]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-tasks.c
Allow "unlimited" abbreviations
[thirdparty/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2019 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 static int ada_build_task_list ();
30
31 /* The name of the array in the GNAT runtime where the Ada Task Control
32 Block of each task is stored. */
33 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
34
35 /* The maximum number of tasks known to the Ada runtime. */
36 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
37
38 /* The name of the variable in the GNAT runtime where the head of a task
39 chain is saved. This is an alternate mechanism to find the list of known
40 tasks. */
41 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
42
43 enum task_states
44 {
45 Unactivated,
46 Runnable,
47 Terminated,
48 Activator_Sleep,
49 Acceptor_Sleep,
50 Entry_Caller_Sleep,
51 Async_Select_Sleep,
52 Delay_Sleep,
53 Master_Completion_Sleep,
54 Master_Phase_2_Sleep,
55 Interrupt_Server_Idle_Sleep,
56 Interrupt_Server_Blocked_Interrupt_Sleep,
57 Timer_Server_Sleep,
58 AST_Server_Sleep,
59 Asynchronous_Hold,
60 Interrupt_Server_Blocked_On_Event_Flag,
61 Activating,
62 Acceptor_Delay_Sleep
63 };
64
65 /* A short description corresponding to each possible task state. */
66 static const char *task_states[] = {
67 N_("Unactivated"),
68 N_("Runnable"),
69 N_("Terminated"),
70 N_("Child Activation Wait"),
71 N_("Accept or Select Term"),
72 N_("Waiting on entry call"),
73 N_("Async Select Wait"),
74 N_("Delay Sleep"),
75 N_("Child Termination Wait"),
76 N_("Wait Child in Term Alt"),
77 "",
78 "",
79 "",
80 "",
81 N_("Asynchronous Hold"),
82 "",
83 N_("Activating"),
84 N_("Selective Wait")
85 };
86
87 /* A longer description corresponding to each possible task state. */
88 static const char *long_task_states[] = {
89 N_("Unactivated"),
90 N_("Runnable"),
91 N_("Terminated"),
92 N_("Waiting for child activation"),
93 N_("Blocked in accept or select with terminate"),
94 N_("Waiting on entry call"),
95 N_("Asynchronous Selective Wait"),
96 N_("Delay Sleep"),
97 N_("Waiting for children termination"),
98 N_("Waiting for children in terminate alternative"),
99 "",
100 "",
101 "",
102 "",
103 N_("Asynchronous Hold"),
104 "",
105 N_("Activating"),
106 N_("Blocked in selective wait statement")
107 };
108
109 /* The index of certain important fields in the Ada Task Control Block
110 record and sub-records. */
111
112 struct atcb_fieldnos
113 {
114 /* Fields in record Ada_Task_Control_Block. */
115 int common;
116 int entry_calls;
117 int atc_nesting_level;
118
119 /* Fields in record Common_ATCB. */
120 int state;
121 int parent;
122 int priority;
123 int image;
124 int image_len; /* This field may be missing. */
125 int activation_link;
126 int call;
127 int ll;
128 int base_cpu;
129
130 /* Fields in Task_Primitives.Private_Data. */
131 int ll_thread;
132 int ll_lwp; /* This field may be missing. */
133
134 /* Fields in Common_ATCB.Call.all. */
135 int call_self;
136 };
137
138 /* This module's per-program-space data. */
139
140 struct ada_tasks_pspace_data
141 {
142 /* Nonzero if the data has been initialized. If set to zero,
143 it means that the data has either not been initialized, or
144 has potentially become stale. */
145 int initialized_p = 0;
146
147 /* The ATCB record type. */
148 struct type *atcb_type = nullptr;
149
150 /* The ATCB "Common" component type. */
151 struct type *atcb_common_type = nullptr;
152
153 /* The type of the "ll" field, from the atcb_common_type. */
154 struct type *atcb_ll_type = nullptr;
155
156 /* The type of the "call" field, from the atcb_common_type. */
157 struct type *atcb_call_type = nullptr;
158
159 /* The index of various fields in the ATCB record and sub-records. */
160 struct atcb_fieldnos atcb_fieldno {};
161 };
162
163 /* Key to our per-program-space data. */
164 static const struct program_space_key<ada_tasks_pspace_data>
165 ada_tasks_pspace_data_handle;
166
167 /* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170 enum ada_known_tasks_kind
171 {
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195 };
196
197 /* This module's per-inferior data. */
198
199 struct ada_tasks_inferior_data
200 {
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr = 0;
217
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element = nullptr;
220
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length = 0;
223
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 bool task_list_valid_p = false;
228
229 /* The list of Ada tasks.
230
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 std::vector<ada_task_info> task_list;
237 };
238
239 /* Key to our per-inferior data. */
240 static const struct inferior_key<ada_tasks_inferior_data>
241 ada_tasks_inferior_data_handle;
242
243 /* Return the ada-tasks module's data for the given program space (PSPACE).
