]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/breakpoint.c
Remove some unused variables
[thirdparty/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block = NULL;
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block;
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 observer_notify_breakpoint_modified (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 int i;
1012
1013 if (c->control_type == while_stepping_control)
1014 error (_("The 'while-stepping' command can "
1015 "only be used for tracepoints"));
1016
1017 for (i = 0; i < c->body_count; ++i)
1018 check_no_tracepoint_commands ((c->body_list)[i]);
1019
1020 /* Not that command parsing removes leading whitespace and comment
1021 lines and also empty lines. So, we only need to check for
1022 command directly. */
1023 if (strstr (c->line, "collect ") == c->line)
1024 error (_("The 'collect' command can only be used for tracepoints"));
1025
1026 if (strstr (c->line, "teval ") == c->line)
1027 error (_("The 'teval' command can only be used for tracepoints"));
1028 }
1029 }
1030
1031 struct longjmp_breakpoint : public breakpoint
1032 {
1033 ~longjmp_breakpoint () override;
1034 };
1035
1036 /* Encapsulate tests for different types of tracepoints. */
1037
1038 static bool
1039 is_tracepoint_type (bptype type)
1040 {
1041 return (type == bp_tracepoint
1042 || type == bp_fast_tracepoint
1043 || type == bp_static_tracepoint);
1044 }
1045
1046 static bool
1047 is_longjmp_type (bptype type)
1048 {
1049 return type == bp_longjmp || type == bp_exception;
1050 }
1051
1052 int
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_count == 1);
1130 c2 = while_stepping->body_list[0];
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 VEC(breakpoint_p) *
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 VEC(breakpoint_p) *found = 0;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 VEC_safe_push(breakpoint_p, found, b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 command_line_up &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 observer_notify_breakpoint_modified (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 observer_notify_breakpoint_modified (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 observer_notify_breakpoint_modified (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 observer_notify_breakpoint_modified (b);
1216 }
1217
1218 void
1219 check_tracepoint_command (char *line, void *closure)
1220 {
1221 struct breakpoint *b = (struct breakpoint *) closure;
1222
1223 validate_actionline (line, b);
1224 }
1225
1226 static void
1227 commands_command_1 (const char *arg, int from_tty,
1228 struct command_line *control)
1229 {
1230 counted_command_line cmd;
1231
1232 std::string new_arg;
1233
1234 if (arg == NULL || !*arg)
1235 {
1236 if (breakpoint_count - prev_breakpoint_count > 1)
1237 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1238 breakpoint_count);
1239 else if (breakpoint_count > 0)
1240 new_arg = string_printf ("%d", breakpoint_count);
1241 arg = new_arg.c_str ();
1242 }
1243
1244 map_breakpoint_numbers
1245 (arg, [&] (breakpoint *b)
1246 {
1247 if (cmd == NULL)
1248 {
1249 if (control != NULL)
1250 cmd = copy_command_lines (control->body_list[0]);
1251 else
1252 {
1253 std::string str
1254 = string_printf (_("Type commands for breakpoint(s) "
1255 "%s, one per line."),
1256 arg);
1257
1258 cmd = read_command_lines (&str[0],
1259 from_tty, 1,
1260 (is_tracepoint (b)
1261 ? check_tracepoint_command : 0),
1262 b);
1263 }
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 observer_notify_breakpoint_modified (b);
1273 }
1274 });
1275
1276 if (cmd == NULL)
1277 error (_("No breakpoints specified."));
1278 }
1279
1280 static void
1281 commands_command (const char *arg, int from_tty)
1282 {
1283 commands_command_1 (arg, from_tty, NULL);
1284 }
1285
1286 /* Like commands_command, but instead of reading the commands from
1287 input stream, takes them from an already parsed command structure.
1288
1289 This is used by cli-script.c to DTRT with breakpoint commands
1290 that are part of if and while bodies. */
1291 enum command_control_type
1292 commands_from_control_command (const char *arg, struct command_line *cmd)
1293 {
1294 commands_command_1 (arg, 0, cmd);
1295 return simple_control;
1296 }
1297
1298 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1299
1300 static int
1301 bp_location_has_shadow (struct bp_location *bl)
1302 {
1303 if (bl->loc_type != bp_loc_software_breakpoint)
1304 return 0;
1305 if (!bl->inserted)
1306 return 0;
1307 if (bl->target_info.shadow_len == 0)
1308 /* BL isn't valid, or doesn't shadow memory. */
1309 return 0;
1310 return 1;
1311 }
1312
1313 /* Update BUF, which is LEN bytes read from the target address
1314 MEMADDR, by replacing a memory breakpoint with its shadowed
1315 contents.
1316
1317 If READBUF is not NULL, this buffer must not overlap with the of
1318 the breakpoint location's shadow_contents buffer. Otherwise, a
1319 failed assertion internal error will be raised. */
1320
1321 static void
1322 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1323 const gdb_byte *writebuf_org,
1324 ULONGEST memaddr, LONGEST len,
1325 struct bp_target_info *target_info,
1326 struct gdbarch *gdbarch)
1327 {
1328 /* Now do full processing of the found relevant range of elements. */
1329 CORE_ADDR bp_addr = 0;
1330 int bp_size = 0;
1331 int bptoffset = 0;
1332
1333 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1334 current_program_space->aspace, 0))
1335 {
1336 /* The breakpoint is inserted in a different address space. */
1337 return;
1338 }
1339
1340 /* Addresses and length of the part of the breakpoint that
1341 we need to copy. */
1342 bp_addr = target_info->placed_address;
1343 bp_size = target_info->shadow_len;
1344
1345 if (bp_addr + bp_size <= memaddr)
1346 {
1347 /* The breakpoint is entirely before the chunk of memory we are
1348 reading. */
1349 return;
1350 }
1351
1352 if (bp_addr >= memaddr + len)
1353 {
1354 /* The breakpoint is entirely after the chunk of memory we are
1355 reading. */
1356 return;
1357 }
1358
1359 /* Offset within shadow_contents. */
1360 if (bp_addr < memaddr)
1361 {
1362 /* Only copy the second part of the breakpoint. */
1363 bp_size -= memaddr - bp_addr;
1364 bptoffset = memaddr - bp_addr;
1365 bp_addr = memaddr;
1366 }
1367
1368 if (bp_addr + bp_size > memaddr + len)
1369 {
1370 /* Only copy the first part of the breakpoint. */
1371 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1372 }
1373
1374 if (readbuf != NULL)
1375 {
1376 /* Verify that the readbuf buffer does not overlap with the
1377 shadow_contents buffer. */
1378 gdb_assert (target_info->shadow_contents >= readbuf + len
1379 || readbuf >= (target_info->shadow_contents
1380 + target_info->shadow_len));
1381
1382 /* Update the read buffer with this inserted breakpoint's
1383 shadow. */
1384 memcpy (readbuf + bp_addr - memaddr,
1385 target_info->shadow_contents + bptoffset, bp_size);
1386 }
1387 else
1388 {
1389 const unsigned char *bp;
1390 CORE_ADDR addr = target_info->reqstd_address;
1391 int placed_size;
1392
1393 /* Update the shadow with what we want to write to memory. */
1394 memcpy (target_info->shadow_contents + bptoffset,
1395 writebuf_org + bp_addr - memaddr, bp_size);
1396
1397 /* Determine appropriate breakpoint contents and size for this
1398 address. */
1399 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1400
1401 /* Update the final write buffer with this inserted
1402 breakpoint's INSN. */
1403 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1404 }
1405 }
1406
1407 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1408 by replacing any memory breakpoints with their shadowed contents.
1409
1410 If READBUF is not NULL, this buffer must not overlap with any of
1411 the breakpoint location's shadow_contents buffers. Otherwise,
1412 a failed assertion internal error will be raised.
1413
1414 The range of shadowed area by each bp_location is:
1415 bl->address - bp_locations_placed_address_before_address_max
1416 up to bl->address + bp_locations_shadow_len_after_address_max
1417 The range we were requested to resolve shadows for is:
1418 memaddr ... memaddr + len
1419 Thus the safe cutoff boundaries for performance optimization are
1420 memaddr + len <= (bl->address
1421 - bp_locations_placed_address_before_address_max)
1422 and:
1423 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1424
1425 void
1426 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1427 const gdb_byte *writebuf_org,
1428 ULONGEST memaddr, LONGEST len)
1429 {
1430 /* Left boundary, right boundary and median element of our binary
1431 search. */
1432 unsigned bc_l, bc_r, bc;
1433
1434 /* Find BC_L which is a leftmost element which may affect BUF
1435 content. It is safe to report lower value but a failure to
1436 report higher one. */
1437
1438 bc_l = 0;
1439 bc_r = bp_locations_count;
1440 while (bc_l + 1 < bc_r)
1441 {
1442 struct bp_location *bl;
1443
1444 bc = (bc_l + bc_r) / 2;
1445 bl = bp_locations[bc];
1446
1447 /* Check first BL->ADDRESS will not overflow due to the added
1448 constant. Then advance the left boundary only if we are sure
1449 the BC element can in no way affect the BUF content (MEMADDR
1450 to MEMADDR + LEN range).
1451
1452 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1453 offset so that we cannot miss a breakpoint with its shadow
1454 range tail still reaching MEMADDR. */
1455
1456 if ((bl->address + bp_locations_shadow_len_after_address_max
1457 >= bl->address)
1458 && (bl->address + bp_locations_shadow_len_after_address_max
1459 <= memaddr))
1460 bc_l = bc;
1461 else
1462 bc_r = bc;
1463 }
1464
1465 /* Due to the binary search above, we need to make sure we pick the
1466 first location that's at BC_L's address. E.g., if there are
1467 multiple locations at the same address, BC_L may end up pointing
1468 at a duplicate location, and miss the "master"/"inserted"
1469 location. Say, given locations L1, L2 and L3 at addresses A and
1470 B:
1471
1472 L1@A, L2@A, L3@B, ...
1473
1474 BC_L could end up pointing at location L2, while the "master"
1475 location could be L1. Since the `loc->inserted' flag is only set
1476 on "master" locations, we'd forget to restore the shadow of L1
1477 and L2. */
1478 while (bc_l > 0
1479 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1480 bc_l--;
1481
1482 /* Now do full processing of the found relevant range of elements. */
1483
1484 for (bc = bc_l; bc < bp_locations_count; bc++)
1485 {
1486 struct bp_location *bl = bp_locations[bc];
1487
1488 /* bp_location array has BL->OWNER always non-NULL. */
1489 if (bl->owner->type == bp_none)
1490 warning (_("reading through apparently deleted breakpoint #%d?"),
1491 bl->owner->number);
1492
1493 /* Performance optimization: any further element can no longer affect BUF
1494 content. */
1495
1496 if (bl->address >= bp_locations_placed_address_before_address_max
1497 && memaddr + len <= (bl->address
1498 - bp_locations_placed_address_before_address_max))
1499 break;
1500
1501 if (!bp_location_has_shadow (bl))
1502 continue;
1503
1504 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1505 memaddr, len, &bl->target_info, bl->gdbarch);
1506 }
1507 }
1508
1509 \f
1510
1511 /* Return true if BPT is either a software breakpoint or a hardware
1512 breakpoint. */
1513
1514 int
1515 is_breakpoint (const struct breakpoint *bpt)
1516 {
1517 return (bpt->type == bp_breakpoint
1518 || bpt->type == bp_hardware_breakpoint
1519 || bpt->type == bp_dprintf);
1520 }
1521
1522 /* Return true if BPT is of any hardware watchpoint kind. */
1523
1524 static int
1525 is_hardware_watchpoint (const struct breakpoint *bpt)
1526 {
1527 return (bpt->type == bp_hardware_watchpoint
1528 || bpt->type == bp_read_watchpoint
1529 || bpt->type == bp_access_watchpoint);
1530 }
1531
1532 /* Return true if BPT is of any watchpoint kind, hardware or
1533 software. */
1534
1535 int
1536 is_watchpoint (const struct breakpoint *bpt)
1537 {
1538 return (is_hardware_watchpoint (bpt)
1539 || bpt->type == bp_watchpoint);
1540 }
1541
1542 /* Returns true if the current thread and its running state are safe
1543 to evaluate or update watchpoint B. Watchpoints on local
1544 expressions need to be evaluated in the context of the thread that
1545 was current when the watchpoint was created, and, that thread needs
1546 to be stopped to be able to select the correct frame context.
1547 Watchpoints on global expressions can be evaluated on any thread,
1548 and in any state. It is presently left to the target allowing
1549 memory accesses when threads are running. */
1550
1551 static int
1552 watchpoint_in_thread_scope (struct watchpoint *b)
1553 {
1554 return (b->pspace == current_program_space
1555 && (ptid_equal (b->watchpoint_thread, null_ptid)
1556 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1557 && !is_executing (inferior_ptid))));
1558 }
1559
1560 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1561 associated bp_watchpoint_scope breakpoint. */
1562
1563 static void
1564 watchpoint_del_at_next_stop (struct watchpoint *w)
1565 {
1566 if (w->related_breakpoint != w)
1567 {
1568 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1569 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1570 w->related_breakpoint->disposition = disp_del_at_next_stop;
1571 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1572 w->related_breakpoint = w;
1573 }
1574 w->disposition = disp_del_at_next_stop;
1575 }
1576
1577 /* Extract a bitfield value from value VAL using the bit parameters contained in
1578 watchpoint W. */
1579
1580 static struct value *
1581 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1582 {
1583 struct value *bit_val;
1584
1585 if (val == NULL)
1586 return NULL;
1587
1588 bit_val = allocate_value (value_type (val));
1589
1590 unpack_value_bitfield (bit_val,
1591 w->val_bitpos,
1592 w->val_bitsize,
1593 value_contents_for_printing (val),
1594 value_offset (val),
1595 val);
1596
1597 return bit_val;
1598 }
1599
1600 /* Allocate a dummy location and add it to B, which must be a software
1601 watchpoint. This is required because even if a software watchpoint
1602 is not watching any memory, bpstat_stop_status requires a location
1603 to be able to report stops. */
1604
1605 static void
1606 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1607 struct program_space *pspace)
1608 {
1609 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1610
1611 b->loc = allocate_bp_location (b);
1612 b->loc->pspace = pspace;
1613 b->loc->address = -1;
1614 b->loc->length = -1;
1615 }
1616
1617 /* Returns true if B is a software watchpoint that is not watching any
1618 memory (e.g., "watch $pc"). */
1619
1620 static int
1621 is_no_memory_software_watchpoint (struct breakpoint *b)
1622 {
1623 return (b->type == bp_watchpoint
1624 && b->loc != NULL
1625 && b->loc->next == NULL
1626 && b->loc->address == -1
1627 && b->loc->length == -1);
1628 }
1629
1630 /* Assuming that B is a watchpoint:
1631 - Reparse watchpoint expression, if REPARSE is non-zero
1632 - Evaluate expression and store the result in B->val
1633 - Evaluate the condition if there is one, and store the result
1634 in b->loc->cond.
1635 - Update the list of values that must be watched in B->loc.
1636
1637 If the watchpoint disposition is disp_del_at_next_stop, then do
1638 nothing. If this is local watchpoint that is out of scope, delete
1639 it.
1640
1641 Even with `set breakpoint always-inserted on' the watchpoints are
1642 removed + inserted on each stop here. Normal breakpoints must
1643 never be removed because they might be missed by a running thread
1644 when debugging in non-stop mode. On the other hand, hardware
1645 watchpoints (is_hardware_watchpoint; processed here) are specific
1646 to each LWP since they are stored in each LWP's hardware debug
1647 registers. Therefore, such LWP must be stopped first in order to
1648 be able to modify its hardware watchpoints.
1649
1650 Hardware watchpoints must be reset exactly once after being
1651 presented to the user. It cannot be done sooner, because it would
1652 reset the data used to present the watchpoint hit to the user. And
1653 it must not be done later because it could display the same single
1654 watchpoint hit during multiple GDB stops. Note that the latter is
1655 relevant only to the hardware watchpoint types bp_read_watchpoint
1656 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1657 not user-visible - its hit is suppressed if the memory content has
1658 not changed.
1659
1660 The following constraints influence the location where we can reset
1661 hardware watchpoints:
1662
1663 * target_stopped_by_watchpoint and target_stopped_data_address are
1664 called several times when GDB stops.
1665
1666 [linux]
1667 * Multiple hardware watchpoints can be hit at the same time,
1668 causing GDB to stop. GDB only presents one hardware watchpoint
1669 hit at a time as the reason for stopping, and all the other hits
1670 are presented later, one after the other, each time the user
1671 requests the execution to be resumed. Execution is not resumed
1672 for the threads still having pending hit event stored in
1673 LWP_INFO->STATUS. While the watchpoint is already removed from
1674 the inferior on the first stop the thread hit event is kept being
1675 reported from its cached value by linux_nat_stopped_data_address
1676 until the real thread resume happens after the watchpoint gets
1677 presented and thus its LWP_INFO->STATUS gets reset.
1678
1679 Therefore the hardware watchpoint hit can get safely reset on the
1680 watchpoint removal from inferior. */
1681
1682 static void
1683 update_watchpoint (struct watchpoint *b, int reparse)
1684 {
1685 int within_current_scope;
1686 struct frame_id saved_frame_id;
1687 int frame_saved;
1688
1689 /* If this is a local watchpoint, we only want to check if the
1690 watchpoint frame is in scope if the current thread is the thread
1691 that was used to create the watchpoint. */
1692 if (!watchpoint_in_thread_scope (b))
1693 return;
1694
1695 if (b->disposition == disp_del_at_next_stop)
1696 return;
1697
1698 frame_saved = 0;
1699
1700 /* Determine if the watchpoint is within scope. */
1701 if (b->exp_valid_block == NULL)
1702 within_current_scope = 1;
1703 else
1704 {
1705 struct frame_info *fi = get_current_frame ();
1706 struct gdbarch *frame_arch = get_frame_arch (fi);
1707 CORE_ADDR frame_pc = get_frame_pc (fi);
1708
1709 /* If we're at a point where the stack has been destroyed
1710 (e.g. in a function epilogue), unwinding may not work
1711 properly. Do not attempt to recreate locations at this
1712 point. See similar comments in watchpoint_check. */
1713 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1714 return;
1715
1716 /* Save the current frame's ID so we can restore it after
1717 evaluating the watchpoint expression on its own frame. */
1718 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1719 took a frame parameter, so that we didn't have to change the
1720 selected frame. */
1721 frame_saved = 1;
1722 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1723
1724 fi = frame_find_by_id (b->watchpoint_frame);
1725 within_current_scope = (fi != NULL);
1726 if (within_current_scope)
1727 select_frame (fi);
1728 }
1729
1730 /* We don't free locations. They are stored in the bp_location array
1731 and update_global_location_list will eventually delete them and
1732 remove breakpoints if needed. */
1733 b->loc = NULL;
1734
1735 if (within_current_scope && reparse)
1736 {
1737 const char *s;
1738
1739 b->exp.reset ();
1740 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1741 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1742 /* If the meaning of expression itself changed, the old value is
1743 no longer relevant. We don't want to report a watchpoint hit
1744 to the user when the old value and the new value may actually
1745 be completely different objects. */
1746 value_free (b->val);
1747 b->val = NULL;
1748 b->val_valid = 0;
1749
1750 /* Note that unlike with breakpoints, the watchpoint's condition
1751 expression is stored in the breakpoint object, not in the
1752 locations (re)created below. */
1753 if (b->cond_string != NULL)
1754 {
1755 b->cond_exp.reset ();
1756
1757 s = b->cond_string;
1758 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1759 }
1760 }
1761
1762 /* If we failed to parse the expression, for example because
1763 it refers to a global variable in a not-yet-loaded shared library,
1764 don't try to insert watchpoint. We don't automatically delete
1765 such watchpoint, though, since failure to parse expression
1766 is different from out-of-scope watchpoint. */
1767 if (!target_has_execution)
1768 {
1769 /* Without execution, memory can't change. No use to try and
1770 set watchpoint locations. The watchpoint will be reset when
1771 the target gains execution, through breakpoint_re_set. */
1772 if (!can_use_hw_watchpoints)
1773 {
1774 if (b->ops->works_in_software_mode (b))
1775 b->type = bp_watchpoint;
1776 else
1777 error (_("Can't set read/access watchpoint when "
1778 "hardware watchpoints are disabled."));
1779 }
1780 }
1781 else if (within_current_scope && b->exp)
1782 {
1783 int pc = 0;
1784 struct value *val_chain, *v, *result, *next;
1785 struct program_space *frame_pspace;
1786
1787 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1788
1789 /* Avoid setting b->val if it's already set. The meaning of
1790 b->val is 'the last value' user saw, and we should update
1791 it only if we reported that last value to user. As it
1792 happens, the code that reports it updates b->val directly.
1793 We don't keep track of the memory value for masked
1794 watchpoints. */
1795 if (!b->val_valid && !is_masked_watchpoint (b))
1796 {
1797 if (b->val_bitsize != 0)
1798 {
1799 v = extract_bitfield_from_watchpoint_value (b, v);
1800 if (v != NULL)
1801 release_value (v);
1802 }
1803 b->val = v;
1804 b->val_valid = 1;
1805 }
1806
1807 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1808
1809 /* Look at each value on the value chain. */
1810 for (v = val_chain; v; v = value_next (v))
1811 {
1812 /* If it's a memory location, and GDB actually needed
1813 its contents to evaluate the expression, then we
1814 must watch it. If the first value returned is
1815 still lazy, that means an error occurred reading it;
1816 watch it anyway in case it becomes readable. */
1817 if (VALUE_LVAL (v) == lval_memory
1818 && (v == val_chain || ! value_lazy (v)))
1819 {
1820 struct type *vtype = check_typedef (value_type (v));
1821
1822 /* We only watch structs and arrays if user asked
1823 for it explicitly, never if they just happen to
1824 appear in the middle of some value chain. */
1825 if (v == result
1826 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1827 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1828 {
1829 CORE_ADDR addr;
1830 enum target_hw_bp_type type;
1831 struct bp_location *loc, **tmp;
1832 int bitpos = 0, bitsize = 0;
1833
1834 if (value_bitsize (v) != 0)
1835 {
1836 /* Extract the bit parameters out from the bitfield
1837 sub-expression. */
1838 bitpos = value_bitpos (v);
1839 bitsize = value_bitsize (v);
1840 }
1841 else if (v == result && b->val_bitsize != 0)
1842 {
1843 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1844 lvalue whose bit parameters are saved in the fields
1845 VAL_BITPOS and VAL_BITSIZE. */
1846 bitpos = b->val_bitpos;
1847 bitsize = b->val_bitsize;
1848 }
1849
1850 addr = value_address (v);
1851 if (bitsize != 0)
1852 {
1853 /* Skip the bytes that don't contain the bitfield. */
1854 addr += bitpos / 8;
1855 }
1856
1857 type = hw_write;
1858 if (b->type == bp_read_watchpoint)
1859 type = hw_read;
1860 else if (b->type == bp_access_watchpoint)
1861 type = hw_access;
1862
1863 loc = allocate_bp_location (b);
1864 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1865 ;
1866 *tmp = loc;
1867 loc->gdbarch = get_type_arch (value_type (v));
1868
1869 loc->pspace = frame_pspace;
1870 loc->address = addr;
1871
1872 if (bitsize != 0)
1873 {
1874 /* Just cover the bytes that make up the bitfield. */
1875 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1876 }
1877 else
1878 loc->length = TYPE_LENGTH (value_type (v));
1879
1880 loc->watchpoint_type = type;
1881 }
1882 }
1883 }
1884
1885 /* Change the type of breakpoint between hardware assisted or
1886 an ordinary watchpoint depending on the hardware support
1887 and free hardware slots. REPARSE is set when the inferior
1888 is started. */
1889 if (reparse)
1890 {
1891 int reg_cnt;
1892 enum bp_loc_type loc_type;
1893 struct bp_location *bl;
1894
1895 reg_cnt = can_use_hardware_watchpoint (val_chain);
1896
1897 if (reg_cnt)
1898 {
1899 int i, target_resources_ok, other_type_used;
1900 enum bptype type;
1901
1902 /* Use an exact watchpoint when there's only one memory region to be
1903 watched, and only one debug register is needed to watch it. */
1904 b->exact = target_exact_watchpoints && reg_cnt == 1;
1905
1906 /* We need to determine how many resources are already
1907 used for all other hardware watchpoints plus this one
1908 to see if we still have enough resources to also fit
1909 this watchpoint in as well. */
1910
1911 /* If this is a software watchpoint, we try to turn it
1912 to a hardware one -- count resources as if B was of
1913 hardware watchpoint type. */
1914 type = b->type;
1915 if (type == bp_watchpoint)
1916 type = bp_hardware_watchpoint;
1917
1918 /* This watchpoint may or may not have been placed on
1919 the list yet at this point (it won't be in the list
1920 if we're trying to create it for the first time,
1921 through watch_command), so always account for it
1922 manually. */
1923
1924 /* Count resources used by all watchpoints except B. */
1925 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1926
1927 /* Add in the resources needed for B. */
1928 i += hw_watchpoint_use_count (b);
1929
1930 target_resources_ok
1931 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1932 if (target_resources_ok <= 0)
1933 {
1934 int sw_mode = b->ops->works_in_software_mode (b);
1935
1936 if (target_resources_ok == 0 && !sw_mode)
1937 error (_("Target does not support this type of "
1938 "hardware watchpoint."));
1939 else if (target_resources_ok < 0 && !sw_mode)
1940 error (_("There are not enough available hardware "
1941 "resources for this watchpoint."));
1942
1943 /* Downgrade to software watchpoint. */
1944 b->type = bp_watchpoint;
1945 }
1946 else
1947 {
1948 /* If this was a software watchpoint, we've just
1949 found we have enough resources to turn it to a
1950 hardware watchpoint. Otherwise, this is a
1951 nop. */
1952 b->type = type;
1953 }
1954 }
1955 else if (!b->ops->works_in_software_mode (b))
1956 {
1957 if (!can_use_hw_watchpoints)
1958 error (_("Can't set read/access watchpoint when "
1959 "hardware watchpoints are disabled."));
1960 else
1961 error (_("Expression cannot be implemented with "
1962 "read/access watchpoint."));
1963 }
1964 else
1965 b->type = bp_watchpoint;
1966
1967 loc_type = (b->type == bp_watchpoint? bp_loc_other
1968 : bp_loc_hardware_watchpoint);
1969 for (bl = b->loc; bl; bl = bl->next)
1970 bl->loc_type = loc_type;
1971 }
1972
1973 for (v = val_chain; v; v = next)
1974 {
1975 next = value_next (v);
1976 if (v != b->val)
1977 value_free (v);
1978 }
1979
1980 /* If a software watchpoint is not watching any memory, then the
1981 above left it without any location set up. But,
1982 bpstat_stop_status requires a location to be able to report
1983 stops, so make sure there's at least a dummy one. */
1984 if (b->type == bp_watchpoint && b->loc == NULL)
1985 software_watchpoint_add_no_memory_location (b, frame_pspace);
1986 }
1987 else if (!within_current_scope)
1988 {
1989 printf_filtered (_("\
1990 Watchpoint %d deleted because the program has left the block\n\
1991 in which its expression is valid.\n"),
1992 b->number);
1993 watchpoint_del_at_next_stop (b);
1994 }
1995
1996 /* Restore the selected frame. */
1997 if (frame_saved)
1998 select_frame (frame_find_by_id (saved_frame_id));
1999 }
2000
2001
2002 /* Returns 1 iff breakpoint location should be
2003 inserted in the inferior. We don't differentiate the type of BL's owner
2004 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2005 breakpoint_ops is not defined, because in insert_bp_location,
2006 tracepoint's insert_location will not be called. */
2007 static int
2008 should_be_inserted (struct bp_location *bl)
2009 {
2010 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2011 return 0;
2012
2013 if (bl->owner->disposition == disp_del_at_next_stop)
2014 return 0;
2015
2016 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2017 return 0;
2018
2019 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2020 return 0;
2021
2022 /* This is set for example, when we're attached to the parent of a
2023 vfork, and have detached from the child. The child is running
2024 free, and we expect it to do an exec or exit, at which point the
2025 OS makes the parent schedulable again (and the target reports
2026 that the vfork is done). Until the child is done with the shared
2027 memory region, do not insert breakpoints in the parent, otherwise
2028 the child could still trip on the parent's breakpoints. Since
2029 the parent is blocked anyway, it won't miss any breakpoint. */
2030 if (bl->pspace->breakpoints_not_allowed)
2031 return 0;
2032
2033 /* Don't insert a breakpoint if we're trying to step past its
2034 location, except if the breakpoint is a single-step breakpoint,
2035 and the breakpoint's thread is the thread which is stepping past
2036 a breakpoint. */
2037 if ((bl->loc_type == bp_loc_software_breakpoint
2038 || bl->loc_type == bp_loc_hardware_breakpoint)
2039 && stepping_past_instruction_at (bl->pspace->aspace,
2040 bl->address)
2041 /* The single-step breakpoint may be inserted at the location
2042 we're trying to step if the instruction branches to itself.
2043 However, the instruction won't be executed at all and it may
2044 break the semantics of the instruction, for example, the
2045 instruction is a conditional branch or updates some flags.
2046 We can't fix it unless GDB is able to emulate the instruction
2047 or switch to displaced stepping. */
2048 && !(bl->owner->type == bp_single_step
2049 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2050 {
2051 if (debug_infrun)
2052 {
2053 fprintf_unfiltered (gdb_stdlog,
2054 "infrun: skipping breakpoint: "
2055 "stepping past insn at: %s\n",
2056 paddress (bl->gdbarch, bl->address));
2057 }
2058 return 0;
2059 }
2060
2061 /* Don't insert watchpoints if we're trying to step past the
2062 instruction that triggered one. */
2063 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2064 && stepping_past_nonsteppable_watchpoint ())
2065 {
2066 if (debug_infrun)
2067 {
2068 fprintf_unfiltered (gdb_stdlog,
2069 "infrun: stepping past non-steppable watchpoint. "
2070 "skipping watchpoint at %s:%d\n",
2071 paddress (bl->gdbarch, bl->address),
2072 bl->length);
2073 }
2074 return 0;
2075 }
2076
2077 return 1;
2078 }
2079
2080 /* Same as should_be_inserted but does the check assuming
2081 that the location is not duplicated. */
2082
2083 static int
2084 unduplicated_should_be_inserted (struct bp_location *bl)
2085 {
2086 int result;
2087 const int save_duplicate = bl->duplicate;
2088
2089 bl->duplicate = 0;
2090 result = should_be_inserted (bl);
2091 bl->duplicate = save_duplicate;
2092 return result;
2093 }
2094
2095 /* Parses a conditional described by an expression COND into an
2096 agent expression bytecode suitable for evaluation
2097 by the bytecode interpreter. Return NULL if there was
2098 any error during parsing. */
2099
2100 static agent_expr_up
2101 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2102 {
2103 if (cond == NULL)
2104 return NULL;
2105
2106 agent_expr_up aexpr;
2107
2108 /* We don't want to stop processing, so catch any errors
2109 that may show up. */
2110 TRY
2111 {
2112 aexpr = gen_eval_for_expr (scope, cond);
2113 }
2114
2115 CATCH (ex, RETURN_MASK_ERROR)
2116 {
2117 /* If we got here, it means the condition could not be parsed to a valid
2118 bytecode expression and thus can't be evaluated on the target's side.
2119 It's no use iterating through the conditions. */
2120 }
2121 END_CATCH
2122
2123 /* We have a valid agent expression. */
2124 return aexpr;
2125 }
2126
2127 /* Based on location BL, create a list of breakpoint conditions to be
2128 passed on to the target. If we have duplicated locations with different
2129 conditions, we will add such conditions to the list. The idea is that the
2130 target will evaluate the list of conditions and will only notify GDB when
2131 one of them is true. */
2132
2133 static void
2134 build_target_condition_list (struct bp_location *bl)
2135 {
2136 struct bp_location **locp = NULL, **loc2p;
2137 int null_condition_or_parse_error = 0;
2138 int modified = bl->needs_update;
2139 struct bp_location *loc;
2140
2141 /* Release conditions left over from a previous insert. */
2142 bl->target_info.conditions.clear ();
2143
2144 /* This is only meaningful if the target is
2145 evaluating conditions and if the user has
2146 opted for condition evaluation on the target's
2147 side. */
2148 if (gdb_evaluates_breakpoint_condition_p ()
2149 || !target_supports_evaluation_of_breakpoint_conditions ())
2150 return;
2151
2152 /* Do a first pass to check for locations with no assigned
2153 conditions or conditions that fail to parse to a valid agent expression
2154 bytecode. If any of these happen, then it's no use to send conditions
2155 to the target since this location will always trigger and generate a
2156 response back to GDB. */
2157 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2158 {
2159 loc = (*loc2p);
2160 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2161 {
2162 if (modified)
2163 {
2164 /* Re-parse the conditions since something changed. In that
2165 case we already freed the condition bytecodes (see
2166 force_breakpoint_reinsertion). We just
2167 need to parse the condition to bytecodes again. */
2168 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2169 loc->cond.get ());
2170 }
2171
2172 /* If we have a NULL bytecode expression, it means something
2173 went wrong or we have a null condition expression. */
2174 if (!loc->cond_bytecode)
2175 {
2176 null_condition_or_parse_error = 1;
2177 break;
2178 }
2179 }
2180 }
2181
2182 /* If any of these happened, it means we will have to evaluate the conditions
2183 for the location's address on gdb's side. It is no use keeping bytecodes
2184 for all the other duplicate locations, thus we free all of them here.
2185
2186 This is so we have a finer control over which locations' conditions are
2187 being evaluated by GDB or the remote stub. */
2188 if (null_condition_or_parse_error)
2189 {
2190 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2191 {
2192 loc = (*loc2p);
2193 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2194 {
2195 /* Only go as far as the first NULL bytecode is
2196 located. */
2197 if (!loc->cond_bytecode)
2198 return;
2199
2200 loc->cond_bytecode.reset ();
2201 }
2202 }
2203 }
2204
2205 /* No NULL conditions or failed bytecode generation. Build a condition list
2206 for this location's address. */
2207 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2208 {
2209 loc = (*loc2p);
2210 if (loc->cond
2211 && is_breakpoint (loc->owner)
2212 && loc->pspace->num == bl->pspace->num
2213 && loc->owner->enable_state == bp_enabled
2214 && loc->enabled)
2215 {
2216 /* Add the condition to the vector. This will be used later
2217 to send the conditions to the target. */
2218 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2219 }
2220 }
2221
2222 return;
2223 }
2224
2225 /* Parses a command described by string CMD into an agent expression
2226 bytecode suitable for evaluation by the bytecode interpreter.
2227 Return NULL if there was any error during parsing. */
2228
2229 static agent_expr_up
2230 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2231 {
2232 struct cleanup *old_cleanups = 0;
2233 struct expression **argvec;
2234 const char *cmdrest;
2235 const char *format_start, *format_end;
2236 struct format_piece *fpieces;
2237 int nargs;
2238 struct gdbarch *gdbarch = get_current_arch ();
2239
2240 if (cmd == NULL)
2241 return NULL;
2242
2243 cmdrest = cmd;
2244
2245 if (*cmdrest == ',')
2246 ++cmdrest;
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (*cmdrest++ != '"')
2250 error (_("No format string following the location"));
2251
2252 format_start = cmdrest;
2253
2254 fpieces = parse_format_string (&cmdrest);
2255
2256 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2257
2258 format_end = cmdrest;
2259
2260 if (*cmdrest++ != '"')
2261 error (_("Bad format string, non-terminated '\"'."));
2262
2263 cmdrest = skip_spaces (cmdrest);
2264
2265 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2266 error (_("Invalid argument syntax"));
2267
2268 if (*cmdrest == ',')
2269 cmdrest++;
2270 cmdrest = skip_spaces (cmdrest);
2271
2272 /* For each argument, make an expression. */
2273
2274 argvec = (struct expression **) alloca (strlen (cmd)
2275 * sizeof (struct expression *));
2276
2277 nargs = 0;
2278 while (*cmdrest != '\0')
2279 {
2280 const char *cmd1;
2281
2282 cmd1 = cmdrest;
2283 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2284 argvec[nargs++] = expr.release ();
2285 cmdrest = cmd1;
2286 if (*cmdrest == ',')
2287 ++cmdrest;
2288 }
2289
2290 agent_expr_up aexpr;
2291
2292 /* We don't want to stop processing, so catch any errors
2293 that may show up. */
2294 TRY
2295 {
2296 aexpr = gen_printf (scope, gdbarch, 0, 0,
2297 format_start, format_end - format_start,
2298 fpieces, nargs, argvec);
2299 }
2300 CATCH (ex, RETURN_MASK_ERROR)
2301 {
2302 /* If we got here, it means the command could not be parsed to a valid
2303 bytecode expression and thus can't be evaluated on the target's side.
2304 It's no use iterating through the other commands. */
2305 }
2306 END_CATCH
2307
2308 do_cleanups (old_cleanups);
2309
2310 /* We have a valid agent expression, return it. */
2311 return aexpr;
2312 }
2313
2314 /* Based on location BL, create a list of breakpoint commands to be
2315 passed on to the target. If we have duplicated locations with
2316 different commands, we will add any such to the list. */
2317
2318 static void
2319 build_target_command_list (struct bp_location *bl)
2320 {
2321 struct bp_location **locp = NULL, **loc2p;
2322 int null_command_or_parse_error = 0;
2323 int modified = bl->needs_update;
2324 struct bp_location *loc;
2325
2326 /* Clear commands left over from a previous insert. */
2327 bl->target_info.tcommands.clear ();
2328
2329 if (!target_can_run_breakpoint_commands ())
2330 return;
2331
2332 /* For now, limit to agent-style dprintf breakpoints. */
2333 if (dprintf_style != dprintf_style_agent)
2334 return;
2335
2336 /* For now, if we have any duplicate location that isn't a dprintf,
2337 don't install the target-side commands, as that would make the
2338 breakpoint not be reported to the core, and we'd lose
2339 control. */
2340 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2341 {
2342 loc = (*loc2p);
2343 if (is_breakpoint (loc->owner)
2344 && loc->pspace->num == bl->pspace->num
2345 && loc->owner->type != bp_dprintf)
2346 return;
2347 }
2348
2349 /* Do a first pass to check for locations with no assigned
2350 conditions or conditions that fail to parse to a valid agent expression
2351 bytecode. If any of these happen, then it's no use to send conditions
2352 to the target since this location will always trigger and generate a
2353 response back to GDB. */
2354 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2355 {
2356 loc = (*loc2p);
2357 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2358 {
2359 if (modified)
2360 {
2361 /* Re-parse the commands since something changed. In that
2362 case we already freed the command bytecodes (see
2363 force_breakpoint_reinsertion). We just
2364 need to parse the command to bytecodes again. */
2365 loc->cmd_bytecode
2366 = parse_cmd_to_aexpr (bl->address,
2367 loc->owner->extra_string);
2368 }
2369
2370 /* If we have a NULL bytecode expression, it means something
2371 went wrong or we have a null command expression. */
2372 if (!loc->cmd_bytecode)
2373 {
2374 null_command_or_parse_error = 1;
2375 break;
2376 }
2377 }
2378 }
2379
2380 /* If anything failed, then we're not doing target-side commands,
2381 and so clean up. */
2382 if (null_command_or_parse_error)
2383 {
2384 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2385 {
2386 loc = (*loc2p);
2387 if (is_breakpoint (loc->owner)
2388 && loc->pspace->num == bl->pspace->num)
2389 {
2390 /* Only go as far as the first NULL bytecode is
2391 located. */
2392 if (loc->cmd_bytecode == NULL)
2393 return;
2394
2395 loc->cmd_bytecode.reset ();
2396 }
2397 }
2398 }
2399
2400 /* No NULL commands or failed bytecode generation. Build a command list
2401 for this location's address. */
2402 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2403 {
2404 loc = (*loc2p);
2405 if (loc->owner->extra_string
2406 && is_breakpoint (loc->owner)
2407 && loc->pspace->num == bl->pspace->num
2408 && loc->owner->enable_state == bp_enabled
2409 && loc->enabled)
2410 {
2411 /* Add the command to the vector. This will be used later
2412 to send the commands to the target. */
2413 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2414 }
2415 }
2416
2417 bl->target_info.persist = 0;
2418 /* Maybe flag this location as persistent. */
2419 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2420 bl->target_info.persist = 1;
2421 }
2422
2423 /* Return the kind of breakpoint on address *ADDR. Get the kind
2424 of breakpoint according to ADDR except single-step breakpoint.
2425 Get the kind of single-step breakpoint according to the current
2426 registers state. */
2427
2428 static int
2429 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2430 {
2431 if (bl->owner->type == bp_single_step)
2432 {
2433 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2434 struct regcache *regcache;
2435
2436 regcache = get_thread_regcache (thr->ptid);
2437
2438 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2439 regcache, addr);
2440 }
2441 else
2442 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2443 }
2444
2445 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2446 location. Any error messages are printed to TMP_ERROR_STREAM; and
2447 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2448 Returns 0 for success, 1 if the bp_location type is not supported or
2449 -1 for failure.
2450
2451 NOTE drow/2003-09-09: This routine could be broken down to an
2452 object-style method for each breakpoint or catchpoint type. */
2453 static int
2454 insert_bp_location (struct bp_location *bl,
2455 struct ui_file *tmp_error_stream,
2456 int *disabled_breaks,
2457 int *hw_breakpoint_error,
2458 int *hw_bp_error_explained_already)
2459 {
2460 gdb_exception bp_excpt = exception_none;
2461
2462 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2463 return 0;
2464
2465 /* Note we don't initialize bl->target_info, as that wipes out
2466 the breakpoint location's shadow_contents if the breakpoint
2467 is still inserted at that location. This in turn breaks
2468 target_read_memory which depends on these buffers when
2469 a memory read is requested at the breakpoint location:
2470 Once the target_info has been wiped, we fail to see that
2471 we have a breakpoint inserted at that address and thus
2472 read the breakpoint instead of returning the data saved in
2473 the breakpoint location's shadow contents. */
2474 bl->target_info.reqstd_address = bl->address;
2475 bl->target_info.placed_address_space = bl->pspace->aspace;
2476 bl->target_info.length = bl->length;
2477
2478 /* When working with target-side conditions, we must pass all the conditions
2479 for the same breakpoint address down to the target since GDB will not
2480 insert those locations. With a list of breakpoint conditions, the target
2481 can decide when to stop and notify GDB. */
2482
2483 if (is_breakpoint (bl->owner))
2484 {
2485 build_target_condition_list (bl);
2486 build_target_command_list (bl);
2487 /* Reset the modification marker. */
2488 bl->needs_update = 0;
2489 }
2490
2491 if (bl->loc_type == bp_loc_software_breakpoint
2492 || bl->loc_type == bp_loc_hardware_breakpoint)
2493 {
2494 if (bl->owner->type != bp_hardware_breakpoint)
2495 {
2496 /* If the explicitly specified breakpoint type
2497 is not hardware breakpoint, check the memory map to see
2498 if the breakpoint address is in read only memory or not.
2499
2500 Two important cases are:
2501 - location type is not hardware breakpoint, memory
2502 is readonly. We change the type of the location to
2503 hardware breakpoint.
2504 - location type is hardware breakpoint, memory is
2505 read-write. This means we've previously made the
2506 location hardware one, but then the memory map changed,
2507 so we undo.
2508
2509 When breakpoints are removed, remove_breakpoints will use
2510 location types we've just set here, the only possible
2511 problem is that memory map has changed during running
2512 program, but it's not going to work anyway with current
2513 gdb. */
2514 struct mem_region *mr
2515 = lookup_mem_region (bl->target_info.reqstd_address);
2516
2517 if (mr)
2518 {
2519 if (automatic_hardware_breakpoints)
2520 {
2521 enum bp_loc_type new_type;
2522
2523 if (mr->attrib.mode != MEM_RW)
2524 new_type = bp_loc_hardware_breakpoint;
2525 else
2526 new_type = bp_loc_software_breakpoint;
2527
2528 if (new_type != bl->loc_type)
2529 {
2530 static int said = 0;
2531
2532 bl->loc_type = new_type;
2533 if (!said)
2534 {
2535 fprintf_filtered (gdb_stdout,
2536 _("Note: automatically using "
2537 "hardware breakpoints for "
2538 "read-only addresses.\n"));
2539 said = 1;
2540 }
2541 }
2542 }
2543 else if (bl->loc_type == bp_loc_software_breakpoint
2544 && mr->attrib.mode != MEM_RW)
2545 {
2546 fprintf_unfiltered (tmp_error_stream,
2547 _("Cannot insert breakpoint %d.\n"
2548 "Cannot set software breakpoint "
2549 "at read-only address %s\n"),
2550 bl->owner->number,
2551 paddress (bl->gdbarch, bl->address));
2552 return 1;
2553 }
2554 }
2555 }
2556
2557 /* First check to see if we have to handle an overlay. */
2558 if (overlay_debugging == ovly_off
2559 || bl->section == NULL
2560 || !(section_is_overlay (bl->section)))
2561 {
2562 /* No overlay handling: just set the breakpoint. */
2563 TRY
2564 {
2565 int val;
2566
2567 val = bl->owner->ops->insert_location (bl);
2568 if (val)
2569 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2570 }
2571 CATCH (e, RETURN_MASK_ALL)
2572 {
2573 bp_excpt = e;
2574 }
2575 END_CATCH
2576 }
2577 else
2578 {
2579 /* This breakpoint is in an overlay section.
2580 Shall we set a breakpoint at the LMA? */
2581 if (!overlay_events_enabled)
2582 {
2583 /* Yes -- overlay event support is not active,
2584 so we must try to set a breakpoint at the LMA.
2585 This will not work for a hardware breakpoint. */
2586 if (bl->loc_type == bp_loc_hardware_breakpoint)
2587 warning (_("hardware breakpoint %d not supported in overlay!"),
2588 bl->owner->number);
2589 else
2590 {
2591 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2592 bl->section);
2593 /* Set a software (trap) breakpoint at the LMA. */
2594 bl->overlay_target_info = bl->target_info;
2595 bl->overlay_target_info.reqstd_address = addr;
2596
2597 /* No overlay handling: just set the breakpoint. */
2598 TRY
2599 {
2600 int val;
2601
2602 bl->overlay_target_info.kind
2603 = breakpoint_kind (bl, &addr);
2604 bl->overlay_target_info.placed_address = addr;
2605 val = target_insert_breakpoint (bl->gdbarch,
2606 &bl->overlay_target_info);
2607 if (val)
2608 bp_excpt
2609 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2610 }
2611 CATCH (e, RETURN_MASK_ALL)
2612 {
2613 bp_excpt = e;
2614 }
2615 END_CATCH
2616
2617 if (bp_excpt.reason != 0)
2618 fprintf_unfiltered (tmp_error_stream,
2619 "Overlay breakpoint %d "
2620 "failed: in ROM?\n",
2621 bl->owner->number);
2622 }
2623 }
2624 /* Shall we set a breakpoint at the VMA? */
2625 if (section_is_mapped (bl->section))
2626 {
2627 /* Yes. This overlay section is mapped into memory. */
2628 TRY
2629 {
2630 int val;
2631
2632 val = bl->owner->ops->insert_location (bl);
2633 if (val)
2634 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2635 }
2636 CATCH (e, RETURN_MASK_ALL)
2637 {
2638 bp_excpt = e;
2639 }
2640 END_CATCH
2641 }
2642 else
2643 {
2644 /* No. This breakpoint will not be inserted.
2645 No error, but do not mark the bp as 'inserted'. */
2646 return 0;
2647 }
2648 }
2649
2650 if (bp_excpt.reason != 0)
2651 {
2652 /* Can't set the breakpoint. */
2653
2654 /* In some cases, we might not be able to insert a
2655 breakpoint in a shared library that has already been
2656 removed, but we have not yet processed the shlib unload
2657 event. Unfortunately, some targets that implement
2658 breakpoint insertion themselves can't tell why the
2659 breakpoint insertion failed (e.g., the remote target
2660 doesn't define error codes), so we must treat generic
2661 errors as memory errors. */
2662 if (bp_excpt.reason == RETURN_ERROR
2663 && (bp_excpt.error == GENERIC_ERROR
2664 || bp_excpt.error == MEMORY_ERROR)
2665 && bl->loc_type == bp_loc_software_breakpoint
2666 && (solib_name_from_address (bl->pspace, bl->address)
2667 || shared_objfile_contains_address_p (bl->pspace,
2668 bl->address)))
2669 {
2670 /* See also: disable_breakpoints_in_shlibs. */
2671 bl->shlib_disabled = 1;
2672 observer_notify_breakpoint_modified (bl->owner);
2673 if (!*disabled_breaks)
2674 {
2675 fprintf_unfiltered (tmp_error_stream,
2676 "Cannot insert breakpoint %d.\n",
2677 bl->owner->number);
2678 fprintf_unfiltered (tmp_error_stream,
2679 "Temporarily disabling shared "
2680 "library breakpoints:\n");
2681 }
2682 *disabled_breaks = 1;
2683 fprintf_unfiltered (tmp_error_stream,
2684 "breakpoint #%d\n", bl->owner->number);
2685 return 0;
2686 }
2687 else
2688 {
2689 if (bl->loc_type == bp_loc_hardware_breakpoint)
2690 {
2691 *hw_breakpoint_error = 1;
2692 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2693 fprintf_unfiltered (tmp_error_stream,
2694 "Cannot insert hardware breakpoint %d%s",
2695 bl->owner->number,
2696 bp_excpt.message ? ":" : ".\n");
2697 if (bp_excpt.message != NULL)
2698 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2699 bp_excpt.message);
2700 }
2701 else
2702 {
2703 if (bp_excpt.message == NULL)
2704 {
2705 std::string message
2706 = memory_error_message (TARGET_XFER_E_IO,
2707 bl->gdbarch, bl->address);
2708
2709 fprintf_unfiltered (tmp_error_stream,
2710 "Cannot insert breakpoint %d.\n"
2711 "%s\n",
2712 bl->owner->number, message.c_str ());
2713 }
2714 else
2715 {
2716 fprintf_unfiltered (tmp_error_stream,
2717 "Cannot insert breakpoint %d: %s\n",
2718 bl->owner->number,
2719 bp_excpt.message);
2720 }
2721 }
2722 return 1;
2723
2724 }
2725 }
2726 else
2727 bl->inserted = 1;
2728
2729 return 0;
2730 }
2731
2732 else if (bl->loc_type == bp_loc_hardware_watchpoint
2733 /* NOTE drow/2003-09-08: This state only exists for removing
2734 watchpoints. It's not clear that it's necessary... */
2735 && bl->owner->disposition != disp_del_at_next_stop)
2736 {
2737 int val;
2738
2739 gdb_assert (bl->owner->ops != NULL
2740 && bl->owner->ops->insert_location != NULL);
2741
2742 val = bl->owner->ops->insert_location (bl);
2743
2744 /* If trying to set a read-watchpoint, and it turns out it's not
2745 supported, try emulating one with an access watchpoint. */
2746 if (val == 1 && bl->watchpoint_type == hw_read)
2747 {
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* But don't try to insert it, if there's already another
2751 hw_access location that would be considered a duplicate
2752 of this one. */
2753 ALL_BP_LOCATIONS (loc, loc_temp)
2754 if (loc != bl
2755 && loc->watchpoint_type == hw_access
2756 && watchpoint_locations_match (bl, loc))
2757 {
2758 bl->duplicate = 1;
2759 bl->inserted = 1;
2760 bl->target_info = loc->target_info;
2761 bl->watchpoint_type = hw_access;
2762 val = 0;
2763 break;
2764 }
2765
2766 if (val == 1)
2767 {
2768 bl->watchpoint_type = hw_access;
2769 val = bl->owner->ops->insert_location (bl);
2770
2771 if (val)
2772 /* Back to the original value. */
2773 bl->watchpoint_type = hw_read;
2774 }
2775 }
2776
2777 bl->inserted = (val == 0);
2778 }
2779
2780 else if (bl->owner->type == bp_catchpoint)
2781 {
2782 int val;
2783
2784 gdb_assert (bl->owner->ops != NULL
2785 && bl->owner->ops->insert_location != NULL);
2786
2787 val = bl->owner->ops->insert_location (bl);
2788 if (val)
2789 {
2790 bl->owner->enable_state = bp_disabled;
2791
2792 if (val == 1)
2793 warning (_("\
2794 Error inserting catchpoint %d: Your system does not support this type\n\
2795 of catchpoint."), bl->owner->number);
2796 else
2797 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2798 }
2799
2800 bl->inserted = (val == 0);
2801
2802 /* We've already printed an error message if there was a problem
2803 inserting this catchpoint, and we've disabled the catchpoint,
2804 so just return success. */
2805 return 0;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* This function is called when program space PSPACE is about to be
2812 deleted. It takes care of updating breakpoints to not reference
2813 PSPACE anymore. */
2814
2815 void
2816 breakpoint_program_space_exit (struct program_space *pspace)
2817 {
2818 struct breakpoint *b, *b_temp;
2819 struct bp_location *loc, **loc_temp;
2820
2821 /* Remove any breakpoint that was set through this program space. */
2822 ALL_BREAKPOINTS_SAFE (b, b_temp)
2823 {
2824 if (b->pspace == pspace)
2825 delete_breakpoint (b);
2826 }
2827
2828 /* Breakpoints set through other program spaces could have locations
2829 bound to PSPACE as well. Remove those. */
2830 ALL_BP_LOCATIONS (loc, loc_temp)
2831 {
2832 struct bp_location *tmp;
2833
2834 if (loc->pspace == pspace)
2835 {
2836 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2837 if (loc->owner->loc == loc)
2838 loc->owner->loc = loc->next;
2839 else
2840 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2841 if (tmp->next == loc)
2842 {
2843 tmp->next = loc->next;
2844 break;
2845 }
2846 }
2847 }
2848
2849 /* Now update the global location list to permanently delete the
2850 removed locations above. */
2851 update_global_location_list (UGLL_DONT_INSERT);
2852 }
2853
2854 /* Make sure all breakpoints are inserted in inferior.
2855 Throws exception on any error.
2856 A breakpoint that is already inserted won't be inserted
2857 again, so calling this function twice is safe. */
2858 void
2859 insert_breakpoints (void)
2860 {
2861 struct breakpoint *bpt;
2862
2863 ALL_BREAKPOINTS (bpt)
2864 if (is_hardware_watchpoint (bpt))
2865 {
2866 struct watchpoint *w = (struct watchpoint *) bpt;
2867
2868 update_watchpoint (w, 0 /* don't reparse. */);
2869 }
2870
2871 /* Updating watchpoints creates new locations, so update the global
2872 location list. Explicitly tell ugll to insert locations and
2873 ignore breakpoints_always_inserted_mode. */
2874 update_global_location_list (UGLL_INSERT);
2875 }
2876
2877 /* Invoke CALLBACK for each of bp_location. */
2878
2879 void
2880 iterate_over_bp_locations (walk_bp_location_callback callback)
2881 {
2882 struct bp_location *loc, **loc_tmp;
2883
2884 ALL_BP_LOCATIONS (loc, loc_tmp)
2885 {
2886 callback (loc, NULL);
2887 }
2888 }
2889
2890 /* This is used when we need to synch breakpoint conditions between GDB and the
2891 target. It is the case with deleting and disabling of breakpoints when using
2892 always-inserted mode. */
2893
2894 static void
2895 update_inserted_breakpoint_locations (void)
2896 {
2897 struct bp_location *bl, **blp_tmp;
2898 int error_flag = 0;
2899 int val = 0;
2900 int disabled_breaks = 0;
2901 int hw_breakpoint_error = 0;
2902 int hw_bp_details_reported = 0;
2903
2904 string_file tmp_error_stream;
2905
2906 /* Explicitly mark the warning -- this will only be printed if
2907 there was an error. */
2908 tmp_error_stream.puts ("Warning:\n");
2909
2910 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2911
2912 ALL_BP_LOCATIONS (bl, blp_tmp)
2913 {
2914 /* We only want to update software breakpoints and hardware
2915 breakpoints. */
2916 if (!is_breakpoint (bl->owner))
2917 continue;
2918
2919 /* We only want to update locations that are already inserted
2920 and need updating. This is to avoid unwanted insertion during
2921 deletion of breakpoints. */
2922 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2923 continue;
2924
2925 switch_to_program_space_and_thread (bl->pspace);
2926
2927 /* For targets that support global breakpoints, there's no need
2928 to select an inferior to insert breakpoint to. In fact, even
2929 if we aren't attached to any process yet, we should still
2930 insert breakpoints. */
2931 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2932 && ptid_equal (inferior_ptid, null_ptid))
2933 continue;
2934
2935 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2936 &hw_breakpoint_error, &hw_bp_details_reported);
2937 if (val)
2938 error_flag = val;
2939 }
2940
2941 if (error_flag)
2942 {
2943 target_terminal::ours_for_output ();
2944 error_stream (tmp_error_stream);
2945 }
2946 }
2947
2948 /* Used when starting or continuing the program. */
2949
2950 static void
2951 insert_breakpoint_locations (void)
2952 {
2953 struct breakpoint *bpt;
2954 struct bp_location *bl, **blp_tmp;
2955 int error_flag = 0;
2956 int val = 0;
2957 int disabled_breaks = 0;
2958 int hw_breakpoint_error = 0;
2959 int hw_bp_error_explained_already = 0;
2960
2961 string_file tmp_error_stream;
2962
2963 /* Explicitly mark the warning -- this will only be printed if
2964 there was an error. */
2965 tmp_error_stream.puts ("Warning:\n");
2966
2967 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2968
2969 ALL_BP_LOCATIONS (bl, blp_tmp)
2970 {
2971 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2972 continue;
2973
2974 /* There is no point inserting thread-specific breakpoints if
2975 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2976 has BL->OWNER always non-NULL. */
2977 if (bl->owner->thread != -1
2978 && !valid_global_thread_id (bl->owner->thread))
2979 continue;
2980
2981 switch_to_program_space_and_thread (bl->pspace);
2982
2983 /* For targets that support global breakpoints, there's no need
2984 to select an inferior to insert breakpoint to. In fact, even
2985 if we aren't attached to any process yet, we should still
2986 insert breakpoints. */
2987 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2988 && ptid_equal (inferior_ptid, null_ptid))
2989 continue;
2990
2991 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2992 &hw_breakpoint_error, &hw_bp_error_explained_already);
2993 if (val)
2994 error_flag = val;
2995 }
2996
2997 /* If we failed to insert all locations of a watchpoint, remove
2998 them, as half-inserted watchpoint is of limited use. */
2999 ALL_BREAKPOINTS (bpt)
3000 {
3001 int some_failed = 0;
3002 struct bp_location *loc;
3003
3004 if (!is_hardware_watchpoint (bpt))
3005 continue;
3006
3007 if (!breakpoint_enabled (bpt))
3008 continue;
3009
3010 if (bpt->disposition == disp_del_at_next_stop)
3011 continue;
3012
3013 for (loc = bpt->loc; loc; loc = loc->next)
3014 if (!loc->inserted && should_be_inserted (loc))
3015 {
3016 some_failed = 1;
3017 break;
3018 }
3019 if (some_failed)
3020 {
3021 for (loc = bpt->loc; loc; loc = loc->next)
3022 if (loc->inserted)
3023 remove_breakpoint (loc);
3024
3025 hw_breakpoint_error = 1;
3026 tmp_error_stream.printf ("Could not insert "
3027 "hardware watchpoint %d.\n",
3028 bpt->number);
3029 error_flag = -1;
3030 }
3031 }
3032
3033 if (error_flag)
3034 {
3035 /* If a hardware breakpoint or watchpoint was inserted, add a
3036 message about possibly exhausted resources. */
3037 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3038 {
3039 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3040 You may have requested too many hardware breakpoints/watchpoints.\n");
3041 }
3042 target_terminal::ours_for_output ();
3043 error_stream (tmp_error_stream);
3044 }
3045 }
3046
3047 /* Used when the program stops.
