]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-tasks.c
Update "disassemble" help
[thirdparty/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2020 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28 #include "cli/cli-style.h"
29
30 static int ada_build_task_list ();
31
32 /* The name of the array in the GNAT runtime where the Ada Task Control
33 Block of each task is stored. */
34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
35
36 /* The maximum number of tasks known to the Ada runtime. */
37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
38
39 /* The name of the variable in the GNAT runtime where the head of a task
40 chain is saved. This is an alternate mechanism to find the list of known
41 tasks. */
42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
43
44 enum task_states
45 {
46 Unactivated,
47 Runnable,
48 Terminated,
49 Activator_Sleep,
50 Acceptor_Sleep,
51 Entry_Caller_Sleep,
52 Async_Select_Sleep,
53 Delay_Sleep,
54 Master_Completion_Sleep,
55 Master_Phase_2_Sleep,
56 Interrupt_Server_Idle_Sleep,
57 Interrupt_Server_Blocked_Interrupt_Sleep,
58 Timer_Server_Sleep,
59 AST_Server_Sleep,
60 Asynchronous_Hold,
61 Interrupt_Server_Blocked_On_Event_Flag,
62 Activating,
63 Acceptor_Delay_Sleep
64 };
65
66 /* A short description corresponding to each possible task state. */
67 static const char *task_states[] = {
68 N_("Unactivated"),
69 N_("Runnable"),
70 N_("Terminated"),
71 N_("Child Activation Wait"),
72 N_("Accept or Select Term"),
73 N_("Waiting on entry call"),
74 N_("Async Select Wait"),
75 N_("Delay Sleep"),
76 N_("Child Termination Wait"),
77 N_("Wait Child in Term Alt"),
78 "",
79 "",
80 "",
81 "",
82 N_("Asynchronous Hold"),
83 "",
84 N_("Activating"),
85 N_("Selective Wait")
86 };
87
88 /* A longer description corresponding to each possible task state. */
89 static const char *long_task_states[] = {
90 N_("Unactivated"),
91 N_("Runnable"),
92 N_("Terminated"),
93 N_("Waiting for child activation"),
94 N_("Blocked in accept or select with terminate"),
95 N_("Waiting on entry call"),
96 N_("Asynchronous Selective Wait"),
97 N_("Delay Sleep"),
98 N_("Waiting for children termination"),
99 N_("Waiting for children in terminate alternative"),
100 "",
101 "",
102 "",
103 "",
104 N_("Asynchronous Hold"),
105 "",
106 N_("Activating"),
107 N_("Blocked in selective wait statement")
108 };
109
110 /* The index of certain important fields in the Ada Task Control Block
111 record and sub-records. */
112
113 struct atcb_fieldnos
114 {
115 /* Fields in record Ada_Task_Control_Block. */
116 int common;
117 int entry_calls;
118 int atc_nesting_level;
119
120 /* Fields in record Common_ATCB. */
121 int state;
122 int parent;
123 int priority;
124 int image;
125 int image_len; /* This field may be missing. */
126 int activation_link;
127 int call;
128 int ll;
129 int base_cpu;
130
131 /* Fields in Task_Primitives.Private_Data. */
132 int ll_thread;
133 int ll_lwp; /* This field may be missing. */
134
135 /* Fields in Common_ATCB.Call.all. */
136 int call_self;
137 };
138
139 /* This module's per-program-space data. */
140
141 struct ada_tasks_pspace_data
142 {
143 /* Nonzero if the data has been initialized. If set to zero,
144 it means that the data has either not been initialized, or
145 has potentially become stale. */
146 int initialized_p = 0;
147
148 /* The ATCB record type. */
149 struct type *atcb_type = nullptr;
150
151 /* The ATCB "Common" component type. */
152 struct type *atcb_common_type = nullptr;
153
154 /* The type of the "ll" field, from the atcb_common_type. */
155 struct type *atcb_ll_type = nullptr;
156
157 /* The type of the "call" field, from the atcb_common_type. */
158 struct type *atcb_call_type = nullptr;
159
160 /* The index of various fields in the ATCB record and sub-records. */
161 struct atcb_fieldnos atcb_fieldno {};
162 };
163
164 /* Key to our per-program-space data. */
165 static const struct program_space_key<ada_tasks_pspace_data>
166 ada_tasks_pspace_data_handle;
167
168 /* The kind of data structure used by the runtime to store the list
169 of Ada tasks. */
170
171 enum ada_known_tasks_kind
172 {
173 /* Use this value when we haven't determined which kind of structure
174 is being used, or when we need to recompute it.
175
176 We set the value of this enumerate to zero on purpose: This allows
177 us to use this enumerate in a structure where setting all fields
178 to zero will result in this kind being set to unknown. */
179 ADA_TASKS_UNKNOWN = 0,
180
181 /* This value means that we did not find any task list. Unless
182 there is a bug somewhere, this means that the inferior does not
183 use tasking. */
184 ADA_TASKS_NOT_FOUND,
185
186 /* This value means that the task list is stored as an array.
187 This is the usual method, as it causes very little overhead.
188 But this method is not always used, as it does use a certain
189 amount of memory, which might be scarse in certain environments. */
190 ADA_TASKS_ARRAY,
191
192 /* This value means that the task list is stored as a linked list.
193 This has more runtime overhead than the array approach, but
194 also require less memory when the number of tasks is small. */
195 ADA_TASKS_LIST,
196 };
197
198 /* This module's per-inferior data. */
199
200 struct ada_tasks_inferior_data
201 {
202 /* The type of data structure used by the runtime to store
203 the list of Ada tasks. The value of this field influences
204 the interpretation of the known_tasks_addr field below:
205 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
206 been determined yet;
207 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
208 and the known_tasks_addr is irrelevant;
209 - ADA_TASKS_ARRAY: The known_tasks is an array;
210 - ADA_TASKS_LIST: The known_tasks is a list. */
211 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
212
213 /* The address of the known_tasks structure. This is where
214 the runtime stores the information for all Ada tasks.