244 If none is found, add a zero'ed one now.
245
246 This function always returns a valid object. */
247
248 static struct ada_tasks_pspace_data *
249 get_ada_tasks_pspace_data (struct program_space *pspace)
250 {
251 struct ada_tasks_pspace_data *data;
252
253 data = ada_tasks_pspace_data_handle.get (pspace);
254 if (data == NULL)
255 data = ada_tasks_pspace_data_handle.emplace (pspace);
256
257 return data;
258 }
259
260 /* Return the ada-tasks module's data for the given inferior (INF).
261 If none is found, add a zero'ed one now.
262
263 This function always returns a valid object.
264
265 Note that we could use an observer of the inferior-created event
266 to make sure that the ada-tasks per-inferior data always exists.
267 But we prefered this approach, as it avoids this entirely as long
268 as the user does not use any of the tasking features. This is
269 quite possible, particularly in the case where the inferior does
270 not use tasking. */
271
272 static struct ada_tasks_inferior_data *
273 get_ada_tasks_inferior_data (struct inferior *inf)
274 {
275 struct ada_tasks_inferior_data *data;
276
277 data = ada_tasks_inferior_data_handle.get (inf);
278 if (data == NULL)
279 data = ada_tasks_inferior_data_handle.emplace (inf);
280
281 return data;
282 }
283
284 /* Return the task number of the task whose thread is THREAD, or zero
285 if the task could not be found. */
286
287 int
288 ada_get_task_number (thread_info *thread)
289 {
290 struct inferior *inf = thread->inf;
291 struct ada_tasks_inferior_data *data;
292
293 gdb_assert (inf != NULL);
294 data = get_ada_tasks_inferior_data (inf);
295
296 for (int i = 0; i < data->task_list.size (); i++)
297 if (data->task_list[i].ptid == thread->ptid)
298 return i + 1;
299
300 return 0; /* No matching task found. */
301 }
302
303 /* Return the task number of the task running in inferior INF which
304 matches TASK_ID , or zero if the task could not be found. */
305
306 static int
307 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
308 {
309 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
310
311 for (int i = 0; i < data->task_list.size (); i++)
312 {
313 if (data->task_list[i].task_id == task_id)
314 return i + 1;
315 }
316
317 /* Task not found. Return 0. */
318 return 0;
319 }
320
321 /* Return non-zero if TASK_NUM is a valid task number. */
322
323 int
324 valid_task_id (int task_num)
325 {
326 struct ada_tasks_inferior_data *data;
327
328 ada_build_task_list ();
329 data = get_ada_tasks_inferior_data (current_inferior ());
330 return task_num > 0 && task_num <= data->task_list.size ();
331 }
332
333 /* Return non-zero iff the task STATE corresponds to a non-terminated
334 task state. */
335
336 static int
337 ada_task_is_alive (struct ada_task_info *task_info)
338 {
339 return (task_info->state != Terminated);
340 }
341
342 /* Search through the list of known tasks for the one whose ptid is
343 PTID, and return it. Return NULL if the task was not found. */
344
345 struct ada_task_info *
346 ada_get_task_info_from_ptid (ptid_t ptid)
347 {
348 struct ada_tasks_inferior_data *data;
349
350 ada_build_task_list ();
351 data = get_ada_tasks_inferior_data (current_inferior ());
352
353 for (ada_task_info &task : data->task_list)
354 {
355 if (task.ptid == ptid)
356 return &task;
357 }
358
359 return NULL;
360 }
361
362 /* Call the ITERATOR function once for each Ada task that hasn't been
363 terminated yet. */
364
365 void
366 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
367 {
368 struct ada_tasks_inferior_data *data;
369
370 ada_build_task_list ();
371 data = get_ada_tasks_inferior_data (current_inferior ());
372
373 for (ada_task_info &task : data->task_list)
374 {
375 if (!ada_task_is_alive (&task))
376 continue;
377 iterator (&task);
378 }
379 }
380
381 /* Extract the contents of the value as a string whose length is LENGTH,
382 and store the result in DEST. */
383
384 static void
385 value_as_string (char *dest, struct value *val, int length)
386 {
387 memcpy (dest, value_contents (val), length);
388 dest[length] = '\0';
389 }
390
391 /* Extract the string image from the fat string corresponding to VAL,
392 and store it in DEST. If the string length is greater than MAX_LEN,
393 then truncate the result to the first MAX_LEN characters of the fat
394 string. */
395
396 static void
397 read_fat_string_value (char *dest, struct value *val, int max_len)
398 {
399 struct value *array_val;
400 struct value *bounds_val;
401 int len;
402
403 /* The following variables are made static to avoid recomputing them
404 each time this function is called. */
405 static int initialize_fieldnos = 1;
406 static int array_fieldno;
407 static int bounds_fieldno;
408 static int upper_bound_fieldno;
409
410 /* Get the index of the fields that we will need to read in order
411 to extract the string from the fat string. */
412 if (initialize_fieldnos)
413 {
414 struct type *type = value_type (val);
415 struct type *bounds_type;
416
417 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
418 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
419
420 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
421 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
422 bounds_type = TYPE_TARGET_TYPE (bounds_type);
423 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
424 error (_("Unknown task name format. Aborting"));
425 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
426
427 initialize_fieldnos = 0;
428 }
429
430 /* Get the size of the task image by checking the value of the bounds.
