]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/breakpoint.c
target_pass_signals/target_program_signals: Use gdb::array_view
[thirdparty/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84 #include "common/array-view.h"
85 #include "common/gdb_optional.h"
86
87 /* Enums for exception-handling support. */
88 enum exception_event_kind
89 {
90 EX_EVENT_THROW,
91 EX_EVENT_RETHROW,
92 EX_EVENT_CATCH
93 };
94
95 /* Prototypes for local functions. */
96
97 static void map_breakpoint_numbers (const char *,
98 gdb::function_view<void (breakpoint *)>);
99
100 static void breakpoint_re_set_default (struct breakpoint *);
101
102 static void
103 create_sals_from_location_default (const struct event_location *location,
104 struct linespec_result *canonical,
105 enum bptype type_wanted);
106
107 static void create_breakpoints_sal_default (struct gdbarch *,
108 struct linespec_result *,
109 gdb::unique_xmalloc_ptr<char>,
110 gdb::unique_xmalloc_ptr<char>,
111 enum bptype,
112 enum bpdisp, int, int,
113 int,
114 const struct breakpoint_ops *,
115 int, int, int, unsigned);
116
117 static std::vector<symtab_and_line> decode_location_default
118 (struct breakpoint *b, const struct event_location *location,
119 struct program_space *search_pspace);
120
121 static int can_use_hardware_watchpoint
122 (const std::vector<value_ref_ptr> &vals);
123
124 static void mention (struct breakpoint *);
125
126 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
127 enum bptype,
128 const struct breakpoint_ops *);
129 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
130 const struct symtab_and_line *);
131
132 /* This function is used in gdbtk sources and thus can not be made
133 static. */
134 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
135 struct symtab_and_line,
136 enum bptype,
137 const struct breakpoint_ops *);
138
139 static struct breakpoint *
140 momentary_breakpoint_from_master (struct breakpoint *orig,
141 enum bptype type,
142 const struct breakpoint_ops *ops,
143 int loc_enabled);
144
145 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
146
147 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
148 CORE_ADDR bpaddr,
149 enum bptype bptype);
150
151 static void describe_other_breakpoints (struct gdbarch *,
152 struct program_space *, CORE_ADDR,
153 struct obj_section *, int);
154
155 static int watchpoint_locations_match (struct bp_location *loc1,
156 struct bp_location *loc2);
157
158 static int breakpoint_location_address_match (struct bp_location *bl,
159 const struct address_space *aspace,
160 CORE_ADDR addr);
161
162 static int breakpoint_location_address_range_overlap (struct bp_location *,
163 const address_space *,
164 CORE_ADDR, int);
165
166 static int remove_breakpoint (struct bp_location *);
167 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
168
169 static enum print_stop_action print_bp_stop_message (bpstat bs);
170
171 static int hw_breakpoint_used_count (void);
172
173 static int hw_watchpoint_use_count (struct breakpoint *);
174
175 static int hw_watchpoint_used_count_others (struct breakpoint *except,
176 enum bptype type,
177 int *other_type_used);
178
179 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
180 int count);
181
182 static void free_bp_location (struct bp_location *loc);
183 static void incref_bp_location (struct bp_location *loc);
184 static void decref_bp_location (struct bp_location **loc);
185
186 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
187
188 /* update_global_location_list's modes of operation wrt to whether to
189 insert locations now. */
190 enum ugll_insert_mode
191 {
192 /* Don't insert any breakpoint locations into the inferior, only
193 remove already-inserted locations that no longer should be
194 inserted. Functions that delete a breakpoint or breakpoints
195 should specify this mode, so that deleting a breakpoint doesn't
196 have the side effect of inserting the locations of other
197 breakpoints that are marked not-inserted, but should_be_inserted
198 returns true on them.
199
200 This behavior is useful is situations close to tear-down -- e.g.,
201 after an exec, while the target still has execution, but
202 breakpoint shadows of the previous executable image should *NOT*
203 be restored to the new image; or before detaching, where the
204 target still has execution and wants to delete breakpoints from
205 GDB's lists, and all breakpoints had already been removed from
206 the inferior. */
207 UGLL_DONT_INSERT,
208
209 /* May insert breakpoints iff breakpoints_should_be_inserted_now
210 claims breakpoints should be inserted now. */
211 UGLL_MAY_INSERT,
212
213 /* Insert locations now, irrespective of
214 breakpoints_should_be_inserted_now. E.g., say all threads are
215 stopped right now, and the user did "continue". We need to
216 insert breakpoints _before_ resuming the target, but
217 UGLL_MAY_INSERT wouldn't insert them, because
218 breakpoints_should_be_inserted_now returns false at that point,
219 as no thread is running yet. */
220 UGLL_INSERT
221 };
222
223 static void update_global_location_list (enum ugll_insert_mode);
224
225 static void update_global_location_list_nothrow (enum ugll_insert_mode);
226
227 static int is_hardware_watchpoint (const struct breakpoint *bpt);
228
229 static void insert_breakpoint_locations (void);
230
231 static void trace_pass_command (const char *, int);
232
233 static void set_tracepoint_count (int num);
234
235 static int is_masked_watchpoint (const struct breakpoint *b);
236
237 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
238
239 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
240 otherwise. */
241
242 static int strace_marker_p (struct breakpoint *b);
243
244 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
245 that are implemented on top of software or hardware breakpoints
246 (user breakpoints, internal and momentary breakpoints, etc.). */
247 static struct breakpoint_ops bkpt_base_breakpoint_ops;
248
249 /* Internal breakpoints class type. */
250 static struct breakpoint_ops internal_breakpoint_ops;
251
252 /* Momentary breakpoints class type. */
253 static struct breakpoint_ops momentary_breakpoint_ops;
254
255 /* The breakpoint_ops structure to be used in regular user created
256 breakpoints. */
257 struct breakpoint_ops bkpt_breakpoint_ops;
258
259 /* Breakpoints set on probes. */
260 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
261
262 /* Dynamic printf class type. */
263 struct breakpoint_ops dprintf_breakpoint_ops;
264
265 /* The style in which to perform a dynamic printf. This is a user
266 option because different output options have different tradeoffs;
267 if GDB does the printing, there is better error handling if there
268 is a problem with any of the arguments, but using an inferior
269 function lets you have special-purpose printers and sending of
270 output to the same place as compiled-in print functions. */
271
272 static const char dprintf_style_gdb[] = "gdb";
273 static const char dprintf_style_call[] = "call";
274 static const char dprintf_style_agent[] = "agent";
275 static const char *const dprintf_style_enums[] = {
276 dprintf_style_gdb,
277 dprintf_style_call,
278 dprintf_style_agent,
279 NULL
280 };
281 static const char *dprintf_style = dprintf_style_gdb;
282
283 /* The function to use for dynamic printf if the preferred style is to
284 call into the inferior. The value is simply a string that is
285 copied into the command, so it can be anything that GDB can
286 evaluate to a callable address, not necessarily a function name. */
287
288 static char *dprintf_function;
289
290 /* The channel to use for dynamic printf if the preferred style is to
291 call into the inferior; if a nonempty string, it will be passed to
292 the call as the first argument, with the format string as the
293 second. As with the dprintf function, this can be anything that
294 GDB knows how to evaluate, so in addition to common choices like
295 "stderr", this could be an app-specific expression like
296 "mystreams[curlogger]". */
297
298 static char *dprintf_channel;
299
300 /* True if dprintf commands should continue to operate even if GDB
301 has disconnected. */
302 static int disconnected_dprintf = 1;
303
304 struct command_line *
305 breakpoint_commands (struct breakpoint *b)
306 {
307 return b->commands ? b->commands.get () : NULL;
308 }
309
310 /* Flag indicating that a command has proceeded the inferior past the
311 current breakpoint. */
312
313 static int breakpoint_proceeded;
314
315 const char *
316 bpdisp_text (enum bpdisp disp)
317 {
318 /* NOTE: the following values are a part of MI protocol and
319 represent values of 'disp' field returned when inferior stops at
320 a breakpoint. */
321 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
322
323 return bpdisps[(int) disp];
324 }
325
326 /* Prototypes for exported functions. */
327 /* If FALSE, gdb will not use hardware support for watchpoints, even
328 if such is available. */
329 static int can_use_hw_watchpoints;
330
331 static void
332 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
333 struct cmd_list_element *c,
334 const char *value)
335 {
336 fprintf_filtered (file,
337 _("Debugger's willingness to use "
338 "watchpoint hardware is %s.\n"),
339 value);
340 }
341
342 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
343 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
344 for unrecognized breakpoint locations.
345 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
346 static enum auto_boolean pending_break_support;
347 static void
348 show_pending_break_support (struct ui_file *file, int from_tty,
349 struct cmd_list_element *c,
350 const char *value)
351 {
352 fprintf_filtered (file,
353 _("Debugger's behavior regarding "
354 "pending breakpoints is %s.\n"),
355 value);
356 }
357
358 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
359 set with "break" but falling in read-only memory.
360 If 0, gdb will warn about such breakpoints, but won't automatically
361 use hardware breakpoints. */
362 static int automatic_hardware_breakpoints;
363 static void
364 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c,
366 const char *value)
367 {
368 fprintf_filtered (file,
369 _("Automatic usage of hardware breakpoints is %s.\n"),
370 value);
371 }
372
373 /* If on, GDB keeps breakpoints inserted even if the inferior is
374 stopped, and immediately inserts any new breakpoints as soon as
375 they're created. If off (default), GDB keeps breakpoints off of
376 the target as long as possible. That is, it delays inserting
377 breakpoints until the next resume, and removes them again when the
378 target fully stops. This is a bit safer in case GDB crashes while
379 processing user input. */
380 static int always_inserted_mode = 0;
381
382 static void
383 show_always_inserted_mode (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
387 value);
388 }
389
390 /* See breakpoint.h. */
391
392 int
393 breakpoints_should_be_inserted_now (void)
394 {
395 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
396 {
397 /* If breakpoints are global, they should be inserted even if no
398 thread under gdb's control is running, or even if there are
399 no threads under GDB's control yet. */
400 return 1;
401 }
402 else if (target_has_execution)
403 {
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 for (thread_info *tp : all_non_exited_threads ())
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 static std::vector<bp_location *> moribund_locations;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 int
1051 is_tracepoint (const struct breakpoint *b)
1052 {
1053 return is_tracepoint_type (b->type);
1054 }
1055
1056 /* Factory function to create an appropriate instance of breakpoint given
1057 TYPE. */
1058
1059 static std::unique_ptr<breakpoint>
1060 new_breakpoint_from_type (bptype type)
1061 {
1062 breakpoint *b;
1063
1064 if (is_tracepoint_type (type))
1065 b = new tracepoint ();
1066 else if (is_longjmp_type (type))
1067 b = new longjmp_breakpoint ();
1068 else
1069 b = new breakpoint ();
1070
1071 return std::unique_ptr<breakpoint> (b);
1072 }
1073
1074 /* A helper function that validates that COMMANDS are valid for a
1075 breakpoint. This function will throw an exception if a problem is
1076 found. */
1077
1078 static void
1079 validate_commands_for_breakpoint (struct breakpoint *b,
1080 struct command_line *commands)
1081 {
1082 if (is_tracepoint (b))
1083 {
1084 struct tracepoint *t = (struct tracepoint *) b;
1085 struct command_line *c;
1086 struct command_line *while_stepping = 0;
1087
1088 /* Reset the while-stepping step count. The previous commands
1089 might have included a while-stepping action, while the new
1090 ones might not. */
1091 t->step_count = 0;
1092
1093 /* We need to verify that each top-level element of commands is
1094 valid for tracepoints, that there's at most one
1095 while-stepping element, and that the while-stepping's body
1096 has valid tracing commands excluding nested while-stepping.
1097 We also need to validate the tracepoint action line in the
1098 context of the tracepoint --- validate_actionline actually
1099 has side effects, like setting the tracepoint's
1100 while-stepping STEP_COUNT, in addition to checking if the
1101 collect/teval actions parse and make sense in the
1102 tracepoint's context. */
1103 for (c = commands; c; c = c->next)
1104 {
1105 if (c->control_type == while_stepping_control)
1106 {
1107 if (b->type == bp_fast_tracepoint)
1108 error (_("The 'while-stepping' command "
1109 "cannot be used for fast tracepoint"));
1110 else if (b->type == bp_static_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for static tracepoint"));
1113
1114 if (while_stepping)
1115 error (_("The 'while-stepping' command "
1116 "can be used only once"));
1117 else
1118 while_stepping = c;
1119 }
1120
1121 validate_actionline (c->line, b);
1122 }
1123 if (while_stepping)
1124 {
1125 struct command_line *c2;
1126
1127 gdb_assert (while_stepping->body_list_1 == nullptr);
1128 c2 = while_stepping->body_list_0.get ();
1129 for (; c2; c2 = c2->next)
1130 {
1131 if (c2->control_type == while_stepping_control)
1132 error (_("The 'while-stepping' command cannot be nested"));
1133 }
1134 }
1135 }
1136 else
1137 {
1138 check_no_tracepoint_commands (commands);
1139 }
1140 }
1141
1142 /* Return a vector of all the static tracepoints set at ADDR. The
1143 caller is responsible for releasing the vector. */
1144
1145 std::vector<breakpoint *>
1146 static_tracepoints_here (CORE_ADDR addr)
1147 {
1148 struct breakpoint *b;
1149 std::vector<breakpoint *> found;
1150 struct bp_location *loc;
1151
1152 ALL_BREAKPOINTS (b)
1153 if (b->type == bp_static_tracepoint)
1154 {
1155 for (loc = b->loc; loc; loc = loc->next)
1156 if (loc->address == addr)
1157 found.push_back (b);
1158 }
1159
1160 return found;
1161 }
1162
1163 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1164 validate that only allowed commands are included. */
1165
1166 void
1167 breakpoint_set_commands (struct breakpoint *b,
1168 counted_command_line &&commands)
1169 {
1170 validate_commands_for_breakpoint (b, commands.get ());
1171
1172 b->commands = std::move (commands);
1173 gdb::observers::breakpoint_modified.notify (b);
1174 }
1175
1176 /* Set the internal `silent' flag on the breakpoint. Note that this
1177 is not the same as the "silent" that may appear in the breakpoint's
1178 commands. */
1179
1180 void
1181 breakpoint_set_silent (struct breakpoint *b, int silent)
1182 {
1183 int old_silent = b->silent;
1184
1185 b->silent = silent;
1186 if (old_silent != silent)
1187 gdb::observers::breakpoint_modified.notify (b);
1188 }
1189
1190 /* Set the thread for this breakpoint. If THREAD is -1, make the
1191 breakpoint work for any thread. */
1192
1193 void
1194 breakpoint_set_thread (struct breakpoint *b, int thread)
1195 {
1196 int old_thread = b->thread;
1197
1198 b->thread = thread;
1199 if (old_thread != thread)
1200 gdb::observers::breakpoint_modified.notify (b);
1201 }
1202
1203 /* Set the task for this breakpoint. If TASK is 0, make the
1204 breakpoint work for any task. */
1205
1206 void
1207 breakpoint_set_task (struct breakpoint *b, int task)
1208 {
1209 int old_task = b->task;
1210
1211 b->task = task;
1212 if (old_task != task)
1213 gdb::observers::breakpoint_modified.notify (b);
1214 }
1215
1216 static void
1217 commands_command_1 (const char *arg, int from_tty,
1218 struct command_line *control)
1219 {
1220 counted_command_line cmd;
1221 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1222 NULL after the call to read_command_lines if the user provides an empty
1223 list of command by just typing "end". */
1224 bool cmd_read = false;
1225
1226 std::string new_arg;
1227
1228 if (arg == NULL || !*arg)
1229 {
1230 if (breakpoint_count - prev_breakpoint_count > 1)
1231 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1232 breakpoint_count);
1233 else if (breakpoint_count > 0)
1234 new_arg = string_printf ("%d", breakpoint_count);
1235 arg = new_arg.c_str ();
1236 }
1237
1238 map_breakpoint_numbers
1239 (arg, [&] (breakpoint *b)
1240 {
1241 if (!cmd_read)
1242 {
1243 gdb_assert (cmd == NULL);
1244 if (control != NULL)
1245 cmd = control->body_list_0;
1246 else
1247 {
1248 std::string str
1249 = string_printf (_("Type commands for breakpoint(s) "
1250 "%s, one per line."),
1251 arg);
1252
1253 auto do_validate = [=] (const char *line)
1254 {
1255 validate_actionline (line, b);
1256 };
1257 gdb::function_view<void (const char *)> validator;
1258 if (is_tracepoint (b))
1259 validator = do_validate;
1260
1261 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1262 }
1263 cmd_read = true;
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (b->watchpoint_thread == null_ptid
1553 || (inferior_ptid == b->watchpoint_thread
1554 && !inferior_thread ()->executing)));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 b->val = NULL;
1744 b->val_valid = 0;
1745
1746 /* Note that unlike with breakpoints, the watchpoint's condition
1747 expression is stored in the breakpoint object, not in the
1748 locations (re)created below. */
1749 if (b->cond_string != NULL)
1750 {
1751 b->cond_exp.reset ();
1752
1753 s = b->cond_string;
1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1755 }
1756 }
1757
1758 /* If we failed to parse the expression, for example because
1759 it refers to a global variable in a not-yet-loaded shared library,
1760 don't try to insert watchpoint. We don't automatically delete
1761 such watchpoint, though, since failure to parse expression
1762 is different from out-of-scope watchpoint. */
1763 if (!target_has_execution)
1764 {
1765 /* Without execution, memory can't change. No use to try and
1766 set watchpoint locations. The watchpoint will be reset when
1767 the target gains execution, through breakpoint_re_set. */
1768 if (!can_use_hw_watchpoints)
1769 {
1770 if (b->ops->works_in_software_mode (b))
1771 b->type = bp_watchpoint;
1772 else
1773 error (_("Can't set read/access watchpoint when "
1774 "hardware watchpoints are disabled."));
1775 }
1776 }
1777 else if (within_current_scope && b->exp)
1778 {
1779 int pc = 0;
1780 std::vector<value_ref_ptr> val_chain;
1781 struct value *v, *result;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 v = extract_bitfield_from_watchpoint_value (b, v);
1796 b->val = release_value (v);
1797 b->val_valid = 1;
1798 }
1799
1800 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1801
1802 /* Look at each value on the value chain. */
1803 gdb_assert (!val_chain.empty ());
1804 for (const value_ref_ptr &iter : val_chain)
1805 {
1806 v = iter.get ();
1807
1808 /* If it's a memory location, and GDB actually needed
1809 its contents to evaluate the expression, then we
1810 must watch it. If the first value returned is
1811 still lazy, that means an error occurred reading it;
1812 watch it anyway in case it becomes readable. */
1813 if (VALUE_LVAL (v) == lval_memory
1814 && (v == val_chain[0] || ! value_lazy (v)))
1815 {
1816 struct type *vtype = check_typedef (value_type (v));
1817
1818 /* We only watch structs and arrays if user asked
1819 for it explicitly, never if they just happen to
1820 appear in the middle of some value chain. */
1821 if (v == result
1822 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1823 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1824 {
1825 CORE_ADDR addr;
1826 enum target_hw_bp_type type;
1827 struct bp_location *loc, **tmp;
1828 int bitpos = 0, bitsize = 0;
1829
1830 if (value_bitsize (v) != 0)
1831 {
1832 /* Extract the bit parameters out from the bitfield
1833 sub-expression. */
1834 bitpos = value_bitpos (v);
1835 bitsize = value_bitsize (v);
1836 }
1837 else if (v == result && b->val_bitsize != 0)
1838 {
1839 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1840 lvalue whose bit parameters are saved in the fields
1841 VAL_BITPOS and VAL_BITSIZE. */
1842 bitpos = b->val_bitpos;
1843 bitsize = b->val_bitsize;
1844 }
1845
1846 addr = value_address (v);
1847 if (bitsize != 0)
1848 {
1849 /* Skip the bytes that don't contain the bitfield. */
1850 addr += bitpos / 8;
1851 }
1852
1853 type = hw_write;
1854 if (b->type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (b);
1860 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = address_significant (loc->gdbarch, addr);
1867
1868 if (bitsize != 0)
1869 {
1870 /* Just cover the bytes that make up the bitfield. */
1871 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1872 }
1873 else
1874 loc->length = TYPE_LENGTH (value_type (v));
1875
1876 loc->watchpoint_type = type;
1877 }
1878 }
1879 }
1880
1881 /* Change the type of breakpoint between hardware assisted or
1882 an ordinary watchpoint depending on the hardware support
1883 and free hardware slots. REPARSE is set when the inferior
1884 is started. */
1885 if (reparse)
1886 {
1887 int reg_cnt;
1888 enum bp_loc_type loc_type;
1889 struct bp_location *bl;
1890
1891 reg_cnt = can_use_hardware_watchpoint (val_chain);
1892
1893 if (reg_cnt)
1894 {
1895 int i, target_resources_ok, other_type_used;
1896 enum bptype type;
1897
1898 /* Use an exact watchpoint when there's only one memory region to be
1899 watched, and only one debug register is needed to watch it. */
1900 b->exact = target_exact_watchpoints && reg_cnt == 1;
1901
1902 /* We need to determine how many resources are already
1903 used for all other hardware watchpoints plus this one
1904 to see if we still have enough resources to also fit
1905 this watchpoint in as well. */
1906
1907 /* If this is a software watchpoint, we try to turn it
1908 to a hardware one -- count resources as if B was of
1909 hardware watchpoint type. */
1910 type = b->type;
1911 if (type == bp_watchpoint)
1912 type = bp_hardware_watchpoint;
1913
1914 /* This watchpoint may or may not have been placed on
1915 the list yet at this point (it won't be in the list
1916 if we're trying to create it for the first time,
1917 through watch_command), so always account for it
1918 manually. */
1919
1920 /* Count resources used by all watchpoints except B. */
1921 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1922
1923 /* Add in the resources needed for B. */
1924 i += hw_watchpoint_use_count (b);
1925
1926 target_resources_ok
1927 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1928 if (target_resources_ok <= 0)
1929 {
1930 int sw_mode = b->ops->works_in_software_mode (b);
1931
1932 if (target_resources_ok == 0 && !sw_mode)
1933 error (_("Target does not support this type of "
1934 "hardware watchpoint."));
1935 else if (target_resources_ok < 0 && !sw_mode)
1936 error (_("There are not enough available hardware "
1937 "resources for this watchpoint."));
1938
1939 /* Downgrade to software watchpoint. */
1940 b->type = bp_watchpoint;
1941 }
1942 else
1943 {
1944 /* If this was a software watchpoint, we've just
1945 found we have enough resources to turn it to a
1946 hardware watchpoint. Otherwise, this is a
1947 nop. */
1948 b->type = type;
1949 }
1950 }
1951 else if (!b->ops->works_in_software_mode (b))
1952 {
1953 if (!can_use_hw_watchpoints)
1954 error (_("Can't set read/access watchpoint when "
1955 "hardware watchpoints are disabled."));
1956 else
1957 error (_("Expression cannot be implemented with "
1958 "read/access watchpoint."));
1959 }
1960 else
1961 b->type = bp_watchpoint;
1962
1963 loc_type = (b->type == bp_watchpoint? bp_loc_other
1964 : bp_loc_hardware_watchpoint);
1965 for (bl = b->loc; bl; bl = bl->next)
1966 bl->loc_type = loc_type;
1967 }
1968
1969 /* If a software watchpoint is not watching any memory, then the
1970 above left it without any location set up. But,
1971 bpstat_stop_status requires a location to be able to report
1972 stops, so make sure there's at least a dummy one. */
1973 if (b->type == bp_watchpoint && b->loc == NULL)
1974 software_watchpoint_add_no_memory_location (b, frame_pspace);
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 /* Don't insert a breakpoint if we're trying to step past its
2023 location, except if the breakpoint is a single-step breakpoint,
2024 and the breakpoint's thread is the thread which is stepping past
2025 a breakpoint. */
2026 if ((bl->loc_type == bp_loc_software_breakpoint
2027 || bl->loc_type == bp_loc_hardware_breakpoint)
2028 && stepping_past_instruction_at (bl->pspace->aspace,
2029 bl->address)
2030 /* The single-step breakpoint may be inserted at the location
2031 we're trying to step if the instruction branches to itself.
2032 However, the instruction won't be executed at all and it may
2033 break the semantics of the instruction, for example, the
2034 instruction is a conditional branch or updates some flags.
2035 We can't fix it unless GDB is able to emulate the instruction
2036 or switch to displaced stepping. */
2037 && !(bl->owner->type == bp_single_step
2038 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2039 {
2040 if (debug_infrun)
2041 {
2042 fprintf_unfiltered (gdb_stdlog,
2043 "infrun: skipping breakpoint: "
2044 "stepping past insn at: %s\n",
2045 paddress (bl->gdbarch, bl->address));
2046 }
2047 return 0;
2048 }
2049
2050 /* Don't insert watchpoints if we're trying to step past the
2051 instruction that triggered one. */
2052 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2053 && stepping_past_nonsteppable_watchpoint ())
2054 {
2055 if (debug_infrun)
2056 {
2057 fprintf_unfiltered (gdb_stdlog,
2058 "infrun: stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address),
2061 bl->length);
2062 }
2063 return 0;
2064 }
2065
2066 return 1;
2067 }
2068
2069 /* Same as should_be_inserted but does the check assuming
2070 that the location is not duplicated. */
2071
2072 static int
2073 unduplicated_should_be_inserted (struct bp_location *bl)
2074 {
2075 int result;
2076 const int save_duplicate = bl->duplicate;
2077
2078 bl->duplicate = 0;
2079 result = should_be_inserted (bl);
2080 bl->duplicate = save_duplicate;
2081 return result;
2082 }
2083
2084 /* Parses a conditional described by an expression COND into an
2085 agent expression bytecode suitable for evaluation
2086 by the bytecode interpreter. Return NULL if there was
2087 any error during parsing. */
2088
2089 static agent_expr_up
2090 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2091 {
2092 if (cond == NULL)
2093 return NULL;
2094
2095 agent_expr_up aexpr;
2096
2097 /* We don't want to stop processing, so catch any errors
2098 that may show up. */
2099 TRY
2100 {
2101 aexpr = gen_eval_for_expr (scope, cond);
2102 }
2103
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 /* If we got here, it means the condition could not be parsed to a valid
2107 bytecode expression and thus can't be evaluated on the target's side.
2108 It's no use iterating through the conditions. */
2109 }
2110 END_CATCH
2111
2112 /* We have a valid agent expression. */
2113 return aexpr;
2114 }
2115
2116 /* Based on location BL, create a list of breakpoint conditions to be
2117 passed on to the target. If we have duplicated locations with different
2118 conditions, we will add such conditions to the list. The idea is that the
2119 target will evaluate the list of conditions and will only notify GDB when
2120 one of them is true. */
2121
2122 static void
2123 build_target_condition_list (struct bp_location *bl)
2124 {
2125 struct bp_location **locp = NULL, **loc2p;
2126 int null_condition_or_parse_error = 0;
2127 int modified = bl->needs_update;
2128 struct bp_location *loc;
2129
2130 /* Release conditions left over from a previous insert. */
2131 bl->target_info.conditions.clear ();
2132
2133 /* This is only meaningful if the target is
2134 evaluating conditions and if the user has
2135 opted for condition evaluation on the target's
2136 side. */
2137 if (gdb_evaluates_breakpoint_condition_p ()
2138 || !target_supports_evaluation_of_breakpoint_conditions ())
2139 return;
2140
2141 /* Do a first pass to check for locations with no assigned
2142 conditions or conditions that fail to parse to a valid agent expression
2143 bytecode. If any of these happen, then it's no use to send conditions
2144 to the target since this location will always trigger and generate a
2145 response back to GDB. */
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 if (modified)
2152 {
2153 /* Re-parse the conditions since something changed. In that
2154 case we already freed the condition bytecodes (see
2155 force_breakpoint_reinsertion). We just
2156 need to parse the condition to bytecodes again. */
2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2158 loc->cond.get ());
2159 }
2160
2161 /* If we have a NULL bytecode expression, it means something
2162 went wrong or we have a null condition expression. */
2163 if (!loc->cond_bytecode)
2164 {
2165 null_condition_or_parse_error = 1;
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* If any of these happened, it means we will have to evaluate the conditions
2172 for the location's address on gdb's side. It is no use keeping bytecodes
2173 for all the other duplicate locations, thus we free all of them here.
2174
2175 This is so we have a finer control over which locations' conditions are
2176 being evaluated by GDB or the remote stub. */
2177 if (null_condition_or_parse_error)
2178 {
2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2180 {
2181 loc = (*loc2p);
2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2183 {
2184 /* Only go as far as the first NULL bytecode is
2185 located. */
2186 if (!loc->cond_bytecode)
2187 return;
2188
2189 loc->cond_bytecode.reset ();
2190 }
2191 }
2192 }
2193
2194 /* No NULL conditions or failed bytecode generation. Build a condition list
2195 for this location's address. */
2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2197 {
2198 loc = (*loc2p);
2199 if (loc->cond
2200 && is_breakpoint (loc->owner)
2201 && loc->pspace->num == bl->pspace->num
2202 && loc->owner->enable_state == bp_enabled
2203 && loc->enabled)
2204 {
2205 /* Add the condition to the vector. This will be used later
2206 to send the conditions to the target. */
2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 /* Parses a command described by string CMD into an agent expression
2215 bytecode suitable for evaluation by the bytecode interpreter.
2216 Return NULL if there was any error during parsing. */
2217
2218 static agent_expr_up
2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2220 {
2221 const char *cmdrest;
2222 const char *format_start, *format_end;
2223 struct gdbarch *gdbarch = get_current_arch ();
2224
2225 if (cmd == NULL)
2226 return NULL;
2227
2228 cmdrest = cmd;
2229
2230 if (*cmdrest == ',')
2231 ++cmdrest;
2232 cmdrest = skip_spaces (cmdrest);
2233
2234 if (*cmdrest++ != '"')
2235 error (_("No format string following the location"));
2236
2237 format_start = cmdrest;
2238
2239 format_pieces fpieces (&cmdrest);
2240
2241 format_end = cmdrest;
2242
2243 if (*cmdrest++ != '"')
2244 error (_("Bad format string, non-terminated '\"'."));
2245
2246 cmdrest = skip_spaces (cmdrest);
2247
2248 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2249 error (_("Invalid argument syntax"));
2250
2251 if (*cmdrest == ',')
2252 cmdrest++;
2253 cmdrest = skip_spaces (cmdrest);
2254
2255 /* For each argument, make an expression. */
2256
2257 std::vector<struct expression *> argvec;
2258 while (*cmdrest != '\0')
2259 {
2260 const char *cmd1;
2261
2262 cmd1 = cmdrest;
2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2264 argvec.push_back (expr.release ());
2265 cmdrest = cmd1;
2266 if (*cmdrest == ',')
2267 ++cmdrest;
2268 }
2269
2270 agent_expr_up aexpr;
2271
2272 /* We don't want to stop processing, so catch any errors
2273 that may show up. */
2274 TRY
2275 {
2276 aexpr = gen_printf (scope, gdbarch, 0, 0,
2277 format_start, format_end - format_start,
2278 argvec.size (), argvec.data ());
2279 }
2280 CATCH (ex, RETURN_MASK_ERROR)
2281 {
2282 /* If we got here, it means the command could not be parsed to a valid
2283 bytecode expression and thus can't be evaluated on the target's side.
2284 It's no use iterating through the other commands. */
2285 }
2286 END_CATCH
2287
2288 /* We have a valid agent expression, return it. */
2289 return aexpr;
2290 }
2291
2292 /* Based on location BL, create a list of breakpoint commands to be
2293 passed on to the target. If we have duplicated locations with
2294 different commands, we will add any such to the list. */
2295
2296 static void
2297 build_target_command_list (struct bp_location *bl)
2298 {
2299 struct bp_location **locp = NULL, **loc2p;
2300 int null_command_or_parse_error = 0;
2301 int modified = bl->needs_update;
2302 struct bp_location *loc;
2303
2304 /* Clear commands left over from a previous insert. */
2305 bl->target_info.tcommands.clear ();
2306
2307 if (!target_can_run_breakpoint_commands ())
2308 return;
2309
2310 /* For now, limit to agent-style dprintf breakpoints. */
2311 if (dprintf_style != dprintf_style_agent)
2312 return;
2313
2314 /* For now, if we have any duplicate location that isn't a dprintf,
2315 don't install the target-side commands, as that would make the
2316 breakpoint not be reported to the core, and we'd lose
2317 control. */
2318 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2319 {
2320 loc = (*loc2p);
2321 if (is_breakpoint (loc->owner)
2322 && loc->pspace->num == bl->pspace->num
2323 && loc->owner->type != bp_dprintf)
2324 return;
2325 }
2326
2327 /* Do a first pass to check for locations with no assigned
2328 conditions or conditions that fail to parse to a valid agent expression
2329 bytecode. If any of these happen, then it's no use to send conditions
2330 to the target since this location will always trigger and generate a
2331 response back to GDB. */
2332 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2333 {
2334 loc = (*loc2p);
2335 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2336 {
2337 if (modified)
2338 {
2339 /* Re-parse the commands since something changed. In that
2340 case we already freed the command bytecodes (see
2341 force_breakpoint_reinsertion). We just
2342 need to parse the command to bytecodes again. */
2343 loc->cmd_bytecode
2344 = parse_cmd_to_aexpr (bl->address,
2345 loc->owner->extra_string);
2346 }
2347
2348 /* If we have a NULL bytecode expression, it means something
2349 went wrong or we have a null command expression. */
2350 if (!loc->cmd_bytecode)
2351 {
2352 null_command_or_parse_error = 1;
2353 break;
2354 }
2355 }
2356 }
2357
2358 /* If anything failed, then we're not doing target-side commands,
2359 and so clean up. */
2360 if (null_command_or_parse_error)
2361 {
2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2363 {
2364 loc = (*loc2p);
2365 if (is_breakpoint (loc->owner)
2366 && loc->pspace->num == bl->pspace->num)
2367 {
2368 /* Only go as far as the first NULL bytecode is
2369 located. */
2370 if (loc->cmd_bytecode == NULL)
2371 return;
2372
2373 loc->cmd_bytecode.reset ();
2374 }
2375 }
2376 }
2377
2378 /* No NULL commands or failed bytecode generation. Build a command list
2379 for this location's address. */
2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2381 {
2382 loc = (*loc2p);
2383 if (loc->owner->extra_string
2384 && is_breakpoint (loc->owner)
2385 && loc->pspace->num == bl->pspace->num
2386 && loc->owner->enable_state == bp_enabled
2387 && loc->enabled)
2388 {
2389 /* Add the command to the vector. This will be used later
2390 to send the commands to the target. */
2391 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2392 }
2393 }
2394
2395 bl->target_info.persist = 0;
2396 /* Maybe flag this location as persistent. */
2397 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2398 bl->target_info.persist = 1;
2399 }
2400
2401 /* Return the kind of breakpoint on address *ADDR. Get the kind
2402 of breakpoint according to ADDR except single-step breakpoint.
2403 Get the kind of single-step breakpoint according to the current
2404 registers state. */
2405
2406 static int
2407 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2408 {
2409 if (bl->owner->type == bp_single_step)
2410 {
2411 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2412 struct regcache *regcache;
2413
2414 regcache = get_thread_regcache (thr);
2415
2416 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2417 regcache, addr);
2418 }
2419 else
2420 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2421 }
2422
2423 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2424 location. Any error messages are printed to TMP_ERROR_STREAM; and
2425 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2426 Returns 0 for success, 1 if the bp_location type is not supported or
2427 -1 for failure.
2428
2429 NOTE drow/2003-09-09: This routine could be broken down to an
2430 object-style method for each breakpoint or catchpoint type. */
2431 static int
2432 insert_bp_location (struct bp_location *bl,
2433 struct ui_file *tmp_error_stream,
2434 int *disabled_breaks,
2435 int *hw_breakpoint_error,
2436 int *hw_bp_error_explained_already)
2437 {
2438 gdb_exception bp_excpt = exception_none;
2439
2440 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2441 return 0;
2442
2443 /* Note we don't initialize bl->target_info, as that wipes out
2444 the breakpoint location's shadow_contents if the breakpoint
2445 is still inserted at that location. This in turn breaks
2446 target_read_memory which depends on these buffers when
2447 a memory read is requested at the breakpoint location:
2448 Once the target_info has been wiped, we fail to see that
2449 we have a breakpoint inserted at that address and thus
2450 read the breakpoint instead of returning the data saved in
2451 the breakpoint location's shadow contents. */
2452 bl->target_info.reqstd_address = bl->address;
2453 bl->target_info.placed_address_space = bl->pspace->aspace;
2454 bl->target_info.length = bl->length;
2455
2456 /* When working with target-side conditions, we must pass all the conditions
2457 for the same breakpoint address down to the target since GDB will not
2458 insert those locations. With a list of breakpoint conditions, the target
2459 can decide when to stop and notify GDB. */
2460
2461 if (is_breakpoint (bl->owner))
2462 {
2463 build_target_condition_list (bl);
2464 build_target_command_list (bl);
2465 /* Reset the modification marker. */
2466 bl->needs_update = 0;
2467 }
2468
2469 if (bl->loc_type == bp_loc_software_breakpoint
2470 || bl->loc_type == bp_loc_hardware_breakpoint)
2471 {
2472 if (bl->owner->type != bp_hardware_breakpoint)
2473 {
2474 /* If the explicitly specified breakpoint type
2475 is not hardware breakpoint, check the memory map to see
2476 if the breakpoint address is in read only memory or not.
2477
2478 Two important cases are:
2479 - location type is not hardware breakpoint, memory
2480 is readonly. We change the type of the location to
2481 hardware breakpoint.
2482 - location type is hardware breakpoint, memory is
2483 read-write. This means we've previously made the
2484 location hardware one, but then the memory map changed,
2485 so we undo.
2486
2487 When breakpoints are removed, remove_breakpoints will use
2488 location types we've just set here, the only possible
2489 problem is that memory map has changed during running
2490 program, but it's not going to work anyway with current
2491 gdb. */
2492 struct mem_region *mr
2493 = lookup_mem_region (bl->target_info.reqstd_address);
2494
2495 if (mr)
2496 {
2497 if (automatic_hardware_breakpoints)
2498 {
2499 enum bp_loc_type new_type;
2500
2501 if (mr->attrib.mode != MEM_RW)
2502 new_type = bp_loc_hardware_breakpoint;
2503 else
2504 new_type = bp_loc_software_breakpoint;
2505
2506 if (new_type != bl->loc_type)
2507 {
2508 static int said = 0;
2509
2510 bl->loc_type = new_type;
2511 if (!said)
2512 {
2513 fprintf_filtered (gdb_stdout,
2514 _("Note: automatically using "
2515 "hardware breakpoints for "
2516 "read-only addresses.\n"));
2517 said = 1;
2518 }
2519 }
2520 }
2521 else if (bl->loc_type == bp_loc_software_breakpoint
2522 && mr->attrib.mode != MEM_RW)
2523 {
2524 fprintf_unfiltered (tmp_error_stream,
2525 _("Cannot insert breakpoint %d.\n"
2526 "Cannot set software breakpoint "
2527 "at read-only address %s\n"),
2528 bl->owner->number,
2529 paddress (bl->gdbarch, bl->address));
2530 return 1;
2531 }
2532 }
2533 }
2534
2535 /* First check to see if we have to handle an overlay. */
2536 if (overlay_debugging == ovly_off
2537 || bl->section == NULL
2538 || !(section_is_overlay (bl->section)))
2539 {
2540 /* No overlay handling: just set the breakpoint. */
2541 TRY
2542 {
2543 int val;
2544
2545 val = bl->owner->ops->insert_location (bl);
2546 if (val)
2547 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2548 }
2549 CATCH (e, RETURN_MASK_ALL)
2550 {
2551 bp_excpt = e;
2552 }
2553 END_CATCH
2554 }
2555 else
2556 {
2557 /* This breakpoint is in an overlay section.
2558 Shall we set a breakpoint at the LMA? */
2559 if (!overlay_events_enabled)
2560 {
2561 /* Yes -- overlay event support is not active,
2562 so we must try to set a breakpoint at the LMA.
2563 This will not work for a hardware breakpoint. */
2564 if (bl->loc_type == bp_loc_hardware_breakpoint)
2565 warning (_("hardware breakpoint %d not supported in overlay!"),
2566 bl->owner->number);
2567 else
2568 {
2569 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2570 bl->section);
2571 /* Set a software (trap) breakpoint at the LMA. */
2572 bl->overlay_target_info = bl->target_info;
2573 bl->overlay_target_info.reqstd_address = addr;
2574
2575 /* No overlay handling: just set the breakpoint. */
2576 TRY
2577 {
2578 int val;
2579
2580 bl->overlay_target_info.kind
2581 = breakpoint_kind (bl, &addr);
2582 bl->overlay_target_info.placed_address = addr;
2583 val = target_insert_breakpoint (bl->gdbarch,
2584 &bl->overlay_target_info);
2585 if (val)
2586 bp_excpt
2587 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2588 }
2589 CATCH (e, RETURN_MASK_ALL)
2590 {
2591 bp_excpt = e;
2592 }
2593 END_CATCH
2594
2595 if (bp_excpt.reason != 0)
2596 fprintf_unfiltered (tmp_error_stream,
2597 "Overlay breakpoint %d "
2598 "failed: in ROM?\n",
2599 bl->owner->number);
2600 }
2601 }
2602 /* Shall we set a breakpoint at the VMA? */
2603 if (section_is_mapped (bl->section))
2604 {
2605 /* Yes. This overlay section is mapped into memory. */
2606 TRY
2607 {
2608 int val;
2609
2610 val = bl->owner->ops->insert_location (bl);
2611 if (val)
2612 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2613 }
2614 CATCH (e, RETURN_MASK_ALL)
2615 {
2616 bp_excpt = e;
2617 }
2618 END_CATCH
2619 }
2620 else
2621 {
2622 /* No. This breakpoint will not be inserted.
2623 No error, but do not mark the bp as 'inserted'. */
2624 return 0;
2625 }
2626 }
2627
2628 if (bp_excpt.reason != 0)
2629 {
2630 /* Can't set the breakpoint. */
2631
2632 /* In some cases, we might not be able to insert a
2633 breakpoint in a shared library that has already been
2634 removed, but we have not yet processed the shlib unload
2635 event. Unfortunately, some targets that implement
2636 breakpoint insertion themselves can't tell why the
2637 breakpoint insertion failed (e.g., the remote target
2638 doesn't define error codes), so we must treat generic
2639 errors as memory errors. */
2640 if (bp_excpt.reason == RETURN_ERROR
2641 && (bp_excpt.error == GENERIC_ERROR
2642 || bp_excpt.error == MEMORY_ERROR)
2643 && bl->loc_type == bp_loc_software_breakpoint
2644 && (solib_name_from_address (bl->pspace, bl->address)
2645 || shared_objfile_contains_address_p (bl->pspace,
2646 bl->address)))
2647 {
2648 /* See also: disable_breakpoints_in_shlibs. */
2649 bl->shlib_disabled = 1;
2650 gdb::observers::breakpoint_modified.notify (bl->owner);
2651 if (!*disabled_breaks)
2652 {
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Cannot insert breakpoint %d.\n",
2655 bl->owner->number);
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Temporarily disabling shared "
2658 "library breakpoints:\n");
2659 }
2660 *disabled_breaks = 1;
2661 fprintf_unfiltered (tmp_error_stream,
2662 "breakpoint #%d\n", bl->owner->number);
2663 return 0;
2664 }
2665 else
2666 {
2667 if (bl->loc_type == bp_loc_hardware_breakpoint)
2668 {
2669 *hw_breakpoint_error = 1;
2670 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2671 fprintf_unfiltered (tmp_error_stream,
2672 "Cannot insert hardware breakpoint %d%s",
2673 bl->owner->number,
2674 bp_excpt.message ? ":" : ".\n");
2675 if (bp_excpt.message != NULL)
2676 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2677 bp_excpt.message);
2678 }
2679 else
2680 {
2681 if (bp_excpt.message == NULL)
2682 {
2683 std::string message
2684 = memory_error_message (TARGET_XFER_E_IO,
2685 bl->gdbarch, bl->address);
2686
2687 fprintf_unfiltered (tmp_error_stream,
2688 "Cannot insert breakpoint %d.\n"
2689 "%s\n",
2690 bl->owner->number, message.c_str ());
2691 }
2692 else
2693 {
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert breakpoint %d: %s\n",
2696 bl->owner->number,
2697 bp_excpt.message);
2698 }
2699 }
2700 return 1;
2701
2702 }
2703 }
2704 else
2705 bl->inserted = 1;
2706
2707 return 0;
2708 }
2709
2710 else if (bl->loc_type == bp_loc_hardware_watchpoint
2711 /* NOTE drow/2003-09-08: This state only exists for removing
2712 watchpoints. It's not clear that it's necessary... */
2713 && bl->owner->disposition != disp_del_at_next_stop)
2714 {
2715 int val;
2716
2717 gdb_assert (bl->owner->ops != NULL
2718 && bl->owner->ops->insert_location != NULL);
2719
2720 val = bl->owner->ops->insert_location (bl);
2721
2722 /* If trying to set a read-watchpoint, and it turns out it's not
2723 supported, try emulating one with an access watchpoint. */
2724 if (val == 1 && bl->watchpoint_type == hw_read)
2725 {
2726 struct bp_location *loc, **loc_temp;
2727
2728 /* But don't try to insert it, if there's already another
2729 hw_access location that would be considered a duplicate
2730 of this one. */
2731 ALL_BP_LOCATIONS (loc, loc_temp)
2732 if (loc != bl
2733 && loc->watchpoint_type == hw_access
2734 && watchpoint_locations_match (bl, loc))
2735 {
2736 bl->duplicate = 1;
2737 bl->inserted = 1;
2738 bl->target_info = loc->target_info;
2739 bl->watchpoint_type = hw_access;
2740 val = 0;
2741 break;
2742 }
2743
2744 if (val == 1)
2745 {
2746 bl->watchpoint_type = hw_access;
2747 val = bl->owner->ops->insert_location (bl);
2748
2749 if (val)
2750 /* Back to the original value. */
2751 bl->watchpoint_type = hw_read;
2752 }
2753 }
2754
2755 bl->inserted = (val == 0);
2756 }
2757
2758 else if (bl->owner->type == bp_catchpoint)
2759 {
2760 int val;
2761
2762 gdb_assert (bl->owner->ops != NULL
2763 && bl->owner->ops->insert_location != NULL);
2764
2765 val = bl->owner->ops->insert_location (bl);
2766 if (val)
2767 {
2768 bl->owner->enable_state = bp_disabled;
2769
2770 if (val == 1)
2771 warning (_("\
2772 Error inserting catchpoint %d: Your system does not support this type\n\
2773 of catchpoint."), bl->owner->number);
2774 else
2775 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2776 }
2777
2778 bl->inserted = (val == 0);
2779
2780 /* We've already printed an error message if there was a problem
2781 inserting this catchpoint, and we've disabled the catchpoint,
2782 so just return success. */
2783 return 0;
2784 }
2785
2786 return 0;
2787 }
2788
2789 /* This function is called when program space PSPACE is about to be
2790 deleted. It takes care of updating breakpoints to not reference
2791 PSPACE anymore. */
2792
2793 void
2794 breakpoint_program_space_exit (struct program_space *pspace)
2795 {
2796 struct breakpoint *b, *b_temp;
2797 struct bp_location *loc, **loc_temp;
2798
2799 /* Remove any breakpoint that was set through this program space. */
2800 ALL_BREAKPOINTS_SAFE (b, b_temp)
2801 {
2802 if (b->pspace == pspace)
2803 delete_breakpoint (b);
2804 }
2805
2806 /* Breakpoints set through other program spaces could have locations
2807 bound to PSPACE as well. Remove those. */
2808 ALL_BP_LOCATIONS (loc, loc_temp)
2809 {
2810 struct bp_location *tmp;
2811
2812 if (loc->pspace == pspace)
2813 {
2814 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2815 if (loc->owner->loc == loc)
2816 loc->owner->loc = loc->next;
2817 else
2818 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2819 if (tmp->next == loc)
2820 {
2821 tmp->next = loc->next;
2822 break;
2823 }
2824 }
2825 }
2826
2827 /* Now update the global location list to permanently delete the
2828 removed locations above. */
2829 update_global_location_list (UGLL_DONT_INSERT);
2830 }
2831
2832 /* Make sure all breakpoints are inserted in inferior.
2833 Throws exception on any error.
2834 A breakpoint that is already inserted won't be inserted
2835 again, so calling this function twice is safe. */
2836 void
2837 insert_breakpoints (void)
2838 {
2839 struct breakpoint *bpt;
2840
2841 ALL_BREAKPOINTS (bpt)
2842 if (is_hardware_watchpoint (bpt))
2843 {
2844 struct watchpoint *w = (struct watchpoint *) bpt;
2845
2846 update_watchpoint (w, 0 /* don't reparse. */);
2847 }
2848
2849 /* Updating watchpoints creates new locations, so update the global
2850 location list. Explicitly tell ugll to insert locations and
2851 ignore breakpoints_always_inserted_mode. */
2852 update_global_location_list (UGLL_INSERT);
2853 }
2854
2855 /* Invoke CALLBACK for each of bp_location. */
2856
2857 void
2858 iterate_over_bp_locations (walk_bp_location_callback callback)
2859 {
2860 struct bp_location *loc, **loc_tmp;
2861
2862 ALL_BP_LOCATIONS (loc, loc_tmp)
2863 {
2864 callback (loc, NULL);
2865 }
2866 }
2867
2868 /* This is used when we need to synch breakpoint conditions between GDB and the
2869 target. It is the case with deleting and disabling of breakpoints when using
2870 always-inserted mode. */
2871
2872 static void
2873 update_inserted_breakpoint_locations (void)
2874 {
2875 struct bp_location *bl, **blp_tmp;
2876 int error_flag = 0;
2877 int val = 0;
2878 int disabled_breaks = 0;
2879 int hw_breakpoint_error = 0;
2880 int hw_bp_details_reported = 0;
2881
2882 string_file tmp_error_stream;
2883
2884 /* Explicitly mark the warning -- this will only be printed if
2885 there was an error. */
2886 tmp_error_stream.puts ("Warning:\n");
2887
2888 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2889
2890 ALL_BP_LOCATIONS (bl, blp_tmp)
2891 {
2892 /* We only want to update software breakpoints and hardware
2893 breakpoints. */
2894 if (!is_breakpoint (bl->owner))
2895 continue;
2896
2897 /* We only want to update locations that are already inserted
2898 and need updating. This is to avoid unwanted insertion during
2899 deletion of breakpoints. */
2900 if (!bl->inserted || !bl->needs_update)
2901 continue;
2902
2903 switch_to_program_space_and_thread (bl->pspace);
2904
2905 /* For targets that support global breakpoints, there's no need
2906 to select an inferior to insert breakpoint to. In fact, even
2907 if we aren't attached to any process yet, we should still
2908 insert breakpoints. */
2909 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2910 && inferior_ptid == null_ptid)
2911 continue;
2912
2913 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2914 &hw_breakpoint_error, &hw_bp_details_reported);
2915 if (val)
2916 error_flag = val;
2917 }
2918
2919 if (error_flag)
2920 {
2921 target_terminal::ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924 }
2925
2926 /* Used when starting or continuing the program. */
2927
2928 static void
2929 insert_breakpoint_locations (void)
2930 {
2931 struct breakpoint *bpt;
2932 struct bp_location *bl, **blp_tmp;
2933 int error_flag = 0;
2934 int val = 0;
2935 int disabled_breaks = 0;
2936 int hw_breakpoint_error = 0;
2937 int hw_bp_error_explained_already = 0;
2938
2939 string_file tmp_error_stream;
2940
2941 /* Explicitly mark the warning -- this will only be printed if
2942 there was an error. */
2943 tmp_error_stream.puts ("Warning:\n");
2944
2945 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2946
2947 ALL_BP_LOCATIONS (bl, blp_tmp)
2948 {
2949 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2950 continue;
2951
2952 /* There is no point inserting thread-specific breakpoints if
2953 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2954 has BL->OWNER always non-NULL. */
2955 if (bl->owner->thread != -1
2956 && !valid_global_thread_id (bl->owner->thread))
2957 continue;
2958
2959 switch_to_program_space_and_thread (bl->pspace);
2960
2961 /* For targets that support global breakpoints, there's no need
2962 to select an inferior to insert breakpoint to. In fact, even
2963 if we aren't attached to any process yet, we should still
2964 insert breakpoints. */
2965 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2966 && inferior_ptid == null_ptid)
2967 continue;
2968
2969 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2970 &hw_breakpoint_error, &hw_bp_error_explained_already);
2971 if (val)
2972 error_flag = val;
2973 }
2974
2975 /* If we failed to insert all locations of a watchpoint, remove
2976 them, as half-inserted watchpoint is of limited use. */
2977 ALL_BREAKPOINTS (bpt)
2978 {
2979 int some_failed = 0;
2980 struct bp_location *loc;
2981
2982 if (!is_hardware_watchpoint (bpt))
2983 continue;
2984
2985 if (!breakpoint_enabled (bpt))
2986 continue;
2987
2988 if (bpt->disposition == disp_del_at_next_stop)
2989 continue;
2990
2991 for (loc = bpt->loc; loc; loc = loc->next)
2992 if (!loc->inserted && should_be_inserted (loc))
2993 {
2994 some_failed = 1;
2995 break;
2996 }
2997 if (some_failed)
2998 {
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (loc->inserted)
3001 remove_breakpoint (loc);
3002
3003 hw_breakpoint_error = 1;
3004 tmp_error_stream.printf ("Could not insert "
3005 "hardware watchpoint %d.\n",
3006 bpt->number);
3007 error_flag = -1;
3008 }
3009 }
3010
3011 if (error_flag)
3012 {
3013 /* If a hardware breakpoint or watchpoint was inserted, add a
3014 message about possibly exhausted resources. */
3015 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3016 {
3017 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3018 You may have requested too many hardware breakpoints/watchpoints.\n");
3019 }
3020 target_terminal::ours_for_output ();
3021 error_stream (tmp_error_stream);
3022 }
3023 }
3024
3025 /* Used when the program stops.
3026 Returns zero if successful, or non-zero if there was a problem
3027 removing a breakpoint location. */
3028
3029 int
3030 remove_breakpoints (void)
3031 {
3032 struct bp_location *bl, **blp_tmp;
3033 int val = 0;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (bl->inserted && !is_tracepoint (bl->owner))
3038 val |= remove_breakpoint (bl);
3039 }
3040 return val;
3041 }
3042
3043 /* When a thread exits, remove breakpoints that are related to
3044 that thread. */
3045
3046 static void
3047 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3048 {
3049 struct breakpoint *b, *b_tmp;
3050
3051 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3052 {
3053 if (b->thread == tp->global_num && user_breakpoint_p (b))
3054 {
3055 b->disposition = disp_del_at_next_stop;
3056
3057 printf_filtered (_("\
3058 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3059 b->number, print_thread_id (tp));
3060
3061 /* Hide it from the user. */
3062 b->number = 0;
3063 }
3064 }
3065 }
3066
3067 /* Remove breakpoints of inferior INF. */
3068
3069 int
3070 remove_breakpoints_inf (inferior *inf)
3071 {
3072 struct bp_location *bl, **blp_tmp;
3073 int val;
3074
3075 ALL_BP_LOCATIONS (bl, blp_tmp)
3076 {
3077 if (bl->pspace != inf->pspace)
3078 continue;
3079
3080 if (bl->inserted && !bl->target_info.persist)
3081 {
3082 val = remove_breakpoint (bl);
3083 if (val != 0)
3084 return val;
3085 }
3086 }
3087 return 0;
3088 }
3089
3090 static int internal_breakpoint_number = -1;
3091
3092 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3093 If INTERNAL is non-zero, the breakpoint number will be populated
3094 from internal_breakpoint_number and that variable decremented.
