]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-tasks.c
Change macro_source_fullname to return a std::string
[thirdparty/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2019 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 /* The name of the array in the GNAT runtime where the Ada Task Control
30 Block of each task is stored. */
31 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
32
33 /* The maximum number of tasks known to the Ada runtime. */
34 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
35
36 /* The name of the variable in the GNAT runtime where the head of a task
37 chain is saved. This is an alternate mechanism to find the list of known
38 tasks. */
39 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
40
41 enum task_states
42 {
43 Unactivated,
44 Runnable,
45 Terminated,
46 Activator_Sleep,
47 Acceptor_Sleep,
48 Entry_Caller_Sleep,
49 Async_Select_Sleep,
50 Delay_Sleep,
51 Master_Completion_Sleep,
52 Master_Phase_2_Sleep,
53 Interrupt_Server_Idle_Sleep,
54 Interrupt_Server_Blocked_Interrupt_Sleep,
55 Timer_Server_Sleep,
56 AST_Server_Sleep,
57 Asynchronous_Hold,
58 Interrupt_Server_Blocked_On_Event_Flag,
59 Activating,
60 Acceptor_Delay_Sleep
61 };
62
63 /* A short description corresponding to each possible task state. */
64 static const char *task_states[] = {
65 N_("Unactivated"),
66 N_("Runnable"),
67 N_("Terminated"),
68 N_("Child Activation Wait"),
69 N_("Accept or Select Term"),
70 N_("Waiting on entry call"),
71 N_("Async Select Wait"),
72 N_("Delay Sleep"),
73 N_("Child Termination Wait"),
74 N_("Wait Child in Term Alt"),
75 "",
76 "",
77 "",
78 "",
79 N_("Asynchronous Hold"),
80 "",
81 N_("Activating"),
82 N_("Selective Wait")
83 };
84
85 /* A longer description corresponding to each possible task state. */
86 static const char *long_task_states[] = {
87 N_("Unactivated"),
88 N_("Runnable"),
89 N_("Terminated"),
90 N_("Waiting for child activation"),
91 N_("Blocked in accept or select with terminate"),
92 N_("Waiting on entry call"),
93 N_("Asynchronous Selective Wait"),
94 N_("Delay Sleep"),
95 N_("Waiting for children termination"),
96 N_("Waiting for children in terminate alternative"),
97 "",
98 "",
99 "",
100 "",
101 N_("Asynchronous Hold"),
102 "",
103 N_("Activating"),
104 N_("Blocked in selective wait statement")
105 };
106
107 /* The index of certain important fields in the Ada Task Control Block
108 record and sub-records. */
109
110 struct atcb_fieldnos
111 {
112 /* Fields in record Ada_Task_Control_Block. */
113 int common;
114 int entry_calls;
115 int atc_nesting_level;
116
117 /* Fields in record Common_ATCB. */
118 int state;
119 int parent;
120 int priority;
121 int image;
122 int image_len; /* This field may be missing. */
123 int activation_link;
124 int call;
125 int ll;
126 int base_cpu;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 /* The kind of data structure used by the runtime to store the list
165 of Ada tasks. */
166
167 enum ada_known_tasks_kind
168 {
169 /* Use this value when we haven't determined which kind of structure
170 is being used, or when we need to recompute it.
171
172 We set the value of this enumerate to zero on purpose: This allows
173 us to use this enumerate in a structure where setting all fields
174 to zero will result in this kind being set to unknown. */
175 ADA_TASKS_UNKNOWN = 0,
176
177 /* This value means that we did not find any task list. Unless
178 there is a bug somewhere, this means that the inferior does not
179 use tasking. */
180 ADA_TASKS_NOT_FOUND,
181
182 /* This value means that the task list is stored as an array.
183 This is the usual method, as it causes very little overhead.
184 But this method is not always used, as it does use a certain
185 amount of memory, which might be scarse in certain environments. */
186 ADA_TASKS_ARRAY,
187
188 /* This value means that the task list is stored as a linked list.
189 This has more runtime overhead than the array approach, but
190 also require less memory when the number of tasks is small. */
191 ADA_TASKS_LIST,
192 };
193
194 /* This module's per-inferior data. */
195
196 struct ada_tasks_inferior_data
197 {
198 /* The type of data structure used by the runtime to store
199 the list of Ada tasks. The value of this field influences
200 the interpretation of the known_tasks_addr field below:
201 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
202 been determined yet;
203 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
204 and the known_tasks_addr is irrelevant;
205 - ADA_TASKS_ARRAY: The known_tasks is an array;
206 - ADA_TASKS_LIST: The known_tasks is a list. */
207 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
208
209 /* The address of the known_tasks structure. This is where
210 the runtime stores the information for all Ada tasks.
211 The interpretation of this field depends on KNOWN_TASKS_KIND
212 above. */
213 CORE_ADDR known_tasks_addr = 0;
214
215 /* Type of elements of the known task. Usually a pointer. */
216 struct type *known_tasks_element = nullptr;
217
218 /* Number of elements in the known tasks array. */
219 unsigned int known_tasks_length = 0;
220
221 /* When nonzero, this flag indicates that the task_list field
222 below is up to date. When set to zero, the list has either
223 not been initialized, or has potentially become stale. */
224 int task_list_valid_p = 0;
225
226 /* The list of Ada tasks.