431 The lower bound is always 1, so we only need to read the upper bound. */
432 bounds_val = value_ind (value_field (val, bounds_fieldno));
433 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
434
435 /* Make sure that we do not read more than max_len characters... */
436 if (len > max_len)
437 len = max_len;
438
439 /* Extract LEN characters from the fat string. */
440 array_val = value_ind (value_field (val, array_fieldno));
441 read_memory (value_address (array_val), (gdb_byte *) dest, len);
442
443 /* Add the NUL character to close the string. */
444 dest[len] = '\0';
445 }
446
447 /* Get, from the debugging information, the type description of all types
448 related to the Ada Task Control Block that are needed in order to
449 read the list of known tasks in the Ada runtime. If all of the info
450 needed to do so is found, then save that info in the module's per-
451 program-space data, and return NULL. Otherwise, if any information
452 cannot be found, leave the per-program-space data untouched, and
453 return an error message explaining what was missing (that error
454 message does NOT need to be deallocated). */
455
456 const char *
457 ada_get_tcb_types_info (void)
458 {
459 struct type *type;
460 struct type *common_type;
461 struct type *ll_type;
462 struct type *call_type;
463 struct atcb_fieldnos fieldnos;
464 struct ada_tasks_pspace_data *pspace_data;
465
466 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
467 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
468 const char *common_atcb_name = "system__tasking__common_atcb";
469 const char *private_data_name = "system__task_primitives__private_data";
470 const char *entry_call_record_name = "system__tasking__entry_call_record";
471
472 /* ATCB symbols may be found in several compilation units. As we
473 are only interested in one instance, use standard (literal,
474 C-like) lookups to get the first match. */
475
476 struct symbol *atcb_sym =
477 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
478 language_c, NULL).symbol;
479 const struct symbol *common_atcb_sym =
480 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
481 language_c, NULL).symbol;
482 const struct symbol *private_data_sym =
483 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
484 language_c, NULL).symbol;
485 const struct symbol *entry_call_record_sym =
486 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
487 language_c, NULL).symbol;
488
489 if (atcb_sym == NULL || atcb_sym->type == NULL)
490 {
491 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
492 size, so the symbol name differs. */
493 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
494 STRUCT_DOMAIN, language_c,
495 NULL).symbol;
496
497 if (atcb_sym == NULL || atcb_sym->type == NULL)
498 return _("Cannot find Ada_Task_Control_Block type");
499
500 type = atcb_sym->type;
501 }
502 else
503 {
504 /* Get a static representation of the type record
505 Ada_Task_Control_Block. */
506 type = atcb_sym->type;
507 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
508 }
509
510 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
511 return _("Cannot find Common_ATCB type");
512 if (private_data_sym == NULL || private_data_sym->type == NULL)
513 return _("Cannot find Private_Data type");
514 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
515 return _("Cannot find Entry_Call_Record type");
516
517 /* Get the type for Ada_Task_Control_Block.Common. */
518 common_type = common_atcb_sym->type;
519
520 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
521 ll_type = private_data_sym->type;
522
523 /* Get the type for Common_ATCB.Call.all. */
524 call_type = entry_call_record_sym->type;
525
526 /* Get the field indices. */
527 fieldnos.common = ada_get_field_index (type, "common", 0);
528 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
529 fieldnos.atc_nesting_level =
530 ada_get_field_index (type, "atc_nesting_level", 1);
531 fieldnos.state = ada_get_field_index (common_type, "state", 0);
532 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
533 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
534 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
535 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
536 fieldnos.activation_link = ada_get_field_index (common_type,
537 "activation_link", 1);
538 fieldnos.call = ada_get_field_index (common_type, "call", 1);
539 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
540 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
541 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
542 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
543 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
544
545 /* On certain platforms such as x86-windows, the "lwp" field has been
546 named "thread_id". This field will likely be renamed in the future,
547 but we need to support both possibilities to avoid an unnecessary
548 dependency on a recent compiler. We therefore try locating the
549 "thread_id" field in place of the "lwp" field if we did not find
550 the latter. */
551 if (fieldnos.ll_lwp < 0)
552 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
553
554 /* Set all the out parameters all at once, now that we are certain
555 that there are no potential error() anymore. */
556 pspace_data = get_ada_tasks_pspace_data (current_program_space);
557 pspace_data->initialized_p = 1;
558 pspace_data->atcb_type = type;
559 pspace_data->atcb_common_type = common_type;
560 pspace_data->atcb_ll_type = ll_type;
561 pspace_data->atcb_call_type = call_type;
562 pspace_data->atcb_fieldno = fieldnos;
563 return NULL;
564 }
565
566 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
567 component of its ATCB record. This PTID needs to match the PTID used
568 by the thread layer. */
569
570 static ptid_t
571 ptid_from_atcb_common (struct value *common_value)
572 {
573 long thread = 0;
574 CORE_ADDR lwp = 0;
575 struct value *ll_value;
576 ptid_t ptid;
577 const struct ada_tasks_pspace_data *pspace_data
578 = get_ada_tasks_pspace_data (current_program_space);
579
580 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
581
582 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
583 lwp = value_as_address (value_field (ll_value,
584 pspace_data->atcb_fieldno.ll_lwp));
585 thread = value_as_long (value_field (ll_value,
586 pspace_data->atcb_fieldno.ll_thread));
587
588 ptid = target_get_ada_task_ptid (lwp, thread);
589
590 return ptid;
591 }
592
593 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
594 the address of its assocated ATCB record), and store the result inside
595 TASK_INFO. */
596
597 static void
598 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
599 {
600 struct value *tcb_value;
601 struct value *common_value;
602 struct value *atc_nesting_level_value;
603 struct value *entry_calls_value;
604 struct value *entry_calls_value_element;
605 int called_task_fieldno = -1;
606 static const char ravenscar_task_name[] = "Ravenscar task";
607 const struct ada_tasks_pspace_data *pspace_data
608 = get_ada_tasks_pspace_data (current_program_space);
609
610 /* Clear the whole structure to start with, so that everything
611 is always initialized the same. */
612 memset (task_info, 0, sizeof (struct ada_task_info));
613
614 if (!pspace_data->initialized_p)
615 {
616 const char *err_msg = ada_get_tcb_types_info ();
617
618 if (err_msg != NULL)
619 error (_("%s. Aborting"), err_msg);
620 }
621
622 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
623 NULL, task_id);
624 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
625
626 /* Fill in the task_id. */
627
628 task_info->task_id = task_id;
629
630 /* Compute the name of the task.