215 The interpretation of this field depends on KNOWN_TASKS_KIND
216 above. */
217 CORE_ADDR known_tasks_addr = 0;
218
219 /* Type of elements of the known task. Usually a pointer. */
220 struct type *known_tasks_element = nullptr;
221
222 /* Number of elements in the known tasks array. */
223 unsigned int known_tasks_length = 0;
224
225 /* When nonzero, this flag indicates that the task_list field
226 below is up to date. When set to zero, the list has either
227 not been initialized, or has potentially become stale. */
228 bool task_list_valid_p = false;
229
230 /* The list of Ada tasks.
231
232 Note: To each task we associate a number that the user can use to
233 reference it - this number is printed beside each task in the tasks
234 info listing displayed by "info tasks". This number is equal to
235 its index in the vector + 1. Reciprocally, to compute the index
236 of a task in the vector, we need to substract 1 from its number. */
237 std::vector<ada_task_info> task_list;
238 };
239
240 /* Key to our per-inferior data. */
241 static const struct inferior_key<ada_tasks_inferior_data>
242 ada_tasks_inferior_data_handle;
243
244 /* Return a string with TASKNO followed by the task name if TASK_INFO
245 contains a name. */
246
247 static std::string
248 task_to_str (int taskno, const ada_task_info *task_info)
249 {
250 if (task_info->name[0] == '\0')
251 return string_printf ("%d", taskno);
252 else
253 return string_printf ("%d \"%s\"", taskno, task_info->name);
254 }
255
256 /* Return the ada-tasks module's data for the given program space (PSPACE).
257 If none is found, add a zero'ed one now.
258
259 This function always returns a valid object. */
260
261 static struct ada_tasks_pspace_data *
262 get_ada_tasks_pspace_data (struct program_space *pspace)
263 {
264 struct ada_tasks_pspace_data *data;
265
266 data = ada_tasks_pspace_data_handle.get (pspace);
267 if (data == NULL)
268 data = ada_tasks_pspace_data_handle.emplace (pspace);
269
270 return data;
271 }
272
273 /* Return the ada-tasks module's data for the given inferior (INF).
274 If none is found, add a zero'ed one now.
275
276 This function always returns a valid object.
277
278 Note that we could use an observer of the inferior-created event
279 to make sure that the ada-tasks per-inferior data always exists.
280 But we prefered this approach, as it avoids this entirely as long
281 as the user does not use any of the tasking features. This is
282 quite possible, particularly in the case where the inferior does
283 not use tasking. */
284
285 static struct ada_tasks_inferior_data *
286 get_ada_tasks_inferior_data (struct inferior *inf)
287 {
288 struct ada_tasks_inferior_data *data;
289
290 data = ada_tasks_inferior_data_handle.get (inf);
291 if (data == NULL)
292 data = ada_tasks_inferior_data_handle.emplace (inf);
293
294 return data;
295 }
296
297 /* Return the task number of the task whose thread is THREAD, or zero
298 if the task could not be found. */
299
300 int
301 ada_get_task_number (thread_info *thread)
302 {
303 struct inferior *inf = thread->inf;
304 struct ada_tasks_inferior_data *data;
305
306 gdb_assert (inf != NULL);
307 data = get_ada_tasks_inferior_data (inf);
308
309 for (int i = 0; i < data->task_list.size (); i++)
310 if (data->task_list[i].ptid == thread->ptid)
311 return i + 1;
312
313 return 0; /* No matching task found. */
314 }
315
316 /* Return the task number of the task running in inferior INF which
317 matches TASK_ID , or zero if the task could not be found. */
318
319 static int
320 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
321 {
322 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
323
324 for (int i = 0; i < data->task_list.size (); i++)
325 {
326 if (data->task_list[i].task_id == task_id)
327 return i + 1;
328 }
329
330 /* Task not found. Return 0. */
331 return 0;
332 }
333
334 /* Return non-zero if TASK_NUM is a valid task number. */
335
336 int
337 valid_task_id (int task_num)
338 {
339 struct ada_tasks_inferior_data *data;
340
341 ada_build_task_list ();
342 data = get_ada_tasks_inferior_data (current_inferior ());
343 return task_num > 0 && task_num <= data->task_list.size ();
344 }
345
346 /* Return non-zero iff the task STATE corresponds to a non-terminated
347 task state. */
348
349 static int
350 ada_task_is_alive (const struct ada_task_info *task_info)
351 {
352 return (task_info->state != Terminated);
353 }
354
355 /* Search through the list of known tasks for the one whose ptid is
356 PTID, and return it. Return NULL if the task was not found. */
357
358 struct ada_task_info *
359 ada_get_task_info_from_ptid (ptid_t ptid)
360 {
361 struct ada_tasks_inferior_data *data;
362
363 ada_build_task_list ();
364 data = get_ada_tasks_inferior_data (current_inferior ());
365
366 for (ada_task_info &task : data->task_list)
367 {
368 if (task.ptid == ptid)
369 return &task;
370 }
371
372 return NULL;
373 }
374
375 /* Call the ITERATOR function once for each Ada task that hasn't been
376 terminated yet. */
377
378 void
379 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
380 {
381 struct ada_tasks_inferior_data *data;
382
383 ada_build_task_list ();
384 data = get_ada_tasks_inferior_data (current_inferior ());
385
386 for (ada_task_info &task : data->task_list)
387 {
388 if (!ada_task_is_alive (&task))
389 continue;
390 iterator (&task);
391 }
392 }
393
394 /* Extract the contents of the value as a string whose length is LENGTH,
395 and store the result in DEST. */
396
397 static void
398 value_as_string (char *dest, struct value *val, int length)
399 {
400 memcpy (dest, value_contents (val), length);
401 dest[length] = '\0';
402 }
403
404 /* Extract the string image from the fat string corresponding to VAL,
405 and store it in DEST. If the string length is greater than MAX_LEN,
406 then truncate the result to the first MAX_LEN characters of the fat
407 string. */
408
409 static void
410 read_fat_string_value (char *dest, struct value *val, int max_len)
411 {
412 struct value *array_val;
413 struct value *bounds_val;
414 int len;
415
416 /* The following variables are made static to avoid recomputing them
417 each time this function is called. */
418 static int initialize_fieldnos = 1;
419 static int array_fieldno;
420 static int bounds_fieldno;
421 static int upper_bound_fieldno;
422
423 /* Get the index of the fields that we will need to read in order
424 to extract the string from the fat string. */
425 if (initialize_fieldnos)
426 {
427 struct type *type = value_type (val);
428 struct type *bounds_type;
429
430 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
431 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
432
433 bounds_type = type->field (bounds_fieldno).type ();
434 if (bounds_type->code () == TYPE_CODE_PTR)
435 bounds_type = TYPE_TARGET_TYPE (bounds_type);
436 if (bounds_type->code () != TYPE_CODE_STRUCT)
437 error (_("Unknown task name format. Aborting"));
438 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
439
440 initialize_fieldnos = 0;
441 }
442
443 /* Get the size of the task image by checking the value of the bounds.
