]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Fix bug in assignment to nested packed structure
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 const struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
158 int, int);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static struct type *ada_find_parallel_type_with_name (struct type *,
163 const char *);
164
165 static int is_dynamic_field (struct type *, int);
166
167 static struct type *to_fixed_variant_branch_type (struct type *,
168 const gdb_byte *,
169 CORE_ADDR, struct value *);
170
171 static struct type *to_fixed_array_type (struct type *, struct value *, int);
172
173 static struct type *to_fixed_range_type (struct type *, struct value *);
174
175 static struct type *to_static_fixed_type (struct type *);
176 static struct type *static_unwrap_type (struct type *type);
177
178 static struct value *unwrap_value (struct value *);
179
180 static struct type *constrained_packed_array_type (struct type *, long *);
181
182 static struct type *decode_constrained_packed_array_type (struct type *);
183
184 static long decode_packed_array_bitsize (struct type *);
185
186 static struct value *decode_constrained_packed_array (struct value *);
187
188 static int ada_is_packed_array_type (struct type *);
189
190 static int ada_is_unconstrained_packed_array_type (struct type *);
191
192 static struct value *value_subscript_packed (struct value *, int,
193 struct value **);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *, int);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'. */
545
546 static std::string
547 add_angle_brackets (const char *str)
548 {
549 return string_printf ("<%s>", str);
550 }
551
552 static const char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* la_watch_location_expression for Ada. */
569
570 gdb::unique_xmalloc_ptr<char>
571 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
572 {
573 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
574 std::string name = type_to_string (type);
575 return gdb::unique_xmalloc_ptr<char>
576 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
577 }
578
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
582
583 void *
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
585 {
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
590 *size = min_size;
591 vect = xrealloc (vect, *size * element_size);
592 }
593 return vect;
594 }
595
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
598
599 static int
600 field_name_match (const char *field_name, const char *target)
601 {
602 int len = strlen (target);
603
604 return
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
610 }
611
612
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
620
621 int
622 ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624 {
625 int fieldno;
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 return fieldno;
631
632 if (!maybe_missing)
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
635
636 return -1;
637 }
638
639 /* The length of the prefix of NAME prior to any "___" suffix. */
640
641 int
642 ada_name_prefix_len (const char *name)
643 {
644 if (name == NULL)
645 return 0;
646 else
647 {
648 const char *p = strstr (name, "___");
649
650 if (p == NULL)
651 return strlen (name);
652 else
653 return p - name;
654 }
655 }
656
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
660 static int
661 is_suffix (const char *str, const char *suffix)
662 {
663 int len1, len2;
664
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 }
671
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
674
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
677 {
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
680 return val;
681 else
682 {
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
688
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
696 }
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
701 return result;
702 }
703 }
704
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
707 {
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712 }
713
714 static CORE_ADDR
715 cond_offset_target (CORE_ADDR address, long offset)
716 {
717 if (address == 0)
718 return 0;
719 else
720 return address + offset;
721 }
722
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
727
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731
732 static void
733 lim_warning (const char *format, ...)
734 {
735 va_list args;
736
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
741
742 va_end (args);
743 }
744
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
749 void
750 ada_ensure_varsize_limit (const struct type *type)
751 {
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
754 }
755
756 /* Maximum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 max_of_size (int size)
759 {
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
761
762 return top_bit | (top_bit - 1);
763 }
764
765 /* Minimum value of a SIZE-byte signed integer type. */
766 static LONGEST
767 min_of_size (int size)
768 {
769 return -max_of_size (size) - 1;
770 }
771
772 /* Maximum value of a SIZE-byte unsigned integer type. */
773 static ULONGEST
774 umax_of_size (int size)
775 {
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
777
778 return top_bit | (top_bit - 1);
779 }
780
781 /* Maximum value of integral type T, as a signed quantity. */
782 static LONGEST
783 max_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789 }
790
791 /* Minimum value of integral type T, as a signed quantity. */
792 static LONGEST
793 min_of_type (struct type *t)
794 {
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
799 }
800
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 LONGEST
803 ada_discrete_type_high_bound (struct type *type)
804 {
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
807 {
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
810 case TYPE_CODE_ENUM:
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
815 case TYPE_CODE_INT:
816 return max_of_type (type);
817 default:
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 }
820 }
821
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 LONGEST
824 ada_discrete_type_low_bound (struct type *type)
825 {
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
828 {
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
831 case TYPE_CODE_ENUM:
832 return TYPE_FIELD_ENUMVAL (type, 0);
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
836 case TYPE_CODE_INT:
837 return min_of_type (type);
838 default:
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 }
841 }
842
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
845
846 static struct type *
847 get_base_type (struct type *type)
848 {
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
856 }
857
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863 struct value *
864 ada_get_decoded_value (struct value *value)
865 {
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881 }
882
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888 struct type *
889 ada_get_decoded_type (struct type *type)
890 {
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895 }
896
897 \f
898
899 /* Language Selection */
900
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
903
904 enum language
905 ada_update_initial_language (enum language lang)
906 {
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
909 return language_ada;
910
911 return lang;
912 }
913
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918 char *
919 ada_main_name (void)
920 {
921 struct bound_minimal_symbol msym;
922 static gdb::unique_xmalloc_ptr<char> main_program_name;
923
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
931 if (msym.minsym != NULL)
932 {
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
939
940 target_read_string (main_program_name_addr, &main_program_name,
941 1024, &err_code);
942
943 if (err_code != 0)
944 return NULL;
945 return main_program_name.get ();
946 }
947
948 /* The main procedure doesn't seem to be in Ada. */
949 return NULL;
950 }
951 \f
952 /* Symbols */
953
954 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 of NULLs. */
956
957 const struct ada_opname_map ada_opname_table[] = {
958 {"Oadd", "\"+\"", BINOP_ADD},
959 {"Osubtract", "\"-\"", BINOP_SUB},
960 {"Omultiply", "\"*\"", BINOP_MUL},
961 {"Odivide", "\"/\"", BINOP_DIV},
962 {"Omod", "\"mod\"", BINOP_MOD},
963 {"Orem", "\"rem\"", BINOP_REM},
964 {"Oexpon", "\"**\"", BINOP_EXP},
965 {"Olt", "\"<\"", BINOP_LESS},
966 {"Ole", "\"<=\"", BINOP_LEQ},
967 {"Ogt", "\">\"", BINOP_GTR},
968 {"Oge", "\">=\"", BINOP_GEQ},
969 {"Oeq", "\"=\"", BINOP_EQUAL},
970 {"One", "\"/=\"", BINOP_NOTEQUAL},
971 {"Oand", "\"and\"", BINOP_BITWISE_AND},
972 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
973 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
974 {"Oconcat", "\"&\"", BINOP_CONCAT},
975 {"Oabs", "\"abs\"", UNOP_ABS},
976 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
977 {"Oadd", "\"+\"", UNOP_PLUS},
978 {"Osubtract", "\"-\"", UNOP_NEG},
979 {NULL, NULL}
980 };
981
982 /* The "encoded" form of DECODED, according to GNAT conventions. The
983 result is valid until the next call to ada_encode. If
984 THROW_ERRORS, throw an error if invalid operator name is found.
985 Otherwise, return NULL in that case. */
986
987 static char *
988 ada_encode_1 (const char *decoded, bool throw_errors)
989 {
990 static char *encoding_buffer = NULL;
991 static size_t encoding_buffer_size = 0;
992 const char *p;
993 int k;
994
995 if (decoded == NULL)
996 return NULL;
997
998 GROW_VECT (encoding_buffer, encoding_buffer_size,
999 2 * strlen (decoded) + 10);
1000
1001 k = 0;
1002 for (p = decoded; *p != '\0'; p += 1)
1003 {
1004 if (*p == '.')
1005 {
1006 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1007 k += 2;
1008 }
1009 else if (*p == '"')
1010 {
1011 const struct ada_opname_map *mapping;
1012
1013 for (mapping = ada_opname_table;
1014 mapping->encoded != NULL
1015 && !startswith (p, mapping->decoded); mapping += 1)
1016 ;
1017 if (mapping->encoded == NULL)
1018 {
1019 if (throw_errors)
1020 error (_("invalid Ada operator name: %s"), p);
1021 else
1022 return NULL;
1023 }
1024 strcpy (encoding_buffer + k, mapping->encoded);
1025 k += strlen (mapping->encoded);
1026 break;
1027 }
1028 else
1029 {
1030 encoding_buffer[k] = *p;
1031 k += 1;
1032 }
1033 }
1034
1035 encoding_buffer[k] = '\0';
1036 return encoding_buffer;
1037 }
1038
1039 /* The "encoded" form of DECODED, according to GNAT conventions.
1040 The result is valid until the next call to ada_encode. */
1041
1042 char *
1043 ada_encode (const char *decoded)
1044 {
1045 return ada_encode_1 (decoded, true);
1046 }
1047
1048 /* Return NAME folded to lower case, or, if surrounded by single
1049 quotes, unfolded, but with the quotes stripped away. Result good
1050 to next call. */
1051
1052 char *
1053 ada_fold_name (const char *name)
1054 {
1055 static char *fold_buffer = NULL;
1056 static size_t fold_buffer_size = 0;
1057
1058 int len = strlen (name);
1059 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1060
1061 if (name[0] == '\'')
1062 {
1063 strncpy (fold_buffer, name + 1, len - 2);
1064 fold_buffer[len - 2] = '\000';
1065 }
1066 else
1067 {
1068 int i;
1069
1070 for (i = 0; i <= len; i += 1)
1071 fold_buffer[i] = tolower (name[i]);
1072 }
1073
1074 return fold_buffer;
1075 }
1076
1077 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078
1079 static int
1080 is_lower_alphanum (const char c)
1081 {
1082 return (isdigit (c) || (isalpha (c) && islower (c)));
1083 }
1084
1085 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1086 This function saves in LEN the length of that same symbol name but
1087 without either of these suffixes:
1088 . .{DIGIT}+
1089 . ${DIGIT}+
1090 . ___{DIGIT}+
1091 . __{DIGIT}+.
1092
1093 These are suffixes introduced by the compiler for entities such as
1094 nested subprogram for instance, in order to avoid name clashes.
1095 They do not serve any purpose for the debugger. */
1096
1097 static void
1098 ada_remove_trailing_digits (const char *encoded, int *len)
1099 {
1100 if (*len > 1 && isdigit (encoded[*len - 1]))
1101 {
1102 int i = *len - 2;
1103
1104 while (i > 0 && isdigit (encoded[i]))
1105 i--;
1106 if (i >= 0 && encoded[i] == '.')
1107 *len = i;
1108 else if (i >= 0 && encoded[i] == '$')
1109 *len = i;
1110 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1111 *len = i - 2;
1112 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1113 *len = i - 1;
1114 }
1115 }
1116
1117 /* Remove the suffix introduced by the compiler for protected object
1118 subprograms. */
1119
1120 static void
1121 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1122 {
1123 /* Remove trailing N. */
1124
1125 /* Protected entry subprograms are broken into two
1126 separate subprograms: The first one is unprotected, and has
1127 a 'N' suffix; the second is the protected version, and has
1128 the 'P' suffix. The second calls the first one after handling
1129 the protection. Since the P subprograms are internally generated,
1130 we leave these names undecoded, giving the user a clue that this
1131 entity is internal. */
1132
1133 if (*len > 1
1134 && encoded[*len - 1] == 'N'
1135 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1136 *len = *len - 1;
1137 }
1138
1139 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140
1141 static void
1142 ada_remove_Xbn_suffix (const char *encoded, int *len)
1143 {
1144 int i = *len - 1;
1145
1146 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 i--;
1148
1149 if (encoded[i] != 'X')
1150 return;
1151
1152 if (i == 0)
1153 return;
1154
1155 if (isalnum (encoded[i-1]))
1156 *len = i;
1157 }
1158
1159 /* If ENCODED follows the GNAT entity encoding conventions, then return
1160 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1161 replaced by ENCODED.
1162
1163 The resulting string is valid until the next call of ada_decode.
1164 If the string is unchanged by decoding, the original string pointer
1165 is returned. */
1166
1167 const char *
1168 ada_decode (const char *encoded)
1169 {
1170 int i, j;
1171 int len0;
1172 const char *p;
1173 char *decoded;
1174 int at_start_name;
1175 static char *decoding_buffer = NULL;
1176 static size_t decoding_buffer_size = 0;
1177
1178 /* With function descriptors on PPC64, the value of a symbol named
1179 ".FN", if it exists, is the entry point of the function "FN". */
1180 if (encoded[0] == '.')
1181 encoded += 1;
1182
1183 /* The name of the Ada main procedure starts with "_ada_".
1184 This prefix is not part of the decoded name, so skip this part
1185 if we see this prefix. */
1186 if (startswith (encoded, "_ada_"))
1187 encoded += 5;
1188
1189 /* If the name starts with '_', then it is not a properly encoded
1190 name, so do not attempt to decode it. Similarly, if the name
1191 starts with '<', the name should not be decoded. */
1192 if (encoded[0] == '_' || encoded[0] == '<')
1193 goto Suppress;
1194
1195 len0 = strlen (encoded);
1196
1197 ada_remove_trailing_digits (encoded, &len0);
1198 ada_remove_po_subprogram_suffix (encoded, &len0);
1199
1200 /* Remove the ___X.* suffix if present. Do not forget to verify that
1201 the suffix is located before the current "end" of ENCODED. We want
1202 to avoid re-matching parts of ENCODED that have previously been
1203 marked as discarded (by decrementing LEN0). */
1204 p = strstr (encoded, "___");
1205 if (p != NULL && p - encoded < len0 - 3)
1206 {
1207 if (p[3] == 'X')
1208 len0 = p - encoded;
1209 else
1210 goto Suppress;
1211 }
1212
1213 /* Remove any trailing TKB suffix. It tells us that this symbol
1214 is for the body of a task, but that information does not actually
1215 appear in the decoded name. */
1216
1217 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1218 len0 -= 3;
1219
1220 /* Remove any trailing TB suffix. The TB suffix is slightly different
1221 from the TKB suffix because it is used for non-anonymous task
1222 bodies. */
1223
1224 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1225 len0 -= 2;
1226
1227 /* Remove trailing "B" suffixes. */
1228 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1229
1230 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1231 len0 -= 1;
1232
1233 /* Make decoded big enough for possible expansion by operator name. */
1234
1235 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1236 decoded = decoding_buffer;
1237
1238 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1239
1240 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1241 {
1242 i = len0 - 2;
1243 while ((i >= 0 && isdigit (encoded[i]))
1244 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1245 i -= 1;
1246 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1247 len0 = i - 1;
1248 else if (encoded[i] == '$')
1249 len0 = i;
1250 }
1251
1252 /* The first few characters that are not alphabetic are not part
1253 of any encoding we use, so we can copy them over verbatim. */
1254
1255 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1256 decoded[j] = encoded[i];
1257
1258 at_start_name = 1;
1259 while (i < len0)
1260 {
1261 /* Is this a symbol function? */
1262 if (at_start_name && encoded[i] == 'O')
1263 {
1264 int k;
1265
1266 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1267 {
1268 int op_len = strlen (ada_opname_table[k].encoded);
1269 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1270 op_len - 1) == 0)
1271 && !isalnum (encoded[i + op_len]))
1272 {
1273 strcpy (decoded + j, ada_opname_table[k].decoded);
1274 at_start_name = 0;
1275 i += op_len;
1276 j += strlen (ada_opname_table[k].decoded);
1277 break;
1278 }
1279 }
1280 if (ada_opname_table[k].encoded != NULL)
1281 continue;
1282 }
1283 at_start_name = 0;
1284
1285 /* Replace "TK__" with "__", which will eventually be translated
1286 into "." (just below). */
1287
1288 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1289 i += 2;
1290
1291 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1292 be translated into "." (just below). These are internal names
1293 generated for anonymous blocks inside which our symbol is nested. */
1294
1295 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1296 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1297 && isdigit (encoded [i+4]))
1298 {
1299 int k = i + 5;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++; /* Skip any extra digit. */
1303
1304 /* Double-check that the "__B_{DIGITS}+" sequence we found
1305 is indeed followed by "__". */
1306 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1307 i = k;
1308 }
1309
1310 /* Remove _E{DIGITS}+[sb] */
1311
1312 /* Just as for protected object subprograms, there are 2 categories
1313 of subprograms created by the compiler for each entry. The first
1314 one implements the actual entry code, and has a suffix following
1315 the convention above; the second one implements the barrier and
1316 uses the same convention as above, except that the 'E' is replaced
1317 by a 'B'.
1318
1319 Just as above, we do not decode the name of barrier functions
1320 to give the user a clue that the code he is debugging has been
1321 internally generated. */
1322
1323 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1324 && isdigit (encoded[i+2]))
1325 {
1326 int k = i + 3;
1327
1328 while (k < len0 && isdigit (encoded[k]))
1329 k++;
1330
1331 if (k < len0
1332 && (encoded[k] == 'b' || encoded[k] == 's'))
1333 {
1334 k++;
1335 /* Just as an extra precaution, make sure that if this
1336 suffix is followed by anything else, it is a '_'.
1337 Otherwise, we matched this sequence by accident. */
1338 if (k == len0
1339 || (k < len0 && encoded[k] == '_'))
1340 i = k;
1341 }
1342 }
1343
1344 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1345 the GNAT front-end in protected object subprograms. */
1346
1347 if (i < len0 + 3
1348 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1349 {
1350 /* Backtrack a bit up until we reach either the begining of
1351 the encoded name, or "__". Make sure that we only find
1352 digits or lowercase characters. */
1353 const char *ptr = encoded + i - 1;
1354
1355 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1356 ptr--;
1357 if (ptr < encoded
1358 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1359 i++;
1360 }
1361
1362 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1363 {
1364 /* This is a X[bn]* sequence not separated from the previous
1365 part of the name with a non-alpha-numeric character (in other
1366 words, immediately following an alpha-numeric character), then
1367 verify that it is placed at the end of the encoded name. If
1368 not, then the encoding is not valid and we should abort the
1369 decoding. Otherwise, just skip it, it is used in body-nested
1370 package names. */
1371 do
1372 i += 1;
1373 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1374 if (i < len0)
1375 goto Suppress;
1376 }
1377 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1378 {
1379 /* Replace '__' by '.'. */
1380 decoded[j] = '.';
1381 at_start_name = 1;
1382 i += 2;
1383 j += 1;
1384 }
1385 else
1386 {
1387 /* It's a character part of the decoded name, so just copy it
1388 over. */
1389 decoded[j] = encoded[i];
1390 i += 1;
1391 j += 1;
1392 }
1393 }
1394 decoded[j] = '\000';
1395
1396 /* Decoded names should never contain any uppercase character.
1397 Double-check this, and abort the decoding if we find one. */
1398
1399 for (i = 0; decoded[i] != '\0'; i += 1)
1400 if (isupper (decoded[i]) || decoded[i] == ' ')
1401 goto Suppress;
1402
1403 if (strcmp (decoded, encoded) == 0)
1404 return encoded;
1405 else
1406 return decoded;
1407
1408 Suppress:
1409 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1410 decoded = decoding_buffer;
1411 if (encoded[0] == '<')
1412 strcpy (decoded, encoded);
1413 else
1414 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1415 return decoded;
1416
1417 }
1418
1419 /* Table for keeping permanent unique copies of decoded names. Once
1420 allocated, names in this table are never released. While this is a
1421 storage leak, it should not be significant unless there are massive
1422 changes in the set of decoded names in successive versions of a
1423 symbol table loaded during a single session. */
1424 static struct htab *decoded_names_store;
1425
1426 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1427 in the language-specific part of GSYMBOL, if it has not been
1428 previously computed. Tries to save the decoded name in the same
1429 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1430 in any case, the decoded symbol has a lifetime at least that of
1431 GSYMBOL).
1432 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1433 const, but nevertheless modified to a semantically equivalent form
1434 when a decoded name is cached in it. */
1435
1436 const char *
1437 ada_decode_symbol (const struct general_symbol_info *arg)
1438 {
1439 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1440 const char **resultp =
1441 &gsymbol->language_specific.demangled_name;
1442
1443 if (!gsymbol->ada_mangled)
1444 {
1445 const char *decoded = ada_decode (gsymbol->name);
1446 struct obstack *obstack = gsymbol->language_specific.obstack;
1447
1448 gsymbol->ada_mangled = 1;
1449
1450 if (obstack != NULL)
1451 *resultp
1452 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1453 else
1454 {
1455 /* Sometimes, we can't find a corresponding objfile, in
1456 which case, we put the result on the heap. Since we only
1457 decode when needed, we hope this usually does not cause a
1458 significant memory leak (FIXME). */
1459
1460 char **slot = (char **) htab_find_slot (decoded_names_store,
1461 decoded, INSERT);
1462
1463 if (*slot == NULL)
1464 *slot = xstrdup (decoded);
1465 *resultp = *slot;
1466 }
1467 }
1468
1469 return *resultp;
1470 }
1471
1472 static char *
1473 ada_la_decode (const char *encoded, int options)
1474 {
1475 return xstrdup (ada_decode (encoded));
1476 }
1477
1478 /* Implement la_sniff_from_mangled_name for Ada. */
1479
1480 static int
1481 ada_sniff_from_mangled_name (const char *mangled, char **out)
1482 {
1483 const char *demangled = ada_decode (mangled);
1484
1485 *out = NULL;
1486
1487 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1488 {
1489 /* Set the gsymbol language to Ada, but still return 0.
1490 Two reasons for that:
1491
1492 1. For Ada, we prefer computing the symbol's decoded name
1493 on the fly rather than pre-compute it, in order to save
1494 memory (Ada projects are typically very large).
1495
1496 2. There are some areas in the definition of the GNAT
1497 encoding where, with a bit of bad luck, we might be able
1498 to decode a non-Ada symbol, generating an incorrect
1499 demangled name (Eg: names ending with "TB" for instance
1500 are identified as task bodies and so stripped from
1501 the decoded name returned).
1502
1503 Returning 1, here, but not setting *DEMANGLED, helps us get a
1504 little bit of the best of both worlds. Because we're last,
1505 we should not affect any of the other languages that were
1506 able to demangle the symbol before us; we get to correctly
1507 tag Ada symbols as such; and even if we incorrectly tagged a
1508 non-Ada symbol, which should be rare, any routing through the
1509 Ada language should be transparent (Ada tries to behave much
1510 like C/C++ with non-Ada symbols). */
1511 return 1;
1512 }
1513
1514 return 0;
1515 }
1516
1517 \f
1518
1519 /* Arrays */
1520
1521 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1522 generated by the GNAT compiler to describe the index type used
1523 for each dimension of an array, check whether it follows the latest
1524 known encoding. If not, fix it up to conform to the latest encoding.
1525 Otherwise, do nothing. This function also does nothing if
1526 INDEX_DESC_TYPE is NULL.
1527
1528 The GNAT encoding used to describle the array index type evolved a bit.
1529 Initially, the information would be provided through the name of each
1530 field of the structure type only, while the type of these fields was
1531 described as unspecified and irrelevant. The debugger was then expected
1532 to perform a global type lookup using the name of that field in order
1533 to get access to the full index type description. Because these global
1534 lookups can be very expensive, the encoding was later enhanced to make
1535 the global lookup unnecessary by defining the field type as being
1536 the full index type description.
1537
1538 The purpose of this routine is to allow us to support older versions
1539 of the compiler by detecting the use of the older encoding, and by
1540 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1541 we essentially replace each field's meaningless type by the associated
1542 index subtype). */
1543
1544 void
1545 ada_fixup_array_indexes_type (struct type *index_desc_type)
1546 {
1547 int i;
1548
1549 if (index_desc_type == NULL)
1550 return;
1551 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1552
1553 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1554 to check one field only, no need to check them all). If not, return
1555 now.
1556
1557 If our INDEX_DESC_TYPE was generated using the older encoding,
1558 the field type should be a meaningless integer type whose name
1559 is not equal to the field name. */
1560 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1561 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1562 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1563 return;
1564
1565 /* Fixup each field of INDEX_DESC_TYPE. */
1566 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1567 {
1568 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1569 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1570
1571 if (raw_type)
1572 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1573 }
1574 }
1575
1576 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1577
1578 static const char *bound_name[] = {
1579 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1580 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1581 };
1582
1583 /* Maximum number of array dimensions we are prepared to handle. */
1584
1585 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1586
1587
1588 /* The desc_* routines return primitive portions of array descriptors
1589 (fat pointers). */
1590
1591 /* The descriptor or array type, if any, indicated by TYPE; removes
1592 level of indirection, if needed. */
1593
1594 static struct type *
1595 desc_base_type (struct type *type)
1596 {
1597 if (type == NULL)
1598 return NULL;
1599 type = ada_check_typedef (type);
1600 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1601 type = ada_typedef_target_type (type);
1602
1603 if (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1607 else
1608 return type;
1609 }
1610
1611 /* True iff TYPE indicates a "thin" array pointer type. */
1612
1613 static int
1614 is_thin_pntr (struct type *type)
1615 {
1616 return
1617 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1618 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1619 }
1620
1621 /* The descriptor type for thin pointer type TYPE. */
1622
1623 static struct type *
1624 thin_descriptor_type (struct type *type)
1625 {
1626 struct type *base_type = desc_base_type (type);
1627
1628 if (base_type == NULL)
1629 return NULL;
1630 if (is_suffix (ada_type_name (base_type), "___XVE"))
1631 return base_type;
1632 else
1633 {
1634 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1635
1636 if (alt_type == NULL)
1637 return base_type;
1638 else
1639 return alt_type;
1640 }
1641 }
1642
1643 /* A pointer to the array data for thin-pointer value VAL. */
1644
1645 static struct value *
1646 thin_data_pntr (struct value *val)
1647 {
1648 struct type *type = ada_check_typedef (value_type (val));
1649 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1650
1651 data_type = lookup_pointer_type (data_type);
1652
1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1654 return value_cast (data_type, value_copy (val));
1655 else
1656 return value_from_longest (data_type, value_address (val));
1657 }
1658
1659 /* True iff TYPE indicates a "thick" array pointer type. */
1660
1661 static int
1662 is_thick_pntr (struct type *type)
1663 {
1664 type = desc_base_type (type);
1665 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1666 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1667 }
1668
1669 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1670 pointer to one, the type of its bounds data; otherwise, NULL. */
1671
1672 static struct type *
1673 desc_bounds_type (struct type *type)
1674 {
1675 struct type *r;
1676
1677 type = desc_base_type (type);
1678
1679 if (type == NULL)
1680 return NULL;
1681 else if (is_thin_pntr (type))
1682 {
1683 type = thin_descriptor_type (type);
1684 if (type == NULL)
1685 return NULL;
1686 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1687 if (r != NULL)
1688 return ada_check_typedef (r);
1689 }
1690 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1691 {
1692 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1693 if (r != NULL)
1694 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1695 }
1696 return NULL;
1697 }
1698
1699 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1700 one, a pointer to its bounds data. Otherwise NULL. */
1701
1702 static struct value *
1703 desc_bounds (struct value *arr)
1704 {
1705 struct type *type = ada_check_typedef (value_type (arr));
1706
1707 if (is_thin_pntr (type))
1708 {
1709 struct type *bounds_type =
1710 desc_bounds_type (thin_descriptor_type (type));
1711 LONGEST addr;
1712
1713 if (bounds_type == NULL)
1714 error (_("Bad GNAT array descriptor"));
1715
1716 /* NOTE: The following calculation is not really kosher, but
1717 since desc_type is an XVE-encoded type (and shouldn't be),
1718 the correct calculation is a real pain. FIXME (and fix GCC). */
1719 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1720 addr = value_as_long (arr);
1721 else
1722 addr = value_address (arr);
1723
1724 return
1725 value_from_longest (lookup_pointer_type (bounds_type),
1726 addr - TYPE_LENGTH (bounds_type));
1727 }
1728
1729 else if (is_thick_pntr (type))
1730 {
1731 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1732 _("Bad GNAT array descriptor"));
1733 struct type *p_bounds_type = value_type (p_bounds);
1734
1735 if (p_bounds_type
1736 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1737 {
1738 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1739
1740 if (TYPE_STUB (target_type))
1741 p_bounds = value_cast (lookup_pointer_type
1742 (ada_check_typedef (target_type)),
1743 p_bounds);
1744 }
1745 else
1746 error (_("Bad GNAT array descriptor"));
1747
1748 return p_bounds;
1749 }
1750 else
1751 return NULL;
1752 }
1753
1754 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the bounds data. */
1756
1757 static int
1758 fat_pntr_bounds_bitpos (struct type *type)
1759 {
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1761 }
1762
1763 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1764 size of the field containing the address of the bounds data. */
1765
1766 static int
1767 fat_pntr_bounds_bitsize (struct type *type)
1768 {
1769 type = desc_base_type (type);
1770
1771 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 1);
1773 else
1774 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1775 }
1776
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its array data (a array-with-no-bounds type);
1779 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1780 data. */
1781
1782 static struct type *
1783 desc_data_target_type (struct type *type)
1784 {
1785 type = desc_base_type (type);
1786
1787 /* NOTE: The following is bogus; see comment in desc_bounds. */
1788 if (is_thin_pntr (type))
1789 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1790 else if (is_thick_pntr (type))
1791 {
1792 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1793
1794 if (data_type
1795 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1796 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1797 }
1798
1799 return NULL;
1800 }
1801
1802 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1803 its array data. */
1804
1805 static struct value *
1806 desc_data (struct value *arr)
1807 {
1808 struct type *type = value_type (arr);
1809
1810 if (is_thin_pntr (type))
1811 return thin_data_pntr (arr);
1812 else if (is_thick_pntr (type))
1813 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1814 _("Bad GNAT array descriptor"));
1815 else
1816 return NULL;
1817 }
1818
1819
1820 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1821 position of the field containing the address of the data. */
1822
1823 static int
1824 fat_pntr_data_bitpos (struct type *type)
1825 {
1826 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1827 }
1828
1829 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1830 size of the field containing the address of the data. */
1831
1832 static int
1833 fat_pntr_data_bitsize (struct type *type)
1834 {
1835 type = desc_base_type (type);
1836
1837 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1838 return TYPE_FIELD_BITSIZE (type, 0);
1839 else
1840 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1844 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static struct value *
1848 desc_one_bound (struct value *bounds, int i, int which)
1849 {
1850 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1851 _("Bad GNAT array descriptor bounds"));
1852 }
1853
1854 /* If BOUNDS is an array-bounds structure type, return the bit position
1855 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1856 bound, if WHICH is 1. The first bound is I=1. */
1857
1858 static int
1859 desc_bound_bitpos (struct type *type, int i, int which)
1860 {
1861 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1862 }
1863
1864 /* If BOUNDS is an array-bounds structure type, return the bit field size
1865 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1866 bound, if WHICH is 1. The first bound is I=1. */
1867
1868 static int
1869 desc_bound_bitsize (struct type *type, int i, int which)
1870 {
1871 type = desc_base_type (type);
1872
1873 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1874 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1875 else
1876 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1877 }
1878
1879 /* If TYPE is the type of an array-bounds structure, the type of its
1880 Ith bound (numbering from 1). Otherwise, NULL. */
1881
1882 static struct type *
1883 desc_index_type (struct type *type, int i)
1884 {
1885 type = desc_base_type (type);
1886
1887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1888 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1889 else
1890 return NULL;
1891 }
1892
1893 /* The number of index positions in the array-bounds type TYPE.
1894 Return 0 if TYPE is NULL. */
1895
1896 static int
1897 desc_arity (struct type *type)
1898 {
1899 type = desc_base_type (type);
1900
1901 if (type != NULL)
1902 return TYPE_NFIELDS (type) / 2;
1903 return 0;
1904 }
1905
1906 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1907 an array descriptor type (representing an unconstrained array
1908 type). */
1909
1910 static int
1911 ada_is_direct_array_type (struct type *type)
1912 {
1913 if (type == NULL)
1914 return 0;
1915 type = ada_check_typedef (type);
1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1917 || ada_is_array_descriptor_type (type));
1918 }
1919
1920 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1921 * to one. */
1922
1923 static int
1924 ada_is_array_type (struct type *type)
1925 {
1926 while (type != NULL
1927 && (TYPE_CODE (type) == TYPE_CODE_PTR
1928 || TYPE_CODE (type) == TYPE_CODE_REF))
1929 type = TYPE_TARGET_TYPE (type);
1930 return ada_is_direct_array_type (type);
1931 }
1932
1933 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1934
1935 int
1936 ada_is_simple_array_type (struct type *type)
1937 {
1938 if (type == NULL)
1939 return 0;
1940 type = ada_check_typedef (type);
1941 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1942 || (TYPE_CODE (type) == TYPE_CODE_PTR
1943 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1944 == TYPE_CODE_ARRAY));
1945 }
1946
1947 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1948
1949 int
1950 ada_is_array_descriptor_type (struct type *type)
1951 {
1952 struct type *data_type = desc_data_target_type (type);
1953
1954 if (type == NULL)
1955 return 0;
1956 type = ada_check_typedef (type);
1957 return (data_type != NULL
1958 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1959 && desc_arity (desc_bounds_type (type)) > 0);
1960 }
1961
1962 /* Non-zero iff type is a partially mal-formed GNAT array
1963 descriptor. FIXME: This is to compensate for some problems with
1964 debugging output from GNAT. Re-examine periodically to see if it
1965 is still needed. */
1966
1967 int
1968 ada_is_bogus_array_descriptor (struct type *type)
1969 {
1970 return
1971 type != NULL
1972 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1973 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1974 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1975 && !ada_is_array_descriptor_type (type);
1976 }
1977
1978
1979 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1980 (fat pointer) returns the type of the array data described---specifically,
1981 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1982 in from the descriptor; otherwise, they are left unspecified. If
1983 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1984 returns NULL. The result is simply the type of ARR if ARR is not
1985 a descriptor. */
1986 struct type *
1987 ada_type_of_array (struct value *arr, int bounds)
1988 {
1989 if (ada_is_constrained_packed_array_type (value_type (arr)))
1990 return decode_constrained_packed_array_type (value_type (arr));
1991
1992 if (!ada_is_array_descriptor_type (value_type (arr)))
1993 return value_type (arr);
1994
1995 if (!bounds)
1996 {
1997 struct type *array_type =
1998 ada_check_typedef (desc_data_target_type (value_type (arr)));
1999
2000 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2001 TYPE_FIELD_BITSIZE (array_type, 0) =
2002 decode_packed_array_bitsize (value_type (arr));
2003
2004 return array_type;
2005 }
2006 else
2007 {
2008 struct type *elt_type;
2009 int arity;
2010 struct value *descriptor;
2011
2012 elt_type = ada_array_element_type (value_type (arr), -1);
2013 arity = ada_array_arity (value_type (arr));
2014
2015 if (elt_type == NULL || arity == 0)
2016 return ada_check_typedef (value_type (arr));
2017
2018 descriptor = desc_bounds (arr);
2019 if (value_as_long (descriptor) == 0)
2020 return NULL;
2021 while (arity > 0)
2022 {
2023 struct type *range_type = alloc_type_copy (value_type (arr));
2024 struct type *array_type = alloc_type_copy (value_type (arr));
2025 struct value *low = desc_one_bound (descriptor, arity, 0);
2026 struct value *high = desc_one_bound (descriptor, arity, 1);
2027
2028 arity -= 1;
2029 create_static_range_type (range_type, value_type (low),
2030 longest_to_int (value_as_long (low)),
2031 longest_to_int (value_as_long (high)));
2032 elt_type = create_array_type (array_type, elt_type, range_type);
2033
2034 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2035 {
2036 /* We need to store the element packed bitsize, as well as
2037 recompute the array size, because it was previously
2038 computed based on the unpacked element size. */
2039 LONGEST lo = value_as_long (low);
2040 LONGEST hi = value_as_long (high);
2041
2042 TYPE_FIELD_BITSIZE (elt_type, 0) =
2043 decode_packed_array_bitsize (value_type (arr));
2044 /* If the array has no element, then the size is already
2045 zero, and does not need to be recomputed. */
2046 if (lo < hi)
2047 {
2048 int array_bitsize =
2049 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2050
2051 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2052 }
2053 }
2054 }
2055
2056 return lookup_pointer_type (elt_type);
2057 }
2058 }
2059
2060 /* If ARR does not represent an array, returns ARR unchanged.
2061 Otherwise, returns either a standard GDB array with bounds set
2062 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2063 GDB array. Returns NULL if ARR is a null fat pointer. */
2064
2065 struct value *
2066 ada_coerce_to_simple_array_ptr (struct value *arr)
2067 {
2068 if (ada_is_array_descriptor_type (value_type (arr)))
2069 {
2070 struct type *arrType = ada_type_of_array (arr, 1);
2071
2072 if (arrType == NULL)
2073 return NULL;
2074 return value_cast (arrType, value_copy (desc_data (arr)));
2075 }
2076 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2077 return decode_constrained_packed_array (arr);
2078 else
2079 return arr;
2080 }
2081
2082 /* If ARR does not represent an array, returns ARR unchanged.
2083 Otherwise, returns a standard GDB array describing ARR (which may
2084 be ARR itself if it already is in the proper form). */
2085
2086 struct value *
2087 ada_coerce_to_simple_array (struct value *arr)
2088 {
2089 if (ada_is_array_descriptor_type (value_type (arr)))
2090 {
2091 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2092
2093 if (arrVal == NULL)
2094 error (_("Bounds unavailable for null array pointer."));
2095 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2096 return value_ind (arrVal);
2097 }
2098 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2099 return decode_constrained_packed_array (arr);
2100 else
2101 return arr;
2102 }
2103
2104 /* If TYPE represents a GNAT array type, return it translated to an
2105 ordinary GDB array type (possibly with BITSIZE fields indicating
2106 packing). For other types, is the identity. */
2107
2108 struct type *
2109 ada_coerce_to_simple_array_type (struct type *type)
2110 {
2111 if (ada_is_constrained_packed_array_type (type))
2112 return decode_constrained_packed_array_type (type);
2113
2114 if (ada_is_array_descriptor_type (type))
2115 return ada_check_typedef (desc_data_target_type (type));
2116
2117 return type;
2118 }
2119
2120 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2121
2122 static int
2123 ada_is_packed_array_type (struct type *type)
2124 {
2125 if (type == NULL)
2126 return 0;
2127 type = desc_base_type (type);
2128 type = ada_check_typedef (type);
2129 return
2130 ada_type_name (type) != NULL
2131 && strstr (ada_type_name (type), "___XP") != NULL;
2132 }
2133
2134 /* Non-zero iff TYPE represents a standard GNAT constrained
2135 packed-array type. */
2136
2137 int
2138 ada_is_constrained_packed_array_type (struct type *type)
2139 {
2140 return ada_is_packed_array_type (type)
2141 && !ada_is_array_descriptor_type (type);
2142 }
2143
2144 /* Non-zero iff TYPE represents an array descriptor for a
2145 unconstrained packed-array type. */
2146
2147 static int
2148 ada_is_unconstrained_packed_array_type (struct type *type)
2149 {
2150 return ada_is_packed_array_type (type)
2151 && ada_is_array_descriptor_type (type);
2152 }
2153
2154 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2155 return the size of its elements in bits. */
2156
2157 static long
2158 decode_packed_array_bitsize (struct type *type)
2159 {
2160 const char *raw_name;
2161 const char *tail;
2162 long bits;
2163
2164 /* Access to arrays implemented as fat pointers are encoded as a typedef
2165 of the fat pointer type. We need the name of the fat pointer type
2166 to do the decoding, so strip the typedef layer. */
2167 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2168 type = ada_typedef_target_type (type);
2169
2170 raw_name = ada_type_name (ada_check_typedef (type));
2171 if (!raw_name)
2172 raw_name = ada_type_name (desc_base_type (type));
2173
2174 if (!raw_name)
2175 return 0;
2176
2177 tail = strstr (raw_name, "___XP");
2178 gdb_assert (tail != NULL);
2179
2180 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2181 {
2182 lim_warning
2183 (_("could not understand bit size information on packed array"));
2184 return 0;
2185 }
2186
2187 return bits;
2188 }
2189
2190 /* Given that TYPE is a standard GDB array type with all bounds filled
2191 in, and that the element size of its ultimate scalar constituents
2192 (that is, either its elements, or, if it is an array of arrays, its
2193 elements' elements, etc.) is *ELT_BITS, return an identical type,
2194 but with the bit sizes of its elements (and those of any
2195 constituent arrays) recorded in the BITSIZE components of its
2196 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2197 in bits.
2198
2199 Note that, for arrays whose index type has an XA encoding where
2200 a bound references a record discriminant, getting that discriminant,
2201 and therefore the actual value of that bound, is not possible
2202 because none of the given parameters gives us access to the record.
2203 This function assumes that it is OK in the context where it is being
2204 used to return an array whose bounds are still dynamic and where
2205 the length is arbitrary. */
2206
2207 static struct type *
2208 constrained_packed_array_type (struct type *type, long *elt_bits)
2209 {
2210 struct type *new_elt_type;
2211 struct type *new_type;
2212 struct type *index_type_desc;
2213 struct type *index_type;
2214 LONGEST low_bound, high_bound;
2215
2216 type = ada_check_typedef (type);
2217 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2218 return type;
2219
2220 index_type_desc = ada_find_parallel_type (type, "___XA");
2221 if (index_type_desc)
2222 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2223 NULL);
2224 else
2225 index_type = TYPE_INDEX_TYPE (type);
2226
2227 new_type = alloc_type_copy (type);
2228 new_elt_type =
2229 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2230 elt_bits);
2231 create_array_type (new_type, new_elt_type, index_type);
2232 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2233 TYPE_NAME (new_type) = ada_type_name (type);
2234
2235 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2236 && is_dynamic_type (check_typedef (index_type)))
2237 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2238 low_bound = high_bound = 0;
2239 if (high_bound < low_bound)
2240 *elt_bits = TYPE_LENGTH (new_type) = 0;
2241 else
2242 {
2243 *elt_bits *= (high_bound - low_bound + 1);
2244 TYPE_LENGTH (new_type) =
2245 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2246 }
2247
2248 TYPE_FIXED_INSTANCE (new_type) = 1;
2249 return new_type;
2250 }
2251
2252 /* The array type encoded by TYPE, where
2253 ada_is_constrained_packed_array_type (TYPE). */
2254
2255 static struct type *
2256 decode_constrained_packed_array_type (struct type *type)
2257 {
2258 const char *raw_name = ada_type_name (ada_check_typedef (type));
2259 char *name;
2260 const char *tail;
2261 struct type *shadow_type;
2262 long bits;
2263
2264 if (!raw_name)
2265 raw_name = ada_type_name (desc_base_type (type));
2266
2267 if (!raw_name)
2268 return NULL;
2269
2270 name = (char *) alloca (strlen (raw_name) + 1);
2271 tail = strstr (raw_name, "___XP");
2272 type = desc_base_type (type);
2273
2274 memcpy (name, raw_name, tail - raw_name);
2275 name[tail - raw_name] = '\000';
2276
2277 shadow_type = ada_find_parallel_type_with_name (type, name);
2278
2279 if (shadow_type == NULL)
2280 {
2281 lim_warning (_("could not find bounds information on packed array"));
2282 return NULL;
2283 }
2284 shadow_type = check_typedef (shadow_type);
2285
2286 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2287 {
2288 lim_warning (_("could not understand bounds "
2289 "information on packed array"));
2290 return NULL;
2291 }
2292
2293 bits = decode_packed_array_bitsize (type);
2294 return constrained_packed_array_type (shadow_type, &bits);
2295 }
2296
2297 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2298 array, returns a simple array that denotes that array. Its type is a
2299 standard GDB array type except that the BITSIZEs of the array
2300 target types are set to the number of bits in each element, and the
2301 type length is set appropriately. */
2302
2303 static struct value *
2304 decode_constrained_packed_array (struct value *arr)
2305 {
2306 struct type *type;
2307
2308 /* If our value is a pointer, then dereference it. Likewise if
2309 the value is a reference. Make sure that this operation does not
2310 cause the target type to be fixed, as this would indirectly cause
2311 this array to be decoded. The rest of the routine assumes that
2312 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2313 and "value_ind" routines to perform the dereferencing, as opposed
2314 to using "ada_coerce_ref" or "ada_value_ind". */
2315 arr = coerce_ref (arr);
2316 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2317 arr = value_ind (arr);
2318
2319 type = decode_constrained_packed_array_type (value_type (arr));
2320 if (type == NULL)
2321 {
2322 error (_("can't unpack array"));
2323 return NULL;
2324 }
2325
2326 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2327 && ada_is_modular_type (value_type (arr)))
2328 {
2329 /* This is a (right-justified) modular type representing a packed
2330 array with no wrapper. In order to interpret the value through
2331 the (left-justified) packed array type we just built, we must
2332 first left-justify it. */
2333 int bit_size, bit_pos;
2334 ULONGEST mod;
2335
2336 mod = ada_modulus (value_type (arr)) - 1;
2337 bit_size = 0;
2338 while (mod > 0)
2339 {
2340 bit_size += 1;
2341 mod >>= 1;
2342 }
2343 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2344 arr = ada_value_primitive_packed_val (arr, NULL,
2345 bit_pos / HOST_CHAR_BIT,
2346 bit_pos % HOST_CHAR_BIT,
2347 bit_size,
2348 type);
2349 }
2350
2351 return coerce_unspec_val_to_type (arr, type);
2352 }
2353
2354
2355 /* The value of the element of packed array ARR at the ARITY indices
2356 given in IND. ARR must be a simple array. */
2357
2358 static struct value *
2359 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2360 {
2361 int i;
2362 int bits, elt_off, bit_off;
2363 long elt_total_bit_offset;
2364 struct type *elt_type;
2365 struct value *v;
2366
2367 bits = 0;
2368 elt_total_bit_offset = 0;
2369 elt_type = ada_check_typedef (value_type (arr));
2370 for (i = 0; i < arity; i += 1)
2371 {
2372 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2373 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2374 error
2375 (_("attempt to do packed indexing of "
2376 "something other than a packed array"));
2377 else
2378 {
2379 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2380 LONGEST lowerbound, upperbound;
2381 LONGEST idx;
2382
2383 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2384 {
2385 lim_warning (_("don't know bounds of array"));
2386 lowerbound = upperbound = 0;
2387 }
2388
2389 idx = pos_atr (ind[i]);
2390 if (idx < lowerbound || idx > upperbound)
2391 lim_warning (_("packed array index %ld out of bounds"),
2392 (long) idx);
2393 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2394 elt_total_bit_offset += (idx - lowerbound) * bits;
2395 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2396 }
2397 }
2398 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2399 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2400
2401 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2402 bits, elt_type);
2403 return v;
2404 }
2405
2406 /* Non-zero iff TYPE includes negative integer values. */
2407
2408 static int
2409 has_negatives (struct type *type)
2410 {
2411 switch (TYPE_CODE (type))
2412 {
2413 default:
2414 return 0;
2415 case TYPE_CODE_INT:
2416 return !TYPE_UNSIGNED (type);
2417 case TYPE_CODE_RANGE:
2418 return TYPE_LOW_BOUND (type) < 0;
2419 }
2420 }
2421
2422 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2423 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2424 the unpacked buffer.
2425
2426 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2427 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2428
2429 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2430 zero otherwise.
2431
2432 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2433
2434 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2435
2436 static void
2437 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2438 gdb_byte *unpacked, int unpacked_len,
2439 int is_big_endian, int is_signed_type,
2440 int is_scalar)
2441 {
2442 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 int src_idx; /* Index into the source area */
2444 int src_bytes_left; /* Number of source bytes left to process. */
2445 int srcBitsLeft; /* Number of source bits left to move */
2446 int unusedLS; /* Number of bits in next significant
2447 byte of source that are unused */
2448
2449 int unpacked_idx; /* Index into the unpacked buffer */
2450 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2451
2452 unsigned long accum; /* Staging area for bits being transferred */
2453 int accumSize; /* Number of meaningful bits in accum */
2454 unsigned char sign;
2455
2456 /* Transmit bytes from least to most significant; delta is the direction
2457 the indices move. */
2458 int delta = is_big_endian ? -1 : 1;
2459
2460 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2461 bits from SRC. .*/
2462 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2463 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2464 bit_size, unpacked_len);
2465
2466 srcBitsLeft = bit_size;
2467 src_bytes_left = src_len;
2468 unpacked_bytes_left = unpacked_len;
2469 sign = 0;
2470
2471 if (is_big_endian)
2472 {
2473 src_idx = src_len - 1;
2474 if (is_signed_type
2475 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2476 sign = ~0;
2477
2478 unusedLS =
2479 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2480 % HOST_CHAR_BIT;
2481
2482 if (is_scalar)
2483 {
2484 accumSize = 0;
2485 unpacked_idx = unpacked_len - 1;
2486 }
2487 else
2488 {
2489 /* Non-scalar values must be aligned at a byte boundary... */
2490 accumSize =
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2493 of the target. */
2494 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 unpacked_bytes_left = unpacked_idx + 1;
2496 }
2497 }
2498 else
2499 {
2500 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2501
2502 src_idx = unpacked_idx = 0;
2503 unusedLS = bit_offset;
2504 accumSize = 0;
2505
2506 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2507 sign = ~0;
2508 }
2509
2510 accum = 0;
2511 while (src_bytes_left > 0)
2512 {
2513 /* Mask for removing bits of the next source byte that are not
2514 part of the value. */
2515 unsigned int unusedMSMask =
2516 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2517 1;
2518 /* Sign-extend bits for this byte. */
2519 unsigned int signMask = sign & ~unusedMSMask;
2520
2521 accum |=
2522 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2523 accumSize += HOST_CHAR_BIT - unusedLS;
2524 if (accumSize >= HOST_CHAR_BIT)
2525 {
2526 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2527 accumSize -= HOST_CHAR_BIT;
2528 accum >>= HOST_CHAR_BIT;
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
2531 }
2532 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2533 unusedLS = 0;
2534 src_bytes_left -= 1;
2535 src_idx += delta;
2536 }
2537 while (unpacked_bytes_left > 0)
2538 {
2539 accum |= sign << accumSize;
2540 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2541 accumSize -= HOST_CHAR_BIT;
2542 if (accumSize < 0)
2543 accumSize = 0;
2544 accum >>= HOST_CHAR_BIT;
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
2547 }
2548 }
2549
2550 /* Create a new value of type TYPE from the contents of OBJ starting
2551 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2552 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2553 assigning through the result will set the field fetched from.
2554 VALADDR is ignored unless OBJ is NULL, in which case,
2555 VALADDR+OFFSET must address the start of storage containing the
2556 packed value. The value returned in this case is never an lval.