3095 Otherwise the breakpoint number will be populated from
3096 breakpoint_count and that value incremented. Internal breakpoints
3097 do not set the internal var bpnum. */
3098 static void
3099 set_breakpoint_number (int internal, struct breakpoint *b)
3100 {
3101 if (internal)
3102 b->number = internal_breakpoint_number--;
3103 else
3104 {
3105 set_breakpoint_count (breakpoint_count + 1);
3106 b->number = breakpoint_count;
3107 }
3108 }
3109
3110 static struct breakpoint *
3111 create_internal_breakpoint (struct gdbarch *gdbarch,
3112 CORE_ADDR address, enum bptype type,
3113 const struct breakpoint_ops *ops)
3114 {
3115 symtab_and_line sal;
3116 sal.pc = address;
3117 sal.section = find_pc_overlay (sal.pc);
3118 sal.pspace = current_program_space;
3119
3120 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3121 b->number = internal_breakpoint_number--;
3122 b->disposition = disp_donttouch;
3123
3124 return b;
3125 }
3126
3127 static const char *const longjmp_names[] =
3128 {
3129 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3130 };
3131 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3132
3133 /* Per-objfile data private to breakpoint.c. */
3134 struct breakpoint_objfile_data
3135 {
3136 /* Minimal symbol for "_ovly_debug_event" (if any). */
3137 struct bound_minimal_symbol overlay_msym {};
3138
3139 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3140 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3141
3142 /* True if we have looked for longjmp probes. */
3143 int longjmp_searched = 0;
3144
3145 /* SystemTap probe points for longjmp (if any). These are non-owning
3146 references. */
3147 std::vector<probe *> longjmp_probes;
3148
3149 /* Minimal symbol for "std::terminate()" (if any). */
3150 struct bound_minimal_symbol terminate_msym {};
3151
3152 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3153 struct bound_minimal_symbol exception_msym {};
3154
3155 /* True if we have looked for exception probes. */
3156 int exception_searched = 0;
3157
3158 /* SystemTap probe points for unwinding (if any). These are non-owning
3159 references. */
3160 std::vector<probe *> exception_probes;
3161 };
3162
3163 static const struct objfile_data *breakpoint_objfile_key;
3164
3165 /* Minimal symbol not found sentinel. */
3166 static struct minimal_symbol msym_not_found;
3167
3168 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3169
3170 static int
3171 msym_not_found_p (const struct minimal_symbol *msym)
3172 {
3173 return msym == &msym_not_found;
3174 }
3175
3176 /* Return per-objfile data needed by breakpoint.c.
3177 Allocate the data if necessary. */
3178
3179 static struct breakpoint_objfile_data *
3180 get_breakpoint_objfile_data (struct objfile *objfile)
3181 {
3182 struct breakpoint_objfile_data *bp_objfile_data;
3183
3184 bp_objfile_data = ((struct breakpoint_objfile_data *)
3185 objfile_data (objfile, breakpoint_objfile_key));
3186 if (bp_objfile_data == NULL)
3187 {
3188 bp_objfile_data = new breakpoint_objfile_data ();
3189 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3190 }
3191 return bp_objfile_data;
3192 }
3193
3194 static void
3195 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3196 {
3197 struct breakpoint_objfile_data *bp_objfile_data
3198 = (struct breakpoint_objfile_data *) data;
3199
3200 delete bp_objfile_data;
3201 }
3202
3203 static void
3204 create_overlay_event_breakpoint (void)
3205 {
3206 const char *const func_name = "_ovly_debug_event";
3207
3208 for (objfile *objfile : current_program_space->objfiles ())
3209 {
3210 struct breakpoint *b;
3211 struct breakpoint_objfile_data *bp_objfile_data;
3212 CORE_ADDR addr;
3213 struct explicit_location explicit_loc;
3214
3215 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3216
3217 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3218 continue;
3219
3220 if (bp_objfile_data->overlay_msym.minsym == NULL)
3221 {
3222 struct bound_minimal_symbol m;
3223
3224 m = lookup_minimal_symbol_text (func_name, objfile);
3225 if (m.minsym == NULL)
3226 {
3227 /* Avoid future lookups in this objfile. */
3228 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3229 continue;
3230 }
3231 bp_objfile_data->overlay_msym = m;
3232 }
3233
3234 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3235 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3236 bp_overlay_event,
3237 &internal_breakpoint_ops);
3238 initialize_explicit_location (&explicit_loc);
3239 explicit_loc.function_name = ASTRDUP (func_name);
3240 b->location = new_explicit_location (&explicit_loc);
3241
3242 if (overlay_debugging == ovly_auto)
3243 {
3244 b->enable_state = bp_enabled;
3245 overlay_events_enabled = 1;
3246 }
3247 else
3248 {
3249 b->enable_state = bp_disabled;
3250 overlay_events_enabled = 0;
3251 }
3252 }
3253 }
3254
3255 static void
3256 create_longjmp_master_breakpoint (void)
3257 {
3258 struct program_space *pspace;
3259
3260 scoped_restore_current_program_space restore_pspace;
3261
3262 ALL_PSPACES (pspace)
3263 {
3264 set_current_program_space (pspace);
3265
3266 for (objfile *objfile : current_program_space->objfiles ())
3267 {
3268 int i;
3269 struct gdbarch *gdbarch;
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 gdbarch = get_objfile_arch (objfile);
3273
3274 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3275
3276 if (!bp_objfile_data->longjmp_searched)
3277 {
3278 std::vector<probe *> ret
3279 = find_probes_in_objfile (objfile, "libc", "longjmp");
3280
3281 if (!ret.empty ())
3282 {
3283 /* We are only interested in checking one element. */
3284 probe *p = ret[0];
3285
3286 if (!p->can_evaluate_arguments ())
3287 {
3288 /* We cannot use the probe interface here, because it does
3289 not know how to evaluate arguments. */
3290 ret.clear ();
3291 }
3292 }
3293 bp_objfile_data->longjmp_probes = ret;
3294 bp_objfile_data->longjmp_searched = 1;
3295 }
3296
3297 if (!bp_objfile_data->longjmp_probes.empty ())
3298 {
3299 for (probe *p : bp_objfile_data->longjmp_probes)
3300 {
3301 struct breakpoint *b;
3302
3303 b = create_internal_breakpoint (gdbarch,
3304 p->get_relocated_address (objfile),
3305 bp_longjmp_master,
3306 &internal_breakpoint_ops);
3307 b->location = new_probe_location ("-probe-stap libc:longjmp");
3308 b->enable_state = bp_disabled;
3309 }
3310
3311 continue;
3312 }
3313
3314 if (!gdbarch_get_longjmp_target_p (gdbarch))
3315 continue;
3316
3317 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3318 {
3319 struct breakpoint *b;
3320 const char *func_name;
3321 CORE_ADDR addr;
3322 struct explicit_location explicit_loc;
3323
3324 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3325 continue;
3326
3327 func_name = longjmp_names[i];
3328 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3329 {
3330 struct bound_minimal_symbol m;
3331
3332 m = lookup_minimal_symbol_text (func_name, objfile);
3333 if (m.minsym == NULL)
3334 {
3335 /* Prevent future lookups in this objfile. */
3336 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3337 continue;
3338 }
3339 bp_objfile_data->longjmp_msym[i] = m;
3340 }
3341
3342 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3343 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3344 &internal_breakpoint_ops);
3345 initialize_explicit_location (&explicit_loc);
3346 explicit_loc.function_name = ASTRDUP (func_name);
3347 b->location = new_explicit_location (&explicit_loc);
3348 b->enable_state = bp_disabled;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* Create a master std::terminate breakpoint. */
3355 static void
3356 create_std_terminate_master_breakpoint (void)
3357 {
3358 struct program_space *pspace;
3359 const char *const func_name = "std::terminate()";
3360
3361 scoped_restore_current_program_space restore_pspace;
3362
3363 ALL_PSPACES (pspace)
3364 {
3365 CORE_ADDR addr;
3366
3367 set_current_program_space (pspace);
3368
3369 for (objfile *objfile : current_program_space->objfiles ())
3370 {
3371 struct breakpoint *b;
3372 struct breakpoint_objfile_data *bp_objfile_data;
3373 struct explicit_location explicit_loc;
3374
3375 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3376
3377 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3378 continue;
3379
3380 if (bp_objfile_data->terminate_msym.minsym == NULL)
3381 {
3382 struct bound_minimal_symbol m;
3383
3384 m = lookup_minimal_symbol (func_name, NULL, objfile);
3385 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3386 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3387 {
3388 /* Prevent future lookups in this objfile. */
3389 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3390 continue;
3391 }
3392 bp_objfile_data->terminate_msym = m;
3393 }
3394
3395 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3396 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3397 bp_std_terminate_master,
3398 &internal_breakpoint_ops);
3399 initialize_explicit_location (&explicit_loc);
3400 explicit_loc.function_name = ASTRDUP (func_name);
3401 b->location = new_explicit_location (&explicit_loc);
3402 b->enable_state = bp_disabled;
3403 }
3404 }
3405 }
3406
3407 /* Install a master breakpoint on the unwinder's debug hook. */
3408
3409 static void
3410 create_exception_master_breakpoint (void)
3411 {
3412 const char *const func_name = "_Unwind_DebugHook";
3413
3414 for (objfile *objfile : current_program_space->objfiles ())
3415 {
3416 struct breakpoint *b;
3417 struct gdbarch *gdbarch;
3418 struct breakpoint_objfile_data *bp_objfile_data;
3419 CORE_ADDR addr;
3420 struct explicit_location explicit_loc;
3421
3422 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3423
3424 /* We prefer the SystemTap probe point if it exists. */
3425 if (!bp_objfile_data->exception_searched)
3426 {
3427 std::vector<probe *> ret
3428 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3429
3430 if (!ret.empty ())
3431 {
3432 /* We are only interested in checking one element. */
3433 probe *p = ret[0];
3434
3435 if (!p->can_evaluate_arguments ())
3436 {
3437 /* We cannot use the probe interface here, because it does
3438 not know how to evaluate arguments. */
3439 ret.clear ();
3440 }
3441 }
3442 bp_objfile_data->exception_probes = ret;
3443 bp_objfile_data->exception_searched = 1;
3444 }
3445
3446 if (!bp_objfile_data->exception_probes.empty ())
3447 {
3448 gdbarch = get_objfile_arch (objfile);
3449
3450 for (probe *p : bp_objfile_data->exception_probes)
3451 {
3452 b = create_internal_breakpoint (gdbarch,
3453 p->get_relocated_address (objfile),
3454 bp_exception_master,
3455 &internal_breakpoint_ops);
3456 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3457 b->enable_state = bp_disabled;
3458 }
3459
3460 continue;
3461 }
3462
3463 /* Otherwise, try the hook function. */
3464
3465 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3466 continue;
3467
3468 gdbarch = get_objfile_arch (objfile);
3469
3470 if (bp_objfile_data->exception_msym.minsym == NULL)
3471 {
3472 struct bound_minimal_symbol debug_hook;
3473
3474 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3475 if (debug_hook.minsym == NULL)
3476 {
3477 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3478 continue;
3479 }
3480
3481 bp_objfile_data->exception_msym = debug_hook;
3482 }
3483
3484 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3485 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3486 current_top_target ());
3487 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3488 &internal_breakpoint_ops);
3489 initialize_explicit_location (&explicit_loc);
3490 explicit_loc.function_name = ASTRDUP (func_name);
3491 b->location = new_explicit_location (&explicit_loc);
3492 b->enable_state = bp_disabled;
3493 }
3494 }
3495
3496 /* Does B have a location spec? */
3497
3498 static int
3499 breakpoint_event_location_empty_p (const struct breakpoint *b)
3500 {
3501 return b->location != NULL && event_location_empty_p (b->location.get ());
3502 }
3503
3504 void
3505 update_breakpoints_after_exec (void)
3506 {
3507 struct breakpoint *b, *b_tmp;
3508 struct bp_location *bploc, **bplocp_tmp;
3509
3510 /* We're about to delete breakpoints from GDB's lists. If the
3511 INSERTED flag is true, GDB will try to lift the breakpoints by
3512 writing the breakpoints' "shadow contents" back into memory. The
3513 "shadow contents" are NOT valid after an exec, so GDB should not
3514 do that. Instead, the target is responsible from marking
3515 breakpoints out as soon as it detects an exec. We don't do that
3516 here instead, because there may be other attempts to delete
3517 breakpoints after detecting an exec and before reaching here. */
3518 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3519 if (bploc->pspace == current_program_space)
3520 gdb_assert (!bploc->inserted);
3521
3522 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3523 {
3524 if (b->pspace != current_program_space)
3525 continue;
3526
3527 /* Solib breakpoints must be explicitly reset after an exec(). */
3528 if (b->type == bp_shlib_event)
3529 {
3530 delete_breakpoint (b);
3531 continue;
3532 }
3533
3534 /* JIT breakpoints must be explicitly reset after an exec(). */
3535 if (b->type == bp_jit_event)
3536 {
3537 delete_breakpoint (b);
3538 continue;
3539 }
3540
3541 /* Thread event breakpoints must be set anew after an exec(),
3542 as must overlay event and longjmp master breakpoints. */
3543 if (b->type == bp_thread_event || b->type == bp_overlay_event
3544 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3545 || b->type == bp_exception_master)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Step-resume breakpoints are meaningless after an exec(). */
3552 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3553 {
3554 delete_breakpoint (b);
3555 continue;
3556 }
3557
3558 /* Just like single-step breakpoints. */
3559 if (b->type == bp_single_step)
3560 {
3561 delete_breakpoint (b);
3562 continue;
3563 }
3564
3565 /* Longjmp and longjmp-resume breakpoints are also meaningless
3566 after an exec. */
3567 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3568 || b->type == bp_longjmp_call_dummy
3569 || b->type == bp_exception || b->type == bp_exception_resume)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 if (b->type == bp_catchpoint)
3576 {
3577 /* For now, none of the bp_catchpoint breakpoints need to
3578 do anything at this point. In the future, if some of
3579 the catchpoints need to something, we will need to add
3580 a new method, and call this method from here. */
3581 continue;
3582 }
3583
3584 /* bp_finish is a special case. The only way we ought to be able
3585 to see one of these when an exec() has happened, is if the user
3586 caught a vfork, and then said "finish". Ordinarily a finish just
3587 carries them to the call-site of the current callee, by setting
3588 a temporary bp there and resuming. But in this case, the finish
3589 will carry them entirely through the vfork & exec.
3590
3591 We don't want to allow a bp_finish to remain inserted now. But
3592 we can't safely delete it, 'cause finish_command has a handle to
3593 the bp on a bpstat, and will later want to delete it. There's a
3594 chance (and I've seen it happen) that if we delete the bp_finish
3595 here, that its storage will get reused by the time finish_command
3596 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3597 We really must allow finish_command to delete a bp_finish.
3598
3599 In the absence of a general solution for the "how do we know
3600 it's safe to delete something others may have handles to?"
3601 problem, what we'll do here is just uninsert the bp_finish, and
3602 let finish_command delete it.
3603
3604 (We know the bp_finish is "doomed" in the sense that it's
3605 momentary, and will be deleted as soon as finish_command sees
3606 the inferior stopped. So it doesn't matter that the bp's
3607 address is probably bogus in the new a.out, unlike e.g., the
3608 solib breakpoints.) */
3609
3610 if (b->type == bp_finish)
3611 {
3612 continue;
3613 }
3614
3615 /* Without a symbolic address, we have little hope of the
3616 pre-exec() address meaning the same thing in the post-exec()
3617 a.out. */
3618 if (breakpoint_event_location_empty_p (b))
3619 {
3620 delete_breakpoint (b);
3621 continue;
3622 }
3623 }
3624 }
3625
3626 int
3627 detach_breakpoints (ptid_t ptid)
3628 {
3629 struct bp_location *bl, **blp_tmp;
3630 int val = 0;
3631 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3632 struct inferior *inf = current_inferior ();
3633
3634 if (ptid.pid () == inferior_ptid.pid ())
3635 error (_("Cannot detach breakpoints of inferior_ptid"));
3636
3637 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3638 inferior_ptid = ptid;
3639 ALL_BP_LOCATIONS (bl, blp_tmp)
3640 {
3641 if (bl->pspace != inf->pspace)
3642 continue;
3643
3644 /* This function must physically remove breakpoints locations
3645 from the specified ptid, without modifying the breakpoint
3646 package's state. Locations of type bp_loc_other are only
3647 maintained at GDB side. So, there is no need to remove
3648 these bp_loc_other locations. Moreover, removing these
3649 would modify the breakpoint package's state. */
3650 if (bl->loc_type == bp_loc_other)
3651 continue;
3652
3653 if (bl->inserted)
3654 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3655 }
3656
3657 return val;
3658 }
3659
3660 /* Remove the breakpoint location BL from the current address space.
3661 Note that this is used to detach breakpoints from a child fork.
3662 When we get here, the child isn't in the inferior list, and neither
3663 do we have objects to represent its address space --- we should
3664 *not* look at bl->pspace->aspace here. */
3665
3666 static int
3667 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3668 {
3669 int val;
3670
3671 /* BL is never in moribund_locations by our callers. */
3672 gdb_assert (bl->owner != NULL);
3673
3674 /* The type of none suggests that owner is actually deleted.
3675 This should not ever happen. */
3676 gdb_assert (bl->owner->type != bp_none);
3677
3678 if (bl->loc_type == bp_loc_software_breakpoint
3679 || bl->loc_type == bp_loc_hardware_breakpoint)
3680 {
3681 /* "Normal" instruction breakpoint: either the standard
3682 trap-instruction bp (bp_breakpoint), or a
3683 bp_hardware_breakpoint. */
3684
3685 /* First check to see if we have to handle an overlay. */
3686 if (overlay_debugging == ovly_off
3687 || bl->section == NULL
3688 || !(section_is_overlay (bl->section)))
3689 {
3690 /* No overlay handling: just remove the breakpoint. */
3691
3692 /* If we're trying to uninsert a memory breakpoint that we
3693 know is set in a dynamic object that is marked
3694 shlib_disabled, then either the dynamic object was
3695 removed with "remove-symbol-file" or with
3696 "nosharedlibrary". In the former case, we don't know
3697 whether another dynamic object might have loaded over the
3698 breakpoint's address -- the user might well let us know
3699 about it next with add-symbol-file (the whole point of
3700 add-symbol-file is letting the user manually maintain a
3701 list of dynamically loaded objects). If we have the
3702 breakpoint's shadow memory, that is, this is a software
3703 breakpoint managed by GDB, check whether the breakpoint
3704 is still inserted in memory, to avoid overwriting wrong
3705 code with stale saved shadow contents. Note that HW
3706 breakpoints don't have shadow memory, as they're
3707 implemented using a mechanism that is not dependent on
3708 being able to modify the target's memory, and as such
3709 they should always be removed. */
3710 if (bl->shlib_disabled
3711 && bl->target_info.shadow_len != 0
3712 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3713 val = 0;
3714 else
3715 val = bl->owner->ops->remove_location (bl, reason);
3716 }
3717 else
3718 {
3719 /* This breakpoint is in an overlay section.
3720 Did we set a breakpoint at the LMA? */
3721 if (!overlay_events_enabled)
3722 {
3723 /* Yes -- overlay event support is not active, so we
3724 should have set a breakpoint at the LMA. Remove it.
3725 */
3726 /* Ignore any failures: if the LMA is in ROM, we will
3727 have already warned when we failed to insert it. */
3728 if (bl->loc_type == bp_loc_hardware_breakpoint)
3729 target_remove_hw_breakpoint (bl->gdbarch,
3730 &bl->overlay_target_info);
3731 else
3732 target_remove_breakpoint (bl->gdbarch,
3733 &bl->overlay_target_info,
3734 reason);
3735 }
3736 /* Did we set a breakpoint at the VMA?
3737 If so, we will have marked the breakpoint 'inserted'. */
3738 if (bl->inserted)
3739 {
3740 /* Yes -- remove it. Previously we did not bother to
3741 remove the breakpoint if the section had been
3742 unmapped, but let's not rely on that being safe. We
3743 don't know what the overlay manager might do. */
3744
3745 /* However, we should remove *software* breakpoints only
3746 if the section is still mapped, or else we overwrite
3747 wrong code with the saved shadow contents. */
3748 if (bl->loc_type == bp_loc_hardware_breakpoint
3749 || section_is_mapped (bl->section))
3750 val = bl->owner->ops->remove_location (bl, reason);
3751 else
3752 val = 0;
3753 }
3754 else
3755 {
3756 /* No -- not inserted, so no need to remove. No error. */
3757 val = 0;
3758 }
3759 }
3760
3761 /* In some cases, we might not be able to remove a breakpoint in
3762 a shared library that has already been removed, but we have
3763 not yet processed the shlib unload event. Similarly for an
3764 unloaded add-symbol-file object - the user might not yet have
3765 had the chance to remove-symbol-file it. shlib_disabled will
3766 be set if the library/object has already been removed, but
3767 the breakpoint hasn't been uninserted yet, e.g., after
3768 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3769 always-inserted mode. */
3770 if (val
3771 && (bl->loc_type == bp_loc_software_breakpoint
3772 && (bl->shlib_disabled
3773 || solib_name_from_address (bl->pspace, bl->address)
3774 || shared_objfile_contains_address_p (bl->pspace,
3775 bl->address))))
3776 val = 0;
3777
3778 if (val)
3779 return val;
3780 bl->inserted = (reason == DETACH_BREAKPOINT);
3781 }
3782 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3783 {
3784 gdb_assert (bl->owner->ops != NULL
3785 && bl->owner->ops->remove_location != NULL);
3786
3787 bl->inserted = (reason == DETACH_BREAKPOINT);
3788 bl->owner->ops->remove_location (bl, reason);
3789
3790 /* Failure to remove any of the hardware watchpoints comes here. */
3791 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3792 warning (_("Could not remove hardware watchpoint %d."),
3793 bl->owner->number);
3794 }
3795 else if (bl->owner->type == bp_catchpoint
3796 && breakpoint_enabled (bl->owner)
3797 && !bl->duplicate)
3798 {
3799 gdb_assert (bl->owner->ops != NULL
3800 && bl->owner->ops->remove_location != NULL);
3801
3802 val = bl->owner->ops->remove_location (bl, reason);
3803 if (val)
3804 return val;
3805
3806 bl->inserted = (reason == DETACH_BREAKPOINT);
3807 }
3808
3809 return 0;
3810 }
3811
3812 static int
3813 remove_breakpoint (struct bp_location *bl)
3814 {
3815 /* BL is never in moribund_locations by our callers. */
3816 gdb_assert (bl->owner != NULL);
3817
3818 /* The type of none suggests that owner is actually deleted.
3819 This should not ever happen. */
3820 gdb_assert (bl->owner->type != bp_none);
3821
3822 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3823
3824 switch_to_program_space_and_thread (bl->pspace);
3825
3826 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3827 }
3828
3829 /* Clear the "inserted" flag in all breakpoints. */
3830
3831 void
3832 mark_breakpoints_out (void)
3833 {
3834 struct bp_location *bl, **blp_tmp;
3835
3836 ALL_BP_LOCATIONS (bl, blp_tmp)
3837 if (bl->pspace == current_program_space)
3838 bl->inserted = 0;
3839 }
3840
3841 /* Clear the "inserted" flag in all breakpoints and delete any
3842 breakpoints which should go away between runs of the program.
3843
3844 Plus other such housekeeping that has to be done for breakpoints
3845 between runs.
3846
3847 Note: this function gets called at the end of a run (by
3848 generic_mourn_inferior) and when a run begins (by
3849 init_wait_for_inferior). */
3850
3851
3852
3853 void
3854 breakpoint_init_inferior (enum inf_context context)
3855 {
3856 struct breakpoint *b, *b_tmp;
3857 struct program_space *pspace = current_program_space;
3858
3859 /* If breakpoint locations are shared across processes, then there's
3860 nothing to do. */
3861 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3862 return;
3863
3864 mark_breakpoints_out ();
3865
3866 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3867 {
3868 if (b->loc && b->loc->pspace != pspace)
3869 continue;
3870
3871 switch (b->type)
3872 {
3873 case bp_call_dummy:
3874 case bp_longjmp_call_dummy:
3875
3876 /* If the call dummy breakpoint is at the entry point it will
3877 cause problems when the inferior is rerun, so we better get
3878 rid of it. */
3879
3880 case bp_watchpoint_scope:
3881
3882 /* Also get rid of scope breakpoints. */
3883
3884 case bp_shlib_event:
3885
3886 /* Also remove solib event breakpoints. Their addresses may
3887 have changed since the last time we ran the program.
3888 Actually we may now be debugging against different target;
3889 and so the solib backend that installed this breakpoint may
3890 not be used in by the target. E.g.,
3891
3892 (gdb) file prog-linux
3893 (gdb) run # native linux target
3894 ...
3895 (gdb) kill
3896 (gdb) file prog-win.exe
3897 (gdb) tar rem :9999 # remote Windows gdbserver.
3898 */
3899
3900 case bp_step_resume:
3901
3902 /* Also remove step-resume breakpoints. */
3903
3904 case bp_single_step:
3905
3906 /* Also remove single-step breakpoints. */
3907
3908 delete_breakpoint (b);
3909 break;
3910
3911 case bp_watchpoint:
3912 case bp_hardware_watchpoint:
3913 case bp_read_watchpoint:
3914 case bp_access_watchpoint:
3915 {
3916 struct watchpoint *w = (struct watchpoint *) b;
3917
3918 /* Likewise for watchpoints on local expressions. */
3919 if (w->exp_valid_block != NULL)
3920 delete_breakpoint (b);
3921 else
3922 {
3923 /* Get rid of existing locations, which are no longer
3924 valid. New ones will be created in
3925 update_watchpoint, when the inferior is restarted.
3926 The next update_global_location_list call will
3927 garbage collect them. */
3928 b->loc = NULL;
3929
3930 if (context == inf_starting)
3931 {
3932 /* Reset val field to force reread of starting value in
3933 insert_breakpoints. */
3934 w->val.reset (nullptr);
3935 w->val_valid = 0;
3936 }
3937 }
3938 }
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Get rid of the moribund locations. */
3946 for (bp_location *bl : moribund_locations)
3947 decref_bp_location (&bl);
3948 moribund_locations.clear ();
3949 }
3950
3951 /* These functions concern about actual breakpoints inserted in the
3952 target --- to e.g. check if we need to do decr_pc adjustment or if
3953 we need to hop over the bkpt --- so we check for address space
3954 match, not program space. */
3955
3956 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3957 exists at PC. It returns ordinary_breakpoint_here if it's an
3958 ordinary breakpoint, or permanent_breakpoint_here if it's a
3959 permanent breakpoint.
3960 - When continuing from a location with an ordinary breakpoint, we
3961 actually single step once before calling insert_breakpoints.
3962 - When continuing from a location with a permanent breakpoint, we
3963 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3964 the target, to advance the PC past the breakpoint. */
3965
3966 enum breakpoint_here
3967 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3968 {
3969 struct bp_location *bl, **blp_tmp;
3970 int any_breakpoint_here = 0;
3971
3972 ALL_BP_LOCATIONS (bl, blp_tmp)
3973 {
3974 if (bl->loc_type != bp_loc_software_breakpoint
3975 && bl->loc_type != bp_loc_hardware_breakpoint)
3976 continue;
3977
3978 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3979 if ((breakpoint_enabled (bl->owner)
3980 || bl->permanent)
3981 && breakpoint_location_address_match (bl, aspace, pc))
3982 {
3983 if (overlay_debugging
3984 && section_is_overlay (bl->section)
3985 && !section_is_mapped (bl->section))
3986 continue; /* unmapped overlay -- can't be a match */
3987 else if (bl->permanent)
3988 return permanent_breakpoint_here;
3989 else
3990 any_breakpoint_here = 1;
3991 }
3992 }
3993
3994 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3995 }
3996
3997 /* See breakpoint.h. */
3998
3999 int
4000 breakpoint_in_range_p (const address_space *aspace,
4001 CORE_ADDR addr, ULONGEST len)
4002 {
4003 struct bp_location *bl, **blp_tmp;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 if ((breakpoint_enabled (bl->owner)
4012 || bl->permanent)
4013 && breakpoint_location_address_range_overlap (bl, aspace,
4014 addr, len))
4015 {
4016 if (overlay_debugging
4017 && section_is_overlay (bl->section)
4018 && !section_is_mapped (bl->section))
4019 {
4020 /* Unmapped overlay -- can't be a match. */
4021 continue;
4022 }
4023
4024 return 1;
4025 }
4026 }
4027
4028 return 0;
4029 }
4030
4031 /* Return true if there's a moribund breakpoint at PC. */
4032
4033 int
4034 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4035 {
4036 for (bp_location *loc : moribund_locations)
4037 if (breakpoint_location_address_match (loc, aspace, pc))
4038 return 1;
4039
4040 return 0;
4041 }
4042
4043 /* Returns non-zero iff BL is inserted at PC, in address space
4044 ASPACE. */
4045
4046 static int
4047 bp_location_inserted_here_p (struct bp_location *bl,
4048 const address_space *aspace, CORE_ADDR pc)
4049 {
4050 if (bl->inserted
4051 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4052 aspace, pc))
4053 {
4054 if (overlay_debugging
4055 && section_is_overlay (bl->section)
4056 && !section_is_mapped (bl->section))
4057 return 0; /* unmapped overlay -- can't be a match */
4058 else
4059 return 1;
4060 }
4061 return 0;
4062 }
4063
4064 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4065
4066 int
4067 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4068 {
4069 struct bp_location **blp, **blp_tmp = NULL;
4070
4071 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4072 {
4073 struct bp_location *bl = *blp;
4074
4075 if (bl->loc_type != bp_loc_software_breakpoint
4076 && bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082 return 0;
4083 }
4084
4085 /* This function returns non-zero iff there is a software breakpoint
4086 inserted at PC. */
4087
4088 int
4089 software_breakpoint_inserted_here_p (const address_space *aspace,
4090 CORE_ADDR pc)
4091 {
4092 struct bp_location **blp, **blp_tmp = NULL;
4093
4094 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4095 {
4096 struct bp_location *bl = *blp;
4097
4098 if (bl->loc_type != bp_loc_software_breakpoint)
4099 continue;
4100
4101 if (bp_location_inserted_here_p (bl, aspace, pc))
4102 return 1;
4103 }
4104
4105 return 0;
4106 }
4107
4108 /* See breakpoint.h. */
4109
4110 int
4111 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4112 CORE_ADDR pc)
4113 {
4114 struct bp_location **blp, **blp_tmp = NULL;
4115
4116 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4117 {
4118 struct bp_location *bl = *blp;
4119
4120 if (bl->loc_type != bp_loc_hardware_breakpoint)
4121 continue;
4122
4123 if (bp_location_inserted_here_p (bl, aspace, pc))
4124 return 1;
4125 }
4126
4127 return 0;
4128 }
4129
4130 int
4131 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4132 CORE_ADDR addr, ULONGEST len)
4133 {
4134 struct breakpoint *bpt;
4135
4136 ALL_BREAKPOINTS (bpt)
4137 {
4138 struct bp_location *loc;
4139
4140 if (bpt->type != bp_hardware_watchpoint
4141 && bpt->type != bp_access_watchpoint)
4142 continue;
4143
4144 if (!breakpoint_enabled (bpt))
4145 continue;
4146
4147 for (loc = bpt->loc; loc; loc = loc->next)
4148 if (loc->pspace->aspace == aspace && loc->inserted)
4149 {
4150 CORE_ADDR l, h;
4151
4152 /* Check for intersection. */
4153 l = std::max<CORE_ADDR> (loc->address, addr);
4154 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4155 if (l < h)
4156 return 1;
4157 }
4158 }
4159 return 0;
4160 }
4161 \f
4162
4163 /* bpstat stuff. External routines' interfaces are documented
4164 in breakpoint.h. */
4165
4166 int
4167 is_catchpoint (struct breakpoint *ep)
4168 {
4169 return (ep->type == bp_catchpoint);
4170 }
4171
4172 /* Frees any storage that is part of a bpstat. Does not walk the
4173 'next' chain. */
4174
4175 bpstats::~bpstats ()
4176 {
4177 if (bp_location_at != NULL)
4178 decref_bp_location (&bp_location_at);
4179 }
4180
4181 /* Clear a bpstat so that it says we are not at any breakpoint.
4182 Also free any storage that is part of a bpstat. */
4183
4184 void
4185 bpstat_clear (bpstat *bsp)
4186 {
4187 bpstat p;
4188 bpstat q;
4189
4190 if (bsp == 0)
4191 return;
4192 p = *bsp;
4193 while (p != NULL)
4194 {
4195 q = p->next;
4196 delete p;
4197 p = q;
4198 }
4199 *bsp = NULL;
4200 }
4201
4202 bpstats::bpstats (const bpstats &other)
4203 : next (NULL),
4204 bp_location_at (other.bp_location_at),
4205 breakpoint_at (other.breakpoint_at),
4206 commands (other.commands),
4207 print (other.print),
4208 stop (other.stop),
4209 print_it (other.print_it)
4210 {
4211 if (other.old_val != NULL)
4212 old_val = release_value (value_copy (other.old_val.get ()));
4213 incref_bp_location (bp_location_at);
4214 }
4215
4216 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4217 is part of the bpstat is copied as well. */
4218
4219 bpstat
4220 bpstat_copy (bpstat bs)
4221 {
4222 bpstat p = NULL;
4223 bpstat tmp;
4224 bpstat retval = NULL;
4225
4226 if (bs == NULL)
4227 return bs;
4228
4229 for (; bs != NULL; bs = bs->next)
4230 {
4231 tmp = new bpstats (*bs);
4232
4233 if (p == NULL)
4234 /* This is the first thing in the chain. */
4235 retval = tmp;
4236 else
4237 p->next = tmp;
4238 p = tmp;
4239 }
4240 p->next = NULL;
4241 return retval;
4242 }
4243
4244 /* Find the bpstat associated with this breakpoint. */
4245
4246 bpstat
4247 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4248 {
4249 if (bsp == NULL)
4250 return NULL;
4251
4252 for (; bsp != NULL; bsp = bsp->next)
4253 {
4254 if (bsp->breakpoint_at == breakpoint)
4255 return bsp;
4256 }
4257 return NULL;
4258 }
4259
4260 /* See breakpoint.h. */
4261
4262 int
4263 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4264 {
4265 for (; bsp != NULL; bsp = bsp->next)
4266 {
4267 if (bsp->breakpoint_at == NULL)
4268 {
4269 /* A moribund location can never explain a signal other than
4270 GDB_SIGNAL_TRAP. */
4271 if (sig == GDB_SIGNAL_TRAP)
4272 return 1;
4273 }
4274 else
4275 {
4276 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4277 sig))
4278 return 1;
4279 }
4280 }
4281
4282 return 0;
4283 }
4284
4285 /* Put in *NUM the breakpoint number of the first breakpoint we are
4286 stopped at. *BSP upon return is a bpstat which points to the
4287 remaining breakpoints stopped at (but which is not guaranteed to be
4288 good for anything but further calls to bpstat_num).
4289
4290 Return 0 if passed a bpstat which does not indicate any breakpoints.
4291 Return -1 if stopped at a breakpoint that has been deleted since
4292 we set it.
4293 Return 1 otherwise. */
4294
4295 int
4296 bpstat_num (bpstat *bsp, int *num)
4297 {
4298 struct breakpoint *b;
4299
4300 if ((*bsp) == NULL)
4301 return 0; /* No more breakpoint values */
4302
4303 /* We assume we'll never have several bpstats that correspond to a
4304 single breakpoint -- otherwise, this function might return the
4305 same number more than once and this will look ugly. */
4306 b = (*bsp)->breakpoint_at;
4307 *bsp = (*bsp)->next;
4308 if (b == NULL)
4309 return -1; /* breakpoint that's been deleted since */
4310
4311 *num = b->number; /* We have its number */
4312 return 1;
4313 }
4314
4315 /* See breakpoint.h. */
4316
4317 void
4318 bpstat_clear_actions (void)
4319 {
4320 bpstat bs;
4321
4322 if (inferior_ptid == null_ptid)
4323 return;
4324
4325 thread_info *tp = inferior_thread ();
4326 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4327 {
4328 bs->commands = NULL;
4329 bs->old_val.reset (nullptr);
4330 }
4331 }
4332
4333 /* Called when a command is about to proceed the inferior. */
4334
4335 static void
4336 breakpoint_about_to_proceed (void)
4337 {
4338 if (inferior_ptid != null_ptid)
4339 {
4340 struct thread_info *tp = inferior_thread ();
4341
4342 /* Allow inferior function calls in breakpoint commands to not
4343 interrupt the command list. When the call finishes
4344 successfully, the inferior will be standing at the same
4345 breakpoint as if nothing happened. */
4346 if (tp->control.in_infcall)
4347 return;
4348 }
4349
4350 breakpoint_proceeded = 1;
4351 }
4352
4353 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4354 or its equivalent. */
4355
4356 static int
4357 command_line_is_silent (struct command_line *cmd)
4358 {
4359 return cmd && (strcmp ("silent", cmd->line) == 0);
4360 }
4361
4362 /* Execute all the commands associated with all the breakpoints at
4363 this location. Any of these commands could cause the process to
4364 proceed beyond this point, etc. We look out for such changes by
4365 checking the global "breakpoint_proceeded" after each command.
4366
4367 Returns true if a breakpoint command resumed the inferior. In that
4368 case, it is the caller's responsibility to recall it again with the
4369 bpstat of the current thread. */
4370
4371 static int
4372 bpstat_do_actions_1 (bpstat *bsp)
4373 {
4374 bpstat bs;
4375 int again = 0;
4376
4377 /* Avoid endless recursion if a `source' command is contained
4378 in bs->commands. */
4379 if (executing_breakpoint_commands)
4380 return 0;
4381
4382 scoped_restore save_executing
4383 = make_scoped_restore (&executing_breakpoint_commands, 1);
4384
4385 scoped_restore preventer = prevent_dont_repeat ();
4386
4387 /* This pointer will iterate over the list of bpstat's. */
4388 bs = *bsp;
4389
4390 breakpoint_proceeded = 0;
4391 for (; bs != NULL; bs = bs->next)
4392 {
4393 struct command_line *cmd = NULL;
4394
4395 /* Take ownership of the BSP's command tree, if it has one.
4396
4397 The command tree could legitimately contain commands like
4398 'step' and 'next', which call clear_proceed_status, which
4399 frees stop_bpstat's command tree. To make sure this doesn't
4400 free the tree we're executing out from under us, we need to
4401 take ownership of the tree ourselves. Since a given bpstat's
4402 commands are only executed once, we don't need to copy it; we
4403 can clear the pointer in the bpstat, and make sure we free
4404 the tree when we're done. */
4405 counted_command_line ccmd = bs->commands;
4406 bs->commands = NULL;
4407 if (ccmd != NULL)
4408 cmd = ccmd.get ();
4409 if (command_line_is_silent (cmd))
4410 {
4411 /* The action has been already done by bpstat_stop_status. */
4412 cmd = cmd->next;
4413 }
4414
4415 while (cmd != NULL)
4416 {
4417 execute_control_command (cmd);
4418
4419 if (breakpoint_proceeded)
4420 break;
4421 else
4422 cmd = cmd->next;
4423 }
4424
4425 if (breakpoint_proceeded)
4426 {
4427 if (current_ui->async)
4428 /* If we are in async mode, then the target might be still
4429 running, not stopped at any breakpoint, so nothing for
4430 us to do here -- just return to the event loop. */
4431 ;
4432 else
4433 /* In sync mode, when execute_control_command returns
4434 we're already standing on the next breakpoint.
4435 Breakpoint commands for that stop were not run, since
4436 execute_command does not run breakpoint commands --
4437 only command_line_handler does, but that one is not
4438 involved in execution of breakpoint commands. So, we
4439 can now execute breakpoint commands. It should be
4440 noted that making execute_command do bpstat actions is
4441 not an option -- in this case we'll have recursive
4442 invocation of bpstat for each breakpoint with a
4443 command, and can easily blow up GDB stack. Instead, we
4444 return true, which will trigger the caller to recall us
4445 with the new stop_bpstat. */
4446 again = 1;
4447 break;
4448 }
4449 }
4450 return again;
4451 }
4452
4453 /* Helper for bpstat_do_actions. Get the current thread, if there's
4454 one, is alive and has execution. Return NULL otherwise. */
4455
4456 static thread_info *
4457 get_bpstat_thread ()
4458 {
4459 if (inferior_ptid == null_ptid || !target_has_execution)
4460 return NULL;
4461
4462 thread_info *tp = inferior_thread ();
4463 if (tp->state == THREAD_EXITED || tp->executing)
4464 return NULL;
4465 return tp;
4466 }
4467
4468 void
4469 bpstat_do_actions (void)
4470 {
4471 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4472 thread_info *tp;
4473
4474 /* Do any commands attached to breakpoint we are stopped at. */
4475 while ((tp = get_bpstat_thread ()) != NULL)
4476 {
4477 /* Since in sync mode, bpstat_do_actions may resume the
4478 inferior, and only return when it is stopped at the next
4479 breakpoint, we keep doing breakpoint actions until it returns
4480 false to indicate the inferior was not resumed. */
4481 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4482 break;
4483 }
4484
4485 cleanup_if_error.release ();
4486 }
4487
4488 /* Print out the (old or new) value associated with a watchpoint. */
4489
4490 static void
4491 watchpoint_value_print (struct value *val, struct ui_file *stream)
4492 {
4493 if (val == NULL)
4494 fprintf_unfiltered (stream, _("<unreadable>"));
4495 else
4496 {
4497 struct value_print_options opts;
4498 get_user_print_options (&opts);
4499 value_print (val, stream, &opts);
4500 }
4501 }
4502
4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4504 debugging multiple threads. */
4505
4506 void
4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4508 {
4509 if (uiout->is_mi_like_p ())
4510 return;
4511
4512 uiout->text ("\n");
4513
4514 if (show_thread_that_caused_stop ())
4515 {
4516 const char *name;
4517 struct thread_info *thr = inferior_thread ();
4518
4519 uiout->text ("Thread ");
4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4521
4522 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4523 if (name != NULL)
4524 {
4525 uiout->text (" \"");
4526 uiout->field_fmt ("name", "%s", name);
4527 uiout->text ("\"");
4528 }
4529
4530 uiout->text (" hit ");
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4583 bool any_added = !current_program_space->added_solibs.empty ();
4584
4585 if (!is_catchpoint)
4586 {
4587 if (any_added || any_deleted)
4588 current_uiout->text (_("Stopped due to shared library event:\n"));
4589 else
4590 current_uiout->text (_("Stopped due to shared library event (no "
4591 "libraries added or removed)\n"));
4592 }
4593
4594 if (current_uiout->is_mi_like_p ())
4595 current_uiout->field_string ("reason",
4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4597
4598 if (any_deleted)
4599 {
4600 current_uiout->text (_(" Inferior unloaded "));
4601 ui_out_emit_list list_emitter (current_uiout, "removed");
4602 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4603 {
4604 const std::string &name = current_program_space->deleted_solibs[ix];
4605
4606 if (ix > 0)
4607 current_uiout->text (" ");
4608 current_uiout->field_string ("library", name);
4609 current_uiout->text ("\n");
4610 }
4611 }
4612
4613 if (any_added)
4614 {
4615 current_uiout->text (_(" Inferior loaded "));
4616 ui_out_emit_list list_emitter (current_uiout, "added");
4617 bool first = true;
4618 for (so_list *iter : current_program_space->added_solibs)
4619 {
4620 if (!first)
4621 current_uiout->text (" ");
4622 first = false;
4623 current_uiout->field_string ("library", iter->so_name);
4624 current_uiout->text ("\n");
4625 }
4626 }
4627 }
4628
4629 /* Print a message indicating what happened. This is called from
4630 normal_stop(). The input to this routine is the head of the bpstat
4631 list - a list of the eventpoints that caused this stop. KIND is
4632 the target_waitkind for the stopping event. This
4633 routine calls the generic print routine for printing a message
4634 about reasons for stopping. This will print (for example) the
4635 "Breakpoint n," part of the output. The return value of this
4636 routine is one of:
4637
4638 PRINT_UNKNOWN: Means we printed nothing.
4639 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4640 code to print the location. An example is
4641 "Breakpoint 1, " which should be followed by
4642 the location.
4643 PRINT_SRC_ONLY: Means we printed something, but there is no need
4644 to also print the location part of the message.
4645 An example is the catch/throw messages, which
4646 don't require a location appended to the end.
4647 PRINT_NOTHING: We have done some printing and we don't need any
4648 further info to be printed. */
4649
4650 enum print_stop_action
4651 bpstat_print (bpstat bs, int kind)
4652 {
4653 enum print_stop_action val;
4654
4655 /* Maybe another breakpoint in the chain caused us to stop.
4656 (Currently all watchpoints go on the bpstat whether hit or not.
4657 That probably could (should) be changed, provided care is taken
4658 with respect to bpstat_explains_signal). */
4659 for (; bs; bs = bs->next)
4660 {
4661 val = print_bp_stop_message (bs);
4662 if (val == PRINT_SRC_ONLY
4663 || val == PRINT_SRC_AND_LOC
4664 || val == PRINT_NOTHING)
4665 return val;
4666 }
4667
4668 /* If we had hit a shared library event breakpoint,
4669 print_bp_stop_message would print out this message. If we hit an
4670 OS-level shared library event, do the same thing. */
4671 if (kind == TARGET_WAITKIND_LOADED)
4672 {
4673 print_solib_event (0);
4674 return PRINT_NOTHING;
4675 }
4676
4677 /* We reached the end of the chain, or we got a null BS to start
4678 with and nothing was printed. */
4679 return PRINT_UNKNOWN;
4680 }
4681
4682 /* Evaluate the boolean expression EXP and return the result. */
4683
4684 static bool
4685 breakpoint_cond_eval (expression *exp)
4686 {
4687 struct value *mark = value_mark ();
4688 bool res = value_true (evaluate_expression (exp));
4689
4690 value_free_to_mark (mark);
4691 return res;
4692 }
4693
4694 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4695
4696 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4697 : next (NULL),
4698 bp_location_at (bl),
4699 breakpoint_at (bl->owner),
4700 commands (NULL),
4701 print (0),
4702 stop (0),
4703 print_it (print_it_normal)
4704 {
4705 incref_bp_location (bl);
4706 **bs_link_pointer = this;
4707 *bs_link_pointer = &next;
4708 }
4709
4710 bpstats::bpstats ()
4711 : next (NULL),
4712 bp_location_at (NULL),
4713 breakpoint_at (NULL),
4714 commands (NULL),
4715 print (0),
4716 stop (0),
4717 print_it (print_it_normal)
4718 {
4719 }
4720 \f
4721 /* The target has stopped with waitstatus WS. Check if any hardware
4722 watchpoints have triggered, according to the target. */
4723
4724 int
4725 watchpoints_triggered (struct target_waitstatus *ws)
4726 {
4727 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4728 CORE_ADDR addr;
4729 struct breakpoint *b;
4730
4731 if (!stopped_by_watchpoint)
4732 {
4733 /* We were not stopped by a watchpoint. Mark all watchpoints
4734 as not triggered. */
4735 ALL_BREAKPOINTS (b)
4736 if (is_hardware_watchpoint (b))
4737 {
4738 struct watchpoint *w = (struct watchpoint *) b;
4739
4740 w->watchpoint_triggered = watch_triggered_no;
4741 }
4742
4743 return 0;
4744 }
4745
4746 if (!target_stopped_data_address (current_top_target (), &addr))
4747 {
4748 /* We were stopped by a watchpoint, but we don't know where.
4749 Mark all watchpoints as unknown. */
4750 ALL_BREAKPOINTS (b)
4751 if (is_hardware_watchpoint (b))
4752 {
4753 struct watchpoint *w = (struct watchpoint *) b;
4754
4755 w->watchpoint_triggered = watch_triggered_unknown;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* The target could report the data address. Mark watchpoints
4762 affected by this data address as triggered, and all others as not
4763 triggered. */
4764
4765 ALL_BREAKPOINTS (b)
4766 if (is_hardware_watchpoint (b))
4767 {
4768 struct watchpoint *w = (struct watchpoint *) b;
4769 struct bp_location *loc;
4770
4771 w->watchpoint_triggered = watch_triggered_no;
4772 for (loc = b->loc; loc; loc = loc->next)
4773 {
4774 if (is_masked_watchpoint (b))
4775 {
4776 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4777 CORE_ADDR start = loc->address & w->hw_wp_mask;
4778
4779 if (newaddr == start)
4780 {
4781 w->watchpoint_triggered = watch_triggered_yes;
4782 break;
4783 }
4784 }
4785 /* Exact match not required. Within range is sufficient. */
4786 else if (target_watchpoint_addr_within_range (current_top_target (),
4787 addr, loc->address,
4788 loc->length))
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Possible return values for watchpoint_check. */
4800 enum wp_check_result
4801 {
4802 /* The watchpoint has been deleted. */
4803 WP_DELETED = 1,
4804
4805 /* The value has changed. */
4806 WP_VALUE_CHANGED = 2,
4807
4808 /* The value has not changed. */
4809 WP_VALUE_NOT_CHANGED = 3,
4810
4811 /* Ignore this watchpoint, no matter if the value changed or not. */
4812 WP_IGNORE = 4,
4813 };
4814
4815 #define BP_TEMPFLAG 1
4816 #define BP_HARDWAREFLAG 2
4817
4818 /* Evaluate watchpoint condition expression and check if its value
4819 changed. */
4820
4821 static wp_check_result
4822 watchpoint_check (bpstat bs)
4823 {
4824 struct watchpoint *b;
4825 struct frame_info *fr;
4826 int within_current_scope;
4827
4828 /* BS is built from an existing struct breakpoint. */
4829 gdb_assert (bs->breakpoint_at != NULL);
4830 b = (struct watchpoint *) bs->breakpoint_at;
4831
4832 /* If this is a local watchpoint, we only want to check if the
4833 watchpoint frame is in scope if the current thread is the thread
4834 that was used to create the watchpoint. */
4835 if (!watchpoint_in_thread_scope (b))
4836 return WP_IGNORE;
4837
4838 if (b->exp_valid_block == NULL)
4839 within_current_scope = 1;
4840 else
4841 {
4842 struct frame_info *frame = get_current_frame ();
4843 struct gdbarch *frame_arch = get_frame_arch (frame);
4844 CORE_ADDR frame_pc = get_frame_pc (frame);
4845
4846 /* stack_frame_destroyed_p() returns a non-zero value if we're
4847 still in the function but the stack frame has already been
4848 invalidated. Since we can't rely on the values of local
4849 variables after the stack has been destroyed, we are treating
4850 the watchpoint in that state as `not changed' without further
4851 checking. Don't mark watchpoints as changed if the current
4852 frame is in an epilogue - even if they are in some other
4853 frame, our view of the stack is likely to be wrong and
4854 frame_find_by_id could error out. */
4855 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4856 return WP_IGNORE;
4857
4858 fr = frame_find_by_id (b->watchpoint_frame);
4859 within_current_scope = (fr != NULL);
4860
4861 /* If we've gotten confused in the unwinder, we might have
4862 returned a frame that can't describe this variable. */
4863 if (within_current_scope)
4864 {
4865 struct symbol *function;
4866
4867 function = get_frame_function (fr);
4868 if (function == NULL
4869 || !contained_in (b->exp_valid_block,
4870 SYMBOL_BLOCK_VALUE (function)))
4871 within_current_scope = 0;
4872 }
4873
4874 if (within_current_scope)
4875 /* If we end up stopping, the current frame will get selected
4876 in normal_stop. So this call to select_frame won't affect
4877 the user. */
4878 select_frame (fr);
4879 }
4880
4881 if (within_current_scope)
4882 {
4883 /* We use value_{,free_to_}mark because it could be a *long*
4884 time before we return to the command level and call
4885 free_all_values. We can't call free_all_values because we
4886 might be in the middle of evaluating a function call. */
4887
4888 int pc = 0;
4889 struct value *mark;
4890 struct value *new_val;
4891
4892 if (is_masked_watchpoint (b))
4893 /* Since we don't know the exact trigger address (from
4894 stopped_data_address), just tell the user we've triggered
4895 a mask watchpoint. */
4896 return WP_VALUE_CHANGED;
4897
4898 mark = value_mark ();
4899 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4900
4901 if (b->val_bitsize != 0)
4902 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4903
4904 /* We use value_equal_contents instead of value_equal because
4905 the latter coerces an array to a pointer, thus comparing just
4906 the address of the array instead of its contents. This is
4907 not what we want. */
4908 if ((b->val != NULL) != (new_val != NULL)
4909 || (b->val != NULL && !value_equal_contents (b->val.get (),
4910 new_val)))
4911 {
4912 bs->old_val = b->val;
4913 b->val = release_value (new_val);
4914 b->val_valid = 1;
4915 if (new_val != NULL)
4916 value_free_to_mark (mark);
4917 return WP_VALUE_CHANGED;
4918 }
4919 else
4920 {
4921 /* Nothing changed. */
4922 value_free_to_mark (mark);
4923 return WP_VALUE_NOT_CHANGED;
4924 }
4925 }
4926 else
4927 {
4928 /* This seems like the only logical thing to do because
4929 if we temporarily ignored the watchpoint, then when
4930 we reenter the block in which it is valid it contains
4931 garbage (in the case of a function, it may have two
4932 garbage values, one before and one after the prologue).
4933 So we can't even detect the first assignment to it and
4934 watch after that (since the garbage may or may not equal
4935 the first value assigned). */
4936 /* We print all the stop information in
4937 breakpoint_ops->print_it, but in this case, by the time we
4938 call breakpoint_ops->print_it this bp will be deleted
4939 already. So we have no choice but print the information
4940 here. */
4941
4942 SWITCH_THRU_ALL_UIS ()
4943 {
4944 struct ui_out *uiout = current_uiout;
4945
4946 if (uiout->is_mi_like_p ())
4947 uiout->field_string
4948 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4949 uiout->text ("\nWatchpoint ");
4950 uiout->field_int ("wpnum", b->number);
4951 uiout->text (" deleted because the program has left the block in\n"
4952 "which its expression is valid.\n");
4953 }
4954
4955 /* Make sure the watchpoint's commands aren't executed. */
4956 b->commands = NULL;
4957 watchpoint_del_at_next_stop (b);
4958
4959 return WP_DELETED;
4960 }
4961 }
4962
4963 /* Return true if it looks like target has stopped due to hitting
4964 breakpoint location BL. This function does not check if we should
4965 stop, only if BL explains the stop. */
4966
4967 static int
4968 bpstat_check_location (const struct bp_location *bl,
4969 const address_space *aspace, CORE_ADDR bp_addr,
4970 const struct target_waitstatus *ws)
4971 {
4972 struct breakpoint *b = bl->owner;
4973
4974 /* BL is from an existing breakpoint. */
4975 gdb_assert (b != NULL);
4976
4977 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4978 }
4979
4980 /* Determine if the watched values have actually changed, and we
4981 should stop. If not, set BS->stop to 0. */
4982
4983 static void
4984 bpstat_check_watchpoint (bpstat bs)
4985 {
4986 const struct bp_location *bl;
4987 struct watchpoint *b;
4988
4989 /* BS is built for existing struct breakpoint. */
4990 bl = bs->bp_location_at;
4991 gdb_assert (bl != NULL);
4992 b = (struct watchpoint *) bs->breakpoint_at;
4993 gdb_assert (b != NULL);
4994
4995 {
4996 int must_check_value = 0;
4997
4998 if (b->type == bp_watchpoint)
4999 /* For a software watchpoint, we must always check the
5000 watched value. */
5001 must_check_value = 1;
5002 else if (b->watchpoint_triggered == watch_triggered_yes)
5003 /* We have a hardware watchpoint (read, write, or access)
5004 and the target earlier reported an address watched by
5005 this watchpoint. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_unknown
5008 && b->type == bp_hardware_watchpoint)
5009 /* We were stopped by a hardware watchpoint, but the target could
5010 not report the data address. We must check the watchpoint's
5011 value. Access and read watchpoints are out of luck; without
5012 a data address, we can't figure it out. */
5013 must_check_value = 1;
5014
5015 if (must_check_value)
5016 {
5017 wp_check_result e;
5018
5019 TRY
5020 {
5021 e = watchpoint_check (bs);
5022 }
5023 CATCH (ex, RETURN_MASK_ALL)
5024 {
5025 exception_fprintf (gdb_stderr, ex,
5026 "Error evaluating expression "
5027 "for watchpoint %d\n",
5028 b->number);
5029
5030 SWITCH_THRU_ALL_UIS ()
5031 {
5032 printf_filtered (_("Watchpoint %d deleted.\n"),
5033 b->number);
5034 }
5035 watchpoint_del_at_next_stop (b);
5036 e = WP_DELETED;
5037 }
5038 END_CATCH
5039
5040 switch (e)
5041 {
5042 case WP_DELETED:
5043 /* We've already printed what needs to be printed. */
5044 bs->print_it = print_it_done;
5045 /* Stop. */
5046 break;
5047 case WP_IGNORE:
5048 bs->print_it = print_it_noop;
5049 bs->stop = 0;
5050 break;
5051 case WP_VALUE_CHANGED:
5052 if (b->type == bp_read_watchpoint)
5053 {
5054 /* There are two cases to consider here:
5055
5056 1. We're watching the triggered memory for reads.
5057 In that case, trust the target, and always report
5058 the watchpoint hit to the user. Even though
5059 reads don't cause value changes, the value may
5060 have changed since the last time it was read, and
5061 since we're not trapping writes, we will not see
5062 those, and as such we should ignore our notion of
5063 old value.
5064
5065 2. We're watching the triggered memory for both
5066 reads and writes. There are two ways this may
5067 happen:
5068
5069 2.1. This is a target that can't break on data
5070 reads only, but can break on accesses (reads or
5071 writes), such as e.g., x86. We detect this case
5072 at the time we try to insert read watchpoints.
