]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/avr-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 /* Constants: prefixed with AVR_ to avoid name space clashes */
76
77 enum
78 {
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
92 /* Pseudo registers. */
93 AVR_PSEUDO_PC_REGNUM = 35,
94 AVR_NUM_PSEUDO_REGS = 1,
95
96 AVR_PC_REG_INDEX = 35, /* index into array of registers */
97
98 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
99
100 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
101 AVR_MAX_PUSHES = 18,
102
103 /* Number of the last pushed register. r17 for current avr-gcc */
104 AVR_LAST_PUSHED_REGNUM = 17,
105
106 AVR_ARG1_REGNUM = 24, /* Single byte argument */
107 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
108
109 AVR_RET1_REGNUM = 24, /* Single byte return value */
110 AVR_RETN_REGNUM = 25, /* Multi byte return value */
111
112 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
113 bits? Do these have to match the bfd vma values? It sure would make
114 things easier in the future if they didn't need to match.
115
116 Note: I chose these values so as to be consistent with bfd vma
117 addresses.
118
119 TRoth/2002-04-08: There is already a conflict with very large programs
120 in the mega128. The mega128 has 128K instruction bytes (64K words),
121 thus the Most Significant Bit is 0x10000 which gets masked off my
122 AVR_MEM_MASK.
123
124 The problem manifests itself when trying to set a breakpoint in a
125 function which resides in the upper half of the instruction space and
126 thus requires a 17-bit address.
127
128 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
129 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
130 but could be for some remote targets by just adding the correct offset
131 to the address and letting the remote target handle the low-level
132 details of actually accessing the eeprom. */
133
134 AVR_IMEM_START = 0x00000000, /* INSN memory */
135 AVR_SMEM_START = 0x00800000, /* SRAM memory */
136 #if 1
137 /* No eeprom mask defined */
138 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
139 #else
140 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
141 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
142 #endif
143 };
144
145 /* Prologue types:
146
147 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
148 causes the generation of the CALL type prologues). */
149
150 enum {
151 AVR_PROLOGUE_NONE, /* No prologue */
152 AVR_PROLOGUE_NORMAL,
153 AVR_PROLOGUE_CALL, /* -mcall-prologues */
154 AVR_PROLOGUE_MAIN,
155 AVR_PROLOGUE_INTR, /* interrupt handler */
156 AVR_PROLOGUE_SIG, /* signal handler */
157 };
158
159 /* Any function with a frame looks like this
160 ....... <-SP POINTS HERE
161 LOCALS1 <-FP POINTS HERE
162 LOCALS0
163 SAVED FP
164 SAVED R3
165 SAVED R2
166 RET PC
167 FIRST ARG
168 SECOND ARG */
169
170 struct avr_unwind_cache
171 {
172 /* The previous frame's inner most stack address. Used as this
173 frame ID's stack_addr. */
174 CORE_ADDR prev_sp;
175 /* The frame's base, optionally used by the high-level debug info. */
176 CORE_ADDR base;
177 int size;
178 int prologue_type;
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
181 };
182
183 struct gdbarch_tdep
184 {
185 /* Number of bytes stored to the stack by call instructions.
186 2 bytes for avr1-5, 3 bytes for avr6. */
187 int call_length;
188
189 /* Type for void. */
190 struct type *void_type;
191 /* Type for a function returning void. */
192 struct type *func_void_type;
193 /* Type for a pointer to a function. Used for the type of PC. */
194 struct type *pc_type;
195 };
196
197 /* Lookup the name of a register given it's number. */
198
199 static const char *
200 avr_register_name (struct gdbarch *gdbarch, int regnum)
201 {
202 static const char * const register_names[] = {
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
206 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
207 "SREG", "SP", "PC2",
208 "pc"
209 };
210 if (regnum < 0)
211 return NULL;
212 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
213 return NULL;
214 return register_names[regnum];
215 }
216
217 /* Return the GDB type object for the "standard" data type
218 of data in register N. */
219
220 static struct type *
221 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
222 {
223 if (reg_nr == AVR_PC_REGNUM)
224 return builtin_type (gdbarch)->builtin_uint32;
225 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
226 return gdbarch_tdep (gdbarch)->pc_type;
227 if (reg_nr == AVR_SP_REGNUM)
228 return builtin_type (gdbarch)->builtin_data_ptr;
229 return builtin_type (gdbarch)->builtin_uint8;
230 }
231
232 /* Instruction address checks and convertions. */
233
234 static CORE_ADDR
235 avr_make_iaddr (CORE_ADDR x)
236 {
237 return ((x) | AVR_IMEM_START);
238 }
239
240 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
241 devices are already up to 128KBytes of flash space.
