, the tagged record or one of the parent type owns the
6931 component to print and there's no issue but in this particular
6932 case, what does it mean to ask for Obj.C? Since the actual
6933 type for object is type Bottom_T, it could mean two things: type
6934 component C from the Middle_T view, but also component C from
6935 Bottom_T. So in that "undefined" case, when the component is
6936 not found in the non-resolved type (which includes all the
6937 components of the parent type), then resolve it and see if we
6938 get better luck once expanded.
6939
6940 In the case of homonyms in the derived tagged type, we don't
6941 guaranty anything, and pick the one that's easiest for us
6942 to program.
6943
6944 Returns 1 if found, 0 otherwise. */
6945
6946 static int
6947 find_struct_field (const char *name, struct type *type, int offset,
6948 struct type **field_type_p,
6949 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6950 int *index_p)
6951 {
6952 int i;
6953 int parent_offset = -1;
6954
6955 type = ada_check_typedef (type);
6956
6957 if (field_type_p != NULL)
6958 *field_type_p = NULL;
6959 if (byte_offset_p != NULL)
6960 *byte_offset_p = 0;
6961 if (bit_offset_p != NULL)
6962 *bit_offset_p = 0;
6963 if (bit_size_p != NULL)
6964 *bit_size_p = 0;
6965
6966 for (i = 0; i < type->num_fields (); i += 1)
6967 {
6968 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6969 int fld_offset = offset + bit_pos / 8;
6970 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6971
6972 if (t_field_name == NULL)
6973 continue;
6974
6975 else if (ada_is_parent_field (type, i))
6976 {
6977 /* This is a field pointing us to the parent type of a tagged
6978 type. As hinted in this function's documentation, we give
6979 preference to fields in the current record first, so what
6980 we do here is just record the index of this field before
6981 we skip it. If it turns out we couldn't find our field
6982 in the current record, then we'll get back to it and search
6983 inside it whether the field might exist in the parent. */
6984
6985 parent_offset = i;
6986 continue;
6987 }
6988
6989 else if (name != NULL && field_name_match (t_field_name, name))
6990 {
6991 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6992
6993 if (field_type_p != NULL)
6994 *field_type_p = type->field (i).type ();
6995 if (byte_offset_p != NULL)
6996 *byte_offset_p = fld_offset;
6997 if (bit_offset_p != NULL)
6998 *bit_offset_p = bit_pos % 8;
6999 if (bit_size_p != NULL)
7000 *bit_size_p = bit_size;
7001 return 1;
7002 }
7003 else if (ada_is_wrapper_field (type, i))
7004 {
7005 if (find_struct_field (name, type->field (i).type (), fld_offset,
7006 field_type_p, byte_offset_p, bit_offset_p,
7007 bit_size_p, index_p))
7008 return 1;
7009 }
7010 else if (ada_is_variant_part (type, i))
7011 {
7012 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7013 fixed type?? */
7014 int j;
7015 struct type *field_type
7016 = ada_check_typedef (type->field (i).type ());
7017
7018 for (j = 0; j < field_type->num_fields (); j += 1)
7019 {
7020 if (find_struct_field (name, field_type->field (j).type (),
7021 fld_offset
7022 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7023 field_type_p, byte_offset_p,
7024 bit_offset_p, bit_size_p, index_p))
7025 return 1;
7026 }
7027 }
7028 else if (index_p != NULL)
7029 *index_p += 1;
7030 }
7031
7032 /* Field not found so far. If this is a tagged type which
7033 has a parent, try finding that field in the parent now. */
7034
7035 if (parent_offset != -1)
7036 {
7037 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7038 int fld_offset = offset + bit_pos / 8;
7039
7040 if (find_struct_field (name, type->field (parent_offset).type (),
7041 fld_offset, field_type_p, byte_offset_p,
7042 bit_offset_p, bit_size_p, index_p))
7043 return 1;
7044 }
7045
7046 return 0;
7047 }
7048
7049 /* Number of user-visible fields in record type TYPE. */
7050
7051 static int
7052 num_visible_fields (struct type *type)
7053 {
7054 int n;
7055
7056 n = 0;
7057 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7058 return n;
7059 }
7060
7061 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7062 and search in it assuming it has (class) type TYPE.
7063 If found, return value, else return NULL.
7064
7065 Searches recursively through wrapper fields (e.g., '_parent').
7066
7067 In the case of homonyms in the tagged types, please refer to the
7068 long explanation in find_struct_field's function documentation. */
7069
7070 static struct value *
7071 ada_search_struct_field (const char *name, struct value *arg, int offset,
7072 struct type *type)
7073 {
7074 int i;
7075 int parent_offset = -1;
7076
7077 type = ada_check_typedef (type);
7078 for (i = 0; i < type->num_fields (); i += 1)
7079 {
7080 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7081
7082 if (t_field_name == NULL)
7083 continue;
7084
7085 else if (ada_is_parent_field (type, i))
7086 {
7087 /* This is a field pointing us to the parent type of a tagged
7088 type. As hinted in this function's documentation, we give
7089 preference to fields in the current record first, so what
7090 we do here is just record the index of this field before
7091 we skip it. If it turns out we couldn't find our field
7092 in the current record, then we'll get back to it and search
7093 inside it whether the field might exist in the parent. */
7094
7095 parent_offset = i;
7096 continue;
7097 }
7098
7099 else if (field_name_match (t_field_name, name))
7100 return ada_value_primitive_field (arg, offset, i, type);
7101
7102 else if (ada_is_wrapper_field (type, i))
7103 {
7104 struct value *v = /* Do not let indent join lines here. */
7105 ada_search_struct_field (name, arg,
7106 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7107 type->field (i).type ());
7108
7109 if (v != NULL)
7110 return v;
7111 }
7112
7113 else if (ada_is_variant_part (type, i))
7114 {
7115 /* PNH: Do we ever get here? See find_struct_field. */
7116 int j;
7117 struct type *field_type = ada_check_typedef (type->field (i).type ());
7118 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7119
7120 for (j = 0; j < field_type->num_fields (); j += 1)
7121 {
7122 struct value *v = ada_search_struct_field /* Force line
7123 break. */
7124 (name, arg,
7125 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7126 field_type->field (j).type ());
7127
7128 if (v != NULL)
7129 return v;
7130 }
7131 }
7132 }
7133
7134 /* Field not found so far. If this is a tagged type which
7135 has a parent, try finding that field in the parent now. */
7136
7137 if (parent_offset != -1)
7138 {
7139 struct value *v = ada_search_struct_field (
7140 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7141 type->field (parent_offset).type ());
7142
7143 if (v != NULL)
7144 return v;
7145 }
7146
7147 return NULL;
7148 }
7149
7150 static struct value *ada_index_struct_field_1 (int *, struct value *,
7151 int, struct type *);
7152
7153
7154 /* Return field #INDEX in ARG, where the index is that returned by
7155 * find_struct_field through its INDEX_P argument. Adjust the address
7156 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7157 * If found, return value, else return NULL. */
7158
7159 static struct value *
7160 ada_index_struct_field (int index, struct value *arg, int offset,
7161 struct type *type)
7162 {
7163 return ada_index_struct_field_1 (&index, arg, offset, type);
7164 }
7165
7166
7167 /* Auxiliary function for ada_index_struct_field. Like
7168 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7169 * *INDEX_P. */
7170
7171 static struct value *
7172 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7173 struct type *type)
7174 {
7175 int i;
7176 type = ada_check_typedef (type);
7177
7178 for (i = 0; i < type->num_fields (); i += 1)
7179 {
7180 if (TYPE_FIELD_NAME (type, i) == NULL)
7181 continue;
7182 else if (ada_is_wrapper_field (type, i))
7183 {
7184 struct value *v = /* Do not let indent join lines here. */
7185 ada_index_struct_field_1 (index_p, arg,
7186 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7187 type->field (i).type ());
7188
7189 if (v != NULL)
7190 return v;
7191 }
7192
7193 else if (ada_is_variant_part (type, i))
7194 {
7195 /* PNH: Do we ever get here? See ada_search_struct_field,
7196 find_struct_field. */
7197 error (_("Cannot assign this kind of variant record"));
7198 }
7199 else if (*index_p == 0)
7200 return ada_value_primitive_field (arg, offset, i, type);
7201 else
7202 *index_p -= 1;
7203 }
7204 return NULL;
7205 }
7206
7207 /* Return a string representation of type TYPE. */
7208
7209 static std::string
7210 type_as_string (struct type *type)
7211 {
7212 string_file tmp_stream;
7213
7214 type_print (type, "", &tmp_stream, -1);
7215
7216 return std::move (tmp_stream.string ());
7217 }
7218
7219 /* Given a type TYPE, look up the type of the component of type named NAME.
7220 If DISPP is non-null, add its byte displacement from the beginning of a
7221 structure (pointed to by a value) of type TYPE to *DISPP (does not
7222 work for packed fields).
7223
7224 Matches any field whose name has NAME as a prefix, possibly
7225 followed by "___".
7226
7227 TYPE can be either a struct or union. If REFOK, TYPE may also
7228 be a (pointer or reference)+ to a struct or union, and the
7229 ultimate target type will be searched.
7230
7231 Looks recursively into variant clauses and parent types.
7232
7233 In the case of homonyms in the tagged types, please refer to the
7234 long explanation in find_struct_field's function documentation.
7235
7236 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7237 TYPE is not a type of the right kind. */
7238
7239 static struct type *
7240 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7241 int noerr)
7242 {
7243 int i;
7244 int parent_offset = -1;
7245
7246 if (name == NULL)
7247 goto BadName;
7248
7249 if (refok && type != NULL)
7250 while (1)
7251 {
7252 type = ada_check_typedef (type);
7253 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7254 break;
7255 type = TYPE_TARGET_TYPE (type);
7256 }
7257
7258 if (type == NULL
7259 || (type->code () != TYPE_CODE_STRUCT
7260 && type->code () != TYPE_CODE_UNION))
7261 {
7262 if (noerr)
7263 return NULL;
7264
7265 error (_("Type %s is not a structure or union type"),
7266 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7267 }
7268
7269 type = to_static_fixed_type (type);
7270
7271 for (i = 0; i < type->num_fields (); i += 1)
7272 {
7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7274 struct type *t;
7275
7276 if (t_field_name == NULL)
7277 continue;
7278
7279 else if (ada_is_parent_field (type, i))
7280 {
7281 /* This is a field pointing us to the parent type of a tagged
7282 type. As hinted in this function's documentation, we give
7283 preference to fields in the current record first, so what
7284 we do here is just record the index of this field before
7285 we skip it. If it turns out we couldn't find our field
7286 in the current record, then we'll get back to it and search
7287 inside it whether the field might exist in the parent. */
7288
7289 parent_offset = i;
7290 continue;
7291 }
7292
7293 else if (field_name_match (t_field_name, name))
7294 return type->field (i).type ();
7295
7296 else if (ada_is_wrapper_field (type, i))
7297 {
7298 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7299 0, 1);
7300 if (t != NULL)
7301 return t;
7302 }
7303
7304 else if (ada_is_variant_part (type, i))
7305 {
7306 int j;
7307 struct type *field_type = ada_check_typedef (type->field (i).type ());
7308
7309 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7310 {
7311 /* FIXME pnh 2008/01/26: We check for a field that is
7312 NOT wrapped in a struct, since the compiler sometimes
7313 generates these for unchecked variant types. Revisit
7314 if the compiler changes this practice. */
7315 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7316
7317 if (v_field_name != NULL
7318 && field_name_match (v_field_name, name))
7319 t = field_type->field (j).type ();
7320 else
7321 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7322 name, 0, 1);
7323
7324 if (t != NULL)
7325 return t;
7326 }
7327 }
7328
7329 }
7330
7331 /* Field not found so far. If this is a tagged type which
7332 has a parent, try finding that field in the parent now. */
7333
7334 if (parent_offset != -1)
7335 {
7336 struct type *t;
7337
7338 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7339 name, 0, 1);
7340 if (t != NULL)
7341 return t;
7342 }
7343
7344 BadName:
7345 if (!noerr)
7346 {
7347 const char *name_str = name != NULL ? name : _("<null>");
7348
7349 error (_("Type %s has no component named %s"),
7350 type_as_string (type).c_str (), name_str);
7351 }
7352
7353 return NULL;
7354 }
7355
7356 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7357 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7358 represents an unchecked union (that is, the variant part of a
7359 record that is named in an Unchecked_Union pragma). */
7360
7361 static int
7362 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7363 {
7364 const char *discrim_name = ada_variant_discrim_name (var_type);
7365
7366 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7367 }
7368
7369
7370 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7371 within OUTER, determine which variant clause (field number in VAR_TYPE,
7372 numbering from 0) is applicable. Returns -1 if none are. */
7373
7374 int
7375 ada_which_variant_applies (struct type *var_type, struct value *outer)
7376 {
7377 int others_clause;
7378 int i;
7379 const char *discrim_name = ada_variant_discrim_name (var_type);
7380 struct value *discrim;
7381 LONGEST discrim_val;
7382
7383 /* Using plain value_from_contents_and_address here causes problems
7384 because we will end up trying to resolve a type that is currently
7385 being constructed. */
7386 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7387 if (discrim == NULL)
7388 return -1;
7389 discrim_val = value_as_long (discrim);
7390
7391 others_clause = -1;
7392 for (i = 0; i < var_type->num_fields (); i += 1)
7393 {
7394 if (ada_is_others_clause (var_type, i))
7395 others_clause = i;
7396 else if (ada_in_variant (discrim_val, var_type, i))
7397 return i;
7398 }
7399
7400 return others_clause;
7401 }
7402 \f
7403
7404
7405 /* Dynamic-Sized Records */
7406
7407 /* Strategy: The type ostensibly attached to a value with dynamic size
7408 (i.e., a size that is not statically recorded in the debugging
7409 data) does not accurately reflect the size or layout of the value.
7410 Our strategy is to convert these values to values with accurate,
7411 conventional types that are constructed on the fly. */
7412
7413 /* There is a subtle and tricky problem here. In general, we cannot
7414 determine the size of dynamic records without its data. However,
7415 the 'struct value' data structure, which GDB uses to represent
7416 quantities in the inferior process (the target), requires the size
7417 of the type at the time of its allocation in order to reserve space
7418 for GDB's internal copy of the data. That's why the
7419 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7420 rather than struct value*s.
7421
7422 However, GDB's internal history variables ($1, $2, etc.) are
7423 struct value*s containing internal copies of the data that are not, in
7424 general, the same as the data at their corresponding addresses in
7425 the target. Fortunately, the types we give to these values are all
7426 conventional, fixed-size types (as per the strategy described
7427 above), so that we don't usually have to perform the
7428 'to_fixed_xxx_type' conversions to look at their values.
7429 Unfortunately, there is one exception: if one of the internal
7430 history variables is an array whose elements are unconstrained
7431 records, then we will need to create distinct fixed types for each
7432 element selected. */
7433
7434 /* The upshot of all of this is that many routines take a (type, host
7435 address, target address) triple as arguments to represent a value.
7436 The host address, if non-null, is supposed to contain an internal
7437 copy of the relevant data; otherwise, the program is to consult the
7438 target at the target address. */
7439
7440 /* Assuming that VAL0 represents a pointer value, the result of
7441 dereferencing it. Differs from value_ind in its treatment of
7442 dynamic-sized types. */
7443
7444 struct value *
7445 ada_value_ind (struct value *val0)
7446 {
7447 struct value *val = value_ind (val0);
7448
7449 if (ada_is_tagged_type (value_type (val), 0))
7450 val = ada_tag_value_at_base_address (val);
7451
7452 return ada_to_fixed_value (val);
7453 }
7454
7455 /* The value resulting from dereferencing any "reference to"
7456 qualifiers on VAL0. */
7457
7458 static struct value *
7459 ada_coerce_ref (struct value *val0)
7460 {
7461 if (value_type (val0)->code () == TYPE_CODE_REF)
7462 {
7463 struct value *val = val0;
7464
7465 val = coerce_ref (val);
7466
7467 if (ada_is_tagged_type (value_type (val), 0))
7468 val = ada_tag_value_at_base_address (val);
7469
7470 return ada_to_fixed_value (val);
7471 }
7472 else
7473 return val0;
7474 }
7475
7476 /* Return the bit alignment required for field #F of template type TYPE. */
7477
7478 static unsigned int
7479 field_alignment (struct type *type, int f)
7480 {
7481 const char *name = TYPE_FIELD_NAME (type, f);
7482 int len;
7483 int align_offset;
7484
7485 /* The field name should never be null, unless the debugging information
7486 is somehow malformed. In this case, we assume the field does not
7487 require any alignment. */
7488 if (name == NULL)
7489 return 1;
7490
7491 len = strlen (name);
7492
7493 if (!isdigit (name[len - 1]))
7494 return 1;
7495
7496 if (isdigit (name[len - 2]))
7497 align_offset = len - 2;
7498 else
7499 align_offset = len - 1;
7500
7501 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7502 return TARGET_CHAR_BIT;
7503
7504 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7505 }
7506
7507 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7508
7509 static struct symbol *
7510 ada_find_any_type_symbol (const char *name)
7511 {
7512 struct symbol *sym;
7513
7514 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7516 return sym;
7517
7518 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7519 return sym;
7520 }
7521
7522 /* Find a type named NAME. Ignores ambiguity. This routine will look
7523 solely for types defined by debug info, it will not search the GDB
7524 primitive types. */
7525
7526 static struct type *
7527 ada_find_any_type (const char *name)
7528 {
7529 struct symbol *sym = ada_find_any_type_symbol (name);
7530
7531 if (sym != NULL)
7532 return SYMBOL_TYPE (sym);
7533
7534 return NULL;
7535 }
7536
7537 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7538 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7539 symbol, in which case it is returned. Otherwise, this looks for
7540 symbols whose name is that of NAME_SYM suffixed with "___XR".
7541 Return symbol if found, and NULL otherwise. */
7542
7543 static bool
7544 ada_is_renaming_symbol (struct symbol *name_sym)
7545 {
7546 const char *name = name_sym->linkage_name ();
7547 return strstr (name, "___XR") != NULL;
7548 }
7549
7550 /* Because of GNAT encoding conventions, several GDB symbols may match a
7551 given type name. If the type denoted by TYPE0 is to be preferred to
7552 that of TYPE1 for purposes of type printing, return non-zero;
7553 otherwise return 0. */
7554
7555 int
7556 ada_prefer_type (struct type *type0, struct type *type1)
7557 {
7558 if (type1 == NULL)
7559 return 1;
7560 else if (type0 == NULL)
7561 return 0;
7562 else if (type1->code () == TYPE_CODE_VOID)
7563 return 1;
7564 else if (type0->code () == TYPE_CODE_VOID)
7565 return 0;
7566 else if (type1->name () == NULL && type0->name () != NULL)
7567 return 1;
7568 else if (ada_is_constrained_packed_array_type (type0))
7569 return 1;
7570 else if (ada_is_array_descriptor_type (type0)
7571 && !ada_is_array_descriptor_type (type1))
7572 return 1;
7573 else
7574 {
7575 const char *type0_name = type0->name ();
7576 const char *type1_name = type1->name ();
7577
7578 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7579 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7580 return 1;
7581 }
7582 return 0;
7583 }
7584
7585 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7586 null. */
7587
7588 const char *
7589 ada_type_name (struct type *type)
7590 {
7591 if (type == NULL)
7592 return NULL;
7593 return type->name ();
7594 }
7595
7596 /* Search the list of "descriptive" types associated to TYPE for a type
7597 whose name is NAME. */
7598
7599 static struct type *
7600 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7601 {
7602 struct type *result, *tmp;
7603
7604 if (ada_ignore_descriptive_types_p)
7605 return NULL;
7606
7607 /* If there no descriptive-type info, then there is no parallel type
7608 to be found. */
7609 if (!HAVE_GNAT_AUX_INFO (type))
7610 return NULL;
7611
7612 result = TYPE_DESCRIPTIVE_TYPE (type);
7613 while (result != NULL)
7614 {
7615 const char *result_name = ada_type_name (result);
7616
7617 if (result_name == NULL)
7618 {
7619 warning (_("unexpected null name on descriptive type"));
7620 return NULL;
7621 }
7622
7623 /* If the names match, stop. */
7624 if (strcmp (result_name, name) == 0)
7625 break;
7626
7627 /* Otherwise, look at the next item on the list, if any. */
7628 if (HAVE_GNAT_AUX_INFO (result))
7629 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7630 else
7631 tmp = NULL;
7632
7633 /* If not found either, try after having resolved the typedef. */
7634 if (tmp != NULL)
7635 result = tmp;
7636 else
7637 {
7638 result = check_typedef (result);
7639 if (HAVE_GNAT_AUX_INFO (result))
7640 result = TYPE_DESCRIPTIVE_TYPE (result);
7641 else
7642 result = NULL;
7643 }
7644 }
7645
7646 /* If we didn't find a match, see whether this is a packed array. With
7647 older compilers, the descriptive type information is either absent or
7648 irrelevant when it comes to packed arrays so the above lookup fails.
7649 Fall back to using a parallel lookup by name in this case. */
7650 if (result == NULL && ada_is_constrained_packed_array_type (type))
7651 return ada_find_any_type (name);
7652
7653 return result;
7654 }
7655
7656 /* Find a parallel type to TYPE with the specified NAME, using the
7657 descriptive type taken from the debugging information, if available,
7658 and otherwise using the (slower) name-based method. */
7659
7660 static struct type *
7661 ada_find_parallel_type_with_name (struct type *type, const char *name)
7662 {
7663 struct type *result = NULL;
7664
7665 if (HAVE_GNAT_AUX_INFO (type))
7666 result = find_parallel_type_by_descriptive_type (type, name);
7667 else
7668 result = ada_find_any_type (name);
7669
7670 return result;
7671 }
7672
7673 /* Same as above, but specify the name of the parallel type by appending
7674 SUFFIX to the name of TYPE. */
7675
7676 struct type *
7677 ada_find_parallel_type (struct type *type, const char *suffix)
7678 {
7679 char *name;
7680 const char *type_name = ada_type_name (type);
7681 int len;
7682
7683 if (type_name == NULL)
7684 return NULL;
7685
7686 len = strlen (type_name);
7687
7688 name = (char *) alloca (len + strlen (suffix) + 1);
7689
7690 strcpy (name, type_name);
7691 strcpy (name + len, suffix);
7692
7693 return ada_find_parallel_type_with_name (type, name);
7694 }
7695
7696 /* If TYPE is a variable-size record type, return the corresponding template
7697 type describing its fields. Otherwise, return NULL. */
7698
7699 static struct type *
7700 dynamic_template_type (struct type *type)
7701 {
7702 type = ada_check_typedef (type);
7703
7704 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7705 || ada_type_name (type) == NULL)
7706 return NULL;
7707 else
7708 {
7709 int len = strlen (ada_type_name (type));
7710
7711 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7712 return type;
7713 else
7714 return ada_find_parallel_type (type, "___XVE");
7715 }
7716 }
7717
7718 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7719 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7720
7721 static int
7722 is_dynamic_field (struct type *templ_type, int field_num)
7723 {
7724 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7725
7726 return name != NULL
7727 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7728 && strstr (name, "___XVL") != NULL;
7729 }
7730
7731 /* The index of the variant field of TYPE, or -1 if TYPE does not
7732 represent a variant record type. */
7733
7734 static int
7735 variant_field_index (struct type *type)
7736 {
7737 int f;
7738
7739 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7740 return -1;
7741
7742 for (f = 0; f < type->num_fields (); f += 1)
7743 {
7744 if (ada_is_variant_part (type, f))
7745 return f;
7746 }
7747 return -1;
7748 }
7749
7750 /* A record type with no fields. */
7751
7752 static struct type *
7753 empty_record (struct type *templ)
7754 {
7755 struct type *type = alloc_type_copy (templ);
7756
7757 type->set_code (TYPE_CODE_STRUCT);
7758 INIT_NONE_SPECIFIC (type);
7759 type->set_name ("<empty>");
7760 TYPE_LENGTH (type) = 0;
7761 return type;
7762 }
7763
7764 /* An ordinary record type (with fixed-length fields) that describes
7765 the value of type TYPE at VALADDR or ADDRESS (see comments at
7766 the beginning of this section) VAL according to GNAT conventions.
7767 DVAL0 should describe the (portion of a) record that contains any
7768 necessary discriminants. It should be NULL if value_type (VAL) is
7769 an outer-level type (i.e., as opposed to a branch of a variant.) A
7770 variant field (unless unchecked) is replaced by a particular branch
7771 of the variant.
7772
7773 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7774 length are not statically known are discarded. As a consequence,
7775 VALADDR, ADDRESS and DVAL0 are ignored.
7776
7777 NOTE: Limitations: For now, we assume that dynamic fields and
7778 variants occupy whole numbers of bytes. However, they need not be
7779 byte-aligned. */
7780
7781 struct type *
7782 ada_template_to_fixed_record_type_1 (struct type *type,
7783 const gdb_byte *valaddr,
7784 CORE_ADDR address, struct value *dval0,
7785 int keep_dynamic_fields)
7786 {
7787 struct value *mark = value_mark ();
7788 struct value *dval;
7789 struct type *rtype;
7790 int nfields, bit_len;
7791 int variant_field;
7792 long off;
7793 int fld_bit_len;
7794 int f;
7795
7796 /* Compute the number of fields in this record type that are going
7797 to be processed: unless keep_dynamic_fields, this includes only
7798 fields whose position and length are static will be processed. */
7799 if (keep_dynamic_fields)
7800 nfields = type->num_fields ();
7801 else
7802 {
7803 nfields = 0;
7804 while (nfields < type->num_fields ()
7805 && !ada_is_variant_part (type, nfields)
7806 && !is_dynamic_field (type, nfields))
7807 nfields++;
7808 }
7809
7810 rtype = alloc_type_copy (type);
7811 rtype->set_code (TYPE_CODE_STRUCT);
7812 INIT_NONE_SPECIFIC (rtype);
7813 rtype->set_num_fields (nfields);
7814 rtype->set_fields
7815 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7816 rtype->set_name (ada_type_name (type));
7817 TYPE_FIXED_INSTANCE (rtype) = 1;
7818
7819 off = 0;
7820 bit_len = 0;
7821 variant_field = -1;
7822
7823 for (f = 0; f < nfields; f += 1)
7824 {
7825 off = align_up (off, field_alignment (type, f))
7826 + TYPE_FIELD_BITPOS (type, f);
7827 SET_FIELD_BITPOS (rtype->field (f), off);
7828 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7829
7830 if (ada_is_variant_part (type, f))
7831 {
7832 variant_field = f;
7833 fld_bit_len = 0;
7834 }
7835 else if (is_dynamic_field (type, f))
7836 {
7837 const gdb_byte *field_valaddr = valaddr;
7838 CORE_ADDR field_address = address;
7839 struct type *field_type =
7840 TYPE_TARGET_TYPE (type->field (f).type ());
7841
7842 if (dval0 == NULL)
7843 {
7844 /* rtype's length is computed based on the run-time
7845 value of discriminants. If the discriminants are not
7846 initialized, the type size may be completely bogus and
7847 GDB may fail to allocate a value for it. So check the
7848 size first before creating the value. */
7849 ada_ensure_varsize_limit (rtype);
7850 /* Using plain value_from_contents_and_address here
7851 causes problems because we will end up trying to
7852 resolve a type that is currently being
7853 constructed. */
7854 dval = value_from_contents_and_address_unresolved (rtype,
7855 valaddr,
7856 address);
7857 rtype = value_type (dval);
7858 }
7859 else
7860 dval = dval0;
7861
7862 /* If the type referenced by this field is an aligner type, we need
7863 to unwrap that aligner type, because its size might not be set.