227
228 Note: To each task we associate a number that the user can use to
229 reference it - this number is printed beside each task in the tasks
230 info listing displayed by "info tasks". This number is equal to
231 its index in the vector + 1. Reciprocally, to compute the index
232 of a task in the vector, we need to substract 1 from its number. */
233 std::vector<ada_task_info> task_list;
234 };
235
236 /* Key to our per-inferior data. */
237 static const struct inferior_data *ada_tasks_inferior_data_handle;
238
239 /* Return the ada-tasks module's data for the given program space (PSPACE).
240 If none is found, add a zero'ed one now.
241
242 This function always returns a valid object. */
243
244 static struct ada_tasks_pspace_data *
245 get_ada_tasks_pspace_data (struct program_space *pspace)
246 {
247 struct ada_tasks_pspace_data *data;
248
249 data = ((struct ada_tasks_pspace_data *)
250 program_space_data (pspace, ada_tasks_pspace_data_handle));
251 if (data == NULL)
252 {
253 data = XCNEW (struct ada_tasks_pspace_data);
254 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
255 }
256
257 return data;
258 }
259
260 /* Return the ada-tasks module's data for the given inferior (INF).
261 If none is found, add a zero'ed one now.
262
263 This function always returns a valid object.
264
265 Note that we could use an observer of the inferior-created event
266 to make sure that the ada-tasks per-inferior data always exists.
267 But we prefered this approach, as it avoids this entirely as long
268 as the user does not use any of the tasking features. This is
269 quite possible, particularly in the case where the inferior does
270 not use tasking. */
271
272 static struct ada_tasks_inferior_data *
273 get_ada_tasks_inferior_data (struct inferior *inf)
274 {
275 struct ada_tasks_inferior_data *data;
276
277 data = ((struct ada_tasks_inferior_data *)
278 inferior_data (inf, ada_tasks_inferior_data_handle));
279 if (data == NULL)
280 {
281 data = new ada_tasks_inferior_data;
282 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
283 }
284
285 return data;
286 }
287
288 /* Return the task number of the task whose thread is THREAD, or zero
289 if the task could not be found. */
290
291 int
292 ada_get_task_number (thread_info *thread)
293 {
294 struct inferior *inf = thread->inf;
295 struct ada_tasks_inferior_data *data;
296
297 gdb_assert (inf != NULL);
298 data = get_ada_tasks_inferior_data (inf);
299
300 for (int i = 0; i < data->task_list.size (); i++)
301 if (data->task_list[i].ptid == thread->ptid)
302 return i + 1;
303
304 return 0; /* No matching task found. */
305 }
306
307 /* Return the task number of the task running in inferior INF which
308 matches TASK_ID , or zero if the task could not be found. */
309
310 static int
311 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
312 {
313 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
314
315 for (int i = 0; i < data->task_list.size (); i++)
316 {
317 if (data->task_list[i].task_id == task_id)
318 return i + 1;
319 }
320
321 /* Task not found. Return 0. */
322 return 0;
323 }
324
325 /* Return non-zero if TASK_NUM is a valid task number. */
326
327 int
328 valid_task_id (int task_num)
329 {
330 struct ada_tasks_inferior_data *data;
331
332 ada_build_task_list ();
333 data = get_ada_tasks_inferior_data (current_inferior ());
334 return task_num > 0 && task_num <= data->task_list.size ();
335 }
336
337 /* Return non-zero iff the task STATE corresponds to a non-terminated
338 task state. */
339
340 static int
341 ada_task_is_alive (struct ada_task_info *task_info)
342 {
343 return (task_info->state != Terminated);
344 }
345
346 /* Search through the list of known tasks for the one whose ptid is
347 PTID, and return it. Return NULL if the task was not found. */
348
349 struct ada_task_info *
350 ada_get_task_info_from_ptid (ptid_t ptid)
351 {
352 struct ada_tasks_inferior_data *data;
353
354 ada_build_task_list ();
355 data = get_ada_tasks_inferior_data (current_inferior ());
356
357 for (ada_task_info &task : data->task_list)
358 {
359 if (task.ptid == ptid)
360 return &task;
361 }
362
363 return NULL;
364 }
365
366 /* Call the ITERATOR function once for each Ada task that hasn't been
367 terminated yet. */
368
369 void
370 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
371 {
372 struct ada_tasks_inferior_data *data;
373
374 ada_build_task_list ();
375 data = get_ada_tasks_inferior_data (current_inferior ());
376
377 for (ada_task_info &task : data->task_list)
378 {
379 if (!ada_task_is_alive (&task))
380 continue;
381 iterator (&task);
382 }
383 }
384
385 /* Extract the contents of the value as a string whose length is LENGTH,
386 and store the result in DEST. */
387
388 static void
389 value_as_string (char *dest, struct value *val, int length)
390 {
391 memcpy (dest, value_contents (val), length);
392 dest[length] = '\0';
393 }
394
395 /* Extract the string image from the fat string corresponding to VAL,
396 and store it in DEST. If the string length is greater than MAX_LEN,
397 then truncate the result to the first MAX_LEN characters of the fat
398 string. */
399
400 static void
401 read_fat_string_value (char *dest, struct value *val, int max_len)
402 {
403 struct value *array_val;
404 struct value *bounds_val;
405 int len;
406
407 /* The following variables are made static to avoid recomputing them
408 each time this function is called. */
409 static int initialize_fieldnos = 1;
410 static int array_fieldno;
411 static int bounds_fieldno;
412 static int upper_bound_fieldno;
413
414 /* Get the index of the fields that we will need to read in order
415 to extract the string from the fat string. */
416 if (initialize_fieldnos)
417 {
418 struct type *type = value_type (val);
419 struct type *bounds_type;
420
421 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
422 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
423
424 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
425 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
426 bounds_type = TYPE_TARGET_TYPE (bounds_type);
427 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
428 error (_("Unknown task name format. Aborting"));
429 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
430
431 initialize_fieldnos = 0;
432 }
433
434 /* Get the size of the task image by checking the value of the bounds.