242
243 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
244
245 static CORE_ADDR
246 avr_convert_iaddr_to_raw (CORE_ADDR x)
247 {
248 return ((x) & 0xffffffff);
249 }
250
251 /* SRAM address checks and convertions. */
252
253 static CORE_ADDR
254 avr_make_saddr (CORE_ADDR x)
255 {
256 /* Return 0 for NULL. */
257 if (x == 0)
258 return 0;
259
260 return ((x) | AVR_SMEM_START);
261 }
262
263 static CORE_ADDR
264 avr_convert_saddr_to_raw (CORE_ADDR x)
265 {
266 return ((x) & 0xffffffff);
267 }
268
269 /* EEPROM address checks and convertions. I don't know if these will ever
270 actually be used, but I've added them just the same. TRoth */
271
272 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
273 programs in the mega128. */
274
275 /* static CORE_ADDR */
276 /* avr_make_eaddr (CORE_ADDR x) */
277 /* { */
278 /* return ((x) | AVR_EMEM_START); */
279 /* } */
280
281 /* static int */
282 /* avr_eaddr_p (CORE_ADDR x) */
283 /* { */
284 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
285 /* } */
286
287 /* static CORE_ADDR */
288 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
289 /* { */
290 /* return ((x) & 0xffffffff); */
291 /* } */
292
293 /* Convert from address to pointer and vice-versa. */
294
295 static void
296 avr_address_to_pointer (struct gdbarch *gdbarch,
297 struct type *type, gdb_byte *buf, CORE_ADDR addr)
298 {
299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
300
301 /* Is it a code address? */
302 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
303 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
304 {
305 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
306 avr_convert_iaddr_to_raw (addr >> 1));
307 }
308 else
309 {
310 /* Strip off any upper segment bits. */
311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
312 avr_convert_saddr_to_raw (addr));
313 }
314 }
315
316 static CORE_ADDR
317 avr_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
319 {
320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
321 CORE_ADDR addr
322 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
323
324 /* Is it a code address? */
325 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
326 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
327 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
328 return avr_make_iaddr (addr << 1);
329 else
330 return avr_make_saddr (addr);
331 }
332
333 static CORE_ADDR
334 avr_integer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 ULONGEST addr = unpack_long (type, buf);
338
339 return avr_make_saddr (addr);
340 }
341
342 static CORE_ADDR
343 avr_read_pc (struct regcache *regcache)
344 {
345 ULONGEST pc;
346 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
347 return avr_make_iaddr (pc);
348 }
349
350 static void
351 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
352 {
353 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
354 avr_convert_iaddr_to_raw (val));
355 }
356
357 static enum register_status
358 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
359 int regnum, gdb_byte *buf)
360 {
361 ULONGEST val;
362 enum register_status status;
363
364 switch (regnum)
365 {
366 case AVR_PSEUDO_PC_REGNUM:
367 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
368 if (status != REG_VALID)
369 return status;
370 val >>= 1;
371 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
372 return status;
373 default:
374 internal_error (__FILE__, __LINE__, _("invalid regnum"));
375 }
376 }
377
378 static void
379 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
380 int regnum, const gdb_byte *buf)
381 {
382 ULONGEST val;
383
384 switch (regnum)
385 {
386 case AVR_PSEUDO_PC_REGNUM:
387 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
388 val <<= 1;
389 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
390 break;
391 default:
392 internal_error (__FILE__, __LINE__, _("invalid regnum"));
393 }
394 }
395
396 /* Function: avr_scan_prologue
397
398 This function decodes an AVR function prologue to determine:
399 1) the size of the stack frame
400 2) which registers are saved on it
401 3) the offsets of saved regs
402 This information is stored in the avr_unwind_cache structure.
403
404 Some devices lack the sbiw instruction, so on those replace this:
405 sbiw r28, XX
406 with this:
407 subi r28,lo8(XX)
408 sbci r29,hi8(XX)
409
410 A typical AVR function prologue with a frame pointer might look like this:
411 push rXX ; saved regs
412 ...
413 push r28
414 push r29
415 in r28,__SP_L__
416 in r29,__SP_H__
417 sbiw r28,<LOCALS_SIZE>
418 in __tmp_reg__,__SREG__
419 cli
420 out __SP_H__,r29
421 out __SREG__,__tmp_reg__
422 out __SP_L__,r28
423
424 A typical AVR function prologue without a frame pointer might look like
425 this:
426 push rXX ; saved regs
427 ...
428
429 A main function prologue looks like this:
430 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
431 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
432 out __SP_H__,r29
433 out __SP_L__,r28
434
435 A signal handler prologue looks like this:
436 push __zero_reg__
437 push __tmp_reg__
438 in __tmp_reg__, __SREG__
439 push __tmp_reg__
440 clr __zero_reg__
441 push rXX ; save registers r18:r27, r30:r31
442 ...
443 push r28 ; save frame pointer
444 push r29
445 in r28, __SP_L__
446 in r29, __SP_H__
447 sbiw r28, <LOCALS_SIZE>
448 out __SP_H__, r29
449 out __SP_L__, r28
450
451 A interrupt handler prologue looks like this:
452 sei
453 push __zero_reg__
454 push __tmp_reg__
455 in __tmp_reg__, __SREG__
456 push __tmp_reg__
457 clr __zero_reg__
458 push rXX ; save registers r18:r27, r30:r31
459 ...
