]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-tdep.c
[gdb/symtab] Factor out compunit_epilogue_unwind_valid
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "language.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "gdbsupport/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52 #include "amd64-ravenscar-thread.h"
53
54 /* Note that the AMD64 architecture was previously known as x86-64.
55 The latter is (forever) engraved into the canonical system name as
56 returned by config.guess, and used as the name for the AMD64 port
57 of GNU/Linux. The BSD's have renamed their ports to amd64; they
58 don't like to shout. For GDB we prefer the amd64_-prefix over the
59 x86_64_-prefix since it's so much easier to type. */
60
61 /* Register information. */
62
63 static const char * const amd64_register_names[] =
64 {
65 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
66
67 /* %r8 is indeed register number 8. */
68 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
69 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
70
71 /* %st0 is register number 24. */
72 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
74
75 /* %xmm0 is register number 40. */
76 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
77 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
78 "mxcsr",
79 };
80
81 static const char * const amd64_ymm_names[] =
82 {
83 "ymm0", "ymm1", "ymm2", "ymm3",
84 "ymm4", "ymm5", "ymm6", "ymm7",
85 "ymm8", "ymm9", "ymm10", "ymm11",
86 "ymm12", "ymm13", "ymm14", "ymm15"
87 };
88
89 static const char * const amd64_ymm_avx512_names[] =
90 {
91 "ymm16", "ymm17", "ymm18", "ymm19",
92 "ymm20", "ymm21", "ymm22", "ymm23",
93 "ymm24", "ymm25", "ymm26", "ymm27",
94 "ymm28", "ymm29", "ymm30", "ymm31"
95 };
96
97 static const char * const amd64_ymmh_names[] =
98 {
99 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
100 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
101 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
102 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
103 };
104
105 static const char * const amd64_ymmh_avx512_names[] =
106 {
107 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
108 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
109 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
110 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
111 };
112
113 static const char * const amd64_mpx_names[] =
114 {
115 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
116 };
117
118 static const char * const amd64_k_names[] =
119 {
120 "k0", "k1", "k2", "k3",
121 "k4", "k5", "k6", "k7"
122 };
123
124 static const char * const amd64_zmmh_names[] =
125 {
126 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
127 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
128 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
129 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
130 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
131 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
132 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
133 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
134 };
135
136 static const char * const amd64_zmm_names[] =
137 {
138 "zmm0", "zmm1", "zmm2", "zmm3",
139 "zmm4", "zmm5", "zmm6", "zmm7",
140 "zmm8", "zmm9", "zmm10", "zmm11",
141 "zmm12", "zmm13", "zmm14", "zmm15",
142 "zmm16", "zmm17", "zmm18", "zmm19",
143 "zmm20", "zmm21", "zmm22", "zmm23",
144 "zmm24", "zmm25", "zmm26", "zmm27",
145 "zmm28", "zmm29", "zmm30", "zmm31"
146 };
147
148 static const char * const amd64_xmm_avx512_names[] = {
149 "xmm16", "xmm17", "xmm18", "xmm19",
150 "xmm20", "xmm21", "xmm22", "xmm23",
151 "xmm24", "xmm25", "xmm26", "xmm27",
152 "xmm28", "xmm29", "xmm30", "xmm31"
153 };
154
155 static const char * const amd64_pkeys_names[] = {
156 "pkru"
157 };
158
159 /* DWARF Register Number Mapping as defined in the System V psABI,
160 section 3.6. */
161
162 static int amd64_dwarf_regmap[] =
163 {
164 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
165 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
166 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
167 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
168
169 /* Frame Pointer Register RBP. */
170 AMD64_RBP_REGNUM,
171
172 /* Stack Pointer Register RSP. */
173 AMD64_RSP_REGNUM,
174
175 /* Extended Integer Registers 8 - 15. */
176 AMD64_R8_REGNUM, /* %r8 */
177 AMD64_R9_REGNUM, /* %r9 */
178 AMD64_R10_REGNUM, /* %r10 */
179 AMD64_R11_REGNUM, /* %r11 */
180 AMD64_R12_REGNUM, /* %r12 */
181 AMD64_R13_REGNUM, /* %r13 */
182 AMD64_R14_REGNUM, /* %r14 */
183 AMD64_R15_REGNUM, /* %r15 */
184
185 /* Return Address RA. Mapped to RIP. */
186 AMD64_RIP_REGNUM,
187
188 /* SSE Registers 0 - 7. */
189 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
190 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
191 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
192 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
193
194 /* Extended SSE Registers 8 - 15. */
195 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
196 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
197 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
198 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
199
200 /* Floating Point Registers 0-7. */
201 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
202 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
203 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
204 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
205
206 /* MMX Registers 0 - 7.
207 We have to handle those registers specifically, as their register
208 number within GDB depends on the target (or they may even not be
209 available at all). */
210 -1, -1, -1, -1, -1, -1, -1, -1,
211
212 /* Control and Status Flags Register. */
213 AMD64_EFLAGS_REGNUM,
214
215 /* Selector Registers. */
216 AMD64_ES_REGNUM,
217 AMD64_CS_REGNUM,
218 AMD64_SS_REGNUM,
219 AMD64_DS_REGNUM,
220 AMD64_FS_REGNUM,
221 AMD64_GS_REGNUM,
222 -1,
223 -1,
224
225 /* Segment Base Address Registers. */
226 -1,
227 -1,
228 -1,
229 -1,
230
231 /* Special Selector Registers. */
232 -1,
233 -1,
234
235 /* Floating Point Control Registers. */
236 AMD64_MXCSR_REGNUM,
237 AMD64_FCTRL_REGNUM,
238 AMD64_FSTAT_REGNUM
239 };
240
241 static const int amd64_dwarf_regmap_len =
242 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
243
244 /* Convert DWARF register number REG to the appropriate register
245 number used by GDB. */
246
247 static int
248 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
249 {
250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251 int ymm0_regnum = tdep->ymm0_regnum;
252 int regnum = -1;
253
254 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
255 regnum = amd64_dwarf_regmap[reg];
256
257 if (ymm0_regnum >= 0
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
260
261 return regnum;
262 }
263
264 /* Map architectural register numbers to gdb register numbers. */
265
266 static const int amd64_arch_regmap[16] =
267 {
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284 };
285
286 static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289 /* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292 static int
293 amd64_arch_reg_to_regnum (int reg)
294 {
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298 }
299
300 /* Register names for byte pseudo-registers. */
301
302 static const char * const amd64_byte_names[] =
303 {
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
307 };
308
309 /* Number of lower byte registers. */
310 #define AMD64_NUM_LOWER_BYTE_REGS 16
311
312 /* Register names for word pseudo-registers. */
313
314 static const char * const amd64_word_names[] =
315 {
316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318 };
319
320 /* Register names for dword pseudo-registers. */
321
322 static const char * const amd64_dword_names[] =
323 {
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
327 };
328
329 /* Return the name of register REGNUM. */
330
331 static const char *
332 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349 }
350
351 static struct value *
352 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
353 readable_regcache *regcache,
354 int regnum)
355 {
356 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
357
358 value *result_value = value::allocate (register_type (gdbarch, regnum));
359 result_value->set_lval (lval_register);
360 VALUE_REGNUM (result_value) = regnum;
361 gdb_byte *buf = result_value->contents_raw ().data ();
362
363 if (i386_byte_regnum_p (gdbarch, regnum))
364 {
365 int gpnum = regnum - tdep->al_regnum;
366
367 /* Extract (always little endian). */
368 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
369 {
370 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
371 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
372
373 /* Special handling for AH, BH, CH, DH. */
374 register_status status = regcache->raw_read (gpnum, raw_buf);
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
377 else
378 result_value->mark_bytes_unavailable (0,
379 result_value->type ()->length ());
380 }
381 else
382 {
383 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
384 register_status status = regcache->raw_read (gpnum, raw_buf);
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
387 else
388 result_value->mark_bytes_unavailable (0,
389 result_value->type ()->length ());
390 }
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
395 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
396 /* Extract (always little endian). */
397 register_status status = regcache->raw_read (gpnum, raw_buf);
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
400 else
401 result_value->mark_bytes_unavailable (0,
402 result_value->type ()->length ());
403 }
404 else
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
409 }
410
411 static void
412 amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415 {
416 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
424 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
425 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
426
427 /* Read ... AH, BH, CH, DH. */
428 regcache->raw_read (gpnum, raw_buf);
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
432 regcache->raw_write (gpnum, raw_buf);
433 }
434 else
435 {
436 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
437
438 /* Read ... */
439 regcache->raw_read (gpnum, raw_buf);
440 /* ... Modify ... (always little endian). */
441 memcpy (raw_buf, buf, 1);
442 /* ... Write. */
443 regcache->raw_write (gpnum, raw_buf);
444 }
445 }
446 else if (i386_dword_regnum_p (gdbarch, regnum))
447 {
448 int gpnum = regnum - tdep->eax_regnum;
449 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
450
451 /* Read ... */
452 regcache->raw_read (gpnum, raw_buf);
453 /* ... Modify ... (always little endian). */
454 memcpy (raw_buf, buf, 4);
455 /* ... Write. */
456 regcache->raw_write (gpnum, raw_buf);
457 }
458 else
459 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
460 }
461
462 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
463
464 static int
465 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
466 struct agent_expr *ax, int regnum)
467 {
468 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
469
470 if (i386_byte_regnum_p (gdbarch, regnum))
471 {
472 int gpnum = regnum - tdep->al_regnum;
473
474 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
475 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
476 else
477 ax_reg_mask (ax, gpnum);
478 return 0;
479 }
480 else if (i386_dword_regnum_p (gdbarch, regnum))
481 {
482 int gpnum = regnum - tdep->eax_regnum;
483
484 ax_reg_mask (ax, gpnum);
485 return 0;
486 }
487 else
488 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
489 }
490
491 \f
492
493 /* Register classes as defined in the psABI. */
494
495 enum amd64_reg_class
496 {
497 AMD64_INTEGER,
498 AMD64_SSE,
499 AMD64_SSEUP,
500 AMD64_X87,
501 AMD64_X87UP,
502 AMD64_COMPLEX_X87,
503 AMD64_NO_CLASS,
504 AMD64_MEMORY
505 };
506
507 /* Return the union class of CLASS1 and CLASS2. See the psABI for
508 details. */
509
510 static enum amd64_reg_class
511 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
512 {
513 /* Rule (a): If both classes are equal, this is the resulting class. */
514 if (class1 == class2)
515 return class1;
516
517 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
518 is the other class. */
519 if (class1 == AMD64_NO_CLASS)
520 return class2;
521 if (class2 == AMD64_NO_CLASS)
522 return class1;
523
524 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
525 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
526 return AMD64_MEMORY;
527
528 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
529 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
530 return AMD64_INTEGER;
531
532 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
533 MEMORY is used as class. */
534 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
535 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
536 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
537 return AMD64_MEMORY;
538
539 /* Rule (f): Otherwise class SSE is used. */
540 return AMD64_SSE;
541 }
542
543 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
544
545 /* Return true if TYPE is a structure or union with unaligned fields. */
546
547 static bool
548 amd64_has_unaligned_fields (struct type *type)
549 {
550 if (type->code () == TYPE_CODE_STRUCT
551 || type->code () == TYPE_CODE_UNION)
552 {
553 for (int i = 0; i < type->num_fields (); i++)
554 {
555 struct type *subtype = check_typedef (type->field (i).type ());
556
557 /* Ignore static fields, empty fields (for example nested
558 empty structures), and bitfields (these are handled by
559 the caller). */
560 if (field_is_static (&type->field (i))
561 || (TYPE_FIELD_BITSIZE (type, i) == 0
562 && subtype->length () == 0)
563 || TYPE_FIELD_PACKED (type, i))
564 continue;
565
566 int bitpos = type->field (i).loc_bitpos ();
567
568 if (bitpos % 8 != 0)
569 return true;
570
571 int align = type_align (subtype);
572 if (align == 0)
573 error (_("could not determine alignment of type"));
574
575 int bytepos = bitpos / 8;
576 if (bytepos % align != 0)
577 return true;
578
579 if (amd64_has_unaligned_fields (subtype))
580 return true;
581 }
582 }
583
584 return false;
585 }
586
587 /* Classify field I of TYPE starting at BITOFFSET according to the rules for
588 structures and union types, and store the result in THECLASS. */
589
590 static void
591 amd64_classify_aggregate_field (struct type *type, int i,
592 enum amd64_reg_class theclass[2],
593 unsigned int bitoffset)
594 {
595 struct type *subtype = check_typedef (type->field (i).type ());
596 enum amd64_reg_class subclass[2];
597 int bitsize = TYPE_FIELD_BITSIZE (type, i);
598
599 if (bitsize == 0)
600 bitsize = subtype->length () * 8;
601
602 /* Ignore static fields, or empty fields, for example nested
603 empty structures.*/
604 if (field_is_static (&type->field (i)) || bitsize == 0)
605 return;
606
607 int bitpos = bitoffset + type->field (i).loc_bitpos ();
608 int pos = bitpos / 64;
609 int endpos = (bitpos + bitsize - 1) / 64;
610
611 if (subtype->code () == TYPE_CODE_STRUCT
612 || subtype->code () == TYPE_CODE_UNION)
613 {
614 /* Each field of an object is classified recursively. */
615 int j;
616 for (j = 0; j < subtype->num_fields (); j++)
617 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
618 return;
619 }
620
621 gdb_assert (pos == 0 || pos == 1);
622
623 amd64_classify (subtype, subclass);
624 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
625 if (bitsize <= 64 && pos == 0 && endpos == 1)
626 /* This is a bit of an odd case: We have a field that would
627 normally fit in one of the two eightbytes, except that
628 it is placed in a way that this field straddles them.