3048 Returns zero if successful, or non-zero if there was a problem
3049 removing a breakpoint location. */
3050
3051 int
3052 remove_breakpoints (void)
3053 {
3054 struct bp_location *bl, **blp_tmp;
3055 int val = 0;
3056
3057 ALL_BP_LOCATIONS (bl, blp_tmp)
3058 {
3059 if (bl->inserted && !is_tracepoint (bl->owner))
3060 val |= remove_breakpoint (bl);
3061 }
3062 return val;
3063 }
3064
3065 /* When a thread exits, remove breakpoints that are related to
3066 that thread. */
3067
3068 static void
3069 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3070 {
3071 struct breakpoint *b, *b_tmp;
3072
3073 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3074 {
3075 if (b->thread == tp->global_num && user_breakpoint_p (b))
3076 {
3077 b->disposition = disp_del_at_next_stop;
3078
3079 printf_filtered (_("\
3080 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3081 b->number, print_thread_id (tp));
3082
3083 /* Hide it from the user. */
3084 b->number = 0;
3085 }
3086 }
3087 }
3088
3089 /* Remove breakpoints of process PID. */
3090
3091 int
3092 remove_breakpoints_pid (int pid)
3093 {
3094 struct bp_location *bl, **blp_tmp;
3095 int val;
3096 struct inferior *inf = find_inferior_pid (pid);
3097
3098 ALL_BP_LOCATIONS (bl, blp_tmp)
3099 {
3100 if (bl->pspace != inf->pspace)
3101 continue;
3102
3103 if (bl->inserted && !bl->target_info.persist)
3104 {
3105 val = remove_breakpoint (bl);
3106 if (val != 0)
3107 return val;
3108 }
3109 }
3110 return 0;
3111 }
3112
3113 static int internal_breakpoint_number = -1;
3114
3115 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3116 If INTERNAL is non-zero, the breakpoint number will be populated
3117 from internal_breakpoint_number and that variable decremented.
3118 Otherwise the breakpoint number will be populated from
3119 breakpoint_count and that value incremented. Internal breakpoints
3120 do not set the internal var bpnum. */
3121 static void
3122 set_breakpoint_number (int internal, struct breakpoint *b)
3123 {
3124 if (internal)
3125 b->number = internal_breakpoint_number--;
3126 else
3127 {
3128 set_breakpoint_count (breakpoint_count + 1);
3129 b->number = breakpoint_count;
3130 }
3131 }
3132
3133 static struct breakpoint *
3134 create_internal_breakpoint (struct gdbarch *gdbarch,
3135 CORE_ADDR address, enum bptype type,
3136 const struct breakpoint_ops *ops)
3137 {
3138 symtab_and_line sal;
3139 sal.pc = address;
3140 sal.section = find_pc_overlay (sal.pc);
3141 sal.pspace = current_program_space;
3142
3143 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3144 b->number = internal_breakpoint_number--;
3145 b->disposition = disp_donttouch;
3146
3147 return b;
3148 }
3149
3150 static const char *const longjmp_names[] =
3151 {
3152 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3153 };
3154 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3155
3156 /* Per-objfile data private to breakpoint.c. */
3157 struct breakpoint_objfile_data
3158 {
3159 /* Minimal symbol for "_ovly_debug_event" (if any). */
3160 struct bound_minimal_symbol overlay_msym {};
3161
3162 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3163 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3164
3165 /* True if we have looked for longjmp probes. */
3166 int longjmp_searched = 0;
3167
3168 /* SystemTap probe points for longjmp (if any). These are non-owning
3169 references. */
3170 std::vector<probe *> longjmp_probes;
3171
3172 /* Minimal symbol for "std::terminate()" (if any). */
3173 struct bound_minimal_symbol terminate_msym {};
3174
3175 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3176 struct bound_minimal_symbol exception_msym {};
3177
3178 /* True if we have looked for exception probes. */
3179 int exception_searched = 0;
3180
3181 /* SystemTap probe points for unwinding (if any). These are non-owning
3182 references. */
3183 std::vector<probe *> exception_probes;
3184 };
3185
3186 static const struct objfile_data *breakpoint_objfile_key;
3187
3188 /* Minimal symbol not found sentinel. */
3189 static struct minimal_symbol msym_not_found;
3190
3191 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3192
3193 static int
3194 msym_not_found_p (const struct minimal_symbol *msym)
3195 {
3196 return msym == &msym_not_found;
3197 }
3198
3199 /* Return per-objfile data needed by breakpoint.c.
3200 Allocate the data if necessary. */
3201
3202 static struct breakpoint_objfile_data *
3203 get_breakpoint_objfile_data (struct objfile *objfile)
3204 {
3205 struct breakpoint_objfile_data *bp_objfile_data;
3206
3207 bp_objfile_data = ((struct breakpoint_objfile_data *)
3208 objfile_data (objfile, breakpoint_objfile_key));
3209 if (bp_objfile_data == NULL)
3210 {
3211 bp_objfile_data = new breakpoint_objfile_data ();
3212 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3213 }
3214 return bp_objfile_data;
3215 }
3216
3217 static void
3218 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3219 {
3220 struct breakpoint_objfile_data *bp_objfile_data
3221 = (struct breakpoint_objfile_data *) data;
3222
3223 delete bp_objfile_data;
3224 }
3225
3226 static void
3227 create_overlay_event_breakpoint (void)
3228 {
3229 struct objfile *objfile;
3230 const char *const func_name = "_ovly_debug_event";
3231
3232 ALL_OBJFILES (objfile)
3233 {
3234 struct breakpoint *b;
3235 struct breakpoint_objfile_data *bp_objfile_data;
3236 CORE_ADDR addr;
3237 struct explicit_location explicit_loc;
3238
3239 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3240
3241 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3242 continue;
3243
3244 if (bp_objfile_data->overlay_msym.minsym == NULL)
3245 {
3246 struct bound_minimal_symbol m;
3247
3248 m = lookup_minimal_symbol_text (func_name, objfile);
3249 if (m.minsym == NULL)
3250 {
3251 /* Avoid future lookups in this objfile. */
3252 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3253 continue;
3254 }
3255 bp_objfile_data->overlay_msym = m;
3256 }
3257
3258 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3259 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3260 bp_overlay_event,
3261 &internal_breakpoint_ops);
3262 initialize_explicit_location (&explicit_loc);
3263 explicit_loc.function_name = ASTRDUP (func_name);
3264 b->location = new_explicit_location (&explicit_loc);
3265
3266 if (overlay_debugging == ovly_auto)
3267 {
3268 b->enable_state = bp_enabled;
3269 overlay_events_enabled = 1;
3270 }
3271 else
3272 {
3273 b->enable_state = bp_disabled;
3274 overlay_events_enabled = 0;
3275 }
3276 }
3277 }
3278
3279 static void
3280 create_longjmp_master_breakpoint (void)
3281 {
3282 struct program_space *pspace;
3283
3284 scoped_restore_current_program_space restore_pspace;
3285
3286 ALL_PSPACES (pspace)
3287 {
3288 struct objfile *objfile;
3289
3290 set_current_program_space (pspace);
3291
3292 ALL_OBJFILES (objfile)
3293 {
3294 int i;
3295 struct gdbarch *gdbarch;
3296 struct breakpoint_objfile_data *bp_objfile_data;
3297
3298 gdbarch = get_objfile_arch (objfile);
3299
3300 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3301
3302 if (!bp_objfile_data->longjmp_searched)
3303 {
3304 std::vector<probe *> ret
3305 = find_probes_in_objfile (objfile, "libc", "longjmp");
3306
3307 if (!ret.empty ())
3308 {
3309 /* We are only interested in checking one element. */
3310 probe *p = ret[0];
3311
3312 if (!p->can_evaluate_arguments ())
3313 {
3314 /* We cannot use the probe interface here, because it does
3315 not know how to evaluate arguments. */
3316 ret.clear ();
3317 }
3318 }
3319 bp_objfile_data->longjmp_probes = ret;
3320 bp_objfile_data->longjmp_searched = 1;
3321 }
3322
3323 if (!bp_objfile_data->longjmp_probes.empty ())
3324 {
3325 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3326
3327 for (probe *p : bp_objfile_data->longjmp_probes)
3328 {
3329 struct breakpoint *b;
3330
3331 b = create_internal_breakpoint (gdbarch,
3332 p->get_relocated_address (objfile),
3333 bp_longjmp_master,
3334 &internal_breakpoint_ops);
3335 b->location = new_probe_location ("-probe-stap libc:longjmp");
3336 b->enable_state = bp_disabled;
3337 }
3338
3339 continue;
3340 }
3341
3342 if (!gdbarch_get_longjmp_target_p (gdbarch))
3343 continue;
3344
3345 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3346 {
3347 struct breakpoint *b;
3348 const char *func_name;
3349 CORE_ADDR addr;
3350 struct explicit_location explicit_loc;
3351
3352 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3353 continue;
3354
3355 func_name = longjmp_names[i];
3356 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3357 {
3358 struct bound_minimal_symbol m;
3359
3360 m = lookup_minimal_symbol_text (func_name, objfile);
3361 if (m.minsym == NULL)
3362 {
3363 /* Prevent future lookups in this objfile. */
3364 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3365 continue;
3366 }
3367 bp_objfile_data->longjmp_msym[i] = m;
3368 }
3369
3370 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3371 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3372 &internal_breakpoint_ops);
3373 initialize_explicit_location (&explicit_loc);
3374 explicit_loc.function_name = ASTRDUP (func_name);
3375 b->location = new_explicit_location (&explicit_loc);
3376 b->enable_state = bp_disabled;
3377 }
3378 }
3379 }
3380 }
3381
3382 /* Create a master std::terminate breakpoint. */
3383 static void
3384 create_std_terminate_master_breakpoint (void)
3385 {
3386 struct program_space *pspace;
3387 const char *const func_name = "std::terminate()";
3388
3389 scoped_restore_current_program_space restore_pspace;
3390
3391 ALL_PSPACES (pspace)
3392 {
3393 struct objfile *objfile;
3394 CORE_ADDR addr;
3395
3396 set_current_program_space (pspace);
3397
3398 ALL_OBJFILES (objfile)
3399 {
3400 struct breakpoint *b;
3401 struct breakpoint_objfile_data *bp_objfile_data;
3402 struct explicit_location explicit_loc;
3403
3404 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3405
3406 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3407 continue;
3408
3409 if (bp_objfile_data->terminate_msym.minsym == NULL)
3410 {
3411 struct bound_minimal_symbol m;
3412
3413 m = lookup_minimal_symbol (func_name, NULL, objfile);
3414 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3415 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3416 {
3417 /* Prevent future lookups in this objfile. */
3418 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3419 continue;
3420 }
3421 bp_objfile_data->terminate_msym = m;
3422 }
3423
3424 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3425 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3426 bp_std_terminate_master,
3427 &internal_breakpoint_ops);
3428 initialize_explicit_location (&explicit_loc);
3429 explicit_loc.function_name = ASTRDUP (func_name);
3430 b->location = new_explicit_location (&explicit_loc);
3431 b->enable_state = bp_disabled;
3432 }
3433 }
3434 }
3435
3436 /* Install a master breakpoint on the unwinder's debug hook. */
3437
3438 static void
3439 create_exception_master_breakpoint (void)
3440 {
3441 struct objfile *objfile;
3442 const char *const func_name = "_Unwind_DebugHook";
3443
3444 ALL_OBJFILES (objfile)
3445 {
3446 struct breakpoint *b;
3447 struct gdbarch *gdbarch;
3448 struct breakpoint_objfile_data *bp_objfile_data;
3449 CORE_ADDR addr;
3450 struct explicit_location explicit_loc;
3451
3452 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3453
3454 /* We prefer the SystemTap probe point if it exists. */
3455 if (!bp_objfile_data->exception_searched)
3456 {
3457 std::vector<probe *> ret
3458 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3459
3460 if (!ret.empty ())
3461 {
3462 /* We are only interested in checking one element. */
3463 probe *p = ret[0];
3464
3465 if (!p->can_evaluate_arguments ())
3466 {
3467 /* We cannot use the probe interface here, because it does
3468 not know how to evaluate arguments. */
3469 ret.clear ();
3470 }
3471 }
3472 bp_objfile_data->exception_probes = ret;
3473 bp_objfile_data->exception_searched = 1;
3474 }
3475
3476 if (!bp_objfile_data->exception_probes.empty ())
3477 {
3478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3479
3480 for (probe *p : bp_objfile_data->exception_probes)
3481 {
3482 struct breakpoint *b;
3483
3484 b = create_internal_breakpoint (gdbarch,
3485 p->get_relocated_address (objfile),
3486 bp_exception_master,
3487 &internal_breakpoint_ops);
3488 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3489 b->enable_state = bp_disabled;
3490 }
3491
3492 continue;
3493 }
3494
3495 /* Otherwise, try the hook function. */
3496
3497 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3498 continue;
3499
3500 gdbarch = get_objfile_arch (objfile);
3501
3502 if (bp_objfile_data->exception_msym.minsym == NULL)
3503 {
3504 struct bound_minimal_symbol debug_hook;
3505
3506 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3507 if (debug_hook.minsym == NULL)
3508 {
3509 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3510 continue;
3511 }
3512
3513 bp_objfile_data->exception_msym = debug_hook;
3514 }
3515
3516 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3517 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3518 &current_target);
3519 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3520 &internal_breakpoint_ops);
3521 initialize_explicit_location (&explicit_loc);
3522 explicit_loc.function_name = ASTRDUP (func_name);
3523 b->location = new_explicit_location (&explicit_loc);
3524 b->enable_state = bp_disabled;
3525 }
3526 }
3527
3528 /* Does B have a location spec? */
3529
3530 static int
3531 breakpoint_event_location_empty_p (const struct breakpoint *b)
3532 {
3533 return b->location != NULL && event_location_empty_p (b->location.get ());
3534 }
3535
3536 void
3537 update_breakpoints_after_exec (void)
3538 {
3539 struct breakpoint *b, *b_tmp;
3540 struct bp_location *bploc, **bplocp_tmp;
3541
3542 /* We're about to delete breakpoints from GDB's lists. If the
3543 INSERTED flag is true, GDB will try to lift the breakpoints by
3544 writing the breakpoints' "shadow contents" back into memory. The
3545 "shadow contents" are NOT valid after an exec, so GDB should not
3546 do that. Instead, the target is responsible from marking
3547 breakpoints out as soon as it detects an exec. We don't do that
3548 here instead, because there may be other attempts to delete
3549 breakpoints after detecting an exec and before reaching here. */
3550 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3551 if (bploc->pspace == current_program_space)
3552 gdb_assert (!bploc->inserted);
3553
3554 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3555 {
3556 if (b->pspace != current_program_space)
3557 continue;
3558
3559 /* Solib breakpoints must be explicitly reset after an exec(). */
3560 if (b->type == bp_shlib_event)
3561 {
3562 delete_breakpoint (b);
3563 continue;
3564 }
3565
3566 /* JIT breakpoints must be explicitly reset after an exec(). */
3567 if (b->type == bp_jit_event)
3568 {
3569 delete_breakpoint (b);
3570 continue;
3571 }
3572
3573 /* Thread event breakpoints must be set anew after an exec(),
3574 as must overlay event and longjmp master breakpoints. */
3575 if (b->type == bp_thread_event || b->type == bp_overlay_event
3576 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3577 || b->type == bp_exception_master)
3578 {
3579 delete_breakpoint (b);
3580 continue;
3581 }
3582
3583 /* Step-resume breakpoints are meaningless after an exec(). */
3584 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3585 {
3586 delete_breakpoint (b);
3587 continue;
3588 }
3589
3590 /* Just like single-step breakpoints. */
3591 if (b->type == bp_single_step)
3592 {
3593 delete_breakpoint (b);
3594 continue;
3595 }
3596
3597 /* Longjmp and longjmp-resume breakpoints are also meaningless
3598 after an exec. */
3599 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3600 || b->type == bp_longjmp_call_dummy
3601 || b->type == bp_exception || b->type == bp_exception_resume)
3602 {
3603 delete_breakpoint (b);
3604 continue;
3605 }
3606
3607 if (b->type == bp_catchpoint)
3608 {
3609 /* For now, none of the bp_catchpoint breakpoints need to
3610 do anything at this point. In the future, if some of
3611 the catchpoints need to something, we will need to add
3612 a new method, and call this method from here. */
3613 continue;
3614 }
3615
3616 /* bp_finish is a special case. The only way we ought to be able
3617 to see one of these when an exec() has happened, is if the user
3618 caught a vfork, and then said "finish". Ordinarily a finish just
3619 carries them to the call-site of the current callee, by setting
3620 a temporary bp there and resuming. But in this case, the finish
3621 will carry them entirely through the vfork & exec.
3622
3623 We don't want to allow a bp_finish to remain inserted now. But
3624 we can't safely delete it, 'cause finish_command has a handle to
3625 the bp on a bpstat, and will later want to delete it. There's a
3626 chance (and I've seen it happen) that if we delete the bp_finish
3627 here, that its storage will get reused by the time finish_command
3628 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3629 We really must allow finish_command to delete a bp_finish.
3630
3631 In the absence of a general solution for the "how do we know
3632 it's safe to delete something others may have handles to?"
3633 problem, what we'll do here is just uninsert the bp_finish, and
3634 let finish_command delete it.
3635
3636 (We know the bp_finish is "doomed" in the sense that it's
3637 momentary, and will be deleted as soon as finish_command sees
3638 the inferior stopped. So it doesn't matter that the bp's
3639 address is probably bogus in the new a.out, unlike e.g., the
3640 solib breakpoints.) */
3641
3642 if (b->type == bp_finish)
3643 {
3644 continue;
3645 }
3646
3647 /* Without a symbolic address, we have little hope of the
3648 pre-exec() address meaning the same thing in the post-exec()
3649 a.out. */
3650 if (breakpoint_event_location_empty_p (b))
3651 {
3652 delete_breakpoint (b);
3653 continue;
3654 }
3655 }
3656 }
3657
3658 int
3659 detach_breakpoints (ptid_t ptid)
3660 {
3661 struct bp_location *bl, **blp_tmp;
3662 int val = 0;
3663 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3664 struct inferior *inf = current_inferior ();
3665
3666 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3667 error (_("Cannot detach breakpoints of inferior_ptid"));
3668
3669 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3670 inferior_ptid = ptid;
3671 ALL_BP_LOCATIONS (bl, blp_tmp)
3672 {
3673 if (bl->pspace != inf->pspace)
3674 continue;
3675
3676 /* This function must physically remove breakpoints locations
3677 from the specified ptid, without modifying the breakpoint
3678 package's state. Locations of type bp_loc_other are only
3679 maintained at GDB side. So, there is no need to remove
3680 these bp_loc_other locations. Moreover, removing these
3681 would modify the breakpoint package's state. */
3682 if (bl->loc_type == bp_loc_other)
3683 continue;
3684
3685 if (bl->inserted)
3686 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3687 }
3688
3689 return val;
3690 }
3691
3692 /* Remove the breakpoint location BL from the current address space.
3693 Note that this is used to detach breakpoints from a child fork.
3694 When we get here, the child isn't in the inferior list, and neither
3695 do we have objects to represent its address space --- we should
3696 *not* look at bl->pspace->aspace here. */
3697
3698 static int
3699 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3700 {
3701 int val;
3702
3703 /* BL is never in moribund_locations by our callers. */
3704 gdb_assert (bl->owner != NULL);
3705
3706 /* The type of none suggests that owner is actually deleted.
3707 This should not ever happen. */
3708 gdb_assert (bl->owner->type != bp_none);
3709
3710 if (bl->loc_type == bp_loc_software_breakpoint
3711 || bl->loc_type == bp_loc_hardware_breakpoint)
3712 {
3713 /* "Normal" instruction breakpoint: either the standard
3714 trap-instruction bp (bp_breakpoint), or a
3715 bp_hardware_breakpoint. */
3716
3717 /* First check to see if we have to handle an overlay. */
3718 if (overlay_debugging == ovly_off
3719 || bl->section == NULL
3720 || !(section_is_overlay (bl->section)))
3721 {
3722 /* No overlay handling: just remove the breakpoint. */
3723
3724 /* If we're trying to uninsert a memory breakpoint that we
3725 know is set in a dynamic object that is marked
3726 shlib_disabled, then either the dynamic object was
3727 removed with "remove-symbol-file" or with
3728 "nosharedlibrary". In the former case, we don't know
3729 whether another dynamic object might have loaded over the
3730 breakpoint's address -- the user might well let us know
3731 about it next with add-symbol-file (the whole point of
3732 add-symbol-file is letting the user manually maintain a
3733 list of dynamically loaded objects). If we have the
3734 breakpoint's shadow memory, that is, this is a software
3735 breakpoint managed by GDB, check whether the breakpoint
3736 is still inserted in memory, to avoid overwriting wrong
3737 code with stale saved shadow contents. Note that HW
3738 breakpoints don't have shadow memory, as they're
3739 implemented using a mechanism that is not dependent on
3740 being able to modify the target's memory, and as such
3741 they should always be removed. */
3742 if (bl->shlib_disabled
3743 && bl->target_info.shadow_len != 0
3744 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3745 val = 0;
3746 else
3747 val = bl->owner->ops->remove_location (bl, reason);
3748 }
3749 else
3750 {
3751 /* This breakpoint is in an overlay section.
3752 Did we set a breakpoint at the LMA? */
3753 if (!overlay_events_enabled)
3754 {
3755 /* Yes -- overlay event support is not active, so we
3756 should have set a breakpoint at the LMA. Remove it.
3757 */
3758 /* Ignore any failures: if the LMA is in ROM, we will
3759 have already warned when we failed to insert it. */
3760 if (bl->loc_type == bp_loc_hardware_breakpoint)
3761 target_remove_hw_breakpoint (bl->gdbarch,
3762 &bl->overlay_target_info);
3763 else
3764 target_remove_breakpoint (bl->gdbarch,
3765 &bl->overlay_target_info,
3766 reason);
3767 }
3768 /* Did we set a breakpoint at the VMA?
3769 If so, we will have marked the breakpoint 'inserted'. */
3770 if (bl->inserted)
3771 {
3772 /* Yes -- remove it. Previously we did not bother to
3773 remove the breakpoint if the section had been
3774 unmapped, but let's not rely on that being safe. We
3775 don't know what the overlay manager might do. */
3776
3777 /* However, we should remove *software* breakpoints only
3778 if the section is still mapped, or else we overwrite
3779 wrong code with the saved shadow contents. */
3780 if (bl->loc_type == bp_loc_hardware_breakpoint
3781 || section_is_mapped (bl->section))
3782 val = bl->owner->ops->remove_location (bl, reason);
3783 else
3784 val = 0;
3785 }
3786 else
3787 {
3788 /* No -- not inserted, so no need to remove. No error. */
3789 val = 0;
3790 }
3791 }
3792
3793 /* In some cases, we might not be able to remove a breakpoint in
3794 a shared library that has already been removed, but we have
3795 not yet processed the shlib unload event. Similarly for an
3796 unloaded add-symbol-file object - the user might not yet have
3797 had the chance to remove-symbol-file it. shlib_disabled will
3798 be set if the library/object has already been removed, but
3799 the breakpoint hasn't been uninserted yet, e.g., after
3800 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3801 always-inserted mode. */
3802 if (val
3803 && (bl->loc_type == bp_loc_software_breakpoint
3804 && (bl->shlib_disabled
3805 || solib_name_from_address (bl->pspace, bl->address)
3806 || shared_objfile_contains_address_p (bl->pspace,
3807 bl->address))))
3808 val = 0;
3809
3810 if (val)
3811 return val;
3812 bl->inserted = (reason == DETACH_BREAKPOINT);
3813 }
3814 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3815 {
3816 gdb_assert (bl->owner->ops != NULL
3817 && bl->owner->ops->remove_location != NULL);
3818
3819 bl->inserted = (reason == DETACH_BREAKPOINT);
3820 bl->owner->ops->remove_location (bl, reason);
3821
3822 /* Failure to remove any of the hardware watchpoints comes here. */
3823 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3824 warning (_("Could not remove hardware watchpoint %d."),
3825 bl->owner->number);
3826 }
3827 else if (bl->owner->type == bp_catchpoint
3828 && breakpoint_enabled (bl->owner)
3829 && !bl->duplicate)
3830 {
3831 gdb_assert (bl->owner->ops != NULL
3832 && bl->owner->ops->remove_location != NULL);
3833
3834 val = bl->owner->ops->remove_location (bl, reason);
3835 if (val)
3836 return val;
3837
3838 bl->inserted = (reason == DETACH_BREAKPOINT);
3839 }
3840
3841 return 0;
3842 }
3843
3844 static int
3845 remove_breakpoint (struct bp_location *bl)
3846 {
3847 /* BL is never in moribund_locations by our callers. */
3848 gdb_assert (bl->owner != NULL);
3849
3850 /* The type of none suggests that owner is actually deleted.
3851 This should not ever happen. */
3852 gdb_assert (bl->owner->type != bp_none);
3853
3854 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3855
3856 switch_to_program_space_and_thread (bl->pspace);
3857
3858 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3859 }
3860
3861 /* Clear the "inserted" flag in all breakpoints. */
3862
3863 void
3864 mark_breakpoints_out (void)
3865 {
3866 struct bp_location *bl, **blp_tmp;
3867
3868 ALL_BP_LOCATIONS (bl, blp_tmp)
3869 if (bl->pspace == current_program_space)
3870 bl->inserted = 0;
3871 }
3872
3873 /* Clear the "inserted" flag in all breakpoints and delete any
3874 breakpoints which should go away between runs of the program.
3875
3876 Plus other such housekeeping that has to be done for breakpoints
3877 between runs.
3878
3879 Note: this function gets called at the end of a run (by
3880 generic_mourn_inferior) and when a run begins (by
3881 init_wait_for_inferior). */
3882
3883
3884
3885 void
3886 breakpoint_init_inferior (enum inf_context context)
3887 {
3888 struct breakpoint *b, *b_tmp;
3889 struct bp_location *bl;
3890 int ix;
3891 struct program_space *pspace = current_program_space;
3892
3893 /* If breakpoint locations are shared across processes, then there's
3894 nothing to do. */
3895 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3896 return;
3897
3898 mark_breakpoints_out ();
3899
3900 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3901 {
3902 if (b->loc && b->loc->pspace != pspace)
3903 continue;
3904
3905 switch (b->type)
3906 {
3907 case bp_call_dummy:
3908 case bp_longjmp_call_dummy:
3909
3910 /* If the call dummy breakpoint is at the entry point it will
3911 cause problems when the inferior is rerun, so we better get
3912 rid of it. */
3913
3914 case bp_watchpoint_scope:
3915
3916 /* Also get rid of scope breakpoints. */
3917
3918 case bp_shlib_event:
3919
3920 /* Also remove solib event breakpoints. Their addresses may
3921 have changed since the last time we ran the program.
3922 Actually we may now be debugging against different target;
3923 and so the solib backend that installed this breakpoint may
3924 not be used in by the target. E.g.,
3925
3926 (gdb) file prog-linux
3927 (gdb) run # native linux target
3928 ...
3929 (gdb) kill
3930 (gdb) file prog-win.exe
3931 (gdb) tar rem :9999 # remote Windows gdbserver.
3932 */
3933
3934 case bp_step_resume:
3935
3936 /* Also remove step-resume breakpoints. */
3937
3938 case bp_single_step:
3939
3940 /* Also remove single-step breakpoints. */
3941
3942 delete_breakpoint (b);
3943 break;
3944
3945 case bp_watchpoint:
3946 case bp_hardware_watchpoint:
3947 case bp_read_watchpoint:
3948 case bp_access_watchpoint:
3949 {
3950 struct watchpoint *w = (struct watchpoint *) b;
3951
3952 /* Likewise for watchpoints on local expressions. */
3953 if (w->exp_valid_block != NULL)
3954 delete_breakpoint (b);
3955 else
3956 {
3957 /* Get rid of existing locations, which are no longer
3958 valid. New ones will be created in
3959 update_watchpoint, when the inferior is restarted.
3960 The next update_global_location_list call will
3961 garbage collect them. */
3962 b->loc = NULL;
3963
3964 if (context == inf_starting)
3965 {
3966 /* Reset val field to force reread of starting value in
3967 insert_breakpoints. */
3968 if (w->val)
3969 value_free (w->val);
3970 w->val = NULL;
3971 w->val_valid = 0;
3972 }
3973 }
3974 }
3975 break;
3976 default:
3977 break;
3978 }
3979 }
3980
3981 /* Get rid of the moribund locations. */
3982 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3983 decref_bp_location (&bl);
3984 VEC_free (bp_location_p, moribund_locations);
3985 }
3986
3987 /* These functions concern about actual breakpoints inserted in the
3988 target --- to e.g. check if we need to do decr_pc adjustment or if
3989 we need to hop over the bkpt --- so we check for address space
3990 match, not program space. */
3991
3992 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3993 exists at PC. It returns ordinary_breakpoint_here if it's an
3994 ordinary breakpoint, or permanent_breakpoint_here if it's a
3995 permanent breakpoint.
3996 - When continuing from a location with an ordinary breakpoint, we
3997 actually single step once before calling insert_breakpoints.
3998 - When continuing from a location with a permanent breakpoint, we
3999 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4000 the target, to advance the PC past the breakpoint. */
4001
4002 enum breakpoint_here
4003 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4004 {
4005 struct bp_location *bl, **blp_tmp;
4006 int any_breakpoint_here = 0;
4007
4008 ALL_BP_LOCATIONS (bl, blp_tmp)
4009 {
4010 if (bl->loc_type != bp_loc_software_breakpoint
4011 && bl->loc_type != bp_loc_hardware_breakpoint)
4012 continue;
4013
4014 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4015 if ((breakpoint_enabled (bl->owner)
4016 || bl->permanent)
4017 && breakpoint_location_address_match (bl, aspace, pc))
4018 {
4019 if (overlay_debugging
4020 && section_is_overlay (bl->section)
4021 && !section_is_mapped (bl->section))
4022 continue; /* unmapped overlay -- can't be a match */
4023 else if (bl->permanent)
4024 return permanent_breakpoint_here;
4025 else
4026 any_breakpoint_here = 1;
4027 }
4028 }
4029
4030 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4031 }
4032
4033 /* See breakpoint.h. */
4034
4035 int
4036 breakpoint_in_range_p (const address_space *aspace,
4037 CORE_ADDR addr, ULONGEST len)
4038 {
4039 struct bp_location *bl, **blp_tmp;
4040
4041 ALL_BP_LOCATIONS (bl, blp_tmp)
4042 {
4043 if (bl->loc_type != bp_loc_software_breakpoint
4044 && bl->loc_type != bp_loc_hardware_breakpoint)
4045 continue;
4046
4047 if ((breakpoint_enabled (bl->owner)
4048 || bl->permanent)
4049 && breakpoint_location_address_range_overlap (bl, aspace,
4050 addr, len))
4051 {
4052 if (overlay_debugging
4053 && section_is_overlay (bl->section)
4054 && !section_is_mapped (bl->section))
4055 {
4056 /* Unmapped overlay -- can't be a match. */
4057 continue;
4058 }
4059
4060 return 1;
4061 }
4062 }
4063
4064 return 0;
4065 }
4066
4067 /* Return true if there's a moribund breakpoint at PC. */
4068
4069 int
4070 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4071 {
4072 struct bp_location *loc;
4073 int ix;
4074
4075 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4076 if (breakpoint_location_address_match (loc, aspace, pc))
4077 return 1;
4078
4079 return 0;
4080 }
4081
4082 /* Returns non-zero iff BL is inserted at PC, in address space
4083 ASPACE. */
4084
4085 static int
4086 bp_location_inserted_here_p (struct bp_location *bl,
4087 const address_space *aspace, CORE_ADDR pc)
4088 {
4089 if (bl->inserted
4090 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4091 aspace, pc))
4092 {
4093 if (overlay_debugging
4094 && section_is_overlay (bl->section)
4095 && !section_is_mapped (bl->section))
4096 return 0; /* unmapped overlay -- can't be a match */
4097 else
4098 return 1;
4099 }
4100 return 0;
4101 }
4102
4103 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4104
4105 int
4106 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4107 {
4108 struct bp_location **blp, **blp_tmp = NULL;
4109
4110 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4111 {
4112 struct bp_location *bl = *blp;
4113
4114 if (bl->loc_type != bp_loc_software_breakpoint
4115 && bl->loc_type != bp_loc_hardware_breakpoint)
4116 continue;
4117
4118 if (bp_location_inserted_here_p (bl, aspace, pc))
4119 return 1;
4120 }
4121 return 0;
4122 }
4123
4124 /* This function returns non-zero iff there is a software breakpoint
4125 inserted at PC. */
4126
4127 int
4128 software_breakpoint_inserted_here_p (const address_space *aspace,
4129 CORE_ADDR pc)
4130 {
4131 struct bp_location **blp, **blp_tmp = NULL;
4132
4133 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4134 {
4135 struct bp_location *bl = *blp;
4136
4137 if (bl->loc_type != bp_loc_software_breakpoint)
4138 continue;
4139
4140 if (bp_location_inserted_here_p (bl, aspace, pc))
4141 return 1;
4142 }
4143
4144 return 0;
4145 }
4146
4147 /* See breakpoint.h. */
4148
4149 int
4150 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4151 CORE_ADDR pc)
4152 {
4153 struct bp_location **blp, **blp_tmp = NULL;
4154
4155 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4156 {
4157 struct bp_location *bl = *blp;
4158
4159 if (bl->loc_type != bp_loc_hardware_breakpoint)
4160 continue;
4161
4162 if (bp_location_inserted_here_p (bl, aspace, pc))
4163 return 1;
4164 }
4165
4166 return 0;
4167 }
4168
4169 int
4170 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4171 CORE_ADDR addr, ULONGEST len)
4172 {
4173 struct breakpoint *bpt;
4174
4175 ALL_BREAKPOINTS (bpt)
4176 {
4177 struct bp_location *loc;
4178
4179 if (bpt->type != bp_hardware_watchpoint
4180 && bpt->type != bp_access_watchpoint)
4181 continue;
4182
4183 if (!breakpoint_enabled (bpt))
4184 continue;
4185
4186 for (loc = bpt->loc; loc; loc = loc->next)
4187 if (loc->pspace->aspace == aspace && loc->inserted)
4188 {
4189 CORE_ADDR l, h;
4190
4191 /* Check for intersection. */
4192 l = std::max<CORE_ADDR> (loc->address, addr);
4193 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4194 if (l < h)
4195 return 1;
4196 }
4197 }
4198 return 0;
4199 }
4200 \f
4201
4202 /* bpstat stuff. External routines' interfaces are documented
4203 in breakpoint.h. */
4204
4205 int
4206 is_catchpoint (struct breakpoint *ep)
4207 {
4208 return (ep->type == bp_catchpoint);
4209 }
4210
4211 /* Frees any storage that is part of a bpstat. Does not walk the
4212 'next' chain. */
4213
4214 bpstats::~bpstats ()
4215 {
4216 if (old_val != NULL)
4217 value_free (old_val);
4218 if (bp_location_at != NULL)
4219 decref_bp_location (&bp_location_at);
4220 }
4221
4222 /* Clear a bpstat so that it says we are not at any breakpoint.
4223 Also free any storage that is part of a bpstat. */
4224
4225 void
4226 bpstat_clear (bpstat *bsp)
4227 {
4228 bpstat p;
4229 bpstat q;
4230
4231 if (bsp == 0)
4232 return;
4233 p = *bsp;
4234 while (p != NULL)
4235 {
4236 q = p->next;
4237 delete p;
4238 p = q;
4239 }
4240 *bsp = NULL;
4241 }
4242
4243 bpstats::bpstats (const bpstats &other)
4244 : next (NULL),
4245 bp_location_at (other.bp_location_at),
4246 breakpoint_at (other.breakpoint_at),
4247 commands (other.commands),
4248 old_val (other.old_val),
4249 print (other.print),
4250 stop (other.stop),
4251 print_it (other.print_it)
4252 {
4253 if (old_val != NULL)
4254 {
4255 old_val = value_copy (old_val);
4256 release_value (old_val);
4257 }
4258 incref_bp_location (bp_location_at);
4259 }
4260
4261 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4262 is part of the bpstat is copied as well. */
4263
4264 bpstat
4265 bpstat_copy (bpstat bs)
4266 {
4267 bpstat p = NULL;
4268 bpstat tmp;
4269 bpstat retval = NULL;
4270
4271 if (bs == NULL)
4272 return bs;
4273
4274 for (; bs != NULL; bs = bs->next)
4275 {
4276 tmp = new bpstats (*bs);
4277
4278 if (p == NULL)
4279 /* This is the first thing in the chain. */
4280 retval = tmp;
4281 else
4282 p->next = tmp;
4283 p = tmp;
4284 }
4285 p->next = NULL;
4286 return retval;
4287 }
4288
4289 /* Find the bpstat associated with this breakpoint. */
4290
4291 bpstat
4292 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4293 {
4294 if (bsp == NULL)
4295 return NULL;
4296
4297 for (; bsp != NULL; bsp = bsp->next)
4298 {
4299 if (bsp->breakpoint_at == breakpoint)
4300 return bsp;
4301 }
4302 return NULL;
4303 }
4304
4305 /* See breakpoint.h. */
4306
4307 int
4308 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4309 {
4310 for (; bsp != NULL; bsp = bsp->next)
4311 {
4312 if (bsp->breakpoint_at == NULL)
4313 {
4314 /* A moribund location can never explain a signal other than
4315 GDB_SIGNAL_TRAP. */
4316 if (sig == GDB_SIGNAL_TRAP)
4317 return 1;
4318 }
4319 else
4320 {
4321 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4322 sig))
4323 return 1;
4324 }
4325 }
4326
4327 return 0;
4328 }
4329
4330 /* Put in *NUM the breakpoint number of the first breakpoint we are
4331 stopped at. *BSP upon return is a bpstat which points to the
4332 remaining breakpoints stopped at (but which is not guaranteed to be
4333 good for anything but further calls to bpstat_num).
4334
4335 Return 0 if passed a bpstat which does not indicate any breakpoints.
4336 Return -1 if stopped at a breakpoint that has been deleted since
4337 we set it.
4338 Return 1 otherwise. */
4339
4340 int
4341 bpstat_num (bpstat *bsp, int *num)
4342 {
4343 struct breakpoint *b;
4344
4345 if ((*bsp) == NULL)
4346 return 0; /* No more breakpoint values */
4347
4348 /* We assume we'll never have several bpstats that correspond to a
4349 single breakpoint -- otherwise, this function might return the
4350 same number more than once and this will look ugly. */
4351 b = (*bsp)->breakpoint_at;
4352 *bsp = (*bsp)->next;
4353 if (b == NULL)
4354 return -1; /* breakpoint that's been deleted since */
4355
4356 *num = b->number; /* We have its number */
4357 return 1;
4358 }
4359
4360 /* See breakpoint.h. */
4361
4362 void
4363 bpstat_clear_actions (void)
4364 {
4365 struct thread_info *tp;
4366 bpstat bs;
4367
4368 if (ptid_equal (inferior_ptid, null_ptid))
4369 return;
4370
4371 tp = find_thread_ptid (inferior_ptid);
4372 if (tp == NULL)
4373 return;
4374
4375 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4376 {
4377 bs->commands = NULL;
4378
4379 if (bs->old_val != NULL)
4380 {
4381 value_free (bs->old_val);
4382 bs->old_val = NULL;
4383 }
4384 }
4385 }
4386
4387 /* Called when a command is about to proceed the inferior. */
4388
4389 static void
4390 breakpoint_about_to_proceed (void)
4391 {
4392 if (!ptid_equal (inferior_ptid, null_ptid))
4393 {
4394 struct thread_info *tp = inferior_thread ();
4395
4396 /* Allow inferior function calls in breakpoint commands to not
4397 interrupt the command list. When the call finishes
4398 successfully, the inferior will be standing at the same
4399 breakpoint as if nothing happened. */
4400 if (tp->control.in_infcall)
4401 return;
4402 }
4403
4404 breakpoint_proceeded = 1;
4405 }
4406
4407 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4408 or its equivalent. */
4409
4410 static int
4411 command_line_is_silent (struct command_line *cmd)
4412 {
4413 return cmd && (strcmp ("silent", cmd->line) == 0);
4414 }
4415
4416 /* Execute all the commands associated with all the breakpoints at
4417 this location. Any of these commands could cause the process to
4418 proceed beyond this point, etc. We look out for such changes by
4419 checking the global "breakpoint_proceeded" after each command.
4420
4421 Returns true if a breakpoint command resumed the inferior. In that
4422 case, it is the caller's responsibility to recall it again with the
4423 bpstat of the current thread. */
4424
4425 static int
4426 bpstat_do_actions_1 (bpstat *bsp)
4427 {
4428 bpstat bs;
4429 int again = 0;
4430
4431 /* Avoid endless recursion if a `source' command is contained
4432 in bs->commands. */
4433 if (executing_breakpoint_commands)
4434 return 0;
4435
4436 scoped_restore save_executing
4437 = make_scoped_restore (&executing_breakpoint_commands, 1);
4438
4439 scoped_restore preventer = prevent_dont_repeat ();
4440
4441 /* This pointer will iterate over the list of bpstat's. */
4442 bs = *bsp;
4443
4444 breakpoint_proceeded = 0;
4445 for (; bs != NULL; bs = bs->next)
4446 {
4447 struct command_line *cmd = NULL;
4448
4449 /* Take ownership of the BSP's command tree, if it has one.
4450
4451 The command tree could legitimately contain commands like
4452 'step' and 'next', which call clear_proceed_status, which
4453 frees stop_bpstat's command tree. To make sure this doesn't
4454 free the tree we're executing out from under us, we need to
4455 take ownership of the tree ourselves. Since a given bpstat's
4456 commands are only executed once, we don't need to copy it; we
4457 can clear the pointer in the bpstat, and make sure we free
4458 the tree when we're done. */
4459 counted_command_line ccmd = bs->commands;
4460 bs->commands = NULL;
4461 if (ccmd != NULL)
4462 cmd = ccmd.get ();
4463 if (command_line_is_silent (cmd))
4464 {
4465 /* The action has been already done by bpstat_stop_status. */
4466 cmd = cmd->next;
4467 }
4468
4469 while (cmd != NULL)
4470 {
4471 execute_control_command (cmd);
4472
4473 if (breakpoint_proceeded)
4474 break;
4475 else
4476 cmd = cmd->next;
4477 }
4478
4479 if (breakpoint_proceeded)
4480 {
4481 if (current_ui->async)
4482 /* If we are in async mode, then the target might be still
4483 running, not stopped at any breakpoint, so nothing for
4484 us to do here -- just return to the event loop. */
4485 ;
4486 else
4487 /* In sync mode, when execute_control_command returns
4488 we're already standing on the next breakpoint.
4489 Breakpoint commands for that stop were not run, since
4490 execute_command does not run breakpoint commands --
4491 only command_line_handler does, but that one is not
4492 involved in execution of breakpoint commands. So, we
4493 can now execute breakpoint commands. It should be
4494 noted that making execute_command do bpstat actions is
4495 not an option -- in this case we'll have recursive
4496 invocation of bpstat for each breakpoint with a
4497 command, and can easily blow up GDB stack. Instead, we
4498 return true, which will trigger the caller to recall us
4499 with the new stop_bpstat. */
4500 again = 1;
4501 break;
4502 }
4503 }
4504 return again;
4505 }
4506
4507 void
4508 bpstat_do_actions (void)
4509 {
4510 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4511
4512 /* Do any commands attached to breakpoint we are stopped at. */
4513 while (!ptid_equal (inferior_ptid, null_ptid)
4514 && target_has_execution
4515 && !is_exited (inferior_ptid)
4516 && !is_executing (inferior_ptid))
4517 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4518 and only return when it is stopped at the next breakpoint, we
4519 keep doing breakpoint actions until it returns false to
4520 indicate the inferior was not resumed. */
4521 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4522 break;
4523
4524 discard_cleanups (cleanup_if_error);
4525 }
4526
4527 /* Print out the (old or new) value associated with a watchpoint. */
4528
4529 static void
4530 watchpoint_value_print (struct value *val, struct ui_file *stream)
4531 {
4532 if (val == NULL)
4533 fprintf_unfiltered (stream, _("<unreadable>"));
4534 else
4535 {
4536 struct value_print_options opts;
4537 get_user_print_options (&opts);
4538 value_print (val, stream, &opts);
4539 }
4540 }
4541
4542 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4543 debugging multiple threads. */
4544
4545 void
4546 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4547 {
4548 if (uiout->is_mi_like_p ())
4549 return;
4550
4551 uiout->text ("\n");
4552
4553 if (show_thread_that_caused_stop ())
4554 {
4555 const char *name;
4556 struct thread_info *thr = inferior_thread ();
4557
4558 uiout->text ("Thread ");
4559 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4560
4561 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4562 if (name != NULL)
4563 {
4564 uiout->text (" \"");
4565 uiout->field_fmt ("name", "%s", name);
4566 uiout->text ("\"");
4567 }
4568
4569 uiout->text (" hit ");
4570 }
4571 }
4572
4573 /* Generic routine for printing messages indicating why we
4574 stopped. The behavior of this function depends on the value
4575 'print_it' in the bpstat structure. Under some circumstances we
4576 may decide not to print anything here and delegate the task to
4577 normal_stop(). */
4578
4579 static enum print_stop_action
4580 print_bp_stop_message (bpstat bs)
4581 {
4582 switch (bs->print_it)
4583 {
4584 case print_it_noop:
4585 /* Nothing should be printed for this bpstat entry. */
4586 return PRINT_UNKNOWN;
4587 break;
4588
4589 case print_it_done:
4590 /* We still want to print the frame, but we already printed the
4591 relevant messages. */
4592 return PRINT_SRC_AND_LOC;
4593 break;
4594
4595 case print_it_normal:
4596 {
4597 struct breakpoint *b = bs->breakpoint_at;
4598
4599 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4600 which has since been deleted. */
4601 if (b == NULL)
4602 return PRINT_UNKNOWN;
4603
4604 /* Normal case. Call the breakpoint's print_it method. */
4605 return b->ops->print_it (bs);
4606 }
4607 break;
4608
4609 default:
4610 internal_error (__FILE__, __LINE__,
4611 _("print_bp_stop_message: unrecognized enum value"));
4612 break;
4613 }
4614 }
4615
4616 /* A helper function that prints a shared library stopped event. */
4617
4618 static void
4619 print_solib_event (int is_catchpoint)
4620 {
4621 int any_deleted
4622 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4623 int any_added
4624 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4625
4626 if (!is_catchpoint)
4627 {
4628 if (any_added || any_deleted)
4629 current_uiout->text (_("Stopped due to shared library event:\n"));
4630 else
4631 current_uiout->text (_("Stopped due to shared library event (no "
4632 "libraries added or removed)\n"));
4633 }
4634
4635 if (current_uiout->is_mi_like_p ())
4636 current_uiout->field_string ("reason",
4637 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4638
4639 if (any_deleted)
4640 {
4641 char *name;
4642 int ix;
4643
4644 current_uiout->text (_(" Inferior unloaded "));
4645 ui_out_emit_list list_emitter (current_uiout, "removed");
4646 for (ix = 0;
4647 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4648 ix, name);
4649 ++ix)
4650 {
4651 if (ix > 0)
4652 current_uiout->text (" ");
4653 current_uiout->field_string ("library", name);
4654 current_uiout->text ("\n");
4655 }
4656 }
4657
4658 if (any_added)
4659 {
4660 struct so_list *iter;
4661 int ix;
4662
4663 current_uiout->text (_(" Inferior loaded "));
4664 ui_out_emit_list list_emitter (current_uiout, "added");
4665 for (ix = 0;
4666 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4667 ix, iter);
4668 ++ix)
4669 {
4670 if (ix > 0)
4671 current_uiout->text (" ");
4672 current_uiout->field_string ("library", iter->so_name);
4673 current_uiout->text ("\n");
4674 }
4675 }
4676 }
4677
4678 /* Print a message indicating what happened. This is called from
4679 normal_stop(). The input to this routine is the head of the bpstat
4680 list - a list of the eventpoints that caused this stop. KIND is
4681 the target_waitkind for the stopping event. This
4682 routine calls the generic print routine for printing a message
4683 about reasons for stopping. This will print (for example) the
4684 "Breakpoint n," part of the output. The return value of this
4685 routine is one of:
4686
4687 PRINT_UNKNOWN: Means we printed nothing.
4688 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4689 code to print the location. An example is
4690 "Breakpoint 1, " which should be followed by
4691 the location.
4692 PRINT_SRC_ONLY: Means we printed something, but there is no need
4693 to also print the location part of the message.
4694 An example is the catch/throw messages, which
4695 don't require a location appended to the end.
4696 PRINT_NOTHING: We have done some printing and we don't need any
4697 further info to be printed. */
4698
4699 enum print_stop_action
4700 bpstat_print (bpstat bs, int kind)
4701 {
4702 enum print_stop_action val;
4703
4704 /* Maybe another breakpoint in the chain caused us to stop.
4705 (Currently all watchpoints go on the bpstat whether hit or not.
4706 That probably could (should) be changed, provided care is taken
4707 with respect to bpstat_explains_signal). */
4708 for (; bs; bs = bs->next)
4709 {
4710 val = print_bp_stop_message (bs);
4711 if (val == PRINT_SRC_ONLY
4712 || val == PRINT_SRC_AND_LOC
4713 || val == PRINT_NOTHING)
4714 return val;
4715 }
4716
4717 /* If we had hit a shared library event breakpoint,
4718 print_bp_stop_message would print out this message. If we hit an
4719 OS-level shared library event, do the same thing. */
4720 if (kind == TARGET_WAITKIND_LOADED)
4721 {
4722 print_solib_event (0);
4723 return PRINT_NOTHING;
4724 }
4725
4726 /* We reached the end of the chain, or we got a null BS to start
4727 with and nothing was printed. */
4728 return PRINT_UNKNOWN;
4729 }
4730
4731 /* Evaluate the boolean expression EXP and return the result. */
4732
4733 static bool
4734 breakpoint_cond_eval (expression *exp)
4735 {
4736 struct value *mark = value_mark ();
4737 bool res = value_true (evaluate_expression (exp));
4738
4739 value_free_to_mark (mark);
4740 return res;
4741 }
4742
4743 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4744
4745 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4746 : next (NULL),
4747 bp_location_at (bl),
4748 breakpoint_at (bl->owner),
4749 commands (NULL),
4750 old_val (NULL),
4751 print (0),
4752 stop (0),
4753 print_it (print_it_normal)
4754 {
4755 incref_bp_location (bl);
4756 **bs_link_pointer = this;
4757 *bs_link_pointer = &next;
4758 }
4759
4760 bpstats::bpstats ()
4761 : next (NULL),
4762 bp_location_at (NULL),
4763 breakpoint_at (NULL),
4764 commands (NULL),
4765 old_val (NULL),
4766 print (0),
4767 stop (0),
4768 print_it (print_it_normal)
4769 {
4770 }
4771 \f
4772 /* The target has stopped with waitstatus WS. Check if any hardware
4773 watchpoints have triggered, according to the target. */
4774
4775 int
4776 watchpoints_triggered (struct target_waitstatus *ws)
4777 {
4778 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4779 CORE_ADDR addr;
4780 struct breakpoint *b;
4781
4782 if (!stopped_by_watchpoint)
4783 {
4784 /* We were not stopped by a watchpoint. Mark all watchpoints
4785 as not triggered. */
4786 ALL_BREAKPOINTS (b)
4787 if (is_hardware_watchpoint (b))
4788 {
4789 struct watchpoint *w = (struct watchpoint *) b;
4790
4791 w->watchpoint_triggered = watch_triggered_no;
4792 }
4793
4794 return 0;
4795 }
4796
4797 if (!target_stopped_data_address (&current_target, &addr))
4798 {
4799 /* We were stopped by a watchpoint, but we don't know where.
4800 Mark all watchpoints as unknown. */
4801 ALL_BREAKPOINTS (b)
4802 if (is_hardware_watchpoint (b))
4803 {
4804 struct watchpoint *w = (struct watchpoint *) b;
4805
4806 w->watchpoint_triggered = watch_triggered_unknown;
4807 }
4808
4809 return 1;
4810 }
4811
4812 /* The target could report the data address. Mark watchpoints
4813 affected by this data address as triggered, and all others as not
4814 triggered. */
4815
4816 ALL_BREAKPOINTS (b)
4817 if (is_hardware_watchpoint (b))
4818 {
4819 struct watchpoint *w = (struct watchpoint *) b;
4820 struct bp_location *loc;
4821
4822 w->watchpoint_triggered = watch_triggered_no;
4823 for (loc = b->loc; loc; loc = loc->next)
4824 {
4825 if (is_masked_watchpoint (b))
4826 {
4827 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4828 CORE_ADDR start = loc->address & w->hw_wp_mask;
4829
4830 if (newaddr == start)
4831 {
4832 w->watchpoint_triggered = watch_triggered_yes;
4833 break;
4834 }
4835 }
4836 /* Exact match not required. Within range is sufficient. */
4837 else if (target_watchpoint_addr_within_range (&current_target,
4838 addr, loc->address,
4839 loc->length))
4840 {
4841 w->watchpoint_triggered = watch_triggered_yes;
4842 break;
4843 }
4844 }
4845 }
4846
4847 return 1;
4848 }
4849
4850 /* Possible return values for watchpoint_check. */
4851 enum wp_check_result
4852 {
4853 /* The watchpoint has been deleted. */
4854 WP_DELETED = 1,
4855
4856 /* The value has changed. */
4857 WP_VALUE_CHANGED = 2,
4858
4859 /* The value has not changed. */
4860 WP_VALUE_NOT_CHANGED = 3,
4861
4862 /* Ignore this watchpoint, no matter if the value changed or not. */
4863 WP_IGNORE = 4,
4864 };
4865
4866 #define BP_TEMPFLAG 1
4867 #define BP_HARDWAREFLAG 2
4868
4869 /* Evaluate watchpoint condition expression and check if its value
4870 changed. */
4871
4872 static wp_check_result
4873 watchpoint_check (bpstat bs)
4874 {
4875 struct watchpoint *b;
4876 struct frame_info *fr;
4877 int within_current_scope;
4878
4879 /* BS is built from an existing struct breakpoint. */
4880 gdb_assert (bs->breakpoint_at != NULL);
4881 b = (struct watchpoint *) bs->breakpoint_at;
4882
4883 /* If this is a local watchpoint, we only want to check if the
4884 watchpoint frame is in scope if the current thread is the thread
4885 that was used to create the watchpoint. */
4886 if (!watchpoint_in_thread_scope (b))
4887 return WP_IGNORE;
4888
4889 if (b->exp_valid_block == NULL)
4890 within_current_scope = 1;
4891 else
4892 {
4893 struct frame_info *frame = get_current_frame ();
4894 struct gdbarch *frame_arch = get_frame_arch (frame);
4895 CORE_ADDR frame_pc = get_frame_pc (frame);
4896
4897 /* stack_frame_destroyed_p() returns a non-zero value if we're
4898 still in the function but the stack frame has already been
4899 invalidated. Since we can't rely on the values of local
4900 variables after the stack has been destroyed, we are treating
4901 the watchpoint in that state as `not changed' without further
4902 checking. Don't mark watchpoints as changed if the current
4903 frame is in an epilogue - even if they are in some other
4904 frame, our view of the stack is likely to be wrong and
4905 frame_find_by_id could error out. */
4906 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4907 return WP_IGNORE;
4908
4909 fr = frame_find_by_id (b->watchpoint_frame);
4910 within_current_scope = (fr != NULL);
4911
4912 /* If we've gotten confused in the unwinder, we might have
4913 returned a frame that can't describe this variable. */
4914 if (within_current_scope)
4915 {
4916 struct symbol *function;
4917
4918 function = get_frame_function (fr);
4919 if (function == NULL
4920 || !contained_in (b->exp_valid_block,
4921 SYMBOL_BLOCK_VALUE (function)))
4922 within_current_scope = 0;
4923 }
4924
4925 if (within_current_scope)
4926 /* If we end up stopping, the current frame will get selected
4927 in normal_stop. So this call to select_frame won't affect
4928 the user. */
4929 select_frame (fr);
4930 }
4931
4932 if (within_current_scope)
4933 {
4934 /* We use value_{,free_to_}mark because it could be a *long*
4935 time before we return to the command level and call
4936 free_all_values. We can't call free_all_values because we
4937 might be in the middle of evaluating a function call. */
4938
4939 int pc = 0;
4940 struct value *mark;
4941 struct value *new_val;
4942
4943 if (is_masked_watchpoint (b))
4944 /* Since we don't know the exact trigger address (from
4945 stopped_data_address), just tell the user we've triggered
4946 a mask watchpoint. */
4947 return WP_VALUE_CHANGED;
4948
4949 mark = value_mark ();
4950 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4951
4952 if (b->val_bitsize != 0)
4953 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4954
4955 /* We use value_equal_contents instead of value_equal because
4956 the latter coerces an array to a pointer, thus comparing just
4957 the address of the array instead of its contents. This is
4958 not what we want. */
4959 if ((b->val != NULL) != (new_val != NULL)
4960 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4961 {
4962 if (new_val != NULL)
4963 {
4964 release_value (new_val);
4965 value_free_to_mark (mark);
4966 }
4967 bs->old_val = b->val;
4968 b->val = new_val;
4969 b->val_valid = 1;
4970 return WP_VALUE_CHANGED;
4971 }
4972 else
4973 {
4974 /* Nothing changed. */
4975 value_free_to_mark (mark);
4976 return WP_VALUE_NOT_CHANGED;
4977 }
4978 }
4979 else
4980 {
4981 /* This seems like the only logical thing to do because
4982 if we temporarily ignored the watchpoint, then when
4983 we reenter the block in which it is valid it contains
4984 garbage (in the case of a function, it may have two
4985 garbage values, one before and one after the prologue).
