]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Add a new gdbarch method to fetch signal information from core files.
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 void _initialize_corelow (void);
92
93 static struct target_ops core_ops;
94
95 /* An arbitrary identifier for the core inferior. */
96 #define CORELOW_PID 1
97
98 /* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108 }
109
110 /* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121 }
122
123 /* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157 }
158
159 /* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163 int
164 default_check_format (bfd *abfd)
165 {
166 return (0);
167 }
168
169 /* Attempt to recognize core file formats that BFD rejects. */
170
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184 }
185
186 /* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189 static void
190 core_close (struct target_ops *self)
191 {
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216 }
217
218 static void
219 core_close_cleanup (void *ignore)
220 {
221 core_close (NULL);
222 }
223
224 /* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262 /* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267 }
268
269 /* This routine opens and sets up the core file bfd. */
270
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 int scratch_chan;
279 int flags;
280 char *filename;
281
282 target_preopen (from_tty);
283 if (!arg)
284 {
285 if (core_bfd)
286 error (_("No core file specified. (Use `detach' "
287 "to stop debugging a core file.)"));
288 else
289 error (_("No core file specified."));
290 }
291
292 filename = tilde_expand (arg);
293 if (!IS_ABSOLUTE_PATH (filename))
294 {
295 temp = concat (current_directory, "/",
296 filename, (char *) NULL);
297 xfree (filename);
298 filename = temp;
299 }
300
301 old_chain = make_cleanup (xfree, filename);
302
303 flags = O_BINARY | O_LARGEFILE;
304 if (write_files)
305 flags |= O_RDWR;
306 else
307 flags |= O_RDONLY;
308 scratch_chan = gdb_open_cloexec (filename, flags, 0);
309 if (scratch_chan < 0)
310 perror_with_name (filename);
311
312 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename, gnutarget,
313 write_files ? FOPEN_RUB : FOPEN_RB,
314 scratch_chan));
315 if (temp_bfd == NULL)
316 perror_with_name (filename);
317
318 if (!bfd_check_format (temp_bfd.get (), bfd_core)
319 && !gdb_check_format (temp_bfd.get ()))
320 {
321 /* Do it after the err msg */
322 /* FIXME: should be checking for errors from bfd_close (for one
323 thing, on error it does not free all the storage associated
324 with the bfd). */
325 error (_("\"%s\" is not a core dump: %s"),
326 filename, bfd_errmsg (bfd_get_error ()));
327 }
328
329 /* Looks semi-reasonable. Toss the old core file and work on the
330 new. */
331
332 do_cleanups (old_chain);
333 unpush_target (&core_ops);
334 core_bfd = temp_bfd.release ();
335 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
336
337 core_gdbarch = gdbarch_from_bfd (core_bfd);
338
339 /* Find a suitable core file handler to munch on core_bfd */
340 core_vec = sniff_core_bfd (core_bfd);
341
342 validate_files ();
343
344 core_data = XCNEW (struct target_section_table);
345
346 /* Find the data section */
347 if (build_section_table (core_bfd,
348 &core_data->sections,
349 &core_data->sections_end))
350 error (_("\"%s\": Can't find sections: %s"),
351 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
352
353 /* If we have no exec file, try to set the architecture from the
354 core file. We don't do this unconditionally since an exec file
355 typically contains more information that helps us determine the
356 architecture than a core file. */
357 if (!exec_bfd)
358 set_gdbarch_from_file (core_bfd);
359
360 push_target (&core_ops);
361 discard_cleanups (old_chain);
362
363 /* Do this before acknowledging the inferior, so if
364 post_create_inferior throws (can happen easilly if you're loading
365 a core file with the wrong exec), we aren't left with threads
366 from the previous inferior. */
367 init_thread_list ();
368
369 inferior_ptid = null_ptid;
370
371 /* Need to flush the register cache (and the frame cache) from a
372 previous debug session. If inferior_ptid ends up the same as the
373 last debug session --- e.g., b foo; run; gcore core1; step; gcore
374 core2; core core1; core core2 --- then there's potential for
375 get_current_regcache to return the cached regcache of the
376 previous session, and the frame cache being stale. */
377 registers_changed ();
378
379 /* Build up thread list from BFD sections, and possibly set the
380 current thread to the .reg/NN section matching the .reg
381 section. */
382 bfd_map_over_sections (core_bfd, add_to_thread_list,
383 bfd_get_section_by_name (core_bfd, ".reg"));
384
385 if (ptid_equal (inferior_ptid, null_ptid))
386 {
387 /* Either we found no .reg/NN section, and hence we have a
388 non-threaded core (single-threaded, from gdb's perspective),
389 or for some reason add_to_thread_list couldn't determine
390 which was the "main" thread. The latter case shouldn't
391 usually happen, but we're dealing with input here, which can
392 always be broken in different ways. */
393 struct thread_info *thread = first_thread_of_process (-1);
394
395 if (thread == NULL)
396 {
397 inferior_appeared (current_inferior (), CORELOW_PID);
398 inferior_ptid = pid_to_ptid (CORELOW_PID);
399 add_thread_silent (inferior_ptid);
400 }
401 else
402 switch_to_thread (thread->ptid);