435 The lower bound is always 1, so we only need to read the upper bound. */
436 bounds_val = value_ind (value_field (val, bounds_fieldno));
437 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
438
439 /* Make sure that we do not read more than max_len characters... */
440 if (len > max_len)
441 len = max_len;
442
443 /* Extract LEN characters from the fat string. */
444 array_val = value_ind (value_field (val, array_fieldno));
445 read_memory (value_address (array_val), (gdb_byte *) dest, len);
446
447 /* Add the NUL character to close the string. */
448 dest[len] = '\0';
449 }
450
451 /* Get, from the debugging information, the type description of all types
452 related to the Ada Task Control Block that are needed in order to
453 read the list of known tasks in the Ada runtime. If all of the info
454 needed to do so is found, then save that info in the module's per-
455 program-space data, and return NULL. Otherwise, if any information
456 cannot be found, leave the per-program-space data untouched, and
457 return an error message explaining what was missing (that error
458 message does NOT need to be deallocated). */
459
460 const char *
461 ada_get_tcb_types_info (void)
462 {
463 struct type *type;
464 struct type *common_type;
465 struct type *ll_type;
466 struct type *call_type;
467 struct atcb_fieldnos fieldnos;
468 struct ada_tasks_pspace_data *pspace_data;
469
470 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
471 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
472 const char *common_atcb_name = "system__tasking__common_atcb";
473 const char *private_data_name = "system__task_primitives__private_data";
474 const char *entry_call_record_name = "system__tasking__entry_call_record";
475
476 /* ATCB symbols may be found in several compilation units. As we
477 are only interested in one instance, use standard (literal,
478 C-like) lookups to get the first match. */
479
480 struct symbol *atcb_sym =
481 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
482 language_c, NULL).symbol;
483 const struct symbol *common_atcb_sym =
484 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
485 language_c, NULL).symbol;
486 const struct symbol *private_data_sym =
487 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
488 language_c, NULL).symbol;
489 const struct symbol *entry_call_record_sym =
490 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
491 language_c, NULL).symbol;
492
493 if (atcb_sym == NULL || atcb_sym->type == NULL)
494 {
495 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
496 size, so the symbol name differs. */
497 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
498 STRUCT_DOMAIN, language_c,
499 NULL).symbol;
500
501 if (atcb_sym == NULL || atcb_sym->type == NULL)
502 return _("Cannot find Ada_Task_Control_Block type");
503
504 type = atcb_sym->type;
505 }
506 else
507 {
508 /* Get a static representation of the type record
509 Ada_Task_Control_Block. */
510 type = atcb_sym->type;
511 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
512 }
513
514 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
515 return _("Cannot find Common_ATCB type");
516 if (private_data_sym == NULL || private_data_sym->type == NULL)
517 return _("Cannot find Private_Data type");
518 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
519 return _("Cannot find Entry_Call_Record type");
520
521 /* Get the type for Ada_Task_Control_Block.Common. */
522 common_type = common_atcb_sym->type;
523
524 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
525 ll_type = private_data_sym->type;
526
527 /* Get the type for Common_ATCB.Call.all. */
528 call_type = entry_call_record_sym->type;
529
530 /* Get the field indices. */
531 fieldnos.common = ada_get_field_index (type, "common", 0);
532 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
533 fieldnos.atc_nesting_level =
534 ada_get_field_index (type, "atc_nesting_level", 1);
535 fieldnos.state = ada_get_field_index (common_type, "state", 0);
536 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
537 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
538 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
539 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
540 fieldnos.activation_link = ada_get_field_index (common_type,
541 "activation_link", 1);
542 fieldnos.call = ada_get_field_index (common_type, "call", 1);
543 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
544 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
545 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
546 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
547 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
548
549 /* On certain platforms such as x86-windows, the "lwp" field has been
550 named "thread_id". This field will likely be renamed in the future,
551 but we need to support both possibilities to avoid an unnecessary
552 dependency on a recent compiler. We therefore try locating the
553 "thread_id" field in place of the "lwp" field if we did not find
554 the latter. */
555 if (fieldnos.ll_lwp < 0)
556 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
557
558 /* Set all the out parameters all at once, now that we are certain
559 that there are no potential error() anymore. */
560 pspace_data = get_ada_tasks_pspace_data (current_program_space);
561 pspace_data->initialized_p = 1;
562 pspace_data->atcb_type = type;
563 pspace_data->atcb_common_type = common_type;
564 pspace_data->atcb_ll_type = ll_type;
565 pspace_data->atcb_call_type = call_type;
566 pspace_data->atcb_fieldno = fieldnos;
567 return NULL;
568 }
569
570 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
571 component of its ATCB record. This PTID needs to match the PTID used
572 by the thread layer. */
573
574 static ptid_t
575 ptid_from_atcb_common (struct value *common_value)
576 {
577 long thread = 0;
578 CORE_ADDR lwp = 0;
579 struct value *ll_value;