4986 So we can't even detect the first assignment to it and
4987 watch after that (since the garbage may or may not equal
4988 the first value assigned). */
4989 /* We print all the stop information in
4990 breakpoint_ops->print_it, but in this case, by the time we
4991 call breakpoint_ops->print_it this bp will be deleted
4992 already. So we have no choice but print the information
4993 here. */
4994
4995 SWITCH_THRU_ALL_UIS ()
4996 {
4997 struct ui_out *uiout = current_uiout;
4998
4999 if (uiout->is_mi_like_p ())
5000 uiout->field_string
5001 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5002 uiout->text ("\nWatchpoint ");
5003 uiout->field_int ("wpnum", b->number);
5004 uiout->text (" deleted because the program has left the block in\n"
5005 "which its expression is valid.\n");
5006 }
5007
5008 /* Make sure the watchpoint's commands aren't executed. */
5009 b->commands = NULL;
5010 watchpoint_del_at_next_stop (b);
5011
5012 return WP_DELETED;
5013 }
5014 }
5015
5016 /* Return true if it looks like target has stopped due to hitting
5017 breakpoint location BL. This function does not check if we should
5018 stop, only if BL explains the stop. */
5019
5020 static int
5021 bpstat_check_location (const struct bp_location *bl,
5022 const address_space *aspace, CORE_ADDR bp_addr,
5023 const struct target_waitstatus *ws)
5024 {
5025 struct breakpoint *b = bl->owner;
5026
5027 /* BL is from an existing breakpoint. */
5028 gdb_assert (b != NULL);
5029
5030 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5031 }
5032
5033 /* Determine if the watched values have actually changed, and we
5034 should stop. If not, set BS->stop to 0. */
5035
5036 static void
5037 bpstat_check_watchpoint (bpstat bs)
5038 {
5039 const struct bp_location *bl;
5040 struct watchpoint *b;
5041
5042 /* BS is built for existing struct breakpoint. */
5043 bl = bs->bp_location_at;
5044 gdb_assert (bl != NULL);
5045 b = (struct watchpoint *) bs->breakpoint_at;
5046 gdb_assert (b != NULL);
5047
5048 {
5049 int must_check_value = 0;
5050
5051 if (b->type == bp_watchpoint)
5052 /* For a software watchpoint, we must always check the
5053 watched value. */
5054 must_check_value = 1;
5055 else if (b->watchpoint_triggered == watch_triggered_yes)
5056 /* We have a hardware watchpoint (read, write, or access)
5057 and the target earlier reported an address watched by
5058 this watchpoint. */
5059 must_check_value = 1;
5060 else if (b->watchpoint_triggered == watch_triggered_unknown
5061 && b->type == bp_hardware_watchpoint)
5062 /* We were stopped by a hardware watchpoint, but the target could
5063 not report the data address. We must check the watchpoint's
5064 value. Access and read watchpoints are out of luck; without
5065 a data address, we can't figure it out. */
5066 must_check_value = 1;
5067
5068 if (must_check_value)
5069 {
5070 wp_check_result e;
5071
5072 TRY
5073 {
5074 e = watchpoint_check (bs);
5075 }
5076 CATCH (ex, RETURN_MASK_ALL)
5077 {
5078 exception_fprintf (gdb_stderr, ex,
5079 "Error evaluating expression "
5080 "for watchpoint %d\n",
5081 b->number);
5082
5083 SWITCH_THRU_ALL_UIS ()
5084 {
5085 printf_filtered (_("Watchpoint %d deleted.\n"),
5086 b->number);
5087 }
5088 watchpoint_del_at_next_stop (b);
5089 e = WP_DELETED;
5090 }
5091 END_CATCH
5092
5093 switch (e)
5094 {
5095 case WP_DELETED:
5096 /* We've already printed what needs to be printed. */
5097 bs->print_it = print_it_done;
5098 /* Stop. */
5099 break;
5100 case WP_IGNORE:
5101 bs->print_it = print_it_noop;
5102 bs->stop = 0;
5103 break;
5104 case WP_VALUE_CHANGED:
5105 if (b->type == bp_read_watchpoint)
5106 {
5107 /* There are two cases to consider here:
5108
5109 1. We're watching the triggered memory for reads.
5110 In that case, trust the target, and always report
5111 the watchpoint hit to the user. Even though
5112 reads don't cause value changes, the value may
5113 have changed since the last time it was read, and
5114 since we're not trapping writes, we will not see
5115 those, and as such we should ignore our notion of
5116 old value.
5117
5118 2. We're watching the triggered memory for both
5119 reads and writes. There are two ways this may
5120 happen:
5121
5122 2.1. This is a target that can't break on data
5123 reads only, but can break on accesses (reads or
5124 writes), such as e.g., x86. We detect this case
5125 at the time we try to insert read watchpoints.
5126
5127 2.2. Otherwise, the target supports read
5128 watchpoints, but, the user set an access or write
5129 watchpoint watching the same memory as this read
5130 watchpoint.
5131
5132 If we're watching memory writes as well as reads,
5133 ignore watchpoint hits when we find that the
5134 value hasn't changed, as reads don't cause
5135 changes. This still gives false positives when
5136 the program writes the same value to memory as
5137 what there was already in memory (we will confuse
5138 it for a read), but it's much better than
5139 nothing. */
5140
5141 int other_write_watchpoint = 0;
5142
5143 if (bl->watchpoint_type == hw_read)
5144 {
5145 struct breakpoint *other_b;
5146
5147 ALL_BREAKPOINTS (other_b)
5148 if (other_b->type == bp_hardware_watchpoint
5149 || other_b->type == bp_access_watchpoint)
5150 {
5151 struct watchpoint *other_w =
5152 (struct watchpoint *) other_b;
5153
5154 if (other_w->watchpoint_triggered
5155 == watch_triggered_yes)
5156 {
5157 other_write_watchpoint = 1;
5158 break;
5159 }
5160 }
5161 }
5162
5163 if (other_write_watchpoint
5164 || bl->watchpoint_type == hw_access)
5165 {
5166 /* We're watching the same memory for writes,
5167 and the value changed since the last time we
5168 updated it, so this trap must be for a write.
5169 Ignore it. */
5170 bs->print_it = print_it_noop;
5171 bs->stop = 0;
5172 }
5173 }
5174 break;
5175 case WP_VALUE_NOT_CHANGED:
5176 if (b->type == bp_hardware_watchpoint
5177 || b->type == bp_watchpoint)
5178 {
5179 /* Don't stop: write watchpoints shouldn't fire if
5180 the value hasn't changed. */
5181 bs->print_it = print_it_noop;
5182 bs->stop = 0;
5183 }
5184 /* Stop. */
5185 break;
5186 default:
5187 /* Can't happen. */
5188 break;
5189 }
5190 }
5191 else /* must_check_value == 0 */
5192 {
5193 /* This is a case where some watchpoint(s) triggered, but
5194 not at the address of this watchpoint, or else no
5195 watchpoint triggered after all. So don't print
5196 anything for this watchpoint. */
5197 bs->print_it = print_it_noop;
5198 bs->stop = 0;
5199 }
5200 }
5201 }
5202
5203 /* For breakpoints that are currently marked as telling gdb to stop,
5204 check conditions (condition proper, frame, thread and ignore count)
5205 of breakpoint referred to by BS. If we should not stop for this
5206 breakpoint, set BS->stop to 0. */
5207
5208 static void
5209 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5210 {
5211 const struct bp_location *bl;
5212 struct breakpoint *b;
5213 /* Assume stop. */
5214 bool condition_result = true;
5215 struct expression *cond;
5216
5217 gdb_assert (bs->stop);
5218
5219 /* BS is built for existing struct breakpoint. */
5220 bl = bs->bp_location_at;
5221 gdb_assert (bl != NULL);
5222 b = bs->breakpoint_at;
5223 gdb_assert (b != NULL);
5224
5225 /* Even if the target evaluated the condition on its end and notified GDB, we
5226 need to do so again since GDB does not know if we stopped due to a
5227 breakpoint or a single step breakpoint. */
5228
5229 if (frame_id_p (b->frame_id)
5230 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5231 {
5232 bs->stop = 0;
5233 return;
5234 }
5235
5236 /* If this is a thread/task-specific breakpoint, don't waste cpu
5237 evaluating the condition if this isn't the specified
5238 thread/task. */
5239 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5240 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5241
5242 {
5243 bs->stop = 0;
5244 return;
5245 }
5246
5247 /* Evaluate extension language breakpoints that have a "stop" method
5248 implemented. */
5249 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5250
5251 if (is_watchpoint (b))
5252 {
5253 struct watchpoint *w = (struct watchpoint *) b;
5254
5255 cond = w->cond_exp.get ();
5256 }
5257 else
5258 cond = bl->cond.get ();
5259
5260 if (cond && b->disposition != disp_del_at_next_stop)
5261 {
5262 int within_current_scope = 1;
5263 struct watchpoint * w;
5264
5265 /* We use value_mark and value_free_to_mark because it could
5266 be a long time before we return to the command level and
5267 call free_all_values. We can't call free_all_values
5268 because we might be in the middle of evaluating a
5269 function call. */
5270 struct value *mark = value_mark ();
5271
5272 if (is_watchpoint (b))
5273 w = (struct watchpoint *) b;
5274 else
5275 w = NULL;
5276
5277 /* Need to select the frame, with all that implies so that
5278 the conditions will have the right context. Because we
5279 use the frame, we will not see an inlined function's
5280 variables when we arrive at a breakpoint at the start
5281 of the inlined function; the current frame will be the
5282 call site. */
5283 if (w == NULL || w->cond_exp_valid_block == NULL)
5284 select_frame (get_current_frame ());
5285 else
5286 {
5287 struct frame_info *frame;
5288
5289 /* For local watchpoint expressions, which particular
5290 instance of a local is being watched matters, so we
5291 keep track of the frame to evaluate the expression
5292 in. To evaluate the condition however, it doesn't
5293 really matter which instantiation of the function
5294 where the condition makes sense triggers the
5295 watchpoint. This allows an expression like "watch
5296 global if q > 10" set in `func', catch writes to
5297 global on all threads that call `func', or catch
5298 writes on all recursive calls of `func' by a single
5299 thread. We simply always evaluate the condition in
5300 the innermost frame that's executing where it makes
5301 sense to evaluate the condition. It seems
5302 intuitive. */
5303 frame = block_innermost_frame (w->cond_exp_valid_block);
5304 if (frame != NULL)
5305 select_frame (frame);
5306 else
5307 within_current_scope = 0;
5308 }
5309 if (within_current_scope)
5310 {
5311 TRY
5312 {
5313 condition_result = breakpoint_cond_eval (cond);
5314 }
5315 CATCH (ex, RETURN_MASK_ALL)
5316 {
5317 exception_fprintf (gdb_stderr, ex,
5318 "Error in testing breakpoint condition:\n");
5319 }
5320 END_CATCH
5321 }
5322 else
5323 {
5324 warning (_("Watchpoint condition cannot be tested "
5325 "in the current scope"));
5326 /* If we failed to set the right context for this
5327 watchpoint, unconditionally report it. */
5328 }
5329 /* FIXME-someday, should give breakpoint #. */
5330 value_free_to_mark (mark);
5331 }
5332
5333 if (cond && !condition_result)
5334 {
5335 bs->stop = 0;
5336 }
5337 else if (b->ignore_count > 0)
5338 {
5339 b->ignore_count--;
5340 bs->stop = 0;
5341 /* Increase the hit count even though we don't stop. */
5342 ++(b->hit_count);
5343 observer_notify_breakpoint_modified (b);
5344 }
5345 }
5346
5347 /* Returns true if we need to track moribund locations of LOC's type
5348 on the current target. */
5349
5350 static int
5351 need_moribund_for_location_type (struct bp_location *loc)
5352 {
5353 return ((loc->loc_type == bp_loc_software_breakpoint
5354 && !target_supports_stopped_by_sw_breakpoint ())
5355 || (loc->loc_type == bp_loc_hardware_breakpoint
5356 && !target_supports_stopped_by_hw_breakpoint ()));
5357 }
5358
5359
5360 /* Get a bpstat associated with having just stopped at address
5361 BP_ADDR in thread PTID.
5362
5363 Determine whether we stopped at a breakpoint, etc, or whether we
5364 don't understand this stop. Result is a chain of bpstat's such
5365 that:
5366
5367 if we don't understand the stop, the result is a null pointer.
5368
5369 if we understand why we stopped, the result is not null.
5370
5371 Each element of the chain refers to a particular breakpoint or
5372 watchpoint at which we have stopped. (We may have stopped for
5373 several reasons concurrently.)
5374
5375 Each element of the chain has valid next, breakpoint_at,
5376 commands, FIXME??? fields. */
5377
5378 bpstat
5379 bpstat_stop_status (const address_space *aspace,
5380 CORE_ADDR bp_addr, ptid_t ptid,
5381 const struct target_waitstatus *ws)
5382 {
5383 struct breakpoint *b = NULL;
5384 struct bp_location *bl;
5385 struct bp_location *loc;
5386 /* First item of allocated bpstat's. */
5387 bpstat bs_head = NULL, *bs_link = &bs_head;
5388 /* Pointer to the last thing in the chain currently. */
5389 bpstat bs;
5390 int ix;
5391 int need_remove_insert;
5392 int removed_any;
5393
5394 /* First, build the bpstat chain with locations that explain a
5395 target stop, while being careful to not set the target running,
5396 as that may invalidate locations (in particular watchpoint
5397 locations are recreated). Resuming will happen here with
5398 breakpoint conditions or watchpoint expressions that include
5399 inferior function calls. */
5400
5401 ALL_BREAKPOINTS (b)
5402 {
5403 if (!breakpoint_enabled (b))
5404 continue;
5405
5406 for (bl = b->loc; bl != NULL; bl = bl->next)
5407 {
5408 /* For hardware watchpoints, we look only at the first
5409 location. The watchpoint_check function will work on the
5410 entire expression, not the individual locations. For
5411 read watchpoints, the watchpoints_triggered function has
5412 checked all locations already. */
5413 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5414 break;
5415
5416 if (!bl->enabled || bl->shlib_disabled)
5417 continue;
5418
5419 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5420 continue;
5421
5422 /* Come here if it's a watchpoint, or if the break address
5423 matches. */
5424
5425 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5426 explain stop. */
5427
5428 /* Assume we stop. Should we find a watchpoint that is not
5429 actually triggered, or if the condition of the breakpoint
5430 evaluates as false, we'll reset 'stop' to 0. */
5431 bs->stop = 1;
5432 bs->print = 1;
5433
5434 /* If this is a scope breakpoint, mark the associated
5435 watchpoint as triggered so that we will handle the
5436 out-of-scope event. We'll get to the watchpoint next
5437 iteration. */
5438 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5439 {
5440 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5441
5442 w->watchpoint_triggered = watch_triggered_yes;
5443 }
5444 }
5445 }
5446
5447 /* Check if a moribund breakpoint explains the stop. */
5448 if (!target_supports_stopped_by_sw_breakpoint ()
5449 || !target_supports_stopped_by_hw_breakpoint ())
5450 {
5451 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5452 {
5453 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5454 && need_moribund_for_location_type (loc))
5455 {
5456 bs = new bpstats (loc, &bs_link);
5457 /* For hits of moribund locations, we should just proceed. */
5458 bs->stop = 0;
5459 bs->print = 0;
5460 bs->print_it = print_it_noop;
5461 }
5462 }
5463 }
5464
5465 /* A bit of special processing for shlib breakpoints. We need to
5466 process solib loading here, so that the lists of loaded and
5467 unloaded libraries are correct before we handle "catch load" and
5468 "catch unload". */
5469 for (bs = bs_head; bs != NULL; bs = bs->next)
5470 {
5471 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5472 {
5473 handle_solib_event ();
5474 break;
5475 }
5476 }
5477
5478 /* Now go through the locations that caused the target to stop, and
5479 check whether we're interested in reporting this stop to higher
5480 layers, or whether we should resume the target transparently. */
5481
5482 removed_any = 0;
5483
5484 for (bs = bs_head; bs != NULL; bs = bs->next)
5485 {
5486 if (!bs->stop)
5487 continue;
5488
5489 b = bs->breakpoint_at;
5490 b->ops->check_status (bs);
5491 if (bs->stop)
5492 {
5493 bpstat_check_breakpoint_conditions (bs, ptid);
5494
5495 if (bs->stop)
5496 {
5497 ++(b->hit_count);
5498 observer_notify_breakpoint_modified (b);
5499
5500 /* We will stop here. */
5501 if (b->disposition == disp_disable)
5502 {
5503 --(b->enable_count);
5504 if (b->enable_count <= 0)
5505 b->enable_state = bp_disabled;
5506 removed_any = 1;
5507 }
5508 if (b->silent)
5509 bs->print = 0;
5510 bs->commands = b->commands;
5511 if (command_line_is_silent (bs->commands
5512 ? bs->commands.get () : NULL))
5513 bs->print = 0;
5514
5515 b->ops->after_condition_true (bs);
5516 }
5517
5518 }
5519
5520 /* Print nothing for this entry if we don't stop or don't
5521 print. */
5522 if (!bs->stop || !bs->print)
5523 bs->print_it = print_it_noop;
5524 }
5525
5526 /* If we aren't stopping, the value of some hardware watchpoint may
5527 not have changed, but the intermediate memory locations we are
5528 watching may have. Don't bother if we're stopping; this will get
5529 done later. */
5530 need_remove_insert = 0;
5531 if (! bpstat_causes_stop (bs_head))
5532 for (bs = bs_head; bs != NULL; bs = bs->next)
5533 if (!bs->stop
5534 && bs->breakpoint_at
5535 && is_hardware_watchpoint (bs->breakpoint_at))
5536 {
5537 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5538
5539 update_watchpoint (w, 0 /* don't reparse. */);
5540 need_remove_insert = 1;
5541 }
5542
5543 if (need_remove_insert)
5544 update_global_location_list (UGLL_MAY_INSERT);
5545 else if (removed_any)
5546 update_global_location_list (UGLL_DONT_INSERT);
5547
5548 return bs_head;
5549 }
5550
5551 static void
5552 handle_jit_event (void)
5553 {
5554 struct frame_info *frame;
5555 struct gdbarch *gdbarch;
5556
5557 if (debug_infrun)
5558 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5559
5560 /* Switch terminal for any messages produced by
5561 breakpoint_re_set. */
5562 target_terminal::ours_for_output ();
5563
5564 frame = get_current_frame ();
5565 gdbarch = get_frame_arch (frame);
5566
5567 jit_event_handler (gdbarch);
5568
5569 target_terminal::inferior ();
5570 }
5571
5572 /* Prepare WHAT final decision for infrun. */
5573
5574 /* Decide what infrun needs to do with this bpstat. */
5575
5576 struct bpstat_what
5577 bpstat_what (bpstat bs_head)
5578 {
5579 struct bpstat_what retval;
5580 bpstat bs;
5581
5582 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5583 retval.call_dummy = STOP_NONE;
5584 retval.is_longjmp = 0;
5585
5586 for (bs = bs_head; bs != NULL; bs = bs->next)
5587 {
5588 /* Extract this BS's action. After processing each BS, we check
5589 if its action overrides all we've seem so far. */
5590 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5591 enum bptype bptype;
5592
5593 if (bs->breakpoint_at == NULL)
5594 {
5595 /* I suspect this can happen if it was a momentary
5596 breakpoint which has since been deleted. */
5597 bptype = bp_none;
5598 }
5599 else
5600 bptype = bs->breakpoint_at->type;
5601
5602 switch (bptype)
5603 {
5604 case bp_none:
5605 break;
5606 case bp_breakpoint:
5607 case bp_hardware_breakpoint:
5608 case bp_single_step:
5609 case bp_until:
5610 case bp_finish:
5611 case bp_shlib_event:
5612 if (bs->stop)
5613 {
5614 if (bs->print)
5615 this_action = BPSTAT_WHAT_STOP_NOISY;
5616 else
5617 this_action = BPSTAT_WHAT_STOP_SILENT;
5618 }
5619 else
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_watchpoint:
5623 case bp_hardware_watchpoint:
5624 case bp_read_watchpoint:
5625 case bp_access_watchpoint:
5626 if (bs->stop)
5627 {
5628 if (bs->print)
5629 this_action = BPSTAT_WHAT_STOP_NOISY;
5630 else
5631 this_action = BPSTAT_WHAT_STOP_SILENT;
5632 }
5633 else
5634 {
5635 /* There was a watchpoint, but we're not stopping.
5636 This requires no further action. */
5637 }
5638 break;
5639 case bp_longjmp:
5640 case bp_longjmp_call_dummy:
5641 case bp_exception:
5642 if (bs->stop)
5643 {
5644 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5645 retval.is_longjmp = bptype != bp_exception;
5646 }
5647 else
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650 case bp_longjmp_resume:
5651 case bp_exception_resume:
5652 if (bs->stop)
5653 {
5654 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5655 retval.is_longjmp = bptype == bp_longjmp_resume;
5656 }
5657 else
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_step_resume:
5661 if (bs->stop)
5662 this_action = BPSTAT_WHAT_STEP_RESUME;
5663 else
5664 {
5665 /* It is for the wrong frame. */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 }
5668 break;
5669 case bp_hp_step_resume:
5670 if (bs->stop)
5671 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5672 else
5673 {
5674 /* It is for the wrong frame. */
5675 this_action = BPSTAT_WHAT_SINGLE;
5676 }
5677 break;
5678 case bp_watchpoint_scope:
5679 case bp_thread_event:
5680 case bp_overlay_event:
5681 case bp_longjmp_master:
5682 case bp_std_terminate_master:
5683 case bp_exception_master:
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 break;
5686 case bp_catchpoint:
5687 if (bs->stop)
5688 {
5689 if (bs->print)
5690 this_action = BPSTAT_WHAT_STOP_NOISY;
5691 else
5692 this_action = BPSTAT_WHAT_STOP_SILENT;
5693 }
5694 else
5695 {
5696 /* There was a catchpoint, but we're not stopping.
5697 This requires no further action. */
5698 }
5699 break;
5700 case bp_jit_event:
5701 this_action = BPSTAT_WHAT_SINGLE;
5702 break;
5703 case bp_call_dummy:
5704 /* Make sure the action is stop (silent or noisy),
5705 so infrun.c pops the dummy frame. */
5706 retval.call_dummy = STOP_STACK_DUMMY;
5707 this_action = BPSTAT_WHAT_STOP_SILENT;
5708 break;
5709 case bp_std_terminate:
5710 /* Make sure the action is stop (silent or noisy),
5711 so infrun.c pops the dummy frame. */
5712 retval.call_dummy = STOP_STD_TERMINATE;
5713 this_action = BPSTAT_WHAT_STOP_SILENT;
5714 break;
5715 case bp_tracepoint:
5716 case bp_fast_tracepoint:
5717 case bp_static_tracepoint:
5718 /* Tracepoint hits should not be reported back to GDB, and
5719 if one got through somehow, it should have been filtered
5720 out already. */
5721 internal_error (__FILE__, __LINE__,
5722 _("bpstat_what: tracepoint encountered"));
5723 break;
5724 case bp_gnu_ifunc_resolver:
5725 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5726 this_action = BPSTAT_WHAT_SINGLE;
5727 break;
5728 case bp_gnu_ifunc_resolver_return:
5729 /* The breakpoint will be removed, execution will restart from the
5730 PC of the former breakpoint. */
5731 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5732 break;
5733
5734 case bp_dprintf:
5735 if (bs->stop)
5736 this_action = BPSTAT_WHAT_STOP_SILENT;
5737 else
5738 this_action = BPSTAT_WHAT_SINGLE;
5739 break;
5740
5741 default:
5742 internal_error (__FILE__, __LINE__,
5743 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5744 }
5745
5746 retval.main_action = std::max (retval.main_action, this_action);
5747 }
5748
5749 return retval;
5750 }
5751
5752 void
5753 bpstat_run_callbacks (bpstat bs_head)
5754 {
5755 bpstat bs;
5756
5757 for (bs = bs_head; bs != NULL; bs = bs->next)
5758 {
5759 struct breakpoint *b = bs->breakpoint_at;
5760
5761 if (b == NULL)
5762 continue;
5763 switch (b->type)
5764 {
5765 case bp_jit_event:
5766 handle_jit_event ();
5767 break;
5768 case bp_gnu_ifunc_resolver:
5769 gnu_ifunc_resolver_stop (b);
5770 break;
5771 case bp_gnu_ifunc_resolver_return:
5772 gnu_ifunc_resolver_return_stop (b);
5773 break;
5774 }
5775 }
5776 }
5777
5778 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5779 without hardware support). This isn't related to a specific bpstat,
5780 just to things like whether watchpoints are set. */
5781
5782 int
5783 bpstat_should_step (void)
5784 {
5785 struct breakpoint *b;
5786
5787 ALL_BREAKPOINTS (b)
5788 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5789 return 1;
5790 return 0;
5791 }
5792
5793 int
5794 bpstat_causes_stop (bpstat bs)
5795 {
5796 for (; bs != NULL; bs = bs->next)
5797 if (bs->stop)
5798 return 1;
5799
5800 return 0;
5801 }
5802
5803 \f
5804
5805 /* Compute a string of spaces suitable to indent the next line
5806 so it starts at the position corresponding to the table column
5807 named COL_NAME in the currently active table of UIOUT. */
5808
5809 static char *
5810 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5811 {
5812 static char wrap_indent[80];
5813 int i, total_width, width, align;
5814 const char *text;
5815
5816 total_width = 0;
5817 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5818 {
5819 if (strcmp (text, col_name) == 0)
5820 {
5821 gdb_assert (total_width < sizeof wrap_indent);
5822 memset (wrap_indent, ' ', total_width);
5823 wrap_indent[total_width] = 0;
5824
5825 return wrap_indent;
5826 }
5827
5828 total_width += width + 1;
5829 }
5830
5831 return NULL;
5832 }
5833
5834 /* Determine if the locations of this breakpoint will have their conditions
5835 evaluated by the target, host or a mix of both. Returns the following:
5836
5837 "host": Host evals condition.
5838 "host or target": Host or Target evals condition.
5839 "target": Target evals condition.
5840 */
5841
5842 static const char *
5843 bp_condition_evaluator (struct breakpoint *b)
5844 {
5845 struct bp_location *bl;
5846 char host_evals = 0;
5847 char target_evals = 0;
5848
5849 if (!b)
5850 return NULL;
5851
5852 if (!is_breakpoint (b))
5853 return NULL;
5854
5855 if (gdb_evaluates_breakpoint_condition_p ()
5856 || !target_supports_evaluation_of_breakpoint_conditions ())
5857 return condition_evaluation_host;
5858
5859 for (bl = b->loc; bl; bl = bl->next)
5860 {
5861 if (bl->cond_bytecode)
5862 target_evals++;
5863 else
5864 host_evals++;
5865 }
5866
5867 if (host_evals && target_evals)
5868 return condition_evaluation_both;
5869 else if (target_evals)
5870 return condition_evaluation_target;
5871 else
5872 return condition_evaluation_host;
5873 }
5874
5875 /* Determine the breakpoint location's condition evaluator. This is
5876 similar to bp_condition_evaluator, but for locations. */
5877
5878 static const char *
5879 bp_location_condition_evaluator (struct bp_location *bl)
5880 {
5881 if (bl && !is_breakpoint (bl->owner))
5882 return NULL;
5883
5884 if (gdb_evaluates_breakpoint_condition_p ()
5885 || !target_supports_evaluation_of_breakpoint_conditions ())
5886 return condition_evaluation_host;
5887
5888 if (bl && bl->cond_bytecode)
5889 return condition_evaluation_target;
5890 else
5891 return condition_evaluation_host;
5892 }
5893
5894 /* Print the LOC location out of the list of B->LOC locations. */
5895
5896 static void
5897 print_breakpoint_location (struct breakpoint *b,
5898 struct bp_location *loc)
5899 {
5900 struct ui_out *uiout = current_uiout;
5901
5902 scoped_restore_current_program_space restore_pspace;
5903
5904 if (loc != NULL && loc->shlib_disabled)
5905 loc = NULL;
5906
5907 if (loc != NULL)
5908 set_current_program_space (loc->pspace);
5909
5910 if (b->display_canonical)
5911 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5912 else if (loc && loc->symtab)
5913 {
5914 const struct symbol *sym = loc->symbol;
5915
5916 if (sym == NULL)
5917 sym = find_pc_sect_function (loc->address, loc->section);
5918
5919 if (sym)
5920 {
5921 uiout->text ("in ");
5922 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5923 uiout->text (" ");
5924 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5925 uiout->text ("at ");
5926 }
5927 uiout->field_string ("file",
5928 symtab_to_filename_for_display (loc->symtab));
5929 uiout->text (":");
5930
5931 if (uiout->is_mi_like_p ())
5932 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5933
5934 uiout->field_int ("line", loc->line_number);
5935 }
5936 else if (loc)
5937 {
5938 string_file stb;
5939
5940 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5941 demangle, "");
5942 uiout->field_stream ("at", stb);
5943 }
5944 else
5945 {
5946 uiout->field_string ("pending",
5947 event_location_to_string (b->location.get ()));
5948 /* If extra_string is available, it could be holding a condition
5949 or dprintf arguments. In either case, make sure it is printed,
5950 too, but only for non-MI streams. */
5951 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5952 {
5953 if (b->type == bp_dprintf)
5954 uiout->text (",");
5955 else
5956 uiout->text (" ");
5957 uiout->text (b->extra_string);
5958 }
5959 }
5960
5961 if (loc && is_breakpoint (b)
5962 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5963 && bp_condition_evaluator (b) == condition_evaluation_both)
5964 {
5965 uiout->text (" (");
5966 uiout->field_string ("evaluated-by",
5967 bp_location_condition_evaluator (loc));
5968 uiout->text (")");
5969 }
5970 }
5971
5972 static const char *
5973 bptype_string (enum bptype type)
5974 {
5975 struct ep_type_description
5976 {
5977 enum bptype type;
5978 const char *description;
5979 };
5980 static struct ep_type_description bptypes[] =
5981 {
5982 {bp_none, "?deleted?"},
5983 {bp_breakpoint, "breakpoint"},
5984 {bp_hardware_breakpoint, "hw breakpoint"},
5985 {bp_single_step, "sw single-step"},
5986 {bp_until, "until"},
5987 {bp_finish, "finish"},
5988 {bp_watchpoint, "watchpoint"},
5989 {bp_hardware_watchpoint, "hw watchpoint"},
5990 {bp_read_watchpoint, "read watchpoint"},
5991 {bp_access_watchpoint, "acc watchpoint"},
5992 {bp_longjmp, "longjmp"},
5993 {bp_longjmp_resume, "longjmp resume"},
5994 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5995 {bp_exception, "exception"},
5996 {bp_exception_resume, "exception resume"},
5997 {bp_step_resume, "step resume"},
5998 {bp_hp_step_resume, "high-priority step resume"},
5999 {bp_watchpoint_scope, "watchpoint scope"},
6000 {bp_call_dummy, "call dummy"},
6001 {bp_std_terminate, "std::terminate"},
6002 {bp_shlib_event, "shlib events"},
6003 {bp_thread_event, "thread events"},
6004 {bp_overlay_event, "overlay events"},
6005 {bp_longjmp_master, "longjmp master"},
6006 {bp_std_terminate_master, "std::terminate master"},
6007 {bp_exception_master, "exception master"},
6008 {bp_catchpoint, "catchpoint"},
6009 {bp_tracepoint, "tracepoint"},
6010 {bp_fast_tracepoint, "fast tracepoint"},
6011 {bp_static_tracepoint, "static tracepoint"},
6012 {bp_dprintf, "dprintf"},
6013 {bp_jit_event, "jit events"},
6014 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6015 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6016 };
6017
6018 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6019 || ((int) type != bptypes[(int) type].type))
6020 internal_error (__FILE__, __LINE__,
6021 _("bptypes table does not describe type #%d."),
6022 (int) type);
6023
6024 return bptypes[(int) type].description;
6025 }
6026
6027 /* For MI, output a field named 'thread-groups' with a list as the value.
6028 For CLI, prefix the list with the string 'inf'. */
6029
6030 static void
6031 output_thread_groups (struct ui_out *uiout,
6032 const char *field_name,
6033 const std::vector<int> &inf_nums,
6034 int mi_only)
6035 {
6036 int is_mi = uiout->is_mi_like_p ();
6037
6038 /* For backward compatibility, don't display inferiors in CLI unless
6039 there are several. Always display them for MI. */
6040 if (!is_mi && mi_only)
6041 return;
6042
6043 ui_out_emit_list list_emitter (uiout, field_name);
6044
6045 for (size_t i = 0; i < inf_nums.size (); i++)
6046 {
6047 if (is_mi)
6048 {
6049 char mi_group[10];
6050
6051 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6052 uiout->field_string (NULL, mi_group);
6053 }
6054 else
6055 {
6056 if (i == 0)
6057 uiout->text (" inf ");
6058 else
6059 uiout->text (", ");
6060
6061 uiout->text (plongest (inf_nums[i]));
6062 }
6063 }
6064 }
6065
6066 /* Print B to gdb_stdout. */
6067
6068 static void
6069 print_one_breakpoint_location (struct breakpoint *b,
6070 struct bp_location *loc,
6071 int loc_number,
6072 struct bp_location **last_loc,
6073 int allflag)
6074 {
6075 struct command_line *l;
6076 static char bpenables[] = "nynny";
6077
6078 struct ui_out *uiout = current_uiout;
6079 int header_of_multiple = 0;
6080 int part_of_multiple = (loc != NULL);
6081 struct value_print_options opts;
6082
6083 get_user_print_options (&opts);
6084
6085 gdb_assert (!loc || loc_number != 0);
6086 /* See comment in print_one_breakpoint concerning treatment of
6087 breakpoints with single disabled location. */
6088 if (loc == NULL
6089 && (b->loc != NULL
6090 && (b->loc->next != NULL || !b->loc->enabled)))
6091 header_of_multiple = 1;
6092 if (loc == NULL)
6093 loc = b->loc;
6094
6095 annotate_record ();
6096
6097 /* 1 */
6098 annotate_field (0);
6099 if (part_of_multiple)
6100 {
6101 char *formatted;
6102 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6103 uiout->field_string ("number", formatted);
6104 xfree (formatted);
6105 }
6106 else
6107 {
6108 uiout->field_int ("number", b->number);
6109 }
6110
6111 /* 2 */
6112 annotate_field (1);
6113 if (part_of_multiple)
6114 uiout->field_skip ("type");
6115 else
6116 uiout->field_string ("type", bptype_string (b->type));
6117
6118 /* 3 */
6119 annotate_field (2);
6120 if (part_of_multiple)
6121 uiout->field_skip ("disp");
6122 else
6123 uiout->field_string ("disp", bpdisp_text (b->disposition));
6124
6125
6126 /* 4 */
6127 annotate_field (3);
6128 if (part_of_multiple)
6129 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6130 else
6131 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6132 uiout->spaces (2);
6133
6134
6135 /* 5 and 6 */
6136 if (b->ops != NULL && b->ops->print_one != NULL)
6137 {
6138 /* Although the print_one can possibly print all locations,
6139 calling it here is not likely to get any nice result. So,
6140 make sure there's just one location. */
6141 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6142 b->ops->print_one (b, last_loc);
6143 }
6144 else
6145 switch (b->type)
6146 {
6147 case bp_none:
6148 internal_error (__FILE__, __LINE__,
6149 _("print_one_breakpoint: bp_none encountered\n"));
6150 break;
6151
6152 case bp_watchpoint:
6153 case bp_hardware_watchpoint:
6154 case bp_read_watchpoint:
6155 case bp_access_watchpoint:
6156 {
6157 struct watchpoint *w = (struct watchpoint *) b;
6158
6159 /* Field 4, the address, is omitted (which makes the columns
6160 not line up too nicely with the headers, but the effect
6161 is relatively readable). */
6162 if (opts.addressprint)
6163 uiout->field_skip ("addr");
6164 annotate_field (5);
6165 uiout->field_string ("what", w->exp_string);
6166 }
6167 break;
6168
6169 case bp_breakpoint:
6170 case bp_hardware_breakpoint:
6171 case bp_single_step:
6172 case bp_until:
6173 case bp_finish:
6174 case bp_longjmp:
6175 case bp_longjmp_resume:
6176 case bp_longjmp_call_dummy:
6177 case bp_exception:
6178 case bp_exception_resume:
6179 case bp_step_resume:
6180 case bp_hp_step_resume:
6181 case bp_watchpoint_scope:
6182 case bp_call_dummy:
6183 case bp_std_terminate:
6184 case bp_shlib_event:
6185 case bp_thread_event:
6186 case bp_overlay_event:
6187 case bp_longjmp_master:
6188 case bp_std_terminate_master:
6189 case bp_exception_master:
6190 case bp_tracepoint:
6191 case bp_fast_tracepoint:
6192 case bp_static_tracepoint:
6193 case bp_dprintf:
6194 case bp_jit_event:
6195 case bp_gnu_ifunc_resolver:
6196 case bp_gnu_ifunc_resolver_return:
6197 if (opts.addressprint)
6198 {
6199 annotate_field (4);
6200 if (header_of_multiple)
6201 uiout->field_string ("addr", "<MULTIPLE>");
6202 else if (b->loc == NULL || loc->shlib_disabled)
6203 uiout->field_string ("addr", "<PENDING>");
6204 else
6205 uiout->field_core_addr ("addr",
6206 loc->gdbarch, loc->address);
6207 }
6208 annotate_field (5);
6209 if (!header_of_multiple)
6210 print_breakpoint_location (b, loc);
6211 if (b->loc)
6212 *last_loc = b->loc;
6213 break;
6214 }
6215
6216
6217 if (loc != NULL && !header_of_multiple)
6218 {
6219 struct inferior *inf;
6220 std::vector<int> inf_nums;
6221 int mi_only = 1;
6222
6223 ALL_INFERIORS (inf)
6224 {
6225 if (inf->pspace == loc->pspace)
6226 inf_nums.push_back (inf->num);
6227 }
6228
6229 /* For backward compatibility, don't display inferiors in CLI unless
6230 there are several. Always display for MI. */
6231 if (allflag
6232 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6233 && (number_of_program_spaces () > 1
6234 || number_of_inferiors () > 1)
6235 /* LOC is for existing B, it cannot be in
6236 moribund_locations and thus having NULL OWNER. */
6237 && loc->owner->type != bp_catchpoint))
6238 mi_only = 0;
6239 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6240 }
6241
6242 if (!part_of_multiple)
6243 {
6244 if (b->thread != -1)
6245 {
6246 /* FIXME: This seems to be redundant and lost here; see the
6247 "stop only in" line a little further down. */
6248 uiout->text (" thread ");
6249 uiout->field_int ("thread", b->thread);
6250 }
6251 else if (b->task != 0)
6252 {
6253 uiout->text (" task ");
6254 uiout->field_int ("task", b->task);
6255 }
6256 }
6257
6258 uiout->text ("\n");
6259
6260 if (!part_of_multiple)
6261 b->ops->print_one_detail (b, uiout);
6262
6263 if (part_of_multiple && frame_id_p (b->frame_id))
6264 {
6265 annotate_field (6);
6266 uiout->text ("\tstop only in stack frame at ");
6267 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6268 the frame ID. */
6269 uiout->field_core_addr ("frame",
6270 b->gdbarch, b->frame_id.stack_addr);
6271 uiout->text ("\n");
6272 }
6273
6274 if (!part_of_multiple && b->cond_string)
6275 {
6276 annotate_field (7);
6277 if (is_tracepoint (b))
6278 uiout->text ("\ttrace only if ");
6279 else
6280 uiout->text ("\tstop only if ");
6281 uiout->field_string ("cond", b->cond_string);
6282
6283 /* Print whether the target is doing the breakpoint's condition
6284 evaluation. If GDB is doing the evaluation, don't print anything. */
6285 if (is_breakpoint (b)
6286 && breakpoint_condition_evaluation_mode ()
6287 == condition_evaluation_target)
6288 {
6289 uiout->text (" (");
6290 uiout->field_string ("evaluated-by",
6291 bp_condition_evaluator (b));
6292 uiout->text (" evals)");
6293 }
6294 uiout->text ("\n");
6295 }
6296
6297 if (!part_of_multiple && b->thread != -1)
6298 {
6299 /* FIXME should make an annotation for this. */
6300 uiout->text ("\tstop only in thread ");
6301 if (uiout->is_mi_like_p ())
6302 uiout->field_int ("thread", b->thread);
6303 else
6304 {
6305 struct thread_info *thr = find_thread_global_id (b->thread);
6306
6307 uiout->field_string ("thread", print_thread_id (thr));
6308 }
6309 uiout->text ("\n");
6310 }
6311
6312 if (!part_of_multiple)
6313 {
6314 if (b->hit_count)
6315 {
6316 /* FIXME should make an annotation for this. */
6317 if (is_catchpoint (b))
6318 uiout->text ("\tcatchpoint");
6319 else if (is_tracepoint (b))
6320 uiout->text ("\ttracepoint");
6321 else
6322 uiout->text ("\tbreakpoint");
6323 uiout->text (" already hit ");
6324 uiout->field_int ("times", b->hit_count);
6325 if (b->hit_count == 1)
6326 uiout->text (" time\n");
6327 else
6328 uiout->text (" times\n");
6329 }
6330 else
6331 {
6332 /* Output the count also if it is zero, but only if this is mi. */
6333 if (uiout->is_mi_like_p ())
6334 uiout->field_int ("times", b->hit_count);
6335 }
6336 }
6337
6338 if (!part_of_multiple && b->ignore_count)
6339 {
6340 annotate_field (8);
6341 uiout->text ("\tignore next ");
6342 uiout->field_int ("ignore", b->ignore_count);
6343 uiout->text (" hits\n");
6344 }
6345
6346 /* Note that an enable count of 1 corresponds to "enable once"
6347 behavior, which is reported by the combination of enablement and
6348 disposition, so we don't need to mention it here. */
6349 if (!part_of_multiple && b->enable_count > 1)
6350 {
6351 annotate_field (8);
6352 uiout->text ("\tdisable after ");
6353 /* Tweak the wording to clarify that ignore and enable counts
6354 are distinct, and have additive effect. */
6355 if (b->ignore_count)
6356 uiout->text ("additional ");
6357 else
6358 uiout->text ("next ");
6359 uiout->field_int ("enable", b->enable_count);
6360 uiout->text (" hits\n");
6361 }
6362
6363 if (!part_of_multiple && is_tracepoint (b))
6364 {
6365 struct tracepoint *tp = (struct tracepoint *) b;
6366
6367 if (tp->traceframe_usage)
6368 {
6369 uiout->text ("\ttrace buffer usage ");
6370 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6371 uiout->text (" bytes\n");
6372 }
6373 }
6374
6375 l = b->commands ? b->commands.get () : NULL;
6376 if (!part_of_multiple && l)
6377 {
6378 annotate_field (9);
6379 ui_out_emit_tuple tuple_emitter (uiout, "script");
6380 print_command_lines (uiout, l, 4);
6381 }
6382
6383 if (is_tracepoint (b))
6384 {
6385 struct tracepoint *t = (struct tracepoint *) b;
6386
6387 if (!part_of_multiple && t->pass_count)
6388 {
6389 annotate_field (10);
6390 uiout->text ("\tpass count ");
6391 uiout->field_int ("pass", t->pass_count);
6392 uiout->text (" \n");
6393 }
6394
6395 /* Don't display it when tracepoint or tracepoint location is
6396 pending. */
6397 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6398 {
6399 annotate_field (11);
6400
6401 if (uiout->is_mi_like_p ())
6402 uiout->field_string ("installed",
6403 loc->inserted ? "y" : "n");
6404 else
6405 {
6406 if (loc->inserted)
6407 uiout->text ("\t");
6408 else
6409 uiout->text ("\tnot ");
6410 uiout->text ("installed on target\n");
6411 }
6412 }
6413 }
6414
6415 if (uiout->is_mi_like_p () && !part_of_multiple)
6416 {
6417 if (is_watchpoint (b))
6418 {
6419 struct watchpoint *w = (struct watchpoint *) b;
6420
6421 uiout->field_string ("original-location", w->exp_string);
6422 }
6423 else if (b->location != NULL
6424 && event_location_to_string (b->location.get ()) != NULL)
6425 uiout->field_string ("original-location",
6426 event_location_to_string (b->location.get ()));
6427 }
6428 }
6429
6430 static void
6431 print_one_breakpoint (struct breakpoint *b,
6432 struct bp_location **last_loc,
6433 int allflag)
6434 {
6435 struct ui_out *uiout = current_uiout;
6436
6437 {
6438 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6439
6440 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6441 }
6442
6443 /* If this breakpoint has custom print function,
6444 it's already printed. Otherwise, print individual
6445 locations, if any. */
6446 if (b->ops == NULL || b->ops->print_one == NULL)
6447 {
6448 /* If breakpoint has a single location that is disabled, we
6449 print it as if it had several locations, since otherwise it's
6450 hard to represent "breakpoint enabled, location disabled"
6451 situation.
6452
6453 Note that while hardware watchpoints have several locations
6454 internally, that's not a property exposed to user. */
6455 if (b->loc
6456 && !is_hardware_watchpoint (b)
6457 && (b->loc->next || !b->loc->enabled))
6458 {
6459 struct bp_location *loc;
6460 int n = 1;
6461
6462 for (loc = b->loc; loc; loc = loc->next, ++n)
6463 {
6464 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6465 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6466 }
6467 }
6468 }
6469 }
6470
6471 static int
6472 breakpoint_address_bits (struct breakpoint *b)
6473 {
6474 int print_address_bits = 0;
6475 struct bp_location *loc;
6476
6477 /* Software watchpoints that aren't watching memory don't have an
6478 address to print. */
6479 if (is_no_memory_software_watchpoint (b))
6480 return 0;
6481
6482 for (loc = b->loc; loc; loc = loc->next)
6483 {
6484 int addr_bit;
6485
6486 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6487 if (addr_bit > print_address_bits)
6488 print_address_bits = addr_bit;
6489 }
6490
6491 return print_address_bits;
6492 }
6493
6494 /* See breakpoint.h. */
6495
6496 void
6497 print_breakpoint (breakpoint *b)
6498 {
6499 struct bp_location *dummy_loc = NULL;
6500 print_one_breakpoint (b, &dummy_loc, 0);
6501 }
6502
6503 /* Return true if this breakpoint was set by the user, false if it is
6504 internal or momentary. */
6505
6506 int
6507 user_breakpoint_p (struct breakpoint *b)
6508 {
6509 return b->number > 0;
6510 }
6511
6512 /* See breakpoint.h. */
6513
6514 int
6515 pending_breakpoint_p (struct breakpoint *b)
6516 {
6517 return b->loc == NULL;
6518 }
6519
6520 /* Print information on user settable breakpoint (watchpoint, etc)
6521 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6522 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6523 FILTER is non-NULL, call it on each breakpoint and only include the
6524 ones for which it returns non-zero. Return the total number of
6525 breakpoints listed. */
6526
6527 static int
6528 breakpoint_1 (const char *args, int allflag,
6529 int (*filter) (const struct breakpoint *))
6530 {
6531 struct breakpoint *b;
6532 struct bp_location *last_loc = NULL;
6533 int nr_printable_breakpoints;
6534 struct value_print_options opts;
6535 int print_address_bits = 0;
6536 int print_type_col_width = 14;
6537 struct ui_out *uiout = current_uiout;
6538
6539 get_user_print_options (&opts);
6540
6541 /* Compute the number of rows in the table, as well as the size
6542 required for address fields. */
6543 nr_printable_breakpoints = 0;
6544 ALL_BREAKPOINTS (b)
6545 {
6546 /* If we have a filter, only list the breakpoints it accepts. */
6547 if (filter && !filter (b))
6548 continue;
6549
6550 /* If we have an "args" string, it is a list of breakpoints to
6551 accept. Skip the others. */
6552 if (args != NULL && *args != '\0')
6553 {
6554 if (allflag && parse_and_eval_long (args) != b->number)
6555 continue;
6556 if (!allflag && !number_is_in_list (args, b->number))
6557 continue;
6558 }
6559
6560 if (allflag || user_breakpoint_p (b))
6561 {
6562 int addr_bit, type_len;
6563
6564 addr_bit = breakpoint_address_bits (b);
6565 if (addr_bit > print_address_bits)
6566 print_address_bits = addr_bit;
6567
6568 type_len = strlen (bptype_string (b->type));
6569 if (type_len > print_type_col_width)
6570 print_type_col_width = type_len;
6571
6572 nr_printable_breakpoints++;
6573 }
6574 }
6575
6576 {
6577 ui_out_emit_table table_emitter (uiout,
6578 opts.addressprint ? 6 : 5,
6579 nr_printable_breakpoints,
6580 "BreakpointTable");
6581
6582 if (nr_printable_breakpoints > 0)
6583 annotate_breakpoints_headers ();
6584 if (nr_printable_breakpoints > 0)
6585 annotate_field (0);
6586 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6587 if (nr_printable_breakpoints > 0)
6588 annotate_field (1);
6589 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6590 if (nr_printable_breakpoints > 0)
6591 annotate_field (2);
6592 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6593 if (nr_printable_breakpoints > 0)
6594 annotate_field (3);
6595 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6596 if (opts.addressprint)
6597 {
6598 if (nr_printable_breakpoints > 0)
6599 annotate_field (4);
6600 if (print_address_bits <= 32)
6601 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6602 else
6603 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6604 }
6605 if (nr_printable_breakpoints > 0)
6606 annotate_field (5);
6607 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6608 uiout->table_body ();
6609 if (nr_printable_breakpoints > 0)
6610 annotate_breakpoints_table ();
6611
6612 ALL_BREAKPOINTS (b)
6613 {
6614 QUIT;
6615 /* If we have a filter, only list the breakpoints it accepts. */
6616 if (filter && !filter (b))
6617 continue;
6618
6619 /* If we have an "args" string, it is a list of breakpoints to
6620 accept. Skip the others. */
6621
6622 if (args != NULL && *args != '\0')
6623 {
6624 if (allflag) /* maintenance info breakpoint */
6625 {
6626 if (parse_and_eval_long (args) != b->number)
6627 continue;
6628 }
6629 else /* all others */
6630 {
6631 if (!number_is_in_list (args, b->number))
6632 continue;
6633 }
6634 }
6635 /* We only print out user settable breakpoints unless the
6636 allflag is set. */
6637 if (allflag || user_breakpoint_p (b))
6638 print_one_breakpoint (b, &last_loc, allflag);
6639 }
6640 }
6641
6642 if (nr_printable_breakpoints == 0)
6643 {
6644 /* If there's a filter, let the caller decide how to report
6645 empty list. */
6646 if (!filter)
6647 {
6648 if (args == NULL || *args == '\0')
6649 uiout->message ("No breakpoints or watchpoints.\n");
6650 else
6651 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6652 args);
6653 }
6654 }
6655 else
6656 {
6657 if (last_loc && !server_command)
6658 set_next_address (last_loc->gdbarch, last_loc->address);
6659 }
6660
6661 /* FIXME? Should this be moved up so that it is only called when
6662 there have been breakpoints? */
6663 annotate_breakpoints_table_end ();
6664
6665 return nr_printable_breakpoints;
6666 }
6667
6668 /* Display the value of default-collect in a way that is generally
6669 compatible with the breakpoint list. */
6670
6671 static void
6672 default_collect_info (void)
6673 {
6674 struct ui_out *uiout = current_uiout;
6675
6676 /* If it has no value (which is frequently the case), say nothing; a
6677 message like "No default-collect." gets in user's face when it's
6678 not wanted. */
6679 if (!*default_collect)
6680 return;
6681
6682 /* The following phrase lines up nicely with per-tracepoint collect
6683 actions. */
6684 uiout->text ("default collect ");
6685 uiout->field_string ("default-collect", default_collect);
6686 uiout->text (" \n");
6687 }
6688
6689 static void
6690 info_breakpoints_command (const char *args, int from_tty)
6691 {
6692 breakpoint_1 (args, 0, NULL);
6693
6694 default_collect_info ();
6695 }
6696
6697 static void
6698 info_watchpoints_command (const char *args, int from_tty)
6699 {
6700 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6701 struct ui_out *uiout = current_uiout;
6702
6703 if (num_printed == 0)
6704 {
6705 if (args == NULL || *args == '\0')
6706 uiout->message ("No watchpoints.\n");
6707 else
6708 uiout->message ("No watchpoint matching '%s'.\n", args);
6709 }
6710 }
6711
6712 static void
6713 maintenance_info_breakpoints (const char *args, int from_tty)
6714 {
6715 breakpoint_1 (args, 1, NULL);
6716
6717 default_collect_info ();
6718 }
6719
6720 static int
6721 breakpoint_has_pc (struct breakpoint *b,
6722 struct program_space *pspace,
6723 CORE_ADDR pc, struct obj_section *section)
6724 {
6725 struct bp_location *bl = b->loc;
6726
6727 for (; bl; bl = bl->next)
6728 {
6729 if (bl->pspace == pspace
6730 && bl->address == pc
6731 && (!overlay_debugging || bl->section == section))
6732 return 1;
6733 }
6734 return 0;
6735 }
6736
6737 /* Print a message describing any user-breakpoints set at PC. This
6738 concerns with logical breakpoints, so we match program spaces, not
6739 address spaces. */
6740
6741 static void
6742 describe_other_breakpoints (struct gdbarch *gdbarch,
6743 struct program_space *pspace, CORE_ADDR pc,
6744 struct obj_section *section, int thread)
6745 {
6746 int others = 0;
6747 struct breakpoint *b;
6748
6749 ALL_BREAKPOINTS (b)
6750 others += (user_breakpoint_p (b)
6751 && breakpoint_has_pc (b, pspace, pc, section));
6752 if (others > 0)
6753 {
6754 if (others == 1)
6755 printf_filtered (_("Note: breakpoint "));
6756 else /* if (others == ???) */
6757 printf_filtered (_("Note: breakpoints "));
6758 ALL_BREAKPOINTS (b)
6759 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6760 {
6761 others--;
6762 printf_filtered ("%d", b->number);
6763 if (b->thread == -1 && thread != -1)
6764 printf_filtered (" (all threads)");
6765 else if (b->thread != -1)
6766 printf_filtered (" (thread %d)", b->thread);
6767 printf_filtered ("%s%s ",
6768 ((b->enable_state == bp_disabled
6769 || b->enable_state == bp_call_disabled)
6770 ? " (disabled)"
6771 : ""),
6772 (others > 1) ? ","
6773 : ((others == 1) ? " and" : ""));
6774 }
6775 printf_filtered (_("also set at pc "));
6776 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6777 printf_filtered (".\n");
6778 }
6779 }
6780 \f
6781
6782 /* Return true iff it is meaningful to use the address member of
6783 BPT locations. For some breakpoint types, the locations' address members
6784 are irrelevant and it makes no sense to attempt to compare them to other
6785 addresses (or use them for any other purpose either).
