]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-tdep.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
48
49 #include "ax.h"
50 #include "ax-gdb.h"
51
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
59 /* Register information. */
60
61 static const char *amd64_register_names[] =
62 {
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
77 };
78
79 static const char *amd64_ymm_names[] =
80 {
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85 };
86
87 static const char *amd64_ymmh_names[] =
88 {
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 };
94
95 /* The registers used to pass integer arguments during a function call. */
96 static int amd64_dummy_call_integer_regs[] =
97 {
98 AMD64_RDI_REGNUM, /* %rdi */
99 AMD64_RSI_REGNUM, /* %rsi */
100 AMD64_RDX_REGNUM, /* %rdx */
101 AMD64_RCX_REGNUM, /* %rcx */
102 8, /* %r8 */
103 9 /* %r9 */
104 };
105
106 /* DWARF Register Number Mapping as defined in the System V psABI,
107 section 3.6. */
108
109 static int amd64_dwarf_regmap[] =
110 {
111 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
112 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
113 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
114 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
115
116 /* Frame Pointer Register RBP. */
117 AMD64_RBP_REGNUM,
118
119 /* Stack Pointer Register RSP. */
120 AMD64_RSP_REGNUM,
121
122 /* Extended Integer Registers 8 - 15. */
123 8, 9, 10, 11, 12, 13, 14, 15,
124
125 /* Return Address RA. Mapped to RIP. */
126 AMD64_RIP_REGNUM,
127
128 /* SSE Registers 0 - 7. */
129 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
130 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
131 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
132 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
133
134 /* Extended SSE Registers 8 - 15. */
135 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
136 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
137 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
138 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
139
140 /* Floating Point Registers 0-7. */
141 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
142 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
143 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
144 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145
146 /* Control and Status Flags Register. */
147 AMD64_EFLAGS_REGNUM,
148
149 /* Selector Registers. */
150 AMD64_ES_REGNUM,
151 AMD64_CS_REGNUM,
152 AMD64_SS_REGNUM,
153 AMD64_DS_REGNUM,
154 AMD64_FS_REGNUM,
155 AMD64_GS_REGNUM,
156 -1,
157 -1,
158
159 /* Segment Base Address Registers. */
160 -1,
161 -1,
162 -1,
163 -1,
164
165 /* Special Selector Registers. */
166 -1,
167 -1,
168
169 /* Floating Point Control Registers. */
170 AMD64_MXCSR_REGNUM,
171 AMD64_FCTRL_REGNUM,
172 AMD64_FSTAT_REGNUM
173 };
174
175 static const int amd64_dwarf_regmap_len =
176 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
177
178 /* Convert DWARF register number REG to the appropriate register
179 number used by GDB. */
180
181 static int
182 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 int ymm0_regnum = tdep->ymm0_regnum;
186 int regnum = -1;
187
188 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
189 regnum = amd64_dwarf_regmap[reg];
190
191 if (regnum == -1)
192 warning (_("Unmapped DWARF Register #%d encountered."), reg);
193 else if (ymm0_regnum >= 0
194 && i386_xmm_regnum_p (gdbarch, regnum))
195 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
196
197 return regnum;
198 }
199
200 /* Map architectural register numbers to gdb register numbers. */
201
202 static const int amd64_arch_regmap[16] =
203 {
204 AMD64_RAX_REGNUM, /* %rax */
205 AMD64_RCX_REGNUM, /* %rcx */
206 AMD64_RDX_REGNUM, /* %rdx */
207 AMD64_RBX_REGNUM, /* %rbx */
208 AMD64_RSP_REGNUM, /* %rsp */
209 AMD64_RBP_REGNUM, /* %rbp */
210 AMD64_RSI_REGNUM, /* %rsi */
211 AMD64_RDI_REGNUM, /* %rdi */
212 AMD64_R8_REGNUM, /* %r8 */
213 AMD64_R9_REGNUM, /* %r9 */
214 AMD64_R10_REGNUM, /* %r10 */
215 AMD64_R11_REGNUM, /* %r11 */
216 AMD64_R12_REGNUM, /* %r12 */
217 AMD64_R13_REGNUM, /* %r13 */
218 AMD64_R14_REGNUM, /* %r14 */
219 AMD64_R15_REGNUM /* %r15 */
220 };
221
222 static const int amd64_arch_regmap_len =
223 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224
225 /* Convert architectural register number REG to the appropriate register
226 number used by GDB. */
227
228 static int
229 amd64_arch_reg_to_regnum (int reg)
230 {
231 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232
233 return amd64_arch_regmap[reg];
234 }
235
236 /* Register names for byte pseudo-registers. */
237
238 static const char *amd64_byte_names[] =
239 {
240 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
241 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
242 "ah", "bh", "ch", "dh"
243 };
244
245 /* Number of lower byte registers. */
246 #define AMD64_NUM_LOWER_BYTE_REGS 16
247
248 /* Register names for word pseudo-registers. */
249
250 static const char *amd64_word_names[] =
251 {
252 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
253 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254 };
255
256 /* Register names for dword pseudo-registers. */
257
258 static const char *amd64_dword_names[] =
259 {
260 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
261 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
262 "eip"
263 };
264
265 /* Return the name of register REGNUM. */
266
267 static const char *
268 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 if (i386_byte_regnum_p (gdbarch, regnum))
272 return amd64_byte_names[regnum - tdep->al_regnum];
273 else if (i386_ymm_regnum_p (gdbarch, regnum))
274 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
275 else if (i386_word_regnum_p (gdbarch, regnum))
276 return amd64_word_names[regnum - tdep->ax_regnum];
277 else if (i386_dword_regnum_p (gdbarch, regnum))
278 return amd64_dword_names[regnum - tdep->eax_regnum];
279 else
280 return i386_pseudo_register_name (gdbarch, regnum);
281 }
282
283 static struct value *
284 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regnum)
287 {
288 gdb_byte raw_buf[MAX_REGISTER_SIZE];
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 enum register_status status;
291 struct value *result_value;
292 gdb_byte *buf;
293
294 result_value = allocate_value (register_type (gdbarch, regnum));
295 VALUE_LVAL (result_value) = lval_register;
296 VALUE_REGNUM (result_value) = regnum;
297 buf = value_contents_raw (result_value);
298
299 if (i386_byte_regnum_p (gdbarch, regnum))
300 {
301 int gpnum = regnum - tdep->al_regnum;
302
303 /* Extract (always little endian). */
304 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
305 {
306 /* Special handling for AH, BH, CH, DH. */
307 status = regcache_raw_read (regcache,
308 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
309 raw_buf);
310 if (status == REG_VALID)
311 memcpy (buf, raw_buf + 1, 1);
312 else
313 mark_value_bytes_unavailable (result_value, 0,
314 TYPE_LENGTH (value_type (result_value)));
315 }
316 else
317 {
318 status = regcache_raw_read (regcache, gpnum, raw_buf);
319 if (status == REG_VALID)
320 memcpy (buf, raw_buf, 1);
321 else
322 mark_value_bytes_unavailable (result_value, 0,
323 TYPE_LENGTH (value_type (result_value)));
324 }
325 }
326 else if (i386_dword_regnum_p (gdbarch, regnum))
327 {
328 int gpnum = regnum - tdep->eax_regnum;
329 /* Extract (always little endian). */
330 status = regcache_raw_read (regcache, gpnum, raw_buf);
331 if (status == REG_VALID)
332 memcpy (buf, raw_buf, 4);
333 else
334 mark_value_bytes_unavailable (result_value, 0,
335 TYPE_LENGTH (value_type (result_value)));
336 }
337 else
338 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
339 result_value);
340
341 return result_value;
342 }
343
344 static void
345 amd64_pseudo_register_write (struct gdbarch *gdbarch,
346 struct regcache *regcache,
347 int regnum, const gdb_byte *buf)
348 {
349 gdb_byte raw_buf[MAX_REGISTER_SIZE];
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
351
352 if (i386_byte_regnum_p (gdbarch, regnum))
353 {
354 int gpnum = regnum - tdep->al_regnum;
355
356 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
357 {
358 /* Read ... AH, BH, CH, DH. */
359 regcache_raw_read (regcache,
360 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
361 /* ... Modify ... (always little endian). */
362 memcpy (raw_buf + 1, buf, 1);
363 /* ... Write. */
364 regcache_raw_write (regcache,
365 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
366 }
367 else
368 {
369 /* Read ... */
370 regcache_raw_read (regcache, gpnum, raw_buf);
371 /* ... Modify ... (always little endian). */
372 memcpy (raw_buf, buf, 1);
373 /* ... Write. */
374 regcache_raw_write (regcache, gpnum, raw_buf);
375 }
376 }
377 else if (i386_dword_regnum_p (gdbarch, regnum))
378 {
379 int gpnum = regnum - tdep->eax_regnum;
380
381 /* Read ... */
382 regcache_raw_read (regcache, gpnum, raw_buf);
383 /* ... Modify ... (always little endian). */
384 memcpy (raw_buf, buf, 4);
385 /* ... Write. */
386 regcache_raw_write (regcache, gpnum, raw_buf);
387 }
388 else
389 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
390 }
391
392 \f
393
394 /* Return the union class of CLASS1 and CLASS2. See the psABI for
395 details. */
396
397 static enum amd64_reg_class
398 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
399 {
400 /* Rule (a): If both classes are equal, this is the resulting class. */
401 if (class1 == class2)
402 return class1;
403
404 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
405 is the other class. */
406 if (class1 == AMD64_NO_CLASS)
407 return class2;
408 if (class2 == AMD64_NO_CLASS)
409 return class1;
410
411 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
412 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
413 return AMD64_MEMORY;
414
415 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
416 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
417 return AMD64_INTEGER;
418
419 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
420 MEMORY is used as class. */
421 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
422 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
423 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
424 return AMD64_MEMORY;
425
426 /* Rule (f): Otherwise class SSE is used. */
427 return AMD64_SSE;
428 }
429
430 /* Return non-zero if TYPE is a non-POD structure or union type. */
431
432 static int
433 amd64_non_pod_p (struct type *type)
434 {
435 /* ??? A class with a base class certainly isn't POD, but does this
436 catch all non-POD structure types? */
437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
438 return 1;
439
440 return 0;
441 }
442
443 /* Classify TYPE according to the rules for aggregate (structures and
444 arrays) and union types, and store the result in CLASS. */
445
446 static void
447 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
448 {
449 /* 1. If the size of an object is larger than two eightbytes, or in
450 C++, is a non-POD structure or union type, or contains
451 unaligned fields, it has class memory. */
452 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
453 {
454 class[0] = class[1] = AMD64_MEMORY;
455 return;
456 }
457
458 /* 2. Both eightbytes get initialized to class NO_CLASS. */
459 class[0] = class[1] = AMD64_NO_CLASS;
460
461 /* 3. Each field of an object is classified recursively so that
462 always two fields are considered. The resulting class is
463 calculated according to the classes of the fields in the
464 eightbyte: */
465
466 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
467 {
468 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
469
470 /* All fields in an array have the same type. */
471 amd64_classify (subtype, class);
472 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
473 class[1] = class[0];
474 }
475 else
476 {
477 int i;
478
479 /* Structure or union. */
480 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
481 || TYPE_CODE (type) == TYPE_CODE_UNION);
482
483 for (i = 0; i < TYPE_NFIELDS (type); i++)
484 {
485 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
486 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
487 enum amd64_reg_class subclass[2];
488 int bitsize = TYPE_FIELD_BITSIZE (type, i);
489 int endpos;
490
491 if (bitsize == 0)
492 bitsize = TYPE_LENGTH (subtype) * 8;
493 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
494
495 /* Ignore static fields. */
496 if (field_is_static (&TYPE_FIELD (type, i)))
497 continue;
498
499 gdb_assert (pos == 0 || pos == 1);
500
501 amd64_classify (subtype, subclass);
502 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
503 if (bitsize <= 64 && pos == 0 && endpos == 1)
504 /* This is a bit of an odd case: We have a field that would
505 normally fit in one of the two eightbytes, except that
506 it is placed in a way that this field straddles them.