580 ptid_t ptid;
581 const struct ada_tasks_pspace_data *pspace_data
582 = get_ada_tasks_pspace_data (current_program_space);
583
584 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
585
586 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
587 lwp = value_as_address (value_field (ll_value,
588 pspace_data->atcb_fieldno.ll_lwp));
589 thread = value_as_long (value_field (ll_value,
590 pspace_data->atcb_fieldno.ll_thread));
591
592 ptid = target_get_ada_task_ptid (lwp, thread);
593
594 return ptid;
595 }
596
597 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
598 the address of its assocated ATCB record), and store the result inside
599 TASK_INFO. */
600
601 static void
602 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
603 {
604 struct value *tcb_value;
605 struct value *common_value;
606 struct value *atc_nesting_level_value;
607 struct value *entry_calls_value;
608 struct value *entry_calls_value_element;
609 int called_task_fieldno = -1;
610 static const char ravenscar_task_name[] = "Ravenscar task";
611 const struct ada_tasks_pspace_data *pspace_data
612 = get_ada_tasks_pspace_data (current_program_space);
613
614 /* Clear the whole structure to start with, so that everything
615 is always initialized the same. */
616 memset (task_info, 0, sizeof (struct ada_task_info));
617
618 if (!pspace_data->initialized_p)
619 {
620 const char *err_msg = ada_get_tcb_types_info ();
621
622 if (err_msg != NULL)
623 error (_("%s. Aborting"), err_msg);
624 }
625
626 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
627 NULL, task_id);
628 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
629
630 /* Fill in the task_id. */
631
632 task_info->task_id = task_id;
633
634 /* Compute the name of the task.
635
636 Depending on the GNAT version used, the task image is either a fat
637 string, or a thin array of characters. Older versions of GNAT used
638 to use fat strings, and therefore did not need an extra field in
639 the ATCB to store the string length. For efficiency reasons, newer
640 versions of GNAT replaced the fat string by a static buffer, but this
641 also required the addition of a new field named "Image_Len" containing
642 the length of the task name. The method used to extract the task name
643 is selected depending on the existence of this field.
644
645 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
646 we may want to get it from the first user frame of the stack. For now,
647 we just give a dummy name. */
648
649 if (pspace_data->atcb_fieldno.image_len == -1)
650 {
651 if (pspace_data->atcb_fieldno.image >= 0)
652 read_fat_string_value (task_info->name,
653 value_field (common_value,
654 pspace_data->atcb_fieldno.image),
655 sizeof (task_info->name) - 1);
656 else
657 {
658 struct bound_minimal_symbol msym;
659
660 msym = lookup_minimal_symbol_by_pc (task_id);
661 if (msym.minsym)
662 {
663 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
664 const char *task_name = full_name;
665 const char *p;
666
667 /* Strip the prefix. */
668 for (p = full_name; *p; p++)
669 if (p[0] == '_' && p[1] == '_')
670 task_name = p + 2;
671
672 /* Copy the task name. */
673 strncpy (task_info->name, task_name, sizeof (task_info->name));
674 task_info->name[sizeof (task_info->name) - 1] = 0;
675 }
676 else
677 {
678 /* No symbol found. Use a default name. */
679 strcpy (task_info->name, ravenscar_task_name);
680 }
681 }
682 }
683 else
684 {
685 int len = value_as_long
686 (value_field (common_value,
687 pspace_data->atcb_fieldno.image_len));
688
689 value_as_string (task_info->name,
690 value_field (common_value,
691 pspace_data->atcb_fieldno.image),
692 len);
693 }
694
695 /* Compute the task state and priority. */
696
697 task_info->state =
698 value_as_long (value_field (common_value,
699 pspace_data->atcb_fieldno.state));
700 task_info->priority =
701 value_as_long (value_field (common_value,
702 pspace_data->atcb_fieldno.priority));
703
704 /* If the ATCB contains some information about the parent task,
705 then compute it as well. Otherwise, zero. */
706
707 if (pspace_data->atcb_fieldno.parent >= 0)
708 task_info->parent =
709 value_as_address (value_field (common_value,
710 pspace_data->atcb_fieldno.parent));
711
712 /* If the task is in an entry call waiting for another task,
713 then determine which task it is. */
714
715 if (task_info->state == Entry_Caller_Sleep
716 && pspace_data->atcb_fieldno.atc_nesting_level > 0
717 && pspace_data->atcb_fieldno.entry_calls > 0)
718 {
719 /* Let My_ATCB be the Ada task control block of a task calling the
720 entry of another task; then the Task_Id of the called task is
721 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
722 atc_nesting_level_value =
723 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
724 entry_calls_value =
725 ada_coerce_to_simple_array_ptr
726 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
727 entry_calls_value_element =
728 value_subscript (entry_calls_value,
729 value_as_long (atc_nesting_level_value));
730 called_task_fieldno =
731 ada_get_field_index (value_type (entry_calls_value_element),
732 "called_task", 0);
733 task_info->called_task =
734 value_as_address (value_field (entry_calls_value_element,
735 called_task_fieldno));
736 }
737
738 /* If the ATCB cotnains some information about RV callers, then
739 compute the "caller_task". Otherwise, leave it as zero. */
740
741 if (pspace_data->atcb_fieldno.call >= 0)
742 {
743 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
744 If Common_ATCB.Call is null, then there is no caller. */
745 const CORE_ADDR call =
746 value_as_address (value_field (common_value,
747 pspace_data->atcb_fieldno.call));
748 struct value *call_val;
749
750 if (call != 0)
751 {
752 call_val =
753 value_from_contents_and_address (pspace_data->atcb_call_type,
754 NULL, call);
755 task_info->caller_task =
756 value_as_address
757 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
758 }