5073
5074 2.2. Otherwise, the target supports read
5075 watchpoints, but, the user set an access or write
5076 watchpoint watching the same memory as this read
5077 watchpoint.
5078
5079 If we're watching memory writes as well as reads,
5080 ignore watchpoint hits when we find that the
5081 value hasn't changed, as reads don't cause
5082 changes. This still gives false positives when
5083 the program writes the same value to memory as
5084 what there was already in memory (we will confuse
5085 it for a read), but it's much better than
5086 nothing. */
5087
5088 int other_write_watchpoint = 0;
5089
5090 if (bl->watchpoint_type == hw_read)
5091 {
5092 struct breakpoint *other_b;
5093
5094 ALL_BREAKPOINTS (other_b)
5095 if (other_b->type == bp_hardware_watchpoint
5096 || other_b->type == bp_access_watchpoint)
5097 {
5098 struct watchpoint *other_w =
5099 (struct watchpoint *) other_b;
5100
5101 if (other_w->watchpoint_triggered
5102 == watch_triggered_yes)
5103 {
5104 other_write_watchpoint = 1;
5105 break;
5106 }
5107 }
5108 }
5109
5110 if (other_write_watchpoint
5111 || bl->watchpoint_type == hw_access)
5112 {
5113 /* We're watching the same memory for writes,
5114 and the value changed since the last time we
5115 updated it, so this trap must be for a write.
5116 Ignore it. */
5117 bs->print_it = print_it_noop;
5118 bs->stop = 0;
5119 }
5120 }
5121 break;
5122 case WP_VALUE_NOT_CHANGED:
5123 if (b->type == bp_hardware_watchpoint
5124 || b->type == bp_watchpoint)
5125 {
5126 /* Don't stop: write watchpoints shouldn't fire if
5127 the value hasn't changed. */
5128 bs->print_it = print_it_noop;
5129 bs->stop = 0;
5130 }
5131 /* Stop. */
5132 break;
5133 default:
5134 /* Can't happen. */
5135 break;
5136 }
5137 }
5138 else /* must_check_value == 0 */
5139 {
5140 /* This is a case where some watchpoint(s) triggered, but
5141 not at the address of this watchpoint, or else no
5142 watchpoint triggered after all. So don't print
5143 anything for this watchpoint. */
5144 bs->print_it = print_it_noop;
5145 bs->stop = 0;
5146 }
5147 }
5148 }
5149
5150 /* For breakpoints that are currently marked as telling gdb to stop,
5151 check conditions (condition proper, frame, thread and ignore count)
5152 of breakpoint referred to by BS. If we should not stop for this
5153 breakpoint, set BS->stop to 0. */
5154
5155 static void
5156 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5157 {
5158 const struct bp_location *bl;
5159 struct breakpoint *b;
5160 /* Assume stop. */
5161 bool condition_result = true;
5162 struct expression *cond;
5163
5164 gdb_assert (bs->stop);
5165
5166 /* BS is built for existing struct breakpoint. */
5167 bl = bs->bp_location_at;
5168 gdb_assert (bl != NULL);
5169 b = bs->breakpoint_at;
5170 gdb_assert (b != NULL);
5171
5172 /* Even if the target evaluated the condition on its end and notified GDB, we
5173 need to do so again since GDB does not know if we stopped due to a
5174 breakpoint or a single step breakpoint. */
5175
5176 if (frame_id_p (b->frame_id)
5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5178 {
5179 bs->stop = 0;
5180 return;
5181 }
5182
5183 /* If this is a thread/task-specific breakpoint, don't waste cpu
5184 evaluating the condition if this isn't the specified
5185 thread/task. */
5186 if ((b->thread != -1 && b->thread != thread->global_num)
5187 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* Evaluate extension language breakpoints that have a "stop" method
5194 implemented. */
5195 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5196
5197 if (is_watchpoint (b))
5198 {
5199 struct watchpoint *w = (struct watchpoint *) b;
5200
5201 cond = w->cond_exp.get ();
5202 }
5203 else
5204 cond = bl->cond.get ();
5205
5206 if (cond && b->disposition != disp_del_at_next_stop)
5207 {
5208 int within_current_scope = 1;
5209 struct watchpoint * w;
5210
5211 /* We use value_mark and value_free_to_mark because it could
5212 be a long time before we return to the command level and
5213 call free_all_values. We can't call free_all_values
5214 because we might be in the middle of evaluating a
5215 function call. */
5216 struct value *mark = value_mark ();
5217
5218 if (is_watchpoint (b))
5219 w = (struct watchpoint *) b;
5220 else
5221 w = NULL;
5222
5223 /* Need to select the frame, with all that implies so that
5224 the conditions will have the right context. Because we
5225 use the frame, we will not see an inlined function's
5226 variables when we arrive at a breakpoint at the start
5227 of the inlined function; the current frame will be the
5228 call site. */
5229 if (w == NULL || w->cond_exp_valid_block == NULL)
5230 select_frame (get_current_frame ());
5231 else
5232 {
5233 struct frame_info *frame;
5234
5235 /* For local watchpoint expressions, which particular
5236 instance of a local is being watched matters, so we
5237 keep track of the frame to evaluate the expression
5238 in. To evaluate the condition however, it doesn't
5239 really matter which instantiation of the function
5240 where the condition makes sense triggers the
5241 watchpoint. This allows an expression like "watch
5242 global if q > 10" set in `func', catch writes to
5243 global on all threads that call `func', or catch
5244 writes on all recursive calls of `func' by a single
5245 thread. We simply always evaluate the condition in
5246 the innermost frame that's executing where it makes
5247 sense to evaluate the condition. It seems
5248 intuitive. */
5249 frame = block_innermost_frame (w->cond_exp_valid_block);
5250 if (frame != NULL)
5251 select_frame (frame);
5252 else
5253 within_current_scope = 0;
5254 }
5255 if (within_current_scope)
5256 {
5257 TRY
5258 {
5259 condition_result = breakpoint_cond_eval (cond);
5260 }
5261 CATCH (ex, RETURN_MASK_ALL)
5262 {
5263 exception_fprintf (gdb_stderr, ex,
5264 "Error in testing breakpoint condition:\n");
5265 }
5266 END_CATCH
5267 }
5268 else
5269 {
5270 warning (_("Watchpoint condition cannot be tested "
5271 "in the current scope"));
5272 /* If we failed to set the right context for this
5273 watchpoint, unconditionally report it. */
5274 }
5275 /* FIXME-someday, should give breakpoint #. */
5276 value_free_to_mark (mark);
5277 }
5278
5279 if (cond && !condition_result)
5280 {
5281 bs->stop = 0;
5282 }
5283 else if (b->ignore_count > 0)
5284 {
5285 b->ignore_count--;
5286 bs->stop = 0;
5287 /* Increase the hit count even though we don't stop. */
5288 ++(b->hit_count);
5289 gdb::observers::breakpoint_modified.notify (b);
5290 }
5291 }
5292
5293 /* Returns true if we need to track moribund locations of LOC's type
5294 on the current target. */
5295
5296 static int
5297 need_moribund_for_location_type (struct bp_location *loc)
5298 {
5299 return ((loc->loc_type == bp_loc_software_breakpoint
5300 && !target_supports_stopped_by_sw_breakpoint ())
5301 || (loc->loc_type == bp_loc_hardware_breakpoint
5302 && !target_supports_stopped_by_hw_breakpoint ()));
5303 }
5304
5305 /* See breakpoint.h. */
5306
5307 bpstat
5308 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5309 const struct target_waitstatus *ws)
5310 {
5311 struct breakpoint *b;
5312 bpstat bs_head = NULL, *bs_link = &bs_head;
5313
5314 ALL_BREAKPOINTS (b)
5315 {
5316 if (!breakpoint_enabled (b))
5317 continue;
5318
5319 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5320 {
5321 /* For hardware watchpoints, we look only at the first
5322 location. The watchpoint_check function will work on the
5323 entire expression, not the individual locations. For
5324 read watchpoints, the watchpoints_triggered function has
5325 checked all locations already. */
5326 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5327 break;
5328
5329 if (!bl->enabled || bl->shlib_disabled)
5330 continue;
5331
5332 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5333 continue;
5334
5335 /* Come here if it's a watchpoint, or if the break address
5336 matches. */
5337
5338 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5339 explain stop. */
5340
5341 /* Assume we stop. Should we find a watchpoint that is not
5342 actually triggered, or if the condition of the breakpoint
5343 evaluates as false, we'll reset 'stop' to 0. */
5344 bs->stop = 1;
5345 bs->print = 1;
5346
5347 /* If this is a scope breakpoint, mark the associated
5348 watchpoint as triggered so that we will handle the
5349 out-of-scope event. We'll get to the watchpoint next
5350 iteration. */
5351 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5352 {
5353 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5354
5355 w->watchpoint_triggered = watch_triggered_yes;
5356 }
5357 }
5358 }
5359
5360 /* Check if a moribund breakpoint explains the stop. */
5361 if (!target_supports_stopped_by_sw_breakpoint ()
5362 || !target_supports_stopped_by_hw_breakpoint ())
5363 {
5364 for (bp_location *loc : moribund_locations)
5365 {
5366 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5367 && need_moribund_for_location_type (loc))
5368 {
5369 bpstat bs = new bpstats (loc, &bs_link);
5370 /* For hits of moribund locations, we should just proceed. */
5371 bs->stop = 0;
5372 bs->print = 0;
5373 bs->print_it = print_it_noop;
5374 }
5375 }
5376 }
5377
5378 return bs_head;
5379 }
5380
5381 /* See breakpoint.h. */
5382
5383 bpstat
5384 bpstat_stop_status (const address_space *aspace,
5385 CORE_ADDR bp_addr, thread_info *thread,
5386 const struct target_waitstatus *ws,
5387 bpstat stop_chain)
5388 {
5389 struct breakpoint *b = NULL;
5390 /* First item of allocated bpstat's. */
5391 bpstat bs_head = stop_chain;
5392 bpstat bs;
5393 int need_remove_insert;
5394 int removed_any;
5395
5396 /* First, build the bpstat chain with locations that explain a
5397 target stop, while being careful to not set the target running,
5398 as that may invalidate locations (in particular watchpoint
5399 locations are recreated). Resuming will happen here with
5400 breakpoint conditions or watchpoint expressions that include
5401 inferior function calls. */
5402 if (bs_head == NULL)
5403 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5404
5405 /* A bit of special processing for shlib breakpoints. We need to
5406 process solib loading here, so that the lists of loaded and
5407 unloaded libraries are correct before we handle "catch load" and
5408 "catch unload". */
5409 for (bs = bs_head; bs != NULL; bs = bs->next)
5410 {
5411 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5412 {
5413 handle_solib_event ();
5414 break;
5415 }
5416 }
5417
5418 /* Now go through the locations that caused the target to stop, and
5419 check whether we're interested in reporting this stop to higher
5420 layers, or whether we should resume the target transparently. */
5421
5422 removed_any = 0;
5423
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 {
5426 if (!bs->stop)
5427 continue;
5428
5429 b = bs->breakpoint_at;
5430 b->ops->check_status (bs);
5431 if (bs->stop)
5432 {
5433 bpstat_check_breakpoint_conditions (bs, thread);
5434
5435 if (bs->stop)
5436 {
5437 ++(b->hit_count);
5438 gdb::observers::breakpoint_modified.notify (b);
5439
5440 /* We will stop here. */
5441 if (b->disposition == disp_disable)
5442 {
5443 --(b->enable_count);
5444 if (b->enable_count <= 0)
5445 b->enable_state = bp_disabled;
5446 removed_any = 1;
5447 }
5448 if (b->silent)
5449 bs->print = 0;
5450 bs->commands = b->commands;
5451 if (command_line_is_silent (bs->commands
5452 ? bs->commands.get () : NULL))
5453 bs->print = 0;
5454
5455 b->ops->after_condition_true (bs);
5456 }
5457
5458 }
5459
5460 /* Print nothing for this entry if we don't stop or don't
5461 print. */
5462 if (!bs->stop || !bs->print)
5463 bs->print_it = print_it_noop;
5464 }
5465
5466 /* If we aren't stopping, the value of some hardware watchpoint may
5467 not have changed, but the intermediate memory locations we are
5468 watching may have. Don't bother if we're stopping; this will get
5469 done later. */
5470 need_remove_insert = 0;
5471 if (! bpstat_causes_stop (bs_head))
5472 for (bs = bs_head; bs != NULL; bs = bs->next)
5473 if (!bs->stop
5474 && bs->breakpoint_at
5475 && is_hardware_watchpoint (bs->breakpoint_at))
5476 {
5477 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5478
5479 update_watchpoint (w, 0 /* don't reparse. */);
5480 need_remove_insert = 1;
5481 }
5482
5483 if (need_remove_insert)
5484 update_global_location_list (UGLL_MAY_INSERT);
5485 else if (removed_any)
5486 update_global_location_list (UGLL_DONT_INSERT);
5487
5488 return bs_head;
5489 }
5490
5491 static void
5492 handle_jit_event (void)
5493 {
5494 struct frame_info *frame;
5495 struct gdbarch *gdbarch;
5496
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5499
5500 /* Switch terminal for any messages produced by
5501 breakpoint_re_set. */
5502 target_terminal::ours_for_output ();
5503
5504 frame = get_current_frame ();
5505 gdbarch = get_frame_arch (frame);
5506
5507 jit_event_handler (gdbarch);
5508
5509 target_terminal::inferior ();
5510 }
5511
5512 /* Prepare WHAT final decision for infrun. */
5513
5514 /* Decide what infrun needs to do with this bpstat. */
5515
5516 struct bpstat_what
5517 bpstat_what (bpstat bs_head)
5518 {
5519 struct bpstat_what retval;
5520 bpstat bs;
5521
5522 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5523 retval.call_dummy = STOP_NONE;
5524 retval.is_longjmp = 0;
5525
5526 for (bs = bs_head; bs != NULL; bs = bs->next)
5527 {
5528 /* Extract this BS's action. After processing each BS, we check
5529 if its action overrides all we've seem so far. */
5530 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5531 enum bptype bptype;
5532
5533 if (bs->breakpoint_at == NULL)
5534 {
5535 /* I suspect this can happen if it was a momentary
5536 breakpoint which has since been deleted. */
5537 bptype = bp_none;
5538 }
5539 else
5540 bptype = bs->breakpoint_at->type;
5541
5542 switch (bptype)
5543 {
5544 case bp_none:
5545 break;
5546 case bp_breakpoint:
5547 case bp_hardware_breakpoint:
5548 case bp_single_step:
5549 case bp_until:
5550 case bp_finish:
5551 case bp_shlib_event:
5552 if (bs->stop)
5553 {
5554 if (bs->print)
5555 this_action = BPSTAT_WHAT_STOP_NOISY;
5556 else
5557 this_action = BPSTAT_WHAT_STOP_SILENT;
5558 }
5559 else
5560 this_action = BPSTAT_WHAT_SINGLE;
5561 break;
5562 case bp_watchpoint:
5563 case bp_hardware_watchpoint:
5564 case bp_read_watchpoint:
5565 case bp_access_watchpoint:
5566 if (bs->stop)
5567 {
5568 if (bs->print)
5569 this_action = BPSTAT_WHAT_STOP_NOISY;
5570 else
5571 this_action = BPSTAT_WHAT_STOP_SILENT;
5572 }
5573 else
5574 {
5575 /* There was a watchpoint, but we're not stopping.
5576 This requires no further action. */
5577 }
5578 break;
5579 case bp_longjmp:
5580 case bp_longjmp_call_dummy:
5581 case bp_exception:
5582 if (bs->stop)
5583 {
5584 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5585 retval.is_longjmp = bptype != bp_exception;
5586 }
5587 else
5588 this_action = BPSTAT_WHAT_SINGLE;
5589 break;
5590 case bp_longjmp_resume:
5591 case bp_exception_resume:
5592 if (bs->stop)
5593 {
5594 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5595 retval.is_longjmp = bptype == bp_longjmp_resume;
5596 }
5597 else
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_step_resume:
5601 if (bs->stop)
5602 this_action = BPSTAT_WHAT_STEP_RESUME;
5603 else
5604 {
5605 /* It is for the wrong frame. */
5606 this_action = BPSTAT_WHAT_SINGLE;
5607 }
5608 break;
5609 case bp_hp_step_resume:
5610 if (bs->stop)
5611 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5612 else
5613 {
5614 /* It is for the wrong frame. */
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 }
5617 break;
5618 case bp_watchpoint_scope:
5619 case bp_thread_event:
5620 case bp_overlay_event:
5621 case bp_longjmp_master:
5622 case bp_std_terminate_master:
5623 case bp_exception_master:
5624 this_action = BPSTAT_WHAT_SINGLE;
5625 break;
5626 case bp_catchpoint:
5627 if (bs->stop)
5628 {
5629 if (bs->print)
5630 this_action = BPSTAT_WHAT_STOP_NOISY;
5631 else
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 }
5634 else
5635 {
5636 /* There was a catchpoint, but we're not stopping.
5637 This requires no further action. */
5638 }
5639 break;
5640 case bp_jit_event:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_call_dummy:
5644 /* Make sure the action is stop (silent or noisy),
5645 so infrun.c pops the dummy frame. */
5646 retval.call_dummy = STOP_STACK_DUMMY;
5647 this_action = BPSTAT_WHAT_STOP_SILENT;
5648 break;
5649 case bp_std_terminate:
5650 /* Make sure the action is stop (silent or noisy),
5651 so infrun.c pops the dummy frame. */
5652 retval.call_dummy = STOP_STD_TERMINATE;
5653 this_action = BPSTAT_WHAT_STOP_SILENT;
5654 break;
5655 case bp_tracepoint:
5656 case bp_fast_tracepoint:
5657 case bp_static_tracepoint:
5658 /* Tracepoint hits should not be reported back to GDB, and
5659 if one got through somehow, it should have been filtered
5660 out already. */
5661 internal_error (__FILE__, __LINE__,
5662 _("bpstat_what: tracepoint encountered"));
5663 break;
5664 case bp_gnu_ifunc_resolver:
5665 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 break;
5668 case bp_gnu_ifunc_resolver_return:
5669 /* The breakpoint will be removed, execution will restart from the
5670 PC of the former breakpoint. */
5671 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5672 break;
5673
5674 case bp_dprintf:
5675 if (bs->stop)
5676 this_action = BPSTAT_WHAT_STOP_SILENT;
5677 else
5678 this_action = BPSTAT_WHAT_SINGLE;
5679 break;
5680
5681 default:
5682 internal_error (__FILE__, __LINE__,
5683 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5684 }
5685
5686 retval.main_action = std::max (retval.main_action, this_action);
5687 }
5688
5689 return retval;
5690 }
5691
5692 void
5693 bpstat_run_callbacks (bpstat bs_head)
5694 {
5695 bpstat bs;
5696
5697 for (bs = bs_head; bs != NULL; bs = bs->next)
5698 {
5699 struct breakpoint *b = bs->breakpoint_at;
5700
5701 if (b == NULL)
5702 continue;
5703 switch (b->type)
5704 {
5705 case bp_jit_event:
5706 handle_jit_event ();
5707 break;
5708 case bp_gnu_ifunc_resolver:
5709 gnu_ifunc_resolver_stop (b);
5710 break;
5711 case bp_gnu_ifunc_resolver_return:
5712 gnu_ifunc_resolver_return_stop (b);
5713 break;
5714 }
5715 }
5716 }
5717
5718 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5719 without hardware support). This isn't related to a specific bpstat,
5720 just to things like whether watchpoints are set. */
5721
5722 int
5723 bpstat_should_step (void)
5724 {
5725 struct breakpoint *b;
5726
5727 ALL_BREAKPOINTS (b)
5728 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5729 return 1;
5730 return 0;
5731 }
5732
5733 int
5734 bpstat_causes_stop (bpstat bs)
5735 {
5736 for (; bs != NULL; bs = bs->next)
5737 if (bs->stop)
5738 return 1;
5739
5740 return 0;
5741 }
5742
5743 \f
5744
5745 /* Compute a string of spaces suitable to indent the next line
5746 so it starts at the position corresponding to the table column
5747 named COL_NAME in the currently active table of UIOUT. */
5748
5749 static char *
5750 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5751 {
5752 static char wrap_indent[80];
5753 int i, total_width, width, align;
5754 const char *text;
5755
5756 total_width = 0;
5757 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5758 {
5759 if (strcmp (text, col_name) == 0)
5760 {
5761 gdb_assert (total_width < sizeof wrap_indent);
5762 memset (wrap_indent, ' ', total_width);
5763 wrap_indent[total_width] = 0;
5764
5765 return wrap_indent;
5766 }
5767
5768 total_width += width + 1;
5769 }
5770
5771 return NULL;
5772 }
5773
5774 /* Determine if the locations of this breakpoint will have their conditions
5775 evaluated by the target, host or a mix of both. Returns the following:
5776
5777 "host": Host evals condition.
5778 "host or target": Host or Target evals condition.
5779 "target": Target evals condition.
5780 */
5781
5782 static const char *
5783 bp_condition_evaluator (struct breakpoint *b)
5784 {
5785 struct bp_location *bl;
5786 char host_evals = 0;
5787 char target_evals = 0;
5788
5789 if (!b)
5790 return NULL;
5791
5792 if (!is_breakpoint (b))
5793 return NULL;
5794
5795 if (gdb_evaluates_breakpoint_condition_p ()
5796 || !target_supports_evaluation_of_breakpoint_conditions ())
5797 return condition_evaluation_host;
5798
5799 for (bl = b->loc; bl; bl = bl->next)
5800 {
5801 if (bl->cond_bytecode)
5802 target_evals++;
5803 else
5804 host_evals++;
5805 }
5806
5807 if (host_evals && target_evals)
5808 return condition_evaluation_both;
5809 else if (target_evals)
5810 return condition_evaluation_target;
5811 else
5812 return condition_evaluation_host;
5813 }
5814
5815 /* Determine the breakpoint location's condition evaluator. This is
5816 similar to bp_condition_evaluator, but for locations. */
5817
5818 static const char *
5819 bp_location_condition_evaluator (struct bp_location *bl)
5820 {
5821 if (bl && !is_breakpoint (bl->owner))
5822 return NULL;
5823
5824 if (gdb_evaluates_breakpoint_condition_p ()
5825 || !target_supports_evaluation_of_breakpoint_conditions ())
5826 return condition_evaluation_host;
5827
5828 if (bl && bl->cond_bytecode)
5829 return condition_evaluation_target;
5830 else
5831 return condition_evaluation_host;
5832 }
5833
5834 /* Print the LOC location out of the list of B->LOC locations. */
5835
5836 static void
5837 print_breakpoint_location (struct breakpoint *b,
5838 struct bp_location *loc)
5839 {
5840 struct ui_out *uiout = current_uiout;
5841
5842 scoped_restore_current_program_space restore_pspace;
5843
5844 if (loc != NULL && loc->shlib_disabled)
5845 loc = NULL;
5846
5847 if (loc != NULL)
5848 set_current_program_space (loc->pspace);
5849
5850 if (b->display_canonical)
5851 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5852 else if (loc && loc->symtab)
5853 {
5854 const struct symbol *sym = loc->symbol;
5855
5856 if (sym)
5857 {
5858 uiout->text ("in ");
5859 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5860 ui_out_style_kind::FUNCTION);
5861 uiout->text (" ");
5862 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5863 uiout->text ("at ");
5864 }
5865 uiout->field_string ("file",
5866 symtab_to_filename_for_display (loc->symtab),
5867 ui_out_style_kind::FILE);
5868 uiout->text (":");
5869
5870 if (uiout->is_mi_like_p ())
5871 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5872
5873 uiout->field_int ("line", loc->line_number);
5874 }
5875 else if (loc)
5876 {
5877 string_file stb;
5878
5879 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5880 demangle, "");
5881 uiout->field_stream ("at", stb);
5882 }
5883 else
5884 {
5885 uiout->field_string ("pending",
5886 event_location_to_string (b->location.get ()));
5887 /* If extra_string is available, it could be holding a condition
5888 or dprintf arguments. In either case, make sure it is printed,
5889 too, but only for non-MI streams. */
5890 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5891 {
5892 if (b->type == bp_dprintf)
5893 uiout->text (",");
5894 else
5895 uiout->text (" ");
5896 uiout->text (b->extra_string);
5897 }
5898 }
5899
5900 if (loc && is_breakpoint (b)
5901 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5902 && bp_condition_evaluator (b) == condition_evaluation_both)
5903 {
5904 uiout->text (" (");
5905 uiout->field_string ("evaluated-by",
5906 bp_location_condition_evaluator (loc));
5907 uiout->text (")");
5908 }
5909 }
5910
5911 static const char *
5912 bptype_string (enum bptype type)
5913 {
5914 struct ep_type_description
5915 {
5916 enum bptype type;
5917 const char *description;
5918 };
5919 static struct ep_type_description bptypes[] =
5920 {
5921 {bp_none, "?deleted?"},
5922 {bp_breakpoint, "breakpoint"},
5923 {bp_hardware_breakpoint, "hw breakpoint"},
5924 {bp_single_step, "sw single-step"},
5925 {bp_until, "until"},
5926 {bp_finish, "finish"},
5927 {bp_watchpoint, "watchpoint"},
5928 {bp_hardware_watchpoint, "hw watchpoint"},
5929 {bp_read_watchpoint, "read watchpoint"},
5930 {bp_access_watchpoint, "acc watchpoint"},
5931 {bp_longjmp, "longjmp"},
5932 {bp_longjmp_resume, "longjmp resume"},
5933 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5934 {bp_exception, "exception"},
5935 {bp_exception_resume, "exception resume"},
5936 {bp_step_resume, "step resume"},
5937 {bp_hp_step_resume, "high-priority step resume"},
5938 {bp_watchpoint_scope, "watchpoint scope"},
5939 {bp_call_dummy, "call dummy"},
5940 {bp_std_terminate, "std::terminate"},
5941 {bp_shlib_event, "shlib events"},
5942 {bp_thread_event, "thread events"},
5943 {bp_overlay_event, "overlay events"},
5944 {bp_longjmp_master, "longjmp master"},
5945 {bp_std_terminate_master, "std::terminate master"},
5946 {bp_exception_master, "exception master"},
5947 {bp_catchpoint, "catchpoint"},
5948 {bp_tracepoint, "tracepoint"},
5949 {bp_fast_tracepoint, "fast tracepoint"},
5950 {bp_static_tracepoint, "static tracepoint"},
5951 {bp_dprintf, "dprintf"},
5952 {bp_jit_event, "jit events"},
5953 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5954 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5955 };
5956
5957 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5958 || ((int) type != bptypes[(int) type].type))
5959 internal_error (__FILE__, __LINE__,
5960 _("bptypes table does not describe type #%d."),
5961 (int) type);
5962
5963 return bptypes[(int) type].description;
5964 }
5965
5966 /* For MI, output a field named 'thread-groups' with a list as the value.
5967 For CLI, prefix the list with the string 'inf'. */
5968
5969 static void
5970 output_thread_groups (struct ui_out *uiout,
5971 const char *field_name,
5972 const std::vector<int> &inf_nums,
5973 int mi_only)
5974 {
5975 int is_mi = uiout->is_mi_like_p ();
5976
5977 /* For backward compatibility, don't display inferiors in CLI unless
5978 there are several. Always display them for MI. */
5979 if (!is_mi && mi_only)
5980 return;
5981
5982 ui_out_emit_list list_emitter (uiout, field_name);
5983
5984 for (size_t i = 0; i < inf_nums.size (); i++)
5985 {
5986 if (is_mi)
5987 {
5988 char mi_group[10];
5989
5990 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5991 uiout->field_string (NULL, mi_group);
5992 }
5993 else
5994 {
5995 if (i == 0)
5996 uiout->text (" inf ");
5997 else
5998 uiout->text (", ");
5999
6000 uiout->text (plongest (inf_nums[i]));
6001 }
6002 }
6003 }
6004
6005 /* Print B to gdb_stdout. */
6006
6007 static void
6008 print_one_breakpoint_location (struct breakpoint *b,
6009 struct bp_location *loc,
6010 int loc_number,
6011 struct bp_location **last_loc,
6012 int allflag)
6013 {
6014 struct command_line *l;
6015 static char bpenables[] = "nynny";
6016
6017 struct ui_out *uiout = current_uiout;
6018 int header_of_multiple = 0;
6019 int part_of_multiple = (loc != NULL);
6020 struct value_print_options opts;
6021
6022 get_user_print_options (&opts);
6023
6024 gdb_assert (!loc || loc_number != 0);
6025 /* See comment in print_one_breakpoint concerning treatment of
6026 breakpoints with single disabled location. */
6027 if (loc == NULL
6028 && (b->loc != NULL
6029 && (b->loc->next != NULL || !b->loc->enabled)))
6030 header_of_multiple = 1;
6031 if (loc == NULL)
6032 loc = b->loc;
6033
6034 annotate_record ();
6035
6036 /* 1 */
6037 annotate_field (0);
6038 if (part_of_multiple)
6039 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6040 else
6041 uiout->field_int ("number", b->number);
6042
6043 /* 2 */
6044 annotate_field (1);
6045 if (part_of_multiple)
6046 uiout->field_skip ("type");
6047 else
6048 uiout->field_string ("type", bptype_string (b->type));
6049
6050 /* 3 */
6051 annotate_field (2);
6052 if (part_of_multiple)
6053 uiout->field_skip ("disp");
6054 else
6055 uiout->field_string ("disp", bpdisp_text (b->disposition));
6056
6057 /* 4 */
6058 annotate_field (3);
6059 if (part_of_multiple)
6060 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6061 else
6062 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6063
6064 /* 5 and 6 */
6065 if (b->ops != NULL && b->ops->print_one != NULL)
6066 {
6067 /* Although the print_one can possibly print all locations,
6068 calling it here is not likely to get any nice result. So,
6069 make sure there's just one location. */
6070 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6071 b->ops->print_one (b, last_loc);
6072 }
6073 else
6074 switch (b->type)
6075 {
6076 case bp_none:
6077 internal_error (__FILE__, __LINE__,
6078 _("print_one_breakpoint: bp_none encountered\n"));
6079 break;
6080
6081 case bp_watchpoint:
6082 case bp_hardware_watchpoint:
6083 case bp_read_watchpoint:
6084 case bp_access_watchpoint:
6085 {
6086 struct watchpoint *w = (struct watchpoint *) b;
6087
6088 /* Field 4, the address, is omitted (which makes the columns
6089 not line up too nicely with the headers, but the effect
6090 is relatively readable). */
6091 if (opts.addressprint)
6092 uiout->field_skip ("addr");
6093 annotate_field (5);
6094 uiout->field_string ("what", w->exp_string);
6095 }
6096 break;
6097
6098 case bp_breakpoint:
6099 case bp_hardware_breakpoint:
6100 case bp_single_step:
6101 case bp_until:
6102 case bp_finish:
6103 case bp_longjmp:
6104 case bp_longjmp_resume:
6105 case bp_longjmp_call_dummy:
6106 case bp_exception:
6107 case bp_exception_resume:
6108 case bp_step_resume:
6109 case bp_hp_step_resume:
6110 case bp_watchpoint_scope:
6111 case bp_call_dummy:
6112 case bp_std_terminate:
6113 case bp_shlib_event:
6114 case bp_thread_event:
6115 case bp_overlay_event:
6116 case bp_longjmp_master:
6117 case bp_std_terminate_master:
6118 case bp_exception_master:
6119 case bp_tracepoint:
6120 case bp_fast_tracepoint:
6121 case bp_static_tracepoint:
6122 case bp_dprintf:
6123 case bp_jit_event:
6124 case bp_gnu_ifunc_resolver:
6125 case bp_gnu_ifunc_resolver_return:
6126 if (opts.addressprint)
6127 {
6128 annotate_field (4);
6129 if (header_of_multiple)
6130 uiout->field_string ("addr", "<MULTIPLE>");
6131 else if (b->loc == NULL || loc->shlib_disabled)
6132 uiout->field_string ("addr", "<PENDING>");
6133 else
6134 uiout->field_core_addr ("addr",
6135 loc->gdbarch, loc->address);
6136 }
6137 annotate_field (5);
6138 if (!header_of_multiple)
6139 print_breakpoint_location (b, loc);
6140 if (b->loc)
6141 *last_loc = b->loc;
6142 break;
6143 }
6144
6145
6146 if (loc != NULL && !header_of_multiple)
6147 {
6148 std::vector<int> inf_nums;
6149 int mi_only = 1;
6150
6151 for (inferior *inf : all_inferiors ())
6152 {
6153 if (inf->pspace == loc->pspace)
6154 inf_nums.push_back (inf->num);
6155 }
6156
6157 /* For backward compatibility, don't display inferiors in CLI unless
6158 there are several. Always display for MI. */
6159 if (allflag
6160 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6161 && (number_of_program_spaces () > 1
6162 || number_of_inferiors () > 1)
6163 /* LOC is for existing B, it cannot be in
6164 moribund_locations and thus having NULL OWNER. */
6165 && loc->owner->type != bp_catchpoint))
6166 mi_only = 0;
6167 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6168 }
6169
6170 if (!part_of_multiple)
6171 {
6172 if (b->thread != -1)
6173 {
6174 /* FIXME: This seems to be redundant and lost here; see the
6175 "stop only in" line a little further down. */
6176 uiout->text (" thread ");
6177 uiout->field_int ("thread", b->thread);
6178 }
6179 else if (b->task != 0)
6180 {
6181 uiout->text (" task ");
6182 uiout->field_int ("task", b->task);
6183 }
6184 }
6185
6186 uiout->text ("\n");
6187
6188 if (!part_of_multiple)
6189 b->ops->print_one_detail (b, uiout);
6190
6191 if (part_of_multiple && frame_id_p (b->frame_id))
6192 {
6193 annotate_field (6);
6194 uiout->text ("\tstop only in stack frame at ");
6195 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6196 the frame ID. */
6197 uiout->field_core_addr ("frame",
6198 b->gdbarch, b->frame_id.stack_addr);
6199 uiout->text ("\n");
6200 }
6201
6202 if (!part_of_multiple && b->cond_string)
6203 {
6204 annotate_field (7);
6205 if (is_tracepoint (b))
6206 uiout->text ("\ttrace only if ");
6207 else
6208 uiout->text ("\tstop only if ");
6209 uiout->field_string ("cond", b->cond_string);
6210
6211 /* Print whether the target is doing the breakpoint's condition
6212 evaluation. If GDB is doing the evaluation, don't print anything. */
6213 if (is_breakpoint (b)
6214 && breakpoint_condition_evaluation_mode ()
6215 == condition_evaluation_target)
6216 {
6217 uiout->text (" (");
6218 uiout->field_string ("evaluated-by",
6219 bp_condition_evaluator (b));
6220 uiout->text (" evals)");
6221 }
6222 uiout->text ("\n");
6223 }
6224
6225 if (!part_of_multiple && b->thread != -1)
6226 {
6227 /* FIXME should make an annotation for this. */
6228 uiout->text ("\tstop only in thread ");
6229 if (uiout->is_mi_like_p ())
6230 uiout->field_int ("thread", b->thread);
6231 else
6232 {
6233 struct thread_info *thr = find_thread_global_id (b->thread);
6234
6235 uiout->field_string ("thread", print_thread_id (thr));
6236 }
6237 uiout->text ("\n");
6238 }
6239
6240 if (!part_of_multiple)
6241 {
6242 if (b->hit_count)
6243 {
6244 /* FIXME should make an annotation for this. */
6245 if (is_catchpoint (b))
6246 uiout->text ("\tcatchpoint");
6247 else if (is_tracepoint (b))
6248 uiout->text ("\ttracepoint");
6249 else
6250 uiout->text ("\tbreakpoint");
6251 uiout->text (" already hit ");
6252 uiout->field_int ("times", b->hit_count);
6253 if (b->hit_count == 1)
6254 uiout->text (" time\n");
6255 else
6256 uiout->text (" times\n");
6257 }
6258 else
6259 {
6260 /* Output the count also if it is zero, but only if this is mi. */
6261 if (uiout->is_mi_like_p ())
6262 uiout->field_int ("times", b->hit_count);
6263 }
6264 }
6265
6266 if (!part_of_multiple && b->ignore_count)
6267 {
6268 annotate_field (8);
6269 uiout->text ("\tignore next ");
6270 uiout->field_int ("ignore", b->ignore_count);
6271 uiout->text (" hits\n");
6272 }
6273
6274 /* Note that an enable count of 1 corresponds to "enable once"
6275 behavior, which is reported by the combination of enablement and
6276 disposition, so we don't need to mention it here. */
6277 if (!part_of_multiple && b->enable_count > 1)
6278 {
6279 annotate_field (8);
6280 uiout->text ("\tdisable after ");
6281 /* Tweak the wording to clarify that ignore and enable counts
6282 are distinct, and have additive effect. */
6283 if (b->ignore_count)
6284 uiout->text ("additional ");
6285 else
6286 uiout->text ("next ");
6287 uiout->field_int ("enable", b->enable_count);
6288 uiout->text (" hits\n");
6289 }
6290
6291 if (!part_of_multiple && is_tracepoint (b))
6292 {
6293 struct tracepoint *tp = (struct tracepoint *) b;
6294
6295 if (tp->traceframe_usage)
6296 {
6297 uiout->text ("\ttrace buffer usage ");
6298 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6299 uiout->text (" bytes\n");
6300 }
6301 }
6302
6303 l = b->commands ? b->commands.get () : NULL;
6304 if (!part_of_multiple && l)
6305 {
6306 annotate_field (9);
6307 ui_out_emit_tuple tuple_emitter (uiout, "script");
6308 print_command_lines (uiout, l, 4);
6309 }
6310
6311 if (is_tracepoint (b))
6312 {
6313 struct tracepoint *t = (struct tracepoint *) b;
6314
6315 if (!part_of_multiple && t->pass_count)
6316 {
6317 annotate_field (10);
6318 uiout->text ("\tpass count ");
6319 uiout->field_int ("pass", t->pass_count);
6320 uiout->text (" \n");
6321 }
6322
6323 /* Don't display it when tracepoint or tracepoint location is
6324 pending. */
6325 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6326 {
6327 annotate_field (11);
6328
6329 if (uiout->is_mi_like_p ())
6330 uiout->field_string ("installed",
6331 loc->inserted ? "y" : "n");
6332 else
6333 {
6334 if (loc->inserted)
6335 uiout->text ("\t");
6336 else
6337 uiout->text ("\tnot ");
6338 uiout->text ("installed on target\n");
6339 }
6340 }
6341 }
6342
6343 if (uiout->is_mi_like_p () && !part_of_multiple)
6344 {
6345 if (is_watchpoint (b))
6346 {
6347 struct watchpoint *w = (struct watchpoint *) b;
6348
6349 uiout->field_string ("original-location", w->exp_string);
6350 }
6351 else if (b->location != NULL
6352 && event_location_to_string (b->location.get ()) != NULL)
6353 uiout->field_string ("original-location",
6354 event_location_to_string (b->location.get ()));
6355 }
6356 }
6357
6358 static void
6359 print_one_breakpoint (struct breakpoint *b,
6360 struct bp_location **last_loc,
6361 int allflag)
6362 {
6363 struct ui_out *uiout = current_uiout;
6364
6365 {
6366 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6367
6368 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6369 }
6370
6371 /* If this breakpoint has custom print function,
6372 it's already printed. Otherwise, print individual
6373 locations, if any. */
6374 if (b->ops == NULL || b->ops->print_one == NULL)
6375 {
6376 /* If breakpoint has a single location that is disabled, we
6377 print it as if it had several locations, since otherwise it's
6378 hard to represent "breakpoint enabled, location disabled"
6379 situation.
6380
6381 Note that while hardware watchpoints have several locations
6382 internally, that's not a property exposed to user. */
6383 if (b->loc
6384 && !is_hardware_watchpoint (b)
6385 && (b->loc->next || !b->loc->enabled))
6386 {
6387 struct bp_location *loc;
6388 int n = 1;
6389
6390 for (loc = b->loc; loc; loc = loc->next, ++n)
6391 {
6392 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6393 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6394 }
6395 }
6396 }
6397 }
6398
6399 static int
6400 breakpoint_address_bits (struct breakpoint *b)
6401 {
6402 int print_address_bits = 0;
6403 struct bp_location *loc;
6404
6405 /* Software watchpoints that aren't watching memory don't have an
6406 address to print. */
6407 if (is_no_memory_software_watchpoint (b))
6408 return 0;
6409
6410 for (loc = b->loc; loc; loc = loc->next)
6411 {
6412 int addr_bit;
6413
6414 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6415 if (addr_bit > print_address_bits)
6416 print_address_bits = addr_bit;
6417 }
6418
6419 return print_address_bits;
6420 }
6421
6422 /* See breakpoint.h. */
6423
6424 void
6425 print_breakpoint (breakpoint *b)
6426 {
6427 struct bp_location *dummy_loc = NULL;
6428 print_one_breakpoint (b, &dummy_loc, 0);
6429 }
6430
6431 /* Return true if this breakpoint was set by the user, false if it is
6432 internal or momentary. */
6433
6434 int
6435 user_breakpoint_p (struct breakpoint *b)
6436 {
6437 return b->number > 0;
6438 }
6439
6440 /* See breakpoint.h. */
6441
6442 int
6443 pending_breakpoint_p (struct breakpoint *b)
6444 {
6445 return b->loc == NULL;
6446 }
6447
6448 /* Print information on user settable breakpoint (watchpoint, etc)
6449 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6450 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6451 FILTER is non-NULL, call it on each breakpoint and only include the
6452 ones for which it returns non-zero. Return the total number of
6453 breakpoints listed. */
6454
6455 static int
6456 breakpoint_1 (const char *args, int allflag,
6457 int (*filter) (const struct breakpoint *))
6458 {
6459 struct breakpoint *b;
6460 struct bp_location *last_loc = NULL;
6461 int nr_printable_breakpoints;
6462 struct value_print_options opts;
6463 int print_address_bits = 0;
6464 int print_type_col_width = 14;
6465 struct ui_out *uiout = current_uiout;
6466
6467 get_user_print_options (&opts);
6468
6469 /* Compute the number of rows in the table, as well as the size
6470 required for address fields. */
6471 nr_printable_breakpoints = 0;
6472 ALL_BREAKPOINTS (b)
6473 {
6474 /* If we have a filter, only list the breakpoints it accepts. */
6475 if (filter && !filter (b))
6476 continue;
6477
6478 /* If we have an "args" string, it is a list of breakpoints to
6479 accept. Skip the others. */
6480 if (args != NULL && *args != '\0')
6481 {
6482 if (allflag && parse_and_eval_long (args) != b->number)
6483 continue;
6484 if (!allflag && !number_is_in_list (args, b->number))
6485 continue;
6486 }
6487
6488 if (allflag || user_breakpoint_p (b))
6489 {
6490 int addr_bit, type_len;
6491
6492 addr_bit = breakpoint_address_bits (b);
6493 if (addr_bit > print_address_bits)
6494 print_address_bits = addr_bit;
6495
6496 type_len = strlen (bptype_string (b->type));
6497 if (type_len > print_type_col_width)
6498 print_type_col_width = type_len;
6499
6500 nr_printable_breakpoints++;
6501 }
6502 }
6503
6504 {
6505 ui_out_emit_table table_emitter (uiout,
6506 opts.addressprint ? 6 : 5,
6507 nr_printable_breakpoints,
6508 "BreakpointTable");
6509
6510 if (nr_printable_breakpoints > 0)
6511 annotate_breakpoints_headers ();
6512 if (nr_printable_breakpoints > 0)
6513 annotate_field (0);
6514 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6515 if (nr_printable_breakpoints > 0)
6516 annotate_field (1);
6517 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6518 if (nr_printable_breakpoints > 0)
6519 annotate_field (2);
6520 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6521 if (nr_printable_breakpoints > 0)
6522 annotate_field (3);
6523 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6524 if (opts.addressprint)
6525 {
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (4);
6528 if (print_address_bits <= 32)
6529 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6530 else
6531 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6532 }
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (5);
6535 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6536 uiout->table_body ();
6537 if (nr_printable_breakpoints > 0)
6538 annotate_breakpoints_table ();
6539
6540 ALL_BREAKPOINTS (b)
6541 {
6542 QUIT;
6543 /* If we have a filter, only list the breakpoints it accepts. */
6544 if (filter && !filter (b))
6545 continue;
6546
6547 /* If we have an "args" string, it is a list of breakpoints to
6548 accept. Skip the others. */
6549
6550 if (args != NULL && *args != '\0')
6551 {
6552 if (allflag) /* maintenance info breakpoint */
6553 {
6554 if (parse_and_eval_long (args) != b->number)
6555 continue;
6556 }
6557 else /* all others */
6558 {
6559 if (!number_is_in_list (args, b->number))
6560 continue;
6561 }
6562 }
6563 /* We only print out user settable breakpoints unless the
6564 allflag is set. */
6565 if (allflag || user_breakpoint_p (b))
6566 print_one_breakpoint (b, &last_loc, allflag);
6567 }
6568 }
6569
6570 if (nr_printable_breakpoints == 0)
6571 {
6572 /* If there's a filter, let the caller decide how to report
6573 empty list. */
6574 if (!filter)
6575 {
6576 if (args == NULL || *args == '\0')
6577 uiout->message ("No breakpoints or watchpoints.\n");
6578 else
6579 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6580 args);
6581 }
6582 }
6583 else
6584 {
6585 if (last_loc && !server_command)
6586 set_next_address (last_loc->gdbarch, last_loc->address);
6587 }
6588
6589 /* FIXME? Should this be moved up so that it is only called when
6590 there have been breakpoints? */
6591 annotate_breakpoints_table_end ();
6592
6593 return nr_printable_breakpoints;
6594 }
6595
6596 /* Display the value of default-collect in a way that is generally
6597 compatible with the breakpoint list. */
6598
6599 static void
6600 default_collect_info (void)
6601 {
6602 struct ui_out *uiout = current_uiout;
6603
6604 /* If it has no value (which is frequently the case), say nothing; a
6605 message like "No default-collect." gets in user's face when it's
6606 not wanted. */
6607 if (!*default_collect)
6608 return;
6609
6610 /* The following phrase lines up nicely with per-tracepoint collect
6611 actions. */
6612 uiout->text ("default collect ");
6613 uiout->field_string ("default-collect", default_collect);
6614 uiout->text (" \n");
6615 }
6616
6617 static void
6618 info_breakpoints_command (const char *args, int from_tty)
6619 {
6620 breakpoint_1 (args, 0, NULL);
6621
6622 default_collect_info ();
6623 }
6624
6625 static void
6626 info_watchpoints_command (const char *args, int from_tty)
6627 {
6628 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6629 struct ui_out *uiout = current_uiout;
6630
6631 if (num_printed == 0)
6632 {
6633 if (args == NULL || *args == '\0')
6634 uiout->message ("No watchpoints.\n");
6635 else
6636 uiout->message ("No watchpoint matching '%s'.\n", args);
6637 }
6638 }
6639
6640 static void
6641 maintenance_info_breakpoints (const char *args, int from_tty)
6642 {
6643 breakpoint_1 (args, 1, NULL);
6644
6645 default_collect_info ();
6646 }
6647
6648 static int
6649 breakpoint_has_pc (struct breakpoint *b,
6650 struct program_space *pspace,
6651 CORE_ADDR pc, struct obj_section *section)
6652 {
6653 struct bp_location *bl = b->loc;
6654
6655 for (; bl; bl = bl->next)
6656 {
6657 if (bl->pspace == pspace
6658 && bl->address == pc
6659 && (!overlay_debugging || bl->section == section))
6660 return 1;
6661 }
6662 return 0;
6663 }
6664
6665 /* Print a message describing any user-breakpoints set at PC. This
6666 concerns with logical breakpoints, so we match program spaces, not
6667 address spaces. */
6668
6669 static void
6670 describe_other_breakpoints (struct gdbarch *gdbarch,
6671 struct program_space *pspace, CORE_ADDR pc,
6672 struct obj_section *section, int thread)
6673 {
6674 int others = 0;
6675 struct breakpoint *b;
6676
6677 ALL_BREAKPOINTS (b)
6678 others += (user_breakpoint_p (b)
6679 && breakpoint_has_pc (b, pspace, pc, section));
6680 if (others > 0)
6681 {
6682 if (others == 1)
6683 printf_filtered (_("Note: breakpoint "));
6684 else /* if (others == ???) */
6685 printf_filtered (_("Note: breakpoints "));
6686 ALL_BREAKPOINTS (b)
6687 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6688 {
6689 others--;
6690 printf_filtered ("%d", b->number);
6691 if (b->thread == -1 && thread != -1)
6692 printf_filtered (" (all threads)");
6693 else if (b->thread != -1)
6694 printf_filtered (" (thread %d)", b->thread);
6695 printf_filtered ("%s%s ",
6696 ((b->enable_state == bp_disabled
6697 || b->enable_state == bp_call_disabled)
6698 ? " (disabled)"
6699 : ""),
6700 (others > 1) ? ","
6701 : ((others == 1) ? " and" : ""));
6702 }
6703 printf_filtered (_("also set at pc "));
6704 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6705 printf_filtered (".\n");
6706 }
6707 }
6708 \f
6709
6710 /* Return true iff it is meaningful to use the address member of
6711 BPT locations. For some breakpoint types, the locations' address members
6712 are irrelevant and it makes no sense to attempt to compare them to other
6713 addresses (or use them for any other purpose either).
6714
6715 More specifically, each of the following breakpoint types will
6716 always have a zero valued location address and we don't want to mark
6717 breakpoints of any of these types to be a duplicate of an actual
6718 breakpoint location at address zero:
6719
6720 bp_watchpoint
6721 bp_catchpoint
6722
6723 */
6724
6725 static int
6726 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6727 {
6728 enum bptype type = bpt->type;
6729
6730 return (type != bp_watchpoint && type != bp_catchpoint);
6731 }
6732
6733 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6734 true if LOC1 and LOC2 represent the same watchpoint location. */
6735
6736 static int
6737 watchpoint_locations_match (struct bp_location *loc1,
6738 struct bp_location *loc2)
6739 {
6740 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6741 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6742
6743 /* Both of them must exist. */
6744 gdb_assert (w1 != NULL);
6745 gdb_assert (w2 != NULL);
6746
6747 /* If the target can evaluate the condition expression in hardware,
6748 then we we need to insert both watchpoints even if they are at
6749 the same place. Otherwise the watchpoint will only trigger when
6750 the condition of whichever watchpoint was inserted evaluates to
6751 true, not giving a chance for GDB to check the condition of the
6752 other watchpoint. */
6753 if ((w1->cond_exp
6754 && target_can_accel_watchpoint_condition (loc1->address,
6755 loc1->length,
6756 loc1->watchpoint_type,
6757 w1->cond_exp.get ()))
6758 || (w2->cond_exp
6759 && target_can_accel_watchpoint_condition (loc2->address,
6760 loc2->length,
6761 loc2->watchpoint_type,
6762 w2->cond_exp.get ())))
6763 return 0;
6764
6765 /* Note that this checks the owner's type, not the location's. In
6766 case the target does not support read watchpoints, but does
6767 support access watchpoints, we'll have bp_read_watchpoint
6768 watchpoints with hw_access locations. Those should be considered
6769 duplicates of hw_read locations. The hw_read locations will
6770 become hw_access locations later. */
6771 return (loc1->owner->type == loc2->owner->type
6772 && loc1->pspace->aspace == loc2->pspace->aspace
6773 && loc1->address == loc2->address
6774 && loc1->length == loc2->length);
6775 }
6776
6777 /* See breakpoint.h. */
6778
6779 int
6780 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6781 const address_space *aspace2, CORE_ADDR addr2)
6782 {
6783 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6784 || aspace1 == aspace2)
6785 && addr1 == addr2);
6786 }
6787
6788 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6789 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6790 matches ASPACE2. On targets that have global breakpoints, the address
6791 space doesn't really matter. */
6792
6793 static int
6794 breakpoint_address_match_range (const address_space *aspace1,
6795 CORE_ADDR addr1,
6796 int len1, const address_space *aspace2,
6797 CORE_ADDR addr2)
6798 {
6799 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6800 || aspace1 == aspace2)
6801 && addr2 >= addr1 && addr2 < addr1 + len1);
6802 }
6803
6804 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6805 a ranged breakpoint. In most targets, a match happens only if ASPACE
6806 matches the breakpoint's address space. On targets that have global
6807 breakpoints, the address space doesn't really matter. */
6808
6809 static int
6810 breakpoint_location_address_match (struct bp_location *bl,
6811 const address_space *aspace,
6812 CORE_ADDR addr)
6813 {
6814 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6815 aspace, addr)
6816 || (bl->length
6817 && breakpoint_address_match_range (bl->pspace->aspace,
6818 bl->address, bl->length,
6819 aspace, addr)));
6820 }
6821
6822 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6823 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6824 match happens only if ASPACE matches the breakpoint's address
6825 space. On targets that have global breakpoints, the address space
6826 doesn't really matter. */
6827
6828 static int
6829 breakpoint_location_address_range_overlap (struct bp_location *bl,
6830 const address_space *aspace,
6831 CORE_ADDR addr, int len)
6832 {
6833 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6834 || bl->pspace->aspace == aspace)
6835 {
6836 int bl_len = bl->length != 0 ? bl->length : 1;
6837
6838 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6839 return 1;
6840 }
6841 return 0;
6842 }
6843
6844 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6845 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6846 true, otherwise returns false. */
6847
6848 static int
6849 tracepoint_locations_match (struct bp_location *loc1,
6850 struct bp_location *loc2)
6851 {
6852 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6853 /* Since tracepoint locations are never duplicated with others', tracepoint
6854 locations at the same address of different tracepoints are regarded as
6855 different locations. */
6856 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6857 else
6858 return 0;
6859 }
6860
6861 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6862 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6863 represent the same location. */
6864
6865 static int
6866 breakpoint_locations_match (struct bp_location *loc1,
6867 struct bp_location *loc2)
6868 {
6869 int hw_point1, hw_point2;
6870
6871 /* Both of them must not be in moribund_locations. */
6872 gdb_assert (loc1->owner != NULL);
6873 gdb_assert (loc2->owner != NULL);
6874
6875 hw_point1 = is_hardware_watchpoint (loc1->owner);
6876 hw_point2 = is_hardware_watchpoint (loc2->owner);
6877
6878 if (hw_point1 != hw_point2)
6879 return 0;
6880 else if (hw_point1)
6881 return watchpoint_locations_match (loc1, loc2);
6882 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6883 return tracepoint_locations_match (loc1, loc2);
6884 else
6885 /* We compare bp_location.length in order to cover ranged breakpoints. */
6886 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6887 loc2->pspace->aspace, loc2->address)
6888 && loc1->length == loc2->length);
6889 }
6890
6891 static void
6892 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6893 int bnum, int have_bnum)
6894 {
6895 /* The longest string possibly returned by hex_string_custom
6896 is 50 chars. These must be at least that big for safety. */
6897 char astr1[64];
6898 char astr2[64];
6899
6900 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6901 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6902 if (have_bnum)
6903 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6904 bnum, astr1, astr2);
6905 else
6906 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6907 }
6908
6909 /* Adjust a breakpoint's address to account for architectural
6910 constraints on breakpoint placement. Return the adjusted address.