507 This has been seen with a structure containing an array.
508
509 The ABI is a bit unclear in this case, but we assume that
510 this field's class (stored in subclass[0]) must also be merged
511 into class[1]. In other words, our field has a piece stored
512 in the second eight-byte, and thus its class applies to
513 the second eight-byte as well.
514
515 In the case where the field length exceeds 8 bytes,
516 it should not be necessary to merge the field class
517 into class[1]. As LEN > 8, subclass[1] is necessarily
518 different from AMD64_NO_CLASS. If subclass[1] is equal
519 to subclass[0], then the normal class[1]/subclass[1]
520 merging will take care of everything. For subclass[1]
521 to be different from subclass[0], I can only see the case
522 where we have a SSE/SSEUP or X87/X87UP pair, which both
523 use up all 16 bytes of the aggregate, and are already
524 handled just fine (because each portion sits on its own
525 8-byte). */
526 class[1] = amd64_merge_classes (class[1], subclass[0]);
527 if (pos == 0)
528 class[1] = amd64_merge_classes (class[1], subclass[1]);
529 }
530 }
531
532 /* 4. Then a post merger cleanup is done: */
533
534 /* Rule (a): If one of the classes is MEMORY, the whole argument is
535 passed in memory. */
536 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
537 class[0] = class[1] = AMD64_MEMORY;
538
539 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
540 SSE. */
541 if (class[0] == AMD64_SSEUP)
542 class[0] = AMD64_SSE;
543 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
544 class[1] = AMD64_SSE;
545 }
546
547 /* Classify TYPE, and store the result in CLASS. */
548
549 void
550 amd64_classify (struct type *type, enum amd64_reg_class class[2])
551 {
552 enum type_code code = TYPE_CODE (type);
553 int len = TYPE_LENGTH (type);
554
555 class[0] = class[1] = AMD64_NO_CLASS;
556
557 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
558 long, long long, and pointers are in the INTEGER class. Similarly,
559 range types, used by languages such as Ada, are also in the INTEGER
560 class. */
561 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
562 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
563 || code == TYPE_CODE_CHAR
564 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
565 && (len == 1 || len == 2 || len == 4 || len == 8))
566 class[0] = AMD64_INTEGER;
567
568 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
569 are in class SSE. */
570 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
571 && (len == 4 || len == 8))
572 /* FIXME: __m64 . */
573 class[0] = AMD64_SSE;
574
575 /* Arguments of types __float128, _Decimal128 and __m128 are split into
576 two halves. The least significant ones belong to class SSE, the most
577 significant one to class SSEUP. */
578 else if (code == TYPE_CODE_DECFLOAT && len == 16)
579 /* FIXME: __float128, __m128. */
580 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
581
582 /* The 64-bit mantissa of arguments of type long double belongs to
583 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
584 class X87UP. */
585 else if (code == TYPE_CODE_FLT && len == 16)
586 /* Class X87 and X87UP. */
587 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
588
589 /* Arguments of complex T where T is one of the types float or
590 double get treated as if they are implemented as:
591
592 struct complexT {
593 T real;
594 T imag;
595 }; */
596 else if (code == TYPE_CODE_COMPLEX && len == 8)
597 class[0] = AMD64_SSE;
598 else if (code == TYPE_CODE_COMPLEX && len == 16)
599 class[0] = class[1] = AMD64_SSE;
600
601 /* A variable of type complex long double is classified as type
602 COMPLEX_X87. */
603 else if (code == TYPE_CODE_COMPLEX && len == 32)
604 class[0] = AMD64_COMPLEX_X87;
605
606 /* Aggregates. */
607 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
608 || code == TYPE_CODE_UNION)
609 amd64_classify_aggregate (type, class);
610 }
611
612 static enum return_value_convention
613 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
618 enum amd64_reg_class class[2];
619 int len = TYPE_LENGTH (type);
620 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
621 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
622 int integer_reg = 0;
623 int sse_reg = 0;
624 int i;
625
626 gdb_assert (!(readbuf && writebuf));
627 gdb_assert (tdep->classify);
628
629 /* 1. Classify the return type with the classification algorithm. */
630 tdep->classify (type, class);
631
632 /* 2. If the type has class MEMORY, then the caller provides space
633 for the return value and passes the address of this storage in
634 %rdi as if it were the first argument to the function. In effect,
635 this address becomes a hidden first argument.
636
637 On return %rax will contain the address that has been passed in
638 by the caller in %rdi. */
639 if (class[0] == AMD64_MEMORY)
640 {
641 /* As indicated by the comment above, the ABI guarantees that we
642 can always find the return value just after the function has
643 returned. */
644
645 if (readbuf)
646 {
647 ULONGEST addr;
648
649 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
650 read_memory (addr, readbuf, TYPE_LENGTH (type));
651 }
652
653 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
654 }
655
656 /* 8. If the class is COMPLEX_X87, the real part of the value is
657 returned in %st0 and the imaginary part in %st1. */
658 if (class[0] == AMD64_COMPLEX_X87)
659 {
660 if (readbuf)
661 {
662 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
663 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
664 }
665
666 if (writebuf)
667 {
668 i387_return_value (gdbarch, regcache);
669 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
670 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
671
672 /* Fix up the tag word such that both %st(0) and %st(1) are
673 marked as valid. */
674 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
675 }
676
677 return RETURN_VALUE_REGISTER_CONVENTION;
678 }
679
680 gdb_assert (class[1] != AMD64_MEMORY);
681 gdb_assert (len <= 16);
682
683 for (i = 0; len > 0; i++, len -= 8)
684 {
685 int regnum = -1;
686 int offset = 0;
687
688 switch (class[i])
689 {
690 case AMD64_INTEGER:
691 /* 3. If the class is INTEGER, the next available register
692 of the sequence %rax, %rdx is used. */
693 regnum = integer_regnum[integer_reg++];
694 break;
695
696 case AMD64_SSE:
697 /* 4. If the class is SSE, the next available SSE register
698 of the sequence %xmm0, %xmm1 is used. */
699 regnum = sse_regnum[sse_reg++];
700 break;
701
702 case AMD64_SSEUP:
703 /* 5. If the class is SSEUP, the eightbyte is passed in the
704 upper half of the last used SSE register. */
705 gdb_assert (sse_reg > 0);
706 regnum = sse_regnum[sse_reg - 1];
707 offset = 8;
708 break;
709
710 case AMD64_X87:
711 /* 6. If the class is X87, the value is returned on the X87
712 stack in %st0 as 80-bit x87 number. */
713 regnum = AMD64_ST0_REGNUM;
714 if (writebuf)
715 i387_return_value (gdbarch, regcache);
716 break;
717
718 case AMD64_X87UP:
719 /* 7. If the class is X87UP, the value is returned together
720 with the previous X87 value in %st0. */
721 gdb_assert (i > 0 && class[0] == AMD64_X87);
722 regnum = AMD64_ST0_REGNUM;
723 offset = 8;
724 len = 2;
725 break;
726
727 case AMD64_NO_CLASS:
728 continue;
729
730 default:
731 gdb_assert (!"Unexpected register class.");
732 }
733
734 gdb_assert (regnum != -1);
735
736 if (readbuf)
737 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
738 readbuf + i * 8);
739 if (writebuf)
740 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
741 writebuf + i * 8);
742 }
743
744 return RETURN_VALUE_REGISTER_CONVENTION;
745 }
746 \f
747
748 static CORE_ADDR
749 amd64_push_arguments (struct regcache *regcache, int nargs,
750 struct value **args, CORE_ADDR sp, int struct_return)
751 {
752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
753 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
754 int *integer_regs = tdep->call_dummy_integer_regs;
755 int num_integer_regs = tdep->call_dummy_num_integer_regs;
756
757 static int sse_regnum[] =
758 {
759 /* %xmm0 ... %xmm7 */
760 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
761 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
762 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
763 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
764 };
765 struct value **stack_args = alloca (nargs * sizeof (struct value *));
766 /* An array that mirrors the stack_args array. For all arguments
767 that are passed by MEMORY, if that argument's address also needs
768 to be stored in a register, the ARG_ADDR_REGNO array will contain
769 that register number (or a negative value otherwise). */
770 int *arg_addr_regno = alloca (nargs * sizeof (int));
771 int num_stack_args = 0;
772 int num_elements = 0;
773 int element = 0;
774 int integer_reg = 0;
775 int sse_reg = 0;
776 int i;
777
778 gdb_assert (tdep->classify);
779
780 /* Reserve a register for the "hidden" argument. */
781 if (struct_return)
782 integer_reg++;
783
784 for (i = 0; i < nargs; i++)
785 {
786 struct type *type = value_type (args[i]);
787 int len = TYPE_LENGTH (type);
788 enum amd64_reg_class class[2];
789 int needed_integer_regs = 0;
790 int needed_sse_regs = 0;
791 int j;
792
793 /* Classify argument. */
794 tdep->classify (type, class);
795
796 /* Calculate the number of integer and SSE registers needed for
797 this argument. */
798 for (j = 0; j < 2; j++)
799 {
800 if (class[j] == AMD64_INTEGER)
801 needed_integer_regs++;
802 else if (class[j] == AMD64_SSE)
803 needed_sse_regs++;
804 }
805
806 /* Check whether enough registers are available, and if the
807 argument should be passed in registers at all. */
808 if (integer_reg + needed_integer_regs > num_integer_regs
809 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
810 || (needed_integer_regs == 0 && needed_sse_regs == 0))
811 {
812 /* The argument will be passed on the stack. */
813 num_elements += ((len + 7) / 8);
814 stack_args[num_stack_args] = args[i];
815 /* If this is an AMD64_MEMORY argument whose address must also
816 be passed in one of the integer registers, reserve that
817 register and associate this value to that register so that
818 we can store the argument address as soon as we know it. */
819 if (class[0] == AMD64_MEMORY
820 && tdep->memory_args_by_pointer
821 && integer_reg < tdep->call_dummy_num_integer_regs)
822 arg_addr_regno[num_stack_args] =
823 tdep->call_dummy_integer_regs[integer_reg++];
824 else
825 arg_addr_regno[num_stack_args] = -1;
826 num_stack_args++;
827 }
828 else
829 {
830 /* The argument will be passed in registers. */
831 const gdb_byte *valbuf = value_contents (args[i]);
832 gdb_byte buf[8];
833
834 gdb_assert (len <= 16);
835
836 for (j = 0; len > 0; j++, len -= 8)
837 {
838 int regnum = -1;
839 int offset = 0;
840
841 switch (class[j])
842 {
843 case AMD64_INTEGER:
844 regnum = integer_regs[integer_reg++];
845 break;
846
847 case AMD64_SSE:
848 regnum = sse_regnum[sse_reg++];
849 break;
850
851 case AMD64_SSEUP:
852 gdb_assert (sse_reg > 0);
853 regnum = sse_regnum[sse_reg - 1];
854 offset = 8;
855 break;