444 The lower bound is always 1, so we only need to read the upper bound. */
445 bounds_val = value_ind (value_field (val, bounds_fieldno));
446 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
447
448 /* Make sure that we do not read more than max_len characters... */
449 if (len > max_len)
450 len = max_len;
451
452 /* Extract LEN characters from the fat string. */
453 array_val = value_ind (value_field (val, array_fieldno));
454 read_memory (value_address (array_val), (gdb_byte *) dest, len);
455
456 /* Add the NUL character to close the string. */
457 dest[len] = '\0';
458 }
459
460 /* Get, from the debugging information, the type description of all types
461 related to the Ada Task Control Block that are needed in order to
462 read the list of known tasks in the Ada runtime. If all of the info
463 needed to do so is found, then save that info in the module's per-
464 program-space data, and return NULL. Otherwise, if any information
465 cannot be found, leave the per-program-space data untouched, and
466 return an error message explaining what was missing (that error
467 message does NOT need to be deallocated). */
468
469 const char *
470 ada_get_tcb_types_info (void)
471 {
472 struct type *type;
473 struct type *common_type;
474 struct type *ll_type;
475 struct type *call_type;
476 struct atcb_fieldnos fieldnos;
477 struct ada_tasks_pspace_data *pspace_data;
478
479 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
480 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
481 const char *common_atcb_name = "system__tasking__common_atcb";
482 const char *private_data_name = "system__task_primitives__private_data";
483 const char *entry_call_record_name = "system__tasking__entry_call_record";
484
485 /* ATCB symbols may be found in several compilation units. As we
486 are only interested in one instance, use standard (literal,
487 C-like) lookups to get the first match. */
488
489 struct symbol *atcb_sym =
490 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
491 language_c, NULL).symbol;
492 const struct symbol *common_atcb_sym =
493 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
494 language_c, NULL).symbol;
495 const struct symbol *private_data_sym =
496 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
497 language_c, NULL).symbol;
498 const struct symbol *entry_call_record_sym =
499 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
500 language_c, NULL).symbol;
501
502 if (atcb_sym == NULL || atcb_sym->type == NULL)
503 {
504 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
505 size, so the symbol name differs. */
506 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
507 STRUCT_DOMAIN, language_c,
508 NULL).symbol;
509
510 if (atcb_sym == NULL || atcb_sym->type == NULL)
511 return _("Cannot find Ada_Task_Control_Block type");
512
513 type = atcb_sym->type;
514 }
515 else
516 {
517 /* Get a static representation of the type record
518 Ada_Task_Control_Block. */
519 type = atcb_sym->type;
520 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
521 }
522
523 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
524 return _("Cannot find Common_ATCB type");
525 if (private_data_sym == NULL || private_data_sym->type == NULL)
526 return _("Cannot find Private_Data type");
527 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
528 return _("Cannot find Entry_Call_Record type");
529
530 /* Get the type for Ada_Task_Control_Block.Common. */
531 common_type = common_atcb_sym->type;
532
533 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
534 ll_type = private_data_sym->type;
535
536 /* Get the type for Common_ATCB.Call.all. */
537 call_type = entry_call_record_sym->type;
538
539 /* Get the field indices. */
540 fieldnos.common = ada_get_field_index (type, "common", 0);
541 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
542 fieldnos.atc_nesting_level =
543 ada_get_field_index (type, "atc_nesting_level", 1);
544 fieldnos.state = ada_get_field_index (common_type, "state", 0);
545 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
546 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
547 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
548 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
549 fieldnos.activation_link = ada_get_field_index (common_type,
550 "activation_link", 1);
551 fieldnos.call = ada_get_field_index (common_type, "call", 1);
552 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
553 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
554 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
555 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
556 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
557
558 /* On certain platforms such as x86-windows, the "lwp" field has been
559 named "thread_id". This field will likely be renamed in the future,
560 but we need to support both possibilities to avoid an unnecessary
561 dependency on a recent compiler. We therefore try locating the
562 "thread_id" field in place of the "lwp" field if we did not find
563 the latter. */
564 if (fieldnos.ll_lwp < 0)
565 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
566
567 /* Set all the out parameters all at once, now that we are certain
568 that there are no potential error() anymore. */
569 pspace_data = get_ada_tasks_pspace_data (current_program_space);
570 pspace_data->initialized_p = 1;
571 pspace_data->atcb_type = type;
572 pspace_data->atcb_common_type = common_type;
573 pspace_data->atcb_ll_type = ll_type;
574 pspace_data->atcb_call_type = call_type;
575 pspace_data->atcb_fieldno = fieldnos;
576 return NULL;
577 }
578
579 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
580 component of its ATCB record. This PTID needs to match the PTID used
581 by the thread layer. */
582
583 static ptid_t
584 ptid_from_atcb_common (struct value *common_value)
585 {
586 long thread = 0;
587 CORE_ADDR lwp = 0;
588 struct value *ll_value;
589 ptid_t ptid;
590 const struct ada_tasks_pspace_data *pspace_data