6911 Note: Very few targets require this kind of adjustment. For most
6912 targets, this function is simply the identity function. */
6913
6914 static CORE_ADDR
6915 adjust_breakpoint_address (struct gdbarch *gdbarch,
6916 CORE_ADDR bpaddr, enum bptype bptype)
6917 {
6918 if (bptype == bp_watchpoint
6919 || bptype == bp_hardware_watchpoint
6920 || bptype == bp_read_watchpoint
6921 || bptype == bp_access_watchpoint
6922 || bptype == bp_catchpoint)
6923 {
6924 /* Watchpoints and the various bp_catch_* eventpoints should not
6925 have their addresses modified. */
6926 return bpaddr;
6927 }
6928 else if (bptype == bp_single_step)
6929 {
6930 /* Single-step breakpoints should not have their addresses
6931 modified. If there's any architectural constrain that
6932 applies to this address, then it should have already been
6933 taken into account when the breakpoint was created in the
6934 first place. If we didn't do this, stepping through e.g.,
6935 Thumb-2 IT blocks would break. */
6936 return bpaddr;
6937 }
6938 else
6939 {
6940 CORE_ADDR adjusted_bpaddr = bpaddr;
6941
6942 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6943 {
6944 /* Some targets have architectural constraints on the placement
6945 of breakpoint instructions. Obtain the adjusted address. */
6946 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6947 }
6948
6949 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6950
6951 /* An adjusted breakpoint address can significantly alter
6952 a user's expectations. Print a warning if an adjustment
6953 is required. */
6954 if (adjusted_bpaddr != bpaddr)
6955 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6956
6957 return adjusted_bpaddr;
6958 }
6959 }
6960
6961 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6962 {
6963 bp_location *loc = this;
6964
6965 gdb_assert (ops != NULL);
6966
6967 loc->ops = ops;
6968 loc->owner = owner;
6969 loc->cond_bytecode = NULL;
6970 loc->shlib_disabled = 0;
6971 loc->enabled = 1;
6972
6973 switch (owner->type)
6974 {
6975 case bp_breakpoint:
6976 case bp_single_step:
6977 case bp_until:
6978 case bp_finish:
6979 case bp_longjmp:
6980 case bp_longjmp_resume:
6981 case bp_longjmp_call_dummy:
6982 case bp_exception:
6983 case bp_exception_resume:
6984 case bp_step_resume:
6985 case bp_hp_step_resume:
6986 case bp_watchpoint_scope:
6987 case bp_call_dummy:
6988 case bp_std_terminate:
6989 case bp_shlib_event:
6990 case bp_thread_event:
6991 case bp_overlay_event:
6992 case bp_jit_event:
6993 case bp_longjmp_master:
6994 case bp_std_terminate_master:
6995 case bp_exception_master:
6996 case bp_gnu_ifunc_resolver:
6997 case bp_gnu_ifunc_resolver_return:
6998 case bp_dprintf:
6999 loc->loc_type = bp_loc_software_breakpoint;
7000 mark_breakpoint_location_modified (loc);
7001 break;
7002 case bp_hardware_breakpoint:
7003 loc->loc_type = bp_loc_hardware_breakpoint;
7004 mark_breakpoint_location_modified (loc);
7005 break;
7006 case bp_hardware_watchpoint:
7007 case bp_read_watchpoint:
7008 case bp_access_watchpoint:
7009 loc->loc_type = bp_loc_hardware_watchpoint;
7010 break;
7011 case bp_watchpoint:
7012 case bp_catchpoint:
7013 case bp_tracepoint:
7014 case bp_fast_tracepoint:
7015 case bp_static_tracepoint:
7016 loc->loc_type = bp_loc_other;
7017 break;
7018 default:
7019 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7020 }
7021
7022 loc->refc = 1;
7023 }
7024
7025 /* Allocate a struct bp_location. */
7026
7027 static struct bp_location *
7028 allocate_bp_location (struct breakpoint *bpt)
7029 {
7030 return bpt->ops->allocate_location (bpt);
7031 }
7032
7033 static void
7034 free_bp_location (struct bp_location *loc)
7035 {
7036 loc->ops->dtor (loc);
7037 delete loc;
7038 }
7039
7040 /* Increment reference count. */
7041
7042 static void
7043 incref_bp_location (struct bp_location *bl)
7044 {
7045 ++bl->refc;
7046 }
7047
7048 /* Decrement reference count. If the reference count reaches 0,
7049 destroy the bp_location. Sets *BLP to NULL. */
7050
7051 static void
7052 decref_bp_location (struct bp_location **blp)
7053 {
7054 gdb_assert ((*blp)->refc > 0);
7055
7056 if (--(*blp)->refc == 0)
7057 free_bp_location (*blp);
7058 *blp = NULL;
7059 }
7060
7061 /* Add breakpoint B at the end of the global breakpoint chain. */
7062
7063 static breakpoint *
7064 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7065 {
7066 struct breakpoint *b1;
7067 struct breakpoint *result = b.get ();
7068
7069 /* Add this breakpoint to the end of the chain so that a list of
7070 breakpoints will come out in order of increasing numbers. */
7071
7072 b1 = breakpoint_chain;
7073 if (b1 == 0)
7074 breakpoint_chain = b.release ();
7075 else
7076 {
7077 while (b1->next)
7078 b1 = b1->next;
7079 b1->next = b.release ();
7080 }
7081
7082 return result;
7083 }
7084
7085 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7086
7087 static void
7088 init_raw_breakpoint_without_location (struct breakpoint *b,
7089 struct gdbarch *gdbarch,
7090 enum bptype bptype,
7091 const struct breakpoint_ops *ops)
7092 {
7093 gdb_assert (ops != NULL);
7094
7095 b->ops = ops;
7096 b->type = bptype;
7097 b->gdbarch = gdbarch;
7098 b->language = current_language->la_language;
7099 b->input_radix = input_radix;
7100 b->related_breakpoint = b;
7101 }
7102
7103 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7104 that has type BPTYPE and has no locations as yet. */
7105
7106 static struct breakpoint *
7107 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7108 enum bptype bptype,
7109 const struct breakpoint_ops *ops)
7110 {
7111 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7112
7113 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7114 return add_to_breakpoint_chain (std::move (b));
7115 }
7116
7117 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7118 resolutions should be made as the user specified the location explicitly
7119 enough. */
7120
7121 static void
7122 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7123 {
7124 gdb_assert (loc->owner != NULL);
7125
7126 if (loc->owner->type == bp_breakpoint
7127 || loc->owner->type == bp_hardware_breakpoint
7128 || is_tracepoint (loc->owner))
7129 {
7130 const char *function_name;
7131
7132 if (loc->msymbol != NULL
7133 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7134 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7135 && !explicit_loc)
7136 {
7137 struct breakpoint *b = loc->owner;
7138
7139 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7140
7141 if (b->type == bp_breakpoint && b->loc == loc
7142 && loc->next == NULL && b->related_breakpoint == b)
7143 {
7144 /* Create only the whole new breakpoint of this type but do not
7145 mess more complicated breakpoints with multiple locations. */
7146 b->type = bp_gnu_ifunc_resolver;
7147 /* Remember the resolver's address for use by the return
7148 breakpoint. */
7149 loc->related_address = loc->address;
7150 }
7151 }
7152 else
7153 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7154
7155 if (function_name)
7156 loc->function_name = xstrdup (function_name);
7157 }
7158 }
7159
7160 /* Attempt to determine architecture of location identified by SAL. */
7161 struct gdbarch *
7162 get_sal_arch (struct symtab_and_line sal)
7163 {
7164 if (sal.section)
7165 return get_objfile_arch (sal.section->objfile);
7166 if (sal.symtab)
7167 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7168
7169 return NULL;
7170 }
7171
7172 /* Low level routine for partially initializing a breakpoint of type
7173 BPTYPE. The newly created breakpoint's address, section, source
7174 file name, and line number are provided by SAL.
7175
7176 It is expected that the caller will complete the initialization of
7177 the newly created breakpoint struct as well as output any status
7178 information regarding the creation of a new breakpoint. */
7179
7180 static void
7181 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7182 struct symtab_and_line sal, enum bptype bptype,
7183 const struct breakpoint_ops *ops)
7184 {
7185 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7186
7187 add_location_to_breakpoint (b, &sal);
7188
7189 if (bptype != bp_catchpoint)
7190 gdb_assert (sal.pspace != NULL);
7191
7192 /* Store the program space that was used to set the breakpoint,
7193 except for ordinary breakpoints, which are independent of the
7194 program space. */
7195 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7196 b->pspace = sal.pspace;
7197 }
7198
7199 /* set_raw_breakpoint is a low level routine for allocating and
7200 partially initializing a breakpoint of type BPTYPE. The newly
7201 created breakpoint's address, section, source file name, and line
7202 number are provided by SAL. The newly created and partially
7203 initialized breakpoint is added to the breakpoint chain and
7204 is also returned as the value of this function.
7205
7206 It is expected that the caller will complete the initialization of
7207 the newly created breakpoint struct as well as output any status
7208 information regarding the creation of a new breakpoint. In
7209 particular, set_raw_breakpoint does NOT set the breakpoint
7210 number! Care should be taken to not allow an error to occur
7211 prior to completing the initialization of the breakpoint. If this
7212 should happen, a bogus breakpoint will be left on the chain. */
7213
7214 struct breakpoint *
7215 set_raw_breakpoint (struct gdbarch *gdbarch,
7216 struct symtab_and_line sal, enum bptype bptype,
7217 const struct breakpoint_ops *ops)
7218 {
7219 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7220
7221 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7222 return add_to_breakpoint_chain (std::move (b));
7223 }
7224
7225 /* Call this routine when stepping and nexting to enable a breakpoint
7226 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7227 initiated the operation. */
7228
7229 void
7230 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7231 {
7232 struct breakpoint *b, *b_tmp;
7233 int thread = tp->global_num;
7234
7235 /* To avoid having to rescan all objfile symbols at every step,
7236 we maintain a list of continually-inserted but always disabled
7237 longjmp "master" breakpoints. Here, we simply create momentary
7238 clones of those and enable them for the requested thread. */
7239 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7240 if (b->pspace == current_program_space
7241 && (b->type == bp_longjmp_master
7242 || b->type == bp_exception_master))
7243 {
7244 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7245 struct breakpoint *clone;
7246
7247 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7248 after their removal. */
7249 clone = momentary_breakpoint_from_master (b, type,
7250 &momentary_breakpoint_ops, 1);
7251 clone->thread = thread;
7252 }
7253
7254 tp->initiating_frame = frame;
7255 }
7256
7257 /* Delete all longjmp breakpoints from THREAD. */
7258 void
7259 delete_longjmp_breakpoint (int thread)
7260 {
7261 struct breakpoint *b, *b_tmp;
7262
7263 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7264 if (b->type == bp_longjmp || b->type == bp_exception)
7265 {
7266 if (b->thread == thread)
7267 delete_breakpoint (b);
7268 }
7269 }
7270
7271 void
7272 delete_longjmp_breakpoint_at_next_stop (int thread)
7273 {
7274 struct breakpoint *b, *b_tmp;
7275
7276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7277 if (b->type == bp_longjmp || b->type == bp_exception)
7278 {
7279 if (b->thread == thread)
7280 b->disposition = disp_del_at_next_stop;
7281 }
7282 }
7283
7284 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7285 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7286 pointer to any of them. Return NULL if this system cannot place longjmp
7287 breakpoints. */
7288
7289 struct breakpoint *
7290 set_longjmp_breakpoint_for_call_dummy (void)
7291 {
7292 struct breakpoint *b, *retval = NULL;
7293
7294 ALL_BREAKPOINTS (b)
7295 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7296 {
7297 struct breakpoint *new_b;
7298
7299 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7300 &momentary_breakpoint_ops,
7301 1);
7302 new_b->thread = inferior_thread ()->global_num;
7303
7304 /* Link NEW_B into the chain of RETVAL breakpoints. */
7305
7306 gdb_assert (new_b->related_breakpoint == new_b);
7307 if (retval == NULL)
7308 retval = new_b;
7309 new_b->related_breakpoint = retval;
7310 while (retval->related_breakpoint != new_b->related_breakpoint)
7311 retval = retval->related_breakpoint;
7312 retval->related_breakpoint = new_b;
7313 }
7314
7315 return retval;
7316 }
7317
7318 /* Verify all existing dummy frames and their associated breakpoints for
7319 TP. Remove those which can no longer be found in the current frame
7320 stack.
7321
7322 You should call this function only at places where it is safe to currently
7323 unwind the whole stack. Failed stack unwind would discard live dummy
7324 frames. */
7325
7326 void
7327 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7328 {
7329 struct breakpoint *b, *b_tmp;
7330
7331 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7332 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7333 {
7334 struct breakpoint *dummy_b = b->related_breakpoint;
7335
7336 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7337 dummy_b = dummy_b->related_breakpoint;
7338 if (dummy_b->type != bp_call_dummy
7339 || frame_find_by_id (dummy_b->frame_id) != NULL)
7340 continue;
7341
7342 dummy_frame_discard (dummy_b->frame_id, tp);
7343
7344 while (b->related_breakpoint != b)
7345 {
7346 if (b_tmp == b->related_breakpoint)
7347 b_tmp = b->related_breakpoint->next;
7348 delete_breakpoint (b->related_breakpoint);
7349 }
7350 delete_breakpoint (b);
7351 }
7352 }
7353
7354 void
7355 enable_overlay_breakpoints (void)
7356 {
7357 struct breakpoint *b;
7358
7359 ALL_BREAKPOINTS (b)
7360 if (b->type == bp_overlay_event)
7361 {
7362 b->enable_state = bp_enabled;
7363 update_global_location_list (UGLL_MAY_INSERT);
7364 overlay_events_enabled = 1;
7365 }
7366 }
7367
7368 void
7369 disable_overlay_breakpoints (void)
7370 {
7371 struct breakpoint *b;
7372
7373 ALL_BREAKPOINTS (b)
7374 if (b->type == bp_overlay_event)
7375 {
7376 b->enable_state = bp_disabled;
7377 update_global_location_list (UGLL_DONT_INSERT);
7378 overlay_events_enabled = 0;
7379 }
7380 }
7381
7382 /* Set an active std::terminate breakpoint for each std::terminate
7383 master breakpoint. */
7384 void
7385 set_std_terminate_breakpoint (void)
7386 {
7387 struct breakpoint *b, *b_tmp;
7388
7389 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7390 if (b->pspace == current_program_space
7391 && b->type == bp_std_terminate_master)
7392 {
7393 momentary_breakpoint_from_master (b, bp_std_terminate,
7394 &momentary_breakpoint_ops, 1);
7395 }
7396 }
7397
7398 /* Delete all the std::terminate breakpoints. */
7399 void
7400 delete_std_terminate_breakpoint (void)
7401 {
7402 struct breakpoint *b, *b_tmp;
7403
7404 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7405 if (b->type == bp_std_terminate)
7406 delete_breakpoint (b);
7407 }
7408
7409 struct breakpoint *
7410 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7411 {
7412 struct breakpoint *b;
7413
7414 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7415 &internal_breakpoint_ops);
7416
7417 b->enable_state = bp_enabled;
7418 /* location has to be used or breakpoint_re_set will delete me. */
7419 b->location = new_address_location (b->loc->address, NULL, 0);
7420
7421 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7422
7423 return b;
7424 }
7425
7426 struct lang_and_radix
7427 {
7428 enum language lang;
7429 int radix;
7430 };
7431
7432 /* Create a breakpoint for JIT code registration and unregistration. */
7433
7434 struct breakpoint *
7435 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7436 {
7437 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7438 &internal_breakpoint_ops);
7439 }
7440
7441 /* Remove JIT code registration and unregistration breakpoint(s). */
7442
7443 void
7444 remove_jit_event_breakpoints (void)
7445 {
7446 struct breakpoint *b, *b_tmp;
7447
7448 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7449 if (b->type == bp_jit_event
7450 && b->loc->pspace == current_program_space)
7451 delete_breakpoint (b);
7452 }
7453
7454 void
7455 remove_solib_event_breakpoints (void)
7456 {
7457 struct breakpoint *b, *b_tmp;
7458
7459 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7460 if (b->type == bp_shlib_event
7461 && b->loc->pspace == current_program_space)
7462 delete_breakpoint (b);
7463 }
7464
7465 /* See breakpoint.h. */
7466
7467 void
7468 remove_solib_event_breakpoints_at_next_stop (void)
7469 {
7470 struct breakpoint *b, *b_tmp;
7471
7472 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7473 if (b->type == bp_shlib_event
7474 && b->loc->pspace == current_program_space)
7475 b->disposition = disp_del_at_next_stop;
7476 }
7477
7478 /* Helper for create_solib_event_breakpoint /
7479 create_and_insert_solib_event_breakpoint. Allows specifying which
7480 INSERT_MODE to pass through to update_global_location_list. */
7481
7482 static struct breakpoint *
7483 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7484 enum ugll_insert_mode insert_mode)
7485 {
7486 struct breakpoint *b;
7487
7488 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7489 &internal_breakpoint_ops);
7490 update_global_location_list_nothrow (insert_mode);
7491 return b;
7492 }
7493
7494 struct breakpoint *
7495 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7496 {
7497 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7498 }
7499
7500 /* See breakpoint.h. */
7501
7502 struct breakpoint *
7503 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7504 {
7505 struct breakpoint *b;
7506
7507 /* Explicitly tell update_global_location_list to insert
7508 locations. */
7509 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7510 if (!b->loc->inserted)
7511 {
7512 delete_breakpoint (b);
7513 return NULL;
7514 }
7515 return b;
7516 }
7517
7518 /* Disable any breakpoints that are on code in shared libraries. Only
7519 apply to enabled breakpoints, disabled ones can just stay disabled. */
7520
7521 void
7522 disable_breakpoints_in_shlibs (void)
7523 {
7524 struct bp_location *loc, **locp_tmp;
7525
7526 ALL_BP_LOCATIONS (loc, locp_tmp)
7527 {
7528 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7529 struct breakpoint *b = loc->owner;
7530
7531 /* We apply the check to all breakpoints, including disabled for
7532 those with loc->duplicate set. This is so that when breakpoint
7533 becomes enabled, or the duplicate is removed, gdb will try to
7534 insert all breakpoints. If we don't set shlib_disabled here,
7535 we'll try to insert those breakpoints and fail. */
7536 if (((b->type == bp_breakpoint)
7537 || (b->type == bp_jit_event)
7538 || (b->type == bp_hardware_breakpoint)
7539 || (is_tracepoint (b)))
7540 && loc->pspace == current_program_space
7541 && !loc->shlib_disabled
7542 && solib_name_from_address (loc->pspace, loc->address)
7543 )
7544 {
7545 loc->shlib_disabled = 1;
7546 }
7547 }
7548 }
7549
7550 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7551 notification of unloaded_shlib. Only apply to enabled breakpoints,
7552 disabled ones can just stay disabled. */
7553
7554 static void
7555 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7556 {
7557 struct bp_location *loc, **locp_tmp;
7558 int disabled_shlib_breaks = 0;
7559
7560 ALL_BP_LOCATIONS (loc, locp_tmp)
7561 {
7562 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7563 struct breakpoint *b = loc->owner;
7564
7565 if (solib->pspace == loc->pspace
7566 && !loc->shlib_disabled
7567 && (((b->type == bp_breakpoint
7568 || b->type == bp_jit_event
7569 || b->type == bp_hardware_breakpoint)
7570 && (loc->loc_type == bp_loc_hardware_breakpoint
7571 || loc->loc_type == bp_loc_software_breakpoint))
7572 || is_tracepoint (b))
7573 && solib_contains_address_p (solib, loc->address))
7574 {
7575 loc->shlib_disabled = 1;
7576 /* At this point, we cannot rely on remove_breakpoint
7577 succeeding so we must mark the breakpoint as not inserted
7578 to prevent future errors occurring in remove_breakpoints. */
7579 loc->inserted = 0;
7580
7581 /* This may cause duplicate notifications for the same breakpoint. */
7582 gdb::observers::breakpoint_modified.notify (b);
7583
7584 if (!disabled_shlib_breaks)
7585 {
7586 target_terminal::ours_for_output ();
7587 warning (_("Temporarily disabling breakpoints "
7588 "for unloaded shared library \"%s\""),
7589 solib->so_name);
7590 }
7591 disabled_shlib_breaks = 1;
7592 }
7593 }
7594 }
7595
7596 /* Disable any breakpoints and tracepoints in OBJFILE upon
7597 notification of free_objfile. Only apply to enabled breakpoints,
7598 disabled ones can just stay disabled. */
7599
7600 static void
7601 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7602 {
7603 struct breakpoint *b;
7604
7605 if (objfile == NULL)
7606 return;
7607
7608 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7609 managed by the user with add-symbol-file/remove-symbol-file.
7610 Similarly to how breakpoints in shared libraries are handled in
7611 response to "nosharedlibrary", mark breakpoints in such modules
7612 shlib_disabled so they end up uninserted on the next global
7613 location list update. Shared libraries not loaded by the user
7614 aren't handled here -- they're already handled in
7615 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7616 solib_unloaded observer. We skip objfiles that are not
7617 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7618 main objfile). */
7619 if ((objfile->flags & OBJF_SHARED) == 0
7620 || (objfile->flags & OBJF_USERLOADED) == 0)
7621 return;
7622
7623 ALL_BREAKPOINTS (b)
7624 {
7625 struct bp_location *loc;
7626 int bp_modified = 0;
7627
7628 if (!is_breakpoint (b) && !is_tracepoint (b))
7629 continue;
7630
7631 for (loc = b->loc; loc != NULL; loc = loc->next)
7632 {
7633 CORE_ADDR loc_addr = loc->address;
7634
7635 if (loc->loc_type != bp_loc_hardware_breakpoint
7636 && loc->loc_type != bp_loc_software_breakpoint)
7637 continue;
7638
7639 if (loc->shlib_disabled != 0)
7640 continue;
7641
7642 if (objfile->pspace != loc->pspace)
7643 continue;
7644
7645 if (loc->loc_type != bp_loc_hardware_breakpoint
7646 && loc->loc_type != bp_loc_software_breakpoint)
7647 continue;
7648
7649 if (is_addr_in_objfile (loc_addr, objfile))
7650 {
7651 loc->shlib_disabled = 1;
7652 /* At this point, we don't know whether the object was
7653 unmapped from the inferior or not, so leave the
7654 inserted flag alone. We'll handle failure to
7655 uninsert quietly, in case the object was indeed
7656 unmapped. */
7657
7658 mark_breakpoint_location_modified (loc);
7659
7660 bp_modified = 1;
7661 }
7662 }
7663
7664 if (bp_modified)
7665 gdb::observers::breakpoint_modified.notify (b);
7666 }
7667 }
7668
7669 /* FORK & VFORK catchpoints. */
7670
7671 /* An instance of this type is used to represent a fork or vfork
7672 catchpoint. A breakpoint is really of this type iff its ops pointer points
7673 to CATCH_FORK_BREAKPOINT_OPS. */
7674
7675 struct fork_catchpoint : public breakpoint
7676 {
7677 /* Process id of a child process whose forking triggered this
7678 catchpoint. This field is only valid immediately after this
7679 catchpoint has triggered. */
7680 ptid_t forked_inferior_pid;
7681 };
7682
7683 /* Implement the "insert" breakpoint_ops method for fork
7684 catchpoints. */
7685
7686 static int
7687 insert_catch_fork (struct bp_location *bl)
7688 {
7689 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7690 }
7691
7692 /* Implement the "remove" breakpoint_ops method for fork
7693 catchpoints. */
7694
7695 static int
7696 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7697 {
7698 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7699 }
7700
7701 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7702 catchpoints. */
7703
7704 static int
7705 breakpoint_hit_catch_fork (const struct bp_location *bl,
7706 const address_space *aspace, CORE_ADDR bp_addr,
7707 const struct target_waitstatus *ws)
7708 {
7709 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7710
7711 if (ws->kind != TARGET_WAITKIND_FORKED)
7712 return 0;
7713
7714 c->forked_inferior_pid = ws->value.related_pid;
7715 return 1;
7716 }
7717
7718 /* Implement the "print_it" breakpoint_ops method for fork
7719 catchpoints. */
7720
7721 static enum print_stop_action
7722 print_it_catch_fork (bpstat bs)
7723 {
7724 struct ui_out *uiout = current_uiout;
7725 struct breakpoint *b = bs->breakpoint_at;
7726 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7727
7728 annotate_catchpoint (b->number);
7729 maybe_print_thread_hit_breakpoint (uiout);
7730 if (b->disposition == disp_del)
7731 uiout->text ("Temporary catchpoint ");
7732 else
7733 uiout->text ("Catchpoint ");
7734 if (uiout->is_mi_like_p ())
7735 {
7736 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7737 uiout->field_string ("disp", bpdisp_text (b->disposition));
7738 }
7739 uiout->field_int ("bkptno", b->number);
7740 uiout->text (" (forked process ");
7741 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7742 uiout->text ("), ");
7743 return PRINT_SRC_AND_LOC;
7744 }
7745
7746 /* Implement the "print_one" breakpoint_ops method for fork
7747 catchpoints. */
7748
7749 static void
7750 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7751 {
7752 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7753 struct value_print_options opts;
7754 struct ui_out *uiout = current_uiout;
7755
7756 get_user_print_options (&opts);
7757
7758 /* Field 4, the address, is omitted (which makes the columns not
7759 line up too nicely with the headers, but the effect is relatively
7760 readable). */
7761 if (opts.addressprint)
7762 uiout->field_skip ("addr");
7763 annotate_field (5);
7764 uiout->text ("fork");
7765 if (c->forked_inferior_pid != null_ptid)
7766 {
7767 uiout->text (", process ");
7768 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7769 uiout->spaces (1);
7770 }
7771
7772 if (uiout->is_mi_like_p ())
7773 uiout->field_string ("catch-type", "fork");
7774 }
7775
7776 /* Implement the "print_mention" breakpoint_ops method for fork
7777 catchpoints. */
7778
7779 static void
7780 print_mention_catch_fork (struct breakpoint *b)
7781 {
7782 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7783 }
7784
7785 /* Implement the "print_recreate" breakpoint_ops method for fork
7786 catchpoints. */
7787
7788 static void
7789 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7790 {
7791 fprintf_unfiltered (fp, "catch fork");
7792 print_recreate_thread (b, fp);
7793 }
7794
7795 /* The breakpoint_ops structure to be used in fork catchpoints. */
7796
7797 static struct breakpoint_ops catch_fork_breakpoint_ops;
7798
7799 /* Implement the "insert" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802 static int
7803 insert_catch_vfork (struct bp_location *bl)
7804 {
7805 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7806 }
7807
7808 /* Implement the "remove" breakpoint_ops method for vfork
7809 catchpoints. */
7810
7811 static int
7812 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7813 {
7814 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7815 }
7816
7817 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7818 catchpoints. */
7819
7820 static int
7821 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7822 const address_space *aspace, CORE_ADDR bp_addr,
7823 const struct target_waitstatus *ws)
7824 {
7825 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7826
7827 if (ws->kind != TARGET_WAITKIND_VFORKED)
7828 return 0;
7829
7830 c->forked_inferior_pid = ws->value.related_pid;
7831 return 1;
7832 }
7833
7834 /* Implement the "print_it" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static enum print_stop_action
7838 print_it_catch_vfork (bpstat bs)
7839 {
7840 struct ui_out *uiout = current_uiout;
7841 struct breakpoint *b = bs->breakpoint_at;
7842 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7843
7844 annotate_catchpoint (b->number);
7845 maybe_print_thread_hit_breakpoint (uiout);
7846 if (b->disposition == disp_del)
7847 uiout->text ("Temporary catchpoint ");
7848 else
7849 uiout->text ("Catchpoint ");
7850 if (uiout->is_mi_like_p ())
7851 {
7852 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7853 uiout->field_string ("disp", bpdisp_text (b->disposition));
7854 }
7855 uiout->field_int ("bkptno", b->number);
7856 uiout->text (" (vforked process ");
7857 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7858 uiout->text ("), ");
7859 return PRINT_SRC_AND_LOC;
7860 }
7861
7862 /* Implement the "print_one" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static void
7866 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7867 {
7868 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7869 struct value_print_options opts;
7870 struct ui_out *uiout = current_uiout;
7871
7872 get_user_print_options (&opts);
7873 /* Field 4, the address, is omitted (which makes the columns not
7874 line up too nicely with the headers, but the effect is relatively
7875 readable). */
7876 if (opts.addressprint)
7877 uiout->field_skip ("addr");
7878 annotate_field (5);
7879 uiout->text ("vfork");
7880 if (c->forked_inferior_pid != null_ptid)
7881 {
7882 uiout->text (", process ");
7883 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7884 uiout->spaces (1);
7885 }
7886
7887 if (uiout->is_mi_like_p ())
7888 uiout->field_string ("catch-type", "vfork");
7889 }
7890
7891 /* Implement the "print_mention" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static void
7895 print_mention_catch_vfork (struct breakpoint *b)
7896 {
7897 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7898 }
7899
7900 /* Implement the "print_recreate" breakpoint_ops method for vfork
7901 catchpoints. */
7902
7903 static void
7904 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7905 {
7906 fprintf_unfiltered (fp, "catch vfork");
7907 print_recreate_thread (b, fp);
7908 }
7909
7910 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7911
7912 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7913
7914 /* An instance of this type is used to represent an solib catchpoint.
7915 A breakpoint is really of this type iff its ops pointer points to
7916 CATCH_SOLIB_BREAKPOINT_OPS. */
7917
7918 struct solib_catchpoint : public breakpoint
7919 {
7920 ~solib_catchpoint () override;
7921
7922 /* True for "catch load", false for "catch unload". */
7923 unsigned char is_load;
7924
7925 /* Regular expression to match, if any. COMPILED is only valid when
7926 REGEX is non-NULL. */
7927 char *regex;
7928 std::unique_ptr<compiled_regex> compiled;
7929 };
7930
7931 solib_catchpoint::~solib_catchpoint ()
7932 {
7933 xfree (this->regex);
7934 }
7935
7936 static int
7937 insert_catch_solib (struct bp_location *ignore)
7938 {
7939 return 0;
7940 }
7941
7942 static int
7943 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7944 {
7945 return 0;
7946 }
7947
7948 static int
7949 breakpoint_hit_catch_solib (const struct bp_location *bl,
7950 const address_space *aspace,
7951 CORE_ADDR bp_addr,
7952 const struct target_waitstatus *ws)
7953 {
7954 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7955 struct breakpoint *other;
7956
7957 if (ws->kind == TARGET_WAITKIND_LOADED)
7958 return 1;
7959
7960 ALL_BREAKPOINTS (other)
7961 {
7962 struct bp_location *other_bl;
7963
7964 if (other == bl->owner)
7965 continue;
7966
7967 if (other->type != bp_shlib_event)
7968 continue;
7969
7970 if (self->pspace != NULL && other->pspace != self->pspace)
7971 continue;
7972
7973 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7974 {
7975 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7976 return 1;
7977 }
7978 }
7979
7980 return 0;
7981 }
7982
7983 static void
7984 check_status_catch_solib (struct bpstats *bs)
7985 {
7986 struct solib_catchpoint *self
7987 = (struct solib_catchpoint *) bs->breakpoint_at;
7988
7989 if (self->is_load)
7990 {
7991 for (so_list *iter : current_program_space->added_solibs)
7992 {
7993 if (!self->regex
7994 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7995 return;
7996 }
7997 }
7998 else
7999 {
8000 for (const std::string &iter : current_program_space->deleted_solibs)
8001 {
8002 if (!self->regex
8003 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8004 return;
8005 }
8006 }
8007
8008 bs->stop = 0;
8009 bs->print_it = print_it_noop;
8010 }
8011
8012 static enum print_stop_action
8013 print_it_catch_solib (bpstat bs)
8014 {
8015 struct breakpoint *b = bs->breakpoint_at;
8016 struct ui_out *uiout = current_uiout;
8017
8018 annotate_catchpoint (b->number);
8019 maybe_print_thread_hit_breakpoint (uiout);
8020 if (b->disposition == disp_del)
8021 uiout->text ("Temporary catchpoint ");
8022 else
8023 uiout->text ("Catchpoint ");
8024 uiout->field_int ("bkptno", b->number);
8025 uiout->text ("\n");
8026 if (uiout->is_mi_like_p ())
8027 uiout->field_string ("disp", bpdisp_text (b->disposition));
8028 print_solib_event (1);
8029 return PRINT_SRC_AND_LOC;
8030 }
8031
8032 static void
8033 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8034 {
8035 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8036 struct value_print_options opts;
8037 struct ui_out *uiout = current_uiout;
8038
8039 get_user_print_options (&opts);
8040 /* Field 4, the address, is omitted (which makes the columns not
8041 line up too nicely with the headers, but the effect is relatively
8042 readable). */
8043 if (opts.addressprint)
8044 {
8045 annotate_field (4);
8046 uiout->field_skip ("addr");
8047 }
8048
8049 std::string msg;
8050 annotate_field (5);
8051 if (self->is_load)
8052 {
8053 if (self->regex)
8054 msg = string_printf (_("load of library matching %s"), self->regex);
8055 else
8056 msg = _("load of library");
8057 }
8058 else
8059 {
8060 if (self->regex)
8061 msg = string_printf (_("unload of library matching %s"), self->regex);
8062 else
8063 msg = _("unload of library");
8064 }
8065 uiout->field_string ("what", msg);
8066
8067 if (uiout->is_mi_like_p ())
8068 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8069 }
8070
8071 static void
8072 print_mention_catch_solib (struct breakpoint *b)
8073 {
8074 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8075
8076 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8077 self->is_load ? "load" : "unload");
8078 }
8079
8080 static void
8081 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8082 {
8083 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8084
8085 fprintf_unfiltered (fp, "%s %s",
8086 b->disposition == disp_del ? "tcatch" : "catch",
8087 self->is_load ? "load" : "unload");
8088 if (self->regex)
8089 fprintf_unfiltered (fp, " %s", self->regex);
8090 fprintf_unfiltered (fp, "\n");
8091 }
8092
8093 static struct breakpoint_ops catch_solib_breakpoint_ops;
8094
8095 /* Shared helper function (MI and CLI) for creating and installing
8096 a shared object event catchpoint. If IS_LOAD is non-zero then
8097 the events to be caught are load events, otherwise they are
8098 unload events. If IS_TEMP is non-zero the catchpoint is a
8099 temporary one. If ENABLED is non-zero the catchpoint is
8100 created in an enabled state. */
8101
8102 void
8103 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8104 {
8105 struct gdbarch *gdbarch = get_current_arch ();
8106
8107 if (!arg)
8108 arg = "";
8109 arg = skip_spaces (arg);
8110
8111 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8112
8113 if (*arg != '\0')
8114 {
8115 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8116 _("Invalid regexp")));
8117 c->regex = xstrdup (arg);
8118 }
8119
8120 c->is_load = is_load;
8121 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8122 &catch_solib_breakpoint_ops);
8123
8124 c->enable_state = enabled ? bp_enabled : bp_disabled;
8125
8126 install_breakpoint (0, std::move (c), 1);
8127 }
8128
8129 /* A helper function that does all the work for "catch load" and
8130 "catch unload". */
8131
8132 static void
8133 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8134 struct cmd_list_element *command)
8135 {
8136 int tempflag;
8137 const int enabled = 1;
8138
8139 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8140
8141 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8142 }
8143
8144 static void
8145 catch_load_command_1 (const char *arg, int from_tty,
8146 struct cmd_list_element *command)
8147 {
8148 catch_load_or_unload (arg, from_tty, 1, command);
8149 }
8150
8151 static void
8152 catch_unload_command_1 (const char *arg, int from_tty,
8153 struct cmd_list_element *command)
8154 {
8155 catch_load_or_unload (arg, from_tty, 0, command);
8156 }
8157
8158 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8159 is non-zero, then make the breakpoint temporary. If COND_STRING is
8160 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8161 the breakpoint_ops structure associated to the catchpoint. */
8162
8163 void
8164 init_catchpoint (struct breakpoint *b,
8165 struct gdbarch *gdbarch, int tempflag,
8166 const char *cond_string,
8167 const struct breakpoint_ops *ops)
8168 {
8169 symtab_and_line sal;
8170 sal.pspace = current_program_space;
8171
8172 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8173
8174 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8175 b->disposition = tempflag ? disp_del : disp_donttouch;
8176 }
8177
8178 void
8179 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8180 {
8181 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8182 set_breakpoint_number (internal, b);
8183 if (is_tracepoint (b))
8184 set_tracepoint_count (breakpoint_count);
8185 if (!internal)
8186 mention (b);
8187 gdb::observers::breakpoint_created.notify (b);
8188
8189 if (update_gll)
8190 update_global_location_list (UGLL_MAY_INSERT);
8191 }
8192
8193 static void
8194 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8195 int tempflag, const char *cond_string,
8196 const struct breakpoint_ops *ops)
8197 {
8198 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8199
8200 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8201
8202 c->forked_inferior_pid = null_ptid;
8203
8204 install_breakpoint (0, std::move (c), 1);
8205 }
8206
8207 /* Exec catchpoints. */
8208
8209 /* An instance of this type is used to represent an exec catchpoint.
8210 A breakpoint is really of this type iff its ops pointer points to
8211 CATCH_EXEC_BREAKPOINT_OPS. */
8212
8213 struct exec_catchpoint : public breakpoint
8214 {
8215 ~exec_catchpoint () override;
8216
8217 /* Filename of a program whose exec triggered this catchpoint.
8218 This field is only valid immediately after this catchpoint has
8219 triggered. */
8220 char *exec_pathname;
8221 };
8222
8223 /* Exec catchpoint destructor. */
8224
8225 exec_catchpoint::~exec_catchpoint ()
8226 {
8227 xfree (this->exec_pathname);
8228 }
8229
8230 static int
8231 insert_catch_exec (struct bp_location *bl)
8232 {
8233 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8234 }
8235
8236 static int
8237 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8238 {
8239 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8240 }
8241
8242 static int
8243 breakpoint_hit_catch_exec (const struct bp_location *bl,
8244 const address_space *aspace, CORE_ADDR bp_addr,
8245 const struct target_waitstatus *ws)
8246 {
8247 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8248
8249 if (ws->kind != TARGET_WAITKIND_EXECD)
8250 return 0;
8251
8252 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8253 return 1;
8254 }
8255
8256 static enum print_stop_action
8257 print_it_catch_exec (bpstat bs)
8258 {
8259 struct ui_out *uiout = current_uiout;
8260 struct breakpoint *b = bs->breakpoint_at;
8261 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8262
8263 annotate_catchpoint (b->number);
8264 maybe_print_thread_hit_breakpoint (uiout);
8265 if (b->disposition == disp_del)
8266 uiout->text ("Temporary catchpoint ");
8267 else
8268 uiout->text ("Catchpoint ");
8269 if (uiout->is_mi_like_p ())
8270 {
8271 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8272 uiout->field_string ("disp", bpdisp_text (b->disposition));
8273 }
8274 uiout->field_int ("bkptno", b->number);
8275 uiout->text (" (exec'd ");
8276 uiout->field_string ("new-exec", c->exec_pathname);
8277 uiout->text ("), ");
8278
8279 return PRINT_SRC_AND_LOC;
8280 }
8281
8282 static void
8283 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8284 {
8285 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8286 struct value_print_options opts;
8287 struct ui_out *uiout = current_uiout;
8288
8289 get_user_print_options (&opts);
8290
8291 /* Field 4, the address, is omitted (which makes the columns
8292 not line up too nicely with the headers, but the effect
8293 is relatively readable). */
8294 if (opts.addressprint)
8295 uiout->field_skip ("addr");
8296 annotate_field (5);
8297 uiout->text ("exec");
8298 if (c->exec_pathname != NULL)
8299 {
8300 uiout->text (", program \"");
8301 uiout->field_string ("what", c->exec_pathname);
8302 uiout->text ("\" ");
8303 }
8304
8305 if (uiout->is_mi_like_p ())
8306 uiout->field_string ("catch-type", "exec");
8307 }
8308
8309 static void
8310 print_mention_catch_exec (struct breakpoint *b)
8311 {
8312 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8313 }
8314
8315 /* Implement the "print_recreate" breakpoint_ops method for exec
8316 catchpoints. */
8317
8318 static void
8319 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8320 {
8321 fprintf_unfiltered (fp, "catch exec");
8322 print_recreate_thread (b, fp);
8323 }
8324
8325 static struct breakpoint_ops catch_exec_breakpoint_ops;
8326
8327 static int
8328 hw_breakpoint_used_count (void)
8329 {
8330 int i = 0;
8331 struct breakpoint *b;
8332 struct bp_location *bl;
8333
8334 ALL_BREAKPOINTS (b)
8335 {
8336 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8337 for (bl = b->loc; bl; bl = bl->next)
8338 {
8339 /* Special types of hardware breakpoints may use more than
8340 one register. */
8341 i += b->ops->resources_needed (bl);
8342 }
8343 }
8344
8345 return i;
8346 }
8347
8348 /* Returns the resources B would use if it were a hardware
8349 watchpoint. */
8350
8351 static int
8352 hw_watchpoint_use_count (struct breakpoint *b)
8353 {
8354 int i = 0;
8355 struct bp_location *bl;
8356
8357 if (!breakpoint_enabled (b))
8358 return 0;
8359
8360 for (bl = b->loc; bl; bl = bl->next)
8361 {
8362 /* Special types of hardware watchpoints may use more than
8363 one register. */
8364 i += b->ops->resources_needed (bl);
8365 }
8366
8367 return i;
8368 }
8369
8370 /* Returns the sum the used resources of all hardware watchpoints of
8371 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8372 the sum of the used resources of all hardware watchpoints of other
8373 types _not_ TYPE. */
8374
8375 static int
8376 hw_watchpoint_used_count_others (struct breakpoint *except,
8377 enum bptype type, int *other_type_used)
8378 {
8379 int i = 0;
8380 struct breakpoint *b;
8381
8382 *other_type_used = 0;
8383 ALL_BREAKPOINTS (b)
8384 {
8385 if (b == except)
8386 continue;
8387 if (!breakpoint_enabled (b))
8388 continue;
8389
8390 if (b->type == type)
8391 i += hw_watchpoint_use_count (b);
8392 else if (is_hardware_watchpoint (b))
8393 *other_type_used = 1;
8394 }
8395
8396 return i;
8397 }
8398
8399 void
8400 disable_watchpoints_before_interactive_call_start (void)
8401 {
8402 struct breakpoint *b;
8403
8404 ALL_BREAKPOINTS (b)
8405 {
8406 if (is_watchpoint (b) && breakpoint_enabled (b))
8407 {
8408 b->enable_state = bp_call_disabled;
8409 update_global_location_list (UGLL_DONT_INSERT);
8410 }
8411 }
8412 }
8413
8414 void
8415 enable_watchpoints_after_interactive_call_stop (void)
8416 {
8417 struct breakpoint *b;
8418
8419 ALL_BREAKPOINTS (b)
8420 {
8421 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8422 {
8423 b->enable_state = bp_enabled;
8424 update_global_location_list (UGLL_MAY_INSERT);
8425 }
8426 }
8427 }
8428
8429 void
8430 disable_breakpoints_before_startup (void)
8431 {
8432 current_program_space->executing_startup = 1;
8433 update_global_location_list (UGLL_DONT_INSERT);
8434 }
8435
8436 void
8437 enable_breakpoints_after_startup (void)
8438 {
8439 current_program_space->executing_startup = 0;
8440 breakpoint_re_set ();
8441 }
8442
8443 /* Create a new single-step breakpoint for thread THREAD, with no
8444 locations. */
8445
8446 static struct breakpoint *
8447 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8448 {
8449 std::unique_ptr<breakpoint> b (new breakpoint ());
8450
8451 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8452 &momentary_breakpoint_ops);
8453
8454 b->disposition = disp_donttouch;
8455 b->frame_id = null_frame_id;
8456
8457 b->thread = thread;
8458 gdb_assert (b->thread != 0);
8459
8460 return add_to_breakpoint_chain (std::move (b));
8461 }
8462
8463 /* Set a momentary breakpoint of type TYPE at address specified by
8464 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8465 frame. */
8466
8467 breakpoint_up
8468 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8469 struct frame_id frame_id, enum bptype type)
8470 {
8471 struct breakpoint *b;
8472
8473 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8474 tail-called one. */
8475 gdb_assert (!frame_id_artificial_p (frame_id));
8476
8477 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8478 b->enable_state = bp_enabled;
8479 b->disposition = disp_donttouch;
8480 b->frame_id = frame_id;
8481
8482 b->thread = inferior_thread ()->global_num;
8483
8484 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8485
8486 return breakpoint_up (b);
8487 }
8488
8489 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8490 The new breakpoint will have type TYPE, use OPS as its
8491 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8492
8493 static struct breakpoint *
8494 momentary_breakpoint_from_master (struct breakpoint *orig,
8495 enum bptype type,
8496 const struct breakpoint_ops *ops,
8497 int loc_enabled)
8498 {
8499 struct breakpoint *copy;
8500
8501 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8502 copy->loc = allocate_bp_location (copy);
8503 set_breakpoint_location_function (copy->loc, 1);
8504
8505 copy->loc->gdbarch = orig->loc->gdbarch;
8506 copy->loc->requested_address = orig->loc->requested_address;
8507 copy->loc->address = orig->loc->address;
8508 copy->loc->section = orig->loc->section;
8509 copy->loc->pspace = orig->loc->pspace;
8510 copy->loc->probe = orig->loc->probe;
8511 copy->loc->line_number = orig->loc->line_number;
8512 copy->loc->symtab = orig->loc->symtab;
8513 copy->loc->enabled = loc_enabled;
8514 copy->frame_id = orig->frame_id;
8515 copy->thread = orig->thread;
8516 copy->pspace = orig->pspace;
8517
8518 copy->enable_state = bp_enabled;
8519 copy->disposition = disp_donttouch;
8520 copy->number = internal_breakpoint_number--;
8521
8522 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8523 return copy;
8524 }
8525
8526 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8527 ORIG is NULL. */
8528
8529 struct breakpoint *
8530 clone_momentary_breakpoint (struct breakpoint *orig)
8531 {
8532 /* If there's nothing to clone, then return nothing. */
8533 if (orig == NULL)
8534 return NULL;
8535
8536 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8537 }
8538
8539 breakpoint_up
8540 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8541 enum bptype type)
8542 {
8543 struct symtab_and_line sal;
8544
8545 sal = find_pc_line (pc, 0);
8546 sal.pc = pc;
8547 sal.section = find_pc_overlay (pc);
8548 sal.explicit_pc = 1;
8549
8550 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8551 }
8552 \f
8553
8554 /* Tell the user we have just set a breakpoint B. */
8555
8556 static void
8557 mention (struct breakpoint *b)
8558 {
8559 b->ops->print_mention (b);
8560 current_uiout->text ("\n");
8561 }
8562 \f
8563
8564 static int bp_loc_is_permanent (struct bp_location *loc);
8565
8566 static struct bp_location *
8567 add_location_to_breakpoint (struct breakpoint *b,
8568 const struct symtab_and_line *sal)
8569 {
8570 struct bp_location *loc, **tmp;
8571 CORE_ADDR adjusted_address;
8572 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8573
8574 if (loc_gdbarch == NULL)
8575 loc_gdbarch = b->gdbarch;
8576
8577 /* Adjust the breakpoint's address prior to allocating a location.
8578 Once we call allocate_bp_location(), that mostly uninitialized
8579 location will be placed on the location chain. Adjustment of the
8580 breakpoint may cause target_read_memory() to be called and we do
8581 not want its scan of the location chain to find a breakpoint and
8582 location that's only been partially initialized. */
8583 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8584 sal->pc, b->type);
8585
8586 /* Sort the locations by their ADDRESS. */
8587 loc = allocate_bp_location (b);
8588 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8589 tmp = &((*tmp)->next))
8590 ;
8591 loc->next = *tmp;
8592 *tmp = loc;
8593
8594 loc->requested_address = sal->pc;
8595 loc->address = adjusted_address;
8596 loc->pspace = sal->pspace;
8597 loc->probe.prob = sal->prob;
8598 loc->probe.objfile = sal->objfile;
8599 gdb_assert (loc->pspace != NULL);
8600 loc->section = sal->section;
8601 loc->gdbarch = loc_gdbarch;
8602 loc->line_number = sal->line;
8603 loc->symtab = sal->symtab;
8604 loc->symbol = sal->symbol;
8605 loc->msymbol = sal->msymbol;
8606 loc->objfile = sal->objfile;
8607
8608 set_breakpoint_location_function (loc,
8609 sal->explicit_pc || sal->explicit_line);
8610
8611 /* While by definition, permanent breakpoints are already present in the
8612 code, we don't mark the location as inserted. Normally one would expect
8613 that GDB could rely on that breakpoint instruction to stop the program,
8614 thus removing the need to insert its own breakpoint, except that executing
8615 the breakpoint instruction can kill the target instead of reporting a
8616 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8617 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8618 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8619 breakpoint be inserted normally results in QEMU knowing about the GDB
8620 breakpoint, and thus trap before the breakpoint instruction is executed.
8621 (If GDB later needs to continue execution past the permanent breakpoint,
8622 it manually increments the PC, thus avoiding executing the breakpoint
8623 instruction.) */
8624 if (bp_loc_is_permanent (loc))
8625 loc->permanent = 1;
8626
8627 return loc;
8628 }
8629 \f
8630
8631 /* See breakpoint.h. */
8632
8633 int
8634 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8635 {
8636 int len;
8637 CORE_ADDR addr;
8638 const gdb_byte *bpoint;
8639 gdb_byte *target_mem;
8640
8641 addr = address;
8642 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8643
8644 /* Software breakpoints unsupported? */
8645 if (bpoint == NULL)
8646 return 0;
8647
8648 target_mem = (gdb_byte *) alloca (len);
8649
8650 /* Enable the automatic memory restoration from breakpoints while
8651 we read the memory. Otherwise we could say about our temporary
8652 breakpoints they are permanent. */
8653 scoped_restore restore_memory
8654 = make_scoped_restore_show_memory_breakpoints (0);
8655
8656 if (target_read_memory (address, target_mem, len) == 0
8657 && memcmp (target_mem, bpoint, len) == 0)
8658 return 1;
8659
8660 return 0;
8661 }
8662
8663 /* Return 1 if LOC is pointing to a permanent breakpoint,
8664 return 0 otherwise. */
8665
8666 static int
8667 bp_loc_is_permanent (struct bp_location *loc)
8668 {
8669 gdb_assert (loc != NULL);
8670
8671 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8672 attempt to read from the addresses the locations of these breakpoint types
8673 point to. program_breakpoint_here_p, below, will attempt to read
8674 memory. */
8675 if (!breakpoint_address_is_meaningful (loc->owner))
8676 return 0;
8677
8678 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8679 switch_to_program_space_and_thread (loc->pspace);
8680 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8681 }
8682
8683 /* Build a command list for the dprintf corresponding to the current
8684 settings of the dprintf style options. */
8685
8686 static void
8687 update_dprintf_command_list (struct breakpoint *b)
8688 {
8689 char *dprintf_args = b->extra_string;
8690 char *printf_line = NULL;
8691
8692 if (!dprintf_args)
8693 return;
8694
8695 dprintf_args = skip_spaces (dprintf_args);
8696
8697 /* Allow a comma, as it may have terminated a location, but don't
8698 insist on it. */
8699 if (*dprintf_args == ',')
8700 ++dprintf_args;
8701 dprintf_args = skip_spaces (dprintf_args);
8702
8703 if (*dprintf_args != '"')
8704 error (_("Bad format string, missing '\"'."));
8705
8706 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8707 printf_line = xstrprintf ("printf %s", dprintf_args);
8708 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8709 {
8710 if (!dprintf_function)
8711 error (_("No function supplied for dprintf call"));
8712
8713 if (dprintf_channel && strlen (dprintf_channel) > 0)
8714 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8715 dprintf_function,
8716 dprintf_channel,
8717 dprintf_args);
8718 else
8719 printf_line = xstrprintf ("call (void) %s (%s)",
8720 dprintf_function,
8721 dprintf_args);
8722 }
8723 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8724 {
8725 if (target_can_run_breakpoint_commands ())
8726 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8727 else
8728 {
8729 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8730 printf_line = xstrprintf ("printf %s", dprintf_args);
8731 }
8732 }
8733 else
8734 internal_error (__FILE__, __LINE__,
8735 _("Invalid dprintf style."));
8736
8737 gdb_assert (printf_line != NULL);
8738
8739 /* Manufacture a printf sequence. */
8740 struct command_line *printf_cmd_line
8741 = new struct command_line (simple_control, printf_line);
8742 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8743 command_lines_deleter ()));
8744 }
8745
8746 /* Update all dprintf commands, making their command lists reflect
8747 current style settings. */
8748
8749 static void
8750 update_dprintf_commands (const char *args, int from_tty,
8751 struct cmd_list_element *c)
8752 {
8753 struct breakpoint *b;
8754
8755 ALL_BREAKPOINTS (b)
8756 {
8757 if (b->type == bp_dprintf)
8758 update_dprintf_command_list (b);
8759 }
8760 }
8761
8762 /* Create a breakpoint with SAL as location. Use LOCATION
8763 as a description of the location, and COND_STRING
8764 as condition expression. If LOCATION is NULL then create an
8765 "address location" from the address in the SAL. */
8766
8767 static void
8768 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8769 gdb::array_view<const symtab_and_line> sals,
8770 event_location_up &&location,
8771 gdb::unique_xmalloc_ptr<char> filter,
8772 gdb::unique_xmalloc_ptr<char> cond_string,
8773 gdb::unique_xmalloc_ptr<char> extra_string,
8774 enum bptype type, enum bpdisp disposition,
8775 int thread, int task, int ignore_count,
8776 const struct breakpoint_ops *ops, int from_tty,
8777 int enabled, int internal, unsigned flags,
8778 int display_canonical)
8779 {
8780 int i;
8781
8782 if (type == bp_hardware_breakpoint)
8783 {
8784 int target_resources_ok;
8785
8786 i = hw_breakpoint_used_count ();
8787 target_resources_ok =
8788 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8789 i + 1, 0);
8790 if (target_resources_ok == 0)
8791 error (_("No hardware breakpoint support in the target."));
8792 else if (target_resources_ok < 0)
8793 error (_("Hardware breakpoints used exceeds limit."));
8794 }
8795
8796 gdb_assert (!sals.empty ());
8797
8798 for (const auto &sal : sals)
8799 {
8800 struct bp_location *loc;
8801
8802 if (from_tty)
8803 {
8804 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8805 if (!loc_gdbarch)
8806 loc_gdbarch = gdbarch;
8807
8808 describe_other_breakpoints (loc_gdbarch,
8809 sal.pspace, sal.pc, sal.section, thread);
8810 }
8811
8812 if (&sal == &sals[0])
8813 {
8814 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8815 b->thread = thread;
8816 b->task = task;
8817
8818 b->cond_string = cond_string.release ();
8819 b->extra_string = extra_string.release ();
8820 b->ignore_count = ignore_count;
8821 b->enable_state = enabled ? bp_enabled : bp_disabled;
8822 b->disposition = disposition;
8823
8824 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8825 b->loc->inserted = 1;
8826
8827 if (type == bp_static_tracepoint)
8828 {
8829 struct tracepoint *t = (struct tracepoint *) b;
8830 struct static_tracepoint_marker marker;
8831
8832 if (strace_marker_p (b))
8833 {
8834 /* We already know the marker exists, otherwise, we
8835 wouldn't see a sal for it. */
8836 const char *p
8837 = &event_location_to_string (b->location.get ())[3];
8838 const char *endp;
8839
8840 p = skip_spaces (p);
8841
8842 endp = skip_to_space (p);
8843
8844 t->static_trace_marker_id.assign (p, endp - p);
8845
8846 printf_filtered (_("Probed static tracepoint "
8847 "marker \"%s\"\n"),
8848 t->static_trace_marker_id.c_str ());
8849 }
8850 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8851 {
8852 t->static_trace_marker_id = std::move (marker.str_id);
8853
8854 printf_filtered (_("Probed static tracepoint "
8855 "marker \"%s\"\n"),
8856 t->static_trace_marker_id.c_str ());
8857 }
8858 else
8859 warning (_("Couldn't determine the static "
8860 "tracepoint marker to probe"));
8861 }
8862
8863 loc = b->loc;
8864 }
8865 else
8866 {
8867 loc = add_location_to_breakpoint (b, &sal);
8868 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8869 loc->inserted = 1;
8870 }
8871
8872 if (b->cond_string)
8873 {
8874 const char *arg = b->cond_string;
8875
8876 loc->cond = parse_exp_1 (&arg, loc->address,
8877 block_for_pc (loc->address), 0);
8878 if (*arg)
8879 error (_("Garbage '%s' follows condition"), arg);
8880 }
8881
8882 /* Dynamic printf requires and uses additional arguments on the
8883 command line, otherwise it's an error. */
8884 if (type == bp_dprintf)
8885 {
8886 if (b->extra_string)
8887 update_dprintf_command_list (b);
8888 else
8889 error (_("Format string required"));
8890 }
8891 else if (b->extra_string)
8892 error (_("Garbage '%s' at end of command"), b->extra_string);
8893 }
8894
8895 b->display_canonical = display_canonical;
8896 if (location != NULL)
8897 b->location = std::move (location);
8898 else
8899 b->location = new_address_location (b->loc->address, NULL, 0);
8900 b->filter = filter.release ();
8901 }
8902
8903 static void
8904 create_breakpoint_sal (struct gdbarch *gdbarch,
8905 gdb::array_view<const symtab_and_line> sals,
8906 event_location_up &&location,
8907 gdb::unique_xmalloc_ptr<char> filter,
8908 gdb::unique_xmalloc_ptr<char> cond_string,
8909 gdb::unique_xmalloc_ptr<char> extra_string,
8910 enum bptype type, enum bpdisp disposition,
8911 int thread, int task, int ignore_count,
8912 const struct breakpoint_ops *ops, int from_tty,
8913 int enabled, int internal, unsigned flags,
8914 int display_canonical)
8915 {
8916 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8917
8918 init_breakpoint_sal (b.get (), gdbarch,
8919 sals, std::move (location),
8920 std::move (filter),
8921 std::move (cond_string),
8922 std::move (extra_string),
8923 type, disposition,
8924 thread, task, ignore_count,
8925 ops, from_tty,
8926 enabled, internal, flags,
8927 display_canonical);
8928
8929 install_breakpoint (internal, std::move (b), 0);
8930 }
8931
8932 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8933 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8934 value. COND_STRING, if not NULL, specified the condition to be
8935 used for all breakpoints. Essentially the only case where
8936 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8937 function. In that case, it's still not possible to specify
8938 separate conditions for different overloaded functions, so
8939 we take just a single condition string.