856
857 default:
858 gdb_assert (!"Unexpected register class.");
859 }
860
861 gdb_assert (regnum != -1);
862 memset (buf, 0, sizeof buf);
863 memcpy (buf, valbuf + j * 8, min (len, 8));
864 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
865 }
866 }
867 }
868
869 /* Allocate space for the arguments on the stack. */
870 sp -= num_elements * 8;
871
872 /* The psABI says that "The end of the input argument area shall be
873 aligned on a 16 byte boundary." */
874 sp &= ~0xf;
875
876 /* Write out the arguments to the stack. */
877 for (i = 0; i < num_stack_args; i++)
878 {
879 struct type *type = value_type (stack_args[i]);
880 const gdb_byte *valbuf = value_contents (stack_args[i]);
881 CORE_ADDR arg_addr = sp + element * 8;
882
883 write_memory (arg_addr, valbuf, TYPE_LENGTH (type));
884 if (arg_addr_regno[i] >= 0)
885 {
886 /* We also need to store the address of that argument in
887 the given register. */
888 gdb_byte buf[8];
889 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
890
891 store_unsigned_integer (buf, 8, byte_order, arg_addr);
892 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
893 }
894 element += ((TYPE_LENGTH (type) + 7) / 8);
895 }
896
897 /* The psABI says that "For calls that may call functions that use
898 varargs or stdargs (prototype-less calls or calls to functions
899 containing ellipsis (...) in the declaration) %al is used as
900 hidden argument to specify the number of SSE registers used. */
901 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
902 return sp;
903 }
904
905 static CORE_ADDR
906 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
907 struct regcache *regcache, CORE_ADDR bp_addr,
908 int nargs, struct value **args, CORE_ADDR sp,
909 int struct_return, CORE_ADDR struct_addr)
910 {
911 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913 gdb_byte buf[8];
914
915 /* Pass arguments. */
916 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
917
918 /* Pass "hidden" argument". */
919 if (struct_return)
920 {
921 /* The "hidden" argument is passed throught the first argument
922 register. */
923 const int arg_regnum = tdep->call_dummy_integer_regs[0];
924
925 store_unsigned_integer (buf, 8, byte_order, struct_addr);
926 regcache_cooked_write (regcache, arg_regnum, buf);
927 }
928
929 /* Reserve some memory on the stack for the integer-parameter registers,
930 if required by the ABI. */
931 if (tdep->integer_param_regs_saved_in_caller_frame)
932 sp -= tdep->call_dummy_num_integer_regs * 8;
933
934 /* Store return address. */
935 sp -= 8;
936 store_unsigned_integer (buf, 8, byte_order, bp_addr);
937 write_memory (sp, buf, 8);
938
939 /* Finally, update the stack pointer... */
940 store_unsigned_integer (buf, 8, byte_order, sp);
941 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
942
943 /* ...and fake a frame pointer. */
944 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
945
946 return sp + 16;
947 }
948 \f
949 /* Displaced instruction handling. */
950
951 /* A partially decoded instruction.
952 This contains enough details for displaced stepping purposes. */
953
954 struct amd64_insn
955 {
956 /* The number of opcode bytes. */
957 int opcode_len;
958 /* The offset of the rex prefix or -1 if not present. */
959 int rex_offset;
960 /* The offset to the first opcode byte. */
961 int opcode_offset;
962 /* The offset to the modrm byte or -1 if not present. */
963 int modrm_offset;
964
965 /* The raw instruction. */
966 gdb_byte *raw_insn;
967 };
968
969 struct displaced_step_closure
970 {
971 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
972 int tmp_used;
973 int tmp_regno;
974 ULONGEST tmp_save;
975
976 /* Details of the instruction. */
977 struct amd64_insn insn_details;
978
979 /* Amount of space allocated to insn_buf. */
980 int max_len;
981
982 /* The possibly modified insn.
983 This is a variable-length field. */
984 gdb_byte insn_buf[1];
985 };
986
987 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
988 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
989 at which point delete these in favor of libopcodes' versions). */
990
991 static const unsigned char onebyte_has_modrm[256] = {
992 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
993 /* ------------------------------- */
994 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
995 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
996 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
997 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
998 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
999 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1000 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1001 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1002 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1003 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1004 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1005 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1006 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1007 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1008 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1009 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1010 /* ------------------------------- */
1011 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1012 };
1013
1014 static const unsigned char twobyte_has_modrm[256] = {
1015 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1016 /* ------------------------------- */
1017 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1018 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1019 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1020 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1021 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1022 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1023 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1024 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1025 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1026 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1027 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1028 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1029 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1030 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1031 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1032 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1033 /* ------------------------------- */
1034 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1035 };
1036
1037 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1038
1039 static int
1040 rex_prefix_p (gdb_byte pfx)
1041 {
1042 return REX_PREFIX_P (pfx);
1043 }
1044
1045 /* Skip the legacy instruction prefixes in INSN.
1046 We assume INSN is properly sentineled so we don't have to worry
1047 about falling off the end of the buffer. */
1048
1049 static gdb_byte *
1050 amd64_skip_prefixes (gdb_byte *insn)
1051 {
1052 while (1)
1053 {
1054 switch (*insn)
1055 {
1056 case DATA_PREFIX_OPCODE:
1057 case ADDR_PREFIX_OPCODE:
1058 case CS_PREFIX_OPCODE:
1059 case DS_PREFIX_OPCODE:
1060 case ES_PREFIX_OPCODE:
1061 case FS_PREFIX_OPCODE:
1062 case GS_PREFIX_OPCODE:
1063 case SS_PREFIX_OPCODE:
1064 case LOCK_PREFIX_OPCODE:
1065 case REPE_PREFIX_OPCODE:
1066 case REPNE_PREFIX_OPCODE:
1067 ++insn;
1068 continue;
1069 default:
1070 break;
1071 }
1072 break;
1073 }
1074
1075 return insn;
1076 }
1077
1078 /* Return an integer register (other than RSP) that is unused as an input
1079 operand in INSN.
1080 In order to not require adding a rex prefix if the insn doesn't already
1081 have one, the result is restricted to RAX ... RDI, sans RSP.
1082 The register numbering of the result follows architecture ordering,
1083 e.g. RDI = 7. */
1084
1085 static int
1086 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1087 {
1088 /* 1 bit for each reg */
1089 int used_regs_mask = 0;
1090
1091 /* There can be at most 3 int regs used as inputs in an insn, and we have
1092 7 to choose from (RAX ... RDI, sans RSP).
1093 This allows us to take a conservative approach and keep things simple.
1094 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1095 that implicitly specify RAX. */
1096
1097 /* Avoid RAX. */
1098 used_regs_mask |= 1 << EAX_REG_NUM;
1099 /* Similarily avoid RDX, implicit operand in divides. */
1100 used_regs_mask |= 1 << EDX_REG_NUM;
1101 /* Avoid RSP. */
1102 used_regs_mask |= 1 << ESP_REG_NUM;
1103
1104 /* If the opcode is one byte long and there's no ModRM byte,
1105 assume the opcode specifies a register. */
1106 if (details->opcode_len == 1 && details->modrm_offset == -1)
1107 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1108
1109 /* Mark used regs in the modrm/sib bytes. */
1110 if (details->modrm_offset != -1)
1111 {
1112 int modrm = details->raw_insn[details->modrm_offset];
1113 int mod = MODRM_MOD_FIELD (modrm);
1114 int reg = MODRM_REG_FIELD (modrm);
1115 int rm = MODRM_RM_FIELD (modrm);
1116 int have_sib = mod != 3 && rm == 4;
1117
1118 /* Assume the reg field of the modrm byte specifies a register. */
1119 used_regs_mask |= 1 << reg;
1120
1121 if (have_sib)
1122 {
1123 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1124 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1125 used_regs_mask |= 1 << base;
1126 used_regs_mask |= 1 << idx;
1127 }
1128 else
1129 {
1130 used_regs_mask |= 1 << rm;
1131 }
1132 }
1133
1134 gdb_assert (used_regs_mask < 256);
1135 gdb_assert (used_regs_mask != 255);
1136
1137 /* Finally, find a free reg. */
1138 {
1139 int i;
1140
1141 for (i = 0; i < 8; ++i)
1142 {
1143 if (! (used_regs_mask & (1 << i)))
1144 return i;
1145 }
1146
1147 /* We shouldn't get here. */
1148 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1149 }
1150 }
1151
1152 /* Extract the details of INSN that we need. */
1153
1154 static void
1155 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1156 {
1157 gdb_byte *start = insn;
1158 int need_modrm;
1159
1160 details->raw_insn = insn;
1161
1162 details->opcode_len = -1;
1163 details->rex_offset = -1;
1164 details->opcode_offset = -1;
1165 details->modrm_offset = -1;
1166
1167 /* Skip legacy instruction prefixes. */
1168 insn = amd64_skip_prefixes (insn);
1169
1170 /* Skip REX instruction prefix. */
1171 if (rex_prefix_p (*insn))
1172 {
1173 details->rex_offset = insn - start;
1174 ++insn;
1175 }
1176
1177 details->opcode_offset = insn - start;
1178
1179 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1180 {
1181 /* Two or three-byte opcode. */
1182 ++insn;
1183 need_modrm = twobyte_has_modrm[*insn];
1184
1185 /* Check for three-byte opcode. */
1186 switch (*insn)
1187 {
1188 case 0x24:
1189 case 0x25:
1190 case 0x38:
1191 case 0x3a:
1192 case 0x7a:
1193 case 0x7b:
1194 ++insn;
1195 details->opcode_len = 3;
1196 break;
1197 default:
1198 details->opcode_len = 2;
1199 break;
1200 }
1201 }
1202 else
1203 {
1204 /* One-byte opcode. */
1205 need_modrm = onebyte_has_modrm[*insn];
1206 details->opcode_len = 1;
1207 }
1208
1209 if (need_modrm)
1210 {
1211 ++insn;
1212 details->modrm_offset = insn - start;
1213 }
1214 }
1215
1216 /* Update %rip-relative addressing in INSN.