629 This has been seen with a structure containing an array.
630
631 The ABI is a bit unclear in this case, but we assume that
632 this field's class (stored in subclass[0]) must also be merged
633 into class[1]. In other words, our field has a piece stored
634 in the second eight-byte, and thus its class applies to
635 the second eight-byte as well.
636
637 In the case where the field length exceeds 8 bytes,
638 it should not be necessary to merge the field class
639 into class[1]. As LEN > 8, subclass[1] is necessarily
640 different from AMD64_NO_CLASS. If subclass[1] is equal
641 to subclass[0], then the normal class[1]/subclass[1]
642 merging will take care of everything. For subclass[1]
643 to be different from subclass[0], I can only see the case
644 where we have a SSE/SSEUP or X87/X87UP pair, which both
645 use up all 16 bytes of the aggregate, and are already
646 handled just fine (because each portion sits on its own
647 8-byte). */
648 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
649 if (pos == 0)
650 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
651 }
652
653 /* Classify TYPE according to the rules for aggregate (structures and
654 arrays) and union types, and store the result in CLASS. */
655
656 static void
657 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
658 {
659 /* 1. If the size of an object is larger than two times eight bytes, or
660 it is a non-trivial C++ object, or it has unaligned fields, then it
661 has class memory.
662
663 It is important that the trivially_copyable check is before the
664 unaligned fields check, as C++ classes with virtual base classes
665 will have fields (for the virtual base classes) with non-constant
666 loc_bitpos attributes, which will cause an assert to trigger within
667 the unaligned field check. As classes with virtual bases are not
668 trivially copyable, checking that first avoids this problem. */
669 if (TYPE_HAS_DYNAMIC_LENGTH (type)
670 || type->length () > 16
671 || !language_pass_by_reference (type).trivially_copyable
672 || amd64_has_unaligned_fields (type))
673 {
674 theclass[0] = theclass[1] = AMD64_MEMORY;
675 return;
676 }
677
678 /* 2. Both eightbytes get initialized to class NO_CLASS. */
679 theclass[0] = theclass[1] = AMD64_NO_CLASS;
680
681 /* 3. Each field of an object is classified recursively so that
682 always two fields are considered. The resulting class is
683 calculated according to the classes of the fields in the
684 eightbyte: */
685
686 if (type->code () == TYPE_CODE_ARRAY)
687 {
688 struct type *subtype = check_typedef (type->target_type ());
689
690 /* All fields in an array have the same type. */
691 amd64_classify (subtype, theclass);
692 if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS)
693 theclass[1] = theclass[0];
694 }
695 else
696 {
697 int i;
698
699 /* Structure or union. */
700 gdb_assert (type->code () == TYPE_CODE_STRUCT
701 || type->code () == TYPE_CODE_UNION);
702
703 for (i = 0; i < type->num_fields (); i++)
704 amd64_classify_aggregate_field (type, i, theclass, 0);
705 }
706
707 /* 4. Then a post merger cleanup is done: */
708
709 /* Rule (a): If one of the classes is MEMORY, the whole argument is
710 passed in memory. */
711 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
712 theclass[0] = theclass[1] = AMD64_MEMORY;
713
714 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
715 SSE. */
716 if (theclass[0] == AMD64_SSEUP)
717 theclass[0] = AMD64_SSE;
718 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
719 theclass[1] = AMD64_SSE;
720 }
721
722 /* Classify TYPE, and store the result in CLASS. */
723
724 static void
725 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
726 {
727 enum type_code code = type->code ();
728 int len = type->length ();
729
730 theclass[0] = theclass[1] = AMD64_NO_CLASS;
731
732 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
733 long, long long, and pointers are in the INTEGER class. Similarly,
734 range types, used by languages such as Ada, are also in the INTEGER
735 class. */
736 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
737 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
738 || code == TYPE_CODE_CHAR
739 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
740 && (len == 1 || len == 2 || len == 4 || len == 8))
741 theclass[0] = AMD64_INTEGER;
742
743 /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and
744 __m64 are in class SSE. */
745 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
746 && (len == 2 || len == 4 || len == 8))
747 /* FIXME: __m64 . */
748 theclass[0] = AMD64_SSE;
749
750 /* Arguments of types __float128, _Decimal128 and __m128 are split into
751 two halves. The least significant ones belong to class SSE, the most
752 significant one to class SSEUP. */
753 else if (code == TYPE_CODE_DECFLOAT && len == 16)
754 /* FIXME: __float128, __m128. */
755 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
756
757 /* The 64-bit mantissa of arguments of type long double belongs to
758 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
759 class X87UP. */
760 else if (code == TYPE_CODE_FLT && len == 16)
761 /* Class X87 and X87UP. */
762 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
763
764 /* Arguments of complex T - where T is one of the types _Float16, float or
765 double - get treated as if they are implemented as:
766
767 struct complexT {
768 T real;
769 T imag;
770 };
771
772 */
773 else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4))
774 theclass[0] = AMD64_SSE;
775 else if (code == TYPE_CODE_COMPLEX && len == 16)
776 theclass[0] = theclass[1] = AMD64_SSE;
777
778 /* A variable of type complex long double is classified as type
779 COMPLEX_X87. */
780 else if (code == TYPE_CODE_COMPLEX && len == 32)
781 theclass[0] = AMD64_COMPLEX_X87;
782
783 /* Aggregates. */
784 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
785 || code == TYPE_CODE_UNION)
786 amd64_classify_aggregate (type, theclass);
787 }
788
789 static enum return_value_convention
790 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
791 struct type *type, struct regcache *regcache,
792 struct value **read_value, const gdb_byte *writebuf)
793 {
794 enum amd64_reg_class theclass[2];
795 int len = type->length ();
796 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
797 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
798 int integer_reg = 0;
799 int sse_reg = 0;
800 int i;
801
802 gdb_assert (!(read_value && writebuf));
803
804 /* 1. Classify the return type with the classification algorithm. */
805 amd64_classify (type, theclass);
806
807 /* 2. If the type has class MEMORY, then the caller provides space
808 for the return value and passes the address of this storage in
809 %rdi as if it were the first argument to the function. In effect,
810 this address becomes a hidden first argument.
811
812 On return %rax will contain the address that has been passed in
813 by the caller in %rdi. */
814 if (theclass[0] == AMD64_MEMORY)
815 {
816 /* As indicated by the comment above, the ABI guarantees that we
817 can always find the return value just after the function has
818 returned. */
819
820 if (read_value != nullptr)
821 {
822 ULONGEST addr;
823
824 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
825 *read_value = value_at_non_lval (type, addr);
826 }
827
828 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
829 }
830
831 gdb_byte *readbuf = nullptr;
832 if (read_value != nullptr)
833 {
834 *read_value = value::allocate (type);
835 readbuf = (*read_value)->contents_raw ().data ();
836 }
837
838 /* 8. If the class is COMPLEX_X87, the real part of the value is
839 returned in %st0 and the imaginary part in %st1. */
840 if (theclass[0] == AMD64_COMPLEX_X87)
841 {
842 if (readbuf)
843 {
844 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
845 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
846 }
847
848 if (writebuf)
849 {
850 i387_return_value (gdbarch, regcache);
851 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
852 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
853
854 /* Fix up the tag word such that both %st(0) and %st(1) are
855 marked as valid. */
856 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
857 }
858
859 return RETURN_VALUE_REGISTER_CONVENTION;
860 }
861
862 gdb_assert (theclass[1] != AMD64_MEMORY);
863 gdb_assert (len <= 16);
864
865 for (i = 0; len > 0; i++, len -= 8)
866 {
867 int regnum = -1;
868 int offset = 0;
869
870 switch (theclass[i])
871 {
872 case AMD64_INTEGER:
873 /* 3. If the class is INTEGER, the next available register
874 of the sequence %rax, %rdx is used. */
875 regnum = integer_regnum[integer_reg++];
876 break;
877
878 case AMD64_SSE:
879 /* 4. If the class is SSE, the next available SSE register
880 of the sequence %xmm0, %xmm1 is used. */
881 regnum = sse_regnum[sse_reg++];
882 break;
883
884 case AMD64_SSEUP:
885 /* 5. If the class is SSEUP, the eightbyte is passed in the
886 upper half of the last used SSE register. */
887 gdb_assert (sse_reg > 0);
888 regnum = sse_regnum[sse_reg - 1];
889 offset = 8;
890 break;
891
892 case AMD64_X87:
893 /* 6. If the class is X87, the value is returned on the X87
894 stack in %st0 as 80-bit x87 number. */
895 regnum = AMD64_ST0_REGNUM;
896 if (writebuf)
897 i387_return_value (gdbarch, regcache);
898 break;
899
900 case AMD64_X87UP:
901 /* 7. If the class is X87UP, the value is returned together
902 with the previous X87 value in %st0. */
903 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
904 regnum = AMD64_ST0_REGNUM;
905 offset = 8;
906 len = 2;
907 break;
908
909 case AMD64_NO_CLASS:
910 continue;
911
912 default:
913 gdb_assert (!"Unexpected register class.");
914 }
915
916 gdb_assert (regnum != -1);
917
918 if (readbuf)
919 regcache->raw_read_part (regnum, offset, std::min (len, 8),
920 readbuf + i * 8);
921 if (writebuf)
922 regcache->raw_write_part (regnum, offset, std::min (len, 8),
923 writebuf + i * 8);
924 }
925
926 return RETURN_VALUE_REGISTER_CONVENTION;
927 }
928 \f
929
930 static CORE_ADDR
931 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
932 CORE_ADDR sp, function_call_return_method return_method)
933 {
934 static int integer_regnum[] =
935 {
936 AMD64_RDI_REGNUM, /* %rdi */
937 AMD64_RSI_REGNUM, /* %rsi */
938 AMD64_RDX_REGNUM, /* %rdx */
939 AMD64_RCX_REGNUM, /* %rcx */
940 AMD64_R8_REGNUM, /* %r8 */
941 AMD64_R9_REGNUM /* %r9 */
942 };
943 static int sse_regnum[] =
944 {
945 /* %xmm0 ... %xmm7 */
946 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
947 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
948 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
949 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
950 };
951 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
952 int num_stack_args = 0;
953 int num_elements = 0;
954 int element = 0;
955 int integer_reg = 0;
956 int sse_reg = 0;
957 int i;
958
959 /* Reserve a register for the "hidden" argument. */
960 if (return_method == return_method_struct)
961 integer_reg++;
962
963 for (i = 0; i < nargs; i++)
964 {
965 struct type *type = args[i]->type ();
966 int len = type->length ();
967 enum amd64_reg_class theclass[2];
968 int needed_integer_regs = 0;
969 int needed_sse_regs = 0;
970 int j;
971
972 /* Classify argument. */
973 amd64_classify (type, theclass);
974
975 /* Calculate the number of integer and SSE registers needed for
976 this argument. */
977 for (j = 0; j < 2; j++)
978 {
979 if (theclass[j] == AMD64_INTEGER)
980 needed_integer_regs++;
981 else if (theclass[j] == AMD64_SSE)
982 needed_sse_regs++;
983 }
984
985 /* Check whether enough registers are available, and if the
986 argument should be passed in registers at all. */
987 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
988 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
989 || (needed_integer_regs == 0 && needed_sse_regs == 0))
990 {
991 /* The argument will be passed on the stack. */
992 num_elements += ((len + 7) / 8);
993 stack_args[num_stack_args++] = args[i];
994 }
995 else
996 {
997 /* The argument will be passed in registers. */
998 const gdb_byte *valbuf = args[i]->contents ().data ();
999 gdb_byte buf[8];
