]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-tasks.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2024 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "extract-store-integer.h"
19 #include "observable.h"
20 #include "cli/cli-cmds.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28 #include "cli/cli-style.h"
29
30 static int ada_build_task_list ();
31
32 /* The name of the array in the GNAT runtime where the Ada Task Control
33 Block of each task is stored. */
34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
35
36 /* The maximum number of tasks known to the Ada runtime. */
37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
38
39 /* The name of the variable in the GNAT runtime where the head of a task
40 chain is saved. This is an alternate mechanism to find the list of known
41 tasks. */
42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
43
44 enum task_states
45 {
46 Unactivated,
47 Runnable,
48 Terminated,
49 Activator_Sleep,
50 Acceptor_Sleep,
51 Entry_Caller_Sleep,
52 Async_Select_Sleep,
53 Delay_Sleep,
54 Master_Completion_Sleep,
55 Master_Phase_2_Sleep,
56 Interrupt_Server_Idle_Sleep,
57 Interrupt_Server_Blocked_Interrupt_Sleep,
58 Timer_Server_Sleep,
59 AST_Server_Sleep,
60 Asynchronous_Hold,
61 Interrupt_Server_Blocked_On_Event_Flag,
62 Activating,
63 Acceptor_Delay_Sleep
64 };
65
66 /* A short description corresponding to each possible task state. */
67 static const char * const task_states[] = {
68 N_("Unactivated"),
69 N_("Runnable"),
70 N_("Terminated"),
71 N_("Child Activation Wait"),
72 N_("Accept or Select Term"),
73 N_("Waiting on entry call"),
74 N_("Async Select Wait"),
75 N_("Delay Sleep"),
76 N_("Child Termination Wait"),
77 N_("Wait Child in Term Alt"),
78 "",
79 "",
80 "",
81 "",
82 N_("Asynchronous Hold"),
83 "",
84 N_("Activating"),
85 N_("Selective Wait")
86 };
87
88 /* Return a string representing the task state. */
89 static const char *
90 get_state (unsigned value)
91 {
92 if (value >= 0
93 && value <= ARRAY_SIZE (task_states)
94 && task_states[value][0] != '\0')
95 return _(task_states[value]);
96
97 static char buffer[100];
98 xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value);
99 return buffer;
100 }
101
102 /* A longer description corresponding to each possible task state. */
103 static const char * const long_task_states[] = {
104 N_("Unactivated"),
105 N_("Runnable"),
106 N_("Terminated"),
107 N_("Waiting for child activation"),
108 N_("Blocked in accept or select with terminate"),
109 N_("Waiting on entry call"),
110 N_("Asynchronous Selective Wait"),
111 N_("Delay Sleep"),
112 N_("Waiting for children termination"),
113 N_("Waiting for children in terminate alternative"),
114 "",
115 "",
116 "",
117 "",
118 N_("Asynchronous Hold"),
119 "",
120 N_("Activating"),
121 N_("Blocked in selective wait statement")
122 };
123
124 /* Return a string representing the task state. This uses the long
125 descriptions. */
126 static const char *
127 get_long_state (unsigned value)
128 {
129 if (value >= 0
130 && value <= ARRAY_SIZE (long_task_states)
131 && long_task_states[value][0] != '\0')
132 return _(long_task_states[value]);
133
134 static char buffer[100];
135 xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value);
136 return buffer;
137 }
138
139 /* The index of certain important fields in the Ada Task Control Block
140 record and sub-records. */
141
142 struct atcb_fieldnos
143 {
144 /* Fields in record Ada_Task_Control_Block. */
145 int common;
146 int entry_calls;
147 int atc_nesting_level;
148
149 /* Fields in record Common_ATCB. */
150 int state;
151 int parent;
152 int priority;
153 int image;
154 int image_len; /* This field may be missing. */
155 int activation_link;
156 int call;
157 int ll;
158 int base_cpu;
159
160 /* Fields in Task_Primitives.Private_Data. */
161 int ll_thread;
162 int ll_lwp; /* This field may be missing. */
163
164 /* Fields in Common_ATCB.Call.all. */
165 int call_self;
166 };
167
168 /* This module's per-program-space data. */
169
170 struct ada_tasks_pspace_data
171 {
172 /* Nonzero if the data has been initialized. If set to zero,
173 it means that the data has either not been initialized, or
174 has potentially become stale. */
175 int initialized_p = 0;
176
177 /* The ATCB record type. */
178 struct type *atcb_type = nullptr;
179
180 /* The ATCB "Common" component type. */
181 struct type *atcb_common_type = nullptr;
182
183 /* The type of the "ll" field, from the atcb_common_type. */
184 struct type *atcb_ll_type = nullptr;
185
186 /* The type of the "call" field, from the atcb_common_type. */
187 struct type *atcb_call_type = nullptr;
188
189 /* The index of various fields in the ATCB record and sub-records. */
190 struct atcb_fieldnos atcb_fieldno {};
191
192 /* On some systems, gdbserver applies an offset to the CPU that is
193 reported. */
194 unsigned int cpu_id_offset = 0;
195 };
196
197 /* Key to our per-program-space data. */
198 static const registry<program_space>::key<ada_tasks_pspace_data>
199 ada_tasks_pspace_data_handle;
200
201 /* The kind of data structure used by the runtime to store the list
202 of Ada tasks. */
203
204 enum ada_known_tasks_kind
205 {
206 /* Use this value when we haven't determined which kind of structure
207 is being used, or when we need to recompute it.
208
209 We set the value of this enumerate to zero on purpose: This allows
210 us to use this enumerate in a structure where setting all fields
211 to zero will result in this kind being set to unknown. */
212 ADA_TASKS_UNKNOWN = 0,
213
214 /* This value means that we did not find any task list. Unless
215 there is a bug somewhere, this means that the inferior does not
216 use tasking. */
217 ADA_TASKS_NOT_FOUND,
218
219 /* This value means that the task list is stored as an array.
220 This is the usual method, as it causes very little overhead.
221 But this method is not always used, as it does use a certain
222 amount of memory, which might be scarse in certain environments. */
223 ADA_TASKS_ARRAY,
224
225 /* This value means that the task list is stored as a linked list.
226 This has more runtime overhead than the array approach, but
227 also require less memory when the number of tasks is small. */
228 ADA_TASKS_LIST,
229 };
230
231 /* This module's per-inferior data. */
232
233 struct ada_tasks_inferior_data
234 {
235 /* The type of data structure used by the runtime to store
236 the list of Ada tasks. The value of this field influences
237 the interpretation of the known_tasks_addr field below:
238 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
239 been determined yet;
240 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
241 and the known_tasks_addr is irrelevant;
242 - ADA_TASKS_ARRAY: The known_tasks is an array;
243 - ADA_TASKS_LIST: The known_tasks is a list. */
244 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
245
246 /* The address of the known_tasks structure. This is where
247 the runtime stores the information for all Ada tasks.