1217
1218 %rip-relative addressing only uses a 32-bit displacement.
1219 32 bits is not enough to be guaranteed to cover the distance between where
1220 the real instruction is and where its copy is.
1221 Convert the insn to use base+disp addressing.
1222 We set base = pc + insn_length so we can leave disp unchanged. */
1223
1224 static void
1225 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1226 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1227 {
1228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1229 const struct amd64_insn *insn_details = &dsc->insn_details;
1230 int modrm_offset = insn_details->modrm_offset;
1231 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1232 CORE_ADDR rip_base;
1233 int32_t disp;
1234 int insn_length;
1235 int arch_tmp_regno, tmp_regno;
1236 ULONGEST orig_value;
1237
1238 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1239 ++insn;
1240
1241 /* Compute the rip-relative address. */
1242 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1243 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1244 dsc->max_len, from);
1245 rip_base = from + insn_length;
1246
1247 /* We need a register to hold the address.
1248 Pick one not used in the insn.
1249 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1250 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1251 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1252
1253 /* REX.B should be unset as we were using rip-relative addressing,
1254 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1255 if (insn_details->rex_offset != -1)
1256 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1257
1258 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1259 dsc->tmp_regno = tmp_regno;
1260 dsc->tmp_save = orig_value;
1261 dsc->tmp_used = 1;
1262
1263 /* Convert the ModRM field to be base+disp. */
1264 dsc->insn_buf[modrm_offset] &= ~0xc7;
1265 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1266
1267 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1268
1269 if (debug_displaced)
1270 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1271 "displaced: using temp reg %d, old value %s, new value %s\n",
1272 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1273 paddress (gdbarch, rip_base));
1274 }
1275
1276 static void
1277 fixup_displaced_copy (struct gdbarch *gdbarch,
1278 struct displaced_step_closure *dsc,
1279 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1280 {
1281 const struct amd64_insn *details = &dsc->insn_details;
1282
1283 if (details->modrm_offset != -1)
1284 {
1285 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1286
1287 if ((modrm & 0xc7) == 0x05)
1288 {
1289 /* The insn uses rip-relative addressing.
1290 Deal with it. */
1291 fixup_riprel (gdbarch, dsc, from, to, regs);
1292 }
1293 }
1294 }
1295
1296 struct displaced_step_closure *
1297 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1298 CORE_ADDR from, CORE_ADDR to,
1299 struct regcache *regs)
1300 {
1301 int len = gdbarch_max_insn_length (gdbarch);
1302 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1303 continually watch for running off the end of the buffer. */
1304 int fixup_sentinel_space = len;
1305 struct displaced_step_closure *dsc =
1306 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1307 gdb_byte *buf = &dsc->insn_buf[0];
1308 struct amd64_insn *details = &dsc->insn_details;
1309
1310 dsc->tmp_used = 0;
1311 dsc->max_len = len + fixup_sentinel_space;
1312
1313 read_memory (from, buf, len);
1314
1315 /* Set up the sentinel space so we don't have to worry about running
1316 off the end of the buffer. An excessive number of leading prefixes
1317 could otherwise cause this. */
1318 memset (buf + len, 0, fixup_sentinel_space);
1319
1320 amd64_get_insn_details (buf, details);
1321
1322 /* GDB may get control back after the insn after the syscall.
1323 Presumably this is a kernel bug.
1324 If this is a syscall, make sure there's a nop afterwards. */
1325 {
1326 int syscall_length;
1327
1328 if (amd64_syscall_p (details, &syscall_length))
1329 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1330 }
1331
1332 /* Modify the insn to cope with the address where it will be executed from.
1333 In particular, handle any rip-relative addressing. */
1334 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1335
1336 write_memory (to, buf, len);
1337
1338 if (debug_displaced)
1339 {
1340 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1341 paddress (gdbarch, from), paddress (gdbarch, to));
1342 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1343 }
1344
1345 return dsc;
1346 }
1347
1348 static int
1349 amd64_absolute_jmp_p (const struct amd64_insn *details)
1350 {
1351 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1352
1353 if (insn[0] == 0xff)
1354 {
1355 /* jump near, absolute indirect (/4) */
1356 if ((insn[1] & 0x38) == 0x20)
1357 return 1;
1358
1359 /* jump far, absolute indirect (/5) */
1360 if ((insn[1] & 0x38) == 0x28)
1361 return 1;
1362 }
1363
1364 return 0;
1365 }
1366
1367 static int
1368 amd64_absolute_call_p (const struct amd64_insn *details)
1369 {
1370 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1371
1372 if (insn[0] == 0xff)
1373 {
1374 /* Call near, absolute indirect (/2) */
1375 if ((insn[1] & 0x38) == 0x10)
1376 return 1;
1377
1378 /* Call far, absolute indirect (/3) */
1379 if ((insn[1] & 0x38) == 0x18)
1380 return 1;
1381 }
1382
1383 return 0;
1384 }
1385
1386 static int
1387 amd64_ret_p (const struct amd64_insn *details)
1388 {
1389 /* NOTE: gcc can emit "repz ; ret". */
1390 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1391
1392 switch (insn[0])
1393 {
1394 case 0xc2: /* ret near, pop N bytes */
1395 case 0xc3: /* ret near */
1396 case 0xca: /* ret far, pop N bytes */
1397 case 0xcb: /* ret far */
1398 case 0xcf: /* iret */
1399 return 1;
1400
1401 default:
1402 return 0;
1403 }
1404 }
1405
1406 static int
1407 amd64_call_p (const struct amd64_insn *details)
1408 {
1409 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1410
1411 if (amd64_absolute_call_p (details))
1412 return 1;
1413
1414 /* call near, relative */
1415 if (insn[0] == 0xe8)
1416 return 1;
1417
1418 return 0;
1419 }
1420
1421 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1422 length in bytes. Otherwise, return zero. */
1423
1424 static int
1425 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1426 {
1427 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1428
1429 if (insn[0] == 0x0f && insn[1] == 0x05)
1430 {
1431 *lengthp = 2;
1432 return 1;
1433 }
1434
1435 return 0;
1436 }
1437
1438 /* Fix up the state of registers and memory after having single-stepped
1439 a displaced instruction. */
1440
1441 void
1442 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1443 struct displaced_step_closure *dsc,
1444 CORE_ADDR from, CORE_ADDR to,
1445 struct regcache *regs)
1446 {
1447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1448 /* The offset we applied to the instruction's address. */
1449 ULONGEST insn_offset = to - from;
1450 gdb_byte *insn = dsc->insn_buf;
1451 const struct amd64_insn *insn_details = &dsc->insn_details;
1452
1453 if (debug_displaced)
1454 fprintf_unfiltered (gdb_stdlog,
1455 "displaced: fixup (%s, %s), "
1456 "insn = 0x%02x 0x%02x ...\n",
1457 paddress (gdbarch, from), paddress (gdbarch, to),
1458 insn[0], insn[1]);
1459
1460 /* If we used a tmp reg, restore it. */
1461
1462 if (dsc->tmp_used)
1463 {
1464 if (debug_displaced)
1465 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1466 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1467 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1468 }
1469
1470 /* The list of issues to contend with here is taken from
1471 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1472 Yay for Free Software! */
1473
1474 /* Relocate the %rip back to the program's instruction stream,
1475 if necessary. */
1476
1477 /* Except in the case of absolute or indirect jump or call
1478 instructions, or a return instruction, the new rip is relative to
1479 the displaced instruction; make it relative to the original insn.
1480 Well, signal handler returns don't need relocation either, but we use the
1481 value of %rip to recognize those; see below. */
1482 if (! amd64_absolute_jmp_p (insn_details)
1483 && ! amd64_absolute_call_p (insn_details)
1484 && ! amd64_ret_p (insn_details))
1485 {
1486 ULONGEST orig_rip;
1487 int insn_len;
1488
1489 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1490
1491 /* A signal trampoline system call changes the %rip, resuming
1492 execution of the main program after the signal handler has
1493 returned. That makes them like 'return' instructions; we
1494 shouldn't relocate %rip.
1495
1496 But most system calls don't, and we do need to relocate %rip.
1497
1498 Our heuristic for distinguishing these cases: if stepping
1499 over the system call instruction left control directly after
1500 the instruction, the we relocate --- control almost certainly
1501 doesn't belong in the displaced copy. Otherwise, we assume
1502 the instruction has put control where it belongs, and leave
1503 it unrelocated. Goodness help us if there are PC-relative
1504 system calls. */
1505 if (amd64_syscall_p (insn_details, &insn_len)
1506 && orig_rip != to + insn_len
1507 /* GDB can get control back after the insn after the syscall.