1000
1001 gdb_assert (len <= 16);
1002
1003 for (j = 0; len > 0; j++, len -= 8)
1004 {
1005 int regnum = -1;
1006 int offset = 0;
1007
1008 switch (theclass[j])
1009 {
1010 case AMD64_INTEGER:
1011 regnum = integer_regnum[integer_reg++];
1012 break;
1013
1014 case AMD64_SSE:
1015 regnum = sse_regnum[sse_reg++];
1016 break;
1017
1018 case AMD64_SSEUP:
1019 gdb_assert (sse_reg > 0);
1020 regnum = sse_regnum[sse_reg - 1];
1021 offset = 8;
1022 break;
1023
1024 case AMD64_NO_CLASS:
1025 continue;
1026
1027 default:
1028 gdb_assert (!"Unexpected register class.");
1029 }
1030
1031 gdb_assert (regnum != -1);
1032 memset (buf, 0, sizeof buf);
1033 memcpy (buf, valbuf + j * 8, std::min (len, 8));
1034 regcache->raw_write_part (regnum, offset, 8, buf);
1035 }
1036 }
1037 }
1038
1039 /* Allocate space for the arguments on the stack. */
1040 sp -= num_elements * 8;
1041
1042 /* The psABI says that "The end of the input argument area shall be
1043 aligned on a 16 byte boundary." */
1044 sp &= ~0xf;
1045
1046 /* Write out the arguments to the stack. */
1047 for (i = 0; i < num_stack_args; i++)
1048 {
1049 struct type *type = stack_args[i]->type ();
1050 const gdb_byte *valbuf = stack_args[i]->contents ().data ();
1051 int len = type->length ();
1052
1053 write_memory (sp + element * 8, valbuf, len);
1054 element += ((len + 7) / 8);
1055 }
1056
1057 /* The psABI says that "For calls that may call functions that use
1058 varargs or stdargs (prototype-less calls or calls to functions
1059 containing ellipsis (...) in the declaration) %al is used as
1060 hidden argument to specify the number of SSE registers used. */
1061 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1062 return sp;
1063 }
1064
1065 static CORE_ADDR
1066 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1067 struct regcache *regcache, CORE_ADDR bp_addr,
1068 int nargs, struct value **args, CORE_ADDR sp,
1069 function_call_return_method return_method,
1070 CORE_ADDR struct_addr)
1071 {
1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1073 gdb_byte buf[8];
1074
1075 /* BND registers can be in arbitrary values at the moment of the
1076 inferior call. This can cause boundary violations that are not
1077 due to a real bug or even desired by the user. The best to be done
1078 is set the BND registers to allow access to the whole memory, INIT
1079 state, before pushing the inferior call. */
1080 i387_reset_bnd_regs (gdbarch, regcache);
1081
1082 /* Pass arguments. */
1083 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1084
1085 /* Pass "hidden" argument". */
1086 if (return_method == return_method_struct)
1087 {
1088 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1089 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1090 }
1091
1092 /* Store return address. */
1093 sp -= 8;
1094 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1095 write_memory (sp, buf, 8);
1096
1097 /* Finally, update the stack pointer... */
1098 store_unsigned_integer (buf, 8, byte_order, sp);
1099 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1100
1101 /* ...and fake a frame pointer. */
1102 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1103
1104 return sp + 16;
1105 }
1106 \f
1107 /* Displaced instruction handling. */
1108
1109 /* A partially decoded instruction.
1110 This contains enough details for displaced stepping purposes. */
1111
1112 struct amd64_insn
1113 {
1114 /* The number of opcode bytes. */
1115 int opcode_len;
1116 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1117 not present. */
1118 int enc_prefix_offset;
1119 /* The offset to the first opcode byte. */
1120 int opcode_offset;
1121 /* The offset to the modrm byte or -1 if not present. */
1122 int modrm_offset;
1123
1124 /* The raw instruction. */
1125 gdb_byte *raw_insn;
1126 };
1127
1128 struct amd64_displaced_step_copy_insn_closure
1129 : public displaced_step_copy_insn_closure
1130 {
1131 amd64_displaced_step_copy_insn_closure (int insn_buf_len)
1132 : insn_buf (insn_buf_len, 0)
1133 {}
1134
1135 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1136 int tmp_used = 0;
1137 int tmp_regno;
1138 ULONGEST tmp_save;
1139
1140 /* Details of the instruction. */
1141 struct amd64_insn insn_details;
1142
1143 /* The possibly modified insn. */
1144 gdb::byte_vector insn_buf;
1145 };
1146
1147 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1148 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1149 at which point delete these in favor of libopcodes' versions). */
1150
1151 static const unsigned char onebyte_has_modrm[256] = {
1152 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1153 /* ------------------------------- */
1154 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1155 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1156 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1157 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1158 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1159 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1160 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1161 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1162 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1163 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1164 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1165 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1166 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1167 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1168 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1169 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1170 /* ------------------------------- */
1171 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1172 };
1173
1174 static const unsigned char twobyte_has_modrm[256] = {
1175 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1176 /* ------------------------------- */
1177 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1178 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1179 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1180 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1181 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1182 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1183 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1184 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1185 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1186 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1187 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1188 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1189 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1190 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1191 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1192 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1193 /* ------------------------------- */
1194 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1195 };
1196
1197 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1198
1199 static int
1200 rex_prefix_p (gdb_byte pfx)
1201 {
1202 return REX_PREFIX_P (pfx);
1203 }
1204
1205 /* True if PFX is the start of the 2-byte VEX prefix. */
1206
1207 static bool
1208 vex2_prefix_p (gdb_byte pfx)
1209 {
1210 return pfx == 0xc5;
1211 }
1212
1213 /* True if PFX is the start of the 3-byte VEX prefix. */
1214
1215 static bool
1216 vex3_prefix_p (gdb_byte pfx)
1217 {
1218 return pfx == 0xc4;
1219 }
1220
1221 /* Skip the legacy instruction prefixes in INSN.
1222 We assume INSN is properly sentineled so we don't have to worry
1223 about falling off the end of the buffer. */
1224
1225 static gdb_byte *
1226 amd64_skip_prefixes (gdb_byte *insn)
1227 {
1228 while (1)
1229 {
1230 switch (*insn)
1231 {
1232 case DATA_PREFIX_OPCODE:
1233 case ADDR_PREFIX_OPCODE:
1234 case CS_PREFIX_OPCODE:
1235 case DS_PREFIX_OPCODE:
1236 case ES_PREFIX_OPCODE:
1237 case FS_PREFIX_OPCODE:
1238 case GS_PREFIX_OPCODE:
1239 case SS_PREFIX_OPCODE:
1240 case LOCK_PREFIX_OPCODE:
1241 case REPE_PREFIX_OPCODE:
1242 case REPNE_PREFIX_OPCODE:
1243 ++insn;
1244 continue;
1245 default:
1246 break;
1247 }
1248 break;
1249 }
1250
1251 return insn;
1252 }
1253
1254 /* Return an integer register (other than RSP) that is unused as an input
1255 operand in INSN.
1256 In order to not require adding a rex prefix if the insn doesn't already
1257 have one, the result is restricted to RAX ... RDI, sans RSP.
1258 The register numbering of the result follows architecture ordering,
1259 e.g. RDI = 7. */
1260
1261 static int
1262 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1263 {
1264 /* 1 bit for each reg */
1265 int used_regs_mask = 0;
1266
1267 /* There can be at most 3 int regs used as inputs in an insn, and we have
1268 7 to choose from (RAX ... RDI, sans RSP).
1269 This allows us to take a conservative approach and keep things simple.
1270 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1271 that implicitly specify RAX. */
1272
1273 /* Avoid RAX. */
1274 used_regs_mask |= 1 << EAX_REG_NUM;
1275 /* Similarily avoid RDX, implicit operand in divides. */
1276 used_regs_mask |= 1 << EDX_REG_NUM;
1277 /* Avoid RSP. */
1278 used_regs_mask |= 1 << ESP_REG_NUM;
1279
1280 /* If the opcode is one byte long and there's no ModRM byte,
1281 assume the opcode specifies a register. */
1282 if (details->opcode_len == 1 && details->modrm_offset == -1)
1283 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1284
1285 /* Mark used regs in the modrm/sib bytes. */
1286 if (details->modrm_offset != -1)
1287 {
1288 int modrm = details->raw_insn[details->modrm_offset];
1289 int mod = MODRM_MOD_FIELD (modrm);
1290 int reg = MODRM_REG_FIELD (modrm);
1291 int rm = MODRM_RM_FIELD (modrm);
1292 int have_sib = mod != 3 && rm == 4;
1293
1294 /* Assume the reg field of the modrm byte specifies a register. */
1295 used_regs_mask |= 1 << reg;
1296
1297 if (have_sib)
1298 {
1299 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1300 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1301 used_regs_mask |= 1 << base;
1302 used_regs_mask |= 1 << idx;
1303 }
1304 else
1305 {
1306 used_regs_mask |= 1 << rm;
1307 }
1308 }
1309
1310 gdb_assert (used_regs_mask < 256);
1311 gdb_assert (used_regs_mask != 255);
1312
1313 /* Finally, find a free reg. */
1314 {
1315 int i;
1316
1317 for (i = 0; i < 8; ++i)
1318 {
1319 if (! (used_regs_mask & (1 << i)))
1320 return i;
1321 }
1322
1323 /* We shouldn't get here. */
1324 internal_error (_("unable to find free reg"));
1325 }
1326 }
1327
1328 /* Extract the details of INSN that we need. */
1329
1330 static void
1331 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1332 {
1333 gdb_byte *start = insn;
1334 int need_modrm;
1335
1336 details->raw_insn = insn;
1337
1338 details->opcode_len = -1;
1339 details->enc_prefix_offset = -1;
1340 details->opcode_offset = -1;
1341 details->modrm_offset = -1;
1342
1343 /* Skip legacy instruction prefixes. */
1344 insn = amd64_skip_prefixes (insn);
1345
1346 /* Skip REX/VEX instruction encoding prefixes. */
1347 if (rex_prefix_p (*insn))
1348 {
1349 details->enc_prefix_offset = insn - start;
1350 ++insn;
1351 }
1352 else if (vex2_prefix_p (*insn))
1353 {
1354 /* Don't record the offset in this case because this prefix has
1355 no REX.B equivalent. */
1356 insn += 2;
1357 }
1358 else if (vex3_prefix_p (*insn))
1359 {
1360 details->enc_prefix_offset = insn - start;
1361 insn += 3;
1362 }
1363
1364 details->opcode_offset = insn - start;
1365
1366 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1367 {
1368 /* Two or three-byte opcode. */
1369 ++insn;
1370 need_modrm = twobyte_has_modrm[*insn];
1371
1372 /* Check for three-byte opcode. */
1373 switch (*insn)
1374 {
1375 case 0x24:
1376 case 0x25:
1377 case 0x38:
1378 case 0x3a:
1379 case 0x7a:
1380 case 0x7b:
1381 ++insn;
1382 details->opcode_len = 3;
1383 break;
1384 default:
1385 details->opcode_len = 2;
1386 break;
1387 }
1388 }
1389 else
1390 {
1391 /* One-byte opcode. */
1392 need_modrm = onebyte_has_modrm[*insn];
1393 details->opcode_len = 1;
1394 }
1395
1396 if (need_modrm)
1397 {
1398 ++insn;
1399 details->modrm_offset = insn - start;
1400 }
1401 }
1402
1403 /* Update %rip-relative addressing in INSN.