2557 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2558
2559 struct value *
2560 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2561 long offset, int bit_offset, int bit_size,
2562 struct type *type)
2563 {
2564 struct value *v;
2565 const gdb_byte *src; /* First byte containing data to unpack */
2566 gdb_byte *unpacked;
2567 const int is_scalar = is_scalar_type (type);
2568 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2569 gdb::byte_vector staging;
2570
2571 type = ada_check_typedef (type);
2572
2573 if (obj == NULL)
2574 src = valaddr + offset;
2575 else
2576 src = value_contents (obj) + offset;
2577
2578 if (is_dynamic_type (type))
2579 {
2580 /* The length of TYPE might by dynamic, so we need to resolve
2581 TYPE in order to know its actual size, which we then use
2582 to create the contents buffer of the value we return.
2583 The difficulty is that the data containing our object is
2584 packed, and therefore maybe not at a byte boundary. So, what
2585 we do, is unpack the data into a byte-aligned buffer, and then
2586 use that buffer as our object's value for resolving the type. */
2587 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2588 staging.resize (staging_len);
2589
2590 ada_unpack_from_contents (src, bit_offset, bit_size,
2591 staging.data (), staging.size (),
2592 is_big_endian, has_negatives (type),
2593 is_scalar);
2594 type = resolve_dynamic_type (type, staging.data (), 0);
2595 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2596 {
2597 /* This happens when the length of the object is dynamic,
2598 and is actually smaller than the space reserved for it.
2599 For instance, in an array of variant records, the bit_size
2600 we're given is the array stride, which is constant and
2601 normally equal to the maximum size of its element.
2602 But, in reality, each element only actually spans a portion
2603 of that stride. */
2604 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2605 }
2606 }
2607
2608 if (obj == NULL)
2609 {
2610 v = allocate_value (type);
2611 src = valaddr + offset;
2612 }
2613 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2614 {
2615 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2616 gdb_byte *buf;
2617
2618 v = value_at (type, value_address (obj) + offset);
2619 buf = (gdb_byte *) alloca (src_len);
2620 read_memory (value_address (v), buf, src_len);
2621 src = buf;
2622 }
2623 else
2624 {
2625 v = allocate_value (type);
2626 src = value_contents (obj) + offset;
2627 }
2628
2629 if (obj != NULL)
2630 {
2631 long new_offset = offset;
2632
2633 set_value_component_location (v, obj);
2634 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2635 set_value_bitsize (v, bit_size);
2636 if (value_bitpos (v) >= HOST_CHAR_BIT)
2637 {
2638 ++new_offset;
2639 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2640 }
2641 set_value_offset (v, new_offset);
2642
2643 /* Also set the parent value. This is needed when trying to
2644 assign a new value (in inferior memory). */
2645 set_value_parent (v, obj);
2646 }
2647 else
2648 set_value_bitsize (v, bit_size);
2649 unpacked = value_contents_writeable (v);
2650
2651 if (bit_size == 0)
2652 {
2653 memset (unpacked, 0, TYPE_LENGTH (type));
2654 return v;
2655 }
2656
2657 if (staging.size () == TYPE_LENGTH (type))
2658 {
2659 /* Small short-cut: If we've unpacked the data into a buffer
2660 of the same size as TYPE's length, then we can reuse that,
2661 instead of doing the unpacking again. */
2662 memcpy (unpacked, staging.data (), staging.size ());
2663 }
2664 else
2665 ada_unpack_from_contents (src, bit_offset, bit_size,
2666 unpacked, TYPE_LENGTH (type),
2667 is_big_endian, has_negatives (type), is_scalar);
2668
2669 return v;
2670 }
2671
2672 /* Store the contents of FROMVAL into the location of TOVAL.
2673 Return a new value with the location of TOVAL and contents of
2674 FROMVAL. Handles assignment into packed fields that have
2675 floating-point or non-scalar types. */
2676
2677 static struct value *
2678 ada_value_assign (struct value *toval, struct value *fromval)
2679 {
2680 struct type *type = value_type (toval);
2681 int bits = value_bitsize (toval);
2682
2683 toval = ada_coerce_ref (toval);
2684 fromval = ada_coerce_ref (fromval);
2685
2686 if (ada_is_direct_array_type (value_type (toval)))
2687 toval = ada_coerce_to_simple_array (toval);
2688 if (ada_is_direct_array_type (value_type (fromval)))
2689 fromval = ada_coerce_to_simple_array (fromval);
2690
2691 if (!deprecated_value_modifiable (toval))
2692 error (_("Left operand of assignment is not a modifiable lvalue."));
2693
2694 if (VALUE_LVAL (toval) == lval_memory
2695 && bits > 0
2696 && (TYPE_CODE (type) == TYPE_CODE_FLT
2697 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2698 {
2699 int len = (value_bitpos (toval)
2700 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2701 int from_size;
2702 gdb_byte *buffer = (gdb_byte *) alloca (len);
2703 struct value *val;
2704 CORE_ADDR to_addr = value_address (toval);
2705
2706 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2707 fromval = value_cast (type, fromval);
2708
2709 read_memory (to_addr, buffer, len);
2710 from_size = value_bitsize (fromval);
2711 if (from_size == 0)
2712 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2713
2714 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2715 ULONGEST from_offset = 0;
2716 if (is_big_endian && is_scalar_type (value_type (fromval)))
2717 from_offset = from_size - bits;
2718 copy_bitwise (buffer, value_bitpos (toval),
2719 value_contents (fromval), from_offset,
2720 bits, is_big_endian);
2721 write_memory_with_notification (to_addr, buffer, len);
2722
2723 val = value_copy (toval);
2724 memcpy (value_contents_raw (val), value_contents (fromval),
2725 TYPE_LENGTH (type));
2726 deprecated_set_value_type (val, type);
2727
2728 return val;
2729 }
2730
2731 return value_assign (toval, fromval);
2732 }
2733
2734
2735 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2736 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2737 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2738 COMPONENT, and not the inferior's memory. The current contents
2739 of COMPONENT are ignored.
2740
2741 Although not part of the initial design, this function also works
2742 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2743 had a null address, and COMPONENT had an address which is equal to
2744 its offset inside CONTAINER. */
2745
2746 static void
2747 value_assign_to_component (struct value *container, struct value *component,
2748 struct value *val)
2749 {
2750 LONGEST offset_in_container =
2751 (LONGEST) (value_address (component) - value_address (container));
2752 int bit_offset_in_container =
2753 value_bitpos (component) - value_bitpos (container);
2754 int bits;
2755
2756 val = value_cast (value_type (component), val);
2757
2758 if (value_bitsize (component) == 0)
2759 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2760 else
2761 bits = value_bitsize (component);
2762
2763 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2764 {
2765 int src_offset;
2766
2767 if (is_scalar_type (check_typedef (value_type (component))))
2768 src_offset
2769 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2770 else
2771 src_offset = 0;
2772 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2773 value_bitpos (container) + bit_offset_in_container,
2774 value_contents (val), src_offset, bits, 1);
2775 }
2776 else
2777 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2778 value_bitpos (container) + bit_offset_in_container,
2779 value_contents (val), 0, bits, 0);
2780 }
2781
2782 /* Determine if TYPE is an access to an unconstrained array. */
2783
2784 bool
2785 ada_is_access_to_unconstrained_array (struct type *type)
2786 {
2787 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2788 && is_thick_pntr (ada_typedef_target_type (type)));
2789 }
2790
2791 /* The value of the element of array ARR at the ARITY indices given in IND.
2792 ARR may be either a simple array, GNAT array descriptor, or pointer
2793 thereto. */
2794
2795 struct value *
2796 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2797 {
2798 int k;
2799 struct value *elt;
2800 struct type *elt_type;
2801
2802 elt = ada_coerce_to_simple_array (arr);
2803
2804 elt_type = ada_check_typedef (value_type (elt));
2805 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2806 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2807 return value_subscript_packed (elt, arity, ind);
2808
2809 for (k = 0; k < arity; k += 1)
2810 {
2811 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2812
2813 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2814 error (_("too many subscripts (%d expected)"), k);
2815
2816 elt = value_subscript (elt, pos_atr (ind[k]));
2817
2818 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2819 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2820 {
2821 /* The element is a typedef to an unconstrained array,
2822 except that the value_subscript call stripped the
2823 typedef layer. The typedef layer is GNAT's way to
2824 specify that the element is, at the source level, an
2825 access to the unconstrained array, rather than the
2826 unconstrained array. So, we need to restore that
2827 typedef layer, which we can do by forcing the element's
2828 type back to its original type. Otherwise, the returned
2829 value is going to be printed as the array, rather
2830 than as an access. Another symptom of the same issue
2831 would be that an expression trying to dereference the
2832 element would also be improperly rejected. */
2833 deprecated_set_value_type (elt, saved_elt_type);
2834 }
2835
2836 elt_type = ada_check_typedef (value_type (elt));
2837 }
2838
2839 return elt;
2840 }
2841
2842 /* Assuming ARR is a pointer to a GDB array, the value of the element
2843 of *ARR at the ARITY indices given in IND.
2844 Does not read the entire array into memory.
2845
2846 Note: Unlike what one would expect, this function is used instead of
2847 ada_value_subscript for basically all non-packed array types. The reason
2848 for this is that a side effect of doing our own pointer arithmetics instead
2849 of relying on value_subscript is that there is no implicit typedef peeling.
2850 This is important for arrays of array accesses, where it allows us to
2851 preserve the fact that the array's element is an array access, where the
2852 access part os encoded in a typedef layer. */
2853
2854 static struct value *
2855 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2856 {
2857 int k;
2858 struct value *array_ind = ada_value_ind (arr);
2859 struct type *type
2860 = check_typedef (value_enclosing_type (array_ind));
2861
2862 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2863 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2864 return value_subscript_packed (array_ind, arity, ind);
2865
2866 for (k = 0; k < arity; k += 1)
2867 {
2868 LONGEST lwb, upb;
2869 struct value *lwb_value;
2870
2871 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2872 error (_("too many subscripts (%d expected)"), k);
2873 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2874 value_copy (arr));
2875 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2876 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2877 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2878 type = TYPE_TARGET_TYPE (type);
2879 }
2880
2881 return value_ind (arr);
2882 }
2883
2884 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2885 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2886 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2887 this array is LOW, as per Ada rules. */
2888 static struct value *
2889 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2890 int low, int high)
2891 {
2892 struct type *type0 = ada_check_typedef (type);
2893 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2894 struct type *index_type
2895 = create_static_range_type (NULL, base_index_type, low, high);
2896 struct type *slice_type = create_array_type_with_stride
2897 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2898 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2899 TYPE_FIELD_BITSIZE (type0, 0));
2900 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2901 LONGEST base_low_pos, low_pos;
2902 CORE_ADDR base;
2903
2904 if (!discrete_position (base_index_type, low, &low_pos)
2905 || !discrete_position (base_index_type, base_low, &base_low_pos))
2906 {
2907 warning (_("unable to get positions in slice, use bounds instead"));
2908 low_pos = low;
2909 base_low_pos = base_low;
2910 }
2911
2912 base = value_as_address (array_ptr)
2913 + ((low_pos - base_low_pos)
2914 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2915 return value_at_lazy (slice_type, base);
2916 }
2917
2918
2919 static struct value *
2920 ada_value_slice (struct value *array, int low, int high)
2921 {
2922 struct type *type = ada_check_typedef (value_type (array));
2923 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2924 struct type *index_type
2925 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2926 struct type *slice_type = create_array_type_with_stride
2927 (NULL, TYPE_TARGET_TYPE (type), index_type,
2928 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2929 TYPE_FIELD_BITSIZE (type, 0));
2930 LONGEST low_pos, high_pos;
2931
2932 if (!discrete_position (base_index_type, low, &low_pos)
2933 || !discrete_position (base_index_type, high, &high_pos))
2934 {
2935 warning (_("unable to get positions in slice, use bounds instead"));
2936 low_pos = low;
2937 high_pos = high;
2938 }
2939
2940 return value_cast (slice_type,
2941 value_slice (array, low, high_pos - low_pos + 1));
2942 }
2943
2944 /* If type is a record type in the form of a standard GNAT array
2945 descriptor, returns the number of dimensions for type. If arr is a
2946 simple array, returns the number of "array of"s that prefix its
2947 type designation. Otherwise, returns 0. */
2948
2949 int
2950 ada_array_arity (struct type *type)
2951 {
2952 int arity;
2953
2954 if (type == NULL)
2955 return 0;
2956
2957 type = desc_base_type (type);
2958
2959 arity = 0;
2960 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2961 return desc_arity (desc_bounds_type (type));
2962 else
2963 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2964 {
2965 arity += 1;
2966 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2967 }
2968
2969 return arity;
2970 }
2971
2972 /* If TYPE is a record type in the form of a standard GNAT array
2973 descriptor or a simple array type, returns the element type for
2974 TYPE after indexing by NINDICES indices, or by all indices if
2975 NINDICES is -1. Otherwise, returns NULL. */
2976
2977 struct type *
2978 ada_array_element_type (struct type *type, int nindices)
2979 {
2980 type = desc_base_type (type);
2981
2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2983 {
2984 int k;
2985 struct type *p_array_type;
2986
2987 p_array_type = desc_data_target_type (type);
2988
2989 k = ada_array_arity (type);
2990 if (k == 0)
2991 return NULL;
2992
2993 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2994 if (nindices >= 0 && k > nindices)
2995 k = nindices;
2996 while (k > 0 && p_array_type != NULL)
2997 {
2998 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2999 k -= 1;
3000 }
3001 return p_array_type;
3002 }
3003 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3004 {
3005 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3006 {
3007 type = TYPE_TARGET_TYPE (type);
3008 nindices -= 1;
3009 }
3010 return type;
3011 }
3012
3013 return NULL;
3014 }
3015
3016 /* The type of nth index in arrays of given type (n numbering from 1).
3017 Does not examine memory. Throws an error if N is invalid or TYPE
3018 is not an array type. NAME is the name of the Ada attribute being
3019 evaluated ('range, 'first, 'last, or 'length); it is used in building
3020 the error message. */
3021
3022 static struct type *
3023 ada_index_type (struct type *type, int n, const char *name)
3024 {
3025 struct type *result_type;
3026
3027 type = desc_base_type (type);
3028
3029 if (n < 0 || n > ada_array_arity (type))
3030 error (_("invalid dimension number to '%s"), name);
3031
3032 if (ada_is_simple_array_type (type))
3033 {
3034 int i;
3035
3036 for (i = 1; i < n; i += 1)
3037 type = TYPE_TARGET_TYPE (type);
3038 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3039 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3040 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3041 perhaps stabsread.c would make more sense. */
3042 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3043 result_type = NULL;
3044 }
3045 else
3046 {
3047 result_type = desc_index_type (desc_bounds_type (type), n);
3048 if (result_type == NULL)
3049 error (_("attempt to take bound of something that is not an array"));
3050 }
3051
3052 return result_type;
3053 }
3054
3055 /* Given that arr is an array type, returns the lower bound of the
3056 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3057 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3058 array-descriptor type. It works for other arrays with bounds supplied
3059 by run-time quantities other than discriminants. */
3060
3061 static LONGEST
3062 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3063 {
3064 struct type *type, *index_type_desc, *index_type;
3065 int i;
3066
3067 gdb_assert (which == 0 || which == 1);
3068
3069 if (ada_is_constrained_packed_array_type (arr_type))
3070 arr_type = decode_constrained_packed_array_type (arr_type);
3071
3072 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3073 return (LONGEST) - which;
3074
3075 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3076 type = TYPE_TARGET_TYPE (arr_type);
3077 else
3078 type = arr_type;
3079
3080 if (TYPE_FIXED_INSTANCE (type))
3081 {
3082 /* The array has already been fixed, so we do not need to
3083 check the parallel ___XA type again. That encoding has
3084 already been applied, so ignore it now. */
3085 index_type_desc = NULL;
3086 }
3087 else
3088 {
3089 index_type_desc = ada_find_parallel_type (type, "___XA");
3090 ada_fixup_array_indexes_type (index_type_desc);
3091 }
3092
3093 if (index_type_desc != NULL)
3094 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3095 NULL);
3096 else
3097 {
3098 struct type *elt_type = check_typedef (type);
3099
3100 for (i = 1; i < n; i++)
3101 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3102
3103 index_type = TYPE_INDEX_TYPE (elt_type);
3104 }
3105
3106 return
3107 (LONGEST) (which == 0
3108 ? ada_discrete_type_low_bound (index_type)
3109 : ada_discrete_type_high_bound (index_type));
3110 }
3111
3112 /* Given that arr is an array value, returns the lower bound of the
3113 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3114 WHICH is 1. This routine will also work for arrays with bounds
3115 supplied by run-time quantities other than discriminants. */
3116
3117 static LONGEST
3118 ada_array_bound (struct value *arr, int n, int which)
3119 {
3120 struct type *arr_type;
3121
3122 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3123 arr = value_ind (arr);
3124 arr_type = value_enclosing_type (arr);
3125
3126 if (ada_is_constrained_packed_array_type (arr_type))
3127 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3128 else if (ada_is_simple_array_type (arr_type))
3129 return ada_array_bound_from_type (arr_type, n, which);
3130 else
3131 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3132 }
3133
3134 /* Given that arr is an array value, returns the length of the
3135 nth index. This routine will also work for arrays with bounds
3136 supplied by run-time quantities other than discriminants.
3137 Does not work for arrays indexed by enumeration types with representation
3138 clauses at the moment. */
3139
3140 static LONGEST
3141 ada_array_length (struct value *arr, int n)
3142 {
3143 struct type *arr_type, *index_type;
3144 int low, high;
3145
3146 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3147 arr = value_ind (arr);
3148 arr_type = value_enclosing_type (arr);
3149
3150 if (ada_is_constrained_packed_array_type (arr_type))
3151 return ada_array_length (decode_constrained_packed_array (arr), n);
3152
3153 if (ada_is_simple_array_type (arr_type))
3154 {
3155 low = ada_array_bound_from_type (arr_type, n, 0);
3156 high = ada_array_bound_from_type (arr_type, n, 1);
3157 }
3158 else
3159 {
3160 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3161 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3162 }
3163
3164 arr_type = check_typedef (arr_type);
3165 index_type = ada_index_type (arr_type, n, "length");
3166 if (index_type != NULL)
3167 {
3168 struct type *base_type;
3169 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3170 base_type = TYPE_TARGET_TYPE (index_type);
3171 else
3172 base_type = index_type;
3173
3174 low = pos_atr (value_from_longest (base_type, low));
3175 high = pos_atr (value_from_longest (base_type, high));
3176 }
3177 return high - low + 1;
3178 }
3179
3180 /* An array whose type is that of ARR_TYPE (an array type), with
3181 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3182 less than LOW, then LOW-1 is used. */
3183
3184 static struct value *
3185 empty_array (struct type *arr_type, int low, int high)
3186 {
3187 struct type *arr_type0 = ada_check_typedef (arr_type);
3188 struct type *index_type
3189 = create_static_range_type
3190 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3191 high < low ? low - 1 : high);
3192 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3193
3194 return allocate_value (create_array_type (NULL, elt_type, index_type));
3195 }
3196 \f
3197
3198 /* Name resolution */
3199
3200 /* The "decoded" name for the user-definable Ada operator corresponding
3201 to OP. */
3202
3203 static const char *
3204 ada_decoded_op_name (enum exp_opcode op)
3205 {
3206 int i;
3207
3208 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3209 {
3210 if (ada_opname_table[i].op == op)
3211 return ada_opname_table[i].decoded;
3212 }
3213 error (_("Could not find operator name for opcode"));
3214 }
3215
3216
3217 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3218 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3219 undefined namespace) and converts operators that are
3220 user-defined into appropriate function calls. If CONTEXT_TYPE is
3221 non-null, it provides a preferred result type [at the moment, only
3222 type void has any effect---causing procedures to be preferred over
3223 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3224 return type is preferred. May change (expand) *EXP. */
3225
3226 static void
3227 resolve (expression_up *expp, int void_context_p, int parse_completion,
3228 innermost_block_tracker *tracker)
3229 {
3230 struct type *context_type = NULL;
3231 int pc = 0;
3232
3233 if (void_context_p)
3234 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3235
3236 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3237 }
3238
3239 /* Resolve the operator of the subexpression beginning at
3240 position *POS of *EXPP. "Resolving" consists of replacing
3241 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3242 with their resolutions, replacing built-in operators with
3243 function calls to user-defined operators, where appropriate, and,
3244 when DEPROCEDURE_P is non-zero, converting function-valued variables
3245 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3246 are as in ada_resolve, above. */
3247
3248 static struct value *
3249 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3250 struct type *context_type, int parse_completion,
3251 innermost_block_tracker *tracker)
3252 {
3253 int pc = *pos;
3254 int i;
3255 struct expression *exp; /* Convenience: == *expp. */
3256 enum exp_opcode op = (*expp)->elts[pc].opcode;
3257 struct value **argvec; /* Vector of operand types (alloca'ed). */
3258 int nargs; /* Number of operands. */
3259 int oplen;
3260
3261 argvec = NULL;
3262 nargs = 0;
3263 exp = expp->get ();
3264
3265 /* Pass one: resolve operands, saving their types and updating *pos,
3266 if needed. */
3267 switch (op)
3268 {
3269 case OP_FUNCALL:
3270 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3271 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3272 *pos += 7;
3273 else
3274 {
3275 *pos += 3;
3276 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3277 }
3278 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3279 break;
3280
3281 case UNOP_ADDR:
3282 *pos += 1;
3283 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3284 break;
3285
3286 case UNOP_QUAL:
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3289 parse_completion, tracker);
3290 break;
3291
3292 case OP_ATR_MODULUS:
3293 case OP_ATR_SIZE:
3294 case OP_ATR_TAG:
3295 case OP_ATR_FIRST:
3296 case OP_ATR_LAST:
3297 case OP_ATR_LENGTH:
3298 case OP_ATR_POS:
3299 case OP_ATR_VAL:
3300 case OP_ATR_MIN:
3301 case OP_ATR_MAX:
3302 case TERNOP_IN_RANGE:
3303 case BINOP_IN_BOUNDS:
3304 case UNOP_IN_RANGE:
3305 case OP_AGGREGATE:
3306 case OP_OTHERS:
3307 case OP_CHOICES:
3308 case OP_POSITIONAL:
3309 case OP_DISCRETE_RANGE:
3310 case OP_NAME:
3311 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3312 *pos += oplen;
3313 break;
3314
3315 case BINOP_ASSIGN:
3316 {
3317 struct value *arg1;
3318
3319 *pos += 1;
3320 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3321 if (arg1 == NULL)
3322 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3323 else
3324 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3325 tracker);
3326 break;
3327 }
3328
3329 case UNOP_CAST:
3330 *pos += 3;
3331 nargs = 1;
3332 break;
3333
3334 case BINOP_ADD:
3335 case BINOP_SUB:
3336 case BINOP_MUL:
3337 case BINOP_DIV:
3338 case BINOP_REM:
3339 case BINOP_MOD:
3340 case BINOP_EXP:
3341 case BINOP_CONCAT:
3342 case BINOP_LOGICAL_AND:
3343 case BINOP_LOGICAL_OR:
3344 case BINOP_BITWISE_AND:
3345 case BINOP_BITWISE_IOR:
3346 case BINOP_BITWISE_XOR:
3347
3348 case BINOP_EQUAL:
3349 case BINOP_NOTEQUAL:
3350 case BINOP_LESS:
3351 case BINOP_GTR:
3352 case BINOP_LEQ:
3353 case BINOP_GEQ:
3354
3355 case BINOP_REPEAT:
3356 case BINOP_SUBSCRIPT:
3357 case BINOP_COMMA:
3358 *pos += 1;
3359 nargs = 2;
3360 break;
3361
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 case UNOP_IND:
3367 *pos += 1;
3368 nargs = 1;
3369 break;
3370
3371 case OP_LONG:
3372 case OP_FLOAT:
3373 case OP_VAR_VALUE:
3374 case OP_VAR_MSYM_VALUE:
3375 *pos += 4;
3376 break;
3377
3378 case OP_TYPE:
3379 case OP_BOOL:
3380 case OP_LAST:
3381 case OP_INTERNALVAR:
3382 *pos += 3;
3383 break;
3384
3385 case UNOP_MEMVAL:
3386 *pos += 3;
3387 nargs = 1;
3388 break;
3389
3390 case OP_REGISTER:
3391 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3392 break;
3393
3394 case STRUCTOP_STRUCT:
3395 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3396 nargs = 1;
3397 break;
3398
3399 case TERNOP_SLICE:
3400 *pos += 1;
3401 nargs = 3;
3402 break;
3403
3404 case OP_STRING:
3405 break;
3406
3407 default:
3408 error (_("Unexpected operator during name resolution"));
3409 }
3410
3411 argvec = XALLOCAVEC (struct value *, nargs + 1);
3412 for (i = 0; i < nargs; i += 1)
3413 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3414 tracker);
3415 argvec[i] = NULL;
3416 exp = expp->get ();
3417
3418 /* Pass two: perform any resolution on principal operator. */
3419 switch (op)
3420 {
3421 default:
3422 break;
3423
3424 case OP_VAR_VALUE:
3425 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3426 {
3427 std::vector<struct block_symbol> candidates;
3428 int n_candidates;
3429
3430 n_candidates =
3431 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3432 (exp->elts[pc + 2].symbol),
3433 exp->elts[pc + 1].block, VAR_DOMAIN,
3434 &candidates);
3435
3436 if (n_candidates > 1)
3437 {
3438 /* Types tend to get re-introduced locally, so if there
3439 are any local symbols that are not types, first filter
3440 out all types. */
3441 int j;
3442 for (j = 0; j < n_candidates; j += 1)
3443 switch (SYMBOL_CLASS (candidates[j].symbol))
3444 {
3445 case LOC_REGISTER:
3446 case LOC_ARG:
3447 case LOC_REF_ARG:
3448 case LOC_REGPARM_ADDR:
3449 case LOC_LOCAL:
3450 case LOC_COMPUTED:
3451 goto FoundNonType;
3452 default:
3453 break;
3454 }
3455 FoundNonType:
3456 if (j < n_candidates)
3457 {
3458 j = 0;
3459 while (j < n_candidates)
3460 {
3461 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3462 {
3463 candidates[j] = candidates[n_candidates - 1];
3464 n_candidates -= 1;
3465 }
3466 else
3467 j += 1;
3468 }
3469 }
3470 }
3471
3472 if (n_candidates == 0)
3473 error (_("No definition found for %s"),
3474 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3475 else if (n_candidates == 1)
3476 i = 0;
3477 else if (deprocedure_p
3478 && !is_nonfunction (candidates.data (), n_candidates))
3479 {
3480 i = ada_resolve_function
3481 (candidates.data (), n_candidates, NULL, 0,
3482 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3483 context_type, parse_completion);
3484 if (i < 0)
3485 error (_("Could not find a match for %s"),
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 }
3488 else
3489 {
3490 printf_filtered (_("Multiple matches for %s\n"),
3491 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3492 user_select_syms (candidates.data (), n_candidates, 1);
3493 i = 0;
3494 }
3495
3496 exp->elts[pc + 1].block = candidates[i].block;
3497 exp->elts[pc + 2].symbol = candidates[i].symbol;
3498 tracker->update (candidates[i]);
3499 }
3500
3501 if (deprocedure_p
3502 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3503 == TYPE_CODE_FUNC))
3504 {
3505 replace_operator_with_call (expp, pc, 0, 4,
3506 exp->elts[pc + 2].symbol,
3507 exp->elts[pc + 1].block);
3508 exp = expp->get ();
3509 }
3510 break;
3511
3512 case OP_FUNCALL:
3513 {
3514 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3515 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3516 {
3517 std::vector<struct block_symbol> candidates;
3518 int n_candidates;
3519
3520 n_candidates =
3521 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3522 (exp->elts[pc + 5].symbol),
3523 exp->elts[pc + 4].block, VAR_DOMAIN,
3524 &candidates);
3525
3526 if (n_candidates == 1)
3527 i = 0;
3528 else
3529 {
3530 i = ada_resolve_function
3531 (candidates.data (), n_candidates,
3532 argvec, nargs,
3533 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3534 context_type, parse_completion);
3535 if (i < 0)
3536 error (_("Could not find a match for %s"),
3537 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3538 }
3539
3540 exp->elts[pc + 4].block = candidates[i].block;
3541 exp->elts[pc + 5].symbol = candidates[i].symbol;
3542 tracker->update (candidates[i]);
3543 }
3544 }
3545 break;
3546 case BINOP_ADD:
3547 case BINOP_SUB:
3548 case BINOP_MUL:
3549 case BINOP_DIV:
3550 case BINOP_REM:
3551 case BINOP_MOD:
3552 case BINOP_CONCAT:
3553 case BINOP_BITWISE_AND:
3554 case BINOP_BITWISE_IOR:
3555 case BINOP_BITWISE_XOR:
3556 case BINOP_EQUAL:
3557 case BINOP_NOTEQUAL:
3558 case BINOP_LESS:
3559 case BINOP_GTR:
3560 case BINOP_LEQ:
3561 case BINOP_GEQ:
3562 case BINOP_EXP:
3563 case UNOP_NEG:
3564 case UNOP_PLUS:
3565 case UNOP_LOGICAL_NOT:
3566 case UNOP_ABS:
3567 if (possible_user_operator_p (op, argvec))
3568 {
3569 std::vector<struct block_symbol> candidates;
3570 int n_candidates;
3571
3572 n_candidates =
3573 ada_lookup_symbol_list (ada_decoded_op_name (op),
3574 NULL, VAR_DOMAIN,
3575 &candidates);
3576
3577 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3578 nargs, ada_decoded_op_name (op), NULL,
3579 parse_completion);
3580 if (i < 0)
3581 break;
3582
3583 replace_operator_with_call (expp, pc, nargs, 1,
3584 candidates[i].symbol,
3585 candidates[i].block);
3586 exp = expp->get ();
3587 }
3588 break;
3589
3590 case OP_TYPE:
3591 case OP_REGISTER:
3592 return NULL;
3593 }
3594
3595 *pos = pc;
3596 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3597 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3598 exp->elts[pc + 1].objfile,
3599 exp->elts[pc + 2].msymbol);
3600 else
3601 return evaluate_subexp_type (exp, pos);
3602 }
3603
3604 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3605 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3606 a non-pointer. */
3607 /* The term "match" here is rather loose. The match is heuristic and
3608 liberal. */
3609
3610 static int
3611 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3612 {
3613 ftype = ada_check_typedef (ftype);
3614 atype = ada_check_typedef (atype);
3615
3616 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3617 ftype = TYPE_TARGET_TYPE (ftype);
3618 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3619 atype = TYPE_TARGET_TYPE (atype);
3620
3621 switch (TYPE_CODE (ftype))
3622 {
3623 default:
3624 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3625 case TYPE_CODE_PTR:
3626 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3627 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3628 TYPE_TARGET_TYPE (atype), 0);
3629 else
3630 return (may_deref
3631 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3632 case TYPE_CODE_INT:
3633 case TYPE_CODE_ENUM:
3634 case TYPE_CODE_RANGE:
3635 switch (TYPE_CODE (atype))
3636 {
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 return 1;
3641 default:
3642 return 0;
3643 }
3644
3645 case TYPE_CODE_ARRAY:
3646 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3647 || ada_is_array_descriptor_type (atype));
3648
3649 case TYPE_CODE_STRUCT:
3650 if (ada_is_array_descriptor_type (ftype))
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653 else
3654 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3655 && !ada_is_array_descriptor_type (atype));
3656
3657 case TYPE_CODE_UNION:
3658 case TYPE_CODE_FLT:
3659 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3660 }
3661 }
3662
3663 /* Return non-zero if the formals of FUNC "sufficiently match" the
3664 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3665 may also be an enumeral, in which case it is treated as a 0-
3666 argument function. */
3667
3668 static int
3669 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3670 {
3671 int i;
3672 struct type *func_type = SYMBOL_TYPE (func);
3673
3674 if (SYMBOL_CLASS (func) == LOC_CONST
3675 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3676 return (n_actuals == 0);
3677 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3678 return 0;
3679
3680 if (TYPE_NFIELDS (func_type) != n_actuals)
3681 return 0;
3682
3683 for (i = 0; i < n_actuals; i += 1)
3684 {
3685 if (actuals[i] == NULL)
3686 return 0;
3687 else
3688 {
3689 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3690 i));
3691 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3692
3693 if (!ada_type_match (ftype, atype, 1))
3694 return 0;
3695 }
3696 }
3697 return 1;
3698 }
3699
3700 /* False iff function type FUNC_TYPE definitely does not produce a value
3701 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3702 FUNC_TYPE is not a valid function type with a non-null return type
3703 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3704
3705 static int
3706 return_match (struct type *func_type, struct type *context_type)
3707 {
3708 struct type *return_type;
3709
3710 if (func_type == NULL)
3711 return 1;
3712
3713 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3714 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3715 else
3716 return_type = get_base_type (func_type);
3717 if (return_type == NULL)
3718 return 1;
3719
3720 context_type = get_base_type (context_type);
3721
3722 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3723 return context_type == NULL || return_type == context_type;
3724 else if (context_type == NULL)
3725 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3726 else
3727 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3728 }
3729
3730
3731 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3732 function (if any) that matches the types of the NARGS arguments in
3733 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3734 that returns that type, then eliminate matches that don't. If
3735 CONTEXT_TYPE is void and there is at least one match that does not
3736 return void, eliminate all matches that do.
3737
3738 Asks the user if there is more than one match remaining. Returns -1
3739 if there is no such symbol or none is selected. NAME is used
3740 solely for messages. May re-arrange and modify SYMS in
3741 the process; the index returned is for the modified vector. */
3742
3743 static int
3744 ada_resolve_function (struct block_symbol syms[],
3745 int nsyms, struct value **args, int nargs,
3746 const char *name, struct type *context_type,
3747 int parse_completion)
3748 {
3749 int fallback;
3750 int k;
3751 int m; /* Number of hits */
3752
3753 m = 0;
3754 /* In the first pass of the loop, we only accept functions matching
3755 context_type. If none are found, we add a second pass of the loop
3756 where every function is accepted. */
3757 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3758 {
3759 for (k = 0; k < nsyms; k += 1)
3760 {
3761 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3762
3763 if (ada_args_match (syms[k].symbol, args, nargs)
3764 && (fallback || return_match (type, context_type)))
3765 {
3766 syms[m] = syms[k];
3767 m += 1;
3768 }
3769 }
3770 }
3771
3772 /* If we got multiple matches, ask the user which one to use. Don't do this
3773 interactive thing during completion, though, as the purpose of the
3774 completion is providing a list of all possible matches. Prompting the
3775 user to filter it down would be completely unexpected in this case. */
3776 if (m == 0)
3777 return -1;
3778 else if (m > 1 && !parse_completion)
3779 {
3780 printf_filtered (_("Multiple matches for %s\n"), name);
3781 user_select_syms (syms, m, 1);
3782 return 0;
3783 }
3784 return 0;
3785 }
3786
3787 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3788 in a listing of choices during disambiguation (see sort_choices, below).
3789 The idea is that overloadings of a subprogram name from the
3790 same package should sort in their source order. We settle for ordering
3791 such symbols by their trailing number (__N or $N). */
3792
3793 static int
3794 encoded_ordered_before (const char *N0, const char *N1)
3795 {
3796 if (N1 == NULL)
3797 return 0;
3798 else if (N0 == NULL)
3799 return 1;
3800 else
3801 {
3802 int k0, k1;
3803
3804 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3805 ;
3806 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3807 ;
3808 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3809 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3810 {
3811 int n0, n1;
3812
3813 n0 = k0;
3814 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3815 n0 -= 1;
3816 n1 = k1;
3817 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3818 n1 -= 1;
3819 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3820 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3821 }
3822 return (strcmp (N0, N1) < 0);
3823 }
3824 }
3825
3826 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3827 encoded names. */
3828
3829 static void
3830 sort_choices (struct block_symbol syms[], int nsyms)
3831 {
3832 int i;
3833
3834 for (i = 1; i < nsyms; i += 1)
3835 {
3836 struct block_symbol sym = syms[i];
3837 int j;
3838
3839 for (j = i - 1; j >= 0; j -= 1)
3840 {
3841 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3842 SYMBOL_LINKAGE_NAME (sym.symbol)))
3843 break;
3844 syms[j + 1] = syms[j];
3845 }
3846 syms[j + 1] = sym;
3847 }
3848 }
3849
3850 /* Whether GDB should display formals and return types for functions in the
3851 overloads selection menu. */
3852 static int print_signatures = 1;
3853
3854 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3855 all but functions, the signature is just the name of the symbol. For
3856 functions, this is the name of the function, the list of types for formals
3857 and the return type (if any). */
3858
3859 static void
3860 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3861 const struct type_print_options *flags)
3862 {
3863 struct type *type = SYMBOL_TYPE (sym);
3864
3865 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3866 if (!print_signatures
3867 || type == NULL
3868 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3869 return;
3870
3871 if (TYPE_NFIELDS (type) > 0)
3872 {
3873 int i;
3874
3875 fprintf_filtered (stream, " (");
3876 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3877 {
3878 if (i > 0)
3879 fprintf_filtered (stream, "; ");
3880 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3881 flags);
3882 }
3883 fprintf_filtered (stream, ")");
3884 }
3885 if (TYPE_TARGET_TYPE (type) != NULL
3886 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3887 {
3888 fprintf_filtered (stream, " return ");
3889 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3890 }
3891 }
3892
3893 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3894 by asking the user (if necessary), returning the number selected,
3895 and setting the first elements of SYMS items. Error if no symbols
3896 selected. */
3897
3898 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3899 to be re-integrated one of these days. */
3900
3901 int
3902 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3903 {
3904 int i;
3905 int *chosen = XALLOCAVEC (int , nsyms);
3906 int n_chosen;
3907 int first_choice = (max_results == 1) ? 1 : 2;
3908 const char *select_mode = multiple_symbols_select_mode ();
3909
3910 if (max_results < 1)
3911 error (_("Request to select 0 symbols!"));
3912 if (nsyms <= 1)
3913 return nsyms;
3914
3915 if (select_mode == multiple_symbols_cancel)
3916 error (_("\
3917 canceled because the command is ambiguous\n\
3918 See set/show multiple-symbol."));
3919
3920 /* If select_mode is "all", then return all possible symbols.
3921 Only do that if more than one symbol can be selected, of course.
3922 Otherwise, display the menu as usual. */
3923 if (select_mode == multiple_symbols_all && max_results > 1)
3924 return nsyms;
3925
3926 printf_filtered (_("[0] cancel\n"));
3927 if (max_results > 1)
3928 printf_filtered (_("[1] all\n"));
3929
3930 sort_choices (syms, nsyms);
3931
3932 for (i = 0; i < nsyms; i += 1)
3933 {
3934 if (syms[i].symbol == NULL)
3935 continue;
3936
3937 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3938 {
3939 struct symtab_and_line sal =
3940 find_function_start_sal (syms[i].symbol, 1);
3941
3942 printf_filtered ("[%d] ", i + first_choice);
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
3945 if (sal.symtab == NULL)
3946 printf_filtered (_(" at <no source file available>:%d\n"),
3947 sal.line);
3948 else
3949 printf_filtered (_(" at %s:%d\n"),
3950 symtab_to_filename_for_display (sal.symtab),
3951 sal.line);
3952 continue;
3953 }
3954 else
3955 {
3956 int is_enumeral =
3957 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3958 && SYMBOL_TYPE (syms[i].symbol) != NULL
3959 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3960 struct symtab *symtab = NULL;
3961
3962 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3963 symtab = symbol_symtab (syms[i].symbol);
3964
3965 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3966 {
3967 printf_filtered ("[%d] ", i + first_choice);
3968 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3969 &type_print_raw_options);
3970 printf_filtered (_(" at %s:%d\n"),
3971 symtab_to_filename_for_display (symtab),
3972 SYMBOL_LINE (syms[i].symbol));
3973 }
3974 else if (is_enumeral
3975 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3976 {
3977 printf_filtered (("[%d] "), i + first_choice);
3978 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3979 gdb_stdout, -1, 0, &type_print_raw_options);
3980 printf_filtered (_("'(%s) (enumeral)\n"),
3981 SYMBOL_PRINT_NAME (syms[i].symbol));
3982 }
3983 else
3984 {
3985 printf_filtered ("[%d] ", i + first_choice);
3986 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3987 &type_print_raw_options);
3988
3989 if (symtab != NULL)
3990 printf_filtered (is_enumeral
3991 ? _(" in %s (enumeral)\n")
3992 : _(" at %s:?\n"),
3993 symtab_to_filename_for_display (symtab));
3994 else
3995 printf_filtered (is_enumeral
3996 ? _(" (enumeral)\n")
3997 : _(" at ?\n"));
3998 }
3999 }
4000 }
4001
4002 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4003 "overload-choice");
4004
4005 for (i = 0; i < n_chosen; i += 1)
4006 syms[i] = syms[chosen[i]];
4007
4008 return n_chosen;
4009 }
4010
4011 /* Read and validate a set of numeric choices from the user in the
4012 range 0 .. N_CHOICES-1. Place the results in increasing
4013 order in CHOICES[0 .. N-1], and return N.
4014
4015 The user types choices as a sequence of numbers on one line
4016 separated by blanks, encoding them as follows:
4017
4018 + A choice of 0 means to cancel the selection, throwing an error.
4019 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4020 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4021
4022 The user is not allowed to choose more than MAX_RESULTS values.
4023
4024 ANNOTATION_SUFFIX, if present, is used to annotate the input
4025 prompts (for use with the -f switch). */
4026
4027 int
4028 get_selections (int *choices, int n_choices, int max_results,
4029 int is_all_choice, const char *annotation_suffix)
4030 {
4031 char *args;
4032 const char *prompt;
4033 int n_chosen;
4034 int first_choice = is_all_choice ? 2 : 1;
4035
4036 prompt = getenv ("PS2");
4037 if (prompt == NULL)
4038 prompt = "> ";
4039
4040 args = command_line_input (prompt, annotation_suffix);
4041
4042 if (args == NULL)
4043 error_no_arg (_("one or more choice numbers"));
4044
4045 n_chosen = 0;
4046
4047 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4048 order, as given in args. Choices are validated. */
4049 while (1)
4050 {
4051 char *args2;
4052 int choice, j;
4053
4054 args = skip_spaces (args);
4055 if (*args == '\0' && n_chosen == 0)
4056 error_no_arg (_("one or more choice numbers"));
4057 else if (*args == '\0')
4058 break;
4059
4060 choice = strtol (args, &args2, 10);
4061 if (args == args2 || choice < 0
4062 || choice > n_choices + first_choice - 1)
4063 error (_("Argument must be choice number"));
4064 args = args2;
4065
4066 if (choice == 0)
4067 error (_("cancelled"));
4068
4069 if (choice < first_choice)
4070 {
4071 n_chosen = n_choices;
4072 for (j = 0; j < n_choices; j += 1)
4073 choices[j] = j;
4074 break;
4075 }
4076 choice -= first_choice;
4077
4078 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4079 {
4080 }
4081
4082 if (j < 0 || choice != choices[j])
4083 {
4084 int k;
4085
4086 for (k = n_chosen - 1; k > j; k -= 1)
4087 choices[k + 1] = choices[k];
4088 choices[j + 1] = choice;
4089 n_chosen += 1;
4090 }
4091 }
4092
4093 if (n_chosen > max_results)
4094 error (_("Select no more than %d of the above"), max_results);
4095
4096 return n_chosen;
4097 }
4098
4099 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4100 on the function identified by SYM and BLOCK, and taking NARGS
4101 arguments. Update *EXPP as needed to hold more space. */
4102
4103 static void
4104 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4105 int oplen, struct symbol *sym,
4106 const struct block *block)
4107 {
4108 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4109 symbol, -oplen for operator being replaced). */
4110 struct expression *newexp = (struct expression *)
4111 xzalloc (sizeof (struct expression)
4112 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4113 struct expression *exp = expp->get ();
4114
4115 newexp->nelts = exp->nelts + 7 - oplen;
4116 newexp->language_defn = exp->language_defn;
4117 newexp->gdbarch = exp->gdbarch;
4118 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4119 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4120 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4121
4122 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4123 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4124
4125 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4126 newexp->elts[pc + 4].block = block;
4127 newexp->elts[pc + 5].symbol = sym;
4128
4129 expp->reset (newexp);
4130 }
4131
4132 /* Type-class predicates */
4133
4134 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4135 or FLOAT). */
4136
4137 static int
4138 numeric_type_p (struct type *type)
4139 {
4140 if (type == NULL)
4141 return 0;
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_FLT:
4148 return 1;
4149 case TYPE_CODE_RANGE:
4150 return (type == TYPE_TARGET_TYPE (type)
4151 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4152 default:
4153 return 0;
4154 }
4155 }
4156 }
4157
4158 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4159
4160 static int
4161 integer_type_p (struct type *type)
4162 {
4163 if (type == NULL)
4164 return 0;
4165 else
4166 {
4167 switch (TYPE_CODE (type))
4168 {
4169 case TYPE_CODE_INT:
4170 return 1;
4171 case TYPE_CODE_RANGE:
4172 return (type == TYPE_TARGET_TYPE (type)
4173 || integer_type_p (TYPE_TARGET_TYPE (type)));
4174 default:
4175 return 0;
4176 }
4177 }
4178 }
4179
4180 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4181
4182 static int
4183 scalar_type_p (struct type *type)
4184 {
4185 if (type == NULL)
4186 return 0;
4187 else
4188 {
4189 switch (TYPE_CODE (type))
4190 {
4191 case TYPE_CODE_INT:
4192 case TYPE_CODE_RANGE:
4193 case TYPE_CODE_ENUM:
4194 case TYPE_CODE_FLT:
4195 return 1;
4196 default:
4197 return 0;
4198 }
4199 }
4200 }
4201
4202 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4203
4204 static int
4205 discrete_type_p (struct type *type)
4206 {
4207 if (type == NULL)
4208 return 0;
4209 else
4210 {
4211 switch (TYPE_CODE (type))
4212 {
4213 case TYPE_CODE_INT:
4214 case TYPE_CODE_RANGE:
4215 case TYPE_CODE_ENUM:
4216 case TYPE_CODE_BOOL:
4217 return 1;
4218 default:
4219 return 0;
4220 }
4221 }
4222 }
4223
4224 /* Returns non-zero if OP with operands in the vector ARGS could be
4225 a user-defined function. Errs on the side of pre-defined operators
4226 (i.e., result 0). */
4227
4228 static int
4229 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4230 {
4231 struct type *type0 =
4232 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4233 struct type *type1 =
4234 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4235
4236 if (type0 == NULL)
4237 return 0;
4238
4239 switch (op)
4240 {
4241 default:
4242 return 0;
4243
4244 case BINOP_ADD:
4245 case BINOP_SUB:
4246 case BINOP_MUL:
4247 case BINOP_DIV:
4248 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4249
4250 case BINOP_REM:
4251 case BINOP_MOD:
4252 case BINOP_BITWISE_AND:
4253 case BINOP_BITWISE_IOR:
4254 case BINOP_BITWISE_XOR:
4255 return (!(integer_type_p (type0) && integer_type_p (type1)));
4256
4257 case BINOP_EQUAL:
4258 case BINOP_NOTEQUAL:
4259 case BINOP_LESS:
4260 case BINOP_GTR:
4261 case BINOP_LEQ:
4262 case BINOP_GEQ:
4263 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4264
4265 case BINOP_CONCAT:
4266 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4267
4268 case BINOP_EXP:
4269 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4270
4271 case UNOP_NEG:
4272 case UNOP_PLUS:
4273 case UNOP_LOGICAL_NOT:
4274 case UNOP_ABS:
4275 return (!numeric_type_p (type0));
4276
4277 }
4278 }
4279 \f
4280 /* Renaming */
4281
4282 /* NOTES:
4283
4284 1. In the following, we assume that a renaming type's name may
4285 have an ___XD suffix. It would be nice if this went away at some
4286 point.
4287 2. We handle both the (old) purely type-based representation of
4288 renamings and the (new) variable-based encoding. At some point,
4289 it is devoutly to be hoped that the former goes away
4290 (FIXME: hilfinger-2007-07-09).
4291 3. Subprogram renamings are not implemented, although the XRS
4292 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4293
4294 /* If SYM encodes a renaming,
4295
4296 <renaming> renames <renamed entity>,
4297
4298 sets *LEN to the length of the renamed entity's name,
4299 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4300 the string describing the subcomponent selected from the renamed
4301 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4302 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4303 are undefined). Otherwise, returns a value indicating the category
4304 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4305 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4306 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4307 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4308 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4309 may be NULL, in which case they are not assigned.