8940
8941 NOTE: If the function succeeds, the caller is expected to cleanup
8942 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8943 array contents). If the function fails (error() is called), the
8944 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8945 COND and SALS arrays and each of those arrays contents. */
8946
8947 static void
8948 create_breakpoints_sal (struct gdbarch *gdbarch,
8949 struct linespec_result *canonical,
8950 gdb::unique_xmalloc_ptr<char> cond_string,
8951 gdb::unique_xmalloc_ptr<char> extra_string,
8952 enum bptype type, enum bpdisp disposition,
8953 int thread, int task, int ignore_count,
8954 const struct breakpoint_ops *ops, int from_tty,
8955 int enabled, int internal, unsigned flags)
8956 {
8957 if (canonical->pre_expanded)
8958 gdb_assert (canonical->lsals.size () == 1);
8959
8960 for (const auto &lsal : canonical->lsals)
8961 {
8962 /* Note that 'location' can be NULL in the case of a plain
8963 'break', without arguments. */
8964 event_location_up location
8965 = (canonical->location != NULL
8966 ? copy_event_location (canonical->location.get ()) : NULL);
8967 gdb::unique_xmalloc_ptr<char> filter_string
8968 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8969
8970 create_breakpoint_sal (gdbarch, lsal.sals,
8971 std::move (location),
8972 std::move (filter_string),
8973 std::move (cond_string),
8974 std::move (extra_string),
8975 type, disposition,
8976 thread, task, ignore_count, ops,
8977 from_tty, enabled, internal, flags,
8978 canonical->special_display);
8979 }
8980 }
8981
8982 /* Parse LOCATION which is assumed to be a SAL specification possibly
8983 followed by conditionals. On return, SALS contains an array of SAL
8984 addresses found. LOCATION points to the end of the SAL (for
8985 linespec locations).
8986
8987 The array and the line spec strings are allocated on the heap, it is
8988 the caller's responsibility to free them. */
8989
8990 static void
8991 parse_breakpoint_sals (const struct event_location *location,
8992 struct linespec_result *canonical)
8993 {
8994 struct symtab_and_line cursal;
8995
8996 if (event_location_type (location) == LINESPEC_LOCATION)
8997 {
8998 const char *spec = get_linespec_location (location)->spec_string;
8999
9000 if (spec == NULL)
9001 {
9002 /* The last displayed codepoint, if it's valid, is our default
9003 breakpoint address. */
9004 if (last_displayed_sal_is_valid ())
9005 {
9006 /* Set sal's pspace, pc, symtab, and line to the values
9007 corresponding to the last call to print_frame_info.
9008 Be sure to reinitialize LINE with NOTCURRENT == 0
9009 as the breakpoint line number is inappropriate otherwise.
9010 find_pc_line would adjust PC, re-set it back. */
9011 symtab_and_line sal = get_last_displayed_sal ();
9012 CORE_ADDR pc = sal.pc;
9013
9014 sal = find_pc_line (pc, 0);
9015
9016 /* "break" without arguments is equivalent to "break *PC"
9017 where PC is the last displayed codepoint's address. So
9018 make sure to set sal.explicit_pc to prevent GDB from
9019 trying to expand the list of sals to include all other
9020 instances with the same symtab and line. */
9021 sal.pc = pc;
9022 sal.explicit_pc = 1;
9023
9024 struct linespec_sals lsal;
9025 lsal.sals = {sal};
9026 lsal.canonical = NULL;
9027
9028 canonical->lsals.push_back (std::move (lsal));
9029 return;
9030 }
9031 else
9032 error (_("No default breakpoint address now."));
9033 }
9034 }
9035
9036 /* Force almost all breakpoints to be in terms of the
9037 current_source_symtab (which is decode_line_1's default).
9038 This should produce the results we want almost all of the
9039 time while leaving default_breakpoint_* alone.
9040
9041 ObjC: However, don't match an Objective-C method name which
9042 may have a '+' or '-' succeeded by a '['. */
9043 cursal = get_current_source_symtab_and_line ();
9044 if (last_displayed_sal_is_valid ())
9045 {
9046 const char *spec = NULL;
9047
9048 if (event_location_type (location) == LINESPEC_LOCATION)
9049 spec = get_linespec_location (location)->spec_string;
9050
9051 if (!cursal.symtab
9052 || (spec != NULL
9053 && strchr ("+-", spec[0]) != NULL
9054 && spec[1] != '['))
9055 {
9056 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9057 get_last_displayed_symtab (),
9058 get_last_displayed_line (),
9059 canonical, NULL, NULL);
9060 return;
9061 }
9062 }
9063
9064 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9065 cursal.symtab, cursal.line, canonical, NULL, NULL);
9066 }
9067
9068
9069 /* Convert each SAL into a real PC. Verify that the PC can be
9070 inserted as a breakpoint. If it can't throw an error. */
9071
9072 static void
9073 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9074 {
9075 for (auto &sal : sals)
9076 resolve_sal_pc (&sal);
9077 }
9078
9079 /* Fast tracepoints may have restrictions on valid locations. For
9080 instance, a fast tracepoint using a jump instead of a trap will
9081 likely have to overwrite more bytes than a trap would, and so can
9082 only be placed where the instruction is longer than the jump, or a
9083 multi-instruction sequence does not have a jump into the middle of
9084 it, etc. */
9085
9086 static void
9087 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9088 gdb::array_view<const symtab_and_line> sals)
9089 {
9090 for (const auto &sal : sals)
9091 {
9092 struct gdbarch *sarch;
9093
9094 sarch = get_sal_arch (sal);
9095 /* We fall back to GDBARCH if there is no architecture
9096 associated with SAL. */
9097 if (sarch == NULL)
9098 sarch = gdbarch;
9099 std::string msg;
9100 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9101 error (_("May not have a fast tracepoint at %s%s"),
9102 paddress (sarch, sal.pc), msg.c_str ());
9103 }
9104 }
9105
9106 /* Given TOK, a string specification of condition and thread, as
9107 accepted by the 'break' command, extract the condition
9108 string and thread number and set *COND_STRING and *THREAD.
9109 PC identifies the context at which the condition should be parsed.
9110 If no condition is found, *COND_STRING is set to NULL.
9111 If no thread is found, *THREAD is set to -1. */
9112
9113 static void
9114 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9115 char **cond_string, int *thread, int *task,
9116 char **rest)
9117 {
9118 *cond_string = NULL;
9119 *thread = -1;
9120 *task = 0;
9121 *rest = NULL;
9122
9123 while (tok && *tok)
9124 {
9125 const char *end_tok;
9126 int toklen;
9127 const char *cond_start = NULL;
9128 const char *cond_end = NULL;
9129
9130 tok = skip_spaces (tok);
9131
9132 if ((*tok == '"' || *tok == ',') && rest)
9133 {
9134 *rest = savestring (tok, strlen (tok));
9135 return;
9136 }
9137
9138 end_tok = skip_to_space (tok);
9139
9140 toklen = end_tok - tok;
9141
9142 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9143 {
9144 tok = cond_start = end_tok + 1;
9145 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9146 cond_end = tok;
9147 *cond_string = savestring (cond_start, cond_end - cond_start);
9148 }
9149 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9150 {
9151 const char *tmptok;
9152 struct thread_info *thr;
9153
9154 tok = end_tok + 1;
9155 thr = parse_thread_id (tok, &tmptok);
9156 if (tok == tmptok)
9157 error (_("Junk after thread keyword."));
9158 *thread = thr->global_num;
9159 tok = tmptok;
9160 }
9161 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9162 {
9163 char *tmptok;
9164
9165 tok = end_tok + 1;
9166 *task = strtol (tok, &tmptok, 0);
9167 if (tok == tmptok)
9168 error (_("Junk after task keyword."));
9169 if (!valid_task_id (*task))
9170 error (_("Unknown task %d."), *task);
9171 tok = tmptok;
9172 }
9173 else if (rest)
9174 {
9175 *rest = savestring (tok, strlen (tok));
9176 return;
9177 }
9178 else
9179 error (_("Junk at end of arguments."));
9180 }
9181 }
9182
9183 /* Decode a static tracepoint marker spec. */
9184
9185 static std::vector<symtab_and_line>
9186 decode_static_tracepoint_spec (const char **arg_p)
9187 {
9188 const char *p = &(*arg_p)[3];
9189 const char *endp;
9190
9191 p = skip_spaces (p);
9192
9193 endp = skip_to_space (p);
9194
9195 std::string marker_str (p, endp - p);
9196
9197 std::vector<static_tracepoint_marker> markers
9198 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9199 if (markers.empty ())
9200 error (_("No known static tracepoint marker named %s"),
9201 marker_str.c_str ());
9202
9203 std::vector<symtab_and_line> sals;
9204 sals.reserve (markers.size ());
9205
9206 for (const static_tracepoint_marker &marker : markers)
9207 {
9208 symtab_and_line sal = find_pc_line (marker.address, 0);
9209 sal.pc = marker.address;
9210 sals.push_back (sal);
9211 }
9212
9213 *arg_p = endp;
9214 return sals;
9215 }
9216
9217 /* See breakpoint.h. */
9218
9219 int
9220 create_breakpoint (struct gdbarch *gdbarch,
9221 const struct event_location *location,
9222 const char *cond_string,
9223 int thread, const char *extra_string,
9224 int parse_extra,
9225 int tempflag, enum bptype type_wanted,
9226 int ignore_count,
9227 enum auto_boolean pending_break_support,
9228 const struct breakpoint_ops *ops,
9229 int from_tty, int enabled, int internal,
9230 unsigned flags)
9231 {
9232 struct linespec_result canonical;
9233 int pending = 0;
9234 int task = 0;
9235 int prev_bkpt_count = breakpoint_count;
9236
9237 gdb_assert (ops != NULL);
9238
9239 /* If extra_string isn't useful, set it to NULL. */
9240 if (extra_string != NULL && *extra_string == '\0')
9241 extra_string = NULL;
9242
9243 TRY
9244 {
9245 ops->create_sals_from_location (location, &canonical, type_wanted);
9246 }
9247 CATCH (e, RETURN_MASK_ERROR)
9248 {
9249 /* If caller is interested in rc value from parse, set
9250 value. */
9251 if (e.error == NOT_FOUND_ERROR)
9252 {
9253 /* If pending breakpoint support is turned off, throw
9254 error. */
9255
9256 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9257 throw_exception (e);
9258
9259 exception_print (gdb_stderr, e);
9260
9261 /* If pending breakpoint support is auto query and the user
9262 selects no, then simply return the error code. */
9263 if (pending_break_support == AUTO_BOOLEAN_AUTO
9264 && !nquery (_("Make %s pending on future shared library load? "),
9265 bptype_string (type_wanted)))
9266 return 0;
9267
9268 /* At this point, either the user was queried about setting
9269 a pending breakpoint and selected yes, or pending
9270 breakpoint behavior is on and thus a pending breakpoint
9271 is defaulted on behalf of the user. */
9272 pending = 1;
9273 }
9274 else
9275 throw_exception (e);
9276 }
9277 END_CATCH
9278
9279 if (!pending && canonical.lsals.empty ())
9280 return 0;
9281
9282 /* Resolve all line numbers to PC's and verify that the addresses
9283 are ok for the target. */
9284 if (!pending)
9285 {
9286 for (auto &lsal : canonical.lsals)
9287 breakpoint_sals_to_pc (lsal.sals);
9288 }
9289
9290 /* Fast tracepoints may have additional restrictions on location. */
9291 if (!pending && type_wanted == bp_fast_tracepoint)
9292 {
9293 for (const auto &lsal : canonical.lsals)
9294 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9295 }
9296
9297 /* Verify that condition can be parsed, before setting any
9298 breakpoints. Allocate a separate condition expression for each
9299 breakpoint. */
9300 if (!pending)
9301 {
9302 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9303 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9304
9305 if (parse_extra)
9306 {
9307 char *rest;
9308 char *cond;
9309
9310 const linespec_sals &lsal = canonical.lsals[0];
9311
9312 /* Here we only parse 'arg' to separate condition
9313 from thread number, so parsing in context of first
9314 sal is OK. When setting the breakpoint we'll
9315 re-parse it in context of each sal. */
9316
9317 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9318 &cond, &thread, &task, &rest);
9319 cond_string_copy.reset (cond);
9320 extra_string_copy.reset (rest);
9321 }
9322 else
9323 {
9324 if (type_wanted != bp_dprintf
9325 && extra_string != NULL && *extra_string != '\0')
9326 error (_("Garbage '%s' at end of location"), extra_string);
9327
9328 /* Create a private copy of condition string. */
9329 if (cond_string)
9330 cond_string_copy.reset (xstrdup (cond_string));
9331 /* Create a private copy of any extra string. */
9332 if (extra_string)
9333 extra_string_copy.reset (xstrdup (extra_string));
9334 }
9335
9336 ops->create_breakpoints_sal (gdbarch, &canonical,
9337 std::move (cond_string_copy),
9338 std::move (extra_string_copy),
9339 type_wanted,
9340 tempflag ? disp_del : disp_donttouch,
9341 thread, task, ignore_count, ops,
9342 from_tty, enabled, internal, flags);
9343 }
9344 else
9345 {
9346 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9347
9348 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9349 b->location = copy_event_location (location);
9350
9351 if (parse_extra)
9352 b->cond_string = NULL;
9353 else
9354 {
9355 /* Create a private copy of condition string. */
9356 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9357 b->thread = thread;
9358 }
9359
9360 /* Create a private copy of any extra string. */
9361 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9362 b->ignore_count = ignore_count;
9363 b->disposition = tempflag ? disp_del : disp_donttouch;
9364 b->condition_not_parsed = 1;
9365 b->enable_state = enabled ? bp_enabled : bp_disabled;
9366 if ((type_wanted != bp_breakpoint
9367 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9368 b->pspace = current_program_space;
9369
9370 install_breakpoint (internal, std::move (b), 0);
9371 }
9372
9373 if (canonical.lsals.size () > 1)
9374 {
9375 warning (_("Multiple breakpoints were set.\nUse the "
9376 "\"delete\" command to delete unwanted breakpoints."));
9377 prev_breakpoint_count = prev_bkpt_count;
9378 }
9379
9380 update_global_location_list (UGLL_MAY_INSERT);
9381
9382 return 1;
9383 }
9384
9385 /* Set a breakpoint.
9386 ARG is a string describing breakpoint address,
9387 condition, and thread.
9388 FLAG specifies if a breakpoint is hardware on,
9389 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9390 and BP_TEMPFLAG. */
9391
9392 static void
9393 break_command_1 (const char *arg, int flag, int from_tty)
9394 {
9395 int tempflag = flag & BP_TEMPFLAG;
9396 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9397 ? bp_hardware_breakpoint
9398 : bp_breakpoint);
9399 struct breakpoint_ops *ops;
9400
9401 event_location_up location = string_to_event_location (&arg, current_language);
9402
9403 /* Matching breakpoints on probes. */
9404 if (location != NULL
9405 && event_location_type (location.get ()) == PROBE_LOCATION)
9406 ops = &bkpt_probe_breakpoint_ops;
9407 else
9408 ops = &bkpt_breakpoint_ops;
9409
9410 create_breakpoint (get_current_arch (),
9411 location.get (),
9412 NULL, 0, arg, 1 /* parse arg */,
9413 tempflag, type_wanted,
9414 0 /* Ignore count */,
9415 pending_break_support,
9416 ops,
9417 from_tty,
9418 1 /* enabled */,
9419 0 /* internal */,
9420 0);
9421 }
9422
9423 /* Helper function for break_command_1 and disassemble_command. */
9424
9425 void
9426 resolve_sal_pc (struct symtab_and_line *sal)
9427 {
9428 CORE_ADDR pc;
9429
9430 if (sal->pc == 0 && sal->symtab != NULL)
9431 {
9432 if (!find_line_pc (sal->symtab, sal->line, &pc))
9433 error (_("No line %d in file \"%s\"."),
9434 sal->line, symtab_to_filename_for_display (sal->symtab));
9435 sal->pc = pc;
9436
9437 /* If this SAL corresponds to a breakpoint inserted using a line
9438 number, then skip the function prologue if necessary. */
9439 if (sal->explicit_line)
9440 skip_prologue_sal (sal);
9441 }
9442
9443 if (sal->section == 0 && sal->symtab != NULL)
9444 {
9445 const struct blockvector *bv;
9446 const struct block *b;
9447 struct symbol *sym;
9448
9449 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9450 SYMTAB_COMPUNIT (sal->symtab));
9451 if (bv != NULL)
9452 {
9453 sym = block_linkage_function (b);
9454 if (sym != NULL)
9455 {
9456 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9457 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9458 sym);
9459 }
9460 else
9461 {
9462 /* It really is worthwhile to have the section, so we'll
9463 just have to look harder. This case can be executed
9464 if we have line numbers but no functions (as can
9465 happen in assembly source). */
9466
9467 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9468 switch_to_program_space_and_thread (sal->pspace);
9469
9470 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9471 if (msym.minsym)
9472 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9473 }
9474 }
9475 }
9476 }
9477
9478 void
9479 break_command (const char *arg, int from_tty)
9480 {
9481 break_command_1 (arg, 0, from_tty);
9482 }
9483
9484 void
9485 tbreak_command (const char *arg, int from_tty)
9486 {
9487 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9488 }
9489
9490 static void
9491 hbreak_command (const char *arg, int from_tty)
9492 {
9493 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9494 }
9495
9496 static void
9497 thbreak_command (const char *arg, int from_tty)
9498 {
9499 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9500 }
9501
9502 static void
9503 stop_command (const char *arg, int from_tty)
9504 {
9505 printf_filtered (_("Specify the type of breakpoint to set.\n\
9506 Usage: stop in <function | address>\n\
9507 stop at <line>\n"));
9508 }
9509
9510 static void
9511 stopin_command (const char *arg, int from_tty)
9512 {
9513 int badInput = 0;
9514
9515 if (arg == (char *) NULL)
9516 badInput = 1;
9517 else if (*arg != '*')
9518 {
9519 const char *argptr = arg;
9520 int hasColon = 0;
9521
9522 /* Look for a ':'. If this is a line number specification, then
9523 say it is bad, otherwise, it should be an address or
9524 function/method name. */
9525 while (*argptr && !hasColon)
9526 {
9527 hasColon = (*argptr == ':');
9528 argptr++;
9529 }
9530
9531 if (hasColon)
9532 badInput = (*argptr != ':'); /* Not a class::method */
9533 else
9534 badInput = isdigit (*arg); /* a simple line number */
9535 }
9536
9537 if (badInput)
9538 printf_filtered (_("Usage: stop in <function | address>\n"));
9539 else
9540 break_command_1 (arg, 0, from_tty);
9541 }
9542
9543 static void
9544 stopat_command (const char *arg, int from_tty)
9545 {
9546 int badInput = 0;
9547
9548 if (arg == (char *) NULL || *arg == '*') /* no line number */
9549 badInput = 1;
9550 else
9551 {
9552 const char *argptr = arg;
9553 int hasColon = 0;
9554
9555 /* Look for a ':'. If there is a '::' then get out, otherwise
9556 it is probably a line number. */
9557 while (*argptr && !hasColon)
9558 {
9559 hasColon = (*argptr == ':');
9560 argptr++;
9561 }
9562
9563 if (hasColon)
9564 badInput = (*argptr == ':'); /* we have class::method */
9565 else
9566 badInput = !isdigit (*arg); /* not a line number */
9567 }
9568
9569 if (badInput)
9570 printf_filtered (_("Usage: stop at LINE\n"));
9571 else
9572 break_command_1 (arg, 0, from_tty);
9573 }
9574
9575 /* The dynamic printf command is mostly like a regular breakpoint, but
9576 with a prewired command list consisting of a single output command,
9577 built from extra arguments supplied on the dprintf command
9578 line. */
9579
9580 static void
9581 dprintf_command (const char *arg, int from_tty)
9582 {
9583 event_location_up location = string_to_event_location (&arg, current_language);
9584
9585 /* If non-NULL, ARG should have been advanced past the location;
9586 the next character must be ','. */
9587 if (arg != NULL)
9588 {
9589 if (arg[0] != ',' || arg[1] == '\0')
9590 error (_("Format string required"));
9591 else
9592 {
9593 /* Skip the comma. */
9594 ++arg;
9595 }
9596 }
9597
9598 create_breakpoint (get_current_arch (),
9599 location.get (),
9600 NULL, 0, arg, 1 /* parse arg */,
9601 0, bp_dprintf,
9602 0 /* Ignore count */,
9603 pending_break_support,
9604 &dprintf_breakpoint_ops,
9605 from_tty,
9606 1 /* enabled */,
9607 0 /* internal */,
9608 0);
9609 }
9610
9611 static void
9612 agent_printf_command (const char *arg, int from_tty)
9613 {
9614 error (_("May only run agent-printf on the target"));
9615 }
9616
9617 /* Implement the "breakpoint_hit" breakpoint_ops method for
9618 ranged breakpoints. */
9619
9620 static int
9621 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9622 const address_space *aspace,
9623 CORE_ADDR bp_addr,
9624 const struct target_waitstatus *ws)
9625 {
9626 if (ws->kind != TARGET_WAITKIND_STOPPED
9627 || ws->value.sig != GDB_SIGNAL_TRAP)
9628 return 0;
9629
9630 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9631 bl->length, aspace, bp_addr);
9632 }
9633
9634 /* Implement the "resources_needed" breakpoint_ops method for
9635 ranged breakpoints. */
9636
9637 static int
9638 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9639 {
9640 return target_ranged_break_num_registers ();
9641 }
9642
9643 /* Implement the "print_it" breakpoint_ops method for
9644 ranged breakpoints. */
9645
9646 static enum print_stop_action
9647 print_it_ranged_breakpoint (bpstat bs)
9648 {
9649 struct breakpoint *b = bs->breakpoint_at;
9650 struct bp_location *bl = b->loc;
9651 struct ui_out *uiout = current_uiout;
9652
9653 gdb_assert (b->type == bp_hardware_breakpoint);
9654
9655 /* Ranged breakpoints have only one location. */
9656 gdb_assert (bl && bl->next == NULL);
9657
9658 annotate_breakpoint (b->number);
9659
9660 maybe_print_thread_hit_breakpoint (uiout);
9661
9662 if (b->disposition == disp_del)
9663 uiout->text ("Temporary ranged breakpoint ");
9664 else
9665 uiout->text ("Ranged breakpoint ");
9666 if (uiout->is_mi_like_p ())
9667 {
9668 uiout->field_string ("reason",
9669 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9670 uiout->field_string ("disp", bpdisp_text (b->disposition));
9671 }
9672 uiout->field_int ("bkptno", b->number);
9673 uiout->text (", ");
9674
9675 return PRINT_SRC_AND_LOC;
9676 }
9677
9678 /* Implement the "print_one" breakpoint_ops method for
9679 ranged breakpoints. */
9680
9681 static void
9682 print_one_ranged_breakpoint (struct breakpoint *b,
9683 struct bp_location **last_loc)
9684 {
9685 struct bp_location *bl = b->loc;
9686 struct value_print_options opts;
9687 struct ui_out *uiout = current_uiout;
9688
9689 /* Ranged breakpoints have only one location. */
9690 gdb_assert (bl && bl->next == NULL);
9691
9692 get_user_print_options (&opts);
9693
9694 if (opts.addressprint)
9695 /* We don't print the address range here, it will be printed later
9696 by print_one_detail_ranged_breakpoint. */
9697 uiout->field_skip ("addr");
9698 annotate_field (5);
9699 print_breakpoint_location (b, bl);
9700 *last_loc = bl;
9701 }
9702
9703 /* Implement the "print_one_detail" breakpoint_ops method for
9704 ranged breakpoints. */
9705
9706 static void
9707 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9708 struct ui_out *uiout)
9709 {
9710 CORE_ADDR address_start, address_end;
9711 struct bp_location *bl = b->loc;
9712 string_file stb;
9713
9714 gdb_assert (bl);
9715
9716 address_start = bl->address;
9717 address_end = address_start + bl->length - 1;
9718
9719 uiout->text ("\taddress range: ");
9720 stb.printf ("[%s, %s]",
9721 print_core_address (bl->gdbarch, address_start),
9722 print_core_address (bl->gdbarch, address_end));
9723 uiout->field_stream ("addr", stb);
9724 uiout->text ("\n");
9725 }
9726
9727 /* Implement the "print_mention" breakpoint_ops method for
9728 ranged breakpoints. */
9729
9730 static void
9731 print_mention_ranged_breakpoint (struct breakpoint *b)
9732 {
9733 struct bp_location *bl = b->loc;
9734 struct ui_out *uiout = current_uiout;
9735
9736 gdb_assert (bl);
9737 gdb_assert (b->type == bp_hardware_breakpoint);
9738
9739 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9740 b->number, paddress (bl->gdbarch, bl->address),
9741 paddress (bl->gdbarch, bl->address + bl->length - 1));
9742 }
9743
9744 /* Implement the "print_recreate" breakpoint_ops method for
9745 ranged breakpoints. */
9746
9747 static void
9748 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9749 {
9750 fprintf_unfiltered (fp, "break-range %s, %s",
9751 event_location_to_string (b->location.get ()),
9752 event_location_to_string (b->location_range_end.get ()));
9753 print_recreate_thread (b, fp);
9754 }
9755
9756 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9757
9758 static struct breakpoint_ops ranged_breakpoint_ops;
9759
9760 /* Find the address where the end of the breakpoint range should be
9761 placed, given the SAL of the end of the range. This is so that if
9762 the user provides a line number, the end of the range is set to the
9763 last instruction of the given line. */
9764
9765 static CORE_ADDR
9766 find_breakpoint_range_end (struct symtab_and_line sal)
9767 {
9768 CORE_ADDR end;
9769
9770 /* If the user provided a PC value, use it. Otherwise,
9771 find the address of the end of the given location. */
9772 if (sal.explicit_pc)
9773 end = sal.pc;
9774 else
9775 {
9776 int ret;
9777 CORE_ADDR start;
9778
9779 ret = find_line_pc_range (sal, &start, &end);
9780 if (!ret)
9781 error (_("Could not find location of the end of the range."));
9782
9783 /* find_line_pc_range returns the start of the next line. */
9784 end--;
9785 }
9786
9787 return end;
9788 }
9789
9790 /* Implement the "break-range" CLI command. */
9791
9792 static void
9793 break_range_command (const char *arg, int from_tty)
9794 {
9795 const char *arg_start;
9796 struct linespec_result canonical_start, canonical_end;
9797 int bp_count, can_use_bp, length;
9798 CORE_ADDR end;
9799 struct breakpoint *b;
9800
9801 /* We don't support software ranged breakpoints. */
9802 if (target_ranged_break_num_registers () < 0)
9803 error (_("This target does not support hardware ranged breakpoints."));
9804
9805 bp_count = hw_breakpoint_used_count ();
9806 bp_count += target_ranged_break_num_registers ();
9807 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9808 bp_count, 0);
9809 if (can_use_bp < 0)
9810 error (_("Hardware breakpoints used exceeds limit."));
9811
9812 arg = skip_spaces (arg);
9813 if (arg == NULL || arg[0] == '\0')
9814 error(_("No address range specified."));
9815
9816 arg_start = arg;
9817 event_location_up start_location = string_to_event_location (&arg,
9818 current_language);
9819 parse_breakpoint_sals (start_location.get (), &canonical_start);
9820
9821 if (arg[0] != ',')
9822 error (_("Too few arguments."));
9823 else if (canonical_start.lsals.empty ())
9824 error (_("Could not find location of the beginning of the range."));
9825
9826 const linespec_sals &lsal_start = canonical_start.lsals[0];
9827
9828 if (canonical_start.lsals.size () > 1
9829 || lsal_start.sals.size () != 1)
9830 error (_("Cannot create a ranged breakpoint with multiple locations."));
9831
9832 const symtab_and_line &sal_start = lsal_start.sals[0];
9833 std::string addr_string_start (arg_start, arg - arg_start);
9834
9835 arg++; /* Skip the comma. */
9836 arg = skip_spaces (arg);
9837
9838 /* Parse the end location. */
9839
9840 arg_start = arg;
9841
9842 /* We call decode_line_full directly here instead of using
9843 parse_breakpoint_sals because we need to specify the start location's
9844 symtab and line as the default symtab and line for the end of the
9845 range. This makes it possible to have ranges like "foo.c:27, +14",
9846 where +14 means 14 lines from the start location. */
9847 event_location_up end_location = string_to_event_location (&arg,
9848 current_language);
9849 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9850 sal_start.symtab, sal_start.line,
9851 &canonical_end, NULL, NULL);
9852
9853 if (canonical_end.lsals.empty ())
9854 error (_("Could not find location of the end of the range."));
9855
9856 const linespec_sals &lsal_end = canonical_end.lsals[0];
9857 if (canonical_end.lsals.size () > 1
9858 || lsal_end.sals.size () != 1)
9859 error (_("Cannot create a ranged breakpoint with multiple locations."));
9860
9861 const symtab_and_line &sal_end = lsal_end.sals[0];
9862
9863 end = find_breakpoint_range_end (sal_end);
9864 if (sal_start.pc > end)
9865 error (_("Invalid address range, end precedes start."));
9866
9867 length = end - sal_start.pc + 1;
9868 if (length < 0)
9869 /* Length overflowed. */
9870 error (_("Address range too large."));
9871 else if (length == 1)
9872 {
9873 /* This range is simple enough to be handled by
9874 the `hbreak' command. */
9875 hbreak_command (&addr_string_start[0], 1);
9876
9877 return;
9878 }
9879
9880 /* Now set up the breakpoint. */
9881 b = set_raw_breakpoint (get_current_arch (), sal_start,
9882 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9883 set_breakpoint_count (breakpoint_count + 1);
9884 b->number = breakpoint_count;
9885 b->disposition = disp_donttouch;
9886 b->location = std::move (start_location);
9887 b->location_range_end = std::move (end_location);
9888 b->loc->length = length;
9889
9890 mention (b);
9891 gdb::observers::breakpoint_created.notify (b);
9892 update_global_location_list (UGLL_MAY_INSERT);
9893 }
9894
9895 /* Return non-zero if EXP is verified as constant. Returned zero
9896 means EXP is variable. Also the constant detection may fail for
9897 some constant expressions and in such case still falsely return
9898 zero. */
9899
9900 static int
9901 watchpoint_exp_is_const (const struct expression *exp)
9902 {
9903 int i = exp->nelts;
9904
9905 while (i > 0)
9906 {
9907 int oplenp, argsp;
9908
9909 /* We are only interested in the descriptor of each element. */
9910 operator_length (exp, i, &oplenp, &argsp);
9911 i -= oplenp;
9912
9913 switch (exp->elts[i].opcode)
9914 {
9915 case BINOP_ADD:
9916 case BINOP_SUB:
9917 case BINOP_MUL:
9918 case BINOP_DIV:
9919 case BINOP_REM:
9920 case BINOP_MOD:
9921 case BINOP_LSH:
9922 case BINOP_RSH:
9923 case BINOP_LOGICAL_AND:
9924 case BINOP_LOGICAL_OR:
9925 case BINOP_BITWISE_AND:
9926 case BINOP_BITWISE_IOR:
9927 case BINOP_BITWISE_XOR:
9928 case BINOP_EQUAL:
9929 case BINOP_NOTEQUAL:
9930 case BINOP_LESS:
9931 case BINOP_GTR:
9932 case BINOP_LEQ:
9933 case BINOP_GEQ:
9934 case BINOP_REPEAT:
9935 case BINOP_COMMA:
9936 case BINOP_EXP:
9937 case BINOP_MIN:
9938 case BINOP_MAX:
9939 case BINOP_INTDIV:
9940 case BINOP_CONCAT:
9941 case TERNOP_COND:
9942 case TERNOP_SLICE:
9943
9944 case OP_LONG:
9945 case OP_FLOAT:
9946 case OP_LAST:
9947 case OP_COMPLEX:
9948 case OP_STRING:
9949 case OP_ARRAY:
9950 case OP_TYPE:
9951 case OP_TYPEOF:
9952 case OP_DECLTYPE:
9953 case OP_TYPEID:
9954 case OP_NAME:
9955 case OP_OBJC_NSSTRING:
9956
9957 case UNOP_NEG:
9958 case UNOP_LOGICAL_NOT:
9959 case UNOP_COMPLEMENT:
9960 case UNOP_ADDR:
9961 case UNOP_HIGH:
9962 case UNOP_CAST:
9963
9964 case UNOP_CAST_TYPE:
9965 case UNOP_REINTERPRET_CAST:
9966 case UNOP_DYNAMIC_CAST:
9967 /* Unary, binary and ternary operators: We have to check
9968 their operands. If they are constant, then so is the
9969 result of that operation. For instance, if A and B are
9970 determined to be constants, then so is "A + B".
9971
9972 UNOP_IND is one exception to the rule above, because the
9973 value of *ADDR is not necessarily a constant, even when
9974 ADDR is. */
9975 break;
9976
9977 case OP_VAR_VALUE:
9978 /* Check whether the associated symbol is a constant.
9979
9980 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9981 possible that a buggy compiler could mark a variable as
9982 constant even when it is not, and TYPE_CONST would return
9983 true in this case, while SYMBOL_CLASS wouldn't.
9984
9985 We also have to check for function symbols because they
9986 are always constant. */
9987 {
9988 struct symbol *s = exp->elts[i + 2].symbol;
9989
9990 if (SYMBOL_CLASS (s) != LOC_BLOCK
9991 && SYMBOL_CLASS (s) != LOC_CONST
9992 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9993 return 0;
9994 break;
9995 }
9996
9997 /* The default action is to return 0 because we are using
9998 the optimistic approach here: If we don't know something,
9999 then it is not a constant. */
10000 default:
10001 return 0;
10002 }
10003 }
10004
10005 return 1;
10006 }
10007
10008 /* Watchpoint destructor. */
10009
10010 watchpoint::~watchpoint ()
10011 {
10012 xfree (this->exp_string);
10013 xfree (this->exp_string_reparse);
10014 }
10015
10016 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10017
10018 static void
10019 re_set_watchpoint (struct breakpoint *b)
10020 {
10021 struct watchpoint *w = (struct watchpoint *) b;
10022
10023 /* Watchpoint can be either on expression using entirely global
10024 variables, or it can be on local variables.
10025
10026 Watchpoints of the first kind are never auto-deleted, and even
10027 persist across program restarts. Since they can use variables
10028 from shared libraries, we need to reparse expression as libraries
10029 are loaded and unloaded.
10030
10031 Watchpoints on local variables can also change meaning as result
10032 of solib event. For example, if a watchpoint uses both a local
10033 and a global variables in expression, it's a local watchpoint,
10034 but unloading of a shared library will make the expression
10035 invalid. This is not a very common use case, but we still
10036 re-evaluate expression, to avoid surprises to the user.
10037
10038 Note that for local watchpoints, we re-evaluate it only if
10039 watchpoints frame id is still valid. If it's not, it means the
10040 watchpoint is out of scope and will be deleted soon. In fact,
10041 I'm not sure we'll ever be called in this case.
10042
10043 If a local watchpoint's frame id is still valid, then
10044 w->exp_valid_block is likewise valid, and we can safely use it.
10045
10046 Don't do anything about disabled watchpoints, since they will be
10047 reevaluated again when enabled. */
10048 update_watchpoint (w, 1 /* reparse */);
10049 }
10050
10051 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10052
10053 static int
10054 insert_watchpoint (struct bp_location *bl)
10055 {
10056 struct watchpoint *w = (struct watchpoint *) bl->owner;
10057 int length = w->exact ? 1 : bl->length;
10058
10059 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10060 w->cond_exp.get ());
10061 }
10062
10063 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10064
10065 static int
10066 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10067 {
10068 struct watchpoint *w = (struct watchpoint *) bl->owner;
10069 int length = w->exact ? 1 : bl->length;
10070
10071 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10072 w->cond_exp.get ());
10073 }
10074
10075 static int
10076 breakpoint_hit_watchpoint (const struct bp_location *bl,
10077 const address_space *aspace, CORE_ADDR bp_addr,
10078 const struct target_waitstatus *ws)
10079 {
10080 struct breakpoint *b = bl->owner;
10081 struct watchpoint *w = (struct watchpoint *) b;
10082
10083 /* Continuable hardware watchpoints are treated as non-existent if the
10084 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10085 some data address). Otherwise gdb won't stop on a break instruction
10086 in the code (not from a breakpoint) when a hardware watchpoint has
10087 been defined. Also skip watchpoints which we know did not trigger
10088 (did not match the data address). */
10089 if (is_hardware_watchpoint (b)
10090 && w->watchpoint_triggered == watch_triggered_no)
10091 return 0;
10092
10093 return 1;
10094 }
10095
10096 static void
10097 check_status_watchpoint (bpstat bs)
10098 {
10099 gdb_assert (is_watchpoint (bs->breakpoint_at));
10100
10101 bpstat_check_watchpoint (bs);
10102 }
10103
10104 /* Implement the "resources_needed" breakpoint_ops method for
10105 hardware watchpoints. */
10106
10107 static int
10108 resources_needed_watchpoint (const struct bp_location *bl)
10109 {
10110 struct watchpoint *w = (struct watchpoint *) bl->owner;
10111 int length = w->exact? 1 : bl->length;
10112
10113 return target_region_ok_for_hw_watchpoint (bl->address, length);
10114 }
10115
10116 /* Implement the "works_in_software_mode" breakpoint_ops method for
10117 hardware watchpoints. */
10118
10119 static int
10120 works_in_software_mode_watchpoint (const struct breakpoint *b)
10121 {
10122 /* Read and access watchpoints only work with hardware support. */
10123 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10124 }
10125
10126 static enum print_stop_action
10127 print_it_watchpoint (bpstat bs)
10128 {
10129 struct breakpoint *b;
10130 enum print_stop_action result;
10131 struct watchpoint *w;
10132 struct ui_out *uiout = current_uiout;
10133
10134 gdb_assert (bs->bp_location_at != NULL);
10135
10136 b = bs->breakpoint_at;
10137 w = (struct watchpoint *) b;
10138
10139 annotate_watchpoint (b->number);
10140 maybe_print_thread_hit_breakpoint (uiout);
10141
10142 string_file stb;
10143
10144 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10145 switch (b->type)
10146 {
10147 case bp_watchpoint:
10148 case bp_hardware_watchpoint:
10149 if (uiout->is_mi_like_p ())
10150 uiout->field_string
10151 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10152 mention (b);
10153 tuple_emitter.emplace (uiout, "value");
10154 uiout->text ("\nOld value = ");
10155 watchpoint_value_print (bs->old_val.get (), &stb);
10156 uiout->field_stream ("old", stb);
10157 uiout->text ("\nNew value = ");
10158 watchpoint_value_print (w->val.get (), &stb);
10159 uiout->field_stream ("new", stb);
10160 uiout->text ("\n");
10161 /* More than one watchpoint may have been triggered. */
10162 result = PRINT_UNKNOWN;
10163 break;
10164
10165 case bp_read_watchpoint:
10166 if (uiout->is_mi_like_p ())
10167 uiout->field_string
10168 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10169 mention (b);
10170 tuple_emitter.emplace (uiout, "value");
10171 uiout->text ("\nValue = ");
10172 watchpoint_value_print (w->val.get (), &stb);
10173 uiout->field_stream ("value", stb);
10174 uiout->text ("\n");
10175 result = PRINT_UNKNOWN;
10176 break;
10177
10178 case bp_access_watchpoint:
10179 if (bs->old_val != NULL)
10180 {
10181 if (uiout->is_mi_like_p ())
10182 uiout->field_string
10183 ("reason",
10184 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10185 mention (b);
10186 tuple_emitter.emplace (uiout, "value");
10187 uiout->text ("\nOld value = ");
10188 watchpoint_value_print (bs->old_val.get (), &stb);
10189 uiout->field_stream ("old", stb);
10190 uiout->text ("\nNew value = ");
10191 }
10192 else
10193 {
10194 mention (b);
10195 if (uiout->is_mi_like_p ())
10196 uiout->field_string
10197 ("reason",
10198 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10199 tuple_emitter.emplace (uiout, "value");
10200 uiout->text ("\nValue = ");
10201 }
10202 watchpoint_value_print (w->val.get (), &stb);
10203 uiout->field_stream ("new", stb);
10204 uiout->text ("\n");
10205 result = PRINT_UNKNOWN;
10206 break;
10207 default:
10208 result = PRINT_UNKNOWN;
10209 }
10210
10211 return result;
10212 }
10213
10214 /* Implement the "print_mention" breakpoint_ops method for hardware
10215 watchpoints. */
10216
10217 static void
10218 print_mention_watchpoint (struct breakpoint *b)
10219 {
10220 struct watchpoint *w = (struct watchpoint *) b;
10221 struct ui_out *uiout = current_uiout;
10222 const char *tuple_name;
10223
10224 switch (b->type)
10225 {
10226 case bp_watchpoint:
10227 uiout->text ("Watchpoint ");
10228 tuple_name = "wpt";
10229 break;
10230 case bp_hardware_watchpoint:
10231 uiout->text ("Hardware watchpoint ");
10232 tuple_name = "wpt";
10233 break;
10234 case bp_read_watchpoint:
10235 uiout->text ("Hardware read watchpoint ");
10236 tuple_name = "hw-rwpt";
10237 break;
10238 case bp_access_watchpoint:
10239 uiout->text ("Hardware access (read/write) watchpoint ");
10240 tuple_name = "hw-awpt";
10241 break;
10242 default:
10243 internal_error (__FILE__, __LINE__,
10244 _("Invalid hardware watchpoint type."));
10245 }
10246
10247 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10248 uiout->field_int ("number", b->number);
10249 uiout->text (": ");
10250 uiout->field_string ("exp", w->exp_string);
10251 }
10252
10253 /* Implement the "print_recreate" breakpoint_ops method for
10254 watchpoints. */
10255
10256 static void
10257 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10258 {
10259 struct watchpoint *w = (struct watchpoint *) b;
10260
10261 switch (b->type)
10262 {
10263 case bp_watchpoint:
10264 case bp_hardware_watchpoint:
10265 fprintf_unfiltered (fp, "watch");
10266 break;
10267 case bp_read_watchpoint:
10268 fprintf_unfiltered (fp, "rwatch");
10269 break;
10270 case bp_access_watchpoint:
10271 fprintf_unfiltered (fp, "awatch");
10272 break;
10273 default:
10274 internal_error (__FILE__, __LINE__,
10275 _("Invalid watchpoint type."));
10276 }
10277
10278 fprintf_unfiltered (fp, " %s", w->exp_string);
10279 print_recreate_thread (b, fp);
10280 }
10281
10282 /* Implement the "explains_signal" breakpoint_ops method for
10283 watchpoints. */
10284
10285 static int
10286 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10287 {
10288 /* A software watchpoint cannot cause a signal other than
10289 GDB_SIGNAL_TRAP. */
10290 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10291 return 0;
10292
10293 return 1;
10294 }
10295
10296 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10297
10298 static struct breakpoint_ops watchpoint_breakpoint_ops;
10299
10300 /* Implement the "insert" breakpoint_ops method for
10301 masked hardware watchpoints. */
10302
10303 static int
10304 insert_masked_watchpoint (struct bp_location *bl)
10305 {
10306 struct watchpoint *w = (struct watchpoint *) bl->owner;
10307
10308 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10309 bl->watchpoint_type);
10310 }
10311
10312 /* Implement the "remove" breakpoint_ops method for
10313 masked hardware watchpoints. */
10314
10315 static int
10316 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10317 {
10318 struct watchpoint *w = (struct watchpoint *) bl->owner;
10319
10320 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10321 bl->watchpoint_type);
10322 }
10323
10324 /* Implement the "resources_needed" breakpoint_ops method for
10325 masked hardware watchpoints. */
10326
10327 static int
10328 resources_needed_masked_watchpoint (const struct bp_location *bl)
10329 {
10330 struct watchpoint *w = (struct watchpoint *) bl->owner;
10331
10332 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10333 }
10334
10335 /* Implement the "works_in_software_mode" breakpoint_ops method for
10336 masked hardware watchpoints. */
10337
10338 static int
10339 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10340 {
10341 return 0;
10342 }
10343
10344 /* Implement the "print_it" breakpoint_ops method for
10345 masked hardware watchpoints. */
10346
10347 static enum print_stop_action
10348 print_it_masked_watchpoint (bpstat bs)
10349 {
10350 struct breakpoint *b = bs->breakpoint_at;
10351 struct ui_out *uiout = current_uiout;
10352
10353 /* Masked watchpoints have only one location. */
10354 gdb_assert (b->loc && b->loc->next == NULL);
10355
10356 annotate_watchpoint (b->number);
10357 maybe_print_thread_hit_breakpoint (uiout);
10358
10359 switch (b->type)
10360 {
10361 case bp_hardware_watchpoint:
10362 if (uiout->is_mi_like_p ())
10363 uiout->field_string
10364 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10365 break;
10366
10367 case bp_read_watchpoint:
10368 if (uiout->is_mi_like_p ())
10369 uiout->field_string
10370 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10371 break;
10372
10373 case bp_access_watchpoint:
10374 if (uiout->is_mi_like_p ())
10375 uiout->field_string
10376 ("reason",
10377 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10378 break;
10379 default:
10380 internal_error (__FILE__, __LINE__,
10381 _("Invalid hardware watchpoint type."));
10382 }
10383
10384 mention (b);
10385 uiout->text (_("\n\
10386 Check the underlying instruction at PC for the memory\n\
10387 address and value which triggered this watchpoint.\n"));
10388 uiout->text ("\n");
10389
10390 /* More than one watchpoint may have been triggered. */
10391 return PRINT_UNKNOWN;
10392 }
10393
10394 /* Implement the "print_one_detail" breakpoint_ops method for
10395 masked hardware watchpoints. */
10396
10397 static void
10398 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10399 struct ui_out *uiout)
10400 {
10401 struct watchpoint *w = (struct watchpoint *) b;
10402
10403 /* Masked watchpoints have only one location. */
10404 gdb_assert (b->loc && b->loc->next == NULL);
10405
10406 uiout->text ("\tmask ");
10407 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10408 uiout->text ("\n");
10409 }
10410
10411 /* Implement the "print_mention" breakpoint_ops method for
10412 masked hardware watchpoints. */
10413
10414 static void
10415 print_mention_masked_watchpoint (struct breakpoint *b)
10416 {
10417 struct watchpoint *w = (struct watchpoint *) b;
10418 struct ui_out *uiout = current_uiout;
10419 const char *tuple_name;
10420
10421 switch (b->type)
10422 {
10423 case bp_hardware_watchpoint:
10424 uiout->text ("Masked hardware watchpoint ");
10425 tuple_name = "wpt";
10426 break;
10427 case bp_read_watchpoint:
10428 uiout->text ("Masked hardware read watchpoint ");
10429 tuple_name = "hw-rwpt";
10430 break;
10431 case bp_access_watchpoint:
10432 uiout->text ("Masked hardware access (read/write) watchpoint ");
10433 tuple_name = "hw-awpt";
10434 break;
10435 default:
10436 internal_error (__FILE__, __LINE__,
10437 _("Invalid hardware watchpoint type."));
10438 }
10439
10440 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10441 uiout->field_int ("number", b->number);
10442 uiout->text (": ");
10443 uiout->field_string ("exp", w->exp_string);
10444 }
10445
10446 /* Implement the "print_recreate" breakpoint_ops method for
10447 masked hardware watchpoints. */
10448
10449 static void
10450 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10451 {
10452 struct watchpoint *w = (struct watchpoint *) b;
10453 char tmp[40];
10454
10455 switch (b->type)
10456 {
10457 case bp_hardware_watchpoint:
10458 fprintf_unfiltered (fp, "watch");
10459 break;
10460 case bp_read_watchpoint:
10461 fprintf_unfiltered (fp, "rwatch");
10462 break;
10463 case bp_access_watchpoint:
10464 fprintf_unfiltered (fp, "awatch");
10465 break;
10466 default:
10467 internal_error (__FILE__, __LINE__,
10468 _("Invalid hardware watchpoint type."));
10469 }
10470
10471 sprintf_vma (tmp, w->hw_wp_mask);
10472 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10473 print_recreate_thread (b, fp);
10474 }
10475
10476 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10477
10478 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10479
10480 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10481
10482 static int
10483 is_masked_watchpoint (const struct breakpoint *b)
10484 {
10485 return b->ops == &masked_watchpoint_breakpoint_ops;
10486 }
10487
10488 /* accessflag: hw_write: watch write,
10489 hw_read: watch read,
10490 hw_access: watch access (read or write) */
10491 static void
10492 watch_command_1 (const char *arg, int accessflag, int from_tty,
10493 int just_location, int internal)
10494 {
10495 struct breakpoint *scope_breakpoint = NULL;
10496 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10497 struct value *result;
10498 int saved_bitpos = 0, saved_bitsize = 0;
10499 const char *exp_start = NULL;
10500 const char *exp_end = NULL;
10501 const char *tok, *end_tok;
10502 int toklen = -1;
10503 const char *cond_start = NULL;
10504 const char *cond_end = NULL;
10505 enum bptype bp_type;
10506 int thread = -1;
10507 int pc = 0;
10508 /* Flag to indicate whether we are going to use masks for
10509 the hardware watchpoint. */
10510 int use_mask = 0;
10511 CORE_ADDR mask = 0;
10512
10513 /* Make sure that we actually have parameters to parse. */
10514 if (arg != NULL && arg[0] != '\0')
10515 {
10516 const char *value_start;
10517
10518 exp_end = arg + strlen (arg);
10519
10520 /* Look for "parameter value" pairs at the end
10521 of the arguments string. */
10522 for (tok = exp_end - 1; tok > arg; tok--)
10523 {
10524 /* Skip whitespace at the end of the argument list. */
10525 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10526 tok--;
10527
10528 /* Find the beginning of the last token.
10529 This is the value of the parameter. */
10530 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10531 tok--;
10532 value_start = tok + 1;
10533
10534 /* Skip whitespace. */
10535 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10536 tok--;
10537
10538 end_tok = tok;
10539
10540 /* Find the beginning of the second to last token.
10541 This is the parameter itself. */
10542 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10543 tok--;
10544 tok++;
10545 toklen = end_tok - tok + 1;
10546
10547 if (toklen == 6 && startswith (tok, "thread"))
10548 {
10549 struct thread_info *thr;
10550 /* At this point we've found a "thread" token, which means
10551 the user is trying to set a watchpoint that triggers
10552 only in a specific thread. */
10553 const char *endp;
10554
10555 if (thread != -1)
10556 error(_("You can specify only one thread."));
10557
10558 /* Extract the thread ID from the next token. */
10559 thr = parse_thread_id (value_start, &endp);
10560
10561 /* Check if the user provided a valid thread ID. */
10562 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10563 invalid_thread_id_error (value_start);
10564
10565 thread = thr->global_num;
10566 }
10567 else if (toklen == 4 && startswith (tok, "mask"))
10568 {
10569 /* We've found a "mask" token, which means the user wants to
10570 create a hardware watchpoint that is going to have the mask
10571 facility. */
10572 struct value *mask_value, *mark;
10573
10574 if (use_mask)
10575 error(_("You can specify only one mask."));
10576
10577 use_mask = just_location = 1;
10578
10579 mark = value_mark ();
10580 mask_value = parse_to_comma_and_eval (&value_start);
10581 mask = value_as_address (mask_value);
10582 value_free_to_mark (mark);
10583 }
10584 else
10585 /* We didn't recognize what we found. We should stop here. */
10586 break;
10587
10588 /* Truncate the string and get rid of the "parameter value" pair before
10589 the arguments string is parsed by the parse_exp_1 function. */
10590 exp_end = tok;
10591 }
10592 }
10593 else
10594 exp_end = arg;
10595
10596 /* Parse the rest of the arguments. From here on out, everything
10597 is in terms of a newly allocated string instead of the original
10598 ARG. */
10599 innermost_block.reset ();
10600 std::string expression (arg, exp_end - arg);
10601 exp_start = arg = expression.c_str ();
10602 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10603 exp_end = arg;
10604 /* Remove trailing whitespace from the expression before saving it.
10605 This makes the eventual display of the expression string a bit
10606 prettier. */
10607 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10608 --exp_end;
10609
10610 /* Checking if the expression is not constant. */
10611 if (watchpoint_exp_is_const (exp.get ()))
10612 {
10613 int len;
10614
10615 len = exp_end - exp_start;
10616 while (len > 0 && isspace (exp_start[len - 1]))
10617 len--;
10618 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10619 }
10620
10621 exp_valid_block = innermost_block.block ();
10622 struct value *mark = value_mark ();
10623 struct value *val_as_value = nullptr;
10624 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10625 just_location);
10626
10627 if (val_as_value != NULL && just_location)
10628 {
10629 saved_bitpos = value_bitpos (val_as_value);
10630 saved_bitsize = value_bitsize (val_as_value);
10631 }
10632
10633 value_ref_ptr val;
10634 if (just_location)
10635 {
10636 int ret;
10637
10638 exp_valid_block = NULL;
10639 val = release_value (value_addr (result));
10640 value_free_to_mark (mark);
10641
10642 if (use_mask)
10643 {
10644 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10645 mask);
10646 if (ret == -1)
10647 error (_("This target does not support masked watchpoints."));
10648 else if (ret == -2)
10649 error (_("Invalid mask or memory region."));
10650 }
10651 }
10652 else if (val_as_value != NULL)
10653 val = release_value (val_as_value);
10654
10655 tok = skip_spaces (arg);
10656 end_tok = skip_to_space (tok);
10657
10658 toklen = end_tok - tok;
10659 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10660 {
10661 innermost_block.reset ();
10662 tok = cond_start = end_tok + 1;
10663 parse_exp_1 (&tok, 0, 0, 0);
10664
10665 /* The watchpoint expression may not be local, but the condition
10666 may still be. E.g.: `watch global if local > 0'. */
10667 cond_exp_valid_block = innermost_block.block ();
10668
10669 cond_end = tok;
10670 }
10671 if (*tok)
10672 error (_("Junk at end of command."));
10673
10674 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10675
10676 /* Save this because create_internal_breakpoint below invalidates
10677 'wp_frame'. */
10678 frame_id watchpoint_frame = get_frame_id (wp_frame);
10679
10680 /* If the expression is "local", then set up a "watchpoint scope"
10681 breakpoint at the point where we've left the scope of the watchpoint
10682 expression. Create the scope breakpoint before the watchpoint, so
10683 that we will encounter it first in bpstat_stop_status. */
10684 if (exp_valid_block != NULL && wp_frame != NULL)
10685 {
10686 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10687
10688 if (frame_id_p (caller_frame_id))
10689 {
10690 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10691 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10692
10693 scope_breakpoint
10694 = create_internal_breakpoint (caller_arch, caller_pc,
10695 bp_watchpoint_scope,
10696 &momentary_breakpoint_ops);
10697
10698 /* create_internal_breakpoint could invalidate WP_FRAME. */
10699 wp_frame = NULL;
10700
10701 scope_breakpoint->enable_state = bp_enabled;
10702
10703 /* Automatically delete the breakpoint when it hits. */
10704 scope_breakpoint->disposition = disp_del;
10705
10706 /* Only break in the proper frame (help with recursion). */
10707 scope_breakpoint->frame_id = caller_frame_id;
10708
10709 /* Set the address at which we will stop. */
10710 scope_breakpoint->loc->gdbarch = caller_arch;
10711 scope_breakpoint->loc->requested_address = caller_pc;
10712 scope_breakpoint->loc->address
10713 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10714 scope_breakpoint->loc->requested_address,
10715 scope_breakpoint->type);
10716 }
10717 }
10718
10719 /* Now set up the breakpoint. We create all watchpoints as hardware
10720 watchpoints here even if hardware watchpoints are turned off, a call
10721 to update_watchpoint later in this function will cause the type to
10722 drop back to bp_watchpoint (software watchpoint) if required. */
10723
10724 if (accessflag == hw_read)
10725 bp_type = bp_read_watchpoint;
10726 else if (accessflag == hw_access)
10727 bp_type = bp_access_watchpoint;
10728 else
10729 bp_type = bp_hardware_watchpoint;
10730
10731 std::unique_ptr<watchpoint> w (new watchpoint ());
10732
10733 if (use_mask)
10734 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10735 &masked_watchpoint_breakpoint_ops);
10736 else
10737 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10738 &watchpoint_breakpoint_ops);
10739 w->thread = thread;
10740 w->disposition = disp_donttouch;
10741 w->pspace = current_program_space;
10742 w->exp = std::move (exp);
10743 w->exp_valid_block = exp_valid_block;
10744 w->cond_exp_valid_block = cond_exp_valid_block;
10745 if (just_location)
10746 {
10747 struct type *t = value_type (val.get ());
10748 CORE_ADDR addr = value_as_address (val.get ());
10749
10750 w->exp_string_reparse
10751 = current_language->la_watch_location_expression (t, addr).release ();
10752
10753 w->exp_string = xstrprintf ("-location %.*s",
10754 (int) (exp_end - exp_start), exp_start);
10755 }
10756 else
10757 w->exp_string = savestring (exp_start, exp_end - exp_start);
10758
10759 if (use_mask)
10760 {
10761 w->hw_wp_mask = mask;
10762 }
10763 else
10764 {
10765 w->val = val;
10766 w->val_bitpos = saved_bitpos;
10767 w->val_bitsize = saved_bitsize;
10768 w->val_valid = 1;
10769 }
10770
10771 if (cond_start)
10772 w->cond_string = savestring (cond_start, cond_end - cond_start);
10773 else
10774 w->cond_string = 0;
10775
10776 if (frame_id_p (watchpoint_frame))
10777 {
10778 w->watchpoint_frame = watchpoint_frame;
10779 w->watchpoint_thread = inferior_ptid;
10780 }
10781 else
10782 {
10783 w->watchpoint_frame = null_frame_id;
10784 w->watchpoint_thread = null_ptid;
10785 }
10786
10787 if (scope_breakpoint != NULL)
10788 {
10789 /* The scope breakpoint is related to the watchpoint. We will
10790 need to act on them together. */
10791 w->related_breakpoint = scope_breakpoint;
10792 scope_breakpoint->related_breakpoint = w.get ();
10793 }
10794
10795 if (!just_location)
10796 value_free_to_mark (mark);
10797
10798 /* Finally update the new watchpoint. This creates the locations
10799 that should be inserted. */
10800 update_watchpoint (w.get (), 1);
10801
10802 install_breakpoint (internal, std::move (w), 1);
10803 }
10804
10805 /* Return count of debug registers needed to watch the given expression.