1404
1405 %rip-relative addressing only uses a 32-bit displacement.
1406 32 bits is not enough to be guaranteed to cover the distance between where
1407 the real instruction is and where its copy is.
1408 Convert the insn to use base+disp addressing.
1409 We set base = pc + insn_length so we can leave disp unchanged. */
1410
1411 static void
1412 fixup_riprel (struct gdbarch *gdbarch,
1413 amd64_displaced_step_copy_insn_closure *dsc,
1414 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1415 {
1416 const struct amd64_insn *insn_details = &dsc->insn_details;
1417 int modrm_offset = insn_details->modrm_offset;
1418 CORE_ADDR rip_base;
1419 int insn_length;
1420 int arch_tmp_regno, tmp_regno;
1421 ULONGEST orig_value;
1422
1423 /* Compute the rip-relative address. */
1424 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1425 dsc->insn_buf.size (), from);
1426 rip_base = from + insn_length;
1427
1428 /* We need a register to hold the address.
1429 Pick one not used in the insn.
1430 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1431 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1432 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1433
1434 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1435 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1436
1437 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1438 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1439 is not r8-r15. */
1440 if (insn_details->enc_prefix_offset != -1)
1441 {
1442 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1443 if (rex_prefix_p (pfx[0]))
1444 pfx[0] &= ~REX_B;
1445 else if (vex3_prefix_p (pfx[0]))
1446 pfx[1] |= VEX3_NOT_B;
1447 else
1448 gdb_assert_not_reached ("unhandled prefix");
1449 }
1450
1451 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1452 dsc->tmp_regno = tmp_regno;
1453 dsc->tmp_save = orig_value;
1454 dsc->tmp_used = 1;
1455
1456 /* Convert the ModRM field to be base+disp. */
1457 dsc->insn_buf[modrm_offset] &= ~0xc7;
1458 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1459
1460 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1461
1462 displaced_debug_printf ("%%rip-relative addressing used.");
1463 displaced_debug_printf ("using temp reg %d, old value %s, new value %s",
1464 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1465 paddress (gdbarch, rip_base));
1466 }
1467
1468 static void
1469 fixup_displaced_copy (struct gdbarch *gdbarch,
1470 amd64_displaced_step_copy_insn_closure *dsc,
1471 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1472 {
1473 const struct amd64_insn *details = &dsc->insn_details;
1474
1475 if (details->modrm_offset != -1)
1476 {
1477 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1478
1479 if ((modrm & 0xc7) == 0x05)
1480 {
1481 /* The insn uses rip-relative addressing.
1482 Deal with it. */
1483 fixup_riprel (gdbarch, dsc, from, to, regs);
1484 }
1485 }
1486 }
1487
1488 displaced_step_copy_insn_closure_up
1489 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1490 CORE_ADDR from, CORE_ADDR to,
1491 struct regcache *regs)
1492 {
1493 int len = gdbarch_max_insn_length (gdbarch);
1494 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1495 continually watch for running off the end of the buffer. */
1496 int fixup_sentinel_space = len;
1497 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
1498 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
1499 gdb_byte *buf = &dsc->insn_buf[0];
1500 struct amd64_insn *details = &dsc->insn_details;
1501
1502 read_memory (from, buf, len);
1503
1504 /* Set up the sentinel space so we don't have to worry about running
1505 off the end of the buffer. An excessive number of leading prefixes
1506 could otherwise cause this. */
1507 memset (buf + len, 0, fixup_sentinel_space);
1508
1509 amd64_get_insn_details (buf, details);
1510
1511 /* GDB may get control back after the insn after the syscall.
1512 Presumably this is a kernel bug.
1513 If this is a syscall, make sure there's a nop afterwards. */
1514 {
1515 int syscall_length;
1516
1517 if (amd64_syscall_p (details, &syscall_length))
1518 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1519 }
1520
1521 /* Modify the insn to cope with the address where it will be executed from.
1522 In particular, handle any rip-relative addressing. */
1523 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
1524
1525 write_memory (to, buf, len);
1526
1527 displaced_debug_printf ("copy %s->%s: %s",
1528 paddress (gdbarch, from), paddress (gdbarch, to),
1529 displaced_step_dump_bytes (buf, len).c_str ());
1530
1531 /* This is a work around for a problem with g++ 4.8. */
1532 return displaced_step_copy_insn_closure_up (dsc.release ());
1533 }
1534
1535 static int
1536 amd64_absolute_jmp_p (const struct amd64_insn *details)
1537 {
1538 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1539
1540 if (insn[0] == 0xff)
1541 {
1542 /* jump near, absolute indirect (/4) */
1543 if ((insn[1] & 0x38) == 0x20)
1544 return 1;
1545
1546 /* jump far, absolute indirect (/5) */
1547 if ((insn[1] & 0x38) == 0x28)
1548 return 1;
1549 }
1550
1551 return 0;
1552 }
1553
1554 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1555
1556 static int
1557 amd64_jmp_p (const struct amd64_insn *details)
1558 {
1559 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1560
1561 /* jump short, relative. */
1562 if (insn[0] == 0xeb)
1563 return 1;
1564
1565 /* jump near, relative. */
1566 if (insn[0] == 0xe9)
1567 return 1;
1568
1569 return amd64_absolute_jmp_p (details);
1570 }
1571
1572 static int
1573 amd64_absolute_call_p (const struct amd64_insn *details)
1574 {
1575 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1576
1577 if (insn[0] == 0xff)
1578 {
1579 /* Call near, absolute indirect (/2) */
1580 if ((insn[1] & 0x38) == 0x10)
1581 return 1;
1582
1583 /* Call far, absolute indirect (/3) */
1584 if ((insn[1] & 0x38) == 0x18)
1585 return 1;
1586 }
1587
1588 return 0;
1589 }
1590
1591 static int
1592 amd64_ret_p (const struct amd64_insn *details)
1593 {
1594 /* NOTE: gcc can emit "repz ; ret". */
1595 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1596
1597 switch (insn[0])
1598 {
1599 case 0xc2: /* ret near, pop N bytes */
1600 case 0xc3: /* ret near */
1601 case 0xca: /* ret far, pop N bytes */
1602 case 0xcb: /* ret far */
1603 case 0xcf: /* iret */
1604 return 1;
1605
1606 default:
1607 return 0;
1608 }
1609 }
1610
1611 static int
1612 amd64_call_p (const struct amd64_insn *details)
1613 {
1614 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1615
1616 if (amd64_absolute_call_p (details))
1617 return 1;
1618
1619 /* call near, relative */
1620 if (insn[0] == 0xe8)
1621 return 1;
1622
1623 return 0;
1624 }
1625
1626 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1627 length in bytes. Otherwise, return zero. */
1628
1629 static int
1630 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1631 {
1632 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1633
1634 if (insn[0] == 0x0f && insn[1] == 0x05)
1635 {
1636 *lengthp = 2;
1637 return 1;
1638 }
1639
1640 return 0;
1641 }
1642
1643 /* Classify the instruction at ADDR using PRED.
1644 Throw an error if the memory can't be read. */
1645
1646 static int
1647 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1648 int (*pred) (const struct amd64_insn *))
1649 {
1650 struct amd64_insn details;
1651 gdb_byte *buf;
1652 int len, classification;
1653
1654 len = gdbarch_max_insn_length (gdbarch);
1655 buf = (gdb_byte *) alloca (len);
1656
1657 read_code (addr, buf, len);
1658 amd64_get_insn_details (buf, &details);
1659
1660 classification = pred (&details);
1661
1662 return classification;
1663 }
1664
1665 /* The gdbarch insn_is_call method. */
1666
1667 static int
1668 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1669 {
1670 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1671 }
1672
1673 /* The gdbarch insn_is_ret method. */
1674
1675 static int
1676 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1677 {
1678 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1679 }
1680
1681 /* The gdbarch insn_is_jump method. */
1682
1683 static int
1684 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1685 {
1686 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1687 }
1688
1689 /* Fix up the state of registers and memory after having single-stepped
1690 a displaced instruction. */
1691
1692 void
1693 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1694 struct displaced_step_copy_insn_closure *dsc_,
1695 CORE_ADDR from, CORE_ADDR to,
1696 struct regcache *regs)
1697 {
1698 amd64_displaced_step_copy_insn_closure *dsc
1699 = (amd64_displaced_step_copy_insn_closure *) dsc_;
1700 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1701 /* The offset we applied to the instruction's address. */
1702 ULONGEST insn_offset = to - from;
1703 gdb_byte *insn = dsc->insn_buf.data ();
1704 const struct amd64_insn *insn_details = &dsc->insn_details;
1705
1706 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
1707 paddress (gdbarch, from), paddress (gdbarch, to),
1708 insn[0], insn[1]);
1709
1710 /* If we used a tmp reg, restore it. */
1711
1712 if (dsc->tmp_used)
1713 {
1714 displaced_debug_printf ("restoring reg %d to %s",
1715 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1716 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1717 }
1718
1719 /* The list of issues to contend with here is taken from
1720 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1721 Yay for Free Software! */
1722
1723 /* Relocate the %rip back to the program's instruction stream,
1724 if necessary. */
1725
1726 /* Except in the case of absolute or indirect jump or call
1727 instructions, or a return instruction, the new rip is relative to
1728 the displaced instruction; make it relative to the original insn.
1729 Well, signal handler returns don't need relocation either, but we use the
1730 value of %rip to recognize those; see below. */
1731 if (! amd64_absolute_jmp_p (insn_details)
1732 && ! amd64_absolute_call_p (insn_details)
1733 && ! amd64_ret_p (insn_details))
1734 {
1735 ULONGEST orig_rip;
1736 int insn_len;
1737
1738 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1739
1740 /* A signal trampoline system call changes the %rip, resuming
1741 execution of the main program after the signal handler has
1742 returned. That makes them like 'return' instructions; we
1743 shouldn't relocate %rip.
1744
1745 But most system calls don't, and we do need to relocate %rip.
1746
1747 Our heuristic for distinguishing these cases: if stepping
1748 over the system call instruction left control directly after
1749 the instruction, the we relocate --- control almost certainly
1750 doesn't belong in the displaced copy. Otherwise, we assume
1751 the instruction has put control where it belongs, and leave
1752 it unrelocated. Goodness help us if there are PC-relative
1753 system calls. */
1754 if (amd64_syscall_p (insn_details, &insn_len)
1755 && orig_rip != to + insn_len
1756 /* GDB can get control back after the insn after the syscall.