7864 Keeping the aligner type would cause us to compute the wrong
7865 size for this field, impacting the offset of the all the fields
7866 that follow this one. */
7867 if (ada_is_aligner_type (field_type))
7868 {
7869 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7870
7871 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7872 field_address = cond_offset_target (field_address, field_offset);
7873 field_type = ada_aligned_type (field_type);
7874 }
7875
7876 field_valaddr = cond_offset_host (field_valaddr,
7877 off / TARGET_CHAR_BIT);
7878 field_address = cond_offset_target (field_address,
7879 off / TARGET_CHAR_BIT);
7880
7881 /* Get the fixed type of the field. Note that, in this case,
7882 we do not want to get the real type out of the tag: if
7883 the current field is the parent part of a tagged record,
7884 we will get the tag of the object. Clearly wrong: the real
7885 type of the parent is not the real type of the child. We
7886 would end up in an infinite loop. */
7887 field_type = ada_get_base_type (field_type);
7888 field_type = ada_to_fixed_type (field_type, field_valaddr,
7889 field_address, dval, 0);
7890 /* If the field size is already larger than the maximum
7891 object size, then the record itself will necessarily
7892 be larger than the maximum object size. We need to make
7893 this check now, because the size might be so ridiculously
7894 large (due to an uninitialized variable in the inferior)
7895 that it would cause an overflow when adding it to the
7896 record size. */
7897 ada_ensure_varsize_limit (field_type);
7898
7899 rtype->field (f).set_type (field_type);
7900 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7901 /* The multiplication can potentially overflow. But because
7902 the field length has been size-checked just above, and
7903 assuming that the maximum size is a reasonable value,
7904 an overflow should not happen in practice. So rather than
7905 adding overflow recovery code to this already complex code,
7906 we just assume that it's not going to happen. */
7907 fld_bit_len =
7908 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7909 }
7910 else
7911 {
7912 /* Note: If this field's type is a typedef, it is important
7913 to preserve the typedef layer.
7914
7915 Otherwise, we might be transforming a typedef to a fat
7916 pointer (encoding a pointer to an unconstrained array),
7917 into a basic fat pointer (encoding an unconstrained
7918 array). As both types are implemented using the same
7919 structure, the typedef is the only clue which allows us
7920 to distinguish between the two options. Stripping it
7921 would prevent us from printing this field appropriately. */
7922 rtype->field (f).set_type (type->field (f).type ());
7923 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7924 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7925 fld_bit_len =
7926 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7927 else
7928 {
7929 struct type *field_type = type->field (f).type ();
7930
7931 /* We need to be careful of typedefs when computing
7932 the length of our field. If this is a typedef,
7933 get the length of the target type, not the length
7934 of the typedef. */
7935 if (field_type->code () == TYPE_CODE_TYPEDEF)
7936 field_type = ada_typedef_target_type (field_type);
7937
7938 fld_bit_len =
7939 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7940 }
7941 }
7942 if (off + fld_bit_len > bit_len)
7943 bit_len = off + fld_bit_len;
7944 off += fld_bit_len;
7945 TYPE_LENGTH (rtype) =
7946 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7947 }
7948
7949 /* We handle the variant part, if any, at the end because of certain
7950 odd cases in which it is re-ordered so as NOT to be the last field of
7951 the record. This can happen in the presence of representation
7952 clauses. */
7953 if (variant_field >= 0)
7954 {
7955 struct type *branch_type;
7956
7957 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7958
7959 if (dval0 == NULL)
7960 {
7961 /* Using plain value_from_contents_and_address here causes
7962 problems because we will end up trying to resolve a type
7963 that is currently being constructed. */
7964 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7965 address);
7966 rtype = value_type (dval);
7967 }
7968 else
7969 dval = dval0;
7970
7971 branch_type =
7972 to_fixed_variant_branch_type
7973 (type->field (variant_field).type (),
7974 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7975 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7976 if (branch_type == NULL)
7977 {
7978 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7979 rtype->field (f - 1) = rtype->field (f);
7980 rtype->set_num_fields (rtype->num_fields () - 1);
7981 }
7982 else
7983 {
7984 rtype->field (variant_field).set_type (branch_type);
7985 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7986 fld_bit_len =
7987 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7988 TARGET_CHAR_BIT;
7989 if (off + fld_bit_len > bit_len)
7990 bit_len = off + fld_bit_len;
7991 TYPE_LENGTH (rtype) =
7992 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7993 }
7994 }
7995
7996 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7997 should contain the alignment of that record, which should be a strictly
7998 positive value. If null or negative, then something is wrong, most
7999 probably in the debug info. In that case, we don't round up the size
8000 of the resulting type. If this record is not part of another structure,
8001 the current RTYPE length might be good enough for our purposes. */
8002 if (TYPE_LENGTH (type) <= 0)
8003 {
8004 if (rtype->name ())
8005 warning (_("Invalid type size for `%s' detected: %s."),
8006 rtype->name (), pulongest (TYPE_LENGTH (type)));
8007 else
8008 warning (_("Invalid type size for <unnamed> detected: %s."),
8009 pulongest (TYPE_LENGTH (type)));
8010 }
8011 else
8012 {
8013 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8014 TYPE_LENGTH (type));
8015 }
8016
8017 value_free_to_mark (mark);
8018 if (TYPE_LENGTH (rtype) > varsize_limit)
8019 error (_("record type with dynamic size is larger than varsize-limit"));
8020 return rtype;
8021 }
8022
8023 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8024 of 1. */
8025
8026 static struct type *
8027 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8028 CORE_ADDR address, struct value *dval0)
8029 {
8030 return ada_template_to_fixed_record_type_1 (type, valaddr,
8031 address, dval0, 1);
8032 }
8033
8034 /* An ordinary record type in which ___XVL-convention fields and
8035 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8036 static approximations, containing all possible fields. Uses
8037 no runtime values. Useless for use in values, but that's OK,
8038 since the results are used only for type determinations. Works on both
8039 structs and unions. Representation note: to save space, we memorize
8040 the result of this function in the TYPE_TARGET_TYPE of the
8041 template type. */
8042
8043 static struct type *
8044 template_to_static_fixed_type (struct type *type0)
8045 {
8046 struct type *type;
8047 int nfields;
8048 int f;
8049
8050 /* No need no do anything if the input type is already fixed. */
8051 if (TYPE_FIXED_INSTANCE (type0))
8052 return type0;
8053
8054 /* Likewise if we already have computed the static approximation. */
8055 if (TYPE_TARGET_TYPE (type0) != NULL)
8056 return TYPE_TARGET_TYPE (type0);
8057
8058 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8059 type = type0;
8060 nfields = type0->num_fields ();
8061
8062 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8063 recompute all over next time. */
8064 TYPE_TARGET_TYPE (type0) = type;
8065
8066 for (f = 0; f < nfields; f += 1)
8067 {
8068 struct type *field_type = type0->field (f).type ();
8069 struct type *new_type;
8070
8071 if (is_dynamic_field (type0, f))
8072 {
8073 field_type = ada_check_typedef (field_type);
8074 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8075 }
8076 else
8077 new_type = static_unwrap_type (field_type);
8078
8079 if (new_type != field_type)
8080 {
8081 /* Clone TYPE0 only the first time we get a new field type. */
8082 if (type == type0)
8083 {
8084 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8085 type->set_code (type0->code ());
8086 INIT_NONE_SPECIFIC (type);
8087 type->set_num_fields (nfields);
8088
8089 field *fields =
8090 ((struct field *)
8091 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8092 memcpy (fields, type0->fields (),
8093 sizeof (struct field) * nfields);
8094 type->set_fields (fields);
8095
8096 type->set_name (ada_type_name (type0));
8097 TYPE_FIXED_INSTANCE (type) = 1;
8098 TYPE_LENGTH (type) = 0;
8099 }
8100 type->field (f).set_type (new_type);
8101 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8102 }
8103 }
8104
8105 return type;
8106 }
8107
8108 /* Given an object of type TYPE whose contents are at VALADDR and
8109 whose address in memory is ADDRESS, returns a revision of TYPE,
8110 which should be a non-dynamic-sized record, in which the variant
8111 part, if any, is replaced with the appropriate branch. Looks
8112 for discriminant values in DVAL0, which can be NULL if the record
8113 contains the necessary discriminant values. */
8114
8115 static struct type *
8116 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8117 CORE_ADDR address, struct value *dval0)
8118 {
8119 struct value *mark = value_mark ();
8120 struct value *dval;
8121 struct type *rtype;
8122 struct type *branch_type;
8123 int nfields = type->num_fields ();
8124 int variant_field = variant_field_index (type);
8125
8126 if (variant_field == -1)
8127 return type;
8128
8129 if (dval0 == NULL)
8130 {
8131 dval = value_from_contents_and_address (type, valaddr, address);
8132 type = value_type (dval);
8133 }
8134 else
8135 dval = dval0;
8136
8137 rtype = alloc_type_copy (type);
8138 rtype->set_code (TYPE_CODE_STRUCT);
8139 INIT_NONE_SPECIFIC (rtype);
8140 rtype->set_num_fields (nfields);
8141
8142 field *fields =
8143 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8144 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8145 rtype->set_fields (fields);
8146
8147 rtype->set_name (ada_type_name (type));
8148 TYPE_FIXED_INSTANCE (rtype) = 1;
8149 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8150
8151 branch_type = to_fixed_variant_branch_type
8152 (type->field (variant_field).type (),
8153 cond_offset_host (valaddr,
8154 TYPE_FIELD_BITPOS (type, variant_field)
8155 / TARGET_CHAR_BIT),
8156 cond_offset_target (address,
8157 TYPE_FIELD_BITPOS (type, variant_field)
8158 / TARGET_CHAR_BIT), dval);
8159 if (branch_type == NULL)
8160 {
8161 int f;
8162
8163 for (f = variant_field + 1; f < nfields; f += 1)
8164 rtype->field (f - 1) = rtype->field (f);
8165 rtype->set_num_fields (rtype->num_fields () - 1);
8166 }
8167 else
8168 {
8169 rtype->field (variant_field).set_type (branch_type);
8170 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8171 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8172 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8173 }
8174 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8175
8176 value_free_to_mark (mark);
8177 return rtype;
8178 }
8179
8180 /* An ordinary record type (with fixed-length fields) that describes
8181 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8182 beginning of this section]. Any necessary discriminants' values
8183 should be in DVAL, a record value; it may be NULL if the object
8184 at ADDR itself contains any necessary discriminant values.
8185 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8186 values from the record are needed. Except in the case that DVAL,
8187 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8188 unchecked) is replaced by a particular branch of the variant.
8189
8190 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8191 is questionable and may be removed. It can arise during the
8192 processing of an unconstrained-array-of-record type where all the
8193 variant branches have exactly the same size. This is because in
8194 such cases, the compiler does not bother to use the XVS convention
8195 when encoding the record. I am currently dubious of this
8196 shortcut and suspect the compiler should be altered. FIXME. */
8197
8198 static struct type *
8199 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8200 CORE_ADDR address, struct value *dval)
8201 {
8202 struct type *templ_type;
8203
8204 if (TYPE_FIXED_INSTANCE (type0))
8205 return type0;
8206
8207 templ_type = dynamic_template_type (type0);
8208
8209 if (templ_type != NULL)
8210 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8211 else if (variant_field_index (type0) >= 0)
8212 {
8213 if (dval == NULL && valaddr == NULL && address == 0)
8214 return type0;
8215 return to_record_with_fixed_variant_part (type0, valaddr, address,
8216 dval);
8217 }
8218 else
8219 {
8220 TYPE_FIXED_INSTANCE (type0) = 1;
8221 return type0;
8222 }
8223
8224 }
8225
8226 /* An ordinary record type (with fixed-length fields) that describes
8227 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8228 union type. Any necessary discriminants' values should be in DVAL,
8229 a record value. That is, this routine selects the appropriate
8230 branch of the union at ADDR according to the discriminant value
8231 indicated in the union's type name. Returns VAR_TYPE0 itself if
8232 it represents a variant subject to a pragma Unchecked_Union. */
8233
8234 static struct type *
8235 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8236 CORE_ADDR address, struct value *dval)
8237 {
8238 int which;
8239 struct type *templ_type;
8240 struct type *var_type;
8241
8242 if (var_type0->code () == TYPE_CODE_PTR)
8243 var_type = TYPE_TARGET_TYPE (var_type0);
8244 else
8245 var_type = var_type0;
8246
8247 templ_type = ada_find_parallel_type (var_type, "___XVU");
8248
8249 if (templ_type != NULL)
8250 var_type = templ_type;
8251
8252 if (is_unchecked_variant (var_type, value_type (dval)))
8253 return var_type0;
8254 which = ada_which_variant_applies (var_type, dval);
8255
8256 if (which < 0)
8257 return empty_record (var_type);
8258 else if (is_dynamic_field (var_type, which))
8259 return to_fixed_record_type
8260 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8261 valaddr, address, dval);
8262 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8263 return
8264 to_fixed_record_type
8265 (var_type->field (which).type (), valaddr, address, dval);
8266 else
8267 return var_type->field (which).type ();
8268 }
8269
8270 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8271 ENCODING_TYPE, a type following the GNAT conventions for discrete
8272 type encodings, only carries redundant information. */
8273
8274 static int
8275 ada_is_redundant_range_encoding (struct type *range_type,
8276 struct type *encoding_type)
8277 {
8278 const char *bounds_str;
8279 int n;
8280 LONGEST lo, hi;
8281
8282 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8283
8284 if (get_base_type (range_type)->code ()
8285 != get_base_type (encoding_type)->code ())
8286 {
8287 /* The compiler probably used a simple base type to describe
8288 the range type instead of the range's actual base type,
8289 expecting us to get the real base type from the encoding
8290 anyway. In this situation, the encoding cannot be ignored
8291 as redundant. */
8292 return 0;
8293 }
8294
8295 if (is_dynamic_type (range_type))
8296 return 0;
8297
8298 if (encoding_type->name () == NULL)
8299 return 0;
8300
8301 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8302 if (bounds_str == NULL)
8303 return 0;
8304
8305 n = 8; /* Skip "___XDLU_". */
8306 if (!ada_scan_number (bounds_str, n, &lo, &n))
8307 return 0;
8308 if (TYPE_LOW_BOUND (range_type) != lo)
8309 return 0;
8310
8311 n += 2; /* Skip the "__" separator between the two bounds. */
8312 if (!ada_scan_number (bounds_str, n, &hi, &n))
8313 return 0;
8314 if (TYPE_HIGH_BOUND (range_type) != hi)
8315 return 0;
8316
8317 return 1;
8318 }
8319
8320 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8321 a type following the GNAT encoding for describing array type
8322 indices, only carries redundant information. */
8323
8324 static int
8325 ada_is_redundant_index_type_desc (struct type *array_type,
8326 struct type *desc_type)
8327 {
8328 struct type *this_layer = check_typedef (array_type);
8329 int i;
8330
8331 for (i = 0; i < desc_type->num_fields (); i++)
8332 {
8333 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8334 desc_type->field (i).type ()))
8335 return 0;
8336 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8337 }
8338
8339 return 1;
8340 }
8341
8342 /* Assuming that TYPE0 is an array type describing the type of a value
8343 at ADDR, and that DVAL describes a record containing any
8344 discriminants used in TYPE0, returns a type for the value that
8345 contains no dynamic components (that is, no components whose sizes
8346 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8347 true, gives an error message if the resulting type's size is over
8348 varsize_limit. */
8349
8350 static struct type *
8351 to_fixed_array_type (struct type *type0, struct value *dval,
8352 int ignore_too_big)
8353 {
8354 struct type *index_type_desc;
8355 struct type *result;
8356 int constrained_packed_array_p;
8357 static const char *xa_suffix = "___XA";
8358
8359 type0 = ada_check_typedef (type0);
8360 if (TYPE_FIXED_INSTANCE (type0))
8361 return type0;
8362
8363 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8364 if (constrained_packed_array_p)
8365 type0 = decode_constrained_packed_array_type (type0);
8366
8367 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8368
8369 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8370 encoding suffixed with 'P' may still be generated. If so,
8371 it should be used to find the XA type. */
8372
8373 if (index_type_desc == NULL)
8374 {
8375 const char *type_name = ada_type_name (type0);
8376
8377 if (type_name != NULL)
8378 {
8379 const int len = strlen (type_name);
8380 char *name = (char *) alloca (len + strlen (xa_suffix));
8381
8382 if (type_name[len - 1] == 'P')
8383 {
8384 strcpy (name, type_name);
8385 strcpy (name + len - 1, xa_suffix);
8386 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8387 }
8388 }
8389 }
8390
8391 ada_fixup_array_indexes_type (index_type_desc);
8392 if (index_type_desc != NULL
8393 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8394 {
8395 /* Ignore this ___XA parallel type, as it does not bring any
8396 useful information. This allows us to avoid creating fixed
8397 versions of the array's index types, which would be identical
8398 to the original ones. This, in turn, can also help avoid
8399 the creation of fixed versions of the array itself. */
8400 index_type_desc = NULL;
8401 }
8402
8403 if (index_type_desc == NULL)
8404 {
8405 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8406
8407 /* NOTE: elt_type---the fixed version of elt_type0---should never
8408 depend on the contents of the array in properly constructed
8409 debugging data. */
8410 /* Create a fixed version of the array element type.
8411 We're not providing the address of an element here,
8412 and thus the actual object value cannot be inspected to do
8413 the conversion. This should not be a problem, since arrays of
8414 unconstrained objects are not allowed. In particular, all
8415 the elements of an array of a tagged type should all be of
8416 the same type specified in the debugging info. No need to
8417 consult the object tag. */
8418 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8419
8420 /* Make sure we always create a new array type when dealing with
8421 packed array types, since we're going to fix-up the array
8422 type length and element bitsize a little further down. */
8423 if (elt_type0 == elt_type && !constrained_packed_array_p)
8424 result = type0;
8425 else
8426 result = create_array_type (alloc_type_copy (type0),
8427 elt_type, type0->index_type ());
8428 }
8429 else
8430 {
8431 int i;
8432 struct type *elt_type0;
8433
8434 elt_type0 = type0;
8435 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8436 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8437
8438 /* NOTE: result---the fixed version of elt_type0---should never
8439 depend on the contents of the array in properly constructed
8440 debugging data. */
8441 /* Create a fixed version of the array element type.
8442 We're not providing the address of an element here,
8443 and thus the actual object value cannot be inspected to do
8444 the conversion. This should not be a problem, since arrays of
8445 unconstrained objects are not allowed. In particular, all
8446 the elements of an array of a tagged type should all be of
8447 the same type specified in the debugging info. No need to
8448 consult the object tag. */
8449 result =
8450 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8451
8452 elt_type0 = type0;
8453 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8454 {
8455 struct type *range_type =
8456 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8457
8458 result = create_array_type (alloc_type_copy (elt_type0),
8459 result, range_type);
8460 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8461 }
8462 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8463 error (_("array type with dynamic size is larger than varsize-limit"));
8464 }
8465
8466 /* We want to preserve the type name. This can be useful when
8467 trying to get the type name of a value that has already been
8468 printed (for instance, if the user did "print VAR; whatis $". */
8469 result->set_name (type0->name ());
8470
8471 if (constrained_packed_array_p)
8472 {
8473 /* So far, the resulting type has been created as if the original
8474 type was a regular (non-packed) array type. As a result, the
8475 bitsize of the array elements needs to be set again, and the array
8476 length needs to be recomputed based on that bitsize. */
8477 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8478 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8479
8480 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8481 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8482 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8483 TYPE_LENGTH (result)++;
8484 }
8485
8486 TYPE_FIXED_INSTANCE (result) = 1;
8487 return result;
8488 }
8489
8490
8491 /* A standard type (containing no dynamically sized components)
8492 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8493 DVAL describes a record containing any discriminants used in TYPE0,
8494 and may be NULL if there are none, or if the object of type TYPE at
8495 ADDRESS or in VALADDR contains these discriminants.
8496
8497 If CHECK_TAG is not null, in the case of tagged types, this function
8498 attempts to locate the object's tag and use it to compute the actual
8499 type. However, when ADDRESS is null, we cannot use it to determine the
8500 location of the tag, and therefore compute the tagged type's actual type.
8501 So we return the tagged type without consulting the tag. */
8502
8503 static struct type *
8504 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8505 CORE_ADDR address, struct value *dval, int check_tag)
8506 {
8507 type = ada_check_typedef (type);
8508
8509 /* Only un-fixed types need to be handled here. */
8510 if (!HAVE_GNAT_AUX_INFO (type))
8511 return type;
8512
8513 switch (type->code ())
8514 {
8515 default:
8516 return type;
8517 case TYPE_CODE_STRUCT:
8518 {
8519 struct type *static_type = to_static_fixed_type (type);
8520 struct type *fixed_record_type =
8521 to_fixed_record_type (type, valaddr, address, NULL);
8522
8523 /* If STATIC_TYPE is a tagged type and we know the object's address,
8524 then we can determine its tag, and compute the object's actual
8525 type from there. Note that we have to use the fixed record
8526 type (the parent part of the record may have dynamic fields
8527 and the way the location of _tag is expressed may depend on
8528 them). */
8529
8530 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8531 {
8532 struct value *tag =
8533 value_tag_from_contents_and_address
8534 (fixed_record_type,
8535 valaddr,
8536 address);
8537 struct type *real_type = type_from_tag (tag);
8538 struct value *obj =
8539 value_from_contents_and_address (fixed_record_type,
8540 valaddr,
8541 address);
8542 fixed_record_type = value_type (obj);
8543 if (real_type != NULL)
8544 return to_fixed_record_type
8545 (real_type, NULL,
8546 value_address (ada_tag_value_at_base_address (obj)), NULL);
8547 }
8548
8549 /* Check to see if there is a parallel ___XVZ variable.
8550 If there is, then it provides the actual size of our type. */
8551 else if (ada_type_name (fixed_record_type) != NULL)
8552 {
8553 const char *name = ada_type_name (fixed_record_type);
8554 char *xvz_name
8555 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8556 bool xvz_found = false;
8557 LONGEST size;
8558
8559 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8560 try
8561 {
8562 xvz_found = get_int_var_value (xvz_name, size);
8563 }
8564 catch (const gdb_exception_error &except)
8565 {
8566 /* We found the variable, but somehow failed to read
8567 its value. Rethrow the same error, but with a little
8568 bit more information, to help the user understand
8569 what went wrong (Eg: the variable might have been
8570 optimized out). */
8571 throw_error (except.error,
8572 _("unable to read value of %s (%s)"),
8573 xvz_name, except.what ());
8574 }
8575
8576 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8577 {
8578 fixed_record_type = copy_type (fixed_record_type);
8579 TYPE_LENGTH (fixed_record_type) = size;
8580
8581 /* The FIXED_RECORD_TYPE may have be a stub. We have
8582 observed this when the debugging info is STABS, and
8583 apparently it is something that is hard to fix.
8584
8585 In practice, we don't need the actual type definition
8586 at all, because the presence of the XVZ variable allows us
8587 to assume that there must be a XVS type as well, which we
8588 should be able to use later, when we need the actual type
8589 definition.
8590
8591 In the meantime, pretend that the "fixed" type we are
8592 returning is NOT a stub, because this can cause trouble
8593 when using this type to create new types targeting it.
8594 Indeed, the associated creation routines often check
8595 whether the target type is a stub and will try to replace
8596 it, thus using a type with the wrong size. This, in turn,
8597 might cause the new type to have the wrong size too.
8598 Consider the case of an array, for instance, where the size
8599 of the array is computed from the number of elements in
8600 our array multiplied by the size of its element. */
8601 TYPE_STUB (fixed_record_type) = 0;
8602 }
8603 }
8604 return fixed_record_type;
8605 }
8606 case TYPE_CODE_ARRAY:
8607 return to_fixed_array_type (type, dval, 1);
8608 case TYPE_CODE_UNION:
8609 if (dval == NULL)
8610 return type;
8611 else
8612 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8613 }
8614 }
8615
8616 /* The same as ada_to_fixed_type_1, except that it preserves the type
8617 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8618
8619 The typedef layer needs be preserved in order to differentiate between
8620 arrays and array pointers when both types are implemented using the same
8621 fat pointer. In the array pointer case, the pointer is encoded as
8622 a typedef of the pointer type. For instance, considering:
8623
8624 type String_Access is access String;
8625 S1 : String_Access := null;
8626
8627 To the debugger, S1 is defined as a typedef of type String. But
8628 to the user, it is a pointer. So if the user tries to print S1,
8629 we should not dereference the array, but print the array address
8630 instead.
8631
8632 If we didn't preserve the typedef layer, we would lose the fact that
8633 the type is to be presented as a pointer (needs de-reference before
8634 being printed). And we would also use the source-level type name. */
8635
8636 struct type *
8637 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8638 CORE_ADDR address, struct value *dval, int check_tag)
8639
8640 {
8641 struct type *fixed_type =
8642 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8643
8644 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8645 then preserve the typedef layer.
8646
8647 Implementation note: We can only check the main-type portion of
8648 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8649 from TYPE now returns a type that has the same instance flags
8650 as TYPE. For instance, if TYPE is a "typedef const", and its
8651 target type is a "struct", then the typedef elimination will return
8652 a "const" version of the target type. See check_typedef for more
8653 details about how the typedef layer elimination is done.
8654
8655 brobecker/2010-11-19: It seems to me that the only case where it is
8656 useful to preserve the typedef layer is when dealing with fat pointers.
8657 Perhaps, we could add a check for that and preserve the typedef layer
8658 only in that situation. But this seems unnecessary so far, probably
8659 because we call check_typedef/ada_check_typedef pretty much everywhere.
8660 */
8661 if (type->code () == TYPE_CODE_TYPEDEF
8662 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8663 == TYPE_MAIN_TYPE (fixed_type)))
8664 return type;
8665
8666 return fixed_type;
8667 }
8668
8669 /* A standard (static-sized) type corresponding as well as possible to
8670 TYPE0, but based on no runtime data. */
8671
8672 static struct type *
8673 to_static_fixed_type (struct type *type0)
8674 {
8675 struct type *type;
8676
8677 if (type0 == NULL)
8678 return NULL;
8679
8680 if (TYPE_FIXED_INSTANCE (type0))
8681 return type0;
8682
8683 type0 = ada_check_typedef (type0);
8684
8685 switch (type0->code ())
8686 {
8687 default:
8688 return type0;
8689 case TYPE_CODE_STRUCT:
8690 type = dynamic_template_type (type0);
8691 if (type != NULL)
8692 return template_to_static_fixed_type (type);
8693 else
8694 return template_to_static_fixed_type (type0);
8695 case TYPE_CODE_UNION:
8696 type = ada_find_parallel_type (type0, "___XVU");
8697 if (type != NULL)
8698 return template_to_static_fixed_type (type);
8699 else
8700 return template_to_static_fixed_type (type0);
8701 }
8702 }
8703
8704 /* A static approximation of TYPE with all type wrappers removed. */
8705
8706 static struct type *
8707 static_unwrap_type (struct type *type)
8708 {
8709 if (ada_is_aligner_type (type))
8710 {
8711 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8712 if (ada_type_name (type1) == NULL)
8713 type1->set_name (ada_type_name (type));
8714
8715 return static_unwrap_type (type1);
8716 }
8717 else
8718 {
8719 struct type *raw_real_type = ada_get_base_type (type);
8720
8721 if (raw_real_type == type)
8722 return type;
8723 else
8724 return to_static_fixed_type (raw_real_type);
8725 }
8726 }
8727
8728 /* In some cases, incomplete and private types require
8729 cross-references that are not resolved as records (for example,
8730 type Foo;
8731 type FooP is access Foo;
8732 V: FooP;
8733 type Foo is array ...;
8734 ). In these cases, since there is no mechanism for producing
8735 cross-references to such types, we instead substitute for FooP a
8736 stub enumeration type that is nowhere resolved, and whose tag is
8737 the name of the actual type. Call these types "non-record stubs". */
8738
8739 /* A type equivalent to TYPE that is not a non-record stub, if one
8740 exists, otherwise TYPE. */
8741
8742 struct type *
8743 ada_check_typedef (struct type *type)
8744 {
8745 if (type == NULL)
8746 return NULL;
8747
8748 /* If our type is an access to an unconstrained array, which is encoded
8749 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8750 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8751 what allows us to distinguish between fat pointers that represent
8752 array types, and fat pointers that represent array access types
8753 (in both cases, the compiler implements them as fat pointers). */
8754 if (ada_is_access_to_unconstrained_array (type))
8755 return type;
8756
8757 type = check_typedef (type);
8758 if (type == NULL || type->code () != TYPE_CODE_ENUM
8759 || !TYPE_STUB (type)
8760 || type->name () == NULL)
8761 return type;
8762 else
8763 {
8764 const char *name = type->name ();
8765 struct type *type1 = ada_find_any_type (name);
8766
8767 if (type1 == NULL)
8768 return type;
8769
8770 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8771 stubs pointing to arrays, as we don't create symbols for array
8772 types, only for the typedef-to-array types). If that's the case,
8773 strip the typedef layer. */
8774 if (type1->code () == TYPE_CODE_TYPEDEF)
8775 type1 = ada_check_typedef (type1);
8776
8777 return type1;
8778 }
8779 }
8780
8781 /* A value representing the data at VALADDR/ADDRESS as described by
8782 type TYPE0, but with a standard (static-sized) type that correctly
8783 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8784 type, then return VAL0 [this feature is simply to avoid redundant
8785 creation of struct values]. */
8786
8787 static struct value *
8788 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8789 struct value *val0)
8790 {
8791 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8792
8793 if (type == type0 && val0 != NULL)
8794 return val0;
8795
8796 if (VALUE_LVAL (val0) != lval_memory)
8797 {
8798 /* Our value does not live in memory; it could be a convenience
8799 variable, for instance. Create a not_lval value using val0's
8800 contents. */
8801 return value_from_contents (type, value_contents (val0));
8802 }
8803
8804 return value_from_contents_and_address (type, 0, address);
8805 }
8806
8807 /* A value representing VAL, but with a standard (static-sized) type
8808 that correctly describes it. Does not necessarily create a new
8809 value. */
8810
8811 struct value *
8812 ada_to_fixed_value (struct value *val)
8813 {
8814 val = unwrap_value (val);
8815 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8816 return val;
8817 }
8818 \f
8819
8820 /* Attributes */
8821
8822 /* Table mapping attribute numbers to names.