631
632 Depending on the GNAT version used, the task image is either a fat
633 string, or a thin array of characters. Older versions of GNAT used
634 to use fat strings, and therefore did not need an extra field in
635 the ATCB to store the string length. For efficiency reasons, newer
636 versions of GNAT replaced the fat string by a static buffer, but this
637 also required the addition of a new field named "Image_Len" containing
638 the length of the task name. The method used to extract the task name
639 is selected depending on the existence of this field.
640
641 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
642 we may want to get it from the first user frame of the stack. For now,
643 we just give a dummy name. */
644
645 if (pspace_data->atcb_fieldno.image_len == -1)
646 {
647 if (pspace_data->atcb_fieldno.image >= 0)
648 read_fat_string_value (task_info->name,
649 value_field (common_value,
650 pspace_data->atcb_fieldno.image),
651 sizeof (task_info->name) - 1);
652 else
653 {
654 struct bound_minimal_symbol msym;
655
656 msym = lookup_minimal_symbol_by_pc (task_id);
657 if (msym.minsym)
658 {
659 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
660 const char *task_name = full_name;
661 const char *p;
662
663 /* Strip the prefix. */
664 for (p = full_name; *p; p++)
665 if (p[0] == '_' && p[1] == '_')
666 task_name = p + 2;
667
668 /* Copy the task name. */
669 strncpy (task_info->name, task_name, sizeof (task_info->name));
670 task_info->name[sizeof (task_info->name) - 1] = 0;
671 }
672 else
673 {
674 /* No symbol found. Use a default name. */
675 strcpy (task_info->name, ravenscar_task_name);
676 }
677 }
678 }
679 else
680 {
681 int len = value_as_long
682 (value_field (common_value,
683 pspace_data->atcb_fieldno.image_len));
684
685 value_as_string (task_info->name,
686 value_field (common_value,
687 pspace_data->atcb_fieldno.image),
688 len);
689 }
690
691 /* Compute the task state and priority. */
692
693 task_info->state =
694 value_as_long (value_field (common_value,
695 pspace_data->atcb_fieldno.state));
696 task_info->priority =
697 value_as_long (value_field (common_value,
698 pspace_data->atcb_fieldno.priority));
699
700 /* If the ATCB contains some information about the parent task,
701 then compute it as well. Otherwise, zero. */
702
703 if (pspace_data->atcb_fieldno.parent >= 0)
704 task_info->parent =
705 value_as_address (value_field (common_value,
706 pspace_data->atcb_fieldno.parent));
707
708 /* If the task is in an entry call waiting for another task,
709 then determine which task it is. */
710
711 if (task_info->state == Entry_Caller_Sleep
712 && pspace_data->atcb_fieldno.atc_nesting_level > 0
713 && pspace_data->atcb_fieldno.entry_calls > 0)
714 {
715 /* Let My_ATCB be the Ada task control block of a task calling the
716 entry of another task; then the Task_Id of the called task is
717 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
718 atc_nesting_level_value =
719 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
720 entry_calls_value =
721 ada_coerce_to_simple_array_ptr
722 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
723 entry_calls_value_element =
724 value_subscript (entry_calls_value,
725 value_as_long (atc_nesting_level_value));
726 called_task_fieldno =
727 ada_get_field_index (value_type (entry_calls_value_element),
728 "called_task", 0);
729 task_info->called_task =
730 value_as_address (value_field (entry_calls_value_element,
731 called_task_fieldno));
732 }
733
734 /* If the ATCB cotnains some information about RV callers, then
735 compute the "caller_task". Otherwise, leave it as zero. */
736
737 if (pspace_data->atcb_fieldno.call >= 0)
738 {
739 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
740 If Common_ATCB.Call is null, then there is no caller. */
741 const CORE_ADDR call =
742 value_as_address (value_field (common_value,
743 pspace_data->atcb_fieldno.call));
744 struct value *call_val;
745
746 if (call != 0)
747 {
748 call_val =
749 value_from_contents_and_address (pspace_data->atcb_call_type,
750 NULL, call);
751 task_info->caller_task =
752 value_as_address
753 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
754 }
755 }
756
757 task_info->base_cpu
758 = value_as_long (value_field (common_value,
759 pspace_data->atcb_fieldno.base_cpu));
760
761 /* And finally, compute the task ptid. Note that there is not point
762 in computing it if the task is no longer alive, in which case
763 it is good enough to set its ptid to the null_ptid. */
764 if (ada_task_is_alive (task_info))
765 task_info->ptid = ptid_from_atcb_common (common_value);
766 else
767 task_info->ptid = null_ptid;
768 }
769
770 /* Read the ATCB info of the given task (identified by TASK_ID), and
771 add the result to the given inferior's TASK_LIST. */
772
773 static void
774 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
775 {
776 struct ada_task_info task_info;
777 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
778
779 read_atcb (task_id, &task_info);
780 data->task_list.push_back (task_info);
781 }
782
783 /* Read the Known_Tasks array from the inferior memory, and store
784 it in the current inferior's TASK_LIST. Return true upon success. */