1508 Presumably this is a kernel bug.
1509 Fixup ensures its a nop, we add one to the length for it. */
1510 && orig_rip != to + insn_len + 1)
1511 {
1512 if (debug_displaced)
1513 fprintf_unfiltered (gdb_stdlog,
1514 "displaced: syscall changed %%rip; "
1515 "not relocating\n");
1516 }
1517 else
1518 {
1519 ULONGEST rip = orig_rip - insn_offset;
1520
1521 /* If we just stepped over a breakpoint insn, we don't backup
1522 the pc on purpose; this is to match behaviour without
1523 stepping. */
1524
1525 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1526
1527 if (debug_displaced)
1528 fprintf_unfiltered (gdb_stdlog,
1529 "displaced: "
1530 "relocated %%rip from %s to %s\n",
1531 paddress (gdbarch, orig_rip),
1532 paddress (gdbarch, rip));
1533 }
1534 }
1535
1536 /* If the instruction was PUSHFL, then the TF bit will be set in the
1537 pushed value, and should be cleared. We'll leave this for later,
1538 since GDB already messes up the TF flag when stepping over a
1539 pushfl. */
1540
1541 /* If the instruction was a call, the return address now atop the
1542 stack is the address following the copied instruction. We need
1543 to make it the address following the original instruction. */
1544 if (amd64_call_p (insn_details))
1545 {
1546 ULONGEST rsp;
1547 ULONGEST retaddr;
1548 const ULONGEST retaddr_len = 8;
1549
1550 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1551 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1552 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1553 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1554
1555 if (debug_displaced)
1556 fprintf_unfiltered (gdb_stdlog,
1557 "displaced: relocated return addr at %s "
1558 "to %s\n",
1559 paddress (gdbarch, rsp),
1560 paddress (gdbarch, retaddr));
1561 }
1562 }
1563
1564 /* If the instruction INSN uses RIP-relative addressing, return the
1565 offset into the raw INSN where the displacement to be adjusted is
1566 found. Returns 0 if the instruction doesn't use RIP-relative
1567 addressing. */
1568
1569 static int
1570 rip_relative_offset (struct amd64_insn *insn)
1571 {
1572 if (insn->modrm_offset != -1)
1573 {
1574 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1575
1576 if ((modrm & 0xc7) == 0x05)
1577 {
1578 /* The displacement is found right after the ModRM byte. */
1579 return insn->modrm_offset + 1;
1580 }
1581 }
1582
1583 return 0;
1584 }
1585
1586 static void
1587 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1588 {
1589 target_write_memory (*to, buf, len);
1590 *to += len;
1591 }
1592
1593 static void
1594 amd64_relocate_instruction (struct gdbarch *gdbarch,
1595 CORE_ADDR *to, CORE_ADDR oldloc)
1596 {
1597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1598 int len = gdbarch_max_insn_length (gdbarch);
1599 /* Extra space for sentinels. */
1600 int fixup_sentinel_space = len;
1601 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1602 struct amd64_insn insn_details;
1603 int offset = 0;
1604 LONGEST rel32, newrel;
1605 gdb_byte *insn;
1606 int insn_length;
1607
1608 read_memory (oldloc, buf, len);
1609
1610 /* Set up the sentinel space so we don't have to worry about running
1611 off the end of the buffer. An excessive number of leading prefixes
1612 could otherwise cause this. */
1613 memset (buf + len, 0, fixup_sentinel_space);
1614
1615 insn = buf;
1616 amd64_get_insn_details (insn, &insn_details);
1617
1618 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1619
1620 /* Skip legacy instruction prefixes. */
1621 insn = amd64_skip_prefixes (insn);
1622
1623 /* Adjust calls with 32-bit relative addresses as push/jump, with
1624 the address pushed being the location where the original call in
1625 the user program would return to. */
1626 if (insn[0] == 0xe8)
1627 {
1628 gdb_byte push_buf[16];
1629 unsigned int ret_addr;
1630
1631 /* Where "ret" in the original code will return to. */
1632 ret_addr = oldloc + insn_length;
1633 push_buf[0] = 0x68; /* pushq $... */
1634 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1635 /* Push the push. */
1636 append_insns (to, 5, push_buf);
1637
1638 /* Convert the relative call to a relative jump. */
1639 insn[0] = 0xe9;
1640
1641 /* Adjust the destination offset. */
1642 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1643 newrel = (oldloc - *to) + rel32;
1644 store_signed_integer (insn + 1, 4, byte_order, newrel);
1645
1646 if (debug_displaced)
1647 fprintf_unfiltered (gdb_stdlog,
1648 "Adjusted insn rel32=%s at %s to"
1649 " rel32=%s at %s\n",
1650 hex_string (rel32), paddress (gdbarch, oldloc),
1651 hex_string (newrel), paddress (gdbarch, *to));
1652
1653 /* Write the adjusted jump into its displaced location. */
1654 append_insns (to, 5, insn);
1655 return;
1656 }
1657
1658 offset = rip_relative_offset (&insn_details);
1659 if (!offset)
1660 {
1661 /* Adjust jumps with 32-bit relative addresses. Calls are
1662 already handled above. */
1663 if (insn[0] == 0xe9)
1664 offset = 1;
1665 /* Adjust conditional jumps. */
1666 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1667 offset = 2;
1668 }
1669
1670 if (offset)
1671 {
1672 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1673 newrel = (oldloc - *to) + rel32;
1674 store_signed_integer (insn + offset, 4, byte_order, newrel);
1675 if (debug_displaced)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "Adjusted insn rel32=%s at %s to"
1678 " rel32=%s at %s\n",
1679 hex_string (rel32), paddress (gdbarch, oldloc),
1680 hex_string (newrel), paddress (gdbarch, *to));
1681 }
1682
1683 /* Write the adjusted instruction into its displaced location. */
1684 append_insns (to, insn_length, buf);
1685 }
1686
1687 \f
1688 /* The maximum number of saved registers. This should include %rip. */
1689 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1690
1691 struct amd64_frame_cache
1692 {
1693 /* Base address. */
1694 CORE_ADDR base;
1695 int base_p;
1696 CORE_ADDR sp_offset;
1697 CORE_ADDR pc;
1698
1699 /* Saved registers. */
1700 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1701 CORE_ADDR saved_sp;
1702 int saved_sp_reg;
1703
1704 /* Do we have a frame? */
1705 int frameless_p;
1706 };
1707
1708 /* Initialize a frame cache. */
1709
1710 static void
1711 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1712 {
1713 int i;
1714
1715 /* Base address. */
1716 cache->base = 0;
1717 cache->base_p = 0;
1718 cache->sp_offset = -8;
1719 cache->pc = 0;
1720
1721 /* Saved registers. We initialize these to -1 since zero is a valid
1722 offset (that's where %rbp is supposed to be stored).
1723 The values start out as being offsets, and are later converted to
1724 addresses (at which point -1 is interpreted as an address, still meaning
1725 "invalid"). */
1726 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1727 cache->saved_regs[i] = -1;
1728 cache->saved_sp = 0;
1729 cache->saved_sp_reg = -1;
1730
1731 /* Frameless until proven otherwise. */
1732 cache->frameless_p = 1;
1733 }
1734
1735 /* Allocate and initialize a frame cache. */
1736
1737 static struct amd64_frame_cache *
1738 amd64_alloc_frame_cache (void)
1739 {
1740 struct amd64_frame_cache *cache;
1741
1742 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1743 amd64_init_frame_cache (cache);
1744 return cache;
1745 }
1746
1747 /* GCC 4.4 and later, can put code in the prologue to realign the
1748 stack pointer. Check whether PC points to such code, and update
1749 CACHE accordingly. Return the first instruction after the code
1750 sequence or CURRENT_PC, whichever is smaller. If we don't
1751 recognize the code, return PC. */
1752
1753 static CORE_ADDR
1754 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1755 struct amd64_frame_cache *cache)
1756 {
1757 /* There are 2 code sequences to re-align stack before the frame
1758 gets set up:
1759
1760 1. Use a caller-saved saved register:
1761
1762 leaq 8(%rsp), %reg
1763 andq $-XXX, %rsp
1764 pushq -8(%reg)
1765
1766 2. Use a callee-saved saved register:
1767
1768 pushq %reg
1769 leaq 16(%rsp), %reg
1770 andq $-XXX, %rsp
1771 pushq -8(%reg)
1772
1773 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1774
1775 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1776 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1777 */
1778
1779 gdb_byte buf[18];
1780 int reg, r;
1781 int offset, offset_and;
1782
1783 if (target_read_memory (pc, buf, sizeof buf))
1784 return pc;
1785
1786 /* Check caller-saved saved register. The first instruction has
1787 to be "leaq 8(%rsp), %reg". */
1788 if ((buf[0] & 0xfb) == 0x48
1789 && buf[1] == 0x8d
1790 && buf[3] == 0x24
1791 && buf[4] == 0x8)
1792 {
1793 /* MOD must be binary 10 and R/M must be binary 100. */
1794 if ((buf[2] & 0xc7) != 0x44)
1795 return pc;
1796
1797 /* REG has register number. */
1798 reg = (buf[2] >> 3) & 7;
1799
1800 /* Check the REX.R bit. */
1801 if (buf[0] == 0x4c)
1802 reg += 8;
1803
1804 offset = 5;
1805 }
1806 else
1807 {
1808 /* Check callee-saved saved register. The first instruction
1809 has to be "pushq %reg". */
1810 reg = 0;
1811 if ((buf[0] & 0xf8) == 0x50)
1812 offset = 0;
1813 else if ((buf[0] & 0xf6) == 0x40
1814 && (buf[1] & 0xf8) == 0x50)
1815 {
1816 /* Check the REX.B bit. */
1817 if ((buf[0] & 1) != 0)
1818 reg = 8;
1819
1820 offset = 1;
1821 }
1822 else
1823 return pc;
1824
1825 /* Get register. */