403 }
404
405 post_create_inferior (&core_ops, from_tty);
406
407 /* Now go through the target stack looking for threads since there
408 may be a thread_stratum target loaded on top of target core by
409 now. The layer above should claim threads found in the BFD
410 sections. */
411 TRY
412 {
413 target_update_thread_list ();
414 }
415
416 CATCH (except, RETURN_MASK_ERROR)
417 {
418 exception_print (gdb_stderr, except);
419 }
420 END_CATCH
421
422 p = bfd_core_file_failing_command (core_bfd);
423 if (p)
424 printf_filtered (_("Core was generated by `%s'.\n"), p);
425
426 /* Clearing any previous state of convenience variables. */
427 clear_exit_convenience_vars ();
428
429 siggy = bfd_core_file_failing_signal (core_bfd);
430 if (siggy > 0)
431 {
432 /* If we don't have a CORE_GDBARCH to work with, assume a native
433 core (map gdb_signal from host signals). If we do have
434 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 implementation for that gdbarch, as a fallback measure,
436 assume the host signal mapping. It'll be correct for native
437 cores, but most likely incorrect for cross-cores. */
438 enum gdb_signal sig = (core_gdbarch != NULL
439 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 siggy)
442 : gdb_signal_from_host (siggy));
443
444 printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446
447 /* Set the value of the internal variable $_exitsignal,
448 which holds the signal uncaught by the inferior. */
449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 siggy);
451 }
452
453 /* Fetch all registers from core file. */
454 target_fetch_registers (get_current_regcache (), -1);
455
456 /* Now, set up the frame cache, and print the top of stack. */
457 reinit_frame_cache ();
458 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459
460 /* Current thread should be NUM 1 but the user does not know that.
461 If a program is single threaded gdb in general does not mention
462 anything about threads. That is why the test is >= 2. */
463 if (thread_count () >= 2)
464 {
465 TRY
466 {
467 thread_command (NULL, from_tty);
468 }
469 CATCH (except, RETURN_MASK_ERROR)
470 {
471 exception_print (gdb_stderr, except);
472 }
473 END_CATCH
474 }
475 }
476
477 static void
478 core_detach (struct target_ops *ops, const char *args, int from_tty)
479 {
480 if (args)
481 error (_("Too many arguments"));
482 unpush_target (ops);
483 reinit_frame_cache ();
484 if (from_tty)
485 printf_filtered (_("No core file now.\n"));
486 }
487
488 /* Try to retrieve registers from a section in core_bfd, and supply
489 them to core_vec->core_read_registers, as the register set numbered
490 WHICH.
491
492 If ptid's lwp member is zero, do the single-threaded
493 thing: look for a section named NAME. If ptid's lwp
494 member is non-zero, do the multi-threaded thing: look for a section
495 named "NAME/LWP", where LWP is the shortest ASCII decimal
496 representation of ptid's lwp member.
497
498 HUMAN_NAME is a human-readable name for the kind of registers the
499 NAME section contains, for use in error messages.
500
501 If REQUIRED is non-zero, print an error if the core file doesn't
502 have a section by the appropriate name. Otherwise, just do
503 nothing. */
504
505 static void
506 get_core_register_section (struct regcache *regcache,
507 const struct regset *regset,
508 const char *name,
509 int min_size,
510 int which,
511 const char *human_name,
512 int required)
513 {
514 struct bfd_section *section;
515 bfd_size_type size;
516 char *contents;
517 bool variable_size_section = (regset != NULL
518 && regset->flags & REGSET_VARIABLE_SIZE);
519
520 thread_section_name section_name (name, regcache->ptid ());
521
522 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
523 if (! section)
524 {
525 if (required)
526 warning (_("Couldn't find %s registers in core file."),
527 human_name);
528 return;
529 }
530
531 size = bfd_section_size (core_bfd, section);
532 if (size < min_size)
533 {
534 warning (_("Section `%s' in core file too small."),
535 section_name.c_str ());
536 return;
537 }
538 if (size != min_size && !variable_size_section)
539 {
540 warning (_("Unexpected size of section `%s' in core file."),
541 section_name.c_str ());
542 }
543
544 contents = (char *) alloca (size);
545 if (! bfd_get_section_contents (core_bfd, section, contents,
546 (file_ptr) 0, size))
547 {
548 warning (_("Couldn't read %s registers from `%s' section in core file."),
549 human_name, section_name.c_str ());
550 return;
551 }
552
553 if (regset != NULL)
554 {
555 regset->supply_regset (regset, regcache, -1, contents, size);
556 return;
557 }
558
559 gdb_assert (core_vec);
560 core_vec->core_read_registers (regcache, contents, size, which,
561 ((CORE_ADDR)
562 bfd_section_vma (core_bfd, section)));
563 }
564
565 /* Callback for get_core_registers that handles a single core file
566 register note section. */
567
568 static void
569 get_core_registers_cb (const char *sect_name, int size,
570 const struct regset *regset,
571 const char *human_name, void *cb_data)
572 {
573 struct regcache *regcache = (struct regcache *) cb_data;
574 int required = 0;
575
576 if (strcmp (sect_name, ".reg") == 0)
577 {
578 required = 1;
579 if (human_name == NULL)
580 human_name = "general-purpose";
581 }
582 else if (strcmp (sect_name, ".reg2") == 0)
583 {
584 if (human_name == NULL)
585 human_name = "floating-point";
586 }
587
588 /* The 'which' parameter is only used when no regset is provided.