785
786 static bool
787 read_known_tasks_array (struct ada_tasks_inferior_data *data)
788 {
789 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
790 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
791 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
792 int i;
793
794 /* Build a new list by reading the ATCBs from the Known_Tasks array
795 in the Ada runtime. */
796 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
797 for (i = 0; i < data->known_tasks_length; i++)
798 {
799 CORE_ADDR task_id =
800 extract_typed_address (known_tasks + i * target_ptr_byte,
801 data->known_tasks_element);
802
803 if (task_id != 0)
804 add_ada_task (task_id, current_inferior ());
805 }
806
807 return true;
808 }
809
810 /* Read the known tasks from the inferior memory, and store it in
811 the current inferior's TASK_LIST. Return true upon success. */
812
813 static bool
814 read_known_tasks_list (struct ada_tasks_inferior_data *data)
815 {
816 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
817 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
818 CORE_ADDR task_id;
819 const struct ada_tasks_pspace_data *pspace_data
820 = get_ada_tasks_pspace_data (current_program_space);
821
822 /* Sanity check. */
823 if (pspace_data->atcb_fieldno.activation_link < 0)
824 return false;
825
826 /* Build a new list by reading the ATCBs. Read head of the list. */
827 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
828 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
829 while (task_id != 0)
830 {
831 struct value *tcb_value;
832 struct value *common_value;
833
834 add_ada_task (task_id, current_inferior ());
835
836 /* Read the chain. */
837 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
838 NULL, task_id);
839 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
840 task_id = value_as_address
841 (value_field (common_value,
842 pspace_data->atcb_fieldno.activation_link));
843 }
844
845 return true;
846 }
847
848 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
849 Do nothing if those fields are already set and still up to date. */
850
851 static void
852 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
853 {
854 struct bound_minimal_symbol msym;
855 struct symbol *sym;
856
857 /* Return now if already set. */
858 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
859 return;
860
861 /* Try array. */
862
863 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
864 if (msym.minsym != NULL)
865 {
866 data->known_tasks_kind = ADA_TASKS_ARRAY;
867 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
868
869 /* Try to get pointer type and array length from the symtab. */
870 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
871 language_c, NULL).symbol;
872 if (sym != NULL)
873 {
874 /* Validate. */
875 struct type *type = check_typedef (SYMBOL_TYPE (sym));
876 struct type *eltype = NULL;
877 struct type *idxtype = NULL;
878
879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
880 eltype = check_typedef (TYPE_TARGET_TYPE (type));
881 if (eltype != NULL
882 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
883 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
884 if (idxtype != NULL
885 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
886 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
887 {
888 data->known_tasks_element = eltype;
889 data->known_tasks_length =
890 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
891 return;
892 }
893 }
894
895 /* Fallback to default values. The runtime may have been stripped (as
896 in some distributions), but it is likely that the executable still
897 contains debug information on the task type (due to implicit with of
898 Ada.Tasking). */
899 data->known_tasks_element =
900 builtin_type (target_gdbarch ())->builtin_data_ptr;
901 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
902 return;
903 }
904
905
906 /* Try list. */
907
908 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
909 if (msym.minsym != NULL)
910 {
911 data->known_tasks_kind = ADA_TASKS_LIST;
912 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
913 data->known_tasks_length = 1;
914
915 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
916 language_c, NULL).symbol;
917 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
918 {
919 /* Validate. */
920 struct type *type = check_typedef (SYMBOL_TYPE (sym));
921
922 if (TYPE_CODE (type) == TYPE_CODE_PTR)
923 {
924 data->known_tasks_element = type;
925 return;
926 }
927 }
928
929 /* Fallback to default values. */
930 data->known_tasks_element =
931 builtin_type (target_gdbarch ())->builtin_data_ptr;
932 data->known_tasks_length = 1;
933 return;
934 }
935
936 /* Can't find tasks. */
937
938 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
939 data->known_tasks_addr = 0;
940 }
941
942 /* Read the known tasks from the current inferior's memory, and store it
943 in the current inferior's data TASK_LIST. */
944
945 static void
946 read_known_tasks ()
947 {
948 struct ada_tasks_inferior_data *data =
949 get_ada_tasks_inferior_data (current_inferior ());
950
951 /* Step 1: Clear the current list, if necessary. */
952 data->task_list.clear ();
953
954 /* Step 2: do the real work.