4310
4311 [Currently, however, GCC does not generate subprogram renamings.] */
4312
4313 enum ada_renaming_category
4314 ada_parse_renaming (struct symbol *sym,
4315 const char **renamed_entity, int *len,
4316 const char **renaming_expr)
4317 {
4318 enum ada_renaming_category kind;
4319 const char *info;
4320 const char *suffix;
4321
4322 if (sym == NULL)
4323 return ADA_NOT_RENAMING;
4324 switch (SYMBOL_CLASS (sym))
4325 {
4326 default:
4327 return ADA_NOT_RENAMING;
4328 case LOC_TYPEDEF:
4329 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4330 renamed_entity, len, renaming_expr);
4331 case LOC_LOCAL:
4332 case LOC_STATIC:
4333 case LOC_COMPUTED:
4334 case LOC_OPTIMIZED_OUT:
4335 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4336 if (info == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (info[5])
4339 {
4340 case '_':
4341 kind = ADA_OBJECT_RENAMING;
4342 info += 6;
4343 break;
4344 case 'E':
4345 kind = ADA_EXCEPTION_RENAMING;
4346 info += 7;
4347 break;
4348 case 'P':
4349 kind = ADA_PACKAGE_RENAMING;
4350 info += 7;
4351 break;
4352 case 'S':
4353 kind = ADA_SUBPROGRAM_RENAMING;
4354 info += 7;
4355 break;
4356 default:
4357 return ADA_NOT_RENAMING;
4358 }
4359 }
4360
4361 if (renamed_entity != NULL)
4362 *renamed_entity = info;
4363 suffix = strstr (info, "___XE");
4364 if (suffix == NULL || suffix == info)
4365 return ADA_NOT_RENAMING;
4366 if (len != NULL)
4367 *len = strlen (info) - strlen (suffix);
4368 suffix += 5;
4369 if (renaming_expr != NULL)
4370 *renaming_expr = suffix;
4371 return kind;
4372 }
4373
4374 /* Assuming TYPE encodes a renaming according to the old encoding in
4375 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4376 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4377 ADA_NOT_RENAMING otherwise. */
4378 static enum ada_renaming_category
4379 parse_old_style_renaming (struct type *type,
4380 const char **renamed_entity, int *len,
4381 const char **renaming_expr)
4382 {
4383 enum ada_renaming_category kind;
4384 const char *name;
4385 const char *info;
4386 const char *suffix;
4387
4388 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4389 || TYPE_NFIELDS (type) != 1)
4390 return ADA_NOT_RENAMING;
4391
4392 name = TYPE_NAME (type);
4393 if (name == NULL)
4394 return ADA_NOT_RENAMING;
4395
4396 name = strstr (name, "___XR");
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399 switch (name[5])
4400 {
4401 case '\0':
4402 case '_':
4403 kind = ADA_OBJECT_RENAMING;
4404 break;
4405 case 'E':
4406 kind = ADA_EXCEPTION_RENAMING;
4407 break;
4408 case 'P':
4409 kind = ADA_PACKAGE_RENAMING;
4410 break;
4411 case 'S':
4412 kind = ADA_SUBPROGRAM_RENAMING;
4413 break;
4414 default:
4415 return ADA_NOT_RENAMING;
4416 }
4417
4418 info = TYPE_FIELD_NAME (type, 0);
4419 if (info == NULL)
4420 return ADA_NOT_RENAMING;
4421 if (renamed_entity != NULL)
4422 *renamed_entity = info;
4423 suffix = strstr (info, "___XE");
4424 if (renaming_expr != NULL)
4425 *renaming_expr = suffix + 5;
4426 if (suffix == NULL || suffix == info)
4427 return ADA_NOT_RENAMING;
4428 if (len != NULL)
4429 *len = suffix - info;
4430 return kind;
4431 }
4432
4433 /* Compute the value of the given RENAMING_SYM, which is expected to
4434 be a symbol encoding a renaming expression. BLOCK is the block
4435 used to evaluate the renaming. */
4436
4437 static struct value *
4438 ada_read_renaming_var_value (struct symbol *renaming_sym,
4439 const struct block *block)
4440 {
4441 const char *sym_name;
4442
4443 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4444 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4445 return evaluate_expression (expr.get ());
4446 }
4447 \f
4448
4449 /* Evaluation: Function Calls */
4450
4451 /* Return an lvalue containing the value VAL. This is the identity on
4452 lvalues, and otherwise has the side-effect of allocating memory
4453 in the inferior where a copy of the value contents is copied. */
4454
4455 static struct value *
4456 ensure_lval (struct value *val)
4457 {
4458 if (VALUE_LVAL (val) == not_lval
4459 || VALUE_LVAL (val) == lval_internalvar)
4460 {
4461 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4462 const CORE_ADDR addr =
4463 value_as_long (value_allocate_space_in_inferior (len));
4464
4465 VALUE_LVAL (val) = lval_memory;
4466 set_value_address (val, addr);
4467 write_memory (addr, value_contents (val), len);
4468 }
4469
4470 return val;
4471 }
4472
4473 /* Return the value ACTUAL, converted to be an appropriate value for a
4474 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4475 allocating any necessary descriptors (fat pointers), or copies of
4476 values not residing in memory, updating it as needed. */
4477
4478 struct value *
4479 ada_convert_actual (struct value *actual, struct type *formal_type0)
4480 {
4481 struct type *actual_type = ada_check_typedef (value_type (actual));
4482 struct type *formal_type = ada_check_typedef (formal_type0);
4483 struct type *formal_target =
4484 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4486 struct type *actual_target =
4487 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4488 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4489
4490 if (ada_is_array_descriptor_type (formal_target)
4491 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4492 return make_array_descriptor (formal_type, actual);
4493 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4494 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4495 {
4496 struct value *result;
4497
4498 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4499 && ada_is_array_descriptor_type (actual_target))
4500 result = desc_data (actual);
4501 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4502 {
4503 if (VALUE_LVAL (actual) != lval_memory)
4504 {
4505 struct value *val;
4506
4507 actual_type = ada_check_typedef (value_type (actual));
4508 val = allocate_value (actual_type);
4509 memcpy ((char *) value_contents_raw (val),
4510 (char *) value_contents (actual),
4511 TYPE_LENGTH (actual_type));
4512 actual = ensure_lval (val);
4513 }
4514 result = value_addr (actual);
4515 }
4516 else
4517 return actual;
4518 return value_cast_pointers (formal_type, result, 0);
4519 }
4520 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4521 return ada_value_ind (actual);
4522 else if (ada_is_aligner_type (formal_type))
4523 {
4524 /* We need to turn this parameter into an aligner type
4525 as well. */
4526 struct value *aligner = allocate_value (formal_type);
4527 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4528
4529 value_assign_to_component (aligner, component, actual);
4530 return aligner;
4531 }
4532
4533 return actual;
4534 }
4535
4536 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4537 type TYPE. This is usually an inefficient no-op except on some targets
4538 (such as AVR) where the representation of a pointer and an address
4539 differs. */
4540
4541 static CORE_ADDR
4542 value_pointer (struct value *value, struct type *type)
4543 {
4544 struct gdbarch *gdbarch = get_type_arch (type);
4545 unsigned len = TYPE_LENGTH (type);
4546 gdb_byte *buf = (gdb_byte *) alloca (len);
4547 CORE_ADDR addr;
4548
4549 addr = value_address (value);
4550 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4551 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4552 return addr;
4553 }
4554
4555
4556 /* Push a descriptor of type TYPE for array value ARR on the stack at
4557 *SP, updating *SP to reflect the new descriptor. Return either
4558 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4559 to-descriptor type rather than a descriptor type), a struct value *
4560 representing a pointer to this descriptor. */
4561
4562 static struct value *
4563 make_array_descriptor (struct type *type, struct value *arr)
4564 {
4565 struct type *bounds_type = desc_bounds_type (type);
4566 struct type *desc_type = desc_base_type (type);
4567 struct value *descriptor = allocate_value (desc_type);
4568 struct value *bounds = allocate_value (bounds_type);
4569 int i;
4570
4571 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4572 i > 0; i -= 1)
4573 {
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 0),
4576 desc_bound_bitpos (bounds_type, i, 0),
4577 desc_bound_bitsize (bounds_type, i, 0));
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 1),
4580 desc_bound_bitpos (bounds_type, i, 1),
4581 desc_bound_bitsize (bounds_type, i, 1));
4582 }
4583
4584 bounds = ensure_lval (bounds);
4585
4586 modify_field (value_type (descriptor),
4587 value_contents_writeable (descriptor),
4588 value_pointer (ensure_lval (arr),
4589 TYPE_FIELD_TYPE (desc_type, 0)),
4590 fat_pntr_data_bitpos (desc_type),
4591 fat_pntr_data_bitsize (desc_type));
4592
4593 modify_field (value_type (descriptor),
4594 value_contents_writeable (descriptor),
4595 value_pointer (bounds,
4596 TYPE_FIELD_TYPE (desc_type, 1)),
4597 fat_pntr_bounds_bitpos (desc_type),
4598 fat_pntr_bounds_bitsize (desc_type));
4599
4600 descriptor = ensure_lval (descriptor);
4601
4602 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4603 return value_addr (descriptor);
4604 else
4605 return descriptor;
4606 }
4607 \f
4608 /* Symbol Cache Module */
4609
4610 /* Performance measurements made as of 2010-01-15 indicate that
4611 this cache does bring some noticeable improvements. Depending
4612 on the type of entity being printed, the cache can make it as much
4613 as an order of magnitude faster than without it.
4614
4615 The descriptive type DWARF extension has significantly reduced
4616 the need for this cache, at least when DWARF is being used. However,
4617 even in this case, some expensive name-based symbol searches are still
4618 sometimes necessary - to find an XVZ variable, mostly. */
4619
4620 /* Initialize the contents of SYM_CACHE. */
4621
4622 static void
4623 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4624 {
4625 obstack_init (&sym_cache->cache_space);
4626 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4627 }
4628
4629 /* Free the memory used by SYM_CACHE. */
4630
4631 static void
4632 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4633 {
4634 obstack_free (&sym_cache->cache_space, NULL);
4635 xfree (sym_cache);
4636 }
4637
4638 /* Return the symbol cache associated to the given program space PSPACE.
4639 If not allocated for this PSPACE yet, allocate and initialize one. */
4640
4641 static struct ada_symbol_cache *
4642 ada_get_symbol_cache (struct program_space *pspace)
4643 {
4644 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4645
4646 if (pspace_data->sym_cache == NULL)
4647 {
4648 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4649 ada_init_symbol_cache (pspace_data->sym_cache);
4650 }
4651
4652 return pspace_data->sym_cache;
4653 }
4654
4655 /* Clear all entries from the symbol cache. */
4656
4657 static void
4658 ada_clear_symbol_cache (void)
4659 {
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662
4663 obstack_free (&sym_cache->cache_space, NULL);
4664 ada_init_symbol_cache (sym_cache);
4665 }
4666
4667 /* Search our cache for an entry matching NAME and DOMAIN.
4668 Return it if found, or NULL otherwise. */
4669
4670 static struct cache_entry **
4671 find_entry (const char *name, domain_enum domain)
4672 {
4673 struct ada_symbol_cache *sym_cache
4674 = ada_get_symbol_cache (current_program_space);
4675 int h = msymbol_hash (name) % HASH_SIZE;
4676 struct cache_entry **e;
4677
4678 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4679 {
4680 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4681 return e;
4682 }
4683 return NULL;
4684 }
4685
4686 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4687 Return 1 if found, 0 otherwise.
4688
4689 If an entry was found and SYM is not NULL, set *SYM to the entry's
4690 SYM. Same principle for BLOCK if not NULL. */
4691
4692 static int
4693 lookup_cached_symbol (const char *name, domain_enum domain,
4694 struct symbol **sym, const struct block **block)
4695 {
4696 struct cache_entry **e = find_entry (name, domain);
4697
4698 if (e == NULL)
4699 return 0;
4700 if (sym != NULL)
4701 *sym = (*e)->sym;
4702 if (block != NULL)
4703 *block = (*e)->block;
4704 return 1;
4705 }
4706
4707 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4708 in domain DOMAIN, save this result in our symbol cache. */
4709
4710 static void
4711 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4712 const struct block *block)
4713 {
4714 struct ada_symbol_cache *sym_cache
4715 = ada_get_symbol_cache (current_program_space);
4716 int h;
4717 char *copy;
4718 struct cache_entry *e;
4719
4720 /* Symbols for builtin types don't have a block.
4721 For now don't cache such symbols. */
4722 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4723 return;
4724
4725 /* If the symbol is a local symbol, then do not cache it, as a search
4726 for that symbol depends on the context. To determine whether
4727 the symbol is local or not, we check the block where we found it
4728 against the global and static blocks of its associated symtab. */
4729 if (sym
4730 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4731 GLOBAL_BLOCK) != block
4732 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4733 STATIC_BLOCK) != block)
4734 return;
4735
4736 h = msymbol_hash (name) % HASH_SIZE;
4737 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4738 e->next = sym_cache->root[h];
4739 sym_cache->root[h] = e;
4740 e->name = copy
4741 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4742 strcpy (copy, name);
4743 e->sym = sym;
4744 e->domain = domain;
4745 e->block = block;
4746 }
4747 \f
4748 /* Symbol Lookup */
4749
4750 /* Return the symbol name match type that should be used used when
4751 searching for all symbols matching LOOKUP_NAME.
4752
4753 LOOKUP_NAME is expected to be a symbol name after transformation
4754 for Ada lookups. */
4755
4756 static symbol_name_match_type
4757 name_match_type_from_name (const char *lookup_name)
4758 {
4759 return (strstr (lookup_name, "__") == NULL
4760 ? symbol_name_match_type::WILD
4761 : symbol_name_match_type::FULL);
4762 }
4763
4764 /* Return the result of a standard (literal, C-like) lookup of NAME in
4765 given DOMAIN, visible from lexical block BLOCK. */
4766
4767 static struct symbol *
4768 standard_lookup (const char *name, const struct block *block,
4769 domain_enum domain)
4770 {
4771 /* Initialize it just to avoid a GCC false warning. */
4772 struct block_symbol sym = {};
4773
4774 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4775 return sym.symbol;
4776 ada_lookup_encoded_symbol (name, block, domain, &sym);
4777 cache_symbol (name, domain, sym.symbol, sym.block);
4778 return sym.symbol;
4779 }
4780
4781
4782 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4783 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4784 since they contend in overloading in the same way. */
4785 static int
4786 is_nonfunction (struct block_symbol syms[], int n)
4787 {
4788 int i;
4789
4790 for (i = 0; i < n; i += 1)
4791 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4792 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4793 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4794 return 1;
4795
4796 return 0;
4797 }
4798
4799 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4800 struct types. Otherwise, they may not. */
4801
4802 static int
4803 equiv_types (struct type *type0, struct type *type1)
4804 {
4805 if (type0 == type1)
4806 return 1;
4807 if (type0 == NULL || type1 == NULL
4808 || TYPE_CODE (type0) != TYPE_CODE (type1))
4809 return 0;
4810 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4811 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4812 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4813 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4814 return 1;
4815
4816 return 0;
4817 }
4818
4819 /* True iff SYM0 represents the same entity as SYM1, or one that is
4820 no more defined than that of SYM1. */
4821
4822 static int
4823 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4824 {
4825 if (sym0 == sym1)
4826 return 1;
4827 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4828 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4829 return 0;
4830
4831 switch (SYMBOL_CLASS (sym0))
4832 {
4833 case LOC_UNDEF:
4834 return 1;
4835 case LOC_TYPEDEF:
4836 {
4837 struct type *type0 = SYMBOL_TYPE (sym0);
4838 struct type *type1 = SYMBOL_TYPE (sym1);
4839 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4840 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4841 int len0 = strlen (name0);
4842
4843 return
4844 TYPE_CODE (type0) == TYPE_CODE (type1)
4845 && (equiv_types (type0, type1)
4846 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4847 && startswith (name1 + len0, "___XV")));
4848 }
4849 case LOC_CONST:
4850 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4851 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4852 default:
4853 return 0;
4854 }
4855 }
4856
4857 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4858 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4859
4860 static void
4861 add_defn_to_vec (struct obstack *obstackp,
4862 struct symbol *sym,
4863 const struct block *block)
4864 {
4865 int i;
4866 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4867
4868 /* Do not try to complete stub types, as the debugger is probably
4869 already scanning all symbols matching a certain name at the
4870 time when this function is called. Trying to replace the stub
4871 type by its associated full type will cause us to restart a scan
4872 which may lead to an infinite recursion. Instead, the client
4873 collecting the matching symbols will end up collecting several
4874 matches, with at least one of them complete. It can then filter
4875 out the stub ones if needed. */
4876
4877 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4878 {
4879 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4880 return;
4881 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4882 {
4883 prevDefns[i].symbol = sym;
4884 prevDefns[i].block = block;
4885 return;
4886 }
4887 }
4888
4889 {
4890 struct block_symbol info;
4891
4892 info.symbol = sym;
4893 info.block = block;
4894 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4895 }
4896 }
4897
4898 /* Number of block_symbol structures currently collected in current vector in
4899 OBSTACKP. */
4900
4901 static int
4902 num_defns_collected (struct obstack *obstackp)
4903 {
4904 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4905 }
4906
4907 /* Vector of block_symbol structures currently collected in current vector in
4908 OBSTACKP. If FINISH, close off the vector and return its final address. */
4909
4910 static struct block_symbol *
4911 defns_collected (struct obstack *obstackp, int finish)
4912 {
4913 if (finish)
4914 return (struct block_symbol *) obstack_finish (obstackp);
4915 else
4916 return (struct block_symbol *) obstack_base (obstackp);
4917 }
4918
4919 /* Return a bound minimal symbol matching NAME according to Ada
4920 decoding rules. Returns an invalid symbol if there is no such
4921 minimal symbol. Names prefixed with "standard__" are handled
4922 specially: "standard__" is first stripped off, and only static and
4923 global symbols are searched. */
4924
4925 struct bound_minimal_symbol
4926 ada_lookup_simple_minsym (const char *name)
4927 {
4928 struct bound_minimal_symbol result;
4929
4930 memset (&result, 0, sizeof (result));
4931
4932 symbol_name_match_type match_type = name_match_type_from_name (name);
4933 lookup_name_info lookup_name (name, match_type);
4934
4935 symbol_name_matcher_ftype *match_name
4936 = ada_get_symbol_name_matcher (lookup_name);
4937
4938 for (objfile *objfile : current_program_space->objfiles ())
4939 {
4940 for (minimal_symbol *msymbol : objfile->msymbols ())
4941 {
4942 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4943 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4944 {
4945 result.minsym = msymbol;
4946 result.objfile = objfile;
4947 break;
4948 }
4949 }
4950 }
4951
4952 return result;
4953 }
4954
4955 /* Return all the bound minimal symbols matching NAME according to Ada
4956 decoding rules. Returns an empty vector if there is no such
4957 minimal symbol. Names prefixed with "standard__" are handled
4958 specially: "standard__" is first stripped off, and only static and
4959 global symbols are searched. */
4960
4961 static std::vector<struct bound_minimal_symbol>
4962 ada_lookup_simple_minsyms (const char *name)
4963 {
4964 std::vector<struct bound_minimal_symbol> result;
4965
4966 symbol_name_match_type match_type = name_match_type_from_name (name);
4967 lookup_name_info lookup_name (name, match_type);
4968
4969 symbol_name_matcher_ftype *match_name
4970 = ada_get_symbol_name_matcher (lookup_name);
4971
4972 for (objfile *objfile : current_program_space->objfiles ())
4973 {
4974 for (minimal_symbol *msymbol : objfile->msymbols ())
4975 {
4976 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4977 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4978 result.push_back ({msymbol, objfile});
4979 }
4980 }
4981
4982 return result;
4983 }
4984
4985 /* For all subprograms that statically enclose the subprogram of the
4986 selected frame, add symbols matching identifier NAME in DOMAIN
4987 and their blocks to the list of data in OBSTACKP, as for
4988 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4989 with a wildcard prefix. */
4990
4991 static void
4992 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4993 const lookup_name_info &lookup_name,
4994 domain_enum domain)
4995 {
4996 }
4997
4998 /* True if TYPE is definitely an artificial type supplied to a symbol
4999 for which no debugging information was given in the symbol file. */
5000
5001 static int
5002 is_nondebugging_type (struct type *type)
5003 {
5004 const char *name = ada_type_name (type);
5005
5006 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5007 }
5008
5009 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5010 that are deemed "identical" for practical purposes.
5011
5012 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5013 types and that their number of enumerals is identical (in other
5014 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5015
5016 static int
5017 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5018 {
5019 int i;
5020
5021 /* The heuristic we use here is fairly conservative. We consider
5022 that 2 enumerate types are identical if they have the same
5023 number of enumerals and that all enumerals have the same
5024 underlying value and name. */
5025
5026 /* All enums in the type should have an identical underlying value. */
5027 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5028 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5029 return 0;
5030
5031 /* All enumerals should also have the same name (modulo any numerical
5032 suffix). */
5033 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5034 {
5035 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5036 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5037 int len_1 = strlen (name_1);
5038 int len_2 = strlen (name_2);
5039
5040 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5041 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5042 if (len_1 != len_2
5043 || strncmp (TYPE_FIELD_NAME (type1, i),
5044 TYPE_FIELD_NAME (type2, i),
5045 len_1) != 0)
5046 return 0;
5047 }
5048
5049 return 1;
5050 }
5051
5052 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5053 that are deemed "identical" for practical purposes. Sometimes,
5054 enumerals are not strictly identical, but their types are so similar
5055 that they can be considered identical.
5056
5057 For instance, consider the following code:
5058
5059 type Color is (Black, Red, Green, Blue, White);
5060 type RGB_Color is new Color range Red .. Blue;
5061
5062 Type RGB_Color is a subrange of an implicit type which is a copy
5063 of type Color. If we call that implicit type RGB_ColorB ("B" is
5064 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5065 As a result, when an expression references any of the enumeral
5066 by name (Eg. "print green"), the expression is technically
5067 ambiguous and the user should be asked to disambiguate. But
5068 doing so would only hinder the user, since it wouldn't matter
5069 what choice he makes, the outcome would always be the same.
5070 So, for practical purposes, we consider them as the same. */
5071
5072 static int
5073 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5074 {
5075 int i;
5076
5077 /* Before performing a thorough comparison check of each type,
5078 we perform a series of inexpensive checks. We expect that these
5079 checks will quickly fail in the vast majority of cases, and thus
5080 help prevent the unnecessary use of a more expensive comparison.
5081 Said comparison also expects us to make some of these checks
5082 (see ada_identical_enum_types_p). */
5083
5084 /* Quick check: All symbols should have an enum type. */
5085 for (i = 0; i < syms.size (); i++)
5086 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5087 return 0;
5088
5089 /* Quick check: They should all have the same value. */
5090 for (i = 1; i < syms.size (); i++)
5091 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5092 return 0;
5093
5094 /* Quick check: They should all have the same number of enumerals. */
5095 for (i = 1; i < syms.size (); i++)
5096 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5097 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5098 return 0;
5099
5100 /* All the sanity checks passed, so we might have a set of
5101 identical enumeration types. Perform a more complete
5102 comparison of the type of each symbol. */
5103 for (i = 1; i < syms.size (); i++)
5104 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5105 SYMBOL_TYPE (syms[0].symbol)))
5106 return 0;
5107
5108 return 1;
5109 }
5110
5111 /* Remove any non-debugging symbols in SYMS that definitely
5112 duplicate other symbols in the list (The only case I know of where
5113 this happens is when object files containing stabs-in-ecoff are
5114 linked with files containing ordinary ecoff debugging symbols (or no
5115 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5116 Returns the number of items in the modified list. */
5117
5118 static int
5119 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5120 {
5121 int i, j;
5122
5123 /* We should never be called with less than 2 symbols, as there
5124 cannot be any extra symbol in that case. But it's easy to
5125 handle, since we have nothing to do in that case. */
5126 if (syms->size () < 2)
5127 return syms->size ();
5128
5129 i = 0;
5130 while (i < syms->size ())
5131 {
5132 int remove_p = 0;
5133
5134 /* If two symbols have the same name and one of them is a stub type,
5135 the get rid of the stub. */
5136
5137 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5138 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5139 {
5140 for (j = 0; j < syms->size (); j++)
5141 {
5142 if (j != i
5143 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5144 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5146 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5147 remove_p = 1;
5148 }
5149 }
5150
5151 /* Two symbols with the same name, same class and same address
5152 should be identical. */
5153
5154 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5155 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5156 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5157 {
5158 for (j = 0; j < syms->size (); j += 1)
5159 {
5160 if (i != j
5161 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5162 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5163 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5164 && SYMBOL_CLASS ((*syms)[i].symbol)
5165 == SYMBOL_CLASS ((*syms)[j].symbol)
5166 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5167 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5168 remove_p = 1;
5169 }
5170 }
5171
5172 if (remove_p)
5173 syms->erase (syms->begin () + i);
5174
5175 i += 1;
5176 }
5177
5178 /* If all the remaining symbols are identical enumerals, then
5179 just keep the first one and discard the rest.
5180
5181 Unlike what we did previously, we do not discard any entry
5182 unless they are ALL identical. This is because the symbol
5183 comparison is not a strict comparison, but rather a practical
5184 comparison. If all symbols are considered identical, then
5185 we can just go ahead and use the first one and discard the rest.
5186 But if we cannot reduce the list to a single element, we have
5187 to ask the user to disambiguate anyways. And if we have to
5188 present a multiple-choice menu, it's less confusing if the list
5189 isn't missing some choices that were identical and yet distinct. */
5190 if (symbols_are_identical_enums (*syms))
5191 syms->resize (1);
5192
5193 return syms->size ();
5194 }
5195
5196 /* Given a type that corresponds to a renaming entity, use the type name
5197 to extract the scope (package name or function name, fully qualified,
5198 and following the GNAT encoding convention) where this renaming has been
5199 defined. */
5200
5201 static std::string
5202 xget_renaming_scope (struct type *renaming_type)
5203 {
5204 /* The renaming types adhere to the following convention:
5205 <scope>__<rename>___<XR extension>.
5206 So, to extract the scope, we search for the "___XR" extension,
5207 and then backtrack until we find the first "__". */
5208
5209 const char *name = TYPE_NAME (renaming_type);
5210 const char *suffix = strstr (name, "___XR");
5211 const char *last;
5212
5213 /* Now, backtrack a bit until we find the first "__". Start looking
5214 at suffix - 3, as the <rename> part is at least one character long. */
5215
5216 for (last = suffix - 3; last > name; last--)
5217 if (last[0] == '_' && last[1] == '_')
5218 break;
5219
5220 /* Make a copy of scope and return it. */
5221 return std::string (name, last);
5222 }
5223
5224 /* Return nonzero if NAME corresponds to a package name. */
5225
5226 static int
5227 is_package_name (const char *name)
5228 {
5229 /* Here, We take advantage of the fact that no symbols are generated
5230 for packages, while symbols are generated for each function.
5231 So the condition for NAME represent a package becomes equivalent
5232 to NAME not existing in our list of symbols. There is only one
5233 small complication with library-level functions (see below). */
5234
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
5239
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5242
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5246 return 0;
5247
5248 std::string fun_name = string_printf ("_ada_%s", name);
5249
5250 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5251 }
5252
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5255
5256 static int
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 {
5259 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5260 return 0;
5261
5262 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5263
5264 /* If the rename has been defined in a package, then it is visible. */
5265 if (is_package_name (scope.c_str ()))
5266 return 0;
5267
5268 /* Check that the rename is in the current function scope by checking
5269 that its name starts with SCOPE. */
5270
5271 /* If the function name starts with "_ada_", it means that it is
5272 a library-level function. Strip this prefix before doing the
5273 comparison, as the encoding for the renaming does not contain
5274 this prefix. */
5275 if (startswith (function_name, "_ada_"))
5276 function_name += 5;
5277
5278 return !startswith (function_name, scope.c_str ());
5279 }
5280
5281 /* Remove entries from SYMS that corresponds to a renaming entity that
5282 is not visible from the function associated with CURRENT_BLOCK or
5283 that is superfluous due to the presence of more specific renaming
5284 information. Places surviving symbols in the initial entries of
5285 SYMS and returns the number of surviving symbols.
5286
5287 Rationale:
5288 First, in cases where an object renaming is implemented as a
5289 reference variable, GNAT may produce both the actual reference
5290 variable and the renaming encoding. In this case, we discard the
5291 latter.
5292
5293 Second, GNAT emits a type following a specified encoding for each renaming
5294 entity. Unfortunately, STABS currently does not support the definition
5295 of types that are local to a given lexical block, so all renamings types
5296 are emitted at library level. As a consequence, if an application
5297 contains two renaming entities using the same name, and a user tries to
5298 print the value of one of these entities, the result of the ada symbol
5299 lookup will also contain the wrong renaming type.
5300
5301 This function partially covers for this limitation by attempting to
5302 remove from the SYMS list renaming symbols that should be visible
5303 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5304 method with the current information available. The implementation
5305 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5306
5307 - When the user tries to print a rename in a function while there
5308 is another rename entity defined in a package: Normally, the
5309 rename in the function has precedence over the rename in the
5310 package, so the latter should be removed from the list. This is
5311 currently not the case.
5312
5313 - This function will incorrectly remove valid renames if
5314 the CURRENT_BLOCK corresponds to a function which symbol name
5315 has been changed by an "Export" pragma. As a consequence,
5316 the user will be unable to print such rename entities. */
5317
5318 static int
5319 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5320 const struct block *current_block)
5321 {
5322 struct symbol *current_function;
5323 const char *current_function_name;
5324 int i;
5325 int is_new_style_renaming;
5326
5327 /* If there is both a renaming foo___XR... encoded as a variable and
5328 a simple variable foo in the same block, discard the latter.
5329 First, zero out such symbols, then compress. */
5330 is_new_style_renaming = 0;
5331 for (i = 0; i < syms->size (); i += 1)
5332 {
5333 struct symbol *sym = (*syms)[i].symbol;
5334 const struct block *block = (*syms)[i].block;
5335 const char *name;
5336 const char *suffix;
5337
5338 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5339 continue;
5340 name = SYMBOL_LINKAGE_NAME (sym);
5341 suffix = strstr (name, "___XR");
5342
5343 if (suffix != NULL)
5344 {
5345 int name_len = suffix - name;
5346 int j;
5347
5348 is_new_style_renaming = 1;
5349 for (j = 0; j < syms->size (); j += 1)
5350 if (i != j && (*syms)[j].symbol != NULL
5351 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5352 name_len) == 0
5353 && block == (*syms)[j].block)
5354 (*syms)[j].symbol = NULL;
5355 }
5356 }
5357 if (is_new_style_renaming)
5358 {
5359 int j, k;
5360
5361 for (j = k = 0; j < syms->size (); j += 1)
5362 if ((*syms)[j].symbol != NULL)
5363 {
5364 (*syms)[k] = (*syms)[j];
5365 k += 1;
5366 }
5367 return k;
5368 }
5369
5370 /* Extract the function name associated to CURRENT_BLOCK.
5371 Abort if unable to do so. */
5372
5373 if (current_block == NULL)
5374 return syms->size ();
5375
5376 current_function = block_linkage_function (current_block);
5377 if (current_function == NULL)
5378 return syms->size ();
5379
5380 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5381 if (current_function_name == NULL)
5382 return syms->size ();
5383
5384 /* Check each of the symbols, and remove it from the list if it is
5385 a type corresponding to a renaming that is out of the scope of
5386 the current block. */
5387
5388 i = 0;
5389 while (i < syms->size ())
5390 {
5391 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5392 == ADA_OBJECT_RENAMING
5393 && old_renaming_is_invisible ((*syms)[i].symbol,
5394 current_function_name))
5395 syms->erase (syms->begin () + i);
5396 else
5397 i += 1;
5398 }
5399
5400 return syms->size ();
5401 }
5402
5403 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5404 whose name and domain match NAME and DOMAIN respectively.
5405 If no match was found, then extend the search to "enclosing"
5406 routines (in other words, if we're inside a nested function,
5407 search the symbols defined inside the enclosing functions).
5408 If WILD_MATCH_P is nonzero, perform the naming matching in
5409 "wild" mode (see function "wild_match" for more info).
5410
5411 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5412
5413 static void
5414 ada_add_local_symbols (struct obstack *obstackp,
5415 const lookup_name_info &lookup_name,
5416 const struct block *block, domain_enum domain)
5417 {
5418 int block_depth = 0;
5419
5420 while (block != NULL)
5421 {
5422 block_depth += 1;
5423 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5424
5425 /* If we found a non-function match, assume that's the one. */
5426 if (is_nonfunction (defns_collected (obstackp, 0),
5427 num_defns_collected (obstackp)))
5428 return;
5429
5430 block = BLOCK_SUPERBLOCK (block);
5431 }
5432
5433 /* If no luck so far, try to find NAME as a local symbol in some lexically
5434 enclosing subprogram. */
5435 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5436 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5437 }
5438
5439 /* An object of this type is used as the user_data argument when
5440 calling the map_matching_symbols method. */
5441
5442 struct match_data
5443 {
5444 struct objfile *objfile;
5445 struct obstack *obstackp;
5446 struct symbol *arg_sym;
5447 int found_sym;
5448 };
5449
5450 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5451 to a list of symbols. DATA0 is a pointer to a struct match_data *
5452 containing the obstack that collects the symbol list, the file that SYM
5453 must come from, a flag indicating whether a non-argument symbol has
5454 been found in the current block, and the last argument symbol
5455 passed in SYM within the current block (if any). When SYM is null,
5456 marking the end of a block, the argument symbol is added if no
5457 other has been found. */
5458
5459 static int
5460 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5461 void *data0)
5462 {
5463 struct match_data *data = (struct match_data *) data0;
5464
5465 if (sym == NULL)
5466 {
5467 if (!data->found_sym && data->arg_sym != NULL)
5468 add_defn_to_vec (data->obstackp,
5469 fixup_symbol_section (data->arg_sym, data->objfile),
5470 block);
5471 data->found_sym = 0;
5472 data->arg_sym = NULL;
5473 }
5474 else
5475 {
5476 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5477 return 0;
5478 else if (SYMBOL_IS_ARGUMENT (sym))
5479 data->arg_sym = sym;
5480 else
5481 {
5482 data->found_sym = 1;
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (sym, data->objfile),
5485 block);
5486 }
5487 }
5488 return 0;
5489 }
5490
5491 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5492 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5493 symbols to OBSTACKP. Return whether we found such symbols. */
5494
5495 static int
5496 ada_add_block_renamings (struct obstack *obstackp,
5497 const struct block *block,
5498 const lookup_name_info &lookup_name,
5499 domain_enum domain)
5500 {
5501 struct using_direct *renaming;
5502 int defns_mark = num_defns_collected (obstackp);
5503
5504 symbol_name_matcher_ftype *name_match
5505 = ada_get_symbol_name_matcher (lookup_name);
5506
5507 for (renaming = block_using (block);
5508 renaming != NULL;
5509 renaming = renaming->next)
5510 {
5511 const char *r_name;
5512
5513 /* Avoid infinite recursions: skip this renaming if we are actually
5514 already traversing it.
5515
5516 Currently, symbol lookup in Ada don't use the namespace machinery from
5517 C++/Fortran support: skip namespace imports that use them. */
5518 if (renaming->searched
5519 || (renaming->import_src != NULL
5520 && renaming->import_src[0] != '\0')
5521 || (renaming->import_dest != NULL
5522 && renaming->import_dest[0] != '\0'))
5523 continue;
5524 renaming->searched = 1;
5525
5526 /* TODO: here, we perform another name-based symbol lookup, which can
5527 pull its own multiple overloads. In theory, we should be able to do
5528 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5529 not a simple name. But in order to do this, we would need to enhance
5530 the DWARF reader to associate a symbol to this renaming, instead of a
5531 name. So, for now, we do something simpler: re-use the C++/Fortran
5532 namespace machinery. */
5533 r_name = (renaming->alias != NULL
5534 ? renaming->alias
5535 : renaming->declaration);
5536 if (name_match (r_name, lookup_name, NULL))
5537 {
5538 lookup_name_info decl_lookup_name (renaming->declaration,
5539 lookup_name.match_type ());
5540 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5541 1, NULL);
5542 }
5543 renaming->searched = 0;
5544 }
5545 return num_defns_collected (obstackp) != defns_mark;
5546 }
5547
5548 /* Implements compare_names, but only applying the comparision using
5549 the given CASING. */
5550
5551 static int
5552 compare_names_with_case (const char *string1, const char *string2,
5553 enum case_sensitivity casing)
5554 {
5555 while (*string1 != '\0' && *string2 != '\0')
5556 {
5557 char c1, c2;
5558
5559 if (isspace (*string1) || isspace (*string2))
5560 return strcmp_iw_ordered (string1, string2);
5561
5562 if (casing == case_sensitive_off)
5563 {
5564 c1 = tolower (*string1);
5565 c2 = tolower (*string2);
5566 }
5567 else
5568 {
5569 c1 = *string1;
5570 c2 = *string2;
5571 }
5572 if (c1 != c2)
5573 break;
5574
5575 string1 += 1;
5576 string2 += 1;
5577 }
5578
5579 switch (*string1)
5580 {
5581 case '(':
5582 return strcmp_iw_ordered (string1, string2);
5583 case '_':
5584 if (*string2 == '\0')
5585 {
5586 if (is_name_suffix (string1))
5587 return 0;
5588 else
5589 return 1;
5590 }
5591 /* FALLTHROUGH */
5592 default:
5593 if (*string2 == '(')
5594 return strcmp_iw_ordered (string1, string2);
5595 else
5596 {
5597 if (casing == case_sensitive_off)
5598 return tolower (*string1) - tolower (*string2);
5599 else
5600 return *string1 - *string2;
5601 }
5602 }
5603 }
5604
5605 /* Compare STRING1 to STRING2, with results as for strcmp.
5606 Compatible with strcmp_iw_ordered in that...
5607
5608 strcmp_iw_ordered (STRING1, STRING2) <= 0
5609
5610 ... implies...
5611
5612 compare_names (STRING1, STRING2) <= 0
5613
5614 (they may differ as to what symbols compare equal). */
5615
5616 static int
5617 compare_names (const char *string1, const char *string2)
5618 {
5619 int result;
5620
5621 /* Similar to what strcmp_iw_ordered does, we need to perform
5622 a case-insensitive comparison first, and only resort to
5623 a second, case-sensitive, comparison if the first one was
5624 not sufficient to differentiate the two strings. */
5625
5626 result = compare_names_with_case (string1, string2, case_sensitive_off);
5627 if (result == 0)
5628 result = compare_names_with_case (string1, string2, case_sensitive_on);
5629
5630 return result;
5631 }
5632
5633 /* Convenience function to get at the Ada encoded lookup name for
5634 LOOKUP_NAME, as a C string. */
5635
5636 static const char *
5637 ada_lookup_name (const lookup_name_info &lookup_name)
5638 {
5639 return lookup_name.ada ().lookup_name ().c_str ();
5640 }
5641
5642 /* Add to OBSTACKP all non-local symbols whose name and domain match
5643 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5644 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5645 symbols otherwise. */
5646
5647 static void
5648 add_nonlocal_symbols (struct obstack *obstackp,
5649 const lookup_name_info &lookup_name,
5650 domain_enum domain, int global)
5651 {
5652 struct match_data data;
5653
5654 memset (&data, 0, sizeof data);
5655 data.obstackp = obstackp;
5656
5657 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5658
5659 for (objfile *objfile : current_program_space->objfiles ())
5660 {
5661 data.objfile = objfile;
5662
5663 if (is_wild_match)
5664 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5665 domain, global,
5666 aux_add_nonlocal_symbols, &data,
5667 symbol_name_match_type::WILD,
5668 NULL);
5669 else
5670 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5671 domain, global,
5672 aux_add_nonlocal_symbols, &data,
5673 symbol_name_match_type::FULL,
5674 compare_names);
5675
5676 for (compunit_symtab *cu : objfile->compunits ())
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5682 domain))
5683 data.found_sym = 1;
5684 }
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
5689 const char *name = ada_lookup_name (lookup_name);
5690 std::string name1 = std::string ("<_ada_") + name + '>';
5691
5692 for (objfile *objfile : current_program_space->objfiles ())
5693 {
5694 data.objfile = objfile;
5695 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5696 domain, global,
5697 aux_add_nonlocal_symbols,
5698 &data,
5699 symbol_name_match_type::FULL,
5700 compare_names);
5701 }
5702 }
5703 }
5704
5705 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5706 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5707 returning the number of matches. Add these to OBSTACKP.
5708
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
5711 is the one match returned (no other matches in that or
5712 enclosing blocks is returned). If there are any matches in or
5713 surrounding BLOCK, then these alone are returned.
5714
5715 Names prefixed with "standard__" are handled specially:
5716 "standard__" is first stripped off (by the lookup_name
5717 constructor), and only static and global symbols are searched.
5718
5719 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5720 to lookup global symbols. */
5721
5722 static void
5723 ada_add_all_symbols (struct obstack *obstackp,
5724 const struct block *block,
5725 const lookup_name_info &lookup_name,
5726 domain_enum domain,
5727 int full_search,
5728 int *made_global_lookup_p)
5729 {
5730 struct symbol *sym;
5731
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
5742 if (lookup_name.ada ().standard_p ())
5743 block = NULL;
5744
5745 /* Check the non-global symbols. If we have ANY match, then we're done. */
5746
5747 if (block != NULL)
5748 {
5749 if (full_search)
5750 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5751 else
5752 {
5753 /* In the !full_search case we're are being called by
5754 ada_iterate_over_symbols, and we don't want to search
5755 superblocks. */
5756 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5757 }
5758 if (num_defns_collected (obstackp) > 0 || !full_search)
5759 return;
5760 }
5761
5762 /* No non-global symbols found. Check our cache to see if we have
5763 already performed this search before. If we have, then return
5764 the same result. */
5765
5766 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5767 domain, &sym, &block))
5768 {
5769 if (sym != NULL)
5770 add_defn_to_vec (obstackp, sym, block);
5771 return;
5772 }
5773
5774 if (made_global_lookup_p)
5775 *made_global_lookup_p = 1;
5776
5777 /* Search symbols from all global blocks. */
5778
5779 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5780
5781 /* Now add symbols from all per-file blocks if we've gotten no hits
5782 (not strictly correct, but perhaps better than an error). */
5783
5784 if (num_defns_collected (obstackp) == 0)
5785 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5786 }
5787
5788 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5789 is non-zero, enclosing scope and in global scopes, returning the number of
5790 matches.
5791 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5792 found and the blocks and symbol tables (if any) in which they were
5793 found.
5794
5795 When full_search is non-zero, any non-function/non-enumeral
5796 symbol match within the nest of blocks whose innermost member is BLOCK,
5797 is the one match returned (no other matches in that or
5798 enclosing blocks is returned). If there are any matches in or
5799 surrounding BLOCK, then these alone are returned.
5800
5801 Names prefixed with "standard__" are handled specially: "standard__"
5802 is first stripped off, and only static and global symbols are searched. */
5803
5804 static int
5805 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5806 const struct block *block,
5807 domain_enum domain,
5808 std::vector<struct block_symbol> *results,
5809 int full_search)
5810 {
5811 int syms_from_global_search;
5812 int ndefns;
5813 auto_obstack obstack;
5814
5815 ada_add_all_symbols (&obstack, block, lookup_name,
5816 domain, full_search, &syms_from_global_search);
5817
5818 ndefns = num_defns_collected (&obstack);
5819
5820 struct block_symbol *base = defns_collected (&obstack, 1);
5821 for (int i = 0; i < ndefns; ++i)
5822 results->push_back (base[i]);
5823
5824 ndefns = remove_extra_symbols (results);
5825
5826 if (ndefns == 0 && full_search && syms_from_global_search)
5827 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5828
5829 if (ndefns == 1 && full_search && syms_from_global_search)
5830 cache_symbol (ada_lookup_name (lookup_name), domain,
5831 (*results)[0].symbol, (*results)[0].block);
5832
5833 ndefns = remove_irrelevant_renamings (results, block);
5834
5835 return ndefns;
5836 }
5837
5838 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5839 in global scopes, returning the number of matches, and filling *RESULTS
5840 with (SYM,BLOCK) tuples.
5841
5842 See ada_lookup_symbol_list_worker for further details. */
5843
5844 int
5845 ada_lookup_symbol_list (const char *name, const struct block *block,
5846 domain_enum domain,
5847 std::vector<struct block_symbol> *results)
5848 {
5849 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5850 lookup_name_info lookup_name (name, name_match_type);
5851
5852 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5853 }
5854
5855 /* Implementation of the la_iterate_over_symbols method. */
5856
5857 static void
5858 ada_iterate_over_symbols
5859 (const struct block *block, const lookup_name_info &name,
5860 domain_enum domain,
5861 gdb::function_view<symbol_found_callback_ftype> callback)
5862 {
5863 int ndefs, i;
5864 std::vector<struct block_symbol> results;
5865
5866 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5867
5868 for (i = 0; i < ndefs; ++i)
5869 {
5870 if (!callback (&results[i]))
5871 break;
5872 }
5873 }
5874
5875 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5876 to 1, but choosing the first symbol found if there are multiple
5877 choices.
5878
5879 The result is stored in *INFO, which must be non-NULL.
5880 If no match is found, INFO->SYM is set to NULL. */
5881
5882 void
5883 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5884 domain_enum domain,
5885 struct block_symbol *info)
5886 {
5887 /* Since we already have an encoded name, wrap it in '<>' to force a
5888 verbatim match. Otherwise, if the name happens to not look like
5889 an encoded name (because it doesn't include a "__"),
5890 ada_lookup_name_info would re-encode/fold it again, and that
5891 would e.g., incorrectly lowercase object renaming names like
5892 "R28b" -> "r28b". */
5893 std::string verbatim = std::string ("<") + name + '>';
5894
5895 gdb_assert (info != NULL);
5896 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5897 }
5898
5899 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5900 scope and in global scopes, or NULL if none. NAME is folded and
5901 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5902 choosing the first symbol if there are multiple choices.
5903 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5904
5905 struct block_symbol
5906 ada_lookup_symbol (const char *name, const struct block *block0,
5907 domain_enum domain, int *is_a_field_of_this)
5908 {
5909 if (is_a_field_of_this != NULL)
5910 *is_a_field_of_this = 0;
5911
5912 std::vector<struct block_symbol> candidates;
5913 int n_candidates;
5914
5915 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5916
5917 if (n_candidates == 0)
5918 return {};
5919
5920 block_symbol info = candidates[0];
5921 info.symbol = fixup_symbol_section (info.symbol, NULL);
5922 return info;
5923 }
5924
5925 static struct block_symbol
5926 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5927 const char *name,
5928 const struct block *block,
5929 const domain_enum domain)
5930 {
5931 struct block_symbol sym;
5932
5933 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5934 if (sym.symbol != NULL)
5935 return sym;
5936
5937 /* If we haven't found a match at this point, try the primitive
5938 types. In other languages, this search is performed before
5939 searching for global symbols in order to short-circuit that
5940 global-symbol search if it happens that the name corresponds
5941 to a primitive type. But we cannot do the same in Ada, because
5942 it is perfectly legitimate for a program to declare a type which
5943 has the same name as a standard type. If looking up a type in
5944 that situation, we have traditionally ignored the primitive type
5945 in favor of user-defined types. This is why, unlike most other
5946 languages, we search the primitive types this late and only after
5947 having searched the global symbols without success. */
5948
5949 if (domain == VAR_DOMAIN)
5950 {
5951 struct gdbarch *gdbarch;
5952
5953 if (block == NULL)
5954 gdbarch = target_gdbarch ();
5955 else
5956 gdbarch = block_gdbarch (block);
5957 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5958 if (sym.symbol != NULL)
5959 return sym;
5960 }
5961
5962 return {};
5963 }
5964
5965
5966 /* True iff STR is a possible encoded suffix of a normal Ada name
5967 that is to be ignored for matching purposes. Suffixes of parallel
5968 names (e.g., XVE) are not included here. Currently, the possible suffixes
5969 are given by any of the regular expressions:
5970
5971 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5972 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5973 TKB [subprogram suffix for task bodies]
5974 _E[0-9]+[bs]$ [protected object entry suffixes]
5975 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5976
5977 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5978 match is performed. This sequence is used to differentiate homonyms,
5979 is an optional part of a valid name suffix. */
5980
5981 static int
5982 is_name_suffix (const char *str)
5983 {
5984 int k;
5985 const char *matching;
5986 const int len = strlen (str);
5987
5988 /* Skip optional leading __[0-9]+. */
5989
5990 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5991 {
5992 str += 3;
5993 while (isdigit (str[0]))
5994 str += 1;
5995 }
5996
5997 /* [.$][0-9]+ */
5998
5999 if (str[0] == '.' || str[0] == '$')
6000 {
6001 matching = str + 1;
6002 while (isdigit (matching[0]))
6003 matching += 1;
6004 if (matching[0] == '\0')
6005 return 1;
6006 }
6007
6008 /* ___[0-9]+ */
6009
6010 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6011 {
6012 matching = str + 3;
6013 while (isdigit (matching[0]))
6014 matching += 1;
6015 if (matching[0] == '\0')
6016 return 1;
6017 }
6018
6019 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6020
6021 if (strcmp (str, "TKB") == 0)
6022 return 1;
6023
6024 #if 0
6025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6026 with a N at the end. Unfortunately, the compiler uses the same
6027 convention for other internal types it creates. So treating
6028 all entity names that end with an "N" as a name suffix causes
6029 some regressions. For instance, consider the case of an enumerated
6030 type. To support the 'Image attribute, it creates an array whose
6031 name ends with N.
6032 Having a single character like this as a suffix carrying some
6033 information is a bit risky. Perhaps we should change the encoding
6034 to be something like "_N" instead. In the meantime, do not do
6035 the following check. */
6036 /* Protected Object Subprograms */
6037 if (len == 1 && str [0] == 'N')
6038 return 1;
6039 #endif
6040
6041 /* _E[0-9]+[bs]$ */
6042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6043 {
6044 matching = str + 3;
6045 while (isdigit (matching[0]))
6046 matching += 1;
6047 if ((matching[0] == 'b' || matching[0] == 's')
6048 && matching [1] == '\0')
6049 return 1;
6050 }
6051
6052 /* ??? We should not modify STR directly, as we are doing below. This
6053 is fine in this case, but may become problematic later if we find
6054 that this alternative did not work, and want to try matching
6055 another one from the begining of STR. Since we modified it, we
6056 won't be able to find the begining of the string anymore! */
6057 if (str[0] == 'X')
6058 {
6059 str += 1;
6060 while (str[0] != '_' && str[0] != '\0')
6061 {
6062 if (str[0] != 'n' && str[0] != 'b')
6063 return 0;
6064 str += 1;
6065 }
6066 }
6067
6068 if (str[0] == '\000')
6069 return 1;
6070
6071 if (str[0] == '_')
6072 {
6073 if (str[1] != '_' || str[2] == '\000')
6074 return 0;
6075 if (str[2] == '_')
6076 {
6077 if (strcmp (str + 3, "JM") == 0)
6078 return 1;
6079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6080 the LJM suffix in favor of the JM one. But we will
6081 still accept LJM as a valid suffix for a reasonable
6082 amount of time, just to allow ourselves to debug programs
6083 compiled using an older version of GNAT. */
6084 if (strcmp (str + 3, "LJM") == 0)
6085 return 1;
6086 if (str[3] != 'X')
6087 return 0;
6088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6089 || str[4] == 'U' || str[4] == 'P')
6090 return 1;
6091 if (str[4] == 'R' && str[5] != 'T')
6092 return 1;
6093 return 0;
6094 }
6095 if (!isdigit (str[2]))
6096 return 0;
6097 for (k = 3; str[k] != '\0'; k += 1)
6098 if (!isdigit (str[k]) && str[k] != '_')
6099 return 0;
6100 return 1;
6101 }
6102 if (str[0] == '$' && isdigit (str[1]))
6103 {
6104 for (k = 2; str[k] != '\0'; k += 1)
6105 if (!isdigit (str[k]) && str[k] != '_')
6106 return 0;
6107 return 1;
6108 }
6109 return 0;
6110 }
6111
6112 /* Return non-zero if the string starting at NAME and ending before
6113 NAME_END contains no capital letters. */
6114
6115 static int
6116 is_valid_name_for_wild_match (const char *name0)
6117 {
6118 const char *decoded_name = ada_decode (name0);
6119 int i;
6120
6121 /* If the decoded name starts with an angle bracket, it means that
6122 NAME0 does not follow the GNAT encoding format. It should then
6123 not be allowed as a possible wild match. */
6124 if (decoded_name[0] == '<')
6125 return 0;
6126
6127 for (i=0; decoded_name[i] != '\0'; i++)
6128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6129 return 0;
6130
6131 return 1;
6132 }
6133
6134 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6135 that could start a simple name. Assumes that *NAMEP points into
6136 the string beginning at NAME0. */
6137
6138 static int
6139 advance_wild_match (const char **namep, const char *name0, int target0)
6140 {
6141 const char *name = *namep;
6142
6143 while (1)
6144 {
6145 int t0, t1;
6146
6147 t0 = *name;
6148 if (t0 == '_')
6149 {
6150 t1 = name[1];
6151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6152 {
6153 name += 1;
6154 if (name == name0 + 5 && startswith (name0, "_ada"))
6155 break;
6156 else
6157 name += 1;
6158 }
6159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6160 || name[2] == target0))
6161 {
6162 name += 2;
6163 break;
6164 }
6165 else
6166 return 0;
6167 }
6168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6169 name += 1;
6170 else
6171 return 0;
6172 }
6173
6174 *namep = name;
6175 return 1;
6176 }
6177
6178 /* Return true iff NAME encodes a name of the form prefix.PATN.