248 The interpretation of this field depends on KNOWN_TASKS_KIND
249 above. */
250 CORE_ADDR known_tasks_addr = 0;
251
252 /* Type of elements of the known task. Usually a pointer. */
253 struct type *known_tasks_element = nullptr;
254
255 /* Number of elements in the known tasks array. */
256 unsigned int known_tasks_length = 0;
257
258 /* When nonzero, this flag indicates that the task_list field
259 below is up to date. When set to zero, the list has either
260 not been initialized, or has potentially become stale. */
261 bool task_list_valid_p = false;
262
263 /* The list of Ada tasks.
264
265 Note: To each task we associate a number that the user can use to
266 reference it - this number is printed beside each task in the tasks
267 info listing displayed by "info tasks". This number is equal to
268 its index in the vector + 1. Reciprocally, to compute the index
269 of a task in the vector, we need to substract 1 from its number. */
270 std::vector<ada_task_info> task_list;
271 };
272
273 /* Key to our per-inferior data. */
274 static const registry<inferior>::key<ada_tasks_inferior_data>
275 ada_tasks_inferior_data_handle;
276
277 /* Return a string with TASKNO followed by the task name if TASK_INFO
278 contains a name. */
279
280 static std::string
281 task_to_str (int taskno, const ada_task_info *task_info)
282 {
283 if (task_info->name[0] == '\0')
284 return string_printf ("%d", taskno);
285 else
286 return string_printf ("%d \"%s\"", taskno, task_info->name);
287 }
288
289 /* Return the ada-tasks module's data for the given program space (PSPACE).
290 If none is found, add a zero'ed one now.
291
292 This function always returns a valid object. */
293
294 static struct ada_tasks_pspace_data *
295 get_ada_tasks_pspace_data (struct program_space *pspace)
296 {
297 struct ada_tasks_pspace_data *data;
298
299 data = ada_tasks_pspace_data_handle.get (pspace);
300 if (data == NULL)
301 data = ada_tasks_pspace_data_handle.emplace (pspace);
302
303 return data;
304 }
305
306 /* Return the ada-tasks module's data for the given inferior (INF).
307 If none is found, add a zero'ed one now.
308
309 This function always returns a valid object.
310
311 Note that we could use an observer of the inferior-created event
312 to make sure that the ada-tasks per-inferior data always exists.
313 But we preferred this approach, as it avoids this entirely as long
314 as the user does not use any of the tasking features. This is
315 quite possible, particularly in the case where the inferior does
316 not use tasking. */
317
318 static struct ada_tasks_inferior_data *
319 get_ada_tasks_inferior_data (struct inferior *inf)
320 {
321 struct ada_tasks_inferior_data *data;
322
323 data = ada_tasks_inferior_data_handle.get (inf);
324 if (data == NULL)
325 data = ada_tasks_inferior_data_handle.emplace (inf);
326
327 return data;
328 }
329
330 /* Return the task number of the task whose thread is THREAD, or zero
331 if the task could not be found. */
332
333 int
334 ada_get_task_number (thread_info *thread)
335 {
336 struct inferior *inf = thread->inf;
337 struct ada_tasks_inferior_data *data;
338
339 gdb_assert (inf != NULL);
340 data = get_ada_tasks_inferior_data (inf);
341
342 for (int i = 0; i < data->task_list.size (); i++)
343 if (data->task_list[i].ptid == thread->ptid)
344 return i + 1;
345
346 return 0; /* No matching task found. */
347 }
348
349 /* Return the task number of the task running in inferior INF which
350 matches TASK_ID , or zero if the task could not be found. */
351
352 static int
353 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
354 {
355 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
356
357 for (int i = 0; i < data->task_list.size (); i++)
358 {
359 if (data->task_list[i].task_id == task_id)
360 return i + 1;
361 }
362
363 /* Task not found. Return 0. */
364 return 0;
365 }
366
367 /* Return non-zero if TASK_NUM is a valid task number. */
368
369 int
370 valid_task_id (int task_num)
371 {
372 struct ada_tasks_inferior_data *data;
373
374 ada_build_task_list ();
375 data = get_ada_tasks_inferior_data (current_inferior ());
376 return task_num > 0 && task_num <= data->task_list.size ();
377 }
378
379 /* Return non-zero iff the task STATE corresponds to a non-terminated
380 task state. */
381
382 static int
383 ada_task_is_alive (const struct ada_task_info *task_info)
384 {
385 return (task_info->state != Terminated);
386 }
387
388 /* Search through the list of known tasks for the one whose ptid is
389 PTID, and return it. Return NULL if the task was not found. */
390
391 struct ada_task_info *
392 ada_get_task_info_from_ptid (ptid_t ptid)
393 {
394 struct ada_tasks_inferior_data *data;
395
396 ada_build_task_list ();
397 data = get_ada_tasks_inferior_data (current_inferior ());
398
399 for (ada_task_info &task : data->task_list)
400 {
401 if (task.ptid == ptid)
402 return &task;
403 }
404
405 return NULL;
406 }
407
408 /* Call the ITERATOR function once for each Ada task that hasn't been
409 terminated yet. */
410
411 void
412 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype iterator)
413 {
414 struct ada_tasks_inferior_data *data;
415
416 ada_build_task_list ();
417 data = get_ada_tasks_inferior_data (current_inferior ());
418
419 for (ada_task_info &task : data->task_list)
420 {
421 if (!ada_task_is_alive (&task))
422 continue;
423 iterator (&task);
424 }
425 }
426
427 /* Extract the contents of the value as a string whose length is LENGTH,
428 and store the result in DEST. */
429
430 static void
431 value_as_string (char *dest, struct value *val, int length)
432 {
433 memcpy (dest, val->contents ().data (), length);
434 dest[length] = '\0';
435 }
436
437 /* Extract the string image from the fat string corresponding to VAL,
438 and store it in DEST. If the string length is greater than MAX_LEN,
439 then truncate the result to the first MAX_LEN characters of the fat
440 string. */
441
442 static void
443 read_fat_string_value (char *dest, struct value *val, int max_len)
444 {
445 struct value *array_val;
446 struct value *bounds_val;
447 int len;
448
449 /* The following variables are made static to avoid recomputing them
450 each time this function is called. */
451 static int initialize_fieldnos = 1;
452 static int array_fieldno;
453 static int bounds_fieldno;
454 static int upper_bound_fieldno;
455
456 /* Get the index of the fields that we will need to read in order
457 to extract the string from the fat string. */
458 if (initialize_fieldnos)
459 {
460 struct type *type = val->type ();
461 struct type *bounds_type;
462
463 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
464 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
465
466 bounds_type = type->field (bounds_fieldno).type ();
467 if (bounds_type->code () == TYPE_CODE_PTR)
468 bounds_type = bounds_type->target_type ();
469 if (bounds_type->code () != TYPE_CODE_STRUCT)
470 error (_("Unknown task name format. Aborting"));
471 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
472
473 initialize_fieldnos = 0;
474 }
475
476 /* Get the size of the task image by checking the value of the bounds.