6786
6787 More specifically, each of the following breakpoint types will
6788 always have a zero valued location address and we don't want to mark
6789 breakpoints of any of these types to be a duplicate of an actual
6790 breakpoint location at address zero:
6791
6792 bp_watchpoint
6793 bp_catchpoint
6794
6795 */
6796
6797 static int
6798 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6799 {
6800 enum bptype type = bpt->type;
6801
6802 return (type != bp_watchpoint && type != bp_catchpoint);
6803 }
6804
6805 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6806 true if LOC1 and LOC2 represent the same watchpoint location. */
6807
6808 static int
6809 watchpoint_locations_match (struct bp_location *loc1,
6810 struct bp_location *loc2)
6811 {
6812 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6813 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6814
6815 /* Both of them must exist. */
6816 gdb_assert (w1 != NULL);
6817 gdb_assert (w2 != NULL);
6818
6819 /* If the target can evaluate the condition expression in hardware,
6820 then we we need to insert both watchpoints even if they are at
6821 the same place. Otherwise the watchpoint will only trigger when
6822 the condition of whichever watchpoint was inserted evaluates to
6823 true, not giving a chance for GDB to check the condition of the
6824 other watchpoint. */
6825 if ((w1->cond_exp
6826 && target_can_accel_watchpoint_condition (loc1->address,
6827 loc1->length,
6828 loc1->watchpoint_type,
6829 w1->cond_exp.get ()))
6830 || (w2->cond_exp
6831 && target_can_accel_watchpoint_condition (loc2->address,
6832 loc2->length,
6833 loc2->watchpoint_type,
6834 w2->cond_exp.get ())))
6835 return 0;
6836
6837 /* Note that this checks the owner's type, not the location's. In
6838 case the target does not support read watchpoints, but does
6839 support access watchpoints, we'll have bp_read_watchpoint
6840 watchpoints with hw_access locations. Those should be considered
6841 duplicates of hw_read locations. The hw_read locations will
6842 become hw_access locations later. */
6843 return (loc1->owner->type == loc2->owner->type
6844 && loc1->pspace->aspace == loc2->pspace->aspace
6845 && loc1->address == loc2->address
6846 && loc1->length == loc2->length);
6847 }
6848
6849 /* See breakpoint.h. */
6850
6851 int
6852 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6853 const address_space *aspace2, CORE_ADDR addr2)
6854 {
6855 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6856 || aspace1 == aspace2)
6857 && addr1 == addr2);
6858 }
6859
6860 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6861 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6862 matches ASPACE2. On targets that have global breakpoints, the address
6863 space doesn't really matter. */
6864
6865 static int
6866 breakpoint_address_match_range (const address_space *aspace1,
6867 CORE_ADDR addr1,
6868 int len1, const address_space *aspace2,
6869 CORE_ADDR addr2)
6870 {
6871 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6872 || aspace1 == aspace2)
6873 && addr2 >= addr1 && addr2 < addr1 + len1);
6874 }
6875
6876 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6877 a ranged breakpoint. In most targets, a match happens only if ASPACE
6878 matches the breakpoint's address space. On targets that have global
6879 breakpoints, the address space doesn't really matter. */
6880
6881 static int
6882 breakpoint_location_address_match (struct bp_location *bl,
6883 const address_space *aspace,
6884 CORE_ADDR addr)
6885 {
6886 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6887 aspace, addr)
6888 || (bl->length
6889 && breakpoint_address_match_range (bl->pspace->aspace,
6890 bl->address, bl->length,
6891 aspace, addr)));
6892 }
6893
6894 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6895 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6896 match happens only if ASPACE matches the breakpoint's address
6897 space. On targets that have global breakpoints, the address space
6898 doesn't really matter. */
6899
6900 static int
6901 breakpoint_location_address_range_overlap (struct bp_location *bl,
6902 const address_space *aspace,
6903 CORE_ADDR addr, int len)
6904 {
6905 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6906 || bl->pspace->aspace == aspace)
6907 {
6908 int bl_len = bl->length != 0 ? bl->length : 1;
6909
6910 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6911 return 1;
6912 }
6913 return 0;
6914 }
6915
6916 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6917 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6918 true, otherwise returns false. */
6919
6920 static int
6921 tracepoint_locations_match (struct bp_location *loc1,
6922 struct bp_location *loc2)
6923 {
6924 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6925 /* Since tracepoint locations are never duplicated with others', tracepoint
6926 locations at the same address of different tracepoints are regarded as
6927 different locations. */
6928 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6929 else
6930 return 0;
6931 }
6932
6933 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6934 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6935 represent the same location. */
6936
6937 static int
6938 breakpoint_locations_match (struct bp_location *loc1,
6939 struct bp_location *loc2)
6940 {
6941 int hw_point1, hw_point2;
6942
6943 /* Both of them must not be in moribund_locations. */
6944 gdb_assert (loc1->owner != NULL);
6945 gdb_assert (loc2->owner != NULL);
6946
6947 hw_point1 = is_hardware_watchpoint (loc1->owner);
6948 hw_point2 = is_hardware_watchpoint (loc2->owner);
6949
6950 if (hw_point1 != hw_point2)
6951 return 0;
6952 else if (hw_point1)
6953 return watchpoint_locations_match (loc1, loc2);
6954 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6955 return tracepoint_locations_match (loc1, loc2);
6956 else
6957 /* We compare bp_location.length in order to cover ranged breakpoints. */
6958 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6959 loc2->pspace->aspace, loc2->address)
6960 && loc1->length == loc2->length);
6961 }
6962
6963 static void
6964 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6965 int bnum, int have_bnum)
6966 {
6967 /* The longest string possibly returned by hex_string_custom
6968 is 50 chars. These must be at least that big for safety. */
6969 char astr1[64];
6970 char astr2[64];
6971
6972 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6973 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6974 if (have_bnum)
6975 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6976 bnum, astr1, astr2);
6977 else
6978 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6979 }
6980
6981 /* Adjust a breakpoint's address to account for architectural
6982 constraints on breakpoint placement. Return the adjusted address.
6983 Note: Very few targets require this kind of adjustment. For most
6984 targets, this function is simply the identity function. */
6985
6986 static CORE_ADDR
6987 adjust_breakpoint_address (struct gdbarch *gdbarch,
6988 CORE_ADDR bpaddr, enum bptype bptype)
6989 {
6990 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6991 {
6992 /* Very few targets need any kind of breakpoint adjustment. */
6993 return bpaddr;
6994 }
6995 else if (bptype == bp_watchpoint
6996 || bptype == bp_hardware_watchpoint
6997 || bptype == bp_read_watchpoint
6998 || bptype == bp_access_watchpoint
6999 || bptype == bp_catchpoint)
7000 {
7001 /* Watchpoints and the various bp_catch_* eventpoints should not
7002 have their addresses modified. */
7003 return bpaddr;
7004 }
7005 else if (bptype == bp_single_step)
7006 {
7007 /* Single-step breakpoints should not have their addresses
7008 modified. If there's any architectural constrain that
7009 applies to this address, then it should have already been
7010 taken into account when the breakpoint was created in the
7011 first place. If we didn't do this, stepping through e.g.,
7012 Thumb-2 IT blocks would break. */
7013 return bpaddr;
7014 }
7015 else
7016 {
7017 CORE_ADDR adjusted_bpaddr;
7018
7019 /* Some targets have architectural constraints on the placement
7020 of breakpoint instructions. Obtain the adjusted address. */
7021 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7022
7023 /* An adjusted breakpoint address can significantly alter
7024 a user's expectations. Print a warning if an adjustment
7025 is required. */
7026 if (adjusted_bpaddr != bpaddr)
7027 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7028
7029 return adjusted_bpaddr;
7030 }
7031 }
7032
7033 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7034 {
7035 bp_location *loc = this;
7036
7037 gdb_assert (ops != NULL);
7038
7039 loc->ops = ops;
7040 loc->owner = owner;
7041 loc->cond_bytecode = NULL;
7042 loc->shlib_disabled = 0;
7043 loc->enabled = 1;
7044
7045 switch (owner->type)
7046 {
7047 case bp_breakpoint:
7048 case bp_single_step:
7049 case bp_until:
7050 case bp_finish:
7051 case bp_longjmp:
7052 case bp_longjmp_resume:
7053 case bp_longjmp_call_dummy:
7054 case bp_exception:
7055 case bp_exception_resume:
7056 case bp_step_resume:
7057 case bp_hp_step_resume:
7058 case bp_watchpoint_scope:
7059 case bp_call_dummy:
7060 case bp_std_terminate:
7061 case bp_shlib_event:
7062 case bp_thread_event:
7063 case bp_overlay_event:
7064 case bp_jit_event:
7065 case bp_longjmp_master:
7066 case bp_std_terminate_master:
7067 case bp_exception_master:
7068 case bp_gnu_ifunc_resolver:
7069 case bp_gnu_ifunc_resolver_return:
7070 case bp_dprintf:
7071 loc->loc_type = bp_loc_software_breakpoint;
7072 mark_breakpoint_location_modified (loc);
7073 break;
7074 case bp_hardware_breakpoint:
7075 loc->loc_type = bp_loc_hardware_breakpoint;
7076 mark_breakpoint_location_modified (loc);
7077 break;
7078 case bp_hardware_watchpoint:
7079 case bp_read_watchpoint:
7080 case bp_access_watchpoint:
7081 loc->loc_type = bp_loc_hardware_watchpoint;
7082 break;
7083 case bp_watchpoint:
7084 case bp_catchpoint:
7085 case bp_tracepoint:
7086 case bp_fast_tracepoint:
7087 case bp_static_tracepoint:
7088 loc->loc_type = bp_loc_other;
7089 break;
7090 default:
7091 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7092 }
7093
7094 loc->refc = 1;
7095 }
7096
7097 /* Allocate a struct bp_location. */
7098
7099 static struct bp_location *
7100 allocate_bp_location (struct breakpoint *bpt)
7101 {
7102 return bpt->ops->allocate_location (bpt);
7103 }
7104
7105 static void
7106 free_bp_location (struct bp_location *loc)
7107 {
7108 loc->ops->dtor (loc);
7109 delete loc;
7110 }
7111
7112 /* Increment reference count. */
7113
7114 static void
7115 incref_bp_location (struct bp_location *bl)
7116 {
7117 ++bl->refc;
7118 }
7119
7120 /* Decrement reference count. If the reference count reaches 0,
7121 destroy the bp_location. Sets *BLP to NULL. */
7122
7123 static void
7124 decref_bp_location (struct bp_location **blp)
7125 {
7126 gdb_assert ((*blp)->refc > 0);
7127
7128 if (--(*blp)->refc == 0)
7129 free_bp_location (*blp);
7130 *blp = NULL;
7131 }
7132
7133 /* Add breakpoint B at the end of the global breakpoint chain. */
7134
7135 static breakpoint *
7136 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7137 {
7138 struct breakpoint *b1;
7139 struct breakpoint *result = b.get ();
7140
7141 /* Add this breakpoint to the end of the chain so that a list of
7142 breakpoints will come out in order of increasing numbers. */
7143
7144 b1 = breakpoint_chain;
7145 if (b1 == 0)
7146 breakpoint_chain = b.release ();
7147 else
7148 {
7149 while (b1->next)
7150 b1 = b1->next;
7151 b1->next = b.release ();
7152 }
7153
7154 return result;
7155 }
7156
7157 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7158
7159 static void
7160 init_raw_breakpoint_without_location (struct breakpoint *b,
7161 struct gdbarch *gdbarch,
7162 enum bptype bptype,
7163 const struct breakpoint_ops *ops)
7164 {
7165 gdb_assert (ops != NULL);
7166
7167 b->ops = ops;
7168 b->type = bptype;
7169 b->gdbarch = gdbarch;
7170 b->language = current_language->la_language;
7171 b->input_radix = input_radix;
7172 b->related_breakpoint = b;
7173 }
7174
7175 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7176 that has type BPTYPE and has no locations as yet. */
7177
7178 static struct breakpoint *
7179 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7180 enum bptype bptype,
7181 const struct breakpoint_ops *ops)
7182 {
7183 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7184
7185 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7186 return add_to_breakpoint_chain (std::move (b));
7187 }
7188
7189 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7190 resolutions should be made as the user specified the location explicitly
7191 enough. */
7192
7193 static void
7194 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7195 {
7196 gdb_assert (loc->owner != NULL);
7197
7198 if (loc->owner->type == bp_breakpoint
7199 || loc->owner->type == bp_hardware_breakpoint
7200 || is_tracepoint (loc->owner))
7201 {
7202 int is_gnu_ifunc;
7203 const char *function_name;
7204 CORE_ADDR func_addr;
7205
7206 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7207 &func_addr, NULL, &is_gnu_ifunc);
7208
7209 if (is_gnu_ifunc && !explicit_loc)
7210 {
7211 struct breakpoint *b = loc->owner;
7212
7213 gdb_assert (loc->pspace == current_program_space);
7214 if (gnu_ifunc_resolve_name (function_name,
7215 &loc->requested_address))
7216 {
7217 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7218 loc->address = adjust_breakpoint_address (loc->gdbarch,
7219 loc->requested_address,
7220 b->type);
7221 }
7222 else if (b->type == bp_breakpoint && b->loc == loc
7223 && loc->next == NULL && b->related_breakpoint == b)
7224 {
7225 /* Create only the whole new breakpoint of this type but do not
7226 mess more complicated breakpoints with multiple locations. */
7227 b->type = bp_gnu_ifunc_resolver;
7228 /* Remember the resolver's address for use by the return
7229 breakpoint. */
7230 loc->related_address = func_addr;
7231 }
7232 }
7233
7234 if (function_name)
7235 loc->function_name = xstrdup (function_name);
7236 }
7237 }
7238
7239 /* Attempt to determine architecture of location identified by SAL. */
7240 struct gdbarch *
7241 get_sal_arch (struct symtab_and_line sal)
7242 {
7243 if (sal.section)
7244 return get_objfile_arch (sal.section->objfile);
7245 if (sal.symtab)
7246 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7247
7248 return NULL;
7249 }
7250
7251 /* Low level routine for partially initializing a breakpoint of type
7252 BPTYPE. The newly created breakpoint's address, section, source
7253 file name, and line number are provided by SAL.
7254
7255 It is expected that the caller will complete the initialization of
7256 the newly created breakpoint struct as well as output any status
7257 information regarding the creation of a new breakpoint. */
7258
7259 static void
7260 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7261 struct symtab_and_line sal, enum bptype bptype,
7262 const struct breakpoint_ops *ops)
7263 {
7264 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7265
7266 add_location_to_breakpoint (b, &sal);
7267
7268 if (bptype != bp_catchpoint)
7269 gdb_assert (sal.pspace != NULL);
7270
7271 /* Store the program space that was used to set the breakpoint,
7272 except for ordinary breakpoints, which are independent of the
7273 program space. */
7274 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7275 b->pspace = sal.pspace;
7276 }
7277
7278 /* set_raw_breakpoint is a low level routine for allocating and
7279 partially initializing a breakpoint of type BPTYPE. The newly
7280 created breakpoint's address, section, source file name, and line
7281 number are provided by SAL. The newly created and partially
7282 initialized breakpoint is added to the breakpoint chain and
7283 is also returned as the value of this function.
7284
7285 It is expected that the caller will complete the initialization of
7286 the newly created breakpoint struct as well as output any status
7287 information regarding the creation of a new breakpoint. In
7288 particular, set_raw_breakpoint does NOT set the breakpoint
7289 number! Care should be taken to not allow an error to occur
7290 prior to completing the initialization of the breakpoint. If this
7291 should happen, a bogus breakpoint will be left on the chain. */
7292
7293 struct breakpoint *
7294 set_raw_breakpoint (struct gdbarch *gdbarch,
7295 struct symtab_and_line sal, enum bptype bptype,
7296 const struct breakpoint_ops *ops)
7297 {
7298 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7299
7300 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7301 return add_to_breakpoint_chain (std::move (b));
7302 }
7303
7304 /* Call this routine when stepping and nexting to enable a breakpoint
7305 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7306 initiated the operation. */
7307
7308 void
7309 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7310 {
7311 struct breakpoint *b, *b_tmp;
7312 int thread = tp->global_num;
7313
7314 /* To avoid having to rescan all objfile symbols at every step,
7315 we maintain a list of continually-inserted but always disabled
7316 longjmp "master" breakpoints. Here, we simply create momentary
7317 clones of those and enable them for the requested thread. */
7318 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7319 if (b->pspace == current_program_space
7320 && (b->type == bp_longjmp_master
7321 || b->type == bp_exception_master))
7322 {
7323 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7324 struct breakpoint *clone;
7325
7326 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7327 after their removal. */
7328 clone = momentary_breakpoint_from_master (b, type,
7329 &momentary_breakpoint_ops, 1);
7330 clone->thread = thread;
7331 }
7332
7333 tp->initiating_frame = frame;
7334 }
7335
7336 /* Delete all longjmp breakpoints from THREAD. */
7337 void
7338 delete_longjmp_breakpoint (int thread)
7339 {
7340 struct breakpoint *b, *b_tmp;
7341
7342 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7343 if (b->type == bp_longjmp || b->type == bp_exception)
7344 {
7345 if (b->thread == thread)
7346 delete_breakpoint (b);
7347 }
7348 }
7349
7350 void
7351 delete_longjmp_breakpoint_at_next_stop (int thread)
7352 {
7353 struct breakpoint *b, *b_tmp;
7354
7355 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7356 if (b->type == bp_longjmp || b->type == bp_exception)
7357 {
7358 if (b->thread == thread)
7359 b->disposition = disp_del_at_next_stop;
7360 }
7361 }
7362
7363 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7364 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7365 pointer to any of them. Return NULL if this system cannot place longjmp
7366 breakpoints. */
7367
7368 struct breakpoint *
7369 set_longjmp_breakpoint_for_call_dummy (void)
7370 {
7371 struct breakpoint *b, *retval = NULL;
7372
7373 ALL_BREAKPOINTS (b)
7374 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7375 {
7376 struct breakpoint *new_b;
7377
7378 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7379 &momentary_breakpoint_ops,
7380 1);
7381 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7382
7383 /* Link NEW_B into the chain of RETVAL breakpoints. */
7384
7385 gdb_assert (new_b->related_breakpoint == new_b);
7386 if (retval == NULL)
7387 retval = new_b;
7388 new_b->related_breakpoint = retval;
7389 while (retval->related_breakpoint != new_b->related_breakpoint)
7390 retval = retval->related_breakpoint;
7391 retval->related_breakpoint = new_b;
7392 }
7393
7394 return retval;
7395 }
7396
7397 /* Verify all existing dummy frames and their associated breakpoints for
7398 TP. Remove those which can no longer be found in the current frame
7399 stack.
7400
7401 You should call this function only at places where it is safe to currently
7402 unwind the whole stack. Failed stack unwind would discard live dummy
7403 frames. */
7404
7405 void
7406 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7407 {
7408 struct breakpoint *b, *b_tmp;
7409
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7412 {
7413 struct breakpoint *dummy_b = b->related_breakpoint;
7414
7415 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7416 dummy_b = dummy_b->related_breakpoint;
7417 if (dummy_b->type != bp_call_dummy
7418 || frame_find_by_id (dummy_b->frame_id) != NULL)
7419 continue;
7420
7421 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7422
7423 while (b->related_breakpoint != b)
7424 {
7425 if (b_tmp == b->related_breakpoint)
7426 b_tmp = b->related_breakpoint->next;
7427 delete_breakpoint (b->related_breakpoint);
7428 }
7429 delete_breakpoint (b);
7430 }
7431 }
7432
7433 void
7434 enable_overlay_breakpoints (void)
7435 {
7436 struct breakpoint *b;
7437
7438 ALL_BREAKPOINTS (b)
7439 if (b->type == bp_overlay_event)
7440 {
7441 b->enable_state = bp_enabled;
7442 update_global_location_list (UGLL_MAY_INSERT);
7443 overlay_events_enabled = 1;
7444 }
7445 }
7446
7447 void
7448 disable_overlay_breakpoints (void)
7449 {
7450 struct breakpoint *b;
7451
7452 ALL_BREAKPOINTS (b)
7453 if (b->type == bp_overlay_event)
7454 {
7455 b->enable_state = bp_disabled;
7456 update_global_location_list (UGLL_DONT_INSERT);
7457 overlay_events_enabled = 0;
7458 }
7459 }
7460
7461 /* Set an active std::terminate breakpoint for each std::terminate
7462 master breakpoint. */
7463 void
7464 set_std_terminate_breakpoint (void)
7465 {
7466 struct breakpoint *b, *b_tmp;
7467
7468 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7469 if (b->pspace == current_program_space
7470 && b->type == bp_std_terminate_master)
7471 {
7472 momentary_breakpoint_from_master (b, bp_std_terminate,
7473 &momentary_breakpoint_ops, 1);
7474 }
7475 }
7476
7477 /* Delete all the std::terminate breakpoints. */
7478 void
7479 delete_std_terminate_breakpoint (void)
7480 {
7481 struct breakpoint *b, *b_tmp;
7482
7483 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7484 if (b->type == bp_std_terminate)
7485 delete_breakpoint (b);
7486 }
7487
7488 struct breakpoint *
7489 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7490 {
7491 struct breakpoint *b;
7492
7493 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7494 &internal_breakpoint_ops);
7495
7496 b->enable_state = bp_enabled;
7497 /* location has to be used or breakpoint_re_set will delete me. */
7498 b->location = new_address_location (b->loc->address, NULL, 0);
7499
7500 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7501
7502 return b;
7503 }
7504
7505 struct lang_and_radix
7506 {
7507 enum language lang;
7508 int radix;
7509 };
7510
7511 /* Create a breakpoint for JIT code registration and unregistration. */
7512
7513 struct breakpoint *
7514 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7515 {
7516 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7517 &internal_breakpoint_ops);
7518 }
7519
7520 /* Remove JIT code registration and unregistration breakpoint(s). */
7521
7522 void
7523 remove_jit_event_breakpoints (void)
7524 {
7525 struct breakpoint *b, *b_tmp;
7526
7527 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7528 if (b->type == bp_jit_event
7529 && b->loc->pspace == current_program_space)
7530 delete_breakpoint (b);
7531 }
7532
7533 void
7534 remove_solib_event_breakpoints (void)
7535 {
7536 struct breakpoint *b, *b_tmp;
7537
7538 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7539 if (b->type == bp_shlib_event
7540 && b->loc->pspace == current_program_space)
7541 delete_breakpoint (b);
7542 }
7543
7544 /* See breakpoint.h. */
7545
7546 void
7547 remove_solib_event_breakpoints_at_next_stop (void)
7548 {
7549 struct breakpoint *b, *b_tmp;
7550
7551 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7552 if (b->type == bp_shlib_event
7553 && b->loc->pspace == current_program_space)
7554 b->disposition = disp_del_at_next_stop;
7555 }
7556
7557 /* Helper for create_solib_event_breakpoint /
7558 create_and_insert_solib_event_breakpoint. Allows specifying which
7559 INSERT_MODE to pass through to update_global_location_list. */
7560
7561 static struct breakpoint *
7562 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7563 enum ugll_insert_mode insert_mode)
7564 {
7565 struct breakpoint *b;
7566
7567 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7568 &internal_breakpoint_ops);
7569 update_global_location_list_nothrow (insert_mode);
7570 return b;
7571 }
7572
7573 struct breakpoint *
7574 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7575 {
7576 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7577 }
7578
7579 /* See breakpoint.h. */
7580
7581 struct breakpoint *
7582 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7583 {
7584 struct breakpoint *b;
7585
7586 /* Explicitly tell update_global_location_list to insert
7587 locations. */
7588 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7589 if (!b->loc->inserted)
7590 {
7591 delete_breakpoint (b);
7592 return NULL;
7593 }
7594 return b;
7595 }
7596
7597 /* Disable any breakpoints that are on code in shared libraries. Only
7598 apply to enabled breakpoints, disabled ones can just stay disabled. */
7599
7600 void
7601 disable_breakpoints_in_shlibs (void)
7602 {
7603 struct bp_location *loc, **locp_tmp;
7604
7605 ALL_BP_LOCATIONS (loc, locp_tmp)
7606 {
7607 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7608 struct breakpoint *b = loc->owner;
7609
7610 /* We apply the check to all breakpoints, including disabled for
7611 those with loc->duplicate set. This is so that when breakpoint
7612 becomes enabled, or the duplicate is removed, gdb will try to
7613 insert all breakpoints. If we don't set shlib_disabled here,
7614 we'll try to insert those breakpoints and fail. */
7615 if (((b->type == bp_breakpoint)
7616 || (b->type == bp_jit_event)
7617 || (b->type == bp_hardware_breakpoint)
7618 || (is_tracepoint (b)))
7619 && loc->pspace == current_program_space
7620 && !loc->shlib_disabled
7621 && solib_name_from_address (loc->pspace, loc->address)
7622 )
7623 {
7624 loc->shlib_disabled = 1;
7625 }
7626 }
7627 }
7628
7629 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7630 notification of unloaded_shlib. Only apply to enabled breakpoints,
7631 disabled ones can just stay disabled. */
7632
7633 static void
7634 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7635 {
7636 struct bp_location *loc, **locp_tmp;
7637 int disabled_shlib_breaks = 0;
7638
7639 ALL_BP_LOCATIONS (loc, locp_tmp)
7640 {
7641 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7642 struct breakpoint *b = loc->owner;
7643
7644 if (solib->pspace == loc->pspace
7645 && !loc->shlib_disabled
7646 && (((b->type == bp_breakpoint
7647 || b->type == bp_jit_event
7648 || b->type == bp_hardware_breakpoint)
7649 && (loc->loc_type == bp_loc_hardware_breakpoint
7650 || loc->loc_type == bp_loc_software_breakpoint))
7651 || is_tracepoint (b))
7652 && solib_contains_address_p (solib, loc->address))
7653 {
7654 loc->shlib_disabled = 1;
7655 /* At this point, we cannot rely on remove_breakpoint
7656 succeeding so we must mark the breakpoint as not inserted
7657 to prevent future errors occurring in remove_breakpoints. */
7658 loc->inserted = 0;
7659
7660 /* This may cause duplicate notifications for the same breakpoint. */
7661 observer_notify_breakpoint_modified (b);
7662
7663 if (!disabled_shlib_breaks)
7664 {
7665 target_terminal::ours_for_output ();
7666 warning (_("Temporarily disabling breakpoints "
7667 "for unloaded shared library \"%s\""),
7668 solib->so_name);
7669 }
7670 disabled_shlib_breaks = 1;
7671 }
7672 }
7673 }
7674
7675 /* Disable any breakpoints and tracepoints in OBJFILE upon
7676 notification of free_objfile. Only apply to enabled breakpoints,
7677 disabled ones can just stay disabled. */
7678
7679 static void
7680 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7681 {
7682 struct breakpoint *b;
7683
7684 if (objfile == NULL)
7685 return;
7686
7687 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7688 managed by the user with add-symbol-file/remove-symbol-file.
7689 Similarly to how breakpoints in shared libraries are handled in
7690 response to "nosharedlibrary", mark breakpoints in such modules
7691 shlib_disabled so they end up uninserted on the next global
7692 location list update. Shared libraries not loaded by the user
7693 aren't handled here -- they're already handled in
7694 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7695 solib_unloaded observer. We skip objfiles that are not
7696 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7697 main objfile). */
7698 if ((objfile->flags & OBJF_SHARED) == 0
7699 || (objfile->flags & OBJF_USERLOADED) == 0)
7700 return;
7701
7702 ALL_BREAKPOINTS (b)
7703 {
7704 struct bp_location *loc;
7705 int bp_modified = 0;
7706
7707 if (!is_breakpoint (b) && !is_tracepoint (b))
7708 continue;
7709
7710 for (loc = b->loc; loc != NULL; loc = loc->next)
7711 {
7712 CORE_ADDR loc_addr = loc->address;
7713
7714 if (loc->loc_type != bp_loc_hardware_breakpoint
7715 && loc->loc_type != bp_loc_software_breakpoint)
7716 continue;
7717
7718 if (loc->shlib_disabled != 0)
7719 continue;
7720
7721 if (objfile->pspace != loc->pspace)
7722 continue;
7723
7724 if (loc->loc_type != bp_loc_hardware_breakpoint
7725 && loc->loc_type != bp_loc_software_breakpoint)
7726 continue;
7727
7728 if (is_addr_in_objfile (loc_addr, objfile))
7729 {
7730 loc->shlib_disabled = 1;
7731 /* At this point, we don't know whether the object was
7732 unmapped from the inferior or not, so leave the
7733 inserted flag alone. We'll handle failure to
7734 uninsert quietly, in case the object was indeed
7735 unmapped. */
7736
7737 mark_breakpoint_location_modified (loc);
7738
7739 bp_modified = 1;
7740 }
7741 }
7742
7743 if (bp_modified)
7744 observer_notify_breakpoint_modified (b);
7745 }
7746 }
7747
7748 /* FORK & VFORK catchpoints. */
7749
7750 /* An instance of this type is used to represent a fork or vfork
7751 catchpoint. A breakpoint is really of this type iff its ops pointer points
7752 to CATCH_FORK_BREAKPOINT_OPS. */
7753
7754 struct fork_catchpoint : public breakpoint
7755 {
7756 /* Process id of a child process whose forking triggered this
7757 catchpoint. This field is only valid immediately after this
7758 catchpoint has triggered. */
7759 ptid_t forked_inferior_pid;
7760 };
7761
7762 /* Implement the "insert" breakpoint_ops method for fork
7763 catchpoints. */
7764
7765 static int
7766 insert_catch_fork (struct bp_location *bl)
7767 {
7768 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7769 }
7770
7771 /* Implement the "remove" breakpoint_ops method for fork
7772 catchpoints. */
7773
7774 static int
7775 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7776 {
7777 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7778 }
7779
7780 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7781 catchpoints. */
7782
7783 static int
7784 breakpoint_hit_catch_fork (const struct bp_location *bl,
7785 const address_space *aspace, CORE_ADDR bp_addr,
7786 const struct target_waitstatus *ws)
7787 {
7788 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7789
7790 if (ws->kind != TARGET_WAITKIND_FORKED)
7791 return 0;
7792
7793 c->forked_inferior_pid = ws->value.related_pid;
7794 return 1;
7795 }
7796
7797 /* Implement the "print_it" breakpoint_ops method for fork
7798 catchpoints. */
7799
7800 static enum print_stop_action
7801 print_it_catch_fork (bpstat bs)
7802 {
7803 struct ui_out *uiout = current_uiout;
7804 struct breakpoint *b = bs->breakpoint_at;
7805 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7806
7807 annotate_catchpoint (b->number);
7808 maybe_print_thread_hit_breakpoint (uiout);
7809 if (b->disposition == disp_del)
7810 uiout->text ("Temporary catchpoint ");
7811 else
7812 uiout->text ("Catchpoint ");
7813 if (uiout->is_mi_like_p ())
7814 {
7815 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7816 uiout->field_string ("disp", bpdisp_text (b->disposition));
7817 }
7818 uiout->field_int ("bkptno", b->number);
7819 uiout->text (" (forked process ");
7820 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7821 uiout->text ("), ");
7822 return PRINT_SRC_AND_LOC;
7823 }
7824
7825 /* Implement the "print_one" breakpoint_ops method for fork
7826 catchpoints. */
7827
7828 static void
7829 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7830 {
7831 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7832 struct value_print_options opts;
7833 struct ui_out *uiout = current_uiout;
7834
7835 get_user_print_options (&opts);
7836
7837 /* Field 4, the address, is omitted (which makes the columns not
7838 line up too nicely with the headers, but the effect is relatively
7839 readable). */
7840 if (opts.addressprint)
7841 uiout->field_skip ("addr");
7842 annotate_field (5);
7843 uiout->text ("fork");
7844 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7845 {
7846 uiout->text (", process ");
7847 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7848 uiout->spaces (1);
7849 }
7850
7851 if (uiout->is_mi_like_p ())
7852 uiout->field_string ("catch-type", "fork");
7853 }
7854
7855 /* Implement the "print_mention" breakpoint_ops method for fork
7856 catchpoints. */
7857
7858 static void
7859 print_mention_catch_fork (struct breakpoint *b)
7860 {
7861 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7862 }
7863
7864 /* Implement the "print_recreate" breakpoint_ops method for fork
7865 catchpoints. */
7866
7867 static void
7868 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7869 {
7870 fprintf_unfiltered (fp, "catch fork");
7871 print_recreate_thread (b, fp);
7872 }
7873
7874 /* The breakpoint_ops structure to be used in fork catchpoints. */
7875
7876 static struct breakpoint_ops catch_fork_breakpoint_ops;
7877
7878 /* Implement the "insert" breakpoint_ops method for vfork
7879 catchpoints. */
7880
7881 static int
7882 insert_catch_vfork (struct bp_location *bl)
7883 {
7884 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7885 }
7886
7887 /* Implement the "remove" breakpoint_ops method for vfork
7888 catchpoints. */
7889
7890 static int
7891 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7892 {
7893 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7894 }
7895
7896 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7897 catchpoints. */
7898
7899 static int
7900 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7901 const address_space *aspace, CORE_ADDR bp_addr,
7902 const struct target_waitstatus *ws)
7903 {
7904 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7905
7906 if (ws->kind != TARGET_WAITKIND_VFORKED)
7907 return 0;
7908
7909 c->forked_inferior_pid = ws->value.related_pid;
7910 return 1;
7911 }
7912
7913 /* Implement the "print_it" breakpoint_ops method for vfork
7914 catchpoints. */
7915
7916 static enum print_stop_action
7917 print_it_catch_vfork (bpstat bs)
7918 {
7919 struct ui_out *uiout = current_uiout;
7920 struct breakpoint *b = bs->breakpoint_at;
7921 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7922
7923 annotate_catchpoint (b->number);
7924 maybe_print_thread_hit_breakpoint (uiout);
7925 if (b->disposition == disp_del)
7926 uiout->text ("Temporary catchpoint ");
7927 else
7928 uiout->text ("Catchpoint ");
7929 if (uiout->is_mi_like_p ())
7930 {
7931 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7932 uiout->field_string ("disp", bpdisp_text (b->disposition));
7933 }
7934 uiout->field_int ("bkptno", b->number);
7935 uiout->text (" (vforked process ");
7936 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7937 uiout->text ("), ");
7938 return PRINT_SRC_AND_LOC;
7939 }
7940
7941 /* Implement the "print_one" breakpoint_ops method for vfork
7942 catchpoints. */
7943
7944 static void
7945 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7946 {
7947 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7948 struct value_print_options opts;
7949 struct ui_out *uiout = current_uiout;
7950
7951 get_user_print_options (&opts);
7952 /* Field 4, the address, is omitted (which makes the columns not
7953 line up too nicely with the headers, but the effect is relatively
7954 readable). */
7955 if (opts.addressprint)
7956 uiout->field_skip ("addr");
7957 annotate_field (5);
7958 uiout->text ("vfork");
7959 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7960 {
7961 uiout->text (", process ");
7962 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7963 uiout->spaces (1);
7964 }
7965
7966 if (uiout->is_mi_like_p ())
7967 uiout->field_string ("catch-type", "vfork");
7968 }
7969
7970 /* Implement the "print_mention" breakpoint_ops method for vfork
7971 catchpoints. */
7972
7973 static void
7974 print_mention_catch_vfork (struct breakpoint *b)
7975 {
7976 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7977 }
7978
7979 /* Implement the "print_recreate" breakpoint_ops method for vfork
7980 catchpoints. */
7981
7982 static void
7983 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7984 {
7985 fprintf_unfiltered (fp, "catch vfork");
7986 print_recreate_thread (b, fp);
7987 }
7988
7989 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7990
7991 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7992
7993 /* An instance of this type is used to represent an solib catchpoint.
7994 A breakpoint is really of this type iff its ops pointer points to
7995 CATCH_SOLIB_BREAKPOINT_OPS. */
7996
7997 struct solib_catchpoint : public breakpoint
7998 {
7999 ~solib_catchpoint () override;
8000
8001 /* True for "catch load", false for "catch unload". */
8002 unsigned char is_load;
8003
8004 /* Regular expression to match, if any. COMPILED is only valid when
8005 REGEX is non-NULL. */
8006 char *regex;
8007 std::unique_ptr<compiled_regex> compiled;
8008 };
8009
8010 solib_catchpoint::~solib_catchpoint ()
8011 {
8012 xfree (this->regex);
8013 }
8014
8015 static int
8016 insert_catch_solib (struct bp_location *ignore)
8017 {
8018 return 0;
8019 }
8020
8021 static int
8022 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8023 {
8024 return 0;
8025 }
8026
8027 static int
8028 breakpoint_hit_catch_solib (const struct bp_location *bl,
8029 const address_space *aspace,
8030 CORE_ADDR bp_addr,
8031 const struct target_waitstatus *ws)
8032 {
8033 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8034 struct breakpoint *other;
8035
8036 if (ws->kind == TARGET_WAITKIND_LOADED)
8037 return 1;
8038
8039 ALL_BREAKPOINTS (other)
8040 {
8041 struct bp_location *other_bl;
8042
8043 if (other == bl->owner)
8044 continue;
8045
8046 if (other->type != bp_shlib_event)
8047 continue;
8048
8049 if (self->pspace != NULL && other->pspace != self->pspace)
8050 continue;
8051
8052 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8053 {
8054 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8055 return 1;
8056 }
8057 }
8058
8059 return 0;
8060 }
8061
8062 static void
8063 check_status_catch_solib (struct bpstats *bs)
8064 {
8065 struct solib_catchpoint *self
8066 = (struct solib_catchpoint *) bs->breakpoint_at;
8067 int ix;
8068
8069 if (self->is_load)
8070 {
8071 struct so_list *iter;
8072
8073 for (ix = 0;
8074 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8075 ix, iter);
8076 ++ix)
8077 {
8078 if (!self->regex
8079 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8080 return;
8081 }
8082 }
8083 else
8084 {
8085 char *iter;
8086
8087 for (ix = 0;
8088 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8089 ix, iter);
8090 ++ix)
8091 {
8092 if (!self->regex
8093 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8094 return;
8095 }
8096 }
8097
8098 bs->stop = 0;
8099 bs->print_it = print_it_noop;
8100 }
8101
8102 static enum print_stop_action
8103 print_it_catch_solib (bpstat bs)
8104 {
8105 struct breakpoint *b = bs->breakpoint_at;
8106 struct ui_out *uiout = current_uiout;
8107
8108 annotate_catchpoint (b->number);
8109 maybe_print_thread_hit_breakpoint (uiout);
8110 if (b->disposition == disp_del)
8111 uiout->text ("Temporary catchpoint ");
8112 else
8113 uiout->text ("Catchpoint ");
8114 uiout->field_int ("bkptno", b->number);
8115 uiout->text ("\n");
8116 if (uiout->is_mi_like_p ())
8117 uiout->field_string ("disp", bpdisp_text (b->disposition));
8118 print_solib_event (1);
8119 return PRINT_SRC_AND_LOC;
8120 }
8121
8122 static void
8123 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8124 {
8125 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8126 struct value_print_options opts;
8127 struct ui_out *uiout = current_uiout;
8128 char *msg;
8129
8130 get_user_print_options (&opts);
8131 /* Field 4, the address, is omitted (which makes the columns not
8132 line up too nicely with the headers, but the effect is relatively
8133 readable). */
8134 if (opts.addressprint)
8135 {
8136 annotate_field (4);
8137 uiout->field_skip ("addr");
8138 }
8139
8140 annotate_field (5);
8141 if (self->is_load)
8142 {
8143 if (self->regex)
8144 msg = xstrprintf (_("load of library matching %s"), self->regex);
8145 else
8146 msg = xstrdup (_("load of library"));
8147 }
8148 else
8149 {
8150 if (self->regex)
8151 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8152 else
8153 msg = xstrdup (_("unload of library"));
8154 }
8155 uiout->field_string ("what", msg);
8156 xfree (msg);
8157
8158 if (uiout->is_mi_like_p ())
8159 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8160 }
8161
8162 static void
8163 print_mention_catch_solib (struct breakpoint *b)
8164 {
8165 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8166
8167 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8168 self->is_load ? "load" : "unload");
8169 }
8170
8171 static void
8172 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8173 {
8174 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8175
8176 fprintf_unfiltered (fp, "%s %s",
8177 b->disposition == disp_del ? "tcatch" : "catch",
8178 self->is_load ? "load" : "unload");
8179 if (self->regex)
8180 fprintf_unfiltered (fp, " %s", self->regex);
8181 fprintf_unfiltered (fp, "\n");
8182 }
8183
8184 static struct breakpoint_ops catch_solib_breakpoint_ops;
8185
8186 /* Shared helper function (MI and CLI) for creating and installing
8187 a shared object event catchpoint. If IS_LOAD is non-zero then
8188 the events to be caught are load events, otherwise they are
8189 unload events. If IS_TEMP is non-zero the catchpoint is a
8190 temporary one. If ENABLED is non-zero the catchpoint is
8191 created in an enabled state. */
8192
8193 void
8194 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8195 {
8196 struct gdbarch *gdbarch = get_current_arch ();
8197
8198 if (!arg)
8199 arg = "";
8200 arg = skip_spaces (arg);
8201
8202 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8203
8204 if (*arg != '\0')
8205 {
8206 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8207 _("Invalid regexp")));
8208 c->regex = xstrdup (arg);
8209 }
8210
8211 c->is_load = is_load;
8212 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8213 &catch_solib_breakpoint_ops);
8214
8215 c->enable_state = enabled ? bp_enabled : bp_disabled;
8216
8217 install_breakpoint (0, std::move (c), 1);
8218 }
8219
8220 /* A helper function that does all the work for "catch load" and
8221 "catch unload". */
8222
8223 static void
8224 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8225 struct cmd_list_element *command)
8226 {
8227 int tempflag;
8228 const int enabled = 1;
8229
8230 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8231
8232 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8233 }
8234
8235 static void
8236 catch_load_command_1 (const char *arg, int from_tty,
8237 struct cmd_list_element *command)
8238 {
8239 catch_load_or_unload (arg, from_tty, 1, command);
8240 }
8241
8242 static void
8243 catch_unload_command_1 (const char *arg, int from_tty,
8244 struct cmd_list_element *command)
8245 {
8246 catch_load_or_unload (arg, from_tty, 0, command);
8247 }
8248
8249 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8250 is non-zero, then make the breakpoint temporary. If COND_STRING is
8251 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8252 the breakpoint_ops structure associated to the catchpoint. */
8253
8254 void
8255 init_catchpoint (struct breakpoint *b,
8256 struct gdbarch *gdbarch, int tempflag,
8257 const char *cond_string,
8258 const struct breakpoint_ops *ops)
8259 {
8260 symtab_and_line sal;
8261 sal.pspace = current_program_space;
8262
8263 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8264
8265 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8266 b->disposition = tempflag ? disp_del : disp_donttouch;
8267 }
8268
8269 void
8270 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8271 {
8272 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8273 set_breakpoint_number (internal, b);
8274 if (is_tracepoint (b))
8275 set_tracepoint_count (breakpoint_count);
8276 if (!internal)
8277 mention (b);
8278 observer_notify_breakpoint_created (b);
8279
8280 if (update_gll)
8281 update_global_location_list (UGLL_MAY_INSERT);
8282 }
8283
8284 static void
8285 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8286 int tempflag, const char *cond_string,
8287 const struct breakpoint_ops *ops)
8288 {
8289 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8290
8291 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8292
8293 c->forked_inferior_pid = null_ptid;
8294
8295 install_breakpoint (0, std::move (c), 1);
8296 }
8297
8298 /* Exec catchpoints. */
8299
8300 /* An instance of this type is used to represent an exec catchpoint.
8301 A breakpoint is really of this type iff its ops pointer points to
8302 CATCH_EXEC_BREAKPOINT_OPS. */
8303
8304 struct exec_catchpoint : public breakpoint
8305 {
8306 ~exec_catchpoint () override;
8307
8308 /* Filename of a program whose exec triggered this catchpoint.
8309 This field is only valid immediately after this catchpoint has
8310 triggered. */
8311 char *exec_pathname;
8312 };
8313
8314 /* Exec catchpoint destructor. */
8315
8316 exec_catchpoint::~exec_catchpoint ()
8317 {
8318 xfree (this->exec_pathname);
8319 }
8320
8321 static int
8322 insert_catch_exec (struct bp_location *bl)
8323 {
8324 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8325 }
8326
8327 static int
8328 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8329 {
8330 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8331 }
8332
8333 static int
8334 breakpoint_hit_catch_exec (const struct bp_location *bl,
8335 const address_space *aspace, CORE_ADDR bp_addr,
8336 const struct target_waitstatus *ws)
8337 {
8338 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8339
8340 if (ws->kind != TARGET_WAITKIND_EXECD)
8341 return 0;
8342
8343 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8344 return 1;
8345 }
8346
8347 static enum print_stop_action
8348 print_it_catch_exec (bpstat bs)
8349 {
8350 struct ui_out *uiout = current_uiout;
8351 struct breakpoint *b = bs->breakpoint_at;
8352 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8353
8354 annotate_catchpoint (b->number);
8355 maybe_print_thread_hit_breakpoint (uiout);
8356 if (b->disposition == disp_del)
8357 uiout->text ("Temporary catchpoint ");
8358 else
8359 uiout->text ("Catchpoint ");
8360 if (uiout->is_mi_like_p ())
8361 {
8362 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8363 uiout->field_string ("disp", bpdisp_text (b->disposition));
8364 }
8365 uiout->field_int ("bkptno", b->number);
8366 uiout->text (" (exec'd ");
8367 uiout->field_string ("new-exec", c->exec_pathname);
8368 uiout->text ("), ");
8369
8370 return PRINT_SRC_AND_LOC;
8371 }
8372
8373 static void
8374 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8375 {
8376 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8377 struct value_print_options opts;
8378 struct ui_out *uiout = current_uiout;
8379
8380 get_user_print_options (&opts);
8381
8382 /* Field 4, the address, is omitted (which makes the columns
8383 not line up too nicely with the headers, but the effect
8384 is relatively readable). */
8385 if (opts.addressprint)
8386 uiout->field_skip ("addr");
8387 annotate_field (5);
8388 uiout->text ("exec");
8389 if (c->exec_pathname != NULL)
8390 {
8391 uiout->text (", program \"");
8392 uiout->field_string ("what", c->exec_pathname);
8393 uiout->text ("\" ");
8394 }
8395
8396 if (uiout->is_mi_like_p ())
8397 uiout->field_string ("catch-type", "exec");
8398 }
8399
8400 static void
8401 print_mention_catch_exec (struct breakpoint *b)
8402 {
8403 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8404 }
8405
8406 /* Implement the "print_recreate" breakpoint_ops method for exec
8407 catchpoints. */
8408
8409 static void
8410 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8411 {
8412 fprintf_unfiltered (fp, "catch exec");
8413 print_recreate_thread (b, fp);
8414 }
8415
8416 static struct breakpoint_ops catch_exec_breakpoint_ops;
8417
8418 static int
8419 hw_breakpoint_used_count (void)
8420 {
8421 int i = 0;
8422 struct breakpoint *b;
8423 struct bp_location *bl;
8424
8425 ALL_BREAKPOINTS (b)
8426 {
8427 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8428 for (bl = b->loc; bl; bl = bl->next)
8429 {
8430 /* Special types of hardware breakpoints may use more than
8431 one register. */
8432 i += b->ops->resources_needed (bl);
8433 }
8434 }
8435
8436 return i;
8437 }
8438
8439 /* Returns the resources B would use if it were a hardware
8440 watchpoint. */
8441
8442 static int
8443 hw_watchpoint_use_count (struct breakpoint *b)
8444 {
8445 int i = 0;
8446 struct bp_location *bl;
8447
8448 if (!breakpoint_enabled (b))
8449 return 0;
8450
8451 for (bl = b->loc; bl; bl = bl->next)
8452 {
8453 /* Special types of hardware watchpoints may use more than
8454 one register. */
8455 i += b->ops->resources_needed (bl);
8456 }
8457
8458 return i;
8459 }
8460
8461 /* Returns the sum the used resources of all hardware watchpoints of
8462 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8463 the sum of the used resources of all hardware watchpoints of other
8464 types _not_ TYPE. */
8465
8466 static int
8467 hw_watchpoint_used_count_others (struct breakpoint *except,
8468 enum bptype type, int *other_type_used)
8469 {
8470 int i = 0;
8471 struct breakpoint *b;
8472
8473 *other_type_used = 0;
8474 ALL_BREAKPOINTS (b)
8475 {
8476 if (b == except)
8477 continue;
8478 if (!breakpoint_enabled (b))
8479 continue;
8480
8481 if (b->type == type)
8482 i += hw_watchpoint_use_count (b);
8483 else if (is_hardware_watchpoint (b))
8484 *other_type_used = 1;
8485 }
8486
8487 return i;
8488 }
8489
8490 void
8491 disable_watchpoints_before_interactive_call_start (void)
8492 {
8493 struct breakpoint *b;
8494
8495 ALL_BREAKPOINTS (b)
8496 {
8497 if (is_watchpoint (b) && breakpoint_enabled (b))
8498 {
8499 b->enable_state = bp_call_disabled;
8500 update_global_location_list (UGLL_DONT_INSERT);
8501 }
8502 }
8503 }
8504
8505 void
8506 enable_watchpoints_after_interactive_call_stop (void)
8507 {
8508 struct breakpoint *b;
8509
8510 ALL_BREAKPOINTS (b)
8511 {
8512 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8513 {
8514 b->enable_state = bp_enabled;
8515 update_global_location_list (UGLL_MAY_INSERT);
8516 }
8517 }
8518 }
8519
8520 void
8521 disable_breakpoints_before_startup (void)
8522 {
8523 current_program_space->executing_startup = 1;
8524 update_global_location_list (UGLL_DONT_INSERT);
8525 }
8526
8527 void
8528 enable_breakpoints_after_startup (void)
8529 {
8530 current_program_space->executing_startup = 0;
8531 breakpoint_re_set ();
8532 }
8533
8534 /* Create a new single-step breakpoint for thread THREAD, with no
8535 locations. */
8536
8537 static struct breakpoint *
8538 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8539 {
8540 std::unique_ptr<breakpoint> b (new breakpoint ());
8541
8542 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8543 &momentary_breakpoint_ops);
8544
8545 b->disposition = disp_donttouch;
8546 b->frame_id = null_frame_id;
8547
8548 b->thread = thread;
8549 gdb_assert (b->thread != 0);
8550
8551 return add_to_breakpoint_chain (std::move (b));
8552 }
8553
8554 /* Set a momentary breakpoint of type TYPE at address specified by
8555 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8556 frame. */
8557
8558 breakpoint_up
8559 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8560 struct frame_id frame_id, enum bptype type)
8561 {
8562 struct breakpoint *b;
8563
8564 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8565 tail-called one. */
8566 gdb_assert (!frame_id_artificial_p (frame_id));
8567
8568 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8569 b->enable_state = bp_enabled;
8570 b->disposition = disp_donttouch;
8571 b->frame_id = frame_id;
8572
8573 /* If we're debugging a multi-threaded program, then we want
8574 momentary breakpoints to be active in only a single thread of
8575 control. */
8576 if (in_thread_list (inferior_ptid))
8577 b->thread = ptid_to_global_thread_id (inferior_ptid);
8578
8579 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8580
8581 return breakpoint_up (b);
8582 }
8583
8584 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8585 The new breakpoint will have type TYPE, use OPS as its
8586 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8587
8588 static struct breakpoint *
8589 momentary_breakpoint_from_master (struct breakpoint *orig,
8590 enum bptype type,
8591 const struct breakpoint_ops *ops,
8592 int loc_enabled)
8593 {
8594 struct breakpoint *copy;
8595
8596 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8597 copy->loc = allocate_bp_location (copy);
8598 set_breakpoint_location_function (copy->loc, 1);
8599
8600 copy->loc->gdbarch = orig->loc->gdbarch;
8601 copy->loc->requested_address = orig->loc->requested_address;
8602 copy->loc->address = orig->loc->address;
8603 copy->loc->section = orig->loc->section;
8604 copy->loc->pspace = orig->loc->pspace;
8605 copy->loc->probe = orig->loc->probe;
8606 copy->loc->line_number = orig->loc->line_number;
8607 copy->loc->symtab = orig->loc->symtab;
8608 copy->loc->enabled = loc_enabled;
8609 copy->frame_id = orig->frame_id;
8610 copy->thread = orig->thread;
8611 copy->pspace = orig->pspace;
8612
8613 copy->enable_state = bp_enabled;
8614 copy->disposition = disp_donttouch;
8615 copy->number = internal_breakpoint_number--;
8616
8617 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8618 return copy;
8619 }
8620
8621 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8622 ORIG is NULL. */
8623
8624 struct breakpoint *
8625 clone_momentary_breakpoint (struct breakpoint *orig)
8626 {
8627 /* If there's nothing to clone, then return nothing. */
8628 if (orig == NULL)
8629 return NULL;
8630
8631 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8632 }
8633
8634 breakpoint_up
8635 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8636 enum bptype type)
8637 {
8638 struct symtab_and_line sal;
8639
8640 sal = find_pc_line (pc, 0);
8641 sal.pc = pc;
8642 sal.section = find_pc_overlay (pc);
8643 sal.explicit_pc = 1;
8644
8645 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8646 }
8647 \f
8648
8649 /* Tell the user we have just set a breakpoint B. */
8650
8651 static void
8652 mention (struct breakpoint *b)
8653 {
8654 b->ops->print_mention (b);
8655 if (current_uiout->is_mi_like_p ())
8656 return;
8657 printf_filtered ("\n");
8658 }
8659 \f
8660
8661 static int bp_loc_is_permanent (struct bp_location *loc);
8662
8663 static struct bp_location *
8664 add_location_to_breakpoint (struct breakpoint *b,
8665 const struct symtab_and_line *sal)
8666 {
8667 struct bp_location *loc, **tmp;
8668 CORE_ADDR adjusted_address;
8669 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8670
8671 if (loc_gdbarch == NULL)
8672 loc_gdbarch = b->gdbarch;
8673
8674 /* Adjust the breakpoint's address prior to allocating a location.
8675 Once we call allocate_bp_location(), that mostly uninitialized
8676 location will be placed on the location chain. Adjustment of the
8677 breakpoint may cause target_read_memory() to be called and we do
8678 not want its scan of the location chain to find a breakpoint and
8679 location that's only been partially initialized. */
8680 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8681 sal->pc, b->type);
8682
8683 /* Sort the locations by their ADDRESS. */
8684 loc = allocate_bp_location (b);
8685 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8686 tmp = &((*tmp)->next))
8687 ;
8688 loc->next = *tmp;
8689 *tmp = loc;
8690
8691 loc->requested_address = sal->pc;
8692 loc->address = adjusted_address;
8693 loc->pspace = sal->pspace;
8694 loc->probe.prob = sal->prob;
8695 loc->probe.objfile = sal->objfile;
8696 gdb_assert (loc->pspace != NULL);
8697 loc->section = sal->section;
8698 loc->gdbarch = loc_gdbarch;
8699 loc->line_number = sal->line;
8700 loc->symtab = sal->symtab;
8701 loc->symbol = sal->symbol;
8702
8703 set_breakpoint_location_function (loc,
8704 sal->explicit_pc || sal->explicit_line);
8705
8706 /* While by definition, permanent breakpoints are already present in the
8707 code, we don't mark the location as inserted. Normally one would expect
8708 that GDB could rely on that breakpoint instruction to stop the program,
8709 thus removing the need to insert its own breakpoint, except that executing
8710 the breakpoint instruction can kill the target instead of reporting a
8711 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8712 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8713 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8714 breakpoint be inserted normally results in QEMU knowing about the GDB
8715 breakpoint, and thus trap before the breakpoint instruction is executed.