591 = get_ada_tasks_pspace_data (current_program_space);
592
593 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
594
595 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
596 lwp = value_as_address (value_field (ll_value,
597 pspace_data->atcb_fieldno.ll_lwp));
598 thread = value_as_long (value_field (ll_value,
599 pspace_data->atcb_fieldno.ll_thread));
600
601 ptid = target_get_ada_task_ptid (lwp, thread);
602
603 return ptid;
604 }
605
606 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
607 the address of its associated ATCB record), and store the result inside
608 TASK_INFO. */
609
610 static void
611 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
612 {
613 struct value *tcb_value;
614 struct value *common_value;
615 struct value *atc_nesting_level_value;
616 struct value *entry_calls_value;
617 struct value *entry_calls_value_element;
618 int called_task_fieldno = -1;
619 static const char ravenscar_task_name[] = "Ravenscar task";
620 const struct ada_tasks_pspace_data *pspace_data
621 = get_ada_tasks_pspace_data (current_program_space);
622
623 /* Clear the whole structure to start with, so that everything
624 is always initialized the same. */
625 memset (task_info, 0, sizeof (struct ada_task_info));
626
627 if (!pspace_data->initialized_p)
628 {
629 const char *err_msg = ada_get_tcb_types_info ();
630
631 if (err_msg != NULL)
632 error (_("%s. Aborting"), err_msg);
633 }
634
635 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
636 NULL, task_id);
637 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
638
639 /* Fill in the task_id. */
640
641 task_info->task_id = task_id;
642
643 /* Compute the name of the task.
644
645 Depending on the GNAT version used, the task image is either a fat
646 string, or a thin array of characters. Older versions of GNAT used
647 to use fat strings, and therefore did not need an extra field in
648 the ATCB to store the string length. For efficiency reasons, newer
649 versions of GNAT replaced the fat string by a static buffer, but this
650 also required the addition of a new field named "Image_Len" containing
651 the length of the task name. The method used to extract the task name
652 is selected depending on the existence of this field.
653
654 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
655 we may want to get it from the first user frame of the stack. For now,
656 we just give a dummy name. */
657
658 if (pspace_data->atcb_fieldno.image_len == -1)
659 {
660 if (pspace_data->atcb_fieldno.image >= 0)
661 read_fat_string_value (task_info->name,
662 value_field (common_value,
663 pspace_data->atcb_fieldno.image),
664 sizeof (task_info->name) - 1);
665 else
666 {
667 struct bound_minimal_symbol msym;
668
669 msym = lookup_minimal_symbol_by_pc (task_id);
670 if (msym.minsym)
671 {
672 const char *full_name = msym.minsym->linkage_name ();
673 const char *task_name = full_name;
674 const char *p;
675
676 /* Strip the prefix. */
677 for (p = full_name; *p; p++)
678 if (p[0] == '_' && p[1] == '_')
679 task_name = p + 2;
680
681 /* Copy the task name. */
682 strncpy (task_info->name, task_name,
683 sizeof (task_info->name) - 1);
684 task_info->name[sizeof (task_info->name) - 1] = 0;
685 }
686 else
687 {
688 /* No symbol found. Use a default name. */
689 strcpy (task_info->name, ravenscar_task_name);
690 }
691 }
692 }
693 else
694 {
695 int len = value_as_long
696 (value_field (common_value,
697 pspace_data->atcb_fieldno.image_len));
698
699 value_as_string (task_info->name,
700 value_field (common_value,
701 pspace_data->atcb_fieldno.image),
702 len);
703 }
704
705 /* Compute the task state and priority. */
706
707 task_info->state =
708 value_as_long (value_field (common_value,
709 pspace_data->atcb_fieldno.state));
710 task_info->priority =
711 value_as_long (value_field (common_value,
712 pspace_data->atcb_fieldno.priority));
713
714 /* If the ATCB contains some information about the parent task,
715 then compute it as well. Otherwise, zero. */
716
717 if (pspace_data->atcb_fieldno.parent >= 0)
718 task_info->parent =
719 value_as_address (value_field (common_value,
720 pspace_data->atcb_fieldno.parent));
721
722 /* If the task is in an entry call waiting for another task,
723 then determine which task it is. */
724
725 if (task_info->state == Entry_Caller_Sleep
726 && pspace_data->atcb_fieldno.atc_nesting_level > 0
727 && pspace_data->atcb_fieldno.entry_calls > 0)
728 {
729 /* Let My_ATCB be the Ada task control block of a task calling the
730 entry of another task; then the Task_Id of the called task is
731 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
732 atc_nesting_level_value =
733 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
734 entry_calls_value =
735 ada_coerce_to_simple_array_ptr
736 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
737 entry_calls_value_element =
738 value_subscript (entry_calls_value,
739 value_as_long (atc_nesting_level_value));
740 called_task_fieldno =
741 ada_get_field_index (value_type (entry_calls_value_element),
742 "called_task", 0);
743 task_info->called_task =
744 value_as_address (value_field (entry_calls_value_element,
745 called_task_fieldno));
746 }
747
748 /* If the ATCB contains some information about RV callers, then
749 compute the "caller_task". Otherwise, leave it as zero. */
750
751 if (pspace_data->atcb_fieldno.call >= 0)
752 {
753 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
754 If Common_ATCB.Call is null, then there is no caller. */
755 const CORE_ADDR call =
756 value_as_address (value_field (common_value,
757 pspace_data->atcb_fieldno.call));
758 struct value *call_val;
759
760 if (call != 0)
761 {
762 call_val =
763 value_from_contents_and_address (pspace_data->atcb_call_type,
764 NULL, call);
765 task_info->caller_task =
766 value_as_address
767 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
768 }
769 }
770
771 task_info->base_cpu
772 = value_as_long (value_field (common_value,
773 pspace_data->atcb_fieldno.base_cpu));
774
775 /* And finally, compute the task ptid. Note that there is not point