10806 If the watchpoint cannot be handled in hardware return zero. */
10807
10808 static int
10809 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10810 {
10811 int found_memory_cnt = 0;
10812
10813 /* Did the user specifically forbid us to use hardware watchpoints? */
10814 if (!can_use_hw_watchpoints)
10815 return 0;
10816
10817 gdb_assert (!vals.empty ());
10818 struct value *head = vals[0].get ();
10819
10820 /* Make sure that the value of the expression depends only upon
10821 memory contents, and values computed from them within GDB. If we
10822 find any register references or function calls, we can't use a
10823 hardware watchpoint.
10824
10825 The idea here is that evaluating an expression generates a series
10826 of values, one holding the value of every subexpression. (The
10827 expression a*b+c has five subexpressions: a, b, a*b, c, and
10828 a*b+c.) GDB's values hold almost enough information to establish
10829 the criteria given above --- they identify memory lvalues,
10830 register lvalues, computed values, etcetera. So we can evaluate
10831 the expression, and then scan the chain of values that leaves
10832 behind to decide whether we can detect any possible change to the
10833 expression's final value using only hardware watchpoints.
10834
10835 However, I don't think that the values returned by inferior
10836 function calls are special in any way. So this function may not
10837 notice that an expression involving an inferior function call
10838 can't be watched with hardware watchpoints. FIXME. */
10839 for (const value_ref_ptr &iter : vals)
10840 {
10841 struct value *v = iter.get ();
10842
10843 if (VALUE_LVAL (v) == lval_memory)
10844 {
10845 if (v != head && value_lazy (v))
10846 /* A lazy memory lvalue in the chain is one that GDB never
10847 needed to fetch; we either just used its address (e.g.,
10848 `a' in `a.b') or we never needed it at all (e.g., `a'
10849 in `a,b'). This doesn't apply to HEAD; if that is
10850 lazy then it was not readable, but watch it anyway. */
10851 ;
10852 else
10853 {
10854 /* Ahh, memory we actually used! Check if we can cover
10855 it with hardware watchpoints. */
10856 struct type *vtype = check_typedef (value_type (v));
10857
10858 /* We only watch structs and arrays if user asked for it
10859 explicitly, never if they just happen to appear in a
10860 middle of some value chain. */
10861 if (v == head
10862 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10863 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10864 {
10865 CORE_ADDR vaddr = value_address (v);
10866 int len;
10867 int num_regs;
10868
10869 len = (target_exact_watchpoints
10870 && is_scalar_type_recursive (vtype))?
10871 1 : TYPE_LENGTH (value_type (v));
10872
10873 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10874 if (!num_regs)
10875 return 0;
10876 else
10877 found_memory_cnt += num_regs;
10878 }
10879 }
10880 }
10881 else if (VALUE_LVAL (v) != not_lval
10882 && deprecated_value_modifiable (v) == 0)
10883 return 0; /* These are values from the history (e.g., $1). */
10884 else if (VALUE_LVAL (v) == lval_register)
10885 return 0; /* Cannot watch a register with a HW watchpoint. */
10886 }
10887
10888 /* The expression itself looks suitable for using a hardware
10889 watchpoint, but give the target machine a chance to reject it. */
10890 return found_memory_cnt;
10891 }
10892
10893 void
10894 watch_command_wrapper (const char *arg, int from_tty, int internal)
10895 {
10896 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10897 }
10898
10899 /* A helper function that looks for the "-location" argument and then
10900 calls watch_command_1. */
10901
10902 static void
10903 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10904 {
10905 int just_location = 0;
10906
10907 if (arg
10908 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10909 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10910 {
10911 arg = skip_spaces (arg);
10912 just_location = 1;
10913 }
10914
10915 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10916 }
10917
10918 static void
10919 watch_command (const char *arg, int from_tty)
10920 {
10921 watch_maybe_just_location (arg, hw_write, from_tty);
10922 }
10923
10924 void
10925 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10926 {
10927 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10928 }
10929
10930 static void
10931 rwatch_command (const char *arg, int from_tty)
10932 {
10933 watch_maybe_just_location (arg, hw_read, from_tty);
10934 }
10935
10936 void
10937 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10938 {
10939 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10940 }
10941
10942 static void
10943 awatch_command (const char *arg, int from_tty)
10944 {
10945 watch_maybe_just_location (arg, hw_access, from_tty);
10946 }
10947 \f
10948
10949 /* Data for the FSM that manages the until(location)/advance commands
10950 in infcmd.c. Here because it uses the mechanisms of
10951 breakpoints. */
10952
10953 struct until_break_fsm
10954 {
10955 /* The base class. */
10956 struct thread_fsm thread_fsm;
10957
10958 /* The thread that as current when the command was executed. */
10959 int thread;
10960
10961 /* The breakpoint set at the destination location. */
10962 struct breakpoint *location_breakpoint;
10963
10964 /* Breakpoint set at the return address in the caller frame. May be
10965 NULL. */
10966 struct breakpoint *caller_breakpoint;
10967 };
10968
10969 static void until_break_fsm_clean_up (struct thread_fsm *self,
10970 struct thread_info *thread);
10971 static int until_break_fsm_should_stop (struct thread_fsm *self,
10972 struct thread_info *thread);
10973 static enum async_reply_reason
10974 until_break_fsm_async_reply_reason (struct thread_fsm *self);
10975
10976 /* until_break_fsm's vtable. */
10977
10978 static struct thread_fsm_ops until_break_fsm_ops =
10979 {
10980 NULL, /* dtor */
10981 until_break_fsm_clean_up,
10982 until_break_fsm_should_stop,
10983 NULL, /* return_value */
10984 until_break_fsm_async_reply_reason,
10985 };
10986
10987 /* Allocate a new until_break_command_fsm. */
10988
10989 static struct until_break_fsm *
10990 new_until_break_fsm (struct interp *cmd_interp, int thread,
10991 breakpoint_up &&location_breakpoint,
10992 breakpoint_up &&caller_breakpoint)
10993 {
10994 struct until_break_fsm *sm;
10995
10996 sm = XCNEW (struct until_break_fsm);
10997 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
10998
10999 sm->thread = thread;
11000 sm->location_breakpoint = location_breakpoint.release ();
11001 sm->caller_breakpoint = caller_breakpoint.release ();
11002
11003 return sm;
11004 }
11005
11006 /* Implementation of the 'should_stop' FSM method for the
11007 until(location)/advance commands. */
11008
11009 static int
11010 until_break_fsm_should_stop (struct thread_fsm *self,
11011 struct thread_info *tp)
11012 {
11013 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11014
11015 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11016 sm->location_breakpoint) != NULL
11017 || (sm->caller_breakpoint != NULL
11018 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11019 sm->caller_breakpoint) != NULL))
11020 thread_fsm_set_finished (self);
11021
11022 return 1;
11023 }
11024
11025 /* Implementation of the 'clean_up' FSM method for the
11026 until(location)/advance commands. */
11027
11028 static void
11029 until_break_fsm_clean_up (struct thread_fsm *self,
11030 struct thread_info *thread)
11031 {
11032 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11033
11034 /* Clean up our temporary breakpoints. */
11035 if (sm->location_breakpoint != NULL)
11036 {
11037 delete_breakpoint (sm->location_breakpoint);
11038 sm->location_breakpoint = NULL;
11039 }
11040 if (sm->caller_breakpoint != NULL)
11041 {
11042 delete_breakpoint (sm->caller_breakpoint);
11043 sm->caller_breakpoint = NULL;
11044 }
11045 delete_longjmp_breakpoint (sm->thread);
11046 }
11047
11048 /* Implementation of the 'async_reply_reason' FSM method for the
11049 until(location)/advance commands. */
11050
11051 static enum async_reply_reason
11052 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11053 {
11054 return EXEC_ASYNC_LOCATION_REACHED;
11055 }
11056
11057 void
11058 until_break_command (const char *arg, int from_tty, int anywhere)
11059 {
11060 struct frame_info *frame;
11061 struct gdbarch *frame_gdbarch;
11062 struct frame_id stack_frame_id;
11063 struct frame_id caller_frame_id;
11064 int thread;
11065 struct thread_info *tp;
11066 struct until_break_fsm *sm;
11067
11068 clear_proceed_status (0);
11069
11070 /* Set a breakpoint where the user wants it and at return from
11071 this function. */
11072
11073 event_location_up location = string_to_event_location (&arg, current_language);
11074
11075 std::vector<symtab_and_line> sals
11076 = (last_displayed_sal_is_valid ()
11077 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11078 get_last_displayed_symtab (),
11079 get_last_displayed_line ())
11080 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11081 NULL, (struct symtab *) NULL, 0));
11082
11083 if (sals.size () != 1)
11084 error (_("Couldn't get information on specified line."));
11085
11086 symtab_and_line &sal = sals[0];
11087
11088 if (*arg)
11089 error (_("Junk at end of arguments."));
11090
11091 resolve_sal_pc (&sal);
11092
11093 tp = inferior_thread ();
11094 thread = tp->global_num;
11095
11096 /* Note linespec handling above invalidates the frame chain.
11097 Installing a breakpoint also invalidates the frame chain (as it
11098 may need to switch threads), so do any frame handling before
11099 that. */
11100
11101 frame = get_selected_frame (NULL);
11102 frame_gdbarch = get_frame_arch (frame);
11103 stack_frame_id = get_stack_frame_id (frame);
11104 caller_frame_id = frame_unwind_caller_id (frame);
11105
11106 /* Keep within the current frame, or in frames called by the current
11107 one. */
11108
11109 breakpoint_up caller_breakpoint;
11110
11111 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11112
11113 if (frame_id_p (caller_frame_id))
11114 {
11115 struct symtab_and_line sal2;
11116 struct gdbarch *caller_gdbarch;
11117
11118 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11119 sal2.pc = frame_unwind_caller_pc (frame);
11120 caller_gdbarch = frame_unwind_caller_arch (frame);
11121 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11122 sal2,
11123 caller_frame_id,
11124 bp_until);
11125
11126 set_longjmp_breakpoint (tp, caller_frame_id);
11127 lj_deleter.emplace (thread);
11128 }
11129
11130 /* set_momentary_breakpoint could invalidate FRAME. */
11131 frame = NULL;
11132
11133 breakpoint_up location_breakpoint;
11134 if (anywhere)
11135 /* If the user told us to continue until a specified location,
11136 we don't specify a frame at which we need to stop. */
11137 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11138 null_frame_id, bp_until);
11139 else
11140 /* Otherwise, specify the selected frame, because we want to stop
11141 only at the very same frame. */
11142 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11143 stack_frame_id, bp_until);
11144
11145 sm = new_until_break_fsm (command_interp (), tp->global_num,
11146 std::move (location_breakpoint),
11147 std::move (caller_breakpoint));
11148 tp->thread_fsm = &sm->thread_fsm;
11149
11150 if (lj_deleter)
11151 lj_deleter->release ();
11152
11153 proceed (-1, GDB_SIGNAL_DEFAULT);
11154 }
11155
11156 /* This function attempts to parse an optional "if <cond>" clause
11157 from the arg string. If one is not found, it returns NULL.
11158
11159 Else, it returns a pointer to the condition string. (It does not
11160 attempt to evaluate the string against a particular block.) And,
11161 it updates arg to point to the first character following the parsed
11162 if clause in the arg string. */
11163
11164 const char *
11165 ep_parse_optional_if_clause (const char **arg)
11166 {
11167 const char *cond_string;
11168
11169 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11170 return NULL;
11171
11172 /* Skip the "if" keyword. */
11173 (*arg) += 2;
11174
11175 /* Skip any extra leading whitespace, and record the start of the
11176 condition string. */
11177 *arg = skip_spaces (*arg);
11178 cond_string = *arg;
11179
11180 /* Assume that the condition occupies the remainder of the arg
11181 string. */
11182 (*arg) += strlen (cond_string);
11183
11184 return cond_string;
11185 }
11186
11187 /* Commands to deal with catching events, such as signals, exceptions,
11188 process start/exit, etc. */
11189
11190 typedef enum
11191 {
11192 catch_fork_temporary, catch_vfork_temporary,
11193 catch_fork_permanent, catch_vfork_permanent
11194 }
11195 catch_fork_kind;
11196
11197 static void
11198 catch_fork_command_1 (const char *arg, int from_tty,
11199 struct cmd_list_element *command)
11200 {
11201 struct gdbarch *gdbarch = get_current_arch ();
11202 const char *cond_string = NULL;
11203 catch_fork_kind fork_kind;
11204 int tempflag;
11205
11206 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11207 tempflag = (fork_kind == catch_fork_temporary
11208 || fork_kind == catch_vfork_temporary);
11209
11210 if (!arg)
11211 arg = "";
11212 arg = skip_spaces (arg);
11213
11214 /* The allowed syntax is:
11215 catch [v]fork
11216 catch [v]fork if <cond>
11217
11218 First, check if there's an if clause. */
11219 cond_string = ep_parse_optional_if_clause (&arg);
11220
11221 if ((*arg != '\0') && !isspace (*arg))
11222 error (_("Junk at end of arguments."));
11223
11224 /* If this target supports it, create a fork or vfork catchpoint
11225 and enable reporting of such events. */
11226 switch (fork_kind)
11227 {
11228 case catch_fork_temporary:
11229 case catch_fork_permanent:
11230 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11231 &catch_fork_breakpoint_ops);
11232 break;
11233 case catch_vfork_temporary:
11234 case catch_vfork_permanent:
11235 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11236 &catch_vfork_breakpoint_ops);
11237 break;
11238 default:
11239 error (_("unsupported or unknown fork kind; cannot catch it"));
11240 break;
11241 }
11242 }
11243
11244 static void
11245 catch_exec_command_1 (const char *arg, int from_tty,
11246 struct cmd_list_element *command)
11247 {
11248 struct gdbarch *gdbarch = get_current_arch ();
11249 int tempflag;
11250 const char *cond_string = NULL;
11251
11252 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11253
11254 if (!arg)
11255 arg = "";
11256 arg = skip_spaces (arg);
11257
11258 /* The allowed syntax is:
11259 catch exec
11260 catch exec if <cond>
11261
11262 First, check if there's an if clause. */
11263 cond_string = ep_parse_optional_if_clause (&arg);
11264
11265 if ((*arg != '\0') && !isspace (*arg))
11266 error (_("Junk at end of arguments."));
11267
11268 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11269 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11270 &catch_exec_breakpoint_ops);
11271 c->exec_pathname = NULL;
11272
11273 install_breakpoint (0, std::move (c), 1);
11274 }
11275
11276 void
11277 init_ada_exception_breakpoint (struct breakpoint *b,
11278 struct gdbarch *gdbarch,
11279 struct symtab_and_line sal,
11280 const char *addr_string,
11281 const struct breakpoint_ops *ops,
11282 int tempflag,
11283 int enabled,
11284 int from_tty)
11285 {
11286 if (from_tty)
11287 {
11288 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11289 if (!loc_gdbarch)
11290 loc_gdbarch = gdbarch;
11291
11292 describe_other_breakpoints (loc_gdbarch,
11293 sal.pspace, sal.pc, sal.section, -1);
11294 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11295 version for exception catchpoints, because two catchpoints
11296 used for different exception names will use the same address.
11297 In this case, a "breakpoint ... also set at..." warning is
11298 unproductive. Besides, the warning phrasing is also a bit
11299 inappropriate, we should use the word catchpoint, and tell
11300 the user what type of catchpoint it is. The above is good
11301 enough for now, though. */
11302 }
11303
11304 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11305
11306 b->enable_state = enabled ? bp_enabled : bp_disabled;
11307 b->disposition = tempflag ? disp_del : disp_donttouch;
11308 b->location = string_to_event_location (&addr_string,
11309 language_def (language_ada));
11310 b->language = language_ada;
11311 }
11312
11313 static void
11314 catch_command (const char *arg, int from_tty)
11315 {
11316 error (_("Catch requires an event name."));
11317 }
11318 \f
11319
11320 static void
11321 tcatch_command (const char *arg, int from_tty)
11322 {
11323 error (_("Catch requires an event name."));
11324 }
11325
11326 /* Compare two breakpoints and return a strcmp-like result. */
11327
11328 static int
11329 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11330 {
11331 uintptr_t ua = (uintptr_t) a;
11332 uintptr_t ub = (uintptr_t) b;
11333
11334 if (a->number < b->number)
11335 return -1;
11336 else if (a->number > b->number)
11337 return 1;
11338
11339 /* Now sort by address, in case we see, e..g, two breakpoints with
11340 the number 0. */
11341 if (ua < ub)
11342 return -1;
11343 return ua > ub ? 1 : 0;
11344 }
11345
11346 /* Delete breakpoints by address or line. */
11347
11348 static void
11349 clear_command (const char *arg, int from_tty)
11350 {
11351 struct breakpoint *b;
11352 int default_match;
11353
11354 std::vector<symtab_and_line> decoded_sals;
11355 symtab_and_line last_sal;
11356 gdb::array_view<symtab_and_line> sals;
11357 if (arg)
11358 {
11359 decoded_sals
11360 = decode_line_with_current_source (arg,
11361 (DECODE_LINE_FUNFIRSTLINE
11362 | DECODE_LINE_LIST_MODE));
11363 default_match = 0;
11364 sals = decoded_sals;
11365 }
11366 else
11367 {
11368 /* Set sal's line, symtab, pc, and pspace to the values
11369 corresponding to the last call to print_frame_info. If the
11370 codepoint is not valid, this will set all the fields to 0. */
11371 last_sal = get_last_displayed_sal ();
11372 if (last_sal.symtab == 0)
11373 error (_("No source file specified."));
11374
11375 default_match = 1;
11376 sals = last_sal;
11377 }
11378
11379 /* We don't call resolve_sal_pc here. That's not as bad as it
11380 seems, because all existing breakpoints typically have both
11381 file/line and pc set. So, if clear is given file/line, we can
11382 match this to existing breakpoint without obtaining pc at all.
11383
11384 We only support clearing given the address explicitly
11385 present in breakpoint table. Say, we've set breakpoint
11386 at file:line. There were several PC values for that file:line,
11387 due to optimization, all in one block.
11388
11389 We've picked one PC value. If "clear" is issued with another
11390 PC corresponding to the same file:line, the breakpoint won't
11391 be cleared. We probably can still clear the breakpoint, but
11392 since the other PC value is never presented to user, user
11393 can only find it by guessing, and it does not seem important
11394 to support that. */
11395
11396 /* For each line spec given, delete bps which correspond to it. Do
11397 it in two passes, solely to preserve the current behavior that
11398 from_tty is forced true if we delete more than one
11399 breakpoint. */
11400
11401 std::vector<struct breakpoint *> found;
11402 for (const auto &sal : sals)
11403 {
11404 const char *sal_fullname;
11405
11406 /* If exact pc given, clear bpts at that pc.
11407 If line given (pc == 0), clear all bpts on specified line.
11408 If defaulting, clear all bpts on default line
11409 or at default pc.
11410
11411 defaulting sal.pc != 0 tests to do
11412
11413 0 1 pc
11414 1 1 pc _and_ line
11415 0 0 line
11416 1 0 <can't happen> */
11417
11418 sal_fullname = (sal.symtab == NULL
11419 ? NULL : symtab_to_fullname (sal.symtab));
11420
11421 /* Find all matching breakpoints and add them to 'found'. */
11422 ALL_BREAKPOINTS (b)
11423 {
11424 int match = 0;
11425 /* Are we going to delete b? */
11426 if (b->type != bp_none && !is_watchpoint (b))
11427 {
11428 struct bp_location *loc = b->loc;
11429 for (; loc; loc = loc->next)
11430 {
11431 /* If the user specified file:line, don't allow a PC
11432 match. This matches historical gdb behavior. */
11433 int pc_match = (!sal.explicit_line
11434 && sal.pc
11435 && (loc->pspace == sal.pspace)
11436 && (loc->address == sal.pc)
11437 && (!section_is_overlay (loc->section)
11438 || loc->section == sal.section));
11439 int line_match = 0;
11440
11441 if ((default_match || sal.explicit_line)
11442 && loc->symtab != NULL
11443 && sal_fullname != NULL
11444 && sal.pspace == loc->pspace
11445 && loc->line_number == sal.line
11446 && filename_cmp (symtab_to_fullname (loc->symtab),
11447 sal_fullname) == 0)
11448 line_match = 1;
11449
11450 if (pc_match || line_match)
11451 {
11452 match = 1;
11453 break;
11454 }
11455 }
11456 }
11457
11458 if (match)
11459 found.push_back (b);
11460 }
11461 }
11462
11463 /* Now go thru the 'found' chain and delete them. */
11464 if (found.empty ())
11465 {
11466 if (arg)
11467 error (_("No breakpoint at %s."), arg);
11468 else
11469 error (_("No breakpoint at this line."));
11470 }
11471
11472 /* Remove duplicates from the vec. */
11473 std::sort (found.begin (), found.end (),
11474 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11475 {
11476 return compare_breakpoints (bp_a, bp_b) < 0;
11477 });
11478 found.erase (std::unique (found.begin (), found.end (),
11479 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11480 {
11481 return compare_breakpoints (bp_a, bp_b) == 0;
11482 }),
11483 found.end ());
11484
11485 if (found.size () > 1)
11486 from_tty = 1; /* Always report if deleted more than one. */
11487 if (from_tty)
11488 {
11489 if (found.size () == 1)
11490 printf_unfiltered (_("Deleted breakpoint "));
11491 else
11492 printf_unfiltered (_("Deleted breakpoints "));
11493 }
11494
11495 for (breakpoint *iter : found)
11496 {
11497 if (from_tty)
11498 printf_unfiltered ("%d ", iter->number);
11499 delete_breakpoint (iter);
11500 }
11501 if (from_tty)
11502 putchar_unfiltered ('\n');
11503 }
11504 \f
11505 /* Delete breakpoint in BS if they are `delete' breakpoints and
11506 all breakpoints that are marked for deletion, whether hit or not.
11507 This is called after any breakpoint is hit, or after errors. */
11508
11509 void
11510 breakpoint_auto_delete (bpstat bs)
11511 {
11512 struct breakpoint *b, *b_tmp;
11513
11514 for (; bs; bs = bs->next)
11515 if (bs->breakpoint_at
11516 && bs->breakpoint_at->disposition == disp_del
11517 && bs->stop)
11518 delete_breakpoint (bs->breakpoint_at);
11519
11520 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11521 {
11522 if (b->disposition == disp_del_at_next_stop)
11523 delete_breakpoint (b);
11524 }
11525 }
11526
11527 /* A comparison function for bp_location AP and BP being interfaced to
11528 qsort. Sort elements primarily by their ADDRESS (no matter what
11529 does breakpoint_address_is_meaningful say for its OWNER),
11530 secondarily by ordering first permanent elements and
11531 terciarily just ensuring the array is sorted stable way despite
11532 qsort being an unstable algorithm. */
11533
11534 static int
11535 bp_locations_compare (const void *ap, const void *bp)
11536 {
11537 const struct bp_location *a = *(const struct bp_location **) ap;
11538 const struct bp_location *b = *(const struct bp_location **) bp;
11539
11540 if (a->address != b->address)
11541 return (a->address > b->address) - (a->address < b->address);
11542
11543 /* Sort locations at the same address by their pspace number, keeping
11544 locations of the same inferior (in a multi-inferior environment)
11545 grouped. */
11546
11547 if (a->pspace->num != b->pspace->num)
11548 return ((a->pspace->num > b->pspace->num)
11549 - (a->pspace->num < b->pspace->num));
11550
11551 /* Sort permanent breakpoints first. */
11552 if (a->permanent != b->permanent)
11553 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11554
11555 /* Make the internal GDB representation stable across GDB runs
11556 where A and B memory inside GDB can differ. Breakpoint locations of
11557 the same type at the same address can be sorted in arbitrary order. */
11558
11559 if (a->owner->number != b->owner->number)
11560 return ((a->owner->number > b->owner->number)
11561 - (a->owner->number < b->owner->number));
11562
11563 return (a > b) - (a < b);
11564 }
11565
11566 /* Set bp_locations_placed_address_before_address_max and
11567 bp_locations_shadow_len_after_address_max according to the current
11568 content of the bp_locations array. */
11569
11570 static void
11571 bp_locations_target_extensions_update (void)
11572 {
11573 struct bp_location *bl, **blp_tmp;
11574
11575 bp_locations_placed_address_before_address_max = 0;
11576 bp_locations_shadow_len_after_address_max = 0;
11577
11578 ALL_BP_LOCATIONS (bl, blp_tmp)
11579 {
11580 CORE_ADDR start, end, addr;
11581
11582 if (!bp_location_has_shadow (bl))
11583 continue;
11584
11585 start = bl->target_info.placed_address;
11586 end = start + bl->target_info.shadow_len;
11587
11588 gdb_assert (bl->address >= start);
11589 addr = bl->address - start;
11590 if (addr > bp_locations_placed_address_before_address_max)
11591 bp_locations_placed_address_before_address_max = addr;
11592
11593 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11594
11595 gdb_assert (bl->address < end);
11596 addr = end - bl->address;
11597 if (addr > bp_locations_shadow_len_after_address_max)
11598 bp_locations_shadow_len_after_address_max = addr;
11599 }
11600 }
11601
11602 /* Download tracepoint locations if they haven't been. */
11603
11604 static void
11605 download_tracepoint_locations (void)
11606 {
11607 struct breakpoint *b;
11608 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11609
11610 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11611
11612 ALL_TRACEPOINTS (b)
11613 {
11614 struct bp_location *bl;
11615 struct tracepoint *t;
11616 int bp_location_downloaded = 0;
11617
11618 if ((b->type == bp_fast_tracepoint
11619 ? !may_insert_fast_tracepoints
11620 : !may_insert_tracepoints))
11621 continue;
11622
11623 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11624 {
11625 if (target_can_download_tracepoint ())
11626 can_download_tracepoint = TRIBOOL_TRUE;
11627 else
11628 can_download_tracepoint = TRIBOOL_FALSE;
11629 }
11630
11631 if (can_download_tracepoint == TRIBOOL_FALSE)
11632 break;
11633
11634 for (bl = b->loc; bl; bl = bl->next)
11635 {
11636 /* In tracepoint, locations are _never_ duplicated, so
11637 should_be_inserted is equivalent to
11638 unduplicated_should_be_inserted. */
11639 if (!should_be_inserted (bl) || bl->inserted)
11640 continue;
11641
11642 switch_to_program_space_and_thread (bl->pspace);
11643
11644 target_download_tracepoint (bl);
11645
11646 bl->inserted = 1;
11647 bp_location_downloaded = 1;
11648 }
11649 t = (struct tracepoint *) b;
11650 t->number_on_target = b->number;
11651 if (bp_location_downloaded)
11652 gdb::observers::breakpoint_modified.notify (b);
11653 }
11654 }
11655
11656 /* Swap the insertion/duplication state between two locations. */
11657
11658 static void
11659 swap_insertion (struct bp_location *left, struct bp_location *right)
11660 {
11661 const int left_inserted = left->inserted;
11662 const int left_duplicate = left->duplicate;
11663 const int left_needs_update = left->needs_update;
11664 const struct bp_target_info left_target_info = left->target_info;
11665
11666 /* Locations of tracepoints can never be duplicated. */
11667 if (is_tracepoint (left->owner))
11668 gdb_assert (!left->duplicate);
11669 if (is_tracepoint (right->owner))
11670 gdb_assert (!right->duplicate);
11671
11672 left->inserted = right->inserted;
11673 left->duplicate = right->duplicate;
11674 left->needs_update = right->needs_update;
11675 left->target_info = right->target_info;
11676 right->inserted = left_inserted;
11677 right->duplicate = left_duplicate;
11678 right->needs_update = left_needs_update;
11679 right->target_info = left_target_info;
11680 }
11681
11682 /* Force the re-insertion of the locations at ADDRESS. This is called
11683 once a new/deleted/modified duplicate location is found and we are evaluating
11684 conditions on the target's side. Such conditions need to be updated on
11685 the target. */
11686
11687 static void
11688 force_breakpoint_reinsertion (struct bp_location *bl)
11689 {
11690 struct bp_location **locp = NULL, **loc2p;
11691 struct bp_location *loc;
11692 CORE_ADDR address = 0;
11693 int pspace_num;
11694
11695 address = bl->address;
11696 pspace_num = bl->pspace->num;
11697
11698 /* This is only meaningful if the target is
11699 evaluating conditions and if the user has
11700 opted for condition evaluation on the target's
11701 side. */
11702 if (gdb_evaluates_breakpoint_condition_p ()
11703 || !target_supports_evaluation_of_breakpoint_conditions ())
11704 return;
11705
11706 /* Flag all breakpoint locations with this address and
11707 the same program space as the location
11708 as "its condition has changed". We need to
11709 update the conditions on the target's side. */
11710 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11711 {
11712 loc = *loc2p;
11713
11714 if (!is_breakpoint (loc->owner)
11715 || pspace_num != loc->pspace->num)
11716 continue;
11717
11718 /* Flag the location appropriately. We use a different state to
11719 let everyone know that we already updated the set of locations
11720 with addr bl->address and program space bl->pspace. This is so
11721 we don't have to keep calling these functions just to mark locations
11722 that have already been marked. */
11723 loc->condition_changed = condition_updated;
11724
11725 /* Free the agent expression bytecode as well. We will compute
11726 it later on. */
11727 loc->cond_bytecode.reset ();
11728 }
11729 }
11730 /* Called whether new breakpoints are created, or existing breakpoints
11731 deleted, to update the global location list and recompute which
11732 locations are duplicate of which.
11733
11734 The INSERT_MODE flag determines whether locations may not, may, or
11735 shall be inserted now. See 'enum ugll_insert_mode' for more
11736 info. */
11737
11738 static void
11739 update_global_location_list (enum ugll_insert_mode insert_mode)
11740 {
11741 struct breakpoint *b;
11742 struct bp_location **locp, *loc;
11743 /* Last breakpoint location address that was marked for update. */
11744 CORE_ADDR last_addr = 0;
11745 /* Last breakpoint location program space that was marked for update. */
11746 int last_pspace_num = -1;
11747
11748 /* Used in the duplicates detection below. When iterating over all
11749 bp_locations, points to the first bp_location of a given address.
11750 Breakpoints and watchpoints of different types are never
11751 duplicates of each other. Keep one pointer for each type of
11752 breakpoint/watchpoint, so we only need to loop over all locations
11753 once. */
11754 struct bp_location *bp_loc_first; /* breakpoint */
11755 struct bp_location *wp_loc_first; /* hardware watchpoint */
11756 struct bp_location *awp_loc_first; /* access watchpoint */
11757 struct bp_location *rwp_loc_first; /* read watchpoint */
11758
11759 /* Saved former bp_locations array which we compare against the newly
11760 built bp_locations from the current state of ALL_BREAKPOINTS. */
11761 struct bp_location **old_locp;
11762 unsigned old_locations_count;
11763 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11764
11765 old_locations_count = bp_locations_count;
11766 bp_locations = NULL;
11767 bp_locations_count = 0;
11768
11769 ALL_BREAKPOINTS (b)
11770 for (loc = b->loc; loc; loc = loc->next)
11771 bp_locations_count++;
11772
11773 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11774 locp = bp_locations;
11775 ALL_BREAKPOINTS (b)
11776 for (loc = b->loc; loc; loc = loc->next)
11777 *locp++ = loc;
11778 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11779 bp_locations_compare);
11780
11781 bp_locations_target_extensions_update ();
11782
11783 /* Identify bp_location instances that are no longer present in the
11784 new list, and therefore should be freed. Note that it's not
11785 necessary that those locations should be removed from inferior --
11786 if there's another location at the same address (previously
11787 marked as duplicate), we don't need to remove/insert the
11788 location.
11789
11790 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11791 and former bp_location array state respectively. */
11792
11793 locp = bp_locations;
11794 for (old_locp = old_locations.get ();
11795 old_locp < old_locations.get () + old_locations_count;
11796 old_locp++)
11797 {
11798 struct bp_location *old_loc = *old_locp;
11799 struct bp_location **loc2p;
11800
11801 /* Tells if 'old_loc' is found among the new locations. If
11802 not, we have to free it. */
11803 int found_object = 0;
11804 /* Tells if the location should remain inserted in the target. */
11805 int keep_in_target = 0;
11806 int removed = 0;
11807
11808 /* Skip LOCP entries which will definitely never be needed.
11809 Stop either at or being the one matching OLD_LOC. */
11810 while (locp < bp_locations + bp_locations_count
11811 && (*locp)->address < old_loc->address)
11812 locp++;
11813
11814 for (loc2p = locp;
11815 (loc2p < bp_locations + bp_locations_count
11816 && (*loc2p)->address == old_loc->address);
11817 loc2p++)
11818 {
11819 /* Check if this is a new/duplicated location or a duplicated
11820 location that had its condition modified. If so, we want to send
11821 its condition to the target if evaluation of conditions is taking
11822 place there. */
11823 if ((*loc2p)->condition_changed == condition_modified
11824 && (last_addr != old_loc->address
11825 || last_pspace_num != old_loc->pspace->num))
11826 {
11827 force_breakpoint_reinsertion (*loc2p);
11828 last_pspace_num = old_loc->pspace->num;
11829 }
11830
11831 if (*loc2p == old_loc)
11832 found_object = 1;
11833 }
11834
11835 /* We have already handled this address, update it so that we don't
11836 have to go through updates again. */
11837 last_addr = old_loc->address;
11838
11839 /* Target-side condition evaluation: Handle deleted locations. */
11840 if (!found_object)
11841 force_breakpoint_reinsertion (old_loc);
11842
11843 /* If this location is no longer present, and inserted, look if
11844 there's maybe a new location at the same address. If so,
11845 mark that one inserted, and don't remove this one. This is
11846 needed so that we don't have a time window where a breakpoint
11847 at certain location is not inserted. */
11848
11849 if (old_loc->inserted)
11850 {
11851 /* If the location is inserted now, we might have to remove
11852 it. */
11853
11854 if (found_object && should_be_inserted (old_loc))
11855 {
11856 /* The location is still present in the location list,
11857 and still should be inserted. Don't do anything. */
11858 keep_in_target = 1;
11859 }
11860 else
11861 {
11862 /* This location still exists, but it won't be kept in the
11863 target since it may have been disabled. We proceed to
11864 remove its target-side condition. */
11865
11866 /* The location is either no longer present, or got
11867 disabled. See if there's another location at the
11868 same address, in which case we don't need to remove
11869 this one from the target. */
11870
11871 /* OLD_LOC comes from existing struct breakpoint. */
11872 if (breakpoint_address_is_meaningful (old_loc->owner))
11873 {
11874 for (loc2p = locp;
11875 (loc2p < bp_locations + bp_locations_count
11876 && (*loc2p)->address == old_loc->address);
11877 loc2p++)
11878 {
11879 struct bp_location *loc2 = *loc2p;
11880
11881 if (breakpoint_locations_match (loc2, old_loc))
11882 {
11883 /* Read watchpoint locations are switched to
11884 access watchpoints, if the former are not
11885 supported, but the latter are. */
11886 if (is_hardware_watchpoint (old_loc->owner))
11887 {
11888 gdb_assert (is_hardware_watchpoint (loc2->owner));
11889 loc2->watchpoint_type = old_loc->watchpoint_type;
11890 }
11891
11892 /* loc2 is a duplicated location. We need to check
11893 if it should be inserted in case it will be
11894 unduplicated. */
11895 if (loc2 != old_loc
11896 && unduplicated_should_be_inserted (loc2))
11897 {
11898 swap_insertion (old_loc, loc2);
11899 keep_in_target = 1;
11900 break;
11901 }
11902 }
11903 }
11904 }
11905 }
11906
11907 if (!keep_in_target)
11908 {
11909 if (remove_breakpoint (old_loc))
11910 {
11911 /* This is just about all we can do. We could keep
11912 this location on the global list, and try to
11913 remove it next time, but there's no particular
11914 reason why we will succeed next time.
11915
11916 Note that at this point, old_loc->owner is still
11917 valid, as delete_breakpoint frees the breakpoint
11918 only after calling us. */
11919 printf_filtered (_("warning: Error removing "
11920 "breakpoint %d\n"),
11921 old_loc->owner->number);
11922 }
11923 removed = 1;
11924 }
11925 }
11926
11927 if (!found_object)
11928 {
11929 if (removed && target_is_non_stop_p ()
11930 && need_moribund_for_location_type (old_loc))
11931 {
11932 /* This location was removed from the target. In
11933 non-stop mode, a race condition is possible where
11934 we've removed a breakpoint, but stop events for that
11935 breakpoint are already queued and will arrive later.
11936 We apply an heuristic to be able to distinguish such
11937 SIGTRAPs from other random SIGTRAPs: we keep this
11938 breakpoint location for a bit, and will retire it
11939 after we see some number of events. The theory here
11940 is that reporting of events should, "on the average",
11941 be fair, so after a while we'll see events from all
11942 threads that have anything of interest, and no longer
11943 need to keep this breakpoint location around. We
11944 don't hold locations forever so to reduce chances of
11945 mistaking a non-breakpoint SIGTRAP for a breakpoint
11946 SIGTRAP.
11947
11948 The heuristic failing can be disastrous on
11949 decr_pc_after_break targets.
11950
11951 On decr_pc_after_break targets, like e.g., x86-linux,
11952 if we fail to recognize a late breakpoint SIGTRAP,
11953 because events_till_retirement has reached 0 too
11954 soon, we'll fail to do the PC adjustment, and report
11955 a random SIGTRAP to the user. When the user resumes
11956 the inferior, it will most likely immediately crash
11957 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11958 corrupted, because of being resumed e.g., in the
11959 middle of a multi-byte instruction, or skipped a
11960 one-byte instruction. This was actually seen happen
11961 on native x86-linux, and should be less rare on
11962 targets that do not support new thread events, like
11963 remote, due to the heuristic depending on
11964 thread_count.
11965
11966 Mistaking a random SIGTRAP for a breakpoint trap
11967 causes similar symptoms (PC adjustment applied when
11968 it shouldn't), but then again, playing with SIGTRAPs
11969 behind the debugger's back is asking for trouble.
11970
11971 Since hardware watchpoint traps are always
11972 distinguishable from other traps, so we don't need to
11973 apply keep hardware watchpoint moribund locations
11974 around. We simply always ignore hardware watchpoint
11975 traps we can no longer explain. */
11976
11977 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11978 old_loc->owner = NULL;
11979
11980 moribund_locations.push_back (old_loc);
11981 }
11982 else
11983 {
11984 old_loc->owner = NULL;
11985 decref_bp_location (&old_loc);
11986 }
11987 }
11988 }
11989
11990 /* Rescan breakpoints at the same address and section, marking the
11991 first one as "first" and any others as "duplicates". This is so
11992 that the bpt instruction is only inserted once. If we have a
11993 permanent breakpoint at the same place as BPT, make that one the
11994 official one, and the rest as duplicates. Permanent breakpoints
11995 are sorted first for the same address.
11996
11997 Do the same for hardware watchpoints, but also considering the
11998 watchpoint's type (regular/access/read) and length. */
11999
12000 bp_loc_first = NULL;
12001 wp_loc_first = NULL;
12002 awp_loc_first = NULL;
12003 rwp_loc_first = NULL;
12004 ALL_BP_LOCATIONS (loc, locp)
12005 {
12006 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12007 non-NULL. */
12008 struct bp_location **loc_first_p;
12009 b = loc->owner;
12010
12011 if (!unduplicated_should_be_inserted (loc)
12012 || !breakpoint_address_is_meaningful (b)
12013 /* Don't detect duplicate for tracepoint locations because they are
12014 never duplicated. See the comments in field `duplicate' of
12015 `struct bp_location'. */
12016 || is_tracepoint (b))
12017 {
12018 /* Clear the condition modification flag. */
12019 loc->condition_changed = condition_unchanged;
12020 continue;
12021 }
12022
12023 if (b->type == bp_hardware_watchpoint)
12024 loc_first_p = &wp_loc_first;
12025 else if (b->type == bp_read_watchpoint)
12026 loc_first_p = &rwp_loc_first;
12027 else if (b->type == bp_access_watchpoint)
12028 loc_first_p = &awp_loc_first;
12029 else
12030 loc_first_p = &bp_loc_first;
12031
12032 if (*loc_first_p == NULL
12033 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12034 || !breakpoint_locations_match (loc, *loc_first_p))
12035 {
12036 *loc_first_p = loc;
12037 loc->duplicate = 0;
12038
12039 if (is_breakpoint (loc->owner) && loc->condition_changed)
12040 {
12041 loc->needs_update = 1;
12042 /* Clear the condition modification flag. */
12043 loc->condition_changed = condition_unchanged;
12044 }
12045 continue;
12046 }
12047
12048
12049 /* This and the above ensure the invariant that the first location
12050 is not duplicated, and is the inserted one.
12051 All following are marked as duplicated, and are not inserted. */
12052 if (loc->inserted)
12053 swap_insertion (loc, *loc_first_p);
12054 loc->duplicate = 1;
12055
12056 /* Clear the condition modification flag. */
12057 loc->condition_changed = condition_unchanged;
12058 }
12059
12060 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12061 {
12062 if (insert_mode != UGLL_DONT_INSERT)
12063 insert_breakpoint_locations ();
12064 else
12065 {
12066 /* Even though the caller told us to not insert new
12067 locations, we may still need to update conditions on the
12068 target's side of breakpoints that were already inserted
12069 if the target is evaluating breakpoint conditions. We
12070 only update conditions for locations that are marked
12071 "needs_update". */
12072 update_inserted_breakpoint_locations ();
12073 }
12074 }
12075
12076 if (insert_mode != UGLL_DONT_INSERT)
12077 download_tracepoint_locations ();
12078 }
12079
12080 void
12081 breakpoint_retire_moribund (void)
12082 {
12083 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12084 {
12085 struct bp_location *loc = moribund_locations[ix];
12086 if (--(loc->events_till_retirement) == 0)
12087 {
12088 decref_bp_location (&loc);
12089 unordered_remove (moribund_locations, ix);
12090 --ix;
12091 }
12092 }
12093 }
12094
12095 static void
12096 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12097 {
12098
12099 TRY
12100 {
12101 update_global_location_list (insert_mode);
12102 }
12103 CATCH (e, RETURN_MASK_ERROR)
12104 {
12105 }
12106 END_CATCH
12107 }
12108
12109 /* Clear BKP from a BPS. */
12110
12111 static void
12112 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12113 {
12114 bpstat bs;
12115
12116 for (bs = bps; bs; bs = bs->next)
12117 if (bs->breakpoint_at == bpt)
12118 {
12119 bs->breakpoint_at = NULL;
12120 bs->old_val = NULL;
12121 /* bs->commands will be freed later. */
12122 }
12123 }
12124
12125 /* Callback for iterate_over_threads. */
12126 static int
12127 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12128 {
12129 struct breakpoint *bpt = (struct breakpoint *) data;
12130
12131 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12132 return 0;
12133 }
12134
12135 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12136 callbacks. */
12137
12138 static void
12139 say_where (struct breakpoint *b)
12140 {
12141 struct value_print_options opts;
12142
12143 get_user_print_options (&opts);
12144
12145 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12146 single string. */
12147 if (b->loc == NULL)
12148 {
12149 /* For pending locations, the output differs slightly based
12150 on b->extra_string. If this is non-NULL, it contains either
12151 a condition or dprintf arguments. */
12152 if (b->extra_string == NULL)
12153 {
12154 printf_filtered (_(" (%s) pending."),
12155 event_location_to_string (b->location.get ()));
12156 }
12157 else if (b->type == bp_dprintf)
12158 {
12159 printf_filtered (_(" (%s,%s) pending."),
12160 event_location_to_string (b->location.get ()),
12161 b->extra_string);
12162 }
12163 else
12164 {
12165 printf_filtered (_(" (%s %s) pending."),
12166 event_location_to_string (b->location.get ()),
12167 b->extra_string);
12168 }
12169 }
12170 else
12171 {
12172 if (opts.addressprint || b->loc->symtab == NULL)
12173 {
12174 printf_filtered (" at ");
12175 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12176 gdb_stdout);
12177 }
12178 if (b->loc->symtab != NULL)
12179 {
12180 /* If there is a single location, we can print the location
12181 more nicely. */
12182 if (b->loc->next == NULL)
12183 {
12184 puts_filtered (": file ");
12185 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12186 file_name_style.style (),
12187 gdb_stdout);
12188 printf_filtered (", line %d.",
12189 b->loc->line_number);
12190 }
12191 else
12192 /* This is not ideal, but each location may have a
12193 different file name, and this at least reflects the
12194 real situation somewhat. */
12195 printf_filtered (": %s.",
12196 event_location_to_string (b->location.get ()));
12197 }
12198
12199 if (b->loc->next)
12200 {
12201 struct bp_location *loc = b->loc;
12202 int n = 0;
12203 for (; loc; loc = loc->next)
12204 ++n;
12205 printf_filtered (" (%d locations)", n);
12206 }
12207 }
12208 }
12209
12210 /* Default bp_location_ops methods. */
12211
12212 static void
12213 bp_location_dtor (struct bp_location *self)
12214 {
12215 xfree (self->function_name);
12216 }
12217
12218 static const struct bp_location_ops bp_location_ops =
12219 {
12220 bp_location_dtor
12221 };
12222
12223 /* Destructor for the breakpoint base class. */
12224
12225 breakpoint::~breakpoint ()
12226 {
12227 xfree (this->cond_string);
12228 xfree (this->extra_string);
12229 xfree (this->filter);
12230 }
12231
12232 static struct bp_location *
12233 base_breakpoint_allocate_location (struct breakpoint *self)
12234 {
12235 return new bp_location (&bp_location_ops, self);
12236 }
12237
12238 static void
12239 base_breakpoint_re_set (struct breakpoint *b)
12240 {
12241 /* Nothing to re-set. */
12242 }
12243
12244 #define internal_error_pure_virtual_called() \
12245 gdb_assert_not_reached ("pure virtual function called")
12246
12247 static int
12248 base_breakpoint_insert_location (struct bp_location *bl)
12249 {
12250 internal_error_pure_virtual_called ();
12251 }
12252
12253 static int
12254 base_breakpoint_remove_location (struct bp_location *bl,
12255 enum remove_bp_reason reason)
12256 {
12257 internal_error_pure_virtual_called ();
12258 }
12259
12260 static int
12261 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12262 const address_space *aspace,
12263 CORE_ADDR bp_addr,
12264 const struct target_waitstatus *ws)
12265 {
12266 internal_error_pure_virtual_called ();
12267 }
12268
12269 static void
12270 base_breakpoint_check_status (bpstat bs)
12271 {
12272 /* Always stop. */
12273 }
12274
12275 /* A "works_in_software_mode" breakpoint_ops method that just internal
12276 errors. */
12277
12278 static int
12279 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12280 {
12281 internal_error_pure_virtual_called ();
12282 }
12283
12284 /* A "resources_needed" breakpoint_ops method that just internal
12285 errors. */
12286
12287 static int
12288 base_breakpoint_resources_needed (const struct bp_location *bl)
12289 {
12290 internal_error_pure_virtual_called ();
12291 }
12292
12293 static enum print_stop_action
12294 base_breakpoint_print_it (bpstat bs)
12295 {
12296 internal_error_pure_virtual_called ();
12297 }
12298
12299 static void
12300 base_breakpoint_print_one_detail (const struct breakpoint *self,
12301 struct ui_out *uiout)
12302 {
12303 /* nothing */
12304 }
12305
12306 static void
12307 base_breakpoint_print_mention (struct breakpoint *b)
12308 {
12309 internal_error_pure_virtual_called ();
12310 }
12311
12312 static void
12313 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12314 {
12315 internal_error_pure_virtual_called ();
12316 }
12317
12318 static void
12319 base_breakpoint_create_sals_from_location
12320 (const struct event_location *location,
12321 struct linespec_result *canonical,
12322 enum bptype type_wanted)
12323 {
12324 internal_error_pure_virtual_called ();
12325 }
12326
12327 static void
12328 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12329 struct linespec_result *c,
12330 gdb::unique_xmalloc_ptr<char> cond_string,
12331 gdb::unique_xmalloc_ptr<char> extra_string,
12332 enum bptype type_wanted,
12333 enum bpdisp disposition,
12334 int thread,
12335 int task, int ignore_count,
12336 const struct breakpoint_ops *o,
12337 int from_tty, int enabled,
12338 int internal, unsigned flags)
12339 {
12340 internal_error_pure_virtual_called ();
12341 }
12342
12343 static std::vector<symtab_and_line>
12344 base_breakpoint_decode_location (struct breakpoint *b,
12345 const struct event_location *location,
12346 struct program_space *search_pspace)
12347 {
12348 internal_error_pure_virtual_called ();
12349 }
12350
12351 /* The default 'explains_signal' method. */
12352
12353 static int
12354 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12355 {
12356 return 1;
12357 }
12358
12359 /* The default "after_condition_true" method. */
12360
12361 static void
12362 base_breakpoint_after_condition_true (struct bpstats *bs)
12363 {
12364 /* Nothing to do. */
12365 }
12366
12367 struct breakpoint_ops base_breakpoint_ops =
12368 {
12369 base_breakpoint_allocate_location,
12370 base_breakpoint_re_set,
12371 base_breakpoint_insert_location,
12372 base_breakpoint_remove_location,
12373 base_breakpoint_breakpoint_hit,
12374 base_breakpoint_check_status,
12375 base_breakpoint_resources_needed,
12376 base_breakpoint_works_in_software_mode,
12377 base_breakpoint_print_it,
12378 NULL,
12379 base_breakpoint_print_one_detail,
12380 base_breakpoint_print_mention,
12381 base_breakpoint_print_recreate,
12382 base_breakpoint_create_sals_from_location,
12383 base_breakpoint_create_breakpoints_sal,
12384 base_breakpoint_decode_location,
12385 base_breakpoint_explains_signal,
12386 base_breakpoint_after_condition_true,
12387 };
12388
12389 /* Default breakpoint_ops methods. */
12390
12391 static void
12392 bkpt_re_set (struct breakpoint *b)
12393 {
12394 /* FIXME: is this still reachable? */
12395 if (breakpoint_event_location_empty_p (b))
12396 {
12397 /* Anything without a location can't be re-set. */
12398 delete_breakpoint (b);
12399 return;
12400 }
12401
12402 breakpoint_re_set_default (b);
12403 }
12404
12405 static int
12406 bkpt_insert_location (struct bp_location *bl)
12407 {
12408 CORE_ADDR addr = bl->target_info.reqstd_address;
12409
12410 bl->target_info.kind = breakpoint_kind (bl, &addr);
12411 bl->target_info.placed_address = addr;
12412
12413 if (bl->loc_type == bp_loc_hardware_breakpoint)
12414 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12415 else
12416 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12417 }
12418
12419 static int
12420 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12421 {
12422 if (bl->loc_type == bp_loc_hardware_breakpoint)
12423 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12424 else
12425 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12426 }
12427
12428 static int
12429 bkpt_breakpoint_hit (const struct bp_location *bl,
12430 const address_space *aspace, CORE_ADDR bp_addr,
12431 const struct target_waitstatus *ws)
12432 {
12433 if (ws->kind != TARGET_WAITKIND_STOPPED
12434 || ws->value.sig != GDB_SIGNAL_TRAP)
12435 return 0;
12436
12437 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12438 aspace, bp_addr))
12439 return 0;
12440
12441 if (overlay_debugging /* unmapped overlay section */
12442 && section_is_overlay (bl->section)
12443 && !section_is_mapped (bl->section))
12444 return 0;
12445
12446 return 1;
12447 }
12448
12449 static int
12450 dprintf_breakpoint_hit (const struct bp_location *bl,
12451 const address_space *aspace, CORE_ADDR bp_addr,
12452 const struct target_waitstatus *ws)
12453 {
12454 if (dprintf_style == dprintf_style_agent
12455 && target_can_run_breakpoint_commands ())
12456 {
12457 /* An agent-style dprintf never causes a stop. If we see a trap
12458 for this address it must be for a breakpoint that happens to
12459 be set at the same address. */
12460 return 0;
12461 }
12462
12463 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12464 }
12465
12466 static int
12467 bkpt_resources_needed (const struct bp_location *bl)
12468 {
12469 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12470
12471 return 1;
12472 }
12473
12474 static enum print_stop_action
12475 bkpt_print_it (bpstat bs)
12476 {
12477 struct breakpoint *b;
12478 const struct bp_location *bl;
12479 int bp_temp;
12480 struct ui_out *uiout = current_uiout;
12481
12482 gdb_assert (bs->bp_location_at != NULL);
12483
12484 bl = bs->bp_location_at;
12485 b = bs->breakpoint_at;
12486
12487 bp_temp = b->disposition == disp_del;
12488 if (bl->address != bl->requested_address)
12489 breakpoint_adjustment_warning (bl->requested_address,
12490 bl->address,
12491 b->number, 1);
12492 annotate_breakpoint (b->number);
12493 maybe_print_thread_hit_breakpoint (uiout);
12494
12495 if (bp_temp)
12496 uiout->text ("Temporary breakpoint ");
12497 else
12498 uiout->text ("Breakpoint ");
12499 if (uiout->is_mi_like_p ())
12500 {
12501 uiout->field_string ("reason",
12502 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12503 uiout->field_string ("disp", bpdisp_text (b->disposition));
12504 }
12505 uiout->field_int ("bkptno", b->number);
12506 uiout->text (", ");
12507
12508 return PRINT_SRC_AND_LOC;
12509 }
12510
12511 static void
12512 bkpt_print_mention (struct breakpoint *b)
12513 {
12514 if (current_uiout->is_mi_like_p ())
12515 return;
12516
12517 switch (b->type)
12518 {
12519 case bp_breakpoint:
12520 case bp_gnu_ifunc_resolver:
12521 if (b->disposition == disp_del)
12522 printf_filtered (_("Temporary breakpoint"));
12523 else
12524 printf_filtered (_("Breakpoint"));
12525 printf_filtered (_(" %d"), b->number);
12526 if (b->type == bp_gnu_ifunc_resolver)
12527 printf_filtered (_(" at gnu-indirect-function resolver"));
12528 break;
12529 case bp_hardware_breakpoint:
12530 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12531 break;
12532 case bp_dprintf:
12533 printf_filtered (_("Dprintf %d"), b->number);
12534 break;
12535 }
12536
12537 say_where (b);
12538 }
12539
12540 static void
12541 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12542 {
12543 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12544 fprintf_unfiltered (fp, "tbreak");
12545 else if (tp->type == bp_breakpoint)
12546 fprintf_unfiltered (fp, "break");
12547 else if (tp->type == bp_hardware_breakpoint
12548 && tp->disposition == disp_del)
12549 fprintf_unfiltered (fp, "thbreak");
12550 else if (tp->type == bp_hardware_breakpoint)
12551 fprintf_unfiltered (fp, "hbreak");
12552 else
12553 internal_error (__FILE__, __LINE__,
12554 _("unhandled breakpoint type %d"), (int) tp->type);
12555
12556 fprintf_unfiltered (fp, " %s",
12557 event_location_to_string (tp->location.get ()));
12558
12559 /* Print out extra_string if this breakpoint is pending. It might
12560 contain, for example, conditions that were set by the user. */
12561 if (tp->loc == NULL && tp->extra_string != NULL)
12562 fprintf_unfiltered (fp, " %s", tp->extra_string);
12563
12564 print_recreate_thread (tp, fp);
12565 }
12566
12567 static void
12568 bkpt_create_sals_from_location (const struct event_location *location,
12569 struct linespec_result *canonical,
12570 enum bptype type_wanted)
12571 {
12572 create_sals_from_location_default (location, canonical, type_wanted);
12573 }
12574
12575 static void
12576 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12577 struct linespec_result *canonical,
12578 gdb::unique_xmalloc_ptr<char> cond_string,
12579 gdb::unique_xmalloc_ptr<char> extra_string,
12580 enum bptype type_wanted,
12581 enum bpdisp disposition,
12582 int thread,
12583 int task, int ignore_count,
12584 const struct breakpoint_ops *ops,
12585 int from_tty, int enabled,
12586 int internal, unsigned flags)
12587 {
12588 create_breakpoints_sal_default (gdbarch, canonical,
12589 std::move (cond_string),
12590 std::move (extra_string),
12591 type_wanted,
12592 disposition, thread, task,
12593 ignore_count, ops, from_tty,
12594 enabled, internal, flags);
12595 }
12596
12597 static std::vector<symtab_and_line>
12598 bkpt_decode_location (struct breakpoint *b,
12599 const struct event_location *location,
12600 struct program_space *search_pspace)
12601 {
12602 return decode_location_default (b, location, search_pspace);
12603 }
12604
12605 /* Virtual table for internal breakpoints. */
12606
12607 static void
12608 internal_bkpt_re_set (struct breakpoint *b)
12609 {
12610 switch (b->type)
12611 {
12612 /* Delete overlay event and longjmp master breakpoints; they
12613 will be reset later by breakpoint_re_set. */
12614 case bp_overlay_event:
12615 case bp_longjmp_master:
12616 case bp_std_terminate_master:
12617 case bp_exception_master:
12618 delete_breakpoint (b);
12619 break;
12620
12621 /* This breakpoint is special, it's set up when the inferior
12622 starts and we really don't want to touch it. */
12623 case bp_shlib_event:
12624
12625 /* Like bp_shlib_event, this breakpoint type is special. Once
12626 it is set up, we do not want to touch it. */
12627 case bp_thread_event:
12628 break;
12629 }
12630 }
12631
12632 static void
12633 internal_bkpt_check_status (bpstat bs)
12634 {
12635 if (bs->breakpoint_at->type == bp_shlib_event)
12636 {
12637 /* If requested, stop when the dynamic linker notifies GDB of
12638 events. This allows the user to get control and place
12639 breakpoints in initializer routines for dynamically loaded
12640 objects (among other things). */
12641 bs->stop = stop_on_solib_events;
12642 bs->print = stop_on_solib_events;
12643 }
12644 else
12645 bs->stop = 0;
12646 }
12647
12648 static enum print_stop_action
12649 internal_bkpt_print_it (bpstat bs)
12650 {
12651 struct breakpoint *b;
12652
12653 b = bs->breakpoint_at;
12654
12655 switch (b->type)
12656 {
12657 case bp_shlib_event:
12658 /* Did we stop because the user set the stop_on_solib_events
12659 variable? (If so, we report this as a generic, "Stopped due
12660 to shlib event" message.) */
12661 print_solib_event (0);
12662 break;
12663
12664 case bp_thread_event:
12665 /* Not sure how we will get here.