477 The lower bound is always 1, so we only need to read the upper bound. */
478 bounds_val = value_ind (value_field (val, bounds_fieldno));
479 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
480
481 /* Make sure that we do not read more than max_len characters... */
482 if (len > max_len)
483 len = max_len;
484
485 /* Extract LEN characters from the fat string. */
486 array_val = value_ind (value_field (val, array_fieldno));
487 read_memory (array_val->address (), (gdb_byte *) dest, len);
488
489 /* Add the NUL character to close the string. */
490 dest[len] = '\0';
491 }
492
493 /* Get, from the debugging information, the type description of all types
494 related to the Ada Task Control Block that are needed in order to
495 read the list of known tasks in the Ada runtime. If all of the info
496 needed to do so is found, then save that info in the module's per-
497 program-space data, and return NULL. Otherwise, if any information
498 cannot be found, leave the per-program-space data untouched, and
499 return an error message explaining what was missing (that error
500 message does NOT need to be deallocated). */
501
502 const char *
503 ada_get_tcb_types_info (void)
504 {
505 struct type *type;
506 struct type *common_type;
507 struct type *ll_type;
508 struct type *call_type;
509 struct atcb_fieldnos fieldnos;
510 struct ada_tasks_pspace_data *pspace_data;
511
512 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
513 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
514 const char *common_atcb_name = "system__tasking__common_atcb";
515 const char *private_data_name = "system__task_primitives__private_data";
516 const char *entry_call_record_name = "system__tasking__entry_call_record";
517
518 /* ATCB symbols may be found in several compilation units. As we
519 are only interested in one instance, use standard (literal,
520 C-like) lookups to get the first match. */
521
522 struct symbol *atcb_sym =
523 lookup_symbol_in_language (atcb_name, NULL, SEARCH_TYPE_DOMAIN,
524 language_c, NULL).symbol;
525 const struct symbol *common_atcb_sym =
526 lookup_symbol_in_language (common_atcb_name, NULL, SEARCH_TYPE_DOMAIN,
527 language_c, NULL).symbol;
528 const struct symbol *private_data_sym =
529 lookup_symbol_in_language (private_data_name, NULL, SEARCH_TYPE_DOMAIN,
530 language_c, NULL).symbol;
531 const struct symbol *entry_call_record_sym =
532 lookup_symbol_in_language (entry_call_record_name, NULL,
533 SEARCH_TYPE_DOMAIN,
534 language_c, NULL).symbol;
535
536 if (atcb_sym == NULL || atcb_sym->type () == NULL)
537 {
538 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
539 size, so the symbol name differs. */
540 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
541 SEARCH_TYPE_DOMAIN, language_c,
542 NULL).symbol;
543
544 if (atcb_sym == NULL || atcb_sym->type () == NULL)
545 return _("Cannot find Ada_Task_Control_Block type");
546
547 type = atcb_sym->type ();
548 }
549 else
550 {
551 /* Get a static representation of the type record
552 Ada_Task_Control_Block. */
553 type = atcb_sym->type ();
554 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
555 }
556
557 if (common_atcb_sym == NULL || common_atcb_sym->type () == NULL)
558 return _("Cannot find Common_ATCB type");
559 if (private_data_sym == NULL || private_data_sym->type ()== NULL)
560 return _("Cannot find Private_Data type");
561 if (entry_call_record_sym == NULL || entry_call_record_sym->type () == NULL)
562 return _("Cannot find Entry_Call_Record type");
563
564 /* Get the type for Ada_Task_Control_Block.Common. */
565 common_type = common_atcb_sym->type ();
566
567 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
568 ll_type = private_data_sym->type ();
569
570 /* Get the type for Common_ATCB.Call.all. */
571 call_type = entry_call_record_sym->type ();
572
573 /* Get the field indices. */
574 fieldnos.common = ada_get_field_index (type, "common", 0);
575 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
576 fieldnos.atc_nesting_level =
577 ada_get_field_index (type, "atc_nesting_level", 1);
578 fieldnos.state = ada_get_field_index (common_type, "state", 0);
579 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
580 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
581 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
582 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
583 fieldnos.activation_link = ada_get_field_index (common_type,
584 "activation_link", 1);
585 fieldnos.call = ada_get_field_index (common_type, "call", 1);
586 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
587 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
588 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
589 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
590 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
591
592 /* On certain platforms such as x86-windows, the "lwp" field has been
593 named "thread_id". This field will likely be renamed in the future,
594 but we need to support both possibilities to avoid an unnecessary
595 dependency on a recent compiler. We therefore try locating the
596 "thread_id" field in place of the "lwp" field if we did not find
597 the latter. */
598 if (fieldnos.ll_lwp < 0)
599 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
600
601 /* Check for the CPU offset. */
602 bound_minimal_symbol first_id_sym
603 = lookup_minimal_symbol (current_program_space, "__gnat_gdb_cpu_first_id");
604 unsigned int first_id = 0;
605 if (first_id_sym.minsym != nullptr)
606 {
607 CORE_ADDR addr = first_id_sym.value_address ();
608 gdbarch *arch = current_inferior ()->arch ();
609 /* This symbol always has type uint32_t. */
610 struct type *u32type = builtin_type (arch)->builtin_uint32;
611 first_id = value_as_long (value_at (u32type, addr));
612 }
613
614 /* Set all the out parameters all at once, now that we are certain
615 that there are no potential error() anymore. */
616 pspace_data = get_ada_tasks_pspace_data (current_program_space);
617 pspace_data->initialized_p = 1;
618 pspace_data->atcb_type = type;
619 pspace_data->atcb_common_type = common_type;
620 pspace_data->atcb_ll_type = ll_type;
621 pspace_data->atcb_call_type = call_type;
622 pspace_data->atcb_fieldno = fieldnos;
623 pspace_data->cpu_id_offset = first_id;
624 return NULL;
625 }
626
627 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
628 component of its ATCB record. This PTID needs to match the PTID used
629 by the thread layer. */
630
631 static ptid_t
632 ptid_from_atcb_common (struct value *common_value)
633 {
634 ULONGEST thread;
635 CORE_ADDR lwp = 0;
636 struct value *ll_value;
637 ptid_t ptid;
638 const struct ada_tasks_pspace_data *pspace_data
639 = get_ada_tasks_pspace_data (current_program_space);
640
641 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
642
643 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
644 lwp = value_as_address (value_field (ll_value,
645 pspace_data->atcb_fieldno.ll_lwp));
646 thread = value_as_long (value_field (ll_value,
647 pspace_data->atcb_fieldno.ll_thread));
648
649 ptid = target_get_ada_task_ptid (lwp, thread);
650
651 return ptid;
652 }
653
654 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
655 the address of its associated ATCB record), and store the result inside
656 TASK_INFO. */
657
658 static void
659 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
660 {
661 struct value *tcb_value;
662 struct value *common_value;
663 struct value *atc_nesting_level_value;
664 struct value *entry_calls_value;
665 struct value *entry_calls_value_element;
666 int called_task_fieldno = -1;
667 static const char ravenscar_task_name[] = "Ravenscar task";
668 const struct ada_tasks_pspace_data *pspace_data
669 = get_ada_tasks_pspace_data (current_program_space);
670
671 /* Clear the whole structure to start with, so that everything
672 is always initialized the same. */
673 memset (task_info, 0, sizeof (struct ada_task_info));
674
675 if (!pspace_data->initialized_p)
676 {
677 const char *err_msg = ada_get_tcb_types_info ();
678
679 if (err_msg != NULL)
680 error (_("%s. Aborting"), err_msg);
681 }
682
683 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
684 NULL, task_id);
685 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
686
687 /* Fill in the task_id. */
688
689 task_info->task_id = task_id;
690
691 /* Compute the name of the task.