8716 (If GDB later needs to continue execution past the permanent breakpoint,
8717 it manually increments the PC, thus avoiding executing the breakpoint
8718 instruction.) */
8719 if (bp_loc_is_permanent (loc))
8720 loc->permanent = 1;
8721
8722 return loc;
8723 }
8724 \f
8725
8726 /* See breakpoint.h. */
8727
8728 int
8729 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8730 {
8731 int len;
8732 CORE_ADDR addr;
8733 const gdb_byte *bpoint;
8734 gdb_byte *target_mem;
8735
8736 addr = address;
8737 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8738
8739 /* Software breakpoints unsupported? */
8740 if (bpoint == NULL)
8741 return 0;
8742
8743 target_mem = (gdb_byte *) alloca (len);
8744
8745 /* Enable the automatic memory restoration from breakpoints while
8746 we read the memory. Otherwise we could say about our temporary
8747 breakpoints they are permanent. */
8748 scoped_restore restore_memory
8749 = make_scoped_restore_show_memory_breakpoints (0);
8750
8751 if (target_read_memory (address, target_mem, len) == 0
8752 && memcmp (target_mem, bpoint, len) == 0)
8753 return 1;
8754
8755 return 0;
8756 }
8757
8758 /* Return 1 if LOC is pointing to a permanent breakpoint,
8759 return 0 otherwise. */
8760
8761 static int
8762 bp_loc_is_permanent (struct bp_location *loc)
8763 {
8764 gdb_assert (loc != NULL);
8765
8766 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8767 attempt to read from the addresses the locations of these breakpoint types
8768 point to. program_breakpoint_here_p, below, will attempt to read
8769 memory. */
8770 if (!breakpoint_address_is_meaningful (loc->owner))
8771 return 0;
8772
8773 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8774 switch_to_program_space_and_thread (loc->pspace);
8775 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8776 }
8777
8778 /* Build a command list for the dprintf corresponding to the current
8779 settings of the dprintf style options. */
8780
8781 static void
8782 update_dprintf_command_list (struct breakpoint *b)
8783 {
8784 char *dprintf_args = b->extra_string;
8785 char *printf_line = NULL;
8786
8787 if (!dprintf_args)
8788 return;
8789
8790 dprintf_args = skip_spaces (dprintf_args);
8791
8792 /* Allow a comma, as it may have terminated a location, but don't
8793 insist on it. */
8794 if (*dprintf_args == ',')
8795 ++dprintf_args;
8796 dprintf_args = skip_spaces (dprintf_args);
8797
8798 if (*dprintf_args != '"')
8799 error (_("Bad format string, missing '\"'."));
8800
8801 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8802 printf_line = xstrprintf ("printf %s", dprintf_args);
8803 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8804 {
8805 if (!dprintf_function)
8806 error (_("No function supplied for dprintf call"));
8807
8808 if (dprintf_channel && strlen (dprintf_channel) > 0)
8809 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8810 dprintf_function,
8811 dprintf_channel,
8812 dprintf_args);
8813 else
8814 printf_line = xstrprintf ("call (void) %s (%s)",
8815 dprintf_function,
8816 dprintf_args);
8817 }
8818 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8819 {
8820 if (target_can_run_breakpoint_commands ())
8821 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8822 else
8823 {
8824 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8825 printf_line = xstrprintf ("printf %s", dprintf_args);
8826 }
8827 }
8828 else
8829 internal_error (__FILE__, __LINE__,
8830 _("Invalid dprintf style."));
8831
8832 gdb_assert (printf_line != NULL);
8833 /* Manufacture a printf sequence. */
8834 {
8835 struct command_line *printf_cmd_line = XNEW (struct command_line);
8836
8837 printf_cmd_line->control_type = simple_control;
8838 printf_cmd_line->body_count = 0;
8839 printf_cmd_line->body_list = NULL;
8840 printf_cmd_line->next = NULL;
8841 printf_cmd_line->line = printf_line;
8842
8843 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8844 }
8845 }
8846
8847 /* Update all dprintf commands, making their command lists reflect
8848 current style settings. */
8849
8850 static void
8851 update_dprintf_commands (const char *args, int from_tty,
8852 struct cmd_list_element *c)
8853 {
8854 struct breakpoint *b;
8855
8856 ALL_BREAKPOINTS (b)
8857 {
8858 if (b->type == bp_dprintf)
8859 update_dprintf_command_list (b);
8860 }
8861 }
8862
8863 /* Create a breakpoint with SAL as location. Use LOCATION
8864 as a description of the location, and COND_STRING
8865 as condition expression. If LOCATION is NULL then create an
8866 "address location" from the address in the SAL. */
8867
8868 static void
8869 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8870 gdb::array_view<const symtab_and_line> sals,
8871 event_location_up &&location,
8872 gdb::unique_xmalloc_ptr<char> filter,
8873 gdb::unique_xmalloc_ptr<char> cond_string,
8874 gdb::unique_xmalloc_ptr<char> extra_string,
8875 enum bptype type, enum bpdisp disposition,
8876 int thread, int task, int ignore_count,
8877 const struct breakpoint_ops *ops, int from_tty,
8878 int enabled, int internal, unsigned flags,
8879 int display_canonical)
8880 {
8881 int i;
8882
8883 if (type == bp_hardware_breakpoint)
8884 {
8885 int target_resources_ok;
8886
8887 i = hw_breakpoint_used_count ();
8888 target_resources_ok =
8889 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8890 i + 1, 0);
8891 if (target_resources_ok == 0)
8892 error (_("No hardware breakpoint support in the target."));
8893 else if (target_resources_ok < 0)
8894 error (_("Hardware breakpoints used exceeds limit."));
8895 }
8896
8897 gdb_assert (!sals.empty ());
8898
8899 for (const auto &sal : sals)
8900 {
8901 struct bp_location *loc;
8902
8903 if (from_tty)
8904 {
8905 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8906 if (!loc_gdbarch)
8907 loc_gdbarch = gdbarch;
8908
8909 describe_other_breakpoints (loc_gdbarch,
8910 sal.pspace, sal.pc, sal.section, thread);
8911 }
8912
8913 if (&sal == &sals[0])
8914 {
8915 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8916 b->thread = thread;
8917 b->task = task;
8918
8919 b->cond_string = cond_string.release ();
8920 b->extra_string = extra_string.release ();
8921 b->ignore_count = ignore_count;
8922 b->enable_state = enabled ? bp_enabled : bp_disabled;
8923 b->disposition = disposition;
8924
8925 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8926 b->loc->inserted = 1;
8927
8928 if (type == bp_static_tracepoint)
8929 {
8930 struct tracepoint *t = (struct tracepoint *) b;
8931 struct static_tracepoint_marker marker;
8932
8933 if (strace_marker_p (b))
8934 {
8935 /* We already know the marker exists, otherwise, we
8936 wouldn't see a sal for it. */
8937 const char *p
8938 = &event_location_to_string (b->location.get ())[3];
8939 const char *endp;
8940 char *marker_str;
8941
8942 p = skip_spaces (p);
8943
8944 endp = skip_to_space (p);
8945
8946 marker_str = savestring (p, endp - p);
8947 t->static_trace_marker_id = marker_str;
8948
8949 printf_filtered (_("Probed static tracepoint "
8950 "marker \"%s\"\n"),
8951 t->static_trace_marker_id);
8952 }
8953 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8954 {
8955 t->static_trace_marker_id = xstrdup (marker.str_id);
8956 release_static_tracepoint_marker (&marker);
8957
8958 printf_filtered (_("Probed static tracepoint "
8959 "marker \"%s\"\n"),
8960 t->static_trace_marker_id);
8961 }
8962 else
8963 warning (_("Couldn't determine the static "
8964 "tracepoint marker to probe"));
8965 }
8966
8967 loc = b->loc;
8968 }
8969 else
8970 {
8971 loc = add_location_to_breakpoint (b, &sal);
8972 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8973 loc->inserted = 1;
8974 }
8975
8976 if (b->cond_string)
8977 {
8978 const char *arg = b->cond_string;
8979
8980 loc->cond = parse_exp_1 (&arg, loc->address,
8981 block_for_pc (loc->address), 0);
8982 if (*arg)
8983 error (_("Garbage '%s' follows condition"), arg);
8984 }
8985
8986 /* Dynamic printf requires and uses additional arguments on the
8987 command line, otherwise it's an error. */
8988 if (type == bp_dprintf)
8989 {
8990 if (b->extra_string)
8991 update_dprintf_command_list (b);
8992 else
8993 error (_("Format string required"));
8994 }
8995 else if (b->extra_string)
8996 error (_("Garbage '%s' at end of command"), b->extra_string);
8997 }
8998
8999 b->display_canonical = display_canonical;
9000 if (location != NULL)
9001 b->location = std::move (location);
9002 else
9003 b->location = new_address_location (b->loc->address, NULL, 0);
9004 b->filter = filter.release ();
9005 }
9006
9007 static void
9008 create_breakpoint_sal (struct gdbarch *gdbarch,
9009 gdb::array_view<const symtab_and_line> sals,
9010 event_location_up &&location,
9011 gdb::unique_xmalloc_ptr<char> filter,
9012 gdb::unique_xmalloc_ptr<char> cond_string,
9013 gdb::unique_xmalloc_ptr<char> extra_string,
9014 enum bptype type, enum bpdisp disposition,
9015 int thread, int task, int ignore_count,
9016 const struct breakpoint_ops *ops, int from_tty,
9017 int enabled, int internal, unsigned flags,
9018 int display_canonical)
9019 {
9020 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9021
9022 init_breakpoint_sal (b.get (), gdbarch,
9023 sals, std::move (location),
9024 std::move (filter),
9025 std::move (cond_string),
9026 std::move (extra_string),
9027 type, disposition,
9028 thread, task, ignore_count,
9029 ops, from_tty,
9030 enabled, internal, flags,
9031 display_canonical);
9032
9033 install_breakpoint (internal, std::move (b), 0);
9034 }
9035
9036 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9037 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9038 value. COND_STRING, if not NULL, specified the condition to be
9039 used for all breakpoints. Essentially the only case where
9040 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9041 function. In that case, it's still not possible to specify
9042 separate conditions for different overloaded functions, so
9043 we take just a single condition string.
9044
9045 NOTE: If the function succeeds, the caller is expected to cleanup
9046 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9047 array contents). If the function fails (error() is called), the
9048 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9049 COND and SALS arrays and each of those arrays contents. */
9050
9051 static void
9052 create_breakpoints_sal (struct gdbarch *gdbarch,
9053 struct linespec_result *canonical,
9054 gdb::unique_xmalloc_ptr<char> cond_string,
9055 gdb::unique_xmalloc_ptr<char> extra_string,
9056 enum bptype type, enum bpdisp disposition,
9057 int thread, int task, int ignore_count,
9058 const struct breakpoint_ops *ops, int from_tty,
9059 int enabled, int internal, unsigned flags)
9060 {
9061 if (canonical->pre_expanded)
9062 gdb_assert (canonical->lsals.size () == 1);
9063
9064 for (const auto &lsal : canonical->lsals)
9065 {
9066 /* Note that 'location' can be NULL in the case of a plain
9067 'break', without arguments. */
9068 event_location_up location
9069 = (canonical->location != NULL
9070 ? copy_event_location (canonical->location.get ()) : NULL);
9071 gdb::unique_xmalloc_ptr<char> filter_string
9072 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9073
9074 create_breakpoint_sal (gdbarch, lsal.sals,
9075 std::move (location),
9076 std::move (filter_string),
9077 std::move (cond_string),
9078 std::move (extra_string),
9079 type, disposition,
9080 thread, task, ignore_count, ops,
9081 from_tty, enabled, internal, flags,
9082 canonical->special_display);
9083 }
9084 }
9085
9086 /* Parse LOCATION which is assumed to be a SAL specification possibly
9087 followed by conditionals. On return, SALS contains an array of SAL
9088 addresses found. LOCATION points to the end of the SAL (for
9089 linespec locations).
9090
9091 The array and the line spec strings are allocated on the heap, it is
9092 the caller's responsibility to free them. */
9093
9094 static void
9095 parse_breakpoint_sals (const struct event_location *location,
9096 struct linespec_result *canonical)
9097 {
9098 struct symtab_and_line cursal;
9099
9100 if (event_location_type (location) == LINESPEC_LOCATION)
9101 {
9102 const char *spec = get_linespec_location (location)->spec_string;
9103
9104 if (spec == NULL)
9105 {
9106 /* The last displayed codepoint, if it's valid, is our default
9107 breakpoint address. */
9108 if (last_displayed_sal_is_valid ())
9109 {
9110 /* Set sal's pspace, pc, symtab, and line to the values
9111 corresponding to the last call to print_frame_info.
9112 Be sure to reinitialize LINE with NOTCURRENT == 0
9113 as the breakpoint line number is inappropriate otherwise.
9114 find_pc_line would adjust PC, re-set it back. */
9115 symtab_and_line sal = get_last_displayed_sal ();
9116 CORE_ADDR pc = sal.pc;
9117
9118 sal = find_pc_line (pc, 0);
9119
9120 /* "break" without arguments is equivalent to "break *PC"
9121 where PC is the last displayed codepoint's address. So
9122 make sure to set sal.explicit_pc to prevent GDB from
9123 trying to expand the list of sals to include all other
9124 instances with the same symtab and line. */
9125 sal.pc = pc;
9126 sal.explicit_pc = 1;
9127
9128 struct linespec_sals lsal;
9129 lsal.sals = {sal};
9130 lsal.canonical = NULL;
9131
9132 canonical->lsals.push_back (std::move (lsal));
9133 return;
9134 }
9135 else
9136 error (_("No default breakpoint address now."));
9137 }
9138 }
9139
9140 /* Force almost all breakpoints to be in terms of the
9141 current_source_symtab (which is decode_line_1's default).
9142 This should produce the results we want almost all of the
9143 time while leaving default_breakpoint_* alone.
9144
9145 ObjC: However, don't match an Objective-C method name which
9146 may have a '+' or '-' succeeded by a '['. */
9147 cursal = get_current_source_symtab_and_line ();
9148 if (last_displayed_sal_is_valid ())
9149 {
9150 const char *spec = NULL;
9151
9152 if (event_location_type (location) == LINESPEC_LOCATION)
9153 spec = get_linespec_location (location)->spec_string;
9154
9155 if (!cursal.symtab
9156 || (spec != NULL
9157 && strchr ("+-", spec[0]) != NULL
9158 && spec[1] != '['))
9159 {
9160 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9161 get_last_displayed_symtab (),
9162 get_last_displayed_line (),
9163 canonical, NULL, NULL);
9164 return;
9165 }
9166 }
9167
9168 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9169 cursal.symtab, cursal.line, canonical, NULL, NULL);
9170 }
9171
9172
9173 /* Convert each SAL into a real PC. Verify that the PC can be
9174 inserted as a breakpoint. If it can't throw an error. */
9175
9176 static void
9177 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9178 {
9179 for (auto &sal : sals)
9180 resolve_sal_pc (&sal);
9181 }
9182
9183 /* Fast tracepoints may have restrictions on valid locations. For
9184 instance, a fast tracepoint using a jump instead of a trap will
9185 likely have to overwrite more bytes than a trap would, and so can
9186 only be placed where the instruction is longer than the jump, or a
9187 multi-instruction sequence does not have a jump into the middle of
9188 it, etc. */
9189
9190 static void
9191 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9192 gdb::array_view<const symtab_and_line> sals)
9193 {
9194 int rslt;
9195 char *msg;
9196 struct cleanup *old_chain;
9197
9198 for (const auto &sal : sals)
9199 {
9200 struct gdbarch *sarch;
9201
9202 sarch = get_sal_arch (sal);
9203 /* We fall back to GDBARCH if there is no architecture
9204 associated with SAL. */
9205 if (sarch == NULL)
9206 sarch = gdbarch;
9207 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9208 old_chain = make_cleanup (xfree, msg);
9209
9210 if (!rslt)
9211 error (_("May not have a fast tracepoint at %s%s"),
9212 paddress (sarch, sal.pc), (msg ? msg : ""));
9213
9214 do_cleanups (old_chain);
9215 }
9216 }
9217
9218 /* Given TOK, a string specification of condition and thread, as
9219 accepted by the 'break' command, extract the condition
9220 string and thread number and set *COND_STRING and *THREAD.
9221 PC identifies the context at which the condition should be parsed.
9222 If no condition is found, *COND_STRING is set to NULL.
9223 If no thread is found, *THREAD is set to -1. */
9224
9225 static void
9226 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9227 char **cond_string, int *thread, int *task,
9228 char **rest)
9229 {
9230 *cond_string = NULL;
9231 *thread = -1;
9232 *task = 0;
9233 *rest = NULL;
9234
9235 while (tok && *tok)
9236 {
9237 const char *end_tok;
9238 int toklen;
9239 const char *cond_start = NULL;
9240 const char *cond_end = NULL;
9241
9242 tok = skip_spaces (tok);
9243
9244 if ((*tok == '"' || *tok == ',') && rest)
9245 {
9246 *rest = savestring (tok, strlen (tok));
9247 return;
9248 }
9249
9250 end_tok = skip_to_space (tok);
9251
9252 toklen = end_tok - tok;
9253
9254 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9255 {
9256 tok = cond_start = end_tok + 1;
9257 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9258 cond_end = tok;
9259 *cond_string = savestring (cond_start, cond_end - cond_start);
9260 }
9261 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9262 {
9263 const char *tmptok;
9264 struct thread_info *thr;
9265
9266 tok = end_tok + 1;
9267 thr = parse_thread_id (tok, &tmptok);
9268 if (tok == tmptok)
9269 error (_("Junk after thread keyword."));
9270 *thread = thr->global_num;
9271 tok = tmptok;
9272 }
9273 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9274 {
9275 char *tmptok;
9276
9277 tok = end_tok + 1;
9278 *task = strtol (tok, &tmptok, 0);
9279 if (tok == tmptok)
9280 error (_("Junk after task keyword."));
9281 if (!valid_task_id (*task))
9282 error (_("Unknown task %d."), *task);
9283 tok = tmptok;
9284 }
9285 else if (rest)
9286 {
9287 *rest = savestring (tok, strlen (tok));
9288 return;
9289 }
9290 else
9291 error (_("Junk at end of arguments."));
9292 }
9293 }
9294
9295 /* Decode a static tracepoint marker spec. */
9296
9297 static std::vector<symtab_and_line>
9298 decode_static_tracepoint_spec (const char **arg_p)
9299 {
9300 VEC(static_tracepoint_marker_p) *markers = NULL;
9301 const char *p = &(*arg_p)[3];
9302 const char *endp;
9303 int i;
9304
9305 p = skip_spaces (p);
9306
9307 endp = skip_to_space (p);
9308
9309 std::string marker_str (p, endp - p);
9310
9311 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9312 if (VEC_empty(static_tracepoint_marker_p, markers))
9313 error (_("No known static tracepoint marker named %s"),
9314 marker_str.c_str ());
9315
9316 std::vector<symtab_and_line> sals;
9317 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9318
9319 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9320 {
9321 struct static_tracepoint_marker *marker;
9322
9323 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9324
9325 symtab_and_line sal = find_pc_line (marker->address, 0);
9326 sal.pc = marker->address;
9327 sals.push_back (sal);
9328
9329 release_static_tracepoint_marker (marker);
9330 }
9331
9332 *arg_p = endp;
9333 return sals;
9334 }
9335
9336 /* See breakpoint.h. */
9337
9338 int
9339 create_breakpoint (struct gdbarch *gdbarch,
9340 const struct event_location *location,
9341 const char *cond_string,
9342 int thread, const char *extra_string,
9343 int parse_extra,
9344 int tempflag, enum bptype type_wanted,
9345 int ignore_count,
9346 enum auto_boolean pending_break_support,
9347 const struct breakpoint_ops *ops,
9348 int from_tty, int enabled, int internal,
9349 unsigned flags)
9350 {
9351 struct linespec_result canonical;
9352 struct cleanup *bkpt_chain = NULL;
9353 int pending = 0;
9354 int task = 0;
9355 int prev_bkpt_count = breakpoint_count;
9356
9357 gdb_assert (ops != NULL);
9358
9359 /* If extra_string isn't useful, set it to NULL. */
9360 if (extra_string != NULL && *extra_string == '\0')
9361 extra_string = NULL;
9362
9363 TRY
9364 {
9365 ops->create_sals_from_location (location, &canonical, type_wanted);
9366 }
9367 CATCH (e, RETURN_MASK_ERROR)
9368 {
9369 /* If caller is interested in rc value from parse, set
9370 value. */
9371 if (e.error == NOT_FOUND_ERROR)
9372 {
9373 /* If pending breakpoint support is turned off, throw
9374 error. */
9375
9376 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9377 throw_exception (e);
9378
9379 exception_print (gdb_stderr, e);
9380
9381 /* If pending breakpoint support is auto query and the user
9382 selects no, then simply return the error code. */
9383 if (pending_break_support == AUTO_BOOLEAN_AUTO
9384 && !nquery (_("Make %s pending on future shared library load? "),
9385 bptype_string (type_wanted)))
9386 return 0;
9387
9388 /* At this point, either the user was queried about setting
9389 a pending breakpoint and selected yes, or pending
9390 breakpoint behavior is on and thus a pending breakpoint
9391 is defaulted on behalf of the user. */
9392 pending = 1;
9393 }
9394 else
9395 throw_exception (e);
9396 }
9397 END_CATCH
9398
9399 if (!pending && canonical.lsals.empty ())
9400 return 0;
9401
9402 /* ----------------------------- SNIP -----------------------------
9403 Anything added to the cleanup chain beyond this point is assumed
9404 to be part of a breakpoint. If the breakpoint create succeeds
9405 then the memory is not reclaimed. */
9406 bkpt_chain = make_cleanup (null_cleanup, 0);
9407
9408 /* Resolve all line numbers to PC's and verify that the addresses
9409 are ok for the target. */
9410 if (!pending)
9411 {
9412 for (auto &lsal : canonical.lsals)
9413 breakpoint_sals_to_pc (lsal.sals);
9414 }
9415
9416 /* Fast tracepoints may have additional restrictions on location. */
9417 if (!pending && type_wanted == bp_fast_tracepoint)
9418 {
9419 for (const auto &lsal : canonical.lsals)
9420 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9421 }
9422
9423 /* Verify that condition can be parsed, before setting any
9424 breakpoints. Allocate a separate condition expression for each
9425 breakpoint. */
9426 if (!pending)
9427 {
9428 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9429 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9430
9431 if (parse_extra)
9432 {
9433 char *rest;
9434 char *cond;
9435
9436 const linespec_sals &lsal = canonical.lsals[0];
9437
9438 /* Here we only parse 'arg' to separate condition
9439 from thread number, so parsing in context of first
9440 sal is OK. When setting the breakpoint we'll
9441 re-parse it in context of each sal. */
9442
9443 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9444 &cond, &thread, &task, &rest);
9445 cond_string_copy.reset (cond);
9446 extra_string_copy.reset (rest);
9447 }
9448 else
9449 {
9450 if (type_wanted != bp_dprintf
9451 && extra_string != NULL && *extra_string != '\0')
9452 error (_("Garbage '%s' at end of location"), extra_string);
9453
9454 /* Create a private copy of condition string. */
9455 if (cond_string)
9456 cond_string_copy.reset (xstrdup (cond_string));
9457 /* Create a private copy of any extra string. */
9458 if (extra_string)
9459 extra_string_copy.reset (xstrdup (extra_string));
9460 }
9461
9462 ops->create_breakpoints_sal (gdbarch, &canonical,
9463 std::move (cond_string_copy),
9464 std::move (extra_string_copy),
9465 type_wanted,
9466 tempflag ? disp_del : disp_donttouch,
9467 thread, task, ignore_count, ops,
9468 from_tty, enabled, internal, flags);
9469 }
9470 else
9471 {
9472 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9473
9474 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9475 b->location = copy_event_location (location);
9476
9477 if (parse_extra)
9478 b->cond_string = NULL;
9479 else
9480 {
9481 /* Create a private copy of condition string. */
9482 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9483 b->thread = thread;
9484 }
9485
9486 /* Create a private copy of any extra string. */
9487 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9488 b->ignore_count = ignore_count;
9489 b->disposition = tempflag ? disp_del : disp_donttouch;
9490 b->condition_not_parsed = 1;
9491 b->enable_state = enabled ? bp_enabled : bp_disabled;
9492 if ((type_wanted != bp_breakpoint
9493 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9494 b->pspace = current_program_space;
9495
9496 install_breakpoint (internal, std::move (b), 0);
9497 }
9498
9499 if (canonical.lsals.size () > 1)
9500 {
9501 warning (_("Multiple breakpoints were set.\nUse the "
9502 "\"delete\" command to delete unwanted breakpoints."));
9503 prev_breakpoint_count = prev_bkpt_count;
9504 }
9505
9506 /* That's it. Discard the cleanups for data inserted into the
9507 breakpoint. */
9508 discard_cleanups (bkpt_chain);
9509
9510 /* error call may happen here - have BKPT_CHAIN already discarded. */
9511 update_global_location_list (UGLL_MAY_INSERT);
9512
9513 return 1;
9514 }
9515
9516 /* Set a breakpoint.
9517 ARG is a string describing breakpoint address,
9518 condition, and thread.
9519 FLAG specifies if a breakpoint is hardware on,
9520 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9521 and BP_TEMPFLAG. */
9522
9523 static void
9524 break_command_1 (const char *arg, int flag, int from_tty)
9525 {
9526 int tempflag = flag & BP_TEMPFLAG;
9527 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9528 ? bp_hardware_breakpoint
9529 : bp_breakpoint);
9530 struct breakpoint_ops *ops;
9531
9532 event_location_up location = string_to_event_location (&arg, current_language);
9533
9534 /* Matching breakpoints on probes. */
9535 if (location != NULL
9536 && event_location_type (location.get ()) == PROBE_LOCATION)
9537 ops = &bkpt_probe_breakpoint_ops;
9538 else
9539 ops = &bkpt_breakpoint_ops;
9540
9541 create_breakpoint (get_current_arch (),
9542 location.get (),
9543 NULL, 0, arg, 1 /* parse arg */,
9544 tempflag, type_wanted,
9545 0 /* Ignore count */,
9546 pending_break_support,
9547 ops,
9548 from_tty,
9549 1 /* enabled */,
9550 0 /* internal */,
9551 0);
9552 }
9553
9554 /* Helper function for break_command_1 and disassemble_command. */
9555
9556 void
9557 resolve_sal_pc (struct symtab_and_line *sal)
9558 {
9559 CORE_ADDR pc;
9560
9561 if (sal->pc == 0 && sal->symtab != NULL)
9562 {
9563 if (!find_line_pc (sal->symtab, sal->line, &pc))
9564 error (_("No line %d in file \"%s\"."),
9565 sal->line, symtab_to_filename_for_display (sal->symtab));
9566 sal->pc = pc;
9567
9568 /* If this SAL corresponds to a breakpoint inserted using a line
9569 number, then skip the function prologue if necessary. */
9570 if (sal->explicit_line)
9571 skip_prologue_sal (sal);
9572 }
9573
9574 if (sal->section == 0 && sal->symtab != NULL)
9575 {
9576 const struct blockvector *bv;
9577 const struct block *b;
9578 struct symbol *sym;
9579
9580 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9581 SYMTAB_COMPUNIT (sal->symtab));
9582 if (bv != NULL)
9583 {
9584 sym = block_linkage_function (b);
9585 if (sym != NULL)
9586 {
9587 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9588 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9589 sym);
9590 }
9591 else
9592 {
9593 /* It really is worthwhile to have the section, so we'll
9594 just have to look harder. This case can be executed
9595 if we have line numbers but no functions (as can
9596 happen in assembly source). */
9597
9598 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9599 switch_to_program_space_and_thread (sal->pspace);
9600
9601 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9602 if (msym.minsym)
9603 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9604 }
9605 }
9606 }
9607 }
9608
9609 void
9610 break_command (const char *arg, int from_tty)
9611 {
9612 break_command_1 (arg, 0, from_tty);
9613 }
9614
9615 void
9616 tbreak_command (const char *arg, int from_tty)
9617 {
9618 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9619 }
9620
9621 static void
9622 hbreak_command (const char *arg, int from_tty)
9623 {
9624 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9625 }
9626
9627 static void
9628 thbreak_command (const char *arg, int from_tty)
9629 {
9630 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9631 }
9632
9633 static void
9634 stop_command (const char *arg, int from_tty)
9635 {
9636 printf_filtered (_("Specify the type of breakpoint to set.\n\
9637 Usage: stop in <function | address>\n\
9638 stop at <line>\n"));
9639 }
9640
9641 static void
9642 stopin_command (const char *arg, int from_tty)
9643 {
9644 int badInput = 0;
9645
9646 if (arg == (char *) NULL)
9647 badInput = 1;
9648 else if (*arg != '*')
9649 {
9650 const char *argptr = arg;
9651 int hasColon = 0;
9652
9653 /* Look for a ':'. If this is a line number specification, then
9654 say it is bad, otherwise, it should be an address or
9655 function/method name. */
9656 while (*argptr && !hasColon)
9657 {
9658 hasColon = (*argptr == ':');
9659 argptr++;
9660 }
9661
9662 if (hasColon)
9663 badInput = (*argptr != ':'); /* Not a class::method */
9664 else
9665 badInput = isdigit (*arg); /* a simple line number */
9666 }
9667
9668 if (badInput)
9669 printf_filtered (_("Usage: stop in <function | address>\n"));
9670 else
9671 break_command_1 (arg, 0, from_tty);
9672 }
9673
9674 static void
9675 stopat_command (const char *arg, int from_tty)
9676 {
9677 int badInput = 0;
9678
9679 if (arg == (char *) NULL || *arg == '*') /* no line number */
9680 badInput = 1;
9681 else
9682 {
9683 const char *argptr = arg;
9684 int hasColon = 0;
9685
9686 /* Look for a ':'. If there is a '::' then get out, otherwise
9687 it is probably a line number. */
9688 while (*argptr && !hasColon)
9689 {
9690 hasColon = (*argptr == ':');
9691 argptr++;
9692 }
9693
9694 if (hasColon)
9695 badInput = (*argptr == ':'); /* we have class::method */
9696 else
9697 badInput = !isdigit (*arg); /* not a line number */
9698 }
9699
9700 if (badInput)
9701 printf_filtered (_("Usage: stop at <line>\n"));
9702 else
9703 break_command_1 (arg, 0, from_tty);
9704 }
9705
9706 /* The dynamic printf command is mostly like a regular breakpoint, but
9707 with a prewired command list consisting of a single output command,
9708 built from extra arguments supplied on the dprintf command
9709 line. */
9710
9711 static void
9712 dprintf_command (const char *arg, int from_tty)
9713 {
9714 event_location_up location = string_to_event_location (&arg, current_language);
9715
9716 /* If non-NULL, ARG should have been advanced past the location;
9717 the next character must be ','. */
9718 if (arg != NULL)
9719 {
9720 if (arg[0] != ',' || arg[1] == '\0')
9721 error (_("Format string required"));
9722 else
9723 {
9724 /* Skip the comma. */
9725 ++arg;
9726 }
9727 }
9728
9729 create_breakpoint (get_current_arch (),
9730 location.get (),
9731 NULL, 0, arg, 1 /* parse arg */,
9732 0, bp_dprintf,
9733 0 /* Ignore count */,
9734 pending_break_support,
9735 &dprintf_breakpoint_ops,
9736 from_tty,
9737 1 /* enabled */,
9738 0 /* internal */,
9739 0);
9740 }
9741
9742 static void
9743 agent_printf_command (const char *arg, int from_tty)
9744 {
9745 error (_("May only run agent-printf on the target"));
9746 }
9747
9748 /* Implement the "breakpoint_hit" breakpoint_ops method for
9749 ranged breakpoints. */
9750
9751 static int
9752 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9753 const address_space *aspace,
9754 CORE_ADDR bp_addr,
9755 const struct target_waitstatus *ws)
9756 {
9757 if (ws->kind != TARGET_WAITKIND_STOPPED
9758 || ws->value.sig != GDB_SIGNAL_TRAP)
9759 return 0;
9760
9761 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9762 bl->length, aspace, bp_addr);
9763 }
9764
9765 /* Implement the "resources_needed" breakpoint_ops method for
9766 ranged breakpoints. */
9767
9768 static int
9769 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9770 {
9771 return target_ranged_break_num_registers ();
9772 }
9773
9774 /* Implement the "print_it" breakpoint_ops method for
9775 ranged breakpoints. */
9776
9777 static enum print_stop_action
9778 print_it_ranged_breakpoint (bpstat bs)
9779 {
9780 struct breakpoint *b = bs->breakpoint_at;
9781 struct bp_location *bl = b->loc;
9782 struct ui_out *uiout = current_uiout;
9783
9784 gdb_assert (b->type == bp_hardware_breakpoint);
9785
9786 /* Ranged breakpoints have only one location. */
9787 gdb_assert (bl && bl->next == NULL);
9788
9789 annotate_breakpoint (b->number);
9790
9791 maybe_print_thread_hit_breakpoint (uiout);
9792
9793 if (b->disposition == disp_del)
9794 uiout->text ("Temporary ranged breakpoint ");
9795 else
9796 uiout->text ("Ranged breakpoint ");
9797 if (uiout->is_mi_like_p ())
9798 {
9799 uiout->field_string ("reason",
9800 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9801 uiout->field_string ("disp", bpdisp_text (b->disposition));
9802 }
9803 uiout->field_int ("bkptno", b->number);
9804 uiout->text (", ");
9805
9806 return PRINT_SRC_AND_LOC;
9807 }
9808
9809 /* Implement the "print_one" breakpoint_ops method for
9810 ranged breakpoints. */
9811
9812 static void
9813 print_one_ranged_breakpoint (struct breakpoint *b,
9814 struct bp_location **last_loc)
9815 {
9816 struct bp_location *bl = b->loc;
9817 struct value_print_options opts;
9818 struct ui_out *uiout = current_uiout;
9819
9820 /* Ranged breakpoints have only one location. */
9821 gdb_assert (bl && bl->next == NULL);
9822
9823 get_user_print_options (&opts);
9824
9825 if (opts.addressprint)
9826 /* We don't print the address range here, it will be printed later
9827 by print_one_detail_ranged_breakpoint. */
9828 uiout->field_skip ("addr");
9829 annotate_field (5);
9830 print_breakpoint_location (b, bl);
9831 *last_loc = bl;
9832 }
9833
9834 /* Implement the "print_one_detail" breakpoint_ops method for
9835 ranged breakpoints. */
9836
9837 static void
9838 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9839 struct ui_out *uiout)
9840 {
9841 CORE_ADDR address_start, address_end;
9842 struct bp_location *bl = b->loc;
9843 string_file stb;
9844
9845 gdb_assert (bl);
9846
9847 address_start = bl->address;
9848 address_end = address_start + bl->length - 1;
9849
9850 uiout->text ("\taddress range: ");
9851 stb.printf ("[%s, %s]",
9852 print_core_address (bl->gdbarch, address_start),
9853 print_core_address (bl->gdbarch, address_end));
9854 uiout->field_stream ("addr", stb);
9855 uiout->text ("\n");
9856 }
9857
9858 /* Implement the "print_mention" breakpoint_ops method for
9859 ranged breakpoints. */
9860
9861 static void
9862 print_mention_ranged_breakpoint (struct breakpoint *b)
9863 {
9864 struct bp_location *bl = b->loc;
9865 struct ui_out *uiout = current_uiout;
9866
9867 gdb_assert (bl);
9868 gdb_assert (b->type == bp_hardware_breakpoint);
9869
9870 if (uiout->is_mi_like_p ())
9871 return;
9872
9873 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9874 b->number, paddress (bl->gdbarch, bl->address),
9875 paddress (bl->gdbarch, bl->address + bl->length - 1));
9876 }
9877
9878 /* Implement the "print_recreate" breakpoint_ops method for
9879 ranged breakpoints. */
9880
9881 static void
9882 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9883 {
9884 fprintf_unfiltered (fp, "break-range %s, %s",
9885 event_location_to_string (b->location.get ()),
9886 event_location_to_string (b->location_range_end.get ()));
9887 print_recreate_thread (b, fp);
9888 }
9889
9890 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9891
9892 static struct breakpoint_ops ranged_breakpoint_ops;
9893
9894 /* Find the address where the end of the breakpoint range should be
9895 placed, given the SAL of the end of the range. This is so that if
9896 the user provides a line number, the end of the range is set to the
9897 last instruction of the given line. */
9898
9899 static CORE_ADDR
9900 find_breakpoint_range_end (struct symtab_and_line sal)
9901 {
9902 CORE_ADDR end;
9903
9904 /* If the user provided a PC value, use it. Otherwise,
9905 find the address of the end of the given location. */
9906 if (sal.explicit_pc)
9907 end = sal.pc;
9908 else
9909 {
9910 int ret;
9911 CORE_ADDR start;
9912
9913 ret = find_line_pc_range (sal, &start, &end);
9914 if (!ret)
9915 error (_("Could not find location of the end of the range."));
9916
9917 /* find_line_pc_range returns the start of the next line. */
9918 end--;
9919 }
9920
9921 return end;
9922 }
9923
9924 /* Implement the "break-range" CLI command. */
9925
9926 static void
9927 break_range_command (const char *arg, int from_tty)
9928 {
9929 const char *arg_start;
9930 struct linespec_result canonical_start, canonical_end;
9931 int bp_count, can_use_bp, length;
9932 CORE_ADDR end;
9933 struct breakpoint *b;
9934
9935 /* We don't support software ranged breakpoints. */
9936 if (target_ranged_break_num_registers () < 0)
9937 error (_("This target does not support hardware ranged breakpoints."));
9938
9939 bp_count = hw_breakpoint_used_count ();
9940 bp_count += target_ranged_break_num_registers ();
9941 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9942 bp_count, 0);
9943 if (can_use_bp < 0)
9944 error (_("Hardware breakpoints used exceeds limit."));
9945
9946 arg = skip_spaces (arg);
9947 if (arg == NULL || arg[0] == '\0')
9948 error(_("No address range specified."));
9949
9950 arg_start = arg;
9951 event_location_up start_location = string_to_event_location (&arg,
9952 current_language);
9953 parse_breakpoint_sals (start_location.get (), &canonical_start);
9954
9955 if (arg[0] != ',')
9956 error (_("Too few arguments."));
9957 else if (canonical_start.lsals.empty ())
9958 error (_("Could not find location of the beginning of the range."));
9959
9960 const linespec_sals &lsal_start = canonical_start.lsals[0];
9961
9962 if (canonical_start.lsals.size () > 1
9963 || lsal_start.sals.size () != 1)
9964 error (_("Cannot create a ranged breakpoint with multiple locations."));
9965
9966 const symtab_and_line &sal_start = lsal_start.sals[0];
9967 std::string addr_string_start (arg_start, arg - arg_start);
9968
9969 arg++; /* Skip the comma. */
9970 arg = skip_spaces (arg);
9971
9972 /* Parse the end location. */
9973
9974 arg_start = arg;
9975
9976 /* We call decode_line_full directly here instead of using
9977 parse_breakpoint_sals because we need to specify the start location's
9978 symtab and line as the default symtab and line for the end of the
9979 range. This makes it possible to have ranges like "foo.c:27, +14",
9980 where +14 means 14 lines from the start location. */
9981 event_location_up end_location = string_to_event_location (&arg,
9982 current_language);
9983 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9984 sal_start.symtab, sal_start.line,
9985 &canonical_end, NULL, NULL);
9986
9987 if (canonical_end.lsals.empty ())
9988 error (_("Could not find location of the end of the range."));
9989
9990 const linespec_sals &lsal_end = canonical_end.lsals[0];
9991 if (canonical_end.lsals.size () > 1
9992 || lsal_end.sals.size () != 1)
9993 error (_("Cannot create a ranged breakpoint with multiple locations."));
9994
9995 const symtab_and_line &sal_end = lsal_end.sals[0];
9996
9997 end = find_breakpoint_range_end (sal_end);
9998 if (sal_start.pc > end)
9999 error (_("Invalid address range, end precedes start."));
10000
10001 length = end - sal_start.pc + 1;
10002 if (length < 0)
10003 /* Length overflowed. */
10004 error (_("Address range too large."));
10005 else if (length == 1)
10006 {
10007 /* This range is simple enough to be handled by
10008 the `hbreak' command. */
10009 hbreak_command (&addr_string_start[0], 1);
10010
10011 return;
10012 }
10013
10014 /* Now set up the breakpoint. */
10015 b = set_raw_breakpoint (get_current_arch (), sal_start,
10016 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10017 set_breakpoint_count (breakpoint_count + 1);
10018 b->number = breakpoint_count;
10019 b->disposition = disp_donttouch;
10020 b->location = std::move (start_location);
10021 b->location_range_end = std::move (end_location);
10022 b->loc->length = length;
10023
10024 mention (b);
10025 observer_notify_breakpoint_created (b);
10026 update_global_location_list (UGLL_MAY_INSERT);
10027 }
10028
10029 /* Return non-zero if EXP is verified as constant. Returned zero
10030 means EXP is variable. Also the constant detection may fail for
10031 some constant expressions and in such case still falsely return
10032 zero. */
10033
10034 static int
10035 watchpoint_exp_is_const (const struct expression *exp)
10036 {
10037 int i = exp->nelts;
10038
10039 while (i > 0)
10040 {
10041 int oplenp, argsp;
10042
10043 /* We are only interested in the descriptor of each element. */
10044 operator_length (exp, i, &oplenp, &argsp);
10045 i -= oplenp;
10046
10047 switch (exp->elts[i].opcode)
10048 {
10049 case BINOP_ADD:
10050 case BINOP_SUB:
10051 case BINOP_MUL:
10052 case BINOP_DIV:
10053 case BINOP_REM:
10054 case BINOP_MOD:
10055 case BINOP_LSH:
10056 case BINOP_RSH:
10057 case BINOP_LOGICAL_AND:
10058 case BINOP_LOGICAL_OR:
10059 case BINOP_BITWISE_AND:
10060 case BINOP_BITWISE_IOR:
10061 case BINOP_BITWISE_XOR:
10062 case BINOP_EQUAL:
10063 case BINOP_NOTEQUAL:
10064 case BINOP_LESS:
10065 case BINOP_GTR:
10066 case BINOP_LEQ:
10067 case BINOP_GEQ:
10068 case BINOP_REPEAT:
10069 case BINOP_COMMA:
10070 case BINOP_EXP:
10071 case BINOP_MIN:
10072 case BINOP_MAX:
10073 case BINOP_INTDIV:
10074 case BINOP_CONCAT:
10075 case TERNOP_COND:
10076 case TERNOP_SLICE:
10077
10078 case OP_LONG:
10079 case OP_FLOAT:
10080 case OP_LAST:
10081 case OP_COMPLEX:
10082 case OP_STRING:
10083 case OP_ARRAY:
10084 case OP_TYPE:
10085 case OP_TYPEOF:
10086 case OP_DECLTYPE:
10087 case OP_TYPEID:
10088 case OP_NAME:
10089 case OP_OBJC_NSSTRING:
10090
10091 case UNOP_NEG:
10092 case UNOP_LOGICAL_NOT:
10093 case UNOP_COMPLEMENT:
10094 case UNOP_ADDR:
10095 case UNOP_HIGH:
10096 case UNOP_CAST:
10097
10098 case UNOP_CAST_TYPE:
10099 case UNOP_REINTERPRET_CAST:
10100 case UNOP_DYNAMIC_CAST:
10101 /* Unary, binary and ternary operators: We have to check
10102 their operands. If they are constant, then so is the
10103 result of that operation. For instance, if A and B are
10104 determined to be constants, then so is "A + B".
10105
10106 UNOP_IND is one exception to the rule above, because the
10107 value of *ADDR is not necessarily a constant, even when
10108 ADDR is. */
10109 break;
10110
10111 case OP_VAR_VALUE:
10112 /* Check whether the associated symbol is a constant.
10113
10114 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10115 possible that a buggy compiler could mark a variable as
10116 constant even when it is not, and TYPE_CONST would return
10117 true in this case, while SYMBOL_CLASS wouldn't.
10118
10119 We also have to check for function symbols because they
10120 are always constant. */
10121 {
10122 struct symbol *s = exp->elts[i + 2].symbol;
10123
10124 if (SYMBOL_CLASS (s) != LOC_BLOCK
10125 && SYMBOL_CLASS (s) != LOC_CONST
10126 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10127 return 0;
10128 break;
10129 }
10130
10131 /* The default action is to return 0 because we are using
10132 the optimistic approach here: If we don't know something,
10133 then it is not a constant. */
10134 default:
10135 return 0;
10136 }
10137 }
10138
10139 return 1;
10140 }
10141
10142 /* Watchpoint destructor. */
10143
10144 watchpoint::~watchpoint ()
10145 {
10146 xfree (this->exp_string);
10147 xfree (this->exp_string_reparse);
10148 value_free (this->val);
10149 }
10150
10151 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10152
10153 static void
10154 re_set_watchpoint (struct breakpoint *b)
10155 {
10156 struct watchpoint *w = (struct watchpoint *) b;
10157
10158 /* Watchpoint can be either on expression using entirely global
10159 variables, or it can be on local variables.
10160
10161 Watchpoints of the first kind are never auto-deleted, and even
10162 persist across program restarts. Since they can use variables
10163 from shared libraries, we need to reparse expression as libraries
10164 are loaded and unloaded.
10165
10166 Watchpoints on local variables can also change meaning as result
10167 of solib event. For example, if a watchpoint uses both a local
10168 and a global variables in expression, it's a local watchpoint,
10169 but unloading of a shared library will make the expression
10170 invalid. This is not a very common use case, but we still
10171 re-evaluate expression, to avoid surprises to the user.
10172
10173 Note that for local watchpoints, we re-evaluate it only if
10174 watchpoints frame id is still valid. If it's not, it means the
10175 watchpoint is out of scope and will be deleted soon. In fact,
10176 I'm not sure we'll ever be called in this case.
10177
10178 If a local watchpoint's frame id is still valid, then
10179 w->exp_valid_block is likewise valid, and we can safely use it.
10180
10181 Don't do anything about disabled watchpoints, since they will be
10182 reevaluated again when enabled. */
10183 update_watchpoint (w, 1 /* reparse */);
10184 }
10185
10186 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10187
10188 static int
10189 insert_watchpoint (struct bp_location *bl)
10190 {
10191 struct watchpoint *w = (struct watchpoint *) bl->owner;
10192 int length = w->exact ? 1 : bl->length;
10193
10194 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10195 w->cond_exp.get ());
10196 }
10197
10198 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10199
10200 static int
10201 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10202 {
10203 struct watchpoint *w = (struct watchpoint *) bl->owner;
10204 int length = w->exact ? 1 : bl->length;
10205
10206 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10207 w->cond_exp.get ());
10208 }
10209
10210 static int
10211 breakpoint_hit_watchpoint (const struct bp_location *bl,
10212 const address_space *aspace, CORE_ADDR bp_addr,
10213 const struct target_waitstatus *ws)
10214 {
10215 struct breakpoint *b = bl->owner;
10216 struct watchpoint *w = (struct watchpoint *) b;
10217
10218 /* Continuable hardware watchpoints are treated as non-existent if the
10219 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10220 some data address). Otherwise gdb won't stop on a break instruction
10221 in the code (not from a breakpoint) when a hardware watchpoint has
10222 been defined. Also skip watchpoints which we know did not trigger
10223 (did not match the data address). */
10224 if (is_hardware_watchpoint (b)
10225 && w->watchpoint_triggered == watch_triggered_no)
10226 return 0;
10227
10228 return 1;
10229 }
10230
10231 static void
10232 check_status_watchpoint (bpstat bs)
10233 {
10234 gdb_assert (is_watchpoint (bs->breakpoint_at));
10235
10236 bpstat_check_watchpoint (bs);
10237 }
10238
10239 /* Implement the "resources_needed" breakpoint_ops method for
10240 hardware watchpoints. */
10241
10242 static int
10243 resources_needed_watchpoint (const struct bp_location *bl)
10244 {
10245 struct watchpoint *w = (struct watchpoint *) bl->owner;
10246 int length = w->exact? 1 : bl->length;
10247
10248 return target_region_ok_for_hw_watchpoint (bl->address, length);
10249 }
10250
10251 /* Implement the "works_in_software_mode" breakpoint_ops method for
10252 hardware watchpoints. */
10253
10254 static int
10255 works_in_software_mode_watchpoint (const struct breakpoint *b)
10256 {
10257 /* Read and access watchpoints only work with hardware support. */
10258 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10259 }
10260
10261 static enum print_stop_action
10262 print_it_watchpoint (bpstat bs)
10263 {
10264 struct breakpoint *b;
10265 enum print_stop_action result;
10266 struct watchpoint *w;
10267 struct ui_out *uiout = current_uiout;
10268
10269 gdb_assert (bs->bp_location_at != NULL);
10270
10271 b = bs->breakpoint_at;
10272 w = (struct watchpoint *) b;
10273
10274 annotate_watchpoint (b->number);
10275 maybe_print_thread_hit_breakpoint (uiout);
10276
10277 string_file stb;
10278
10279 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10280 switch (b->type)
10281 {
10282 case bp_watchpoint:
10283 case bp_hardware_watchpoint:
10284 if (uiout->is_mi_like_p ())
10285 uiout->field_string
10286 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10287 mention (b);
10288 tuple_emitter.emplace (uiout, "value");
10289 uiout->text ("\nOld value = ");
10290 watchpoint_value_print (bs->old_val, &stb);
10291 uiout->field_stream ("old", stb);
10292 uiout->text ("\nNew value = ");
10293 watchpoint_value_print (w->val, &stb);
10294 uiout->field_stream ("new", stb);
10295 uiout->text ("\n");
10296 /* More than one watchpoint may have been triggered. */
10297 result = PRINT_UNKNOWN;
10298 break;
10299
10300 case bp_read_watchpoint:
10301 if (uiout->is_mi_like_p ())
10302 uiout->field_string
10303 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10304 mention (b);
10305 tuple_emitter.emplace (uiout, "value");
10306 uiout->text ("\nValue = ");
10307 watchpoint_value_print (w->val, &stb);
10308 uiout->field_stream ("value", stb);
10309 uiout->text ("\n");
10310 result = PRINT_UNKNOWN;
10311 break;
10312
10313 case bp_access_watchpoint:
10314 if (bs->old_val != NULL)
10315 {
10316 if (uiout->is_mi_like_p ())
10317 uiout->field_string
10318 ("reason",
10319 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10320 mention (b);
10321 tuple_emitter.emplace (uiout, "value");
10322 uiout->text ("\nOld value = ");
10323 watchpoint_value_print (bs->old_val, &stb);
10324 uiout->field_stream ("old", stb);
10325 uiout->text ("\nNew value = ");
10326 }
10327 else
10328 {
10329 mention (b);
10330 if (uiout->is_mi_like_p ())
10331 uiout->field_string
10332 ("reason",
10333 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10334 tuple_emitter.emplace (uiout, "value");
10335 uiout->text ("\nValue = ");
10336 }
10337 watchpoint_value_print (w->val, &stb);
10338 uiout->field_stream ("new", stb);
10339 uiout->text ("\n");
10340 result = PRINT_UNKNOWN;
10341 break;
10342 default:
10343 result = PRINT_UNKNOWN;
10344 }
10345
10346 return result;
10347 }
10348
10349 /* Implement the "print_mention" breakpoint_ops method for hardware
10350 watchpoints. */
10351
10352 static void
10353 print_mention_watchpoint (struct breakpoint *b)
10354 {
10355 struct watchpoint *w = (struct watchpoint *) b;
10356 struct ui_out *uiout = current_uiout;
10357 const char *tuple_name;
10358
10359 switch (b->type)
10360 {
10361 case bp_watchpoint:
10362 uiout->text ("Watchpoint ");
10363 tuple_name = "wpt";
10364 break;
10365 case bp_hardware_watchpoint:
10366 uiout->text ("Hardware watchpoint ");
10367 tuple_name = "wpt";
10368 break;
10369 case bp_read_watchpoint:
10370 uiout->text ("Hardware read watchpoint ");
10371 tuple_name = "hw-rwpt";
10372 break;
10373 case bp_access_watchpoint:
10374 uiout->text ("Hardware access (read/write) watchpoint ");
10375 tuple_name = "hw-awpt";
10376 break;
10377 default:
10378 internal_error (__FILE__, __LINE__,
10379 _("Invalid hardware watchpoint type."));
10380 }
10381
10382 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10383 uiout->field_int ("number", b->number);
10384 uiout->text (": ");
10385 uiout->field_string ("exp", w->exp_string);
10386 }
10387
10388 /* Implement the "print_recreate" breakpoint_ops method for
10389 watchpoints. */
10390
10391 static void
10392 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10393 {
10394 struct watchpoint *w = (struct watchpoint *) b;
10395
10396 switch (b->type)
10397 {
10398 case bp_watchpoint:
10399 case bp_hardware_watchpoint:
10400 fprintf_unfiltered (fp, "watch");
10401 break;
10402 case bp_read_watchpoint:
10403 fprintf_unfiltered (fp, "rwatch");
10404 break;
10405 case bp_access_watchpoint:
10406 fprintf_unfiltered (fp, "awatch");
10407 break;
10408 default:
10409 internal_error (__FILE__, __LINE__,
10410 _("Invalid watchpoint type."));
10411 }
10412
10413 fprintf_unfiltered (fp, " %s", w->exp_string);
10414 print_recreate_thread (b, fp);
10415 }
10416
10417 /* Implement the "explains_signal" breakpoint_ops method for
10418 watchpoints. */
10419
10420 static int
10421 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10422 {
10423 /* A software watchpoint cannot cause a signal other than
10424 GDB_SIGNAL_TRAP. */
10425 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10426 return 0;
10427
10428 return 1;
10429 }
10430
10431 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10432
10433 static struct breakpoint_ops watchpoint_breakpoint_ops;
10434
10435 /* Implement the "insert" breakpoint_ops method for
10436 masked hardware watchpoints. */
10437
10438 static int
10439 insert_masked_watchpoint (struct bp_location *bl)
10440 {
10441 struct watchpoint *w = (struct watchpoint *) bl->owner;
10442
10443 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10444 bl->watchpoint_type);
10445 }
10446
10447 /* Implement the "remove" breakpoint_ops method for
10448 masked hardware watchpoints. */
10449
10450 static int
10451 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10452 {
10453 struct watchpoint *w = (struct watchpoint *) bl->owner;
10454
10455 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10456 bl->watchpoint_type);
10457 }
10458
10459 /* Implement the "resources_needed" breakpoint_ops method for
10460 masked hardware watchpoints. */
10461
10462 static int
10463 resources_needed_masked_watchpoint (const struct bp_location *bl)
10464 {
10465 struct watchpoint *w = (struct watchpoint *) bl->owner;
10466
10467 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10468 }
10469
10470 /* Implement the "works_in_software_mode" breakpoint_ops method for
10471 masked hardware watchpoints. */
10472
10473 static int
10474 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10475 {
10476 return 0;
10477 }
10478
10479 /* Implement the "print_it" breakpoint_ops method for
10480 masked hardware watchpoints. */
10481
10482 static enum print_stop_action
10483 print_it_masked_watchpoint (bpstat bs)
10484 {
10485 struct breakpoint *b = bs->breakpoint_at;
10486 struct ui_out *uiout = current_uiout;
10487
10488 /* Masked watchpoints have only one location. */
10489 gdb_assert (b->loc && b->loc->next == NULL);
10490
10491 annotate_watchpoint (b->number);
10492 maybe_print_thread_hit_breakpoint (uiout);
10493
10494 switch (b->type)
10495 {
10496 case bp_hardware_watchpoint:
10497 if (uiout->is_mi_like_p ())
10498 uiout->field_string
10499 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10500 break;
10501
10502 case bp_read_watchpoint:
10503 if (uiout->is_mi_like_p ())
10504 uiout->field_string
10505 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10506 break;
10507
10508 case bp_access_watchpoint:
10509 if (uiout->is_mi_like_p ())
10510 uiout->field_string
10511 ("reason",
10512 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10513 break;
10514 default:
10515 internal_error (__FILE__, __LINE__,
10516 _("Invalid hardware watchpoint type."));
10517 }
10518
10519 mention (b);
10520 uiout->text (_("\n\
10521 Check the underlying instruction at PC for the memory\n\
10522 address and value which triggered this watchpoint.\n"));
10523 uiout->text ("\n");
10524
10525 /* More than one watchpoint may have been triggered. */
10526 return PRINT_UNKNOWN;
10527 }
10528
10529 /* Implement the "print_one_detail" breakpoint_ops method for
10530 masked hardware watchpoints. */
10531
10532 static void
10533 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10534 struct ui_out *uiout)
10535 {
10536 struct watchpoint *w = (struct watchpoint *) b;
10537
10538 /* Masked watchpoints have only one location. */
10539 gdb_assert (b->loc && b->loc->next == NULL);
10540
10541 uiout->text ("\tmask ");
10542 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10543 uiout->text ("\n");
10544 }
10545
10546 /* Implement the "print_mention" breakpoint_ops method for
10547 masked hardware watchpoints. */
10548
10549 static void
10550 print_mention_masked_watchpoint (struct breakpoint *b)
10551 {
10552 struct watchpoint *w = (struct watchpoint *) b;
10553 struct ui_out *uiout = current_uiout;
10554 const char *tuple_name;
10555
10556 switch (b->type)
10557 {
10558 case bp_hardware_watchpoint:
10559 uiout->text ("Masked hardware watchpoint ");
10560 tuple_name = "wpt";
10561 break;
10562 case bp_read_watchpoint:
10563 uiout->text ("Masked hardware read watchpoint ");
10564 tuple_name = "hw-rwpt";
10565 break;
10566 case bp_access_watchpoint:
10567 uiout->text ("Masked hardware access (read/write) watchpoint ");
10568 tuple_name = "hw-awpt";
10569 break;
10570 default:
10571 internal_error (__FILE__, __LINE__,
10572 _("Invalid hardware watchpoint type."));
10573 }
10574
10575 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10576 uiout->field_int ("number", b->number);
10577 uiout->text (": ");
10578 uiout->field_string ("exp", w->exp_string);
10579 }
10580
10581 /* Implement the "print_recreate" breakpoint_ops method for
10582 masked hardware watchpoints. */
10583
10584 static void
10585 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10586 {
10587 struct watchpoint *w = (struct watchpoint *) b;
10588 char tmp[40];
10589
10590 switch (b->type)
10591 {
10592 case bp_hardware_watchpoint:
10593 fprintf_unfiltered (fp, "watch");
10594 break;
10595 case bp_read_watchpoint:
10596 fprintf_unfiltered (fp, "rwatch");
10597 break;
10598 case bp_access_watchpoint:
10599 fprintf_unfiltered (fp, "awatch");
10600 break;
10601 default:
10602 internal_error (__FILE__, __LINE__,
10603 _("Invalid hardware watchpoint type."));
10604 }
10605
10606 sprintf_vma (tmp, w->hw_wp_mask);
10607 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10608 print_recreate_thread (b, fp);
10609 }
10610
10611 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10612
10613 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10614
10615 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10616
10617 static int
10618 is_masked_watchpoint (const struct breakpoint *b)
10619 {
10620 return b->ops == &masked_watchpoint_breakpoint_ops;
10621 }
10622
10623 /* accessflag: hw_write: watch write,
10624 hw_read: watch read,
10625 hw_access: watch access (read or write) */
10626 static void
10627 watch_command_1 (const char *arg, int accessflag, int from_tty,
10628 int just_location, int internal)
10629 {
10630 struct breakpoint *scope_breakpoint = NULL;
10631 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10632 struct value *val, *mark, *result;
10633 int saved_bitpos = 0, saved_bitsize = 0;
10634 const char *exp_start = NULL;
10635 const char *exp_end = NULL;
10636 const char *tok, *end_tok;
10637 int toklen = -1;
10638 const char *cond_start = NULL;
10639 const char *cond_end = NULL;
10640 enum bptype bp_type;
10641 int thread = -1;
10642 int pc = 0;
10643 /* Flag to indicate whether we are going to use masks for
10644 the hardware watchpoint. */
10645 int use_mask = 0;
10646 CORE_ADDR mask = 0;
10647
10648 /* Make sure that we actually have parameters to parse. */
10649 if (arg != NULL && arg[0] != '\0')
10650 {
10651 const char *value_start;
10652
10653 exp_end = arg + strlen (arg);
10654
10655 /* Look for "parameter value" pairs at the end
10656 of the arguments string. */
10657 for (tok = exp_end - 1; tok > arg; tok--)
10658 {
10659 /* Skip whitespace at the end of the argument list. */
10660 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10661 tok--;
10662
10663 /* Find the beginning of the last token.
10664 This is the value of the parameter. */
10665 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10666 tok--;
10667 value_start = tok + 1;
10668
10669 /* Skip whitespace. */
10670 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10671 tok--;
10672
10673 end_tok = tok;
10674
10675 /* Find the beginning of the second to last token.
10676 This is the parameter itself. */
10677 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10678 tok--;
10679 tok++;
10680 toklen = end_tok - tok + 1;
10681
10682 if (toklen == 6 && startswith (tok, "thread"))
10683 {
10684 struct thread_info *thr;
10685 /* At this point we've found a "thread" token, which means
10686 the user is trying to set a watchpoint that triggers
10687 only in a specific thread. */
10688 const char *endp;
10689
10690 if (thread != -1)
10691 error(_("You can specify only one thread."));
10692
10693 /* Extract the thread ID from the next token. */
10694 thr = parse_thread_id (value_start, &endp);
10695
10696 /* Check if the user provided a valid thread ID. */
10697 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10698 invalid_thread_id_error (value_start);
10699
10700 thread = thr->global_num;
10701 }
10702 else if (toklen == 4 && startswith (tok, "mask"))
10703 {
10704 /* We've found a "mask" token, which means the user wants to
10705 create a hardware watchpoint that is going to have the mask
10706 facility. */
10707 struct value *mask_value, *mark;
10708
10709 if (use_mask)
10710 error(_("You can specify only one mask."));
10711
10712 use_mask = just_location = 1;
10713
10714 mark = value_mark ();
10715 mask_value = parse_to_comma_and_eval (&value_start);
10716 mask = value_as_address (mask_value);
10717 value_free_to_mark (mark);
10718 }
10719 else
10720 /* We didn't recognize what we found. We should stop here. */
10721 break;
10722
10723 /* Truncate the string and get rid of the "parameter value" pair before
10724 the arguments string is parsed by the parse_exp_1 function. */
10725 exp_end = tok;
10726 }
10727 }
10728 else
10729 exp_end = arg;
10730
10731 /* Parse the rest of the arguments. From here on out, everything
10732 is in terms of a newly allocated string instead of the original
10733 ARG. */
10734 innermost_block = NULL;
10735 std::string expression (arg, exp_end - arg);
10736 exp_start = arg = expression.c_str ();
10737 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10738 exp_end = arg;
10739 /* Remove trailing whitespace from the expression before saving it.