8823 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8824
8825 static const char *attribute_names[] = {
8826 "<?>",
8827
8828 "first",
8829 "last",
8830 "length",
8831 "image",
8832 "max",
8833 "min",
8834 "modulus",
8835 "pos",
8836 "size",
8837 "tag",
8838 "val",
8839 0
8840 };
8841
8842 static const char *
8843 ada_attribute_name (enum exp_opcode n)
8844 {
8845 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8846 return attribute_names[n - OP_ATR_FIRST + 1];
8847 else
8848 return attribute_names[0];
8849 }
8850
8851 /* Evaluate the 'POS attribute applied to ARG. */
8852
8853 static LONGEST
8854 pos_atr (struct value *arg)
8855 {
8856 struct value *val = coerce_ref (arg);
8857 struct type *type = value_type (val);
8858 LONGEST result;
8859
8860 if (!discrete_type_p (type))
8861 error (_("'POS only defined on discrete types"));
8862
8863 if (!discrete_position (type, value_as_long (val), &result))
8864 error (_("enumeration value is invalid: can't find 'POS"));
8865
8866 return result;
8867 }
8868
8869 static struct value *
8870 value_pos_atr (struct type *type, struct value *arg)
8871 {
8872 return value_from_longest (type, pos_atr (arg));
8873 }
8874
8875 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8876
8877 static struct value *
8878 val_atr (struct type *type, LONGEST val)
8879 {
8880 gdb_assert (discrete_type_p (type));
8881 if (type->code () == TYPE_CODE_RANGE)
8882 type = TYPE_TARGET_TYPE (type);
8883 if (type->code () == TYPE_CODE_ENUM)
8884 {
8885 if (val < 0 || val >= type->num_fields ())
8886 error (_("argument to 'VAL out of range"));
8887 val = TYPE_FIELD_ENUMVAL (type, val);
8888 }
8889 return value_from_longest (type, val);
8890 }
8891
8892 static struct value *
8893 value_val_atr (struct type *type, struct value *arg)
8894 {
8895 if (!discrete_type_p (type))
8896 error (_("'VAL only defined on discrete types"));
8897 if (!integer_type_p (value_type (arg)))
8898 error (_("'VAL requires integral argument"));
8899
8900 return val_atr (type, value_as_long (arg));
8901 }
8902 \f
8903
8904 /* Evaluation */
8905
8906 /* True if TYPE appears to be an Ada character type.
8907 [At the moment, this is true only for Character and Wide_Character;
8908 It is a heuristic test that could stand improvement]. */
8909
8910 bool
8911 ada_is_character_type (struct type *type)
8912 {
8913 const char *name;
8914
8915 /* If the type code says it's a character, then assume it really is,
8916 and don't check any further. */
8917 if (type->code () == TYPE_CODE_CHAR)
8918 return true;
8919
8920 /* Otherwise, assume it's a character type iff it is a discrete type
8921 with a known character type name. */
8922 name = ada_type_name (type);
8923 return (name != NULL
8924 && (type->code () == TYPE_CODE_INT
8925 || type->code () == TYPE_CODE_RANGE)
8926 && (strcmp (name, "character") == 0
8927 || strcmp (name, "wide_character") == 0
8928 || strcmp (name, "wide_wide_character") == 0
8929 || strcmp (name, "unsigned char") == 0));
8930 }
8931
8932 /* True if TYPE appears to be an Ada string type. */
8933
8934 bool
8935 ada_is_string_type (struct type *type)
8936 {
8937 type = ada_check_typedef (type);
8938 if (type != NULL
8939 && type->code () != TYPE_CODE_PTR
8940 && (ada_is_simple_array_type (type)
8941 || ada_is_array_descriptor_type (type))
8942 && ada_array_arity (type) == 1)
8943 {
8944 struct type *elttype = ada_array_element_type (type, 1);
8945
8946 return ada_is_character_type (elttype);
8947 }
8948 else
8949 return false;
8950 }
8951
8952 /* The compiler sometimes provides a parallel XVS type for a given
8953 PAD type. Normally, it is safe to follow the PAD type directly,
8954 but older versions of the compiler have a bug that causes the offset
8955 of its "F" field to be wrong. Following that field in that case
8956 would lead to incorrect results, but this can be worked around
8957 by ignoring the PAD type and using the associated XVS type instead.
8958
8959 Set to True if the debugger should trust the contents of PAD types.
8960 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8961 static bool trust_pad_over_xvs = true;
8962
8963 /* True if TYPE is a struct type introduced by the compiler to force the
8964 alignment of a value. Such types have a single field with a
8965 distinctive name. */
8966
8967 int
8968 ada_is_aligner_type (struct type *type)
8969 {
8970 type = ada_check_typedef (type);
8971
8972 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8973 return 0;
8974
8975 return (type->code () == TYPE_CODE_STRUCT
8976 && type->num_fields () == 1
8977 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8978 }
8979
8980 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8981 the parallel type. */
8982
8983 struct type *
8984 ada_get_base_type (struct type *raw_type)
8985 {
8986 struct type *real_type_namer;
8987 struct type *raw_real_type;
8988
8989 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8990 return raw_type;
8991
8992 if (ada_is_aligner_type (raw_type))
8993 /* The encoding specifies that we should always use the aligner type.
8994 So, even if this aligner type has an associated XVS type, we should
8995 simply ignore it.
8996
8997 According to the compiler gurus, an XVS type parallel to an aligner
8998 type may exist because of a stabs limitation. In stabs, aligner
8999 types are empty because the field has a variable-sized type, and
9000 thus cannot actually be used as an aligner type. As a result,
9001 we need the associated parallel XVS type to decode the type.
9002 Since the policy in the compiler is to not change the internal
9003 representation based on the debugging info format, we sometimes
9004 end up having a redundant XVS type parallel to the aligner type. */
9005 return raw_type;
9006
9007 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9008 if (real_type_namer == NULL
9009 || real_type_namer->code () != TYPE_CODE_STRUCT
9010 || real_type_namer->num_fields () != 1)
9011 return raw_type;
9012
9013 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9014 {
9015 /* This is an older encoding form where the base type needs to be
9016 looked up by name. We prefer the newer encoding because it is
9017 more efficient. */
9018 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9019 if (raw_real_type == NULL)
9020 return raw_type;
9021 else
9022 return raw_real_type;
9023 }
9024
9025 /* The field in our XVS type is a reference to the base type. */
9026 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9027 }
9028
9029 /* The type of value designated by TYPE, with all aligners removed. */
9030
9031 struct type *
9032 ada_aligned_type (struct type *type)
9033 {
9034 if (ada_is_aligner_type (type))
9035 return ada_aligned_type (type->field (0).type ());
9036 else
9037 return ada_get_base_type (type);
9038 }
9039
9040
9041 /* The address of the aligned value in an object at address VALADDR
9042 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9043
9044 const gdb_byte *
9045 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9046 {
9047 if (ada_is_aligner_type (type))
9048 return ada_aligned_value_addr (type->field (0).type (),
9049 valaddr +
9050 TYPE_FIELD_BITPOS (type,
9051 0) / TARGET_CHAR_BIT);
9052 else
9053 return valaddr;
9054 }
9055
9056
9057
9058 /* The printed representation of an enumeration literal with encoded
9059 name NAME. The value is good to the next call of ada_enum_name. */
9060 const char *
9061 ada_enum_name (const char *name)
9062 {
9063 static char *result;
9064 static size_t result_len = 0;
9065 const char *tmp;
9066
9067 /* First, unqualify the enumeration name:
9068 1. Search for the last '.' character. If we find one, then skip
9069 all the preceding characters, the unqualified name starts
9070 right after that dot.
9071 2. Otherwise, we may be debugging on a target where the compiler
9072 translates dots into "__". Search forward for double underscores,
9073 but stop searching when we hit an overloading suffix, which is
9074 of the form "__" followed by digits. */
9075
9076 tmp = strrchr (name, '.');
9077 if (tmp != NULL)
9078 name = tmp + 1;
9079 else
9080 {
9081 while ((tmp = strstr (name, "__")) != NULL)
9082 {
9083 if (isdigit (tmp[2]))
9084 break;
9085 else
9086 name = tmp + 2;
9087 }
9088 }
9089
9090 if (name[0] == 'Q')
9091 {
9092 int v;
9093
9094 if (name[1] == 'U' || name[1] == 'W')
9095 {
9096 if (sscanf (name + 2, "%x", &v) != 1)
9097 return name;
9098 }
9099 else if (((name[1] >= '0' && name[1] <= '9')
9100 || (name[1] >= 'a' && name[1] <= 'z'))
9101 && name[2] == '\0')
9102 {
9103 GROW_VECT (result, result_len, 4);
9104 xsnprintf (result, result_len, "'%c'", name[1]);
9105 return result;
9106 }
9107 else
9108 return name;
9109
9110 GROW_VECT (result, result_len, 16);
9111 if (isascii (v) && isprint (v))
9112 xsnprintf (result, result_len, "'%c'", v);
9113 else if (name[1] == 'U')
9114 xsnprintf (result, result_len, "[\"%02x\"]", v);
9115 else
9116 xsnprintf (result, result_len, "[\"%04x\"]", v);
9117
9118 return result;
9119 }
9120 else
9121 {
9122 tmp = strstr (name, "__");
9123 if (tmp == NULL)
9124 tmp = strstr (name, "$");
9125 if (tmp != NULL)
9126 {
9127 GROW_VECT (result, result_len, tmp - name + 1);
9128 strncpy (result, name, tmp - name);
9129 result[tmp - name] = '\0';
9130 return result;
9131 }
9132
9133 return name;
9134 }
9135 }
9136
9137 /* Evaluate the subexpression of EXP starting at *POS as for
9138 evaluate_type, updating *POS to point just past the evaluated
9139 expression. */
9140
9141 static struct value *
9142 evaluate_subexp_type (struct expression *exp, int *pos)
9143 {
9144 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9145 }
9146
9147 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9148 value it wraps. */
9149
9150 static struct value *
9151 unwrap_value (struct value *val)
9152 {
9153 struct type *type = ada_check_typedef (value_type (val));
9154
9155 if (ada_is_aligner_type (type))
9156 {
9157 struct value *v = ada_value_struct_elt (val, "F", 0);
9158 struct type *val_type = ada_check_typedef (value_type (v));
9159
9160 if (ada_type_name (val_type) == NULL)
9161 val_type->set_name (ada_type_name (type));
9162
9163 return unwrap_value (v);
9164 }
9165 else
9166 {
9167 struct type *raw_real_type =
9168 ada_check_typedef (ada_get_base_type (type));
9169
9170 /* If there is no parallel XVS or XVE type, then the value is
9171 already unwrapped. Return it without further modification. */
9172 if ((type == raw_real_type)
9173 && ada_find_parallel_type (type, "___XVE") == NULL)
9174 return val;
9175
9176 return
9177 coerce_unspec_val_to_type
9178 (val, ada_to_fixed_type (raw_real_type, 0,
9179 value_address (val),
9180 NULL, 1));
9181 }
9182 }
9183
9184 static struct value *
9185 cast_from_fixed (struct type *type, struct value *arg)
9186 {
9187 struct value *scale = ada_scaling_factor (value_type (arg));
9188 arg = value_cast (value_type (scale), arg);
9189
9190 arg = value_binop (arg, scale, BINOP_MUL);
9191 return value_cast (type, arg);
9192 }
9193
9194 static struct value *
9195 cast_to_fixed (struct type *type, struct value *arg)
9196 {
9197 if (type == value_type (arg))
9198 return arg;
9199
9200 struct value *scale = ada_scaling_factor (type);
9201 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9202 arg = cast_from_fixed (value_type (scale), arg);
9203 else
9204 arg = value_cast (value_type (scale), arg);
9205
9206 arg = value_binop (arg, scale, BINOP_DIV);
9207 return value_cast (type, arg);
9208 }
9209
9210 /* Given two array types T1 and T2, return nonzero iff both arrays
9211 contain the same number of elements. */
9212
9213 static int
9214 ada_same_array_size_p (struct type *t1, struct type *t2)
9215 {
9216 LONGEST lo1, hi1, lo2, hi2;
9217
9218 /* Get the array bounds in order to verify that the size of
9219 the two arrays match. */
9220 if (!get_array_bounds (t1, &lo1, &hi1)
9221 || !get_array_bounds (t2, &lo2, &hi2))
9222 error (_("unable to determine array bounds"));
9223
9224 /* To make things easier for size comparison, normalize a bit
9225 the case of empty arrays by making sure that the difference
9226 between upper bound and lower bound is always -1. */
9227 if (lo1 > hi1)
9228 hi1 = lo1 - 1;
9229 if (lo2 > hi2)
9230 hi2 = lo2 - 1;
9231
9232 return (hi1 - lo1 == hi2 - lo2);
9233 }
9234
9235 /* Assuming that VAL is an array of integrals, and TYPE represents
9236 an array with the same number of elements, but with wider integral
9237 elements, return an array "casted" to TYPE. In practice, this
9238 means that the returned array is built by casting each element
9239 of the original array into TYPE's (wider) element type. */
9240
9241 static struct value *
9242 ada_promote_array_of_integrals (struct type *type, struct value *val)
9243 {
9244 struct type *elt_type = TYPE_TARGET_TYPE (type);
9245 LONGEST lo, hi;
9246 struct value *res;
9247 LONGEST i;
9248
9249 /* Verify that both val and type are arrays of scalars, and
9250 that the size of val's elements is smaller than the size
9251 of type's element. */
9252 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9253 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9254 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9255 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9256 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9257 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9258
9259 if (!get_array_bounds (type, &lo, &hi))
9260 error (_("unable to determine array bounds"));
9261
9262 res = allocate_value (type);
9263
9264 /* Promote each array element. */
9265 for (i = 0; i < hi - lo + 1; i++)
9266 {
9267 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9268
9269 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9270 value_contents_all (elt), TYPE_LENGTH (elt_type));
9271 }
9272
9273 return res;
9274 }
9275
9276 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9277 return the converted value. */
9278
9279 static struct value *
9280 coerce_for_assign (struct type *type, struct value *val)
9281 {
9282 struct type *type2 = value_type (val);
9283
9284 if (type == type2)
9285 return val;
9286
9287 type2 = ada_check_typedef (type2);
9288 type = ada_check_typedef (type);
9289
9290 if (type2->code () == TYPE_CODE_PTR
9291 && type->code () == TYPE_CODE_ARRAY)
9292 {
9293 val = ada_value_ind (val);
9294 type2 = value_type (val);
9295 }
9296
9297 if (type2->code () == TYPE_CODE_ARRAY
9298 && type->code () == TYPE_CODE_ARRAY)
9299 {
9300 if (!ada_same_array_size_p (type, type2))
9301 error (_("cannot assign arrays of different length"));
9302
9303 if (is_integral_type (TYPE_TARGET_TYPE (type))
9304 && is_integral_type (TYPE_TARGET_TYPE (type2))
9305 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9306 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9307 {
9308 /* Allow implicit promotion of the array elements to
9309 a wider type. */
9310 return ada_promote_array_of_integrals (type, val);
9311 }
9312
9313 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9314 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9315 error (_("Incompatible types in assignment"));
9316 deprecated_set_value_type (val, type);
9317 }
9318 return val;
9319 }
9320
9321 static struct value *
9322 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9323 {
9324 struct value *val;
9325 struct type *type1, *type2;
9326 LONGEST v, v1, v2;
9327
9328 arg1 = coerce_ref (arg1);
9329 arg2 = coerce_ref (arg2);
9330 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9331 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9332
9333 if (type1->code () != TYPE_CODE_INT
9334 || type2->code () != TYPE_CODE_INT)
9335 return value_binop (arg1, arg2, op);
9336
9337 switch (op)
9338 {
9339 case BINOP_MOD:
9340 case BINOP_DIV:
9341 case BINOP_REM:
9342 break;
9343 default:
9344 return value_binop (arg1, arg2, op);
9345 }
9346
9347 v2 = value_as_long (arg2);
9348 if (v2 == 0)
9349 error (_("second operand of %s must not be zero."), op_string (op));
9350
9351 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9352 return value_binop (arg1, arg2, op);
9353
9354 v1 = value_as_long (arg1);
9355 switch (op)
9356 {
9357 case BINOP_DIV:
9358 v = v1 / v2;
9359 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9360 v += v > 0 ? -1 : 1;
9361 break;
9362 case BINOP_REM:
9363 v = v1 % v2;
9364 if (v * v1 < 0)
9365 v -= v2;
9366 break;
9367 default:
9368 /* Should not reach this point. */
9369 v = 0;
9370 }
9371
9372 val = allocate_value (type1);
9373 store_unsigned_integer (value_contents_raw (val),
9374 TYPE_LENGTH (value_type (val)),
9375 type_byte_order (type1), v);
9376 return val;
9377 }
9378
9379 static int
9380 ada_value_equal (struct value *arg1, struct value *arg2)
9381 {
9382 if (ada_is_direct_array_type (value_type (arg1))
9383 || ada_is_direct_array_type (value_type (arg2)))
9384 {
9385 struct type *arg1_type, *arg2_type;
9386
9387 /* Automatically dereference any array reference before
9388 we attempt to perform the comparison. */
9389 arg1 = ada_coerce_ref (arg1);
9390 arg2 = ada_coerce_ref (arg2);
9391
9392 arg1 = ada_coerce_to_simple_array (arg1);
9393 arg2 = ada_coerce_to_simple_array (arg2);
9394
9395 arg1_type = ada_check_typedef (value_type (arg1));
9396 arg2_type = ada_check_typedef (value_type (arg2));
9397
9398 if (arg1_type->code () != TYPE_CODE_ARRAY
9399 || arg2_type->code () != TYPE_CODE_ARRAY)
9400 error (_("Attempt to compare array with non-array"));
9401 /* FIXME: The following works only for types whose
9402 representations use all bits (no padding or undefined bits)
9403 and do not have user-defined equality. */
9404 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9405 && memcmp (value_contents (arg1), value_contents (arg2),
9406 TYPE_LENGTH (arg1_type)) == 0);
9407 }
9408 return value_equal (arg1, arg2);
9409 }
9410
9411 /* Total number of component associations in the aggregate starting at
9412 index PC in EXP. Assumes that index PC is the start of an
9413 OP_AGGREGATE. */
9414
9415 static int
9416 num_component_specs (struct expression *exp, int pc)
9417 {
9418 int n, m, i;
9419
9420 m = exp->elts[pc + 1].longconst;
9421 pc += 3;
9422 n = 0;
9423 for (i = 0; i < m; i += 1)
9424 {
9425 switch (exp->elts[pc].opcode)
9426 {
9427 default:
9428 n += 1;
9429 break;
9430 case OP_CHOICES:
9431 n += exp->elts[pc + 1].longconst;
9432 break;
9433 }
9434 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9435 }
9436 return n;
9437 }
9438
9439 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9440 component of LHS (a simple array or a record), updating *POS past
9441 the expression, assuming that LHS is contained in CONTAINER. Does
9442 not modify the inferior's memory, nor does it modify LHS (unless
9443 LHS == CONTAINER). */
9444
9445 static void
9446 assign_component (struct value *container, struct value *lhs, LONGEST index,
9447 struct expression *exp, int *pos)
9448 {
9449 struct value *mark = value_mark ();
9450 struct value *elt;
9451 struct type *lhs_type = check_typedef (value_type (lhs));
9452
9453 if (lhs_type->code () == TYPE_CODE_ARRAY)
9454 {
9455 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9456 struct value *index_val = value_from_longest (index_type, index);
9457
9458 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9459 }
9460 else
9461 {
9462 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9463 elt = ada_to_fixed_value (elt);
9464 }
9465
9466 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9467 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9468 else
9469 value_assign_to_component (container, elt,
9470 ada_evaluate_subexp (NULL, exp, pos,
9471 EVAL_NORMAL));
9472
9473 value_free_to_mark (mark);
9474 }
9475
9476 /* Assuming that LHS represents an lvalue having a record or array
9477 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9478 of that aggregate's value to LHS, advancing *POS past the
9479 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9480 lvalue containing LHS (possibly LHS itself). Does not modify
9481 the inferior's memory, nor does it modify the contents of
9482 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9483
9484 static struct value *
9485 assign_aggregate (struct value *container,
9486 struct value *lhs, struct expression *exp,
9487 int *pos, enum noside noside)
9488 {
9489 struct type *lhs_type;
9490 int n = exp->elts[*pos+1].longconst;
9491 LONGEST low_index, high_index;
9492 int num_specs;
9493 LONGEST *indices;
9494 int max_indices, num_indices;
9495 int i;
9496
9497 *pos += 3;
9498 if (noside != EVAL_NORMAL)
9499 {
9500 for (i = 0; i < n; i += 1)
9501 ada_evaluate_subexp (NULL, exp, pos, noside);
9502 return container;
9503 }
9504
9505 container = ada_coerce_ref (container);
9506 if (ada_is_direct_array_type (value_type (container)))
9507 container = ada_coerce_to_simple_array (container);
9508 lhs = ada_coerce_ref (lhs);
9509 if (!deprecated_value_modifiable (lhs))
9510 error (_("Left operand of assignment is not a modifiable lvalue."));
9511
9512 lhs_type = check_typedef (value_type (lhs));
9513 if (ada_is_direct_array_type (lhs_type))
9514 {
9515 lhs = ada_coerce_to_simple_array (lhs);
9516 lhs_type = check_typedef (value_type (lhs));
9517 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9518 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9519 }
9520 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9521 {
9522 low_index = 0;
9523 high_index = num_visible_fields (lhs_type) - 1;
9524 }
9525 else
9526 error (_("Left-hand side must be array or record."));
9527
9528 num_specs = num_component_specs (exp, *pos - 3);
9529 max_indices = 4 * num_specs + 4;
9530 indices = XALLOCAVEC (LONGEST, max_indices);
9531 indices[0] = indices[1] = low_index - 1;
9532 indices[2] = indices[3] = high_index + 1;
9533 num_indices = 4;
9534
9535 for (i = 0; i < n; i += 1)
9536 {
9537 switch (exp->elts[*pos].opcode)
9538 {
9539 case OP_CHOICES:
9540 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9541 &num_indices, max_indices,
9542 low_index, high_index);
9543 break;
9544 case OP_POSITIONAL:
9545 aggregate_assign_positional (container, lhs, exp, pos, indices,
9546 &num_indices, max_indices,
9547 low_index, high_index);
9548 break;
9549 case OP_OTHERS:
9550 if (i != n-1)
9551 error (_("Misplaced 'others' clause"));
9552 aggregate_assign_others (container, lhs, exp, pos, indices,
9553 num_indices, low_index, high_index);
9554 break;
9555 default:
9556 error (_("Internal error: bad aggregate clause"));
9557 }
9558 }
9559
9560 return container;
9561 }
9562
9563 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9564 construct at *POS, updating *POS past the construct, given that
9565 the positions are relative to lower bound LOW, where HIGH is the
9566 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9567 updating *NUM_INDICES as needed. CONTAINER is as for
9568 assign_aggregate. */
9569 static void
9570 aggregate_assign_positional (struct value *container,
9571 struct value *lhs, struct expression *exp,
9572 int *pos, LONGEST *indices, int *num_indices,
9573 int max_indices, LONGEST low, LONGEST high)
9574 {
9575 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9576
9577 if (ind - 1 == high)
9578 warning (_("Extra components in aggregate ignored."));
9579 if (ind <= high)
9580 {
9581 add_component_interval (ind, ind, indices, num_indices, max_indices);
9582 *pos += 3;
9583 assign_component (container, lhs, ind, exp, pos);
9584 }
9585 else
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587 }
9588
9589 /* Assign into the components of LHS indexed by the OP_CHOICES
9590 construct at *POS, updating *POS past the construct, given that
9591 the allowable indices are LOW..HIGH. Record the indices assigned
9592 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9593 needed. CONTAINER is as for assign_aggregate. */
9594 static void
9595 aggregate_assign_from_choices (struct value *container,
9596 struct value *lhs, struct expression *exp,
9597 int *pos, LONGEST *indices, int *num_indices,
9598 int max_indices, LONGEST low, LONGEST high)
9599 {
9600 int j;
9601 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9602 int choice_pos, expr_pc;
9603 int is_array = ada_is_direct_array_type (value_type (lhs));
9604
9605 choice_pos = *pos += 3;
9606
9607 for (j = 0; j < n_choices; j += 1)
9608 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9609 expr_pc = *pos;
9610 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9611
9612 for (j = 0; j < n_choices; j += 1)
9613 {
9614 LONGEST lower, upper;
9615 enum exp_opcode op = exp->elts[choice_pos].opcode;
9616
9617 if (op == OP_DISCRETE_RANGE)
9618 {
9619 choice_pos += 1;
9620 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9621 EVAL_NORMAL));
9622 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9623 EVAL_NORMAL));
9624 }
9625 else if (is_array)
9626 {
9627 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9628 EVAL_NORMAL));
9629 upper = lower;
9630 }
9631 else
9632 {
9633 int ind;
9634 const char *name;
9635
9636 switch (op)
9637 {
9638 case OP_NAME:
9639 name = &exp->elts[choice_pos + 2].string;
9640 break;
9641 case OP_VAR_VALUE:
9642 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9643 break;
9644 default:
9645 error (_("Invalid record component association."));
9646 }
9647 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9648 ind = 0;
9649 if (! find_struct_field (name, value_type (lhs), 0,
9650 NULL, NULL, NULL, NULL, &ind))
9651 error (_("Unknown component name: %s."), name);
9652 lower = upper = ind;
9653 }
9654
9655 if (lower <= upper && (lower < low || upper > high))
9656 error (_("Index in component association out of bounds."));
9657
9658 add_component_interval (lower, upper, indices, num_indices,
9659 max_indices);
9660 while (lower <= upper)
9661 {
9662 int pos1;
9663
9664 pos1 = expr_pc;
9665 assign_component (container, lhs, lower, exp, &pos1);
9666 lower += 1;
9667 }
9668 }
9669 }
9670
9671 /* Assign the value of the expression in the OP_OTHERS construct in
9672 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9673 have not been previously assigned. The index intervals already assigned
9674 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9675 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9676 static void
9677 aggregate_assign_others (struct value *container,
9678 struct value *lhs, struct expression *exp,
9679 int *pos, LONGEST *indices, int num_indices,
9680 LONGEST low, LONGEST high)
9681 {
9682 int i;
9683 int expr_pc = *pos + 1;
9684
9685 for (i = 0; i < num_indices - 2; i += 2)
9686 {
9687 LONGEST ind;
9688
9689 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9690 {
9691 int localpos;
9692
9693 localpos = expr_pc;
9694 assign_component (container, lhs, ind, exp, &localpos);
9695 }
9696 }
9697 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9698 }
9699
9700 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9701 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9702 modifying *SIZE as needed. It is an error if *SIZE exceeds
9703 MAX_SIZE. The resulting intervals do not overlap. */
9704 static void
9705 add_component_interval (LONGEST low, LONGEST high,
9706 LONGEST* indices, int *size, int max_size)
9707 {
9708 int i, j;
9709
9710 for (i = 0; i < *size; i += 2) {
9711 if (high >= indices[i] && low <= indices[i + 1])
9712 {
9713 int kh;
9714
9715 for (kh = i + 2; kh < *size; kh += 2)
9716 if (high < indices[kh])
9717 break;
9718 if (low < indices[i])
9719 indices[i] = low;
9720 indices[i + 1] = indices[kh - 1];
9721 if (high > indices[i + 1])
9722 indices[i + 1] = high;
9723 memcpy (indices + i + 2, indices + kh, *size - kh);
9724 *size -= kh - i - 2;
9725 return;
9726 }
9727 else if (high < indices[i])
9728 break;
9729 }
9730
9731 if (*size == max_size)
9732 error (_("Internal error: miscounted aggregate components."));
9733 *size += 2;
9734 for (j = *size-1; j >= i+2; j -= 1)
9735 indices[j] = indices[j - 2];
9736 indices[i] = low;
9737 indices[i + 1] = high;
9738 }
9739
9740 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9741 is different. */
9742
9743 static struct value *
9744 ada_value_cast (struct type *type, struct value *arg2)
9745 {
9746 if (type == ada_check_typedef (value_type (arg2)))
9747 return arg2;
9748
9749 if (ada_is_gnat_encoded_fixed_point_type (type))
9750 return cast_to_fixed (type, arg2);
9751
9752 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9753 return cast_from_fixed (type, arg2);
9754
9755 return value_cast (type, arg2);
9756 }
9757
9758 /* Evaluating Ada expressions, and printing their result.