776 in computing it if the task is no longer alive, in which case
777 it is good enough to set its ptid to the null_ptid. */
778 if (ada_task_is_alive (task_info))
779 task_info->ptid = ptid_from_atcb_common (common_value);
780 else
781 task_info->ptid = null_ptid;
782 }
783
784 /* Read the ATCB info of the given task (identified by TASK_ID), and
785 add the result to the given inferior's TASK_LIST. */
786
787 static void
788 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
789 {
790 struct ada_task_info task_info;
791 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
792
793 read_atcb (task_id, &task_info);
794 data->task_list.push_back (task_info);
795 }
796
797 /* Read the Known_Tasks array from the inferior memory, and store
798 it in the current inferior's TASK_LIST. Return true upon success. */
799
800 static bool
801 read_known_tasks_array (struct ada_tasks_inferior_data *data)
802 {
803 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
804 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
805 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
806 int i;
807
808 /* Build a new list by reading the ATCBs from the Known_Tasks array
809 in the Ada runtime. */
810 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
811 for (i = 0; i < data->known_tasks_length; i++)
812 {
813 CORE_ADDR task_id =
814 extract_typed_address (known_tasks + i * target_ptr_byte,
815 data->known_tasks_element);
816
817 if (task_id != 0)
818 add_ada_task (task_id, current_inferior ());
819 }
820
821 return true;
822 }
823
824 /* Read the known tasks from the inferior memory, and store it in
825 the current inferior's TASK_LIST. Return true upon success. */
826
827 static bool
828 read_known_tasks_list (struct ada_tasks_inferior_data *data)
829 {
830 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
831 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
832 CORE_ADDR task_id;
833 const struct ada_tasks_pspace_data *pspace_data
834 = get_ada_tasks_pspace_data (current_program_space);
835
836 /* Sanity check. */
837 if (pspace_data->atcb_fieldno.activation_link < 0)
838 return false;
839
840 /* Build a new list by reading the ATCBs. Read head of the list. */
841 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
842 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
843 while (task_id != 0)
844 {
845 struct value *tcb_value;
846 struct value *common_value;
847
848 add_ada_task (task_id, current_inferior ());
849
850 /* Read the chain. */
851 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
852 NULL, task_id);
853 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
854 task_id = value_as_address
855 (value_field (common_value,
856 pspace_data->atcb_fieldno.activation_link));
857 }
858
859 return true;
860 }
861
862 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
863 Do nothing if those fields are already set and still up to date. */
864
865 static void
866 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
867 {
868 struct bound_minimal_symbol msym;
869 struct symbol *sym;
870
871 /* Return now if already set. */
872 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
873 return;
874
875 /* Try array. */
876
877 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
878 if (msym.minsym != NULL)
879 {
880 data->known_tasks_kind = ADA_TASKS_ARRAY;
881 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
882
883 /* Try to get pointer type and array length from the symtab. */
884 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
885 language_c, NULL).symbol;
886 if (sym != NULL)
887 {
888 /* Validate. */
889 struct type *type = check_typedef (SYMBOL_TYPE (sym));
890 struct type *eltype = NULL;
891 struct type *idxtype = NULL;
892
893 if (type->code () == TYPE_CODE_ARRAY)
894 eltype = check_typedef (TYPE_TARGET_TYPE (type));
895 if (eltype != NULL
896 && eltype->code () == TYPE_CODE_PTR)
897 idxtype = check_typedef (type->index_type ());
898 if (idxtype != NULL
899 && idxtype->bounds ()->low.kind () != PROP_UNDEFINED
900 && idxtype->bounds ()->high.kind () != PROP_UNDEFINED)
901 {
902 data->known_tasks_element = eltype;
903 data->known_tasks_length =
904 (idxtype->bounds ()->high.const_val ()
905 - idxtype->bounds ()->low.const_val () + 1);
906 return;
907 }
908 }
909
910 /* Fallback to default values. The runtime may have been stripped (as
911 in some distributions), but it is likely that the executable still
912 contains debug information on the task type (due to implicit with of
913 Ada.Tasking). */
914 data->known_tasks_element =
915 builtin_type (target_gdbarch ())->builtin_data_ptr;
916 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
917 return;
918 }
919
920
921 /* Try list. */
922
923 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
924 if (msym.minsym != NULL)
925 {
926 data->known_tasks_kind = ADA_TASKS_LIST;
927 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
928 data->known_tasks_length = 1;
929
930 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
931 language_c, NULL).symbol;
932 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
933 {
934 /* Validate. */
935 struct type *type = check_typedef (SYMBOL_TYPE (sym));
936
937 if (type->code () == TYPE_CODE_PTR)
938 {
939 data->known_tasks_element = type;
940 return;
941 }
942 }
943
944 /* Fallback to default values. */
945 data->known_tasks_element =
946 builtin_type (target_gdbarch ())->builtin_data_ptr;
947 data->known_tasks_length = 1;
948 return;
949 }
950
951 /* Can't find tasks. */
952
953 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
954 data->known_tasks_addr = 0;
955 }
956
957 /* Read the known tasks from the current inferior's memory, and store it
958 in the current inferior's data TASK_LIST. */
959
960 static void
961 read_known_tasks ()
962 {
963 struct ada_tasks_inferior_data *data =
964 get_ada_tasks_inferior_data (current_inferior ());
965
966 /* Step 1: Clear the current list, if necessary. */
967 data->task_list.clear ();
968
969 /* Step 2: do the real work.