10740 This makes the eventual display of the expression string a bit
10741 prettier. */
10742 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10743 --exp_end;
10744
10745 /* Checking if the expression is not constant. */
10746 if (watchpoint_exp_is_const (exp.get ()))
10747 {
10748 int len;
10749
10750 len = exp_end - exp_start;
10751 while (len > 0 && isspace (exp_start[len - 1]))
10752 len--;
10753 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10754 }
10755
10756 exp_valid_block = innermost_block;
10757 mark = value_mark ();
10758 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10759
10760 if (val != NULL && just_location)
10761 {
10762 saved_bitpos = value_bitpos (val);
10763 saved_bitsize = value_bitsize (val);
10764 }
10765
10766 if (just_location)
10767 {
10768 int ret;
10769
10770 exp_valid_block = NULL;
10771 val = value_addr (result);
10772 release_value (val);
10773 value_free_to_mark (mark);
10774
10775 if (use_mask)
10776 {
10777 ret = target_masked_watch_num_registers (value_as_address (val),
10778 mask);
10779 if (ret == -1)
10780 error (_("This target does not support masked watchpoints."));
10781 else if (ret == -2)
10782 error (_("Invalid mask or memory region."));
10783 }
10784 }
10785 else if (val != NULL)
10786 release_value (val);
10787
10788 tok = skip_spaces (arg);
10789 end_tok = skip_to_space (tok);
10790
10791 toklen = end_tok - tok;
10792 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10793 {
10794 innermost_block = NULL;
10795 tok = cond_start = end_tok + 1;
10796 parse_exp_1 (&tok, 0, 0, 0);
10797
10798 /* The watchpoint expression may not be local, but the condition
10799 may still be. E.g.: `watch global if local > 0'. */
10800 cond_exp_valid_block = innermost_block;
10801
10802 cond_end = tok;
10803 }
10804 if (*tok)
10805 error (_("Junk at end of command."));
10806
10807 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10808
10809 /* Save this because create_internal_breakpoint below invalidates
10810 'wp_frame'. */
10811 frame_id watchpoint_frame = get_frame_id (wp_frame);
10812
10813 /* If the expression is "local", then set up a "watchpoint scope"
10814 breakpoint at the point where we've left the scope of the watchpoint
10815 expression. Create the scope breakpoint before the watchpoint, so
10816 that we will encounter it first in bpstat_stop_status. */
10817 if (exp_valid_block != NULL && wp_frame != NULL)
10818 {
10819 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10820
10821 if (frame_id_p (caller_frame_id))
10822 {
10823 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10824 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10825
10826 scope_breakpoint
10827 = create_internal_breakpoint (caller_arch, caller_pc,
10828 bp_watchpoint_scope,
10829 &momentary_breakpoint_ops);
10830
10831 /* create_internal_breakpoint could invalidate WP_FRAME. */
10832 wp_frame = NULL;
10833
10834 scope_breakpoint->enable_state = bp_enabled;
10835
10836 /* Automatically delete the breakpoint when it hits. */
10837 scope_breakpoint->disposition = disp_del;
10838
10839 /* Only break in the proper frame (help with recursion). */
10840 scope_breakpoint->frame_id = caller_frame_id;
10841
10842 /* Set the address at which we will stop. */
10843 scope_breakpoint->loc->gdbarch = caller_arch;
10844 scope_breakpoint->loc->requested_address = caller_pc;
10845 scope_breakpoint->loc->address
10846 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10847 scope_breakpoint->loc->requested_address,
10848 scope_breakpoint->type);
10849 }
10850 }
10851
10852 /* Now set up the breakpoint. We create all watchpoints as hardware
10853 watchpoints here even if hardware watchpoints are turned off, a call
10854 to update_watchpoint later in this function will cause the type to
10855 drop back to bp_watchpoint (software watchpoint) if required. */
10856
10857 if (accessflag == hw_read)
10858 bp_type = bp_read_watchpoint;
10859 else if (accessflag == hw_access)
10860 bp_type = bp_access_watchpoint;
10861 else
10862 bp_type = bp_hardware_watchpoint;
10863
10864 std::unique_ptr<watchpoint> w (new watchpoint ());
10865
10866 if (use_mask)
10867 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10868 &masked_watchpoint_breakpoint_ops);
10869 else
10870 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10871 &watchpoint_breakpoint_ops);
10872 w->thread = thread;
10873 w->disposition = disp_donttouch;
10874 w->pspace = current_program_space;
10875 w->exp = std::move (exp);
10876 w->exp_valid_block = exp_valid_block;
10877 w->cond_exp_valid_block = cond_exp_valid_block;
10878 if (just_location)
10879 {
10880 struct type *t = value_type (val);
10881 CORE_ADDR addr = value_as_address (val);
10882
10883 w->exp_string_reparse
10884 = current_language->la_watch_location_expression (t, addr).release ();
10885
10886 w->exp_string = xstrprintf ("-location %.*s",
10887 (int) (exp_end - exp_start), exp_start);
10888 }
10889 else
10890 w->exp_string = savestring (exp_start, exp_end - exp_start);
10891
10892 if (use_mask)
10893 {
10894 w->hw_wp_mask = mask;
10895 }
10896 else
10897 {
10898 w->val = val;
10899 w->val_bitpos = saved_bitpos;
10900 w->val_bitsize = saved_bitsize;
10901 w->val_valid = 1;
10902 }
10903
10904 if (cond_start)
10905 w->cond_string = savestring (cond_start, cond_end - cond_start);
10906 else
10907 w->cond_string = 0;
10908
10909 if (frame_id_p (watchpoint_frame))
10910 {
10911 w->watchpoint_frame = watchpoint_frame;
10912 w->watchpoint_thread = inferior_ptid;
10913 }
10914 else
10915 {
10916 w->watchpoint_frame = null_frame_id;
10917 w->watchpoint_thread = null_ptid;
10918 }
10919
10920 if (scope_breakpoint != NULL)
10921 {
10922 /* The scope breakpoint is related to the watchpoint. We will
10923 need to act on them together. */
10924 w->related_breakpoint = scope_breakpoint;
10925 scope_breakpoint->related_breakpoint = w.get ();
10926 }
10927
10928 if (!just_location)
10929 value_free_to_mark (mark);
10930
10931 /* Finally update the new watchpoint. This creates the locations
10932 that should be inserted. */
10933 update_watchpoint (w.get (), 1);
10934
10935 install_breakpoint (internal, std::move (w), 1);
10936 }
10937
10938 /* Return count of debug registers needed to watch the given expression.
10939 If the watchpoint cannot be handled in hardware return zero. */
10940
10941 static int
10942 can_use_hardware_watchpoint (struct value *v)
10943 {
10944 int found_memory_cnt = 0;
10945 struct value *head = v;
10946
10947 /* Did the user specifically forbid us to use hardware watchpoints? */
10948 if (!can_use_hw_watchpoints)
10949 return 0;
10950
10951 /* Make sure that the value of the expression depends only upon
10952 memory contents, and values computed from them within GDB. If we
10953 find any register references or function calls, we can't use a
10954 hardware watchpoint.
10955
10956 The idea here is that evaluating an expression generates a series
10957 of values, one holding the value of every subexpression. (The
10958 expression a*b+c has five subexpressions: a, b, a*b, c, and
10959 a*b+c.) GDB's values hold almost enough information to establish
10960 the criteria given above --- they identify memory lvalues,
10961 register lvalues, computed values, etcetera. So we can evaluate
10962 the expression, and then scan the chain of values that leaves
10963 behind to decide whether we can detect any possible change to the
10964 expression's final value using only hardware watchpoints.
10965
10966 However, I don't think that the values returned by inferior
10967 function calls are special in any way. So this function may not
10968 notice that an expression involving an inferior function call
10969 can't be watched with hardware watchpoints. FIXME. */
10970 for (; v; v = value_next (v))
10971 {
10972 if (VALUE_LVAL (v) == lval_memory)
10973 {
10974 if (v != head && value_lazy (v))
10975 /* A lazy memory lvalue in the chain is one that GDB never
10976 needed to fetch; we either just used its address (e.g.,
10977 `a' in `a.b') or we never needed it at all (e.g., `a'
10978 in `a,b'). This doesn't apply to HEAD; if that is
10979 lazy then it was not readable, but watch it anyway. */
10980 ;
10981 else
10982 {
10983 /* Ahh, memory we actually used! Check if we can cover
10984 it with hardware watchpoints. */
10985 struct type *vtype = check_typedef (value_type (v));
10986
10987 /* We only watch structs and arrays if user asked for it
10988 explicitly, never if they just happen to appear in a
10989 middle of some value chain. */
10990 if (v == head
10991 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10992 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10993 {
10994 CORE_ADDR vaddr = value_address (v);
10995 int len;
10996 int num_regs;
10997
10998 len = (target_exact_watchpoints
10999 && is_scalar_type_recursive (vtype))?
11000 1 : TYPE_LENGTH (value_type (v));
11001
11002 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11003 if (!num_regs)
11004 return 0;
11005 else
11006 found_memory_cnt += num_regs;
11007 }
11008 }
11009 }
11010 else if (VALUE_LVAL (v) != not_lval
11011 && deprecated_value_modifiable (v) == 0)
11012 return 0; /* These are values from the history (e.g., $1). */
11013 else if (VALUE_LVAL (v) == lval_register)
11014 return 0; /* Cannot watch a register with a HW watchpoint. */
11015 }
11016
11017 /* The expression itself looks suitable for using a hardware
11018 watchpoint, but give the target machine a chance to reject it. */
11019 return found_memory_cnt;
11020 }
11021
11022 void
11023 watch_command_wrapper (const char *arg, int from_tty, int internal)
11024 {
11025 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11026 }
11027
11028 /* A helper function that looks for the "-location" argument and then
11029 calls watch_command_1. */
11030
11031 static void
11032 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11033 {
11034 int just_location = 0;
11035
11036 if (arg
11037 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11038 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11039 {
11040 arg = skip_spaces (arg);
11041 just_location = 1;
11042 }
11043
11044 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11045 }
11046
11047 static void
11048 watch_command (const char *arg, int from_tty)
11049 {
11050 watch_maybe_just_location (arg, hw_write, from_tty);
11051 }
11052
11053 void
11054 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11055 {
11056 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11057 }
11058
11059 static void
11060 rwatch_command (const char *arg, int from_tty)
11061 {
11062 watch_maybe_just_location (arg, hw_read, from_tty);
11063 }
11064
11065 void
11066 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11067 {
11068 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11069 }
11070
11071 static void
11072 awatch_command (const char *arg, int from_tty)
11073 {
11074 watch_maybe_just_location (arg, hw_access, from_tty);
11075 }
11076 \f
11077
11078 /* Data for the FSM that manages the until(location)/advance commands
11079 in infcmd.c. Here because it uses the mechanisms of
11080 breakpoints. */
11081
11082 struct until_break_fsm
11083 {
11084 /* The base class. */
11085 struct thread_fsm thread_fsm;
11086
11087 /* The thread that as current when the command was executed. */
11088 int thread;
11089
11090 /* The breakpoint set at the destination location. */
11091 struct breakpoint *location_breakpoint;
11092
11093 /* Breakpoint set at the return address in the caller frame. May be
11094 NULL. */
11095 struct breakpoint *caller_breakpoint;
11096 };
11097
11098 static void until_break_fsm_clean_up (struct thread_fsm *self,
11099 struct thread_info *thread);
11100 static int until_break_fsm_should_stop (struct thread_fsm *self,
11101 struct thread_info *thread);
11102 static enum async_reply_reason
11103 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11104
11105 /* until_break_fsm's vtable. */
11106
11107 static struct thread_fsm_ops until_break_fsm_ops =
11108 {
11109 NULL, /* dtor */
11110 until_break_fsm_clean_up,
11111 until_break_fsm_should_stop,
11112 NULL, /* return_value */
11113 until_break_fsm_async_reply_reason,
11114 };
11115
11116 /* Allocate a new until_break_command_fsm. */
11117
11118 static struct until_break_fsm *
11119 new_until_break_fsm (struct interp *cmd_interp, int thread,
11120 breakpoint_up &&location_breakpoint,
11121 breakpoint_up &&caller_breakpoint)
11122 {
11123 struct until_break_fsm *sm;
11124
11125 sm = XCNEW (struct until_break_fsm);
11126 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11127
11128 sm->thread = thread;
11129 sm->location_breakpoint = location_breakpoint.release ();
11130 sm->caller_breakpoint = caller_breakpoint.release ();
11131
11132 return sm;
11133 }
11134
11135 /* Implementation of the 'should_stop' FSM method for the
11136 until(location)/advance commands. */
11137
11138 static int
11139 until_break_fsm_should_stop (struct thread_fsm *self,
11140 struct thread_info *tp)
11141 {
11142 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11143
11144 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11145 sm->location_breakpoint) != NULL
11146 || (sm->caller_breakpoint != NULL
11147 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11148 sm->caller_breakpoint) != NULL))
11149 thread_fsm_set_finished (self);
11150
11151 return 1;
11152 }
11153
11154 /* Implementation of the 'clean_up' FSM method for the
11155 until(location)/advance commands. */
11156
11157 static void
11158 until_break_fsm_clean_up (struct thread_fsm *self,
11159 struct thread_info *thread)
11160 {
11161 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11162
11163 /* Clean up our temporary breakpoints. */
11164 if (sm->location_breakpoint != NULL)
11165 {
11166 delete_breakpoint (sm->location_breakpoint);
11167 sm->location_breakpoint = NULL;
11168 }
11169 if (sm->caller_breakpoint != NULL)
11170 {
11171 delete_breakpoint (sm->caller_breakpoint);
11172 sm->caller_breakpoint = NULL;
11173 }
11174 delete_longjmp_breakpoint (sm->thread);
11175 }
11176
11177 /* Implementation of the 'async_reply_reason' FSM method for the
11178 until(location)/advance commands. */
11179
11180 static enum async_reply_reason
11181 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11182 {
11183 return EXEC_ASYNC_LOCATION_REACHED;
11184 }
11185
11186 void
11187 until_break_command (const char *arg, int from_tty, int anywhere)
11188 {
11189 struct frame_info *frame;
11190 struct gdbarch *frame_gdbarch;
11191 struct frame_id stack_frame_id;
11192 struct frame_id caller_frame_id;
11193 struct cleanup *old_chain;
11194 int thread;
11195 struct thread_info *tp;
11196 struct until_break_fsm *sm;
11197
11198 clear_proceed_status (0);
11199
11200 /* Set a breakpoint where the user wants it and at return from
11201 this function. */
11202
11203 event_location_up location = string_to_event_location (&arg, current_language);
11204
11205 std::vector<symtab_and_line> sals
11206 = (last_displayed_sal_is_valid ()
11207 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11208 get_last_displayed_symtab (),
11209 get_last_displayed_line ())
11210 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11211 NULL, (struct symtab *) NULL, 0));
11212
11213 if (sals.size () != 1)
11214 error (_("Couldn't get information on specified line."));
11215
11216 symtab_and_line &sal = sals[0];
11217
11218 if (*arg)
11219 error (_("Junk at end of arguments."));
11220
11221 resolve_sal_pc (&sal);
11222
11223 tp = inferior_thread ();
11224 thread = tp->global_num;
11225
11226 old_chain = make_cleanup (null_cleanup, NULL);
11227
11228 /* Note linespec handling above invalidates the frame chain.
11229 Installing a breakpoint also invalidates the frame chain (as it
11230 may need to switch threads), so do any frame handling before
11231 that. */
11232
11233 frame = get_selected_frame (NULL);
11234 frame_gdbarch = get_frame_arch (frame);
11235 stack_frame_id = get_stack_frame_id (frame);
11236 caller_frame_id = frame_unwind_caller_id (frame);
11237
11238 /* Keep within the current frame, or in frames called by the current
11239 one. */
11240
11241 breakpoint_up caller_breakpoint;
11242 if (frame_id_p (caller_frame_id))
11243 {
11244 struct symtab_and_line sal2;
11245 struct gdbarch *caller_gdbarch;
11246
11247 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11248 sal2.pc = frame_unwind_caller_pc (frame);
11249 caller_gdbarch = frame_unwind_caller_arch (frame);
11250 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11251 sal2,
11252 caller_frame_id,
11253 bp_until);
11254
11255 set_longjmp_breakpoint (tp, caller_frame_id);
11256 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11257 }
11258
11259 /* set_momentary_breakpoint could invalidate FRAME. */
11260 frame = NULL;
11261
11262 breakpoint_up location_breakpoint;
11263 if (anywhere)
11264 /* If the user told us to continue until a specified location,
11265 we don't specify a frame at which we need to stop. */
11266 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11267 null_frame_id, bp_until);
11268 else
11269 /* Otherwise, specify the selected frame, because we want to stop
11270 only at the very same frame. */
11271 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11272 stack_frame_id, bp_until);
11273
11274 sm = new_until_break_fsm (command_interp (), tp->global_num,
11275 std::move (location_breakpoint),
11276 std::move (caller_breakpoint));
11277 tp->thread_fsm = &sm->thread_fsm;
11278
11279 discard_cleanups (old_chain);
11280
11281 proceed (-1, GDB_SIGNAL_DEFAULT);
11282 }
11283
11284 /* This function attempts to parse an optional "if <cond>" clause
11285 from the arg string. If one is not found, it returns NULL.
11286
11287 Else, it returns a pointer to the condition string. (It does not
11288 attempt to evaluate the string against a particular block.) And,
11289 it updates arg to point to the first character following the parsed
11290 if clause in the arg string. */
11291
11292 const char *
11293 ep_parse_optional_if_clause (const char **arg)
11294 {
11295 const char *cond_string;
11296
11297 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11298 return NULL;
11299
11300 /* Skip the "if" keyword. */
11301 (*arg) += 2;
11302
11303 /* Skip any extra leading whitespace, and record the start of the
11304 condition string. */
11305 *arg = skip_spaces (*arg);
11306 cond_string = *arg;
11307
11308 /* Assume that the condition occupies the remainder of the arg
11309 string. */
11310 (*arg) += strlen (cond_string);
11311
11312 return cond_string;
11313 }
11314
11315 /* Commands to deal with catching events, such as signals, exceptions,
11316 process start/exit, etc. */
11317
11318 typedef enum
11319 {
11320 catch_fork_temporary, catch_vfork_temporary,
11321 catch_fork_permanent, catch_vfork_permanent
11322 }
11323 catch_fork_kind;
11324
11325 static void
11326 catch_fork_command_1 (const char *arg, int from_tty,
11327 struct cmd_list_element *command)
11328 {
11329 struct gdbarch *gdbarch = get_current_arch ();
11330 const char *cond_string = NULL;
11331 catch_fork_kind fork_kind;
11332 int tempflag;
11333
11334 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11335 tempflag = (fork_kind == catch_fork_temporary
11336 || fork_kind == catch_vfork_temporary);
11337
11338 if (!arg)
11339 arg = "";
11340 arg = skip_spaces (arg);
11341
11342 /* The allowed syntax is:
11343 catch [v]fork
11344 catch [v]fork if <cond>
11345
11346 First, check if there's an if clause. */
11347 cond_string = ep_parse_optional_if_clause (&arg);
11348
11349 if ((*arg != '\0') && !isspace (*arg))
11350 error (_("Junk at end of arguments."));
11351
11352 /* If this target supports it, create a fork or vfork catchpoint
11353 and enable reporting of such events. */
11354 switch (fork_kind)
11355 {
11356 case catch_fork_temporary:
11357 case catch_fork_permanent:
11358 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11359 &catch_fork_breakpoint_ops);
11360 break;
11361 case catch_vfork_temporary:
11362 case catch_vfork_permanent:
11363 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11364 &catch_vfork_breakpoint_ops);
11365 break;
11366 default:
11367 error (_("unsupported or unknown fork kind; cannot catch it"));
11368 break;
11369 }
11370 }
11371
11372 static void
11373 catch_exec_command_1 (const char *arg, int from_tty,
11374 struct cmd_list_element *command)
11375 {
11376 struct gdbarch *gdbarch = get_current_arch ();
11377 int tempflag;
11378 const char *cond_string = NULL;
11379
11380 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11381
11382 if (!arg)
11383 arg = "";
11384 arg = skip_spaces (arg);
11385
11386 /* The allowed syntax is:
11387 catch exec
11388 catch exec if <cond>
11389
11390 First, check if there's an if clause. */
11391 cond_string = ep_parse_optional_if_clause (&arg);
11392
11393 if ((*arg != '\0') && !isspace (*arg))
11394 error (_("Junk at end of arguments."));
11395
11396 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11397 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11398 &catch_exec_breakpoint_ops);
11399 c->exec_pathname = NULL;
11400
11401 install_breakpoint (0, std::move (c), 1);
11402 }
11403
11404 void
11405 init_ada_exception_breakpoint (struct breakpoint *b,
11406 struct gdbarch *gdbarch,
11407 struct symtab_and_line sal,
11408 const char *addr_string,
11409 const struct breakpoint_ops *ops,
11410 int tempflag,
11411 int enabled,
11412 int from_tty)
11413 {
11414 if (from_tty)
11415 {
11416 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11417 if (!loc_gdbarch)
11418 loc_gdbarch = gdbarch;
11419
11420 describe_other_breakpoints (loc_gdbarch,
11421 sal.pspace, sal.pc, sal.section, -1);
11422 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11423 version for exception catchpoints, because two catchpoints
11424 used for different exception names will use the same address.
11425 In this case, a "breakpoint ... also set at..." warning is
11426 unproductive. Besides, the warning phrasing is also a bit
11427 inappropriate, we should use the word catchpoint, and tell
11428 the user what type of catchpoint it is. The above is good
11429 enough for now, though. */
11430 }
11431
11432 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11433
11434 b->enable_state = enabled ? bp_enabled : bp_disabled;
11435 b->disposition = tempflag ? disp_del : disp_donttouch;
11436 b->location = string_to_event_location (&addr_string,
11437 language_def (language_ada));
11438 b->language = language_ada;
11439 }
11440
11441 static void
11442 catch_command (const char *arg, int from_tty)
11443 {
11444 error (_("Catch requires an event name."));
11445 }
11446 \f
11447
11448 static void
11449 tcatch_command (const char *arg, int from_tty)
11450 {
11451 error (_("Catch requires an event name."));
11452 }
11453
11454 /* Compare two breakpoints and return a strcmp-like result. */
11455
11456 static int
11457 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11458 {
11459 uintptr_t ua = (uintptr_t) a;
11460 uintptr_t ub = (uintptr_t) b;
11461
11462 if (a->number < b->number)
11463 return -1;
11464 else if (a->number > b->number)
11465 return 1;
11466
11467 /* Now sort by address, in case we see, e..g, two breakpoints with
11468 the number 0. */
11469 if (ua < ub)
11470 return -1;
11471 return ua > ub ? 1 : 0;
11472 }
11473
11474 /* Delete breakpoints by address or line. */
11475
11476 static void
11477 clear_command (const char *arg, int from_tty)
11478 {
11479 struct breakpoint *b;
11480 int default_match;
11481
11482 std::vector<symtab_and_line> decoded_sals;
11483 symtab_and_line last_sal;
11484 gdb::array_view<symtab_and_line> sals;
11485 if (arg)
11486 {
11487 decoded_sals
11488 = decode_line_with_current_source (arg,
11489 (DECODE_LINE_FUNFIRSTLINE
11490 | DECODE_LINE_LIST_MODE));
11491 default_match = 0;
11492 sals = decoded_sals;
11493 }
11494 else
11495 {
11496 /* Set sal's line, symtab, pc, and pspace to the values
11497 corresponding to the last call to print_frame_info. If the
11498 codepoint is not valid, this will set all the fields to 0. */
11499 last_sal = get_last_displayed_sal ();
11500 if (last_sal.symtab == 0)
11501 error (_("No source file specified."));
11502
11503 default_match = 1;
11504 sals = last_sal;
11505 }
11506
11507 /* We don't call resolve_sal_pc here. That's not as bad as it
11508 seems, because all existing breakpoints typically have both
11509 file/line and pc set. So, if clear is given file/line, we can
11510 match this to existing breakpoint without obtaining pc at all.
11511
11512 We only support clearing given the address explicitly
11513 present in breakpoint table. Say, we've set breakpoint
11514 at file:line. There were several PC values for that file:line,
11515 due to optimization, all in one block.
11516
11517 We've picked one PC value. If "clear" is issued with another
11518 PC corresponding to the same file:line, the breakpoint won't
11519 be cleared. We probably can still clear the breakpoint, but
11520 since the other PC value is never presented to user, user
11521 can only find it by guessing, and it does not seem important
11522 to support that. */
11523
11524 /* For each line spec given, delete bps which correspond to it. Do
11525 it in two passes, solely to preserve the current behavior that
11526 from_tty is forced true if we delete more than one
11527 breakpoint. */
11528
11529 std::vector<struct breakpoint *> found;
11530 for (const auto &sal : sals)
11531 {
11532 const char *sal_fullname;
11533
11534 /* If exact pc given, clear bpts at that pc.
11535 If line given (pc == 0), clear all bpts on specified line.
11536 If defaulting, clear all bpts on default line
11537 or at default pc.
11538
11539 defaulting sal.pc != 0 tests to do
11540
11541 0 1 pc
11542 1 1 pc _and_ line
11543 0 0 line
11544 1 0 <can't happen> */
11545
11546 sal_fullname = (sal.symtab == NULL
11547 ? NULL : symtab_to_fullname (sal.symtab));
11548
11549 /* Find all matching breakpoints and add them to 'found'. */
11550 ALL_BREAKPOINTS (b)
11551 {
11552 int match = 0;
11553 /* Are we going to delete b? */
11554 if (b->type != bp_none && !is_watchpoint (b))
11555 {
11556 struct bp_location *loc = b->loc;
11557 for (; loc; loc = loc->next)
11558 {
11559 /* If the user specified file:line, don't allow a PC
11560 match. This matches historical gdb behavior. */
11561 int pc_match = (!sal.explicit_line
11562 && sal.pc
11563 && (loc->pspace == sal.pspace)
11564 && (loc->address == sal.pc)
11565 && (!section_is_overlay (loc->section)
11566 || loc->section == sal.section));
11567 int line_match = 0;
11568
11569 if ((default_match || sal.explicit_line)
11570 && loc->symtab != NULL
11571 && sal_fullname != NULL
11572 && sal.pspace == loc->pspace
11573 && loc->line_number == sal.line
11574 && filename_cmp (symtab_to_fullname (loc->symtab),
11575 sal_fullname) == 0)
11576 line_match = 1;
11577
11578 if (pc_match || line_match)
11579 {
11580 match = 1;
11581 break;
11582 }
11583 }
11584 }
11585
11586 if (match)
11587 found.push_back (b);
11588 }
11589 }
11590
11591 /* Now go thru the 'found' chain and delete them. */
11592 if (found.empty ())
11593 {
11594 if (arg)
11595 error (_("No breakpoint at %s."), arg);
11596 else
11597 error (_("No breakpoint at this line."));
11598 }
11599
11600 /* Remove duplicates from the vec. */
11601 std::sort (found.begin (), found.end (),
11602 [] (const breakpoint *a, const breakpoint *b)
11603 {
11604 return compare_breakpoints (a, b) < 0;
11605 });
11606 found.erase (std::unique (found.begin (), found.end (),
11607 [] (const breakpoint *a, const breakpoint *b)
11608 {
11609 return compare_breakpoints (a, b) == 0;
11610 }),
11611 found.end ());
11612
11613 if (found.size () > 1)
11614 from_tty = 1; /* Always report if deleted more than one. */
11615 if (from_tty)
11616 {
11617 if (found.size () == 1)
11618 printf_unfiltered (_("Deleted breakpoint "));
11619 else
11620 printf_unfiltered (_("Deleted breakpoints "));
11621 }
11622
11623 for (breakpoint *iter : found)
11624 {
11625 if (from_tty)
11626 printf_unfiltered ("%d ", iter->number);
11627 delete_breakpoint (iter);
11628 }
11629 if (from_tty)
11630 putchar_unfiltered ('\n');
11631 }
11632 \f
11633 /* Delete breakpoint in BS if they are `delete' breakpoints and
11634 all breakpoints that are marked for deletion, whether hit or not.
11635 This is called after any breakpoint is hit, or after errors. */
11636
11637 void
11638 breakpoint_auto_delete (bpstat bs)
11639 {
11640 struct breakpoint *b, *b_tmp;
11641
11642 for (; bs; bs = bs->next)
11643 if (bs->breakpoint_at
11644 && bs->breakpoint_at->disposition == disp_del
11645 && bs->stop)
11646 delete_breakpoint (bs->breakpoint_at);
11647
11648 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11649 {
11650 if (b->disposition == disp_del_at_next_stop)
11651 delete_breakpoint (b);
11652 }
11653 }
11654
11655 /* A comparison function for bp_location AP and BP being interfaced to
11656 qsort. Sort elements primarily by their ADDRESS (no matter what
11657 does breakpoint_address_is_meaningful say for its OWNER),
11658 secondarily by ordering first permanent elements and
11659 terciarily just ensuring the array is sorted stable way despite
11660 qsort being an unstable algorithm. */
11661
11662 static int
11663 bp_locations_compare (const void *ap, const void *bp)
11664 {
11665 const struct bp_location *a = *(const struct bp_location **) ap;
11666 const struct bp_location *b = *(const struct bp_location **) bp;
11667
11668 if (a->address != b->address)
11669 return (a->address > b->address) - (a->address < b->address);
11670
11671 /* Sort locations at the same address by their pspace number, keeping
11672 locations of the same inferior (in a multi-inferior environment)
11673 grouped. */
11674
11675 if (a->pspace->num != b->pspace->num)
11676 return ((a->pspace->num > b->pspace->num)
11677 - (a->pspace->num < b->pspace->num));
11678
11679 /* Sort permanent breakpoints first. */
11680 if (a->permanent != b->permanent)
11681 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11682
11683 /* Make the internal GDB representation stable across GDB runs
11684 where A and B memory inside GDB can differ. Breakpoint locations of
11685 the same type at the same address can be sorted in arbitrary order. */
11686
11687 if (a->owner->number != b->owner->number)
11688 return ((a->owner->number > b->owner->number)
11689 - (a->owner->number < b->owner->number));
11690
11691 return (a > b) - (a < b);
11692 }
11693
11694 /* Set bp_locations_placed_address_before_address_max and
11695 bp_locations_shadow_len_after_address_max according to the current
11696 content of the bp_locations array. */
11697
11698 static void
11699 bp_locations_target_extensions_update (void)
11700 {
11701 struct bp_location *bl, **blp_tmp;
11702
11703 bp_locations_placed_address_before_address_max = 0;
11704 bp_locations_shadow_len_after_address_max = 0;
11705
11706 ALL_BP_LOCATIONS (bl, blp_tmp)
11707 {
11708 CORE_ADDR start, end, addr;
11709
11710 if (!bp_location_has_shadow (bl))
11711 continue;
11712
11713 start = bl->target_info.placed_address;
11714 end = start + bl->target_info.shadow_len;
11715
11716 gdb_assert (bl->address >= start);
11717 addr = bl->address - start;
11718 if (addr > bp_locations_placed_address_before_address_max)
11719 bp_locations_placed_address_before_address_max = addr;
11720
11721 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11722
11723 gdb_assert (bl->address < end);
11724 addr = end - bl->address;
11725 if (addr > bp_locations_shadow_len_after_address_max)
11726 bp_locations_shadow_len_after_address_max = addr;
11727 }
11728 }
11729
11730 /* Download tracepoint locations if they haven't been. */
11731
11732 static void
11733 download_tracepoint_locations (void)
11734 {
11735 struct breakpoint *b;
11736 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11737
11738 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11739
11740 ALL_TRACEPOINTS (b)
11741 {
11742 struct bp_location *bl;
11743 struct tracepoint *t;
11744 int bp_location_downloaded = 0;
11745
11746 if ((b->type == bp_fast_tracepoint
11747 ? !may_insert_fast_tracepoints
11748 : !may_insert_tracepoints))
11749 continue;
11750
11751 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11752 {
11753 if (target_can_download_tracepoint ())
11754 can_download_tracepoint = TRIBOOL_TRUE;
11755 else
11756 can_download_tracepoint = TRIBOOL_FALSE;
11757 }
11758
11759 if (can_download_tracepoint == TRIBOOL_FALSE)
11760 break;
11761
11762 for (bl = b->loc; bl; bl = bl->next)
11763 {
11764 /* In tracepoint, locations are _never_ duplicated, so
11765 should_be_inserted is equivalent to
11766 unduplicated_should_be_inserted. */
11767 if (!should_be_inserted (bl) || bl->inserted)
11768 continue;
11769
11770 switch_to_program_space_and_thread (bl->pspace);
11771
11772 target_download_tracepoint (bl);
11773
11774 bl->inserted = 1;
11775 bp_location_downloaded = 1;
11776 }
11777 t = (struct tracepoint *) b;
11778 t->number_on_target = b->number;
11779 if (bp_location_downloaded)
11780 observer_notify_breakpoint_modified (b);
11781 }
11782 }
11783
11784 /* Swap the insertion/duplication state between two locations. */
11785
11786 static void
11787 swap_insertion (struct bp_location *left, struct bp_location *right)
11788 {
11789 const int left_inserted = left->inserted;
11790 const int left_duplicate = left->duplicate;
11791 const int left_needs_update = left->needs_update;
11792 const struct bp_target_info left_target_info = left->target_info;
11793
11794 /* Locations of tracepoints can never be duplicated. */
11795 if (is_tracepoint (left->owner))
11796 gdb_assert (!left->duplicate);
11797 if (is_tracepoint (right->owner))
11798 gdb_assert (!right->duplicate);
11799
11800 left->inserted = right->inserted;
11801 left->duplicate = right->duplicate;
11802 left->needs_update = right->needs_update;
11803 left->target_info = right->target_info;
11804 right->inserted = left_inserted;
11805 right->duplicate = left_duplicate;
11806 right->needs_update = left_needs_update;
11807 right->target_info = left_target_info;
11808 }
11809
11810 /* Force the re-insertion of the locations at ADDRESS. This is called
11811 once a new/deleted/modified duplicate location is found and we are evaluating
11812 conditions on the target's side. Such conditions need to be updated on
11813 the target. */
11814
11815 static void
11816 force_breakpoint_reinsertion (struct bp_location *bl)
11817 {
11818 struct bp_location **locp = NULL, **loc2p;
11819 struct bp_location *loc;
11820 CORE_ADDR address = 0;
11821 int pspace_num;
11822
11823 address = bl->address;
11824 pspace_num = bl->pspace->num;
11825
11826 /* This is only meaningful if the target is
11827 evaluating conditions and if the user has
11828 opted for condition evaluation on the target's
11829 side. */
11830 if (gdb_evaluates_breakpoint_condition_p ()
11831 || !target_supports_evaluation_of_breakpoint_conditions ())
11832 return;
11833
11834 /* Flag all breakpoint locations with this address and
11835 the same program space as the location
11836 as "its condition has changed". We need to
11837 update the conditions on the target's side. */
11838 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11839 {
11840 loc = *loc2p;
11841
11842 if (!is_breakpoint (loc->owner)
11843 || pspace_num != loc->pspace->num)
11844 continue;
11845
11846 /* Flag the location appropriately. We use a different state to
11847 let everyone know that we already updated the set of locations
11848 with addr bl->address and program space bl->pspace. This is so
11849 we don't have to keep calling these functions just to mark locations
11850 that have already been marked. */
11851 loc->condition_changed = condition_updated;
11852
11853 /* Free the agent expression bytecode as well. We will compute
11854 it later on. */
11855 loc->cond_bytecode.reset ();
11856 }
11857 }
11858 /* Called whether new breakpoints are created, or existing breakpoints
11859 deleted, to update the global location list and recompute which
11860 locations are duplicate of which.
11861
11862 The INSERT_MODE flag determines whether locations may not, may, or
11863 shall be inserted now. See 'enum ugll_insert_mode' for more
11864 info. */
11865
11866 static void
11867 update_global_location_list (enum ugll_insert_mode insert_mode)
11868 {
11869 struct breakpoint *b;
11870 struct bp_location **locp, *loc;
11871 /* Last breakpoint location address that was marked for update. */
11872 CORE_ADDR last_addr = 0;
11873 /* Last breakpoint location program space that was marked for update. */
11874 int last_pspace_num = -1;
11875
11876 /* Used in the duplicates detection below. When iterating over all
11877 bp_locations, points to the first bp_location of a given address.
11878 Breakpoints and watchpoints of different types are never
11879 duplicates of each other. Keep one pointer for each type of
11880 breakpoint/watchpoint, so we only need to loop over all locations
11881 once. */
11882 struct bp_location *bp_loc_first; /* breakpoint */
11883 struct bp_location *wp_loc_first; /* hardware watchpoint */
11884 struct bp_location *awp_loc_first; /* access watchpoint */
11885 struct bp_location *rwp_loc_first; /* read watchpoint */
11886
11887 /* Saved former bp_locations array which we compare against the newly
11888 built bp_locations from the current state of ALL_BREAKPOINTS. */
11889 struct bp_location **old_locp;
11890 unsigned old_locations_count;
11891 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11892
11893 old_locations_count = bp_locations_count;
11894 bp_locations = NULL;
11895 bp_locations_count = 0;
11896
11897 ALL_BREAKPOINTS (b)
11898 for (loc = b->loc; loc; loc = loc->next)
11899 bp_locations_count++;
11900
11901 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11902 locp = bp_locations;
11903 ALL_BREAKPOINTS (b)
11904 for (loc = b->loc; loc; loc = loc->next)
11905 *locp++ = loc;
11906 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11907 bp_locations_compare);
11908
11909 bp_locations_target_extensions_update ();
11910
11911 /* Identify bp_location instances that are no longer present in the
11912 new list, and therefore should be freed. Note that it's not
11913 necessary that those locations should be removed from inferior --
11914 if there's another location at the same address (previously
11915 marked as duplicate), we don't need to remove/insert the
11916 location.
11917
11918 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11919 and former bp_location array state respectively. */
11920
11921 locp = bp_locations;
11922 for (old_locp = old_locations.get ();
11923 old_locp < old_locations.get () + old_locations_count;
11924 old_locp++)
11925 {
11926 struct bp_location *old_loc = *old_locp;
11927 struct bp_location **loc2p;
11928
11929 /* Tells if 'old_loc' is found among the new locations. If
11930 not, we have to free it. */
11931 int found_object = 0;
11932 /* Tells if the location should remain inserted in the target. */
11933 int keep_in_target = 0;
11934 int removed = 0;
11935
11936 /* Skip LOCP entries which will definitely never be needed.
11937 Stop either at or being the one matching OLD_LOC. */
11938 while (locp < bp_locations + bp_locations_count
11939 && (*locp)->address < old_loc->address)
11940 locp++;
11941
11942 for (loc2p = locp;
11943 (loc2p < bp_locations + bp_locations_count
11944 && (*loc2p)->address == old_loc->address);
11945 loc2p++)
11946 {
11947 /* Check if this is a new/duplicated location or a duplicated
11948 location that had its condition modified. If so, we want to send
11949 its condition to the target if evaluation of conditions is taking
11950 place there. */
11951 if ((*loc2p)->condition_changed == condition_modified
11952 && (last_addr != old_loc->address
11953 || last_pspace_num != old_loc->pspace->num))
11954 {
11955 force_breakpoint_reinsertion (*loc2p);
11956 last_pspace_num = old_loc->pspace->num;
11957 }
11958
11959 if (*loc2p == old_loc)
11960 found_object = 1;
11961 }
11962
11963 /* We have already handled this address, update it so that we don't
11964 have to go through updates again. */
11965 last_addr = old_loc->address;
11966
11967 /* Target-side condition evaluation: Handle deleted locations. */
11968 if (!found_object)
11969 force_breakpoint_reinsertion (old_loc);
11970
11971 /* If this location is no longer present, and inserted, look if
11972 there's maybe a new location at the same address. If so,
11973 mark that one inserted, and don't remove this one. This is
11974 needed so that we don't have a time window where a breakpoint
11975 at certain location is not inserted. */
11976
11977 if (old_loc->inserted)
11978 {
11979 /* If the location is inserted now, we might have to remove
11980 it. */
11981
11982 if (found_object && should_be_inserted (old_loc))
11983 {
11984 /* The location is still present in the location list,
11985 and still should be inserted. Don't do anything. */
11986 keep_in_target = 1;
11987 }
11988 else
11989 {
11990 /* This location still exists, but it won't be kept in the
11991 target since it may have been disabled. We proceed to
11992 remove its target-side condition. */
11993
11994 /* The location is either no longer present, or got
11995 disabled. See if there's another location at the
11996 same address, in which case we don't need to remove
11997 this one from the target. */
11998
11999 /* OLD_LOC comes from existing struct breakpoint. */
12000 if (breakpoint_address_is_meaningful (old_loc->owner))
12001 {
12002 for (loc2p = locp;
12003 (loc2p < bp_locations + bp_locations_count
12004 && (*loc2p)->address == old_loc->address);
12005 loc2p++)
12006 {
12007 struct bp_location *loc2 = *loc2p;
12008
12009 if (breakpoint_locations_match (loc2, old_loc))
12010 {
12011 /* Read watchpoint locations are switched to
12012 access watchpoints, if the former are not
12013 supported, but the latter are. */
12014 if (is_hardware_watchpoint (old_loc->owner))
12015 {
12016 gdb_assert (is_hardware_watchpoint (loc2->owner));
12017 loc2->watchpoint_type = old_loc->watchpoint_type;
12018 }
12019
12020 /* loc2 is a duplicated location. We need to check
12021 if it should be inserted in case it will be
12022 unduplicated. */
12023 if (loc2 != old_loc
12024 && unduplicated_should_be_inserted (loc2))
12025 {
12026 swap_insertion (old_loc, loc2);
12027 keep_in_target = 1;
12028 break;
12029 }
12030 }
12031 }
12032 }
12033 }
12034
12035 if (!keep_in_target)
12036 {
12037 if (remove_breakpoint (old_loc))
12038 {
12039 /* This is just about all we can do. We could keep
12040 this location on the global list, and try to
12041 remove it next time, but there's no particular
12042 reason why we will succeed next time.
12043
12044 Note that at this point, old_loc->owner is still
12045 valid, as delete_breakpoint frees the breakpoint
12046 only after calling us. */
12047 printf_filtered (_("warning: Error removing "
12048 "breakpoint %d\n"),
12049 old_loc->owner->number);
12050 }
12051 removed = 1;
12052 }
12053 }
12054
12055 if (!found_object)
12056 {
12057 if (removed && target_is_non_stop_p ()
12058 && need_moribund_for_location_type (old_loc))
12059 {
12060 /* This location was removed from the target. In
12061 non-stop mode, a race condition is possible where
12062 we've removed a breakpoint, but stop events for that
12063 breakpoint are already queued and will arrive later.
12064 We apply an heuristic to be able to distinguish such
12065 SIGTRAPs from other random SIGTRAPs: we keep this
12066 breakpoint location for a bit, and will retire it
12067 after we see some number of events. The theory here
12068 is that reporting of events should, "on the average",
12069 be fair, so after a while we'll see events from all
12070 threads that have anything of interest, and no longer
12071 need to keep this breakpoint location around. We
12072 don't hold locations forever so to reduce chances of
12073 mistaking a non-breakpoint SIGTRAP for a breakpoint
12074 SIGTRAP.
12075
12076 The heuristic failing can be disastrous on
12077 decr_pc_after_break targets.
12078
12079 On decr_pc_after_break targets, like e.g., x86-linux,
12080 if we fail to recognize a late breakpoint SIGTRAP,
12081 because events_till_retirement has reached 0 too
12082 soon, we'll fail to do the PC adjustment, and report
12083 a random SIGTRAP to the user. When the user resumes
12084 the inferior, it will most likely immediately crash
12085 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12086 corrupted, because of being resumed e.g., in the
12087 middle of a multi-byte instruction, or skipped a
12088 one-byte instruction. This was actually seen happen
12089 on native x86-linux, and should be less rare on
12090 targets that do not support new thread events, like
12091 remote, due to the heuristic depending on
12092 thread_count.
12093
12094 Mistaking a random SIGTRAP for a breakpoint trap
12095 causes similar symptoms (PC adjustment applied when
12096 it shouldn't), but then again, playing with SIGTRAPs
12097 behind the debugger's back is asking for trouble.
12098
12099 Since hardware watchpoint traps are always
12100 distinguishable from other traps, so we don't need to
12101 apply keep hardware watchpoint moribund locations
12102 around. We simply always ignore hardware watchpoint
12103 traps we can no longer explain. */
12104
12105 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12106 old_loc->owner = NULL;
12107
12108 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12109 }
12110 else
12111 {
12112 old_loc->owner = NULL;
12113 decref_bp_location (&old_loc);
12114 }
12115 }
12116 }
12117
12118 /* Rescan breakpoints at the same address and section, marking the
12119 first one as "first" and any others as "duplicates". This is so
12120 that the bpt instruction is only inserted once. If we have a
12121 permanent breakpoint at the same place as BPT, make that one the
12122 official one, and the rest as duplicates. Permanent breakpoints
12123 are sorted first for the same address.
12124
12125 Do the same for hardware watchpoints, but also considering the
12126 watchpoint's type (regular/access/read) and length. */
12127
12128 bp_loc_first = NULL;
12129 wp_loc_first = NULL;
12130 awp_loc_first = NULL;
12131 rwp_loc_first = NULL;
12132 ALL_BP_LOCATIONS (loc, locp)
12133 {
12134 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12135 non-NULL. */
12136 struct bp_location **loc_first_p;
12137 b = loc->owner;
12138
12139 if (!unduplicated_should_be_inserted (loc)
12140 || !breakpoint_address_is_meaningful (b)
12141 /* Don't detect duplicate for tracepoint locations because they are
12142 never duplicated. See the comments in field `duplicate' of
12143 `struct bp_location'. */
12144 || is_tracepoint (b))
12145 {
12146 /* Clear the condition modification flag. */
12147 loc->condition_changed = condition_unchanged;
12148 continue;
12149 }
12150
12151 if (b->type == bp_hardware_watchpoint)
12152 loc_first_p = &wp_loc_first;
12153 else if (b->type == bp_read_watchpoint)
12154 loc_first_p = &rwp_loc_first;
12155 else if (b->type == bp_access_watchpoint)
12156 loc_first_p = &awp_loc_first;
12157 else
12158 loc_first_p = &bp_loc_first;
12159
12160 if (*loc_first_p == NULL
12161 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12162 || !breakpoint_locations_match (loc, *loc_first_p))
12163 {
12164 *loc_first_p = loc;
12165 loc->duplicate = 0;
12166
12167 if (is_breakpoint (loc->owner) && loc->condition_changed)
12168 {
12169 loc->needs_update = 1;
12170 /* Clear the condition modification flag. */
12171 loc->condition_changed = condition_unchanged;
12172 }
12173 continue;
12174 }
12175
12176
12177 /* This and the above ensure the invariant that the first location
12178 is not duplicated, and is the inserted one.
12179 All following are marked as duplicated, and are not inserted. */
12180 if (loc->inserted)
12181 swap_insertion (loc, *loc_first_p);
12182 loc->duplicate = 1;
12183
12184 /* Clear the condition modification flag. */
12185 loc->condition_changed = condition_unchanged;
12186 }
12187
12188 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12189 {
12190 if (insert_mode != UGLL_DONT_INSERT)
12191 insert_breakpoint_locations ();
12192 else
12193 {
12194 /* Even though the caller told us to not insert new
12195 locations, we may still need to update conditions on the
12196 target's side of breakpoints that were already inserted
12197 if the target is evaluating breakpoint conditions. We
12198 only update conditions for locations that are marked
12199 "needs_update". */
12200 update_inserted_breakpoint_locations ();
12201 }
12202 }
12203
12204 if (insert_mode != UGLL_DONT_INSERT)
12205 download_tracepoint_locations ();
12206 }
12207
12208 void
12209 breakpoint_retire_moribund (void)
12210 {
12211 struct bp_location *loc;
12212 int ix;
12213
12214 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12215 if (--(loc->events_till_retirement) == 0)
12216 {
12217 decref_bp_location (&loc);
12218 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12219 --ix;
12220 }
12221 }
12222
12223 static void
12224 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12225 {
12226
12227 TRY
12228 {
12229 update_global_location_list (insert_mode);
12230 }
12231 CATCH (e, RETURN_MASK_ERROR)
12232 {
12233 }
12234 END_CATCH
12235 }
12236
12237 /* Clear BKP from a BPS. */
12238
12239 static void
12240 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12241 {
12242 bpstat bs;
12243
12244 for (bs = bps; bs; bs = bs->next)
12245 if (bs->breakpoint_at == bpt)
12246 {
12247 bs->breakpoint_at = NULL;
12248 bs->old_val = NULL;
12249 /* bs->commands will be freed later. */
12250 }
12251 }
12252
12253 /* Callback for iterate_over_threads. */
12254 static int
12255 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12256 {
12257 struct breakpoint *bpt = (struct breakpoint *) data;
12258
12259 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12260 return 0;
12261 }
12262
12263 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12264 callbacks. */
12265
12266 static void
12267 say_where (struct breakpoint *b)
12268 {
12269 struct value_print_options opts;
12270
12271 get_user_print_options (&opts);
12272
12273 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12274 single string. */
12275 if (b->loc == NULL)
12276 {
12277 /* For pending locations, the output differs slightly based
12278 on b->extra_string. If this is non-NULL, it contains either
12279 a condition or dprintf arguments. */
12280 if (b->extra_string == NULL)
12281 {
12282 printf_filtered (_(" (%s) pending."),
12283 event_location_to_string (b->location.get ()));
12284 }
12285 else if (b->type == bp_dprintf)
12286 {
12287 printf_filtered (_(" (%s,%s) pending."),
12288 event_location_to_string (b->location.get ()),
12289 b->extra_string);
12290 }
12291 else
12292 {
12293 printf_filtered (_(" (%s %s) pending."),
12294 event_location_to_string (b->location.get ()),
12295 b->extra_string);
12296 }
12297 }
12298 else
12299 {
12300 if (opts.addressprint || b->loc->symtab == NULL)
12301 {
12302 printf_filtered (" at ");
12303 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12304 gdb_stdout);
12305 }
12306 if (b->loc->symtab != NULL)
12307 {
12308 /* If there is a single location, we can print the location
12309 more nicely. */
12310 if (b->loc->next == NULL)
12311 printf_filtered (": file %s, line %d.",
12312 symtab_to_filename_for_display (b->loc->symtab),
12313 b->loc->line_number);
12314 else
12315 /* This is not ideal, but each location may have a
12316 different file name, and this at least reflects the
12317 real situation somewhat. */
12318 printf_filtered (": %s.",
12319 event_location_to_string (b->location.get ()));
12320 }
12321
12322 if (b->loc->next)
12323 {
12324 struct bp_location *loc = b->loc;
12325 int n = 0;
12326 for (; loc; loc = loc->next)
12327 ++n;
12328 printf_filtered (" (%d locations)", n);
12329 }
12330 }
12331 }
12332
12333 /* Default bp_location_ops methods. */
12334
12335 static void
12336 bp_location_dtor (struct bp_location *self)
12337 {
12338 xfree (self->function_name);
12339 }
12340
12341 static const struct bp_location_ops bp_location_ops =
12342 {
12343 bp_location_dtor
12344 };
12345
12346 /* Destructor for the breakpoint base class. */
12347
12348 breakpoint::~breakpoint ()
12349 {
12350 xfree (this->cond_string);
12351 xfree (this->extra_string);
12352 xfree (this->filter);
12353 }
12354
12355 static struct bp_location *
12356 base_breakpoint_allocate_location (struct breakpoint *self)
12357 {
12358 return new bp_location (&bp_location_ops, self);
12359 }
12360
12361 static void
12362 base_breakpoint_re_set (struct breakpoint *b)
12363 {
12364 /* Nothing to re-set. */
12365 }
12366
12367 #define internal_error_pure_virtual_called() \
12368 gdb_assert_not_reached ("pure virtual function called")
12369
12370 static int
12371 base_breakpoint_insert_location (struct bp_location *bl)
12372 {
12373 internal_error_pure_virtual_called ();
12374 }
12375
12376 static int
12377 base_breakpoint_remove_location (struct bp_location *bl,
12378 enum remove_bp_reason reason)
12379 {
12380 internal_error_pure_virtual_called ();
12381 }
12382
12383 static int
12384 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12385 const address_space *aspace,
12386 CORE_ADDR bp_addr,
12387 const struct target_waitstatus *ws)
12388 {
12389 internal_error_pure_virtual_called ();
12390 }
12391
12392 static void
12393 base_breakpoint_check_status (bpstat bs)
12394 {
12395 /* Always stop. */
12396 }
12397
12398 /* A "works_in_software_mode" breakpoint_ops method that just internal
12399 errors. */
12400
12401 static int
12402 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12403 {
12404 internal_error_pure_virtual_called ();
12405 }
12406
12407 /* A "resources_needed" breakpoint_ops method that just internal
12408 errors. */
12409
12410 static int
12411 base_breakpoint_resources_needed (const struct bp_location *bl)
12412 {
12413 internal_error_pure_virtual_called ();
12414 }
12415
12416 static enum print_stop_action
12417 base_breakpoint_print_it (bpstat bs)
12418 {
12419 internal_error_pure_virtual_called ();
12420 }
12421
12422 static void
12423 base_breakpoint_print_one_detail (const struct breakpoint *self,
12424 struct ui_out *uiout)
12425 {
12426 /* nothing */
12427 }
12428
12429 static void
12430 base_breakpoint_print_mention (struct breakpoint *b)
12431 {
12432 internal_error_pure_virtual_called ();
12433 }
12434
12435 static void
12436 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12437 {
12438 internal_error_pure_virtual_called ();
12439 }
12440
12441 static void
12442 base_breakpoint_create_sals_from_location
12443 (const struct event_location *location,
12444 struct linespec_result *canonical,
12445 enum bptype type_wanted)
12446 {
12447 internal_error_pure_virtual_called ();
12448 }
12449
12450 static void
12451 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12452 struct linespec_result *c,
12453 gdb::unique_xmalloc_ptr<char> cond_string,
12454 gdb::unique_xmalloc_ptr<char> extra_string,
12455 enum bptype type_wanted,
12456 enum bpdisp disposition,
12457 int thread,
12458 int task, int ignore_count,
12459 const struct breakpoint_ops *o,
12460 int from_tty, int enabled,
12461 int internal, unsigned flags)
12462 {
12463 internal_error_pure_virtual_called ();
12464 }
12465
12466 static std::vector<symtab_and_line>
12467 base_breakpoint_decode_location (struct breakpoint *b,
12468 const struct event_location *location,
12469 struct program_space *search_pspace)
12470 {
12471 internal_error_pure_virtual_called ();
12472 }
12473
12474 /* The default 'explains_signal' method. */
12475
12476 static int
12477 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12478 {
12479 return 1;
12480 }
12481
12482 /* The default "after_condition_true" method. */
12483
12484 static void
12485 base_breakpoint_after_condition_true (struct bpstats *bs)
12486 {
12487 /* Nothing to do. */
12488 }
12489
12490 struct breakpoint_ops base_breakpoint_ops =
12491 {
12492 base_breakpoint_allocate_location,
12493 base_breakpoint_re_set,
12494 base_breakpoint_insert_location,
12495 base_breakpoint_remove_location,
12496 base_breakpoint_breakpoint_hit,
12497 base_breakpoint_check_status,
12498 base_breakpoint_resources_needed,
12499 base_breakpoint_works_in_software_mode,
12500 base_breakpoint_print_it,
12501 NULL,
12502 base_breakpoint_print_one_detail,
12503 base_breakpoint_print_mention,
12504 base_breakpoint_print_recreate,
12505 base_breakpoint_create_sals_from_location,
12506 base_breakpoint_create_breakpoints_sal,
12507 base_breakpoint_decode_location,
12508 base_breakpoint_explains_signal,
12509 base_breakpoint_after_condition_true,
12510 };
12511
12512 /* Default breakpoint_ops methods. */
12513
12514 static void
12515 bkpt_re_set (struct breakpoint *b)
12516 {
12517 /* FIXME: is this still reachable? */
12518 if (breakpoint_event_location_empty_p (b))
12519 {
12520 /* Anything without a location can't be re-set. */
12521 delete_breakpoint (b);
12522 return;
12523 }
12524
12525 breakpoint_re_set_default (b);
12526 }
12527
12528 static int
12529 bkpt_insert_location (struct bp_location *bl)
12530 {
12531 CORE_ADDR addr = bl->target_info.reqstd_address;
12532
12533 bl->target_info.kind = breakpoint_kind (bl, &addr);
12534 bl->target_info.placed_address = addr;
12535
12536 if (bl->loc_type == bp_loc_hardware_breakpoint)
12537 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12538 else
12539 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12540 }
12541
12542 static int
12543 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12544 {
12545 if (bl->loc_type == bp_loc_hardware_breakpoint)
12546 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12547 else
12548 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12549 }
12550
12551 static int
12552 bkpt_breakpoint_hit (const struct bp_location *bl,
12553 const address_space *aspace, CORE_ADDR bp_addr,
12554 const struct target_waitstatus *ws)
12555 {
12556 if (ws->kind != TARGET_WAITKIND_STOPPED
12557 || ws->value.sig != GDB_SIGNAL_TRAP)
12558 return 0;
12559
12560 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12561 aspace, bp_addr))
12562 return 0;
12563
12564 if (overlay_debugging /* unmapped overlay section */
12565 && section_is_overlay (bl->section)
12566 && !section_is_mapped (bl->section))
12567 return 0;
12568
12569 return 1;
12570 }
12571
12572 static int
12573 dprintf_breakpoint_hit (const struct bp_location *bl,
12574 const address_space *aspace, CORE_ADDR bp_addr,
12575 const struct target_waitstatus *ws)
12576 {
12577 if (dprintf_style == dprintf_style_agent
12578 && target_can_run_breakpoint_commands ())
12579 {
12580 /* An agent-style dprintf never causes a stop. If we see a trap
12581 for this address it must be for a breakpoint that happens to
12582 be set at the same address. */
12583 return 0;
12584 }
12585
12586 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12587 }
12588
12589 static int
12590 bkpt_resources_needed (const struct bp_location *bl)
12591 {
12592 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12593
12594 return 1;
12595 }
12596
12597 static enum print_stop_action
12598 bkpt_print_it (bpstat bs)
12599 {
12600 struct breakpoint *b;
12601 const struct bp_location *bl;
12602 int bp_temp;
12603 struct ui_out *uiout = current_uiout;
12604
12605 gdb_assert (bs->bp_location_at != NULL);
12606
12607 bl = bs->bp_location_at;
12608 b = bs->breakpoint_at;
12609
12610 bp_temp = b->disposition == disp_del;
12611 if (bl->address != bl->requested_address)
12612 breakpoint_adjustment_warning (bl->requested_address,
12613 bl->address,
12614 b->number, 1);
12615 annotate_breakpoint (b->number);
12616 maybe_print_thread_hit_breakpoint (uiout);
12617
12618 if (bp_temp)
12619 uiout->text ("Temporary breakpoint ");
12620 else
12621 uiout->text ("Breakpoint ");
12622 if (uiout->is_mi_like_p ())
12623 {
12624 uiout->field_string ("reason",
12625 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12626 uiout->field_string ("disp", bpdisp_text (b->disposition));
12627 }
12628 uiout->field_int ("bkptno", b->number);
12629 uiout->text (", ");
12630
12631 return PRINT_SRC_AND_LOC;
12632 }
12633
12634 static void
12635 bkpt_print_mention (struct breakpoint *b)
12636 {
12637 if (current_uiout->is_mi_like_p ())
12638 return;
12639
12640 switch (b->type)
12641 {
12642 case bp_breakpoint:
12643 case bp_gnu_ifunc_resolver:
12644 if (b->disposition == disp_del)
12645 printf_filtered (_("Temporary breakpoint"));
12646 else
12647 printf_filtered (_("Breakpoint"));
12648 printf_filtered (_(" %d"), b->number);
12649 if (b->type == bp_gnu_ifunc_resolver)
12650 printf_filtered (_(" at gnu-indirect-function resolver"));
12651 break;
12652 case bp_hardware_breakpoint:
12653 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12654 break;
12655 case bp_dprintf:
12656 printf_filtered (_("Dprintf %d"), b->number);
12657 break;
12658 }
12659
12660 say_where (b);
12661 }
12662
12663 static void
12664 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12665 {
12666 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12667 fprintf_unfiltered (fp, "tbreak");
12668 else if (tp->type == bp_breakpoint)
12669 fprintf_unfiltered (fp, "break");
12670 else if (tp->type == bp_hardware_breakpoint
12671 && tp->disposition == disp_del)
12672 fprintf_unfiltered (fp, "thbreak");
12673 else if (tp->type == bp_hardware_breakpoint)
12674 fprintf_unfiltered (fp, "hbreak");
12675 else
12676 internal_error (__FILE__, __LINE__,
12677 _("unhandled breakpoint type %d"), (int) tp->type);
12678
12679 fprintf_unfiltered (fp, " %s",
12680 event_location_to_string (tp->location.get ()));
12681
12682 /* Print out extra_string if this breakpoint is pending. It might
12683 contain, for example, conditions that were set by the user. */
12684 if (tp->loc == NULL && tp->extra_string != NULL)
12685 fprintf_unfiltered (fp, " %s", tp->extra_string);
12686
12687 print_recreate_thread (tp, fp);
12688 }
12689
12690 static void
12691 bkpt_create_sals_from_location (const struct event_location *location,
12692 struct linespec_result *canonical,
12693 enum bptype type_wanted)
12694 {
12695 create_sals_from_location_default (location, canonical, type_wanted);
12696 }
12697
12698 static void
12699 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12700 struct linespec_result *canonical,
12701 gdb::unique_xmalloc_ptr<char> cond_string,
12702 gdb::unique_xmalloc_ptr<char> extra_string,
12703 enum bptype type_wanted,
12704 enum bpdisp disposition,
12705 int thread,
12706 int task, int ignore_count,
12707 const struct breakpoint_ops *ops,
12708 int from_tty, int enabled,
12709 int internal, unsigned flags)
12710 {
12711 create_breakpoints_sal_default (gdbarch, canonical,
12712 std::move (cond_string),
12713 std::move (extra_string),
12714 type_wanted,
12715 disposition, thread, task,
12716 ignore_count, ops, from_tty,
12717 enabled, internal, flags);
12718 }
12719
12720 static std::vector<symtab_and_line>
12721 bkpt_decode_location (struct breakpoint *b,
12722 const struct event_location *location,
12723 struct program_space *search_pspace)
12724 {
12725 return decode_location_default (b, location, search_pspace);
12726 }
12727
12728 /* Virtual table for internal breakpoints. */
12729
12730 static void
12731 internal_bkpt_re_set (struct breakpoint *b)
12732 {
12733 switch (b->type)
12734 {
12735 /* Delete overlay event and longjmp master breakpoints; they
12736 will be reset later by breakpoint_re_set. */
12737 case bp_overlay_event:
12738 case bp_longjmp_master:
12739 case bp_std_terminate_master:
12740 case bp_exception_master:
12741 delete_breakpoint (b);
12742 break;
12743
12744 /* This breakpoint is special, it's set up when the inferior
12745 starts and we really don't want to touch it. */
12746 case bp_shlib_event:
12747
12748 /* Like bp_shlib_event, this breakpoint type is special. Once
12749 it is set up, we do not want to touch it. */
12750 case bp_thread_event:
12751 break;
12752 }
12753 }
12754
12755 static void
12756 internal_bkpt_check_status (bpstat bs)
12757 {
12758 if (bs->breakpoint_at->type == bp_shlib_event)
12759 {
12760 /* If requested, stop when the dynamic linker notifies GDB of
12761 events. This allows the user to get control and place
12762 breakpoints in initializer routines for dynamically loaded
12763 objects (among other things). */
12764 bs->stop = stop_on_solib_events;
12765 bs->print = stop_on_solib_events;
12766 }
12767 else
12768 bs->stop = 0;
12769 }
12770
12771 static enum print_stop_action
12772 internal_bkpt_print_it (bpstat bs)
12773 {
12774 struct breakpoint *b;
12775
12776 b = bs->breakpoint_at;
12777
12778 switch (b->type)
12779 {
12780 case bp_shlib_event:
12781 /* Did we stop because the user set the stop_on_solib_events
12782 variable? (If so, we report this as a generic, "Stopped due
12783 to shlib event" message.) */
12784 print_solib_event (0);
12785 break;
12786
12787 case bp_thread_event:
12788 /* Not sure how we will get here.