9759 ------------------------------------------------------
9760
9761 1. Introduction:
9762 ----------------
9763
9764 We usually evaluate an Ada expression in order to print its value.
9765 We also evaluate an expression in order to print its type, which
9766 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9767 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9768 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9769 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9770 similar.
9771
9772 Evaluating expressions is a little more complicated for Ada entities
9773 than it is for entities in languages such as C. The main reason for
9774 this is that Ada provides types whose definition might be dynamic.
9775 One example of such types is variant records. Or another example
9776 would be an array whose bounds can only be known at run time.
9777
9778 The following description is a general guide as to what should be
9779 done (and what should NOT be done) in order to evaluate an expression
9780 involving such types, and when. This does not cover how the semantic
9781 information is encoded by GNAT as this is covered separatly. For the
9782 document used as the reference for the GNAT encoding, see exp_dbug.ads
9783 in the GNAT sources.
9784
9785 Ideally, we should embed each part of this description next to its
9786 associated code. Unfortunately, the amount of code is so vast right
9787 now that it's hard to see whether the code handling a particular
9788 situation might be duplicated or not. One day, when the code is
9789 cleaned up, this guide might become redundant with the comments
9790 inserted in the code, and we might want to remove it.
9791
9792 2. ``Fixing'' an Entity, the Simple Case:
9793 -----------------------------------------
9794
9795 When evaluating Ada expressions, the tricky issue is that they may
9796 reference entities whose type contents and size are not statically
9797 known. Consider for instance a variant record:
9798
9799 type Rec (Empty : Boolean := True) is record
9800 case Empty is
9801 when True => null;
9802 when False => Value : Integer;
9803 end case;
9804 end record;
9805 Yes : Rec := (Empty => False, Value => 1);
9806 No : Rec := (empty => True);
9807
9808 The size and contents of that record depends on the value of the
9809 descriminant (Rec.Empty). At this point, neither the debugging
9810 information nor the associated type structure in GDB are able to
9811 express such dynamic types. So what the debugger does is to create
9812 "fixed" versions of the type that applies to the specific object.
9813 We also informally refer to this operation as "fixing" an object,
9814 which means creating its associated fixed type.
9815
9816 Example: when printing the value of variable "Yes" above, its fixed
9817 type would look like this:
9818
9819 type Rec is record
9820 Empty : Boolean;
9821 Value : Integer;
9822 end record;
9823
9824 On the other hand, if we printed the value of "No", its fixed type
9825 would become:
9826
9827 type Rec is record
9828 Empty : Boolean;
9829 end record;
9830
9831 Things become a little more complicated when trying to fix an entity
9832 with a dynamic type that directly contains another dynamic type,
9833 such as an array of variant records, for instance. There are
9834 two possible cases: Arrays, and records.
9835
9836 3. ``Fixing'' Arrays:
9837 ---------------------
9838
9839 The type structure in GDB describes an array in terms of its bounds,
9840 and the type of its elements. By design, all elements in the array
9841 have the same type and we cannot represent an array of variant elements
9842 using the current type structure in GDB. When fixing an array,
9843 we cannot fix the array element, as we would potentially need one
9844 fixed type per element of the array. As a result, the best we can do
9845 when fixing an array is to produce an array whose bounds and size
9846 are correct (allowing us to read it from memory), but without having
9847 touched its element type. Fixing each element will be done later,
9848 when (if) necessary.
9849
9850 Arrays are a little simpler to handle than records, because the same
9851 amount of memory is allocated for each element of the array, even if
9852 the amount of space actually used by each element differs from element
9853 to element. Consider for instance the following array of type Rec:
9854
9855 type Rec_Array is array (1 .. 2) of Rec;
9856
9857 The actual amount of memory occupied by each element might be different
9858 from element to element, depending on the value of their discriminant.
9859 But the amount of space reserved for each element in the array remains
9860 fixed regardless. So we simply need to compute that size using
9861 the debugging information available, from which we can then determine
9862 the array size (we multiply the number of elements of the array by
9863 the size of each element).
9864
9865 The simplest case is when we have an array of a constrained element
9866 type. For instance, consider the following type declarations:
9867
9868 type Bounded_String (Max_Size : Integer) is
9869 Length : Integer;
9870 Buffer : String (1 .. Max_Size);
9871 end record;
9872 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9873
9874 In this case, the compiler describes the array as an array of
9875 variable-size elements (identified by its XVS suffix) for which
9876 the size can be read in the parallel XVZ variable.
9877
9878 In the case of an array of an unconstrained element type, the compiler
9879 wraps the array element inside a private PAD type. This type should not
9880 be shown to the user, and must be "unwrap"'ed before printing. Note
9881 that we also use the adjective "aligner" in our code to designate
9882 these wrapper types.
9883
9884 In some cases, the size allocated for each element is statically
9885 known. In that case, the PAD type already has the correct size,
9886 and the array element should remain unfixed.
9887
9888 But there are cases when this size is not statically known.
9889 For instance, assuming that "Five" is an integer variable:
9890
9891 type Dynamic is array (1 .. Five) of Integer;
9892 type Wrapper (Has_Length : Boolean := False) is record
9893 Data : Dynamic;
9894 case Has_Length is
9895 when True => Length : Integer;
9896 when False => null;
9897 end case;
9898 end record;
9899 type Wrapper_Array is array (1 .. 2) of Wrapper;
9900
9901 Hello : Wrapper_Array := (others => (Has_Length => True,
9902 Data => (others => 17),
9903 Length => 1));
9904
9905
9906 The debugging info would describe variable Hello as being an
9907 array of a PAD type. The size of that PAD type is not statically
9908 known, but can be determined using a parallel XVZ variable.
9909 In that case, a copy of the PAD type with the correct size should
9910 be used for the fixed array.
9911
9912 3. ``Fixing'' record type objects:
9913 ----------------------------------
9914
9915 Things are slightly different from arrays in the case of dynamic
9916 record types. In this case, in order to compute the associated
9917 fixed type, we need to determine the size and offset of each of
9918 its components. This, in turn, requires us to compute the fixed
9919 type of each of these components.
9920
9921 Consider for instance the example:
9922
9923 type Bounded_String (Max_Size : Natural) is record
9924 Str : String (1 .. Max_Size);
9925 Length : Natural;
9926 end record;
9927 My_String : Bounded_String (Max_Size => 10);
9928
9929 In that case, the position of field "Length" depends on the size
9930 of field Str, which itself depends on the value of the Max_Size
9931 discriminant. In order to fix the type of variable My_String,
9932 we need to fix the type of field Str. Therefore, fixing a variant
9933 record requires us to fix each of its components.
9934
9935 However, if a component does not have a dynamic size, the component
9936 should not be fixed. In particular, fields that use a PAD type
9937 should not fixed. Here is an example where this might happen
9938 (assuming type Rec above):
9939
9940 type Container (Big : Boolean) is record
9941 First : Rec;
9942 After : Integer;
9943 case Big is
9944 when True => Another : Integer;
9945 when False => null;
9946 end case;
9947 end record;
9948 My_Container : Container := (Big => False,
9949 First => (Empty => True),
9950 After => 42);
9951
9952 In that example, the compiler creates a PAD type for component First,
9953 whose size is constant, and then positions the component After just
9954 right after it. The offset of component After is therefore constant
9955 in this case.
9956
9957 The debugger computes the position of each field based on an algorithm
9958 that uses, among other things, the actual position and size of the field
9959 preceding it. Let's now imagine that the user is trying to print
9960 the value of My_Container. If the type fixing was recursive, we would
9961 end up computing the offset of field After based on the size of the
9962 fixed version of field First. And since in our example First has
9963 only one actual field, the size of the fixed type is actually smaller
9964 than the amount of space allocated to that field, and thus we would
9965 compute the wrong offset of field After.
9966
9967 To make things more complicated, we need to watch out for dynamic
9968 components of variant records (identified by the ___XVL suffix in
9969 the component name). Even if the target type is a PAD type, the size
9970 of that type might not be statically known. So the PAD type needs
9971 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9972 we might end up with the wrong size for our component. This can be
9973 observed with the following type declarations:
9974
9975 type Octal is new Integer range 0 .. 7;
9976 type Octal_Array is array (Positive range <>) of Octal;
9977 pragma Pack (Octal_Array);
9978
9979 type Octal_Buffer (Size : Positive) is record
9980 Buffer : Octal_Array (1 .. Size);
9981 Length : Integer;
9982 end record;
9983
9984 In that case, Buffer is a PAD type whose size is unset and needs
9985 to be computed by fixing the unwrapped type.
9986
9987 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9988 ----------------------------------------------------------
9989
9990 Lastly, when should the sub-elements of an entity that remained unfixed
9991 thus far, be actually fixed?
9992
9993 The answer is: Only when referencing that element. For instance
9994 when selecting one component of a record, this specific component
9995 should be fixed at that point in time. Or when printing the value
9996 of a record, each component should be fixed before its value gets
9997 printed. Similarly for arrays, the element of the array should be
9998 fixed when printing each element of the array, or when extracting
9999 one element out of that array. On the other hand, fixing should
10000 not be performed on the elements when taking a slice of an array!
10001
10002 Note that one of the side effects of miscomputing the offset and
10003 size of each field is that we end up also miscomputing the size
10004 of the containing type. This can have adverse results when computing
10005 the value of an entity. GDB fetches the value of an entity based
10006 on the size of its type, and thus a wrong size causes GDB to fetch
10007 the wrong amount of memory. In the case where the computed size is
10008 too small, GDB fetches too little data to print the value of our
10009 entity. Results in this case are unpredictable, as we usually read
10010 past the buffer containing the data =:-o. */
10011
10012 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10013 for that subexpression cast to TO_TYPE. Advance *POS over the
10014 subexpression. */
10015
10016 static value *
10017 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10018 enum noside noside, struct type *to_type)
10019 {
10020 int pc = *pos;
10021
10022 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10023 || exp->elts[pc].opcode == OP_VAR_VALUE)
10024 {
10025 (*pos) += 4;
10026
10027 value *val;
10028 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10029 {
10030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10031 return value_zero (to_type, not_lval);
10032
10033 val = evaluate_var_msym_value (noside,
10034 exp->elts[pc + 1].objfile,
10035 exp->elts[pc + 2].msymbol);
10036 }
10037 else
10038 val = evaluate_var_value (noside,
10039 exp->elts[pc + 1].block,
10040 exp->elts[pc + 2].symbol);
10041
10042 if (noside == EVAL_SKIP)
10043 return eval_skip_value (exp);
10044
10045 val = ada_value_cast (to_type, val);
10046
10047 /* Follow the Ada language semantics that do not allow taking
10048 an address of the result of a cast (view conversion in Ada). */
10049 if (VALUE_LVAL (val) == lval_memory)
10050 {
10051 if (value_lazy (val))
10052 value_fetch_lazy (val);
10053 VALUE_LVAL (val) = not_lval;
10054 }
10055 return val;
10056 }
10057
10058 value *val = evaluate_subexp (to_type, exp, pos, noside);
10059 if (noside == EVAL_SKIP)
10060 return eval_skip_value (exp);
10061 return ada_value_cast (to_type, val);
10062 }
10063
10064 /* Implement the evaluate_exp routine in the exp_descriptor structure
10065 for the Ada language. */
10066
10067 static struct value *
10068 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10069 int *pos, enum noside noside)
10070 {
10071 enum exp_opcode op;
10072 int tem;
10073 int pc;
10074 int preeval_pos;
10075 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10076 struct type *type;
10077 int nargs, oplen;
10078 struct value **argvec;
10079
10080 pc = *pos;
10081 *pos += 1;
10082 op = exp->elts[pc].opcode;
10083
10084 switch (op)
10085 {
10086 default:
10087 *pos -= 1;
10088 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10089
10090 if (noside == EVAL_NORMAL)
10091 arg1 = unwrap_value (arg1);
10092
10093 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10094 then we need to perform the conversion manually, because
10095 evaluate_subexp_standard doesn't do it. This conversion is
10096 necessary in Ada because the different kinds of float/fixed
10097 types in Ada have different representations.
10098
10099 Similarly, we need to perform the conversion from OP_LONG
10100 ourselves. */
10101 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10102 arg1 = ada_value_cast (expect_type, arg1);
10103
10104 return arg1;
10105
10106 case OP_STRING:
10107 {
10108 struct value *result;
10109
10110 *pos -= 1;
10111 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10112 /* The result type will have code OP_STRING, bashed there from
10113 OP_ARRAY. Bash it back. */
10114 if (value_type (result)->code () == TYPE_CODE_STRING)
10115 value_type (result)->set_code (TYPE_CODE_ARRAY);
10116 return result;
10117 }
10118
10119 case UNOP_CAST:
10120 (*pos) += 2;
10121 type = exp->elts[pc + 1].type;
10122 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10123
10124 case UNOP_QUAL:
10125 (*pos) += 2;
10126 type = exp->elts[pc + 1].type;
10127 return ada_evaluate_subexp (type, exp, pos, noside);
10128
10129 case BINOP_ASSIGN:
10130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10132 {
10133 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10134 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10135 return arg1;
10136 return ada_value_assign (arg1, arg1);
10137 }
10138 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10139 except if the lhs of our assignment is a convenience variable.
10140 In the case of assigning to a convenience variable, the lhs
10141 should be exactly the result of the evaluation of the rhs. */
10142 type = value_type (arg1);
10143 if (VALUE_LVAL (arg1) == lval_internalvar)
10144 type = NULL;
10145 arg2 = evaluate_subexp (type, exp, pos, noside);
10146 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10147 return arg1;
10148 if (VALUE_LVAL (arg1) == lval_internalvar)
10149 {
10150 /* Nothing. */
10151 }
10152 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10153 arg2 = cast_to_fixed (value_type (arg1), arg2);
10154 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10155 error
10156 (_("Fixed-point values must be assigned to fixed-point variables"));
10157 else
10158 arg2 = coerce_for_assign (value_type (arg1), arg2);
10159 return ada_value_assign (arg1, arg2);
10160
10161 case BINOP_ADD:
10162 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10163 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10164 if (noside == EVAL_SKIP)
10165 goto nosideret;
10166 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10167 return (value_from_longest
10168 (value_type (arg1),
10169 value_as_long (arg1) + value_as_long (arg2)));
10170 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10171 return (value_from_longest
10172 (value_type (arg2),
10173 value_as_long (arg1) + value_as_long (arg2)));
10174 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10175 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10176 && value_type (arg1) != value_type (arg2))
10177 error (_("Operands of fixed-point addition must have the same type"));
10178 /* Do the addition, and cast the result to the type of the first
10179 argument. We cannot cast the result to a reference type, so if
10180 ARG1 is a reference type, find its underlying type. */
10181 type = value_type (arg1);
10182 while (type->code () == TYPE_CODE_REF)
10183 type = TYPE_TARGET_TYPE (type);
10184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10185 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10186
10187 case BINOP_SUB:
10188 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10189 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10190 if (noside == EVAL_SKIP)
10191 goto nosideret;
10192 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10193 return (value_from_longest
10194 (value_type (arg1),
10195 value_as_long (arg1) - value_as_long (arg2)));
10196 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10197 return (value_from_longest
10198 (value_type (arg2),
10199 value_as_long (arg1) - value_as_long (arg2)));
10200 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10201 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10202 && value_type (arg1) != value_type (arg2))
10203 error (_("Operands of fixed-point subtraction "
10204 "must have the same type"));
10205 /* Do the substraction, and cast the result to the type of the first
10206 argument. We cannot cast the result to a reference type, so if
10207 ARG1 is a reference type, find its underlying type. */
10208 type = value_type (arg1);
10209 while (type->code () == TYPE_CODE_REF)
10210 type = TYPE_TARGET_TYPE (type);
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10213
10214 case BINOP_MUL:
10215 case BINOP_DIV:
10216 case BINOP_REM:
10217 case BINOP_MOD:
10218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10219 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 if (noside == EVAL_SKIP)
10221 goto nosideret;
10222 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10223 {
10224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10225 return value_zero (value_type (arg1), not_lval);
10226 }
10227 else
10228 {
10229 type = builtin_type (exp->gdbarch)->builtin_double;
10230 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10231 arg1 = cast_from_fixed (type, arg1);
10232 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10233 arg2 = cast_from_fixed (type, arg2);
10234 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10235 return ada_value_binop (arg1, arg2, op);
10236 }
10237
10238 case BINOP_EQUAL:
10239 case BINOP_NOTEQUAL:
10240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10241 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10242 if (noside == EVAL_SKIP)
10243 goto nosideret;
10244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10245 tem = 0;
10246 else
10247 {
10248 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10249 tem = ada_value_equal (arg1, arg2);
10250 }
10251 if (op == BINOP_NOTEQUAL)
10252 tem = !tem;
10253 type = language_bool_type (exp->language_defn, exp->gdbarch);
10254 return value_from_longest (type, (LONGEST) tem);
10255
10256 case UNOP_NEG:
10257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10258 if (noside == EVAL_SKIP)
10259 goto nosideret;
10260 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10261 return value_cast (value_type (arg1), value_neg (arg1));
10262 else
10263 {
10264 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10265 return value_neg (arg1);
10266 }
10267
10268 case BINOP_LOGICAL_AND:
10269 case BINOP_LOGICAL_OR:
10270 case UNOP_LOGICAL_NOT:
10271 {
10272 struct value *val;
10273
10274 *pos -= 1;
10275 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10276 type = language_bool_type (exp->language_defn, exp->gdbarch);
10277 return value_cast (type, val);
10278 }
10279
10280 case BINOP_BITWISE_AND:
10281 case BINOP_BITWISE_IOR:
10282 case BINOP_BITWISE_XOR:
10283 {
10284 struct value *val;
10285
10286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10287 *pos = pc;
10288 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10289
10290 return value_cast (value_type (arg1), val);
10291 }
10292
10293 case OP_VAR_VALUE:
10294 *pos -= 1;
10295
10296 if (noside == EVAL_SKIP)
10297 {
10298 *pos += 4;
10299 goto nosideret;
10300 }
10301
10302 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10303 /* Only encountered when an unresolved symbol occurs in a
10304 context other than a function call, in which case, it is
10305 invalid. */
10306 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10307 exp->elts[pc + 2].symbol->print_name ());
10308
10309 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10310 {
10311 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10312 /* Check to see if this is a tagged type. We also need to handle
10313 the case where the type is a reference to a tagged type, but
10314 we have to be careful to exclude pointers to tagged types.
10315 The latter should be shown as usual (as a pointer), whereas
10316 a reference should mostly be transparent to the user. */
10317 if (ada_is_tagged_type (type, 0)
10318 || (type->code () == TYPE_CODE_REF
10319 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10320 {
10321 /* Tagged types are a little special in the fact that the real
10322 type is dynamic and can only be determined by inspecting the
10323 object's tag. This means that we need to get the object's
10324 value first (EVAL_NORMAL) and then extract the actual object
10325 type from its tag.
10326
10327 Note that we cannot skip the final step where we extract
10328 the object type from its tag, because the EVAL_NORMAL phase
10329 results in dynamic components being resolved into fixed ones.
10330 This can cause problems when trying to print the type
10331 description of tagged types whose parent has a dynamic size:
10332 We use the type name of the "_parent" component in order
10333 to print the name of the ancestor type in the type description.
10334 If that component had a dynamic size, the resolution into
10335 a fixed type would result in the loss of that type name,
10336 thus preventing us from printing the name of the ancestor
10337 type in the type description. */
10338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10339
10340 if (type->code () != TYPE_CODE_REF)
10341 {
10342 struct type *actual_type;
10343
10344 actual_type = type_from_tag (ada_value_tag (arg1));
10345 if (actual_type == NULL)
10346 /* If, for some reason, we were unable to determine
10347 the actual type from the tag, then use the static
10348 approximation that we just computed as a fallback.
10349 This can happen if the debugging information is
10350 incomplete, for instance. */
10351 actual_type = type;
10352 return value_zero (actual_type, not_lval);
10353 }
10354 else
10355 {
10356 /* In the case of a ref, ada_coerce_ref takes care
10357 of determining the actual type. But the evaluation
10358 should return a ref as it should be valid to ask
10359 for its address; so rebuild a ref after coerce. */
10360 arg1 = ada_coerce_ref (arg1);
10361 return value_ref (arg1, TYPE_CODE_REF);
10362 }
10363 }
10364
10365 /* Records and unions for which GNAT encodings have been
10366 generated need to be statically fixed as well.
10367 Otherwise, non-static fixing produces a type where
10368 all dynamic properties are removed, which prevents "ptype"
10369 from being able to completely describe the type.