692
693 Depending on the GNAT version used, the task image is either a fat
694 string, or a thin array of characters. Older versions of GNAT used
695 to use fat strings, and therefore did not need an extra field in
696 the ATCB to store the string length. For efficiency reasons, newer
697 versions of GNAT replaced the fat string by a static buffer, but this
698 also required the addition of a new field named "Image_Len" containing
699 the length of the task name. The method used to extract the task name
700 is selected depending on the existence of this field.
701
702 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
703 we may want to get it from the first user frame of the stack. For now,
704 we just give a dummy name. */
705
706 if (pspace_data->atcb_fieldno.image_len == -1)
707 {
708 if (pspace_data->atcb_fieldno.image >= 0)
709 read_fat_string_value (task_info->name,
710 value_field (common_value,
711 pspace_data->atcb_fieldno.image),
712 sizeof (task_info->name) - 1);
713 else
714 {
715 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (task_id);
716 if (msym.minsym)
717 {
718 const char *full_name = msym.minsym->linkage_name ();
719 const char *task_name = full_name;
720 const char *p;
721
722 /* Strip the prefix. */
723 for (p = full_name; *p; p++)
724 if (p[0] == '_' && p[1] == '_')
725 task_name = p + 2;
726
727 /* Copy the task name. */
728 strncpy (task_info->name, task_name,
729 sizeof (task_info->name) - 1);
730 task_info->name[sizeof (task_info->name) - 1] = 0;
731 }
732 else
733 {
734 /* No symbol found. Use a default name. */
735 strcpy (task_info->name, ravenscar_task_name);
736 }
737 }
738 }
739 else
740 {
741 int len = value_as_long
742 (value_field (common_value,
743 pspace_data->atcb_fieldno.image_len));
744
745 value_as_string (task_info->name,
746 value_field (common_value,
747 pspace_data->atcb_fieldno.image),
748 len);
749 }
750
751 /* Compute the task state and priority. */
752
753 task_info->state =
754 value_as_long (value_field (common_value,
755 pspace_data->atcb_fieldno.state));
756 task_info->priority =
757 value_as_long (value_field (common_value,
758 pspace_data->atcb_fieldno.priority));
759
760 /* If the ATCB contains some information about the parent task,
761 then compute it as well. Otherwise, zero. */
762
763 if (pspace_data->atcb_fieldno.parent >= 0)
764 task_info->parent =
765 value_as_address (value_field (common_value,
766 pspace_data->atcb_fieldno.parent));
767
768 /* If the task is in an entry call waiting for another task,
769 then determine which task it is. */
770
771 if (task_info->state == Entry_Caller_Sleep
772 && pspace_data->atcb_fieldno.atc_nesting_level > 0
773 && pspace_data->atcb_fieldno.entry_calls > 0)
774 {
775 /* Let My_ATCB be the Ada task control block of a task calling the
776 entry of another task; then the Task_Id of the called task is
777 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
778 atc_nesting_level_value =
779 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
780 entry_calls_value =
781 ada_coerce_to_simple_array_ptr
782 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
783 entry_calls_value_element =
784 value_subscript (entry_calls_value,
785 value_as_long (atc_nesting_level_value));
786 called_task_fieldno =
787 ada_get_field_index (entry_calls_value_element->type (),
788 "called_task", 0);
789 task_info->called_task =
790 value_as_address (value_field (entry_calls_value_element,
791 called_task_fieldno));
792 }
793
794 /* If the ATCB contains some information about RV callers, then
795 compute the "caller_task". Otherwise, leave it as zero. */
796
797 if (pspace_data->atcb_fieldno.call >= 0)
798 {
799 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
800 If Common_ATCB.Call is null, then there is no caller. */
801 const CORE_ADDR call =
802 value_as_address (value_field (common_value,
803 pspace_data->atcb_fieldno.call));
804 struct value *call_val;
805
806 if (call != 0)
807 {
808 call_val =
809 value_from_contents_and_address (pspace_data->atcb_call_type,
810 NULL, call);
811 task_info->caller_task =
812 value_as_address
813 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
814 }
815 }
816
817 task_info->base_cpu
818 = (pspace_data->cpu_id_offset
819 + value_as_long (value_field (common_value,
820 pspace_data->atcb_fieldno.base_cpu)));
821
822 /* And finally, compute the task ptid. Note that there is not point
823 in computing it if the task is no longer alive, in which case
824 it is good enough to set its ptid to the null_ptid. */
825 if (ada_task_is_alive (task_info))
826 task_info->ptid = ptid_from_atcb_common (common_value);
827 else
828 task_info->ptid = null_ptid;
829 }
830
831 /* Read the ATCB info of the given task (identified by TASK_ID), and
832 add the result to the given inferior's TASK_LIST. */
833
834 static void
835 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
836 {
837 struct ada_task_info task_info;
838 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
839
840 read_atcb (task_id, &task_info);
841 data->task_list.push_back (task_info);
842 }
843
844 /* Read the Known_Tasks array from the inferior memory, and store
845 it in the current inferior's TASK_LIST. Return true upon success. */
846
847 static bool
848 read_known_tasks_array (struct ada_tasks_inferior_data *data)
849 {
850 const int target_ptr_byte = data->known_tasks_element->length ();
851 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
852 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
853 int i;
854
855 /* Build a new list by reading the ATCBs from the Known_Tasks array
856 in the Ada runtime. */
857 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
858 for (i = 0; i < data->known_tasks_length; i++)
859 {
860 CORE_ADDR task_id =
861 extract_typed_address (known_tasks + i * target_ptr_byte,
862 data->known_tasks_element);
863
864 if (task_id != 0)
865 add_ada_task (task_id, current_inferior ());
866 }
867
868 return true;
869 }
870
871 /* Read the known tasks from the inferior memory, and store it in
872 the current inferior's TASK_LIST. Return true upon success. */
873
874 static bool
875 read_known_tasks_list (struct ada_tasks_inferior_data *data)
876 {
877 const int target_ptr_byte = data->known_tasks_element->length ();
878 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
879 CORE_ADDR task_id;
880 const struct ada_tasks_pspace_data *pspace_data
881 = get_ada_tasks_pspace_data (current_program_space);
882
883 /* Sanity check. */
884 if (pspace_data->atcb_fieldno.activation_link < 0)
885 return false;
886
887 /* Build a new list by reading the ATCBs. Read head of the list. */
888 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
889 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
890 while (task_id != 0)
891 {
892 struct value *tcb_value;
893 struct value *common_value;