1757 Presumably this is a kernel bug.
1758 Fixup ensures its a nop, we add one to the length for it. */
1759 && orig_rip != to + insn_len + 1)
1760 displaced_debug_printf ("syscall changed %%rip; not relocating");
1761 else
1762 {
1763 ULONGEST rip = orig_rip - insn_offset;
1764
1765 /* If we just stepped over a breakpoint insn, we don't backup
1766 the pc on purpose; this is to match behaviour without
1767 stepping. */
1768
1769 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1770
1771 displaced_debug_printf ("relocated %%rip from %s to %s",
1772 paddress (gdbarch, orig_rip),
1773 paddress (gdbarch, rip));
1774 }
1775 }
1776
1777 /* If the instruction was PUSHFL, then the TF bit will be set in the
1778 pushed value, and should be cleared. We'll leave this for later,
1779 since GDB already messes up the TF flag when stepping over a
1780 pushfl. */
1781
1782 /* If the instruction was a call, the return address now atop the
1783 stack is the address following the copied instruction. We need
1784 to make it the address following the original instruction. */
1785 if (amd64_call_p (insn_details))
1786 {
1787 ULONGEST rsp;
1788 ULONGEST retaddr;
1789 const ULONGEST retaddr_len = 8;
1790
1791 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1792 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1793 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1794 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1795
1796 displaced_debug_printf ("relocated return addr at %s to %s",
1797 paddress (gdbarch, rsp),
1798 paddress (gdbarch, retaddr));
1799 }
1800 }
1801
1802 /* If the instruction INSN uses RIP-relative addressing, return the
1803 offset into the raw INSN where the displacement to be adjusted is
1804 found. Returns 0 if the instruction doesn't use RIP-relative
1805 addressing. */
1806
1807 static int
1808 rip_relative_offset (struct amd64_insn *insn)
1809 {
1810 if (insn->modrm_offset != -1)
1811 {
1812 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1813
1814 if ((modrm & 0xc7) == 0x05)
1815 {
1816 /* The displacement is found right after the ModRM byte. */
1817 return insn->modrm_offset + 1;
1818 }
1819 }
1820
1821 return 0;
1822 }
1823
1824 static void
1825 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1826 {
1827 target_write_memory (*to, buf, len);
1828 *to += len;
1829 }
1830
1831 static void
1832 amd64_relocate_instruction (struct gdbarch *gdbarch,
1833 CORE_ADDR *to, CORE_ADDR oldloc)
1834 {
1835 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1836 int len = gdbarch_max_insn_length (gdbarch);
1837 /* Extra space for sentinels. */
1838 int fixup_sentinel_space = len;
1839 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1840 struct amd64_insn insn_details;
1841 int offset = 0;
1842 LONGEST rel32, newrel;
1843 gdb_byte *insn;
1844 int insn_length;
1845
1846 read_memory (oldloc, buf, len);
1847
1848 /* Set up the sentinel space so we don't have to worry about running
1849 off the end of the buffer. An excessive number of leading prefixes
1850 could otherwise cause this. */
1851 memset (buf + len, 0, fixup_sentinel_space);
1852
1853 insn = buf;
1854 amd64_get_insn_details (insn, &insn_details);
1855
1856 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1857
1858 /* Skip legacy instruction prefixes. */
1859 insn = amd64_skip_prefixes (insn);
1860
1861 /* Adjust calls with 32-bit relative addresses as push/jump, with
1862 the address pushed being the location where the original call in
1863 the user program would return to. */
1864 if (insn[0] == 0xe8)
1865 {
1866 gdb_byte push_buf[32];
1867 CORE_ADDR ret_addr;
1868 int i = 0;
1869
1870 /* Where "ret" in the original code will return to. */
1871 ret_addr = oldloc + insn_length;
1872
1873 /* If pushing an address higher than or equal to 0x80000000,
1874 avoid 'pushq', as that sign extends its 32-bit operand, which
1875 would be incorrect. */
1876 if (ret_addr <= 0x7fffffff)
1877 {
1878 push_buf[0] = 0x68; /* pushq $... */
1879 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1880 i = 5;
1881 }
1882 else
1883 {
1884 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1885 push_buf[i++] = 0x83;
1886 push_buf[i++] = 0xec;
1887 push_buf[i++] = 0x08;
1888
1889 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1890 push_buf[i++] = 0x04;
1891 push_buf[i++] = 0x24;
1892 store_unsigned_integer (&push_buf[i], 4, byte_order,
1893 ret_addr & 0xffffffff);
1894 i += 4;
1895
1896 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1897 push_buf[i++] = 0x44;
1898 push_buf[i++] = 0x24;
1899 push_buf[i++] = 0x04;
1900 store_unsigned_integer (&push_buf[i], 4, byte_order,
1901 ret_addr >> 32);
1902 i += 4;
1903 }
1904 gdb_assert (i <= sizeof (push_buf));
1905 /* Push the push. */
1906 append_insns (to, i, push_buf);
1907
1908 /* Convert the relative call to a relative jump. */
1909 insn[0] = 0xe9;
1910
1911 /* Adjust the destination offset. */
1912 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1913 newrel = (oldloc - *to) + rel32;
1914 store_signed_integer (insn + 1, 4, byte_order, newrel);
1915
1916 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1917 hex_string (rel32), paddress (gdbarch, oldloc),
1918 hex_string (newrel), paddress (gdbarch, *to));
1919
1920 /* Write the adjusted jump into its displaced location. */
1921 append_insns (to, 5, insn);
1922 return;
1923 }
1924
1925 offset = rip_relative_offset (&insn_details);
1926 if (!offset)
1927 {
1928 /* Adjust jumps with 32-bit relative addresses. Calls are
1929 already handled above. */
1930 if (insn[0] == 0xe9)
1931 offset = 1;
1932 /* Adjust conditional jumps. */
1933 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1934 offset = 2;
1935 }
1936
1937 if (offset)
1938 {
1939 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1940 newrel = (oldloc - *to) + rel32;
1941 store_signed_integer (insn + offset, 4, byte_order, newrel);
1942 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1943 hex_string (rel32), paddress (gdbarch, oldloc),
1944 hex_string (newrel), paddress (gdbarch, *to));
1945 }
1946
1947 /* Write the adjusted instruction into its displaced location. */
1948 append_insns (to, insn_length, buf);
1949 }
1950
1951 \f
1952 /* The maximum number of saved registers. This should include %rip. */
1953 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1954
1955 struct amd64_frame_cache
1956 {
1957 /* Base address. */
1958 CORE_ADDR base;
1959 int base_p;
1960 CORE_ADDR sp_offset;
1961 CORE_ADDR pc;
1962
1963 /* Saved registers. */
1964 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1965 CORE_ADDR saved_sp;
1966 int saved_sp_reg;
1967
1968 /* Do we have a frame? */
1969 int frameless_p;
1970 };
1971
1972 /* Initialize a frame cache. */
1973
1974 static void
1975 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1976 {
1977 int i;
1978
1979 /* Base address. */
1980 cache->base = 0;
1981 cache->base_p = 0;
1982 cache->sp_offset = -8;
1983 cache->pc = 0;
1984
1985 /* Saved registers. We initialize these to -1 since zero is a valid
1986 offset (that's where %rbp is supposed to be stored).
1987 The values start out as being offsets, and are later converted to
1988 addresses (at which point -1 is interpreted as an address, still meaning
1989 "invalid"). */
1990 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1991 cache->saved_regs[i] = -1;
1992 cache->saved_sp = 0;
1993 cache->saved_sp_reg = -1;
1994
1995 /* Frameless until proven otherwise. */
1996 cache->frameless_p = 1;
1997 }
1998
1999 /* Allocate and initialize a frame cache. */
2000
2001 static struct amd64_frame_cache *
2002 amd64_alloc_frame_cache (void)
2003 {
2004 struct amd64_frame_cache *cache;
2005
2006 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
2007 amd64_init_frame_cache (cache);
2008 return cache;
2009 }
2010
2011 /* GCC 4.4 and later, can put code in the prologue to realign the
2012 stack pointer. Check whether PC points to such code, and update
2013 CACHE accordingly. Return the first instruction after the code
2014 sequence or CURRENT_PC, whichever is smaller. If we don't
2015 recognize the code, return PC. */
2016
2017 static CORE_ADDR
2018 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2019 struct amd64_frame_cache *cache)
2020 {
2021 /* There are 2 code sequences to re-align stack before the frame
2022 gets set up:
2023
2024 1. Use a caller-saved saved register:
2025
2026 leaq 8(%rsp), %reg
2027 andq $-XXX, %rsp
2028 pushq -8(%reg)
2029
2030 2. Use a callee-saved saved register:
2031
2032 pushq %reg
2033 leaq 16(%rsp), %reg
2034 andq $-XXX, %rsp
2035 pushq -8(%reg)
2036
2037 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2038
2039 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2040 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2041 */
2042
2043 gdb_byte buf[18];
2044 int reg, r;
2045 int offset, offset_and;
2046
2047 if (target_read_code (pc, buf, sizeof buf))
2048 return pc;
2049
2050 /* Check caller-saved saved register. The first instruction has
2051 to be "leaq 8(%rsp), %reg". */
2052 if ((buf[0] & 0xfb) == 0x48
2053 && buf[1] == 0x8d
2054 && buf[3] == 0x24
2055 && buf[4] == 0x8)
2056 {
2057 /* MOD must be binary 10 and R/M must be binary 100. */
2058 if ((buf[2] & 0xc7) != 0x44)
2059 return pc;
2060
2061 /* REG has register number. */
2062 reg = (buf[2] >> 3) & 7;
2063
2064 /* Check the REX.R bit. */
2065 if (buf[0] == 0x4c)
2066 reg += 8;
2067
2068 offset = 5;
2069 }
2070 else
2071 {
2072 /* Check callee-saved saved register. The first instruction
2073 has to be "pushq %reg". */
2074 reg = 0;
2075 if ((buf[0] & 0xf8) == 0x50)
2076 offset = 0;
2077 else if ((buf[0] & 0xf6) == 0x40
2078 && (buf[1] & 0xf8) == 0x50)
2079 {
2080 /* Check the REX.B bit. */
2081 if ((buf[0] & 1) != 0)
2082 reg = 8;
2083
2084 offset = 1;
2085 }
2086 else
2087 return pc;
2088
2089 /* Get register. */