10370 For instance, a case statement in a variant record would be
10371 replaced by the relevant components based on the actual
10372 value of the discriminants. */
10373 if ((type->code () == TYPE_CODE_STRUCT
10374 && dynamic_template_type (type) != NULL)
10375 || (type->code () == TYPE_CODE_UNION
10376 && ada_find_parallel_type (type, "___XVU") != NULL))
10377 {
10378 *pos += 4;
10379 return value_zero (to_static_fixed_type (type), not_lval);
10380 }
10381 }
10382
10383 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10384 return ada_to_fixed_value (arg1);
10385
10386 case OP_FUNCALL:
10387 (*pos) += 2;
10388
10389 /* Allocate arg vector, including space for the function to be
10390 called in argvec[0] and a terminating NULL. */
10391 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10392 argvec = XALLOCAVEC (struct value *, nargs + 2);
10393
10394 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10395 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10396 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10397 exp->elts[pc + 5].symbol->print_name ());
10398 else
10399 {
10400 for (tem = 0; tem <= nargs; tem += 1)
10401 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10402 argvec[tem] = 0;
10403
10404 if (noside == EVAL_SKIP)
10405 goto nosideret;
10406 }
10407
10408 if (ada_is_constrained_packed_array_type
10409 (desc_base_type (value_type (argvec[0]))))
10410 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10411 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10412 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10413 /* This is a packed array that has already been fixed, and
10414 therefore already coerced to a simple array. Nothing further
10415 to do. */
10416 ;
10417 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10418 {
10419 /* Make sure we dereference references so that all the code below
10420 feels like it's really handling the referenced value. Wrapping
10421 types (for alignment) may be there, so make sure we strip them as
10422 well. */
10423 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10424 }
10425 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10426 && VALUE_LVAL (argvec[0]) == lval_memory)
10427 argvec[0] = value_addr (argvec[0]);
10428
10429 type = ada_check_typedef (value_type (argvec[0]));
10430
10431 /* Ada allows us to implicitly dereference arrays when subscripting
10432 them. So, if this is an array typedef (encoding use for array
10433 access types encoded as fat pointers), strip it now. */
10434 if (type->code () == TYPE_CODE_TYPEDEF)
10435 type = ada_typedef_target_type (type);
10436
10437 if (type->code () == TYPE_CODE_PTR)
10438 {
10439 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10440 {
10441 case TYPE_CODE_FUNC:
10442 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10443 break;
10444 case TYPE_CODE_ARRAY:
10445 break;
10446 case TYPE_CODE_STRUCT:
10447 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10448 argvec[0] = ada_value_ind (argvec[0]);
10449 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10450 break;
10451 default:
10452 error (_("cannot subscript or call something of type `%s'"),
10453 ada_type_name (value_type (argvec[0])));
10454 break;
10455 }
10456 }
10457
10458 switch (type->code ())
10459 {
10460 case TYPE_CODE_FUNC:
10461 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10462 {
10463 if (TYPE_TARGET_TYPE (type) == NULL)
10464 error_call_unknown_return_type (NULL);
10465 return allocate_value (TYPE_TARGET_TYPE (type));
10466 }
10467 return call_function_by_hand (argvec[0], NULL,
10468 gdb::make_array_view (argvec + 1,
10469 nargs));
10470 case TYPE_CODE_INTERNAL_FUNCTION:
10471 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10472 /* We don't know anything about what the internal
10473 function might return, but we have to return
10474 something. */
10475 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10476 not_lval);
10477 else
10478 return call_internal_function (exp->gdbarch, exp->language_defn,
10479 argvec[0], nargs, argvec + 1);
10480
10481 case TYPE_CODE_STRUCT:
10482 {
10483 int arity;
10484
10485 arity = ada_array_arity (type);
10486 type = ada_array_element_type (type, nargs);
10487 if (type == NULL)
10488 error (_("cannot subscript or call a record"));
10489 if (arity != nargs)
10490 error (_("wrong number of subscripts; expecting %d"), arity);
10491 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10492 return value_zero (ada_aligned_type (type), lval_memory);
10493 return
10494 unwrap_value (ada_value_subscript
10495 (argvec[0], nargs, argvec + 1));
10496 }
10497 case TYPE_CODE_ARRAY:
10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10499 {
10500 type = ada_array_element_type (type, nargs);
10501 if (type == NULL)
10502 error (_("element type of array unknown"));
10503 else
10504 return value_zero (ada_aligned_type (type), lval_memory);
10505 }
10506 return
10507 unwrap_value (ada_value_subscript
10508 (ada_coerce_to_simple_array (argvec[0]),
10509 nargs, argvec + 1));
10510 case TYPE_CODE_PTR: /* Pointer to array */
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 {
10513 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10514 type = ada_array_element_type (type, nargs);
10515 if (type == NULL)
10516 error (_("element type of array unknown"));
10517 else
10518 return value_zero (ada_aligned_type (type), lval_memory);
10519 }
10520 return
10521 unwrap_value (ada_value_ptr_subscript (argvec[0],
10522 nargs, argvec + 1));
10523
10524 default:
10525 error (_("Attempt to index or call something other than an "
10526 "array or function"));
10527 }
10528
10529 case TERNOP_SLICE:
10530 {
10531 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10532 struct value *low_bound_val =
10533 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10534 struct value *high_bound_val =
10535 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10536 LONGEST low_bound;
10537 LONGEST high_bound;
10538
10539 low_bound_val = coerce_ref (low_bound_val);
10540 high_bound_val = coerce_ref (high_bound_val);
10541 low_bound = value_as_long (low_bound_val);
10542 high_bound = value_as_long (high_bound_val);
10543
10544 if (noside == EVAL_SKIP)
10545 goto nosideret;
10546
10547 /* If this is a reference to an aligner type, then remove all
10548 the aligners. */
10549 if (value_type (array)->code () == TYPE_CODE_REF
10550 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10551 TYPE_TARGET_TYPE (value_type (array)) =
10552 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10553
10554 if (ada_is_constrained_packed_array_type (value_type (array)))
10555 error (_("cannot slice a packed array"));
10556
10557 /* If this is a reference to an array or an array lvalue,
10558 convert to a pointer. */
10559 if (value_type (array)->code () == TYPE_CODE_REF
10560 || (value_type (array)->code () == TYPE_CODE_ARRAY
10561 && VALUE_LVAL (array) == lval_memory))
10562 array = value_addr (array);
10563
10564 if (noside == EVAL_AVOID_SIDE_EFFECTS
10565 && ada_is_array_descriptor_type (ada_check_typedef
10566 (value_type (array))))
10567 return empty_array (ada_type_of_array (array, 0), low_bound,
10568 high_bound);
10569
10570 array = ada_coerce_to_simple_array_ptr (array);
10571
10572 /* If we have more than one level of pointer indirection,
10573 dereference the value until we get only one level. */
10574 while (value_type (array)->code () == TYPE_CODE_PTR
10575 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10576 == TYPE_CODE_PTR))
10577 array = value_ind (array);
10578
10579 /* Make sure we really do have an array type before going further,
10580 to avoid a SEGV when trying to get the index type or the target
10581 type later down the road if the debug info generated by
10582 the compiler is incorrect or incomplete. */
10583 if (!ada_is_simple_array_type (value_type (array)))
10584 error (_("cannot take slice of non-array"));
10585
10586 if (ada_check_typedef (value_type (array))->code ()
10587 == TYPE_CODE_PTR)
10588 {
10589 struct type *type0 = ada_check_typedef (value_type (array));
10590
10591 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10592 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10593 else
10594 {
10595 struct type *arr_type0 =
10596 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10597
10598 return ada_value_slice_from_ptr (array, arr_type0,
10599 longest_to_int (low_bound),
10600 longest_to_int (high_bound));
10601 }
10602 }
10603 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10604 return array;
10605 else if (high_bound < low_bound)
10606 return empty_array (value_type (array), low_bound, high_bound);
10607 else
10608 return ada_value_slice (array, longest_to_int (low_bound),
10609 longest_to_int (high_bound));
10610 }
10611
10612 case UNOP_IN_RANGE:
10613 (*pos) += 2;
10614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10615 type = check_typedef (exp->elts[pc + 1].type);
10616
10617 if (noside == EVAL_SKIP)
10618 goto nosideret;
10619
10620 switch (type->code ())
10621 {
10622 default:
10623 lim_warning (_("Membership test incompletely implemented; "
10624 "always returns true"));
10625 type = language_bool_type (exp->language_defn, exp->gdbarch);
10626 return value_from_longest (type, (LONGEST) 1);
10627
10628 case TYPE_CODE_RANGE:
10629 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10630 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10631 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10633 type = language_bool_type (exp->language_defn, exp->gdbarch);
10634 return
10635 value_from_longest (type,
10636 (value_less (arg1, arg3)
10637 || value_equal (arg1, arg3))
10638 && (value_less (arg2, arg1)
10639 || value_equal (arg2, arg1)));
10640 }
10641
10642 case BINOP_IN_BOUNDS:
10643 (*pos) += 2;
10644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10645 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10646
10647 if (noside == EVAL_SKIP)
10648 goto nosideret;
10649
10650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10651 {
10652 type = language_bool_type (exp->language_defn, exp->gdbarch);
10653 return value_zero (type, not_lval);
10654 }
10655
10656 tem = longest_to_int (exp->elts[pc + 1].longconst);
10657
10658 type = ada_index_type (value_type (arg2), tem, "range");
10659 if (!type)
10660 type = value_type (arg1);
10661
10662 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10663 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10664
10665 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10667 type = language_bool_type (exp->language_defn, exp->gdbarch);
10668 return
10669 value_from_longest (type,
10670 (value_less (arg1, arg3)
10671 || value_equal (arg1, arg3))
10672 && (value_less (arg2, arg1)
10673 || value_equal (arg2, arg1)));
10674
10675 case TERNOP_IN_RANGE:
10676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10677 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10678 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10679
10680 if (noside == EVAL_SKIP)
10681 goto nosideret;
10682
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10684 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10685 type = language_bool_type (exp->language_defn, exp->gdbarch);
10686 return
10687 value_from_longest (type,
10688 (value_less (arg1, arg3)
10689 || value_equal (arg1, arg3))
10690 && (value_less (arg2, arg1)
10691 || value_equal (arg2, arg1)));
10692
10693 case OP_ATR_FIRST:
10694 case OP_ATR_LAST:
10695 case OP_ATR_LENGTH:
10696 {
10697 struct type *type_arg;
10698
10699 if (exp->elts[*pos].opcode == OP_TYPE)
10700 {
10701 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10702 arg1 = NULL;
10703 type_arg = check_typedef (exp->elts[pc + 2].type);
10704 }
10705 else
10706 {
10707 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10708 type_arg = NULL;
10709 }
10710
10711 if (exp->elts[*pos].opcode != OP_LONG)
10712 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10713 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10714 *pos += 4;
10715
10716 if (noside == EVAL_SKIP)
10717 goto nosideret;
10718 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10719 {
10720 if (type_arg == NULL)
10721 type_arg = value_type (arg1);
10722
10723 if (ada_is_constrained_packed_array_type (type_arg))
10724 type_arg = decode_constrained_packed_array_type (type_arg);
10725
10726 if (!discrete_type_p (type_arg))
10727 {
10728 switch (op)
10729 {
10730 default: /* Should never happen. */
10731 error (_("unexpected attribute encountered"));
10732 case OP_ATR_FIRST:
10733 case OP_ATR_LAST:
10734 type_arg = ada_index_type (type_arg, tem,
10735 ada_attribute_name (op));
10736 break;
10737 case OP_ATR_LENGTH:
10738 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10739 break;
10740 }
10741 }
10742
10743 return value_zero (type_arg, not_lval);
10744 }
10745 else if (type_arg == NULL)
10746 {
10747 arg1 = ada_coerce_ref (arg1);
10748
10749 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10750 arg1 = ada_coerce_to_simple_array (arg1);
10751
10752 if (op == OP_ATR_LENGTH)
10753 type = builtin_type (exp->gdbarch)->builtin_int;
10754 else
10755 {
10756 type = ada_index_type (value_type (arg1), tem,
10757 ada_attribute_name (op));
10758 if (type == NULL)
10759 type = builtin_type (exp->gdbarch)->builtin_int;
10760 }
10761
10762 switch (op)
10763 {
10764 default: /* Should never happen. */
10765 error (_("unexpected attribute encountered"));
10766 case OP_ATR_FIRST:
10767 return value_from_longest
10768 (type, ada_array_bound (arg1, tem, 0));
10769 case OP_ATR_LAST:
10770 return value_from_longest
10771 (type, ada_array_bound (arg1, tem, 1));
10772 case OP_ATR_LENGTH:
10773 return value_from_longest
10774 (type, ada_array_length (arg1, tem));
10775 }
10776 }
10777 else if (discrete_type_p (type_arg))
10778 {
10779 struct type *range_type;
10780 const char *name = ada_type_name (type_arg);
10781
10782 range_type = NULL;
10783 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10784 range_type = to_fixed_range_type (type_arg, NULL);
10785 if (range_type == NULL)
10786 range_type = type_arg;
10787 switch (op)
10788 {
10789 default:
10790 error (_("unexpected attribute encountered"));
10791 case OP_ATR_FIRST:
10792 return value_from_longest
10793 (range_type, ada_discrete_type_low_bound (range_type));
10794 case OP_ATR_LAST:
10795 return value_from_longest
10796 (range_type, ada_discrete_type_high_bound (range_type));
10797 case OP_ATR_LENGTH:
10798 error (_("the 'length attribute applies only to array types"));
10799 }
10800 }
10801 else if (type_arg->code () == TYPE_CODE_FLT)
10802 error (_("unimplemented type attribute"));
10803 else
10804 {
10805 LONGEST low, high;
10806
10807 if (ada_is_constrained_packed_array_type (type_arg))
10808 type_arg = decode_constrained_packed_array_type (type_arg);
10809
10810 if (op == OP_ATR_LENGTH)
10811 type = builtin_type (exp->gdbarch)->builtin_int;
10812 else
10813 {
10814 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10815 if (type == NULL)
10816 type = builtin_type (exp->gdbarch)->builtin_int;
10817 }
10818
10819 switch (op)
10820 {
10821 default:
10822 error (_("unexpected attribute encountered"));
10823 case OP_ATR_FIRST:
10824 low = ada_array_bound_from_type (type_arg, tem, 0);
10825 return value_from_longest (type, low);
10826 case OP_ATR_LAST:
10827 high = ada_array_bound_from_type (type_arg, tem, 1);
10828 return value_from_longest (type, high);
10829 case OP_ATR_LENGTH:
10830 low = ada_array_bound_from_type (type_arg, tem, 0);
10831 high = ada_array_bound_from_type (type_arg, tem, 1);
10832 return value_from_longest (type, high - low + 1);
10833 }
10834 }
10835 }
10836
10837 case OP_ATR_TAG:
10838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10839 if (noside == EVAL_SKIP)
10840 goto nosideret;
10841
10842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10843 return value_zero (ada_tag_type (arg1), not_lval);
10844
10845 return ada_value_tag (arg1);
10846
10847 case OP_ATR_MIN:
10848 case OP_ATR_MAX:
10849 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10851 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10855 return value_zero (value_type (arg1), not_lval);
10856 else
10857 {
10858 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10859 return value_binop (arg1, arg2,
10860 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10861 }
10862
10863 case OP_ATR_MODULUS:
10864 {
10865 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10866
10867 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10868 if (noside == EVAL_SKIP)
10869 goto nosideret;
10870
10871 if (!ada_is_modular_type (type_arg))
10872 error (_("'modulus must be applied to modular type"));
10873
10874 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10875 ada_modulus (type_arg));
10876 }
10877
10878
10879 case OP_ATR_POS:
10880 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 if (noside == EVAL_SKIP)
10883 goto nosideret;
10884 type = builtin_type (exp->gdbarch)->builtin_int;
10885 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10886 return value_zero (type, not_lval);
10887 else
10888 return value_pos_atr (type, arg1);
10889
10890 case OP_ATR_SIZE:
10891 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10892 type = value_type (arg1);
10893
10894 /* If the argument is a reference, then dereference its type, since
10895 the user is really asking for the size of the actual object,
10896 not the size of the pointer. */
10897 if (type->code () == TYPE_CODE_REF)
10898 type = TYPE_TARGET_TYPE (type);
10899
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10903 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10904 else
10905 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10906 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10907
10908 case OP_ATR_VAL:
10909 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10910 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10911 type = exp->elts[pc + 2].type;
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
10914 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10915 return value_zero (type, not_lval);
10916 else
10917 return value_val_atr (type, arg1);
10918
10919 case BINOP_EXP:
10920 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10921 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 if (noside == EVAL_SKIP)
10923 goto nosideret;
10924 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10925 return value_zero (value_type (arg1), not_lval);
10926 else
10927 {
10928 /* For integer exponentiation operations,
10929 only promote the first argument. */
10930 if (is_integral_type (value_type (arg2)))
10931 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10932 else
10933 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10934
10935 return value_binop (arg1, arg2, op);
10936 }
10937
10938 case UNOP_PLUS:
10939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940 if (noside == EVAL_SKIP)
10941 goto nosideret;
10942 else
10943 return arg1;
10944
10945 case UNOP_ABS:
10946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
10949 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10950 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10951 return value_neg (arg1);
10952 else
10953 return arg1;
10954
10955 case UNOP_IND:
10956 preeval_pos = *pos;
10957 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10958 if (noside == EVAL_SKIP)
10959 goto nosideret;
10960 type = ada_check_typedef (value_type (arg1));
10961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10962 {
10963 if (ada_is_array_descriptor_type (type))
10964 /* GDB allows dereferencing GNAT array descriptors. */
10965 {
10966 struct type *arrType = ada_type_of_array (arg1, 0);
10967
10968 if (arrType == NULL)
10969 error (_("Attempt to dereference null array pointer."));
10970 return value_at_lazy (arrType, 0);
10971 }
10972 else if (type->code () == TYPE_CODE_PTR
10973 || type->code () == TYPE_CODE_REF
10974 /* In C you can dereference an array to get the 1st elt. */
10975 || type->code () == TYPE_CODE_ARRAY)
10976 {
10977 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10978 only be determined by inspecting the object's tag.
10979 This means that we need to evaluate completely the
10980 expression in order to get its type. */
10981
10982 if ((type->code () == TYPE_CODE_REF
10983 || type->code () == TYPE_CODE_PTR)
10984 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10985 {
10986 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10987 EVAL_NORMAL);
10988 type = value_type (ada_value_ind (arg1));
10989 }
10990 else
10991 {
10992 type = to_static_fixed_type
10993 (ada_aligned_type
10994 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10995 }
10996 ada_ensure_varsize_limit (type);
10997 return value_zero (type, lval_memory);
10998 }
10999 else if (type->code () == TYPE_CODE_INT)
11000 {
11001 /* GDB allows dereferencing an int. */
11002 if (expect_type == NULL)
11003 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11004 lval_memory);
11005 else
11006 {
11007 expect_type =
11008 to_static_fixed_type (ada_aligned_type (expect_type));
11009 return value_zero (expect_type, lval_memory);
11010 }
11011 }
11012 else
11013 error (_("Attempt to take contents of a non-pointer value."));
11014 }
11015 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11016 type = ada_check_typedef (value_type (arg1));
11017
11018 if (type->code () == TYPE_CODE_INT)
11019 /* GDB allows dereferencing an int. If we were given
11020 the expect_type, then use that as the target type.
11021 Otherwise, assume that the target type is an int. */
11022 {
11023 if (expect_type != NULL)
11024 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11025 arg1));
11026 else
11027 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11028 (CORE_ADDR) value_as_address (arg1));
11029 }
11030
11031 if (ada_is_array_descriptor_type (type))
11032 /* GDB allows dereferencing GNAT array descriptors. */
11033 return ada_coerce_to_simple_array (arg1);
11034 else
11035 return ada_value_ind (arg1);
11036
11037 case STRUCTOP_STRUCT:
11038 tem = longest_to_int (exp->elts[pc + 1].longconst);
11039 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11040 preeval_pos = *pos;
11041 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11042 if (noside == EVAL_SKIP)
11043 goto nosideret;
11044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11045 {
11046 struct type *type1 = value_type (arg1);
11047
11048 if (ada_is_tagged_type (type1, 1))
11049 {
11050 type = ada_lookup_struct_elt_type (type1,
11051 &exp->elts[pc + 2].string,
11052 1, 1);
11053
11054 /* If the field is not found, check if it exists in the
11055 extension of this object's type. This means that we
11056 need to evaluate completely the expression. */
11057
11058 if (type == NULL)
11059 {
11060 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11061 EVAL_NORMAL);
11062 arg1 = ada_value_struct_elt (arg1,
11063 &exp->elts[pc + 2].string,
11064 0);
11065 arg1 = unwrap_value (arg1);
11066 type = value_type (ada_to_fixed_value (arg1));
11067 }
11068 }
11069 else
11070 type =
11071 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11072 0);
11073
11074 return value_zero (ada_aligned_type (type), lval_memory);
11075 }
11076 else
11077 {
11078 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11079 arg1 = unwrap_value (arg1);
11080 return ada_to_fixed_value (arg1);
11081 }
11082
11083 case OP_TYPE:
11084 /* The value is not supposed to be used. This is here to make it
11085 easier to accommodate expressions that contain types. */
11086 (*pos) += 2;
11087 if (noside == EVAL_SKIP)
11088 goto nosideret;
11089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11090 return allocate_value (exp->elts[pc + 1].type);
11091 else
11092 error (_("Attempt to use a type name as an expression"));
11093
11094 case OP_AGGREGATE:
11095 case OP_CHOICES:
11096 case OP_OTHERS:
11097 case OP_DISCRETE_RANGE:
11098 case OP_POSITIONAL:
11099 case OP_NAME:
11100 if (noside == EVAL_NORMAL)
11101 switch (op)
11102 {
11103 case OP_NAME:
11104 error (_("Undefined name, ambiguous name, or renaming used in "
11105 "component association: %s."), &exp->elts[pc+2].string);
11106 case OP_AGGREGATE:
11107 error (_("Aggregates only allowed on the right of an assignment"));
11108 default:
11109 internal_error (__FILE__, __LINE__,
11110 _("aggregate apparently mangled"));
11111 }
11112
11113 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11114 *pos += oplen - 1;
11115 for (tem = 0; tem < nargs; tem += 1)
11116 ada_evaluate_subexp (NULL, exp, pos, noside);
11117 goto nosideret;
11118 }
11119
11120 nosideret:
11121 return eval_skip_value (exp);
11122 }
11123 \f
11124
11125 /* Fixed point */
11126
11127 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11128 type name that encodes the 'small and 'delta information.
11129 Otherwise, return NULL. */
11130
11131 static const char *
11132 gnat_encoded_fixed_type_info (struct type *type)
11133 {
11134 const char *name = ada_type_name (type);
11135 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11136
11137 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11138 {
11139 const char *tail = strstr (name, "___XF_");
11140
11141 if (tail == NULL)
11142 return NULL;
11143 else
11144 return tail + 5;
11145 }
11146 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11147 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11148 else
11149 return NULL;
11150 }
11151
11152 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11153
11154 int
11155 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11156 {
11157 return gnat_encoded_fixed_type_info (type) != NULL;
11158 }
11159
11160 /* Return non-zero iff TYPE represents a System.Address type. */
11161
11162 int
11163 ada_is_system_address_type (struct type *type)
11164 {
11165 return (type->name () && strcmp (type->name (), "system__address") == 0);
11166 }
11167
11168 /* Assuming that TYPE is the representation of an Ada fixed-point
11169 type, return the target floating-point type to be used to represent
11170 of this type during internal computation. */
11171
11172 static struct type *
11173 ada_scaling_type (struct type *type)
11174 {
11175 return builtin_type (get_type_arch (type))->builtin_long_double;
11176 }
11177
11178 /* Assuming that TYPE is the representation of an Ada fixed-point
11179 type, return its delta, or NULL if the type is malformed and the
11180 delta cannot be determined. */
11181
11182 struct value *
11183 gnat_encoded_fixed_point_delta (struct type *type)
11184 {
11185 const char *encoding = gnat_encoded_fixed_type_info (type);
11186 struct type *scale_type = ada_scaling_type (type);
11187
11188 long long num, den;
11189
11190 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11191 return nullptr;
11192 else
11193 return value_binop (value_from_longest (scale_type, num),
11194 value_from_longest (scale_type, den), BINOP_DIV);
11195 }
11196
11197 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11198 the scaling factor ('SMALL value) associated with the type. */
11199
11200 struct value *
11201 ada_scaling_factor (struct type *type)
11202 {
11203 const char *encoding = gnat_encoded_fixed_type_info (type);
11204 struct type *scale_type = ada_scaling_type (type);
11205
11206 long long num0, den0, num1, den1;
11207 int n;
11208
11209 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11210 &num0, &den0, &num1, &den1);
11211
11212 if (n < 2)
11213 return value_from_longest (scale_type, 1);
11214 else if (n == 4)
11215 return value_binop (value_from_longest (scale_type, num1),
11216 value_from_longest (scale_type, den1), BINOP_DIV);
11217 else
11218 return value_binop (value_from_longest (scale_type, num0),
11219 value_from_longest (scale_type, den0), BINOP_DIV);
11220 }
11221
11222 \f
11223
11224 /* Range types */
11225
11226 /* Scan STR beginning at position K for a discriminant name, and
11227 return the value of that discriminant field of DVAL in *PX. If
11228 PNEW_K is not null, put the position of the character beyond the
11229 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11230 not alter *PX and *PNEW_K if unsuccessful. */
11231
11232 static int
11233 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11234 int *pnew_k)
11235 {
11236 static char *bound_buffer = NULL;
11237 static size_t bound_buffer_len = 0;
11238 const char *pstart, *pend, *bound;
11239 struct value *bound_val;
11240
11241 if (dval == NULL || str == NULL || str[k] == '\0')
11242 return 0;
11243
11244 pstart = str + k;
11245 pend = strstr (pstart, "__");
11246 if (pend == NULL)
11247 {
11248 bound = pstart;
11249 k += strlen (bound);
11250 }
11251 else
11252 {
11253 int len = pend - pstart;
11254
11255 /* Strip __ and beyond. */
11256 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11257 strncpy (bound_buffer, pstart, len);
11258 bound_buffer[len] = '\0';
11259
11260 bound = bound_buffer;
11261 k = pend - str;
11262 }
11263
11264 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11265 if (bound_val == NULL)
11266 return 0;
11267
11268 *px = value_as_long (bound_val);
11269 if (pnew_k != NULL)
11270 *pnew_k = k;
11271 return 1;
11272 }
11273
11274 /* Value of variable named NAME in the current environment. If
11275 no such variable found, then if ERR_MSG is null, returns 0, and
11276 otherwise causes an error with message ERR_MSG. */
11277
11278 static struct value *
11279 get_var_value (const char *name, const char *err_msg)
11280 {
11281 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11282
11283 std::vector<struct block_symbol> syms;
11284 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11285 get_selected_block (0),
11286 VAR_DOMAIN, &syms, 1);
11287
11288 if (nsyms != 1)
11289 {
11290 if (err_msg == NULL)
11291 return 0;
11292 else
11293 error (("%s"), err_msg);
11294 }
11295
11296 return value_of_variable (syms[0].symbol, syms[0].block);
11297 }
11298
11299 /* Value of integer variable named NAME in the current environment.
11300 If no such variable is found, returns false. Otherwise, sets VALUE
11301 to the variable's value and returns true. */
11302
11303 bool
11304 get_int_var_value (const char *name, LONGEST &value)
11305 {
11306 struct value *var_val = get_var_value (name, 0);
11307
11308 if (var_val == 0)
11309 return false;
11310
11311 value = value_as_long (var_val);
11312 return true;
11313 }
11314
11315
11316 /* Return a range type whose base type is that of the range type named
11317 NAME in the current environment, and whose bounds are calculated
11318 from NAME according to the GNAT range encoding conventions.
11319 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11320 corresponding range type from debug information; fall back to using it
11321 if symbol lookup fails. If a new type must be created, allocate it
11322 like ORIG_TYPE was. The bounds information, in general, is encoded
11323 in NAME, the base type given in the named range type. */
11324
11325 static struct type *
11326 to_fixed_range_type (struct type *raw_type, struct value *dval)
11327 {
11328 const char *name;
11329 struct type *base_type;
11330 const char *subtype_info;
11331
11332 gdb_assert (raw_type != NULL);
11333 gdb_assert (raw_type->name () != NULL);
11334
11335 if (raw_type->code () == TYPE_CODE_RANGE)
11336 base_type = TYPE_TARGET_TYPE (raw_type);
11337 else
11338 base_type = raw_type;
11339
11340 name = raw_type->name ();
11341 subtype_info = strstr (name, "___XD");
11342 if (subtype_info == NULL)
11343 {
11344 LONGEST L = ada_discrete_type_low_bound (raw_type);
11345 LONGEST U = ada_discrete_type_high_bound (raw_type);
11346
11347 if (L < INT_MIN || U > INT_MAX)
11348 return raw_type;
11349 else
11350 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11351 L, U);
11352 }
11353 else
11354 {
11355 static char *name_buf = NULL;
11356 static size_t name_len = 0;
11357 int prefix_len = subtype_info - name;
11358 LONGEST L, U;
11359 struct type *type;
11360 const char *bounds_str;
11361 int n;
11362
11363 GROW_VECT (name_buf, name_len, prefix_len + 5);
11364 strncpy (name_buf, name, prefix_len);
11365 name_buf[prefix_len] = '\0';
11366
11367 subtype_info += 5;
11368 bounds_str = strchr (subtype_info, '_');
11369 n = 1;
11370
11371 if (*subtype_info == 'L')
11372 {
11373 if (!ada_scan_number (bounds_str, n, &L, &n)
11374 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11375 return raw_type;
11376 if (bounds_str[n] == '_')
11377 n += 2;
11378 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11379 n += 1;
11380 subtype_info += 1;
11381 }
11382 else
11383 {
11384 strcpy (name_buf + prefix_len, "___L");
11385 if (!get_int_var_value (name_buf, L))
11386 {
11387 lim_warning (_("Unknown lower bound, using 1."));
11388 L = 1;
11389 }
11390 }
11391
11392 if (*subtype_info == 'U')
11393 {
11394 if (!ada_scan_number (bounds_str, n, &U, &n)
11395 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11396 return raw_type;
11397 }
11398 else
11399 {
11400 strcpy (name_buf + prefix_len, "___U");
11401 if (!get_int_var_value (name_buf, U))
11402 {
11403 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11404 U = L;
11405 }
11406 }
11407
11408 type = create_static_range_type (alloc_type_copy (raw_type),
11409 base_type, L, U);
11410 /* create_static_range_type alters the resulting type's length
11411 to match the size of the base_type, which is not what we want.
11412 Set it back to the original range type's length. */
11413 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11414 type->set_name (name);
11415 return type;
11416 }
11417 }
11418
11419 /* True iff NAME is the name of a range type. */
11420
11421 int
11422 ada_is_range_type_name (const char *name)
11423 {
11424 return (name != NULL && strstr (name, "___XD"));
11425 }
11426 \f
11427
11428 /* Modular types */
11429
11430 /* True iff TYPE is an Ada modular type. */
11431
11432 int
11433 ada_is_modular_type (struct type *type)
11434 {
11435 struct type *subranged_type = get_base_type (type);
11436
11437 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11438 && subranged_type->code () == TYPE_CODE_INT
11439 && TYPE_UNSIGNED (subranged_type));
11440 }
11441
11442 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11443
11444 ULONGEST
11445 ada_modulus (struct type *type)
11446 {
11447 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11448 }
11449 \f
11450
11451 /* Ada exception catchpoint support:
11452 ---------------------------------
11453
11454 We support 3 kinds of exception catchpoints:
11455 . catchpoints on Ada exceptions
11456 . catchpoints on unhandled Ada exceptions
11457 . catchpoints on failed assertions
11458
11459 Exceptions raised during failed assertions, or unhandled exceptions
11460 could perfectly be caught with the general catchpoint on Ada exceptions.
11461 However, we can easily differentiate these two special cases, and having
11462 the option to distinguish these two cases from the rest can be useful
11463 to zero-in on certain situations.
11464
11465 Exception catchpoints are a specialized form of breakpoint,
11466 since they rely on inserting breakpoints inside known routines
11467 of the GNAT runtime. The implementation therefore uses a standard
11468 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11469 of breakpoint_ops.
11470
11471 Support in the runtime for exception catchpoints have been changed
11472 a few times already, and these changes affect the implementation
11473 of these catchpoints. In order to be able to support several
11474 variants of the runtime, we use a sniffer that will determine
11475 the runtime variant used by the program being debugged. */
11476
11477 /* Ada's standard exceptions.
11478
11479 The Ada 83 standard also defined Numeric_Error. But there so many
11480 situations where it was unclear from the Ada 83 Reference Manual
11481 (RM) whether Constraint_Error or Numeric_Error should be raised,
11482 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11483 Interpretation saying that anytime the RM says that Numeric_Error
11484 should be raised, the implementation may raise Constraint_Error.
11485 Ada 95 went one step further and pretty much removed Numeric_Error
11486 from the list of standard exceptions (it made it a renaming of
11487 Constraint_Error, to help preserve compatibility when compiling
11488 an Ada83 compiler). As such, we do not include Numeric_Error from
11489 this list of standard exceptions. */
11490
11491 static const char *standard_exc[] = {
11492 "constraint_error",
11493 "program_error",
11494 "storage_error",
11495 "tasking_error"
11496 };
11497
11498 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11499
11500 /* A structure that describes how to support exception catchpoints
11501 for a given executable. */
11502
11503 struct exception_support_info
11504 {
11505 /* The name of the symbol to break on in order to insert
11506 a catchpoint on exceptions. */
11507 const char *catch_exception_sym;
11508
11509 /* The name of the symbol to break on in order to insert
11510 a catchpoint on unhandled exceptions. */
11511 const char *catch_exception_unhandled_sym;
11512
11513 /* The name of the symbol to break on in order to insert
11514 a catchpoint on failed assertions. */
11515 const char *catch_assert_sym;
11516
11517 /* The name of the symbol to break on in order to insert
11518 a catchpoint on exception handling. */
11519 const char *catch_handlers_sym;
11520
11521 /* Assuming that the inferior just triggered an unhandled exception
11522 catchpoint, this function is responsible for returning the address
11523 in inferior memory where the name of that exception is stored.