894
895 add_ada_task (task_id, current_inferior ());
896
897 /* Read the chain. */
898 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
899 NULL, task_id);
900 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
901 task_id = value_as_address
902 (value_field (common_value,
903 pspace_data->atcb_fieldno.activation_link));
904 }
905
906 return true;
907 }
908
909 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
910 Do nothing if those fields are already set and still up to date. */
911
912 static void
913 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
914 {
915 struct symbol *sym;
916
917 /* Return now if already set. */
918 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
919 return;
920
921 /* Try array. */
922
923 bound_minimal_symbol msym
924 = lookup_minimal_symbol (current_program_space, KNOWN_TASKS_NAME);
925 if (msym.minsym != NULL)
926 {
927 data->known_tasks_kind = ADA_TASKS_ARRAY;
928 data->known_tasks_addr = msym.value_address ();
929
930 /* Try to get pointer type and array length from the symtab. */
931 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL,
932 SEARCH_VAR_DOMAIN,
933 language_c, NULL).symbol;
934 if (sym != NULL)
935 {
936 /* Validate. */
937 struct type *type = check_typedef (sym->type ());
938 struct type *eltype = NULL;
939 struct type *idxtype = NULL;
940
941 if (type->code () == TYPE_CODE_ARRAY)
942 eltype = check_typedef (type->target_type ());
943 if (eltype != NULL
944 && eltype->code () == TYPE_CODE_PTR)
945 idxtype = check_typedef (type->index_type ());
946 if (idxtype != NULL
947 && idxtype->bounds ()->low.is_constant ()
948 && idxtype->bounds ()->high.is_constant ())
949 {
950 data->known_tasks_element = eltype;
951 data->known_tasks_length =
952 (idxtype->bounds ()->high.const_val ()
953 - idxtype->bounds ()->low.const_val () + 1);
954 return;
955 }
956 }
957
958 /* Fallback to default values. The runtime may have been stripped (as
959 in some distributions), but it is likely that the executable still
960 contains debug information on the task type (due to implicit with of
961 Ada.Tasking). */
962 data->known_tasks_element =
963 builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
964 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
965 return;
966 }
967
968
969 /* Try list. */
970
971 msym = lookup_minimal_symbol (current_program_space, KNOWN_TASKS_LIST);
972 if (msym.minsym != NULL)
973 {
974 data->known_tasks_kind = ADA_TASKS_LIST;
975 data->known_tasks_addr = msym.value_address ();
976 data->known_tasks_length = 1;
977
978 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL,
979 SEARCH_VAR_DOMAIN,
980 language_c, NULL).symbol;
981 if (sym != NULL && sym->value_address () != 0)
982 {
983 /* Validate. */
984 struct type *type = check_typedef (sym->type ());
985
986 if (type->code () == TYPE_CODE_PTR)
987 {
988 data->known_tasks_element = type;
989 return;
990 }
991 }
992
993 /* Fallback to default values. */
994 data->known_tasks_element =
995 builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
996 data->known_tasks_length = 1;
997 return;
998 }
999
1000 /* Can't find tasks. */
1001
1002 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
1003 data->known_tasks_addr = 0;
1004 }
1005
1006 /* Read the known tasks from the current inferior's memory, and store it
1007 in the current inferior's data TASK_LIST. */
1008
1009 static void
1010 read_known_tasks ()
1011 {
1012 struct ada_tasks_inferior_data *data =
1013 get_ada_tasks_inferior_data (current_inferior ());
1014
1015 /* Step 1: Clear the current list, if necessary. */
1016 data->task_list.clear ();
1017
1018 /* Step 2: do the real work.
1019 If the application does not use task, then no more needs to be done.
1020 It is important to have the task list cleared (see above) before we
1021 return, as we don't want a stale task list to be used... This can
1022 happen for instance when debugging a non-multitasking program after
1023 having debugged a multitasking one. */
1024 ada_tasks_inferior_data_sniffer (data);
1025 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
1026
1027 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
1028 array unless needed. */
1029 switch (data->known_tasks_kind)
1030 {
1031 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
1032 break;
1033 case ADA_TASKS_ARRAY:
1034 data->task_list_valid_p = read_known_tasks_array (data);
1035 break;
1036 case ADA_TASKS_LIST:
1037 data->task_list_valid_p = read_known_tasks_list (data);
1038 break;
1039 }
1040 }
1041
1042 /* Build the task_list by reading the Known_Tasks array from
1043 the inferior, and return the number of tasks in that list
1044 (zero means that the program is not using tasking at all). */
1045
1046 static int
1047 ada_build_task_list ()
1048 {
1049 struct ada_tasks_inferior_data *data;
1050
1051 if (!target_has_stack ())
1052 error (_("Cannot inspect Ada tasks when program is not running"));
1053
1054 data = get_ada_tasks_inferior_data (current_inferior ());
1055 if (!data->task_list_valid_p)
1056 read_known_tasks ();
1057
1058 return data->task_list.size ();
1059 }
1060
1061 /* Print a table providing a short description of all Ada tasks
1062 running inside inferior INF. If ARG_STR is set, it will be
1063 interpreted as a task number, and the table will be limited to
1064 that task only. */
1065
1066 void
1067 print_ada_task_info (struct ui_out *uiout,
1068 const char *arg_str,
1069 struct inferior *inf)
1070 {
1071 struct ada_tasks_inferior_data *data;
1072 int taskno, nb_tasks;
1073 int taskno_arg = 0;
1074 int nb_columns;
1075
1076 if (ada_build_task_list () == 0)
1077 {
1078 uiout->message (_("Your application does not use any Ada tasks.\n"));
1079 return;
1080 }
1081
1082 if (arg_str != NULL && arg_str[0] != '\0')
1083 taskno_arg = value_as_long (parse_and_eval (arg_str));
1084
1085 if (uiout->is_mi_like_p ())
1086 /* In GDB/MI mode, we want to provide the thread ID corresponding
1087 to each task. This allows clients to quickly find the thread
1088 associated to any task, which is helpful for commands that
1089 take a --thread argument. However, in order to be able to
1090 provide that thread ID, the thread list must be up to date
1091 first. */
1092 target_update_thread_list ();
1093
1094 data = get_ada_tasks_inferior_data (inf);
1095
1096 /* Compute the number of tasks that are going to be displayed
1097 in the output. If an argument was given, there will be
1098 at most 1 entry. Otherwise, there will be as many entries
1099 as we have tasks. */
1100 if (taskno_arg)
1101 {
1102 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1103 nb_tasks = 1;
1104 else
1105 nb_tasks = 0;
1106 }
1107 else
1108 nb_tasks = data->task_list.size ();
1109
1110 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1111 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1112 uiout->table_header (1, ui_left, "current", "");