12666 GDB should not stop for these breakpoints. */
12667 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12668 break;
12669
12670 case bp_overlay_event:
12671 /* By analogy with the thread event, GDB should not stop for these. */
12672 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12673 break;
12674
12675 case bp_longjmp_master:
12676 /* These should never be enabled. */
12677 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12678 break;
12679
12680 case bp_std_terminate_master:
12681 /* These should never be enabled. */
12682 printf_filtered (_("std::terminate Master Breakpoint: "
12683 "gdb should not stop!\n"));
12684 break;
12685
12686 case bp_exception_master:
12687 /* These should never be enabled. */
12688 printf_filtered (_("Exception Master Breakpoint: "
12689 "gdb should not stop!\n"));
12690 break;
12691 }
12692
12693 return PRINT_NOTHING;
12694 }
12695
12696 static void
12697 internal_bkpt_print_mention (struct breakpoint *b)
12698 {
12699 /* Nothing to mention. These breakpoints are internal. */
12700 }
12701
12702 /* Virtual table for momentary breakpoints */
12703
12704 static void
12705 momentary_bkpt_re_set (struct breakpoint *b)
12706 {
12707 /* Keep temporary breakpoints, which can be encountered when we step
12708 over a dlopen call and solib_add is resetting the breakpoints.
12709 Otherwise these should have been blown away via the cleanup chain
12710 or by breakpoint_init_inferior when we rerun the executable. */
12711 }
12712
12713 static void
12714 momentary_bkpt_check_status (bpstat bs)
12715 {
12716 /* Nothing. The point of these breakpoints is causing a stop. */
12717 }
12718
12719 static enum print_stop_action
12720 momentary_bkpt_print_it (bpstat bs)
12721 {
12722 return PRINT_UNKNOWN;
12723 }
12724
12725 static void
12726 momentary_bkpt_print_mention (struct breakpoint *b)
12727 {
12728 /* Nothing to mention. These breakpoints are internal. */
12729 }
12730
12731 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12732
12733 It gets cleared already on the removal of the first one of such placed
12734 breakpoints. This is OK as they get all removed altogether. */
12735
12736 longjmp_breakpoint::~longjmp_breakpoint ()
12737 {
12738 thread_info *tp = find_thread_global_id (this->thread);
12739
12740 if (tp != NULL)
12741 tp->initiating_frame = null_frame_id;
12742 }
12743
12744 /* Specific methods for probe breakpoints. */
12745
12746 static int
12747 bkpt_probe_insert_location (struct bp_location *bl)
12748 {
12749 int v = bkpt_insert_location (bl);
12750
12751 if (v == 0)
12752 {
12753 /* The insertion was successful, now let's set the probe's semaphore
12754 if needed. */
12755 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12756 }
12757
12758 return v;
12759 }
12760
12761 static int
12762 bkpt_probe_remove_location (struct bp_location *bl,
12763 enum remove_bp_reason reason)
12764 {
12765 /* Let's clear the semaphore before removing the location. */
12766 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12767
12768 return bkpt_remove_location (bl, reason);
12769 }
12770
12771 static void
12772 bkpt_probe_create_sals_from_location (const struct event_location *location,
12773 struct linespec_result *canonical,
12774 enum bptype type_wanted)
12775 {
12776 struct linespec_sals lsal;
12777
12778 lsal.sals = parse_probes (location, NULL, canonical);
12779 lsal.canonical
12780 = xstrdup (event_location_to_string (canonical->location.get ()));
12781 canonical->lsals.push_back (std::move (lsal));
12782 }
12783
12784 static std::vector<symtab_and_line>
12785 bkpt_probe_decode_location (struct breakpoint *b,
12786 const struct event_location *location,
12787 struct program_space *search_pspace)
12788 {
12789 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12790 if (sals.empty ())
12791 error (_("probe not found"));
12792 return sals;
12793 }
12794
12795 /* The breakpoint_ops structure to be used in tracepoints. */
12796
12797 static void
12798 tracepoint_re_set (struct breakpoint *b)
12799 {
12800 breakpoint_re_set_default (b);
12801 }
12802
12803 static int
12804 tracepoint_breakpoint_hit (const struct bp_location *bl,
12805 const address_space *aspace, CORE_ADDR bp_addr,
12806 const struct target_waitstatus *ws)
12807 {
12808 /* By definition, the inferior does not report stops at
12809 tracepoints. */
12810 return 0;
12811 }
12812
12813 static void
12814 tracepoint_print_one_detail (const struct breakpoint *self,
12815 struct ui_out *uiout)
12816 {
12817 struct tracepoint *tp = (struct tracepoint *) self;
12818 if (!tp->static_trace_marker_id.empty ())
12819 {
12820 gdb_assert (self->type == bp_static_tracepoint);
12821
12822 uiout->text ("\tmarker id is ");
12823 uiout->field_string ("static-tracepoint-marker-string-id",
12824 tp->static_trace_marker_id);
12825 uiout->text ("\n");
12826 }
12827 }
12828
12829 static void
12830 tracepoint_print_mention (struct breakpoint *b)
12831 {
12832 if (current_uiout->is_mi_like_p ())
12833 return;
12834
12835 switch (b->type)
12836 {
12837 case bp_tracepoint:
12838 printf_filtered (_("Tracepoint"));
12839 printf_filtered (_(" %d"), b->number);
12840 break;
12841 case bp_fast_tracepoint:
12842 printf_filtered (_("Fast tracepoint"));
12843 printf_filtered (_(" %d"), b->number);
12844 break;
12845 case bp_static_tracepoint:
12846 printf_filtered (_("Static tracepoint"));
12847 printf_filtered (_(" %d"), b->number);
12848 break;
12849 default:
12850 internal_error (__FILE__, __LINE__,
12851 _("unhandled tracepoint type %d"), (int) b->type);
12852 }
12853
12854 say_where (b);
12855 }
12856
12857 static void
12858 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12859 {
12860 struct tracepoint *tp = (struct tracepoint *) self;
12861
12862 if (self->type == bp_fast_tracepoint)
12863 fprintf_unfiltered (fp, "ftrace");
12864 else if (self->type == bp_static_tracepoint)
12865 fprintf_unfiltered (fp, "strace");
12866 else if (self->type == bp_tracepoint)
12867 fprintf_unfiltered (fp, "trace");
12868 else
12869 internal_error (__FILE__, __LINE__,
12870 _("unhandled tracepoint type %d"), (int) self->type);
12871
12872 fprintf_unfiltered (fp, " %s",
12873 event_location_to_string (self->location.get ()));
12874 print_recreate_thread (self, fp);
12875
12876 if (tp->pass_count)
12877 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12878 }
12879
12880 static void
12881 tracepoint_create_sals_from_location (const struct event_location *location,
12882 struct linespec_result *canonical,
12883 enum bptype type_wanted)
12884 {
12885 create_sals_from_location_default (location, canonical, type_wanted);
12886 }
12887
12888 static void
12889 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12890 struct linespec_result *canonical,
12891 gdb::unique_xmalloc_ptr<char> cond_string,
12892 gdb::unique_xmalloc_ptr<char> extra_string,
12893 enum bptype type_wanted,
12894 enum bpdisp disposition,
12895 int thread,
12896 int task, int ignore_count,
12897 const struct breakpoint_ops *ops,
12898 int from_tty, int enabled,
12899 int internal, unsigned flags)
12900 {
12901 create_breakpoints_sal_default (gdbarch, canonical,
12902 std::move (cond_string),
12903 std::move (extra_string),
12904 type_wanted,
12905 disposition, thread, task,
12906 ignore_count, ops, from_tty,
12907 enabled, internal, flags);
12908 }
12909
12910 static std::vector<symtab_and_line>
12911 tracepoint_decode_location (struct breakpoint *b,
12912 const struct event_location *location,
12913 struct program_space *search_pspace)
12914 {
12915 return decode_location_default (b, location, search_pspace);
12916 }
12917
12918 struct breakpoint_ops tracepoint_breakpoint_ops;
12919
12920 /* The breakpoint_ops structure to be use on tracepoints placed in a
12921 static probe. */
12922
12923 static void
12924 tracepoint_probe_create_sals_from_location
12925 (const struct event_location *location,
12926 struct linespec_result *canonical,
12927 enum bptype type_wanted)
12928 {
12929 /* We use the same method for breakpoint on probes. */
12930 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12931 }
12932
12933 static std::vector<symtab_and_line>
12934 tracepoint_probe_decode_location (struct breakpoint *b,
12935 const struct event_location *location,
12936 struct program_space *search_pspace)
12937 {
12938 /* We use the same method for breakpoint on probes. */
12939 return bkpt_probe_decode_location (b, location, search_pspace);
12940 }
12941
12942 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12943
12944 /* Dprintf breakpoint_ops methods. */
12945
12946 static void
12947 dprintf_re_set (struct breakpoint *b)
12948 {
12949 breakpoint_re_set_default (b);
12950
12951 /* extra_string should never be non-NULL for dprintf. */
12952 gdb_assert (b->extra_string != NULL);
12953
12954 /* 1 - connect to target 1, that can run breakpoint commands.
12955 2 - create a dprintf, which resolves fine.
12956 3 - disconnect from target 1
12957 4 - connect to target 2, that can NOT run breakpoint commands.
12958
12959 After steps #3/#4, you'll want the dprintf command list to
12960 be updated, because target 1 and 2 may well return different
12961 answers for target_can_run_breakpoint_commands().
12962 Given absence of finer grained resetting, we get to do
12963 it all the time. */
12964 if (b->extra_string != NULL)
12965 update_dprintf_command_list (b);
12966 }
12967
12968 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12969
12970 static void
12971 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12972 {
12973 fprintf_unfiltered (fp, "dprintf %s,%s",
12974 event_location_to_string (tp->location.get ()),
12975 tp->extra_string);
12976 print_recreate_thread (tp, fp);
12977 }
12978
12979 /* Implement the "after_condition_true" breakpoint_ops method for
12980 dprintf.
12981
12982 dprintf's are implemented with regular commands in their command
12983 list, but we run the commands here instead of before presenting the
12984 stop to the user, as dprintf's don't actually cause a stop. This
12985 also makes it so that the commands of multiple dprintfs at the same
12986 address are all handled. */
12987
12988 static void
12989 dprintf_after_condition_true (struct bpstats *bs)
12990 {
12991 struct bpstats tmp_bs;
12992 struct bpstats *tmp_bs_p = &tmp_bs;
12993
12994 /* dprintf's never cause a stop. This wasn't set in the
12995 check_status hook instead because that would make the dprintf's
12996 condition not be evaluated. */
12997 bs->stop = 0;
12998
12999 /* Run the command list here. Take ownership of it instead of
13000 copying. We never want these commands to run later in
13001 bpstat_do_actions, if a breakpoint that causes a stop happens to
13002 be set at same address as this dprintf, or even if running the
13003 commands here throws. */
13004 tmp_bs.commands = bs->commands;
13005 bs->commands = NULL;
13006
13007 bpstat_do_actions_1 (&tmp_bs_p);
13008
13009 /* 'tmp_bs.commands' will usually be NULL by now, but
13010 bpstat_do_actions_1 may return early without processing the whole
13011 list. */
13012 }
13013
13014 /* The breakpoint_ops structure to be used on static tracepoints with
13015 markers (`-m'). */
13016
13017 static void
13018 strace_marker_create_sals_from_location (const struct event_location *location,
13019 struct linespec_result *canonical,
13020 enum bptype type_wanted)
13021 {
13022 struct linespec_sals lsal;
13023 const char *arg_start, *arg;
13024
13025 arg = arg_start = get_linespec_location (location)->spec_string;
13026 lsal.sals = decode_static_tracepoint_spec (&arg);
13027
13028 std::string str (arg_start, arg - arg_start);
13029 const char *ptr = str.c_str ();
13030 canonical->location
13031 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13032
13033 lsal.canonical
13034 = xstrdup (event_location_to_string (canonical->location.get ()));
13035 canonical->lsals.push_back (std::move (lsal));
13036 }
13037
13038 static void
13039 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13040 struct linespec_result *canonical,
13041 gdb::unique_xmalloc_ptr<char> cond_string,
13042 gdb::unique_xmalloc_ptr<char> extra_string,
13043 enum bptype type_wanted,
13044 enum bpdisp disposition,
13045 int thread,
13046 int task, int ignore_count,
13047 const struct breakpoint_ops *ops,
13048 int from_tty, int enabled,
13049 int internal, unsigned flags)
13050 {
13051 const linespec_sals &lsal = canonical->lsals[0];
13052
13053 /* If the user is creating a static tracepoint by marker id
13054 (strace -m MARKER_ID), then store the sals index, so that
13055 breakpoint_re_set can try to match up which of the newly
13056 found markers corresponds to this one, and, don't try to
13057 expand multiple locations for each sal, given than SALS
13058 already should contain all sals for MARKER_ID. */
13059
13060 for (size_t i = 0; i < lsal.sals.size (); i++)
13061 {
13062 event_location_up location
13063 = copy_event_location (canonical->location.get ());
13064
13065 std::unique_ptr<tracepoint> tp (new tracepoint ());
13066 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13067 std::move (location), NULL,
13068 std::move (cond_string),
13069 std::move (extra_string),
13070 type_wanted, disposition,
13071 thread, task, ignore_count, ops,
13072 from_tty, enabled, internal, flags,
13073 canonical->special_display);
13074 /* Given that its possible to have multiple markers with
13075 the same string id, if the user is creating a static
13076 tracepoint by marker id ("strace -m MARKER_ID"), then
13077 store the sals index, so that breakpoint_re_set can
13078 try to match up which of the newly found markers
13079 corresponds to this one */
13080 tp->static_trace_marker_id_idx = i;
13081
13082 install_breakpoint (internal, std::move (tp), 0);
13083 }
13084 }
13085
13086 static std::vector<symtab_and_line>
13087 strace_marker_decode_location (struct breakpoint *b,
13088 const struct event_location *location,
13089 struct program_space *search_pspace)
13090 {
13091 struct tracepoint *tp = (struct tracepoint *) b;
13092 const char *s = get_linespec_location (location)->spec_string;
13093
13094 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13095 if (sals.size () > tp->static_trace_marker_id_idx)
13096 {
13097 sals[0] = sals[tp->static_trace_marker_id_idx];
13098 sals.resize (1);
13099 return sals;
13100 }
13101 else
13102 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13103 }
13104
13105 static struct breakpoint_ops strace_marker_breakpoint_ops;
13106
13107 static int
13108 strace_marker_p (struct breakpoint *b)
13109 {
13110 return b->ops == &strace_marker_breakpoint_ops;
13111 }
13112
13113 /* Delete a breakpoint and clean up all traces of it in the data
13114 structures. */
13115
13116 void
13117 delete_breakpoint (struct breakpoint *bpt)
13118 {
13119 struct breakpoint *b;
13120
13121 gdb_assert (bpt != NULL);
13122
13123 /* Has this bp already been deleted? This can happen because
13124 multiple lists can hold pointers to bp's. bpstat lists are
13125 especial culprits.
13126
13127 One example of this happening is a watchpoint's scope bp. When
13128 the scope bp triggers, we notice that the watchpoint is out of
13129 scope, and delete it. We also delete its scope bp. But the
13130 scope bp is marked "auto-deleting", and is already on a bpstat.
13131 That bpstat is then checked for auto-deleting bp's, which are
13132 deleted.
13133
13134 A real solution to this problem might involve reference counts in
13135 bp's, and/or giving them pointers back to their referencing
13136 bpstat's, and teaching delete_breakpoint to only free a bp's
13137 storage when no more references were extent. A cheaper bandaid
13138 was chosen. */
13139 if (bpt->type == bp_none)
13140 return;
13141
13142 /* At least avoid this stale reference until the reference counting
13143 of breakpoints gets resolved. */
13144 if (bpt->related_breakpoint != bpt)
13145 {
13146 struct breakpoint *related;
13147 struct watchpoint *w;
13148
13149 if (bpt->type == bp_watchpoint_scope)
13150 w = (struct watchpoint *) bpt->related_breakpoint;
13151 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13152 w = (struct watchpoint *) bpt;
13153 else
13154 w = NULL;
13155 if (w != NULL)
13156 watchpoint_del_at_next_stop (w);
13157
13158 /* Unlink bpt from the bpt->related_breakpoint ring. */
13159 for (related = bpt; related->related_breakpoint != bpt;
13160 related = related->related_breakpoint);
13161 related->related_breakpoint = bpt->related_breakpoint;
13162 bpt->related_breakpoint = bpt;
13163 }
13164
13165 /* watch_command_1 creates a watchpoint but only sets its number if
13166 update_watchpoint succeeds in creating its bp_locations. If there's
13167 a problem in that process, we'll be asked to delete the half-created
13168 watchpoint. In that case, don't announce the deletion. */
13169 if (bpt->number)
13170 gdb::observers::breakpoint_deleted.notify (bpt);
13171
13172 if (breakpoint_chain == bpt)
13173 breakpoint_chain = bpt->next;
13174
13175 ALL_BREAKPOINTS (b)
13176 if (b->next == bpt)
13177 {
13178 b->next = bpt->next;
13179 break;
13180 }
13181
13182 /* Be sure no bpstat's are pointing at the breakpoint after it's
13183 been freed. */
13184 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13185 in all threads for now. Note that we cannot just remove bpstats
13186 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13187 commands are associated with the bpstat; if we remove it here,
13188 then the later call to bpstat_do_actions (&stop_bpstat); in
13189 event-top.c won't do anything, and temporary breakpoints with
13190 commands won't work. */
13191
13192 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13193
13194 /* Now that breakpoint is removed from breakpoint list, update the
13195 global location list. This will remove locations that used to
13196 belong to this breakpoint. Do this before freeing the breakpoint
13197 itself, since remove_breakpoint looks at location's owner. It
13198 might be better design to have location completely
13199 self-contained, but it's not the case now. */
13200 update_global_location_list (UGLL_DONT_INSERT);
13201
13202 /* On the chance that someone will soon try again to delete this
13203 same bp, we mark it as deleted before freeing its storage. */
13204 bpt->type = bp_none;
13205 delete bpt;
13206 }
13207
13208 /* Iterator function to call a user-provided callback function once
13209 for each of B and its related breakpoints. */
13210
13211 static void
13212 iterate_over_related_breakpoints (struct breakpoint *b,
13213 gdb::function_view<void (breakpoint *)> function)
13214 {
13215 struct breakpoint *related;
13216
13217 related = b;
13218 do
13219 {
13220 struct breakpoint *next;
13221
13222 /* FUNCTION may delete RELATED. */
13223 next = related->related_breakpoint;
13224
13225 if (next == related)
13226 {
13227 /* RELATED is the last ring entry. */
13228 function (related);
13229
13230 /* FUNCTION may have deleted it, so we'd never reach back to
13231 B. There's nothing left to do anyway, so just break
13232 out. */
13233 break;
13234 }
13235 else
13236 function (related);
13237
13238 related = next;
13239 }
13240 while (related != b);
13241 }
13242
13243 static void
13244 delete_command (const char *arg, int from_tty)
13245 {
13246 struct breakpoint *b, *b_tmp;
13247
13248 dont_repeat ();
13249
13250 if (arg == 0)
13251 {
13252 int breaks_to_delete = 0;
13253
13254 /* Delete all breakpoints if no argument. Do not delete
13255 internal breakpoints, these have to be deleted with an
13256 explicit breakpoint number argument. */
13257 ALL_BREAKPOINTS (b)
13258 if (user_breakpoint_p (b))
13259 {
13260 breaks_to_delete = 1;
13261 break;
13262 }
13263
13264 /* Ask user only if there are some breakpoints to delete. */
13265 if (!from_tty
13266 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13267 {
13268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13269 if (user_breakpoint_p (b))
13270 delete_breakpoint (b);
13271 }
13272 }
13273 else
13274 map_breakpoint_numbers
13275 (arg, [&] (breakpoint *br)
13276 {
13277 iterate_over_related_breakpoints (br, delete_breakpoint);
13278 });
13279 }
13280
13281 /* Return true if all locations of B bound to PSPACE are pending. If
13282 PSPACE is NULL, all locations of all program spaces are
13283 considered. */
13284
13285 static int
13286 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13287 {
13288 struct bp_location *loc;
13289
13290 for (loc = b->loc; loc != NULL; loc = loc->next)
13291 if ((pspace == NULL
13292 || loc->pspace == pspace)
13293 && !loc->shlib_disabled
13294 && !loc->pspace->executing_startup)
13295 return 0;
13296 return 1;
13297 }
13298
13299 /* Subroutine of update_breakpoint_locations to simplify it.
13300 Return non-zero if multiple fns in list LOC have the same name.
13301 Null names are ignored. */
13302
13303 static int
13304 ambiguous_names_p (struct bp_location *loc)
13305 {
13306 struct bp_location *l;
13307 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13308 xcalloc, xfree);
13309
13310 for (l = loc; l != NULL; l = l->next)
13311 {
13312 const char **slot;
13313 const char *name = l->function_name;
13314
13315 /* Allow for some names to be NULL, ignore them. */
13316 if (name == NULL)
13317 continue;
13318
13319 slot = (const char **) htab_find_slot (htab, (const void *) name,
13320 INSERT);
13321 /* NOTE: We can assume slot != NULL here because xcalloc never
13322 returns NULL. */
13323 if (*slot != NULL)
13324 {
13325 htab_delete (htab);
13326 return 1;
13327 }
13328 *slot = name;
13329 }
13330
13331 htab_delete (htab);
13332 return 0;
13333 }
13334
13335 /* When symbols change, it probably means the sources changed as well,
13336 and it might mean the static tracepoint markers are no longer at
13337 the same address or line numbers they used to be at last we
13338 checked. Losing your static tracepoints whenever you rebuild is
13339 undesirable. This function tries to resync/rematch gdb static
13340 tracepoints with the markers on the target, for static tracepoints
13341 that have not been set by marker id. Static tracepoint that have
13342 been set by marker id are reset by marker id in breakpoint_re_set.
13343 The heuristic is:
13344
13345 1) For a tracepoint set at a specific address, look for a marker at
13346 the old PC. If one is found there, assume to be the same marker.
13347 If the name / string id of the marker found is different from the
13348 previous known name, assume that means the user renamed the marker
13349 in the sources, and output a warning.
13350
13351 2) For a tracepoint set at a given line number, look for a marker
13352 at the new address of the old line number. If one is found there,
13353 assume to be the same marker. If the name / string id of the
13354 marker found is different from the previous known name, assume that
13355 means the user renamed the marker in the sources, and output a
13356 warning.
13357
13358 3) If a marker is no longer found at the same address or line, it
13359 may mean the marker no longer exists. But it may also just mean
13360 the code changed a bit. Maybe the user added a few lines of code
13361 that made the marker move up or down (in line number terms). Ask
13362 the target for info about the marker with the string id as we knew
13363 it. If found, update line number and address in the matching
13364 static tracepoint. This will get confused if there's more than one
13365 marker with the same ID (possible in UST, although unadvised
13366 precisely because it confuses tools). */
13367
13368 static struct symtab_and_line
13369 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13370 {
13371 struct tracepoint *tp = (struct tracepoint *) b;
13372 struct static_tracepoint_marker marker;
13373 CORE_ADDR pc;
13374
13375 pc = sal.pc;
13376 if (sal.line)
13377 find_line_pc (sal.symtab, sal.line, &pc);
13378
13379 if (target_static_tracepoint_marker_at (pc, &marker))
13380 {
13381 if (tp->static_trace_marker_id != marker.str_id)
13382 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13383 b->number, tp->static_trace_marker_id.c_str (),
13384 marker.str_id.c_str ());
13385
13386 tp->static_trace_marker_id = std::move (marker.str_id);
13387
13388 return sal;
13389 }
13390
13391 /* Old marker wasn't found on target at lineno. Try looking it up
13392 by string ID. */
13393 if (!sal.explicit_pc
13394 && sal.line != 0
13395 && sal.symtab != NULL
13396 && !tp->static_trace_marker_id.empty ())
13397 {
13398 std::vector<static_tracepoint_marker> markers
13399 = target_static_tracepoint_markers_by_strid
13400 (tp->static_trace_marker_id.c_str ());
13401
13402 if (!markers.empty ())
13403 {
13404 struct symbol *sym;
13405 struct static_tracepoint_marker *tpmarker;
13406 struct ui_out *uiout = current_uiout;
13407 struct explicit_location explicit_loc;
13408
13409 tpmarker = &markers[0];
13410
13411 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13412
13413 warning (_("marker for static tracepoint %d (%s) not "
13414 "found at previous line number"),
13415 b->number, tp->static_trace_marker_id.c_str ());
13416
13417 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13418 sym = find_pc_sect_function (tpmarker->address, NULL);
13419 uiout->text ("Now in ");
13420 if (sym)
13421 {
13422 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13423 ui_out_style_kind::FUNCTION);
13424 uiout->text (" at ");
13425 }
13426 uiout->field_string ("file",
13427 symtab_to_filename_for_display (sal2.symtab),
13428 ui_out_style_kind::FILE);
13429 uiout->text (":");
13430
13431 if (uiout->is_mi_like_p ())
13432 {
13433 const char *fullname = symtab_to_fullname (sal2.symtab);
13434
13435 uiout->field_string ("fullname", fullname);
13436 }
13437
13438 uiout->field_int ("line", sal2.line);
13439 uiout->text ("\n");
13440
13441 b->loc->line_number = sal2.line;
13442 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13443
13444 b->location.reset (NULL);
13445 initialize_explicit_location (&explicit_loc);
13446 explicit_loc.source_filename
13447 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13448 explicit_loc.line_offset.offset = b->loc->line_number;
13449 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13450 b->location = new_explicit_location (&explicit_loc);
13451
13452 /* Might be nice to check if function changed, and warn if
13453 so. */
13454 }
13455 }
13456 return sal;
13457 }
13458
13459 /* Returns 1 iff locations A and B are sufficiently same that
13460 we don't need to report breakpoint as changed. */
13461
13462 static int
13463 locations_are_equal (struct bp_location *a, struct bp_location *b)
13464 {
13465 while (a && b)
13466 {
13467 if (a->address != b->address)
13468 return 0;
13469
13470 if (a->shlib_disabled != b->shlib_disabled)
13471 return 0;
13472
13473 if (a->enabled != b->enabled)
13474 return 0;
13475
13476 a = a->next;
13477 b = b->next;
13478 }
13479
13480 if ((a == NULL) != (b == NULL))
13481 return 0;
13482
13483 return 1;
13484 }
13485
13486 /* Split all locations of B that are bound to PSPACE out of B's
13487 location list to a separate list and return that list's head. If
13488 PSPACE is NULL, hoist out all locations of B. */
13489
13490 static struct bp_location *
13491 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13492 {
13493 struct bp_location head;
13494 struct bp_location *i = b->loc;
13495 struct bp_location **i_link = &b->loc;
13496 struct bp_location *hoisted = &head;
13497
13498 if (pspace == NULL)
13499 {
13500 i = b->loc;
13501 b->loc = NULL;
13502 return i;
13503 }
13504
13505 head.next = NULL;
13506
13507 while (i != NULL)
13508 {
13509 if (i->pspace == pspace)
13510 {
13511 *i_link = i->next;
13512 i->next = NULL;
13513 hoisted->next = i;
13514 hoisted = i;
13515 }
13516 else
13517 i_link = &i->next;
13518 i = *i_link;
13519 }
13520
13521 return head.next;
13522 }
13523
13524 /* Create new breakpoint locations for B (a hardware or software
13525 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13526 zero, then B is a ranged breakpoint. Only recreates locations for
13527 FILTER_PSPACE. Locations of other program spaces are left
13528 untouched. */
13529
13530 void
13531 update_breakpoint_locations (struct breakpoint *b,
13532 struct program_space *filter_pspace,
13533 gdb::array_view<const symtab_and_line> sals,
13534 gdb::array_view<const symtab_and_line> sals_end)
13535 {
13536 struct bp_location *existing_locations;
13537
13538 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13539 {
13540 /* Ranged breakpoints have only one start location and one end
13541 location. */
13542 b->enable_state = bp_disabled;
13543 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13544 "multiple locations found\n"),
13545 b->number);
13546 return;
13547 }
13548
13549 /* If there's no new locations, and all existing locations are
13550 pending, don't do anything. This optimizes the common case where
13551 all locations are in the same shared library, that was unloaded.
13552 We'd like to retain the location, so that when the library is
13553 loaded again, we don't loose the enabled/disabled status of the
13554 individual locations. */
13555 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13556 return;
13557
13558 existing_locations = hoist_existing_locations (b, filter_pspace);
13559
13560 for (const auto &sal : sals)
13561 {
13562 struct bp_location *new_loc;
13563
13564 switch_to_program_space_and_thread (sal.pspace);
13565
13566 new_loc = add_location_to_breakpoint (b, &sal);
13567
13568 /* Reparse conditions, they might contain references to the
13569 old symtab. */
13570 if (b->cond_string != NULL)
13571 {
13572 const char *s;
13573
13574 s = b->cond_string;
13575 TRY
13576 {
13577 new_loc->cond = parse_exp_1 (&s, sal.pc,
13578 block_for_pc (sal.pc),
13579 0);
13580 }
13581 CATCH (e, RETURN_MASK_ERROR)
13582 {
13583 warning (_("failed to reevaluate condition "
13584 "for breakpoint %d: %s"),
13585 b->number, e.message);
13586 new_loc->enabled = 0;
13587 }
13588 END_CATCH
13589 }
13590
13591 if (!sals_end.empty ())
13592 {
13593 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13594
13595 new_loc->length = end - sals[0].pc + 1;
13596 }
13597 }
13598
13599 /* If possible, carry over 'disable' status from existing
13600 breakpoints. */
13601 {
13602 struct bp_location *e = existing_locations;
13603 /* If there are multiple breakpoints with the same function name,
13604 e.g. for inline functions, comparing function names won't work.
13605 Instead compare pc addresses; this is just a heuristic as things
13606 may have moved, but in practice it gives the correct answer
13607 often enough until a better solution is found. */
13608 int have_ambiguous_names = ambiguous_names_p (b->loc);
13609
13610 for (; e; e = e->next)
13611 {
13612 if (!e->enabled && e->function_name)
13613 {
13614 struct bp_location *l = b->loc;
13615 if (have_ambiguous_names)
13616 {
13617 for (; l; l = l->next)
13618 if (breakpoint_locations_match (e, l))
13619 {
13620 l->enabled = 0;
13621 break;
13622 }
13623 }
13624 else
13625 {
13626 for (; l; l = l->next)
13627 if (l->function_name
13628 && strcmp (e->function_name, l->function_name) == 0)
13629 {
13630 l->enabled = 0;
13631 break;
13632 }
13633 }
13634 }
13635 }
13636 }
13637
13638 if (!locations_are_equal (existing_locations, b->loc))
13639 gdb::observers::breakpoint_modified.notify (b);
13640 }
13641
13642 /* Find the SaL locations corresponding to the given LOCATION.
13643 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13644
13645 static std::vector<symtab_and_line>
13646 location_to_sals (struct breakpoint *b, struct event_location *location,
13647 struct program_space *search_pspace, int *found)
13648 {
13649 struct gdb_exception exception = exception_none;
13650
13651 gdb_assert (b->ops != NULL);
13652
13653 std::vector<symtab_and_line> sals;
13654
13655 TRY
13656 {
13657 sals = b->ops->decode_location (b, location, search_pspace);
13658 }
13659 CATCH (e, RETURN_MASK_ERROR)
13660 {
13661 int not_found_and_ok = 0;
13662
13663 exception = e;
13664
13665 /* For pending breakpoints, it's expected that parsing will
13666 fail until the right shared library is loaded. User has
13667 already told to create pending breakpoints and don't need
13668 extra messages. If breakpoint is in bp_shlib_disabled
13669 state, then user already saw the message about that
13670 breakpoint being disabled, and don't want to see more
13671 errors. */
13672 if (e.error == NOT_FOUND_ERROR
13673 && (b->condition_not_parsed
13674 || (b->loc != NULL
13675 && search_pspace != NULL
13676 && b->loc->pspace != search_pspace)
13677 || (b->loc && b->loc->shlib_disabled)
13678 || (b->loc && b->loc->pspace->executing_startup)
13679 || b->enable_state == bp_disabled))
13680 not_found_and_ok = 1;
13681
13682 if (!not_found_and_ok)
13683 {
13684 /* We surely don't want to warn about the same breakpoint
13685 10 times. One solution, implemented here, is disable
13686 the breakpoint on error. Another solution would be to
13687 have separate 'warning emitted' flag. Since this
13688 happens only when a binary has changed, I don't know
13689 which approach is better. */
13690 b->enable_state = bp_disabled;
13691 throw_exception (e);
13692 }
13693 }
13694 END_CATCH
13695
13696 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13697 {
13698 for (auto &sal : sals)
13699 resolve_sal_pc (&sal);
13700 if (b->condition_not_parsed && b->extra_string != NULL)
13701 {
13702 char *cond_string, *extra_string;
13703 int thread, task;
13704
13705 find_condition_and_thread (b->extra_string, sals[0].pc,
13706 &cond_string, &thread, &task,
13707 &extra_string);
13708 gdb_assert (b->cond_string == NULL);
13709 if (cond_string)
13710 b->cond_string = cond_string;
13711 b->thread = thread;
13712 b->task = task;
13713 if (extra_string)
13714 {
13715 xfree (b->extra_string);
13716 b->extra_string = extra_string;
13717 }
13718 b->condition_not_parsed = 0;
13719 }
13720
13721 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13722 sals[0] = update_static_tracepoint (b, sals[0]);
13723
13724 *found = 1;
13725 }
13726 else
13727 *found = 0;
13728
13729 return sals;
13730 }
13731
13732 /* The default re_set method, for typical hardware or software
13733 breakpoints. Reevaluate the breakpoint and recreate its
13734 locations. */
13735
13736 static void
13737 breakpoint_re_set_default (struct breakpoint *b)
13738 {
13739 struct program_space *filter_pspace = current_program_space;
13740 std::vector<symtab_and_line> expanded, expanded_end;
13741
13742 int found;
13743 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13744 filter_pspace, &found);
13745 if (found)
13746 expanded = std::move (sals);
13747
13748 if (b->location_range_end != NULL)
13749 {
13750 std::vector<symtab_and_line> sals_end
13751 = location_to_sals (b, b->location_range_end.get (),
13752 filter_pspace, &found);
13753 if (found)
13754 expanded_end = std::move (sals_end);
13755 }
13756
13757 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13758 }
13759
13760 /* Default method for creating SALs from an address string. It basically
13761 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13762
13763 static void
13764 create_sals_from_location_default (const struct event_location *location,
13765 struct linespec_result *canonical,
13766 enum bptype type_wanted)
13767 {
13768 parse_breakpoint_sals (location, canonical);
13769 }
13770
13771 /* Call create_breakpoints_sal for the given arguments. This is the default
13772 function for the `create_breakpoints_sal' method of
13773 breakpoint_ops. */
13774
13775 static void
13776 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13777 struct linespec_result *canonical,
13778 gdb::unique_xmalloc_ptr<char> cond_string,
13779 gdb::unique_xmalloc_ptr<char> extra_string,
13780 enum bptype type_wanted,
13781 enum bpdisp disposition,
13782 int thread,
13783 int task, int ignore_count,
13784 const struct breakpoint_ops *ops,
13785 int from_tty, int enabled,
13786 int internal, unsigned flags)
13787 {
13788 create_breakpoints_sal (gdbarch, canonical,
13789 std::move (cond_string),
13790 std::move (extra_string),
13791 type_wanted, disposition,
13792 thread, task, ignore_count, ops, from_tty,
13793 enabled, internal, flags);
13794 }
13795
13796 /* Decode the line represented by S by calling decode_line_full. This is the
13797 default function for the `decode_location' method of breakpoint_ops. */
13798
13799 static std::vector<symtab_and_line>
13800 decode_location_default (struct breakpoint *b,
13801 const struct event_location *location,
13802 struct program_space *search_pspace)
13803 {
13804 struct linespec_result canonical;
13805
13806 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13807 (struct symtab *) NULL, 0,
13808 &canonical, multiple_symbols_all,
13809 b->filter);
13810
13811 /* We should get 0 or 1 resulting SALs. */
13812 gdb_assert (canonical.lsals.size () < 2);
13813
13814 if (!canonical.lsals.empty ())
13815 {
13816 const linespec_sals &lsal = canonical.lsals[0];
13817 return std::move (lsal.sals);
13818 }
13819 return {};
13820 }
13821
13822 /* Reset a breakpoint. */
13823
13824 static void
13825 breakpoint_re_set_one (breakpoint *b)
13826 {
13827 input_radix = b->input_radix;
13828 set_language (b->language);
13829
13830 b->ops->re_set (b);
13831 }
13832
13833 /* Re-set breakpoint locations for the current program space.
13834 Locations bound to other program spaces are left untouched. */
13835
13836 void
13837 breakpoint_re_set (void)
13838 {
13839 struct breakpoint *b, *b_tmp;
13840
13841 {
13842 scoped_restore_current_language save_language;
13843 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13844 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13845
13846 /* breakpoint_re_set_one sets the current_language to the language
13847 of the breakpoint it is resetting (see prepare_re_set_context)
13848 before re-evaluating the breakpoint's location. This change can
13849 unfortunately get undone by accident if the language_mode is set
13850 to auto, and we either switch frames, or more likely in this context,
13851 we select the current frame.
13852
13853 We prevent this by temporarily turning the language_mode to
13854 language_mode_manual. We restore it once all breakpoints
13855 have been reset. */
13856 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13857 language_mode = language_mode_manual;
13858
13859 /* Note: we must not try to insert locations until after all
13860 breakpoints have been re-set. Otherwise, e.g., when re-setting
13861 breakpoint 1, we'd insert the locations of breakpoint 2, which
13862 hadn't been re-set yet, and thus may have stale locations. */
13863
13864 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13865 {
13866 TRY
13867 {
13868 breakpoint_re_set_one (b);
13869 }
13870 CATCH (ex, RETURN_MASK_ALL)
13871 {
13872 exception_fprintf (gdb_stderr, ex,
13873 "Error in re-setting breakpoint %d: ",
13874 b->number);
13875 }
13876 END_CATCH
13877 }
13878
13879 jit_breakpoint_re_set ();
13880 }
13881
13882 create_overlay_event_breakpoint ();
13883 create_longjmp_master_breakpoint ();
13884 create_std_terminate_master_breakpoint ();
13885 create_exception_master_breakpoint ();
13886
13887 /* Now we can insert. */
13888 update_global_location_list (UGLL_MAY_INSERT);
13889 }
13890 \f
13891 /* Reset the thread number of this breakpoint:
13892
13893 - If the breakpoint is for all threads, leave it as-is.
13894 - Else, reset it to the current thread for inferior_ptid. */
13895 void
13896 breakpoint_re_set_thread (struct breakpoint *b)
13897 {
13898 if (b->thread != -1)
13899 {
13900 b->thread = inferior_thread ()->global_num;
13901
13902 /* We're being called after following a fork. The new fork is
13903 selected as current, and unless this was a vfork will have a
13904 different program space from the original thread. Reset that
13905 as well. */
13906 b->loc->pspace = current_program_space;
13907 }
13908 }
13909
13910 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13911 If from_tty is nonzero, it prints a message to that effect,
13912 which ends with a period (no newline). */
13913
13914 void
13915 set_ignore_count (int bptnum, int count, int from_tty)
13916 {
13917 struct breakpoint *b;
13918
13919 if (count < 0)
13920 count = 0;
13921
13922 ALL_BREAKPOINTS (b)
13923 if (b->number == bptnum)
13924 {
13925 if (is_tracepoint (b))
13926 {
13927 if (from_tty && count != 0)
13928 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13929 bptnum);
13930 return;
13931 }
13932
13933 b->ignore_count = count;
13934 if (from_tty)
13935 {
13936 if (count == 0)
13937 printf_filtered (_("Will stop next time "
13938 "breakpoint %d is reached."),
13939 bptnum);
13940 else if (count == 1)
13941 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13942 bptnum);
13943 else
13944 printf_filtered (_("Will ignore next %d "
13945 "crossings of breakpoint %d."),
13946 count, bptnum);
13947 }
13948 gdb::observers::breakpoint_modified.notify (b);
13949 return;
13950 }
13951
13952 error (_("No breakpoint number %d."), bptnum);
13953 }
13954
13955 /* Command to set ignore-count of breakpoint N to COUNT. */
13956
13957 static void
13958 ignore_command (const char *args, int from_tty)
13959 {
13960 const char *p = args;
13961 int num;
13962
13963 if (p == 0)
13964 error_no_arg (_("a breakpoint number"));
13965
13966 num = get_number (&p);
13967 if (num == 0)
13968 error (_("bad breakpoint number: '%s'"), args);
13969 if (*p == 0)
13970 error (_("Second argument (specified ignore-count) is missing."));
13971
13972 set_ignore_count (num,
13973 longest_to_int (value_as_long (parse_and_eval (p))),
13974 from_tty);
13975 if (from_tty)
13976 printf_filtered ("\n");
13977 }
13978 \f
13979
13980 /* Call FUNCTION on each of the breakpoints with numbers in the range
13981 defined by BP_NUM_RANGE (an inclusive range). */
13982
13983 static void
13984 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13985 gdb::function_view<void (breakpoint *)> function)
13986 {
13987 if (bp_num_range.first == 0)
13988 {
13989 warning (_("bad breakpoint number at or near '%d'"),
13990 bp_num_range.first);
13991 }
13992 else
13993 {
13994 struct breakpoint *b, *tmp;
13995
13996 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13997 {
13998 bool match = false;
13999
14000 ALL_BREAKPOINTS_SAFE (b, tmp)
14001 if (b->number == i)
14002 {
14003 match = true;
14004 function (b);
14005 break;
14006 }
14007 if (!match)
14008 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14009 }
14010 }
14011 }
14012
14013 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14014 ARGS. */
14015
14016 static void
14017 map_breakpoint_numbers (const char *args,
14018 gdb::function_view<void (breakpoint *)> function)
14019 {
14020 if (args == NULL || *args == '\0')
14021 error_no_arg (_("one or more breakpoint numbers"));
14022
14023 number_or_range_parser parser (args);
14024
14025 while (!parser.finished ())
14026 {
14027 int num = parser.get_number ();
14028 map_breakpoint_number_range (std::make_pair (num, num), function);
14029 }
14030 }
14031
14032 /* Return the breakpoint location structure corresponding to the
14033 BP_NUM and LOC_NUM values. */
14034
14035 static struct bp_location *
14036 find_location_by_number (int bp_num, int loc_num)
14037 {
14038 struct breakpoint *b;
14039
14040 ALL_BREAKPOINTS (b)
14041 if (b->number == bp_num)
14042 {
14043 break;
14044 }
14045
14046 if (!b || b->number != bp_num)
14047 error (_("Bad breakpoint number '%d'"), bp_num);
14048
14049 if (loc_num == 0)
14050 error (_("Bad breakpoint location number '%d'"), loc_num);
14051
14052 int n = 0;
14053 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14054 if (++n == loc_num)
14055 return loc;
14056
14057 error (_("Bad breakpoint location number '%d'"), loc_num);
14058 }
14059
14060 /* Modes of operation for extract_bp_num. */
14061 enum class extract_bp_kind
14062 {
14063 /* Extracting a breakpoint number. */
14064 bp,
14065
14066 /* Extracting a location number. */
14067 loc,
14068 };
14069
14070 /* Extract a breakpoint or location number (as determined by KIND)
14071 from the string starting at START. TRAILER is a character which
14072 can be found after the number. If you don't want a trailer, use
14073 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14074 string. This always returns a positive integer. */
14075
14076 static int
14077 extract_bp_num (extract_bp_kind kind, const char *start,
14078 int trailer, const char **end_out = NULL)
14079 {
14080 const char *end = start;
14081 int num = get_number_trailer (&end, trailer);
14082 if (num < 0)
14083 error (kind == extract_bp_kind::bp
14084 ? _("Negative breakpoint number '%.*s'")
14085 : _("Negative breakpoint location number '%.*s'"),
14086 int (end - start), start);
14087 if (num == 0)
14088 error (kind == extract_bp_kind::bp
14089 ? _("Bad breakpoint number '%.*s'")
14090 : _("Bad breakpoint location number '%.*s'"),
14091 int (end - start), start);
14092
14093 if (end_out != NULL)
14094 *end_out = end;
14095 return num;
14096 }
14097
14098 /* Extract a breakpoint or location range (as determined by KIND) in
14099 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14100 representing the (inclusive) range. The returned pair's elements
14101 are always positive integers. */
14102
14103 static std::pair<int, int>
14104 extract_bp_or_bp_range (extract_bp_kind kind,
14105 const std::string &arg,
14106 std::string::size_type arg_offset)
14107 {
14108 std::pair<int, int> range;
14109 const char *bp_loc = &arg[arg_offset];
14110 std::string::size_type dash = arg.find ('-', arg_offset);
14111 if (dash != std::string::npos)
14112 {
14113 /* bp_loc is a range (x-z). */
14114 if (arg.length () == dash + 1)
14115 error (kind == extract_bp_kind::bp
14116 ? _("Bad breakpoint number at or near: '%s'")
14117 : _("Bad breakpoint location number at or near: '%s'"),
14118 bp_loc);
14119
14120 const char *end;
14121 const char *start_first = bp_loc;
14122 const char *start_second = &arg[dash + 1];
14123 range.first = extract_bp_num (kind, start_first, '-');
14124 range.second = extract_bp_num (kind, start_second, '\0', &end);
14125
14126 if (range.first > range.second)
14127 error (kind == extract_bp_kind::bp
14128 ? _("Inverted breakpoint range at '%.*s'")
14129 : _("Inverted breakpoint location range at '%.*s'"),
14130 int (end - start_first), start_first);
14131 }
14132 else
14133 {
14134 /* bp_loc is a single value. */
14135 range.first = extract_bp_num (kind, bp_loc, '\0');
14136 range.second = range.first;
14137 }
14138 return range;
14139 }
14140
14141 /* Extract the breakpoint/location range specified by ARG. Returns
14142 the breakpoint range in BP_NUM_RANGE, and the location range in
14143 BP_LOC_RANGE.
14144
14145 ARG may be in any of the following forms:
14146
14147 x where 'x' is a breakpoint number.
14148 x-y where 'x' and 'y' specify a breakpoint numbers range.
14149 x.y where 'x' is a breakpoint number and 'y' a location number.
14150 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14151 location number range.