970 If the application does not use task, then no more needs to be done.
971 It is important to have the task list cleared (see above) before we
972 return, as we don't want a stale task list to be used... This can
973 happen for instance when debugging a non-multitasking program after
974 having debugged a multitasking one. */
975 ada_tasks_inferior_data_sniffer (data);
976 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
977
978 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
979 array unless needed. */
980 switch (data->known_tasks_kind)
981 {
982 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
983 break;
984 case ADA_TASKS_ARRAY:
985 data->task_list_valid_p = read_known_tasks_array (data);
986 break;
987 case ADA_TASKS_LIST:
988 data->task_list_valid_p = read_known_tasks_list (data);
989 break;
990 }
991 }
992
993 /* Build the task_list by reading the Known_Tasks array from
994 the inferior, and return the number of tasks in that list
995 (zero means that the program is not using tasking at all). */
996
997 static int
998 ada_build_task_list ()
999 {
1000 struct ada_tasks_inferior_data *data;
1001
1002 if (!target_has_stack)
1003 error (_("Cannot inspect Ada tasks when program is not running"));
1004
1005 data = get_ada_tasks_inferior_data (current_inferior ());
1006 if (!data->task_list_valid_p)
1007 read_known_tasks ();
1008
1009 return data->task_list.size ();
1010 }
1011
1012 /* Print a table providing a short description of all Ada tasks
1013 running inside inferior INF. If ARG_STR is set, it will be
1014 interpreted as a task number, and the table will be limited to
1015 that task only. */
1016
1017 void
1018 print_ada_task_info (struct ui_out *uiout,
1019 const char *arg_str,
1020 struct inferior *inf)
1021 {
1022 struct ada_tasks_inferior_data *data;
1023 int taskno, nb_tasks;
1024 int taskno_arg = 0;
1025 int nb_columns;
1026
1027 if (ada_build_task_list () == 0)
1028 {
1029 uiout->message (_("Your application does not use any Ada tasks.\n"));
1030 return;
1031 }
1032
1033 if (arg_str != NULL && arg_str[0] != '\0')
1034 taskno_arg = value_as_long (parse_and_eval (arg_str));
1035
1036 if (uiout->is_mi_like_p ())
1037 /* In GDB/MI mode, we want to provide the thread ID corresponding
1038 to each task. This allows clients to quickly find the thread
1039 associated to any task, which is helpful for commands that
1040 take a --thread argument. However, in order to be able to
1041 provide that thread ID, the thread list must be up to date
1042 first. */
1043 target_update_thread_list ();
1044
1045 data = get_ada_tasks_inferior_data (inf);
1046
1047 /* Compute the number of tasks that are going to be displayed
1048 in the output. If an argument was given, there will be
1049 at most 1 entry. Otherwise, there will be as many entries
1050 as we have tasks. */
1051 if (taskno_arg)
1052 {
1053 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1054 nb_tasks = 1;
1055 else
1056 nb_tasks = 0;
1057 }
1058 else
1059 nb_tasks = data->task_list.size ();
1060
1061 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1062 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1063 uiout->table_header (1, ui_left, "current", "");
1064 uiout->table_header (3, ui_right, "id", "ID");
1065 {
1066 size_t tid_width = 9;
1067 /* Grown below in case the largest entry is bigger. */
1068
1069 if (!uiout->is_mi_like_p ())
1070 {
1071 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1072 {
1073 const struct ada_task_info *const task_info
1074 = &data->task_list[taskno - 1];
1075
1076 gdb_assert (task_info != NULL);
1077
1078 tid_width = std::max (tid_width,
1079 1 + strlen (phex_nz (task_info->task_id,
1080 sizeof (CORE_ADDR))));
1081 }
1082 }
1083 uiout->table_header (tid_width, ui_right, "task-id", "TID");
1084 }
1085 /* The following column is provided in GDB/MI mode only because
1086 it is only really useful in that mode, and also because it
1087 allows us to keep the CLI output shorter and more compact. */
1088 if (uiout->is_mi_like_p ())
1089 uiout->table_header (4, ui_right, "thread-id", "");
1090 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1091 uiout->table_header (3, ui_right, "priority", "Pri");
1092 uiout->table_header (22, ui_left, "state", "State");
1093 /* Use ui_noalign for the last column, to prevent the CLI uiout
1094 from printing an extra space at the end of each row. This
1095 is a bit of a hack, but does get the job done. */
1096 uiout->table_header (1, ui_noalign, "name", "Name");
1097 uiout->table_body ();
1098
1099 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1100 {
1101 const struct ada_task_info *const task_info =
1102 &data->task_list[taskno - 1];
1103 int parent_id;
1104
1105 gdb_assert (task_info != NULL);
1106
1107 /* If the user asked for the output to be restricted
1108 to one task only, and this is not the task, skip
1109 to the next one. */
1110 if (taskno_arg && taskno != taskno_arg)
1111 continue;
1112
1113 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1114
1115 /* Print a star if this task is the current task (or the task
1116 currently selected). */
1117 if (task_info->ptid == inferior_ptid)
1118 uiout->field_string ("current", "*");
1119 else
1120 uiout->field_skip ("current");