460 push r28 ; save frame pointer
461 push r29
462 in r28, __SP_L__
463 in r29, __SP_H__
464 sbiw r28, <LOCALS_SIZE>
465 cli
466 out __SP_H__, r29
467 sei
468 out __SP_L__, r28
469
470 A `-mcall-prologues' prologue looks like this (Note that the megas use a
471 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
472 32 bit insn and rjmp is a 16 bit insn):
473 ldi r26,lo8(<LOCALS_SIZE>)
474 ldi r27,hi8(<LOCALS_SIZE>)
475 ldi r30,pm_lo8(.L_foo_body)
476 ldi r31,pm_hi8(.L_foo_body)
477 rjmp __prologue_saves__+RRR
478 .L_foo_body: */
479
480 /* Not really part of a prologue, but still need to scan for it, is when a
481 function prologue moves values passed via registers as arguments to new
482 registers. In this case, all local variables live in registers, so there
483 may be some register saves. This is what it looks like:
484 movw rMM, rNN
485 ...
486
487 There could be multiple movw's. If the target doesn't have a movw insn, it
488 will use two mov insns. This could be done after any of the above prologue
489 types. */
490
491 static CORE_ADDR
492 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
493 struct avr_unwind_cache *info)
494 {
495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
496 int i;
497 unsigned short insn;
498 int scan_stage = 0;
499 struct minimal_symbol *msymbol;
500 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
501 int vpc = 0;
502 int len;
503
504 len = pc_end - pc_beg;
505 if (len > AVR_MAX_PROLOGUE_SIZE)
506 len = AVR_MAX_PROLOGUE_SIZE;
507
508 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
509 reading in the bytes of the prologue. The problem is that the figuring
510 out where the end of the prologue is is a bit difficult. The old code
511 tried to do that, but failed quite often. */
512 read_memory (pc_beg, prologue, len);
513
514 /* Scanning main()'s prologue
515 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
516 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
517 out __SP_H__,r29
518 out __SP_L__,r28 */
519
520 if (len >= 4)
521 {
522 CORE_ADDR locals;
523 static const unsigned char img[] = {
524 0xde, 0xbf, /* out __SP_H__,r29 */
525 0xcd, 0xbf /* out __SP_L__,r28 */
526 };
527
528 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
529 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
530 if ((insn & 0xf0f0) == 0xe0c0)
531 {
532 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
533 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
534 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
535 if ((insn & 0xf0f0) == 0xe0d0)
536 {
537 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
538 if (vpc + 4 + sizeof (img) < len
539 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
540 {
541 info->prologue_type = AVR_PROLOGUE_MAIN;
542 info->base = locals;
543 return pc_beg + 4;
544 }
545 }
546 }
547 }
548
549 /* Scanning `-mcall-prologues' prologue
550 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
551
552 while (1) /* Using a while to avoid many goto's */
553 {
554 int loc_size;
555 int body_addr;
556 unsigned num_pushes;
557 int pc_offset = 0;
558
559 /* At least the fifth instruction must have been executed to
560 modify frame shape. */
561 if (len < 10)
562 break;
563
564 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
565 /* ldi r26,<LOCALS_SIZE> */
566 if ((insn & 0xf0f0) != 0xe0a0)
567 break;
568 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
569 pc_offset += 2;
570
571 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
572 /* ldi r27,<LOCALS_SIZE> / 256 */
573 if ((insn & 0xf0f0) != 0xe0b0)
574 break;
575 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
576 pc_offset += 2;
577
578 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
579 /* ldi r30,pm_lo8(.L_foo_body) */
580 if ((insn & 0xf0f0) != 0xe0e0)
581 break;
582 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
583 pc_offset += 2;
584
585 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
586 /* ldi r31,pm_hi8(.L_foo_body) */
587 if ((insn & 0xf0f0) != 0xe0f0)
588 break;
589 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
590 pc_offset += 2;
591
592 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
593 if (!msymbol)
594 break;
595
596 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
597 /* rjmp __prologue_saves__+RRR */
598 if ((insn & 0xf000) == 0xc000)
599 {
600 /* Extract PC relative offset from RJMP */
601 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
602 /* Convert offset to byte addressable mode */
603 i *= 2;
604 /* Destination address */
605 i += pc_beg + 10;
606
607 if (body_addr != (pc_beg + 10)/2)
608 break;
609
610 pc_offset += 2;
611 }
612 else if ((insn & 0xfe0e) == 0x940c)
613 {
614 /* Extract absolute PC address from JMP */
615 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
616 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
617 & 0xffff));
618 /* Convert address to byte addressable mode */
619 i *= 2;
620
621 if (body_addr != (pc_beg + 12)/2)
622 break;
623
624 pc_offset += 4;
625 }
626 else
627 break;
628
629 /* Resolve offset (in words) from __prologue_saves__ symbol.