6179 Ignores any informational suffixes of NAME (i.e., for which
6180 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6181 simple name. */
6182
6183 static bool
6184 wild_match (const char *name, const char *patn)
6185 {
6186 const char *p;
6187 const char *name0 = name;
6188
6189 while (1)
6190 {
6191 const char *match = name;
6192
6193 if (*name == *patn)
6194 {
6195 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6196 if (*p != *name)
6197 break;
6198 if (*p == '\0' && is_name_suffix (name))
6199 return match == name0 || is_valid_name_for_wild_match (name0);
6200
6201 if (name[-1] == '_')
6202 name -= 1;
6203 }
6204 if (!advance_wild_match (&name, name0, *patn))
6205 return false;
6206 }
6207 }
6208
6209 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6210 any trailing suffixes that encode debugging information or leading
6211 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6212 information that is ignored). */
6213
6214 static bool
6215 full_match (const char *sym_name, const char *search_name)
6216 {
6217 size_t search_name_len = strlen (search_name);
6218
6219 if (strncmp (sym_name, search_name, search_name_len) == 0
6220 && is_name_suffix (sym_name + search_name_len))
6221 return true;
6222
6223 if (startswith (sym_name, "_ada_")
6224 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len + 5))
6226 return true;
6227
6228 return false;
6229 }
6230
6231 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6232 *defn_symbols, updating the list of symbols in OBSTACKP (if
6233 necessary). OBJFILE is the section containing BLOCK. */
6234
6235 static void
6236 ada_add_block_symbols (struct obstack *obstackp,
6237 const struct block *block,
6238 const lookup_name_info &lookup_name,
6239 domain_enum domain, struct objfile *objfile)
6240 {
6241 struct block_iterator iter;
6242 /* A matching argument symbol, if any. */
6243 struct symbol *arg_sym;
6244 /* Set true when we find a matching non-argument symbol. */
6245 int found_sym;
6246 struct symbol *sym;
6247
6248 arg_sym = NULL;
6249 found_sym = 0;
6250 for (sym = block_iter_match_first (block, lookup_name, &iter);
6251 sym != NULL;
6252 sym = block_iter_match_next (lookup_name, &iter))
6253 {
6254 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6255 SYMBOL_DOMAIN (sym), domain))
6256 {
6257 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6258 {
6259 if (SYMBOL_IS_ARGUMENT (sym))
6260 arg_sym = sym;
6261 else
6262 {
6263 found_sym = 1;
6264 add_defn_to_vec (obstackp,
6265 fixup_symbol_section (sym, objfile),
6266 block);
6267 }
6268 }
6269 }
6270 }
6271
6272 /* Handle renamings. */
6273
6274 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6275 found_sym = 1;
6276
6277 if (!found_sym && arg_sym != NULL)
6278 {
6279 add_defn_to_vec (obstackp,
6280 fixup_symbol_section (arg_sym, objfile),
6281 block);
6282 }
6283
6284 if (!lookup_name.ada ().wild_match_p ())
6285 {
6286 arg_sym = NULL;
6287 found_sym = 0;
6288 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6289 const char *name = ada_lookup_name.c_str ();
6290 size_t name_len = ada_lookup_name.size ();
6291
6292 ALL_BLOCK_SYMBOLS (block, iter, sym)
6293 {
6294 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6295 SYMBOL_DOMAIN (sym), domain))
6296 {
6297 int cmp;
6298
6299 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6300 if (cmp == 0)
6301 {
6302 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6303 if (cmp == 0)
6304 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6305 name_len);
6306 }
6307
6308 if (cmp == 0
6309 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6310 {
6311 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6312 {
6313 if (SYMBOL_IS_ARGUMENT (sym))
6314 arg_sym = sym;
6315 else
6316 {
6317 found_sym = 1;
6318 add_defn_to_vec (obstackp,
6319 fixup_symbol_section (sym, objfile),
6320 block);
6321 }
6322 }
6323 }
6324 }
6325 }
6326
6327 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6328 They aren't parameters, right? */
6329 if (!found_sym && arg_sym != NULL)
6330 {
6331 add_defn_to_vec (obstackp,
6332 fixup_symbol_section (arg_sym, objfile),
6333 block);
6334 }
6335 }
6336 }
6337 \f
6338
6339 /* Symbol Completion */
6340
6341 /* See symtab.h. */
6342
6343 bool
6344 ada_lookup_name_info::matches
6345 (const char *sym_name,
6346 symbol_name_match_type match_type,
6347 completion_match_result *comp_match_res) const
6348 {
6349 bool match = false;
6350 const char *text = m_encoded_name.c_str ();
6351 size_t text_len = m_encoded_name.size ();
6352
6353 /* First, test against the fully qualified name of the symbol. */
6354
6355 if (strncmp (sym_name, text, text_len) == 0)
6356 match = true;
6357
6358 if (match && !m_encoded_p)
6359 {
6360 /* One needed check before declaring a positive match is to verify
6361 that iff we are doing a verbatim match, the decoded version
6362 of the symbol name starts with '<'. Otherwise, this symbol name
6363 is not a suitable completion. */
6364 const char *sym_name_copy = sym_name;
6365 bool has_angle_bracket;
6366
6367 sym_name = ada_decode (sym_name);
6368 has_angle_bracket = (sym_name[0] == '<');
6369 match = (has_angle_bracket == m_verbatim_p);
6370 sym_name = sym_name_copy;
6371 }
6372
6373 if (match && !m_verbatim_p)
6374 {
6375 /* When doing non-verbatim match, another check that needs to
6376 be done is to verify that the potentially matching symbol name
6377 does not include capital letters, because the ada-mode would
6378 not be able to understand these symbol names without the
6379 angle bracket notation. */
6380 const char *tmp;
6381
6382 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6383 if (*tmp != '\0')
6384 match = false;
6385 }
6386
6387 /* Second: Try wild matching... */
6388
6389 if (!match && m_wild_match_p)
6390 {
6391 /* Since we are doing wild matching, this means that TEXT
6392 may represent an unqualified symbol name. We therefore must
6393 also compare TEXT against the unqualified name of the symbol. */
6394 sym_name = ada_unqualified_name (ada_decode (sym_name));
6395
6396 if (strncmp (sym_name, text, text_len) == 0)
6397 match = true;
6398 }
6399
6400 /* Finally: If we found a match, prepare the result to return. */
6401
6402 if (!match)
6403 return false;
6404
6405 if (comp_match_res != NULL)
6406 {
6407 std::string &match_str = comp_match_res->match.storage ();
6408
6409 if (!m_encoded_p)
6410 match_str = ada_decode (sym_name);
6411 else
6412 {
6413 if (m_verbatim_p)
6414 match_str = add_angle_brackets (sym_name);
6415 else
6416 match_str = sym_name;
6417
6418 }
6419
6420 comp_match_res->set_match (match_str.c_str ());
6421 }
6422
6423 return true;
6424 }
6425
6426 /* Add the list of possible symbol names completing TEXT to TRACKER.
6427 WORD is the entire command on which completion is made. */
6428
6429 static void
6430 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6431 complete_symbol_mode mode,
6432 symbol_name_match_type name_match_type,
6433 const char *text, const char *word,
6434 enum type_code code)
6435 {
6436 struct symbol *sym;
6437 const struct block *b, *surrounding_static_block = 0;
6438 struct block_iterator iter;
6439
6440 gdb_assert (code == TYPE_CODE_UNDEF);
6441
6442 lookup_name_info lookup_name (text, name_match_type, true);
6443
6444 /* First, look at the partial symtab symbols. */
6445 expand_symtabs_matching (NULL,
6446 lookup_name,
6447 NULL,
6448 NULL,
6449 ALL_DOMAIN);
6450
6451 /* At this point scan through the misc symbol vectors and add each
6452 symbol you find to the list. Eventually we want to ignore
6453 anything that isn't a text symbol (everything else will be
6454 handled by the psymtab code above). */
6455
6456 for (objfile *objfile : current_program_space->objfiles ())
6457 {
6458 for (minimal_symbol *msymbol : objfile->msymbols ())
6459 {
6460 QUIT;
6461
6462 if (completion_skip_symbol (mode, msymbol))
6463 continue;
6464
6465 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6466
6467 /* Ada minimal symbols won't have their language set to Ada. If
6468 we let completion_list_add_name compare using the
6469 default/C-like matcher, then when completing e.g., symbols in a
6470 package named "pck", we'd match internal Ada symbols like
6471 "pckS", which are invalid in an Ada expression, unless you wrap
6472 them in '<' '>' to request a verbatim match.
6473
6474 Unfortunately, some Ada encoded names successfully demangle as
6475 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6476 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6477 with the wrong language set. Paper over that issue here. */
6478 if (symbol_language == language_auto
6479 || symbol_language == language_cplus)
6480 symbol_language = language_ada;
6481
6482 completion_list_add_name (tracker,
6483 symbol_language,
6484 MSYMBOL_LINKAGE_NAME (msymbol),
6485 lookup_name, text, word);
6486 }
6487 }
6488
6489 /* Search upwards from currently selected frame (so that we can
6490 complete on local vars. */
6491
6492 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6493 {
6494 if (!BLOCK_SUPERBLOCK (b))
6495 surrounding_static_block = b; /* For elmin of dups */
6496
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
6505 lookup_name, text, word);
6506 }
6507 }
6508
6509 /* Go through the symtabs and check the externs and statics for
6510 symbols which match. */
6511
6512 for (objfile *objfile : current_program_space->objfiles ())
6513 {
6514 for (compunit_symtab *s : objfile->compunits ())
6515 {
6516 QUIT;
6517 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
6529 }
6530
6531 for (objfile *objfile : current_program_space->objfiles ())
6532 {
6533 for (compunit_symtab *s : objfile->compunits ())
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6537 /* Don't do this block twice. */
6538 if (b == surrounding_static_block)
6539 continue;
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
6544
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
6548 lookup_name, text, word);
6549 }
6550 }
6551 }
6552 }
6553
6554 /* Field Access */
6555
6556 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6557 for tagged types. */
6558
6559 static int
6560 ada_is_dispatch_table_ptr_type (struct type *type)
6561 {
6562 const char *name;
6563
6564 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6565 return 0;
6566
6567 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6568 if (name == NULL)
6569 return 0;
6570
6571 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6572 }
6573
6574 /* Return non-zero if TYPE is an interface tag. */
6575
6576 static int
6577 ada_is_interface_tag (struct type *type)
6578 {
6579 const char *name = TYPE_NAME (type);
6580
6581 if (name == NULL)
6582 return 0;
6583
6584 return (strcmp (name, "ada__tags__interface_tag") == 0);
6585 }
6586
6587 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6588 to be invisible to users. */
6589
6590 int
6591 ada_is_ignored_field (struct type *type, int field_num)
6592 {
6593 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6594 return 1;
6595
6596 /* Check the name of that field. */
6597 {
6598 const char *name = TYPE_FIELD_NAME (type, field_num);
6599
6600 /* Anonymous field names should not be printed.
6601 brobecker/2007-02-20: I don't think this can actually happen
6602 but we don't want to print the value of annonymous fields anyway. */
6603 if (name == NULL)
6604 return 1;
6605
6606 /* Normally, fields whose name start with an underscore ("_")
6607 are fields that have been internally generated by the compiler,
6608 and thus should not be printed. The "_parent" field is special,
6609 however: This is a field internally generated by the compiler
6610 for tagged types, and it contains the components inherited from
6611 the parent type. This field should not be printed as is, but
6612 should not be ignored either. */
6613 if (name[0] == '_' && !startswith (name, "_parent"))
6614 return 1;
6615 }
6616
6617 /* If this is the dispatch table of a tagged type or an interface tag,
6618 then ignore. */
6619 if (ada_is_tagged_type (type, 1)
6620 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6621 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6622 return 1;
6623
6624 /* Not a special field, so it should not be ignored. */
6625 return 0;
6626 }
6627
6628 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6629 pointer or reference type whose ultimate target has a tag field. */
6630
6631 int
6632 ada_is_tagged_type (struct type *type, int refok)
6633 {
6634 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6635 }
6636
6637 /* True iff TYPE represents the type of X'Tag */
6638
6639 int
6640 ada_is_tag_type (struct type *type)
6641 {
6642 type = ada_check_typedef (type);
6643
6644 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6645 return 0;
6646 else
6647 {
6648 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6649
6650 return (name != NULL
6651 && strcmp (name, "ada__tags__dispatch_table") == 0);
6652 }
6653 }
6654
6655 /* The type of the tag on VAL. */
6656
6657 struct type *
6658 ada_tag_type (struct value *val)
6659 {
6660 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6661 }
6662
6663 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6664 retired at Ada 05). */
6665
6666 static int
6667 is_ada95_tag (struct value *tag)
6668 {
6669 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6670 }
6671
6672 /* The value of the tag on VAL. */
6673
6674 struct value *
6675 ada_value_tag (struct value *val)
6676 {
6677 return ada_value_struct_elt (val, "_tag", 0);
6678 }
6679
6680 /* The value of the tag on the object of type TYPE whose contents are
6681 saved at VALADDR, if it is non-null, or is at memory address
6682 ADDRESS. */
6683
6684 static struct value *
6685 value_tag_from_contents_and_address (struct type *type,
6686 const gdb_byte *valaddr,
6687 CORE_ADDR address)
6688 {
6689 int tag_byte_offset;
6690 struct type *tag_type;
6691
6692 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6693 NULL, NULL, NULL))
6694 {
6695 const gdb_byte *valaddr1 = ((valaddr == NULL)
6696 ? NULL
6697 : valaddr + tag_byte_offset);
6698 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6699
6700 return value_from_contents_and_address (tag_type, valaddr1, address1);
6701 }
6702 return NULL;
6703 }
6704
6705 static struct type *
6706 type_from_tag (struct value *tag)
6707 {
6708 const char *type_name = ada_tag_name (tag);
6709
6710 if (type_name != NULL)
6711 return ada_find_any_type (ada_encode (type_name));
6712 return NULL;
6713 }
6714
6715 /* Given a value OBJ of a tagged type, return a value of this
6716 type at the base address of the object. The base address, as
6717 defined in Ada.Tags, it is the address of the primary tag of
6718 the object, and therefore where the field values of its full
6719 view can be fetched. */
6720
6721 struct value *
6722 ada_tag_value_at_base_address (struct value *obj)
6723 {
6724 struct value *val;
6725 LONGEST offset_to_top = 0;
6726 struct type *ptr_type, *obj_type;
6727 struct value *tag;
6728 CORE_ADDR base_address;
6729
6730 obj_type = value_type (obj);
6731
6732 /* It is the responsability of the caller to deref pointers. */
6733
6734 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6735 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6736 return obj;
6737
6738 tag = ada_value_tag (obj);
6739 if (!tag)
6740 return obj;
6741
6742 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6743
6744 if (is_ada95_tag (tag))
6745 return obj;
6746
6747 ptr_type = language_lookup_primitive_type
6748 (language_def (language_ada), target_gdbarch(), "storage_offset");
6749 ptr_type = lookup_pointer_type (ptr_type);
6750 val = value_cast (ptr_type, tag);
6751 if (!val)
6752 return obj;
6753
6754 /* It is perfectly possible that an exception be raised while
6755 trying to determine the base address, just like for the tag;
6756 see ada_tag_name for more details. We do not print the error
6757 message for the same reason. */
6758
6759 try
6760 {
6761 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6762 }
6763
6764 catch (const gdb_exception_error &e)
6765 {
6766 return obj;
6767 }
6768
6769 /* If offset is null, nothing to do. */
6770
6771 if (offset_to_top == 0)
6772 return obj;
6773
6774 /* -1 is a special case in Ada.Tags; however, what should be done
6775 is not quite clear from the documentation. So do nothing for
6776 now. */
6777
6778 if (offset_to_top == -1)
6779 return obj;
6780
6781 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6782 from the base address. This was however incompatible with
6783 C++ dispatch table: C++ uses a *negative* value to *add*
6784 to the base address. Ada's convention has therefore been
6785 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6786 use the same convention. Here, we support both cases by
6787 checking the sign of OFFSET_TO_TOP. */
6788
6789 if (offset_to_top > 0)
6790 offset_to_top = -offset_to_top;
6791
6792 base_address = value_address (obj) + offset_to_top;
6793 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6794
6795 /* Make sure that we have a proper tag at the new address.
6796 Otherwise, offset_to_top is bogus (which can happen when
6797 the object is not initialized yet). */
6798
6799 if (!tag)
6800 return obj;
6801
6802 obj_type = type_from_tag (tag);
6803
6804 if (!obj_type)
6805 return obj;
6806
6807 return value_from_contents_and_address (obj_type, NULL, base_address);
6808 }
6809
6810 /* Return the "ada__tags__type_specific_data" type. */
6811
6812 static struct type *
6813 ada_get_tsd_type (struct inferior *inf)
6814 {
6815 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6816
6817 if (data->tsd_type == 0)
6818 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6819 return data->tsd_type;
6820 }
6821
6822 /* Return the TSD (type-specific data) associated to the given TAG.
6823 TAG is assumed to be the tag of a tagged-type entity.
6824
6825 May return NULL if we are unable to get the TSD. */
6826
6827 static struct value *
6828 ada_get_tsd_from_tag (struct value *tag)
6829 {
6830 struct value *val;
6831 struct type *type;
6832
6833 /* First option: The TSD is simply stored as a field of our TAG.
6834 Only older versions of GNAT would use this format, but we have
6835 to test it first, because there are no visible markers for
6836 the current approach except the absence of that field. */
6837
6838 val = ada_value_struct_elt (tag, "tsd", 1);
6839 if (val)
6840 return val;
6841
6842 /* Try the second representation for the dispatch table (in which
6843 there is no explicit 'tsd' field in the referent of the tag pointer,
6844 and instead the tsd pointer is stored just before the dispatch
6845 table. */
6846
6847 type = ada_get_tsd_type (current_inferior());
6848 if (type == NULL)
6849 return NULL;
6850 type = lookup_pointer_type (lookup_pointer_type (type));
6851 val = value_cast (type, tag);
6852 if (val == NULL)
6853 return NULL;
6854 return value_ind (value_ptradd (val, -1));
6855 }
6856
6857 /* Given the TSD of a tag (type-specific data), return a string
6858 containing the name of the associated type.
6859
6860 The returned value is good until the next call. May return NULL
6861 if we are unable to determine the tag name. */
6862
6863 static char *
6864 ada_tag_name_from_tsd (struct value *tsd)
6865 {
6866 static char name[1024];
6867 char *p;
6868 struct value *val;
6869
6870 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6871 if (val == NULL)
6872 return NULL;
6873 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6874 for (p = name; *p != '\0'; p += 1)
6875 if (isalpha (*p))
6876 *p = tolower (*p);
6877 return name;
6878 }
6879
6880 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6881 a C string.
6882
6883 Return NULL if the TAG is not an Ada tag, or if we were unable to
6884 determine the name of that tag. The result is good until the next
6885 call. */
6886
6887 const char *
6888 ada_tag_name (struct value *tag)
6889 {
6890 char *name = NULL;
6891
6892 if (!ada_is_tag_type (value_type (tag)))
6893 return NULL;
6894
6895 /* It is perfectly possible that an exception be raised while trying
6896 to determine the TAG's name, even under normal circumstances:
6897 The associated variable may be uninitialized or corrupted, for
6898 instance. We do not let any exception propagate past this point.
6899 instead we return NULL.
6900
6901 We also do not print the error message either (which often is very
6902 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6903 the caller print a more meaningful message if necessary. */
6904 try
6905 {
6906 struct value *tsd = ada_get_tsd_from_tag (tag);
6907
6908 if (tsd != NULL)
6909 name = ada_tag_name_from_tsd (tsd);
6910 }
6911 catch (const gdb_exception_error &e)
6912 {
6913 }
6914
6915 return name;
6916 }
6917
6918 /* The parent type of TYPE, or NULL if none. */
6919
6920 struct type *
6921 ada_parent_type (struct type *type)
6922 {
6923 int i;
6924
6925 type = ada_check_typedef (type);
6926
6927 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6928 return NULL;
6929
6930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6931 if (ada_is_parent_field (type, i))
6932 {
6933 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6934
6935 /* If the _parent field is a pointer, then dereference it. */
6936 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6937 parent_type = TYPE_TARGET_TYPE (parent_type);
6938 /* If there is a parallel XVS type, get the actual base type. */
6939 parent_type = ada_get_base_type (parent_type);
6940
6941 return ada_check_typedef (parent_type);
6942 }
6943
6944 return NULL;
6945 }
6946
6947 /* True iff field number FIELD_NUM of structure type TYPE contains the
6948 parent-type (inherited) fields of a derived type. Assumes TYPE is
6949 a structure type with at least FIELD_NUM+1 fields. */
6950
6951 int
6952 ada_is_parent_field (struct type *type, int field_num)
6953 {
6954 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6955
6956 return (name != NULL
6957 && (startswith (name, "PARENT")
6958 || startswith (name, "_parent")));
6959 }
6960
6961 /* True iff field number FIELD_NUM of structure type TYPE is a
6962 transparent wrapper field (which should be silently traversed when doing
6963 field selection and flattened when printing). Assumes TYPE is a
6964 structure type with at least FIELD_NUM+1 fields. Such fields are always
6965 structures. */
6966
6967 int
6968 ada_is_wrapper_field (struct type *type, int field_num)
6969 {
6970 const char *name = TYPE_FIELD_NAME (type, field_num);
6971
6972 if (name != NULL && strcmp (name, "RETVAL") == 0)
6973 {
6974 /* This happens in functions with "out" or "in out" parameters
6975 which are passed by copy. For such functions, GNAT describes
6976 the function's return type as being a struct where the return
6977 value is in a field called RETVAL, and where the other "out"
6978 or "in out" parameters are fields of that struct. This is not
6979 a wrapper. */
6980 return 0;
6981 }
6982
6983 return (name != NULL
6984 && (startswith (name, "PARENT")
6985 || strcmp (name, "REP") == 0
6986 || startswith (name, "_parent")
6987 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6988 }
6989
6990 /* True iff field number FIELD_NUM of structure or union type TYPE
6991 is a variant wrapper. Assumes TYPE is a structure type with at least
6992 FIELD_NUM+1 fields. */
6993
6994 int
6995 ada_is_variant_part (struct type *type, int field_num)
6996 {
6997 /* Only Ada types are eligible. */
6998 if (!ADA_TYPE_P (type))
6999 return 0;
7000
7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7002
7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7004 || (is_dynamic_field (type, field_num)
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
7007 }
7008
7009 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7010 whose discriminants are contained in the record type OUTER_TYPE,
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
7013
7014 struct type *
7015 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7016 {
7017 const char *name = ada_variant_discrim_name (var_type);
7018
7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7020 }
7021
7022 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7024 represents a 'when others' clause; otherwise 0. */
7025
7026 int
7027 ada_is_others_clause (struct type *type, int field_num)
7028 {
7029 const char *name = TYPE_FIELD_NAME (type, field_num);
7030
7031 return (name != NULL && name[0] == 'O');
7032 }
7033
7034 /* Assuming that TYPE0 is the type of the variant part of a record,
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
7037
7038 const char *
7039 ada_variant_discrim_name (struct type *type0)
7040 {
7041 static char *result = NULL;
7042 static size_t result_len = 0;
7043 struct type *type;
7044 const char *name;
7045 const char *discrim_end;
7046 const char *discrim_start;
7047
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7050 else
7051 type = type0;
7052
7053 name = ada_type_name (type);
7054
7055 if (name == NULL || name[0] == '\000')
7056 return "";
7057
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7059 discrim_end -= 1)
7060 {
7061 if (startswith (discrim_end, "___XVN"))
7062 break;
7063 }
7064 if (discrim_end == name)
7065 return "";
7066
7067 for (discrim_start = discrim_end; discrim_start != name + 3;
7068 discrim_start -= 1)
7069 {
7070 if (discrim_start == name + 1)
7071 return "";
7072 if ((discrim_start > name + 3
7073 && startswith (discrim_start - 3, "___"))
7074 || discrim_start[-1] == '.')
7075 break;
7076 }
7077
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
7080 result[discrim_end - discrim_start] = '\0';
7081 return result;
7082 }
7083
7084 /* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
7091
7092 int
7093 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7094 {
7095 ULONGEST RU;
7096
7097 if (!isdigit (str[k]))
7098 return 0;
7099
7100 /* Do it the hard way so as not to make any assumption about
7101 the relationship of unsigned long (%lu scan format code) and
7102 LONGEST. */
7103 RU = 0;
7104 while (isdigit (str[k]))
7105 {
7106 RU = RU * 10 + (str[k] - '0');
7107 k += 1;
7108 }
7109
7110 if (str[k] == 'm')
7111 {
7112 if (R != NULL)
7113 *R = (-(LONGEST) (RU - 1)) - 1;
7114 k += 1;
7115 }
7116 else if (R != NULL)
7117 *R = (LONGEST) RU;
7118
7119 /* NOTE on the above: Technically, C does not say what the results of
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
7123 above is always equivalent to the negative of RU. */
7124
7125 if (new_k != NULL)
7126 *new_k = k;
7127 return 1;
7128 }
7129
7130 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7133
7134 int
7135 ada_in_variant (LONGEST val, struct type *type, int field_num)
7136 {
7137 const char *name = TYPE_FIELD_NAME (type, field_num);
7138 int p;
7139
7140 p = 0;
7141 while (1)
7142 {
7143 switch (name[p])
7144 {
7145 case '\0':
7146 return 0;
7147 case 'S':
7148 {
7149 LONGEST W;
7150
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7152 return 0;
7153 if (val == W)
7154 return 1;
7155 break;
7156 }
7157 case 'R':
7158 {
7159 LONGEST L, U;
7160
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7163 return 0;
7164 if (val >= L && val <= U)
7165 return 1;
7166 break;
7167 }
7168 case 'O':
7169 return 1;
7170 default:
7171 return 0;
7172 }
7173 }
7174 }
7175
7176 /* FIXME: Lots of redundancy below. Try to consolidate. */
7177
7178 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
7182
7183 static struct value *
7184 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7185 struct type *arg_type)
7186 {
7187 struct type *type;
7188
7189 arg_type = ada_check_typedef (arg_type);
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7191
7192 /* Handle packed fields. It might be that the field is not packed
7193 relative to its containing structure, but the structure itself is
7194 packed; in this case we must take the bit-field path. */
7195 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7196 {
7197 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7198 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7199
7200 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7201 offset + bit_pos / 8,
7202 bit_pos % 8, bit_size, type);
7203 }
7204 else
7205 return value_primitive_field (arg1, offset, fieldno, arg_type);
7206 }
7207
7208 /* Find field with name NAME in object of type TYPE. If found,
7209 set the following for each argument that is non-null:
7210 - *FIELD_TYPE_P to the field's type;
7211 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7212 an object of that type;
7213 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7214 - *BIT_SIZE_P to its size in bits if the field is packed, and
7215 0 otherwise;
7216 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7217 fields up to but not including the desired field, or by the total
7218 number of fields if not found. A NULL value of NAME never
7219 matches; the function just counts visible fields in this case.
7220
7221 Notice that we need to handle when a tagged record hierarchy
7222 has some components with the same name, like in this scenario:
7223
7224 type Top_T is tagged record
7225 N : Integer := 1;
7226 U : Integer := 974;
7227 A : Integer := 48;
7228 end record;
7229
7230 type Middle_T is new Top.Top_T with record
7231 N : Character := 'a';
7232 C : Integer := 3;
7233 end record;
7234
7235 type Bottom_T is new Middle.Middle_T with record
7236 N : Float := 4.0;
7237 C : Character := '5';
7238 X : Integer := 6;
7239 A : Character := 'J';
7240 end record;
7241
7242 Let's say we now have a variable declared and initialized as follow:
7243
7244 TC : Top_A := new Bottom_T;
7245
7246 And then we use this variable to call this function
7247
7248 procedure Assign (Obj: in out Top_T; TV : Integer);
7249
7250 as follow:
7251
7252 Assign (Top_T (B), 12);
7253
7254 Now, we're in the debugger, and we're inside that procedure
7255 then and we want to print the value of obj.c:
7256
7257 Usually, the tagged record or one of the parent type owns the
7258 component to print and there's no issue but in this particular
7259 case, what does it mean to ask for Obj.C? Since the actual
7260 type for object is type Bottom_T, it could mean two things: type
7261 component C from the Middle_T view, but also component C from
7262 Bottom_T. So in that "undefined" case, when the component is
7263 not found in the non-resolved type (which includes all the
7264 components of the parent type), then resolve it and see if we
7265 get better luck once expanded.
7266
7267 In the case of homonyms in the derived tagged type, we don't
7268 guaranty anything, and pick the one that's easiest for us
7269 to program.
7270
7271 Returns 1 if found, 0 otherwise. */
7272
7273 static int
7274 find_struct_field (const char *name, struct type *type, int offset,
7275 struct type **field_type_p,
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7277 int *index_p)
7278 {
7279 int i;
7280 int parent_offset = -1;
7281
7282 type = ada_check_typedef (type);
7283
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
7287 *byte_offset_p = 0;
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = 0;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = 0;
7292
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298
7299 if (t_field_name == NULL)
7300 continue;
7301
7302 else if (ada_is_parent_field (type, i))
7303 {
7304 /* This is a field pointing us to the parent type of a tagged
7305 type. As hinted in this function's documentation, we give
7306 preference to fields in the current record first, so what
7307 we do here is just record the index of this field before
7308 we skip it. If it turns out we couldn't find our field
7309 in the current record, then we'll get back to it and search
7310 inside it whether the field might exist in the parent. */
7311
7312 parent_offset = i;
7313 continue;
7314 }
7315
7316 else if (name != NULL && field_name_match (t_field_name, name))
7317 {
7318 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7319
7320 if (field_type_p != NULL)
7321 *field_type_p = TYPE_FIELD_TYPE (type, i);
7322 if (byte_offset_p != NULL)
7323 *byte_offset_p = fld_offset;
7324 if (bit_offset_p != NULL)
7325 *bit_offset_p = bit_pos % 8;
7326 if (bit_size_p != NULL)
7327 *bit_size_p = bit_size;
7328 return 1;
7329 }
7330 else if (ada_is_wrapper_field (type, i))
7331 {
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7333 field_type_p, byte_offset_p, bit_offset_p,
7334 bit_size_p, index_p))
7335 return 1;
7336 }
7337 else if (ada_is_variant_part (type, i))
7338 {
7339 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7340 fixed type?? */
7341 int j;
7342 struct type *field_type
7343 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7344
7345 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7346 {
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7348 fld_offset
7349 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7350 field_type_p, byte_offset_p,
7351 bit_offset_p, bit_size_p, index_p))
7352 return 1;
7353 }
7354 }
7355 else if (index_p != NULL)
7356 *index_p += 1;
7357 }
7358
7359 /* Field not found so far. If this is a tagged type which
7360 has a parent, try finding that field in the parent now. */
7361
7362 if (parent_offset != -1)
7363 {
7364 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7365 int fld_offset = offset + bit_pos / 8;
7366
7367 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7368 fld_offset, field_type_p, byte_offset_p,
7369 bit_offset_p, bit_size_p, index_p))
7370 return 1;
7371 }
7372
7373 return 0;
7374 }
7375
7376 /* Number of user-visible fields in record type TYPE. */
7377
7378 static int
7379 num_visible_fields (struct type *type)
7380 {
7381 int n;
7382
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386 }
7387
7388 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
7392 Searches recursively through wrapper fields (e.g., '_parent').
7393
7394 In the case of homonyms in the tagged types, please refer to the
7395 long explanation in find_struct_field's function documentation. */
7396
7397 static struct value *
7398 ada_search_struct_field (const char *name, struct value *arg, int offset,
7399 struct type *type)
7400 {
7401 int i;
7402 int parent_offset = -1;
7403
7404 type = ada_check_typedef (type);
7405 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7406 {
7407 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7408
7409 if (t_field_name == NULL)
7410 continue;
7411
7412 else if (ada_is_parent_field (type, i))
7413 {
7414 /* This is a field pointing us to the parent type of a tagged
7415 type. As hinted in this function's documentation, we give
7416 preference to fields in the current record first, so what
7417 we do here is just record the index of this field before
7418 we skip it. If it turns out we couldn't find our field
7419 in the current record, then we'll get back to it and search
7420 inside it whether the field might exist in the parent. */
7421
7422 parent_offset = i;
7423 continue;
7424 }
7425
7426 else if (field_name_match (t_field_name, name))
7427 return ada_value_primitive_field (arg, offset, i, type);
7428
7429 else if (ada_is_wrapper_field (type, i))
7430 {
7431 struct value *v = /* Do not let indent join lines here. */
7432 ada_search_struct_field (name, arg,
7433 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7434 TYPE_FIELD_TYPE (type, i));
7435
7436 if (v != NULL)
7437 return v;
7438 }
7439
7440 else if (ada_is_variant_part (type, i))
7441 {
7442 /* PNH: Do we ever get here? See find_struct_field. */
7443 int j;
7444 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7445 i));
7446 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7447
7448 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7449 {
7450 struct value *v = ada_search_struct_field /* Force line
7451 break. */
7452 (name, arg,
7453 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7454 TYPE_FIELD_TYPE (field_type, j));
7455
7456 if (v != NULL)
7457 return v;
7458 }
7459 }
7460 }
7461
7462 /* Field not found so far. If this is a tagged type which
7463 has a parent, try finding that field in the parent now. */
7464
7465 if (parent_offset != -1)
7466 {
7467 struct value *v = ada_search_struct_field (
7468 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7469 TYPE_FIELD_TYPE (type, parent_offset));
7470
7471 if (v != NULL)
7472 return v;
7473 }
7474
7475 return NULL;
7476 }
7477
7478 static struct value *ada_index_struct_field_1 (int *, struct value *,
7479 int, struct type *);
7480
7481
7482 /* Return field #INDEX in ARG, where the index is that returned by
7483 * find_struct_field through its INDEX_P argument. Adjust the address
7484 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7485 * If found, return value, else return NULL. */
7486
7487 static struct value *
7488 ada_index_struct_field (int index, struct value *arg, int offset,
7489 struct type *type)
7490 {
7491 return ada_index_struct_field_1 (&index, arg, offset, type);
7492 }
7493
7494
7495 /* Auxiliary function for ada_index_struct_field. Like
7496 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7497 * *INDEX_P. */
7498
7499 static struct value *
7500 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7501 struct type *type)
7502 {
7503 int i;
7504 type = ada_check_typedef (type);
7505
7506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7507 {
7508 if (TYPE_FIELD_NAME (type, i) == NULL)
7509 continue;
7510 else if (ada_is_wrapper_field (type, i))
7511 {
7512 struct value *v = /* Do not let indent join lines here. */
7513 ada_index_struct_field_1 (index_p, arg,
7514 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7515 TYPE_FIELD_TYPE (type, i));
7516
7517 if (v != NULL)
7518 return v;
7519 }
7520
7521 else if (ada_is_variant_part (type, i))
7522 {
7523 /* PNH: Do we ever get here? See ada_search_struct_field,
7524 find_struct_field. */
7525 error (_("Cannot assign this kind of variant record"));
7526 }
7527 else if (*index_p == 0)
7528 return ada_value_primitive_field (arg, offset, i, type);
7529 else
7530 *index_p -= 1;
7531 }
7532 return NULL;
7533 }
7534
7535 /* Given ARG, a value of type (pointer or reference to a)*
7536 structure/union, extract the component named NAME from the ultimate
7537 target structure/union and return it as a value with its
7538 appropriate type.
7539
7540 The routine searches for NAME among all members of the structure itself
7541 and (recursively) among all members of any wrapper members
7542 (e.g., '_parent').
7543
7544 If NO_ERR, then simply return NULL in case of error, rather than
7545 calling error. */
7546
7547 struct value *
7548 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7549 {
7550 struct type *t, *t1;
7551 struct value *v;
7552 int check_tag;
7553
7554 v = NULL;
7555 t1 = t = ada_check_typedef (value_type (arg));
7556 if (TYPE_CODE (t) == TYPE_CODE_REF)
7557 {
7558 t1 = TYPE_TARGET_TYPE (t);
7559 if (t1 == NULL)
7560 goto BadValue;
7561 t1 = ada_check_typedef (t1);
7562 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7563 {
7564 arg = coerce_ref (arg);
7565 t = t1;
7566 }
7567 }
7568
7569 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7570 {
7571 t1 = TYPE_TARGET_TYPE (t);
7572 if (t1 == NULL)
7573 goto BadValue;
7574 t1 = ada_check_typedef (t1);
7575 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7576 {
7577 arg = value_ind (arg);
7578 t = t1;
7579 }
7580 else
7581 break;
7582 }
7583
7584 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7585 goto BadValue;
7586
7587 if (t1 == t)
7588 v = ada_search_struct_field (name, arg, 0, t);
7589 else
7590 {
7591 int bit_offset, bit_size, byte_offset;
7592 struct type *field_type;
7593 CORE_ADDR address;
7594
7595 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7596 address = value_address (ada_value_ind (arg));
7597 else
7598 address = value_address (ada_coerce_ref (arg));
7599
7600 /* Check to see if this is a tagged type. We also need to handle
7601 the case where the type is a reference to a tagged type, but
7602 we have to be careful to exclude pointers to tagged types.
7603 The latter should be shown as usual (as a pointer), whereas
7604 a reference should mostly be transparent to the user. */
7605
7606 if (ada_is_tagged_type (t1, 0)
7607 || (TYPE_CODE (t1) == TYPE_CODE_REF
7608 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7609 {
7610 /* We first try to find the searched field in the current type.
7611 If not found then let's look in the fixed type. */
7612
7613 if (!find_struct_field (name, t1, 0,
7614 &field_type, &byte_offset, &bit_offset,
7615 &bit_size, NULL))
7616 check_tag = 1;
7617 else
7618 check_tag = 0;
7619 }
7620 else
7621 check_tag = 0;
7622
7623 /* Convert to fixed type in all cases, so that we have proper
7624 offsets to each field in unconstrained record types. */
7625 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7626 address, NULL, check_tag);
7627
7628 if (find_struct_field (name, t1, 0,
7629 &field_type, &byte_offset, &bit_offset,
7630 &bit_size, NULL))
7631 {
7632 if (bit_size != 0)
7633 {
7634 if (TYPE_CODE (t) == TYPE_CODE_REF)
7635 arg = ada_coerce_ref (arg);
7636 else
7637 arg = ada_value_ind (arg);
7638 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7639 bit_offset, bit_size,
7640 field_type);
7641 }
7642 else
7643 v = value_at_lazy (field_type, address + byte_offset);
7644 }
7645 }
7646
7647 if (v != NULL || no_err)
7648 return v;
7649 else
7650 error (_("There is no member named %s."), name);
7651
7652 BadValue:
7653 if (no_err)
7654 return NULL;
7655 else
7656 error (_("Attempt to extract a component of "
7657 "a value that is not a record."));
7658 }
7659
7660 /* Return a string representation of type TYPE. */
7661
7662 static std::string
7663 type_as_string (struct type *type)
7664 {
7665 string_file tmp_stream;
7666
7667 type_print (type, "", &tmp_stream, -1);
7668
7669 return std::move (tmp_stream.string ());
7670 }
7671
7672 /* Given a type TYPE, look up the type of the component of type named NAME.
7673 If DISPP is non-null, add its byte displacement from the beginning of a
7674 structure (pointed to by a value) of type TYPE to *DISPP (does not
7675 work for packed fields).
7676
7677 Matches any field whose name has NAME as a prefix, possibly
7678 followed by "___".
7679
7680 TYPE can be either a struct or union. If REFOK, TYPE may also
7681 be a (pointer or reference)+ to a struct or union, and the
7682 ultimate target type will be searched.
7683
7684 Looks recursively into variant clauses and parent types.
7685
7686 In the case of homonyms in the tagged types, please refer to the
7687 long explanation in find_struct_field's function documentation.
7688
7689 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7690 TYPE is not a type of the right kind. */
7691
7692 static struct type *
7693 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7694 int noerr)
7695 {
7696 int i;
7697 int parent_offset = -1;
7698
7699 if (name == NULL)
7700 goto BadName;
7701
7702 if (refok && type != NULL)
7703 while (1)
7704 {
7705 type = ada_check_typedef (type);
7706 if (TYPE_CODE (type) != TYPE_CODE_PTR
7707 && TYPE_CODE (type) != TYPE_CODE_REF)
7708 break;
7709 type = TYPE_TARGET_TYPE (type);
7710 }
7711
7712 if (type == NULL
7713 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7714 && TYPE_CODE (type) != TYPE_CODE_UNION))
7715 {
7716 if (noerr)
7717 return NULL;
7718
7719 error (_("Type %s is not a structure or union type"),
7720 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7721 }
7722
7723 type = to_static_fixed_type (type);
7724
7725 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7726 {
7727 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7728 struct type *t;
7729
7730 if (t_field_name == NULL)
7731 continue;
7732
7733 else if (ada_is_parent_field (type, i))
7734 {
7735 /* This is a field pointing us to the parent type of a tagged
7736 type. As hinted in this function's documentation, we give
7737 preference to fields in the current record first, so what
7738 we do here is just record the index of this field before
7739 we skip it. If it turns out we couldn't find our field
7740 in the current record, then we'll get back to it and search
7741 inside it whether the field might exist in the parent. */
7742
7743 parent_offset = i;
7744 continue;
7745 }
7746
7747 else if (field_name_match (t_field_name, name))
7748 return TYPE_FIELD_TYPE (type, i);
7749
7750 else if (ada_is_wrapper_field (type, i))
7751 {
7752 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7753 0, 1);
7754 if (t != NULL)
7755 return t;
7756 }
7757
7758 else if (ada_is_variant_part (type, i))
7759 {
7760 int j;
7761 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7762 i));
7763
7764 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7765 {
7766 /* FIXME pnh 2008/01/26: We check for a field that is
7767 NOT wrapped in a struct, since the compiler sometimes
7768 generates these for unchecked variant types. Revisit
7769 if the compiler changes this practice. */
7770 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7771
7772 if (v_field_name != NULL
7773 && field_name_match (v_field_name, name))
7774 t = TYPE_FIELD_TYPE (field_type, j);
7775 else
7776 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7777 j),
7778 name, 0, 1);
7779
7780 if (t != NULL)
7781 return t;
7782 }
7783 }
7784
7785 }
7786
7787 /* Field not found so far. If this is a tagged type which
7788 has a parent, try finding that field in the parent now. */
7789
7790 if (parent_offset != -1)
7791 {
7792 struct type *t;
7793
7794 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7795 name, 0, 1);
7796 if (t != NULL)
7797 return t;
7798 }
7799
7800 BadName:
7801 if (!noerr)
7802 {
7803 const char *name_str = name != NULL ? name : _("<null>");
7804
7805 error (_("Type %s has no component named %s"),
7806 type_as_string (type).c_str (), name_str);
7807 }
7808
7809 return NULL;
7810 }
7811
7812 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7813 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7814 represents an unchecked union (that is, the variant part of a
7815 record that is named in an Unchecked_Union pragma). */
7816
7817 static int
7818 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7819 {
7820 const char *discrim_name = ada_variant_discrim_name (var_type);
7821
7822 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7823 }
7824
7825
7826 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7827 within a value of type OUTER_TYPE that is stored in GDB at
7828 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7829 numbering from 0) is applicable. Returns -1 if none are. */
7830
7831 int
7832 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7833 const gdb_byte *outer_valaddr)
7834 {
7835 int others_clause;
7836 int i;
7837 const char *discrim_name = ada_variant_discrim_name (var_type);
7838 struct value *outer;
7839 struct value *discrim;
7840 LONGEST discrim_val;
7841
7842 /* Using plain value_from_contents_and_address here causes problems
7843 because we will end up trying to resolve a type that is currently
7844 being constructed. */
7845 outer = value_from_contents_and_address_unresolved (outer_type,
7846 outer_valaddr, 0);
7847 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7848 if (discrim == NULL)
7849 return -1;
7850 discrim_val = value_as_long (discrim);
7851
7852 others_clause = -1;
7853 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7854 {
7855 if (ada_is_others_clause (var_type, i))
7856 others_clause = i;
7857 else if (ada_in_variant (discrim_val, var_type, i))
7858 return i;
7859 }
7860
7861 return others_clause;
7862 }
7863 \f
7864
7865
7866 /* Dynamic-Sized Records */
7867
7868 /* Strategy: The type ostensibly attached to a value with dynamic size
7869 (i.e., a size that is not statically recorded in the debugging
7870 data) does not accurately reflect the size or layout of the value.
7871 Our strategy is to convert these values to values with accurate,
7872 conventional types that are constructed on the fly. */
7873
7874 /* There is a subtle and tricky problem here. In general, we cannot
7875 determine the size of dynamic records without its data. However,
7876 the 'struct value' data structure, which GDB uses to represent
7877 quantities in the inferior process (the target), requires the size
7878 of the type at the time of its allocation in order to reserve space
7879 for GDB's internal copy of the data. That's why the
7880 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7881 rather than struct value*s.
7882
7883 However, GDB's internal history variables ($1, $2, etc.) are
7884 struct value*s containing internal copies of the data that are not, in
7885 general, the same as the data at their corresponding addresses in
7886 the target. Fortunately, the types we give to these values are all
7887 conventional, fixed-size types (as per the strategy described
7888 above), so that we don't usually have to perform the
7889 'to_fixed_xxx_type' conversions to look at their values.
7890 Unfortunately, there is one exception: if one of the internal
7891 history variables is an array whose elements are unconstrained
7892 records, then we will need to create distinct fixed types for each
7893 element selected. */
7894
7895 /* The upshot of all of this is that many routines take a (type, host
7896 address, target address) triple as arguments to represent a value.
7897 The host address, if non-null, is supposed to contain an internal
7898 copy of the relevant data; otherwise, the program is to consult the
7899 target at the target address. */
7900
7901 /* Assuming that VAL0 represents a pointer value, the result of
7902 dereferencing it. Differs from value_ind in its treatment of
7903 dynamic-sized types. */
7904
7905 struct value *
7906 ada_value_ind (struct value *val0)
7907 {
7908 struct value *val = value_ind (val0);
7909
7910 if (ada_is_tagged_type (value_type (val), 0))
7911 val = ada_tag_value_at_base_address (val);
7912
7913 return ada_to_fixed_value (val);
7914 }
7915
7916 /* The value resulting from dereferencing any "reference to"
7917 qualifiers on VAL0. */
7918
7919 static struct value *
7920 ada_coerce_ref (struct value *val0)
7921 {
7922 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7923 {
7924 struct value *val = val0;
7925
7926 val = coerce_ref (val);
7927
7928 if (ada_is_tagged_type (value_type (val), 0))
7929 val = ada_tag_value_at_base_address (val);
7930
7931 return ada_to_fixed_value (val);
7932 }
7933 else
7934 return val0;
7935 }
7936
7937 /* Return OFF rounded upward if necessary to a multiple of
7938 ALIGNMENT (a power of 2). */
7939
7940 static unsigned int
7941 align_value (unsigned int off, unsigned int alignment)
7942 {
7943 return (off + alignment - 1) & ~(alignment - 1);
7944 }
7945
7946 /* Return the bit alignment required for field #F of template type TYPE. */
7947
7948 static unsigned int
7949 field_alignment (struct type *type, int f)
7950 {
7951 const char *name = TYPE_FIELD_NAME (type, f);
7952 int len;
7953 int align_offset;
7954
7955 /* The field name should never be null, unless the debugging information
7956 is somehow malformed. In this case, we assume the field does not
7957 require any alignment. */
7958 if (name == NULL)
7959 return 1;
7960
7961 len = strlen (name);
7962
7963 if (!isdigit (name[len - 1]))
7964 return 1;
7965
7966 if (isdigit (name[len - 2]))
7967 align_offset = len - 2;
7968 else
7969 align_offset = len - 1;
7970
7971 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7972 return TARGET_CHAR_BIT;
7973
7974 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7975 }
7976
7977 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7978
7979 static struct symbol *
7980 ada_find_any_type_symbol (const char *name)
7981 {
7982 struct symbol *sym;
7983
7984 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7985 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7986 return sym;
7987
7988 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7989 return sym;
7990 }
7991
7992 /* Find a type named NAME. Ignores ambiguity. This routine will look
7993 solely for types defined by debug info, it will not search the GDB
7994 primitive types. */
7995
7996 static struct type *
7997 ada_find_any_type (const char *name)
7998 {
7999 struct symbol *sym = ada_find_any_type_symbol (name);
8000
8001 if (sym != NULL)
8002 return SYMBOL_TYPE (sym);
8003
8004 return NULL;
8005 }
8006
8007 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8008 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8009 symbol, in which case it is returned. Otherwise, this looks for
8010 symbols whose name is that of NAME_SYM suffixed with "___XR".