2090 reg += buf[offset] & 0x7;
2091
2092 offset++;
2093
2094 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2095 if ((buf[offset] & 0xfb) != 0x48
2096 || buf[offset + 1] != 0x8d
2097 || buf[offset + 3] != 0x24
2098 || buf[offset + 4] != 0x10)
2099 return pc;
2100
2101 /* MOD must be binary 10 and R/M must be binary 100. */
2102 if ((buf[offset + 2] & 0xc7) != 0x44)
2103 return pc;
2104
2105 /* REG has register number. */
2106 r = (buf[offset + 2] >> 3) & 7;
2107
2108 /* Check the REX.R bit. */
2109 if (buf[offset] == 0x4c)
2110 r += 8;
2111
2112 /* Registers in pushq and leaq have to be the same. */
2113 if (reg != r)
2114 return pc;
2115
2116 offset += 5;
2117 }
2118
2119 /* Rigister can't be %rsp nor %rbp. */
2120 if (reg == 4 || reg == 5)
2121 return pc;
2122
2123 /* The next instruction has to be "andq $-XXX, %rsp". */
2124 if (buf[offset] != 0x48
2125 || buf[offset + 2] != 0xe4
2126 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2127 return pc;
2128
2129 offset_and = offset;
2130 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2131
2132 /* The next instruction has to be "pushq -8(%reg)". */
2133 r = 0;
2134 if (buf[offset] == 0xff)
2135 offset++;
2136 else if ((buf[offset] & 0xf6) == 0x40
2137 && buf[offset + 1] == 0xff)
2138 {
2139 /* Check the REX.B bit. */
2140 if ((buf[offset] & 0x1) != 0)
2141 r = 8;
2142 offset += 2;
2143 }
2144 else
2145 return pc;
2146
2147 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2148 01. */
2149 if (buf[offset + 1] != 0xf8
2150 || (buf[offset] & 0xf8) != 0x70)
2151 return pc;
2152
2153 /* R/M has register. */
2154 r += buf[offset] & 7;
2155
2156 /* Registers in leaq and pushq have to be the same. */
2157 if (reg != r)
2158 return pc;
2159
2160 if (current_pc > pc + offset_and)
2161 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2162
2163 return std::min (pc + offset + 2, current_pc);
2164 }
2165
2166 /* Similar to amd64_analyze_stack_align for x32. */
2167
2168 static CORE_ADDR
2169 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2170 struct amd64_frame_cache *cache)
2171 {
2172 /* There are 2 code sequences to re-align stack before the frame
2173 gets set up:
2174
2175 1. Use a caller-saved saved register:
2176
2177 leaq 8(%rsp), %reg
2178 andq $-XXX, %rsp
2179 pushq -8(%reg)
2180
2181 or
2182
2183 [addr32] leal 8(%rsp), %reg
2184 andl $-XXX, %esp
2185 [addr32] pushq -8(%reg)
2186
2187 2. Use a callee-saved saved register:
2188
2189 pushq %reg
2190 leaq 16(%rsp), %reg
2191 andq $-XXX, %rsp
2192 pushq -8(%reg)
2193
2194 or
2195
2196 pushq %reg
2197 [addr32] leal 16(%rsp), %reg
2198 andl $-XXX, %esp
2199 [addr32] pushq -8(%reg)
2200
2201 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2202
2203 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2204 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2205
2206 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2207
2208 0x83 0xe4 0xf0 andl $-16, %esp
2209 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2210 */
2211
2212 gdb_byte buf[19];
2213 int reg, r;
2214 int offset, offset_and;
2215
2216 if (target_read_memory (pc, buf, sizeof buf))
2217 return pc;
2218
2219 /* Skip optional addr32 prefix. */
2220 offset = buf[0] == 0x67 ? 1 : 0;
2221
2222 /* Check caller-saved saved register. The first instruction has
2223 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2224 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2225 && buf[offset + 1] == 0x8d
2226 && buf[offset + 3] == 0x24
2227 && buf[offset + 4] == 0x8)
2228 {
2229 /* MOD must be binary 10 and R/M must be binary 100. */
2230 if ((buf[offset + 2] & 0xc7) != 0x44)
2231 return pc;
2232
2233 /* REG has register number. */
2234 reg = (buf[offset + 2] >> 3) & 7;
2235
2236 /* Check the REX.R bit. */
2237 if ((buf[offset] & 0x4) != 0)
2238 reg += 8;
2239
2240 offset += 5;
2241 }
2242 else
2243 {
2244 /* Check callee-saved saved register. The first instruction
2245 has to be "pushq %reg". */
2246 reg = 0;
2247 if ((buf[offset] & 0xf6) == 0x40
2248 && (buf[offset + 1] & 0xf8) == 0x50)
2249 {
2250 /* Check the REX.B bit. */
2251 if ((buf[offset] & 1) != 0)
2252 reg = 8;
2253
2254 offset += 1;
2255 }
2256 else if ((buf[offset] & 0xf8) != 0x50)
2257 return pc;
2258
2259 /* Get register. */
2260 reg += buf[offset] & 0x7;
2261
2262 offset++;
2263
2264 /* Skip optional addr32 prefix. */
2265 if (buf[offset] == 0x67)
2266 offset++;
2267
2268 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2269 "leal 16(%rsp), %reg". */
2270 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2271 || buf[offset + 1] != 0x8d
2272 || buf[offset + 3] != 0x24
2273 || buf[offset + 4] != 0x10)
2274 return pc;
2275
2276 /* MOD must be binary 10 and R/M must be binary 100. */
2277 if ((buf[offset + 2] & 0xc7) != 0x44)
2278 return pc;
2279
2280 /* REG has register number. */
2281 r = (buf[offset + 2] >> 3) & 7;
2282
2283 /* Check the REX.R bit. */
2284 if ((buf[offset] & 0x4) != 0)
2285 r += 8;
2286
2287 /* Registers in pushq and leaq have to be the same. */
2288 if (reg != r)
2289 return pc;
2290
2291 offset += 5;
2292 }
2293
2294 /* Rigister can't be %rsp nor %rbp. */
2295 if (reg == 4 || reg == 5)
2296 return pc;
2297
2298 /* The next instruction may be "andq $-XXX, %rsp" or
2299 "andl $-XXX, %esp". */
2300 if (buf[offset] != 0x48)
2301 offset--;
2302
2303 if (buf[offset + 2] != 0xe4
2304 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2305 return pc;
2306
2307 offset_and = offset;
2308 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2309
2310 /* Skip optional addr32 prefix. */
2311 if (buf[offset] == 0x67)
2312 offset++;
2313
2314 /* The next instruction has to be "pushq -8(%reg)". */
2315 r = 0;
2316 if (buf[offset] == 0xff)
2317 offset++;
2318 else if ((buf[offset] & 0xf6) == 0x40
2319 && buf[offset + 1] == 0xff)
2320 {
2321 /* Check the REX.B bit. */
2322 if ((buf[offset] & 0x1) != 0)
2323 r = 8;
2324 offset += 2;
2325 }
2326 else
2327 return pc;
2328
2329 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2330 01. */
2331 if (buf[offset + 1] != 0xf8
2332 || (buf[offset] & 0xf8) != 0x70)
2333 return pc;
2334
2335 /* R/M has register. */
2336 r += buf[offset] & 7;
2337
2338 /* Registers in leaq and pushq have to be the same. */
2339 if (reg != r)
2340 return pc;
2341
2342 if (current_pc > pc + offset_and)
2343 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2344
2345 return std::min (pc + offset + 2, current_pc);
2346 }
2347
2348 /* Do a limited analysis of the prologue at PC and update CACHE
2349 accordingly. Bail out early if CURRENT_PC is reached. Return the
2350 address where the analysis stopped.
2351
2352 We will handle only functions beginning with:
2353
2354 pushq %rbp 0x55
2355 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2356
2357 or (for the X32 ABI):
2358
2359 pushq %rbp 0x55
2360 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2361
2362 The `endbr64` instruction can be found before these sequences, and will be
2363 skipped if found.
2364
2365 Any function that doesn't start with one of these sequences will be
2366 assumed to have no prologue and thus no valid frame pointer in
2367 %rbp. */
2368
2369 static CORE_ADDR
2370 amd64_analyze_prologue (struct gdbarch *gdbarch,
2371 CORE_ADDR pc, CORE_ADDR current_pc,
2372 struct amd64_frame_cache *cache)
2373 {
2374 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2375 /* The `endbr64` instruction. */
2376 static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
2377 /* There are two variations of movq %rsp, %rbp. */
2378 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2379 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2380 /* Ditto for movl %esp, %ebp. */
2381 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2382 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2383
2384 gdb_byte buf[3];
2385 gdb_byte op;
2386
2387 if (current_pc <= pc)
2388 return current_pc;
2389
2390 if (gdbarch_ptr_bit (gdbarch) == 32)
2391 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2392 else
2393 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2394
2395 op = read_code_unsigned_integer (pc, 1, byte_order);
2396
2397 /* Check for the `endbr64` instruction, skip it if found. */
2398 if (op == endbr64[0])
2399 {
2400 read_code (pc + 1, buf, 3);
2401
2402 if (memcmp (buf, &endbr64[1], 3) == 0)
2403 pc += 4;
2404
2405 op = read_code_unsigned_integer (pc, 1, byte_order);
2406 }
2407
2408 if (current_pc <= pc)
2409 return current_pc;
2410
2411 if (op == 0x55) /* pushq %rbp */
2412 {
2413 /* Take into account that we've executed the `pushq %rbp' that
2414 starts this instruction sequence. */
2415 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2416 cache->sp_offset += 8;
2417
2418 /* If that's all, return now. */
2419 if (current_pc <= pc + 1)
2420 return current_pc;
2421
2422 read_code (pc + 1, buf, 3);
2423
2424 /* Check for `movq %rsp, %rbp'. */
2425 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2426 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2427 {
2428 /* OK, we actually have a frame. */
2429 cache->frameless_p = 0;
2430 return pc + 4;
2431 }
2432
2433 /* For X32, also check for `movl %esp, %ebp'. */
2434 if (gdbarch_ptr_bit (gdbarch) == 32)
2435 {
2436 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2437 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2438 {
2439 /* OK, we actually have a frame. */
2440 cache->frameless_p = 0;
2441 return pc + 3;
2442 }
2443 }
2444
2445 return pc + 1;
2446 }
2447
2448 return pc;
2449 }
2450
2451 /* Work around false termination of prologue - GCC PR debug/48827.
2452
2453 START_PC is the first instruction of a function, PC is its minimal already
2454 determined advanced address. Function returns PC if it has nothing to do.
2455
2456 84 c0 test %al,%al
2457 74 23 je after
2458 <-- here is 0 lines advance - the false prologue end marker.