630 Which is a pushes count in `-mcall-prologues' mode */
631 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
632
633 if (num_pushes > AVR_MAX_PUSHES)
634 {
635 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
636 num_pushes);
637 num_pushes = 0;
638 }
639
640 if (num_pushes)
641 {
642 int from;
643
644 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
645 if (num_pushes >= 2)
646 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
647
648 i = 0;
649 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
650 from <= AVR_LAST_PUSHED_REGNUM; ++from)
651 info->saved_regs [from].addr = ++i;
652 }
653 info->size = loc_size + num_pushes;
654 info->prologue_type = AVR_PROLOGUE_CALL;
655
656 return pc_beg + pc_offset;
657 }
658
659 /* Scan for the beginning of the prologue for an interrupt or signal
660 function. Note that we have to set the prologue type here since the
661 third stage of the prologue may not be present (e.g. no saved registered
662 or changing of the SP register). */
663
664 if (1)
665 {
666 static const unsigned char img[] = {
667 0x78, 0x94, /* sei */
668 0x1f, 0x92, /* push r1 */
669 0x0f, 0x92, /* push r0 */
670 0x0f, 0xb6, /* in r0,0x3f SREG */
671 0x0f, 0x92, /* push r0 */
672 0x11, 0x24 /* clr r1 */
673 };
674 if (len >= sizeof (img)
675 && memcmp (prologue, img, sizeof (img)) == 0)
676 {
677 info->prologue_type = AVR_PROLOGUE_INTR;
678 vpc += sizeof (img);
679 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
680 info->saved_regs[0].addr = 2;
681 info->saved_regs[1].addr = 1;
682 info->size += 3;
683 }
684 else if (len >= sizeof (img) - 2
685 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
686 {
687 info->prologue_type = AVR_PROLOGUE_SIG;
688 vpc += sizeof (img) - 2;
689 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
690 info->saved_regs[0].addr = 2;
691 info->saved_regs[1].addr = 1;
692 info->size += 2;
693 }
694 }
695
696 /* First stage of the prologue scanning.
697 Scan pushes (saved registers) */
698
699 for (; vpc < len; vpc += 2)
700 {
701 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
702 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
703 {
704 /* Bits 4-9 contain a mask for registers R0-R32. */
705 int regno = (insn & 0x1f0) >> 4;
706 info->size++;
707 info->saved_regs[regno].addr = info->size;
708 scan_stage = 1;
709 }
710 else
711 break;
712 }
713
714 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
715
716 /* Handle static small stack allocation using rcall or push. */
717
718 while (scan_stage == 1 && vpc < len)
719 {
720 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
721 if (insn == 0xd000) /* rcall .+0 */
722 {
723 info->size += gdbarch_tdep (gdbarch)->call_length;
724 vpc += 2;
725 }
726 else if (insn == 0x920f) /* push r0 */
727 {
728 info->size += 1;
729 vpc += 2;
730 }
731 else
732 break;
733 }
734
735 /* Second stage of the prologue scanning.
736 Scan:
737 in r28,__SP_L__
738 in r29,__SP_H__ */
739
740 if (scan_stage == 1 && vpc < len)
741 {
742 static const unsigned char img[] = {
743 0xcd, 0xb7, /* in r28,__SP_L__ */
744 0xde, 0xb7 /* in r29,__SP_H__ */
745 };
746 unsigned short insn1;
747
748 if (vpc + sizeof (img) < len
749 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
750 {
751 vpc += 4;
752 scan_stage = 2;
753 }
754 }
755
756 /* Third stage of the prologue scanning. (Really two stages).
757 Scan for:
758 sbiw r28,XX or subi r28,lo8(XX)
759 sbci r29,hi8(XX)
760 in __tmp_reg__,__SREG__
761 cli
762 out __SP_H__,r29
763 out __SREG__,__tmp_reg__
764 out __SP_L__,r28 */
765
766 if (scan_stage == 2 && vpc < len)
767 {
768 int locals_size = 0;
769 static const unsigned char img[] = {
770 0x0f, 0xb6, /* in r0,0x3f */
771 0xf8, 0x94, /* cli */
772 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
773 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
774 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
775 };
776 static const unsigned char img_sig[] = {
777 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
778 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
779 };
780 static const unsigned char img_int[] = {
781 0xf8, 0x94, /* cli */
782 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
783 0x78, 0x94, /* sei */
784 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
785 };
786
787 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
788 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
789 {
790 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
791 vpc += 2;
792 }
793 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
794 {
795 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
796 vpc += 2;
797 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
798 vpc += 2;
799 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
800 }
801 else
802 return pc_beg + vpc;
803
804 /* Scan the last part of the prologue. May not be present for interrupt
805 or signal handler functions, which is why we set the prologue type
806 when we saw the beginning of the prologue previously. */
807
808 if (vpc + sizeof (img_sig) < len
809 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
810 {
811 vpc += sizeof (img_sig);
812 }
813 else if (vpc + sizeof (img_int) < len
814 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
815 {
816 vpc += sizeof (img_int);
817 }
818 if (vpc + sizeof (img) < len
819 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
820 {
821 info->prologue_type = AVR_PROLOGUE_NORMAL;
822 vpc += sizeof (img);
823 }
824
825 info->size += locals_size;
826
827 /* Fall through. */
828 }
829
830 /* If we got this far, we could not scan the prologue, so just return the pc
831 of the frame plus an adjustment for argument move insns. */
832