759 }
760
761 task_info->base_cpu
762 = value_as_long (value_field (common_value,
763 pspace_data->atcb_fieldno.base_cpu));
764
765 /* And finally, compute the task ptid. Note that there is not point
766 in computing it if the task is no longer alive, in which case
767 it is good enough to set its ptid to the null_ptid. */
768 if (ada_task_is_alive (task_info))
769 task_info->ptid = ptid_from_atcb_common (common_value);
770 else
771 task_info->ptid = null_ptid;
772 }
773
774 /* Read the ATCB info of the given task (identified by TASK_ID), and
775 add the result to the given inferior's TASK_LIST. */
776
777 static void
778 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
779 {
780 struct ada_task_info task_info;
781 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
782
783 read_atcb (task_id, &task_info);
784 data->task_list.push_back (task_info);
785 }
786
787 /* Read the Known_Tasks array from the inferior memory, and store
788 it in the current inferior's TASK_LIST. Return non-zero upon success. */
789
790 static int
791 read_known_tasks_array (struct ada_tasks_inferior_data *data)
792 {
793 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
794 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
795 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
796 int i;
797
798 /* Build a new list by reading the ATCBs from the Known_Tasks array
799 in the Ada runtime. */
800 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
801 for (i = 0; i < data->known_tasks_length; i++)
802 {
803 CORE_ADDR task_id =
804 extract_typed_address (known_tasks + i * target_ptr_byte,
805 data->known_tasks_element);
806
807 if (task_id != 0)
808 add_ada_task (task_id, current_inferior ());
809 }
810
811 return 1;
812 }
813
814 /* Read the known tasks from the inferior memory, and store it in
815 the current inferior's TASK_LIST. Return non-zero upon success. */
816
817 static int
818 read_known_tasks_list (struct ada_tasks_inferior_data *data)
819 {
820 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
821 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
822 CORE_ADDR task_id;
823 const struct ada_tasks_pspace_data *pspace_data
824 = get_ada_tasks_pspace_data (current_program_space);
825
826 /* Sanity check. */
827 if (pspace_data->atcb_fieldno.activation_link < 0)
828 return 0;
829
830 /* Build a new list by reading the ATCBs. Read head of the list. */
831 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
832 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
833 while (task_id != 0)
834 {
835 struct value *tcb_value;
836 struct value *common_value;
837
838 add_ada_task (task_id, current_inferior ());
839
840 /* Read the chain. */
841 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
842 NULL, task_id);
843 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
844 task_id = value_as_address
845 (value_field (common_value,
846 pspace_data->atcb_fieldno.activation_link));
847 }
848
849 return 1;
850 }
851
852 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
853 Do nothing if those fields are already set and still up to date. */
854
855 static void
856 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
857 {
858 struct bound_minimal_symbol msym;
859 struct symbol *sym;
860
861 /* Return now if already set. */
862 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
863 return;
864
865 /* Try array. */
866
867 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
868 if (msym.minsym != NULL)
869 {
870 data->known_tasks_kind = ADA_TASKS_ARRAY;
871 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
872
873 /* Try to get pointer type and array length from the symtab. */
874 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
875 language_c, NULL).symbol;
876 if (sym != NULL)
877 {
878 /* Validate. */
879 struct type *type = check_typedef (SYMBOL_TYPE (sym));
880 struct type *eltype = NULL;
881 struct type *idxtype = NULL;
882
883 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
884 eltype = check_typedef (TYPE_TARGET_TYPE (type));
885 if (eltype != NULL
886 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
887 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
888 if (idxtype != NULL
889 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
890 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
891 {
892 data->known_tasks_element = eltype;
893 data->known_tasks_length =
894 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
895 return;
896 }
897 }
898
899 /* Fallback to default values. The runtime may have been stripped (as
900 in some distributions), but it is likely that the executable still
901 contains debug information on the task type (due to implicit with of
902 Ada.Tasking). */
903 data->known_tasks_element =
904 builtin_type (target_gdbarch ())->builtin_data_ptr;
905 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
906 return;
907 }
908
909
910 /* Try list. */
911
912 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
913 if (msym.minsym != NULL)
914 {
915 data->known_tasks_kind = ADA_TASKS_LIST;
916 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
917 data->known_tasks_length = 1;
918
919 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
920 language_c, NULL).symbol;
921 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
922 {
923 /* Validate. */
924 struct type *type = check_typedef (SYMBOL_TYPE (sym));
925
926 if (TYPE_CODE (type) == TYPE_CODE_PTR)
927 {
928 data->known_tasks_element = type;
929 return;
930 }
931 }
932
933 /* Fallback to default values. */
934 data->known_tasks_element =
935 builtin_type (target_gdbarch ())->builtin_data_ptr;
936 data->known_tasks_length = 1;
937 return;
938 }
939
940 /* Can't find tasks. */
941
942 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
943 data->known_tasks_addr = 0;
944 }
945
946 /* Read the known tasks from the current inferior's memory, and store it
947 in the current inferior's data TASK_LIST.