2459 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2460 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2461 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2462 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2463 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2464 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2465 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2466 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2467 after: */
2468
2469 static CORE_ADDR
2470 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2471 {
2472 struct symtab_and_line start_pc_sal, next_sal;
2473 gdb_byte buf[4 + 8 * 7];
2474 int offset, xmmreg;
2475
2476 if (pc == start_pc)
2477 return pc;
2478
2479 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2480 if (start_pc_sal.symtab == NULL
2481 || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit ()
2482 ->producer ()) < 6
2483 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2484 return pc;
2485
2486 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2487 if (next_sal.line != start_pc_sal.line)
2488 return pc;
2489
2490 /* START_PC can be from overlayed memory, ignored here. */
2491 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2492 return pc;
2493
2494 /* test %al,%al */
2495 if (buf[0] != 0x84 || buf[1] != 0xc0)
2496 return pc;
2497 /* je AFTER */
2498 if (buf[2] != 0x74)
2499 return pc;
2500
2501 offset = 4;
2502 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2503 {
2504 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2505 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2506 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2507 return pc;
2508
2509 /* 0b01?????? */
2510 if ((buf[offset + 2] & 0xc0) == 0x40)
2511 {
2512 /* 8-bit displacement. */
2513 offset += 4;
2514 }
2515 /* 0b10?????? */
2516 else if ((buf[offset + 2] & 0xc0) == 0x80)
2517 {
2518 /* 32-bit displacement. */
2519 offset += 7;
2520 }
2521 else
2522 return pc;
2523 }
2524
2525 /* je AFTER */
2526 if (offset - 4 != buf[3])
2527 return pc;
2528
2529 return next_sal.end;
2530 }
2531
2532 /* Return PC of first real instruction. */
2533
2534 static CORE_ADDR
2535 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2536 {
2537 struct amd64_frame_cache cache;
2538 CORE_ADDR pc;
2539 CORE_ADDR func_addr;
2540
2541 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2542 {
2543 CORE_ADDR post_prologue_pc
2544 = skip_prologue_using_sal (gdbarch, func_addr);
2545 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2546
2547 /* LLVM backend (Clang/Flang) always emits a line note before the
2548 prologue and another one after. We trust clang and newer Intel
2549 compilers to emit usable line notes. */
2550 if (post_prologue_pc
2551 && (cust != NULL
2552 && cust->producer () != nullptr
2553 && (producer_is_llvm (cust->producer ())
2554 || producer_is_icc_ge_19 (cust->producer ()))))
2555 return std::max (start_pc, post_prologue_pc);
2556 }
2557
2558 amd64_init_frame_cache (&cache);
2559 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2560 &cache);
2561 if (cache.frameless_p)
2562 return start_pc;
2563
2564 return amd64_skip_xmm_prologue (pc, start_pc);
2565 }
2566 \f
2567
2568 /* Normal frames. */
2569
2570 static void
2571 amd64_frame_cache_1 (frame_info_ptr this_frame,
2572 struct amd64_frame_cache *cache)
2573 {
2574 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2576 gdb_byte buf[8];
2577 int i;
2578
2579 cache->pc = get_frame_func (this_frame);
2580 if (cache->pc != 0)
2581 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2582 cache);
2583
2584 if (cache->frameless_p)
2585 {
2586 /* We didn't find a valid frame. If we're at the start of a
2587 function, or somewhere half-way its prologue, the function's
2588 frame probably hasn't been fully setup yet. Try to
2589 reconstruct the base address for the stack frame by looking
2590 at the stack pointer. For truly "frameless" functions this
2591 might work too. */
2592
2593 if (cache->saved_sp_reg != -1)
2594 {
2595 /* Stack pointer has been saved. */
2596 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2597 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2598
2599 /* We're halfway aligning the stack. */
2600 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2601 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2602
2603 /* This will be added back below. */
2604 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2605 }
2606 else
2607 {
2608 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2609 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2610 + cache->sp_offset;
2611 }
2612 }
2613 else
2614 {
2615 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2616 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2617 }
2618
2619 /* Now that we have the base address for the stack frame we can
2620 calculate the value of %rsp in the calling frame. */
2621 cache->saved_sp = cache->base + 16;
2622
2623 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2624 frame we find it at the same offset from the reconstructed base
2625 address. If we're halfway aligning the stack, %rip is handled
2626 differently (see above). */
2627 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2628 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2629
2630 /* Adjust all the saved registers such that they contain addresses
2631 instead of offsets. */
2632 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2633 if (cache->saved_regs[i] != -1)
2634 cache->saved_regs[i] += cache->base;
2635
2636 cache->base_p = 1;
2637 }
2638
2639 static struct amd64_frame_cache *
2640 amd64_frame_cache (frame_info_ptr this_frame, void **this_cache)
2641 {
2642 struct amd64_frame_cache *cache;
2643
2644 if (*this_cache)
2645 return (struct amd64_frame_cache *) *this_cache;
2646
2647 cache = amd64_alloc_frame_cache ();
2648 *this_cache = cache;
2649
2650 try
2651 {
2652 amd64_frame_cache_1 (this_frame, cache);
2653 }
2654 catch (const gdb_exception_error &ex)
2655 {
2656 if (ex.error != NOT_AVAILABLE_ERROR)
2657 throw;
2658 }
2659
2660 return cache;
2661 }
2662
2663 static enum unwind_stop_reason
2664 amd64_frame_unwind_stop_reason (frame_info_ptr this_frame,
2665 void **this_cache)
2666 {
2667 struct amd64_frame_cache *cache =
2668 amd64_frame_cache (this_frame, this_cache);
2669
2670 if (!cache->base_p)
2671 return UNWIND_UNAVAILABLE;
2672
2673 /* This marks the outermost frame. */
2674 if (cache->base == 0)
2675 return UNWIND_OUTERMOST;
2676
2677 return UNWIND_NO_REASON;
2678 }
2679
2680 static void
2681 amd64_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2682 struct frame_id *this_id)
2683 {
2684 struct amd64_frame_cache *cache =
2685 amd64_frame_cache (this_frame, this_cache);
2686
2687 if (!cache->base_p)
2688 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2689 else if (cache->base == 0)
2690 {
2691 /* This marks the outermost frame. */
2692 return;
2693 }
2694 else
2695 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2696 }
2697
2698 static struct value *
2699 amd64_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
2700 int regnum)
2701 {
2702 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2703 struct amd64_frame_cache *cache =
2704 amd64_frame_cache (this_frame, this_cache);
2705
2706 gdb_assert (regnum >= 0);
2707
2708 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2709 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2710
2711 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2712 return frame_unwind_got_memory (this_frame, regnum,
2713 cache->saved_regs[regnum]);
2714
2715 return frame_unwind_got_register (this_frame, regnum, regnum);
2716 }
2717
2718 static const struct frame_unwind amd64_frame_unwind =
2719 {
2720 "amd64 prologue",
2721 NORMAL_FRAME,
2722 amd64_frame_unwind_stop_reason,
2723 amd64_frame_this_id,
2724 amd64_frame_prev_register,
2725 NULL,
2726 default_frame_sniffer
2727 };
2728 \f
2729 /* Generate a bytecode expression to get the value of the saved PC. */
2730
2731 static void
2732 amd64_gen_return_address (struct gdbarch *gdbarch,
2733 struct agent_expr *ax, struct axs_value *value,
2734 CORE_ADDR scope)
2735 {
2736 /* The following sequence assumes the traditional use of the base
2737 register. */
2738 ax_reg (ax, AMD64_RBP_REGNUM);
2739 ax_const_l (ax, 8);
2740 ax_simple (ax, aop_add);
2741 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2742 value->kind = axs_lvalue_memory;
2743 }
2744 \f
2745
2746 /* Signal trampolines. */
2747
2748 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2749 64-bit variants. This would require using identical frame caches
2750 on both platforms. */
2751
2752 static struct amd64_frame_cache *
2753 amd64_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
2754 {
2755 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2756 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2758 struct amd64_frame_cache *cache;
2759 CORE_ADDR addr;
2760 gdb_byte buf[8];
2761 int i;
2762
2763 if (*this_cache)
2764 return (struct amd64_frame_cache *) *this_cache;
2765
2766 cache = amd64_alloc_frame_cache ();
2767
2768 try
2769 {
2770 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2771 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2772
2773 addr = tdep->sigcontext_addr (this_frame);
2774 gdb_assert (tdep->sc_reg_offset);
2775 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2776 for (i = 0; i < tdep->sc_num_regs; i++)
2777 if (tdep->sc_reg_offset[i] != -1)
2778 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2779
2780 cache->base_p = 1;
2781 }
2782 catch (const gdb_exception_error &ex)
2783 {
2784 if (ex.error != NOT_AVAILABLE_ERROR)
2785 throw;
2786 }
2787
2788 *this_cache = cache;
2789 return cache;
2790 }
2791
2792 static enum unwind_stop_reason
2793 amd64_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
2794 void **this_cache)
2795 {
2796 struct amd64_frame_cache *cache =
2797 amd64_sigtramp_frame_cache (this_frame, this_cache);
2798
2799 if (!cache->base_p)
2800 return UNWIND_UNAVAILABLE;
2801
2802 return UNWIND_NO_REASON;
2803 }
2804
2805 static void
2806 amd64_sigtramp_frame_this_id (frame_info_ptr this_frame,
2807 void **this_cache, struct frame_id *this_id)
2808 {
2809 struct amd64_frame_cache *cache =
2810 amd64_sigtramp_frame_cache (this_frame, this_cache);
2811
2812 if (!cache->base_p)
2813 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2814 else if (cache->base == 0)
2815 {
2816 /* This marks the outermost frame. */
2817 return;
2818 }
2819 else
2820 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2821 }
2822
2823 static struct value *
2824 amd64_sigtramp_frame_prev_register (frame_info_ptr this_frame,
2825 void **this_cache, int regnum)
2826 {
2827 /* Make sure we've initialized the cache. */
2828 amd64_sigtramp_frame_cache (this_frame, this_cache);
2829
2830 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2831 }
2832
2833 static int
2834 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2835 frame_info_ptr this_frame,
2836 void **this_cache)
2837 {
2838 gdbarch *arch = get_frame_arch (this_frame);
2839 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2840
2841 /* We shouldn't even bother if we don't have a sigcontext_addr
2842 handler. */
2843 if (tdep->sigcontext_addr == NULL)
2844 return 0;
2845
2846 if (tdep->sigtramp_p != NULL)
2847 {
2848 if (tdep->sigtramp_p (this_frame))
2849 return 1;
2850 }
2851
2852 if (tdep->sigtramp_start != 0)
2853 {
2854 CORE_ADDR pc = get_frame_pc (this_frame);
2855
2856 gdb_assert (tdep->sigtramp_end != 0);
2857 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2858 return 1;
2859 }
2860
2861 return 0;
2862 }
2863
2864 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2865 {
2866 "amd64 sigtramp",
2867 SIGTRAMP_FRAME,
2868 amd64_sigtramp_frame_unwind_stop_reason,
2869 amd64_sigtramp_frame_this_id,
2870 amd64_sigtramp_frame_prev_register,
2871 NULL,
2872 amd64_sigtramp_frame_sniffer
2873 };
2874 \f
2875
2876 static CORE_ADDR
2877 amd64_frame_base_address (frame_info_ptr this_frame, void **this_cache)
2878 {
2879 struct amd64_frame_cache *cache =
2880 amd64_frame_cache (this_frame, this_cache);
2881
2882 return cache->base;
2883 }
2884
2885 static const struct frame_base amd64_frame_base =
2886 {
2887 &amd64_frame_unwind,
2888 amd64_frame_base_address,
2889 amd64_frame_base_address,
2890 amd64_frame_base_address
2891 };
2892
2893 /* Normal frames, but in a function epilogue. */
2894
2895 /* Implement the stack_frame_destroyed_p gdbarch method.