1121
1122 /* Print the task number. */
1123 uiout->field_signed ("id", taskno);
1124
1125 /* Print the Task ID. */
1126 uiout->field_string ("task-id", phex_nz (task_info->task_id,
1127 sizeof (CORE_ADDR)));
1128
1129 /* Print the associated Thread ID. */
1130 if (uiout->is_mi_like_p ())
1131 {
1132 thread_info *thread = (ada_task_is_alive (task_info)
1133 ? find_thread_ptid (inf, task_info->ptid)
1134 : nullptr);
1135
1136 if (thread != NULL)
1137 uiout->field_signed ("thread-id", thread->global_num);
1138 else
1139 {
1140 /* This can happen if the thread is no longer alive. */
1141 uiout->field_skip ("thread-id");
1142 }
1143 }
1144
1145 /* Print the ID of the parent task. */
1146 parent_id = get_task_number_from_id (task_info->parent, inf);
1147 if (parent_id)
1148 uiout->field_signed ("parent-id", parent_id);
1149 else
1150 uiout->field_skip ("parent-id");
1151
1152 /* Print the base priority of the task. */
1153 uiout->field_signed ("priority", task_info->priority);
1154
1155 /* Print the task current state. */
1156 if (task_info->caller_task)
1157 uiout->field_fmt ("state",
1158 _("Accepting RV with %-4d"),
1159 get_task_number_from_id (task_info->caller_task,
1160 inf));
1161 else if (task_info->called_task)
1162 uiout->field_fmt ("state",
1163 _("Waiting on RV with %-3d"),
1164 get_task_number_from_id (task_info->called_task,
1165 inf));
1166 else
1167 uiout->field_string ("state", task_states[task_info->state]);
1168
1169 /* Finally, print the task name, without quotes around it, as mi like
1170 is not expecting quotes, and in non mi-like no need for quotes
1171 as there is a specific column for the name. */
1172 uiout->field_fmt ("name",
1173 (task_info->name[0] != '\0'
1174 ? ui_file_style ()
1175 : metadata_style.style ()),
1176 "%s",
1177 (task_info->name[0] != '\0'
1178 ? task_info->name
1179 : _("<no name>")));
1180
1181 uiout->text ("\n");
1182 }
1183 }
1184
1185 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1186 for the given inferior (INF). */
1187
1188 static void
1189 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1190 {
1191 const int taskno = value_as_long (parse_and_eval (taskno_str));
1192 struct ada_task_info *task_info;
1193 int parent_taskno = 0;
1194 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1195
1196 if (ada_build_task_list () == 0)
1197 {
1198 uiout->message (_("Your application does not use any Ada tasks.\n"));
1199 return;
1200 }
1201
1202 if (taskno <= 0 || taskno > data->task_list.size ())
1203 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1204 "see the IDs of currently known tasks"), taskno);
1205 task_info = &data->task_list[taskno - 1];
1206
1207 /* Print the Ada task ID. */
1208 printf_filtered (_("Ada Task: %s\n"),
1209 paddress (target_gdbarch (), task_info->task_id));
1210
1211 /* Print the name of the task. */
1212 if (task_info->name[0] != '\0')
1213 printf_filtered (_("Name: %s\n"), task_info->name);
1214 else
1215 fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n"));
1216
1217 /* Print the TID and LWP. */
1218 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1219 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1220
1221 /* If set, print the base CPU. */
1222 if (task_info->base_cpu != 0)
1223 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1224
1225 /* Print who is the parent (if any). */
1226 if (task_info->parent != 0)
1227 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1228 if (parent_taskno)
1229 {
1230 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1231
1232 printf_filtered (_("Parent: %d"), parent_taskno);
1233 if (parent->name[0] != '\0')
1234 printf_filtered (" (%s)", parent->name);
1235 printf_filtered ("\n");
1236 }
1237 else
1238 printf_filtered (_("No parent\n"));
1239
1240 /* Print the base priority. */
1241 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1242
1243 /* print the task current state. */
1244 {
1245 int target_taskno = 0;
1246
1247 if (task_info->caller_task)
1248 {
1249 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1250 printf_filtered (_("State: Accepting rendezvous with %d"),
1251 target_taskno);
1252 }
1253 else if (task_info->called_task)
1254 {
1255 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1256 printf_filtered (_("State: Waiting on task %d's entry"),
1257 target_taskno);
1258 }
1259 else
1260 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1261
1262 if (target_taskno)
1263 {
1264 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1265
1266 if (target_task_info->name[0] != '\0')
1267 printf_filtered (" (%s)", target_task_info->name);
1268 }
1269
1270 printf_filtered ("\n");
1271 }
1272 }
1273
1274 /* If ARG is empty or null, then print a list of all Ada tasks.
1275 Otherwise, print detailed information about the task whose ID
1276 is ARG.
1277
1278 Does nothing if the program doesn't use Ada tasking. */
1279
1280 static void
1281 info_tasks_command (const char *arg, int from_tty)
1282 {
1283 struct ui_out *uiout = current_uiout;
1284
1285 if (arg == NULL || *arg == '\0')
1286 print_ada_task_info (uiout, NULL, current_inferior ());
1287 else
1288 info_task (uiout, arg, current_inferior ());
1289 }
1290
1291 /* Print a message telling the user id of the current task.