948 Return non-zero upon success. */
949
950 static int
951 read_known_tasks (void)
952 {
953 struct ada_tasks_inferior_data *data =
954 get_ada_tasks_inferior_data (current_inferior ());
955
956 /* Step 1: Clear the current list, if necessary. */
957 data->task_list.clear ();
958
959 /* Step 2: do the real work.
960 If the application does not use task, then no more needs to be done.
961 It is important to have the task list cleared (see above) before we
962 return, as we don't want a stale task list to be used... This can
963 happen for instance when debugging a non-multitasking program after
964 having debugged a multitasking one. */
965 ada_tasks_inferior_data_sniffer (data);
966 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
967
968 switch (data->known_tasks_kind)
969 {
970 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
971 return 0;
972 case ADA_TASKS_ARRAY:
973 return read_known_tasks_array (data);
974 case ADA_TASKS_LIST:
975 return read_known_tasks_list (data);
976 }
977
978 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
979 array unless needed. Then report a success. */
980 data->task_list_valid_p = 1;
981
982 return 1;
983 }
984
985 /* Build the task_list by reading the Known_Tasks array from
986 the inferior, and return the number of tasks in that list
987 (zero means that the program is not using tasking at all). */
988
989 int
990 ada_build_task_list (void)
991 {
992 struct ada_tasks_inferior_data *data;
993
994 if (!target_has_stack)
995 error (_("Cannot inspect Ada tasks when program is not running"));
996
997 data = get_ada_tasks_inferior_data (current_inferior ());
998 if (!data->task_list_valid_p)
999 read_known_tasks ();
1000
1001 return data->task_list.size ();
1002 }
1003
1004 /* Print a table providing a short description of all Ada tasks
1005 running inside inferior INF. If ARG_STR is set, it will be
1006 interpreted as a task number, and the table will be limited to
1007 that task only. */
1008
1009 void
1010 print_ada_task_info (struct ui_out *uiout,
1011 char *arg_str,
1012 struct inferior *inf)
1013 {
1014 struct ada_tasks_inferior_data *data;
1015 int taskno, nb_tasks;
1016 int taskno_arg = 0;
1017 int nb_columns;
1018
1019 if (ada_build_task_list () == 0)
1020 {
1021 uiout->message (_("Your application does not use any Ada tasks.\n"));
1022 return;
1023 }
1024
1025 if (arg_str != NULL && arg_str[0] != '\0')
1026 taskno_arg = value_as_long (parse_and_eval (arg_str));
1027
1028 if (uiout->is_mi_like_p ())
1029 /* In GDB/MI mode, we want to provide the thread ID corresponding
1030 to each task. This allows clients to quickly find the thread
1031 associated to any task, which is helpful for commands that
1032 take a --thread argument. However, in order to be able to
1033 provide that thread ID, the thread list must be up to date
1034 first. */
1035 target_update_thread_list ();
1036
1037 data = get_ada_tasks_inferior_data (inf);
1038
1039 /* Compute the number of tasks that are going to be displayed
1040 in the output. If an argument was given, there will be
1041 at most 1 entry. Otherwise, there will be as many entries
1042 as we have tasks. */
1043 if (taskno_arg)
1044 {
1045 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1046 nb_tasks = 1;
1047 else
1048 nb_tasks = 0;
1049 }
1050 else
1051 nb_tasks = data->task_list.size ();
1052
1053 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1054 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1055 uiout->table_header (1, ui_left, "current", "");
1056 uiout->table_header (3, ui_right, "id", "ID");
1057 uiout->table_header (9, ui_right, "task-id", "TID");
1058 /* The following column is provided in GDB/MI mode only because
1059 it is only really useful in that mode, and also because it
1060 allows us to keep the CLI output shorter and more compact. */
1061 if (uiout->is_mi_like_p ())
1062 uiout->table_header (4, ui_right, "thread-id", "");
1063 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1064 uiout->table_header (3, ui_right, "priority", "Pri");
1065 uiout->table_header (22, ui_left, "state", "State");
1066 /* Use ui_noalign for the last column, to prevent the CLI uiout
1067 from printing an extra space at the end of each row. This
1068 is a bit of a hack, but does get the job done. */
1069 uiout->table_header (1, ui_noalign, "name", "Name");
1070 uiout->table_body ();
1071
1072 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1073 {
1074 const struct ada_task_info *const task_info =
1075 &data->task_list[taskno - 1];
1076 int parent_id;
1077
1078 gdb_assert (task_info != NULL);
1079
1080 /* If the user asked for the output to be restricted
1081 to one task only, and this is not the task, skip
1082 to the next one. */
1083 if (taskno_arg && taskno != taskno_arg)
1084 continue;
1085
1086 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1087
1088 /* Print a star if this task is the current task (or the task
1089 currently selected). */
1090 if (task_info->ptid == inferior_ptid)