833 for (; vpc < len; vpc += 2)
834 {
835 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
836 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
837 continue;
838 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
839 continue;
840 else
841 break;
842 }
843
844 return pc_beg + vpc;
845 }
846
847 static CORE_ADDR
848 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
849 {
850 CORE_ADDR func_addr, func_end;
851 CORE_ADDR post_prologue_pc;
852
853 /* See what the symbol table says */
854
855 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
856 return pc;
857
858 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
859 if (post_prologue_pc != 0)
860 return max (pc, post_prologue_pc);
861
862 {
863 CORE_ADDR prologue_end = pc;
864 struct avr_unwind_cache info = {0};
865 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
866
867 info.saved_regs = saved_regs;
868
869 /* Need to run the prologue scanner to figure out if the function has a
870 prologue and possibly skip over moving arguments passed via registers
871 to other registers. */
872
873 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
874
875 if (info.prologue_type != AVR_PROLOGUE_NONE)
876 return prologue_end;
877 }
878
879 /* Either we didn't find the start of this function (nothing we can do),
880 or there's no line info, or the line after the prologue is after
881 the end of the function (there probably isn't a prologue). */
882
883 return pc;
884 }
885
886 /* Not all avr devices support the BREAK insn. Those that don't should treat
887 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
888 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
889
890 static const unsigned char *
891 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
892 CORE_ADDR *pcptr, int *lenptr)
893 {
894 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
895 *lenptr = sizeof (avr_break_insn);
896 return avr_break_insn;
897 }
898
899 /* Determine, for architecture GDBARCH, how a return value of TYPE
900 should be returned. If it is supposed to be returned in registers,
901 and READBUF is non-zero, read the appropriate value from REGCACHE,
902 and copy it into READBUF. If WRITEBUF is non-zero, write the value
903 from WRITEBUF into REGCACHE. */
904
905 static enum return_value_convention
906 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
907 struct type *valtype, struct regcache *regcache,
908 gdb_byte *readbuf, const gdb_byte *writebuf)
909 {
910 int i;
911 /* Single byte are returned in r24.
912 Otherwise, the MSB of the return value is always in r25, calculate which
913 register holds the LSB. */
914 int lsb_reg;
915
916 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
917 || TYPE_CODE (valtype) == TYPE_CODE_UNION
918 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
919 && TYPE_LENGTH (valtype) > 8)
920 return RETURN_VALUE_STRUCT_CONVENTION;
921
922 if (TYPE_LENGTH (valtype) <= 2)
923 lsb_reg = 24;
924 else if (TYPE_LENGTH (valtype) <= 4)
925 lsb_reg = 22;
926 else if (TYPE_LENGTH (valtype) <= 8)
927 lsb_reg = 18;
928 else
929 gdb_assert_not_reached ("unexpected type length");
930
931 if (writebuf != NULL)
932 {
933 for (i = 0; i < TYPE_LENGTH (valtype); i++)
934 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
935 }
936
937 if (readbuf != NULL)
938 {
939 for (i = 0; i < TYPE_LENGTH (valtype); i++)
940 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
941 }
942
943 return RETURN_VALUE_REGISTER_CONVENTION;
944 }
945
946
947 /* Put here the code to store, into fi->saved_regs, the addresses of
948 the saved registers of frame described by FRAME_INFO. This
949 includes special registers such as pc and fp saved in special ways
950 in the stack frame. sp is even more special: the address we return
951 for it IS the sp for the next frame. */
952
953 static struct avr_unwind_cache *
954 avr_frame_unwind_cache (struct frame_info *this_frame,
955 void **this_prologue_cache)
956 {
957 CORE_ADDR start_pc, current_pc;
958 ULONGEST prev_sp;
959 ULONGEST this_base;
960 struct avr_unwind_cache *info;
961 struct gdbarch *gdbarch;
962 struct gdbarch_tdep *tdep;
963 int i;
964
965 if (*this_prologue_cache)
966 return *this_prologue_cache;
967
968 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
969 *this_prologue_cache = info;
970 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
971
972 info->size = 0;
973 info->prologue_type = AVR_PROLOGUE_NONE;
974
975 start_pc = get_frame_func (this_frame);
976 current_pc = get_frame_pc (this_frame);
977 if ((start_pc > 0) && (start_pc <= current_pc))
978 avr_scan_prologue (get_frame_arch (this_frame),
979 start_pc, current_pc, info);
980
981 if ((info->prologue_type != AVR_PROLOGUE_NONE)
982 && (info->prologue_type != AVR_PROLOGUE_MAIN))
983 {
984 ULONGEST high_base; /* High byte of FP */
985
986 /* The SP was moved to the FP. This indicates that a new frame
987 was created. Get THIS frame's FP value by unwinding it from
988 the next frame. */
989 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
990 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
991 this_base += (high_base << 8);
992
993 /* The FP points at the last saved register. Adjust the FP back
994 to before the first saved register giving the SP. */
995 prev_sp = this_base + info->size;
996 }
997 else
998 {
999 /* Assume that the FP is this frame's SP but with that pushed
1000 stack space added back. */
1001 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1002 prev_sp = this_base + info->size;
1003 }
1004
1005 /* Add 1 here to adjust for the post-decrement nature of the push
1006 instruction.*/
1007 info->prev_sp = avr_make_saddr (prev_sp + 1);
1008 info->base = avr_make_saddr (this_base);
1009