8011 Return symbol if found, and NULL otherwise. */
8012
8013 struct symbol *
8014 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8015 {
8016 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8017 struct symbol *sym;
8018
8019 if (strstr (name, "___XR") != NULL)
8020 return name_sym;
8021
8022 sym = find_old_style_renaming_symbol (name, block);
8023
8024 if (sym != NULL)
8025 return sym;
8026
8027 /* Not right yet. FIXME pnh 7/20/2007. */
8028 sym = ada_find_any_type_symbol (name);
8029 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8030 return sym;
8031 else
8032 return NULL;
8033 }
8034
8035 static struct symbol *
8036 find_old_style_renaming_symbol (const char *name, const struct block *block)
8037 {
8038 const struct symbol *function_sym = block_linkage_function (block);
8039 char *rename;
8040
8041 if (function_sym != NULL)
8042 {
8043 /* If the symbol is defined inside a function, NAME is not fully
8044 qualified. This means we need to prepend the function name
8045 as well as adding the ``___XR'' suffix to build the name of
8046 the associated renaming symbol. */
8047 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8048 /* Function names sometimes contain suffixes used
8049 for instance to qualify nested subprograms. When building
8050 the XR type name, we need to make sure that this suffix is
8051 not included. So do not include any suffix in the function
8052 name length below. */
8053 int function_name_len = ada_name_prefix_len (function_name);
8054 const int rename_len = function_name_len + 2 /* "__" */
8055 + strlen (name) + 6 /* "___XR\0" */ ;
8056
8057 /* Strip the suffix if necessary. */
8058 ada_remove_trailing_digits (function_name, &function_name_len);
8059 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8060 ada_remove_Xbn_suffix (function_name, &function_name_len);
8061
8062 /* Library-level functions are a special case, as GNAT adds
8063 a ``_ada_'' prefix to the function name to avoid namespace
8064 pollution. However, the renaming symbols themselves do not
8065 have this prefix, so we need to skip this prefix if present. */
8066 if (function_name_len > 5 /* "_ada_" */
8067 && strstr (function_name, "_ada_") == function_name)
8068 {
8069 function_name += 5;
8070 function_name_len -= 5;
8071 }
8072
8073 rename = (char *) alloca (rename_len * sizeof (char));
8074 strncpy (rename, function_name, function_name_len);
8075 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8076 "__%s___XR", name);
8077 }
8078 else
8079 {
8080 const int rename_len = strlen (name) + 6;
8081
8082 rename = (char *) alloca (rename_len * sizeof (char));
8083 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8084 }
8085
8086 return ada_find_any_type_symbol (rename);
8087 }
8088
8089 /* Because of GNAT encoding conventions, several GDB symbols may match a
8090 given type name. If the type denoted by TYPE0 is to be preferred to
8091 that of TYPE1 for purposes of type printing, return non-zero;
8092 otherwise return 0. */
8093
8094 int
8095 ada_prefer_type (struct type *type0, struct type *type1)
8096 {
8097 if (type1 == NULL)
8098 return 1;
8099 else if (type0 == NULL)
8100 return 0;
8101 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8102 return 1;
8103 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8104 return 0;
8105 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8106 return 1;
8107 else if (ada_is_constrained_packed_array_type (type0))
8108 return 1;
8109 else if (ada_is_array_descriptor_type (type0)
8110 && !ada_is_array_descriptor_type (type1))
8111 return 1;
8112 else
8113 {
8114 const char *type0_name = TYPE_NAME (type0);
8115 const char *type1_name = TYPE_NAME (type1);
8116
8117 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8118 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8119 return 1;
8120 }
8121 return 0;
8122 }
8123
8124 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8125 null. */
8126
8127 const char *
8128 ada_type_name (struct type *type)
8129 {
8130 if (type == NULL)
8131 return NULL;
8132 return TYPE_NAME (type);
8133 }
8134
8135 /* Search the list of "descriptive" types associated to TYPE for a type
8136 whose name is NAME. */
8137
8138 static struct type *
8139 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8140 {
8141 struct type *result, *tmp;
8142
8143 if (ada_ignore_descriptive_types_p)
8144 return NULL;
8145
8146 /* If there no descriptive-type info, then there is no parallel type
8147 to be found. */
8148 if (!HAVE_GNAT_AUX_INFO (type))
8149 return NULL;
8150
8151 result = TYPE_DESCRIPTIVE_TYPE (type);
8152 while (result != NULL)
8153 {
8154 const char *result_name = ada_type_name (result);
8155
8156 if (result_name == NULL)
8157 {
8158 warning (_("unexpected null name on descriptive type"));
8159 return NULL;
8160 }
8161
8162 /* If the names match, stop. */
8163 if (strcmp (result_name, name) == 0)
8164 break;
8165
8166 /* Otherwise, look at the next item on the list, if any. */
8167 if (HAVE_GNAT_AUX_INFO (result))
8168 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8169 else
8170 tmp = NULL;
8171
8172 /* If not found either, try after having resolved the typedef. */
8173 if (tmp != NULL)
8174 result = tmp;
8175 else
8176 {
8177 result = check_typedef (result);
8178 if (HAVE_GNAT_AUX_INFO (result))
8179 result = TYPE_DESCRIPTIVE_TYPE (result);
8180 else
8181 result = NULL;
8182 }
8183 }
8184
8185 /* If we didn't find a match, see whether this is a packed array. With
8186 older compilers, the descriptive type information is either absent or
8187 irrelevant when it comes to packed arrays so the above lookup fails.
8188 Fall back to using a parallel lookup by name in this case. */
8189 if (result == NULL && ada_is_constrained_packed_array_type (type))
8190 return ada_find_any_type (name);
8191
8192 return result;
8193 }
8194
8195 /* Find a parallel type to TYPE with the specified NAME, using the
8196 descriptive type taken from the debugging information, if available,
8197 and otherwise using the (slower) name-based method. */
8198
8199 static struct type *
8200 ada_find_parallel_type_with_name (struct type *type, const char *name)
8201 {
8202 struct type *result = NULL;
8203
8204 if (HAVE_GNAT_AUX_INFO (type))
8205 result = find_parallel_type_by_descriptive_type (type, name);
8206 else
8207 result = ada_find_any_type (name);
8208
8209 return result;
8210 }
8211
8212 /* Same as above, but specify the name of the parallel type by appending
8213 SUFFIX to the name of TYPE. */
8214
8215 struct type *
8216 ada_find_parallel_type (struct type *type, const char *suffix)
8217 {
8218 char *name;
8219 const char *type_name = ada_type_name (type);
8220 int len;
8221
8222 if (type_name == NULL)
8223 return NULL;
8224
8225 len = strlen (type_name);
8226
8227 name = (char *) alloca (len + strlen (suffix) + 1);
8228
8229 strcpy (name, type_name);
8230 strcpy (name + len, suffix);
8231
8232 return ada_find_parallel_type_with_name (type, name);
8233 }
8234
8235 /* If TYPE is a variable-size record type, return the corresponding template
8236 type describing its fields. Otherwise, return NULL. */
8237
8238 static struct type *
8239 dynamic_template_type (struct type *type)
8240 {
8241 type = ada_check_typedef (type);
8242
8243 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8244 || ada_type_name (type) == NULL)
8245 return NULL;
8246 else
8247 {
8248 int len = strlen (ada_type_name (type));
8249
8250 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8251 return type;
8252 else
8253 return ada_find_parallel_type (type, "___XVE");
8254 }
8255 }
8256
8257 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8258 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8259
8260 static int
8261 is_dynamic_field (struct type *templ_type, int field_num)
8262 {
8263 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8264
8265 return name != NULL
8266 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8267 && strstr (name, "___XVL") != NULL;
8268 }
8269
8270 /* The index of the variant field of TYPE, or -1 if TYPE does not
8271 represent a variant record type. */
8272
8273 static int
8274 variant_field_index (struct type *type)
8275 {
8276 int f;
8277
8278 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8279 return -1;
8280
8281 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8282 {
8283 if (ada_is_variant_part (type, f))
8284 return f;
8285 }
8286 return -1;
8287 }
8288
8289 /* A record type with no fields. */
8290
8291 static struct type *
8292 empty_record (struct type *templ)
8293 {
8294 struct type *type = alloc_type_copy (templ);
8295
8296 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8297 TYPE_NFIELDS (type) = 0;
8298 TYPE_FIELDS (type) = NULL;
8299 INIT_NONE_SPECIFIC (type);
8300 TYPE_NAME (type) = "<empty>";
8301 TYPE_LENGTH (type) = 0;
8302 return type;
8303 }
8304
8305 /* An ordinary record type (with fixed-length fields) that describes
8306 the value of type TYPE at VALADDR or ADDRESS (see comments at
8307 the beginning of this section) VAL according to GNAT conventions.
8308 DVAL0 should describe the (portion of a) record that contains any
8309 necessary discriminants. It should be NULL if value_type (VAL) is
8310 an outer-level type (i.e., as opposed to a branch of a variant.) A
8311 variant field (unless unchecked) is replaced by a particular branch
8312 of the variant.
8313
8314 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8315 length are not statically known are discarded. As a consequence,
8316 VALADDR, ADDRESS and DVAL0 are ignored.
8317
8318 NOTE: Limitations: For now, we assume that dynamic fields and
8319 variants occupy whole numbers of bytes. However, they need not be
8320 byte-aligned. */
8321
8322 struct type *
8323 ada_template_to_fixed_record_type_1 (struct type *type,
8324 const gdb_byte *valaddr,
8325 CORE_ADDR address, struct value *dval0,
8326 int keep_dynamic_fields)
8327 {
8328 struct value *mark = value_mark ();
8329 struct value *dval;
8330 struct type *rtype;
8331 int nfields, bit_len;
8332 int variant_field;
8333 long off;
8334 int fld_bit_len;
8335 int f;
8336
8337 /* Compute the number of fields in this record type that are going
8338 to be processed: unless keep_dynamic_fields, this includes only
8339 fields whose position and length are static will be processed. */
8340 if (keep_dynamic_fields)
8341 nfields = TYPE_NFIELDS (type);
8342 else
8343 {
8344 nfields = 0;
8345 while (nfields < TYPE_NFIELDS (type)
8346 && !ada_is_variant_part (type, nfields)
8347 && !is_dynamic_field (type, nfields))
8348 nfields++;
8349 }
8350
8351 rtype = alloc_type_copy (type);
8352 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8353 INIT_NONE_SPECIFIC (rtype);
8354 TYPE_NFIELDS (rtype) = nfields;
8355 TYPE_FIELDS (rtype) = (struct field *)
8356 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8357 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8358 TYPE_NAME (rtype) = ada_type_name (type);
8359 TYPE_FIXED_INSTANCE (rtype) = 1;
8360
8361 off = 0;
8362 bit_len = 0;
8363 variant_field = -1;
8364
8365 for (f = 0; f < nfields; f += 1)
8366 {
8367 off = align_value (off, field_alignment (type, f))
8368 + TYPE_FIELD_BITPOS (type, f);
8369 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8370 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8371
8372 if (ada_is_variant_part (type, f))
8373 {
8374 variant_field = f;
8375 fld_bit_len = 0;
8376 }
8377 else if (is_dynamic_field (type, f))
8378 {
8379 const gdb_byte *field_valaddr = valaddr;
8380 CORE_ADDR field_address = address;
8381 struct type *field_type =
8382 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8383
8384 if (dval0 == NULL)
8385 {
8386 /* rtype's length is computed based on the run-time
8387 value of discriminants. If the discriminants are not
8388 initialized, the type size may be completely bogus and
8389 GDB may fail to allocate a value for it. So check the
8390 size first before creating the value. */
8391 ada_ensure_varsize_limit (rtype);
8392 /* Using plain value_from_contents_and_address here
8393 causes problems because we will end up trying to
8394 resolve a type that is currently being
8395 constructed. */
8396 dval = value_from_contents_and_address_unresolved (rtype,
8397 valaddr,
8398 address);
8399 rtype = value_type (dval);
8400 }
8401 else
8402 dval = dval0;
8403
8404 /* If the type referenced by this field is an aligner type, we need
8405 to unwrap that aligner type, because its size might not be set.
8406 Keeping the aligner type would cause us to compute the wrong
8407 size for this field, impacting the offset of the all the fields
8408 that follow this one. */
8409 if (ada_is_aligner_type (field_type))
8410 {
8411 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8412
8413 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8414 field_address = cond_offset_target (field_address, field_offset);
8415 field_type = ada_aligned_type (field_type);
8416 }
8417
8418 field_valaddr = cond_offset_host (field_valaddr,
8419 off / TARGET_CHAR_BIT);
8420 field_address = cond_offset_target (field_address,
8421 off / TARGET_CHAR_BIT);
8422
8423 /* Get the fixed type of the field. Note that, in this case,
8424 we do not want to get the real type out of the tag: if
8425 the current field is the parent part of a tagged record,
8426 we will get the tag of the object. Clearly wrong: the real
8427 type of the parent is not the real type of the child. We
8428 would end up in an infinite loop. */
8429 field_type = ada_get_base_type (field_type);
8430 field_type = ada_to_fixed_type (field_type, field_valaddr,
8431 field_address, dval, 0);
8432 /* If the field size is already larger than the maximum
8433 object size, then the record itself will necessarily
8434 be larger than the maximum object size. We need to make
8435 this check now, because the size might be so ridiculously
8436 large (due to an uninitialized variable in the inferior)
8437 that it would cause an overflow when adding it to the
8438 record size. */
8439 ada_ensure_varsize_limit (field_type);
8440
8441 TYPE_FIELD_TYPE (rtype, f) = field_type;
8442 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8443 /* The multiplication can potentially overflow. But because
8444 the field length has been size-checked just above, and
8445 assuming that the maximum size is a reasonable value,
8446 an overflow should not happen in practice. So rather than
8447 adding overflow recovery code to this already complex code,
8448 we just assume that it's not going to happen. */
8449 fld_bit_len =
8450 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8451 }
8452 else
8453 {
8454 /* Note: If this field's type is a typedef, it is important
8455 to preserve the typedef layer.
8456
8457 Otherwise, we might be transforming a typedef to a fat
8458 pointer (encoding a pointer to an unconstrained array),
8459 into a basic fat pointer (encoding an unconstrained
8460 array). As both types are implemented using the same
8461 structure, the typedef is the only clue which allows us
8462 to distinguish between the two options. Stripping it
8463 would prevent us from printing this field appropriately. */
8464 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8465 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8466 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8467 fld_bit_len =
8468 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8469 else
8470 {
8471 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8472
8473 /* We need to be careful of typedefs when computing
8474 the length of our field. If this is a typedef,
8475 get the length of the target type, not the length
8476 of the typedef. */
8477 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8478 field_type = ada_typedef_target_type (field_type);
8479
8480 fld_bit_len =
8481 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8482 }
8483 }
8484 if (off + fld_bit_len > bit_len)
8485 bit_len = off + fld_bit_len;
8486 off += fld_bit_len;
8487 TYPE_LENGTH (rtype) =
8488 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8489 }
8490
8491 /* We handle the variant part, if any, at the end because of certain
8492 odd cases in which it is re-ordered so as NOT to be the last field of
8493 the record. This can happen in the presence of representation
8494 clauses. */
8495 if (variant_field >= 0)
8496 {
8497 struct type *branch_type;
8498
8499 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8500
8501 if (dval0 == NULL)
8502 {
8503 /* Using plain value_from_contents_and_address here causes
8504 problems because we will end up trying to resolve a type
8505 that is currently being constructed. */
8506 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8507 address);
8508 rtype = value_type (dval);
8509 }
8510 else
8511 dval = dval0;
8512
8513 branch_type =
8514 to_fixed_variant_branch_type
8515 (TYPE_FIELD_TYPE (type, variant_field),
8516 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8517 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8518 if (branch_type == NULL)
8519 {
8520 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8521 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8522 TYPE_NFIELDS (rtype) -= 1;
8523 }
8524 else
8525 {
8526 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8527 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8528 fld_bit_len =
8529 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8530 TARGET_CHAR_BIT;
8531 if (off + fld_bit_len > bit_len)
8532 bit_len = off + fld_bit_len;
8533 TYPE_LENGTH (rtype) =
8534 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8535 }
8536 }
8537
8538 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8539 should contain the alignment of that record, which should be a strictly
8540 positive value. If null or negative, then something is wrong, most
8541 probably in the debug info. In that case, we don't round up the size
8542 of the resulting type. If this record is not part of another structure,
8543 the current RTYPE length might be good enough for our purposes. */
8544 if (TYPE_LENGTH (type) <= 0)
8545 {
8546 if (TYPE_NAME (rtype))
8547 warning (_("Invalid type size for `%s' detected: %s."),
8548 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8549 else
8550 warning (_("Invalid type size for <unnamed> detected: %s."),
8551 pulongest (TYPE_LENGTH (type)));
8552 }
8553 else
8554 {
8555 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8556 TYPE_LENGTH (type));
8557 }
8558
8559 value_free_to_mark (mark);
8560 if (TYPE_LENGTH (rtype) > varsize_limit)
8561 error (_("record type with dynamic size is larger than varsize-limit"));
8562 return rtype;
8563 }
8564
8565 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8566 of 1. */
8567
8568 static struct type *
8569 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8570 CORE_ADDR address, struct value *dval0)
8571 {
8572 return ada_template_to_fixed_record_type_1 (type, valaddr,
8573 address, dval0, 1);
8574 }
8575
8576 /* An ordinary record type in which ___XVL-convention fields and
8577 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8578 static approximations, containing all possible fields. Uses
8579 no runtime values. Useless for use in values, but that's OK,
8580 since the results are used only for type determinations. Works on both
8581 structs and unions. Representation note: to save space, we memorize
8582 the result of this function in the TYPE_TARGET_TYPE of the
8583 template type. */
8584
8585 static struct type *
8586 template_to_static_fixed_type (struct type *type0)
8587 {
8588 struct type *type;
8589 int nfields;
8590 int f;
8591
8592 /* No need no do anything if the input type is already fixed. */
8593 if (TYPE_FIXED_INSTANCE (type0))
8594 return type0;
8595
8596 /* Likewise if we already have computed the static approximation. */
8597 if (TYPE_TARGET_TYPE (type0) != NULL)
8598 return TYPE_TARGET_TYPE (type0);
8599
8600 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8601 type = type0;
8602 nfields = TYPE_NFIELDS (type0);
8603
8604 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8605 recompute all over next time. */
8606 TYPE_TARGET_TYPE (type0) = type;
8607
8608 for (f = 0; f < nfields; f += 1)
8609 {
8610 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8611 struct type *new_type;
8612
8613 if (is_dynamic_field (type0, f))
8614 {
8615 field_type = ada_check_typedef (field_type);
8616 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8617 }
8618 else
8619 new_type = static_unwrap_type (field_type);
8620
8621 if (new_type != field_type)
8622 {
8623 /* Clone TYPE0 only the first time we get a new field type. */
8624 if (type == type0)
8625 {
8626 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8627 TYPE_CODE (type) = TYPE_CODE (type0);
8628 INIT_NONE_SPECIFIC (type);
8629 TYPE_NFIELDS (type) = nfields;
8630 TYPE_FIELDS (type) = (struct field *)
8631 TYPE_ALLOC (type, nfields * sizeof (struct field));
8632 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8633 sizeof (struct field) * nfields);
8634 TYPE_NAME (type) = ada_type_name (type0);
8635 TYPE_FIXED_INSTANCE (type) = 1;
8636 TYPE_LENGTH (type) = 0;
8637 }
8638 TYPE_FIELD_TYPE (type, f) = new_type;
8639 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8640 }
8641 }
8642
8643 return type;
8644 }
8645
8646 /* Given an object of type TYPE whose contents are at VALADDR and
8647 whose address in memory is ADDRESS, returns a revision of TYPE,
8648 which should be a non-dynamic-sized record, in which the variant
8649 part, if any, is replaced with the appropriate branch. Looks
8650 for discriminant values in DVAL0, which can be NULL if the record
8651 contains the necessary discriminant values. */
8652
8653 static struct type *
8654 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8655 CORE_ADDR address, struct value *dval0)
8656 {
8657 struct value *mark = value_mark ();
8658 struct value *dval;
8659 struct type *rtype;
8660 struct type *branch_type;
8661 int nfields = TYPE_NFIELDS (type);
8662 int variant_field = variant_field_index (type);
8663
8664 if (variant_field == -1)
8665 return type;
8666
8667 if (dval0 == NULL)
8668 {
8669 dval = value_from_contents_and_address (type, valaddr, address);
8670 type = value_type (dval);
8671 }
8672 else
8673 dval = dval0;
8674
8675 rtype = alloc_type_copy (type);
8676 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8677 INIT_NONE_SPECIFIC (rtype);
8678 TYPE_NFIELDS (rtype) = nfields;
8679 TYPE_FIELDS (rtype) =
8680 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8681 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8682 sizeof (struct field) * nfields);
8683 TYPE_NAME (rtype) = ada_type_name (type);
8684 TYPE_FIXED_INSTANCE (rtype) = 1;
8685 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8686
8687 branch_type = to_fixed_variant_branch_type
8688 (TYPE_FIELD_TYPE (type, variant_field),
8689 cond_offset_host (valaddr,
8690 TYPE_FIELD_BITPOS (type, variant_field)
8691 / TARGET_CHAR_BIT),
8692 cond_offset_target (address,
8693 TYPE_FIELD_BITPOS (type, variant_field)
8694 / TARGET_CHAR_BIT), dval);
8695 if (branch_type == NULL)
8696 {
8697 int f;
8698
8699 for (f = variant_field + 1; f < nfields; f += 1)
8700 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8701 TYPE_NFIELDS (rtype) -= 1;
8702 }
8703 else
8704 {
8705 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8706 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8707 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8708 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8709 }
8710 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8711
8712 value_free_to_mark (mark);
8713 return rtype;
8714 }
8715
8716 /* An ordinary record type (with fixed-length fields) that describes
8717 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8718 beginning of this section]. Any necessary discriminants' values
8719 should be in DVAL, a record value; it may be NULL if the object
8720 at ADDR itself contains any necessary discriminant values.
8721 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8722 values from the record are needed. Except in the case that DVAL,
8723 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8724 unchecked) is replaced by a particular branch of the variant.
8725
8726 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8727 is questionable and may be removed. It can arise during the
8728 processing of an unconstrained-array-of-record type where all the
8729 variant branches have exactly the same size. This is because in
8730 such cases, the compiler does not bother to use the XVS convention
8731 when encoding the record. I am currently dubious of this
8732 shortcut and suspect the compiler should be altered. FIXME. */
8733
8734 static struct type *
8735 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8736 CORE_ADDR address, struct value *dval)
8737 {
8738 struct type *templ_type;
8739
8740 if (TYPE_FIXED_INSTANCE (type0))
8741 return type0;
8742
8743 templ_type = dynamic_template_type (type0);
8744
8745 if (templ_type != NULL)
8746 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8747 else if (variant_field_index (type0) >= 0)
8748 {
8749 if (dval == NULL && valaddr == NULL && address == 0)
8750 return type0;
8751 return to_record_with_fixed_variant_part (type0, valaddr, address,
8752 dval);
8753 }
8754 else
8755 {
8756 TYPE_FIXED_INSTANCE (type0) = 1;
8757 return type0;
8758 }
8759
8760 }
8761
8762 /* An ordinary record type (with fixed-length fields) that describes
8763 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8764 union type. Any necessary discriminants' values should be in DVAL,
8765 a record value. That is, this routine selects the appropriate
8766 branch of the union at ADDR according to the discriminant value
8767 indicated in the union's type name. Returns VAR_TYPE0 itself if
8768 it represents a variant subject to a pragma Unchecked_Union. */
8769
8770 static struct type *
8771 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8772 CORE_ADDR address, struct value *dval)
8773 {
8774 int which;
8775 struct type *templ_type;
8776 struct type *var_type;
8777
8778 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8779 var_type = TYPE_TARGET_TYPE (var_type0);
8780 else
8781 var_type = var_type0;
8782
8783 templ_type = ada_find_parallel_type (var_type, "___XVU");
8784
8785 if (templ_type != NULL)
8786 var_type = templ_type;
8787
8788 if (is_unchecked_variant (var_type, value_type (dval)))
8789 return var_type0;
8790 which =
8791 ada_which_variant_applies (var_type,
8792 value_type (dval), value_contents (dval));
8793
8794 if (which < 0)
8795 return empty_record (var_type);
8796 else if (is_dynamic_field (var_type, which))
8797 return to_fixed_record_type
8798 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8799 valaddr, address, dval);
8800 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8801 return
8802 to_fixed_record_type
8803 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8804 else
8805 return TYPE_FIELD_TYPE (var_type, which);
8806 }
8807
8808 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8809 ENCODING_TYPE, a type following the GNAT conventions for discrete
8810 type encodings, only carries redundant information. */
8811
8812 static int
8813 ada_is_redundant_range_encoding (struct type *range_type,
8814 struct type *encoding_type)
8815 {
8816 const char *bounds_str;
8817 int n;
8818 LONGEST lo, hi;
8819
8820 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8821
8822 if (TYPE_CODE (get_base_type (range_type))
8823 != TYPE_CODE (get_base_type (encoding_type)))
8824 {
8825 /* The compiler probably used a simple base type to describe
8826 the range type instead of the range's actual base type,
8827 expecting us to get the real base type from the encoding
8828 anyway. In this situation, the encoding cannot be ignored
8829 as redundant. */
8830 return 0;
8831 }
8832
8833 if (is_dynamic_type (range_type))
8834 return 0;
8835
8836 if (TYPE_NAME (encoding_type) == NULL)
8837 return 0;
8838
8839 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8840 if (bounds_str == NULL)
8841 return 0;
8842
8843 n = 8; /* Skip "___XDLU_". */
8844 if (!ada_scan_number (bounds_str, n, &lo, &n))
8845 return 0;
8846 if (TYPE_LOW_BOUND (range_type) != lo)
8847 return 0;
8848
8849 n += 2; /* Skip the "__" separator between the two bounds. */
8850 if (!ada_scan_number (bounds_str, n, &hi, &n))
8851 return 0;
8852 if (TYPE_HIGH_BOUND (range_type) != hi)
8853 return 0;
8854
8855 return 1;
8856 }
8857
8858 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8859 a type following the GNAT encoding for describing array type
8860 indices, only carries redundant information. */
8861
8862 static int
8863 ada_is_redundant_index_type_desc (struct type *array_type,
8864 struct type *desc_type)
8865 {
8866 struct type *this_layer = check_typedef (array_type);
8867 int i;
8868
8869 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8870 {
8871 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8872 TYPE_FIELD_TYPE (desc_type, i)))
8873 return 0;
8874 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8875 }
8876
8877 return 1;
8878 }
8879
8880 /* Assuming that TYPE0 is an array type describing the type of a value
8881 at ADDR, and that DVAL describes a record containing any
8882 discriminants used in TYPE0, returns a type for the value that
8883 contains no dynamic components (that is, no components whose sizes
8884 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8885 true, gives an error message if the resulting type's size is over
8886 varsize_limit. */
8887
8888 static struct type *
8889 to_fixed_array_type (struct type *type0, struct value *dval,
8890 int ignore_too_big)
8891 {
8892 struct type *index_type_desc;
8893 struct type *result;
8894 int constrained_packed_array_p;
8895 static const char *xa_suffix = "___XA";
8896
8897 type0 = ada_check_typedef (type0);
8898 if (TYPE_FIXED_INSTANCE (type0))
8899 return type0;
8900
8901 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8902 if (constrained_packed_array_p)
8903 type0 = decode_constrained_packed_array_type (type0);
8904
8905 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8906
8907 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8908 encoding suffixed with 'P' may still be generated. If so,
8909 it should be used to find the XA type. */
8910
8911 if (index_type_desc == NULL)
8912 {
8913 const char *type_name = ada_type_name (type0);
8914
8915 if (type_name != NULL)
8916 {
8917 const int len = strlen (type_name);
8918 char *name = (char *) alloca (len + strlen (xa_suffix));
8919
8920 if (type_name[len - 1] == 'P')
8921 {
8922 strcpy (name, type_name);
8923 strcpy (name + len - 1, xa_suffix);
8924 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8925 }
8926 }
8927 }
8928
8929 ada_fixup_array_indexes_type (index_type_desc);
8930 if (index_type_desc != NULL
8931 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8932 {
8933 /* Ignore this ___XA parallel type, as it does not bring any
8934 useful information. This allows us to avoid creating fixed
8935 versions of the array's index types, which would be identical
8936 to the original ones. This, in turn, can also help avoid
8937 the creation of fixed versions of the array itself. */
8938 index_type_desc = NULL;
8939 }
8940
8941 if (index_type_desc == NULL)
8942 {
8943 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8944
8945 /* NOTE: elt_type---the fixed version of elt_type0---should never
8946 depend on the contents of the array in properly constructed
8947 debugging data. */
8948 /* Create a fixed version of the array element type.
8949 We're not providing the address of an element here,
8950 and thus the actual object value cannot be inspected to do
8951 the conversion. This should not be a problem, since arrays of
8952 unconstrained objects are not allowed. In particular, all
8953 the elements of an array of a tagged type should all be of
8954 the same type specified in the debugging info. No need to
8955 consult the object tag. */
8956 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8957
8958 /* Make sure we always create a new array type when dealing with
8959 packed array types, since we're going to fix-up the array
8960 type length and element bitsize a little further down. */
8961 if (elt_type0 == elt_type && !constrained_packed_array_p)
8962 result = type0;
8963 else
8964 result = create_array_type (alloc_type_copy (type0),
8965 elt_type, TYPE_INDEX_TYPE (type0));
8966 }
8967 else
8968 {
8969 int i;
8970 struct type *elt_type0;
8971
8972 elt_type0 = type0;
8973 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8974 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8975
8976 /* NOTE: result---the fixed version of elt_type0---should never
8977 depend on the contents of the array in properly constructed
8978 debugging data. */
8979 /* Create a fixed version of the array element type.
8980 We're not providing the address of an element here,
8981 and thus the actual object value cannot be inspected to do
8982 the conversion. This should not be a problem, since arrays of
8983 unconstrained objects are not allowed. In particular, all
8984 the elements of an array of a tagged type should all be of
8985 the same type specified in the debugging info. No need to
8986 consult the object tag. */
8987 result =
8988 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8989
8990 elt_type0 = type0;
8991 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8992 {
8993 struct type *range_type =
8994 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8995
8996 result = create_array_type (alloc_type_copy (elt_type0),
8997 result, range_type);
8998 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8999 }
9000 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9001 error (_("array type with dynamic size is larger than varsize-limit"));
9002 }
9003
9004 /* We want to preserve the type name. This can be useful when
9005 trying to get the type name of a value that has already been
9006 printed (for instance, if the user did "print VAR; whatis $". */
9007 TYPE_NAME (result) = TYPE_NAME (type0);
9008
9009 if (constrained_packed_array_p)
9010 {
9011 /* So far, the resulting type has been created as if the original
9012 type was a regular (non-packed) array type. As a result, the
9013 bitsize of the array elements needs to be set again, and the array
9014 length needs to be recomputed based on that bitsize. */
9015 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9016 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9017
9018 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9019 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9020 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9021 TYPE_LENGTH (result)++;
9022 }
9023
9024 TYPE_FIXED_INSTANCE (result) = 1;
9025 return result;
9026 }
9027
9028
9029 /* A standard type (containing no dynamically sized components)
9030 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9031 DVAL describes a record containing any discriminants used in TYPE0,
9032 and may be NULL if there are none, or if the object of type TYPE at
9033 ADDRESS or in VALADDR contains these discriminants.
9034
9035 If CHECK_TAG is not null, in the case of tagged types, this function
9036 attempts to locate the object's tag and use it to compute the actual
9037 type. However, when ADDRESS is null, we cannot use it to determine the
9038 location of the tag, and therefore compute the tagged type's actual type.
9039 So we return the tagged type without consulting the tag. */
9040
9041 static struct type *
9042 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9043 CORE_ADDR address, struct value *dval, int check_tag)
9044 {
9045 type = ada_check_typedef (type);
9046
9047 /* Only un-fixed types need to be handled here. */
9048 if (!HAVE_GNAT_AUX_INFO (type))
9049 return type;
9050
9051 switch (TYPE_CODE (type))
9052 {
9053 default:
9054 return type;
9055 case TYPE_CODE_STRUCT:
9056 {
9057 struct type *static_type = to_static_fixed_type (type);
9058 struct type *fixed_record_type =
9059 to_fixed_record_type (type, valaddr, address, NULL);
9060
9061 /* If STATIC_TYPE is a tagged type and we know the object's address,
9062 then we can determine its tag, and compute the object's actual
9063 type from there. Note that we have to use the fixed record
9064 type (the parent part of the record may have dynamic fields
9065 and the way the location of _tag is expressed may depend on
9066 them). */
9067
9068 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9069 {
9070 struct value *tag =
9071 value_tag_from_contents_and_address
9072 (fixed_record_type,
9073 valaddr,
9074 address);
9075 struct type *real_type = type_from_tag (tag);
9076 struct value *obj =
9077 value_from_contents_and_address (fixed_record_type,
9078 valaddr,
9079 address);
9080 fixed_record_type = value_type (obj);
9081 if (real_type != NULL)
9082 return to_fixed_record_type
9083 (real_type, NULL,
9084 value_address (ada_tag_value_at_base_address (obj)), NULL);
9085 }
9086
9087 /* Check to see if there is a parallel ___XVZ variable.
9088 If there is, then it provides the actual size of our type. */
9089 else if (ada_type_name (fixed_record_type) != NULL)
9090 {
9091 const char *name = ada_type_name (fixed_record_type);
9092 char *xvz_name
9093 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9094 bool xvz_found = false;
9095 LONGEST size;
9096
9097 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9098 try
9099 {
9100 xvz_found = get_int_var_value (xvz_name, size);
9101 }
9102 catch (const gdb_exception_error &except)
9103 {
9104 /* We found the variable, but somehow failed to read
9105 its value. Rethrow the same error, but with a little
9106 bit more information, to help the user understand
9107 what went wrong (Eg: the variable might have been
9108 optimized out). */
9109 throw_error (except.error,
9110 _("unable to read value of %s (%s)"),
9111 xvz_name, except.what ());
9112 }
9113
9114 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9115 {
9116 fixed_record_type = copy_type (fixed_record_type);
9117 TYPE_LENGTH (fixed_record_type) = size;
9118
9119 /* The FIXED_RECORD_TYPE may have be a stub. We have
9120 observed this when the debugging info is STABS, and
9121 apparently it is something that is hard to fix.
9122
9123 In practice, we don't need the actual type definition
9124 at all, because the presence of the XVZ variable allows us
9125 to assume that there must be a XVS type as well, which we
9126 should be able to use later, when we need the actual type
9127 definition.
9128
9129 In the meantime, pretend that the "fixed" type we are
9130 returning is NOT a stub, because this can cause trouble
9131 when using this type to create new types targeting it.
9132 Indeed, the associated creation routines often check
9133 whether the target type is a stub and will try to replace
9134 it, thus using a type with the wrong size. This, in turn,
9135 might cause the new type to have the wrong size too.
9136 Consider the case of an array, for instance, where the size
9137 of the array is computed from the number of elements in
9138 our array multiplied by the size of its element. */
9139 TYPE_STUB (fixed_record_type) = 0;
9140 }
9141 }
9142 return fixed_record_type;
9143 }
9144 case TYPE_CODE_ARRAY:
9145 return to_fixed_array_type (type, dval, 1);
9146 case TYPE_CODE_UNION:
9147 if (dval == NULL)
9148 return type;
9149 else
9150 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9151 }
9152 }
9153
9154 /* The same as ada_to_fixed_type_1, except that it preserves the type
9155 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9156
9157 The typedef layer needs be preserved in order to differentiate between
9158 arrays and array pointers when both types are implemented using the same
9159 fat pointer. In the array pointer case, the pointer is encoded as
9160 a typedef of the pointer type. For instance, considering:
9161
9162 type String_Access is access String;
9163 S1 : String_Access := null;
9164
9165 To the debugger, S1 is defined as a typedef of type String. But
9166 to the user, it is a pointer. So if the user tries to print S1,
9167 we should not dereference the array, but print the array address
9168 instead.
9169
9170 If we didn't preserve the typedef layer, we would lose the fact that
9171 the type is to be presented as a pointer (needs de-reference before
9172 being printed). And we would also use the source-level type name. */
9173
9174 struct type *
9175 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9176 CORE_ADDR address, struct value *dval, int check_tag)
9177
9178 {
9179 struct type *fixed_type =
9180 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9181
9182 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9183 then preserve the typedef layer.
9184
9185 Implementation note: We can only check the main-type portion of
9186 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9187 from TYPE now returns a type that has the same instance flags
9188 as TYPE. For instance, if TYPE is a "typedef const", and its
9189 target type is a "struct", then the typedef elimination will return
9190 a "const" version of the target type. See check_typedef for more
9191 details about how the typedef layer elimination is done.
9192
9193 brobecker/2010-11-19: It seems to me that the only case where it is
9194 useful to preserve the typedef layer is when dealing with fat pointers.
9195 Perhaps, we could add a check for that and preserve the typedef layer
9196 only in that situation. But this seems unecessary so far, probably
9197 because we call check_typedef/ada_check_typedef pretty much everywhere.
9198 */
9199 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9200 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9201 == TYPE_MAIN_TYPE (fixed_type)))
9202 return type;
9203
9204 return fixed_type;
9205 }
9206
9207 /* A standard (static-sized) type corresponding as well as possible to
9208 TYPE0, but based on no runtime data. */
9209
9210 static struct type *
9211 to_static_fixed_type (struct type *type0)
9212 {
9213 struct type *type;
9214
9215 if (type0 == NULL)
9216 return NULL;
9217
9218 if (TYPE_FIXED_INSTANCE (type0))
9219 return type0;
9220
9221 type0 = ada_check_typedef (type0);
9222
9223 switch (TYPE_CODE (type0))
9224 {
9225 default:
9226 return type0;
9227 case TYPE_CODE_STRUCT:
9228 type = dynamic_template_type (type0);
9229 if (type != NULL)
9230 return template_to_static_fixed_type (type);
9231 else
9232 return template_to_static_fixed_type (type0);
9233 case TYPE_CODE_UNION:
9234 type = ada_find_parallel_type (type0, "___XVU");
9235 if (type != NULL)
9236 return template_to_static_fixed_type (type);
9237 else
9238 return template_to_static_fixed_type (type0);
9239 }
9240 }
9241
9242 /* A static approximation of TYPE with all type wrappers removed. */
9243
9244 static struct type *
9245 static_unwrap_type (struct type *type)
9246 {
9247 if (ada_is_aligner_type (type))
9248 {
9249 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9250 if (ada_type_name (type1) == NULL)
9251 TYPE_NAME (type1) = ada_type_name (type);
9252
9253 return static_unwrap_type (type1);
9254 }
9255 else
9256 {
9257 struct type *raw_real_type = ada_get_base_type (type);
9258
9259 if (raw_real_type == type)
9260 return type;
9261 else
9262 return to_static_fixed_type (raw_real_type);
9263 }
9264 }
9265
9266 /* In some cases, incomplete and private types require
9267 cross-references that are not resolved as records (for example,
9268 type Foo;
9269 type FooP is access Foo;
9270 V: FooP;
9271 type Foo is array ...;
9272 ). In these cases, since there is no mechanism for producing
9273 cross-references to such types, we instead substitute for FooP a
9274 stub enumeration type that is nowhere resolved, and whose tag is
9275 the name of the actual type. Call these types "non-record stubs". */
9276
9277 /* A type equivalent to TYPE that is not a non-record stub, if one
9278 exists, otherwise TYPE. */
9279
9280 struct type *
9281 ada_check_typedef (struct type *type)
9282 {
9283 if (type == NULL)
9284 return NULL;
9285
9286 /* If our type is an access to an unconstrained array, which is encoded
9287 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9288 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9289 what allows us to distinguish between fat pointers that represent
9290 array types, and fat pointers that represent array access types
9291 (in both cases, the compiler implements them as fat pointers). */
9292 if (ada_is_access_to_unconstrained_array (type))
9293 return type;
9294
9295 type = check_typedef (type);
9296 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9297 || !TYPE_STUB (type)
9298 || TYPE_NAME (type) == NULL)
9299 return type;
9300 else
9301 {
9302 const char *name = TYPE_NAME (type);
9303 struct type *type1 = ada_find_any_type (name);
9304
9305 if (type1 == NULL)
9306 return type;
9307
9308 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9309 stubs pointing to arrays, as we don't create symbols for array
9310 types, only for the typedef-to-array types). If that's the case,
9311 strip the typedef layer. */
9312 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9313 type1 = ada_check_typedef (type1);
9314
9315 return type1;
9316 }
9317 }
9318
9319 /* A value representing the data at VALADDR/ADDRESS as described by
9320 type TYPE0, but with a standard (static-sized) type that correctly
9321 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9322 type, then return VAL0 [this feature is simply to avoid redundant
9323 creation of struct values]. */
9324
9325 static struct value *
9326 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9327 struct value *val0)
9328 {
9329 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9330
9331 if (type == type0 && val0 != NULL)
9332 return val0;
9333
9334 if (VALUE_LVAL (val0) != lval_memory)
9335 {
9336 /* Our value does not live in memory; it could be a convenience
9337 variable, for instance. Create a not_lval value using val0's
9338 contents. */
9339 return value_from_contents (type, value_contents (val0));
9340 }
9341
9342 return value_from_contents_and_address (type, 0, address);
9343 }
9344
9345 /* A value representing VAL, but with a standard (static-sized) type
9346 that correctly describes it. Does not necessarily create a new
9347 value. */
9348
9349 struct value *
9350 ada_to_fixed_value (struct value *val)
9351 {
9352 val = unwrap_value (val);
9353 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9354 return val;
9355 }
9356 \f
9357
9358 /* Attributes */
9359
9360 /* Table mapping attribute numbers to names.
9361 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9362
9363 static const char *attribute_names[] = {
9364 "<?>",
9365
9366 "first",
9367 "last",
9368 "length",
9369 "image",
9370 "max",
9371 "min",
9372 "modulus",
9373 "pos",
9374 "size",
9375 "tag",
9376 "val",
9377 0
9378 };
9379
9380 const char *
9381 ada_attribute_name (enum exp_opcode n)
9382 {
9383 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9384 return attribute_names[n - OP_ATR_FIRST + 1];
9385 else
9386 return attribute_names[0];
9387 }
9388
9389 /* Evaluate the 'POS attribute applied to ARG. */
9390
9391 static LONGEST
9392 pos_atr (struct value *arg)
9393 {
9394 struct value *val = coerce_ref (arg);
9395 struct type *type = value_type (val);
9396 LONGEST result;
9397
9398 if (!discrete_type_p (type))
9399 error (_("'POS only defined on discrete types"));
9400
9401 if (!discrete_position (type, value_as_long (val), &result))
9402 error (_("enumeration value is invalid: can't find 'POS"));
9403
9404 return result;
9405 }
9406
9407 static struct value *
9408 value_pos_atr (struct type *type, struct value *arg)
9409 {
9410 return value_from_longest (type, pos_atr (arg));
9411 }
9412
9413 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9414
9415 static struct value *
9416 value_val_atr (struct type *type, struct value *arg)
9417 {
9418 if (!discrete_type_p (type))
9419 error (_("'VAL only defined on discrete types"));
9420 if (!integer_type_p (value_type (arg)))
9421 error (_("'VAL requires integral argument"));
9422
9423 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9424 {
9425 long pos = value_as_long (arg);
9426
9427 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9428 error (_("argument to 'VAL out of range"));
9429 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9430 }
9431 else
9432 return value_from_longest (type, value_as_long (arg));
9433 }
9434 \f
9435
9436 /* Evaluation */
9437
9438 /* True if TYPE appears to be an Ada character type.
9439 [At the moment, this is true only for Character and Wide_Character;
9440 It is a heuristic test that could stand improvement]. */
9441
9442 bool
9443 ada_is_character_type (struct type *type)
9444 {
9445 const char *name;
9446
9447 /* If the type code says it's a character, then assume it really is,
9448 and don't check any further. */
9449 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9450 return true;
9451
9452 /* Otherwise, assume it's a character type iff it is a discrete type
9453 with a known character type name. */
9454 name = ada_type_name (type);
9455 return (name != NULL
9456 && (TYPE_CODE (type) == TYPE_CODE_INT
9457 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9458 && (strcmp (name, "character") == 0
9459 || strcmp (name, "wide_character") == 0
9460 || strcmp (name, "wide_wide_character") == 0
9461 || strcmp (name, "unsigned char") == 0));
9462 }
9463
9464 /* True if TYPE appears to be an Ada string type. */
9465
9466 bool
9467 ada_is_string_type (struct type *type)
9468 {
9469 type = ada_check_typedef (type);
9470 if (type != NULL
9471 && TYPE_CODE (type) != TYPE_CODE_PTR
9472 && (ada_is_simple_array_type (type)
9473 || ada_is_array_descriptor_type (type))
9474 && ada_array_arity (type) == 1)
9475 {
9476 struct type *elttype = ada_array_element_type (type, 1);
9477
9478 return ada_is_character_type (elttype);
9479 }
9480 else
9481 return false;
9482 }
9483
9484 /* The compiler sometimes provides a parallel XVS type for a given
9485 PAD type. Normally, it is safe to follow the PAD type directly,
9486 but older versions of the compiler have a bug that causes the offset
9487 of its "F" field to be wrong. Following that field in that case
9488 would lead to incorrect results, but this can be worked around
9489 by ignoring the PAD type and using the associated XVS type instead.
9490
9491 Set to True if the debugger should trust the contents of PAD types.
9492 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9493 static int trust_pad_over_xvs = 1;
9494
9495 /* True if TYPE is a struct type introduced by the compiler to force the
9496 alignment of a value. Such types have a single field with a
9497 distinctive name. */
9498
9499 int
9500 ada_is_aligner_type (struct type *type)
9501 {
9502 type = ada_check_typedef (type);
9503
9504 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9505 return 0;
9506
9507 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9508 && TYPE_NFIELDS (type) == 1
9509 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9510 }
9511
9512 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9513 the parallel type. */
9514
9515 struct type *
9516 ada_get_base_type (struct type *raw_type)
9517 {
9518 struct type *real_type_namer;
9519 struct type *raw_real_type;
9520
9521 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9522 return raw_type;
9523
9524 if (ada_is_aligner_type (raw_type))
9525 /* The encoding specifies that we should always use the aligner type.
9526 So, even if this aligner type has an associated XVS type, we should
9527 simply ignore it.
9528
9529 According to the compiler gurus, an XVS type parallel to an aligner
9530 type may exist because of a stabs limitation. In stabs, aligner
9531 types are empty because the field has a variable-sized type, and
9532 thus cannot actually be used as an aligner type. As a result,
9533 we need the associated parallel XVS type to decode the type.
9534 Since the policy in the compiler is to not change the internal
9535 representation based on the debugging info format, we sometimes
9536 end up having a redundant XVS type parallel to the aligner type. */
9537 return raw_type;
9538
9539 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9540 if (real_type_namer == NULL
9541 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9542 || TYPE_NFIELDS (real_type_namer) != 1)
9543 return raw_type;
9544
9545 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9546 {
9547 /* This is an older encoding form where the base type needs to be
9548 looked up by name. We prefer the newer enconding because it is
9549 more efficient. */
9550 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9551 if (raw_real_type == NULL)
9552 return raw_type;
9553 else
9554 return raw_real_type;
9555 }
9556
9557 /* The field in our XVS type is a reference to the base type. */
9558 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9559 }
9560
9561 /* The type of value designated by TYPE, with all aligners removed. */
9562
9563 struct type *
9564 ada_aligned_type (struct type *type)
9565 {
9566 if (ada_is_aligner_type (type))
9567 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9568 else
9569 return ada_get_base_type (type);
9570 }
9571
9572
9573 /* The address of the aligned value in an object at address VALADDR
9574 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9575
9576 const gdb_byte *
9577 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9578 {
9579 if (ada_is_aligner_type (type))
9580 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9581 valaddr +
9582 TYPE_FIELD_BITPOS (type,
9583 0) / TARGET_CHAR_BIT);
9584 else
9585 return valaddr;
9586 }
9587
9588
9589
9590 /* The printed representation of an enumeration literal with encoded
9591 name NAME. The value is good to the next call of ada_enum_name. */
9592 const char *
9593 ada_enum_name (const char *name)
9594 {
9595 static char *result;
9596 static size_t result_len = 0;
9597 const char *tmp;
9598
9599 /* First, unqualify the enumeration name:
9600 1. Search for the last '.' character. If we find one, then skip
9601 all the preceding characters, the unqualified name starts
9602 right after that dot.