1091 uiout->field_string ("current", "*");
1092 else
1093 uiout->field_skip ("current");
1094
1095 /* Print the task number. */
1096 uiout->field_int ("id", taskno);
1097
1098 /* Print the Task ID. */
1099 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1100
1101 /* Print the associated Thread ID. */
1102 if (uiout->is_mi_like_p ())
1103 {
1104 thread_info *thread = find_thread_ptid (task_info->ptid);
1105
1106 if (thread != NULL)
1107 uiout->field_int ("thread-id", thread->global_num);
1108 else
1109 /* This should never happen unless there is a bug somewhere,
1110 but be resilient when that happens. */
1111 uiout->field_skip ("thread-id");
1112 }
1113
1114 /* Print the ID of the parent task. */
1115 parent_id = get_task_number_from_id (task_info->parent, inf);
1116 if (parent_id)
1117 uiout->field_int ("parent-id", parent_id);
1118 else
1119 uiout->field_skip ("parent-id");
1120
1121 /* Print the base priority of the task. */
1122 uiout->field_int ("priority", task_info->priority);
1123
1124 /* Print the task current state. */
1125 if (task_info->caller_task)
1126 uiout->field_fmt ("state",
1127 _("Accepting RV with %-4d"),
1128 get_task_number_from_id (task_info->caller_task,
1129 inf));
1130 else if (task_info->called_task)
1131 uiout->field_fmt ("state",
1132 _("Waiting on RV with %-3d"),
1133 get_task_number_from_id (task_info->called_task,
1134 inf));
1135 else
1136 uiout->field_string ("state", task_states[task_info->state]);
1137
1138 /* Finally, print the task name. */
1139 uiout->field_fmt ("name",
1140 "%s",
1141 task_info->name[0] != '\0' ? task_info->name
1142 : _("<no name>"));
1143
1144 uiout->text ("\n");
1145 }
1146 }
1147
1148 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1149 for the given inferior (INF). */
1150
1151 static void
1152 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1153 {
1154 const int taskno = value_as_long (parse_and_eval (taskno_str));
1155 struct ada_task_info *task_info;
1156 int parent_taskno = 0;
1157 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1158
1159 if (ada_build_task_list () == 0)
1160 {
1161 uiout->message (_("Your application does not use any Ada tasks.\n"));
1162 return;
1163 }
1164
1165 if (taskno <= 0 || taskno > data->task_list.size ())
1166 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1167 "see the IDs of currently known tasks"), taskno);
1168 task_info = &data->task_list[taskno - 1];
1169
1170 /* Print the Ada task ID. */
1171 printf_filtered (_("Ada Task: %s\n"),
1172 paddress (target_gdbarch (), task_info->task_id));
1173
1174 /* Print the name of the task. */
1175 if (task_info->name[0] != '\0')
1176 printf_filtered (_("Name: %s\n"), task_info->name);
1177 else
1178 printf_filtered (_("<no name>\n"));
1179
1180 /* Print the TID and LWP. */
1181 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1182 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1183
1184 /* If set, print the base CPU. */
1185 if (task_info->base_cpu != 0)
1186 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1187
1188 /* Print who is the parent (if any). */
1189 if (task_info->parent != 0)
1190 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1191 if (parent_taskno)
1192 {
1193 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1194
1195 printf_filtered (_("Parent: %d"), parent_taskno);
1196 if (parent->name[0] != '\0')
1197 printf_filtered (" (%s)", parent->name);
1198 printf_filtered ("\n");
1199 }
1200 else
1201 printf_filtered (_("No parent\n"));
1202
1203 /* Print the base priority. */
1204 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1205
1206 /* print the task current state. */
1207 {
1208 int target_taskno = 0;
1209
1210 if (task_info->caller_task)
1211 {
1212 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1213 printf_filtered (_("State: Accepting rendezvous with %d"),
1214 target_taskno);
1215 }
1216 else if (task_info->called_task)
1217 {
1218 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1219 printf_filtered (_("State: Waiting on task %d's entry"),
1220 target_taskno);
1221 }
1222 else
1223 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1224
1225 if (target_taskno)
1226 {
1227 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1228
1229 if (target_task_info->name[0] != '\0')
1230 printf_filtered (" (%s)", target_task_info->name);
1231 }
1232
1233 printf_filtered ("\n");
1234 }
1235 }
1236
1237 /* If ARG is empty or null, then print a list of all Ada tasks.
1238 Otherwise, print detailed information about the task whose ID
1239 is ARG.
1240
1241 Does nothing if the program doesn't use Ada tasking. */
1242
1243 static void
1244 info_tasks_command (const char *arg, int from_tty)
1245 {
1246 struct ui_out *uiout = current_uiout;
1247
1248 if (arg == NULL || *arg == '\0')
1249 print_ada_task_info (uiout, NULL, current_inferior ());
1250 else
1251 info_task (uiout, arg, current_inferior ());
1252 }
1253
1254 /* Print a message telling the user id of the current task.