1113 uiout->table_header (3, ui_right, "id", "ID");
1114 {
1115 size_t tid_width = 9;
1116 /* Grown below in case the largest entry is bigger. */
1117
1118 if (!uiout->is_mi_like_p ())
1119 {
1120 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1121 {
1122 const struct ada_task_info *const task_info
1123 = &data->task_list[taskno - 1];
1124
1125 gdb_assert (task_info != NULL);
1126
1127 tid_width = std::max (tid_width,
1128 1 + strlen (phex_nz (task_info->task_id,
1129 sizeof (CORE_ADDR))));
1130 }
1131 }
1132 uiout->table_header (tid_width, ui_right, "task-id", "TID");
1133 }
1134 /* The following column is provided in GDB/MI mode only because
1135 it is only really useful in that mode, and also because it
1136 allows us to keep the CLI output shorter and more compact. */
1137 if (uiout->is_mi_like_p ())
1138 uiout->table_header (4, ui_right, "thread-id", "");
1139 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1140 uiout->table_header (3, ui_right, "priority", "Pri");
1141 uiout->table_header (22, ui_left, "state", "State");
1142 /* Use ui_noalign for the last column, to prevent the CLI uiout
1143 from printing an extra space at the end of each row. This
1144 is a bit of a hack, but does get the job done. */
1145 uiout->table_header (1, ui_noalign, "name", "Name");
1146 uiout->table_body ();
1147
1148 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1149 {
1150 const struct ada_task_info *const task_info =
1151 &data->task_list[taskno - 1];
1152 int parent_id;
1153
1154 gdb_assert (task_info != NULL);
1155
1156 /* If the user asked for the output to be restricted
1157 to one task only, and this is not the task, skip
1158 to the next one. */
1159 if (taskno_arg && taskno != taskno_arg)
1160 continue;
1161
1162 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1163
1164 /* Print a star if this task is the current task (or the task
1165 currently selected). */
1166 if (task_info->ptid == inferior_ptid)
1167 uiout->field_string ("current", "*");
1168 else
1169 uiout->field_skip ("current");
1170
1171 /* Print the task number. */
1172 uiout->field_signed ("id", taskno);
1173
1174 /* Print the Task ID. */
1175 uiout->field_string ("task-id", phex_nz (task_info->task_id,
1176 sizeof (CORE_ADDR)));
1177
1178 /* Print the associated Thread ID. */
1179 if (uiout->is_mi_like_p ())
1180 {
1181 thread_info *thread = (ada_task_is_alive (task_info)
1182 ? inf->find_thread (task_info->ptid)
1183 : nullptr);
1184
1185 if (thread != NULL)
1186 uiout->field_signed ("thread-id", thread->global_num);
1187 else
1188 {
1189 /* This can happen if the thread is no longer alive. */
1190 uiout->field_skip ("thread-id");
1191 }
1192 }
1193
1194 /* Print the ID of the parent task. */
1195 parent_id = get_task_number_from_id (task_info->parent, inf);
1196 if (parent_id)
1197 uiout->field_signed ("parent-id", parent_id);
1198 else
1199 uiout->field_skip ("parent-id");
1200
1201 /* Print the base priority of the task. */
1202 uiout->field_signed ("priority", task_info->priority);
1203
1204 /* Print the task current state. */
1205 if (task_info->caller_task)
1206 uiout->field_fmt ("state",
1207 _("Accepting RV with %-4d"),
1208 get_task_number_from_id (task_info->caller_task,
1209 inf));
1210 else if (task_info->called_task)
1211 uiout->field_fmt ("state",
1212 _("Waiting on RV with %-3d"),
1213 get_task_number_from_id (task_info->called_task,
1214 inf));
1215 else
1216 uiout->field_string ("state", get_state (task_info->state));
1217
1218 /* Finally, print the task name, without quotes around it, as mi like
1219 is not expecting quotes, and in non mi-like no need for quotes
1220 as there is a specific column for the name. */
1221 uiout->field_fmt ("name",
1222 (task_info->name[0] != '\0'
1223 ? ui_file_style ()
1224 : metadata_style.style ()),
1225 "%s",
1226 (task_info->name[0] != '\0'
1227 ? task_info->name
1228 : _("<no name>")));
1229
1230 uiout->text ("\n");
1231 }
1232 }
1233
1234 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1235 for the given inferior (INF). */
1236
1237 static void
1238 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1239 {
1240 const int taskno = value_as_long (parse_and_eval (taskno_str));
1241 struct ada_task_info *task_info;
1242 int parent_taskno = 0;
1243 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1244
1245 if (ada_build_task_list () == 0)
1246 {
1247 uiout->message (_("Your application does not use any Ada tasks.\n"));
1248 return;
1249 }
1250
1251 if (taskno <= 0 || taskno > data->task_list.size ())
1252 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1253 "see the IDs of currently known tasks"), taskno);
1254 task_info = &data->task_list[taskno - 1];
1255
1256 /* Print the Ada task ID. */
1257 gdb_printf (_("Ada Task: %s\n"),
1258 paddress (current_inferior ()->arch (), task_info->task_id));
1259
1260 /* Print the name of the task. */
1261 if (task_info->name[0] != '\0')
1262 gdb_printf (_("Name: %s\n"), task_info->name);
1263 else
1264 fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n"));
1265
1266 /* Print the TID and LWP. */
1267 gdb_printf (_("Thread: 0x%s\n"), phex_nz (task_info->ptid.tid (),
1268 sizeof (ULONGEST)));
1269 gdb_printf (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1270
1271 /* If set, print the base CPU. */
1272 if (task_info->base_cpu != 0)
1273 gdb_printf (_("Base CPU: %d\n"), task_info->base_cpu);
1274
1275 /* Print who is the parent (if any). */
1276 if (task_info->parent != 0)
1277 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1278 if (parent_taskno)
1279 {
1280 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1281
1282 gdb_printf (_("Parent: %d"), parent_taskno);
1283 if (parent->name[0] != '\0')
1284 gdb_printf (" (%s)", parent->name);
1285 gdb_printf ("\n");
1286 }
1287 else
1288 gdb_printf (_("No parent\n"));
1289
1290 /* Print the base priority. */
1291 gdb_printf (_("Base Priority: %d\n"), task_info->priority);
1292
1293 /* print the task current state. */
1294 {
1295 int target_taskno = 0;
1296
1297 if (task_info->caller_task)
1298 {
1299 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1300 gdb_printf (_("State: Accepting rendezvous with %d"),
1301 target_taskno);
1302 }
1303 else if (task_info->called_task)
1304 {
1305 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1306 gdb_printf (_("State: Waiting on task %d's entry"),
1307 target_taskno);
1308 }
1309 else
1310 gdb_printf (_("State: %s"), get_long_state (task_info->state));
1311
1312 if (target_taskno)
1313 {
1314 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1315
1316 if (target_task_info->name[0] != '\0')
1317 gdb_printf (" (%s)", target_task_info->name);
1318 }
1319
1320 gdb_printf ("\n");
1321 }
1322 }
1323
1324 /* If ARG is empty or null, then print a list of all Ada tasks.