9603 2. Otherwise, we may be debugging on a target where the compiler
9604 translates dots into "__". Search forward for double underscores,
9605 but stop searching when we hit an overloading suffix, which is
9606 of the form "__" followed by digits. */
9607
9608 tmp = strrchr (name, '.');
9609 if (tmp != NULL)
9610 name = tmp + 1;
9611 else
9612 {
9613 while ((tmp = strstr (name, "__")) != NULL)
9614 {
9615 if (isdigit (tmp[2]))
9616 break;
9617 else
9618 name = tmp + 2;
9619 }
9620 }
9621
9622 if (name[0] == 'Q')
9623 {
9624 int v;
9625
9626 if (name[1] == 'U' || name[1] == 'W')
9627 {
9628 if (sscanf (name + 2, "%x", &v) != 1)
9629 return name;
9630 }
9631 else
9632 return name;
9633
9634 GROW_VECT (result, result_len, 16);
9635 if (isascii (v) && isprint (v))
9636 xsnprintf (result, result_len, "'%c'", v);
9637 else if (name[1] == 'U')
9638 xsnprintf (result, result_len, "[\"%02x\"]", v);
9639 else
9640 xsnprintf (result, result_len, "[\"%04x\"]", v);
9641
9642 return result;
9643 }
9644 else
9645 {
9646 tmp = strstr (name, "__");
9647 if (tmp == NULL)
9648 tmp = strstr (name, "$");
9649 if (tmp != NULL)
9650 {
9651 GROW_VECT (result, result_len, tmp - name + 1);
9652 strncpy (result, name, tmp - name);
9653 result[tmp - name] = '\0';
9654 return result;
9655 }
9656
9657 return name;
9658 }
9659 }
9660
9661 /* Evaluate the subexpression of EXP starting at *POS as for
9662 evaluate_type, updating *POS to point just past the evaluated
9663 expression. */
9664
9665 static struct value *
9666 evaluate_subexp_type (struct expression *exp, int *pos)
9667 {
9668 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9669 }
9670
9671 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9672 value it wraps. */
9673
9674 static struct value *
9675 unwrap_value (struct value *val)
9676 {
9677 struct type *type = ada_check_typedef (value_type (val));
9678
9679 if (ada_is_aligner_type (type))
9680 {
9681 struct value *v = ada_value_struct_elt (val, "F", 0);
9682 struct type *val_type = ada_check_typedef (value_type (v));
9683
9684 if (ada_type_name (val_type) == NULL)
9685 TYPE_NAME (val_type) = ada_type_name (type);
9686
9687 return unwrap_value (v);
9688 }
9689 else
9690 {
9691 struct type *raw_real_type =
9692 ada_check_typedef (ada_get_base_type (type));
9693
9694 /* If there is no parallel XVS or XVE type, then the value is
9695 already unwrapped. Return it without further modification. */
9696 if ((type == raw_real_type)
9697 && ada_find_parallel_type (type, "___XVE") == NULL)
9698 return val;
9699
9700 return
9701 coerce_unspec_val_to_type
9702 (val, ada_to_fixed_type (raw_real_type, 0,
9703 value_address (val),
9704 NULL, 1));
9705 }
9706 }
9707
9708 static struct value *
9709 cast_from_fixed (struct type *type, struct value *arg)
9710 {
9711 struct value *scale = ada_scaling_factor (value_type (arg));
9712 arg = value_cast (value_type (scale), arg);
9713
9714 arg = value_binop (arg, scale, BINOP_MUL);
9715 return value_cast (type, arg);
9716 }
9717
9718 static struct value *
9719 cast_to_fixed (struct type *type, struct value *arg)
9720 {
9721 if (type == value_type (arg))
9722 return arg;
9723
9724 struct value *scale = ada_scaling_factor (type);
9725 if (ada_is_fixed_point_type (value_type (arg)))
9726 arg = cast_from_fixed (value_type (scale), arg);
9727 else
9728 arg = value_cast (value_type (scale), arg);
9729
9730 arg = value_binop (arg, scale, BINOP_DIV);
9731 return value_cast (type, arg);
9732 }
9733
9734 /* Given two array types T1 and T2, return nonzero iff both arrays
9735 contain the same number of elements. */
9736
9737 static int
9738 ada_same_array_size_p (struct type *t1, struct type *t2)
9739 {
9740 LONGEST lo1, hi1, lo2, hi2;
9741
9742 /* Get the array bounds in order to verify that the size of
9743 the two arrays match. */
9744 if (!get_array_bounds (t1, &lo1, &hi1)
9745 || !get_array_bounds (t2, &lo2, &hi2))
9746 error (_("unable to determine array bounds"));
9747
9748 /* To make things easier for size comparison, normalize a bit
9749 the case of empty arrays by making sure that the difference
9750 between upper bound and lower bound is always -1. */
9751 if (lo1 > hi1)
9752 hi1 = lo1 - 1;
9753 if (lo2 > hi2)
9754 hi2 = lo2 - 1;
9755
9756 return (hi1 - lo1 == hi2 - lo2);
9757 }
9758
9759 /* Assuming that VAL is an array of integrals, and TYPE represents
9760 an array with the same number of elements, but with wider integral
9761 elements, return an array "casted" to TYPE. In practice, this
9762 means that the returned array is built by casting each element
9763 of the original array into TYPE's (wider) element type. */
9764
9765 static struct value *
9766 ada_promote_array_of_integrals (struct type *type, struct value *val)
9767 {
9768 struct type *elt_type = TYPE_TARGET_TYPE (type);
9769 LONGEST lo, hi;
9770 struct value *res;
9771 LONGEST i;
9772
9773 /* Verify that both val and type are arrays of scalars, and
9774 that the size of val's elements is smaller than the size
9775 of type's element. */
9776 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9777 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9778 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9779 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9780 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9781 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9782
9783 if (!get_array_bounds (type, &lo, &hi))
9784 error (_("unable to determine array bounds"));
9785
9786 res = allocate_value (type);
9787
9788 /* Promote each array element. */
9789 for (i = 0; i < hi - lo + 1; i++)
9790 {
9791 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9792
9793 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9794 value_contents_all (elt), TYPE_LENGTH (elt_type));
9795 }
9796
9797 return res;
9798 }
9799
9800 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9801 return the converted value. */
9802
9803 static struct value *
9804 coerce_for_assign (struct type *type, struct value *val)
9805 {
9806 struct type *type2 = value_type (val);
9807
9808 if (type == type2)
9809 return val;
9810
9811 type2 = ada_check_typedef (type2);
9812 type = ada_check_typedef (type);
9813
9814 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9815 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9816 {
9817 val = ada_value_ind (val);
9818 type2 = value_type (val);
9819 }
9820
9821 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9822 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9823 {
9824 if (!ada_same_array_size_p (type, type2))
9825 error (_("cannot assign arrays of different length"));
9826
9827 if (is_integral_type (TYPE_TARGET_TYPE (type))
9828 && is_integral_type (TYPE_TARGET_TYPE (type2))
9829 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9830 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9831 {
9832 /* Allow implicit promotion of the array elements to
9833 a wider type. */
9834 return ada_promote_array_of_integrals (type, val);
9835 }
9836
9837 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9838 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9839 error (_("Incompatible types in assignment"));
9840 deprecated_set_value_type (val, type);
9841 }
9842 return val;
9843 }
9844
9845 static struct value *
9846 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9847 {
9848 struct value *val;
9849 struct type *type1, *type2;
9850 LONGEST v, v1, v2;
9851
9852 arg1 = coerce_ref (arg1);
9853 arg2 = coerce_ref (arg2);
9854 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9855 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9856
9857 if (TYPE_CODE (type1) != TYPE_CODE_INT
9858 || TYPE_CODE (type2) != TYPE_CODE_INT)
9859 return value_binop (arg1, arg2, op);
9860
9861 switch (op)
9862 {
9863 case BINOP_MOD:
9864 case BINOP_DIV:
9865 case BINOP_REM:
9866 break;
9867 default:
9868 return value_binop (arg1, arg2, op);
9869 }
9870
9871 v2 = value_as_long (arg2);
9872 if (v2 == 0)
9873 error (_("second operand of %s must not be zero."), op_string (op));
9874
9875 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9876 return value_binop (arg1, arg2, op);
9877
9878 v1 = value_as_long (arg1);
9879 switch (op)
9880 {
9881 case BINOP_DIV:
9882 v = v1 / v2;
9883 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9884 v += v > 0 ? -1 : 1;
9885 break;
9886 case BINOP_REM:
9887 v = v1 % v2;
9888 if (v * v1 < 0)
9889 v -= v2;
9890 break;
9891 default:
9892 /* Should not reach this point. */
9893 v = 0;
9894 }
9895
9896 val = allocate_value (type1);
9897 store_unsigned_integer (value_contents_raw (val),
9898 TYPE_LENGTH (value_type (val)),
9899 gdbarch_byte_order (get_type_arch (type1)), v);
9900 return val;
9901 }
9902
9903 static int
9904 ada_value_equal (struct value *arg1, struct value *arg2)
9905 {
9906 if (ada_is_direct_array_type (value_type (arg1))
9907 || ada_is_direct_array_type (value_type (arg2)))
9908 {
9909 struct type *arg1_type, *arg2_type;
9910
9911 /* Automatically dereference any array reference before
9912 we attempt to perform the comparison. */
9913 arg1 = ada_coerce_ref (arg1);
9914 arg2 = ada_coerce_ref (arg2);
9915
9916 arg1 = ada_coerce_to_simple_array (arg1);
9917 arg2 = ada_coerce_to_simple_array (arg2);
9918
9919 arg1_type = ada_check_typedef (value_type (arg1));
9920 arg2_type = ada_check_typedef (value_type (arg2));
9921
9922 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9923 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9924 error (_("Attempt to compare array with non-array"));
9925 /* FIXME: The following works only for types whose
9926 representations use all bits (no padding or undefined bits)
9927 and do not have user-defined equality. */
9928 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9929 && memcmp (value_contents (arg1), value_contents (arg2),
9930 TYPE_LENGTH (arg1_type)) == 0);
9931 }
9932 return value_equal (arg1, arg2);
9933 }
9934
9935 /* Total number of component associations in the aggregate starting at
9936 index PC in EXP. Assumes that index PC is the start of an
9937 OP_AGGREGATE. */
9938
9939 static int
9940 num_component_specs (struct expression *exp, int pc)
9941 {
9942 int n, m, i;
9943
9944 m = exp->elts[pc + 1].longconst;
9945 pc += 3;
9946 n = 0;
9947 for (i = 0; i < m; i += 1)
9948 {
9949 switch (exp->elts[pc].opcode)
9950 {
9951 default:
9952 n += 1;
9953 break;
9954 case OP_CHOICES:
9955 n += exp->elts[pc + 1].longconst;
9956 break;
9957 }
9958 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9959 }
9960 return n;
9961 }
9962
9963 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9964 component of LHS (a simple array or a record), updating *POS past
9965 the expression, assuming that LHS is contained in CONTAINER. Does
9966 not modify the inferior's memory, nor does it modify LHS (unless
9967 LHS == CONTAINER). */
9968
9969 static void
9970 assign_component (struct value *container, struct value *lhs, LONGEST index,
9971 struct expression *exp, int *pos)
9972 {
9973 struct value *mark = value_mark ();
9974 struct value *elt;
9975 struct type *lhs_type = check_typedef (value_type (lhs));
9976
9977 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9978 {
9979 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9980 struct value *index_val = value_from_longest (index_type, index);
9981
9982 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9983 }
9984 else
9985 {
9986 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9987 elt = ada_to_fixed_value (elt);
9988 }
9989
9990 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9991 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9992 else
9993 value_assign_to_component (container, elt,
9994 ada_evaluate_subexp (NULL, exp, pos,
9995 EVAL_NORMAL));
9996
9997 value_free_to_mark (mark);
9998 }
9999
10000 /* Assuming that LHS represents an lvalue having a record or array
10001 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10002 of that aggregate's value to LHS, advancing *POS past the
10003 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10004 lvalue containing LHS (possibly LHS itself). Does not modify
10005 the inferior's memory, nor does it modify the contents of
10006 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10007
10008 static struct value *
10009 assign_aggregate (struct value *container,
10010 struct value *lhs, struct expression *exp,
10011 int *pos, enum noside noside)
10012 {
10013 struct type *lhs_type;
10014 int n = exp->elts[*pos+1].longconst;
10015 LONGEST low_index, high_index;
10016 int num_specs;
10017 LONGEST *indices;
10018 int max_indices, num_indices;
10019 int i;
10020
10021 *pos += 3;
10022 if (noside != EVAL_NORMAL)
10023 {
10024 for (i = 0; i < n; i += 1)
10025 ada_evaluate_subexp (NULL, exp, pos, noside);
10026 return container;
10027 }
10028
10029 container = ada_coerce_ref (container);
10030 if (ada_is_direct_array_type (value_type (container)))
10031 container = ada_coerce_to_simple_array (container);
10032 lhs = ada_coerce_ref (lhs);
10033 if (!deprecated_value_modifiable (lhs))
10034 error (_("Left operand of assignment is not a modifiable lvalue."));
10035
10036 lhs_type = check_typedef (value_type (lhs));
10037 if (ada_is_direct_array_type (lhs_type))
10038 {
10039 lhs = ada_coerce_to_simple_array (lhs);
10040 lhs_type = check_typedef (value_type (lhs));
10041 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10042 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10043 }
10044 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10045 {
10046 low_index = 0;
10047 high_index = num_visible_fields (lhs_type) - 1;
10048 }
10049 else
10050 error (_("Left-hand side must be array or record."));
10051
10052 num_specs = num_component_specs (exp, *pos - 3);
10053 max_indices = 4 * num_specs + 4;
10054 indices = XALLOCAVEC (LONGEST, max_indices);
10055 indices[0] = indices[1] = low_index - 1;
10056 indices[2] = indices[3] = high_index + 1;
10057 num_indices = 4;
10058
10059 for (i = 0; i < n; i += 1)
10060 {
10061 switch (exp->elts[*pos].opcode)
10062 {
10063 case OP_CHOICES:
10064 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10065 &num_indices, max_indices,
10066 low_index, high_index);
10067 break;
10068 case OP_POSITIONAL:
10069 aggregate_assign_positional (container, lhs, exp, pos, indices,
10070 &num_indices, max_indices,
10071 low_index, high_index);
10072 break;
10073 case OP_OTHERS:
10074 if (i != n-1)
10075 error (_("Misplaced 'others' clause"));
10076 aggregate_assign_others (container, lhs, exp, pos, indices,
10077 num_indices, low_index, high_index);
10078 break;
10079 default:
10080 error (_("Internal error: bad aggregate clause"));
10081 }
10082 }
10083
10084 return container;
10085 }
10086
10087 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10088 construct at *POS, updating *POS past the construct, given that
10089 the positions are relative to lower bound LOW, where HIGH is the
10090 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10091 updating *NUM_INDICES as needed. CONTAINER is as for
10092 assign_aggregate. */
10093 static void
10094 aggregate_assign_positional (struct value *container,
10095 struct value *lhs, struct expression *exp,
10096 int *pos, LONGEST *indices, int *num_indices,
10097 int max_indices, LONGEST low, LONGEST high)
10098 {
10099 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10100
10101 if (ind - 1 == high)
10102 warning (_("Extra components in aggregate ignored."));
10103 if (ind <= high)
10104 {
10105 add_component_interval (ind, ind, indices, num_indices, max_indices);
10106 *pos += 3;
10107 assign_component (container, lhs, ind, exp, pos);
10108 }
10109 else
10110 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10111 }
10112
10113 /* Assign into the components of LHS indexed by the OP_CHOICES
10114 construct at *POS, updating *POS past the construct, given that
10115 the allowable indices are LOW..HIGH. Record the indices assigned
10116 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10117 needed. CONTAINER is as for assign_aggregate. */
10118 static void
10119 aggregate_assign_from_choices (struct value *container,
10120 struct value *lhs, struct expression *exp,
10121 int *pos, LONGEST *indices, int *num_indices,
10122 int max_indices, LONGEST low, LONGEST high)
10123 {
10124 int j;
10125 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10126 int choice_pos, expr_pc;
10127 int is_array = ada_is_direct_array_type (value_type (lhs));
10128
10129 choice_pos = *pos += 3;
10130
10131 for (j = 0; j < n_choices; j += 1)
10132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10133 expr_pc = *pos;
10134 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10135
10136 for (j = 0; j < n_choices; j += 1)
10137 {
10138 LONGEST lower, upper;
10139 enum exp_opcode op = exp->elts[choice_pos].opcode;
10140
10141 if (op == OP_DISCRETE_RANGE)
10142 {
10143 choice_pos += 1;
10144 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10145 EVAL_NORMAL));
10146 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10147 EVAL_NORMAL));
10148 }
10149 else if (is_array)
10150 {
10151 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10152 EVAL_NORMAL));
10153 upper = lower;
10154 }
10155 else
10156 {
10157 int ind;
10158 const char *name;
10159
10160 switch (op)
10161 {
10162 case OP_NAME:
10163 name = &exp->elts[choice_pos + 2].string;
10164 break;
10165 case OP_VAR_VALUE:
10166 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10167 break;
10168 default:
10169 error (_("Invalid record component association."));
10170 }
10171 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10172 ind = 0;
10173 if (! find_struct_field (name, value_type (lhs), 0,
10174 NULL, NULL, NULL, NULL, &ind))
10175 error (_("Unknown component name: %s."), name);
10176 lower = upper = ind;
10177 }
10178
10179 if (lower <= upper && (lower < low || upper > high))
10180 error (_("Index in component association out of bounds."));
10181
10182 add_component_interval (lower, upper, indices, num_indices,
10183 max_indices);
10184 while (lower <= upper)
10185 {
10186 int pos1;
10187
10188 pos1 = expr_pc;
10189 assign_component (container, lhs, lower, exp, &pos1);
10190 lower += 1;
10191 }
10192 }
10193 }
10194
10195 /* Assign the value of the expression in the OP_OTHERS construct in
10196 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10197 have not been previously assigned. The index intervals already assigned
10198 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10199 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10200 static void
10201 aggregate_assign_others (struct value *container,
10202 struct value *lhs, struct expression *exp,
10203 int *pos, LONGEST *indices, int num_indices,
10204 LONGEST low, LONGEST high)
10205 {
10206 int i;
10207 int expr_pc = *pos + 1;
10208
10209 for (i = 0; i < num_indices - 2; i += 2)
10210 {
10211 LONGEST ind;
10212
10213 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10214 {
10215 int localpos;
10216
10217 localpos = expr_pc;
10218 assign_component (container, lhs, ind, exp, &localpos);
10219 }
10220 }
10221 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10222 }
10223
10224 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10225 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10226 modifying *SIZE as needed. It is an error if *SIZE exceeds
10227 MAX_SIZE. The resulting intervals do not overlap. */
10228 static void
10229 add_component_interval (LONGEST low, LONGEST high,
10230 LONGEST* indices, int *size, int max_size)
10231 {
10232 int i, j;
10233
10234 for (i = 0; i < *size; i += 2) {
10235 if (high >= indices[i] && low <= indices[i + 1])
10236 {
10237 int kh;
10238
10239 for (kh = i + 2; kh < *size; kh += 2)
10240 if (high < indices[kh])
10241 break;
10242 if (low < indices[i])
10243 indices[i] = low;
10244 indices[i + 1] = indices[kh - 1];
10245 if (high > indices[i + 1])
10246 indices[i + 1] = high;
10247 memcpy (indices + i + 2, indices + kh, *size - kh);
10248 *size -= kh - i - 2;
10249 return;
10250 }
10251 else if (high < indices[i])
10252 break;
10253 }
10254
10255 if (*size == max_size)
10256 error (_("Internal error: miscounted aggregate components."));
10257 *size += 2;
10258 for (j = *size-1; j >= i+2; j -= 1)
10259 indices[j] = indices[j - 2];
10260 indices[i] = low;
10261 indices[i + 1] = high;
10262 }
10263
10264 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10265 is different. */
10266
10267 static struct value *
10268 ada_value_cast (struct type *type, struct value *arg2)
10269 {
10270 if (type == ada_check_typedef (value_type (arg2)))
10271 return arg2;
10272
10273 if (ada_is_fixed_point_type (type))
10274 return cast_to_fixed (type, arg2);
10275
10276 if (ada_is_fixed_point_type (value_type (arg2)))
10277 return cast_from_fixed (type, arg2);
10278
10279 return value_cast (type, arg2);
10280 }
10281
10282 /* Evaluating Ada expressions, and printing their result.
10283 ------------------------------------------------------
10284
10285 1. Introduction:
10286 ----------------
10287
10288 We usually evaluate an Ada expression in order to print its value.
10289 We also evaluate an expression in order to print its type, which
10290 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10291 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10292 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10293 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10294 similar.
10295
10296 Evaluating expressions is a little more complicated for Ada entities
10297 than it is for entities in languages such as C. The main reason for
10298 this is that Ada provides types whose definition might be dynamic.
10299 One example of such types is variant records. Or another example
10300 would be an array whose bounds can only be known at run time.
10301
10302 The following description is a general guide as to what should be
10303 done (and what should NOT be done) in order to evaluate an expression
10304 involving such types, and when. This does not cover how the semantic
10305 information is encoded by GNAT as this is covered separatly. For the
10306 document used as the reference for the GNAT encoding, see exp_dbug.ads
10307 in the GNAT sources.
10308
10309 Ideally, we should embed each part of this description next to its
10310 associated code. Unfortunately, the amount of code is so vast right
10311 now that it's hard to see whether the code handling a particular
10312 situation might be duplicated or not. One day, when the code is
10313 cleaned up, this guide might become redundant with the comments
10314 inserted in the code, and we might want to remove it.
10315
10316 2. ``Fixing'' an Entity, the Simple Case:
10317 -----------------------------------------
10318
10319 When evaluating Ada expressions, the tricky issue is that they may
10320 reference entities whose type contents and size are not statically
10321 known. Consider for instance a variant record:
10322
10323 type Rec (Empty : Boolean := True) is record
10324 case Empty is
10325 when True => null;
10326 when False => Value : Integer;
10327 end case;
10328 end record;
10329 Yes : Rec := (Empty => False, Value => 1);
10330 No : Rec := (empty => True);
10331
10332 The size and contents of that record depends on the value of the
10333 descriminant (Rec.Empty). At this point, neither the debugging
10334 information nor the associated type structure in GDB are able to
10335 express such dynamic types. So what the debugger does is to create
10336 "fixed" versions of the type that applies to the specific object.
10337 We also informally refer to this opperation as "fixing" an object,
10338 which means creating its associated fixed type.
10339
10340 Example: when printing the value of variable "Yes" above, its fixed
10341 type would look like this:
10342
10343 type Rec is record
10344 Empty : Boolean;
10345 Value : Integer;
10346 end record;
10347
10348 On the other hand, if we printed the value of "No", its fixed type
10349 would become:
10350
10351 type Rec is record
10352 Empty : Boolean;
10353 end record;
10354
10355 Things become a little more complicated when trying to fix an entity
10356 with a dynamic type that directly contains another dynamic type,
10357 such as an array of variant records, for instance. There are
10358 two possible cases: Arrays, and records.
10359
10360 3. ``Fixing'' Arrays:
10361 ---------------------
10362
10363 The type structure in GDB describes an array in terms of its bounds,
10364 and the type of its elements. By design, all elements in the array
10365 have the same type and we cannot represent an array of variant elements
10366 using the current type structure in GDB. When fixing an array,
10367 we cannot fix the array element, as we would potentially need one
10368 fixed type per element of the array. As a result, the best we can do
10369 when fixing an array is to produce an array whose bounds and size
10370 are correct (allowing us to read it from memory), but without having
10371 touched its element type. Fixing each element will be done later,
10372 when (if) necessary.
10373
10374 Arrays are a little simpler to handle than records, because the same
10375 amount of memory is allocated for each element of the array, even if
10376 the amount of space actually used by each element differs from element
10377 to element. Consider for instance the following array of type Rec:
10378
10379 type Rec_Array is array (1 .. 2) of Rec;
10380
10381 The actual amount of memory occupied by each element might be different
10382 from element to element, depending on the value of their discriminant.
10383 But the amount of space reserved for each element in the array remains
10384 fixed regardless. So we simply need to compute that size using
10385 the debugging information available, from which we can then determine
10386 the array size (we multiply the number of elements of the array by
10387 the size of each element).
10388
10389 The simplest case is when we have an array of a constrained element
10390 type. For instance, consider the following type declarations:
10391
10392 type Bounded_String (Max_Size : Integer) is
10393 Length : Integer;
10394 Buffer : String (1 .. Max_Size);
10395 end record;
10396 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10397
10398 In this case, the compiler describes the array as an array of
10399 variable-size elements (identified by its XVS suffix) for which
10400 the size can be read in the parallel XVZ variable.
10401
10402 In the case of an array of an unconstrained element type, the compiler
10403 wraps the array element inside a private PAD type. This type should not
10404 be shown to the user, and must be "unwrap"'ed before printing. Note
10405 that we also use the adjective "aligner" in our code to designate
10406 these wrapper types.
10407
10408 In some cases, the size allocated for each element is statically
10409 known. In that case, the PAD type already has the correct size,
10410 and the array element should remain unfixed.
10411
10412 But there are cases when this size is not statically known.
10413 For instance, assuming that "Five" is an integer variable:
10414
10415 type Dynamic is array (1 .. Five) of Integer;
10416 type Wrapper (Has_Length : Boolean := False) is record
10417 Data : Dynamic;
10418 case Has_Length is
10419 when True => Length : Integer;
10420 when False => null;
10421 end case;
10422 end record;
10423 type Wrapper_Array is array (1 .. 2) of Wrapper;
10424
10425 Hello : Wrapper_Array := (others => (Has_Length => True,
10426 Data => (others => 17),
10427 Length => 1));
10428
10429
10430 The debugging info would describe variable Hello as being an
10431 array of a PAD type. The size of that PAD type is not statically
10432 known, but can be determined using a parallel XVZ variable.
10433 In that case, a copy of the PAD type with the correct size should
10434 be used for the fixed array.
10435
10436 3. ``Fixing'' record type objects:
10437 ----------------------------------
10438
10439 Things are slightly different from arrays in the case of dynamic
10440 record types. In this case, in order to compute the associated
10441 fixed type, we need to determine the size and offset of each of
10442 its components. This, in turn, requires us to compute the fixed
10443 type of each of these components.
10444
10445 Consider for instance the example:
10446
10447 type Bounded_String (Max_Size : Natural) is record
10448 Str : String (1 .. Max_Size);
10449 Length : Natural;
10450 end record;
10451 My_String : Bounded_String (Max_Size => 10);
10452
10453 In that case, the position of field "Length" depends on the size
10454 of field Str, which itself depends on the value of the Max_Size
10455 discriminant. In order to fix the type of variable My_String,
10456 we need to fix the type of field Str. Therefore, fixing a variant
10457 record requires us to fix each of its components.
10458
10459 However, if a component does not have a dynamic size, the component
10460 should not be fixed. In particular, fields that use a PAD type
10461 should not fixed. Here is an example where this might happen
10462 (assuming type Rec above):
10463
10464 type Container (Big : Boolean) is record
10465 First : Rec;
10466 After : Integer;
10467 case Big is
10468 when True => Another : Integer;
10469 when False => null;
10470 end case;
10471 end record;
10472 My_Container : Container := (Big => False,
10473 First => (Empty => True),
10474 After => 42);
10475
10476 In that example, the compiler creates a PAD type for component First,
10477 whose size is constant, and then positions the component After just
10478 right after it. The offset of component After is therefore constant
10479 in this case.
10480
10481 The debugger computes the position of each field based on an algorithm
10482 that uses, among other things, the actual position and size of the field
10483 preceding it. Let's now imagine that the user is trying to print
10484 the value of My_Container. If the type fixing was recursive, we would
10485 end up computing the offset of field After based on the size of the
10486 fixed version of field First. And since in our example First has
10487 only one actual field, the size of the fixed type is actually smaller
10488 than the amount of space allocated to that field, and thus we would
10489 compute the wrong offset of field After.
10490
10491 To make things more complicated, we need to watch out for dynamic
10492 components of variant records (identified by the ___XVL suffix in
10493 the component name). Even if the target type is a PAD type, the size
10494 of that type might not be statically known. So the PAD type needs
10495 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10496 we might end up with the wrong size for our component. This can be
10497 observed with the following type declarations:
10498
10499 type Octal is new Integer range 0 .. 7;
10500 type Octal_Array is array (Positive range <>) of Octal;
10501 pragma Pack (Octal_Array);
10502
10503 type Octal_Buffer (Size : Positive) is record
10504 Buffer : Octal_Array (1 .. Size);
10505 Length : Integer;
10506 end record;
10507
10508 In that case, Buffer is a PAD type whose size is unset and needs
10509 to be computed by fixing the unwrapped type.
10510
10511 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10512 ----------------------------------------------------------
10513
10514 Lastly, when should the sub-elements of an entity that remained unfixed
10515 thus far, be actually fixed?
10516
10517 The answer is: Only when referencing that element. For instance
10518 when selecting one component of a record, this specific component
10519 should be fixed at that point in time. Or when printing the value
10520 of a record, each component should be fixed before its value gets
10521 printed. Similarly for arrays, the element of the array should be
10522 fixed when printing each element of the array, or when extracting
10523 one element out of that array. On the other hand, fixing should
10524 not be performed on the elements when taking a slice of an array!
10525
10526 Note that one of the side effects of miscomputing the offset and
10527 size of each field is that we end up also miscomputing the size
10528 of the containing type. This can have adverse results when computing
10529 the value of an entity. GDB fetches the value of an entity based
10530 on the size of its type, and thus a wrong size causes GDB to fetch
10531 the wrong amount of memory. In the case where the computed size is
10532 too small, GDB fetches too little data to print the value of our
10533 entity. Results in this case are unpredictable, as we usually read
10534 past the buffer containing the data =:-o. */
10535
10536 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10537 for that subexpression cast to TO_TYPE. Advance *POS over the
10538 subexpression. */
10539
10540 static value *
10541 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10542 enum noside noside, struct type *to_type)
10543 {
10544 int pc = *pos;
10545
10546 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10547 || exp->elts[pc].opcode == OP_VAR_VALUE)
10548 {
10549 (*pos) += 4;
10550
10551 value *val;
10552 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10553 {
10554 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10555 return value_zero (to_type, not_lval);
10556
10557 val = evaluate_var_msym_value (noside,
10558 exp->elts[pc + 1].objfile,
10559 exp->elts[pc + 2].msymbol);
10560 }
10561 else
10562 val = evaluate_var_value (noside,
10563 exp->elts[pc + 1].block,
10564 exp->elts[pc + 2].symbol);
10565
10566 if (noside == EVAL_SKIP)
10567 return eval_skip_value (exp);
10568
10569 val = ada_value_cast (to_type, val);
10570
10571 /* Follow the Ada language semantics that do not allow taking
10572 an address of the result of a cast (view conversion in Ada). */
10573 if (VALUE_LVAL (val) == lval_memory)
10574 {
10575 if (value_lazy (val))
10576 value_fetch_lazy (val);
10577 VALUE_LVAL (val) = not_lval;
10578 }
10579 return val;
10580 }
10581
10582 value *val = evaluate_subexp (to_type, exp, pos, noside);
10583 if (noside == EVAL_SKIP)
10584 return eval_skip_value (exp);
10585 return ada_value_cast (to_type, val);
10586 }
10587
10588 /* Implement the evaluate_exp routine in the exp_descriptor structure
10589 for the Ada language. */
10590
10591 static struct value *
10592 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10593 int *pos, enum noside noside)
10594 {
10595 enum exp_opcode op;
10596 int tem;
10597 int pc;
10598 int preeval_pos;
10599 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10600 struct type *type;
10601 int nargs, oplen;
10602 struct value **argvec;
10603
10604 pc = *pos;
10605 *pos += 1;
10606 op = exp->elts[pc].opcode;
10607
10608 switch (op)
10609 {
10610 default:
10611 *pos -= 1;
10612 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10613
10614 if (noside == EVAL_NORMAL)
10615 arg1 = unwrap_value (arg1);
10616
10617 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10618 then we need to perform the conversion manually, because
10619 evaluate_subexp_standard doesn't do it. This conversion is
10620 necessary in Ada because the different kinds of float/fixed
10621 types in Ada have different representations.
10622
10623 Similarly, we need to perform the conversion from OP_LONG
10624 ourselves. */
10625 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10626 arg1 = ada_value_cast (expect_type, arg1);
10627
10628 return arg1;
10629
10630 case OP_STRING:
10631 {
10632 struct value *result;
10633
10634 *pos -= 1;
10635 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636 /* The result type will have code OP_STRING, bashed there from
10637 OP_ARRAY. Bash it back. */
10638 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10639 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10640 return result;
10641 }
10642
10643 case UNOP_CAST:
10644 (*pos) += 2;
10645 type = exp->elts[pc + 1].type;
10646 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10647
10648 case UNOP_QUAL:
10649 (*pos) += 2;
10650 type = exp->elts[pc + 1].type;
10651 return ada_evaluate_subexp (type, exp, pos, noside);
10652
10653 case BINOP_ASSIGN:
10654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10656 {
10657 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10659 return arg1;
10660 return ada_value_assign (arg1, arg1);
10661 }
10662 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10663 except if the lhs of our assignment is a convenience variable.
10664 In the case of assigning to a convenience variable, the lhs
10665 should be exactly the result of the evaluation of the rhs. */
10666 type = value_type (arg1);
10667 if (VALUE_LVAL (arg1) == lval_internalvar)
10668 type = NULL;
10669 arg2 = evaluate_subexp (type, exp, pos, noside);
10670 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10671 return arg1;
10672 if (ada_is_fixed_point_type (value_type (arg1)))
10673 arg2 = cast_to_fixed (value_type (arg1), arg2);
10674 else if (ada_is_fixed_point_type (value_type (arg2)))
10675 error
10676 (_("Fixed-point values must be assigned to fixed-point variables"));
10677 else
10678 arg2 = coerce_for_assign (value_type (arg1), arg2);
10679 return ada_value_assign (arg1, arg2);
10680
10681 case BINOP_ADD:
10682 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10683 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10684 if (noside == EVAL_SKIP)
10685 goto nosideret;
10686 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10687 return (value_from_longest
10688 (value_type (arg1),
10689 value_as_long (arg1) + value_as_long (arg2)));
10690 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10691 return (value_from_longest
10692 (value_type (arg2),
10693 value_as_long (arg1) + value_as_long (arg2)));
10694 if ((ada_is_fixed_point_type (value_type (arg1))
10695 || ada_is_fixed_point_type (value_type (arg2)))
10696 && value_type (arg1) != value_type (arg2))
10697 error (_("Operands of fixed-point addition must have the same type"));
10698 /* Do the addition, and cast the result to the type of the first
10699 argument. We cannot cast the result to a reference type, so if
10700 ARG1 is a reference type, find its underlying type. */
10701 type = value_type (arg1);
10702 while (TYPE_CODE (type) == TYPE_CODE_REF)
10703 type = TYPE_TARGET_TYPE (type);
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10706
10707 case BINOP_SUB:
10708 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10709 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10710 if (noside == EVAL_SKIP)
10711 goto nosideret;
10712 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10713 return (value_from_longest
10714 (value_type (arg1),
10715 value_as_long (arg1) - value_as_long (arg2)));
10716 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10717 return (value_from_longest
10718 (value_type (arg2),
10719 value_as_long (arg1) - value_as_long (arg2)));
10720 if ((ada_is_fixed_point_type (value_type (arg1))
10721 || ada_is_fixed_point_type (value_type (arg2)))
10722 && value_type (arg1) != value_type (arg2))
10723 error (_("Operands of fixed-point subtraction "
10724 "must have the same type"));
10725 /* Do the substraction, and cast the result to the type of the first
10726 argument. We cannot cast the result to a reference type, so if
10727 ARG1 is a reference type, find its underlying type. */
10728 type = value_type (arg1);
10729 while (TYPE_CODE (type) == TYPE_CODE_REF)
10730 type = TYPE_TARGET_TYPE (type);
10731 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10732 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10733
10734 case BINOP_MUL:
10735 case BINOP_DIV:
10736 case BINOP_REM:
10737 case BINOP_MOD:
10738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10739 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 if (noside == EVAL_SKIP)
10741 goto nosideret;
10742 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10743 {
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10745 return value_zero (value_type (arg1), not_lval);
10746 }
10747 else
10748 {
10749 type = builtin_type (exp->gdbarch)->builtin_double;
10750 if (ada_is_fixed_point_type (value_type (arg1)))
10751 arg1 = cast_from_fixed (type, arg1);
10752 if (ada_is_fixed_point_type (value_type (arg2)))
10753 arg2 = cast_from_fixed (type, arg2);
10754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10755 return ada_value_binop (arg1, arg2, op);
10756 }
10757
10758 case BINOP_EQUAL:
10759 case BINOP_NOTEQUAL:
10760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10761 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10762 if (noside == EVAL_SKIP)
10763 goto nosideret;
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 tem = 0;
10766 else
10767 {
10768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10769 tem = ada_value_equal (arg1, arg2);
10770 }
10771 if (op == BINOP_NOTEQUAL)
10772 tem = !tem;
10773 type = language_bool_type (exp->language_defn, exp->gdbarch);
10774 return value_from_longest (type, (LONGEST) tem);
10775
10776 case UNOP_NEG:
10777 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10778 if (noside == EVAL_SKIP)
10779 goto nosideret;
10780 else if (ada_is_fixed_point_type (value_type (arg1)))
10781 return value_cast (value_type (arg1), value_neg (arg1));
10782 else
10783 {
10784 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10785 return value_neg (arg1);
10786 }
10787
10788 case BINOP_LOGICAL_AND:
10789 case BINOP_LOGICAL_OR:
10790 case UNOP_LOGICAL_NOT:
10791 {
10792 struct value *val;
10793
10794 *pos -= 1;
10795 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10796 type = language_bool_type (exp->language_defn, exp->gdbarch);
10797 return value_cast (type, val);
10798 }
10799
10800 case BINOP_BITWISE_AND:
10801 case BINOP_BITWISE_IOR:
10802 case BINOP_BITWISE_XOR:
10803 {
10804 struct value *val;
10805
10806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10807 *pos = pc;
10808 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10809
10810 return value_cast (value_type (arg1), val);
10811 }
10812
10813 case OP_VAR_VALUE:
10814 *pos -= 1;
10815
10816 if (noside == EVAL_SKIP)
10817 {
10818 *pos += 4;
10819 goto nosideret;
10820 }
10821
10822 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10823 /* Only encountered when an unresolved symbol occurs in a
10824 context other than a function call, in which case, it is
10825 invalid. */
10826 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10828
10829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10830 {
10831 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10832 /* Check to see if this is a tagged type. We also need to handle
10833 the case where the type is a reference to a tagged type, but
10834 we have to be careful to exclude pointers to tagged types.
10835 The latter should be shown as usual (as a pointer), whereas
10836 a reference should mostly be transparent to the user. */
10837 if (ada_is_tagged_type (type, 0)
10838 || (TYPE_CODE (type) == TYPE_CODE_REF
10839 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10840 {
10841 /* Tagged types are a little special in the fact that the real
10842 type is dynamic and can only be determined by inspecting the
10843 object's tag. This means that we need to get the object's
10844 value first (EVAL_NORMAL) and then extract the actual object
10845 type from its tag.
10846
10847 Note that we cannot skip the final step where we extract
10848 the object type from its tag, because the EVAL_NORMAL phase
10849 results in dynamic components being resolved into fixed ones.
10850 This can cause problems when trying to print the type
10851 description of tagged types whose parent has a dynamic size:
10852 We use the type name of the "_parent" component in order
10853 to print the name of the ancestor type in the type description.
10854 If that component had a dynamic size, the resolution into
10855 a fixed type would result in the loss of that type name,
10856 thus preventing us from printing the name of the ancestor
10857 type in the type description. */
10858 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10859
10860 if (TYPE_CODE (type) != TYPE_CODE_REF)
10861 {
10862 struct type *actual_type;
10863
10864 actual_type = type_from_tag (ada_value_tag (arg1));
10865 if (actual_type == NULL)
10866 /* If, for some reason, we were unable to determine
10867 the actual type from the tag, then use the static
10868 approximation that we just computed as a fallback.
10869 This can happen if the debugging information is
10870 incomplete, for instance. */
10871 actual_type = type;
10872 return value_zero (actual_type, not_lval);
10873 }
10874 else
10875 {
10876 /* In the case of a ref, ada_coerce_ref takes care
10877 of determining the actual type. But the evaluation
10878 should return a ref as it should be valid to ask
10879 for its address; so rebuild a ref after coerce. */
10880 arg1 = ada_coerce_ref (arg1);
10881 return value_ref (arg1, TYPE_CODE_REF);
10882 }
10883 }
10884
10885 /* Records and unions for which GNAT encodings have been
10886 generated need to be statically fixed as well.
10887 Otherwise, non-static fixing produces a type where
10888 all dynamic properties are removed, which prevents "ptype"
10889 from being able to completely describe the type.
10890 For instance, a case statement in a variant record would be
10891 replaced by the relevant components based on the actual
10892 value of the discriminants. */
10893 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10894 && dynamic_template_type (type) != NULL)
10895 || (TYPE_CODE (type) == TYPE_CODE_UNION
10896 && ada_find_parallel_type (type, "___XVU") != NULL))
10897 {
10898 *pos += 4;
10899 return value_zero (to_static_fixed_type (type), not_lval);
10900 }
10901 }
10902
10903 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10904 return ada_to_fixed_value (arg1);
10905
10906 case OP_FUNCALL:
10907 (*pos) += 2;
10908
10909 /* Allocate arg vector, including space for the function to be
10910 called in argvec[0] and a terminating NULL. */
10911 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10912 argvec = XALLOCAVEC (struct value *, nargs + 2);
10913
10914 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10915 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10916 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10917 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10918 else
10919 {
10920 for (tem = 0; tem <= nargs; tem += 1)
10921 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 argvec[tem] = 0;
10923
10924 if (noside == EVAL_SKIP)
10925 goto nosideret;
10926 }
10927
10928 if (ada_is_constrained_packed_array_type
10929 (desc_base_type (value_type (argvec[0]))))
10930 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10931 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10932 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10933 /* This is a packed array that has already been fixed, and
10934 therefore already coerced to a simple array. Nothing further
10935 to do. */
10936 ;
10937 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10938 {
10939 /* Make sure we dereference references so that all the code below
10940 feels like it's really handling the referenced value. Wrapping
10941 types (for alignment) may be there, so make sure we strip them as
10942 well. */
10943 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10944 }
10945 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10946 && VALUE_LVAL (argvec[0]) == lval_memory)
10947 argvec[0] = value_addr (argvec[0]);
10948
10949 type = ada_check_typedef (value_type (argvec[0]));
10950
10951 /* Ada allows us to implicitly dereference arrays when subscripting
10952 them. So, if this is an array typedef (encoding use for array
10953 access types encoded as fat pointers), strip it now. */
10954 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10955 type = ada_typedef_target_type (type);
10956
10957 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10958 {
10959 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10960 {
10961 case TYPE_CODE_FUNC:
10962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10963 break;
10964 case TYPE_CODE_ARRAY:
10965 break;
10966 case TYPE_CODE_STRUCT:
10967 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10968 argvec[0] = ada_value_ind (argvec[0]);
10969 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10970 break;
10971 default:
10972 error (_("cannot subscript or call something of type `%s'"),
10973 ada_type_name (value_type (argvec[0])));
10974 break;
10975 }
10976 }
10977
10978 switch (TYPE_CODE (type))
10979 {
10980 case TYPE_CODE_FUNC:
10981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10982 {
10983 if (TYPE_TARGET_TYPE (type) == NULL)
10984 error_call_unknown_return_type (NULL);
10985 return allocate_value (TYPE_TARGET_TYPE (type));
10986 }
10987 return call_function_by_hand (argvec[0], NULL,
10988 gdb::make_array_view (argvec + 1,
10989 nargs));
10990 case TYPE_CODE_INTERNAL_FUNCTION:
10991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 /* We don't know anything about what the internal
10993 function might return, but we have to return
10994 something. */
10995 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10996 not_lval);
10997 else
10998 return call_internal_function (exp->gdbarch, exp->language_defn,
10999 argvec[0], nargs, argvec + 1);
11000
11001 case TYPE_CODE_STRUCT:
11002 {
11003 int arity;
11004
11005 arity = ada_array_arity (type);
11006 type = ada_array_element_type (type, nargs);
11007 if (type == NULL)
11008 error (_("cannot subscript or call a record"));
11009 if (arity != nargs)
11010 error (_("wrong number of subscripts; expecting %d"), arity);
11011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11012 return value_zero (ada_aligned_type (type), lval_memory);
11013 return
11014 unwrap_value (ada_value_subscript
11015 (argvec[0], nargs, argvec + 1));
11016 }
11017 case TYPE_CODE_ARRAY:
11018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11019 {
11020 type = ada_array_element_type (type, nargs);
11021 if (type == NULL)
11022 error (_("element type of array unknown"));
11023 else
11024 return value_zero (ada_aligned_type (type), lval_memory);
11025 }
11026 return
11027 unwrap_value (ada_value_subscript
11028 (ada_coerce_to_simple_array (argvec[0]),
11029 nargs, argvec + 1));
11030 case TYPE_CODE_PTR: /* Pointer to array */
11031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11032 {
11033 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11034 type = ada_array_element_type (type, nargs);
11035 if (type == NULL)
11036 error (_("element type of array unknown"));
11037 else
11038 return value_zero (ada_aligned_type (type), lval_memory);
11039 }
11040 return
11041 unwrap_value (ada_value_ptr_subscript (argvec[0],
11042 nargs, argvec + 1));
11043
11044 default:
11045 error (_("Attempt to index or call something other than an "
11046 "array or function"));
11047 }
11048
11049 case TERNOP_SLICE:
11050 {
11051 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11052 struct value *low_bound_val =
11053 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054 struct value *high_bound_val =
11055 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 LONGEST low_bound;
11057 LONGEST high_bound;
11058
11059 low_bound_val = coerce_ref (low_bound_val);
11060 high_bound_val = coerce_ref (high_bound_val);
11061 low_bound = value_as_long (low_bound_val);
11062 high_bound = value_as_long (high_bound_val);
11063
11064 if (noside == EVAL_SKIP)
11065 goto nosideret;
11066
11067 /* If this is a reference to an aligner type, then remove all
11068 the aligners. */
11069 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11070 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11071 TYPE_TARGET_TYPE (value_type (array)) =
11072 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11073
11074 if (ada_is_constrained_packed_array_type (value_type (array)))
11075 error (_("cannot slice a packed array"));
11076
11077 /* If this is a reference to an array or an array lvalue,
11078 convert to a pointer. */
11079 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11080 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11081 && VALUE_LVAL (array) == lval_memory))
11082 array = value_addr (array);
11083
11084 if (noside == EVAL_AVOID_SIDE_EFFECTS
11085 && ada_is_array_descriptor_type (ada_check_typedef
11086 (value_type (array))))
11087 return empty_array (ada_type_of_array (array, 0), low_bound,
11088 high_bound);
11089
11090 array = ada_coerce_to_simple_array_ptr (array);
11091
11092 /* If we have more than one level of pointer indirection,
11093 dereference the value until we get only one level. */
11094 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11095 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11096 == TYPE_CODE_PTR))
11097 array = value_ind (array);
11098
11099 /* Make sure we really do have an array type before going further,
11100 to avoid a SEGV when trying to get the index type or the target
11101 type later down the road if the debug info generated by
11102 the compiler is incorrect or incomplete. */
11103 if (!ada_is_simple_array_type (value_type (array)))
11104 error (_("cannot take slice of non-array"));
11105
11106 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11107 == TYPE_CODE_PTR)
11108 {
11109 struct type *type0 = ada_check_typedef (value_type (array));
11110
11111 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11112 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11113 else
11114 {
11115 struct type *arr_type0 =
11116 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11117
11118 return ada_value_slice_from_ptr (array, arr_type0,
11119 longest_to_int (low_bound),
11120 longest_to_int (high_bound));
11121 }
11122 }
11123 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 return array;
11125 else if (high_bound < low_bound)
11126 return empty_array (value_type (array), low_bound, high_bound);
11127 else
11128 return ada_value_slice (array, longest_to_int (low_bound),
11129 longest_to_int (high_bound));
11130 }
11131
11132 case UNOP_IN_RANGE:
11133 (*pos) += 2;
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 type = check_typedef (exp->elts[pc + 1].type);
11136
11137 if (noside == EVAL_SKIP)
11138 goto nosideret;
11139
11140 switch (TYPE_CODE (type))
11141 {
11142 default:
11143 lim_warning (_("Membership test incompletely implemented; "
11144 "always returns true"));
11145 type = language_bool_type (exp->language_defn, exp->gdbarch);
11146 return value_from_longest (type, (LONGEST) 1);
11147
11148 case TYPE_CODE_RANGE:
11149 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11150 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11153 type = language_bool_type (exp->language_defn, exp->gdbarch);
11154 return
11155 value_from_longest (type,
11156 (value_less (arg1, arg3)
11157 || value_equal (arg1, arg3))
11158 && (value_less (arg2, arg1)
11159 || value_equal (arg2, arg1)));
11160 }
11161
11162 case BINOP_IN_BOUNDS:
11163 (*pos) += 2;
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11166
11167 if (noside == EVAL_SKIP)
11168 goto nosideret;
11169
11170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11171 {
11172 type = language_bool_type (exp->language_defn, exp->gdbarch);
11173 return value_zero (type, not_lval);
11174 }
11175
11176 tem = longest_to_int (exp->elts[pc + 1].longconst);
11177
11178 type = ada_index_type (value_type (arg2), tem, "range");
11179 if (!type)
11180 type = value_type (arg1);
11181
11182 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11183 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11184
11185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11187 type = language_bool_type (exp->language_defn, exp->gdbarch);
11188 return
11189 value_from_longest (type,
11190 (value_less (arg1, arg3)
11191 || value_equal (arg1, arg3))
11192 && (value_less (arg2, arg1)
11193 || value_equal (arg2, arg1)));
11194
11195 case TERNOP_IN_RANGE:
11196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
11202
11203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11205 type = language_bool_type (exp->language_defn, exp->gdbarch);
11206 return
11207 value_from_longest (type,
11208 (value_less (arg1, arg3)
11209 || value_equal (arg1, arg3))
11210 && (value_less (arg2, arg1)
11211 || value_equal (arg2, arg1)));
11212
11213 case OP_ATR_FIRST:
11214 case OP_ATR_LAST:
11215 case OP_ATR_LENGTH:
11216 {
11217 struct type *type_arg;
11218
11219 if (exp->elts[*pos].opcode == OP_TYPE)
11220 {
11221 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11222 arg1 = NULL;
11223 type_arg = check_typedef (exp->elts[pc + 2].type);
11224 }
11225 else
11226 {
11227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 type_arg = NULL;
11229 }
11230
11231 if (exp->elts[*pos].opcode != OP_LONG)
11232 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11233 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11234 *pos += 4;
11235
11236 if (noside == EVAL_SKIP)
11237 goto nosideret;
11238
11239 if (type_arg == NULL)
11240 {
11241 arg1 = ada_coerce_ref (arg1);
11242
11243 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11244 arg1 = ada_coerce_to_simple_array (arg1);
11245
11246 if (op == OP_ATR_LENGTH)
11247 type = builtin_type (exp->gdbarch)->builtin_int;
11248 else
11249 {
11250 type = ada_index_type (value_type (arg1), tem,
11251 ada_attribute_name (op));
11252 if (type == NULL)
11253 type = builtin_type (exp->gdbarch)->builtin_int;
11254 }
11255
11256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11257 return allocate_value (type);
11258
11259 switch (op)
11260 {
11261 default: /* Should never happen. */
11262 error (_("unexpected attribute encountered"));
11263 case OP_ATR_FIRST:
11264 return value_from_longest
11265 (type, ada_array_bound (arg1, tem, 0));
11266 case OP_ATR_LAST:
11267 return value_from_longest
11268 (type, ada_array_bound (arg1, tem, 1));
11269 case OP_ATR_LENGTH:
11270 return value_from_longest
11271 (type, ada_array_length (arg1, tem));
11272 }
11273 }
11274 else if (discrete_type_p (type_arg))
11275 {
11276 struct type *range_type;
11277 const char *name = ada_type_name (type_arg);
11278
11279 range_type = NULL;
11280 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11281 range_type = to_fixed_range_type (type_arg, NULL);
11282 if (range_type == NULL)
11283 range_type = type_arg;
11284 switch (op)
11285 {
11286 default:
11287 error (_("unexpected attribute encountered"));
11288 case OP_ATR_FIRST:
11289 return value_from_longest
11290 (range_type, ada_discrete_type_low_bound (range_type));
11291 case OP_ATR_LAST:
11292 return value_from_longest
11293 (range_type, ada_discrete_type_high_bound (range_type));
11294 case OP_ATR_LENGTH:
11295 error (_("the 'length attribute applies only to array types"));
11296 }
11297 }
11298 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11299 error (_("unimplemented type attribute"));
11300 else
11301 {
11302 LONGEST low, high;
11303
11304 if (ada_is_constrained_packed_array_type (type_arg))
11305 type_arg = decode_constrained_packed_array_type (type_arg);
11306
11307 if (op == OP_ATR_LENGTH)
11308 type = builtin_type (exp->gdbarch)->builtin_int;
11309 else
11310 {
11311 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11312 if (type == NULL)
11313 type = builtin_type (exp->gdbarch)->builtin_int;
11314 }
11315
11316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11317 return allocate_value (type);
11318
11319 switch (op)
11320 {
11321 default:
11322 error (_("unexpected attribute encountered"));
11323 case OP_ATR_FIRST:
11324 low = ada_array_bound_from_type (type_arg, tem, 0);
11325 return value_from_longest (type, low);
11326 case OP_ATR_LAST:
11327 high = ada_array_bound_from_type (type_arg, tem, 1);
11328 return value_from_longest (type, high);
11329 case OP_ATR_LENGTH:
11330 low = ada_array_bound_from_type (type_arg, tem, 0);
11331 high = ada_array_bound_from_type (type_arg, tem, 1);
11332 return value_from_longest (type, high - low + 1);
11333 }
11334 }
11335 }
11336
11337 case OP_ATR_TAG:
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
11340 goto nosideret;
11341
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return value_zero (ada_tag_type (arg1), not_lval);
11344
11345 return ada_value_tag (arg1);
11346
11347 case OP_ATR_MIN:
11348 case OP_ATR_MAX:
11349 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11350 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11351 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 if (noside == EVAL_SKIP)
11353 goto nosideret;
11354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11355 return value_zero (value_type (arg1), not_lval);
11356 else
11357 {
11358 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11359 return value_binop (arg1, arg2,
11360 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11361 }
11362
11363 case OP_ATR_MODULUS:
11364 {
11365 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11366
11367 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11368 if (noside == EVAL_SKIP)
11369 goto nosideret;
11370
11371 if (!ada_is_modular_type (type_arg))
11372 error (_("'modulus must be applied to modular type"));
11373
11374 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11375 ada_modulus (type_arg));
11376 }
11377
11378
11379 case OP_ATR_POS:
11380 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 if (noside == EVAL_SKIP)
11383 goto nosideret;
11384 type = builtin_type (exp->gdbarch)->builtin_int;
11385 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11386 return value_zero (type, not_lval);
11387 else
11388 return value_pos_atr (type, arg1);
11389
11390 case OP_ATR_SIZE:
11391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11392 type = value_type (arg1);
11393
11394 /* If the argument is a reference, then dereference its type, since
11395 the user is really asking for the size of the actual object,
11396 not the size of the pointer. */
11397 if (TYPE_CODE (type) == TYPE_CODE_REF)
11398 type = TYPE_TARGET_TYPE (type);
11399
11400 if (noside == EVAL_SKIP)
11401 goto nosideret;
11402 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11403 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11404 else
11405 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11406 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11407
11408 case OP_ATR_VAL:
11409 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11411 type = exp->elts[pc + 2].type;
11412 if (noside == EVAL_SKIP)
11413 goto nosideret;
11414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11415 return value_zero (type, not_lval);
11416 else
11417 return value_val_atr (type, arg1);
11418
11419 case BINOP_EXP:
11420 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11421 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11422 if (noside == EVAL_SKIP)
11423 goto nosideret;
11424 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11425 return value_zero (value_type (arg1), not_lval);
11426 else
11427 {
11428 /* For integer exponentiation operations,
11429 only promote the first argument. */
11430 if (is_integral_type (value_type (arg2)))
11431 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11432 else
11433 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11434
11435 return value_binop (arg1, arg2, op);
11436 }
11437
11438 case UNOP_PLUS:
11439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11440 if (noside == EVAL_SKIP)
11441 goto nosideret;
11442 else
11443 return arg1;
11444
11445 case UNOP_ABS:
11446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11447 if (noside == EVAL_SKIP)
11448 goto nosideret;
11449 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11450 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11451 return value_neg (arg1);
11452 else
11453 return arg1;
11454
11455 case UNOP_IND:
11456 preeval_pos = *pos;
11457 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11458 if (noside == EVAL_SKIP)
11459 goto nosideret;
11460 type = ada_check_typedef (value_type (arg1));
11461 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11462 {
11463 if (ada_is_array_descriptor_type (type))
11464 /* GDB allows dereferencing GNAT array descriptors. */
11465 {
11466 struct type *arrType = ada_type_of_array (arg1, 0);
11467
11468 if (arrType == NULL)
11469 error (_("Attempt to dereference null array pointer."));
11470 return value_at_lazy (arrType, 0);
11471 }
11472 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11473 || TYPE_CODE (type) == TYPE_CODE_REF
11474 /* In C you can dereference an array to get the 1st elt. */
11475 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11476 {
11477 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11478 only be determined by inspecting the object's tag.