1010 gdbarch = get_frame_arch (this_frame);
1011
1012 /* Adjust all the saved registers so that they contain addresses and not
1013 offsets. */
1014 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1015 if (info->saved_regs[i].addr > 0)
1016 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1017
1018 /* Except for the main and startup code, the return PC is always saved on
1019 the stack and is at the base of the frame. */
1020
1021 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1022 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1023
1024 /* The previous frame's SP needed to be computed. Save the computed
1025 value. */
1026 tdep = gdbarch_tdep (gdbarch);
1027 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1028 info->prev_sp - 1 + tdep->call_length);
1029
1030 return info;
1031 }
1032
1033 static CORE_ADDR
1034 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1035 {
1036 ULONGEST pc;
1037
1038 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1039
1040 return avr_make_iaddr (pc);
1041 }
1042
1043 static CORE_ADDR
1044 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1045 {
1046 ULONGEST sp;
1047
1048 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1049
1050 return avr_make_saddr (sp);
1051 }
1052
1053 /* Given a GDB frame, determine the address of the calling function's
1054 frame. This will be used to create a new GDB frame struct. */
1055
1056 static void
1057 avr_frame_this_id (struct frame_info *this_frame,
1058 void **this_prologue_cache,
1059 struct frame_id *this_id)
1060 {
1061 struct avr_unwind_cache *info
1062 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1063 CORE_ADDR base;
1064 CORE_ADDR func;
1065 struct frame_id id;
1066
1067 /* The FUNC is easy. */
1068 func = get_frame_func (this_frame);
1069
1070 /* Hopefully the prologue analysis either correctly determined the
1071 frame's base (which is the SP from the previous frame), or set
1072 that base to "NULL". */
1073 base = info->prev_sp;
1074 if (base == 0)
1075 return;
1076
1077 id = frame_id_build (base, func);
1078 (*this_id) = id;
1079 }
1080
1081 static struct value *
1082 avr_frame_prev_register (struct frame_info *this_frame,
1083 void **this_prologue_cache, int regnum)
1084 {
1085 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1086 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1087 struct avr_unwind_cache *info
1088 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1089
1090 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1091 {
1092 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1093 {
1094 /* Reading the return PC from the PC register is slightly
1095 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1096 but in reality, only two bytes (3 in upcoming mega256) are
1097 stored on the stack.
1098
1099 Also, note that the value on the stack is an addr to a word
1100 not a byte, so we will need to multiply it by two at some
1101 point.
1102
1103 And to confuse matters even more, the return address stored
1104 on the stack is in big endian byte order, even though most
1105 everything else about the avr is little endian. Ick! */
1106 ULONGEST pc;
1107 int i;
1108 unsigned char buf[3];
1109 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111
1112 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1113 buf, tdep->call_length);
1114
1115 /* Extract the PC read from memory as a big-endian. */
1116 pc = 0;
1117 for (i = 0; i < tdep->call_length; i++)
1118 pc = (pc << 8) | buf[i];
1119
1120 if (regnum == AVR_PC_REGNUM)
1121 pc <<= 1;
1122
1123 return frame_unwind_got_constant (this_frame, regnum, pc);
1124 }
1125
1126 return frame_unwind_got_optimized (this_frame, regnum);
1127 }
1128
1129 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1130 }
1131
1132 static const struct frame_unwind avr_frame_unwind = {
1133 NORMAL_FRAME,
1134 avr_frame_this_id,
1135 avr_frame_prev_register,
1136 NULL,
1137 default_frame_sniffer
1138 };
1139
1140 static CORE_ADDR
1141 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1142 {
1143 struct avr_unwind_cache *info
1144 = avr_frame_unwind_cache (this_frame, this_cache);
1145
1146 return info->base;
1147 }
1148
1149 static const struct frame_base avr_frame_base = {
1150 &avr_frame_unwind,
1151 avr_frame_base_address,
1152 avr_frame_base_address,
1153 avr_frame_base_address
1154 };
1155
1156 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1157 frame. The frame ID's base needs to match the TOS value saved by
1158 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1159
1160 static struct frame_id
1161 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1162 {
1163 ULONGEST base;
1164
1165 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1166 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1167 }
1168
1169 /* When arguments must be pushed onto the stack, they go on in reverse
1170 order. The below implements a FILO (stack) to do this. */
1171
1172 struct stack_item
1173 {
1174 int len;
1175 struct stack_item *prev;
1176 void *data;
1177 };
1178
1179 static struct stack_item *
1180 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1181 {
1182 struct stack_item *si;
1183 si = xmalloc (sizeof (struct stack_item));
1184 si->data = xmalloc (len);
1185 si->len = len;
1186 si->prev = prev;
1187 memcpy (si->data, contents, len);
1188 return si;
1189 }
1190
1191 static struct stack_item *pop_stack_item (struct stack_item *si);
1192 static struct stack_item *
1193 pop_stack_item (struct stack_item *si)
1194 {
1195 struct stack_item *dead = si;
1196 si = si->prev;
1197 xfree (dead->data);
1198 xfree (dead);
1199 return si;
1200 }
1201
1202 /* Setup the function arguments for calling a function in the inferior.