12789 GDB should not stop for these breakpoints. */
12790 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12791 break;
12792
12793 case bp_overlay_event:
12794 /* By analogy with the thread event, GDB should not stop for these. */
12795 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12796 break;
12797
12798 case bp_longjmp_master:
12799 /* These should never be enabled. */
12800 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12801 break;
12802
12803 case bp_std_terminate_master:
12804 /* These should never be enabled. */
12805 printf_filtered (_("std::terminate Master Breakpoint: "
12806 "gdb should not stop!\n"));
12807 break;
12808
12809 case bp_exception_master:
12810 /* These should never be enabled. */
12811 printf_filtered (_("Exception Master Breakpoint: "
12812 "gdb should not stop!\n"));
12813 break;
12814 }
12815
12816 return PRINT_NOTHING;
12817 }
12818
12819 static void
12820 internal_bkpt_print_mention (struct breakpoint *b)
12821 {
12822 /* Nothing to mention. These breakpoints are internal. */
12823 }
12824
12825 /* Virtual table for momentary breakpoints */
12826
12827 static void
12828 momentary_bkpt_re_set (struct breakpoint *b)
12829 {
12830 /* Keep temporary breakpoints, which can be encountered when we step
12831 over a dlopen call and solib_add is resetting the breakpoints.
12832 Otherwise these should have been blown away via the cleanup chain
12833 or by breakpoint_init_inferior when we rerun the executable. */
12834 }
12835
12836 static void
12837 momentary_bkpt_check_status (bpstat bs)
12838 {
12839 /* Nothing. The point of these breakpoints is causing a stop. */
12840 }
12841
12842 static enum print_stop_action
12843 momentary_bkpt_print_it (bpstat bs)
12844 {
12845 return PRINT_UNKNOWN;
12846 }
12847
12848 static void
12849 momentary_bkpt_print_mention (struct breakpoint *b)
12850 {
12851 /* Nothing to mention. These breakpoints are internal. */
12852 }
12853
12854 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12855
12856 It gets cleared already on the removal of the first one of such placed
12857 breakpoints. This is OK as they get all removed altogether. */
12858
12859 longjmp_breakpoint::~longjmp_breakpoint ()
12860 {
12861 thread_info *tp = find_thread_global_id (this->thread);
12862
12863 if (tp != NULL)
12864 tp->initiating_frame = null_frame_id;
12865 }
12866
12867 /* Specific methods for probe breakpoints. */
12868
12869 static int
12870 bkpt_probe_insert_location (struct bp_location *bl)
12871 {
12872 int v = bkpt_insert_location (bl);
12873
12874 if (v == 0)
12875 {
12876 /* The insertion was successful, now let's set the probe's semaphore
12877 if needed. */
12878 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12879 }
12880
12881 return v;
12882 }
12883
12884 static int
12885 bkpt_probe_remove_location (struct bp_location *bl,
12886 enum remove_bp_reason reason)
12887 {
12888 /* Let's clear the semaphore before removing the location. */
12889 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12890
12891 return bkpt_remove_location (bl, reason);
12892 }
12893
12894 static void
12895 bkpt_probe_create_sals_from_location (const struct event_location *location,
12896 struct linespec_result *canonical,
12897 enum bptype type_wanted)
12898 {
12899 struct linespec_sals lsal;
12900
12901 lsal.sals = parse_probes (location, NULL, canonical);
12902 lsal.canonical
12903 = xstrdup (event_location_to_string (canonical->location.get ()));
12904 canonical->lsals.push_back (std::move (lsal));
12905 }
12906
12907 static std::vector<symtab_and_line>
12908 bkpt_probe_decode_location (struct breakpoint *b,
12909 const struct event_location *location,
12910 struct program_space *search_pspace)
12911 {
12912 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12913 if (sals.empty ())
12914 error (_("probe not found"));
12915 return sals;
12916 }
12917
12918 /* The breakpoint_ops structure to be used in tracepoints. */
12919
12920 static void
12921 tracepoint_re_set (struct breakpoint *b)
12922 {
12923 breakpoint_re_set_default (b);
12924 }
12925
12926 static int
12927 tracepoint_breakpoint_hit (const struct bp_location *bl,
12928 const address_space *aspace, CORE_ADDR bp_addr,
12929 const struct target_waitstatus *ws)
12930 {
12931 /* By definition, the inferior does not report stops at
12932 tracepoints. */
12933 return 0;
12934 }
12935
12936 static void
12937 tracepoint_print_one_detail (const struct breakpoint *self,
12938 struct ui_out *uiout)
12939 {
12940 struct tracepoint *tp = (struct tracepoint *) self;
12941 if (tp->static_trace_marker_id)
12942 {
12943 gdb_assert (self->type == bp_static_tracepoint);
12944
12945 uiout->text ("\tmarker id is ");
12946 uiout->field_string ("static-tracepoint-marker-string-id",
12947 tp->static_trace_marker_id);
12948 uiout->text ("\n");
12949 }
12950 }
12951
12952 static void
12953 tracepoint_print_mention (struct breakpoint *b)
12954 {
12955 if (current_uiout->is_mi_like_p ())
12956 return;
12957
12958 switch (b->type)
12959 {
12960 case bp_tracepoint:
12961 printf_filtered (_("Tracepoint"));
12962 printf_filtered (_(" %d"), b->number);
12963 break;
12964 case bp_fast_tracepoint:
12965 printf_filtered (_("Fast tracepoint"));
12966 printf_filtered (_(" %d"), b->number);
12967 break;
12968 case bp_static_tracepoint:
12969 printf_filtered (_("Static tracepoint"));
12970 printf_filtered (_(" %d"), b->number);
12971 break;
12972 default:
12973 internal_error (__FILE__, __LINE__,
12974 _("unhandled tracepoint type %d"), (int) b->type);
12975 }
12976
12977 say_where (b);
12978 }
12979
12980 static void
12981 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12982 {
12983 struct tracepoint *tp = (struct tracepoint *) self;
12984
12985 if (self->type == bp_fast_tracepoint)
12986 fprintf_unfiltered (fp, "ftrace");
12987 else if (self->type == bp_static_tracepoint)
12988 fprintf_unfiltered (fp, "strace");
12989 else if (self->type == bp_tracepoint)
12990 fprintf_unfiltered (fp, "trace");
12991 else
12992 internal_error (__FILE__, __LINE__,
12993 _("unhandled tracepoint type %d"), (int) self->type);
12994
12995 fprintf_unfiltered (fp, " %s",
12996 event_location_to_string (self->location.get ()));
12997 print_recreate_thread (self, fp);
12998
12999 if (tp->pass_count)
13000 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13001 }
13002
13003 static void
13004 tracepoint_create_sals_from_location (const struct event_location *location,
13005 struct linespec_result *canonical,
13006 enum bptype type_wanted)
13007 {
13008 create_sals_from_location_default (location, canonical, type_wanted);
13009 }
13010
13011 static void
13012 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13013 struct linespec_result *canonical,
13014 gdb::unique_xmalloc_ptr<char> cond_string,
13015 gdb::unique_xmalloc_ptr<char> extra_string,
13016 enum bptype type_wanted,
13017 enum bpdisp disposition,
13018 int thread,
13019 int task, int ignore_count,
13020 const struct breakpoint_ops *ops,
13021 int from_tty, int enabled,
13022 int internal, unsigned flags)
13023 {
13024 create_breakpoints_sal_default (gdbarch, canonical,
13025 std::move (cond_string),
13026 std::move (extra_string),
13027 type_wanted,
13028 disposition, thread, task,
13029 ignore_count, ops, from_tty,
13030 enabled, internal, flags);
13031 }
13032
13033 static std::vector<symtab_and_line>
13034 tracepoint_decode_location (struct breakpoint *b,
13035 const struct event_location *location,
13036 struct program_space *search_pspace)
13037 {
13038 return decode_location_default (b, location, search_pspace);
13039 }
13040
13041 struct breakpoint_ops tracepoint_breakpoint_ops;
13042
13043 /* The breakpoint_ops structure to be use on tracepoints placed in a
13044 static probe. */
13045
13046 static void
13047 tracepoint_probe_create_sals_from_location
13048 (const struct event_location *location,
13049 struct linespec_result *canonical,
13050 enum bptype type_wanted)
13051 {
13052 /* We use the same method for breakpoint on probes. */
13053 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13054 }
13055
13056 static std::vector<symtab_and_line>
13057 tracepoint_probe_decode_location (struct breakpoint *b,
13058 const struct event_location *location,
13059 struct program_space *search_pspace)
13060 {
13061 /* We use the same method for breakpoint on probes. */
13062 return bkpt_probe_decode_location (b, location, search_pspace);
13063 }
13064
13065 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13066
13067 /* Dprintf breakpoint_ops methods. */
13068
13069 static void
13070 dprintf_re_set (struct breakpoint *b)
13071 {
13072 breakpoint_re_set_default (b);
13073
13074 /* extra_string should never be non-NULL for dprintf. */
13075 gdb_assert (b->extra_string != NULL);
13076
13077 /* 1 - connect to target 1, that can run breakpoint commands.
13078 2 - create a dprintf, which resolves fine.
13079 3 - disconnect from target 1
13080 4 - connect to target 2, that can NOT run breakpoint commands.
13081
13082 After steps #3/#4, you'll want the dprintf command list to
13083 be updated, because target 1 and 2 may well return different
13084 answers for target_can_run_breakpoint_commands().
13085 Given absence of finer grained resetting, we get to do
13086 it all the time. */
13087 if (b->extra_string != NULL)
13088 update_dprintf_command_list (b);
13089 }
13090
13091 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13092
13093 static void
13094 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13095 {
13096 fprintf_unfiltered (fp, "dprintf %s,%s",
13097 event_location_to_string (tp->location.get ()),
13098 tp->extra_string);
13099 print_recreate_thread (tp, fp);
13100 }
13101
13102 /* Implement the "after_condition_true" breakpoint_ops method for
13103 dprintf.
13104
13105 dprintf's are implemented with regular commands in their command
13106 list, but we run the commands here instead of before presenting the
13107 stop to the user, as dprintf's don't actually cause a stop. This
13108 also makes it so that the commands of multiple dprintfs at the same
13109 address are all handled. */
13110
13111 static void
13112 dprintf_after_condition_true (struct bpstats *bs)
13113 {
13114 struct bpstats tmp_bs;
13115 struct bpstats *tmp_bs_p = &tmp_bs;
13116
13117 /* dprintf's never cause a stop. This wasn't set in the
13118 check_status hook instead because that would make the dprintf's
13119 condition not be evaluated. */
13120 bs->stop = 0;
13121
13122 /* Run the command list here. Take ownership of it instead of
13123 copying. We never want these commands to run later in
13124 bpstat_do_actions, if a breakpoint that causes a stop happens to
13125 be set at same address as this dprintf, or even if running the
13126 commands here throws. */
13127 tmp_bs.commands = bs->commands;
13128 bs->commands = NULL;
13129
13130 bpstat_do_actions_1 (&tmp_bs_p);
13131
13132 /* 'tmp_bs.commands' will usually be NULL by now, but
13133 bpstat_do_actions_1 may return early without processing the whole
13134 list. */
13135 }
13136
13137 /* The breakpoint_ops structure to be used on static tracepoints with
13138 markers (`-m'). */
13139
13140 static void
13141 strace_marker_create_sals_from_location (const struct event_location *location,
13142 struct linespec_result *canonical,
13143 enum bptype type_wanted)
13144 {
13145 struct linespec_sals lsal;
13146 const char *arg_start, *arg;
13147
13148 arg = arg_start = get_linespec_location (location)->spec_string;
13149 lsal.sals = decode_static_tracepoint_spec (&arg);
13150
13151 std::string str (arg_start, arg - arg_start);
13152 const char *ptr = str.c_str ();
13153 canonical->location
13154 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13155
13156 lsal.canonical
13157 = xstrdup (event_location_to_string (canonical->location.get ()));
13158 canonical->lsals.push_back (std::move (lsal));
13159 }
13160
13161 static void
13162 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13163 struct linespec_result *canonical,
13164 gdb::unique_xmalloc_ptr<char> cond_string,
13165 gdb::unique_xmalloc_ptr<char> extra_string,
13166 enum bptype type_wanted,
13167 enum bpdisp disposition,
13168 int thread,
13169 int task, int ignore_count,
13170 const struct breakpoint_ops *ops,
13171 int from_tty, int enabled,
13172 int internal, unsigned flags)
13173 {
13174 const linespec_sals &lsal = canonical->lsals[0];
13175
13176 /* If the user is creating a static tracepoint by marker id
13177 (strace -m MARKER_ID), then store the sals index, so that
13178 breakpoint_re_set can try to match up which of the newly
13179 found markers corresponds to this one, and, don't try to
13180 expand multiple locations for each sal, given than SALS
13181 already should contain all sals for MARKER_ID. */
13182
13183 for (size_t i = 0; i < lsal.sals.size (); i++)
13184 {
13185 event_location_up location
13186 = copy_event_location (canonical->location.get ());
13187
13188 std::unique_ptr<tracepoint> tp (new tracepoint ());
13189 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13190 std::move (location), NULL,
13191 std::move (cond_string),
13192 std::move (extra_string),
13193 type_wanted, disposition,
13194 thread, task, ignore_count, ops,
13195 from_tty, enabled, internal, flags,
13196 canonical->special_display);
13197 /* Given that its possible to have multiple markers with
13198 the same string id, if the user is creating a static
13199 tracepoint by marker id ("strace -m MARKER_ID"), then
13200 store the sals index, so that breakpoint_re_set can
13201 try to match up which of the newly found markers
13202 corresponds to this one */
13203 tp->static_trace_marker_id_idx = i;
13204
13205 install_breakpoint (internal, std::move (tp), 0);
13206 }
13207 }
13208
13209 static std::vector<symtab_and_line>
13210 strace_marker_decode_location (struct breakpoint *b,
13211 const struct event_location *location,
13212 struct program_space *search_pspace)
13213 {
13214 struct tracepoint *tp = (struct tracepoint *) b;
13215 const char *s = get_linespec_location (location)->spec_string;
13216
13217 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13218 if (sals.size () > tp->static_trace_marker_id_idx)
13219 {
13220 sals[0] = sals[tp->static_trace_marker_id_idx];
13221 sals.resize (1);
13222 return sals;
13223 }
13224 else
13225 error (_("marker %s not found"), tp->static_trace_marker_id);
13226 }
13227
13228 static struct breakpoint_ops strace_marker_breakpoint_ops;
13229
13230 static int
13231 strace_marker_p (struct breakpoint *b)
13232 {
13233 return b->ops == &strace_marker_breakpoint_ops;
13234 }
13235
13236 /* Delete a breakpoint and clean up all traces of it in the data
13237 structures. */
13238
13239 void
13240 delete_breakpoint (struct breakpoint *bpt)
13241 {
13242 struct breakpoint *b;
13243
13244 gdb_assert (bpt != NULL);
13245
13246 /* Has this bp already been deleted? This can happen because
13247 multiple lists can hold pointers to bp's. bpstat lists are
13248 especial culprits.
13249
13250 One example of this happening is a watchpoint's scope bp. When
13251 the scope bp triggers, we notice that the watchpoint is out of
13252 scope, and delete it. We also delete its scope bp. But the
13253 scope bp is marked "auto-deleting", and is already on a bpstat.
13254 That bpstat is then checked for auto-deleting bp's, which are
13255 deleted.
13256
13257 A real solution to this problem might involve reference counts in
13258 bp's, and/or giving them pointers back to their referencing
13259 bpstat's, and teaching delete_breakpoint to only free a bp's
13260 storage when no more references were extent. A cheaper bandaid
13261 was chosen. */
13262 if (bpt->type == bp_none)
13263 return;
13264
13265 /* At least avoid this stale reference until the reference counting
13266 of breakpoints gets resolved. */
13267 if (bpt->related_breakpoint != bpt)
13268 {
13269 struct breakpoint *related;
13270 struct watchpoint *w;
13271
13272 if (bpt->type == bp_watchpoint_scope)
13273 w = (struct watchpoint *) bpt->related_breakpoint;
13274 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13275 w = (struct watchpoint *) bpt;
13276 else
13277 w = NULL;
13278 if (w != NULL)
13279 watchpoint_del_at_next_stop (w);
13280
13281 /* Unlink bpt from the bpt->related_breakpoint ring. */
13282 for (related = bpt; related->related_breakpoint != bpt;
13283 related = related->related_breakpoint);
13284 related->related_breakpoint = bpt->related_breakpoint;
13285 bpt->related_breakpoint = bpt;
13286 }
13287
13288 /* watch_command_1 creates a watchpoint but only sets its number if
13289 update_watchpoint succeeds in creating its bp_locations. If there's
13290 a problem in that process, we'll be asked to delete the half-created
13291 watchpoint. In that case, don't announce the deletion. */
13292 if (bpt->number)
13293 observer_notify_breakpoint_deleted (bpt);
13294
13295 if (breakpoint_chain == bpt)
13296 breakpoint_chain = bpt->next;
13297
13298 ALL_BREAKPOINTS (b)
13299 if (b->next == bpt)
13300 {
13301 b->next = bpt->next;
13302 break;
13303 }
13304
13305 /* Be sure no bpstat's are pointing at the breakpoint after it's
13306 been freed. */
13307 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13308 in all threads for now. Note that we cannot just remove bpstats
13309 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13310 commands are associated with the bpstat; if we remove it here,
13311 then the later call to bpstat_do_actions (&stop_bpstat); in
13312 event-top.c won't do anything, and temporary breakpoints with
13313 commands won't work. */
13314
13315 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13316
13317 /* Now that breakpoint is removed from breakpoint list, update the
13318 global location list. This will remove locations that used to
13319 belong to this breakpoint. Do this before freeing the breakpoint
13320 itself, since remove_breakpoint looks at location's owner. It
13321 might be better design to have location completely
13322 self-contained, but it's not the case now. */
13323 update_global_location_list (UGLL_DONT_INSERT);
13324
13325 /* On the chance that someone will soon try again to delete this
13326 same bp, we mark it as deleted before freeing its storage. */
13327 bpt->type = bp_none;
13328 delete bpt;
13329 }
13330
13331 /* Iterator function to call a user-provided callback function once
13332 for each of B and its related breakpoints. */
13333
13334 static void
13335 iterate_over_related_breakpoints (struct breakpoint *b,
13336 gdb::function_view<void (breakpoint *)> function)
13337 {
13338 struct breakpoint *related;
13339
13340 related = b;
13341 do
13342 {
13343 struct breakpoint *next;
13344
13345 /* FUNCTION may delete RELATED. */
13346 next = related->related_breakpoint;
13347
13348 if (next == related)
13349 {
13350 /* RELATED is the last ring entry. */
13351 function (related);
13352
13353 /* FUNCTION may have deleted it, so we'd never reach back to
13354 B. There's nothing left to do anyway, so just break
13355 out. */
13356 break;
13357 }
13358 else
13359 function (related);
13360
13361 related = next;
13362 }
13363 while (related != b);
13364 }
13365
13366 static void
13367 delete_command (const char *arg, int from_tty)
13368 {
13369 struct breakpoint *b, *b_tmp;
13370
13371 dont_repeat ();
13372
13373 if (arg == 0)
13374 {
13375 int breaks_to_delete = 0;
13376
13377 /* Delete all breakpoints if no argument. Do not delete
13378 internal breakpoints, these have to be deleted with an
13379 explicit breakpoint number argument. */
13380 ALL_BREAKPOINTS (b)
13381 if (user_breakpoint_p (b))
13382 {
13383 breaks_to_delete = 1;
13384 break;
13385 }
13386
13387 /* Ask user only if there are some breakpoints to delete. */
13388 if (!from_tty
13389 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13390 {
13391 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13392 if (user_breakpoint_p (b))
13393 delete_breakpoint (b);
13394 }
13395 }
13396 else
13397 map_breakpoint_numbers
13398 (arg, [&] (breakpoint *b)
13399 {
13400 iterate_over_related_breakpoints (b, delete_breakpoint);
13401 });
13402 }
13403
13404 /* Return true if all locations of B bound to PSPACE are pending. If
13405 PSPACE is NULL, all locations of all program spaces are
13406 considered. */
13407
13408 static int
13409 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13410 {
13411 struct bp_location *loc;
13412
13413 for (loc = b->loc; loc != NULL; loc = loc->next)
13414 if ((pspace == NULL
13415 || loc->pspace == pspace)
13416 && !loc->shlib_disabled
13417 && !loc->pspace->executing_startup)
13418 return 0;
13419 return 1;
13420 }
13421
13422 /* Subroutine of update_breakpoint_locations to simplify it.
13423 Return non-zero if multiple fns in list LOC have the same name.
13424 Null names are ignored. */
13425
13426 static int
13427 ambiguous_names_p (struct bp_location *loc)
13428 {
13429 struct bp_location *l;
13430 htab_t htab = htab_create_alloc (13, htab_hash_string,
13431 (int (*) (const void *,
13432 const void *)) streq,
13433 NULL, xcalloc, xfree);
13434
13435 for (l = loc; l != NULL; l = l->next)
13436 {
13437 const char **slot;
13438 const char *name = l->function_name;
13439
13440 /* Allow for some names to be NULL, ignore them. */
13441 if (name == NULL)
13442 continue;
13443
13444 slot = (const char **) htab_find_slot (htab, (const void *) name,
13445 INSERT);
13446 /* NOTE: We can assume slot != NULL here because xcalloc never
13447 returns NULL. */
13448 if (*slot != NULL)
13449 {
13450 htab_delete (htab);
13451 return 1;
13452 }
13453 *slot = name;
13454 }
13455
13456 htab_delete (htab);
13457 return 0;
13458 }
13459
13460 /* When symbols change, it probably means the sources changed as well,
13461 and it might mean the static tracepoint markers are no longer at
13462 the same address or line numbers they used to be at last we
13463 checked. Losing your static tracepoints whenever you rebuild is
13464 undesirable. This function tries to resync/rematch gdb static
13465 tracepoints with the markers on the target, for static tracepoints
13466 that have not been set by marker id. Static tracepoint that have
13467 been set by marker id are reset by marker id in breakpoint_re_set.
13468 The heuristic is:
13469
13470 1) For a tracepoint set at a specific address, look for a marker at
13471 the old PC. If one is found there, assume to be the same marker.
13472 If the name / string id of the marker found is different from the
13473 previous known name, assume that means the user renamed the marker
13474 in the sources, and output a warning.
13475
13476 2) For a tracepoint set at a given line number, look for a marker
13477 at the new address of the old line number. If one is found there,
13478 assume to be the same marker. If the name / string id of the
13479 marker found is different from the previous known name, assume that
13480 means the user renamed the marker in the sources, and output a
13481 warning.
13482
13483 3) If a marker is no longer found at the same address or line, it
13484 may mean the marker no longer exists. But it may also just mean
13485 the code changed a bit. Maybe the user added a few lines of code
13486 that made the marker move up or down (in line number terms). Ask
13487 the target for info about the marker with the string id as we knew
13488 it. If found, update line number and address in the matching
13489 static tracepoint. This will get confused if there's more than one
13490 marker with the same ID (possible in UST, although unadvised
13491 precisely because it confuses tools). */
13492
13493 static struct symtab_and_line
13494 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13495 {
13496 struct tracepoint *tp = (struct tracepoint *) b;
13497 struct static_tracepoint_marker marker;
13498 CORE_ADDR pc;
13499
13500 pc = sal.pc;
13501 if (sal.line)
13502 find_line_pc (sal.symtab, sal.line, &pc);
13503
13504 if (target_static_tracepoint_marker_at (pc, &marker))
13505 {
13506 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13507 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13508 b->number,
13509 tp->static_trace_marker_id, marker.str_id);
13510
13511 xfree (tp->static_trace_marker_id);
13512 tp->static_trace_marker_id = xstrdup (marker.str_id);
13513 release_static_tracepoint_marker (&marker);
13514
13515 return sal;
13516 }
13517
13518 /* Old marker wasn't found on target at lineno. Try looking it up
13519 by string ID. */
13520 if (!sal.explicit_pc
13521 && sal.line != 0
13522 && sal.symtab != NULL
13523 && tp->static_trace_marker_id != NULL)
13524 {
13525 VEC(static_tracepoint_marker_p) *markers;
13526
13527 markers
13528 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13529
13530 if (!VEC_empty(static_tracepoint_marker_p, markers))
13531 {
13532 struct symbol *sym;
13533 struct static_tracepoint_marker *tpmarker;
13534 struct ui_out *uiout = current_uiout;
13535 struct explicit_location explicit_loc;
13536
13537 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13538
13539 xfree (tp->static_trace_marker_id);
13540 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13541
13542 warning (_("marker for static tracepoint %d (%s) not "
13543 "found at previous line number"),
13544 b->number, tp->static_trace_marker_id);
13545
13546 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13547 sym = find_pc_sect_function (tpmarker->address, NULL);
13548 uiout->text ("Now in ");
13549 if (sym)
13550 {
13551 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13552 uiout->text (" at ");
13553 }
13554 uiout->field_string ("file",
13555 symtab_to_filename_for_display (sal2.symtab));
13556 uiout->text (":");
13557
13558 if (uiout->is_mi_like_p ())
13559 {
13560 const char *fullname = symtab_to_fullname (sal2.symtab);
13561
13562 uiout->field_string ("fullname", fullname);
13563 }
13564
13565 uiout->field_int ("line", sal2.line);
13566 uiout->text ("\n");
13567
13568 b->loc->line_number = sal2.line;
13569 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13570
13571 b->location.reset (NULL);
13572 initialize_explicit_location (&explicit_loc);
13573 explicit_loc.source_filename
13574 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13575 explicit_loc.line_offset.offset = b->loc->line_number;
13576 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13577 b->location = new_explicit_location (&explicit_loc);
13578
13579 /* Might be nice to check if function changed, and warn if
13580 so. */
13581
13582 release_static_tracepoint_marker (tpmarker);
13583 }
13584 }
13585 return sal;
13586 }
13587
13588 /* Returns 1 iff locations A and B are sufficiently same that
13589 we don't need to report breakpoint as changed. */
13590
13591 static int
13592 locations_are_equal (struct bp_location *a, struct bp_location *b)
13593 {
13594 while (a && b)
13595 {
13596 if (a->address != b->address)
13597 return 0;
13598
13599 if (a->shlib_disabled != b->shlib_disabled)
13600 return 0;
13601
13602 if (a->enabled != b->enabled)
13603 return 0;
13604
13605 a = a->next;
13606 b = b->next;
13607 }
13608
13609 if ((a == NULL) != (b == NULL))
13610 return 0;
13611
13612 return 1;
13613 }
13614
13615 /* Split all locations of B that are bound to PSPACE out of B's
13616 location list to a separate list and return that list's head. If
13617 PSPACE is NULL, hoist out all locations of B. */
13618
13619 static struct bp_location *
13620 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13621 {
13622 struct bp_location head;
13623 struct bp_location *i = b->loc;
13624 struct bp_location **i_link = &b->loc;
13625 struct bp_location *hoisted = &head;
13626
13627 if (pspace == NULL)
13628 {
13629 i = b->loc;
13630 b->loc = NULL;
13631 return i;
13632 }
13633
13634 head.next = NULL;
13635
13636 while (i != NULL)
13637 {
13638 if (i->pspace == pspace)
13639 {
13640 *i_link = i->next;
13641 i->next = NULL;
13642 hoisted->next = i;
13643 hoisted = i;
13644 }
13645 else
13646 i_link = &i->next;
13647 i = *i_link;
13648 }
13649
13650 return head.next;
13651 }
13652
13653 /* Create new breakpoint locations for B (a hardware or software
13654 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13655 zero, then B is a ranged breakpoint. Only recreates locations for
13656 FILTER_PSPACE. Locations of other program spaces are left
13657 untouched. */
13658
13659 void
13660 update_breakpoint_locations (struct breakpoint *b,
13661 struct program_space *filter_pspace,
13662 gdb::array_view<const symtab_and_line> sals,
13663 gdb::array_view<const symtab_and_line> sals_end)
13664 {
13665 struct bp_location *existing_locations;
13666
13667 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13668 {
13669 /* Ranged breakpoints have only one start location and one end
13670 location. */
13671 b->enable_state = bp_disabled;
13672 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13673 "multiple locations found\n"),
13674 b->number);
13675 return;
13676 }
13677
13678 /* If there's no new locations, and all existing locations are
13679 pending, don't do anything. This optimizes the common case where
13680 all locations are in the same shared library, that was unloaded.
13681 We'd like to retain the location, so that when the library is
13682 loaded again, we don't loose the enabled/disabled status of the
13683 individual locations. */
13684 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13685 return;
13686
13687 existing_locations = hoist_existing_locations (b, filter_pspace);
13688
13689 for (const auto &sal : sals)
13690 {
13691 struct bp_location *new_loc;
13692
13693 switch_to_program_space_and_thread (sal.pspace);
13694
13695 new_loc = add_location_to_breakpoint (b, &sal);
13696
13697 /* Reparse conditions, they might contain references to the
13698 old symtab. */
13699 if (b->cond_string != NULL)
13700 {
13701 const char *s;
13702
13703 s = b->cond_string;
13704 TRY
13705 {
13706 new_loc->cond = parse_exp_1 (&s, sal.pc,
13707 block_for_pc (sal.pc),
13708 0);
13709 }
13710 CATCH (e, RETURN_MASK_ERROR)
13711 {
13712 warning (_("failed to reevaluate condition "
13713 "for breakpoint %d: %s"),
13714 b->number, e.message);
13715 new_loc->enabled = 0;
13716 }
13717 END_CATCH
13718 }
13719
13720 if (!sals_end.empty ())
13721 {
13722 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13723
13724 new_loc->length = end - sals[0].pc + 1;
13725 }
13726 }
13727
13728 /* If possible, carry over 'disable' status from existing
13729 breakpoints. */
13730 {
13731 struct bp_location *e = existing_locations;
13732 /* If there are multiple breakpoints with the same function name,
13733 e.g. for inline functions, comparing function names won't work.
13734 Instead compare pc addresses; this is just a heuristic as things
13735 may have moved, but in practice it gives the correct answer
13736 often enough until a better solution is found. */
13737 int have_ambiguous_names = ambiguous_names_p (b->loc);
13738
13739 for (; e; e = e->next)
13740 {
13741 if (!e->enabled && e->function_name)
13742 {
13743 struct bp_location *l = b->loc;
13744 if (have_ambiguous_names)
13745 {
13746 for (; l; l = l->next)
13747 if (breakpoint_locations_match (e, l))
13748 {
13749 l->enabled = 0;
13750 break;
13751 }
13752 }
13753 else
13754 {
13755 for (; l; l = l->next)
13756 if (l->function_name
13757 && strcmp (e->function_name, l->function_name) == 0)
13758 {
13759 l->enabled = 0;
13760 break;
13761 }
13762 }
13763 }
13764 }
13765 }
13766
13767 if (!locations_are_equal (existing_locations, b->loc))
13768 observer_notify_breakpoint_modified (b);
13769 }
13770
13771 /* Find the SaL locations corresponding to the given LOCATION.
13772 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13773
13774 static std::vector<symtab_and_line>
13775 location_to_sals (struct breakpoint *b, struct event_location *location,
13776 struct program_space *search_pspace, int *found)
13777 {
13778 struct gdb_exception exception = exception_none;
13779
13780 gdb_assert (b->ops != NULL);
13781
13782 std::vector<symtab_and_line> sals;
13783
13784 TRY
13785 {
13786 sals = b->ops->decode_location (b, location, search_pspace);
13787 }
13788 CATCH (e, RETURN_MASK_ERROR)
13789 {
13790 int not_found_and_ok = 0;
13791
13792 exception = e;
13793
13794 /* For pending breakpoints, it's expected that parsing will
13795 fail until the right shared library is loaded. User has
13796 already told to create pending breakpoints and don't need
13797 extra messages. If breakpoint is in bp_shlib_disabled
13798 state, then user already saw the message about that
13799 breakpoint being disabled, and don't want to see more
13800 errors. */
13801 if (e.error == NOT_FOUND_ERROR
13802 && (b->condition_not_parsed
13803 || (b->loc != NULL
13804 && search_pspace != NULL
13805 && b->loc->pspace != search_pspace)
13806 || (b->loc && b->loc->shlib_disabled)
13807 || (b->loc && b->loc->pspace->executing_startup)
13808 || b->enable_state == bp_disabled))
13809 not_found_and_ok = 1;
13810
13811 if (!not_found_and_ok)
13812 {
13813 /* We surely don't want to warn about the same breakpoint
13814 10 times. One solution, implemented here, is disable
13815 the breakpoint on error. Another solution would be to
13816 have separate 'warning emitted' flag. Since this
13817 happens only when a binary has changed, I don't know
13818 which approach is better. */
13819 b->enable_state = bp_disabled;
13820 throw_exception (e);
13821 }
13822 }
13823 END_CATCH
13824
13825 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13826 {
13827 for (auto &sal : sals)
13828 resolve_sal_pc (&sal);
13829 if (b->condition_not_parsed && b->extra_string != NULL)
13830 {
13831 char *cond_string, *extra_string;
13832 int thread, task;
13833
13834 find_condition_and_thread (b->extra_string, sals[0].pc,
13835 &cond_string, &thread, &task,
13836 &extra_string);
13837 gdb_assert (b->cond_string == NULL);
13838 if (cond_string)
13839 b->cond_string = cond_string;
13840 b->thread = thread;
13841 b->task = task;
13842 if (extra_string)
13843 {
13844 xfree (b->extra_string);
13845 b->extra_string = extra_string;
13846 }
13847 b->condition_not_parsed = 0;
13848 }
13849
13850 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13851 sals[0] = update_static_tracepoint (b, sals[0]);
13852
13853 *found = 1;
13854 }
13855 else
13856 *found = 0;
13857
13858 return sals;
13859 }
13860
13861 /* The default re_set method, for typical hardware or software
13862 breakpoints. Reevaluate the breakpoint and recreate its
13863 locations. */
13864
13865 static void
13866 breakpoint_re_set_default (struct breakpoint *b)
13867 {
13868 struct program_space *filter_pspace = current_program_space;
13869 std::vector<symtab_and_line> expanded, expanded_end;
13870
13871 int found;
13872 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13873 filter_pspace, &found);
13874 if (found)
13875 expanded = std::move (sals);
13876
13877 if (b->location_range_end != NULL)
13878 {
13879 std::vector<symtab_and_line> sals_end
13880 = location_to_sals (b, b->location_range_end.get (),
13881 filter_pspace, &found);
13882 if (found)
13883 expanded_end = std::move (sals_end);
13884 }
13885
13886 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13887 }
13888
13889 /* Default method for creating SALs from an address string. It basically
13890 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13891
13892 static void
13893 create_sals_from_location_default (const struct event_location *location,
13894 struct linespec_result *canonical,
13895 enum bptype type_wanted)
13896 {
13897 parse_breakpoint_sals (location, canonical);
13898 }
13899
13900 /* Call create_breakpoints_sal for the given arguments. This is the default
13901 function for the `create_breakpoints_sal' method of
13902 breakpoint_ops. */
13903
13904 static void
13905 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13906 struct linespec_result *canonical,
13907 gdb::unique_xmalloc_ptr<char> cond_string,
13908 gdb::unique_xmalloc_ptr<char> extra_string,
13909 enum bptype type_wanted,
13910 enum bpdisp disposition,
13911 int thread,
13912 int task, int ignore_count,
13913 const struct breakpoint_ops *ops,
13914 int from_tty, int enabled,
13915 int internal, unsigned flags)
13916 {
13917 create_breakpoints_sal (gdbarch, canonical,
13918 std::move (cond_string),
13919 std::move (extra_string),
13920 type_wanted, disposition,
13921 thread, task, ignore_count, ops, from_tty,
13922 enabled, internal, flags);
13923 }
13924
13925 /* Decode the line represented by S by calling decode_line_full. This is the
13926 default function for the `decode_location' method of breakpoint_ops. */
13927
13928 static std::vector<symtab_and_line>
13929 decode_location_default (struct breakpoint *b,
13930 const struct event_location *location,
13931 struct program_space *search_pspace)
13932 {
13933 struct linespec_result canonical;
13934
13935 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13936 (struct symtab *) NULL, 0,
13937 &canonical, multiple_symbols_all,
13938 b->filter);
13939
13940 /* We should get 0 or 1 resulting SALs. */
13941 gdb_assert (canonical.lsals.size () < 2);
13942
13943 if (!canonical.lsals.empty ())
13944 {
13945 const linespec_sals &lsal = canonical.lsals[0];
13946 return std::move (lsal.sals);
13947 }
13948 return {};
13949 }
13950
13951 /* Reset a breakpoint. */
13952
13953 static void
13954 breakpoint_re_set_one (breakpoint *b)
13955 {
13956 input_radix = b->input_radix;
13957 set_language (b->language);
13958
13959 b->ops->re_set (b);
13960 }
13961
13962 /* Re-set breakpoint locations for the current program space.
13963 Locations bound to other program spaces are left untouched. */
13964
13965 void
13966 breakpoint_re_set (void)
13967 {
13968 struct breakpoint *b, *b_tmp;
13969
13970 {
13971 scoped_restore_current_language save_language;
13972 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13973 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13974
13975 /* Note: we must not try to insert locations until after all
13976 breakpoints have been re-set. Otherwise, e.g., when re-setting
13977 breakpoint 1, we'd insert the locations of breakpoint 2, which
13978 hadn't been re-set yet, and thus may have stale locations. */
13979
13980 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13981 {
13982 TRY
13983 {
13984 breakpoint_re_set_one (b);
13985 }
13986 CATCH (ex, RETURN_MASK_ALL)
13987 {
13988 exception_fprintf (gdb_stderr, ex,
13989 "Error in re-setting breakpoint %d: ",
13990 b->number);
13991 }
13992 END_CATCH
13993 }
13994
13995 jit_breakpoint_re_set ();
13996 }
13997
13998 create_overlay_event_breakpoint ();
13999 create_longjmp_master_breakpoint ();
14000 create_std_terminate_master_breakpoint ();
14001 create_exception_master_breakpoint ();
14002
14003 /* Now we can insert. */
14004 update_global_location_list (UGLL_MAY_INSERT);
14005 }
14006 \f
14007 /* Reset the thread number of this breakpoint:
14008
14009 - If the breakpoint is for all threads, leave it as-is.
14010 - Else, reset it to the current thread for inferior_ptid. */
14011 void
14012 breakpoint_re_set_thread (struct breakpoint *b)
14013 {
14014 if (b->thread != -1)
14015 {
14016 if (in_thread_list (inferior_ptid))
14017 b->thread = ptid_to_global_thread_id (inferior_ptid);
14018
14019 /* We're being called after following a fork. The new fork is
14020 selected as current, and unless this was a vfork will have a
14021 different program space from the original thread. Reset that
14022 as well. */
14023 b->loc->pspace = current_program_space;
14024 }
14025 }
14026
14027 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14028 If from_tty is nonzero, it prints a message to that effect,
14029 which ends with a period (no newline). */
14030
14031 void
14032 set_ignore_count (int bptnum, int count, int from_tty)
14033 {
14034 struct breakpoint *b;
14035
14036 if (count < 0)
14037 count = 0;
14038
14039 ALL_BREAKPOINTS (b)
14040 if (b->number == bptnum)
14041 {
14042 if (is_tracepoint (b))
14043 {
14044 if (from_tty && count != 0)
14045 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14046 bptnum);
14047 return;
14048 }
14049
14050 b->ignore_count = count;
14051 if (from_tty)
14052 {
14053 if (count == 0)
14054 printf_filtered (_("Will stop next time "
14055 "breakpoint %d is reached."),
14056 bptnum);
14057 else if (count == 1)
14058 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14059 bptnum);
14060 else
14061 printf_filtered (_("Will ignore next %d "
14062 "crossings of breakpoint %d."),
14063 count, bptnum);
14064 }
14065 observer_notify_breakpoint_modified (b);
14066 return;
14067 }
14068
14069 error (_("No breakpoint number %d."), bptnum);
14070 }
14071
14072 /* Command to set ignore-count of breakpoint N to COUNT. */
14073
14074 static void
14075 ignore_command (const char *args, int from_tty)
14076 {
14077 const char *p = args;
14078 int num;
14079
14080 if (p == 0)
14081 error_no_arg (_("a breakpoint number"));
14082
14083 num = get_number (&p);
14084 if (num == 0)
14085 error (_("bad breakpoint number: '%s'"), args);
14086 if (*p == 0)
14087 error (_("Second argument (specified ignore-count) is missing."));
14088
14089 set_ignore_count (num,
14090 longest_to_int (value_as_long (parse_and_eval (p))),
14091 from_tty);
14092 if (from_tty)
14093 printf_filtered ("\n");
14094 }
14095 \f
14096
14097 /* Call FUNCTION on each of the breakpoints with numbers in the range
14098 defined by BP_NUM_RANGE (an inclusive range). */
14099
14100 static void
14101 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14102 gdb::function_view<void (breakpoint *)> function)
14103 {
14104 if (bp_num_range.first == 0)
14105 {
14106 warning (_("bad breakpoint number at or near '%d'"),
14107 bp_num_range.first);
14108 }
14109 else
14110 {
14111 struct breakpoint *b, *tmp;
14112
14113 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14114 {
14115 bool match = false;
14116
14117 ALL_BREAKPOINTS_SAFE (b, tmp)
14118 if (b->number == i)
14119 {
14120 match = true;
14121 function (b);
14122 break;
14123 }
14124 if (!match)
14125 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14126 }
14127 }
14128 }
14129
14130 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14131 ARGS. */
14132
14133 static void
14134 map_breakpoint_numbers (const char *args,
14135 gdb::function_view<void (breakpoint *)> function)
14136 {
14137 if (args == NULL || *args == '\0')
14138 error_no_arg (_("one or more breakpoint numbers"));
14139
14140 number_or_range_parser parser (args);
14141
14142 while (!parser.finished ())
14143 {
14144 int num = parser.get_number ();
14145 map_breakpoint_number_range (std::make_pair (num, num), function);
14146 }
14147 }
14148
14149 /* Return the breakpoint location structure corresponding to the
14150 BP_NUM and LOC_NUM values. */
14151
14152 static struct bp_location *
14153 find_location_by_number (int bp_num, int loc_num)
14154 {
14155 struct breakpoint *b;
14156
14157 ALL_BREAKPOINTS (b)
14158 if (b->number == bp_num)
14159 {
14160 break;
14161 }
14162
14163 if (!b || b->number != bp_num)
14164 error (_("Bad breakpoint number '%d'"), bp_num);
14165
14166 if (loc_num == 0)
14167 error (_("Bad breakpoint location number '%d'"), loc_num);
14168
14169 int n = 0;
14170 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14171 if (++n == loc_num)
14172 return loc;
14173
14174 error (_("Bad breakpoint location number '%d'"), loc_num);
14175 }
14176
14177 /* Modes of operation for extract_bp_num. */
14178 enum class extract_bp_kind
14179 {
14180 /* Extracting a breakpoint number. */
14181 bp,
14182
14183 /* Extracting a location number. */
14184 loc,
14185 };
14186
14187 /* Extract a breakpoint or location number (as determined by KIND)
14188 from the string starting at START. TRAILER is a character which
14189 can be found after the number. If you don't want a trailer, use
14190 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14191 string. This always returns a positive integer. */
14192
14193 static int
14194 extract_bp_num (extract_bp_kind kind, const char *start,
14195 int trailer, const char **end_out = NULL)
14196 {
14197 const char *end = start;
14198 int num = get_number_trailer (&end, trailer);
14199 if (num < 0)
14200 error (kind == extract_bp_kind::bp
14201 ? _("Negative breakpoint number '%.*s'")
14202 : _("Negative breakpoint location number '%.*s'"),
14203 int (end - start), start);
14204 if (num == 0)
14205 error (kind == extract_bp_kind::bp
14206 ? _("Bad breakpoint number '%.*s'")
14207 : _("Bad breakpoint location number '%.*s'"),
14208 int (end - start), start);
14209
14210 if (end_out != NULL)
14211 *end_out = end;
14212 return num;
14213 }
14214
14215 /* Extract a breakpoint or location range (as determined by KIND) in
14216 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14217 representing the (inclusive) range. The returned pair's elements
14218 are always positive integers. */
14219
14220 static std::pair<int, int>
14221 extract_bp_or_bp_range (extract_bp_kind kind,
14222 const std::string &arg,
14223 std::string::size_type arg_offset)
14224 {
14225 std::pair<int, int> range;
14226 const char *bp_loc = &arg[arg_offset];
14227 std::string::size_type dash = arg.find ('-', arg_offset);
14228 if (dash != std::string::npos)
14229 {
14230 /* bp_loc is a range (x-z). */
14231 if (arg.length () == dash + 1)
14232 error (kind == extract_bp_kind::bp
14233 ? _("Bad breakpoint number at or near: '%s'")
14234 : _("Bad breakpoint location number at or near: '%s'"),
14235 bp_loc);
14236
14237 const char *end;
14238 const char *start_first = bp_loc;
14239 const char *start_second = &arg[dash + 1];
14240 range.first = extract_bp_num (kind, start_first, '-');
14241 range.second = extract_bp_num (kind, start_second, '\0', &end);
14242
14243 if (range.first > range.second)
14244 error (kind == extract_bp_kind::bp
14245 ? _("Inverted breakpoint range at '%.*s'")
14246 : _("Inverted breakpoint location range at '%.*s'"),
14247 int (end - start_first), start_first);
14248 }
14249 else
14250 {
14251 /* bp_loc is a single value. */
14252 range.first = extract_bp_num (kind, bp_loc, '\0');
14253 range.second = range.first;
14254 }
14255 return range;
14256 }
14257
14258 /* Extract the breakpoint/location range specified by ARG. Returns
14259 the breakpoint range in BP_NUM_RANGE, and the location range in
14260 BP_LOC_RANGE.
14261
14262 ARG may be in any of the following forms:
14263
14264 x where 'x' is a breakpoint number.
14265 x-y where 'x' and 'y' specify a breakpoint numbers range.
14266 x.y where 'x' is a breakpoint number and 'y' a location number.
14267 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14268 location number range.