11479 This means that we need to evaluate completely the
11480 expression in order to get its type. */
11481
11482 if ((TYPE_CODE (type) == TYPE_CODE_REF
11483 || TYPE_CODE (type) == TYPE_CODE_PTR)
11484 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11485 {
11486 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11487 EVAL_NORMAL);
11488 type = value_type (ada_value_ind (arg1));
11489 }
11490 else
11491 {
11492 type = to_static_fixed_type
11493 (ada_aligned_type
11494 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11495 }
11496 ada_ensure_varsize_limit (type);
11497 return value_zero (type, lval_memory);
11498 }
11499 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11500 {
11501 /* GDB allows dereferencing an int. */
11502 if (expect_type == NULL)
11503 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11504 lval_memory);
11505 else
11506 {
11507 expect_type =
11508 to_static_fixed_type (ada_aligned_type (expect_type));
11509 return value_zero (expect_type, lval_memory);
11510 }
11511 }
11512 else
11513 error (_("Attempt to take contents of a non-pointer value."));
11514 }
11515 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11516 type = ada_check_typedef (value_type (arg1));
11517
11518 if (TYPE_CODE (type) == TYPE_CODE_INT)
11519 /* GDB allows dereferencing an int. If we were given
11520 the expect_type, then use that as the target type.
11521 Otherwise, assume that the target type is an int. */
11522 {
11523 if (expect_type != NULL)
11524 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11525 arg1));
11526 else
11527 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11528 (CORE_ADDR) value_as_address (arg1));
11529 }
11530
11531 if (ada_is_array_descriptor_type (type))
11532 /* GDB allows dereferencing GNAT array descriptors. */
11533 return ada_coerce_to_simple_array (arg1);
11534 else
11535 return ada_value_ind (arg1);
11536
11537 case STRUCTOP_STRUCT:
11538 tem = longest_to_int (exp->elts[pc + 1].longconst);
11539 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11540 preeval_pos = *pos;
11541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11542 if (noside == EVAL_SKIP)
11543 goto nosideret;
11544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11545 {
11546 struct type *type1 = value_type (arg1);
11547
11548 if (ada_is_tagged_type (type1, 1))
11549 {
11550 type = ada_lookup_struct_elt_type (type1,
11551 &exp->elts[pc + 2].string,
11552 1, 1);
11553
11554 /* If the field is not found, check if it exists in the
11555 extension of this object's type. This means that we
11556 need to evaluate completely the expression. */
11557
11558 if (type == NULL)
11559 {
11560 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11561 EVAL_NORMAL);
11562 arg1 = ada_value_struct_elt (arg1,
11563 &exp->elts[pc + 2].string,
11564 0);
11565 arg1 = unwrap_value (arg1);
11566 type = value_type (ada_to_fixed_value (arg1));
11567 }
11568 }
11569 else
11570 type =
11571 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11572 0);
11573
11574 return value_zero (ada_aligned_type (type), lval_memory);
11575 }
11576 else
11577 {
11578 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11579 arg1 = unwrap_value (arg1);
11580 return ada_to_fixed_value (arg1);
11581 }
11582
11583 case OP_TYPE:
11584 /* The value is not supposed to be used. This is here to make it
11585 easier to accommodate expressions that contain types. */
11586 (*pos) += 2;
11587 if (noside == EVAL_SKIP)
11588 goto nosideret;
11589 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11590 return allocate_value (exp->elts[pc + 1].type);
11591 else
11592 error (_("Attempt to use a type name as an expression"));
11593
11594 case OP_AGGREGATE:
11595 case OP_CHOICES:
11596 case OP_OTHERS:
11597 case OP_DISCRETE_RANGE:
11598 case OP_POSITIONAL:
11599 case OP_NAME:
11600 if (noside == EVAL_NORMAL)
11601 switch (op)
11602 {
11603 case OP_NAME:
11604 error (_("Undefined name, ambiguous name, or renaming used in "
11605 "component association: %s."), &exp->elts[pc+2].string);
11606 case OP_AGGREGATE:
11607 error (_("Aggregates only allowed on the right of an assignment"));
11608 default:
11609 internal_error (__FILE__, __LINE__,
11610 _("aggregate apparently mangled"));
11611 }
11612
11613 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11614 *pos += oplen - 1;
11615 for (tem = 0; tem < nargs; tem += 1)
11616 ada_evaluate_subexp (NULL, exp, pos, noside);
11617 goto nosideret;
11618 }
11619
11620 nosideret:
11621 return eval_skip_value (exp);
11622 }
11623 \f
11624
11625 /* Fixed point */
11626
11627 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11628 type name that encodes the 'small and 'delta information.
11629 Otherwise, return NULL. */
11630
11631 static const char *
11632 fixed_type_info (struct type *type)
11633 {
11634 const char *name = ada_type_name (type);
11635 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11636
11637 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11638 {
11639 const char *tail = strstr (name, "___XF_");
11640
11641 if (tail == NULL)
11642 return NULL;
11643 else
11644 return tail + 5;
11645 }
11646 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11647 return fixed_type_info (TYPE_TARGET_TYPE (type));
11648 else
11649 return NULL;
11650 }
11651
11652 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11653
11654 int
11655 ada_is_fixed_point_type (struct type *type)
11656 {
11657 return fixed_type_info (type) != NULL;
11658 }
11659
11660 /* Return non-zero iff TYPE represents a System.Address type. */
11661
11662 int
11663 ada_is_system_address_type (struct type *type)
11664 {
11665 return (TYPE_NAME (type)
11666 && strcmp (TYPE_NAME (type), "system__address") == 0);
11667 }
11668
11669 /* Assuming that TYPE is the representation of an Ada fixed-point
11670 type, return the target floating-point type to be used to represent
11671 of this type during internal computation. */
11672
11673 static struct type *
11674 ada_scaling_type (struct type *type)
11675 {
11676 return builtin_type (get_type_arch (type))->builtin_long_double;
11677 }
11678
11679 /* Assuming that TYPE is the representation of an Ada fixed-point
11680 type, return its delta, or NULL if the type is malformed and the
11681 delta cannot be determined. */
11682
11683 struct value *
11684 ada_delta (struct type *type)
11685 {
11686 const char *encoding = fixed_type_info (type);
11687 struct type *scale_type = ada_scaling_type (type);
11688
11689 long long num, den;
11690
11691 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11692 return nullptr;
11693 else
11694 return value_binop (value_from_longest (scale_type, num),
11695 value_from_longest (scale_type, den), BINOP_DIV);
11696 }
11697
11698 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11699 factor ('SMALL value) associated with the type. */
11700
11701 struct value *
11702 ada_scaling_factor (struct type *type)
11703 {
11704 const char *encoding = fixed_type_info (type);
11705 struct type *scale_type = ada_scaling_type (type);
11706
11707 long long num0, den0, num1, den1;
11708 int n;
11709
11710 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11711 &num0, &den0, &num1, &den1);
11712
11713 if (n < 2)
11714 return value_from_longest (scale_type, 1);
11715 else if (n == 4)
11716 return value_binop (value_from_longest (scale_type, num1),
11717 value_from_longest (scale_type, den1), BINOP_DIV);
11718 else
11719 return value_binop (value_from_longest (scale_type, num0),
11720 value_from_longest (scale_type, den0), BINOP_DIV);
11721 }
11722
11723 \f
11724
11725 /* Range types */
11726
11727 /* Scan STR beginning at position K for a discriminant name, and
11728 return the value of that discriminant field of DVAL in *PX. If
11729 PNEW_K is not null, put the position of the character beyond the
11730 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11731 not alter *PX and *PNEW_K if unsuccessful. */
11732
11733 static int
11734 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11735 int *pnew_k)
11736 {
11737 static char *bound_buffer = NULL;
11738 static size_t bound_buffer_len = 0;
11739 const char *pstart, *pend, *bound;
11740 struct value *bound_val;
11741
11742 if (dval == NULL || str == NULL || str[k] == '\0')
11743 return 0;
11744
11745 pstart = str + k;
11746 pend = strstr (pstart, "__");
11747 if (pend == NULL)
11748 {
11749 bound = pstart;
11750 k += strlen (bound);
11751 }
11752 else
11753 {
11754 int len = pend - pstart;
11755
11756 /* Strip __ and beyond. */
11757 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11758 strncpy (bound_buffer, pstart, len);
11759 bound_buffer[len] = '\0';
11760
11761 bound = bound_buffer;
11762 k = pend - str;
11763 }
11764
11765 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11766 if (bound_val == NULL)
11767 return 0;
11768
11769 *px = value_as_long (bound_val);
11770 if (pnew_k != NULL)
11771 *pnew_k = k;
11772 return 1;
11773 }
11774
11775 /* Value of variable named NAME in the current environment. If
11776 no such variable found, then if ERR_MSG is null, returns 0, and
11777 otherwise causes an error with message ERR_MSG. */
11778
11779 static struct value *
11780 get_var_value (const char *name, const char *err_msg)
11781 {
11782 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11783
11784 std::vector<struct block_symbol> syms;
11785 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11786 get_selected_block (0),
11787 VAR_DOMAIN, &syms, 1);
11788
11789 if (nsyms != 1)
11790 {
11791 if (err_msg == NULL)
11792 return 0;
11793 else
11794 error (("%s"), err_msg);
11795 }
11796
11797 return value_of_variable (syms[0].symbol, syms[0].block);
11798 }
11799
11800 /* Value of integer variable named NAME in the current environment.
11801 If no such variable is found, returns false. Otherwise, sets VALUE
11802 to the variable's value and returns true. */
11803
11804 bool
11805 get_int_var_value (const char *name, LONGEST &value)
11806 {
11807 struct value *var_val = get_var_value (name, 0);
11808
11809 if (var_val == 0)
11810 return false;
11811
11812 value = value_as_long (var_val);
11813 return true;
11814 }
11815
11816
11817 /* Return a range type whose base type is that of the range type named
11818 NAME in the current environment, and whose bounds are calculated
11819 from NAME according to the GNAT range encoding conventions.
11820 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11821 corresponding range type from debug information; fall back to using it
11822 if symbol lookup fails. If a new type must be created, allocate it
11823 like ORIG_TYPE was. The bounds information, in general, is encoded
11824 in NAME, the base type given in the named range type. */
11825
11826 static struct type *
11827 to_fixed_range_type (struct type *raw_type, struct value *dval)
11828 {
11829 const char *name;
11830 struct type *base_type;
11831 const char *subtype_info;
11832
11833 gdb_assert (raw_type != NULL);
11834 gdb_assert (TYPE_NAME (raw_type) != NULL);
11835
11836 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11837 base_type = TYPE_TARGET_TYPE (raw_type);
11838 else
11839 base_type = raw_type;
11840
11841 name = TYPE_NAME (raw_type);
11842 subtype_info = strstr (name, "___XD");
11843 if (subtype_info == NULL)
11844 {
11845 LONGEST L = ada_discrete_type_low_bound (raw_type);
11846 LONGEST U = ada_discrete_type_high_bound (raw_type);
11847
11848 if (L < INT_MIN || U > INT_MAX)
11849 return raw_type;
11850 else
11851 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11852 L, U);
11853 }
11854 else
11855 {
11856 static char *name_buf = NULL;
11857 static size_t name_len = 0;
11858 int prefix_len = subtype_info - name;
11859 LONGEST L, U;
11860 struct type *type;
11861 const char *bounds_str;
11862 int n;
11863
11864 GROW_VECT (name_buf, name_len, prefix_len + 5);
11865 strncpy (name_buf, name, prefix_len);
11866 name_buf[prefix_len] = '\0';
11867
11868 subtype_info += 5;
11869 bounds_str = strchr (subtype_info, '_');
11870 n = 1;
11871
11872 if (*subtype_info == 'L')
11873 {
11874 if (!ada_scan_number (bounds_str, n, &L, &n)
11875 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11876 return raw_type;
11877 if (bounds_str[n] == '_')
11878 n += 2;
11879 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11880 n += 1;
11881 subtype_info += 1;
11882 }
11883 else
11884 {
11885 strcpy (name_buf + prefix_len, "___L");
11886 if (!get_int_var_value (name_buf, L))
11887 {
11888 lim_warning (_("Unknown lower bound, using 1."));
11889 L = 1;
11890 }
11891 }
11892
11893 if (*subtype_info == 'U')
11894 {
11895 if (!ada_scan_number (bounds_str, n, &U, &n)
11896 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11897 return raw_type;
11898 }
11899 else
11900 {
11901 strcpy (name_buf + prefix_len, "___U");
11902 if (!get_int_var_value (name_buf, U))
11903 {
11904 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11905 U = L;
11906 }
11907 }
11908
11909 type = create_static_range_type (alloc_type_copy (raw_type),
11910 base_type, L, U);
11911 /* create_static_range_type alters the resulting type's length
11912 to match the size of the base_type, which is not what we want.
11913 Set it back to the original range type's length. */
11914 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11915 TYPE_NAME (type) = name;
11916 return type;
11917 }
11918 }
11919
11920 /* True iff NAME is the name of a range type. */
11921
11922 int
11923 ada_is_range_type_name (const char *name)
11924 {
11925 return (name != NULL && strstr (name, "___XD"));
11926 }
11927 \f
11928
11929 /* Modular types */
11930
11931 /* True iff TYPE is an Ada modular type. */
11932
11933 int
11934 ada_is_modular_type (struct type *type)
11935 {
11936 struct type *subranged_type = get_base_type (type);
11937
11938 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11939 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11940 && TYPE_UNSIGNED (subranged_type));
11941 }
11942
11943 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11944
11945 ULONGEST
11946 ada_modulus (struct type *type)
11947 {
11948 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11949 }
11950 \f
11951
11952 /* Ada exception catchpoint support:
11953 ---------------------------------
11954
11955 We support 3 kinds of exception catchpoints:
11956 . catchpoints on Ada exceptions
11957 . catchpoints on unhandled Ada exceptions
11958 . catchpoints on failed assertions
11959
11960 Exceptions raised during failed assertions, or unhandled exceptions
11961 could perfectly be caught with the general catchpoint on Ada exceptions.
11962 However, we can easily differentiate these two special cases, and having
11963 the option to distinguish these two cases from the rest can be useful
11964 to zero-in on certain situations.
11965
11966 Exception catchpoints are a specialized form of breakpoint,
11967 since they rely on inserting breakpoints inside known routines
11968 of the GNAT runtime. The implementation therefore uses a standard
11969 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11970 of breakpoint_ops.
11971
11972 Support in the runtime for exception catchpoints have been changed
11973 a few times already, and these changes affect the implementation
11974 of these catchpoints. In order to be able to support several
11975 variants of the runtime, we use a sniffer that will determine
11976 the runtime variant used by the program being debugged. */
11977
11978 /* Ada's standard exceptions.
11979
11980 The Ada 83 standard also defined Numeric_Error. But there so many
11981 situations where it was unclear from the Ada 83 Reference Manual
11982 (RM) whether Constraint_Error or Numeric_Error should be raised,
11983 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11984 Interpretation saying that anytime the RM says that Numeric_Error
11985 should be raised, the implementation may raise Constraint_Error.
11986 Ada 95 went one step further and pretty much removed Numeric_Error
11987 from the list of standard exceptions (it made it a renaming of
11988 Constraint_Error, to help preserve compatibility when compiling
11989 an Ada83 compiler). As such, we do not include Numeric_Error from
11990 this list of standard exceptions. */
11991
11992 static const char *standard_exc[] = {
11993 "constraint_error",
11994 "program_error",
11995 "storage_error",
11996 "tasking_error"
11997 };
11998
11999 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12000
12001 /* A structure that describes how to support exception catchpoints
12002 for a given executable. */
12003
12004 struct exception_support_info
12005 {
12006 /* The name of the symbol to break on in order to insert
12007 a catchpoint on exceptions. */
12008 const char *catch_exception_sym;
12009
12010 /* The name of the symbol to break on in order to insert
12011 a catchpoint on unhandled exceptions. */
12012 const char *catch_exception_unhandled_sym;
12013
12014 /* The name of the symbol to break on in order to insert
12015 a catchpoint on failed assertions. */
12016 const char *catch_assert_sym;
12017
12018 /* The name of the symbol to break on in order to insert
12019 a catchpoint on exception handling. */
12020 const char *catch_handlers_sym;
12021
12022 /* Assuming that the inferior just triggered an unhandled exception
12023 catchpoint, this function is responsible for returning the address
12024 in inferior memory where the name of that exception is stored.
12025 Return zero if the address could not be computed. */
12026 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12027 };
12028
12029 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12030 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12031
12032 /* The following exception support info structure describes how to
12033 implement exception catchpoints with the latest version of the
12034 Ada runtime (as of 2007-03-06). */
12035
12036 static const struct exception_support_info default_exception_support_info =
12037 {
12038 "__gnat_debug_raise_exception", /* catch_exception_sym */
12039 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12040 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12041 "__gnat_begin_handler", /* catch_handlers_sym */
12042 ada_unhandled_exception_name_addr
12043 };
12044
12045 /* The following exception support info structure describes how to
12046 implement exception catchpoints with a slightly older version
12047 of the Ada runtime. */
12048
12049 static const struct exception_support_info exception_support_info_fallback =
12050 {
12051 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12052 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12053 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12054 "__gnat_begin_handler", /* catch_handlers_sym */
12055 ada_unhandled_exception_name_addr_from_raise
12056 };
12057
12058 /* Return nonzero if we can detect the exception support routines
12059 described in EINFO.
12060
12061 This function errors out if an abnormal situation is detected
12062 (for instance, if we find the exception support routines, but
12063 that support is found to be incomplete). */
12064
12065 static int
12066 ada_has_this_exception_support (const struct exception_support_info *einfo)
12067 {
12068 struct symbol *sym;
12069
12070 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12071 that should be compiled with debugging information. As a result, we
12072 expect to find that symbol in the symtabs. */
12073
12074 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12075 if (sym == NULL)
12076 {
12077 /* Perhaps we did not find our symbol because the Ada runtime was
12078 compiled without debugging info, or simply stripped of it.
12079 It happens on some GNU/Linux distributions for instance, where
12080 users have to install a separate debug package in order to get
12081 the runtime's debugging info. In that situation, let the user
12082 know why we cannot insert an Ada exception catchpoint.
12083
12084 Note: Just for the purpose of inserting our Ada exception
12085 catchpoint, we could rely purely on the associated minimal symbol.
12086 But we would be operating in degraded mode anyway, since we are
12087 still lacking the debugging info needed later on to extract
12088 the name of the exception being raised (this name is printed in
12089 the catchpoint message, and is also used when trying to catch
12090 a specific exception). We do not handle this case for now. */
12091 struct bound_minimal_symbol msym
12092 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12093
12094 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12095 error (_("Your Ada runtime appears to be missing some debugging "
12096 "information.\nCannot insert Ada exception catchpoint "
12097 "in this configuration."));
12098
12099 return 0;
12100 }
12101
12102 /* Make sure that the symbol we found corresponds to a function. */
12103
12104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12105 error (_("Symbol \"%s\" is not a function (class = %d)"),
12106 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12107
12108 return 1;
12109 }
12110
12111 /* Inspect the Ada runtime and determine which exception info structure
12112 should be used to provide support for exception catchpoints.
12113
12114 This function will always set the per-inferior exception_info,
12115 or raise an error. */
12116
12117 static void
12118 ada_exception_support_info_sniffer (void)
12119 {
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121
12122 /* If the exception info is already known, then no need to recompute it. */
12123 if (data->exception_info != NULL)
12124 return;
12125
12126 /* Check the latest (default) exception support info. */
12127 if (ada_has_this_exception_support (&default_exception_support_info))
12128 {
12129 data->exception_info = &default_exception_support_info;
12130 return;
12131 }
12132
12133 /* Try our fallback exception suport info. */
12134 if (ada_has_this_exception_support (&exception_support_info_fallback))
12135 {
12136 data->exception_info = &exception_support_info_fallback;
12137 return;
12138 }
12139
12140 /* Sometimes, it is normal for us to not be able to find the routine
12141 we are looking for. This happens when the program is linked with
12142 the shared version of the GNAT runtime, and the program has not been
12143 started yet. Inform the user of these two possible causes if
12144 applicable. */
12145
12146 if (ada_update_initial_language (language_unknown) != language_ada)
12147 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12148
12149 /* If the symbol does not exist, then check that the program is
12150 already started, to make sure that shared libraries have been
12151 loaded. If it is not started, this may mean that the symbol is
12152 in a shared library. */
12153
12154 if (inferior_ptid.pid () == 0)
12155 error (_("Unable to insert catchpoint. Try to start the program first."));
12156
12157 /* At this point, we know that we are debugging an Ada program and
12158 that the inferior has been started, but we still are not able to
12159 find the run-time symbols. That can mean that we are in
12160 configurable run time mode, or that a-except as been optimized
12161 out by the linker... In any case, at this point it is not worth
12162 supporting this feature. */
12163
12164 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12165 }
12166
12167 /* True iff FRAME is very likely to be that of a function that is
12168 part of the runtime system. This is all very heuristic, but is
12169 intended to be used as advice as to what frames are uninteresting
12170 to most users. */
12171
12172 static int
12173 is_known_support_routine (struct frame_info *frame)
12174 {
12175 enum language func_lang;
12176 int i;
12177 const char *fullname;
12178
12179 /* If this code does not have any debugging information (no symtab),
12180 This cannot be any user code. */
12181
12182 symtab_and_line sal = find_frame_sal (frame);
12183 if (sal.symtab == NULL)
12184 return 1;
12185
12186 /* If there is a symtab, but the associated source file cannot be
12187 located, then assume this is not user code: Selecting a frame
12188 for which we cannot display the code would not be very helpful
12189 for the user. This should also take care of case such as VxWorks
12190 where the kernel has some debugging info provided for a few units. */
12191
12192 fullname = symtab_to_fullname (sal.symtab);
12193 if (access (fullname, R_OK) != 0)
12194 return 1;
12195
12196 /* Check the unit filename againt the Ada runtime file naming.
12197 We also check the name of the objfile against the name of some
12198 known system libraries that sometimes come with debugging info
12199 too. */
12200
12201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12202 {
12203 re_comp (known_runtime_file_name_patterns[i]);
12204 if (re_exec (lbasename (sal.symtab->filename)))
12205 return 1;
12206 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12207 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12208 return 1;
12209 }
12210
12211 /* Check whether the function is a GNAT-generated entity. */
12212
12213 gdb::unique_xmalloc_ptr<char> func_name
12214 = find_frame_funname (frame, &func_lang, NULL);
12215 if (func_name == NULL)
12216 return 1;
12217
12218 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12219 {
12220 re_comp (known_auxiliary_function_name_patterns[i]);
12221 if (re_exec (func_name.get ()))
12222 return 1;
12223 }
12224
12225 return 0;
12226 }
12227
12228 /* Find the first frame that contains debugging information and that is not
12229 part of the Ada run-time, starting from FI and moving upward. */
12230
12231 void
12232 ada_find_printable_frame (struct frame_info *fi)
12233 {
12234 for (; fi != NULL; fi = get_prev_frame (fi))
12235 {
12236 if (!is_known_support_routine (fi))
12237 {
12238 select_frame (fi);
12239 break;
12240 }
12241 }
12242
12243 }
12244
12245 /* Assuming that the inferior just triggered an unhandled exception
12246 catchpoint, return the address in inferior memory where the name
12247 of the exception is stored.
12248
12249 Return zero if the address could not be computed. */
12250
12251 static CORE_ADDR
12252 ada_unhandled_exception_name_addr (void)
12253 {
12254 return parse_and_eval_address ("e.full_name");
12255 }
12256
12257 /* Same as ada_unhandled_exception_name_addr, except that this function
12258 should be used when the inferior uses an older version of the runtime,
12259 where the exception name needs to be extracted from a specific frame
12260 several frames up in the callstack. */
12261
12262 static CORE_ADDR
12263 ada_unhandled_exception_name_addr_from_raise (void)
12264 {
12265 int frame_level;
12266 struct frame_info *fi;
12267 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12268
12269 /* To determine the name of this exception, we need to select
12270 the frame corresponding to RAISE_SYM_NAME. This frame is
12271 at least 3 levels up, so we simply skip the first 3 frames
12272 without checking the name of their associated function. */
12273 fi = get_current_frame ();
12274 for (frame_level = 0; frame_level < 3; frame_level += 1)
12275 if (fi != NULL)
12276 fi = get_prev_frame (fi);
12277
12278 while (fi != NULL)
12279 {
12280 enum language func_lang;
12281
12282 gdb::unique_xmalloc_ptr<char> func_name
12283 = find_frame_funname (fi, &func_lang, NULL);
12284 if (func_name != NULL)
12285 {
12286 if (strcmp (func_name.get (),
12287 data->exception_info->catch_exception_sym) == 0)
12288 break; /* We found the frame we were looking for... */
12289 }
12290 fi = get_prev_frame (fi);
12291 }
12292
12293 if (fi == NULL)
12294 return 0;
12295
12296 select_frame (fi);
12297 return parse_and_eval_address ("id.full_name");
12298 }
12299
12300 /* Assuming the inferior just triggered an Ada exception catchpoint
12301 (of any type), return the address in inferior memory where the name
12302 of the exception is stored, if applicable.
12303
12304 Assumes the selected frame is the current frame.
12305
12306 Return zero if the address could not be computed, or if not relevant. */
12307
12308 static CORE_ADDR
12309 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12310 struct breakpoint *b)
12311 {
12312 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12313
12314 switch (ex)
12315 {
12316 case ada_catch_exception:
12317 return (parse_and_eval_address ("e.full_name"));
12318 break;
12319
12320 case ada_catch_exception_unhandled:
12321 return data->exception_info->unhandled_exception_name_addr ();
12322 break;
12323
12324 case ada_catch_handlers:
12325 return 0; /* The runtimes does not provide access to the exception
12326 name. */
12327 break;
12328
12329 case ada_catch_assert:
12330 return 0; /* Exception name is not relevant in this case. */
12331 break;
12332
12333 default:
12334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12335 break;
12336 }
12337
12338 return 0; /* Should never be reached. */
12339 }
12340
12341 /* Assuming the inferior is stopped at an exception catchpoint,
12342 return the message which was associated to the exception, if
12343 available. Return NULL if the message could not be retrieved.
12344
12345 Note: The exception message can be associated to an exception
12346 either through the use of the Raise_Exception function, or
12347 more simply (Ada 2005 and later), via:
12348
12349 raise Exception_Name with "exception message";
12350
12351 */
12352
12353 static gdb::unique_xmalloc_ptr<char>
12354 ada_exception_message_1 (void)
12355 {
12356 struct value *e_msg_val;
12357 int e_msg_len;
12358
12359 /* For runtimes that support this feature, the exception message
12360 is passed as an unbounded string argument called "message". */
12361 e_msg_val = parse_and_eval ("message");
12362 if (e_msg_val == NULL)
12363 return NULL; /* Exception message not supported. */
12364
12365 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12366 gdb_assert (e_msg_val != NULL);
12367 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12368
12369 /* If the message string is empty, then treat it as if there was
12370 no exception message. */
12371 if (e_msg_len <= 0)
12372 return NULL;
12373
12374 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12375 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12376 e_msg.get ()[e_msg_len] = '\0';
12377
12378 return e_msg;
12379 }
12380
12381 /* Same as ada_exception_message_1, except that all exceptions are
12382 contained here (returning NULL instead). */
12383
12384 static gdb::unique_xmalloc_ptr<char>
12385 ada_exception_message (void)
12386 {
12387 gdb::unique_xmalloc_ptr<char> e_msg;
12388
12389 try
12390 {
12391 e_msg = ada_exception_message_1 ();
12392 }
12393 catch (const gdb_exception_error &e)
12394 {
12395 e_msg.reset (nullptr);
12396 }
12397
12398 return e_msg;
12399 }
12400
12401 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12402 any error that ada_exception_name_addr_1 might cause to be thrown.
12403 When an error is intercepted, a warning with the error message is printed,
12404 and zero is returned. */
12405
12406 static CORE_ADDR
12407 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12408 struct breakpoint *b)
12409 {
12410 CORE_ADDR result = 0;
12411
12412 try
12413 {
12414 result = ada_exception_name_addr_1 (ex, b);
12415 }
12416
12417 catch (const gdb_exception_error &e)
12418 {
12419 warning (_("failed to get exception name: %s"), e.what ());
12420 return 0;
12421 }
12422
12423 return result;
12424 }
12425
12426 static std::string ada_exception_catchpoint_cond_string
12427 (const char *excep_string,
12428 enum ada_exception_catchpoint_kind ex);
12429
12430 /* Ada catchpoints.
12431
12432 In the case of catchpoints on Ada exceptions, the catchpoint will
12433 stop the target on every exception the program throws. When a user
12434 specifies the name of a specific exception, we translate this
12435 request into a condition expression (in text form), and then parse
12436 it into an expression stored in each of the catchpoint's locations.
12437 We then use this condition to check whether the exception that was
12438 raised is the one the user is interested in. If not, then the
12439 target is resumed again. We store the name of the requested
12440 exception, in order to be able to re-set the condition expression
12441 when symbols change. */
12442
12443 /* An instance of this type is used to represent an Ada catchpoint
12444 breakpoint location. */
12445
12446 class ada_catchpoint_location : public bp_location
12447 {
12448 public:
12449 ada_catchpoint_location (breakpoint *owner)
12450 : bp_location (owner)
12451 {}
12452
12453 /* The condition that checks whether the exception that was raised
12454 is the specific exception the user specified on catchpoint
12455 creation. */
12456 expression_up excep_cond_expr;
12457 };
12458
12459 /* An instance of this type is used to represent an Ada catchpoint. */
12460
12461 struct ada_catchpoint : public breakpoint
12462 {
12463 /* The name of the specific exception the user specified. */
12464 std::string excep_string;
12465 };
12466
12467 /* Parse the exception condition string in the context of each of the
12468 catchpoint's locations, and store them for later evaluation. */
12469
12470 static void
12471 create_excep_cond_exprs (struct ada_catchpoint *c,
12472 enum ada_exception_catchpoint_kind ex)
12473 {
12474 /* Nothing to do if there's no specific exception to catch. */
12475 if (c->excep_string.empty ())
12476 return;
12477
12478 /* Same if there are no locations... */
12479 if (c->loc == NULL)
12480 return;
12481
12482 /* We have to compute the expression once for each program space,
12483 because the expression may hold the addresses of multiple symbols
12484 in some cases. */
12485 std::multimap<program_space *, struct bp_location *> loc_map;
12486 for (struct bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12487 loc_map.emplace (bl->pspace, bl);
12488
12489 scoped_restore_current_program_space save_pspace;
12490
12491 std::string cond_string;
12492 program_space *last_ps = nullptr;
12493 for (auto iter : loc_map)
12494 {
12495 struct ada_catchpoint_location *ada_loc
12496 = (struct ada_catchpoint_location *) iter.second;
12497
12498 if (ada_loc->pspace != last_ps)
12499 {
12500 last_ps = ada_loc->pspace;
12501 set_current_program_space (last_ps);
12502
12503 /* Compute the condition expression in text form, from the
12504 specific expection we want to catch. */
12505 cond_string
12506 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12507 ex);
12508 }
12509
12510 expression_up exp;
12511
12512 if (!ada_loc->shlib_disabled)
12513 {
12514 const char *s;
12515
12516 s = cond_string.c_str ();
12517 try
12518 {
12519 exp = parse_exp_1 (&s, ada_loc->address,
12520 block_for_pc (ada_loc->address),
12521 0);
12522 }
12523 catch (const gdb_exception_error &e)
12524 {
12525 warning (_("failed to reevaluate internal exception condition "
12526 "for catchpoint %d: %s"),
12527 c->number, e.what ());
12528 }
12529 }
12530
12531 ada_loc->excep_cond_expr = std::move (exp);
12532 }
12533 }
12534
12535 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12536 structure for all exception catchpoint kinds. */
12537
12538 static struct bp_location *
12539 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12540 struct breakpoint *self)
12541 {
12542 return new ada_catchpoint_location (self);
12543 }
12544
12545 /* Implement the RE_SET method in the breakpoint_ops structure for all
12546 exception catchpoint kinds. */
12547
12548 static void
12549 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12550 {
12551 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12552
12553 /* Call the base class's method. This updates the catchpoint's
12554 locations. */
12555 bkpt_breakpoint_ops.re_set (b);
12556
12557 /* Reparse the exception conditional expressions. One for each
12558 location. */
12559 create_excep_cond_exprs (c, ex);
12560 }
12561
12562 /* Returns true if we should stop for this breakpoint hit. If the
12563 user specified a specific exception, we only want to cause a stop
12564 if the program thrown that exception. */
12565
12566 static int
12567 should_stop_exception (const struct bp_location *bl)
12568 {
12569 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12570 const struct ada_catchpoint_location *ada_loc
12571 = (const struct ada_catchpoint_location *) bl;
12572 int stop;
12573
12574 /* With no specific exception, should always stop. */
12575 if (c->excep_string.empty ())
12576 return 1;
12577
12578 if (ada_loc->excep_cond_expr == NULL)
12579 {
12580 /* We will have a NULL expression if back when we were creating
12581 the expressions, this location's had failed to parse. */
12582 return 1;
12583 }
12584
12585 stop = 1;
12586 try
12587 {
12588 struct value *mark;
12589
12590 mark = value_mark ();
12591 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12592 value_free_to_mark (mark);
12593 }
12594 catch (const gdb_exception &ex)
12595 {
12596 exception_fprintf (gdb_stderr, ex,
12597 _("Error in testing exception condition:\n"));
12598 }
12599
12600 return stop;
12601 }
12602
12603 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12604 for all exception catchpoint kinds. */
12605
12606 static void
12607 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12608 {
12609 bs->stop = should_stop_exception (bs->bp_location_at);
12610 }
12611
12612 /* Implement the PRINT_IT method in the breakpoint_ops structure
12613 for all exception catchpoint kinds. */
12614
12615 static enum print_stop_action
12616 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12617 {
12618 struct ui_out *uiout = current_uiout;
12619 struct breakpoint *b = bs->breakpoint_at;
12620
12621 annotate_catchpoint (b->number);
12622
12623 if (uiout->is_mi_like_p ())
12624 {
12625 uiout->field_string ("reason",
12626 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12627 uiout->field_string ("disp", bpdisp_text (b->disposition));
12628 }
12629
12630 uiout->text (b->disposition == disp_del
12631 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12632 uiout->field_int ("bkptno", b->number);
12633 uiout->text (", ");
12634
12635 /* ada_exception_name_addr relies on the selected frame being the
12636 current frame. Need to do this here because this function may be
12637 called more than once when printing a stop, and below, we'll
12638 select the first frame past the Ada run-time (see
12639 ada_find_printable_frame). */
12640 select_frame (get_current_frame ());
12641
12642 switch (ex)
12643 {
12644 case ada_catch_exception:
12645 case ada_catch_exception_unhandled:
12646 case ada_catch_handlers:
12647 {
12648 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12649 char exception_name[256];
12650
12651 if (addr != 0)
12652 {
12653 read_memory (addr, (gdb_byte *) exception_name,
12654 sizeof (exception_name) - 1);
12655 exception_name [sizeof (exception_name) - 1] = '\0';
12656 }
12657 else
12658 {
12659 /* For some reason, we were unable to read the exception
12660 name. This could happen if the Runtime was compiled
12661 without debugging info, for instance. In that case,
12662 just replace the exception name by the generic string
12663 "exception" - it will read as "an exception" in the
12664 notification we are about to print. */
12665 memcpy (exception_name, "exception", sizeof ("exception"));
12666 }
12667 /* In the case of unhandled exception breakpoints, we print
12668 the exception name as "unhandled EXCEPTION_NAME", to make
12669 it clearer to the user which kind of catchpoint just got
12670 hit. We used ui_out_text to make sure that this extra
12671 info does not pollute the exception name in the MI case. */
12672 if (ex == ada_catch_exception_unhandled)
12673 uiout->text ("unhandled ");
12674 uiout->field_string ("exception-name", exception_name);
12675 }
12676 break;
12677 case ada_catch_assert:
12678 /* In this case, the name of the exception is not really
12679 important. Just print "failed assertion" to make it clearer
12680 that his program just hit an assertion-failure catchpoint.
12681 We used ui_out_text because this info does not belong in
12682 the MI output. */
12683 uiout->text ("failed assertion");
12684 break;
12685 }
12686
12687 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12688 if (exception_message != NULL)
12689 {
12690 uiout->text (" (");
12691 uiout->field_string ("exception-message", exception_message.get ());
12692 uiout->text (")");
12693 }
12694
12695 uiout->text (" at ");
12696 ada_find_printable_frame (get_current_frame ());
12697
12698 return PRINT_SRC_AND_LOC;
12699 }
12700
12701 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12702 for all exception catchpoint kinds. */
12703
12704 static void
12705 print_one_exception (enum ada_exception_catchpoint_kind ex,
12706 struct breakpoint *b, struct bp_location **last_loc)
12707 {
12708 struct ui_out *uiout = current_uiout;
12709 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12710 struct value_print_options opts;
12711
12712 get_user_print_options (&opts);
12713 if (opts.addressprint)
12714 {
12715 annotate_field (4);
12716 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12717 }
12718
12719 annotate_field (5);
12720 *last_loc = b->loc;
12721 switch (ex)
12722 {
12723 case ada_catch_exception:
12724 if (!c->excep_string.empty ())
12725 {
12726 std::string msg = string_printf (_("`%s' Ada exception"),
12727 c->excep_string.c_str ());
12728
12729 uiout->field_string ("what", msg);
12730 }
12731 else
12732 uiout->field_string ("what", "all Ada exceptions");
12733
12734 break;
12735
12736 case ada_catch_exception_unhandled:
12737 uiout->field_string ("what", "unhandled Ada exceptions");
12738 break;
12739
12740 case ada_catch_handlers:
12741 if (!c->excep_string.empty ())
12742 {
12743 uiout->field_fmt ("what",
12744 _("`%s' Ada exception handlers"),
12745 c->excep_string.c_str ());
12746 }
12747 else
12748 uiout->field_string ("what", "all Ada exceptions handlers");
12749 break;
12750
12751 case ada_catch_assert:
12752 uiout->field_string ("what", "failed Ada assertions");
12753 break;
12754
12755 default:
12756 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12757 break;
12758 }
12759 }
12760
12761 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12762 for all exception catchpoint kinds. */
12763
12764 static void
12765 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12766 struct breakpoint *b)
12767 {
12768 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12769 struct ui_out *uiout = current_uiout;
12770
12771 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12772 : _("Catchpoint "));
12773 uiout->field_int ("bkptno", b->number);
12774 uiout->text (": ");
12775
12776 switch (ex)
12777 {
12778 case ada_catch_exception:
12779 if (!c->excep_string.empty ())
12780 {
12781 std::string info = string_printf (_("`%s' Ada exception"),
12782 c->excep_string.c_str ());
12783 uiout->text (info.c_str ());
12784 }
12785 else
12786 uiout->text (_("all Ada exceptions"));
12787 break;
12788
12789 case ada_catch_exception_unhandled:
12790 uiout->text (_("unhandled Ada exceptions"));
12791 break;
12792
12793 case ada_catch_handlers:
12794 if (!c->excep_string.empty ())
12795 {
12796 std::string info
12797 = string_printf (_("`%s' Ada exception handlers"),
12798 c->excep_string.c_str ());
12799 uiout->text (info.c_str ());
12800 }
12801 else
12802 uiout->text (_("all Ada exceptions handlers"));
12803 break;
12804
12805 case ada_catch_assert:
12806 uiout->text (_("failed Ada assertions"));
12807 break;
12808
12809 default:
12810 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12811 break;
12812 }
12813 }
12814
12815 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12816 for all exception catchpoint kinds. */
12817
12818 static void
12819 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12820 struct breakpoint *b, struct ui_file *fp)
12821 {
12822 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12823
12824 switch (ex)
12825 {
12826 case ada_catch_exception:
12827 fprintf_filtered (fp, "catch exception");
12828 if (!c->excep_string.empty ())
12829 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12830 break;
12831
12832 case ada_catch_exception_unhandled:
12833 fprintf_filtered (fp, "catch exception unhandled");
12834 break;
12835
12836 case ada_catch_handlers:
12837 fprintf_filtered (fp, "catch handlers");
12838 break;
12839
12840 case ada_catch_assert:
12841 fprintf_filtered (fp, "catch assert");
12842 break;
12843
12844 default:
12845 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12846 }
12847 print_recreate_thread (b, fp);
12848 }
12849
12850 /* Virtual table for "catch exception" breakpoints. */
12851
12852 static struct bp_location *
12853 allocate_location_catch_exception (struct breakpoint *self)
12854 {
12855 return allocate_location_exception (ada_catch_exception, self);
12856 }
12857
12858 static void
12859 re_set_catch_exception (struct breakpoint *b)
12860 {
12861 re_set_exception (ada_catch_exception, b);
12862 }
12863
12864 static void
12865 check_status_catch_exception (bpstat bs)
12866 {
12867 check_status_exception (ada_catch_exception, bs);
12868 }
12869
12870 static enum print_stop_action
12871 print_it_catch_exception (bpstat bs)
12872 {
12873 return print_it_exception (ada_catch_exception, bs);
12874 }
12875
12876 static void
12877 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12878 {
12879 print_one_exception (ada_catch_exception, b, last_loc);
12880 }
12881
12882 static void
12883 print_mention_catch_exception (struct breakpoint *b)
12884 {
12885 print_mention_exception (ada_catch_exception, b);
12886 }
12887
12888 static void
12889 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12890 {
12891 print_recreate_exception (ada_catch_exception, b, fp);
12892 }
12893
12894 static struct breakpoint_ops catch_exception_breakpoint_ops;
12895
12896 /* Virtual table for "catch exception unhandled" breakpoints. */
12897
12898 static struct bp_location *
12899 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12900 {
12901 return allocate_location_exception (ada_catch_exception_unhandled, self);
12902 }
12903
12904 static void
12905 re_set_catch_exception_unhandled (struct breakpoint *b)
12906 {
12907 re_set_exception (ada_catch_exception_unhandled, b);
12908 }
12909
12910 static void
12911 check_status_catch_exception_unhandled (bpstat bs)
12912 {
12913 check_status_exception (ada_catch_exception_unhandled, bs);
12914 }
12915
12916 static enum print_stop_action
12917 print_it_catch_exception_unhandled (bpstat bs)
12918 {
12919 return print_it_exception (ada_catch_exception_unhandled, bs);
12920 }
12921
12922 static void
12923 print_one_catch_exception_unhandled (struct breakpoint *b,
12924 struct bp_location **last_loc)
12925 {
12926 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12927 }
12928
12929 static void
12930 print_mention_catch_exception_unhandled (struct breakpoint *b)
12931 {
12932 print_mention_exception (ada_catch_exception_unhandled, b);
12933 }
12934
12935 static void
12936 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12937 struct ui_file *fp)
12938 {
12939 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12940 }
12941
12942 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12943
12944 /* Virtual table for "catch assert" breakpoints. */
12945
12946 static struct bp_location *
12947 allocate_location_catch_assert (struct breakpoint *self)
12948 {
12949 return allocate_location_exception (ada_catch_assert, self);
12950 }
12951
12952 static void
12953 re_set_catch_assert (struct breakpoint *b)
12954 {
12955 re_set_exception (ada_catch_assert, b);
12956 }
12957
12958 static void
12959 check_status_catch_assert (bpstat bs)
12960 {
12961 check_status_exception (ada_catch_assert, bs);
12962 }
12963
12964 static enum print_stop_action
12965 print_it_catch_assert (bpstat bs)
12966 {
12967 return print_it_exception (ada_catch_assert, bs);
12968 }
12969
12970 static void
12971 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12972 {
12973 print_one_exception (ada_catch_assert, b, last_loc);
12974 }
12975
12976 static void
12977 print_mention_catch_assert (struct breakpoint *b)
12978 {
12979 print_mention_exception (ada_catch_assert, b);
12980 }
12981
12982 static void
12983 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12984 {
12985 print_recreate_exception (ada_catch_assert, b, fp);
12986 }
12987
12988 static struct breakpoint_ops catch_assert_breakpoint_ops;
12989
12990 /* Virtual table for "catch handlers" breakpoints. */
12991
12992 static struct bp_location *
12993 allocate_location_catch_handlers (struct breakpoint *self)
12994 {
12995 return allocate_location_exception (ada_catch_handlers, self);
12996 }
12997
12998 static void
12999 re_set_catch_handlers (struct breakpoint *b)
13000 {
13001 re_set_exception (ada_catch_handlers, b);
13002 }
13003
13004 static void
13005 check_status_catch_handlers (bpstat bs)
13006 {
13007 check_status_exception (ada_catch_handlers, bs);
13008 }
13009
13010 static enum print_stop_action
13011 print_it_catch_handlers (bpstat bs)
13012 {
13013 return print_it_exception (ada_catch_handlers, bs);
13014 }
13015
13016 static void
13017 print_one_catch_handlers (struct breakpoint *b,
13018 struct bp_location **last_loc)
13019 {
13020 print_one_exception (ada_catch_handlers, b, last_loc);
13021 }
13022
13023 static void
13024 print_mention_catch_handlers (struct breakpoint *b)
13025 {
13026 print_mention_exception (ada_catch_handlers, b);
13027 }
13028
13029 static void
13030 print_recreate_catch_handlers (struct breakpoint *b,
13031 struct ui_file *fp)
13032 {
13033 print_recreate_exception (ada_catch_handlers, b, fp);
13034 }
13035
13036 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13037
13038 /* Split the arguments specified in a "catch exception" command.