1203
1204 On the AVR architecture, there are 18 registers (R25 to R8) which are
1205 dedicated for passing function arguments. Up to the first 18 arguments
1206 (depending on size) may go into these registers. The rest go on the stack.
1207
1208 All arguments are aligned to start in even-numbered registers (odd-sized
1209 arguments, including char, have one free register above them). For example,
1210 an int in arg1 and a char in arg2 would be passed as such:
1211
1212 arg1 -> r25:r24
1213 arg2 -> r22
1214
1215 Arguments that are larger than 2 bytes will be split between two or more
1216 registers as available, but will NOT be split between a register and the
1217 stack. Arguments that go onto the stack are pushed last arg first (this is
1218 similar to the d10v). */
1219
1220 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1221 inaccurate.
1222
1223 An exceptional case exists for struct arguments (and possibly other
1224 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1225 not a multiple of WORDSIZE bytes. In this case the argument is never split
1226 between the registers and the stack, but instead is copied in its entirety
1227 onto the stack, AND also copied into as many registers as there is room
1228 for. In other words, space in registers permitting, two copies of the same
1229 argument are passed in. As far as I can tell, only the one on the stack is
1230 used, although that may be a function of the level of compiler
1231 optimization. I suspect this is a compiler bug. Arguments of these odd
1232 sizes are left-justified within the word (as opposed to arguments smaller
1233 than WORDSIZE bytes, which are right-justified).
1234
1235 If the function is to return an aggregate type such as a struct, the caller
1236 must allocate space into which the callee will copy the return value. In
1237 this case, a pointer to the return value location is passed into the callee
1238 in register R0, which displaces one of the other arguments passed in via
1239 registers R0 to R2. */
1240
1241 static CORE_ADDR
1242 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1243 struct regcache *regcache, CORE_ADDR bp_addr,
1244 int nargs, struct value **args, CORE_ADDR sp,
1245 int struct_return, CORE_ADDR struct_addr)
1246 {
1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1248 int i;
1249 unsigned char buf[3];
1250 int call_length = gdbarch_tdep (gdbarch)->call_length;
1251 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1252 int regnum = AVR_ARGN_REGNUM;
1253 struct stack_item *si = NULL;
1254
1255 if (struct_return)
1256 {
1257 regcache_cooked_write_unsigned
1258 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1259 regcache_cooked_write_unsigned
1260 (regcache, regnum--, struct_addr & 0xff);
1261 /* SP being post decremented, we need to reserve one byte so that the
1262 return address won't overwrite the result (or vice-versa). */
1263 if (sp == struct_addr)
1264 sp--;
1265 }
1266
1267 for (i = 0; i < nargs; i++)
1268 {
1269 int last_regnum;
1270 int j;
1271 struct value *arg = args[i];
1272 struct type *type = check_typedef (value_type (arg));
1273 const bfd_byte *contents = value_contents (arg);
1274 int len = TYPE_LENGTH (type);
1275
1276 /* Calculate the potential last register needed. */
1277 last_regnum = regnum - (len + (len & 1));
1278
1279 /* If there are registers available, use them. Once we start putting
1280 stuff on the stack, all subsequent args go on stack. */
1281 if ((si == NULL) && (last_regnum >= 8))
1282 {
1283 ULONGEST val;
1284
1285 /* Skip a register for odd length args. */
1286 if (len & 1)
1287 regnum--;
1288
1289 val = extract_unsigned_integer (contents, len, byte_order);
1290 for (j = 0; j < len; j++)
1291 regcache_cooked_write_unsigned
1292 (regcache, regnum--, val >> (8 * (len - j - 1)));
1293 }
1294 /* No registers available, push the args onto the stack. */
1295 else
1296 {
1297 /* From here on, we don't care about regnum. */
1298 si = push_stack_item (si, contents, len);
1299 }
1300 }
1301
1302 /* Push args onto the stack. */
1303 while (si)
1304 {
1305 sp -= si->len;
1306 /* Add 1 to sp here to account for post decr nature of pushes. */
1307 write_memory (sp + 1, si->data, si->len);
1308 si = pop_stack_item (si);
1309 }
1310
1311 /* Set the return address. For the avr, the return address is the BP_ADDR.