14269 */
14270
14271 static void
14272 extract_bp_number_and_location (const std::string &arg,
14273 std::pair<int, int> &bp_num_range,
14274 std::pair<int, int> &bp_loc_range)
14275 {
14276 std::string::size_type dot = arg.find ('.');
14277
14278 if (dot != std::string::npos)
14279 {
14280 /* Handle 'x.y' and 'x.y-z' cases. */
14281
14282 if (arg.length () == dot + 1 || dot == 0)
14283 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14284
14285 bp_num_range.first
14286 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14287 bp_num_range.second = bp_num_range.first;
14288
14289 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14290 arg, dot + 1);
14291 }
14292 else
14293 {
14294 /* Handle x and x-y cases. */
14295
14296 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14297 bp_loc_range.first = 0;
14298 bp_loc_range.second = 0;
14299 }
14300 }
14301
14302 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14303 specifies whether to enable or disable. */
14304
14305 static void
14306 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14307 {
14308 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14309 if (loc != NULL)
14310 {
14311 if (loc->enabled != enable)
14312 {
14313 loc->enabled = enable;
14314 mark_breakpoint_location_modified (loc);
14315 }
14316 if (target_supports_enable_disable_tracepoint ()
14317 && current_trace_status ()->running && loc->owner
14318 && is_tracepoint (loc->owner))
14319 target_disable_tracepoint (loc);
14320 }
14321 update_global_location_list (UGLL_DONT_INSERT);
14322 }
14323
14324 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14325 number of the breakpoint, and BP_LOC_RANGE specifies the
14326 (inclusive) range of location numbers of that breakpoint to
14327 enable/disable. ENABLE specifies whether to enable or disable the
14328 location. */
14329
14330 static void
14331 enable_disable_breakpoint_location_range (int bp_num,
14332 std::pair<int, int> &bp_loc_range,
14333 bool enable)
14334 {
14335 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14336 enable_disable_bp_num_loc (bp_num, i, enable);
14337 }
14338
14339 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14340 If from_tty is nonzero, it prints a message to that effect,
14341 which ends with a period (no newline). */
14342
14343 void
14344 disable_breakpoint (struct breakpoint *bpt)
14345 {
14346 /* Never disable a watchpoint scope breakpoint; we want to
14347 hit them when we leave scope so we can delete both the
14348 watchpoint and its scope breakpoint at that time. */
14349 if (bpt->type == bp_watchpoint_scope)
14350 return;
14351
14352 bpt->enable_state = bp_disabled;
14353
14354 /* Mark breakpoint locations modified. */
14355 mark_breakpoint_modified (bpt);
14356
14357 if (target_supports_enable_disable_tracepoint ()
14358 && current_trace_status ()->running && is_tracepoint (bpt))
14359 {
14360 struct bp_location *location;
14361
14362 for (location = bpt->loc; location; location = location->next)
14363 target_disable_tracepoint (location);
14364 }
14365
14366 update_global_location_list (UGLL_DONT_INSERT);
14367
14368 observer_notify_breakpoint_modified (bpt);
14369 }
14370
14371 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14372 specified in ARGS. ARGS may be in any of the formats handled by
14373 extract_bp_number_and_location. ENABLE specifies whether to enable
14374 or disable the breakpoints/locations. */
14375
14376 static void
14377 enable_disable_command (const char *args, int from_tty, bool enable)
14378 {
14379 if (args == 0)
14380 {
14381 struct breakpoint *bpt;
14382
14383 ALL_BREAKPOINTS (bpt)
14384 if (user_breakpoint_p (bpt))
14385 {
14386 if (enable)
14387 enable_breakpoint (bpt);
14388 else
14389 disable_breakpoint (bpt);
14390 }
14391 }
14392 else
14393 {
14394 std::string num = extract_arg (&args);
14395
14396 while (!num.empty ())
14397 {
14398 std::pair<int, int> bp_num_range, bp_loc_range;
14399
14400 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14401
14402 if (bp_loc_range.first == bp_loc_range.second
14403 && bp_loc_range.first == 0)
14404 {
14405 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14406 map_breakpoint_number_range (bp_num_range,
14407 enable
14408 ? enable_breakpoint
14409 : disable_breakpoint);
14410 }
14411 else
14412 {
14413 /* Handle breakpoint ids with formats 'x.y' or
14414 'x.y-z'. */
14415 enable_disable_breakpoint_location_range
14416 (bp_num_range.first, bp_loc_range, enable);
14417 }
14418 num = extract_arg (&args);
14419 }
14420 }
14421 }
14422
14423 /* The disable command disables the specified breakpoints/locations
14424 (or all defined breakpoints) so they're no longer effective in
14425 stopping the inferior. ARGS may be in any of the forms defined in
14426 extract_bp_number_and_location. */
14427
14428 static void
14429 disable_command (const char *args, int from_tty)
14430 {
14431 enable_disable_command (args, from_tty, false);
14432 }
14433
14434 static void
14435 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14436 int count)
14437 {
14438 int target_resources_ok;
14439
14440 if (bpt->type == bp_hardware_breakpoint)
14441 {
14442 int i;
14443 i = hw_breakpoint_used_count ();
14444 target_resources_ok =
14445 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14446 i + 1, 0);
14447 if (target_resources_ok == 0)
14448 error (_("No hardware breakpoint support in the target."));
14449 else if (target_resources_ok < 0)
14450 error (_("Hardware breakpoints used exceeds limit."));
14451 }
14452
14453 if (is_watchpoint (bpt))
14454 {
14455 /* Initialize it just to avoid a GCC false warning. */
14456 enum enable_state orig_enable_state = bp_disabled;
14457
14458 TRY
14459 {
14460 struct watchpoint *w = (struct watchpoint *) bpt;
14461
14462 orig_enable_state = bpt->enable_state;
14463 bpt->enable_state = bp_enabled;
14464 update_watchpoint (w, 1 /* reparse */);
14465 }
14466 CATCH (e, RETURN_MASK_ALL)
14467 {
14468 bpt->enable_state = orig_enable_state;
14469 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14470 bpt->number);
14471 return;
14472 }
14473 END_CATCH
14474 }
14475
14476 bpt->enable_state = bp_enabled;
14477
14478 /* Mark breakpoint locations modified. */
14479 mark_breakpoint_modified (bpt);
14480
14481 if (target_supports_enable_disable_tracepoint ()
14482 && current_trace_status ()->running && is_tracepoint (bpt))
14483 {
14484 struct bp_location *location;
14485
14486 for (location = bpt->loc; location; location = location->next)
14487 target_enable_tracepoint (location);
14488 }
14489
14490 bpt->disposition = disposition;
14491 bpt->enable_count = count;
14492 update_global_location_list (UGLL_MAY_INSERT);
14493
14494 observer_notify_breakpoint_modified (bpt);
14495 }
14496
14497
14498 void
14499 enable_breakpoint (struct breakpoint *bpt)
14500 {
14501 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14502 }
14503
14504 /* The enable command enables the specified breakpoints/locations (or
14505 all defined breakpoints) so they once again become (or continue to
14506 be) effective in stopping the inferior. ARGS may be in any of the
14507 forms defined in extract_bp_number_and_location. */
14508
14509 static void
14510 enable_command (const char *args, int from_tty)
14511 {
14512 enable_disable_command (args, from_tty, true);
14513 }
14514
14515 static void
14516 enable_once_command (const char *args, int from_tty)
14517 {
14518 map_breakpoint_numbers
14519 (args, [&] (breakpoint *b)
14520 {
14521 iterate_over_related_breakpoints
14522 (b, [&] (breakpoint *bpt)
14523 {
14524 enable_breakpoint_disp (bpt, disp_disable, 1);
14525 });
14526 });
14527 }
14528
14529 static void
14530 enable_count_command (const char *args, int from_tty)
14531 {
14532 int count;
14533
14534 if (args == NULL)
14535 error_no_arg (_("hit count"));
14536
14537 count = get_number (&args);
14538
14539 map_breakpoint_numbers
14540 (args, [&] (breakpoint *b)
14541 {
14542 iterate_over_related_breakpoints
14543 (b, [&] (breakpoint *bpt)
14544 {
14545 enable_breakpoint_disp (bpt, disp_disable, count);
14546 });
14547 });
14548 }
14549
14550 static void
14551 enable_delete_command (const char *args, int from_tty)
14552 {
14553 map_breakpoint_numbers
14554 (args, [&] (breakpoint *b)
14555 {
14556 iterate_over_related_breakpoints
14557 (b, [&] (breakpoint *bpt)
14558 {
14559 enable_breakpoint_disp (bpt, disp_del, 1);
14560 });
14561 });
14562 }
14563 \f
14564 static void
14565 set_breakpoint_cmd (const char *args, int from_tty)
14566 {
14567 }
14568
14569 static void
14570 show_breakpoint_cmd (const char *args, int from_tty)
14571 {
14572 }
14573
14574 /* Invalidate last known value of any hardware watchpoint if
14575 the memory which that value represents has been written to by
14576 GDB itself. */
14577
14578 static void
14579 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14580 CORE_ADDR addr, ssize_t len,
14581 const bfd_byte *data)
14582 {
14583 struct breakpoint *bp;
14584
14585 ALL_BREAKPOINTS (bp)
14586 if (bp->enable_state == bp_enabled
14587 && bp->type == bp_hardware_watchpoint)
14588 {
14589 struct watchpoint *wp = (struct watchpoint *) bp;
14590
14591 if (wp->val_valid && wp->val)
14592 {
14593 struct bp_location *loc;
14594
14595 for (loc = bp->loc; loc != NULL; loc = loc->next)
14596 if (loc->loc_type == bp_loc_hardware_watchpoint
14597 && loc->address + loc->length > addr
14598 && addr + len > loc->address)
14599 {
14600 value_free (wp->val);
14601 wp->val = NULL;
14602 wp->val_valid = 0;
14603 }
14604 }
14605 }
14606 }
14607
14608 /* Create and insert a breakpoint for software single step. */
14609
14610 void
14611 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14612 const address_space *aspace,
14613 CORE_ADDR next_pc)
14614 {
14615 struct thread_info *tp = inferior_thread ();
14616 struct symtab_and_line sal;
14617 CORE_ADDR pc = next_pc;
14618
14619 if (tp->control.single_step_breakpoints == NULL)
14620 {
14621 tp->control.single_step_breakpoints
14622 = new_single_step_breakpoint (tp->global_num, gdbarch);
14623 }
14624
14625 sal = find_pc_line (pc, 0);
14626 sal.pc = pc;
14627 sal.section = find_pc_overlay (pc);
14628 sal.explicit_pc = 1;
14629 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14630
14631 update_global_location_list (UGLL_INSERT);
14632 }
14633
14634 /* Insert single step breakpoints according to the current state. */
14635
14636 int
14637 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14638 {
14639 struct regcache *regcache = get_current_regcache ();
14640 std::vector<CORE_ADDR> next_pcs;
14641
14642 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14643
14644 if (!next_pcs.empty ())
14645 {
14646 struct frame_info *frame = get_current_frame ();
14647 const address_space *aspace = get_frame_address_space (frame);
14648
14649 for (CORE_ADDR pc : next_pcs)
14650 insert_single_step_breakpoint (gdbarch, aspace, pc);
14651
14652 return 1;
14653 }
14654 else
14655 return 0;
14656 }
14657
14658 /* See breakpoint.h. */
14659
14660 int
14661 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14662 const address_space *aspace,
14663 CORE_ADDR pc)
14664 {
14665 struct bp_location *loc;
14666
14667 for (loc = bp->loc; loc != NULL; loc = loc->next)
14668 if (loc->inserted
14669 && breakpoint_location_address_match (loc, aspace, pc))
14670 return 1;
14671
14672 return 0;
14673 }
14674
14675 /* Check whether a software single-step breakpoint is inserted at
14676 PC. */
14677
14678 int
14679 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14680 CORE_ADDR pc)
14681 {
14682 struct breakpoint *bpt;
14683
14684 ALL_BREAKPOINTS (bpt)
14685 {
14686 if (bpt->type == bp_single_step
14687 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14688 return 1;
14689 }
14690 return 0;
14691 }
14692
14693 /* Tracepoint-specific operations. */
14694
14695 /* Set tracepoint count to NUM. */
14696 static void
14697 set_tracepoint_count (int num)
14698 {
14699 tracepoint_count = num;
14700 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14701 }
14702
14703 static void
14704 trace_command (const char *arg, int from_tty)
14705 {
14706 struct breakpoint_ops *ops;
14707
14708 event_location_up location = string_to_event_location (&arg,
14709 current_language);
14710 if (location != NULL
14711 && event_location_type (location.get ()) == PROBE_LOCATION)
14712 ops = &tracepoint_probe_breakpoint_ops;
14713 else
14714 ops = &tracepoint_breakpoint_ops;
14715
14716 create_breakpoint (get_current_arch (),
14717 location.get (),
14718 NULL, 0, arg, 1 /* parse arg */,
14719 0 /* tempflag */,
14720 bp_tracepoint /* type_wanted */,
14721 0 /* Ignore count */,
14722 pending_break_support,
14723 ops,
14724 from_tty,
14725 1 /* enabled */,
14726 0 /* internal */, 0);
14727 }
14728
14729 static void
14730 ftrace_command (const char *arg, int from_tty)
14731 {
14732 event_location_up location = string_to_event_location (&arg,
14733 current_language);
14734 create_breakpoint (get_current_arch (),
14735 location.get (),
14736 NULL, 0, arg, 1 /* parse arg */,
14737 0 /* tempflag */,
14738 bp_fast_tracepoint /* type_wanted */,
14739 0 /* Ignore count */,
14740 pending_break_support,
14741 &tracepoint_breakpoint_ops,
14742 from_tty,
14743 1 /* enabled */,
14744 0 /* internal */, 0);
14745 }
14746
14747 /* strace command implementation. Creates a static tracepoint. */
14748
14749 static void
14750 strace_command (const char *arg, int from_tty)
14751 {
14752 struct breakpoint_ops *ops;
14753 event_location_up location;
14754
14755 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14756 or with a normal static tracepoint. */
14757 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14758 {
14759 ops = &strace_marker_breakpoint_ops;
14760 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14761 }
14762 else
14763 {
14764 ops = &tracepoint_breakpoint_ops;
14765 location = string_to_event_location (&arg, current_language);
14766 }
14767
14768 create_breakpoint (get_current_arch (),
14769 location.get (),
14770 NULL, 0, arg, 1 /* parse arg */,
14771 0 /* tempflag */,
14772 bp_static_tracepoint /* type_wanted */,
14773 0 /* Ignore count */,
14774 pending_break_support,
14775 ops,
14776 from_tty,
14777 1 /* enabled */,
14778 0 /* internal */, 0);
14779 }
14780
14781 /* Set up a fake reader function that gets command lines from a linked
14782 list that was acquired during tracepoint uploading. */
14783
14784 static struct uploaded_tp *this_utp;
14785 static int next_cmd;
14786
14787 static char *
14788 read_uploaded_action (void)
14789 {
14790 char *rslt;
14791
14792 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14793
14794 next_cmd++;
14795
14796 return rslt;
14797 }
14798
14799 /* Given information about a tracepoint as recorded on a target (which
14800 can be either a live system or a trace file), attempt to create an
14801 equivalent GDB tracepoint. This is not a reliable process, since
14802 the target does not necessarily have all the information used when
14803 the tracepoint was originally defined. */
14804
14805 struct tracepoint *
14806 create_tracepoint_from_upload (struct uploaded_tp *utp)
14807 {
14808 const char *addr_str;
14809 char small_buf[100];
14810 struct tracepoint *tp;
14811
14812 if (utp->at_string)
14813 addr_str = utp->at_string;
14814 else
14815 {
14816 /* In the absence of a source location, fall back to raw
14817 address. Since there is no way to confirm that the address
14818 means the same thing as when the trace was started, warn the
14819 user. */
14820 warning (_("Uploaded tracepoint %d has no "
14821 "source location, using raw address"),
14822 utp->number);
14823 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14824 addr_str = small_buf;
14825 }
14826
14827 /* There's not much we can do with a sequence of bytecodes. */
14828 if (utp->cond && !utp->cond_string)
14829 warning (_("Uploaded tracepoint %d condition "
14830 "has no source form, ignoring it"),
14831 utp->number);
14832
14833 event_location_up location = string_to_event_location (&addr_str,
14834 current_language);
14835 if (!create_breakpoint (get_current_arch (),
14836 location.get (),
14837 utp->cond_string, -1, addr_str,
14838 0 /* parse cond/thread */,
14839 0 /* tempflag */,
14840 utp->type /* type_wanted */,
14841 0 /* Ignore count */,
14842 pending_break_support,
14843 &tracepoint_breakpoint_ops,
14844 0 /* from_tty */,
14845 utp->enabled /* enabled */,
14846 0 /* internal */,
14847 CREATE_BREAKPOINT_FLAGS_INSERTED))
14848 return NULL;
14849
14850 /* Get the tracepoint we just created. */
14851 tp = get_tracepoint (tracepoint_count);
14852 gdb_assert (tp != NULL);
14853
14854 if (utp->pass > 0)
14855 {
14856 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14857 tp->number);
14858
14859 trace_pass_command (small_buf, 0);
14860 }
14861
14862 /* If we have uploaded versions of the original commands, set up a
14863 special-purpose "reader" function and call the usual command line
14864 reader, then pass the result to the breakpoint command-setting
14865 function. */
14866 if (!VEC_empty (char_ptr, utp->cmd_strings))
14867 {
14868 command_line_up cmd_list;
14869
14870 this_utp = utp;
14871 next_cmd = 0;
14872
14873 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14874
14875 breakpoint_set_commands (tp, std::move (cmd_list));
14876 }
14877 else if (!VEC_empty (char_ptr, utp->actions)
14878 || !VEC_empty (char_ptr, utp->step_actions))
14879 warning (_("Uploaded tracepoint %d actions "
14880 "have no source form, ignoring them"),
14881 utp->number);
14882
14883 /* Copy any status information that might be available. */
14884 tp->hit_count = utp->hit_count;
14885 tp->traceframe_usage = utp->traceframe_usage;
14886
14887 return tp;
14888 }
14889
14890 /* Print information on tracepoint number TPNUM_EXP, or all if
14891 omitted. */
14892
14893 static void
14894 info_tracepoints_command (const char *args, int from_tty)
14895 {
14896 struct ui_out *uiout = current_uiout;
14897 int num_printed;
14898
14899 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14900
14901 if (num_printed == 0)
14902 {
14903 if (args == NULL || *args == '\0')
14904 uiout->message ("No tracepoints.\n");
14905 else
14906 uiout->message ("No tracepoint matching '%s'.\n", args);
14907 }
14908
14909 default_collect_info ();
14910 }
14911
14912 /* The 'enable trace' command enables tracepoints.
14913 Not supported by all targets. */
14914 static void
14915 enable_trace_command (const char *args, int from_tty)
14916 {
14917 enable_command (args, from_tty);
14918 }
14919
14920 /* The 'disable trace' command disables tracepoints.
14921 Not supported by all targets. */
14922 static void
14923 disable_trace_command (const char *args, int from_tty)
14924 {
14925 disable_command (args, from_tty);
14926 }
14927
14928 /* Remove a tracepoint (or all if no argument). */
14929 static void
14930 delete_trace_command (const char *arg, int from_tty)
14931 {
14932 struct breakpoint *b, *b_tmp;
14933
14934 dont_repeat ();
14935
14936 if (arg == 0)
14937 {
14938 int breaks_to_delete = 0;
14939
14940 /* Delete all breakpoints if no argument.
14941 Do not delete internal or call-dummy breakpoints, these
14942 have to be deleted with an explicit breakpoint number
14943 argument. */
14944 ALL_TRACEPOINTS (b)
14945 if (is_tracepoint (b) && user_breakpoint_p (b))
14946 {
14947 breaks_to_delete = 1;
14948 break;
14949 }
14950
14951 /* Ask user only if there are some breakpoints to delete. */
14952 if (!from_tty
14953 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14954 {
14955 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14956 if (is_tracepoint (b) && user_breakpoint_p (b))
14957 delete_breakpoint (b);
14958 }
14959 }
14960 else
14961 map_breakpoint_numbers
14962 (arg, [&] (breakpoint *b)
14963 {
14964 iterate_over_related_breakpoints (b, delete_breakpoint);
14965 });
14966 }
14967
14968 /* Helper function for trace_pass_command. */
14969
14970 static void
14971 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14972 {
14973 tp->pass_count = count;
14974 observer_notify_breakpoint_modified (tp);
14975 if (from_tty)
14976 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14977 tp->number, count);
14978 }
14979
14980 /* Set passcount for tracepoint.
14981
14982 First command argument is passcount, second is tracepoint number.
14983 If tracepoint number omitted, apply to most recently defined.
14984 Also accepts special argument "all". */
14985
14986 static void
14987 trace_pass_command (const char *args, int from_tty)
14988 {
14989 struct tracepoint *t1;
14990 ULONGEST count;
14991
14992 if (args == 0 || *args == 0)
14993 error (_("passcount command requires an "
14994 "argument (count + optional TP num)"));
14995
14996 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14997
14998 args = skip_spaces (args);
14999 if (*args && strncasecmp (args, "all", 3) == 0)
15000 {
15001 struct breakpoint *b;
15002
15003 args += 3; /* Skip special argument "all". */
15004 if (*args)
15005 error (_("Junk at end of arguments."));
15006
15007 ALL_TRACEPOINTS (b)
15008 {
15009 t1 = (struct tracepoint *) b;
15010 trace_pass_set_count (t1, count, from_tty);
15011 }
15012 }
15013 else if (*args == '\0')
15014 {
15015 t1 = get_tracepoint_by_number (&args, NULL);
15016 if (t1)
15017 trace_pass_set_count (t1, count, from_tty);
15018 }
15019 else
15020 {
15021 number_or_range_parser parser (args);
15022 while (!parser.finished ())
15023 {
15024 t1 = get_tracepoint_by_number (&args, &parser);
15025 if (t1)
15026 trace_pass_set_count (t1, count, from_tty);
15027 }
15028 }
15029 }
15030
15031 struct tracepoint *
15032 get_tracepoint (int num)
15033 {
15034 struct breakpoint *t;
15035
15036 ALL_TRACEPOINTS (t)
15037 if (t->number == num)
15038 return (struct tracepoint *) t;
15039
15040 return NULL;
15041 }
15042
15043 /* Find the tracepoint with the given target-side number (which may be
15044 different from the tracepoint number after disconnecting and
15045 reconnecting). */
15046
15047 struct tracepoint *
15048 get_tracepoint_by_number_on_target (int num)
15049 {
15050 struct breakpoint *b;
15051
15052 ALL_TRACEPOINTS (b)
15053 {
15054 struct tracepoint *t = (struct tracepoint *) b;
15055
15056 if (t->number_on_target == num)
15057 return t;
15058 }
15059
15060 return NULL;
15061 }
15062
15063 /* Utility: parse a tracepoint number and look it up in the list.
15064 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15065 If the argument is missing, the most recent tracepoint
15066 (tracepoint_count) is returned. */
15067
15068 struct tracepoint *
15069 get_tracepoint_by_number (const char **arg,
15070 number_or_range_parser *parser)
15071 {
15072 struct breakpoint *t;
15073 int tpnum;
15074 const char *instring = arg == NULL ? NULL : *arg;
15075
15076 if (parser != NULL)
15077 {
15078 gdb_assert (!parser->finished ());
15079 tpnum = parser->get_number ();
15080 }
15081 else if (arg == NULL || *arg == NULL || ! **arg)
15082 tpnum = tracepoint_count;
15083 else
15084 tpnum = get_number (arg);
15085
15086 if (tpnum <= 0)
15087 {
15088 if (instring && *instring)
15089 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15090 instring);
15091 else
15092 printf_filtered (_("No previous tracepoint\n"));
15093 return NULL;
15094 }
15095
15096 ALL_TRACEPOINTS (t)
15097 if (t->number == tpnum)
15098 {
15099 return (struct tracepoint *) t;
15100 }
15101
15102 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15103 return NULL;
15104 }
15105
15106 void
15107 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15108 {
15109 if (b->thread != -1)
15110 fprintf_unfiltered (fp, " thread %d", b->thread);
15111
15112 if (b->task != 0)
15113 fprintf_unfiltered (fp, " task %d", b->task);
15114
15115 fprintf_unfiltered (fp, "\n");
15116 }
15117
15118 /* Save information on user settable breakpoints (watchpoints, etc) to
15119 a new script file named FILENAME. If FILTER is non-NULL, call it
15120 on each breakpoint and only include the ones for which it returns
15121 non-zero. */
15122
15123 static void
15124 save_breakpoints (const char *filename, int from_tty,
15125 int (*filter) (const struct breakpoint *))
15126 {
15127 struct breakpoint *tp;
15128 int any = 0;
15129 int extra_trace_bits = 0;
15130
15131 if (filename == 0 || *filename == 0)
15132 error (_("Argument required (file name in which to save)"));
15133
15134 /* See if we have anything to save. */
15135 ALL_BREAKPOINTS (tp)
15136 {
15137 /* Skip internal and momentary breakpoints. */
15138 if (!user_breakpoint_p (tp))
15139 continue;
15140
15141 /* If we have a filter, only save the breakpoints it accepts. */
15142 if (filter && !filter (tp))
15143 continue;
15144
15145 any = 1;
15146
15147 if (is_tracepoint (tp))
15148 {
15149 extra_trace_bits = 1;
15150
15151 /* We can stop searching. */
15152 break;
15153 }
15154 }
15155
15156 if (!any)
15157 {
15158 warning (_("Nothing to save."));
15159 return;
15160 }
15161
15162 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15163
15164 stdio_file fp;
15165
15166 if (!fp.open (expanded_filename.get (), "w"))
15167 error (_("Unable to open file '%s' for saving (%s)"),
15168 expanded_filename.get (), safe_strerror (errno));
15169
15170 if (extra_trace_bits)
15171 save_trace_state_variables (&fp);
15172
15173 ALL_BREAKPOINTS (tp)
15174 {
15175 /* Skip internal and momentary breakpoints. */
15176 if (!user_breakpoint_p (tp))
15177 continue;
15178
15179 /* If we have a filter, only save the breakpoints it accepts. */
15180 if (filter && !filter (tp))
15181 continue;
15182
15183 tp->ops->print_recreate (tp, &fp);
15184
15185 /* Note, we can't rely on tp->number for anything, as we can't
15186 assume the recreated breakpoint numbers will match. Use $bpnum
15187 instead. */
15188
15189 if (tp->cond_string)
15190 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15191
15192 if (tp->ignore_count)
15193 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15194
15195 if (tp->type != bp_dprintf && tp->commands)
15196 {
15197 fp.puts (" commands\n");
15198
15199 current_uiout->redirect (&fp);
15200 TRY
15201 {
15202 print_command_lines (current_uiout, tp->commands.get (), 2);
15203 }
15204 CATCH (ex, RETURN_MASK_ALL)
15205 {
15206 current_uiout->redirect (NULL);
15207 throw_exception (ex);
15208 }
15209 END_CATCH
15210
15211 current_uiout->redirect (NULL);
15212 fp.puts (" end\n");
15213 }
15214
15215 if (tp->enable_state == bp_disabled)
15216 fp.puts ("disable $bpnum\n");
15217
15218 /* If this is a multi-location breakpoint, check if the locations
15219 should be individually disabled. Watchpoint locations are
15220 special, and not user visible. */
15221 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15222 {
15223 struct bp_location *loc;
15224 int n = 1;
15225
15226 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15227 if (!loc->enabled)
15228 fp.printf ("disable $bpnum.%d\n", n);
15229 }
15230 }
15231
15232 if (extra_trace_bits && *default_collect)
15233 fp.printf ("set default-collect %s\n", default_collect);
15234
15235 if (from_tty)
15236 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15237 }
15238
15239 /* The `save breakpoints' command. */
15240
15241 static void
15242 save_breakpoints_command (const char *args, int from_tty)
15243 {
15244 save_breakpoints (args, from_tty, NULL);
15245 }
15246
15247 /* The `save tracepoints' command. */
15248
15249 static void
15250 save_tracepoints_command (const char *args, int from_tty)
15251 {
15252 save_breakpoints (args, from_tty, is_tracepoint);
15253 }
15254
15255 /* Create a vector of all tracepoints. */
15256
15257 VEC(breakpoint_p) *
15258 all_tracepoints (void)
15259 {
15260 VEC(breakpoint_p) *tp_vec = 0;
15261 struct breakpoint *tp;
15262
15263 ALL_TRACEPOINTS (tp)
15264 {
15265 VEC_safe_push (breakpoint_p, tp_vec, tp);
15266 }
15267
15268 return tp_vec;
15269 }
15270
15271 \f
15272 /* This help string is used to consolidate all the help string for specifying
15273 locations used by several commands. */
15274
15275 #define LOCATION_HELP_STRING \
15276 "Linespecs are colon-separated lists of location parameters, such as\n\
15277 source filename, function name, label name, and line number.\n\
15278 Example: To specify the start of a label named \"the_top\" in the\n\
15279 function \"fact\" in the file \"factorial.c\", use\n\
15280 \"factorial.c:fact:the_top\".\n\
15281 \n\
15282 Address locations begin with \"*\" and specify an exact address in the\n\
15283 program. Example: To specify the fourth byte past the start function\n\
15284 \"main\", use \"*main + 4\".\n\
15285 \n\
15286 Explicit locations are similar to linespecs but use an option/argument\n\
15287 syntax to specify location parameters.\n\
15288 Example: To specify the start of the label named \"the_top\" in the\n\
15289 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15290 -function fact -label the_top\".\n\
15291 \n\
15292 By default, a specified function is matched against the program's\n\
15293 functions in all scopes. For C++, this means in all namespaces and\n\
15294 classes. For Ada, this means in all packages. E.g., in C++,\n\
15295 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15296 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15297 specified name as a complete fully-qualified name instead.\n"
15298
15299 /* This help string is used for the break, hbreak, tbreak and thbreak
15300 commands. It is defined as a macro to prevent duplication.
15301 COMMAND should be a string constant containing the name of the
15302 command. */
15303
15304 #define BREAK_ARGS_HELP(command) \
15305 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15306 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15307 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15308 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15309 `-probe-dtrace' (for a DTrace probe).\n\
15310 LOCATION may be a linespec, address, or explicit location as described\n\
15311 below.\n\
15312 \n\
15313 With no LOCATION, uses current execution address of the selected\n\
15314 stack frame. This is useful for breaking on return to a stack frame.\n\
15315 \n\
15316 THREADNUM is the number from \"info threads\".\n\
15317 CONDITION is a boolean expression.\n\
15318 \n" LOCATION_HELP_STRING "\n\
15319 Multiple breakpoints at one place are permitted, and useful if their\n\
15320 conditions are different.\n\
15321 \n\
15322 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15323
15324 /* List of subcommands for "catch". */
15325 static struct cmd_list_element *catch_cmdlist;
15326
15327 /* List of subcommands for "tcatch". */
15328 static struct cmd_list_element *tcatch_cmdlist;
15329
15330 void
15331 add_catch_command (const char *name, const char *docstring,
15332 cmd_const_sfunc_ftype *sfunc,
15333 completer_ftype *completer,
15334 void *user_data_catch,
15335 void *user_data_tcatch)
15336 {
15337 struct cmd_list_element *command;
15338
15339 command = add_cmd (name, class_breakpoint, docstring,
15340 &catch_cmdlist);
15341 set_cmd_sfunc (command, sfunc);
15342 set_cmd_context (command, user_data_catch);
15343 set_cmd_completer (command, completer);
15344
15345 command = add_cmd (name, class_breakpoint, docstring,
15346 &tcatch_cmdlist);
15347 set_cmd_sfunc (command, sfunc);
15348 set_cmd_context (command, user_data_tcatch);
15349 set_cmd_completer (command, completer);
15350 }
15351
15352 static void
15353 save_command (const char *arg, int from_tty)
15354 {
15355 printf_unfiltered (_("\"save\" must be followed by "
15356 "the name of a save subcommand.\n"));
15357 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15358 }
15359
15360 struct breakpoint *
15361 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15362 void *data)
15363 {
15364 struct breakpoint *b, *b_tmp;
15365
15366 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15367 {
15368 if ((*callback) (b, data))
15369 return b;
15370 }
15371
15372 return NULL;
15373 }
15374
15375 /* Zero if any of the breakpoint's locations could be a location where
15376 functions have been inlined, nonzero otherwise. */
15377
15378 static int
15379 is_non_inline_function (struct breakpoint *b)
15380 {
15381 /* The shared library event breakpoint is set on the address of a
15382 non-inline function. */
15383 if (b->type == bp_shlib_event)
15384 return 1;
15385
15386 return 0;
15387 }
15388
15389 /* Nonzero if the specified PC cannot be a location where functions
15390 have been inlined. */
15391
15392 int
15393 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15394 const struct target_waitstatus *ws)
15395 {
15396 struct breakpoint *b;
15397 struct bp_location *bl;
15398
15399 ALL_BREAKPOINTS (b)
15400 {
15401 if (!is_non_inline_function (b))
15402 continue;
15403
15404 for (bl = b->loc; bl != NULL; bl = bl->next)
15405 {
15406 if (!bl->shlib_disabled
15407 && bpstat_check_location (bl, aspace, pc, ws))
15408 return 1;
15409 }
15410 }
15411
15412 return 0;
15413 }
15414
15415 /* Remove any references to OBJFILE which is going to be freed. */
15416
15417 void
15418 breakpoint_free_objfile (struct objfile *objfile)
15419 {
15420 struct bp_location **locp, *loc;
15421
15422 ALL_BP_LOCATIONS (loc, locp)
15423 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15424 loc->symtab = NULL;
15425 }
15426
15427 void
15428 initialize_breakpoint_ops (void)
15429 {
15430 static int initialized = 0;
15431
15432 struct breakpoint_ops *ops;
15433
15434 if (initialized)
15435 return;
15436 initialized = 1;
15437
15438 /* The breakpoint_ops structure to be inherit by all kinds of
15439 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15440 internal and momentary breakpoints, etc.). */
15441 ops = &bkpt_base_breakpoint_ops;
15442 *ops = base_breakpoint_ops;
15443 ops->re_set = bkpt_re_set;
15444 ops->insert_location = bkpt_insert_location;
15445 ops->remove_location = bkpt_remove_location;
15446 ops->breakpoint_hit = bkpt_breakpoint_hit;
15447 ops->create_sals_from_location = bkpt_create_sals_from_location;
15448 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15449 ops->decode_location = bkpt_decode_location;
15450
15451 /* The breakpoint_ops structure to be used in regular breakpoints. */
15452 ops = &bkpt_breakpoint_ops;
15453 *ops = bkpt_base_breakpoint_ops;
15454 ops->re_set = bkpt_re_set;
15455 ops->resources_needed = bkpt_resources_needed;
15456 ops->print_it = bkpt_print_it;
15457 ops->print_mention = bkpt_print_mention;
15458 ops->print_recreate = bkpt_print_recreate;
15459
15460 /* Ranged breakpoints. */
15461 ops = &ranged_breakpoint_ops;
15462 *ops = bkpt_breakpoint_ops;
15463 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15464 ops->resources_needed = resources_needed_ranged_breakpoint;
15465 ops->print_it = print_it_ranged_breakpoint;
15466 ops->print_one = print_one_ranged_breakpoint;
15467 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15468 ops->print_mention = print_mention_ranged_breakpoint;
15469 ops->print_recreate = print_recreate_ranged_breakpoint;
15470
15471 /* Internal breakpoints. */
15472 ops = &internal_breakpoint_ops;
15473 *ops = bkpt_base_breakpoint_ops;
15474 ops->re_set = internal_bkpt_re_set;
15475 ops->check_status = internal_bkpt_check_status;
15476 ops->print_it = internal_bkpt_print_it;
15477 ops->print_mention = internal_bkpt_print_mention;
15478
15479 /* Momentary breakpoints. */
15480 ops = &momentary_breakpoint_ops;
15481 *ops = bkpt_base_breakpoint_ops;
15482 ops->re_set = momentary_bkpt_re_set;
15483 ops->check_status = momentary_bkpt_check_status;
15484 ops->print_it = momentary_bkpt_print_it;
15485 ops->print_mention = momentary_bkpt_print_mention;
15486
15487 /* Probe breakpoints. */
15488 ops = &bkpt_probe_breakpoint_ops;
15489 *ops = bkpt_breakpoint_ops;
15490 ops->insert_location = bkpt_probe_insert_location;
15491 ops->remove_location = bkpt_probe_remove_location;
15492 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15493 ops->decode_location = bkpt_probe_decode_location;
15494
15495 /* Watchpoints. */
15496 ops = &watchpoint_breakpoint_ops;
15497 *ops = base_breakpoint_ops;
15498 ops->re_set = re_set_watchpoint;
15499 ops->insert_location = insert_watchpoint;
15500 ops->remove_location = remove_watchpoint;
15501 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15502 ops->check_status = check_status_watchpoint;
15503 ops->resources_needed = resources_needed_watchpoint;
15504 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15505 ops->print_it = print_it_watchpoint;
15506 ops->print_mention = print_mention_watchpoint;
15507 ops->print_recreate = print_recreate_watchpoint;
15508 ops->explains_signal = explains_signal_watchpoint;
15509
15510 /* Masked watchpoints. */
15511 ops = &masked_watchpoint_breakpoint_ops;
15512 *ops = watchpoint_breakpoint_ops;
15513 ops->insert_location = insert_masked_watchpoint;
15514 ops->remove_location = remove_masked_watchpoint;
15515 ops->resources_needed = resources_needed_masked_watchpoint;
15516 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15517 ops->print_it = print_it_masked_watchpoint;
15518 ops->print_one_detail = print_one_detail_masked_watchpoint;
15519 ops->print_mention = print_mention_masked_watchpoint;
15520 ops->print_recreate = print_recreate_masked_watchpoint;
15521
15522 /* Tracepoints. */
15523 ops = &tracepoint_breakpoint_ops;
15524 *ops = base_breakpoint_ops;
15525 ops->re_set = tracepoint_re_set;
15526 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15527 ops->print_one_detail = tracepoint_print_one_detail;
15528 ops->print_mention = tracepoint_print_mention;
15529 ops->print_recreate = tracepoint_print_recreate;
15530 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15531 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15532 ops->decode_location = tracepoint_decode_location;
15533
15534 /* Probe tracepoints. */
15535 ops = &tracepoint_probe_breakpoint_ops;
15536 *ops = tracepoint_breakpoint_ops;
15537 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15538 ops->decode_location = tracepoint_probe_decode_location;
15539
15540 /* Static tracepoints with marker (`-m'). */
15541 ops = &strace_marker_breakpoint_ops;
15542 *ops = tracepoint_breakpoint_ops;
15543 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15544 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15545 ops->decode_location = strace_marker_decode_location;
15546
15547 /* Fork catchpoints. */
15548 ops = &catch_fork_breakpoint_ops;
15549 *ops = base_breakpoint_ops;
15550 ops->insert_location = insert_catch_fork;
15551 ops->remove_location = remove_catch_fork;
15552 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15553 ops->print_it = print_it_catch_fork;
15554 ops->print_one = print_one_catch_fork;
15555 ops->print_mention = print_mention_catch_fork;
15556 ops->print_recreate = print_recreate_catch_fork;
15557
15558 /* Vfork catchpoints. */
15559 ops = &catch_vfork_breakpoint_ops;
15560 *ops = base_breakpoint_ops;
15561 ops->insert_location = insert_catch_vfork;
15562 ops->remove_location = remove_catch_vfork;
15563 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15564 ops->print_it = print_it_catch_vfork;
15565 ops->print_one = print_one_catch_vfork;
15566 ops->print_mention = print_mention_catch_vfork;
15567 ops->print_recreate = print_recreate_catch_vfork;
15568
15569 /* Exec catchpoints. */
15570 ops = &catch_exec_breakpoint_ops;
15571 *ops = base_breakpoint_ops;
15572 ops->insert_location = insert_catch_exec;
15573 ops->remove_location = remove_catch_exec;
15574 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15575 ops->print_it = print_it_catch_exec;
15576 ops->print_one = print_one_catch_exec;
15577 ops->print_mention = print_mention_catch_exec;
15578 ops->print_recreate = print_recreate_catch_exec;
15579
15580 /* Solib-related catchpoints. */
15581 ops = &catch_solib_breakpoint_ops;
15582 *ops = base_breakpoint_ops;
15583 ops->insert_location = insert_catch_solib;
15584 ops->remove_location = remove_catch_solib;
15585 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15586 ops->check_status = check_status_catch_solib;
15587 ops->print_it = print_it_catch_solib;
15588 ops->print_one = print_one_catch_solib;
15589 ops->print_mention = print_mention_catch_solib;
15590 ops->print_recreate = print_recreate_catch_solib;
15591
15592 ops = &dprintf_breakpoint_ops;
15593 *ops = bkpt_base_breakpoint_ops;
15594 ops->re_set = dprintf_re_set;
15595 ops->resources_needed = bkpt_resources_needed;
15596 ops->print_it = bkpt_print_it;
15597 ops->print_mention = bkpt_print_mention;
15598 ops->print_recreate = dprintf_print_recreate;
15599 ops->after_condition_true = dprintf_after_condition_true;
15600 ops->breakpoint_hit = dprintf_breakpoint_hit;
15601 }
15602
15603 /* Chain containing all defined "enable breakpoint" subcommands. */
15604
15605 static struct cmd_list_element *enablebreaklist = NULL;
15606
15607 void
15608 _initialize_breakpoint (void)
15609 {
15610 struct cmd_list_element *c;
15611
15612 initialize_breakpoint_ops ();
15613
15614 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15615 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15616 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15617
15618 breakpoint_objfile_key
15619 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15620
15621 breakpoint_chain = 0;
15622 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15623 before a breakpoint is set. */
15624 breakpoint_count = 0;
15625
15626 tracepoint_count = 0;
15627
15628 add_com ("ignore", class_breakpoint, ignore_command, _("\
15629 Set ignore-count of breakpoint number N to COUNT.\n\
15630 Usage is `ignore N COUNT'."));
15631
15632 add_com ("commands", class_breakpoint, commands_command, _("\
15633 Set commands to be executed when the given breakpoints are hit.\n\
15634 Give a space-separated breakpoint list as argument after \"commands\".\n\
15635 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15636 (e.g. `5-7').\n\
15637 With no argument, the targeted breakpoint is the last one set.\n\
15638 The commands themselves follow starting on the next line.\n\
15639 Type a line containing \"end\" to indicate the end of them.\n\
15640 Give \"silent\" as the first line to make the breakpoint silent;\n\
15641 then no output is printed when it is hit, except what the commands print."));
15642
15643 c = add_com ("condition", class_breakpoint, condition_command, _("\
15644 Specify breakpoint number N to break only if COND is true.\n\
15645 Usage is `condition N COND', where N is an integer and COND is an\n\
15646 expression to be evaluated whenever breakpoint N is reached."));
15647 set_cmd_completer (c, condition_completer);
15648
15649 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15650 Set a temporary breakpoint.\n\
15651 Like \"break\" except the breakpoint is only temporary,\n\
15652 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15653 by using \"enable delete\" on the breakpoint number.\n\
15654 \n"
15655 BREAK_ARGS_HELP ("tbreak")));
15656 set_cmd_completer (c, location_completer);
15657
15658 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15659 Set a hardware assisted breakpoint.\n\
15660 Like \"break\" except the breakpoint requires hardware support,\n\
15661 some target hardware may not have this support.\n\
15662 \n"
15663 BREAK_ARGS_HELP ("hbreak")));
15664 set_cmd_completer (c, location_completer);
15665
15666 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15667 Set a temporary hardware assisted breakpoint.\n\
15668 Like \"hbreak\" except the breakpoint is only temporary,\n\
15669 so it will be deleted when hit.\n\
15670 \n"
15671 BREAK_ARGS_HELP ("thbreak")));
15672 set_cmd_completer (c, location_completer);
15673
15674 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15675 Enable some breakpoints.\n\
15676 Give breakpoint numbers (separated by spaces) as arguments.\n\
15677 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15678 This is used to cancel the effect of the \"disable\" command.\n\
15679 With a subcommand you can enable temporarily."),
15680 &enablelist, "enable ", 1, &cmdlist);
15681
15682 add_com_alias ("en", "enable", class_breakpoint, 1);
15683
15684 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15685 Enable some breakpoints.\n\
15686 Give breakpoint numbers (separated by spaces) as arguments.\n\
15687 This is used to cancel the effect of the \"disable\" command.\n\
15688 May be abbreviated to simply \"enable\".\n"),
15689 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15690
15691 add_cmd ("once", no_class, enable_once_command, _("\
15692 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15693 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15694 &enablebreaklist);
15695
15696 add_cmd ("delete", no_class, enable_delete_command, _("\
15697 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15698 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15699 &enablebreaklist);
15700
15701 add_cmd ("count", no_class, enable_count_command, _("\
15702 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15703 If a breakpoint is hit while enabled in this fashion,\n\
15704 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15705 &enablebreaklist);
15706
15707 add_cmd ("delete", no_class, enable_delete_command, _("\
15708 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15709 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15710 &enablelist);
15711
15712 add_cmd ("once", no_class, enable_once_command, _("\
15713 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15714 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15715 &enablelist);
15716
15717 add_cmd ("count", no_class, enable_count_command, _("\
15718 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15719 If a breakpoint is hit while enabled in this fashion,\n\
15720 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15721 &enablelist);
15722
15723 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15724 Disable some breakpoints.\n\
15725 Arguments are breakpoint numbers with spaces in between.\n\
15726 To disable all breakpoints, give no argument.\n\
15727 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15728 &disablelist, "disable ", 1, &cmdlist);
15729 add_com_alias ("dis", "disable", class_breakpoint, 1);
15730 add_com_alias ("disa", "disable", class_breakpoint, 1);
15731
15732 add_cmd ("breakpoints", class_alias, disable_command, _("\
15733 Disable some breakpoints.\n\
15734 Arguments are breakpoint numbers with spaces in between.\n\
15735 To disable all breakpoints, give no argument.\n\
15736 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15737 This command may be abbreviated \"disable\"."),
15738 &disablelist);
15739
15740 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15741 Delete some breakpoints or auto-display expressions.\n\
15742 Arguments are breakpoint numbers with spaces in between.\n\
15743 To delete all breakpoints, give no argument.\n\
15744 \n\
15745 Also a prefix command for deletion of other GDB objects.\n\
15746 The \"unset\" command is also an alias for \"delete\"."),
15747 &deletelist, "delete ", 1, &cmdlist);
15748 add_com_alias ("d", "delete", class_breakpoint, 1);
15749 add_com_alias ("del", "delete", class_breakpoint, 1);
15750
15751 add_cmd ("breakpoints", class_alias, delete_command, _("\
15752 Delete some breakpoints or auto-display expressions.\n\
15753 Arguments are breakpoint numbers with spaces in between.\n\
15754 To delete all breakpoints, give no argument.\n\
15755 This command may be abbreviated \"delete\"."),
15756 &deletelist);
15757
15758 add_com ("clear", class_breakpoint, clear_command, _("\
15759 Clear breakpoint at specified location.\n\
15760 Argument may be a linespec, explicit, or address location as described below.\n\
15761 \n\
15762 With no argument, clears all breakpoints in the line that the selected frame\n\
15763 is executing in.\n"
15764 "\n" LOCATION_HELP_STRING "\n\
15765 See also the \"delete\" command which clears breakpoints by number."));
15766 add_com_alias ("cl", "clear", class_breakpoint, 1);
15767
15768 c = add_com ("break", class_breakpoint, break_command, _("\
15769 Set breakpoint at specified location.\n"
15770 BREAK_ARGS_HELP ("break")));
15771 set_cmd_completer (c, location_completer);
15772
15773 add_com_alias ("b", "break", class_run, 1);
15774 add_com_alias ("br", "break", class_run, 1);
15775 add_com_alias ("bre", "break", class_run, 1);
15776 add_com_alias ("brea", "break", class_run, 1);
15777
15778 if (dbx_commands)
15779 {
15780 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15781 Break in function/address or break at a line in the current file."),
15782 &stoplist, "stop ", 1, &cmdlist);
15783 add_cmd ("in", class_breakpoint, stopin_command,
15784 _("Break in function or address."), &stoplist);
15785 add_cmd ("at", class_breakpoint, stopat_command,
15786 _("Break at a line in the current file."), &stoplist);
15787 add_com ("status", class_info, info_breakpoints_command, _("\
15788 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15789 The \"Type\" column indicates one of:\n\
15790 \tbreakpoint - normal breakpoint\n\
15791 \twatchpoint - watchpoint\n\
15792 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15793 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15794 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15795 address and file/line number respectively.\n\
15796 \n\
15797 Convenience variable \"$_\" and default examine address for \"x\"\n\
15798 are set to the address of the last breakpoint listed unless the command\n\
15799 is prefixed with \"server \".\n\n\
15800 Convenience variable \"$bpnum\" contains the number of the last\n\
15801 breakpoint set."));
15802 }
15803
15804 add_info ("breakpoints", info_breakpoints_command, _("\
15805 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15806 The \"Type\" column indicates one of:\n\
15807 \tbreakpoint - normal breakpoint\n\
15808 \twatchpoint - watchpoint\n\
15809 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15810 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15811 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15812 address and file/line number respectively.\n\
15813 \n\
15814 Convenience variable \"$_\" and default examine address for \"x\"\n\
15815 are set to the address of the last breakpoint listed unless the command\n\
15816 is prefixed with \"server \".\n\n\
15817 Convenience variable \"$bpnum\" contains the number of the last\n\
15818 breakpoint set."));
15819
15820 add_info_alias ("b", "breakpoints", 1);
15821
15822 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15823 Status of all breakpoints, or breakpoint number NUMBER.\n\
15824 The \"Type\" column indicates one of:\n\
15825 \tbreakpoint - normal breakpoint\n\
15826 \twatchpoint - watchpoint\n\
15827 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15828 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15829 \tuntil - internal breakpoint used by the \"until\" command\n\
15830 \tfinish - internal breakpoint used by the \"finish\" command\n\
15831 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15832 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15833 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15834 address and file/line number respectively.\n\
15835 \n\
15836 Convenience variable \"$_\" and default examine address for \"x\"\n\
15837 are set to the address of the last breakpoint listed unless the command\n\
15838 is prefixed with \"server \".\n\n\
15839 Convenience variable \"$bpnum\" contains the number of the last\n\
15840 breakpoint set."),
15841 &maintenanceinfolist);
15842
15843 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15844 Set catchpoints to catch events."),
15845 &catch_cmdlist, "catch ",
15846 0/*allow-unknown*/, &cmdlist);
15847
15848 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15849 Set temporary catchpoints to catch events."),
15850 &tcatch_cmdlist, "tcatch ",
15851 0/*allow-unknown*/, &cmdlist);
15852
15853 add_catch_command ("fork", _("Catch calls to fork."),
15854 catch_fork_command_1,
15855 NULL,
15856 (void *) (uintptr_t) catch_fork_permanent,
15857 (void *) (uintptr_t) catch_fork_temporary);
15858 add_catch_command ("vfork", _("Catch calls to vfork."),
15859 catch_fork_command_1,
15860 NULL,
15861 (void *) (uintptr_t) catch_vfork_permanent,
15862 (void *) (uintptr_t) catch_vfork_temporary);
15863 add_catch_command ("exec", _("Catch calls to exec."),
15864 catch_exec_command_1,
15865 NULL,
15866 CATCH_PERMANENT,
15867 CATCH_TEMPORARY);
15868 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15869 Usage: catch load [REGEX]\n\
15870 If REGEX is given, only stop for libraries matching the regular expression."),
15871 catch_load_command_1,
15872 NULL,
15873 CATCH_PERMANENT,
15874 CATCH_TEMPORARY);
15875 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15876 Usage: catch unload [REGEX]\n\
15877 If REGEX is given, only stop for libraries matching the regular expression."),
15878 catch_unload_command_1,
15879 NULL,
15880 CATCH_PERMANENT,
15881 CATCH_TEMPORARY);
15882
15883 c = add_com ("watch", class_breakpoint, watch_command, _("\
15884 Set a watchpoint for an expression.\n\
15885 Usage: watch [-l|-location] EXPRESSION\n\
15886 A watchpoint stops execution of your program whenever the value of\n\
15887 an expression changes.\n\
15888 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15889 the memory to which it refers."));
15890 set_cmd_completer (c, expression_completer);
15891
15892 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15893 Set a read watchpoint for an expression.\n\
15894 Usage: rwatch [-l|-location] EXPRESSION\n\
15895 A watchpoint stops execution of your program whenever the value of\n\
15896 an expression is read.\n\
15897 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15898 the memory to which it refers."));
15899 set_cmd_completer (c, expression_completer);
15900
15901 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15902 Set a watchpoint for an expression.\n\
15903 Usage: awatch [-l|-location] EXPRESSION\n\
15904 A watchpoint stops execution of your program whenever the value of\n\
15905 an expression is either read or written.\n\
15906 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15907 the memory to which it refers."));
15908 set_cmd_completer (c, expression_completer);
15909
15910 add_info ("watchpoints", info_watchpoints_command, _("\
15911 Status of specified watchpoints (all watchpoints if no argument)."));
15912
15913 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15914 respond to changes - contrary to the description. */
15915 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15916 &can_use_hw_watchpoints, _("\
15917 Set debugger's willingness to use watchpoint hardware."), _("\
15918 Show debugger's willingness to use watchpoint hardware."), _("\
15919 If zero, gdb will not use hardware for new watchpoints, even if\n\
15920 such is available. (However, any hardware watchpoints that were\n\
15921 created before setting this to nonzero, will continue to use watchpoint\n\
15922 hardware.)"),
15923 NULL,
15924 show_can_use_hw_watchpoints,
15925 &setlist, &showlist);
15926
15927 can_use_hw_watchpoints = 1;
15928
15929 /* Tracepoint manipulation commands. */
15930
15931 c = add_com ("trace", class_breakpoint, trace_command, _("\
15932 Set a tracepoint at specified location.\n\
15933 \n"
15934 BREAK_ARGS_HELP ("trace") "\n\
15935 Do \"help tracepoints\" for info on other tracepoint commands."));
15936 set_cmd_completer (c, location_completer);
15937
15938 add_com_alias ("tp", "trace", class_alias, 0);
15939 add_com_alias ("tr", "trace", class_alias, 1);
15940 add_com_alias ("tra", "trace", class_alias, 1);
15941 add_com_alias ("trac", "trace", class_alias, 1);
15942
15943 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15944 Set a fast tracepoint at specified location.\n\
15945 \n"
15946 BREAK_ARGS_HELP ("ftrace") "\n\
15947 Do \"help tracepoints\" for info on other tracepoint commands."));
15948 set_cmd_completer (c, location_completer);
15949
15950 c = add_com ("strace", class_breakpoint, strace_command, _("\
15951 Set a static tracepoint at location or marker.\n\
15952 \n\
15953 strace [LOCATION] [if CONDITION]\n\
15954 LOCATION may be a linespec, explicit, or address location (described below) \n\
15955 or -m MARKER_ID.\n\n\
15956 If a marker id is specified, probe the marker with that name. With\n\
15957 no LOCATION, uses current execution address of the selected stack frame.\n\
15958 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15959 This collects arbitrary user data passed in the probe point call to the\n\
15960 tracing library. You can inspect it when analyzing the trace buffer,\n\
15961 by printing the $_sdata variable like any other convenience variable.\n\
15962 \n\
15963 CONDITION is a boolean expression.\n\
15964 \n" LOCATION_HELP_STRING "\n\
15965 Multiple tracepoints at one place are permitted, and useful if their\n\
15966 conditions are different.\n\
15967 \n\
15968 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15969 Do \"help tracepoints\" for info on other tracepoint commands."));
15970 set_cmd_completer (c, location_completer);
15971
15972 add_info ("tracepoints", info_tracepoints_command, _("\
15973 Status of specified tracepoints (all tracepoints if no argument).\n\
15974 Convenience variable \"$tpnum\" contains the number of the\n\
15975 last tracepoint set."));
15976
15977 add_info_alias ("tp", "tracepoints", 1);
15978
15979 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15980 Delete specified tracepoints.\n\
15981 Arguments are tracepoint numbers, separated by spaces.\n\
15982 No argument means delete all tracepoints."),
15983 &deletelist);
15984 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15985
15986 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15987 Disable specified tracepoints.\n\
15988 Arguments are tracepoint numbers, separated by spaces.\n\
15989 No argument means disable all tracepoints."),
15990 &disablelist);
15991 deprecate_cmd (c, "disable");
15992
15993 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15994 Enable specified tracepoints.\n\
15995 Arguments are tracepoint numbers, separated by spaces.\n\
15996 No argument means enable all tracepoints."),
15997 &enablelist);
15998 deprecate_cmd (c, "enable");
15999
16000 add_com ("passcount", class_trace, trace_pass_command, _("\
16001 Set the passcount for a tracepoint.\n\
16002 The trace will end when the tracepoint has been passed 'count' times.\n\
16003 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16004 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16005
16006 add_prefix_cmd ("save", class_breakpoint, save_command,
16007 _("Save breakpoint definitions as a script."),
16008 &save_cmdlist, "save ",
16009 0/*allow-unknown*/, &cmdlist);
16010
16011 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16012 Save current breakpoint definitions as a script.\n\
16013 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16014 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16015 session to restore them."),
16016 &save_cmdlist);
16017 set_cmd_completer (c, filename_completer);
16018
16019 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16020 Save current tracepoint definitions as a script.\n\
16021 Use the 'source' command in another debug session to restore them."),
16022 &save_cmdlist);
16023 set_cmd_completer (c, filename_completer);
16024
16025 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16026 deprecate_cmd (c, "save tracepoints");
16027
16028 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16029 Breakpoint specific settings\n\
16030 Configure various breakpoint-specific variables such as\n\
16031 pending breakpoint behavior"),
16032 &breakpoint_set_cmdlist, "set breakpoint ",
16033 0/*allow-unknown*/, &setlist);
16034 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16035 Breakpoint specific settings\n\
16036 Configure various breakpoint-specific variables such as\n\
16037 pending breakpoint behavior"),
16038 &breakpoint_show_cmdlist, "show breakpoint ",
16039 0/*allow-unknown*/, &showlist);
16040
16041 add_setshow_auto_boolean_cmd ("pending", no_class,
16042 &pending_break_support, _("\
16043 Set debugger's behavior regarding pending breakpoints."), _("\
16044 Show debugger's behavior regarding pending breakpoints."), _("\
16045 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16046 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16047 an error. If auto, an unrecognized breakpoint location results in a\n\
16048 user-query to see if a pending breakpoint should be created."),
16049 NULL,
16050 show_pending_break_support,
16051 &breakpoint_set_cmdlist,
16052 &breakpoint_show_cmdlist);
16053
16054 pending_break_support = AUTO_BOOLEAN_AUTO;
16055
16056 add_setshow_boolean_cmd ("auto-hw", no_class,
16057 &automatic_hardware_breakpoints, _("\
16058 Set automatic usage of hardware breakpoints."), _("\
16059 Show automatic usage of hardware breakpoints."), _("\
16060 If set, the debugger will automatically use hardware breakpoints for\n\
16061 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16062 a warning will be emitted for such breakpoints."),
16063 NULL,
16064 show_automatic_hardware_breakpoints,
16065 &breakpoint_set_cmdlist,
16066 &breakpoint_show_cmdlist);
16067
16068 add_setshow_boolean_cmd ("always-inserted", class_support,
16069 &always_inserted_mode, _("\
16070 Set mode for inserting breakpoints."), _("\
16071 Show mode for inserting breakpoints."), _("\
16072 When this mode is on, breakpoints are inserted immediately as soon as\n\
16073 they're created, kept inserted even when execution stops, and removed\n\
16074 only when the user deletes them. When this mode is off (the default),\n\
16075 breakpoints are inserted only when execution continues, and removed\n\
16076 when execution stops."),
16077 NULL,
16078 &show_always_inserted_mode,
16079 &breakpoint_set_cmdlist,
16080 &breakpoint_show_cmdlist);
16081
16082 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16083 condition_evaluation_enums,
16084 &condition_evaluation_mode_1, _("\
16085 Set mode of breakpoint condition evaluation."), _("\
16086 Show mode of breakpoint condition evaluation."), _("\
16087 When this is set to \"host\", breakpoint conditions will be\n\
16088 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16089 breakpoint conditions will be downloaded to the target (if the target\n\
16090 supports such feature) and conditions will be evaluated on the target's side.\n\
16091 If this is set to \"auto\" (default), this will be automatically set to\n\
16092 \"target\" if it supports condition evaluation, otherwise it will\n\
16093 be set to \"gdb\""),
16094 &set_condition_evaluation_mode,
16095 &show_condition_evaluation_mode,
16096 &breakpoint_set_cmdlist,
16097 &breakpoint_show_cmdlist);
16098
16099 add_com ("break-range", class_breakpoint, break_range_command, _("\
16100 Set a breakpoint for an address range.\n\
16101 break-range START-LOCATION, END-LOCATION\n\
16102 where START-LOCATION and END-LOCATION can be one of the following:\n\
16103 LINENUM, for that line in the current file,\n\
16104 FILE:LINENUM, for that line in that file,\n\
16105 +OFFSET, for that number of lines after the current line\n\
16106 or the start of the range\n\
16107 FUNCTION, for the first line in that function,\n\
16108 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16109 *ADDRESS, for the instruction at that address.\n\
16110 \n\
16111 The breakpoint will stop execution of the inferior whenever it executes\n\
16112 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16113 range (including START-LOCATION and END-LOCATION)."));
16114
16115 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16116 Set a dynamic printf at specified location.\n\
16117 dprintf location,format string,arg1,arg2,...\n\
16118 location may be a linespec, explicit, or address location.\n"
16119 "\n" LOCATION_HELP_STRING));
16120 set_cmd_completer (c, location_completer);
16121
16122 add_setshow_enum_cmd ("dprintf-style", class_support,
16123 dprintf_style_enums, &dprintf_style, _("\
16124 Set the style of usage for dynamic printf."), _("\
16125 Show the style of usage for dynamic printf."), _("\
16126 This setting chooses how GDB will do a dynamic printf.\n\
16127 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16128 console, as with the \"printf\" command.\n\
16129 If the value is \"call\", the print is done by calling a function in your\n\
16130 program; by default printf(), but you can choose a different function or\n\
16131 output stream by setting dprintf-function and dprintf-channel."),
16132 update_dprintf_commands, NULL,
16133 &setlist, &showlist);
16134
16135 dprintf_function = xstrdup ("printf");
16136 add_setshow_string_cmd ("dprintf-function", class_support,
16137 &dprintf_function, _("\
16138 Set the function to use for dynamic printf"), _("\
16139 Show the function to use for dynamic printf"), NULL,
16140 update_dprintf_commands, NULL,
16141 &setlist, &showlist);
16142
16143 dprintf_channel = xstrdup ("");
16144 add_setshow_string_cmd ("dprintf-channel", class_support,
16145 &dprintf_channel, _("\
16146 Set the channel to use for dynamic printf"), _("\
16147 Show the channel to use for dynamic printf"), NULL,
16148 update_dprintf_commands, NULL,
16149 &setlist, &showlist);
16150
16151 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16152 &disconnected_dprintf, _("\
16153 Set whether dprintf continues after GDB disconnects."), _("\
16154 Show whether dprintf continues after GDB disconnects."), _("\
16155 Use this to let dprintf commands continue to hit and produce output\n\
16156 even if GDB disconnects or detaches from the target."),
16157 NULL,
16158 NULL,
16159 &setlist, &showlist);
16160
16161 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16162 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16163 (target agent only) This is useful for formatted output in user-defined commands."));
16164
16165 automatic_hardware_breakpoints = 1;
16166
16167 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16168 observer_attach_thread_exit (remove_threaded_breakpoints);
16169 }