13039 Set EX to the appropriate catchpoint type.
13040 Set EXCEP_STRING to the name of the specific exception if
13041 specified by the user.
13042 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13043 "catch handlers" command. False otherwise.
13044 If a condition is found at the end of the arguments, the condition
13045 expression is stored in COND_STRING (memory must be deallocated
13046 after use). Otherwise COND_STRING is set to NULL. */
13047
13048 static void
13049 catch_ada_exception_command_split (const char *args,
13050 bool is_catch_handlers_cmd,
13051 enum ada_exception_catchpoint_kind *ex,
13052 std::string *excep_string,
13053 std::string *cond_string)
13054 {
13055 std::string exception_name;
13056
13057 exception_name = extract_arg (&args);
13058 if (exception_name == "if")
13059 {
13060 /* This is not an exception name; this is the start of a condition
13061 expression for a catchpoint on all exceptions. So, "un-get"
13062 this token, and set exception_name to NULL. */
13063 exception_name.clear ();
13064 args -= 2;
13065 }
13066
13067 /* Check to see if we have a condition. */
13068
13069 args = skip_spaces (args);
13070 if (startswith (args, "if")
13071 && (isspace (args[2]) || args[2] == '\0'))
13072 {
13073 args += 2;
13074 args = skip_spaces (args);
13075
13076 if (args[0] == '\0')
13077 error (_("Condition missing after `if' keyword"));
13078 *cond_string = args;
13079
13080 args += strlen (args);
13081 }
13082
13083 /* Check that we do not have any more arguments. Anything else
13084 is unexpected. */
13085
13086 if (args[0] != '\0')
13087 error (_("Junk at end of expression"));
13088
13089 if (is_catch_handlers_cmd)
13090 {
13091 /* Catch handling of exceptions. */
13092 *ex = ada_catch_handlers;
13093 *excep_string = exception_name;
13094 }
13095 else if (exception_name.empty ())
13096 {
13097 /* Catch all exceptions. */
13098 *ex = ada_catch_exception;
13099 excep_string->clear ();
13100 }
13101 else if (exception_name == "unhandled")
13102 {
13103 /* Catch unhandled exceptions. */
13104 *ex = ada_catch_exception_unhandled;
13105 excep_string->clear ();
13106 }
13107 else
13108 {
13109 /* Catch a specific exception. */
13110 *ex = ada_catch_exception;
13111 *excep_string = exception_name;
13112 }
13113 }
13114
13115 /* Return the name of the symbol on which we should break in order to
13116 implement a catchpoint of the EX kind. */
13117
13118 static const char *
13119 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13120 {
13121 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13122
13123 gdb_assert (data->exception_info != NULL);
13124
13125 switch (ex)
13126 {
13127 case ada_catch_exception:
13128 return (data->exception_info->catch_exception_sym);
13129 break;
13130 case ada_catch_exception_unhandled:
13131 return (data->exception_info->catch_exception_unhandled_sym);
13132 break;
13133 case ada_catch_assert:
13134 return (data->exception_info->catch_assert_sym);
13135 break;
13136 case ada_catch_handlers:
13137 return (data->exception_info->catch_handlers_sym);
13138 break;
13139 default:
13140 internal_error (__FILE__, __LINE__,
13141 _("unexpected catchpoint kind (%d)"), ex);
13142 }
13143 }
13144
13145 /* Return the breakpoint ops "virtual table" used for catchpoints
13146 of the EX kind. */
13147
13148 static const struct breakpoint_ops *
13149 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13150 {
13151 switch (ex)
13152 {
13153 case ada_catch_exception:
13154 return (&catch_exception_breakpoint_ops);
13155 break;
13156 case ada_catch_exception_unhandled:
13157 return (&catch_exception_unhandled_breakpoint_ops);
13158 break;
13159 case ada_catch_assert:
13160 return (&catch_assert_breakpoint_ops);
13161 break;
13162 case ada_catch_handlers:
13163 return (&catch_handlers_breakpoint_ops);
13164 break;
13165 default:
13166 internal_error (__FILE__, __LINE__,
13167 _("unexpected catchpoint kind (%d)"), ex);
13168 }
13169 }
13170
13171 /* Return the condition that will be used to match the current exception
13172 being raised with the exception that the user wants to catch. This
13173 assumes that this condition is used when the inferior just triggered
13174 an exception catchpoint.
13175 EX: the type of catchpoints used for catching Ada exceptions. */
13176
13177 static std::string
13178 ada_exception_catchpoint_cond_string (const char *excep_string,
13179 enum ada_exception_catchpoint_kind ex)
13180 {
13181 int i;
13182 std::string result;
13183 const char *name;
13184
13185 if (ex == ada_catch_handlers)
13186 {
13187 /* For exception handlers catchpoints, the condition string does
13188 not use the same parameter as for the other exceptions. */
13189 name = ("long_integer (GNAT_GCC_exception_Access"
13190 "(gcc_exception).all.occurrence.id)");
13191 }
13192 else
13193 name = "long_integer (e)";
13194
13195 /* The standard exceptions are a special case. They are defined in
13196 runtime units that have been compiled without debugging info; if
13197 EXCEP_STRING is the not-fully-qualified name of a standard
13198 exception (e.g. "constraint_error") then, during the evaluation
13199 of the condition expression, the symbol lookup on this name would
13200 *not* return this standard exception. The catchpoint condition
13201 may then be set only on user-defined exceptions which have the
13202 same not-fully-qualified name (e.g. my_package.constraint_error).
13203
13204 To avoid this unexcepted behavior, these standard exceptions are
13205 systematically prefixed by "standard". This means that "catch
13206 exception constraint_error" is rewritten into "catch exception
13207 standard.constraint_error".
13208
13209 If an exception named contraint_error is defined in another package of
13210 the inferior program, then the only way to specify this exception as a
13211 breakpoint condition is to use its fully-qualified named:
13212 e.g. my_package.constraint_error.
13213
13214 Furthermore, in some situations a standard exception's symbol may
13215 be present in more than one objfile, because the compiler may
13216 choose to emit copy relocations for them. So, we have to compare
13217 against all the possible addresses. */
13218
13219 /* Storage for a rewritten symbol name. */
13220 std::string std_name;
13221 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13222 {
13223 if (strcmp (standard_exc [i], excep_string) == 0)
13224 {
13225 std_name = std::string ("standard.") + excep_string;
13226 excep_string = std_name.c_str ();
13227 break;
13228 }
13229 }
13230
13231 excep_string = ada_encode (excep_string);
13232 std::vector<struct bound_minimal_symbol> symbols
13233 = ada_lookup_simple_minsyms (excep_string);
13234 for (const struct bound_minimal_symbol &msym : symbols)
13235 {
13236 if (!result.empty ())
13237 result += " or ";
13238 string_appendf (result, "%s = %s", name,
13239 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13240 }
13241
13242 return result;
13243 }
13244
13245 /* Return the symtab_and_line that should be used to insert an exception
13246 catchpoint of the TYPE kind.
13247
13248 ADDR_STRING returns the name of the function where the real
13249 breakpoint that implements the catchpoints is set, depending on the
13250 type of catchpoint we need to create. */
13251
13252 static struct symtab_and_line
13253 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13254 std::string *addr_string, const struct breakpoint_ops **ops)
13255 {
13256 const char *sym_name;
13257 struct symbol *sym;
13258
13259 /* First, find out which exception support info to use. */
13260 ada_exception_support_info_sniffer ();
13261
13262 /* Then lookup the function on which we will break in order to catch
13263 the Ada exceptions requested by the user. */
13264 sym_name = ada_exception_sym_name (ex);
13265 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13266
13267 if (sym == NULL)
13268 error (_("Catchpoint symbol not found: %s"), sym_name);
13269
13270 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13271 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13272
13273 /* Set ADDR_STRING. */
13274 *addr_string = sym_name;
13275
13276 /* Set OPS. */
13277 *ops = ada_exception_breakpoint_ops (ex);
13278
13279 return find_function_start_sal (sym, 1);
13280 }
13281
13282 /* Create an Ada exception catchpoint.
13283
13284 EX_KIND is the kind of exception catchpoint to be created.
13285
13286 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13287 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13288 of the exception to which this catchpoint applies.
13289
13290 COND_STRING, if not empty, is the catchpoint condition.
13291
13292 TEMPFLAG, if nonzero, means that the underlying breakpoint
13293 should be temporary.
13294
13295 FROM_TTY is the usual argument passed to all commands implementations. */
13296
13297 void
13298 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13299 enum ada_exception_catchpoint_kind ex_kind,
13300 const std::string &excep_string,
13301 const std::string &cond_string,
13302 int tempflag,
13303 int disabled,
13304 int from_tty)
13305 {
13306 std::string addr_string;
13307 const struct breakpoint_ops *ops = NULL;
13308 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13309
13310 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13311 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13312 ops, tempflag, disabled, from_tty);
13313 c->excep_string = excep_string;
13314 create_excep_cond_exprs (c.get (), ex_kind);
13315 if (!cond_string.empty ())
13316 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13317 install_breakpoint (0, std::move (c), 1);
13318 }
13319
13320 /* Implement the "catch exception" command. */
13321
13322 static void
13323 catch_ada_exception_command (const char *arg_entry, int from_tty,
13324 struct cmd_list_element *command)
13325 {
13326 const char *arg = arg_entry;
13327 struct gdbarch *gdbarch = get_current_arch ();
13328 int tempflag;
13329 enum ada_exception_catchpoint_kind ex_kind;
13330 std::string excep_string;
13331 std::string cond_string;
13332
13333 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13334
13335 if (!arg)
13336 arg = "";
13337 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13338 &cond_string);
13339 create_ada_exception_catchpoint (gdbarch, ex_kind,
13340 excep_string, cond_string,
13341 tempflag, 1 /* enabled */,
13342 from_tty);
13343 }
13344
13345 /* Implement the "catch handlers" command. */
13346
13347 static void
13348 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13349 struct cmd_list_element *command)
13350 {
13351 const char *arg = arg_entry;
13352 struct gdbarch *gdbarch = get_current_arch ();
13353 int tempflag;
13354 enum ada_exception_catchpoint_kind ex_kind;
13355 std::string excep_string;
13356 std::string cond_string;
13357
13358 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13359
13360 if (!arg)
13361 arg = "";
13362 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13363 &cond_string);
13364 create_ada_exception_catchpoint (gdbarch, ex_kind,
13365 excep_string, cond_string,
13366 tempflag, 1 /* enabled */,
13367 from_tty);
13368 }
13369
13370 /* Split the arguments specified in a "catch assert" command.
13371
13372 ARGS contains the command's arguments (or the empty string if
13373 no arguments were passed).
13374
13375 If ARGS contains a condition, set COND_STRING to that condition
13376 (the memory needs to be deallocated after use). */
13377
13378 static void
13379 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13380 {
13381 args = skip_spaces (args);
13382
13383 /* Check whether a condition was provided. */
13384 if (startswith (args, "if")
13385 && (isspace (args[2]) || args[2] == '\0'))
13386 {
13387 args += 2;
13388 args = skip_spaces (args);
13389 if (args[0] == '\0')
13390 error (_("condition missing after `if' keyword"));
13391 cond_string.assign (args);
13392 }
13393
13394 /* Otherwise, there should be no other argument at the end of
13395 the command. */
13396 else if (args[0] != '\0')
13397 error (_("Junk at end of arguments."));
13398 }
13399
13400 /* Implement the "catch assert" command. */
13401
13402 static void
13403 catch_assert_command (const char *arg_entry, int from_tty,
13404 struct cmd_list_element *command)
13405 {
13406 const char *arg = arg_entry;
13407 struct gdbarch *gdbarch = get_current_arch ();
13408 int tempflag;
13409 std::string cond_string;
13410
13411 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13412
13413 if (!arg)
13414 arg = "";
13415 catch_ada_assert_command_split (arg, cond_string);
13416 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13417 "", cond_string,
13418 tempflag, 1 /* enabled */,
13419 from_tty);
13420 }
13421
13422 /* Return non-zero if the symbol SYM is an Ada exception object. */
13423
13424 static int
13425 ada_is_exception_sym (struct symbol *sym)
13426 {
13427 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13428
13429 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13430 && SYMBOL_CLASS (sym) != LOC_BLOCK
13431 && SYMBOL_CLASS (sym) != LOC_CONST
13432 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13433 && type_name != NULL && strcmp (type_name, "exception") == 0);
13434 }
13435
13436 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13437 Ada exception object. This matches all exceptions except the ones
13438 defined by the Ada language. */
13439
13440 static int
13441 ada_is_non_standard_exception_sym (struct symbol *sym)
13442 {
13443 int i;
13444
13445 if (!ada_is_exception_sym (sym))
13446 return 0;
13447
13448 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13449 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13450 return 0; /* A standard exception. */
13451
13452 /* Numeric_Error is also a standard exception, so exclude it.
13453 See the STANDARD_EXC description for more details as to why
13454 this exception is not listed in that array. */
13455 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13456 return 0;
13457
13458 return 1;
13459 }
13460
13461 /* A helper function for std::sort, comparing two struct ada_exc_info
13462 objects.
13463
13464 The comparison is determined first by exception name, and then
13465 by exception address. */
13466
13467 bool
13468 ada_exc_info::operator< (const ada_exc_info &other) const
13469 {
13470 int result;
13471
13472 result = strcmp (name, other.name);
13473 if (result < 0)
13474 return true;
13475 if (result == 0 && addr < other.addr)
13476 return true;
13477 return false;
13478 }
13479
13480 bool
13481 ada_exc_info::operator== (const ada_exc_info &other) const
13482 {
13483 return addr == other.addr && strcmp (name, other.name) == 0;
13484 }
13485
13486 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13487 routine, but keeping the first SKIP elements untouched.
13488
13489 All duplicates are also removed. */
13490
13491 static void
13492 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13493 int skip)
13494 {
13495 std::sort (exceptions->begin () + skip, exceptions->end ());
13496 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13497 exceptions->end ());
13498 }
13499
13500 /* Add all exceptions defined by the Ada standard whose name match
13501 a regular expression.
13502
13503 If PREG is not NULL, then this regexp_t object is used to
13504 perform the symbol name matching. Otherwise, no name-based
13505 filtering is performed.
13506
13507 EXCEPTIONS is a vector of exceptions to which matching exceptions
13508 gets pushed. */
13509
13510 static void
13511 ada_add_standard_exceptions (compiled_regex *preg,
13512 std::vector<ada_exc_info> *exceptions)
13513 {
13514 int i;
13515
13516 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13517 {
13518 if (preg == NULL
13519 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13520 {
13521 struct bound_minimal_symbol msymbol
13522 = ada_lookup_simple_minsym (standard_exc[i]);
13523
13524 if (msymbol.minsym != NULL)
13525 {
13526 struct ada_exc_info info
13527 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13528
13529 exceptions->push_back (info);
13530 }
13531 }
13532 }
13533 }
13534
13535 /* Add all Ada exceptions defined locally and accessible from the given
13536 FRAME.
13537
13538 If PREG is not NULL, then this regexp_t object is used to
13539 perform the symbol name matching. Otherwise, no name-based
13540 filtering is performed.
13541
13542 EXCEPTIONS is a vector of exceptions to which matching exceptions
13543 gets pushed. */
13544
13545 static void
13546 ada_add_exceptions_from_frame (compiled_regex *preg,
13547 struct frame_info *frame,
13548 std::vector<ada_exc_info> *exceptions)
13549 {
13550 const struct block *block = get_frame_block (frame, 0);
13551
13552 while (block != 0)
13553 {
13554 struct block_iterator iter;
13555 struct symbol *sym;
13556
13557 ALL_BLOCK_SYMBOLS (block, iter, sym)
13558 {
13559 switch (SYMBOL_CLASS (sym))
13560 {
13561 case LOC_TYPEDEF:
13562 case LOC_BLOCK:
13563 case LOC_CONST:
13564 break;
13565 default:
13566 if (ada_is_exception_sym (sym))
13567 {
13568 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13569 SYMBOL_VALUE_ADDRESS (sym)};
13570
13571 exceptions->push_back (info);
13572 }
13573 }
13574 }
13575 if (BLOCK_FUNCTION (block) != NULL)
13576 break;
13577 block = BLOCK_SUPERBLOCK (block);
13578 }
13579 }
13580
13581 /* Return true if NAME matches PREG or if PREG is NULL. */
13582
13583 static bool
13584 name_matches_regex (const char *name, compiled_regex *preg)
13585 {
13586 return (preg == NULL
13587 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13588 }
13589
13590 /* Add all exceptions defined globally whose name name match
13591 a regular expression, excluding standard exceptions.
13592
13593 The reason we exclude standard exceptions is that they need
13594 to be handled separately: Standard exceptions are defined inside
13595 a runtime unit which is normally not compiled with debugging info,
13596 and thus usually do not show up in our symbol search. However,
13597 if the unit was in fact built with debugging info, we need to
13598 exclude them because they would duplicate the entry we found
13599 during the special loop that specifically searches for those
13600 standard exceptions.
13601
13602 If PREG is not NULL, then this regexp_t object is used to
13603 perform the symbol name matching. Otherwise, no name-based
13604 filtering is performed.
13605
13606 EXCEPTIONS is a vector of exceptions to which matching exceptions
13607 gets pushed. */
13608
13609 static void
13610 ada_add_global_exceptions (compiled_regex *preg,
13611 std::vector<ada_exc_info> *exceptions)
13612 {
13613 /* In Ada, the symbol "search name" is a linkage name, whereas the
13614 regular expression used to do the matching refers to the natural
13615 name. So match against the decoded name. */
13616 expand_symtabs_matching (NULL,
13617 lookup_name_info::match_any (),
13618 [&] (const char *search_name)
13619 {
13620 const char *decoded = ada_decode (search_name);
13621 return name_matches_regex (decoded, preg);
13622 },
13623 NULL,
13624 VARIABLES_DOMAIN);
13625
13626 for (objfile *objfile : current_program_space->objfiles ())
13627 {
13628 for (compunit_symtab *s : objfile->compunits ())
13629 {
13630 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13631 int i;
13632
13633 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13634 {
13635 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13636 struct block_iterator iter;
13637 struct symbol *sym;
13638
13639 ALL_BLOCK_SYMBOLS (b, iter, sym)
13640 if (ada_is_non_standard_exception_sym (sym)
13641 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13642 {
13643 struct ada_exc_info info
13644 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13645
13646 exceptions->push_back (info);
13647 }
13648 }
13649 }
13650 }
13651 }
13652
13653 /* Implements ada_exceptions_list with the regular expression passed
13654 as a regex_t, rather than a string.
13655
13656 If not NULL, PREG is used to filter out exceptions whose names
13657 do not match. Otherwise, all exceptions are listed. */
13658
13659 static std::vector<ada_exc_info>
13660 ada_exceptions_list_1 (compiled_regex *preg)
13661 {
13662 std::vector<ada_exc_info> result;
13663 int prev_len;
13664
13665 /* First, list the known standard exceptions. These exceptions
13666 need to be handled separately, as they are usually defined in
13667 runtime units that have been compiled without debugging info. */
13668
13669 ada_add_standard_exceptions (preg, &result);
13670
13671 /* Next, find all exceptions whose scope is local and accessible
13672 from the currently selected frame. */
13673
13674 if (has_stack_frames ())
13675 {
13676 prev_len = result.size ();
13677 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13678 &result);
13679 if (result.size () > prev_len)
13680 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13681 }
13682
13683 /* Add all exceptions whose scope is global. */
13684
13685 prev_len = result.size ();
13686 ada_add_global_exceptions (preg, &result);
13687 if (result.size () > prev_len)
13688 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13689
13690 return result;
13691 }
13692
13693 /* Return a vector of ada_exc_info.
13694
13695 If REGEXP is NULL, all exceptions are included in the result.
13696 Otherwise, it should contain a valid regular expression,
13697 and only the exceptions whose names match that regular expression
13698 are included in the result.
13699
13700 The exceptions are sorted in the following order:
13701 - Standard exceptions (defined by the Ada language), in
13702 alphabetical order;
13703 - Exceptions only visible from the current frame, in
13704 alphabetical order;
13705 - Exceptions whose scope is global, in alphabetical order. */
13706
13707 std::vector<ada_exc_info>
13708 ada_exceptions_list (const char *regexp)
13709 {
13710 if (regexp == NULL)
13711 return ada_exceptions_list_1 (NULL);
13712
13713 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13714 return ada_exceptions_list_1 (&reg);
13715 }
13716
13717 /* Implement the "info exceptions" command. */
13718
13719 static void
13720 info_exceptions_command (const char *regexp, int from_tty)
13721 {
13722 struct gdbarch *gdbarch = get_current_arch ();
13723
13724 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13725
13726 if (regexp != NULL)
13727 printf_filtered
13728 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13729 else
13730 printf_filtered (_("All defined Ada exceptions:\n"));
13731
13732 for (const ada_exc_info &info : exceptions)
13733 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13734 }
13735
13736 /* Operators */
13737 /* Information about operators given special treatment in functions
13738 below. */
13739 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13740
13741 #define ADA_OPERATORS \
13742 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13743 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13744 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13745 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13746 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13747 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13748 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13749 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13750 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13751 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13752 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13753 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13754 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13755 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13756 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13757 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13758 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13759 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13760 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13761
13762 static void
13763 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13764 int *argsp)
13765 {
13766 switch (exp->elts[pc - 1].opcode)
13767 {
13768 default:
13769 operator_length_standard (exp, pc, oplenp, argsp);
13770 break;
13771
13772 #define OP_DEFN(op, len, args, binop) \
13773 case op: *oplenp = len; *argsp = args; break;
13774 ADA_OPERATORS;
13775 #undef OP_DEFN
13776
13777 case OP_AGGREGATE:
13778 *oplenp = 3;
13779 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13780 break;
13781
13782 case OP_CHOICES:
13783 *oplenp = 3;
13784 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13785 break;
13786 }
13787 }
13788
13789 /* Implementation of the exp_descriptor method operator_check. */
13790
13791 static int
13792 ada_operator_check (struct expression *exp, int pos,
13793 int (*objfile_func) (struct objfile *objfile, void *data),
13794 void *data)
13795 {
13796 const union exp_element *const elts = exp->elts;
13797 struct type *type = NULL;
13798
13799 switch (elts[pos].opcode)
13800 {
13801 case UNOP_IN_RANGE:
13802 case UNOP_QUAL:
13803 type = elts[pos + 1].type;
13804 break;
13805
13806 default:
13807 return operator_check_standard (exp, pos, objfile_func, data);
13808 }
13809
13810 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13811
13812 if (type && TYPE_OBJFILE (type)
13813 && (*objfile_func) (TYPE_OBJFILE (type), data))
13814 return 1;
13815
13816 return 0;
13817 }
13818
13819 static const char *
13820 ada_op_name (enum exp_opcode opcode)
13821 {
13822 switch (opcode)
13823 {
13824 default:
13825 return op_name_standard (opcode);
13826
13827 #define OP_DEFN(op, len, args, binop) case op: return #op;
13828 ADA_OPERATORS;
13829 #undef OP_DEFN
13830
13831 case OP_AGGREGATE:
13832 return "OP_AGGREGATE";
13833 case OP_CHOICES:
13834 return "OP_CHOICES";
13835 case OP_NAME:
13836 return "OP_NAME";
13837 }
13838 }
13839
13840 /* As for operator_length, but assumes PC is pointing at the first
13841 element of the operator, and gives meaningful results only for the
13842 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13843
13844 static void
13845 ada_forward_operator_length (struct expression *exp, int pc,
13846 int *oplenp, int *argsp)
13847 {
13848 switch (exp->elts[pc].opcode)
13849 {
13850 default:
13851 *oplenp = *argsp = 0;
13852 break;
13853
13854 #define OP_DEFN(op, len, args, binop) \
13855 case op: *oplenp = len; *argsp = args; break;
13856 ADA_OPERATORS;
13857 #undef OP_DEFN
13858
13859 case OP_AGGREGATE:
13860 *oplenp = 3;
13861 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13862 break;
13863
13864 case OP_CHOICES:
13865 *oplenp = 3;
13866 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13867 break;
13868
13869 case OP_STRING:
13870 case OP_NAME:
13871 {
13872 int len = longest_to_int (exp->elts[pc + 1].longconst);
13873
13874 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13875 *argsp = 0;
13876 break;
13877 }
13878 }
13879 }
13880
13881 static int
13882 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13883 {
13884 enum exp_opcode op = exp->elts[elt].opcode;
13885 int oplen, nargs;
13886 int pc = elt;
13887 int i;
13888
13889 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13890
13891 switch (op)
13892 {
13893 /* Ada attributes ('Foo). */
13894 case OP_ATR_FIRST:
13895 case OP_ATR_LAST:
13896 case OP_ATR_LENGTH:
13897 case OP_ATR_IMAGE:
13898 case OP_ATR_MAX:
13899 case OP_ATR_MIN:
13900 case OP_ATR_MODULUS:
13901 case OP_ATR_POS:
13902 case OP_ATR_SIZE:
13903 case OP_ATR_TAG:
13904 case OP_ATR_VAL:
13905 break;
13906
13907 case UNOP_IN_RANGE:
13908 case UNOP_QUAL:
13909 /* XXX: gdb_sprint_host_address, type_sprint */
13910 fprintf_filtered (stream, _("Type @"));
13911 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13912 fprintf_filtered (stream, " (");
13913 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13914 fprintf_filtered (stream, ")");
13915 break;
13916 case BINOP_IN_BOUNDS:
13917 fprintf_filtered (stream, " (%d)",
13918 longest_to_int (exp->elts[pc + 2].longconst));
13919 break;
13920 case TERNOP_IN_RANGE:
13921 break;
13922
13923 case OP_AGGREGATE:
13924 case OP_OTHERS:
13925 case OP_DISCRETE_RANGE:
13926 case OP_POSITIONAL:
13927 case OP_CHOICES:
13928 break;
13929
13930 case OP_NAME:
13931 case OP_STRING:
13932 {
13933 char *name = &exp->elts[elt + 2].string;
13934 int len = longest_to_int (exp->elts[elt + 1].longconst);
13935
13936 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13937 break;
13938 }
13939
13940 default:
13941 return dump_subexp_body_standard (exp, stream, elt);
13942 }
13943
13944 elt += oplen;
13945 for (i = 0; i < nargs; i += 1)
13946 elt = dump_subexp (exp, stream, elt);
13947
13948 return elt;
13949 }
13950
13951 /* The Ada extension of print_subexp (q.v.). */
13952
13953 static void
13954 ada_print_subexp (struct expression *exp, int *pos,
13955 struct ui_file *stream, enum precedence prec)
13956 {
13957 int oplen, nargs, i;
13958 int pc = *pos;
13959 enum exp_opcode op = exp->elts[pc].opcode;
13960
13961 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13962
13963 *pos += oplen;
13964 switch (op)
13965 {
13966 default:
13967 *pos -= oplen;
13968 print_subexp_standard (exp, pos, stream, prec);
13969 return;
13970
13971 case OP_VAR_VALUE:
13972 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13973 return;
13974
13975 case BINOP_IN_BOUNDS:
13976 /* XXX: sprint_subexp */
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 fputs_filtered (" in ", stream);
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered ("'range", stream);
13981 if (exp->elts[pc + 1].longconst > 1)
13982 fprintf_filtered (stream, "(%ld)",
13983 (long) exp->elts[pc + 1].longconst);
13984 return;
13985
13986 case TERNOP_IN_RANGE:
13987 if (prec >= PREC_EQUAL)
13988 fputs_filtered ("(", stream);
13989 /* XXX: sprint_subexp */
13990 print_subexp (exp, pos, stream, PREC_SUFFIX);
13991 fputs_filtered (" in ", stream);
13992 print_subexp (exp, pos, stream, PREC_EQUAL);
13993 fputs_filtered (" .. ", stream);
13994 print_subexp (exp, pos, stream, PREC_EQUAL);
13995 if (prec >= PREC_EQUAL)
13996 fputs_filtered (")", stream);
13997 return;
13998
13999 case OP_ATR_FIRST:
14000 case OP_ATR_LAST:
14001 case OP_ATR_LENGTH:
14002 case OP_ATR_IMAGE:
14003 case OP_ATR_MAX:
14004 case OP_ATR_MIN:
14005 case OP_ATR_MODULUS:
14006 case OP_ATR_POS:
14007 case OP_ATR_SIZE:
14008 case OP_ATR_TAG:
14009 case OP_ATR_VAL:
14010 if (exp->elts[*pos].opcode == OP_TYPE)
14011 {
14012 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14013 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14014 &type_print_raw_options);
14015 *pos += 3;
14016 }
14017 else
14018 print_subexp (exp, pos, stream, PREC_SUFFIX);
14019 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14020 if (nargs > 1)
14021 {
14022 int tem;
14023
14024 for (tem = 1; tem < nargs; tem += 1)
14025 {
14026 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14027 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14028 }
14029 fputs_filtered (")", stream);
14030 }
14031 return;
14032
14033 case UNOP_QUAL:
14034 type_print (exp->elts[pc + 1].type, "", stream, 0);
14035 fputs_filtered ("'(", stream);
14036 print_subexp (exp, pos, stream, PREC_PREFIX);
14037 fputs_filtered (")", stream);
14038 return;
14039
14040 case UNOP_IN_RANGE:
14041 /* XXX: sprint_subexp */
14042 print_subexp (exp, pos, stream, PREC_SUFFIX);
14043 fputs_filtered (" in ", stream);
14044 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14045 &type_print_raw_options);
14046 return;
14047
14048 case OP_DISCRETE_RANGE:
14049 print_subexp (exp, pos, stream, PREC_SUFFIX);
14050 fputs_filtered ("..", stream);
14051 print_subexp (exp, pos, stream, PREC_SUFFIX);
14052 return;
14053
14054 case OP_OTHERS:
14055 fputs_filtered ("others => ", stream);
14056 print_subexp (exp, pos, stream, PREC_SUFFIX);
14057 return;
14058
14059 case OP_CHOICES:
14060 for (i = 0; i < nargs-1; i += 1)
14061 {
14062 if (i > 0)
14063 fputs_filtered ("|", stream);
14064 print_subexp (exp, pos, stream, PREC_SUFFIX);
14065 }
14066 fputs_filtered (" => ", stream);
14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
14068 return;
14069
14070 case OP_POSITIONAL:
14071 print_subexp (exp, pos, stream, PREC_SUFFIX);
14072 return;
14073
14074 case OP_AGGREGATE:
14075 fputs_filtered ("(", stream);
14076 for (i = 0; i < nargs; i += 1)
14077 {
14078 if (i > 0)
14079 fputs_filtered (", ", stream);
14080 print_subexp (exp, pos, stream, PREC_SUFFIX);
14081 }
14082 fputs_filtered (")", stream);
14083 return;
14084 }
14085 }
14086
14087 /* Table mapping opcodes into strings for printing operators
14088 and precedences of the operators. */
14089
14090 static const struct op_print ada_op_print_tab[] = {
14091 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14092 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14093 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14094 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14095 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14096 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14097 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14098 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14099 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14100 {">=", BINOP_GEQ, PREC_ORDER, 0},
14101 {">", BINOP_GTR, PREC_ORDER, 0},
14102 {"<", BINOP_LESS, PREC_ORDER, 0},
14103 {">>", BINOP_RSH, PREC_SHIFT, 0},
14104 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14105 {"+", BINOP_ADD, PREC_ADD, 0},
14106 {"-", BINOP_SUB, PREC_ADD, 0},
14107 {"&", BINOP_CONCAT, PREC_ADD, 0},
14108 {"*", BINOP_MUL, PREC_MUL, 0},
14109 {"/", BINOP_DIV, PREC_MUL, 0},
14110 {"rem", BINOP_REM, PREC_MUL, 0},
14111 {"mod", BINOP_MOD, PREC_MUL, 0},
14112 {"**", BINOP_EXP, PREC_REPEAT, 0},
14113 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14114 {"-", UNOP_NEG, PREC_PREFIX, 0},
14115 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14116 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14117 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14118 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14119 {".all", UNOP_IND, PREC_SUFFIX, 1},
14120 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14121 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14122 {NULL, OP_NULL, PREC_SUFFIX, 0}
14123 };
14124 \f
14125 enum ada_primitive_types {
14126 ada_primitive_type_int,
14127 ada_primitive_type_long,
14128 ada_primitive_type_short,
14129 ada_primitive_type_char,
14130 ada_primitive_type_float,
14131 ada_primitive_type_double,
14132 ada_primitive_type_void,
14133 ada_primitive_type_long_long,
14134 ada_primitive_type_long_double,
14135 ada_primitive_type_natural,
14136 ada_primitive_type_positive,
14137 ada_primitive_type_system_address,
14138 ada_primitive_type_storage_offset,
14139 nr_ada_primitive_types
14140 };
14141
14142 static void
14143 ada_language_arch_info (struct gdbarch *gdbarch,
14144 struct language_arch_info *lai)
14145 {
14146 const struct builtin_type *builtin = builtin_type (gdbarch);
14147
14148 lai->primitive_type_vector
14149 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14150 struct type *);
14151
14152 lai->primitive_type_vector [ada_primitive_type_int]
14153 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14154 0, "integer");
14155 lai->primitive_type_vector [ada_primitive_type_long]
14156 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14157 0, "long_integer");
14158 lai->primitive_type_vector [ada_primitive_type_short]
14159 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14160 0, "short_integer");
14161 lai->string_char_type
14162 = lai->primitive_type_vector [ada_primitive_type_char]
14163 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14164 lai->primitive_type_vector [ada_primitive_type_float]
14165 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14166 "float", gdbarch_float_format (gdbarch));
14167 lai->primitive_type_vector [ada_primitive_type_double]
14168 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14169 "long_float", gdbarch_double_format (gdbarch));
14170 lai->primitive_type_vector [ada_primitive_type_long_long]
14171 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14172 0, "long_long_integer");
14173 lai->primitive_type_vector [ada_primitive_type_long_double]
14174 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14175 "long_long_float", gdbarch_long_double_format (gdbarch));
14176 lai->primitive_type_vector [ada_primitive_type_natural]
14177 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14178 0, "natural");
14179 lai->primitive_type_vector [ada_primitive_type_positive]
14180 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14181 0, "positive");
14182 lai->primitive_type_vector [ada_primitive_type_void]
14183 = builtin->builtin_void;
14184
14185 lai->primitive_type_vector [ada_primitive_type_system_address]
14186 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14187 "void"));
14188 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14189 = "system__address";
14190
14191 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14192 type. This is a signed integral type whose size is the same as
14193 the size of addresses. */
14194 {
14195 unsigned int addr_length = TYPE_LENGTH
14196 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14197
14198 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14199 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14200 "storage_offset");
14201 }
14202
14203 lai->bool_type_symbol = NULL;
14204 lai->bool_type_default = builtin->builtin_bool;
14205 }
14206 \f
14207 /* Language vector */
14208
14209 /* Not really used, but needed in the ada_language_defn. */
14210
14211 static void
14212 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14213 {
14214 ada_emit_char (c, type, stream, quoter, 1);
14215 }
14216
14217 static int
14218 parse (struct parser_state *ps)
14219 {
14220 warnings_issued = 0;
14221 return ada_parse (ps);
14222 }
14223
14224 static const struct exp_descriptor ada_exp_descriptor = {
14225 ada_print_subexp,
14226 ada_operator_length,
14227 ada_operator_check,
14228 ada_op_name,
14229 ada_dump_subexp_body,
14230 ada_evaluate_subexp
14231 };
14232
14233 /* symbol_name_matcher_ftype adapter for wild_match. */
14234
14235 static bool
14236 do_wild_match (const char *symbol_search_name,
14237 const lookup_name_info &lookup_name,
14238 completion_match_result *comp_match_res)
14239 {
14240 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14241 }
14242
14243 /* symbol_name_matcher_ftype adapter for full_match. */
14244
14245 static bool
14246 do_full_match (const char *symbol_search_name,
14247 const lookup_name_info &lookup_name,
14248 completion_match_result *comp_match_res)
14249 {
14250 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14251 }
14252
14253 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14254
14255 static bool
14256 do_exact_match (const char *symbol_search_name,
14257 const lookup_name_info &lookup_name,
14258 completion_match_result *comp_match_res)
14259 {
14260 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14261 }
14262
14263 /* Build the Ada lookup name for LOOKUP_NAME. */
14264
14265 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14266 {
14267 const std::string &user_name = lookup_name.name ();
14268
14269 if (user_name[0] == '<')
14270 {
14271 if (user_name.back () == '>')
14272 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14273 else
14274 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14275 m_encoded_p = true;
14276 m_verbatim_p = true;
14277 m_wild_match_p = false;
14278 m_standard_p = false;
14279 }
14280 else
14281 {
14282 m_verbatim_p = false;
14283
14284 m_encoded_p = user_name.find ("__") != std::string::npos;
14285
14286 if (!m_encoded_p)
14287 {
14288 const char *folded = ada_fold_name (user_name.c_str ());
14289 const char *encoded = ada_encode_1 (folded, false);
14290 if (encoded != NULL)
14291 m_encoded_name = encoded;
14292 else
14293 m_encoded_name = user_name;
14294 }
14295 else
14296 m_encoded_name = user_name;
14297
14298 /* Handle the 'package Standard' special case. See description
14299 of m_standard_p. */
14300 if (startswith (m_encoded_name.c_str (), "standard__"))
14301 {
14302 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14303 m_standard_p = true;
14304 }
14305 else
14306 m_standard_p = false;
14307
14308 /* If the name contains a ".", then the user is entering a fully
14309 qualified entity name, and the match must not be done in wild
14310 mode. Similarly, if the user wants to complete what looks
14311 like an encoded name, the match must not be done in wild
14312 mode. Also, in the standard__ special case always do
14313 non-wild matching. */
14314 m_wild_match_p
14315 = (lookup_name.match_type () != symbol_name_match_type::FULL
14316 && !m_encoded_p
14317 && !m_standard_p
14318 && user_name.find ('.') == std::string::npos);
14319 }
14320 }
14321
14322 /* symbol_name_matcher_ftype method for Ada. This only handles
14323 completion mode. */
14324
14325 static bool
14326 ada_symbol_name_matches (const char *symbol_search_name,
14327 const lookup_name_info &lookup_name,
14328 completion_match_result *comp_match_res)
14329 {
14330 return lookup_name.ada ().matches (symbol_search_name,
14331 lookup_name.match_type (),
14332 comp_match_res);
14333 }
14334
14335 /* A name matcher that matches the symbol name exactly, with
14336 strcmp. */
14337
14338 static bool
14339 literal_symbol_name_matcher (const char *symbol_search_name,
14340 const lookup_name_info &lookup_name,
14341 completion_match_result *comp_match_res)
14342 {
14343 const std::string &name = lookup_name.name ();
14344
14345 int cmp = (lookup_name.completion_mode ()
14346 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14347 : strcmp (symbol_search_name, name.c_str ()));
14348 if (cmp == 0)
14349 {
14350 if (comp_match_res != NULL)
14351 comp_match_res->set_match (symbol_search_name);
14352 return true;
14353 }
14354 else
14355 return false;
14356 }
14357
14358 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14359 Ada. */
14360
14361 static symbol_name_matcher_ftype *
14362 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14363 {
14364 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14365 return literal_symbol_name_matcher;
14366
14367 if (lookup_name.completion_mode ())
14368 return ada_symbol_name_matches;
14369 else
14370 {
14371 if (lookup_name.ada ().wild_match_p ())
14372 return do_wild_match;
14373 else if (lookup_name.ada ().verbatim_p ())
14374 return do_exact_match;
14375 else
14376 return do_full_match;
14377 }
14378 }
14379
14380 /* Implement the "la_read_var_value" language_defn method for Ada. */
14381
14382 static struct value *
14383 ada_read_var_value (struct symbol *var, const struct block *var_block,
14384 struct frame_info *frame)
14385 {
14386 const struct block *frame_block = NULL;
14387 struct symbol *renaming_sym = NULL;
14388
14389 /* The only case where default_read_var_value is not sufficient
14390 is when VAR is a renaming... */
14391 if (frame)
14392 frame_block = get_frame_block (frame, NULL);
14393 if (frame_block)
14394 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14395 if (renaming_sym != NULL)
14396 return ada_read_renaming_var_value (renaming_sym, frame_block);
14397
14398 /* This is a typical case where we expect the default_read_var_value
14399 function to work. */
14400 return default_read_var_value (var, var_block, frame);
14401 }
14402
14403 static const char *ada_extensions[] =
14404 {
14405 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14406 };
14407
14408 extern const struct language_defn ada_language_defn = {
14409 "ada", /* Language name */
14410 "Ada",
14411 language_ada,
14412 range_check_off,
14413 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14414 that's not quite what this means. */
14415 array_row_major,
14416 macro_expansion_no,
14417 ada_extensions,
14418 &ada_exp_descriptor,
14419 parse,
14420 resolve,
14421 ada_printchar, /* Print a character constant */
14422 ada_printstr, /* Function to print string constant */
14423 emit_char, /* Function to print single char (not used) */
14424 ada_print_type, /* Print a type using appropriate syntax */
14425 ada_print_typedef, /* Print a typedef using appropriate syntax */
14426 ada_val_print, /* Print a value using appropriate syntax */
14427 ada_value_print, /* Print a top-level value */
14428 ada_read_var_value, /* la_read_var_value */
14429 NULL, /* Language specific skip_trampoline */
14430 NULL, /* name_of_this */
14431 true, /* la_store_sym_names_in_linkage_form_p */
14432 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14433 basic_lookup_transparent_type, /* lookup_transparent_type */
14434 ada_la_decode, /* Language specific symbol demangler */
14435 ada_sniff_from_mangled_name,
14436 NULL, /* Language specific
14437 class_name_from_physname */
14438 ada_op_print_tab, /* expression operators for printing */
14439 0, /* c-style arrays */
14440 1, /* String lower bound */
14441 ada_get_gdb_completer_word_break_characters,
14442 ada_collect_symbol_completion_matches,
14443 ada_language_arch_info,
14444 ada_print_array_index,
14445 default_pass_by_reference,
14446 c_get_string,
14447 ada_watch_location_expression,
14448 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14449 ada_iterate_over_symbols,
14450 default_search_name_hash,
14451 &ada_varobj_ops,
14452 NULL,
14453 NULL,
14454 ada_is_string_type,
14455 "(...)" /* la_struct_too_deep_ellipsis */
14456 };
14457
14458 /* Command-list for the "set/show ada" prefix command. */
14459 static struct cmd_list_element *set_ada_list;
14460 static struct cmd_list_element *show_ada_list;
14461
14462 /* Implement the "set ada" prefix command. */
14463
14464 static void
14465 set_ada_command (const char *arg, int from_tty)
14466 {
14467 printf_unfiltered (_(\
14468 "\"set ada\" must be followed by the name of a setting.\n"));
14469 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14470 }
14471
14472 /* Implement the "show ada" prefix command. */
14473
14474 static void
14475 show_ada_command (const char *args, int from_tty)
14476 {
14477 cmd_show_list (show_ada_list, from_tty, "");
14478 }
14479
14480 static void
14481 initialize_ada_catchpoint_ops (void)
14482 {
14483 struct breakpoint_ops *ops;
14484
14485 initialize_breakpoint_ops ();
14486
14487 ops = &catch_exception_breakpoint_ops;
14488 *ops = bkpt_breakpoint_ops;
14489 ops->allocate_location = allocate_location_catch_exception;
14490 ops->re_set = re_set_catch_exception;
14491 ops->check_status = check_status_catch_exception;
14492 ops->print_it = print_it_catch_exception;
14493 ops->print_one = print_one_catch_exception;
14494 ops->print_mention = print_mention_catch_exception;
14495 ops->print_recreate = print_recreate_catch_exception;
14496
14497 ops = &catch_exception_unhandled_breakpoint_ops;
14498 *ops = bkpt_breakpoint_ops;
14499 ops->allocate_location = allocate_location_catch_exception_unhandled;
14500 ops->re_set = re_set_catch_exception_unhandled;
14501 ops->check_status = check_status_catch_exception_unhandled;
14502 ops->print_it = print_it_catch_exception_unhandled;
14503 ops->print_one = print_one_catch_exception_unhandled;
14504 ops->print_mention = print_mention_catch_exception_unhandled;
14505 ops->print_recreate = print_recreate_catch_exception_unhandled;
14506
14507 ops = &catch_assert_breakpoint_ops;
14508 *ops = bkpt_breakpoint_ops;
14509 ops->allocate_location = allocate_location_catch_assert;
14510 ops->re_set = re_set_catch_assert;
14511 ops->check_status = check_status_catch_assert;
14512 ops->print_it = print_it_catch_assert;
14513 ops->print_one = print_one_catch_assert;
14514 ops->print_mention = print_mention_catch_assert;
14515 ops->print_recreate = print_recreate_catch_assert;
14516
14517 ops = &catch_handlers_breakpoint_ops;
14518 *ops = bkpt_breakpoint_ops;
14519 ops->allocate_location = allocate_location_catch_handlers;
14520 ops->re_set = re_set_catch_handlers;
14521 ops->check_status = check_status_catch_handlers;
14522 ops->print_it = print_it_catch_handlers;
14523 ops->print_one = print_one_catch_handlers;
14524 ops->print_mention = print_mention_catch_handlers;
14525 ops->print_recreate = print_recreate_catch_handlers;
14526 }
14527
14528 /* This module's 'new_objfile' observer. */
14529
14530 static void
14531 ada_new_objfile_observer (struct objfile *objfile)
14532 {
14533 ada_clear_symbol_cache ();
14534 }
14535
14536 /* This module's 'free_objfile' observer. */
14537
14538 static void
14539 ada_free_objfile_observer (struct objfile *objfile)
14540 {
14541 ada_clear_symbol_cache ();
14542 }
14543
14544 void
14545 _initialize_ada_language (void)
14546 {
14547 initialize_ada_catchpoint_ops ();
14548
14549 add_prefix_cmd ("ada", no_class, set_ada_command,
14550 _("Prefix command for changing Ada-specific settings"),
14551 &set_ada_list, "set ada ", 0, &setlist);
14552
14553 add_prefix_cmd ("ada", no_class, show_ada_command,
14554 _("Generic command for showing Ada-specific settings."),
14555 &show_ada_list, "show ada ", 0, &showlist);
14556
14557 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14558 &trust_pad_over_xvs, _("\
14559 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14560 Show whether an optimization trusting PAD types over XVS types is activated"),
14561 _("\
14562 This is related to the encoding used by the GNAT compiler. The debugger\n\
14563 should normally trust the contents of PAD types, but certain older versions\n\
14564 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14565 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14566 work around this bug. It is always safe to turn this option \"off\", but\n\
14567 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14568 this option to \"off\" unless necessary."),
14569 NULL, NULL, &set_ada_list, &show_ada_list);
14570
14571 add_setshow_boolean_cmd ("print-signatures", class_vars,
14572 &print_signatures, _("\
14573 Enable or disable the output of formal and return types for functions in the \
14574 overloads selection menu"), _("\
14575 Show whether the output of formal and return types for functions in the \
14576 overloads selection menu is activated"),
14577 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14578
14579 add_catch_command ("exception", _("\
14580 Catch Ada exceptions, when raised.\n\
14581 Usage: catch exception [ ARG ]\n\
14582 \n\
14583 Without any argument, stop when any Ada exception is raised.\n\
14584 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14585 being raised does not have a handler (and will therefore lead to the task's\n\
14586 termination).\n\
14587 Otherwise, the catchpoint only stops when the name of the exception being\n\
14588 raised is the same as ARG."),
14589 catch_ada_exception_command,
14590 NULL,
14591 CATCH_PERMANENT,
14592 CATCH_TEMPORARY);
14593
14594 add_catch_command ("handlers", _("\
14595 Catch Ada exceptions, when handled.\n\
14596 With an argument, catch only exceptions with the given name."),
14597 catch_ada_handlers_command,
14598 NULL,
14599 CATCH_PERMANENT,
14600 CATCH_TEMPORARY);
14601 add_catch_command ("assert", _("\
14602 Catch failed Ada assertions, when raised.\n\
14603 With an argument, catch only exceptions with the given name."),
14604 catch_assert_command,
14605 NULL,
14606 CATCH_PERMANENT,
14607 CATCH_TEMPORARY);
14608
14609 varsize_limit = 65536;
14610 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14611 &varsize_limit, _("\
14612 Set the maximum number of bytes allowed in a variable-size object."), _("\
14613 Show the maximum number of bytes allowed in a variable-size object."), _("\
14614 Attempts to access an object whose size is not a compile-time constant\n\
14615 and exceeds this limit will cause an error."),
14616 NULL, NULL, &setlist, &showlist);
14617
14618 add_info ("exceptions", info_exceptions_command,
14619 _("\
14620 List all Ada exception names.\n\
14621 If a regular expression is passed as an argument, only those matching\n\
14622 the regular expression are listed."));
14623
14624 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14625 _("Set Ada maintenance-related variables."),
14626 &maint_set_ada_cmdlist, "maintenance set ada ",
14627 0/*allow-unknown*/, &maintenance_set_cmdlist);
14628
14629 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14630 _("Show Ada maintenance-related variables"),
14631 &maint_show_ada_cmdlist, "maintenance show ada ",
14632 0/*allow-unknown*/, &maintenance_show_cmdlist);
14633
14634 add_setshow_boolean_cmd
14635 ("ignore-descriptive-types", class_maintenance,
14636 &ada_ignore_descriptive_types_p,
14637 _("Set whether descriptive types generated by GNAT should be ignored."),
14638 _("Show whether descriptive types generated by GNAT should be ignored."),
14639 _("\
14640 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14641 DWARF attribute."),
14642 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14643
14644 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14645 NULL, xcalloc, xfree);
14646
14647 /* The ada-lang observers. */
14648 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14649 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14650 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14651
14652 /* Setup various context-specific data. */
14653 ada_inferior_data
14654 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14655 ada_pspace_data_handle
14656 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14657 }