1826 reg += buf[offset] & 0x7;
1827
1828 offset++;
1829
1830 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1831 if ((buf[offset] & 0xfb) != 0x48
1832 || buf[offset + 1] != 0x8d
1833 || buf[offset + 3] != 0x24
1834 || buf[offset + 4] != 0x10)
1835 return pc;
1836
1837 /* MOD must be binary 10 and R/M must be binary 100. */
1838 if ((buf[offset + 2] & 0xc7) != 0x44)
1839 return pc;
1840
1841 /* REG has register number. */
1842 r = (buf[offset + 2] >> 3) & 7;
1843
1844 /* Check the REX.R bit. */
1845 if (buf[offset] == 0x4c)
1846 r += 8;
1847
1848 /* Registers in pushq and leaq have to be the same. */
1849 if (reg != r)
1850 return pc;
1851
1852 offset += 5;
1853 }
1854
1855 /* Rigister can't be %rsp nor %rbp. */
1856 if (reg == 4 || reg == 5)
1857 return pc;
1858
1859 /* The next instruction has to be "andq $-XXX, %rsp". */
1860 if (buf[offset] != 0x48
1861 || buf[offset + 2] != 0xe4
1862 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1863 return pc;
1864
1865 offset_and = offset;
1866 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1867
1868 /* The next instruction has to be "pushq -8(%reg)". */
1869 r = 0;
1870 if (buf[offset] == 0xff)
1871 offset++;
1872 else if ((buf[offset] & 0xf6) == 0x40
1873 && buf[offset + 1] == 0xff)
1874 {
1875 /* Check the REX.B bit. */
1876 if ((buf[offset] & 0x1) != 0)
1877 r = 8;
1878 offset += 2;
1879 }
1880 else
1881 return pc;
1882
1883 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1884 01. */
1885 if (buf[offset + 1] != 0xf8
1886 || (buf[offset] & 0xf8) != 0x70)
1887 return pc;
1888
1889 /* R/M has register. */
1890 r += buf[offset] & 7;
1891
1892 /* Registers in leaq and pushq have to be the same. */
1893 if (reg != r)
1894 return pc;
1895
1896 if (current_pc > pc + offset_and)
1897 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1898
1899 return min (pc + offset + 2, current_pc);
1900 }
1901
1902 /* Similar to amd64_analyze_stack_align for x32. */
1903
1904 static CORE_ADDR
1905 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1906 struct amd64_frame_cache *cache)
1907 {
1908 /* There are 2 code sequences to re-align stack before the frame
1909 gets set up:
1910
1911 1. Use a caller-saved saved register:
1912
1913 leaq 8(%rsp), %reg
1914 andq $-XXX, %rsp
1915 pushq -8(%reg)
1916
1917 or
1918
1919 [addr32] leal 8(%rsp), %reg
1920 andl $-XXX, %esp
1921 [addr32] pushq -8(%reg)
1922
1923 2. Use a callee-saved saved register:
1924
1925 pushq %reg
1926 leaq 16(%rsp), %reg
1927 andq $-XXX, %rsp
1928 pushq -8(%reg)
1929
1930 or
1931
1932 pushq %reg
1933 [addr32] leal 16(%rsp), %reg
1934 andl $-XXX, %esp
1935 [addr32] pushq -8(%reg)
1936
1937 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1938
1939 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1940 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1941
1942 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1943
1944 0x83 0xe4 0xf0 andl $-16, %esp
1945 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1946 */
1947
1948 gdb_byte buf[19];
1949 int reg, r;
1950 int offset, offset_and;
1951
1952 if (target_read_memory (pc, buf, sizeof buf))
1953 return pc;
1954
1955 /* Skip optional addr32 prefix. */
1956 offset = buf[0] == 0x67 ? 1 : 0;
1957
1958 /* Check caller-saved saved register. The first instruction has
1959 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
1960 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
1961 && buf[offset + 1] == 0x8d
1962 && buf[offset + 3] == 0x24
1963 && buf[offset + 4] == 0x8)
1964 {
1965 /* MOD must be binary 10 and R/M must be binary 100. */
1966 if ((buf[offset + 2] & 0xc7) != 0x44)
1967 return pc;
1968
1969 /* REG has register number. */
1970 reg = (buf[offset + 2] >> 3) & 7;
1971
1972 /* Check the REX.R bit. */
1973 if ((buf[offset] & 0x4) != 0)
1974 reg += 8;
1975
1976 offset += 5;
1977 }
1978 else
1979 {
1980 /* Check callee-saved saved register. The first instruction
1981 has to be "pushq %reg". */
1982 reg = 0;
1983 if ((buf[offset] & 0xf6) == 0x40
1984 && (buf[offset + 1] & 0xf8) == 0x50)
1985 {
1986 /* Check the REX.B bit. */
1987 if ((buf[offset] & 1) != 0)
1988 reg = 8;
1989
1990 offset += 1;
1991 }
1992 else if ((buf[offset] & 0xf8) != 0x50)
1993 return pc;
1994
1995 /* Get register. */
1996 reg += buf[offset] & 0x7;
1997
1998 offset++;
1999
2000 /* Skip optional addr32 prefix. */
2001 if (buf[offset] == 0x67)
2002 offset++;
2003
2004 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2005 "leal 16(%rsp), %reg". */
2006 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2007 || buf[offset + 1] != 0x8d
2008 || buf[offset + 3] != 0x24
2009 || buf[offset + 4] != 0x10)
2010 return pc;
2011
2012 /* MOD must be binary 10 and R/M must be binary 100. */
2013 if ((buf[offset + 2] & 0xc7) != 0x44)
2014 return pc;
2015
2016 /* REG has register number. */
2017 r = (buf[offset + 2] >> 3) & 7;
2018
2019 /* Check the REX.R bit. */
2020 if ((buf[offset] & 0x4) != 0)
2021 r += 8;
2022
2023 /* Registers in pushq and leaq have to be the same. */
2024 if (reg != r)
2025 return pc;
2026
2027 offset += 5;
2028 }
2029
2030 /* Rigister can't be %rsp nor %rbp. */
2031 if (reg == 4 || reg == 5)
2032 return pc;
2033
2034 /* The next instruction may be "andq $-XXX, %rsp" or
2035 "andl $-XXX, %esp". */
2036 if (buf[offset] != 0x48)
2037 offset--;
2038
2039 if (buf[offset + 2] != 0xe4
2040 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2041 return pc;
2042
2043 offset_and = offset;
2044 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2045
2046 /* Skip optional addr32 prefix. */
2047 if (buf[offset] == 0x67)
2048 offset++;
2049
2050 /* The next instruction has to be "pushq -8(%reg)". */
2051 r = 0;
2052 if (buf[offset] == 0xff)
2053 offset++;
2054 else if ((buf[offset] & 0xf6) == 0x40
2055 && buf[offset + 1] == 0xff)
2056 {
2057 /* Check the REX.B bit. */
2058 if ((buf[offset] & 0x1) != 0)
2059 r = 8;
2060 offset += 2;
2061 }
2062 else
2063 return pc;
2064
2065 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2066 01. */
2067 if (buf[offset + 1] != 0xf8
2068 || (buf[offset] & 0xf8) != 0x70)
2069 return pc;
2070
2071 /* R/M has register. */
2072 r += buf[offset] & 7;
2073
2074 /* Registers in leaq and pushq have to be the same. */
2075 if (reg != r)
2076 return pc;
2077
2078 if (current_pc > pc + offset_and)
2079 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2080
2081 return min (pc + offset + 2, current_pc);
2082 }
2083
2084 /* Do a limited analysis of the prologue at PC and update CACHE
2085 accordingly. Bail out early if CURRENT_PC is reached. Return the
2086 address where the analysis stopped.
2087
2088 We will handle only functions beginning with:
2089
2090 pushq %rbp 0x55
2091 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2092
2093 or (for the X32 ABI):
2094
2095 pushq %rbp 0x55
2096 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2097
2098 Any function that doesn't start with one of these sequences will be
2099 assumed to have no prologue and thus no valid frame pointer in
2100 %rbp. */
2101
2102 static CORE_ADDR
2103 amd64_analyze_prologue (struct gdbarch *gdbarch,
2104 CORE_ADDR pc, CORE_ADDR current_pc,
2105 struct amd64_frame_cache *cache)
2106 {
2107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2108 /* There are two variations of movq %rsp, %rbp. */
2109 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2110 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2111 /* Ditto for movl %esp, %ebp. */
2112 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2113 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2114
2115 gdb_byte buf[3];
2116 gdb_byte op;
2117
2118 if (current_pc <= pc)
2119 return current_pc;
2120
2121 if (gdbarch_ptr_bit (gdbarch) == 32)
2122 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2123 else
2124 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2125
2126 op = read_memory_unsigned_integer (pc, 1, byte_order);
2127
2128 if (op == 0x55) /* pushq %rbp */
2129 {
2130 /* Take into account that we've executed the `pushq %rbp' that
2131 starts this instruction sequence. */
2132 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2133 cache->sp_offset += 8;
2134
2135 /* If that's all, return now. */
2136 if (current_pc <= pc + 1)
2137 return current_pc;
2138
2139 read_memory (pc + 1, buf, 3);
2140
2141 /* Check for `movq %rsp, %rbp'. */
2142 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2143 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2144 {
2145 /* OK, we actually have a frame. */
2146 cache->frameless_p = 0;
2147 return pc + 4;
2148 }
2149
2150 /* For X32, also check for `movq %esp, %ebp'. */
2151 if (gdbarch_ptr_bit (gdbarch) == 32)
2152 {
2153 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2154 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2155 {
2156 /* OK, we actually have a frame. */
2157 cache->frameless_p = 0;
2158 return pc + 3;
2159 }
2160 }
2161
2162 return pc + 1;
2163 }
2164
2165 return pc;
2166 }
2167
2168 /* Work around false termination of prologue - GCC PR debug/48827.
2169
2170 START_PC is the first instruction of a function, PC is its minimal already
2171 determined advanced address. Function returns PC if it has nothing to do.
2172
2173 84 c0 test %al,%al
2174 74 23 je after
2175 <-- here is 0 lines advance - the false prologue end marker.