955 If the application does not use task, then no more needs to be done.
956 It is important to have the task list cleared (see above) before we
957 return, as we don't want a stale task list to be used... This can
958 happen for instance when debugging a non-multitasking program after
959 having debugged a multitasking one. */
960 ada_tasks_inferior_data_sniffer (data);
961 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
962
963 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
964 array unless needed. */
965 switch (data->known_tasks_kind)
966 {
967 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
968 break;
969 case ADA_TASKS_ARRAY:
970 data->task_list_valid_p = read_known_tasks_array (data);
971 break;
972 case ADA_TASKS_LIST:
973 data->task_list_valid_p = read_known_tasks_list (data);
974 break;
975 }
976 }
977
978 /* Build the task_list by reading the Known_Tasks array from
979 the inferior, and return the number of tasks in that list
980 (zero means that the program is not using tasking at all). */
981
982 static int
983 ada_build_task_list ()
984 {
985 struct ada_tasks_inferior_data *data;
986
987 if (!target_has_stack)
988 error (_("Cannot inspect Ada tasks when program is not running"));
989
990 data = get_ada_tasks_inferior_data (current_inferior ());
991 if (!data->task_list_valid_p)
992 read_known_tasks ();
993
994 return data->task_list.size ();
995 }
996
997 /* Print a table providing a short description of all Ada tasks
998 running inside inferior INF. If ARG_STR is set, it will be
999 interpreted as a task number, and the table will be limited to
1000 that task only. */
1001
1002 void
1003 print_ada_task_info (struct ui_out *uiout,
1004 const char *arg_str,
1005 struct inferior *inf)
1006 {
1007 struct ada_tasks_inferior_data *data;
1008 int taskno, nb_tasks;
1009 int taskno_arg = 0;
1010 int nb_columns;
1011
1012 if (ada_build_task_list () == 0)
1013 {
1014 uiout->message (_("Your application does not use any Ada tasks.\n"));
1015 return;
1016 }
1017
1018 if (arg_str != NULL && arg_str[0] != '\0')
1019 taskno_arg = value_as_long (parse_and_eval (arg_str));
1020
1021 if (uiout->is_mi_like_p ())
1022 /* In GDB/MI mode, we want to provide the thread ID corresponding
1023 to each task. This allows clients to quickly find the thread
1024 associated to any task, which is helpful for commands that
1025 take a --thread argument. However, in order to be able to
1026 provide that thread ID, the thread list must be up to date
1027 first. */
1028 target_update_thread_list ();
1029
1030 data = get_ada_tasks_inferior_data (inf);
1031
1032 /* Compute the number of tasks that are going to be displayed
1033 in the output. If an argument was given, there will be
1034 at most 1 entry. Otherwise, there will be as many entries
1035 as we have tasks. */
1036 if (taskno_arg)
1037 {
1038 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1039 nb_tasks = 1;
1040 else
1041 nb_tasks = 0;
1042 }
1043 else
1044 nb_tasks = data->task_list.size ();
1045
1046 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1047 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1048 uiout->table_header (1, ui_left, "current", "");
1049 uiout->table_header (3, ui_right, "id", "ID");
1050 uiout->table_header (9, ui_right, "task-id", "TID");
1051 /* The following column is provided in GDB/MI mode only because
1052 it is only really useful in that mode, and also because it
1053 allows us to keep the CLI output shorter and more compact. */
1054 if (uiout->is_mi_like_p ())
1055 uiout->table_header (4, ui_right, "thread-id", "");
1056 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1057 uiout->table_header (3, ui_right, "priority", "Pri");
1058 uiout->table_header (22, ui_left, "state", "State");
1059 /* Use ui_noalign for the last column, to prevent the CLI uiout
1060 from printing an extra space at the end of each row. This
1061 is a bit of a hack, but does get the job done. */
1062 uiout->table_header (1, ui_noalign, "name", "Name");
1063 uiout->table_body ();
1064
1065 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1066 {
1067 const struct ada_task_info *const task_info =
1068 &data->task_list[taskno - 1];
1069 int parent_id;
1070
1071 gdb_assert (task_info != NULL);
1072
1073 /* If the user asked for the output to be restricted
1074 to one task only, and this is not the task, skip
1075 to the next one. */
1076 if (taskno_arg && taskno != taskno_arg)
1077 continue;
1078
1079 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1080
1081 /* Print a star if this task is the current task (or the task
1082 currently selected). */
1083 if (task_info->ptid == inferior_ptid)
1084 uiout->field_string ("current", "*");
1085 else
1086 uiout->field_skip ("current");
1087
1088 /* Print the task number. */
1089 uiout->field_int ("id", taskno);