11524 Return zero if the address could not be computed. */
11525 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11526 };
11527
11528 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11529 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11530
11531 /* The following exception support info structure describes how to
11532 implement exception catchpoints with the latest version of the
11533 Ada runtime (as of 2019-08-??). */
11534
11535 static const struct exception_support_info default_exception_support_info =
11536 {
11537 "__gnat_debug_raise_exception", /* catch_exception_sym */
11538 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11539 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11540 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11541 ada_unhandled_exception_name_addr
11542 };
11543
11544 /* The following exception support info structure describes how to
11545 implement exception catchpoints with an earlier version of the
11546 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11547
11548 static const struct exception_support_info exception_support_info_v0 =
11549 {
11550 "__gnat_debug_raise_exception", /* catch_exception_sym */
11551 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11552 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11553 "__gnat_begin_handler", /* catch_handlers_sym */
11554 ada_unhandled_exception_name_addr
11555 };
11556
11557 /* The following exception support info structure describes how to
11558 implement exception catchpoints with a slightly older version
11559 of the Ada runtime. */
11560
11561 static const struct exception_support_info exception_support_info_fallback =
11562 {
11563 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11564 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11565 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11566 "__gnat_begin_handler", /* catch_handlers_sym */
11567 ada_unhandled_exception_name_addr_from_raise
11568 };
11569
11570 /* Return nonzero if we can detect the exception support routines
11571 described in EINFO.
11572
11573 This function errors out if an abnormal situation is detected
11574 (for instance, if we find the exception support routines, but
11575 that support is found to be incomplete). */
11576
11577 static int
11578 ada_has_this_exception_support (const struct exception_support_info *einfo)
11579 {
11580 struct symbol *sym;
11581
11582 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11583 that should be compiled with debugging information. As a result, we
11584 expect to find that symbol in the symtabs. */
11585
11586 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11587 if (sym == NULL)
11588 {
11589 /* Perhaps we did not find our symbol because the Ada runtime was
11590 compiled without debugging info, or simply stripped of it.
11591 It happens on some GNU/Linux distributions for instance, where
11592 users have to install a separate debug package in order to get
11593 the runtime's debugging info. In that situation, let the user
11594 know why we cannot insert an Ada exception catchpoint.
11595
11596 Note: Just for the purpose of inserting our Ada exception
11597 catchpoint, we could rely purely on the associated minimal symbol.
11598 But we would be operating in degraded mode anyway, since we are
11599 still lacking the debugging info needed later on to extract
11600 the name of the exception being raised (this name is printed in
11601 the catchpoint message, and is also used when trying to catch
11602 a specific exception). We do not handle this case for now. */
11603 struct bound_minimal_symbol msym
11604 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11605
11606 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11607 error (_("Your Ada runtime appears to be missing some debugging "
11608 "information.\nCannot insert Ada exception catchpoint "
11609 "in this configuration."));
11610
11611 return 0;
11612 }
11613
11614 /* Make sure that the symbol we found corresponds to a function. */
11615
11616 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11617 {
11618 error (_("Symbol \"%s\" is not a function (class = %d)"),
11619 sym->linkage_name (), SYMBOL_CLASS (sym));
11620 return 0;
11621 }
11622
11623 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11624 if (sym == NULL)
11625 {
11626 struct bound_minimal_symbol msym
11627 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11628
11629 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11630 error (_("Your Ada runtime appears to be missing some debugging "
11631 "information.\nCannot insert Ada exception catchpoint "
11632 "in this configuration."));
11633
11634 return 0;
11635 }
11636
11637 /* Make sure that the symbol we found corresponds to a function. */
11638
11639 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11640 {
11641 error (_("Symbol \"%s\" is not a function (class = %d)"),
11642 sym->linkage_name (), SYMBOL_CLASS (sym));
11643 return 0;
11644 }
11645
11646 return 1;
11647 }
11648
11649 /* Inspect the Ada runtime and determine which exception info structure
11650 should be used to provide support for exception catchpoints.
11651
11652 This function will always set the per-inferior exception_info,
11653 or raise an error. */
11654
11655 static void
11656 ada_exception_support_info_sniffer (void)
11657 {
11658 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11659
11660 /* If the exception info is already known, then no need to recompute it. */
11661 if (data->exception_info != NULL)
11662 return;
11663
11664 /* Check the latest (default) exception support info. */
11665 if (ada_has_this_exception_support (&default_exception_support_info))
11666 {
11667 data->exception_info = &default_exception_support_info;
11668 return;
11669 }
11670
11671 /* Try the v0 exception suport info. */
11672 if (ada_has_this_exception_support (&exception_support_info_v0))
11673 {
11674 data->exception_info = &exception_support_info_v0;
11675 return;
11676 }
11677
11678 /* Try our fallback exception suport info. */
11679 if (ada_has_this_exception_support (&exception_support_info_fallback))
11680 {
11681 data->exception_info = &exception_support_info_fallback;
11682 return;
11683 }
11684
11685 /* Sometimes, it is normal for us to not be able to find the routine
11686 we are looking for. This happens when the program is linked with
11687 the shared version of the GNAT runtime, and the program has not been
11688 started yet. Inform the user of these two possible causes if
11689 applicable. */
11690
11691 if (ada_update_initial_language (language_unknown) != language_ada)
11692 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11693
11694 /* If the symbol does not exist, then check that the program is
11695 already started, to make sure that shared libraries have been
11696 loaded. If it is not started, this may mean that the symbol is
11697 in a shared library. */
11698
11699 if (inferior_ptid.pid () == 0)
11700 error (_("Unable to insert catchpoint. Try to start the program first."));
11701
11702 /* At this point, we know that we are debugging an Ada program and
11703 that the inferior has been started, but we still are not able to
11704 find the run-time symbols. That can mean that we are in
11705 configurable run time mode, or that a-except as been optimized
11706 out by the linker... In any case, at this point it is not worth
11707 supporting this feature. */
11708
11709 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11710 }
11711
11712 /* True iff FRAME is very likely to be that of a function that is
11713 part of the runtime system. This is all very heuristic, but is
11714 intended to be used as advice as to what frames are uninteresting
11715 to most users. */
11716
11717 static int
11718 is_known_support_routine (struct frame_info *frame)
11719 {
11720 enum language func_lang;
11721 int i;
11722 const char *fullname;
11723
11724 /* If this code does not have any debugging information (no symtab),
11725 This cannot be any user code. */
11726
11727 symtab_and_line sal = find_frame_sal (frame);
11728 if (sal.symtab == NULL)
11729 return 1;
11730
11731 /* If there is a symtab, but the associated source file cannot be
11732 located, then assume this is not user code: Selecting a frame
11733 for which we cannot display the code would not be very helpful
11734 for the user. This should also take care of case such as VxWorks
11735 where the kernel has some debugging info provided for a few units. */
11736
11737 fullname = symtab_to_fullname (sal.symtab);
11738 if (access (fullname, R_OK) != 0)
11739 return 1;
11740
11741 /* Check the unit filename against the Ada runtime file naming.
11742 We also check the name of the objfile against the name of some
11743 known system libraries that sometimes come with debugging info
11744 too. */
11745
11746 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11747 {
11748 re_comp (known_runtime_file_name_patterns[i]);
11749 if (re_exec (lbasename (sal.symtab->filename)))
11750 return 1;
11751 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11752 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11753 return 1;
11754 }
11755
11756 /* Check whether the function is a GNAT-generated entity. */
11757
11758 gdb::unique_xmalloc_ptr<char> func_name
11759 = find_frame_funname (frame, &func_lang, NULL);
11760 if (func_name == NULL)
11761 return 1;
11762
11763 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11764 {
11765 re_comp (known_auxiliary_function_name_patterns[i]);
11766 if (re_exec (func_name.get ()))
11767 return 1;
11768 }
11769
11770 return 0;
11771 }
11772
11773 /* Find the first frame that contains debugging information and that is not
11774 part of the Ada run-time, starting from FI and moving upward. */
11775
11776 void
11777 ada_find_printable_frame (struct frame_info *fi)
11778 {
11779 for (; fi != NULL; fi = get_prev_frame (fi))
11780 {
11781 if (!is_known_support_routine (fi))
11782 {
11783 select_frame (fi);
11784 break;
11785 }
11786 }
11787
11788 }
11789
11790 /* Assuming that the inferior just triggered an unhandled exception
11791 catchpoint, return the address in inferior memory where the name
11792 of the exception is stored.
11793
11794 Return zero if the address could not be computed. */
11795
11796 static CORE_ADDR
11797 ada_unhandled_exception_name_addr (void)
11798 {
11799 return parse_and_eval_address ("e.full_name");
11800 }
11801
11802 /* Same as ada_unhandled_exception_name_addr, except that this function
11803 should be used when the inferior uses an older version of the runtime,
11804 where the exception name needs to be extracted from a specific frame
11805 several frames up in the callstack. */
11806
11807 static CORE_ADDR
11808 ada_unhandled_exception_name_addr_from_raise (void)
11809 {
11810 int frame_level;
11811 struct frame_info *fi;
11812 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11813
11814 /* To determine the name of this exception, we need to select
11815 the frame corresponding to RAISE_SYM_NAME. This frame is
11816 at least 3 levels up, so we simply skip the first 3 frames
11817 without checking the name of their associated function. */
11818 fi = get_current_frame ();
11819 for (frame_level = 0; frame_level < 3; frame_level += 1)
11820 if (fi != NULL)
11821 fi = get_prev_frame (fi);
11822
11823 while (fi != NULL)
11824 {
11825 enum language func_lang;
11826
11827 gdb::unique_xmalloc_ptr<char> func_name
11828 = find_frame_funname (fi, &func_lang, NULL);
11829 if (func_name != NULL)
11830 {
11831 if (strcmp (func_name.get (),
11832 data->exception_info->catch_exception_sym) == 0)
11833 break; /* We found the frame we were looking for... */
11834 }
11835 fi = get_prev_frame (fi);
11836 }
11837
11838 if (fi == NULL)
11839 return 0;
11840
11841 select_frame (fi);
11842 return parse_and_eval_address ("id.full_name");
11843 }
11844
11845 /* Assuming the inferior just triggered an Ada exception catchpoint
11846 (of any type), return the address in inferior memory where the name
11847 of the exception is stored, if applicable.
11848
11849 Assumes the selected frame is the current frame.
11850
11851 Return zero if the address could not be computed, or if not relevant. */
11852
11853 static CORE_ADDR
11854 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11855 struct breakpoint *b)
11856 {
11857 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11858
11859 switch (ex)
11860 {
11861 case ada_catch_exception:
11862 return (parse_and_eval_address ("e.full_name"));
11863 break;
11864
11865 case ada_catch_exception_unhandled:
11866 return data->exception_info->unhandled_exception_name_addr ();
11867 break;
11868
11869 case ada_catch_handlers:
11870 return 0; /* The runtimes does not provide access to the exception
11871 name. */
11872 break;
11873
11874 case ada_catch_assert:
11875 return 0; /* Exception name is not relevant in this case. */
11876 break;
11877
11878 default:
11879 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11880 break;
11881 }
11882
11883 return 0; /* Should never be reached. */
11884 }
11885
11886 /* Assuming the inferior is stopped at an exception catchpoint,
11887 return the message which was associated to the exception, if
11888 available. Return NULL if the message could not be retrieved.
11889
11890 Note: The exception message can be associated to an exception
11891 either through the use of the Raise_Exception function, or
11892 more simply (Ada 2005 and later), via:
11893
11894 raise Exception_Name with "exception message";
11895
11896 */
11897
11898 static gdb::unique_xmalloc_ptr<char>
11899 ada_exception_message_1 (void)
11900 {
11901 struct value *e_msg_val;
11902 int e_msg_len;
11903
11904 /* For runtimes that support this feature, the exception message
11905 is passed as an unbounded string argument called "message". */
11906 e_msg_val = parse_and_eval ("message");
11907 if (e_msg_val == NULL)
11908 return NULL; /* Exception message not supported. */
11909
11910 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11911 gdb_assert (e_msg_val != NULL);
11912 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11913
11914 /* If the message string is empty, then treat it as if there was
11915 no exception message. */
11916 if (e_msg_len <= 0)
11917 return NULL;
11918
11919 return target_read_string (value_address (e_msg_val), INT_MAX);
11920 }
11921
11922 /* Same as ada_exception_message_1, except that all exceptions are
11923 contained here (returning NULL instead). */
11924
11925 static gdb::unique_xmalloc_ptr<char>
11926 ada_exception_message (void)
11927 {
11928 gdb::unique_xmalloc_ptr<char> e_msg;
11929
11930 try
11931 {
11932 e_msg = ada_exception_message_1 ();
11933 }
11934 catch (const gdb_exception_error &e)
11935 {
11936 e_msg.reset (nullptr);
11937 }
11938
11939 return e_msg;
11940 }
11941
11942 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11943 any error that ada_exception_name_addr_1 might cause to be thrown.
11944 When an error is intercepted, a warning with the error message is printed,
11945 and zero is returned. */
11946
11947 static CORE_ADDR
11948 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11949 struct breakpoint *b)
11950 {
11951 CORE_ADDR result = 0;
11952
11953 try
11954 {
11955 result = ada_exception_name_addr_1 (ex, b);
11956 }
11957
11958 catch (const gdb_exception_error &e)
11959 {
11960 warning (_("failed to get exception name: %s"), e.what ());
11961 return 0;
11962 }
11963
11964 return result;
11965 }
11966
11967 static std::string ada_exception_catchpoint_cond_string
11968 (const char *excep_string,
11969 enum ada_exception_catchpoint_kind ex);
11970
11971 /* Ada catchpoints.
11972
11973 In the case of catchpoints on Ada exceptions, the catchpoint will
11974 stop the target on every exception the program throws. When a user
11975 specifies the name of a specific exception, we translate this
11976 request into a condition expression (in text form), and then parse
11977 it into an expression stored in each of the catchpoint's locations.
11978 We then use this condition to check whether the exception that was
11979 raised is the one the user is interested in. If not, then the
11980 target is resumed again. We store the name of the requested
11981 exception, in order to be able to re-set the condition expression
11982 when symbols change. */
11983
11984 /* An instance of this type is used to represent an Ada catchpoint
11985 breakpoint location. */
11986
11987 class ada_catchpoint_location : public bp_location
11988 {
11989 public:
11990 ada_catchpoint_location (breakpoint *owner)
11991 : bp_location (owner, bp_loc_software_breakpoint)
11992 {}
11993
11994 /* The condition that checks whether the exception that was raised
11995 is the specific exception the user specified on catchpoint
11996 creation. */
11997 expression_up excep_cond_expr;
11998 };
11999
12000 /* An instance of this type is used to represent an Ada catchpoint. */
12001
12002 struct ada_catchpoint : public breakpoint
12003 {
12004 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12005 : m_kind (kind)
12006 {
12007 }
12008
12009 /* The name of the specific exception the user specified. */
12010 std::string excep_string;
12011
12012 /* What kind of catchpoint this is. */
12013 enum ada_exception_catchpoint_kind m_kind;
12014 };
12015
12016 /* Parse the exception condition string in the context of each of the
12017 catchpoint's locations, and store them for later evaluation. */
12018
12019 static void
12020 create_excep_cond_exprs (struct ada_catchpoint *c,
12021 enum ada_exception_catchpoint_kind ex)
12022 {
12023 struct bp_location *bl;
12024
12025 /* Nothing to do if there's no specific exception to catch. */
12026 if (c->excep_string.empty ())
12027 return;
12028
12029 /* Same if there are no locations... */
12030 if (c->loc == NULL)
12031 return;
12032
12033 /* Compute the condition expression in text form, from the specific
12034 expection we want to catch. */
12035 std::string cond_string
12036 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12037
12038 /* Iterate over all the catchpoint's locations, and parse an
12039 expression for each. */
12040 for (bl = c->loc; bl != NULL; bl = bl->next)
12041 {
12042 struct ada_catchpoint_location *ada_loc
12043 = (struct ada_catchpoint_location *) bl;
12044 expression_up exp;
12045
12046 if (!bl->shlib_disabled)
12047 {
12048 const char *s;
12049
12050 s = cond_string.c_str ();
12051 try
12052 {
12053 exp = parse_exp_1 (&s, bl->address,
12054 block_for_pc (bl->address),
12055 0);
12056 }
12057 catch (const gdb_exception_error &e)
12058 {
12059 warning (_("failed to reevaluate internal exception condition "
12060 "for catchpoint %d: %s"),
12061 c->number, e.what ());
12062 }
12063 }
12064
12065 ada_loc->excep_cond_expr = std::move (exp);
12066 }
12067 }
12068
12069 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12070 structure for all exception catchpoint kinds. */
12071
12072 static struct bp_location *
12073 allocate_location_exception (struct breakpoint *self)
12074 {
12075 return new ada_catchpoint_location (self);
12076 }
12077
12078 /* Implement the RE_SET method in the breakpoint_ops structure for all
12079 exception catchpoint kinds. */
12080
12081 static void
12082 re_set_exception (struct breakpoint *b)
12083 {
12084 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12085
12086 /* Call the base class's method. This updates the catchpoint's
12087 locations. */
12088 bkpt_breakpoint_ops.re_set (b);
12089
12090 /* Reparse the exception conditional expressions. One for each
12091 location. */
12092 create_excep_cond_exprs (c, c->m_kind);
12093 }
12094
12095 /* Returns true if we should stop for this breakpoint hit. If the
12096 user specified a specific exception, we only want to cause a stop
12097 if the program thrown that exception. */
12098
12099 static int
12100 should_stop_exception (const struct bp_location *bl)
12101 {
12102 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12103 const struct ada_catchpoint_location *ada_loc
12104 = (const struct ada_catchpoint_location *) bl;
12105 int stop;
12106
12107 struct internalvar *var = lookup_internalvar ("_ada_exception");
12108 if (c->m_kind == ada_catch_assert)
12109 clear_internalvar (var);
12110 else
12111 {
12112 try
12113 {
12114 const char *expr;
12115
12116 if (c->m_kind == ada_catch_handlers)
12117 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12118 ".all.occurrence.id");
12119 else
12120 expr = "e";
12121
12122 struct value *exc = parse_and_eval (expr);
12123 set_internalvar (var, exc);
12124 }
12125 catch (const gdb_exception_error &ex)
12126 {
12127 clear_internalvar (var);
12128 }
12129 }
12130
12131 /* With no specific exception, should always stop. */
12132 if (c->excep_string.empty ())
12133 return 1;
12134
12135 if (ada_loc->excep_cond_expr == NULL)
12136 {
12137 /* We will have a NULL expression if back when we were creating
12138 the expressions, this location's had failed to parse. */
12139 return 1;
12140 }
12141
12142 stop = 1;
12143 try
12144 {
12145 struct value *mark;
12146
12147 mark = value_mark ();
12148 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12149 value_free_to_mark (mark);
12150 }
12151 catch (const gdb_exception &ex)
12152 {
12153 exception_fprintf (gdb_stderr, ex,
12154 _("Error in testing exception condition:\n"));
12155 }
12156
12157 return stop;
12158 }
12159
12160 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12161 for all exception catchpoint kinds. */
12162
12163 static void
12164 check_status_exception (bpstat bs)
12165 {
12166 bs->stop = should_stop_exception (bs->bp_location_at);
12167 }
12168
12169 /* Implement the PRINT_IT method in the breakpoint_ops structure
12170 for all exception catchpoint kinds. */
12171
12172 static enum print_stop_action
12173 print_it_exception (bpstat bs)
12174 {
12175 struct ui_out *uiout = current_uiout;
12176 struct breakpoint *b = bs->breakpoint_at;
12177
12178 annotate_catchpoint (b->number);
12179
12180 if (uiout->is_mi_like_p ())
12181 {
12182 uiout->field_string ("reason",
12183 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12184 uiout->field_string ("disp", bpdisp_text (b->disposition));
12185 }
12186
12187 uiout->text (b->disposition == disp_del
12188 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12189 uiout->field_signed ("bkptno", b->number);
12190 uiout->text (", ");
12191
12192 /* ada_exception_name_addr relies on the selected frame being the
12193 current frame. Need to do this here because this function may be
12194 called more than once when printing a stop, and below, we'll
12195 select the first frame past the Ada run-time (see
12196 ada_find_printable_frame). */
12197 select_frame (get_current_frame ());
12198
12199 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12200 switch (c->m_kind)
12201 {
12202 case ada_catch_exception:
12203 case ada_catch_exception_unhandled:
12204 case ada_catch_handlers:
12205 {
12206 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12207 char exception_name[256];
12208
12209 if (addr != 0)
12210 {
12211 read_memory (addr, (gdb_byte *) exception_name,
12212 sizeof (exception_name) - 1);
12213 exception_name [sizeof (exception_name) - 1] = '\0';
12214 }
12215 else
12216 {
12217 /* For some reason, we were unable to read the exception
12218 name. This could happen if the Runtime was compiled
12219 without debugging info, for instance. In that case,
12220 just replace the exception name by the generic string
12221 "exception" - it will read as "an exception" in the
12222 notification we are about to print. */
12223 memcpy (exception_name, "exception", sizeof ("exception"));
12224 }
12225 /* In the case of unhandled exception breakpoints, we print
12226 the exception name as "unhandled EXCEPTION_NAME", to make
12227 it clearer to the user which kind of catchpoint just got
12228 hit. We used ui_out_text to make sure that this extra
12229 info does not pollute the exception name in the MI case. */
12230 if (c->m_kind == ada_catch_exception_unhandled)
12231 uiout->text ("unhandled ");
12232 uiout->field_string ("exception-name", exception_name);
12233 }
12234 break;
12235 case ada_catch_assert:
12236 /* In this case, the name of the exception is not really
12237 important. Just print "failed assertion" to make it clearer
12238 that his program just hit an assertion-failure catchpoint.
12239 We used ui_out_text because this info does not belong in
12240 the MI output. */
12241 uiout->text ("failed assertion");
12242 break;
12243 }
12244
12245 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12246 if (exception_message != NULL)
12247 {
12248 uiout->text (" (");
12249 uiout->field_string ("exception-message", exception_message.get ());
12250 uiout->text (")");
12251 }
12252
12253 uiout->text (" at ");
12254 ada_find_printable_frame (get_current_frame ());
12255
12256 return PRINT_SRC_AND_LOC;
12257 }
12258
12259 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12260 for all exception catchpoint kinds. */
12261
12262 static void
12263 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12264 {
12265 struct ui_out *uiout = current_uiout;
12266 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12267 struct value_print_options opts;
12268
12269 get_user_print_options (&opts);
12270
12271 if (opts.addressprint)
12272 uiout->field_skip ("addr");
12273
12274 annotate_field (5);
12275 switch (c->m_kind)
12276 {
12277 case ada_catch_exception:
12278 if (!c->excep_string.empty ())
12279 {
12280 std::string msg = string_printf (_("`%s' Ada exception"),
12281 c->excep_string.c_str ());
12282
12283 uiout->field_string ("what", msg);
12284 }
12285 else
12286 uiout->field_string ("what", "all Ada exceptions");
12287
12288 break;
12289
12290 case ada_catch_exception_unhandled:
12291 uiout->field_string ("what", "unhandled Ada exceptions");
12292 break;
12293
12294 case ada_catch_handlers:
12295 if (!c->excep_string.empty ())
12296 {
12297 uiout->field_fmt ("what",
12298 _("`%s' Ada exception handlers"),
12299 c->excep_string.c_str ());
12300 }
12301 else
12302 uiout->field_string ("what", "all Ada exceptions handlers");
12303 break;
12304
12305 case ada_catch_assert:
12306 uiout->field_string ("what", "failed Ada assertions");
12307 break;
12308
12309 default:
12310 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12311 break;
12312 }
12313 }
12314
12315 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12316 for all exception catchpoint kinds. */
12317
12318 static void
12319 print_mention_exception (struct breakpoint *b)
12320 {
12321 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12322 struct ui_out *uiout = current_uiout;
12323
12324 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12325 : _("Catchpoint "));
12326 uiout->field_signed ("bkptno", b->number);
12327 uiout->text (": ");
12328
12329 switch (c->m_kind)
12330 {
12331 case ada_catch_exception:
12332 if (!c->excep_string.empty ())
12333 {
12334 std::string info = string_printf (_("`%s' Ada exception"),
12335 c->excep_string.c_str ());
12336 uiout->text (info.c_str ());
12337 }
12338 else
12339 uiout->text (_("all Ada exceptions"));
12340 break;
12341
12342 case ada_catch_exception_unhandled:
12343 uiout->text (_("unhandled Ada exceptions"));
12344 break;
12345
12346 case ada_catch_handlers:
12347 if (!c->excep_string.empty ())
12348 {
12349 std::string info
12350 = string_printf (_("`%s' Ada exception handlers"),
12351 c->excep_string.c_str ());
12352 uiout->text (info.c_str ());
12353 }
12354 else
12355 uiout->text (_("all Ada exceptions handlers"));
12356 break;
12357
12358 case ada_catch_assert:
12359 uiout->text (_("failed Ada assertions"));
12360 break;
12361
12362 default:
12363 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12364 break;
12365 }
12366 }
12367
12368 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12369 for all exception catchpoint kinds. */
12370
12371 static void
12372 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12373 {
12374 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12375
12376 switch (c->m_kind)
12377 {
12378 case ada_catch_exception:
12379 fprintf_filtered (fp, "catch exception");
12380 if (!c->excep_string.empty ())
12381 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12382 break;
12383
12384 case ada_catch_exception_unhandled:
12385 fprintf_filtered (fp, "catch exception unhandled");
12386 break;
12387
12388 case ada_catch_handlers:
12389 fprintf_filtered (fp, "catch handlers");
12390 break;
12391
12392 case ada_catch_assert:
12393 fprintf_filtered (fp, "catch assert");
12394 break;
12395
12396 default:
12397 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12398 }
12399 print_recreate_thread (b, fp);
12400 }
12401
12402 /* Virtual tables for various breakpoint types. */
12403 static struct breakpoint_ops catch_exception_breakpoint_ops;
12404 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12405 static struct breakpoint_ops catch_assert_breakpoint_ops;
12406 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12407
12408 /* See ada-lang.h. */
12409
12410 bool
12411 is_ada_exception_catchpoint (breakpoint *bp)
12412 {
12413 return (bp->ops == &catch_exception_breakpoint_ops
12414 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12415 || bp->ops == &catch_assert_breakpoint_ops
12416 || bp->ops == &catch_handlers_breakpoint_ops);
12417 }
12418
12419 /* Split the arguments specified in a "catch exception" command.
12420 Set EX to the appropriate catchpoint type.
12421 Set EXCEP_STRING to the name of the specific exception if
12422 specified by the user.
12423 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12424 "catch handlers" command. False otherwise.