14152 */
14153
14154 static void
14155 extract_bp_number_and_location (const std::string &arg,
14156 std::pair<int, int> &bp_num_range,
14157 std::pair<int, int> &bp_loc_range)
14158 {
14159 std::string::size_type dot = arg.find ('.');
14160
14161 if (dot != std::string::npos)
14162 {
14163 /* Handle 'x.y' and 'x.y-z' cases. */
14164
14165 if (arg.length () == dot + 1 || dot == 0)
14166 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14167
14168 bp_num_range.first
14169 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14170 bp_num_range.second = bp_num_range.first;
14171
14172 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14173 arg, dot + 1);
14174 }
14175 else
14176 {
14177 /* Handle x and x-y cases. */
14178
14179 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14180 bp_loc_range.first = 0;
14181 bp_loc_range.second = 0;
14182 }
14183 }
14184
14185 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14186 specifies whether to enable or disable. */
14187
14188 static void
14189 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14190 {
14191 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14192 if (loc != NULL)
14193 {
14194 if (loc->enabled != enable)
14195 {
14196 loc->enabled = enable;
14197 mark_breakpoint_location_modified (loc);
14198 }
14199 if (target_supports_enable_disable_tracepoint ()
14200 && current_trace_status ()->running && loc->owner
14201 && is_tracepoint (loc->owner))
14202 target_disable_tracepoint (loc);
14203 }
14204 update_global_location_list (UGLL_DONT_INSERT);
14205
14206 gdb::observers::breakpoint_modified.notify (loc->owner);
14207 }
14208
14209 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14210 number of the breakpoint, and BP_LOC_RANGE specifies the
14211 (inclusive) range of location numbers of that breakpoint to
14212 enable/disable. ENABLE specifies whether to enable or disable the
14213 location. */
14214
14215 static void
14216 enable_disable_breakpoint_location_range (int bp_num,
14217 std::pair<int, int> &bp_loc_range,
14218 bool enable)
14219 {
14220 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14221 enable_disable_bp_num_loc (bp_num, i, enable);
14222 }
14223
14224 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14225 If from_tty is nonzero, it prints a message to that effect,
14226 which ends with a period (no newline). */
14227
14228 void
14229 disable_breakpoint (struct breakpoint *bpt)
14230 {
14231 /* Never disable a watchpoint scope breakpoint; we want to
14232 hit them when we leave scope so we can delete both the
14233 watchpoint and its scope breakpoint at that time. */
14234 if (bpt->type == bp_watchpoint_scope)
14235 return;
14236
14237 bpt->enable_state = bp_disabled;
14238
14239 /* Mark breakpoint locations modified. */
14240 mark_breakpoint_modified (bpt);
14241
14242 if (target_supports_enable_disable_tracepoint ()
14243 && current_trace_status ()->running && is_tracepoint (bpt))
14244 {
14245 struct bp_location *location;
14246
14247 for (location = bpt->loc; location; location = location->next)
14248 target_disable_tracepoint (location);
14249 }
14250
14251 update_global_location_list (UGLL_DONT_INSERT);
14252
14253 gdb::observers::breakpoint_modified.notify (bpt);
14254 }
14255
14256 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14257 specified in ARGS. ARGS may be in any of the formats handled by
14258 extract_bp_number_and_location. ENABLE specifies whether to enable
14259 or disable the breakpoints/locations. */
14260
14261 static void
14262 enable_disable_command (const char *args, int from_tty, bool enable)
14263 {
14264 if (args == 0)
14265 {
14266 struct breakpoint *bpt;
14267
14268 ALL_BREAKPOINTS (bpt)
14269 if (user_breakpoint_p (bpt))
14270 {
14271 if (enable)
14272 enable_breakpoint (bpt);
14273 else
14274 disable_breakpoint (bpt);
14275 }
14276 }
14277 else
14278 {
14279 std::string num = extract_arg (&args);
14280
14281 while (!num.empty ())
14282 {
14283 std::pair<int, int> bp_num_range, bp_loc_range;
14284
14285 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14286
14287 if (bp_loc_range.first == bp_loc_range.second
14288 && bp_loc_range.first == 0)
14289 {
14290 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14291 map_breakpoint_number_range (bp_num_range,
14292 enable
14293 ? enable_breakpoint
14294 : disable_breakpoint);
14295 }
14296 else
14297 {
14298 /* Handle breakpoint ids with formats 'x.y' or
14299 'x.y-z'. */
14300 enable_disable_breakpoint_location_range
14301 (bp_num_range.first, bp_loc_range, enable);
14302 }
14303 num = extract_arg (&args);
14304 }
14305 }
14306 }
14307
14308 /* The disable command disables the specified breakpoints/locations
14309 (or all defined breakpoints) so they're no longer effective in
14310 stopping the inferior. ARGS may be in any of the forms defined in
14311 extract_bp_number_and_location. */
14312
14313 static void
14314 disable_command (const char *args, int from_tty)
14315 {
14316 enable_disable_command (args, from_tty, false);
14317 }
14318
14319 static void
14320 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14321 int count)
14322 {
14323 int target_resources_ok;
14324
14325 if (bpt->type == bp_hardware_breakpoint)
14326 {
14327 int i;
14328 i = hw_breakpoint_used_count ();
14329 target_resources_ok =
14330 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14331 i + 1, 0);
14332 if (target_resources_ok == 0)
14333 error (_("No hardware breakpoint support in the target."));
14334 else if (target_resources_ok < 0)
14335 error (_("Hardware breakpoints used exceeds limit."));
14336 }
14337
14338 if (is_watchpoint (bpt))
14339 {
14340 /* Initialize it just to avoid a GCC false warning. */
14341 enum enable_state orig_enable_state = bp_disabled;
14342
14343 TRY
14344 {
14345 struct watchpoint *w = (struct watchpoint *) bpt;
14346
14347 orig_enable_state = bpt->enable_state;
14348 bpt->enable_state = bp_enabled;
14349 update_watchpoint (w, 1 /* reparse */);
14350 }
14351 CATCH (e, RETURN_MASK_ALL)
14352 {
14353 bpt->enable_state = orig_enable_state;
14354 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14355 bpt->number);
14356 return;
14357 }
14358 END_CATCH
14359 }
14360
14361 bpt->enable_state = bp_enabled;
14362
14363 /* Mark breakpoint locations modified. */
14364 mark_breakpoint_modified (bpt);
14365
14366 if (target_supports_enable_disable_tracepoint ()
14367 && current_trace_status ()->running && is_tracepoint (bpt))
14368 {
14369 struct bp_location *location;
14370
14371 for (location = bpt->loc; location; location = location->next)
14372 target_enable_tracepoint (location);
14373 }
14374
14375 bpt->disposition = disposition;
14376 bpt->enable_count = count;
14377 update_global_location_list (UGLL_MAY_INSERT);
14378
14379 gdb::observers::breakpoint_modified.notify (bpt);
14380 }
14381
14382
14383 void
14384 enable_breakpoint (struct breakpoint *bpt)
14385 {
14386 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14387 }
14388
14389 /* The enable command enables the specified breakpoints/locations (or
14390 all defined breakpoints) so they once again become (or continue to
14391 be) effective in stopping the inferior. ARGS may be in any of the
14392 forms defined in extract_bp_number_and_location. */
14393
14394 static void
14395 enable_command (const char *args, int from_tty)
14396 {
14397 enable_disable_command (args, from_tty, true);
14398 }
14399
14400 static void
14401 enable_once_command (const char *args, int from_tty)
14402 {
14403 map_breakpoint_numbers
14404 (args, [&] (breakpoint *b)
14405 {
14406 iterate_over_related_breakpoints
14407 (b, [&] (breakpoint *bpt)
14408 {
14409 enable_breakpoint_disp (bpt, disp_disable, 1);
14410 });
14411 });
14412 }
14413
14414 static void
14415 enable_count_command (const char *args, int from_tty)
14416 {
14417 int count;
14418
14419 if (args == NULL)
14420 error_no_arg (_("hit count"));
14421
14422 count = get_number (&args);
14423
14424 map_breakpoint_numbers
14425 (args, [&] (breakpoint *b)
14426 {
14427 iterate_over_related_breakpoints
14428 (b, [&] (breakpoint *bpt)
14429 {
14430 enable_breakpoint_disp (bpt, disp_disable, count);
14431 });
14432 });
14433 }
14434
14435 static void
14436 enable_delete_command (const char *args, int from_tty)
14437 {
14438 map_breakpoint_numbers
14439 (args, [&] (breakpoint *b)
14440 {
14441 iterate_over_related_breakpoints
14442 (b, [&] (breakpoint *bpt)
14443 {
14444 enable_breakpoint_disp (bpt, disp_del, 1);
14445 });
14446 });
14447 }
14448 \f
14449 static void
14450 set_breakpoint_cmd (const char *args, int from_tty)
14451 {
14452 }
14453
14454 static void
14455 show_breakpoint_cmd (const char *args, int from_tty)
14456 {
14457 }
14458
14459 /* Invalidate last known value of any hardware watchpoint if
14460 the memory which that value represents has been written to by
14461 GDB itself. */
14462
14463 static void
14464 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14465 CORE_ADDR addr, ssize_t len,
14466 const bfd_byte *data)
14467 {
14468 struct breakpoint *bp;
14469
14470 ALL_BREAKPOINTS (bp)
14471 if (bp->enable_state == bp_enabled
14472 && bp->type == bp_hardware_watchpoint)
14473 {
14474 struct watchpoint *wp = (struct watchpoint *) bp;
14475
14476 if (wp->val_valid && wp->val != nullptr)
14477 {
14478 struct bp_location *loc;
14479
14480 for (loc = bp->loc; loc != NULL; loc = loc->next)
14481 if (loc->loc_type == bp_loc_hardware_watchpoint
14482 && loc->address + loc->length > addr
14483 && addr + len > loc->address)
14484 {
14485 wp->val = NULL;
14486 wp->val_valid = 0;
14487 }
14488 }
14489 }
14490 }
14491
14492 /* Create and insert a breakpoint for software single step. */
14493
14494 void
14495 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14496 const address_space *aspace,
14497 CORE_ADDR next_pc)
14498 {
14499 struct thread_info *tp = inferior_thread ();
14500 struct symtab_and_line sal;
14501 CORE_ADDR pc = next_pc;
14502
14503 if (tp->control.single_step_breakpoints == NULL)
14504 {
14505 tp->control.single_step_breakpoints
14506 = new_single_step_breakpoint (tp->global_num, gdbarch);
14507 }
14508
14509 sal = find_pc_line (pc, 0);
14510 sal.pc = pc;
14511 sal.section = find_pc_overlay (pc);
14512 sal.explicit_pc = 1;
14513 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14514
14515 update_global_location_list (UGLL_INSERT);
14516 }
14517
14518 /* Insert single step breakpoints according to the current state. */
14519
14520 int
14521 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14522 {
14523 struct regcache *regcache = get_current_regcache ();
14524 std::vector<CORE_ADDR> next_pcs;
14525
14526 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14527
14528 if (!next_pcs.empty ())
14529 {
14530 struct frame_info *frame = get_current_frame ();
14531 const address_space *aspace = get_frame_address_space (frame);
14532
14533 for (CORE_ADDR pc : next_pcs)
14534 insert_single_step_breakpoint (gdbarch, aspace, pc);
14535
14536 return 1;
14537 }
14538 else
14539 return 0;
14540 }
14541
14542 /* See breakpoint.h. */
14543
14544 int
14545 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14546 const address_space *aspace,
14547 CORE_ADDR pc)
14548 {
14549 struct bp_location *loc;
14550
14551 for (loc = bp->loc; loc != NULL; loc = loc->next)
14552 if (loc->inserted
14553 && breakpoint_location_address_match (loc, aspace, pc))
14554 return 1;
14555
14556 return 0;
14557 }
14558
14559 /* Check whether a software single-step breakpoint is inserted at
14560 PC. */
14561
14562 int
14563 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14564 CORE_ADDR pc)
14565 {
14566 struct breakpoint *bpt;
14567
14568 ALL_BREAKPOINTS (bpt)
14569 {
14570 if (bpt->type == bp_single_step
14571 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14572 return 1;
14573 }
14574 return 0;
14575 }
14576
14577 /* Tracepoint-specific operations. */
14578
14579 /* Set tracepoint count to NUM. */
14580 static void
14581 set_tracepoint_count (int num)
14582 {
14583 tracepoint_count = num;
14584 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14585 }
14586
14587 static void
14588 trace_command (const char *arg, int from_tty)
14589 {
14590 struct breakpoint_ops *ops;
14591
14592 event_location_up location = string_to_event_location (&arg,
14593 current_language);
14594 if (location != NULL
14595 && event_location_type (location.get ()) == PROBE_LOCATION)
14596 ops = &tracepoint_probe_breakpoint_ops;
14597 else
14598 ops = &tracepoint_breakpoint_ops;
14599
14600 create_breakpoint (get_current_arch (),
14601 location.get (),
14602 NULL, 0, arg, 1 /* parse arg */,
14603 0 /* tempflag */,
14604 bp_tracepoint /* type_wanted */,
14605 0 /* Ignore count */,
14606 pending_break_support,
14607 ops,
14608 from_tty,
14609 1 /* enabled */,
14610 0 /* internal */, 0);
14611 }
14612
14613 static void
14614 ftrace_command (const char *arg, int from_tty)
14615 {
14616 event_location_up location = string_to_event_location (&arg,
14617 current_language);
14618 create_breakpoint (get_current_arch (),
14619 location.get (),
14620 NULL, 0, arg, 1 /* parse arg */,
14621 0 /* tempflag */,
14622 bp_fast_tracepoint /* type_wanted */,
14623 0 /* Ignore count */,
14624 pending_break_support,
14625 &tracepoint_breakpoint_ops,
14626 from_tty,
14627 1 /* enabled */,
14628 0 /* internal */, 0);
14629 }
14630
14631 /* strace command implementation. Creates a static tracepoint. */
14632
14633 static void
14634 strace_command (const char *arg, int from_tty)
14635 {
14636 struct breakpoint_ops *ops;
14637 event_location_up location;
14638
14639 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14640 or with a normal static tracepoint. */
14641 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14642 {
14643 ops = &strace_marker_breakpoint_ops;
14644 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14645 }
14646 else
14647 {
14648 ops = &tracepoint_breakpoint_ops;
14649 location = string_to_event_location (&arg, current_language);
14650 }
14651
14652 create_breakpoint (get_current_arch (),
14653 location.get (),
14654 NULL, 0, arg, 1 /* parse arg */,
14655 0 /* tempflag */,
14656 bp_static_tracepoint /* type_wanted */,
14657 0 /* Ignore count */,
14658 pending_break_support,
14659 ops,
14660 from_tty,
14661 1 /* enabled */,
14662 0 /* internal */, 0);
14663 }
14664
14665 /* Set up a fake reader function that gets command lines from a linked
14666 list that was acquired during tracepoint uploading. */
14667
14668 static struct uploaded_tp *this_utp;
14669 static int next_cmd;
14670
14671 static char *
14672 read_uploaded_action (void)
14673 {
14674 char *rslt = nullptr;
14675
14676 if (next_cmd < this_utp->cmd_strings.size ())
14677 {
14678 rslt = this_utp->cmd_strings[next_cmd].get ();
14679 next_cmd++;
14680 }
14681
14682 return rslt;
14683 }
14684
14685 /* Given information about a tracepoint as recorded on a target (which
14686 can be either a live system or a trace file), attempt to create an
14687 equivalent GDB tracepoint. This is not a reliable process, since
14688 the target does not necessarily have all the information used when
14689 the tracepoint was originally defined. */
14690
14691 struct tracepoint *
14692 create_tracepoint_from_upload (struct uploaded_tp *utp)
14693 {
14694 const char *addr_str;
14695 char small_buf[100];
14696 struct tracepoint *tp;
14697
14698 if (utp->at_string)
14699 addr_str = utp->at_string.get ();
14700 else
14701 {
14702 /* In the absence of a source location, fall back to raw
14703 address. Since there is no way to confirm that the address
14704 means the same thing as when the trace was started, warn the
14705 user. */
14706 warning (_("Uploaded tracepoint %d has no "
14707 "source location, using raw address"),
14708 utp->number);
14709 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14710 addr_str = small_buf;
14711 }
14712
14713 /* There's not much we can do with a sequence of bytecodes. */
14714 if (utp->cond && !utp->cond_string)
14715 warning (_("Uploaded tracepoint %d condition "
14716 "has no source form, ignoring it"),
14717 utp->number);
14718
14719 event_location_up location = string_to_event_location (&addr_str,
14720 current_language);
14721 if (!create_breakpoint (get_current_arch (),
14722 location.get (),
14723 utp->cond_string.get (), -1, addr_str,
14724 0 /* parse cond/thread */,
14725 0 /* tempflag */,
14726 utp->type /* type_wanted */,
14727 0 /* Ignore count */,
14728 pending_break_support,
14729 &tracepoint_breakpoint_ops,
14730 0 /* from_tty */,
14731 utp->enabled /* enabled */,
14732 0 /* internal */,
14733 CREATE_BREAKPOINT_FLAGS_INSERTED))
14734 return NULL;
14735
14736 /* Get the tracepoint we just created. */
14737 tp = get_tracepoint (tracepoint_count);
14738 gdb_assert (tp != NULL);
14739
14740 if (utp->pass > 0)
14741 {
14742 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14743 tp->number);
14744
14745 trace_pass_command (small_buf, 0);
14746 }
14747
14748 /* If we have uploaded versions of the original commands, set up a
14749 special-purpose "reader" function and call the usual command line
14750 reader, then pass the result to the breakpoint command-setting
14751 function. */
14752 if (!utp->cmd_strings.empty ())
14753 {
14754 counted_command_line cmd_list;
14755
14756 this_utp = utp;
14757 next_cmd = 0;
14758
14759 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14760
14761 breakpoint_set_commands (tp, std::move (cmd_list));
14762 }
14763 else if (!utp->actions.empty ()
14764 || !utp->step_actions.empty ())
14765 warning (_("Uploaded tracepoint %d actions "
14766 "have no source form, ignoring them"),
14767 utp->number);
14768
14769 /* Copy any status information that might be available. */
14770 tp->hit_count = utp->hit_count;
14771 tp->traceframe_usage = utp->traceframe_usage;
14772
14773 return tp;
14774 }
14775
14776 /* Print information on tracepoint number TPNUM_EXP, or all if
14777 omitted. */
14778
14779 static void
14780 info_tracepoints_command (const char *args, int from_tty)
14781 {
14782 struct ui_out *uiout = current_uiout;
14783 int num_printed;
14784
14785 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14786
14787 if (num_printed == 0)
14788 {
14789 if (args == NULL || *args == '\0')
14790 uiout->message ("No tracepoints.\n");
14791 else
14792 uiout->message ("No tracepoint matching '%s'.\n", args);
14793 }
14794
14795 default_collect_info ();
14796 }
14797
14798 /* The 'enable trace' command enables tracepoints.
14799 Not supported by all targets. */
14800 static void
14801 enable_trace_command (const char *args, int from_tty)
14802 {
14803 enable_command (args, from_tty);
14804 }
14805
14806 /* The 'disable trace' command disables tracepoints.
14807 Not supported by all targets. */
14808 static void
14809 disable_trace_command (const char *args, int from_tty)
14810 {
14811 disable_command (args, from_tty);
14812 }
14813
14814 /* Remove a tracepoint (or all if no argument). */
14815 static void
14816 delete_trace_command (const char *arg, int from_tty)
14817 {
14818 struct breakpoint *b, *b_tmp;
14819
14820 dont_repeat ();
14821
14822 if (arg == 0)
14823 {
14824 int breaks_to_delete = 0;
14825
14826 /* Delete all breakpoints if no argument.
14827 Do not delete internal or call-dummy breakpoints, these
14828 have to be deleted with an explicit breakpoint number
14829 argument. */
14830 ALL_TRACEPOINTS (b)
14831 if (is_tracepoint (b) && user_breakpoint_p (b))
14832 {
14833 breaks_to_delete = 1;
14834 break;
14835 }
14836
14837 /* Ask user only if there are some breakpoints to delete. */
14838 if (!from_tty
14839 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14840 {
14841 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14842 if (is_tracepoint (b) && user_breakpoint_p (b))
14843 delete_breakpoint (b);
14844 }
14845 }
14846 else
14847 map_breakpoint_numbers
14848 (arg, [&] (breakpoint *br)
14849 {
14850 iterate_over_related_breakpoints (br, delete_breakpoint);
14851 });
14852 }
14853
14854 /* Helper function for trace_pass_command. */
14855
14856 static void
14857 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14858 {
14859 tp->pass_count = count;
14860 gdb::observers::breakpoint_modified.notify (tp);
14861 if (from_tty)
14862 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14863 tp->number, count);
14864 }
14865
14866 /* Set passcount for tracepoint.
14867
14868 First command argument is passcount, second is tracepoint number.
14869 If tracepoint number omitted, apply to most recently defined.
14870 Also accepts special argument "all". */
14871
14872 static void
14873 trace_pass_command (const char *args, int from_tty)
14874 {
14875 struct tracepoint *t1;
14876 ULONGEST count;
14877
14878 if (args == 0 || *args == 0)
14879 error (_("passcount command requires an "
14880 "argument (count + optional TP num)"));
14881
14882 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14883
14884 args = skip_spaces (args);
14885 if (*args && strncasecmp (args, "all", 3) == 0)
14886 {
14887 struct breakpoint *b;
14888
14889 args += 3; /* Skip special argument "all". */
14890 if (*args)
14891 error (_("Junk at end of arguments."));
14892
14893 ALL_TRACEPOINTS (b)
14894 {
14895 t1 = (struct tracepoint *) b;
14896 trace_pass_set_count (t1, count, from_tty);
14897 }
14898 }
14899 else if (*args == '\0')
14900 {
14901 t1 = get_tracepoint_by_number (&args, NULL);
14902 if (t1)
14903 trace_pass_set_count (t1, count, from_tty);
14904 }
14905 else
14906 {
14907 number_or_range_parser parser (args);
14908 while (!parser.finished ())
14909 {
14910 t1 = get_tracepoint_by_number (&args, &parser);
14911 if (t1)
14912 trace_pass_set_count (t1, count, from_tty);
14913 }
14914 }
14915 }
14916
14917 struct tracepoint *
14918 get_tracepoint (int num)
14919 {
14920 struct breakpoint *t;
14921
14922 ALL_TRACEPOINTS (t)
14923 if (t->number == num)
14924 return (struct tracepoint *) t;
14925
14926 return NULL;
14927 }
14928
14929 /* Find the tracepoint with the given target-side number (which may be
14930 different from the tracepoint number after disconnecting and
14931 reconnecting). */
14932
14933 struct tracepoint *
14934 get_tracepoint_by_number_on_target (int num)
14935 {
14936 struct breakpoint *b;
14937
14938 ALL_TRACEPOINTS (b)
14939 {
14940 struct tracepoint *t = (struct tracepoint *) b;
14941
14942 if (t->number_on_target == num)
14943 return t;
14944 }
14945
14946 return NULL;
14947 }
14948
14949 /* Utility: parse a tracepoint number and look it up in the list.
14950 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14951 If the argument is missing, the most recent tracepoint
14952 (tracepoint_count) is returned. */
14953
14954 struct tracepoint *
14955 get_tracepoint_by_number (const char **arg,
14956 number_or_range_parser *parser)
14957 {
14958 struct breakpoint *t;
14959 int tpnum;
14960 const char *instring = arg == NULL ? NULL : *arg;
14961
14962 if (parser != NULL)
14963 {
14964 gdb_assert (!parser->finished ());
14965 tpnum = parser->get_number ();
14966 }
14967 else if (arg == NULL || *arg == NULL || ! **arg)
14968 tpnum = tracepoint_count;
14969 else
14970 tpnum = get_number (arg);
14971
14972 if (tpnum <= 0)
14973 {
14974 if (instring && *instring)
14975 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14976 instring);
14977 else
14978 printf_filtered (_("No previous tracepoint\n"));
14979 return NULL;
14980 }
14981
14982 ALL_TRACEPOINTS (t)
14983 if (t->number == tpnum)
14984 {
14985 return (struct tracepoint *) t;
14986 }
14987
14988 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14989 return NULL;
14990 }
14991
14992 void
14993 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14994 {
14995 if (b->thread != -1)
14996 fprintf_unfiltered (fp, " thread %d", b->thread);
14997
14998 if (b->task != 0)
14999 fprintf_unfiltered (fp, " task %d", b->task);
15000
15001 fprintf_unfiltered (fp, "\n");
15002 }
15003
15004 /* Save information on user settable breakpoints (watchpoints, etc) to
15005 a new script file named FILENAME. If FILTER is non-NULL, call it
15006 on each breakpoint and only include the ones for which it returns
15007 non-zero. */
15008
15009 static void
15010 save_breakpoints (const char *filename, int from_tty,
15011 int (*filter) (const struct breakpoint *))
15012 {
15013 struct breakpoint *tp;
15014 int any = 0;
15015 int extra_trace_bits = 0;
15016
15017 if (filename == 0 || *filename == 0)
15018 error (_("Argument required (file name in which to save)"));
15019
15020 /* See if we have anything to save. */
15021 ALL_BREAKPOINTS (tp)
15022 {
15023 /* Skip internal and momentary breakpoints. */
15024 if (!user_breakpoint_p (tp))
15025 continue;
15026
15027 /* If we have a filter, only save the breakpoints it accepts. */
15028 if (filter && !filter (tp))
15029 continue;
15030
15031 any = 1;
15032
15033 if (is_tracepoint (tp))
15034 {
15035 extra_trace_bits = 1;
15036
15037 /* We can stop searching. */
15038 break;
15039 }
15040 }
15041
15042 if (!any)
15043 {
15044 warning (_("Nothing to save."));
15045 return;
15046 }
15047
15048 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15049
15050 stdio_file fp;
15051
15052 if (!fp.open (expanded_filename.get (), "w"))
15053 error (_("Unable to open file '%s' for saving (%s)"),
15054 expanded_filename.get (), safe_strerror (errno));
15055
15056 if (extra_trace_bits)
15057 save_trace_state_variables (&fp);
15058
15059 ALL_BREAKPOINTS (tp)
15060 {
15061 /* Skip internal and momentary breakpoints. */
15062 if (!user_breakpoint_p (tp))
15063 continue;
15064
15065 /* If we have a filter, only save the breakpoints it accepts. */
15066 if (filter && !filter (tp))
15067 continue;
15068
15069 tp->ops->print_recreate (tp, &fp);
15070
15071 /* Note, we can't rely on tp->number for anything, as we can't
15072 assume the recreated breakpoint numbers will match. Use $bpnum
15073 instead. */
15074
15075 if (tp->cond_string)
15076 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15077
15078 if (tp->ignore_count)
15079 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15080
15081 if (tp->type != bp_dprintf && tp->commands)
15082 {
15083 fp.puts (" commands\n");
15084
15085 current_uiout->redirect (&fp);
15086 TRY
15087 {
15088 print_command_lines (current_uiout, tp->commands.get (), 2);
15089 }
15090 CATCH (ex, RETURN_MASK_ALL)
15091 {
15092 current_uiout->redirect (NULL);
15093 throw_exception (ex);
15094 }
15095 END_CATCH
15096
15097 current_uiout->redirect (NULL);
15098 fp.puts (" end\n");
15099 }
15100
15101 if (tp->enable_state == bp_disabled)
15102 fp.puts ("disable $bpnum\n");
15103
15104 /* If this is a multi-location breakpoint, check if the locations
15105 should be individually disabled. Watchpoint locations are
15106 special, and not user visible. */
15107 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15108 {
15109 struct bp_location *loc;
15110 int n = 1;
15111
15112 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15113 if (!loc->enabled)
15114 fp.printf ("disable $bpnum.%d\n", n);
15115 }
15116 }
15117
15118 if (extra_trace_bits && *default_collect)
15119 fp.printf ("set default-collect %s\n", default_collect);
15120
15121 if (from_tty)
15122 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15123 }
15124
15125 /* The `save breakpoints' command. */
15126
15127 static void
15128 save_breakpoints_command (const char *args, int from_tty)
15129 {
15130 save_breakpoints (args, from_tty, NULL);
15131 }
15132
15133 /* The `save tracepoints' command. */
15134
15135 static void
15136 save_tracepoints_command (const char *args, int from_tty)
15137 {
15138 save_breakpoints (args, from_tty, is_tracepoint);
15139 }
15140
15141 /* Create a vector of all tracepoints. */
15142
15143 std::vector<breakpoint *>
15144 all_tracepoints (void)
15145 {
15146 std::vector<breakpoint *> tp_vec;
15147 struct breakpoint *tp;
15148
15149 ALL_TRACEPOINTS (tp)
15150 {
15151 tp_vec.push_back (tp);
15152 }
15153
15154 return tp_vec;
15155 }
15156
15157 \f
15158 /* This help string is used to consolidate all the help string for specifying
15159 locations used by several commands. */
15160
15161 #define LOCATION_HELP_STRING \
15162 "Linespecs are colon-separated lists of location parameters, such as\n\
15163 source filename, function name, label name, and line number.\n\
15164 Example: To specify the start of a label named \"the_top\" in the\n\
15165 function \"fact\" in the file \"factorial.c\", use\n\
15166 \"factorial.c:fact:the_top\".\n\
15167 \n\
15168 Address locations begin with \"*\" and specify an exact address in the\n\
15169 program. Example: To specify the fourth byte past the start function\n\
15170 \"main\", use \"*main + 4\".\n\
15171 \n\
15172 Explicit locations are similar to linespecs but use an option/argument\n\
15173 syntax to specify location parameters.\n\
15174 Example: To specify the start of the label named \"the_top\" in the\n\
15175 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15176 -function fact -label the_top\".\n\
15177 \n\
15178 By default, a specified function is matched against the program's\n\
15179 functions in all scopes. For C++, this means in all namespaces and\n\
15180 classes. For Ada, this means in all packages. E.g., in C++,\n\
15181 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15182 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15183 specified name as a complete fully-qualified name instead.\n"
15184
15185 /* This help string is used for the break, hbreak, tbreak and thbreak
15186 commands. It is defined as a macro to prevent duplication.
15187 COMMAND should be a string constant containing the name of the
15188 command. */
15189
15190 #define BREAK_ARGS_HELP(command) \
15191 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15192 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15193 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15194 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15195 `-probe-dtrace' (for a DTrace probe).\n\
15196 LOCATION may be a linespec, address, or explicit location as described\n\
15197 below.\n\
15198 \n\
15199 With no LOCATION, uses current execution address of the selected\n\
15200 stack frame. This is useful for breaking on return to a stack frame.\n\
15201 \n\
15202 THREADNUM is the number from \"info threads\".\n\
15203 CONDITION is a boolean expression.\n\
15204 \n" LOCATION_HELP_STRING "\n\
15205 Multiple breakpoints at one place are permitted, and useful if their\n\
15206 conditions are different.\n\
15207 \n\
15208 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15209
15210 /* List of subcommands for "catch". */
15211 static struct cmd_list_element *catch_cmdlist;
15212
15213 /* List of subcommands for "tcatch". */
15214 static struct cmd_list_element *tcatch_cmdlist;
15215
15216 void
15217 add_catch_command (const char *name, const char *docstring,
15218 cmd_const_sfunc_ftype *sfunc,
15219 completer_ftype *completer,
15220 void *user_data_catch,
15221 void *user_data_tcatch)
15222 {
15223 struct cmd_list_element *command;
15224
15225 command = add_cmd (name, class_breakpoint, docstring,
15226 &catch_cmdlist);
15227 set_cmd_sfunc (command, sfunc);
15228 set_cmd_context (command, user_data_catch);
15229 set_cmd_completer (command, completer);
15230
15231 command = add_cmd (name, class_breakpoint, docstring,
15232 &tcatch_cmdlist);
15233 set_cmd_sfunc (command, sfunc);
15234 set_cmd_context (command, user_data_tcatch);
15235 set_cmd_completer (command, completer);
15236 }
15237
15238 static void
15239 save_command (const char *arg, int from_tty)
15240 {
15241 printf_unfiltered (_("\"save\" must be followed by "
15242 "the name of a save subcommand.\n"));
15243 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15244 }
15245
15246 struct breakpoint *
15247 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15248 void *data)
15249 {
15250 struct breakpoint *b, *b_tmp;
15251
15252 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15253 {
15254 if ((*callback) (b, data))
15255 return b;
15256 }
15257
15258 return NULL;
15259 }
15260
15261 /* Zero if any of the breakpoint's locations could be a location where
15262 functions have been inlined, nonzero otherwise. */
15263
15264 static int
15265 is_non_inline_function (struct breakpoint *b)
15266 {
15267 /* The shared library event breakpoint is set on the address of a
15268 non-inline function. */
15269 if (b->type == bp_shlib_event)
15270 return 1;
15271
15272 return 0;
15273 }
15274
15275 /* Nonzero if the specified PC cannot be a location where functions
15276 have been inlined. */
15277
15278 int
15279 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15280 const struct target_waitstatus *ws)
15281 {
15282 struct breakpoint *b;
15283 struct bp_location *bl;
15284
15285 ALL_BREAKPOINTS (b)
15286 {
15287 if (!is_non_inline_function (b))
15288 continue;
15289
15290 for (bl = b->loc; bl != NULL; bl = bl->next)
15291 {
15292 if (!bl->shlib_disabled
15293 && bpstat_check_location (bl, aspace, pc, ws))
15294 return 1;
15295 }
15296 }
15297
15298 return 0;
15299 }
15300
15301 /* Remove any references to OBJFILE which is going to be freed. */
15302
15303 void
15304 breakpoint_free_objfile (struct objfile *objfile)
15305 {
15306 struct bp_location **locp, *loc;
15307
15308 ALL_BP_LOCATIONS (loc, locp)
15309 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15310 loc->symtab = NULL;
15311 }
15312
15313 void
15314 initialize_breakpoint_ops (void)
15315 {
15316 static int initialized = 0;
15317
15318 struct breakpoint_ops *ops;
15319
15320 if (initialized)
15321 return;
15322 initialized = 1;
15323
15324 /* The breakpoint_ops structure to be inherit by all kinds of
15325 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15326 internal and momentary breakpoints, etc.). */
15327 ops = &bkpt_base_breakpoint_ops;
15328 *ops = base_breakpoint_ops;
15329 ops->re_set = bkpt_re_set;
15330 ops->insert_location = bkpt_insert_location;
15331 ops->remove_location = bkpt_remove_location;
15332 ops->breakpoint_hit = bkpt_breakpoint_hit;
15333 ops->create_sals_from_location = bkpt_create_sals_from_location;
15334 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15335 ops->decode_location = bkpt_decode_location;
15336
15337 /* The breakpoint_ops structure to be used in regular breakpoints. */
15338 ops = &bkpt_breakpoint_ops;
15339 *ops = bkpt_base_breakpoint_ops;
15340 ops->re_set = bkpt_re_set;
15341 ops->resources_needed = bkpt_resources_needed;
15342 ops->print_it = bkpt_print_it;
15343 ops->print_mention = bkpt_print_mention;
15344 ops->print_recreate = bkpt_print_recreate;
15345
15346 /* Ranged breakpoints. */
15347 ops = &ranged_breakpoint_ops;
15348 *ops = bkpt_breakpoint_ops;
15349 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15350 ops->resources_needed = resources_needed_ranged_breakpoint;
15351 ops->print_it = print_it_ranged_breakpoint;
15352 ops->print_one = print_one_ranged_breakpoint;
15353 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15354 ops->print_mention = print_mention_ranged_breakpoint;
15355 ops->print_recreate = print_recreate_ranged_breakpoint;
15356
15357 /* Internal breakpoints. */
15358 ops = &internal_breakpoint_ops;
15359 *ops = bkpt_base_breakpoint_ops;
15360 ops->re_set = internal_bkpt_re_set;
15361 ops->check_status = internal_bkpt_check_status;
15362 ops->print_it = internal_bkpt_print_it;
15363 ops->print_mention = internal_bkpt_print_mention;
15364
15365 /* Momentary breakpoints. */
15366 ops = &momentary_breakpoint_ops;
15367 *ops = bkpt_base_breakpoint_ops;
15368 ops->re_set = momentary_bkpt_re_set;
15369 ops->check_status = momentary_bkpt_check_status;
15370 ops->print_it = momentary_bkpt_print_it;
15371 ops->print_mention = momentary_bkpt_print_mention;
15372
15373 /* Probe breakpoints. */
15374 ops = &bkpt_probe_breakpoint_ops;
15375 *ops = bkpt_breakpoint_ops;
15376 ops->insert_location = bkpt_probe_insert_location;
15377 ops->remove_location = bkpt_probe_remove_location;
15378 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15379 ops->decode_location = bkpt_probe_decode_location;
15380
15381 /* Watchpoints. */
15382 ops = &watchpoint_breakpoint_ops;
15383 *ops = base_breakpoint_ops;
15384 ops->re_set = re_set_watchpoint;
15385 ops->insert_location = insert_watchpoint;
15386 ops->remove_location = remove_watchpoint;
15387 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15388 ops->check_status = check_status_watchpoint;
15389 ops->resources_needed = resources_needed_watchpoint;
15390 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15391 ops->print_it = print_it_watchpoint;
15392 ops->print_mention = print_mention_watchpoint;
15393 ops->print_recreate = print_recreate_watchpoint;
15394 ops->explains_signal = explains_signal_watchpoint;
15395
15396 /* Masked watchpoints. */
15397 ops = &masked_watchpoint_breakpoint_ops;
15398 *ops = watchpoint_breakpoint_ops;
15399 ops->insert_location = insert_masked_watchpoint;
15400 ops->remove_location = remove_masked_watchpoint;
15401 ops->resources_needed = resources_needed_masked_watchpoint;
15402 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15403 ops->print_it = print_it_masked_watchpoint;
15404 ops->print_one_detail = print_one_detail_masked_watchpoint;
15405 ops->print_mention = print_mention_masked_watchpoint;
15406 ops->print_recreate = print_recreate_masked_watchpoint;
15407
15408 /* Tracepoints. */
15409 ops = &tracepoint_breakpoint_ops;
15410 *ops = base_breakpoint_ops;
15411 ops->re_set = tracepoint_re_set;
15412 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15413 ops->print_one_detail = tracepoint_print_one_detail;
15414 ops->print_mention = tracepoint_print_mention;
15415 ops->print_recreate = tracepoint_print_recreate;
15416 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15417 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15418 ops->decode_location = tracepoint_decode_location;
15419
15420 /* Probe tracepoints. */
15421 ops = &tracepoint_probe_breakpoint_ops;
15422 *ops = tracepoint_breakpoint_ops;
15423 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15424 ops->decode_location = tracepoint_probe_decode_location;
15425
15426 /* Static tracepoints with marker (`-m'). */
15427 ops = &strace_marker_breakpoint_ops;
15428 *ops = tracepoint_breakpoint_ops;
15429 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15430 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15431 ops->decode_location = strace_marker_decode_location;
15432
15433 /* Fork catchpoints. */
15434 ops = &catch_fork_breakpoint_ops;
15435 *ops = base_breakpoint_ops;
15436 ops->insert_location = insert_catch_fork;
15437 ops->remove_location = remove_catch_fork;
15438 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15439 ops->print_it = print_it_catch_fork;
15440 ops->print_one = print_one_catch_fork;
15441 ops->print_mention = print_mention_catch_fork;
15442 ops->print_recreate = print_recreate_catch_fork;
15443
15444 /* Vfork catchpoints. */
15445 ops = &catch_vfork_breakpoint_ops;
15446 *ops = base_breakpoint_ops;
15447 ops->insert_location = insert_catch_vfork;
15448 ops->remove_location = remove_catch_vfork;
15449 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15450 ops->print_it = print_it_catch_vfork;
15451 ops->print_one = print_one_catch_vfork;
15452 ops->print_mention = print_mention_catch_vfork;
15453 ops->print_recreate = print_recreate_catch_vfork;
15454
15455 /* Exec catchpoints. */
15456 ops = &catch_exec_breakpoint_ops;
15457 *ops = base_breakpoint_ops;
15458 ops->insert_location = insert_catch_exec;
15459 ops->remove_location = remove_catch_exec;
15460 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15461 ops->print_it = print_it_catch_exec;
15462 ops->print_one = print_one_catch_exec;
15463 ops->print_mention = print_mention_catch_exec;
15464 ops->print_recreate = print_recreate_catch_exec;
15465
15466 /* Solib-related catchpoints. */
15467 ops = &catch_solib_breakpoint_ops;
15468 *ops = base_breakpoint_ops;
15469 ops->insert_location = insert_catch_solib;
15470 ops->remove_location = remove_catch_solib;
15471 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15472 ops->check_status = check_status_catch_solib;
15473 ops->print_it = print_it_catch_solib;
15474 ops->print_one = print_one_catch_solib;
15475 ops->print_mention = print_mention_catch_solib;
15476 ops->print_recreate = print_recreate_catch_solib;
15477
15478 ops = &dprintf_breakpoint_ops;
15479 *ops = bkpt_base_breakpoint_ops;
15480 ops->re_set = dprintf_re_set;
15481 ops->resources_needed = bkpt_resources_needed;
15482 ops->print_it = bkpt_print_it;
15483 ops->print_mention = bkpt_print_mention;
15484 ops->print_recreate = dprintf_print_recreate;
15485 ops->after_condition_true = dprintf_after_condition_true;
15486 ops->breakpoint_hit = dprintf_breakpoint_hit;
15487 }
15488
15489 /* Chain containing all defined "enable breakpoint" subcommands. */
15490
15491 static struct cmd_list_element *enablebreaklist = NULL;
15492
15493 /* See breakpoint.h. */
15494
15495 cmd_list_element *commands_cmd_element = nullptr;
15496
15497 void
15498 _initialize_breakpoint (void)
15499 {
15500 struct cmd_list_element *c;
15501
15502 initialize_breakpoint_ops ();
15503
15504 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15505 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15506 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15507
15508 breakpoint_objfile_key
15509 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15510
15511 breakpoint_chain = 0;
15512 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15513 before a breakpoint is set. */
15514 breakpoint_count = 0;
15515
15516 tracepoint_count = 0;
15517
15518 add_com ("ignore", class_breakpoint, ignore_command, _("\
15519 Set ignore-count of breakpoint number N to COUNT.\n\
15520 Usage is `ignore N COUNT'."));
15521
15522 commands_cmd_element = add_com ("commands", class_breakpoint,
15523 commands_command, _("\
15524 Set commands to be executed when the given breakpoints are hit.\n\
15525 Give a space-separated breakpoint list as argument after \"commands\".\n\
15526 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15527 (e.g. `5-7').\n\
15528 With no argument, the targeted breakpoint is the last one set.\n\
15529 The commands themselves follow starting on the next line.\n\
15530 Type a line containing \"end\" to indicate the end of them.\n\
15531 Give \"silent\" as the first line to make the breakpoint silent;\n\
15532 then no output is printed when it is hit, except what the commands print."));
15533
15534 c = add_com ("condition", class_breakpoint, condition_command, _("\
15535 Specify breakpoint number N to break only if COND is true.\n\
15536 Usage is `condition N COND', where N is an integer and COND is an\n\
15537 expression to be evaluated whenever breakpoint N is reached."));
15538 set_cmd_completer (c, condition_completer);
15539
15540 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15541 Set a temporary breakpoint.\n\
15542 Like \"break\" except the breakpoint is only temporary,\n\
15543 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15544 by using \"enable delete\" on the breakpoint number.\n\
15545 \n"
15546 BREAK_ARGS_HELP ("tbreak")));
15547 set_cmd_completer (c, location_completer);
15548
15549 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15550 Set a hardware assisted breakpoint.\n\
15551 Like \"break\" except the breakpoint requires hardware support,\n\
15552 some target hardware may not have this support.\n\
15553 \n"
15554 BREAK_ARGS_HELP ("hbreak")));
15555 set_cmd_completer (c, location_completer);
15556
15557 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15558 Set a temporary hardware assisted breakpoint.\n\
15559 Like \"hbreak\" except the breakpoint is only temporary,\n\
15560 so it will be deleted when hit.\n\
15561 \n"
15562 BREAK_ARGS_HELP ("thbreak")));
15563 set_cmd_completer (c, location_completer);
15564
15565 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15566 Enable some breakpoints.\n\
15567 Give breakpoint numbers (separated by spaces) as arguments.\n\
15568 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15569 This is used to cancel the effect of the \"disable\" command.\n\
15570 With a subcommand you can enable temporarily."),
15571 &enablelist, "enable ", 1, &cmdlist);
15572
15573 add_com_alias ("en", "enable", class_breakpoint, 1);
15574
15575 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15576 Enable some breakpoints.\n\
15577 Give breakpoint numbers (separated by spaces) as arguments.\n\
15578 This is used to cancel the effect of the \"disable\" command.\n\
15579 May be abbreviated to simply \"enable\".\n"),
15580 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15581
15582 add_cmd ("once", no_class, enable_once_command, _("\
15583 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15584 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15585 &enablebreaklist);
15586
15587 add_cmd ("delete", no_class, enable_delete_command, _("\
15588 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15589 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15590 &enablebreaklist);
15591
15592 add_cmd ("count", no_class, enable_count_command, _("\
15593 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15594 If a breakpoint is hit while enabled in this fashion,\n\
15595 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15596 &enablebreaklist);
15597
15598 add_cmd ("delete", no_class, enable_delete_command, _("\
15599 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15601 &enablelist);
15602
15603 add_cmd ("once", no_class, enable_once_command, _("\
15604 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15605 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15606 &enablelist);
15607
15608 add_cmd ("count", no_class, enable_count_command, _("\
15609 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15610 If a breakpoint is hit while enabled in this fashion,\n\
15611 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15612 &enablelist);
15613
15614 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15615 Disable some breakpoints.\n\
15616 Arguments are breakpoint numbers with spaces in between.\n\
15617 To disable all breakpoints, give no argument.\n\
15618 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15619 &disablelist, "disable ", 1, &cmdlist);
15620 add_com_alias ("dis", "disable", class_breakpoint, 1);
15621 add_com_alias ("disa", "disable", class_breakpoint, 1);
15622
15623 add_cmd ("breakpoints", class_alias, disable_command, _("\
15624 Disable some breakpoints.\n\
15625 Arguments are breakpoint numbers with spaces in between.\n\
15626 To disable all breakpoints, give no argument.\n\
15627 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15628 This command may be abbreviated \"disable\"."),
15629 &disablelist);
15630
15631 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15632 Delete some breakpoints or auto-display expressions.\n\
15633 Arguments are breakpoint numbers with spaces in between.\n\
15634 To delete all breakpoints, give no argument.\n\
15635 \n\
15636 Also a prefix command for deletion of other GDB objects.\n\
15637 The \"unset\" command is also an alias for \"delete\"."),
15638 &deletelist, "delete ", 1, &cmdlist);
15639 add_com_alias ("d", "delete", class_breakpoint, 1);
15640 add_com_alias ("del", "delete", class_breakpoint, 1);
15641
15642 add_cmd ("breakpoints", class_alias, delete_command, _("\
15643 Delete some breakpoints or auto-display expressions.\n\
15644 Arguments are breakpoint numbers with spaces in between.\n\
15645 To delete all breakpoints, give no argument.\n\
15646 This command may be abbreviated \"delete\"."),
15647 &deletelist);
15648
15649 add_com ("clear", class_breakpoint, clear_command, _("\
15650 Clear breakpoint at specified location.\n\
15651 Argument may be a linespec, explicit, or address location as described below.\n\
15652 \n\
15653 With no argument, clears all breakpoints in the line that the selected frame\n\
15654 is executing in.\n"
15655 "\n" LOCATION_HELP_STRING "\n\
15656 See also the \"delete\" command which clears breakpoints by number."));
15657 add_com_alias ("cl", "clear", class_breakpoint, 1);
15658
15659 c = add_com ("break", class_breakpoint, break_command, _("\
15660 Set breakpoint at specified location.\n"
15661 BREAK_ARGS_HELP ("break")));
15662 set_cmd_completer (c, location_completer);
15663
15664 add_com_alias ("b", "break", class_run, 1);
15665 add_com_alias ("br", "break", class_run, 1);
15666 add_com_alias ("bre", "break", class_run, 1);
15667 add_com_alias ("brea", "break", class_run, 1);
15668
15669 if (dbx_commands)
15670 {
15671 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15672 Break in function/address or break at a line in the current file."),
15673 &stoplist, "stop ", 1, &cmdlist);
15674 add_cmd ("in", class_breakpoint, stopin_command,
15675 _("Break in function or address."), &stoplist);
15676 add_cmd ("at", class_breakpoint, stopat_command,
15677 _("Break at a line in the current file."), &stoplist);
15678 add_com ("status", class_info, info_breakpoints_command, _("\
15679 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15680 The \"Type\" column indicates one of:\n\
15681 \tbreakpoint - normal breakpoint\n\
15682 \twatchpoint - watchpoint\n\
15683 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15684 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15685 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15686 address and file/line number respectively.\n\
15687 \n\
15688 Convenience variable \"$_\" and default examine address for \"x\"\n\
15689 are set to the address of the last breakpoint listed unless the command\n\
15690 is prefixed with \"server \".\n\n\
15691 Convenience variable \"$bpnum\" contains the number of the last\n\
15692 breakpoint set."));
15693 }
15694
15695 add_info ("breakpoints", info_breakpoints_command, _("\
15696 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15697 The \"Type\" column indicates one of:\n\
15698 \tbreakpoint - normal breakpoint\n\
15699 \twatchpoint - watchpoint\n\
15700 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15701 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15702 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15703 address and file/line number respectively.\n\
15704 \n\
15705 Convenience variable \"$_\" and default examine address for \"x\"\n\
15706 are set to the address of the last breakpoint listed unless the command\n\
15707 is prefixed with \"server \".\n\n\
15708 Convenience variable \"$bpnum\" contains the number of the last\n\
15709 breakpoint set."));
15710
15711 add_info_alias ("b", "breakpoints", 1);
15712
15713 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15714 Status of all breakpoints, or breakpoint number NUMBER.\n\
15715 The \"Type\" column indicates one of:\n\
15716 \tbreakpoint - normal breakpoint\n\
15717 \twatchpoint - watchpoint\n\
15718 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15719 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15720 \tuntil - internal breakpoint used by the \"until\" command\n\
15721 \tfinish - internal breakpoint used by the \"finish\" command\n\
15722 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15723 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15724 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15725 address and file/line number respectively.\n\
15726 \n\
15727 Convenience variable \"$_\" and default examine address for \"x\"\n\
15728 are set to the address of the last breakpoint listed unless the command\n\
15729 is prefixed with \"server \".\n\n\
15730 Convenience variable \"$bpnum\" contains the number of the last\n\
15731 breakpoint set."),
15732 &maintenanceinfolist);
15733
15734 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15735 Set catchpoints to catch events."),
15736 &catch_cmdlist, "catch ",
15737 0/*allow-unknown*/, &cmdlist);
15738
15739 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15740 Set temporary catchpoints to catch events."),
15741 &tcatch_cmdlist, "tcatch ",
15742 0/*allow-unknown*/, &cmdlist);
15743
15744 add_catch_command ("fork", _("Catch calls to fork."),
15745 catch_fork_command_1,
15746 NULL,
15747 (void *) (uintptr_t) catch_fork_permanent,
15748 (void *) (uintptr_t) catch_fork_temporary);
15749 add_catch_command ("vfork", _("Catch calls to vfork."),
15750 catch_fork_command_1,
15751 NULL,
15752 (void *) (uintptr_t) catch_vfork_permanent,
15753 (void *) (uintptr_t) catch_vfork_temporary);
15754 add_catch_command ("exec", _("Catch calls to exec."),
15755 catch_exec_command_1,
15756 NULL,
15757 CATCH_PERMANENT,
15758 CATCH_TEMPORARY);
15759 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15760 Usage: catch load [REGEX]\n\
15761 If REGEX is given, only stop for libraries matching the regular expression."),
15762 catch_load_command_1,
15763 NULL,
15764 CATCH_PERMANENT,
15765 CATCH_TEMPORARY);
15766 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15767 Usage: catch unload [REGEX]\n\
15768 If REGEX is given, only stop for libraries matching the regular expression."),
15769 catch_unload_command_1,
15770 NULL,
15771 CATCH_PERMANENT,
15772 CATCH_TEMPORARY);
15773
15774 c = add_com ("watch", class_breakpoint, watch_command, _("\
15775 Set a watchpoint for an expression.\n\
15776 Usage: watch [-l|-location] EXPRESSION\n\
15777 A watchpoint stops execution of your program whenever the value of\n\
15778 an expression changes.\n\
15779 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15780 the memory to which it refers."));
15781 set_cmd_completer (c, expression_completer);
15782
15783 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15784 Set a read watchpoint for an expression.\n\
15785 Usage: rwatch [-l|-location] EXPRESSION\n\
15786 A watchpoint stops execution of your program whenever the value of\n\
15787 an expression is read.\n\
15788 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15789 the memory to which it refers."));
15790 set_cmd_completer (c, expression_completer);
15791
15792 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15793 Set a watchpoint for an expression.\n\
15794 Usage: awatch [-l|-location] EXPRESSION\n\
15795 A watchpoint stops execution of your program whenever the value of\n\
15796 an expression is either read or written.\n\
15797 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15798 the memory to which it refers."));
15799 set_cmd_completer (c, expression_completer);
15800
15801 add_info ("watchpoints", info_watchpoints_command, _("\
15802 Status of specified watchpoints (all watchpoints if no argument)."));
15803
15804 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15805 respond to changes - contrary to the description. */
15806 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15807 &can_use_hw_watchpoints, _("\
15808 Set debugger's willingness to use watchpoint hardware."), _("\
15809 Show debugger's willingness to use watchpoint hardware."), _("\
15810 If zero, gdb will not use hardware for new watchpoints, even if\n\
15811 such is available. (However, any hardware watchpoints that were\n\
15812 created before setting this to nonzero, will continue to use watchpoint\n\
15813 hardware.)"),
15814 NULL,
15815 show_can_use_hw_watchpoints,
15816 &setlist, &showlist);
15817
15818 can_use_hw_watchpoints = 1;
15819
15820 /* Tracepoint manipulation commands. */
15821
15822 c = add_com ("trace", class_breakpoint, trace_command, _("\
15823 Set a tracepoint at specified location.\n\
15824 \n"
15825 BREAK_ARGS_HELP ("trace") "\n\
15826 Do \"help tracepoints\" for info on other tracepoint commands."));
15827 set_cmd_completer (c, location_completer);
15828
15829 add_com_alias ("tp", "trace", class_alias, 0);
15830 add_com_alias ("tr", "trace", class_alias, 1);
15831 add_com_alias ("tra", "trace", class_alias, 1);
15832 add_com_alias ("trac", "trace", class_alias, 1);
15833
15834 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15835 Set a fast tracepoint at specified location.\n\
15836 \n"
15837 BREAK_ARGS_HELP ("ftrace") "\n\
15838 Do \"help tracepoints\" for info on other tracepoint commands."));
15839 set_cmd_completer (c, location_completer);
15840
15841 c = add_com ("strace", class_breakpoint, strace_command, _("\
15842 Set a static tracepoint at location or marker.\n\
15843 \n\
15844 strace [LOCATION] [if CONDITION]\n\
15845 LOCATION may be a linespec, explicit, or address location (described below) \n\
15846 or -m MARKER_ID.\n\n\
15847 If a marker id is specified, probe the marker with that name. With\n\
15848 no LOCATION, uses current execution address of the selected stack frame.\n\
15849 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15850 This collects arbitrary user data passed in the probe point call to the\n\
15851 tracing library. You can inspect it when analyzing the trace buffer,\n\
15852 by printing the $_sdata variable like any other convenience variable.\n\
15853 \n\
15854 CONDITION is a boolean expression.\n\
15855 \n" LOCATION_HELP_STRING "\n\
15856 Multiple tracepoints at one place are permitted, and useful if their\n\
15857 conditions are different.\n\
15858 \n\
15859 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15860 Do \"help tracepoints\" for info on other tracepoint commands."));
15861 set_cmd_completer (c, location_completer);
15862
15863 add_info ("tracepoints", info_tracepoints_command, _("\
15864 Status of specified tracepoints (all tracepoints if no argument).\n\
15865 Convenience variable \"$tpnum\" contains the number of the\n\
15866 last tracepoint set."));
15867
15868 add_info_alias ("tp", "tracepoints", 1);
15869
15870 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15871 Delete specified tracepoints.\n\
15872 Arguments are tracepoint numbers, separated by spaces.\n\
15873 No argument means delete all tracepoints."),
15874 &deletelist);
15875 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15876
15877 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15878 Disable specified tracepoints.\n\
15879 Arguments are tracepoint numbers, separated by spaces.\n\
15880 No argument means disable all tracepoints."),
15881 &disablelist);
15882 deprecate_cmd (c, "disable");
15883
15884 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15885 Enable specified tracepoints.\n\
15886 Arguments are tracepoint numbers, separated by spaces.\n\
15887 No argument means enable all tracepoints."),
15888 &enablelist);
15889 deprecate_cmd (c, "enable");
15890
15891 add_com ("passcount", class_trace, trace_pass_command, _("\
15892 Set the passcount for a tracepoint.\n\
15893 The trace will end when the tracepoint has been passed 'count' times.\n\
15894 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15895 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15896
15897 add_prefix_cmd ("save", class_breakpoint, save_command,
15898 _("Save breakpoint definitions as a script."),
15899 &save_cmdlist, "save ",
15900 0/*allow-unknown*/, &cmdlist);
15901
15902 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15903 Save current breakpoint definitions as a script.\n\
15904 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15905 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15906 session to restore them."),
15907 &save_cmdlist);
15908 set_cmd_completer (c, filename_completer);
15909
15910 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15911 Save current tracepoint definitions as a script.\n\
15912 Use the 'source' command in another debug session to restore them."),
15913 &save_cmdlist);
15914 set_cmd_completer (c, filename_completer);
15915
15916 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15917 deprecate_cmd (c, "save tracepoints");
15918
15919 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15920 Breakpoint specific settings\n\
15921 Configure various breakpoint-specific variables such as\n\
15922 pending breakpoint behavior"),
15923 &breakpoint_set_cmdlist, "set breakpoint ",
15924 0/*allow-unknown*/, &setlist);
15925 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15926 Breakpoint specific settings\n\
15927 Configure various breakpoint-specific variables such as\n\
15928 pending breakpoint behavior"),
15929 &breakpoint_show_cmdlist, "show breakpoint ",
15930 0/*allow-unknown*/, &showlist);
15931
15932 add_setshow_auto_boolean_cmd ("pending", no_class,
15933 &pending_break_support, _("\
15934 Set debugger's behavior regarding pending breakpoints."), _("\
15935 Show debugger's behavior regarding pending breakpoints."), _("\
15936 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15937 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15938 an error. If auto, an unrecognized breakpoint location results in a\n\
15939 user-query to see if a pending breakpoint should be created."),
15940 NULL,
15941 show_pending_break_support,
15942 &breakpoint_set_cmdlist,
15943 &breakpoint_show_cmdlist);
15944
15945 pending_break_support = AUTO_BOOLEAN_AUTO;
15946
15947 add_setshow_boolean_cmd ("auto-hw", no_class,
15948 &automatic_hardware_breakpoints, _("\
15949 Set automatic usage of hardware breakpoints."), _("\
15950 Show automatic usage of hardware breakpoints."), _("\
15951 If set, the debugger will automatically use hardware breakpoints for\n\
15952 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15953 a warning will be emitted for such breakpoints."),
15954 NULL,
15955 show_automatic_hardware_breakpoints,
15956 &breakpoint_set_cmdlist,
15957 &breakpoint_show_cmdlist);
15958
15959 add_setshow_boolean_cmd ("always-inserted", class_support,
15960 &always_inserted_mode, _("\
15961 Set mode for inserting breakpoints."), _("\
15962 Show mode for inserting breakpoints."), _("\
15963 When this mode is on, breakpoints are inserted immediately as soon as\n\
15964 they're created, kept inserted even when execution stops, and removed\n\
15965 only when the user deletes them. When this mode is off (the default),\n\
15966 breakpoints are inserted only when execution continues, and removed\n\
15967 when execution stops."),
15968 NULL,
15969 &show_always_inserted_mode,
15970 &breakpoint_set_cmdlist,
15971 &breakpoint_show_cmdlist);
15972
15973 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15974 condition_evaluation_enums,
15975 &condition_evaluation_mode_1, _("\
15976 Set mode of breakpoint condition evaluation."), _("\
15977 Show mode of breakpoint condition evaluation."), _("\
15978 When this is set to \"host\", breakpoint conditions will be\n\
15979 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15980 breakpoint conditions will be downloaded to the target (if the target\n\
15981 supports such feature) and conditions will be evaluated on the target's side.\n\
15982 If this is set to \"auto\" (default), this will be automatically set to\n\
15983 \"target\" if it supports condition evaluation, otherwise it will\n\
15984 be set to \"gdb\""),
15985 &set_condition_evaluation_mode,
15986 &show_condition_evaluation_mode,
15987 &breakpoint_set_cmdlist,
15988 &breakpoint_show_cmdlist);
15989
15990 add_com ("break-range", class_breakpoint, break_range_command, _("\
15991 Set a breakpoint for an address range.\n\
15992 break-range START-LOCATION, END-LOCATION\n\
15993 where START-LOCATION and END-LOCATION can be one of the following:\n\
15994 LINENUM, for that line in the current file,\n\
15995 FILE:LINENUM, for that line in that file,\n\
15996 +OFFSET, for that number of lines after the current line\n\
15997 or the start of the range\n\
15998 FUNCTION, for the first line in that function,\n\
15999 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16000 *ADDRESS, for the instruction at that address.\n\
16001 \n\
16002 The breakpoint will stop execution of the inferior whenever it executes\n\
16003 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16004 range (including START-LOCATION and END-LOCATION)."));
16005
16006 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16007 Set a dynamic printf at specified location.\n\
16008 dprintf location,format string,arg1,arg2,...\n\
16009 location may be a linespec, explicit, or address location.\n"
16010 "\n" LOCATION_HELP_STRING));
16011 set_cmd_completer (c, location_completer);
16012
16013 add_setshow_enum_cmd ("dprintf-style", class_support,
16014 dprintf_style_enums, &dprintf_style, _("\
16015 Set the style of usage for dynamic printf."), _("\
16016 Show the style of usage for dynamic printf."), _("\
16017 This setting chooses how GDB will do a dynamic printf.\n\
16018 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16019 console, as with the \"printf\" command.\n\
16020 If the value is \"call\", the print is done by calling a function in your\n\
16021 program; by default printf(), but you can choose a different function or\n\
16022 output stream by setting dprintf-function and dprintf-channel."),
16023 update_dprintf_commands, NULL,
16024 &setlist, &showlist);
16025
16026 dprintf_function = xstrdup ("printf");
16027 add_setshow_string_cmd ("dprintf-function", class_support,
16028 &dprintf_function, _("\
16029 Set the function to use for dynamic printf"), _("\
16030 Show the function to use for dynamic printf"), NULL,
16031 update_dprintf_commands, NULL,
16032 &setlist, &showlist);
16033
16034 dprintf_channel = xstrdup ("");
16035 add_setshow_string_cmd ("dprintf-channel", class_support,
16036 &dprintf_channel, _("\
16037 Set the channel to use for dynamic printf"), _("\
16038 Show the channel to use for dynamic printf"), NULL,
16039 update_dprintf_commands, NULL,
16040 &setlist, &showlist);
16041
16042 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16043 &disconnected_dprintf, _("\
16044 Set whether dprintf continues after GDB disconnects."), _("\
16045 Show whether dprintf continues after GDB disconnects."), _("\
16046 Use this to let dprintf commands continue to hit and produce output\n\
16047 even if GDB disconnects or detaches from the target."),
16048 NULL,
16049 NULL,
16050 &setlist, &showlist);
16051
16052 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16053 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16054 (target agent only) This is useful for formatted output in user-defined commands."));
16055
16056 automatic_hardware_breakpoints = 1;
16057
16058 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16059 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16060 }