2176 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2177 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2178 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2179 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2180 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2181 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2182 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2183 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2184 after: */
2185
2186 static CORE_ADDR
2187 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2188 {
2189 struct symtab_and_line start_pc_sal, next_sal;
2190 gdb_byte buf[4 + 8 * 7];
2191 int offset, xmmreg;
2192
2193 if (pc == start_pc)
2194 return pc;
2195
2196 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2197 if (start_pc_sal.symtab == NULL
2198 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2199 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2200 return pc;
2201
2202 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2203 if (next_sal.line != start_pc_sal.line)
2204 return pc;
2205
2206 /* START_PC can be from overlayed memory, ignored here. */
2207 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2208 return pc;
2209
2210 /* test %al,%al */
2211 if (buf[0] != 0x84 || buf[1] != 0xc0)
2212 return pc;
2213 /* je AFTER */
2214 if (buf[2] != 0x74)
2215 return pc;
2216
2217 offset = 4;
2218 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2219 {
2220 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2221 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2222 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2223 return pc;
2224
2225 /* 0b01?????? */
2226 if ((buf[offset + 2] & 0xc0) == 0x40)
2227 {
2228 /* 8-bit displacement. */
2229 offset += 4;
2230 }
2231 /* 0b10?????? */
2232 else if ((buf[offset + 2] & 0xc0) == 0x80)
2233 {
2234 /* 32-bit displacement. */
2235 offset += 7;
2236 }
2237 else
2238 return pc;
2239 }
2240
2241 /* je AFTER */
2242 if (offset - 4 != buf[3])
2243 return pc;
2244
2245 return next_sal.end;
2246 }
2247
2248 /* Return PC of first real instruction. */
2249
2250 static CORE_ADDR
2251 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2252 {
2253 struct amd64_frame_cache cache;
2254 CORE_ADDR pc;
2255 CORE_ADDR func_addr;
2256
2257 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2258 {
2259 CORE_ADDR post_prologue_pc
2260 = skip_prologue_using_sal (gdbarch, func_addr);
2261 struct symtab *s = find_pc_symtab (func_addr);
2262
2263 /* Clang always emits a line note before the prologue and another
2264 one after. We trust clang to emit usable line notes. */
2265 if (post_prologue_pc
2266 && (s != NULL
2267 && s->producer != NULL
2268 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
2269 return max (start_pc, post_prologue_pc);
2270 }
2271
2272 amd64_init_frame_cache (&cache);
2273 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2274 &cache);
2275 if (cache.frameless_p)
2276 return start_pc;
2277
2278 return amd64_skip_xmm_prologue (pc, start_pc);
2279 }
2280 \f
2281
2282 /* Normal frames. */
2283
2284 static void
2285 amd64_frame_cache_1 (struct frame_info *this_frame,
2286 struct amd64_frame_cache *cache)
2287 {
2288 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2289 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2290 gdb_byte buf[8];
2291 int i;
2292
2293 cache->pc = get_frame_func (this_frame);
2294 if (cache->pc != 0)
2295 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2296 cache);
2297
2298 if (cache->frameless_p)
2299 {
2300 /* We didn't find a valid frame. If we're at the start of a
2301 function, or somewhere half-way its prologue, the function's
2302 frame probably hasn't been fully setup yet. Try to
2303 reconstruct the base address for the stack frame by looking
2304 at the stack pointer. For truly "frameless" functions this
2305 might work too. */
2306
2307 if (cache->saved_sp_reg != -1)
2308 {
2309 /* Stack pointer has been saved. */
2310 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2311 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2312
2313 /* We're halfway aligning the stack. */
2314 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2315 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2316
2317 /* This will be added back below. */
2318 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2319 }
2320 else
2321 {
2322 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2323 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2324 + cache->sp_offset;
2325 }
2326 }
2327 else
2328 {
2329 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2330 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2331 }
2332
2333 /* Now that we have the base address for the stack frame we can
2334 calculate the value of %rsp in the calling frame. */
2335 cache->saved_sp = cache->base + 16;
2336
2337 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2338 frame we find it at the same offset from the reconstructed base
2339 address. If we're halfway aligning the stack, %rip is handled
2340 differently (see above). */
2341 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2342 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2343
2344 /* Adjust all the saved registers such that they contain addresses
2345 instead of offsets. */
2346 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2347 if (cache->saved_regs[i] != -1)
2348 cache->saved_regs[i] += cache->base;
2349
2350 cache->base_p = 1;
2351 }
2352
2353 static struct amd64_frame_cache *
2354 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2355 {
2356 volatile struct gdb_exception ex;
2357 struct amd64_frame_cache *cache;
2358
2359 if (*this_cache)
2360 return *this_cache;
2361
2362 cache = amd64_alloc_frame_cache ();
2363 *this_cache = cache;
2364
2365 TRY_CATCH (ex, RETURN_MASK_ERROR)
2366 {
2367 amd64_frame_cache_1 (this_frame, cache);
2368 }
2369 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2370 throw_exception (ex);
2371
2372 return cache;
2373 }
2374
2375 static enum unwind_stop_reason
2376 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2377 void **this_cache)
2378 {
2379 struct amd64_frame_cache *cache =
2380 amd64_frame_cache (this_frame, this_cache);
2381
2382 if (!cache->base_p)
2383 return UNWIND_UNAVAILABLE;
2384
2385 /* This marks the outermost frame. */
2386 if (cache->base == 0)
2387 return UNWIND_OUTERMOST;
2388
2389 return UNWIND_NO_REASON;
2390 }
2391
2392 static void
2393 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2394 struct frame_id *this_id)
2395 {
2396 struct amd64_frame_cache *cache =
2397 amd64_frame_cache (this_frame, this_cache);
2398
2399 if (!cache->base_p)
2400 return;
2401
2402 /* This marks the outermost frame. */
2403 if (cache->base == 0)
2404 return;
2405
2406 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2407 }
2408
2409 static struct value *
2410 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2411 int regnum)
2412 {
2413 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2414 struct amd64_frame_cache *cache =
2415 amd64_frame_cache (this_frame, this_cache);
2416
2417 gdb_assert (regnum >= 0);
2418
2419 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2420 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2421
2422 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2423 return frame_unwind_got_memory (this_frame, regnum,
2424 cache->saved_regs[regnum]);
2425
2426 return frame_unwind_got_register (this_frame, regnum, regnum);
2427 }
2428
2429 static const struct frame_unwind amd64_frame_unwind =
2430 {
2431 NORMAL_FRAME,
2432 amd64_frame_unwind_stop_reason,
2433 amd64_frame_this_id,
2434 amd64_frame_prev_register,
2435 NULL,
2436 default_frame_sniffer
2437 };
2438 \f
2439 /* Generate a bytecode expression to get the value of the saved PC. */
2440
2441 static void
2442 amd64_gen_return_address (struct gdbarch *gdbarch,
2443 struct agent_expr *ax, struct axs_value *value,
2444 CORE_ADDR scope)
2445 {
2446 /* The following sequence assumes the traditional use of the base
2447 register. */
2448 ax_reg (ax, AMD64_RBP_REGNUM);
2449 ax_const_l (ax, 8);
2450 ax_simple (ax, aop_add);
2451 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2452 value->kind = axs_lvalue_memory;
2453 }
2454 \f
2455
2456 /* Signal trampolines. */
2457
2458 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2459 64-bit variants. This would require using identical frame caches
2460 on both platforms. */
2461
2462 static struct amd64_frame_cache *
2463 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2464 {
2465 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2467 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2468 volatile struct gdb_exception ex;
2469 struct amd64_frame_cache *cache;
2470 CORE_ADDR addr;
2471 gdb_byte buf[8];
2472 int i;
2473
2474 if (*this_cache)
2475 return *this_cache;
2476
2477 cache = amd64_alloc_frame_cache ();
2478
2479 TRY_CATCH (ex, RETURN_MASK_ERROR)
2480 {
2481 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2482 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2483
2484 addr = tdep->sigcontext_addr (this_frame);
2485 gdb_assert (tdep->sc_reg_offset);
2486 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2487 for (i = 0; i < tdep->sc_num_regs; i++)
2488 if (tdep->sc_reg_offset[i] != -1)
2489 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2490
2491 cache->base_p = 1;
2492 }
2493 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2494 throw_exception (ex);
2495
2496 *this_cache = cache;
2497 return cache;
2498 }
2499
2500 static enum unwind_stop_reason
2501 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2502 void **this_cache)
2503 {
2504 struct amd64_frame_cache *cache =
2505 amd64_sigtramp_frame_cache (this_frame, this_cache);
2506
2507 if (!cache->base_p)
2508 return UNWIND_UNAVAILABLE;
2509
2510 return UNWIND_NO_REASON;
2511 }
2512
2513 static void
2514 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2515 void **this_cache, struct frame_id *this_id)
2516 {
2517 struct amd64_frame_cache *cache =
2518 amd64_sigtramp_frame_cache (this_frame, this_cache);
2519
2520 if (!cache->base_p)
2521 return;
2522
2523 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2524 }
2525
2526 static struct value *
2527 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2528 void **this_cache, int regnum)
2529 {
2530 /* Make sure we've initialized the cache. */
2531 amd64_sigtramp_frame_cache (this_frame, this_cache);
2532
2533 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2534 }
2535
2536 static int
2537 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2538 struct frame_info *this_frame,
2539 void **this_cache)
2540 {
2541 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2542
2543 /* We shouldn't even bother if we don't have a sigcontext_addr
2544 handler. */
2545 if (tdep->sigcontext_addr == NULL)
2546 return 0;
2547
2548 if (tdep->sigtramp_p != NULL)
2549 {
2550 if (tdep->sigtramp_p (this_frame))
2551 return 1;
2552 }
2553
2554 if (tdep->sigtramp_start != 0)
2555 {
2556 CORE_ADDR pc = get_frame_pc (this_frame);
2557
2558 gdb_assert (tdep->sigtramp_end != 0);
2559 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2560 return 1;
2561 }
2562
2563 return 0;
2564 }
2565
2566 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2567 {
2568 SIGTRAMP_FRAME,
2569 amd64_sigtramp_frame_unwind_stop_reason,
2570 amd64_sigtramp_frame_this_id,
2571 amd64_sigtramp_frame_prev_register,
2572 NULL,
2573 amd64_sigtramp_frame_sniffer
2574 };
2575 \f
2576
2577 static CORE_ADDR
2578 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2579 {
2580 struct amd64_frame_cache *cache =
2581 amd64_frame_cache (this_frame, this_cache);
2582
2583 return cache->base;
2584 }
2585
2586 static const struct frame_base amd64_frame_base =
2587 {
2588 &amd64_frame_unwind,
2589 amd64_frame_base_address,
2590 amd64_frame_base_address,
2591 amd64_frame_base_address
2592 };
2593
2594 /* Normal frames, but in a function epilogue. */
2595
2596 /* The epilogue is defined here as the 'ret' instruction, which will
2597 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2598 the function's stack frame. */
2599
2600 static int
2601 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2602 {
2603 gdb_byte insn;
2604 struct symtab *symtab;
2605
2606 symtab = find_pc_symtab (pc);
2607 if (symtab && symtab->epilogue_unwind_valid)
2608 return 0;
2609
2610 if (target_read_memory (pc, &insn, 1))
2611 return 0; /* Can't read memory at pc. */
2612
2613 if (insn != 0xc3) /* 'ret' instruction. */
2614 return 0;
2615
2616 return 1;
2617 }
2618
2619 static int
2620 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2621 struct frame_info *this_frame,
2622 void **this_prologue_cache)
2623 {
2624 if (frame_relative_level (this_frame) == 0)
2625 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2626 get_frame_pc (this_frame));
2627 else
2628 return 0;
2629 }
2630
2631 static struct amd64_frame_cache *
2632 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2633 {
2634 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2635 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2636 volatile struct gdb_exception ex;
2637 struct amd64_frame_cache *cache;
2638 gdb_byte buf[8];
2639
2640 if (*this_cache)
2641 return *this_cache;
2642
2643 cache = amd64_alloc_frame_cache ();
2644 *this_cache = cache;
2645
2646 TRY_CATCH (ex, RETURN_MASK_ERROR)
2647 {
2648 /* Cache base will be %esp plus cache->sp_offset (-8). */
2649 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2650 cache->base = extract_unsigned_integer (buf, 8,
2651 byte_order) + cache->sp_offset;
2652
2653 /* Cache pc will be the frame func. */
2654 cache->pc = get_frame_pc (this_frame);
2655
2656 /* The saved %esp will be at cache->base plus 16. */
2657 cache->saved_sp = cache->base + 16;
2658
2659 /* The saved %eip will be at cache->base plus 8. */
2660 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2661
2662 cache->base_p = 1;
2663 }
2664 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2665 throw_exception (ex);
2666
2667 return cache;
2668 }
2669
2670 static enum unwind_stop_reason
2671 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2672 void **this_cache)
2673 {
2674 struct amd64_frame_cache *cache
2675 = amd64_epilogue_frame_cache (this_frame, this_cache);
2676
2677 if (!cache->base_p)
2678 return UNWIND_UNAVAILABLE;
2679
2680 return UNWIND_NO_REASON;
2681 }
2682
2683 static void
2684 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2685 void **this_cache,
2686 struct frame_id *this_id)
2687 {