1292 This function assumes that tasking is in use in the inferior. */
1293
1294 static void
1295 display_current_task_id (void)
1296 {
1297 const int current_task = ada_get_task_number (inferior_thread ());
1298
1299 if (current_task == 0)
1300 printf_filtered (_("[Current task is unknown]\n"));
1301 else
1302 {
1303 struct ada_tasks_inferior_data *data
1304 = get_ada_tasks_inferior_data (current_inferior ());
1305 struct ada_task_info *task_info = &data->task_list[current_task - 1];
1306
1307 printf_filtered (_("[Current task is %s]\n"),
1308 task_to_str (current_task, task_info).c_str ());
1309 }
1310 }
1311
1312 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1313 that task. Print an error message if the task switch failed. */
1314
1315 static void
1316 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1317 {
1318 const int taskno = value_as_long (parse_and_eval (taskno_str));
1319 struct ada_task_info *task_info;
1320 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1321
1322 if (taskno <= 0 || taskno > data->task_list.size ())
1323 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1324 "see the IDs of currently known tasks"), taskno);
1325 task_info = &data->task_list[taskno - 1];
1326
1327 if (!ada_task_is_alive (task_info))
1328 error (_("Cannot switch to task %s: Task is no longer running"),
1329 task_to_str (taskno, task_info).c_str ());
1330
1331 /* On some platforms, the thread list is not updated until the user
1332 performs a thread-related operation (by using the "info threads"
1333 command, for instance). So this thread list may not be up to date
1334 when the user attempts this task switch. Since we cannot switch
1335 to the thread associated to our task if GDB does not know about
1336 that thread, we need to make sure that any new threads gets added
1337 to the thread list. */
1338 target_update_thread_list ();
1339
1340 /* Verify that the ptid of the task we want to switch to is valid
1341 (in other words, a ptid that GDB knows about). Otherwise, we will
1342 cause an assertion failure later on, when we try to determine
1343 the ptid associated thread_info data. We should normally never
1344 encounter such an error, but the wrong ptid can actually easily be
1345 computed if target_get_ada_task_ptid has not been implemented for
1346 our target (yet). Rather than cause an assertion error in that case,
1347 it's nicer for the user to just refuse to perform the task switch. */
1348 thread_info *tp = find_thread_ptid (inf, task_info->ptid);
1349 if (tp == NULL)
1350 error (_("Unable to compute thread ID for task %s.\n"
1351 "Cannot switch to this task."),
1352 task_to_str (taskno, task_info).c_str ());
1353
1354 switch_to_thread (tp);
1355 ada_find_printable_frame (get_selected_frame (NULL));
1356 printf_filtered (_("[Switching to task %s]\n"),
1357 task_to_str (taskno, task_info).c_str ());
1358 print_stack_frame (get_selected_frame (NULL),
1359 frame_relative_level (get_selected_frame (NULL)),
1360 SRC_AND_LOC, 1);
1361 }
1362
1363
1364 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1365 Otherwise, switch to the task indicated by TASKNO_STR. */
1366
1367 static void
1368 task_command (const char *taskno_str, int from_tty)
1369 {
1370 struct ui_out *uiout = current_uiout;
1371
1372 if (ada_build_task_list () == 0)
1373 {
1374 uiout->message (_("Your application does not use any Ada tasks.\n"));
1375 return;
1376 }
1377
1378 if (taskno_str == NULL || taskno_str[0] == '\0')
1379 display_current_task_id ();
1380 else
1381 task_command_1 (taskno_str, from_tty, current_inferior ());
1382 }
1383
1384 /* Indicate that the given inferior's task list may have changed,
1385 so invalidate the cache. */
1386
1387 static void
1388 ada_task_list_changed (struct inferior *inf)
1389 {
1390 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1391
1392 data->task_list_valid_p = false;
1393 }
1394
1395 /* Invalidate the per-program-space data. */
1396
1397 static void
1398 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1399 {
1400 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1401 }
1402
1403 /* Invalidate the per-inferior data. */
1404
1405 static void
1406 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1407 {
1408 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1409
1410 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1411 data->task_list_valid_p = false;
1412 }
1413
1414 /* The 'normal_stop' observer notification callback. */
1415
1416 static void
1417 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1418 {
1419 /* The inferior has been resumed, and just stopped. This means that
1420 our task_list needs to be recomputed before it can be used again. */
1421 ada_task_list_changed (current_inferior ());
1422 }
1423
1424 /* A routine to be called when the objfiles have changed. */
1425
1426 static void
1427 ada_tasks_new_objfile_observer (struct objfile *objfile)
1428 {
1429 struct inferior *inf;
1430
1431 /* Invalidate the relevant data in our program-space data. */
1432
1433 if (objfile == NULL)
1434 {
1435 /* All objfiles are being cleared, so we should clear all
1436 our caches for all program spaces. */
1437 for (struct program_space *pspace : program_spaces)
1438 ada_tasks_invalidate_pspace_data (pspace);
1439 }
1440 else
1441 {
1442 /* The associated program-space data might have changed after
1443 this objfile was added. Invalidate all cached data. */
1444 ada_tasks_invalidate_pspace_data (objfile->pspace);
1445 }
1446
1447 /* Invalidate the per-inferior cache for all inferiors using
1448 this objfile (or, in other words, for all inferiors who have
1449 the same program-space as the objfile's program space).
1450 If all objfiles are being cleared (OBJFILE is NULL), then
1451 clear the caches for all inferiors. */
1452
1453 for (inf = inferior_list; inf != NULL; inf = inf->next)
1454 if (objfile == NULL || inf->pspace == objfile->pspace)
1455 ada_tasks_invalidate_inferior_data (inf);
1456 }
1457
1458 void _initialize_tasks ();
1459 void
1460 _initialize_tasks ()
1461 {
1462 /* Attach various observers. */
1463 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer);
1464 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer);
1465
1466 /* Some new commands provided by this module. */
1467 add_info ("tasks", info_tasks_command,
1468 _("Provide information about all known Ada tasks."));
1469 add_cmd ("task", class_run, task_command,
1470 _("Use this command to switch between Ada tasks.\n\
1471 Without argument, this command simply prints the current task ID."),
1472 &cmdlist);
1473 }