1090
1091 /* Print the Task ID. */
1092 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1093
1094 /* Print the associated Thread ID. */
1095 if (uiout->is_mi_like_p ())
1096 {
1097 thread_info *thread = find_thread_ptid (task_info->ptid);
1098
1099 if (thread != NULL)
1100 uiout->field_int ("thread-id", thread->global_num);
1101 else
1102 /* This should never happen unless there is a bug somewhere,
1103 but be resilient when that happens. */
1104 uiout->field_skip ("thread-id");
1105 }
1106
1107 /* Print the ID of the parent task. */
1108 parent_id = get_task_number_from_id (task_info->parent, inf);
1109 if (parent_id)
1110 uiout->field_int ("parent-id", parent_id);
1111 else
1112 uiout->field_skip ("parent-id");
1113
1114 /* Print the base priority of the task. */
1115 uiout->field_int ("priority", task_info->priority);
1116
1117 /* Print the task current state. */
1118 if (task_info->caller_task)
1119 uiout->field_fmt ("state",
1120 _("Accepting RV with %-4d"),
1121 get_task_number_from_id (task_info->caller_task,
1122 inf));
1123 else if (task_info->called_task)
1124 uiout->field_fmt ("state",
1125 _("Waiting on RV with %-3d"),
1126 get_task_number_from_id (task_info->called_task,
1127 inf));
1128 else
1129 uiout->field_string ("state", task_states[task_info->state]);
1130
1131 /* Finally, print the task name. */
1132 uiout->field_fmt ("name",
1133 "%s",
1134 task_info->name[0] != '\0' ? task_info->name
1135 : _("<no name>"));
1136
1137 uiout->text ("\n");
1138 }
1139 }
1140
1141 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1142 for the given inferior (INF). */
1143
1144 static void
1145 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1146 {
1147 const int taskno = value_as_long (parse_and_eval (taskno_str));
1148 struct ada_task_info *task_info;
1149 int parent_taskno = 0;
1150 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1151
1152 if (ada_build_task_list () == 0)
1153 {
1154 uiout->message (_("Your application does not use any Ada tasks.\n"));
1155 return;
1156 }
1157
1158 if (taskno <= 0 || taskno > data->task_list.size ())
1159 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1160 "see the IDs of currently known tasks"), taskno);
1161 task_info = &data->task_list[taskno - 1];
1162
1163 /* Print the Ada task ID. */
1164 printf_filtered (_("Ada Task: %s\n"),
1165 paddress (target_gdbarch (), task_info->task_id));
1166
1167 /* Print the name of the task. */
1168 if (task_info->name[0] != '\0')
1169 printf_filtered (_("Name: %s\n"), task_info->name);
1170 else
1171 printf_filtered (_("<no name>\n"));
1172
1173 /* Print the TID and LWP. */
1174 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1175 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1176
1177 /* If set, print the base CPU. */
1178 if (task_info->base_cpu != 0)
1179 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1180
1181 /* Print who is the parent (if any). */
1182 if (task_info->parent != 0)
1183 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1184 if (parent_taskno)
1185 {
1186 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1187
1188 printf_filtered (_("Parent: %d"), parent_taskno);
1189 if (parent->name[0] != '\0')
1190 printf_filtered (" (%s)", parent->name);
1191 printf_filtered ("\n");
1192 }
1193 else
1194 printf_filtered (_("No parent\n"));
1195
1196 /* Print the base priority. */
1197 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1198
1199 /* print the task current state. */
1200 {
1201 int target_taskno = 0;
1202
1203 if (task_info->caller_task)
1204 {
1205 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1206 printf_filtered (_("State: Accepting rendezvous with %d"),
1207 target_taskno);
1208 }
1209 else if (task_info->called_task)
1210 {
1211 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1212 printf_filtered (_("State: Waiting on task %d's entry"),
1213 target_taskno);
1214 }
1215 else
1216 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1217
1218 if (target_taskno)
1219 {
1220 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1221
1222 if (target_task_info->name[0] != '\0')
1223 printf_filtered (" (%s)", target_task_info->name);
1224 }
1225
1226 printf_filtered ("\n");
1227 }
1228 }
1229
1230 /* If ARG is empty or null, then print a list of all Ada tasks.
1231 Otherwise, print detailed information about the task whose ID
1232 is ARG.
1233
1234 Does nothing if the program doesn't use Ada tasking. */
1235
1236 static void
1237 info_tasks_command (const char *arg, int from_tty)
1238 {
1239 struct ui_out *uiout = current_uiout;
1240
1241 if (arg == NULL || *arg == '\0')
1242 print_ada_task_info (uiout, NULL, current_inferior ());
1243 else
1244 info_task (uiout, arg, current_inferior ());
1245 }
1246
1247 /* Print a message telling the user id of the current task.