1255 This function assumes that tasking is in use in the inferior. */
1256
1257 static void
1258 display_current_task_id (void)
1259 {
1260 const int current_task = ada_get_task_number (inferior_thread ());
1261
1262 if (current_task == 0)
1263 printf_filtered (_("[Current task is unknown]\n"));
1264 else
1265 printf_filtered (_("[Current task is %d]\n"), current_task);
1266 }
1267
1268 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1269 that task. Print an error message if the task switch failed. */
1270
1271 static void
1272 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1273 {
1274 const int taskno = value_as_long (parse_and_eval (taskno_str));
1275 struct ada_task_info *task_info;
1276 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1277
1278 if (taskno <= 0 || taskno > data->task_list.size ())
1279 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1280 "see the IDs of currently known tasks"), taskno);
1281 task_info = &data->task_list[taskno - 1];
1282
1283 if (!ada_task_is_alive (task_info))
1284 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1285
1286 /* On some platforms, the thread list is not updated until the user
1287 performs a thread-related operation (by using the "info threads"
1288 command, for instance). So this thread list may not be up to date
1289 when the user attempts this task switch. Since we cannot switch
1290 to the thread associated to our task if GDB does not know about
1291 that thread, we need to make sure that any new threads gets added
1292 to the thread list. */
1293 target_update_thread_list ();
1294
1295 /* Verify that the ptid of the task we want to switch to is valid
1296 (in other words, a ptid that GDB knows about). Otherwise, we will
1297 cause an assertion failure later on, when we try to determine
1298 the ptid associated thread_info data. We should normally never
1299 encounter such an error, but the wrong ptid can actually easily be
1300 computed if target_get_ada_task_ptid has not been implemented for
1301 our target (yet). Rather than cause an assertion error in that case,
1302 it's nicer for the user to just refuse to perform the task switch. */
1303 thread_info *tp = find_thread_ptid (task_info->ptid);
1304 if (tp == NULL)
1305 error (_("Unable to compute thread ID for task %d.\n"
1306 "Cannot switch to this task."),
1307 taskno);
1308
1309 switch_to_thread (tp);
1310 ada_find_printable_frame (get_selected_frame (NULL));
1311 printf_filtered (_("[Switching to task %d]\n"), taskno);
1312 print_stack_frame (get_selected_frame (NULL),
1313 frame_relative_level (get_selected_frame (NULL)),
1314 SRC_AND_LOC, 1);
1315 }
1316
1317
1318 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1319 Otherwise, switch to the task indicated by TASKNO_STR. */
1320
1321 static void
1322 task_command (const char *taskno_str, int from_tty)
1323 {
1324 struct ui_out *uiout = current_uiout;
1325
1326 if (ada_build_task_list () == 0)
1327 {
1328 uiout->message (_("Your application does not use any Ada tasks.\n"));
1329 return;
1330 }
1331
1332 if (taskno_str == NULL || taskno_str[0] == '\0')
1333 display_current_task_id ();
1334 else
1335 task_command_1 (taskno_str, from_tty, current_inferior ());
1336 }
1337
1338 /* Indicate that the given inferior's task list may have changed,
1339 so invalidate the cache. */
1340
1341 static void
1342 ada_task_list_changed (struct inferior *inf)
1343 {
1344 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1345
1346 data->task_list_valid_p = 0;
1347 }
1348
1349 /* Invalidate the per-program-space data. */
1350
1351 static void
1352 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1353 {
1354 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1355 }
1356
1357 /* Invalidate the per-inferior data. */
1358
1359 static void
1360 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1361 {
1362 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1363
1364 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1365 data->task_list_valid_p = 0;
1366 }
1367
1368 /* The 'normal_stop' observer notification callback. */
1369
1370 static void
1371 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1372 {
1373 /* The inferior has been resumed, and just stopped. This means that
1374 our task_list needs to be recomputed before it can be used again. */
1375 ada_task_list_changed (current_inferior ());
1376 }
1377
1378 /* A routine to be called when the objfiles have changed. */
1379
1380 static void
1381 ada_tasks_new_objfile_observer (struct objfile *objfile)
1382 {
1383 struct inferior *inf;
1384
1385 /* Invalidate the relevant data in our program-space data. */
1386
1387 if (objfile == NULL)
1388 {
1389 /* All objfiles are being cleared, so we should clear all
1390 our caches for all program spaces. */
1391 struct program_space *pspace;
1392
1393 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1394 ada_tasks_invalidate_pspace_data (pspace);
1395 }
1396 else
1397 {
1398 /* The associated program-space data might have changed after
1399 this objfile was added. Invalidate all cached data. */
1400 ada_tasks_invalidate_pspace_data (objfile->pspace);
1401 }
1402
1403 /* Invalidate the per-inferior cache for all inferiors using
1404 this objfile (or, in other words, for all inferiors who have
1405 the same program-space as the objfile's program space).
1406 If all objfiles are being cleared (OBJFILE is NULL), then
1407 clear the caches for all inferiors. */
1408
1409 for (inf = inferior_list; inf != NULL; inf = inf->next)
1410 if (objfile == NULL || inf->pspace == objfile->pspace)
1411 ada_tasks_invalidate_inferior_data (inf);
1412 }
1413
1414 void
1415 _initialize_tasks (void)
1416 {
1417 ada_tasks_pspace_data_handle = register_program_space_data ();
1418 ada_tasks_inferior_data_handle = register_inferior_data ();
1419
1420 /* Attach various observers. */
1421 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer);
1422 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer);
1423
1424 /* Some new commands provided by this module. */
1425 add_info ("tasks", info_tasks_command,
1426 _("Provide information about all known Ada tasks"));
1427 add_cmd ("task", class_run, task_command,
1428 _("Use this command to switch between Ada tasks.\n\
1429 Without argument, this command simply prints the current task ID"),
1430 &cmdlist);
1431 }