1325 Otherwise, print detailed information about the task whose ID
1326 is ARG.
1327
1328 Does nothing if the program doesn't use Ada tasking. */
1329
1330 static void
1331 info_tasks_command (const char *arg, int from_tty)
1332 {
1333 struct ui_out *uiout = current_uiout;
1334
1335 if (arg == NULL || *arg == '\0')
1336 print_ada_task_info (uiout, NULL, current_inferior ());
1337 else
1338 info_task (uiout, arg, current_inferior ());
1339 }
1340
1341 /* Print a message telling the user id of the current task.
1342 This function assumes that tasking is in use in the inferior. */
1343
1344 static void
1345 display_current_task_id (void)
1346 {
1347 const int current_task = ada_get_task_number (inferior_thread ());
1348
1349 if (current_task == 0)
1350 gdb_printf (_("[Current task is unknown]\n"));
1351 else
1352 {
1353 struct ada_tasks_inferior_data *data
1354 = get_ada_tasks_inferior_data (current_inferior ());
1355 struct ada_task_info *task_info = &data->task_list[current_task - 1];
1356
1357 gdb_printf (_("[Current task is %s]\n"),
1358 task_to_str (current_task, task_info).c_str ());
1359 }
1360 }
1361
1362 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1363 that task. Print an error message if the task switch failed. */
1364
1365 static void
1366 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1367 {
1368 const int taskno = value_as_long (parse_and_eval (taskno_str));
1369 struct ada_task_info *task_info;
1370 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1371
1372 if (taskno <= 0 || taskno > data->task_list.size ())
1373 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1374 "see the IDs of currently known tasks"), taskno);
1375 task_info = &data->task_list[taskno - 1];
1376
1377 if (!ada_task_is_alive (task_info))
1378 error (_("Cannot switch to task %s: Task is no longer running"),
1379 task_to_str (taskno, task_info).c_str ());
1380
1381 /* On some platforms, the thread list is not updated until the user
1382 performs a thread-related operation (by using the "info threads"
1383 command, for instance). So this thread list may not be up to date
1384 when the user attempts this task switch. Since we cannot switch
1385 to the thread associated to our task if GDB does not know about
1386 that thread, we need to make sure that any new threads gets added
1387 to the thread list. */
1388 target_update_thread_list ();
1389
1390 /* Verify that the ptid of the task we want to switch to is valid
1391 (in other words, a ptid that GDB knows about). Otherwise, we will
1392 cause an assertion failure later on, when we try to determine
1393 the ptid associated thread_info data. We should normally never
1394 encounter such an error, but the wrong ptid can actually easily be
1395 computed if target_get_ada_task_ptid has not been implemented for
1396 our target (yet). Rather than cause an assertion error in that case,
1397 it's nicer for the user to just refuse to perform the task switch. */
1398 thread_info *tp = inf->find_thread (task_info->ptid);
1399 if (tp == NULL)
1400 error (_("Unable to compute thread ID for task %s.\n"
1401 "Cannot switch to this task."),
1402 task_to_str (taskno, task_info).c_str ());
1403
1404 switch_to_thread (tp);
1405 ada_find_printable_frame (get_selected_frame (NULL));
1406 gdb_printf (_("[Switching to task %s]\n"),
1407 task_to_str (taskno, task_info).c_str ());
1408 print_stack_frame (get_selected_frame (NULL),
1409 frame_relative_level (get_selected_frame (NULL)),
1410 SRC_AND_LOC, 1);
1411 }
1412
1413
1414 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1415 Otherwise, switch to the task indicated by TASKNO_STR. */
1416
1417 static void
1418 task_command (const char *taskno_str, int from_tty)
1419 {
1420 struct ui_out *uiout = current_uiout;
1421
1422 if (ada_build_task_list () == 0)
1423 {
1424 uiout->message (_("Your application does not use any Ada tasks.\n"));
1425 return;
1426 }
1427
1428 if (taskno_str == NULL || taskno_str[0] == '\0')
1429 display_current_task_id ();
1430 else
1431 task_command_1 (taskno_str, from_tty, current_inferior ());
1432 }
1433
1434 /* Indicate that the given inferior's task list may have changed,
1435 so invalidate the cache. */
1436
1437 static void
1438 ada_task_list_changed (struct inferior *inf)
1439 {
1440 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1441
1442 data->task_list_valid_p = false;
1443 }
1444
1445 /* Invalidate the per-program-space data. */
1446
1447 static void
1448 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1449 {
1450 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1451 }
1452
1453 /* Invalidate the per-inferior data. */
1454
1455 static void
1456 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1457 {
1458 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1459
1460 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1461 data->task_list_valid_p = false;
1462 }
1463
1464 /* The 'normal_stop' observer notification callback. */
1465
1466 static void
1467 ada_tasks_normal_stop_observer (struct bpstat *unused_args, int unused_args2)
1468 {
1469 /* The inferior has been resumed, and just stopped. This means that
1470 our task_list needs to be recomputed before it can be used again. */
1471 ada_task_list_changed (current_inferior ());
1472 }
1473
1474 /* Clear data associated to PSPACE and all inferiors using that program
1475 space. */
1476
1477 static void
1478 ada_tasks_clear_pspace_data (program_space *pspace)
1479 {
1480 /* The associated program-space data might have changed after
1481 this objfile was added. Invalidate all cached data. */
1482 ada_tasks_invalidate_pspace_data (pspace);
1483
1484 /* Invalidate the per-inferior cache for all inferiors using
1485 this program space. */
1486 for (inferior *inf : all_inferiors ())
1487 if (inf->pspace == pspace)
1488 ada_tasks_invalidate_inferior_data (inf);
1489 }
1490
1491 /* Called when a new objfile was added. */
1492
1493 static void
1494 ada_tasks_new_objfile_observer (objfile *objfile)
1495 {
1496 ada_tasks_clear_pspace_data (objfile->pspace ());
1497 }
1498
1499 /* The qcs command line flags for the "task apply" commands. Keep
1500 this in sync with the "frame apply" commands. */
1501
1502 using qcs_flag_option_def
1503 = gdb::option::flag_option_def<qcs_flags>;
1504
1505 static const gdb::option::option_def task_qcs_flags_option_defs[] = {
1506 qcs_flag_option_def {
1507 "q", [] (qcs_flags *opt) { return &opt->quiet; },
1508 N_("Disables printing the task information."),
1509 },
1510
1511 qcs_flag_option_def {
1512 "c", [] (qcs_flags *opt) { return &opt->cont; },
1513 N_("Print any error raised by COMMAND and continue."),