12425 If a condition is found at the end of the arguments, the condition
12426 expression is stored in COND_STRING (memory must be deallocated
12427 after use). Otherwise COND_STRING is set to NULL. */
12428
12429 static void
12430 catch_ada_exception_command_split (const char *args,
12431 bool is_catch_handlers_cmd,
12432 enum ada_exception_catchpoint_kind *ex,
12433 std::string *excep_string,
12434 std::string *cond_string)
12435 {
12436 std::string exception_name;
12437
12438 exception_name = extract_arg (&args);
12439 if (exception_name == "if")
12440 {
12441 /* This is not an exception name; this is the start of a condition
12442 expression for a catchpoint on all exceptions. So, "un-get"
12443 this token, and set exception_name to NULL. */
12444 exception_name.clear ();
12445 args -= 2;
12446 }
12447
12448 /* Check to see if we have a condition. */
12449
12450 args = skip_spaces (args);
12451 if (startswith (args, "if")
12452 && (isspace (args[2]) || args[2] == '\0'))
12453 {
12454 args += 2;
12455 args = skip_spaces (args);
12456
12457 if (args[0] == '\0')
12458 error (_("Condition missing after `if' keyword"));
12459 *cond_string = args;
12460
12461 args += strlen (args);
12462 }
12463
12464 /* Check that we do not have any more arguments. Anything else
12465 is unexpected. */
12466
12467 if (args[0] != '\0')
12468 error (_("Junk at end of expression"));
12469
12470 if (is_catch_handlers_cmd)
12471 {
12472 /* Catch handling of exceptions. */
12473 *ex = ada_catch_handlers;
12474 *excep_string = exception_name;
12475 }
12476 else if (exception_name.empty ())
12477 {
12478 /* Catch all exceptions. */
12479 *ex = ada_catch_exception;
12480 excep_string->clear ();
12481 }
12482 else if (exception_name == "unhandled")
12483 {
12484 /* Catch unhandled exceptions. */
12485 *ex = ada_catch_exception_unhandled;
12486 excep_string->clear ();
12487 }
12488 else
12489 {
12490 /* Catch a specific exception. */
12491 *ex = ada_catch_exception;
12492 *excep_string = exception_name;
12493 }
12494 }
12495
12496 /* Return the name of the symbol on which we should break in order to
12497 implement a catchpoint of the EX kind. */
12498
12499 static const char *
12500 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12501 {
12502 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12503
12504 gdb_assert (data->exception_info != NULL);
12505
12506 switch (ex)
12507 {
12508 case ada_catch_exception:
12509 return (data->exception_info->catch_exception_sym);
12510 break;
12511 case ada_catch_exception_unhandled:
12512 return (data->exception_info->catch_exception_unhandled_sym);
12513 break;
12514 case ada_catch_assert:
12515 return (data->exception_info->catch_assert_sym);
12516 break;
12517 case ada_catch_handlers:
12518 return (data->exception_info->catch_handlers_sym);
12519 break;
12520 default:
12521 internal_error (__FILE__, __LINE__,
12522 _("unexpected catchpoint kind (%d)"), ex);
12523 }
12524 }
12525
12526 /* Return the breakpoint ops "virtual table" used for catchpoints
12527 of the EX kind. */
12528
12529 static const struct breakpoint_ops *
12530 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12531 {
12532 switch (ex)
12533 {
12534 case ada_catch_exception:
12535 return (&catch_exception_breakpoint_ops);
12536 break;
12537 case ada_catch_exception_unhandled:
12538 return (&catch_exception_unhandled_breakpoint_ops);
12539 break;
12540 case ada_catch_assert:
12541 return (&catch_assert_breakpoint_ops);
12542 break;
12543 case ada_catch_handlers:
12544 return (&catch_handlers_breakpoint_ops);
12545 break;
12546 default:
12547 internal_error (__FILE__, __LINE__,
12548 _("unexpected catchpoint kind (%d)"), ex);
12549 }
12550 }
12551
12552 /* Return the condition that will be used to match the current exception
12553 being raised with the exception that the user wants to catch. This
12554 assumes that this condition is used when the inferior just triggered
12555 an exception catchpoint.
12556 EX: the type of catchpoints used for catching Ada exceptions. */
12557
12558 static std::string
12559 ada_exception_catchpoint_cond_string (const char *excep_string,
12560 enum ada_exception_catchpoint_kind ex)
12561 {
12562 int i;
12563 bool is_standard_exc = false;
12564 std::string result;
12565
12566 if (ex == ada_catch_handlers)
12567 {
12568 /* For exception handlers catchpoints, the condition string does
12569 not use the same parameter as for the other exceptions. */
12570 result = ("long_integer (GNAT_GCC_exception_Access"
12571 "(gcc_exception).all.occurrence.id)");
12572 }
12573 else
12574 result = "long_integer (e)";
12575
12576 /* The standard exceptions are a special case. They are defined in
12577 runtime units that have been compiled without debugging info; if
12578 EXCEP_STRING is the not-fully-qualified name of a standard
12579 exception (e.g. "constraint_error") then, during the evaluation
12580 of the condition expression, the symbol lookup on this name would
12581 *not* return this standard exception. The catchpoint condition
12582 may then be set only on user-defined exceptions which have the
12583 same not-fully-qualified name (e.g. my_package.constraint_error).
12584
12585 To avoid this unexcepted behavior, these standard exceptions are
12586 systematically prefixed by "standard". This means that "catch
12587 exception constraint_error" is rewritten into "catch exception
12588 standard.constraint_error".
12589
12590 If an exception named constraint_error is defined in another package of
12591 the inferior program, then the only way to specify this exception as a
12592 breakpoint condition is to use its fully-qualified named:
12593 e.g. my_package.constraint_error. */
12594
12595 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12596 {
12597 if (strcmp (standard_exc [i], excep_string) == 0)
12598 {
12599 is_standard_exc = true;
12600 break;
12601 }
12602 }
12603
12604 result += " = ";
12605
12606 if (is_standard_exc)
12607 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12608 else
12609 string_appendf (result, "long_integer (&%s)", excep_string);
12610
12611 return result;
12612 }
12613
12614 /* Return the symtab_and_line that should be used to insert an exception
12615 catchpoint of the TYPE kind.
12616
12617 ADDR_STRING returns the name of the function where the real
12618 breakpoint that implements the catchpoints is set, depending on the
12619 type of catchpoint we need to create. */
12620
12621 static struct symtab_and_line
12622 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12623 std::string *addr_string, const struct breakpoint_ops **ops)
12624 {
12625 const char *sym_name;
12626 struct symbol *sym;
12627
12628 /* First, find out which exception support info to use. */
12629 ada_exception_support_info_sniffer ();
12630
12631 /* Then lookup the function on which we will break in order to catch
12632 the Ada exceptions requested by the user. */
12633 sym_name = ada_exception_sym_name (ex);
12634 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12635
12636 if (sym == NULL)
12637 error (_("Catchpoint symbol not found: %s"), sym_name);
12638
12639 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12640 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12641
12642 /* Set ADDR_STRING. */
12643 *addr_string = sym_name;
12644
12645 /* Set OPS. */
12646 *ops = ada_exception_breakpoint_ops (ex);
12647
12648 return find_function_start_sal (sym, 1);
12649 }
12650
12651 /* Create an Ada exception catchpoint.
12652
12653 EX_KIND is the kind of exception catchpoint to be created.
12654
12655 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12656 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12657 of the exception to which this catchpoint applies.
12658
12659 COND_STRING, if not empty, is the catchpoint condition.
12660
12661 TEMPFLAG, if nonzero, means that the underlying breakpoint
12662 should be temporary.
12663
12664 FROM_TTY is the usual argument passed to all commands implementations. */
12665
12666 void
12667 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12668 enum ada_exception_catchpoint_kind ex_kind,
12669 const std::string &excep_string,
12670 const std::string &cond_string,
12671 int tempflag,
12672 int disabled,
12673 int from_tty)
12674 {
12675 std::string addr_string;
12676 const struct breakpoint_ops *ops = NULL;
12677 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12678
12679 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12680 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12681 ops, tempflag, disabled, from_tty);
12682 c->excep_string = excep_string;
12683 create_excep_cond_exprs (c.get (), ex_kind);
12684 if (!cond_string.empty ())
12685 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12686 install_breakpoint (0, std::move (c), 1);
12687 }
12688
12689 /* Implement the "catch exception" command. */
12690
12691 static void
12692 catch_ada_exception_command (const char *arg_entry, int from_tty,
12693 struct cmd_list_element *command)
12694 {
12695 const char *arg = arg_entry;
12696 struct gdbarch *gdbarch = get_current_arch ();
12697 int tempflag;
12698 enum ada_exception_catchpoint_kind ex_kind;
12699 std::string excep_string;
12700 std::string cond_string;
12701
12702 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12703
12704 if (!arg)
12705 arg = "";
12706 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12707 &cond_string);
12708 create_ada_exception_catchpoint (gdbarch, ex_kind,
12709 excep_string, cond_string,
12710 tempflag, 1 /* enabled */,
12711 from_tty);
12712 }
12713
12714 /* Implement the "catch handlers" command. */
12715
12716 static void
12717 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12718 struct cmd_list_element *command)
12719 {
12720 const char *arg = arg_entry;
12721 struct gdbarch *gdbarch = get_current_arch ();
12722 int tempflag;
12723 enum ada_exception_catchpoint_kind ex_kind;
12724 std::string excep_string;
12725 std::string cond_string;
12726
12727 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12728
12729 if (!arg)
12730 arg = "";
12731 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12732 &cond_string);
12733 create_ada_exception_catchpoint (gdbarch, ex_kind,
12734 excep_string, cond_string,
12735 tempflag, 1 /* enabled */,
12736 from_tty);
12737 }
12738
12739 /* Completion function for the Ada "catch" commands. */
12740
12741 static void
12742 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12743 const char *text, const char *word)
12744 {
12745 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12746
12747 for (const ada_exc_info &info : exceptions)
12748 {
12749 if (startswith (info.name, word))
12750 tracker.add_completion (make_unique_xstrdup (info.name));
12751 }
12752 }
12753
12754 /* Split the arguments specified in a "catch assert" command.
12755
12756 ARGS contains the command's arguments (or the empty string if
12757 no arguments were passed).
12758
12759 If ARGS contains a condition, set COND_STRING to that condition
12760 (the memory needs to be deallocated after use). */
12761
12762 static void
12763 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12764 {
12765 args = skip_spaces (args);
12766
12767 /* Check whether a condition was provided. */
12768 if (startswith (args, "if")
12769 && (isspace (args[2]) || args[2] == '\0'))
12770 {
12771 args += 2;
12772 args = skip_spaces (args);
12773 if (args[0] == '\0')
12774 error (_("condition missing after `if' keyword"));
12775 cond_string.assign (args);
12776 }
12777
12778 /* Otherwise, there should be no other argument at the end of
12779 the command. */
12780 else if (args[0] != '\0')
12781 error (_("Junk at end of arguments."));
12782 }
12783
12784 /* Implement the "catch assert" command. */
12785
12786 static void
12787 catch_assert_command (const char *arg_entry, int from_tty,
12788 struct cmd_list_element *command)
12789 {
12790 const char *arg = arg_entry;
12791 struct gdbarch *gdbarch = get_current_arch ();
12792 int tempflag;
12793 std::string cond_string;
12794
12795 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12796
12797 if (!arg)
12798 arg = "";
12799 catch_ada_assert_command_split (arg, cond_string);
12800 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12801 "", cond_string,
12802 tempflag, 1 /* enabled */,
12803 from_tty);
12804 }
12805
12806 /* Return non-zero if the symbol SYM is an Ada exception object. */
12807
12808 static int
12809 ada_is_exception_sym (struct symbol *sym)
12810 {
12811 const char *type_name = SYMBOL_TYPE (sym)->name ();
12812
12813 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12814 && SYMBOL_CLASS (sym) != LOC_BLOCK
12815 && SYMBOL_CLASS (sym) != LOC_CONST
12816 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12817 && type_name != NULL && strcmp (type_name, "exception") == 0);
12818 }
12819
12820 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12821 Ada exception object. This matches all exceptions except the ones
12822 defined by the Ada language. */
12823
12824 static int
12825 ada_is_non_standard_exception_sym (struct symbol *sym)
12826 {
12827 int i;
12828
12829 if (!ada_is_exception_sym (sym))
12830 return 0;
12831
12832 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12833 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12834 return 0; /* A standard exception. */
12835
12836 /* Numeric_Error is also a standard exception, so exclude it.
12837 See the STANDARD_EXC description for more details as to why
12838 this exception is not listed in that array. */
12839 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12840 return 0;
12841
12842 return 1;
12843 }
12844
12845 /* A helper function for std::sort, comparing two struct ada_exc_info
12846 objects.
12847
12848 The comparison is determined first by exception name, and then
12849 by exception address. */
12850
12851 bool
12852 ada_exc_info::operator< (const ada_exc_info &other) const
12853 {
12854 int result;
12855
12856 result = strcmp (name, other.name);
12857 if (result < 0)
12858 return true;
12859 if (result == 0 && addr < other.addr)
12860 return true;
12861 return false;
12862 }
12863
12864 bool
12865 ada_exc_info::operator== (const ada_exc_info &other) const
12866 {
12867 return addr == other.addr && strcmp (name, other.name) == 0;
12868 }
12869
12870 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12871 routine, but keeping the first SKIP elements untouched.
12872
12873 All duplicates are also removed. */
12874
12875 static void
12876 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12877 int skip)
12878 {
12879 std::sort (exceptions->begin () + skip, exceptions->end ());
12880 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12881 exceptions->end ());
12882 }
12883
12884 /* Add all exceptions defined by the Ada standard whose name match
12885 a regular expression.
12886
12887 If PREG is not NULL, then this regexp_t object is used to
12888 perform the symbol name matching. Otherwise, no name-based
12889 filtering is performed.
12890
12891 EXCEPTIONS is a vector of exceptions to which matching exceptions
12892 gets pushed. */
12893
12894 static void
12895 ada_add_standard_exceptions (compiled_regex *preg,
12896 std::vector<ada_exc_info> *exceptions)
12897 {
12898 int i;
12899
12900 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12901 {
12902 if (preg == NULL
12903 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12904 {
12905 struct bound_minimal_symbol msymbol
12906 = ada_lookup_simple_minsym (standard_exc[i]);
12907
12908 if (msymbol.minsym != NULL)
12909 {
12910 struct ada_exc_info info
12911 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12912
12913 exceptions->push_back (info);
12914 }
12915 }
12916 }
12917 }
12918
12919 /* Add all Ada exceptions defined locally and accessible from the given
12920 FRAME.
12921
12922 If PREG is not NULL, then this regexp_t object is used to
12923 perform the symbol name matching. Otherwise, no name-based
12924 filtering is performed.
12925
12926 EXCEPTIONS is a vector of exceptions to which matching exceptions
12927 gets pushed. */
12928
12929 static void
12930 ada_add_exceptions_from_frame (compiled_regex *preg,
12931 struct frame_info *frame,
12932 std::vector<ada_exc_info> *exceptions)
12933 {
12934 const struct block *block = get_frame_block (frame, 0);
12935
12936 while (block != 0)
12937 {
12938 struct block_iterator iter;
12939 struct symbol *sym;
12940
12941 ALL_BLOCK_SYMBOLS (block, iter, sym)
12942 {
12943 switch (SYMBOL_CLASS (sym))
12944 {
12945 case LOC_TYPEDEF:
12946 case LOC_BLOCK:
12947 case LOC_CONST:
12948 break;
12949 default:
12950 if (ada_is_exception_sym (sym))
12951 {
12952 struct ada_exc_info info = {sym->print_name (),
12953 SYMBOL_VALUE_ADDRESS (sym)};
12954
12955 exceptions->push_back (info);
12956 }
12957 }
12958 }
12959 if (BLOCK_FUNCTION (block) != NULL)
12960 break;
12961 block = BLOCK_SUPERBLOCK (block);
12962 }
12963 }
12964
12965 /* Return true if NAME matches PREG or if PREG is NULL. */
12966
12967 static bool
12968 name_matches_regex (const char *name, compiled_regex *preg)
12969 {
12970 return (preg == NULL
12971 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12972 }
12973
12974 /* Add all exceptions defined globally whose name name match
12975 a regular expression, excluding standard exceptions.
12976
12977 The reason we exclude standard exceptions is that they need
12978 to be handled separately: Standard exceptions are defined inside
12979 a runtime unit which is normally not compiled with debugging info,
12980 and thus usually do not show up in our symbol search. However,
12981 if the unit was in fact built with debugging info, we need to
12982 exclude them because they would duplicate the entry we found
12983 during the special loop that specifically searches for those
12984 standard exceptions.
12985
12986 If PREG is not NULL, then this regexp_t object is used to
12987 perform the symbol name matching. Otherwise, no name-based
12988 filtering is performed.
12989
12990 EXCEPTIONS is a vector of exceptions to which matching exceptions
12991 gets pushed. */
12992
12993 static void
12994 ada_add_global_exceptions (compiled_regex *preg,
12995 std::vector<ada_exc_info> *exceptions)
12996 {
12997 /* In Ada, the symbol "search name" is a linkage name, whereas the
12998 regular expression used to do the matching refers to the natural
12999 name. So match against the decoded name. */
13000 expand_symtabs_matching (NULL,
13001 lookup_name_info::match_any (),
13002 [&] (const char *search_name)
13003 {
13004 std::string decoded = ada_decode (search_name);
13005 return name_matches_regex (decoded.c_str (), preg);
13006 },
13007 NULL,
13008 VARIABLES_DOMAIN);
13009
13010 for (objfile *objfile : current_program_space->objfiles ())
13011 {
13012 for (compunit_symtab *s : objfile->compunits ())
13013 {
13014 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13015 int i;
13016
13017 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13018 {
13019 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13020 struct block_iterator iter;
13021 struct symbol *sym;
13022
13023 ALL_BLOCK_SYMBOLS (b, iter, sym)
13024 if (ada_is_non_standard_exception_sym (sym)
13025 && name_matches_regex (sym->natural_name (), preg))
13026 {
13027 struct ada_exc_info info
13028 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13029
13030 exceptions->push_back (info);
13031 }
13032 }
13033 }
13034 }
13035 }
13036
13037 /* Implements ada_exceptions_list with the regular expression passed
13038 as a regex_t, rather than a string.
13039
13040 If not NULL, PREG is used to filter out exceptions whose names
13041 do not match. Otherwise, all exceptions are listed. */
13042
13043 static std::vector<ada_exc_info>
13044 ada_exceptions_list_1 (compiled_regex *preg)
13045 {
13046 std::vector<ada_exc_info> result;
13047 int prev_len;
13048
13049 /* First, list the known standard exceptions. These exceptions
13050 need to be handled separately, as they are usually defined in
13051 runtime units that have been compiled without debugging info. */
13052
13053 ada_add_standard_exceptions (preg, &result);
13054
13055 /* Next, find all exceptions whose scope is local and accessible
13056 from the currently selected frame. */
13057
13058 if (has_stack_frames ())
13059 {
13060 prev_len = result.size ();
13061 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13062 &result);
13063 if (result.size () > prev_len)
13064 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13065 }
13066
13067 /* Add all exceptions whose scope is global. */
13068
13069 prev_len = result.size ();
13070 ada_add_global_exceptions (preg, &result);
13071 if (result.size () > prev_len)
13072 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13073
13074 return result;
13075 }
13076
13077 /* Return a vector of ada_exc_info.
13078
13079 If REGEXP is NULL, all exceptions are included in the result.
13080 Otherwise, it should contain a valid regular expression,
13081 and only the exceptions whose names match that regular expression
13082 are included in the result.
13083
13084 The exceptions are sorted in the following order:
13085 - Standard exceptions (defined by the Ada language), in
13086 alphabetical order;
13087 - Exceptions only visible from the current frame, in
13088 alphabetical order;
13089 - Exceptions whose scope is global, in alphabetical order. */
13090
13091 std::vector<ada_exc_info>
13092 ada_exceptions_list (const char *regexp)
13093 {
13094 if (regexp == NULL)
13095 return ada_exceptions_list_1 (NULL);
13096
13097 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13098 return ada_exceptions_list_1 (&reg);
13099 }
13100
13101 /* Implement the "info exceptions" command. */
13102
13103 static void
13104 info_exceptions_command (const char *regexp, int from_tty)
13105 {
13106 struct gdbarch *gdbarch = get_current_arch ();
13107
13108 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13109
13110 if (regexp != NULL)
13111 printf_filtered
13112 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13113 else
13114 printf_filtered (_("All defined Ada exceptions:\n"));
13115
13116 for (const ada_exc_info &info : exceptions)
13117 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13118 }
13119
13120 /* Operators */
13121 /* Information about operators given special treatment in functions
13122 below. */
13123 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13124
13125 #define ADA_OPERATORS \
13126 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13127 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13128 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13129 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13130 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13131 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13132 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13133 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13134 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13135 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13136 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13137 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13138 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13139 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13140 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13141 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13142 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13143 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13144 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13145
13146 static void
13147 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13148 int *argsp)
13149 {
13150 switch (exp->elts[pc - 1].opcode)
13151 {
13152 default:
13153 operator_length_standard (exp, pc, oplenp, argsp);
13154 break;
13155
13156 #define OP_DEFN(op, len, args, binop) \
13157 case op: *oplenp = len; *argsp = args; break;
13158 ADA_OPERATORS;
13159 #undef OP_DEFN
13160
13161 case OP_AGGREGATE:
13162 *oplenp = 3;
13163 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13164 break;
13165
13166 case OP_CHOICES:
13167 *oplenp = 3;
13168 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13169 break;
13170 }
13171 }
13172
13173 /* Implementation of the exp_descriptor method operator_check. */
13174
13175 static int
13176 ada_operator_check (struct expression *exp, int pos,
13177 int (*objfile_func) (struct objfile *objfile, void *data),
13178 void *data)
13179 {
13180 const union exp_element *const elts = exp->elts;
13181 struct type *type = NULL;
13182
13183 switch (elts[pos].opcode)
13184 {
13185 case UNOP_IN_RANGE:
13186 case UNOP_QUAL:
13187 type = elts[pos + 1].type;
13188 break;
13189
13190 default:
13191 return operator_check_standard (exp, pos, objfile_func, data);
13192 }
13193
13194 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13195
13196 if (type && TYPE_OBJFILE (type)
13197 && (*objfile_func) (TYPE_OBJFILE (type), data))
13198 return 1;
13199
13200 return 0;
13201 }
13202
13203 static const char *
13204 ada_op_name (enum exp_opcode opcode)
13205 {
13206 switch (opcode)
13207 {
13208 default:
13209 return op_name_standard (opcode);
13210
13211 #define OP_DEFN(op, len, args, binop) case op: return #op;
13212 ADA_OPERATORS;
13213 #undef OP_DEFN
13214
13215 case OP_AGGREGATE:
13216 return "OP_AGGREGATE";
13217 case OP_CHOICES:
13218 return "OP_CHOICES";
13219 case OP_NAME:
13220 return "OP_NAME";
13221 }
13222 }
13223
13224 /* As for operator_length, but assumes PC is pointing at the first
13225 element of the operator, and gives meaningful results only for the
13226 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13227
13228 static void
13229 ada_forward_operator_length (struct expression *exp, int pc,
13230 int *oplenp, int *argsp)
13231 {
13232 switch (exp->elts[pc].opcode)
13233 {
13234 default:
13235 *oplenp = *argsp = 0;
13236 break;
13237
13238 #define OP_DEFN(op, len, args, binop) \
13239 case op: *oplenp = len; *argsp = args; break;
13240 ADA_OPERATORS;
13241 #undef OP_DEFN
13242
13243 case OP_AGGREGATE:
13244 *oplenp = 3;
13245 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13246 break;
13247
13248 case OP_CHOICES:
13249 *oplenp = 3;
13250 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13251 break;
13252
13253 case OP_STRING:
13254 case OP_NAME:
13255 {
13256 int len = longest_to_int (exp->elts[pc + 1].longconst);
13257
13258 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13259 *argsp = 0;
13260 break;
13261 }
13262 }
13263 }
13264
13265 static int
13266 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13267 {
13268 enum exp_opcode op = exp->elts[elt].opcode;
13269 int oplen, nargs;
13270 int pc = elt;
13271 int i;
13272
13273 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13274
13275 switch (op)
13276 {
13277 /* Ada attributes ('Foo). */
13278 case OP_ATR_FIRST:
13279 case OP_ATR_LAST:
13280 case OP_ATR_LENGTH:
13281 case OP_ATR_IMAGE:
13282 case OP_ATR_MAX:
13283 case OP_ATR_MIN:
13284 case OP_ATR_MODULUS:
13285 case OP_ATR_POS:
13286 case OP_ATR_SIZE:
13287 case OP_ATR_TAG:
13288 case OP_ATR_VAL:
13289 break;
13290
13291 case UNOP_IN_RANGE:
13292 case UNOP_QUAL:
13293 /* XXX: gdb_sprint_host_address, type_sprint */
13294 fprintf_filtered (stream, _("Type @"));
13295 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13296 fprintf_filtered (stream, " (");
13297 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13298 fprintf_filtered (stream, ")");
13299 break;
13300 case BINOP_IN_BOUNDS:
13301 fprintf_filtered (stream, " (%d)",
13302 longest_to_int (exp->elts[pc + 2].longconst));
13303 break;
13304 case TERNOP_IN_RANGE:
13305 break;
13306
13307 case OP_AGGREGATE:
13308 case OP_OTHERS:
13309 case OP_DISCRETE_RANGE:
13310 case OP_POSITIONAL:
13311 case OP_CHOICES:
13312 break;
13313
13314 case OP_NAME:
13315 case OP_STRING:
13316 {
13317 char *name = &exp->elts[elt + 2].string;
13318 int len = longest_to_int (exp->elts[elt + 1].longconst);
13319
13320 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13321 break;
13322 }
13323
13324 default:
13325 return dump_subexp_body_standard (exp, stream, elt);
13326 }
13327
13328 elt += oplen;
13329 for (i = 0; i < nargs; i += 1)
13330 elt = dump_subexp (exp, stream, elt);
13331
13332 return elt;
13333 }
13334
13335 /* The Ada extension of print_subexp (q.v.). */
13336
13337 static void
13338 ada_print_subexp (struct expression *exp, int *pos,
13339 struct ui_file *stream, enum precedence prec)
13340 {
13341 int oplen, nargs, i;
13342 int pc = *pos;
13343 enum exp_opcode op = exp->elts[pc].opcode;
13344
13345 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13346
13347 *pos += oplen;
13348 switch (op)
13349 {
13350 default:
13351 *pos -= oplen;
13352 print_subexp_standard (exp, pos, stream, prec);
13353 return;
13354
13355 case OP_VAR_VALUE:
13356 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13357 return;
13358
13359 case BINOP_IN_BOUNDS:
13360 /* XXX: sprint_subexp */
13361 print_subexp (exp, pos, stream, PREC_SUFFIX);
13362 fputs_filtered (" in ", stream);
13363 print_subexp (exp, pos, stream, PREC_SUFFIX);
13364 fputs_filtered ("'range", stream);
13365 if (exp->elts[pc + 1].longconst > 1)
13366 fprintf_filtered (stream, "(%ld)",
13367 (long) exp->elts[pc + 1].longconst);
13368 return;
13369
13370 case TERNOP_IN_RANGE:
13371 if (prec >= PREC_EQUAL)
13372 fputs_filtered ("(", stream);
13373 /* XXX: sprint_subexp */
13374 print_subexp (exp, pos, stream, PREC_SUFFIX);
13375 fputs_filtered (" in ", stream);
13376 print_subexp (exp, pos, stream, PREC_EQUAL);
13377 fputs_filtered (" .. ", stream);
13378 print_subexp (exp, pos, stream, PREC_EQUAL);
13379 if (prec >= PREC_EQUAL)
13380 fputs_filtered (")", stream);
13381 return;
13382
13383 case OP_ATR_FIRST:
13384 case OP_ATR_LAST:
13385 case OP_ATR_LENGTH:
13386 case OP_ATR_IMAGE:
13387 case OP_ATR_MAX:
13388 case OP_ATR_MIN:
13389 case OP_ATR_MODULUS:
13390 case OP_ATR_POS:
13391 case OP_ATR_SIZE:
13392 case OP_ATR_TAG:
13393 case OP_ATR_VAL:
13394 if (exp->elts[*pos].opcode == OP_TYPE)
13395 {
13396 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13397 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13398 &type_print_raw_options);
13399 *pos += 3;
13400 }
13401 else
13402 print_subexp (exp, pos, stream, PREC_SUFFIX);
13403 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13404 if (nargs > 1)
13405 {
13406 int tem;
13407
13408 for (tem = 1; tem < nargs; tem += 1)
13409 {
13410 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13411 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13412 }
13413 fputs_filtered (")", stream);
13414 }
13415 return;
13416
13417 case UNOP_QUAL:
13418 type_print (exp->elts[pc + 1].type, "", stream, 0);
13419 fputs_filtered ("'(", stream);
13420 print_subexp (exp, pos, stream, PREC_PREFIX);
13421 fputs_filtered (")", stream);