1312 Need to push the return address onto the stack noting that it needs to be
1313 in big-endian order on the stack. */
1314 for (i = 1; i <= call_length; i++)
1315 {
1316 buf[call_length - i] = return_pc & 0xff;
1317 return_pc >>= 8;
1318 }
1319
1320 sp -= call_length;
1321 /* Use 'sp + 1' since pushes are post decr ops. */
1322 write_memory (sp + 1, buf, call_length);
1323
1324 /* Finally, update the SP register. */
1325 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1326 avr_convert_saddr_to_raw (sp));
1327
1328 /* Return SP value for the dummy frame, where the return address hasn't been
1329 pushed. */
1330 return sp + call_length;
1331 }
1332
1333 /* Unfortunately dwarf2 register for SP is 32. */
1334
1335 static int
1336 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1337 {
1338 if (reg >= 0 && reg < 32)
1339 return reg;
1340 if (reg == 32)
1341 return AVR_SP_REGNUM;
1342
1343 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1344
1345 return -1;
1346 }
1347
1348 /* Initialize the gdbarch structure for the AVR's. */
1349
1350 static struct gdbarch *
1351 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1352 {
1353 struct gdbarch *gdbarch;
1354 struct gdbarch_tdep *tdep;
1355 struct gdbarch_list *best_arch;
1356 int call_length;
1357
1358 /* Avr-6 call instructions save 3 bytes. */
1359 switch (info.bfd_arch_info->mach)
1360 {
1361 case bfd_mach_avr1:
1362 case bfd_mach_avr2:
1363 case bfd_mach_avr3:
1364 case bfd_mach_avr4:
1365 case bfd_mach_avr5:
1366 default:
1367 call_length = 2;
1368 break;
1369 case bfd_mach_avr6:
1370 call_length = 3;
1371 break;
1372 }
1373
1374 /* If there is already a candidate, use it. */
1375 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1376 best_arch != NULL;
1377 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1378 {
1379 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1380 return best_arch->gdbarch;
1381 }
1382
1383 /* None found, create a new architecture from the information provided. */
1384 tdep = XMALLOC (struct gdbarch_tdep);
1385 gdbarch = gdbarch_alloc (&info, tdep);
1386
1387 tdep->call_length = call_length;
1388
1389 /* Create a type for PC. We can't use builtin types here, as they may not
1390 be defined. */
1391 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1392 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1393 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1394 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1395 TYPE_UNSIGNED (tdep->pc_type) = 1;
1396
1397 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1399 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1400 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1401 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1402 set_gdbarch_addr_bit (gdbarch, 32);
1403
1404 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1405 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1406 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1407
1408 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1409 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1410 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1411
1412 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1413 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1414
1415 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1416
1417 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1418 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1419
1420 set_gdbarch_register_name (gdbarch, avr_register_name);
1421 set_gdbarch_register_type (gdbarch, avr_register_type);
1422
1423 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1424 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1425 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1426
1427 set_gdbarch_return_value (gdbarch, avr_return_value);
1428 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1429
1430 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1431
1432 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1433
1434 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1435 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1436 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1437
1438 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1440
1441 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1442
1443 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1444 frame_base_set_default (gdbarch, &avr_frame_base);
1445
1446 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1447
1448 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1449 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1450
1451 return gdbarch;
1452 }
1453
1454 /* Send a query request to the avr remote target asking for values of the io
1455 registers. If args parameter is not NULL, then the user has requested info
1456 on a specific io register [This still needs implemented and is ignored for
1457 now]. The query string should be one of these forms:
1458
1459 "Ravr.io_reg" -> reply is "NN" number of io registers
1460
1461 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1462 registers to be read. The reply should be "<NAME>,VV;" for each io register
1463 where, <NAME> is a string, and VV is the hex value of the register.
1464
1465 All io registers are 8-bit. */
1466
1467 static void
1468 avr_io_reg_read_command (char *args, int from_tty)
1469 {
1470 LONGEST bufsiz = 0;
1471 gdb_byte *buf;
1472 char query[400];
1473 char *p;
1474 unsigned int nreg = 0;
1475 unsigned int val;
1476 int i, j, k, step;
1477
1478 /* Find out how many io registers the target has. */
1479 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1480 "avr.io_reg", &buf);
1481
1482 if (bufsiz <= 0)
1483 {
1484 fprintf_unfiltered (gdb_stderr,
1485 _("ERR: info io_registers NOT supported "
1486 "by current target\n"));
1487 return;
1488 }
1489
1490 if (sscanf (buf, "%x", &nreg) != 1)
1491 {
1492 fprintf_unfiltered (gdb_stderr,
1493 _("Error fetching number of io registers\n"));
1494 xfree (buf);
1495 return;
1496 }
1497
1498 xfree (buf);
1499
1500 reinitialize_more_filter ();
1501
1502 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1503
1504 /* only fetch up to 8 registers at a time to keep the buffer small */
1505 step = 8;
1506
1507 for (i = 0; i < nreg; i += step)
1508 {
1509 /* how many registers this round? */
1510 j = step;
1511 if ((i+j) >= nreg)
1512 j = nreg - i; /* last block is less than 8 registers */
1513
1514 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1515 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1516 query, &buf);
1517
1518 p = buf;
1519 for (k = i; k < (i + j); k++)
1520 {
1521 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1522 {
1523 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1524 while ((*p != ';') && (*p != '\0'))
1525 p++;
1526 p++; /* skip over ';' */
1527 if (*p == '\0')
1528 break;
1529 }
1530 }
1531
1532 xfree (buf);
1533 }
1534 }
1535
1536 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1537
1538 void
1539 _initialize_avr_tdep (void)
1540 {
1541 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1542
1543 /* Add a new command to allow the user to query the avr remote target for
1544 the values of the io space registers in a saner way than just using
1545 `x/NNNb ADDR`. */
1546
1547 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1548 io_registers' to signify it is not available on other platforms. */
1549
1550 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1551 _("query remote avr target for io space register values"),
1552 &infolist);
1553 }