2896
2897 The epilogue is defined here as the 'ret' instruction, which will
2898 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2899 the function's stack frame. */
2900
2901 static int
2902 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2903 {
2904 gdb_byte insn;
2905
2906 if (compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc)))
2907 return 0;
2908
2909 if (target_read_memory (pc, &insn, 1))
2910 return 0; /* Can't read memory at pc. */
2911
2912 if (insn != 0xc3) /* 'ret' instruction. */
2913 return 0;
2914
2915 return 1;
2916 }
2917
2918 static int
2919 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2920 frame_info_ptr this_frame,
2921 void **this_prologue_cache)
2922 {
2923 if (frame_relative_level (this_frame) == 0)
2924 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2925 get_frame_pc (this_frame));
2926 else
2927 return 0;
2928 }
2929
2930 static struct amd64_frame_cache *
2931 amd64_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
2932 {
2933 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2935 struct amd64_frame_cache *cache;
2936 gdb_byte buf[8];
2937
2938 if (*this_cache)
2939 return (struct amd64_frame_cache *) *this_cache;
2940
2941 cache = amd64_alloc_frame_cache ();
2942 *this_cache = cache;
2943
2944 try
2945 {
2946 /* Cache base will be %rsp plus cache->sp_offset (-8). */
2947 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2948 cache->base = extract_unsigned_integer (buf, 8,
2949 byte_order) + cache->sp_offset;
2950
2951 /* Cache pc will be the frame func. */
2952 cache->pc = get_frame_func (this_frame);
2953
2954 /* The previous value of %rsp is cache->base plus 16. */
2955 cache->saved_sp = cache->base + 16;
2956
2957 /* The saved %rip will be at cache->base plus 8. */
2958 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2959
2960 cache->base_p = 1;
2961 }
2962 catch (const gdb_exception_error &ex)
2963 {
2964 if (ex.error != NOT_AVAILABLE_ERROR)
2965 throw;
2966 }
2967
2968 return cache;
2969 }
2970
2971 static enum unwind_stop_reason
2972 amd64_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
2973 void **this_cache)
2974 {
2975 struct amd64_frame_cache *cache
2976 = amd64_epilogue_frame_cache (this_frame, this_cache);
2977
2978 if (!cache->base_p)
2979 return UNWIND_UNAVAILABLE;
2980
2981 return UNWIND_NO_REASON;
2982 }
2983
2984 static void
2985 amd64_epilogue_frame_this_id (frame_info_ptr this_frame,
2986 void **this_cache,
2987 struct frame_id *this_id)
2988 {
2989 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2990 this_cache);
2991
2992 if (!cache->base_p)
2993 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2994 else
2995 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2996 }
2997
2998 static const struct frame_unwind amd64_epilogue_frame_unwind =
2999 {
3000 "amd64 epilogue",
3001 NORMAL_FRAME,
3002 amd64_epilogue_frame_unwind_stop_reason,
3003 amd64_epilogue_frame_this_id,
3004 amd64_frame_prev_register,
3005 NULL,
3006 amd64_epilogue_frame_sniffer
3007 };
3008
3009 static struct frame_id
3010 amd64_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
3011 {
3012 CORE_ADDR fp;
3013
3014 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
3015
3016 return frame_id_build (fp + 16, get_frame_pc (this_frame));
3017 }
3018
3019 /* 16 byte align the SP per frame requirements. */
3020
3021 static CORE_ADDR
3022 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3023 {
3024 return sp & -(CORE_ADDR)16;
3025 }
3026 \f
3027
3028 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3029 in the floating-point register set REGSET to register cache
3030 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3031
3032 static void
3033 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3034 int regnum, const void *fpregs, size_t len)
3035 {
3036 struct gdbarch *gdbarch = regcache->arch ();
3037 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3038
3039 gdb_assert (len >= tdep->sizeof_fpregset);
3040 amd64_supply_fxsave (regcache, regnum, fpregs);
3041 }
3042
3043 /* Collect register REGNUM from the register cache REGCACHE and store
3044 it in the buffer specified by FPREGS and LEN as described by the
3045 floating-point register set REGSET. If REGNUM is -1, do this for
3046 all registers in REGSET. */
3047
3048 static void
3049 amd64_collect_fpregset (const struct regset *regset,
3050 const struct regcache *regcache,
3051 int regnum, void *fpregs, size_t len)
3052 {
3053 struct gdbarch *gdbarch = regcache->arch ();
3054 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3055
3056 gdb_assert (len >= tdep->sizeof_fpregset);
3057 amd64_collect_fxsave (regcache, regnum, fpregs);
3058 }
3059
3060 const struct regset amd64_fpregset =
3061 {
3062 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3063 };
3064 \f
3065
3066 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3067 %rdi. We expect its value to be a pointer to the jmp_buf structure
3068 from which we extract the address that we will land at. This
3069 address is copied into PC. This routine returns non-zero on
3070 success. */
3071
3072 static int
3073 amd64_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
3074 {
3075 gdb_byte buf[8];
3076 CORE_ADDR jb_addr;
3077 struct gdbarch *gdbarch = get_frame_arch (frame);
3078 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3079 int jb_pc_offset = tdep->jb_pc_offset;
3080 int len = builtin_type (gdbarch)->builtin_func_ptr->length ();
3081
3082 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3083 longjmp will land. */
3084 if (jb_pc_offset == -1)
3085 return 0;
3086
3087 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3088 jb_addr= extract_typed_address
3089 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3090 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3091 return 0;
3092
3093 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3094
3095 return 1;
3096 }
3097
3098 static const int amd64_record_regmap[] =
3099 {
3100 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3101 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3102 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3103 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3104 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3105 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3106 };
3107
3108 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3109
3110 static bool
3111 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3112 {
3113 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3114 AMD64_RAX_REGNUM,
3115 AMD64_RIP_REGNUM);
3116 }
3117
3118 void
3119 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3120 const target_desc *default_tdesc)
3121 {
3122 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3123 const struct target_desc *tdesc = info.target_desc;
3124 static const char *const stap_integer_prefixes[] = { "$", NULL };
3125 static const char *const stap_register_prefixes[] = { "%", NULL };
3126 static const char *const stap_register_indirection_prefixes[] = { "(",
3127 NULL };
3128 static const char *const stap_register_indirection_suffixes[] = { ")",
3129 NULL };
3130
3131 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3132 floating-point registers. */
3133 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3134 tdep->fpregset = &amd64_fpregset;
3135
3136 if (! tdesc_has_registers (tdesc))
3137 tdesc = default_tdesc;
3138 tdep->tdesc = tdesc;
3139
3140 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3141 tdep->register_names = amd64_register_names;
3142
3143 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3144 {
3145 tdep->zmmh_register_names = amd64_zmmh_names;
3146 tdep->k_register_names = amd64_k_names;
3147 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3148 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3149
3150 tdep->num_zmm_regs = 32;
3151 tdep->num_xmm_avx512_regs = 16;
3152 tdep->num_ymm_avx512_regs = 16;
3153
3154 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3155 tdep->k0_regnum = AMD64_K0_REGNUM;
3156 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3157 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3158 }
3159
3160 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3161 {
3162 tdep->ymmh_register_names = amd64_ymmh_names;
3163 tdep->num_ymm_regs = 16;
3164 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3165 }
3166
3167 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3168 {
3169 tdep->mpx_register_names = amd64_mpx_names;
3170 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3171 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3172 }
3173
3174 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3175 {
3176 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3177 }
3178
3179 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3180 {
3181 tdep->pkeys_register_names = amd64_pkeys_names;
3182 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3183 tdep->num_pkeys_regs = 1;
3184 }
3185
3186 tdep->num_byte_regs = 20;
3187 tdep->num_word_regs = 16;
3188 tdep->num_dword_regs = 16;
3189 /* Avoid wiring in the MMX registers for now. */
3190 tdep->num_mmx_regs = 0;
3191
3192 set_gdbarch_pseudo_register_read_value (gdbarch,
3193 amd64_pseudo_register_read_value);
3194 set_gdbarch_pseudo_register_write (gdbarch,
3195 amd64_pseudo_register_write);
3196 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3197 amd64_ax_pseudo_register_collect);
3198
3199 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3200
3201 /* AMD64 has an FPU and 16 SSE registers. */
3202 tdep->st0_regnum = AMD64_ST0_REGNUM;
3203 tdep->num_xmm_regs = 16;
3204
3205 /* This is what all the fuss is about. */
3206 set_gdbarch_long_bit (gdbarch, 64);
3207 set_gdbarch_long_long_bit (gdbarch, 64);
3208 set_gdbarch_ptr_bit (gdbarch, 64);
3209
3210 /* In contrast to the i386, on AMD64 a `long double' actually takes
3211 up 128 bits, even though it's still based on the i387 extended
3212 floating-point format which has only 80 significant bits. */
3213 set_gdbarch_long_double_bit (gdbarch, 128);
3214
3215 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3216
3217 /* Register numbers of various important registers. */
3218 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3219 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3220 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3221 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3222
3223 /* The "default" register numbering scheme for AMD64 is referred to
3224 as the "DWARF Register Number Mapping" in the System V psABI.
3225 The preferred debugging format for all known AMD64 targets is
3226 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3227 DWARF-1), but we provide the same mapping just in case. This
3228 mapping is also used for stabs, which GCC does support. */
3229 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3230 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3231
3232 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3233 be in use on any of the supported AMD64 targets. */
3234
3235 /* Call dummy code. */
3236 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3237 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3238 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3239
3240 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3241 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3242 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3243
3244 set_gdbarch_return_value_as_value (gdbarch, amd64_return_value);
3245
3246 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3247
3248 tdep->record_regmap = amd64_record_regmap;
3249
3250 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3251
3252 /* Hook the function epilogue frame unwinder. This unwinder is
3253 appended to the list first, so that it supercedes the other
3254 unwinders in function epilogues. */
3255 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3256
3257 /* Hook the prologue-based frame unwinders. */
3258 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3259 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3260 frame_base_set_default (gdbarch, &amd64_frame_base);
3261
3262 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3263
3264 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3265
3266 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3267
3268 /* SystemTap variables and functions. */
3269 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3270 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3271 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3272 stap_register_indirection_prefixes);
3273 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3274 stap_register_indirection_suffixes);
3275 set_gdbarch_stap_is_single_operand (gdbarch,
3276 i386_stap_is_single_operand);
3277 set_gdbarch_stap_parse_special_token (gdbarch,
3278 i386_stap_parse_special_token);
3279 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3280 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3281 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3282
3283 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3284 amd64_in_indirect_branch_thunk);
3285
3286 register_amd64_ravenscar_ops (gdbarch);
3287 }
3288
3289 /* Initialize ARCH for x86-64, no osabi. */
3290
3291 static void
3292 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3293 {
3294 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3295 true));
3296 }
3297
3298 static struct type *
3299 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3300 {
3301 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3302
3303 switch (regnum - tdep->eax_regnum)
3304 {
3305 case AMD64_RBP_REGNUM: /* %ebp */
3306 case AMD64_RSP_REGNUM: /* %esp */
3307 return builtin_type (gdbarch)->builtin_data_ptr;
3308 case AMD64_RIP_REGNUM: /* %eip */
3309 return builtin_type (gdbarch)->builtin_func_ptr;
3310 }
3311
3312 return i386_pseudo_register_type (gdbarch, regnum);
3313 }
3314
3315 void
3316 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3317 const target_desc *default_tdesc)
3318 {
3319 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3320
3321 amd64_init_abi (info, gdbarch, default_tdesc);
3322
3323 tdep->num_dword_regs = 17;
3324 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3325
3326 set_gdbarch_long_bit (gdbarch, 32);
3327 set_gdbarch_ptr_bit (gdbarch, 32);
3328 }
3329
3330 /* Initialize ARCH for x64-32, no osabi. */
3331
3332 static void
3333 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3334 {
3335 amd64_x32_init_abi (info, arch,
3336 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3337 }
3338
3339 /* Return the target description for a specified XSAVE feature mask. */
3340
3341 const struct target_desc *
3342 amd64_target_description (uint64_t xcr0, bool segments)
3343 {
3344 static target_desc *amd64_tdescs \
3345 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3346 target_desc **tdesc;
3347
3348 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3349 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3350 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3351 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3352 [segments ? 1 : 0];
3353
3354 if (*tdesc == NULL)
3355 *tdesc = amd64_create_target_description (xcr0, false, false,
3356 segments);
3357
3358 return *tdesc;
3359 }
3360
3361 void _initialize_amd64_tdep ();
3362 void
3363 _initialize_amd64_tdep ()
3364 {
3365 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3366 amd64_none_init_abi);
3367 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3368 amd64_x32_none_init_abi);
3369 }
3370 \f
3371
3372 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3373 sense that the instruction pointer and data pointer are simply
3374 64-bit offsets into the code segment and the data segment instead
3375 of a selector offset pair. The functions below store the upper 32
3376 bits of these pointers (instead of just the 16-bits of the segment
3377 selector). */
3378
3379 /* Fill register REGNUM in REGCACHE with the appropriate
3380 floating-point or SSE register value from *FXSAVE. If REGNUM is
3381 -1, do this for all registers. This function masks off any of the
3382 reserved bits in *FXSAVE. */
3383
3384 void
3385 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3386 const void *fxsave)
3387 {
3388 struct gdbarch *gdbarch = regcache->arch ();
3389 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3390
3391 i387_supply_fxsave (regcache, regnum, fxsave);
3392
3393 if (fxsave
3394 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3395 {
3396 const gdb_byte *regs = (const gdb_byte *) fxsave;
3397
3398 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3399 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3400 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3401 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3402 }
3403 }
3404
3405 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3406
3407 void
3408 amd64_supply_xsave (struct regcache *regcache, int regnum,
3409 const void *xsave)
3410 {
3411 struct gdbarch *gdbarch = regcache->arch ();
3412 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3413
3414 i387_supply_xsave (regcache, regnum, xsave);
3415
3416 if (xsave
3417 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3418 {
3419 const gdb_byte *regs = (const gdb_byte *) xsave;
3420 ULONGEST clear_bv;
3421
3422 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3423
3424 /* If the FISEG and FOSEG registers have not been initialised yet
3425 (their CLEAR_BV bit is set) then their default values of zero will
3426 have already been setup by I387_SUPPLY_XSAVE. */
3427 if (!(clear_bv & X86_XSTATE_X87))
3428 {
3429 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3430 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3431 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3432 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3433 }
3434 }
3435 }
3436
3437 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3438 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3439 all registers. This function doesn't touch any of the reserved
3440 bits in *FXSAVE. */
3441
3442 void
3443 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3444 void *fxsave)
3445 {
3446 struct gdbarch *gdbarch = regcache->arch ();
3447 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3448 gdb_byte *regs = (gdb_byte *) fxsave;
3449
3450 i387_collect_fxsave (regcache, regnum, fxsave);
3451
3452 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3453 {
3454 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3455 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3456 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3457 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3458 }
3459 }
3460
3461 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3462
3463 void
3464 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3465 void *xsave, int gcore)
3466 {
3467 struct gdbarch *gdbarch = regcache->arch ();
3468 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3469 gdb_byte *regs = (gdb_byte *) xsave;
3470
3471 i387_collect_xsave (regcache, regnum, xsave, gcore);
3472
3473 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3474 {
3475 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3476 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3477 regs + 12);
3478 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3479 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3480 regs + 20);
3481 }
3482 }