1248 This function assumes that tasking is in use in the inferior. */
1249
1250 static void
1251 display_current_task_id (void)
1252 {
1253 const int current_task = ada_get_task_number (inferior_thread ());
1254
1255 if (current_task == 0)
1256 printf_filtered (_("[Current task is unknown]\n"));
1257 else
1258 printf_filtered (_("[Current task is %d]\n"), current_task);
1259 }
1260
1261 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1262 that task. Print an error message if the task switch failed. */
1263
1264 static void
1265 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1266 {
1267 const int taskno = value_as_long (parse_and_eval (taskno_str));
1268 struct ada_task_info *task_info;
1269 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1270
1271 if (taskno <= 0 || taskno > data->task_list.size ())
1272 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1273 "see the IDs of currently known tasks"), taskno);
1274 task_info = &data->task_list[taskno - 1];
1275
1276 if (!ada_task_is_alive (task_info))
1277 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1278
1279 /* On some platforms, the thread list is not updated until the user
1280 performs a thread-related operation (by using the "info threads"
1281 command, for instance). So this thread list may not be up to date
1282 when the user attempts this task switch. Since we cannot switch
1283 to the thread associated to our task if GDB does not know about
1284 that thread, we need to make sure that any new threads gets added
1285 to the thread list. */
1286 target_update_thread_list ();
1287
1288 /* Verify that the ptid of the task we want to switch to is valid
1289 (in other words, a ptid that GDB knows about). Otherwise, we will
1290 cause an assertion failure later on, when we try to determine
1291 the ptid associated thread_info data. We should normally never
1292 encounter such an error, but the wrong ptid can actually easily be
1293 computed if target_get_ada_task_ptid has not been implemented for
1294 our target (yet). Rather than cause an assertion error in that case,
1295 it's nicer for the user to just refuse to perform the task switch. */
1296 thread_info *tp = find_thread_ptid (task_info->ptid);
1297 if (tp == NULL)
1298 error (_("Unable to compute thread ID for task %d.\n"
1299 "Cannot switch to this task."),
1300 taskno);
1301
1302 switch_to_thread (tp);
1303 ada_find_printable_frame (get_selected_frame (NULL));
1304 printf_filtered (_("[Switching to task %d]\n"), taskno);
1305 print_stack_frame (get_selected_frame (NULL),
1306 frame_relative_level (get_selected_frame (NULL)),
1307 SRC_AND_LOC, 1);
1308 }
1309
1310
1311 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1312 Otherwise, switch to the task indicated by TASKNO_STR. */
1313
1314 static void
1315 task_command (const char *taskno_str, int from_tty)
1316 {
1317 struct ui_out *uiout = current_uiout;
1318
1319 if (ada_build_task_list () == 0)
1320 {
1321 uiout->message (_("Your application does not use any Ada tasks.\n"));
1322 return;
1323 }
1324
1325 if (taskno_str == NULL || taskno_str[0] == '\0')
1326 display_current_task_id ();
1327 else
1328 task_command_1 (taskno_str, from_tty, current_inferior ());
1329 }
1330
1331 /* Indicate that the given inferior's task list may have changed,
1332 so invalidate the cache. */
1333
1334 static void
1335 ada_task_list_changed (struct inferior *inf)
1336 {
1337 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1338
1339 data->task_list_valid_p = false;
1340 }
1341
1342 /* Invalidate the per-program-space data. */
1343
1344 static void
1345 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1346 {
1347 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1348 }
1349
1350 /* Invalidate the per-inferior data. */
1351
1352 static void
1353 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1354 {
1355 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1356
1357 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1358 data->task_list_valid_p = false;
1359 }
1360
1361 /* The 'normal_stop' observer notification callback. */
1362
1363 static void
1364 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1365 {
1366 /* The inferior has been resumed, and just stopped. This means that
1367 our task_list needs to be recomputed before it can be used again. */
1368 ada_task_list_changed (current_inferior ());
1369 }
1370
1371 /* A routine to be called when the objfiles have changed. */
1372
1373 static void
1374 ada_tasks_new_objfile_observer (struct objfile *objfile)
1375 {
1376 struct inferior *inf;
1377
1378 /* Invalidate the relevant data in our program-space data. */
1379
1380 if (objfile == NULL)
1381 {
1382 /* All objfiles are being cleared, so we should clear all
1383 our caches for all program spaces. */
1384 struct program_space *pspace;
1385
1386 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1387 ada_tasks_invalidate_pspace_data (pspace);
1388 }
1389 else
1390 {
1391 /* The associated program-space data might have changed after
1392 this objfile was added. Invalidate all cached data. */
1393 ada_tasks_invalidate_pspace_data (objfile->pspace);
1394 }
1395
1396 /* Invalidate the per-inferior cache for all inferiors using
1397 this objfile (or, in other words, for all inferiors who have
1398 the same program-space as the objfile's program space).
1399 If all objfiles are being cleared (OBJFILE is NULL), then
1400 clear the caches for all inferiors. */
1401
1402 for (inf = inferior_list; inf != NULL; inf = inf->next)
1403 if (objfile == NULL || inf->pspace == objfile->pspace)
1404 ada_tasks_invalidate_inferior_data (inf);
1405 }
1406
1407 void
1408 _initialize_tasks (void)
1409 {
1410 /* Attach various observers. */
1411 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer);
1412 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer);
1413
1414 /* Some new commands provided by this module. */
1415 add_info ("tasks", info_tasks_command,
1416 _("Provide information about all known Ada tasks"));
1417 add_cmd ("task", class_run, task_command,
1418 _("Use this command to switch between Ada tasks.\n\
1419 Without argument, this command simply prints the current task ID"),
1420 &cmdlist);
1421 }