13422 return;
13423
13424 case UNOP_IN_RANGE:
13425 /* XXX: sprint_subexp */
13426 print_subexp (exp, pos, stream, PREC_SUFFIX);
13427 fputs_filtered (" in ", stream);
13428 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13429 &type_print_raw_options);
13430 return;
13431
13432 case OP_DISCRETE_RANGE:
13433 print_subexp (exp, pos, stream, PREC_SUFFIX);
13434 fputs_filtered ("..", stream);
13435 print_subexp (exp, pos, stream, PREC_SUFFIX);
13436 return;
13437
13438 case OP_OTHERS:
13439 fputs_filtered ("others => ", stream);
13440 print_subexp (exp, pos, stream, PREC_SUFFIX);
13441 return;
13442
13443 case OP_CHOICES:
13444 for (i = 0; i < nargs-1; i += 1)
13445 {
13446 if (i > 0)
13447 fputs_filtered ("|", stream);
13448 print_subexp (exp, pos, stream, PREC_SUFFIX);
13449 }
13450 fputs_filtered (" => ", stream);
13451 print_subexp (exp, pos, stream, PREC_SUFFIX);
13452 return;
13453
13454 case OP_POSITIONAL:
13455 print_subexp (exp, pos, stream, PREC_SUFFIX);
13456 return;
13457
13458 case OP_AGGREGATE:
13459 fputs_filtered ("(", stream);
13460 for (i = 0; i < nargs; i += 1)
13461 {
13462 if (i > 0)
13463 fputs_filtered (", ", stream);
13464 print_subexp (exp, pos, stream, PREC_SUFFIX);
13465 }
13466 fputs_filtered (")", stream);
13467 return;
13468 }
13469 }
13470
13471 /* Table mapping opcodes into strings for printing operators
13472 and precedences of the operators. */
13473
13474 static const struct op_print ada_op_print_tab[] = {
13475 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13476 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13477 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13478 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13479 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13480 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13481 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13482 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13483 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13484 {">=", BINOP_GEQ, PREC_ORDER, 0},
13485 {">", BINOP_GTR, PREC_ORDER, 0},
13486 {"<", BINOP_LESS, PREC_ORDER, 0},
13487 {">>", BINOP_RSH, PREC_SHIFT, 0},
13488 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13489 {"+", BINOP_ADD, PREC_ADD, 0},
13490 {"-", BINOP_SUB, PREC_ADD, 0},
13491 {"&", BINOP_CONCAT, PREC_ADD, 0},
13492 {"*", BINOP_MUL, PREC_MUL, 0},
13493 {"/", BINOP_DIV, PREC_MUL, 0},
13494 {"rem", BINOP_REM, PREC_MUL, 0},
13495 {"mod", BINOP_MOD, PREC_MUL, 0},
13496 {"**", BINOP_EXP, PREC_REPEAT, 0},
13497 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13498 {"-", UNOP_NEG, PREC_PREFIX, 0},
13499 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13500 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13501 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13502 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13503 {".all", UNOP_IND, PREC_SUFFIX, 1},
13504 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13505 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13506 {NULL, OP_NULL, PREC_SUFFIX, 0}
13507 };
13508 \f
13509 enum ada_primitive_types {
13510 ada_primitive_type_int,
13511 ada_primitive_type_long,
13512 ada_primitive_type_short,
13513 ada_primitive_type_char,
13514 ada_primitive_type_float,
13515 ada_primitive_type_double,
13516 ada_primitive_type_void,
13517 ada_primitive_type_long_long,
13518 ada_primitive_type_long_double,
13519 ada_primitive_type_natural,
13520 ada_primitive_type_positive,
13521 ada_primitive_type_system_address,
13522 ada_primitive_type_storage_offset,
13523 nr_ada_primitive_types
13524 };
13525
13526 \f
13527 /* Language vector */
13528
13529 /* Not really used, but needed in the ada_language_defn. */
13530
13531 static void
13532 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13533 {
13534 ada_emit_char (c, type, stream, quoter, 1);
13535 }
13536
13537 static int
13538 parse (struct parser_state *ps)
13539 {
13540 warnings_issued = 0;
13541 return ada_parse (ps);
13542 }
13543
13544 static const struct exp_descriptor ada_exp_descriptor = {
13545 ada_print_subexp,
13546 ada_operator_length,
13547 ada_operator_check,
13548 ada_op_name,
13549 ada_dump_subexp_body,
13550 ada_evaluate_subexp
13551 };
13552
13553 /* symbol_name_matcher_ftype adapter for wild_match. */
13554
13555 static bool
13556 do_wild_match (const char *symbol_search_name,
13557 const lookup_name_info &lookup_name,
13558 completion_match_result *comp_match_res)
13559 {
13560 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13561 }
13562
13563 /* symbol_name_matcher_ftype adapter for full_match. */
13564
13565 static bool
13566 do_full_match (const char *symbol_search_name,
13567 const lookup_name_info &lookup_name,
13568 completion_match_result *comp_match_res)
13569 {
13570 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13571 }
13572
13573 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13574
13575 static bool
13576 do_exact_match (const char *symbol_search_name,
13577 const lookup_name_info &lookup_name,
13578 completion_match_result *comp_match_res)
13579 {
13580 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13581 }
13582
13583 /* Build the Ada lookup name for LOOKUP_NAME. */
13584
13585 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13586 {
13587 gdb::string_view user_name = lookup_name.name ();
13588
13589 if (user_name[0] == '<')
13590 {
13591 if (user_name.back () == '>')
13592 m_encoded_name
13593 = user_name.substr (1, user_name.size () - 2).to_string ();
13594 else
13595 m_encoded_name
13596 = user_name.substr (1, user_name.size () - 1).to_string ();
13597 m_encoded_p = true;
13598 m_verbatim_p = true;
13599 m_wild_match_p = false;
13600 m_standard_p = false;
13601 }
13602 else
13603 {
13604 m_verbatim_p = false;
13605
13606 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13607
13608 if (!m_encoded_p)
13609 {
13610 const char *folded = ada_fold_name (user_name);
13611 const char *encoded = ada_encode_1 (folded, false);
13612 if (encoded != NULL)
13613 m_encoded_name = encoded;
13614 else
13615 m_encoded_name = user_name.to_string ();
13616 }
13617 else
13618 m_encoded_name = user_name.to_string ();
13619
13620 /* Handle the 'package Standard' special case. See description
13621 of m_standard_p. */
13622 if (startswith (m_encoded_name.c_str (), "standard__"))
13623 {
13624 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13625 m_standard_p = true;
13626 }
13627 else
13628 m_standard_p = false;
13629
13630 /* If the name contains a ".", then the user is entering a fully
13631 qualified entity name, and the match must not be done in wild
13632 mode. Similarly, if the user wants to complete what looks
13633 like an encoded name, the match must not be done in wild
13634 mode. Also, in the standard__ special case always do
13635 non-wild matching. */
13636 m_wild_match_p
13637 = (lookup_name.match_type () != symbol_name_match_type::FULL
13638 && !m_encoded_p
13639 && !m_standard_p
13640 && user_name.find ('.') == std::string::npos);
13641 }
13642 }
13643
13644 /* symbol_name_matcher_ftype method for Ada. This only handles
13645 completion mode. */
13646
13647 static bool
13648 ada_symbol_name_matches (const char *symbol_search_name,
13649 const lookup_name_info &lookup_name,
13650 completion_match_result *comp_match_res)
13651 {
13652 return lookup_name.ada ().matches (symbol_search_name,
13653 lookup_name.match_type (),
13654 comp_match_res);
13655 }
13656
13657 /* A name matcher that matches the symbol name exactly, with
13658 strcmp. */
13659
13660 static bool
13661 literal_symbol_name_matcher (const char *symbol_search_name,
13662 const lookup_name_info &lookup_name,
13663 completion_match_result *comp_match_res)
13664 {
13665 gdb::string_view name_view = lookup_name.name ();
13666
13667 if (lookup_name.completion_mode ()
13668 ? (strncmp (symbol_search_name, name_view.data (),
13669 name_view.size ()) == 0)
13670 : symbol_search_name == name_view)
13671 {
13672 if (comp_match_res != NULL)
13673 comp_match_res->set_match (symbol_search_name);
13674 return true;
13675 }
13676 else
13677 return false;
13678 }
13679
13680 /* Implement the "get_symbol_name_matcher" language_defn method for
13681 Ada. */
13682
13683 static symbol_name_matcher_ftype *
13684 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13685 {
13686 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13687 return literal_symbol_name_matcher;
13688
13689 if (lookup_name.completion_mode ())
13690 return ada_symbol_name_matches;
13691 else
13692 {
13693 if (lookup_name.ada ().wild_match_p ())
13694 return do_wild_match;
13695 else if (lookup_name.ada ().verbatim_p ())
13696 return do_exact_match;
13697 else
13698 return do_full_match;
13699 }
13700 }
13701
13702 static const char *ada_extensions[] =
13703 {
13704 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13705 };
13706
13707 /* Constant data that describes the Ada language. */
13708
13709 extern const struct language_data ada_language_data =
13710 {
13711 "ada", /* Language name */
13712 "Ada",
13713 language_ada,
13714 range_check_off,
13715 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13716 that's not quite what this means. */
13717 array_row_major,
13718 macro_expansion_no,
13719 ada_extensions,
13720 &ada_exp_descriptor,
13721 parse,
13722 resolve,
13723 ada_printchar, /* Print a character constant */
13724 ada_printstr, /* Function to print string constant */
13725 emit_char, /* Function to print single char (not used) */
13726 ada_print_typedef, /* Print a typedef using appropriate syntax */
13727 NULL, /* name_of_this */
13728 true, /* la_store_sym_names_in_linkage_form_p */
13729 ada_op_print_tab, /* expression operators for printing */
13730 0, /* c-style arrays */
13731 1, /* String lower bound */
13732 &ada_varobj_ops,
13733 ada_is_string_type,
13734 "(...)" /* la_struct_too_deep_ellipsis */
13735 };
13736
13737 /* Class representing the Ada language. */
13738
13739 class ada_language : public language_defn
13740 {
13741 public:
13742 ada_language ()
13743 : language_defn (language_ada, ada_language_data)
13744 { /* Nothing. */ }
13745
13746 /* Print an array element index using the Ada syntax. */
13747
13748 void print_array_index (struct type *index_type,
13749 LONGEST index,
13750 struct ui_file *stream,
13751 const value_print_options *options) const override
13752 {
13753 struct value *index_value = val_atr (index_type, index);
13754
13755 LA_VALUE_PRINT (index_value, stream, options);
13756 fprintf_filtered (stream, " => ");
13757 }
13758
13759 /* Implement the "read_var_value" language_defn method for Ada. */
13760
13761 struct value *read_var_value (struct symbol *var,
13762 const struct block *var_block,
13763 struct frame_info *frame) const override
13764 {
13765 /* The only case where default_read_var_value is not sufficient
13766 is when VAR is a renaming... */
13767 if (frame != nullptr)
13768 {
13769 const struct block *frame_block = get_frame_block (frame, NULL);
13770 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13771 return ada_read_renaming_var_value (var, frame_block);
13772 }
13773
13774 /* This is a typical case where we expect the default_read_var_value
13775 function to work. */
13776 return language_defn::read_var_value (var, var_block, frame);
13777 }
13778
13779 /* See language.h. */
13780 void language_arch_info (struct gdbarch *gdbarch,
13781 struct language_arch_info *lai) const override
13782 {
13783 const struct builtin_type *builtin = builtin_type (gdbarch);
13784
13785 lai->primitive_type_vector
13786 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13787 struct type *);
13788
13789 lai->primitive_type_vector [ada_primitive_type_int]
13790 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13791 0, "integer");
13792 lai->primitive_type_vector [ada_primitive_type_long]
13793 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13794 0, "long_integer");
13795 lai->primitive_type_vector [ada_primitive_type_short]
13796 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13797 0, "short_integer");
13798 lai->string_char_type
13799 = lai->primitive_type_vector [ada_primitive_type_char]
13800 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13801 lai->primitive_type_vector [ada_primitive_type_float]
13802 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13803 "float", gdbarch_float_format (gdbarch));
13804 lai->primitive_type_vector [ada_primitive_type_double]
13805 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13806 "long_float", gdbarch_double_format (gdbarch));
13807 lai->primitive_type_vector [ada_primitive_type_long_long]
13808 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13809 0, "long_long_integer");
13810 lai->primitive_type_vector [ada_primitive_type_long_double]
13811 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13812 "long_long_float", gdbarch_long_double_format (gdbarch));
13813 lai->primitive_type_vector [ada_primitive_type_natural]
13814 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13815 0, "natural");
13816 lai->primitive_type_vector [ada_primitive_type_positive]
13817 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13818 0, "positive");
13819 lai->primitive_type_vector [ada_primitive_type_void]
13820 = builtin->builtin_void;
13821
13822 lai->primitive_type_vector [ada_primitive_type_system_address]
13823 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13824 "void"));
13825 lai->primitive_type_vector [ada_primitive_type_system_address]
13826 ->set_name ("system__address");
13827
13828 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13829 type. This is a signed integral type whose size is the same as
13830 the size of addresses. */
13831 {
13832 unsigned int addr_length = TYPE_LENGTH
13833 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13834
13835 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13836 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13837 "storage_offset");
13838 }
13839
13840 lai->bool_type_symbol = NULL;
13841 lai->bool_type_default = builtin->builtin_bool;
13842 }
13843
13844 /* See language.h. */
13845
13846 bool iterate_over_symbols
13847 (const struct block *block, const lookup_name_info &name,
13848 domain_enum domain,
13849 gdb::function_view<symbol_found_callback_ftype> callback) const override
13850 {
13851 std::vector<struct block_symbol> results;
13852
13853 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13854 for (block_symbol &sym : results)
13855 {
13856 if (!callback (&sym))
13857 return false;
13858 }
13859
13860 return true;
13861 }
13862
13863 /* See language.h. */
13864 bool sniff_from_mangled_name (const char *mangled,
13865 char **out) const override
13866 {
13867 std::string demangled = ada_decode (mangled);
13868
13869 *out = NULL;
13870
13871 if (demangled != mangled && demangled[0] != '<')
13872 {
13873 /* Set the gsymbol language to Ada, but still return 0.
13874 Two reasons for that:
13875
13876 1. For Ada, we prefer computing the symbol's decoded name
13877 on the fly rather than pre-compute it, in order to save
13878 memory (Ada projects are typically very large).
13879
13880 2. There are some areas in the definition of the GNAT
13881 encoding where, with a bit of bad luck, we might be able
13882 to decode a non-Ada symbol, generating an incorrect
13883 demangled name (Eg: names ending with "TB" for instance
13884 are identified as task bodies and so stripped from
13885 the decoded name returned).
13886
13887 Returning true, here, but not setting *DEMANGLED, helps us get
13888 a little bit of the best of both worlds. Because we're last,
13889 we should not affect any of the other languages that were
13890 able to demangle the symbol before us; we get to correctly
13891 tag Ada symbols as such; and even if we incorrectly tagged a
13892 non-Ada symbol, which should be rare, any routing through the
13893 Ada language should be transparent (Ada tries to behave much
13894 like C/C++ with non-Ada symbols). */
13895 return true;
13896 }
13897
13898 return false;
13899 }
13900
13901 /* See language.h. */
13902
13903 char *demangle (const char *mangled, int options) const override
13904 {
13905 return ada_la_decode (mangled, options);
13906 }
13907
13908 /* See language.h. */
13909
13910 void print_type (struct type *type, const char *varstring,
13911 struct ui_file *stream, int show, int level,
13912 const struct type_print_options *flags) const override
13913 {
13914 ada_print_type (type, varstring, stream, show, level, flags);
13915 }
13916
13917 /* See language.h. */
13918
13919 const char *word_break_characters (void) const override
13920 {
13921 return ada_completer_word_break_characters;
13922 }
13923
13924 /* See language.h. */
13925
13926 void collect_symbol_completion_matches (completion_tracker &tracker,
13927 complete_symbol_mode mode,
13928 symbol_name_match_type name_match_type,
13929 const char *text, const char *word,
13930 enum type_code code) const override
13931 {
13932 struct symbol *sym;
13933 const struct block *b, *surrounding_static_block = 0;
13934 struct block_iterator iter;
13935
13936 gdb_assert (code == TYPE_CODE_UNDEF);
13937
13938 lookup_name_info lookup_name (text, name_match_type, true);
13939
13940 /* First, look at the partial symtab symbols. */
13941 expand_symtabs_matching (NULL,
13942 lookup_name,
13943 NULL,
13944 NULL,
13945 ALL_DOMAIN);
13946
13947 /* At this point scan through the misc symbol vectors and add each
13948 symbol you find to the list. Eventually we want to ignore
13949 anything that isn't a text symbol (everything else will be
13950 handled by the psymtab code above). */
13951
13952 for (objfile *objfile : current_program_space->objfiles ())
13953 {
13954 for (minimal_symbol *msymbol : objfile->msymbols ())
13955 {
13956 QUIT;
13957
13958 if (completion_skip_symbol (mode, msymbol))
13959 continue;
13960
13961 language symbol_language = msymbol->language ();
13962
13963 /* Ada minimal symbols won't have their language set to Ada. If
13964 we let completion_list_add_name compare using the
13965 default/C-like matcher, then when completing e.g., symbols in a
13966 package named "pck", we'd match internal Ada symbols like
13967 "pckS", which are invalid in an Ada expression, unless you wrap
13968 them in '<' '>' to request a verbatim match.
13969
13970 Unfortunately, some Ada encoded names successfully demangle as
13971 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13972 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13973 with the wrong language set. Paper over that issue here. */
13974 if (symbol_language == language_auto
13975 || symbol_language == language_cplus)
13976 symbol_language = language_ada;
13977
13978 completion_list_add_name (tracker,
13979 symbol_language,
13980 msymbol->linkage_name (),
13981 lookup_name, text, word);
13982 }
13983 }
13984
13985 /* Search upwards from currently selected frame (so that we can
13986 complete on local vars. */
13987
13988 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13989 {
13990 if (!BLOCK_SUPERBLOCK (b))
13991 surrounding_static_block = b; /* For elmin of dups */
13992
13993 ALL_BLOCK_SYMBOLS (b, iter, sym)
13994 {
13995 if (completion_skip_symbol (mode, sym))
13996 continue;
13997
13998 completion_list_add_name (tracker,
13999 sym->language (),
14000 sym->linkage_name (),
14001 lookup_name, text, word);
14002 }
14003 }
14004
14005 /* Go through the symtabs and check the externs and statics for
14006 symbols which match. */
14007
14008 for (objfile *objfile : current_program_space->objfiles ())
14009 {
14010 for (compunit_symtab *s : objfile->compunits ())
14011 {
14012 QUIT;
14013 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14014 ALL_BLOCK_SYMBOLS (b, iter, sym)
14015 {
14016 if (completion_skip_symbol (mode, sym))
14017 continue;
14018
14019 completion_list_add_name (tracker,
14020 sym->language (),
14021 sym->linkage_name (),
14022 lookup_name, text, word);
14023 }
14024 }
14025 }
14026
14027 for (objfile *objfile : current_program_space->objfiles ())
14028 {
14029 for (compunit_symtab *s : objfile->compunits ())
14030 {
14031 QUIT;
14032 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14033 /* Don't do this block twice. */
14034 if (b == surrounding_static_block)
14035 continue;
14036 ALL_BLOCK_SYMBOLS (b, iter, sym)
14037 {
14038 if (completion_skip_symbol (mode, sym))
14039 continue;
14040
14041 completion_list_add_name (tracker,
14042 sym->language (),
14043 sym->linkage_name (),
14044 lookup_name, text, word);
14045 }
14046 }
14047 }
14048 }
14049
14050 /* See language.h. */
14051
14052 gdb::unique_xmalloc_ptr<char> watch_location_expression
14053 (struct type *type, CORE_ADDR addr) const override
14054 {
14055 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14056 std::string name = type_to_string (type);
14057 return gdb::unique_xmalloc_ptr<char>
14058 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14059 }
14060
14061 /* See language.h. */
14062
14063 void value_print (struct value *val, struct ui_file *stream,
14064 const struct value_print_options *options) const override
14065 {
14066 return ada_value_print (val, stream, options);
14067 }
14068
14069 /* See language.h. */
14070
14071 void value_print_inner
14072 (struct value *val, struct ui_file *stream, int recurse,
14073 const struct value_print_options *options) const override
14074 {
14075 return ada_value_print_inner (val, stream, recurse, options);
14076 }
14077
14078 /* See language.h. */
14079
14080 struct block_symbol lookup_symbol_nonlocal
14081 (const char *name, const struct block *block,
14082 const domain_enum domain) const override
14083 {
14084 struct block_symbol sym;
14085
14086 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14087 if (sym.symbol != NULL)
14088 return sym;
14089
14090 /* If we haven't found a match at this point, try the primitive
14091 types. In other languages, this search is performed before
14092 searching for global symbols in order to short-circuit that
14093 global-symbol search if it happens that the name corresponds
14094 to a primitive type. But we cannot do the same in Ada, because
14095 it is perfectly legitimate for a program to declare a type which
14096 has the same name as a standard type. If looking up a type in
14097 that situation, we have traditionally ignored the primitive type
14098 in favor of user-defined types. This is why, unlike most other
14099 languages, we search the primitive types this late and only after
14100 having searched the global symbols without success. */
14101
14102 if (domain == VAR_DOMAIN)
14103 {
14104 struct gdbarch *gdbarch;
14105
14106 if (block == NULL)
14107 gdbarch = target_gdbarch ();
14108 else
14109 gdbarch = block_gdbarch (block);
14110 sym.symbol
14111 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14112 if (sym.symbol != NULL)
14113 return sym;
14114 }
14115
14116 return {};
14117 }
14118
14119 protected:
14120 /* See language.h. */
14121
14122 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14123 (const lookup_name_info &lookup_name) const override
14124 {
14125 return ada_get_symbol_name_matcher (lookup_name);
14126 }
14127 };
14128
14129 /* Single instance of the Ada language class. */
14130
14131 static ada_language ada_language_defn;
14132
14133 /* Command-list for the "set/show ada" prefix command. */
14134 static struct cmd_list_element *set_ada_list;
14135 static struct cmd_list_element *show_ada_list;
14136
14137 static void
14138 initialize_ada_catchpoint_ops (void)
14139 {
14140 struct breakpoint_ops *ops;
14141
14142 initialize_breakpoint_ops ();
14143
14144 ops = &catch_exception_breakpoint_ops;
14145 *ops = bkpt_breakpoint_ops;
14146 ops->allocate_location = allocate_location_exception;
14147 ops->re_set = re_set_exception;
14148 ops->check_status = check_status_exception;
14149 ops->print_it = print_it_exception;
14150 ops->print_one = print_one_exception;
14151 ops->print_mention = print_mention_exception;
14152 ops->print_recreate = print_recreate_exception;
14153
14154 ops = &catch_exception_unhandled_breakpoint_ops;
14155 *ops = bkpt_breakpoint_ops;
14156 ops->allocate_location = allocate_location_exception;
14157 ops->re_set = re_set_exception;
14158 ops->check_status = check_status_exception;
14159 ops->print_it = print_it_exception;
14160 ops->print_one = print_one_exception;
14161 ops->print_mention = print_mention_exception;
14162 ops->print_recreate = print_recreate_exception;
14163
14164 ops = &catch_assert_breakpoint_ops;
14165 *ops = bkpt_breakpoint_ops;
14166 ops->allocate_location = allocate_location_exception;
14167 ops->re_set = re_set_exception;
14168 ops->check_status = check_status_exception;
14169 ops->print_it = print_it_exception;
14170 ops->print_one = print_one_exception;
14171 ops->print_mention = print_mention_exception;
14172 ops->print_recreate = print_recreate_exception;
14173
14174 ops = &catch_handlers_breakpoint_ops;
14175 *ops = bkpt_breakpoint_ops;
14176 ops->allocate_location = allocate_location_exception;
14177 ops->re_set = re_set_exception;
14178 ops->check_status = check_status_exception;
14179 ops->print_it = print_it_exception;
14180 ops->print_one = print_one_exception;
14181 ops->print_mention = print_mention_exception;
14182 ops->print_recreate = print_recreate_exception;
14183 }
14184
14185 /* This module's 'new_objfile' observer. */
14186
14187 static void
14188 ada_new_objfile_observer (struct objfile *objfile)
14189 {
14190 ada_clear_symbol_cache ();
14191 }
14192
14193 /* This module's 'free_objfile' observer. */
14194
14195 static void
14196 ada_free_objfile_observer (struct objfile *objfile)
14197 {
14198 ada_clear_symbol_cache ();
14199 }
14200
14201 void _initialize_ada_language ();
14202 void
14203 _initialize_ada_language ()
14204 {
14205 initialize_ada_catchpoint_ops ();
14206
14207 add_basic_prefix_cmd ("ada", no_class,
14208 _("Prefix command for changing Ada-specific settings."),
14209 &set_ada_list, "set ada ", 0, &setlist);
14210
14211 add_show_prefix_cmd ("ada", no_class,
14212 _("Generic command for showing Ada-specific settings."),
14213 &show_ada_list, "show ada ", 0, &showlist);
14214
14215 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14216 &trust_pad_over_xvs, _("\
14217 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14218 Show whether an optimization trusting PAD types over XVS types is activated."),
14219 _("\
14220 This is related to the encoding used by the GNAT compiler. The debugger\n\
14221 should normally trust the contents of PAD types, but certain older versions\n\
14222 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14223 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14224 work around this bug. It is always safe to turn this option \"off\", but\n\
14225 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14226 this option to \"off\" unless necessary."),
14227 NULL, NULL, &set_ada_list, &show_ada_list);
14228
14229 add_setshow_boolean_cmd ("print-signatures", class_vars,
14230 &print_signatures, _("\
14231 Enable or disable the output of formal and return types for functions in the \
14232 overloads selection menu."), _("\
14233 Show whether the output of formal and return types for functions in the \
14234 overloads selection menu is activated."),
14235 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14236
14237 add_catch_command ("exception", _("\
14238 Catch Ada exceptions, when raised.\n\
14239 Usage: catch exception [ARG] [if CONDITION]\n\
14240 Without any argument, stop when any Ada exception is raised.\n\
14241 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14242 being raised does not have a handler (and will therefore lead to the task's\n\
14243 termination).\n\
14244 Otherwise, the catchpoint only stops when the name of the exception being\n\
14245 raised is the same as ARG.\n\
14246 CONDITION is a boolean expression that is evaluated to see whether the\n\
14247 exception should cause a stop."),
14248 catch_ada_exception_command,
14249 catch_ada_completer,
14250 CATCH_PERMANENT,
14251 CATCH_TEMPORARY);
14252
14253 add_catch_command ("handlers", _("\
14254 Catch Ada exceptions, when handled.\n\
14255 Usage: catch handlers [ARG] [if CONDITION]\n\
14256 Without any argument, stop when any Ada exception is handled.\n\
14257 With an argument, catch only exceptions with the given name.\n\
14258 CONDITION is a boolean expression that is evaluated to see whether the\n\
14259 exception should cause a stop."),
14260 catch_ada_handlers_command,
14261 catch_ada_completer,
14262 CATCH_PERMANENT,
14263 CATCH_TEMPORARY);
14264 add_catch_command ("assert", _("\
14265 Catch failed Ada assertions, when raised.\n\
14266 Usage: catch assert [if CONDITION]\n\
14267 CONDITION is a boolean expression that is evaluated to see whether the\n\
14268 exception should cause a stop."),
14269 catch_assert_command,
14270 NULL,
14271 CATCH_PERMANENT,
14272 CATCH_TEMPORARY);
14273
14274 varsize_limit = 65536;
14275 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14276 &varsize_limit, _("\
14277 Set the maximum number of bytes allowed in a variable-size object."), _("\
14278 Show the maximum number of bytes allowed in a variable-size object."), _("\
14279 Attempts to access an object whose size is not a compile-time constant\n\
14280 and exceeds this limit will cause an error."),
14281 NULL, NULL, &setlist, &showlist);
14282
14283 add_info ("exceptions", info_exceptions_command,
14284 _("\
14285 List all Ada exception names.\n\
14286 Usage: info exceptions [REGEXP]\n\
14287 If a regular expression is passed as an argument, only those matching\n\
14288 the regular expression are listed."));
14289
14290 add_basic_prefix_cmd ("ada", class_maintenance,
14291 _("Set Ada maintenance-related variables."),
14292 &maint_set_ada_cmdlist, "maintenance set ada ",
14293 0/*allow-unknown*/, &maintenance_set_cmdlist);
14294
14295 add_show_prefix_cmd ("ada", class_maintenance,
14296 _("Show Ada maintenance-related variables."),
14297 &maint_show_ada_cmdlist, "maintenance show ada ",
14298 0/*allow-unknown*/, &maintenance_show_cmdlist);
14299
14300 add_setshow_boolean_cmd
14301 ("ignore-descriptive-types", class_maintenance,
14302 &ada_ignore_descriptive_types_p,
14303 _("Set whether descriptive types generated by GNAT should be ignored."),
14304 _("Show whether descriptive types generated by GNAT should be ignored."),
14305 _("\
14306 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14307 DWARF attribute."),
14308 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14309
14310 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14311 NULL, xcalloc, xfree);
14312
14313 /* The ada-lang observers. */
14314 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14315 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14316 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14317 }