1514 },
1515
1516 qcs_flag_option_def {
1517 "s", [] (qcs_flags *opt) { return &opt->silent; },
1518 N_("Silently ignore any errors or empty output produced by COMMAND."),
1519 },
1520 };
1521
1522 /* Create an option_def_group for the "task apply all" options, with
1523 FLAGS as context. */
1524
1525 static inline std::array<gdb::option::option_def_group, 1>
1526 make_task_apply_all_options_def_group (qcs_flags *flags)
1527 {
1528 return {{
1529 { {task_qcs_flags_option_defs}, flags },
1530 }};
1531 }
1532
1533 /* Create an option_def_group for the "task apply" options, with
1534 FLAGS as context. */
1535
1536 static inline gdb::option::option_def_group
1537 make_task_apply_options_def_group (qcs_flags *flags)
1538 {
1539 return {{task_qcs_flags_option_defs}, flags};
1540 }
1541
1542 /* Implementation of 'task apply all'. */
1543
1544 static void
1545 task_apply_all_command (const char *cmd, int from_tty)
1546 {
1547 qcs_flags flags;
1548
1549 auto group = make_task_apply_all_options_def_group (&flags);
1550 gdb::option::process_options
1551 (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group);
1552
1553 validate_flags_qcs ("task apply all", &flags);
1554
1555 if (cmd == nullptr || *cmd == '\0')
1556 error (_("Please specify a command at the end of 'task apply all'"));
1557
1558 update_thread_list ();
1559 ada_build_task_list ();
1560
1561 inferior *inf = current_inferior ();
1562 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1563
1564 /* Save a copy of the thread list and increment each thread's
1565 refcount while executing the command in the context of each
1566 thread, in case the command affects this. */
1567 std::vector<std::pair<int, thread_info_ref>> thr_list_cpy;
1568
1569 for (int i = 1; i <= data->task_list.size (); ++i)
1570 {
1571 ada_task_info &task = data->task_list[i - 1];
1572 if (!ada_task_is_alive (&task))
1573 continue;
1574
1575 thread_info *tp = inf->find_thread (task.ptid);
1576 if (tp == nullptr)
1577 warning (_("Unable to compute thread ID for task %s.\n"
1578 "Cannot switch to this task."),
1579 task_to_str (i, &task).c_str ());
1580 else
1581 thr_list_cpy.emplace_back (i, thread_info_ref::new_reference (tp));
1582 }
1583
1584 scoped_restore_current_thread restore_thread;
1585
1586 for (const auto &info : thr_list_cpy)
1587 if (switch_to_thread_if_alive (info.second.get ()))
1588 thread_try_catch_cmd (info.second.get (), info.first, cmd,
1589 from_tty, flags);
1590 }
1591
1592 /* Implementation of 'task apply'. */
1593
1594 static void
1595 task_apply_command (const char *tidlist, int from_tty)
1596 {
1597
1598 if (tidlist == nullptr || *tidlist == '\0')
1599 error (_("Please specify a task ID list"));
1600
1601 update_thread_list ();
1602 ada_build_task_list ();
1603
1604 inferior *inf = current_inferior ();
1605 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1606
1607 /* Save a copy of the thread list and increment each thread's
1608 refcount while executing the command in the context of each
1609 thread, in case the command affects this. */
1610 std::vector<std::pair<int, thread_info_ref>> thr_list_cpy;
1611
1612 number_or_range_parser parser (tidlist);
1613 while (!parser.finished ())
1614 {
1615 int num = parser.get_number ();
1616
1617 if (num < 1 || num - 1 >= data->task_list.size ())
1618 warning (_("no Ada Task with number %d"), num);
1619 else
1620 {
1621 ada_task_info &task = data->task_list[num - 1];
1622 if (!ada_task_is_alive (&task))
1623 continue;
1624
1625 thread_info *tp = inf->find_thread (task.ptid);
1626 if (tp == nullptr)
1627 warning (_("Unable to compute thread ID for task %s.\n"
1628 "Cannot switch to this task."),
1629 task_to_str (num, &task).c_str ());
1630 else
1631 thr_list_cpy.emplace_back (num,
1632 thread_info_ref::new_reference (tp));
1633 }
1634 }
1635
1636 qcs_flags flags;
1637 const char *cmd = parser.cur_tok ();
1638
1639 auto group = make_task_apply_options_def_group (&flags);
1640 gdb::option::process_options
1641 (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group);
1642
1643 validate_flags_qcs ("task apply", &flags);
1644
1645 if (*cmd == '\0')
1646 error (_("Please specify a command following the task ID list"));
1647
1648 scoped_restore_current_thread restore_thread;
1649
1650 for (const auto &info : thr_list_cpy)
1651 if (switch_to_thread_if_alive (info.second.get ()))
1652 thread_try_catch_cmd (info.second.get (), info.first, cmd,
1653 from_tty, flags);
1654 }
1655
1656 void _initialize_tasks ();
1657 void
1658 _initialize_tasks ()
1659 {
1660 /* Attach various observers. */
1661 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer,
1662 "ada-tasks");
1663 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer,
1664 "ada-tasks");
1665 gdb::observers::all_objfiles_removed.attach (ada_tasks_clear_pspace_data,
1666 "ada-tasks");
1667
1668 static struct cmd_list_element *task_cmd_list;
1669 static struct cmd_list_element *task_apply_list;
1670
1671
1672 /* Some new commands provided by this module. */
1673 add_info ("tasks", info_tasks_command,
1674 _("Provide information about all known Ada tasks."));
1675
1676 add_prefix_cmd ("task", class_run, task_command,
1677 _("Use this command to switch between Ada tasks.\n\
1678 Without argument, this command simply prints the current task ID."),
1679 &task_cmd_list, 1, &cmdlist);
1680
1681 #define TASK_APPLY_OPTION_HELP "\
1682 Prints per-inferior task number followed by COMMAND output.\n\
1683 \n\
1684 By default, an error raised during the execution of COMMAND\n\
1685 aborts \"task apply\".\n\
1686 \n\
1687 Options:\n\
1688 %OPTIONS%"
1689
1690 static const auto task_apply_opts
1691 = make_task_apply_options_def_group (nullptr);
1692
1693 static std::string task_apply_help = gdb::option::build_help (_("\
1694 Apply a command to a list of tasks.\n\
1695 Usage: task apply ID... [OPTION]... COMMAND\n\
1696 ID is a space-separated list of IDs of tasks to apply COMMAND on.\n"
1697 TASK_APPLY_OPTION_HELP), task_apply_opts);
1698
1699 add_prefix_cmd ("apply", class_run,
1700 task_apply_command,
1701 task_apply_help.c_str (),
1702 &task_apply_list, 1,
1703 &task_cmd_list);
1704
1705 static const auto task_apply_all_opts
1706 = make_task_apply_all_options_def_group (nullptr);
1707
1708 static std::string task_apply_all_help = gdb::option::build_help (_("\
1709 Apply a command to all tasks in the current inferior.\n\
1710 \n\
1711 Usage: task apply all [OPTION]... COMMAND\n"
1712 TASK_APPLY_OPTION_HELP), task_apply_all_opts);
1713
1714 add_cmd ("all", class_run, task_apply_all_command,
1715 task_apply_all_help.c_str (), &task_apply_list);
1716 }