2688 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2689 this_cache);
2690
2691 if (!cache->base_p)
2692 return;
2693
2694 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2695 }
2696
2697 static const struct frame_unwind amd64_epilogue_frame_unwind =
2698 {
2699 NORMAL_FRAME,
2700 amd64_epilogue_frame_unwind_stop_reason,
2701 amd64_epilogue_frame_this_id,
2702 amd64_frame_prev_register,
2703 NULL,
2704 amd64_epilogue_frame_sniffer
2705 };
2706
2707 static struct frame_id
2708 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2709 {
2710 CORE_ADDR fp;
2711
2712 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2713
2714 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2715 }
2716
2717 /* 16 byte align the SP per frame requirements. */
2718
2719 static CORE_ADDR
2720 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2721 {
2722 return sp & -(CORE_ADDR)16;
2723 }
2724 \f
2725
2726 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2727 in the floating-point register set REGSET to register cache
2728 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2729
2730 static void
2731 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2732 int regnum, const void *fpregs, size_t len)
2733 {
2734 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2735
2736 gdb_assert (len == tdep->sizeof_fpregset);
2737 amd64_supply_fxsave (regcache, regnum, fpregs);
2738 }
2739
2740 /* Collect register REGNUM from the register cache REGCACHE and store
2741 it in the buffer specified by FPREGS and LEN as described by the
2742 floating-point register set REGSET. If REGNUM is -1, do this for
2743 all registers in REGSET. */
2744
2745 static void
2746 amd64_collect_fpregset (const struct regset *regset,
2747 const struct regcache *regcache,
2748 int regnum, void *fpregs, size_t len)
2749 {
2750 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2751
2752 gdb_assert (len == tdep->sizeof_fpregset);
2753 amd64_collect_fxsave (regcache, regnum, fpregs);
2754 }
2755
2756 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2757
2758 static void
2759 amd64_supply_xstateregset (const struct regset *regset,
2760 struct regcache *regcache, int regnum,
2761 const void *xstateregs, size_t len)
2762 {
2763 amd64_supply_xsave (regcache, regnum, xstateregs);
2764 }
2765
2766 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2767
2768 static void
2769 amd64_collect_xstateregset (const struct regset *regset,
2770 const struct regcache *regcache,
2771 int regnum, void *xstateregs, size_t len)
2772 {
2773 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2774 }
2775
2776 /* Return the appropriate register set for the core section identified
2777 by SECT_NAME and SECT_SIZE. */
2778
2779 static const struct regset *
2780 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2781 const char *sect_name, size_t sect_size)
2782 {
2783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2784
2785 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2786 {
2787 if (tdep->fpregset == NULL)
2788 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2789 amd64_collect_fpregset);
2790
2791 return tdep->fpregset;
2792 }
2793
2794 if (strcmp (sect_name, ".reg-xstate") == 0)
2795 {
2796 if (tdep->xstateregset == NULL)
2797 tdep->xstateregset = regset_alloc (gdbarch,
2798 amd64_supply_xstateregset,
2799 amd64_collect_xstateregset);
2800
2801 return tdep->xstateregset;
2802 }
2803
2804 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2805 }
2806 \f
2807
2808 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2809 %rdi. We expect its value to be a pointer to the jmp_buf structure
2810 from which we extract the address that we will land at. This
2811 address is copied into PC. This routine returns non-zero on
2812 success. */
2813
2814 static int
2815 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2816 {
2817 gdb_byte buf[8];
2818 CORE_ADDR jb_addr;
2819 struct gdbarch *gdbarch = get_frame_arch (frame);
2820 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2821 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2822
2823 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2824 longjmp will land. */
2825 if (jb_pc_offset == -1)
2826 return 0;
2827
2828 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2829 jb_addr= extract_typed_address
2830 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2831 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2832 return 0;
2833
2834 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2835
2836 return 1;
2837 }
2838
2839 static const int amd64_record_regmap[] =
2840 {
2841 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2842 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2843 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2844 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2845 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2846 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2847 };
2848
2849 void
2850 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2851 {
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853 const struct target_desc *tdesc = info.target_desc;
2854
2855 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2856 floating-point registers. */
2857 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2858
2859 if (! tdesc_has_registers (tdesc))
2860 tdesc = tdesc_amd64;
2861 tdep->tdesc = tdesc;
2862
2863 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2864 tdep->register_names = amd64_register_names;
2865
2866 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2867 {
2868 tdep->ymmh_register_names = amd64_ymmh_names;
2869 tdep->num_ymm_regs = 16;
2870 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2871 }
2872
2873 tdep->num_byte_regs = 20;
2874 tdep->num_word_regs = 16;
2875 tdep->num_dword_regs = 16;
2876 /* Avoid wiring in the MMX registers for now. */
2877 tdep->num_mmx_regs = 0;
2878
2879 set_gdbarch_pseudo_register_read_value (gdbarch,
2880 amd64_pseudo_register_read_value);
2881 set_gdbarch_pseudo_register_write (gdbarch,
2882 amd64_pseudo_register_write);
2883
2884 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2885
2886 /* AMD64 has an FPU and 16 SSE registers. */
2887 tdep->st0_regnum = AMD64_ST0_REGNUM;
2888 tdep->num_xmm_regs = 16;
2889
2890 /* This is what all the fuss is about. */
2891 set_gdbarch_long_bit (gdbarch, 64);
2892 set_gdbarch_long_long_bit (gdbarch, 64);
2893 set_gdbarch_ptr_bit (gdbarch, 64);
2894
2895 /* In contrast to the i386, on AMD64 a `long double' actually takes
2896 up 128 bits, even though it's still based on the i387 extended
2897 floating-point format which has only 80 significant bits. */
2898 set_gdbarch_long_double_bit (gdbarch, 128);
2899
2900 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2901
2902 /* Register numbers of various important registers. */
2903 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2904 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2905 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2906 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2907
2908 /* The "default" register numbering scheme for AMD64 is referred to
2909 as the "DWARF Register Number Mapping" in the System V psABI.
2910 The preferred debugging format for all known AMD64 targets is
2911 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2912 DWARF-1), but we provide the same mapping just in case. This
2913 mapping is also used for stabs, which GCC does support. */
2914 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2915 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2916
2917 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2918 be in use on any of the supported AMD64 targets. */
2919
2920 /* Call dummy code. */
2921 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2922 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2923 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2924 tdep->call_dummy_num_integer_regs =
2925 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2926 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2927 tdep->classify = amd64_classify;
2928
2929 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2930 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2931 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2932
2933 set_gdbarch_return_value (gdbarch, amd64_return_value);
2934
2935 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2936
2937 tdep->record_regmap = amd64_record_regmap;
2938
2939 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2940
2941 /* Hook the function epilogue frame unwinder. This unwinder is
2942 appended to the list first, so that it supercedes the other
2943 unwinders in function epilogues. */
2944 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2945
2946 /* Hook the prologue-based frame unwinders. */
2947 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2948 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2949 frame_base_set_default (gdbarch, &amd64_frame_base);
2950
2951 /* If we have a register mapping, enable the generic core file support. */
2952 if (tdep->gregset_reg_offset)
2953 set_gdbarch_regset_from_core_section (gdbarch,
2954 amd64_regset_from_core_section);
2955
2956 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2957
2958 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2959
2960 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2961
2962 /* SystemTap variables and functions. */
2963 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2964 set_gdbarch_stap_register_prefix (gdbarch, "%");
2965 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2966 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2967 set_gdbarch_stap_is_single_operand (gdbarch,
2968 i386_stap_is_single_operand);
2969 set_gdbarch_stap_parse_special_token (gdbarch,
2970 i386_stap_parse_special_token);
2971 }
2972 \f
2973
2974 static struct type *
2975 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2976 {
2977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2978
2979 switch (regnum - tdep->eax_regnum)
2980 {
2981 case AMD64_RBP_REGNUM: /* %ebp */
2982 case AMD64_RSP_REGNUM: /* %esp */
2983 return builtin_type (gdbarch)->builtin_data_ptr;
2984 case AMD64_RIP_REGNUM: /* %eip */
2985 return builtin_type (gdbarch)->builtin_func_ptr;
2986 }
2987
2988 return i386_pseudo_register_type (gdbarch, regnum);
2989 }
2990
2991 void
2992 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2993 {
2994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2995 const struct target_desc *tdesc = info.target_desc;
2996
2997 amd64_init_abi (info, gdbarch);
2998
2999 if (! tdesc_has_registers (tdesc))
3000 tdesc = tdesc_x32;
3001 tdep->tdesc = tdesc;
3002
3003 tdep->num_dword_regs = 17;
3004 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3005
3006 set_gdbarch_long_bit (gdbarch, 32);
3007 set_gdbarch_ptr_bit (gdbarch, 32);
3008 }
3009
3010 /* Provide a prototype to silence -Wmissing-prototypes. */
3011 void _initialize_amd64_tdep (void);
3012
3013 void
3014 _initialize_amd64_tdep (void)
3015 {
3016 initialize_tdesc_amd64 ();
3017 initialize_tdesc_amd64_avx ();
3018 initialize_tdesc_x32 ();
3019 initialize_tdesc_x32_avx ();
3020 }
3021 \f
3022
3023 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3024 sense that the instruction pointer and data pointer are simply
3025 64-bit offsets into the code segment and the data segment instead
3026 of a selector offset pair. The functions below store the upper 32
3027 bits of these pointers (instead of just the 16-bits of the segment
3028 selector). */
3029
3030 /* Fill register REGNUM in REGCACHE with the appropriate
3031 floating-point or SSE register value from *FXSAVE. If REGNUM is
3032 -1, do this for all registers. This function masks off any of the
3033 reserved bits in *FXSAVE. */
3034
3035 void
3036 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3037 const void *fxsave)
3038 {
3039 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3041
3042 i387_supply_fxsave (regcache, regnum, fxsave);
3043
3044 if (fxsave
3045 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3046 {
3047 const gdb_byte *regs = fxsave;
3048
3049 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3050 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3051 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3052 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3053 }
3054 }
3055
3056 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3057
3058 void
3059 amd64_supply_xsave (struct regcache *regcache, int regnum,
3060 const void *xsave)
3061 {
3062 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3064
3065 i387_supply_xsave (regcache, regnum, xsave);
3066
3067 if (xsave
3068 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3069 {
3070 const gdb_byte *regs = xsave;
3071
3072 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3073 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3074 regs + 12);
3075 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3076 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3077 regs + 20);
3078 }
3079 }
3080
3081 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3082 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3083 all registers. This function doesn't touch any of the reserved
3084 bits in *FXSAVE. */
3085
3086 void
3087 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3088 void *fxsave)
3089 {
3090 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3092 gdb_byte *regs = fxsave;
3093
3094 i387_collect_fxsave (regcache, regnum, fxsave);
3095
3096 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3097 {
3098 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3099 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3100 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3101 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3102 }
3103 }
3104
3105 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3106
3107 void
3108 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3109 void *xsave, int gcore)
3110 {
3111 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3112 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3113 gdb_byte *regs = xsave;
3114
3115 i387_collect_xsave (regcache, regnum, xsave, gcore);
3116
3117 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3118 {
3119 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3120 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3121 regs + 12);
3122 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3123 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3124 regs + 20);
3125 }
3126 }