589 Thus we just set it to -1. */
590 get_core_register_section (regcache, regset, sect_name,
591 size, -1, human_name, required);
592 }
593
594 /* Get the registers out of a core file. This is the machine-
595 independent part. Fetch_core_registers is the machine-dependent
596 part, typically implemented in the xm-file for each
597 architecture. */
598
599 /* We just get all the registers, so we don't use regno. */
600
601 static void
602 get_core_registers (struct target_ops *ops,
603 struct regcache *regcache, int regno)
604 {
605 int i;
606 struct gdbarch *gdbarch;
607
608 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
609 && (core_vec == NULL || core_vec->core_read_registers == NULL))
610 {
611 fprintf_filtered (gdb_stderr,
612 "Can't fetch registers from this type of core file\n");
613 return;
614 }
615
616 gdbarch = get_regcache_arch (regcache);
617 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
618 gdbarch_iterate_over_regset_sections (gdbarch,
619 get_core_registers_cb,
620 (void *) regcache, NULL);
621 else
622 {
623 get_core_register_section (regcache, NULL,
624 ".reg", 0, 0, "general-purpose", 1);
625 get_core_register_section (regcache, NULL,
626 ".reg2", 0, 2, "floating-point", 0);
627 }
628
629 /* Mark all registers not found in the core as unavailable. */
630 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
631 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
632 regcache_raw_supply (regcache, i, NULL);
633 }
634
635 static void
636 core_files_info (struct target_ops *t)
637 {
638 print_section_info (core_data, core_bfd);
639 }
640 \f
641 struct spuid_list
642 {
643 gdb_byte *buf;
644 ULONGEST offset;
645 LONGEST len;
646 ULONGEST pos;
647 ULONGEST written;
648 };
649
650 static void
651 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
652 {
653 struct spuid_list *list = (struct spuid_list *) list_p;
654 enum bfd_endian byte_order
655 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
656 int fd, pos = 0;
657
658 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
659 if (pos == 0)
660 return;
661
662 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
663 {
664 store_unsigned_integer (list->buf + list->pos - list->offset,
665 4, byte_order, fd);
666 list->written += 4;
667 }
668 list->pos += 4;
669 }
670
671 static enum target_xfer_status
672 core_xfer_partial (struct target_ops *ops, enum target_object object,
673 const char *annex, gdb_byte *readbuf,
674 const gdb_byte *writebuf, ULONGEST offset,
675 ULONGEST len, ULONGEST *xfered_len)
676 {
677 switch (object)
678 {
679 case TARGET_OBJECT_MEMORY:
680 return section_table_xfer_memory_partial (readbuf, writebuf,
681 offset, len, xfered_len,
682 core_data->sections,
683 core_data->sections_end,
684 NULL);
685
686 case TARGET_OBJECT_AUXV:
687 if (readbuf)
688 {
689 /* When the aux vector is stored in core file, BFD
690 represents this with a fake section called ".auxv". */
691
692 struct bfd_section *section;
693 bfd_size_type size;
694
695 section = bfd_get_section_by_name (core_bfd, ".auxv");
696 if (section == NULL)
697 return TARGET_XFER_E_IO;
698
699 size = bfd_section_size (core_bfd, section);
700 if (offset >= size)
701 return TARGET_XFER_EOF;
702 size -= offset;
703 if (size > len)
704 size = len;
705
706 if (size == 0)
707 return TARGET_XFER_EOF;
708 if (!bfd_get_section_contents (core_bfd, section, readbuf,
709 (file_ptr) offset, size))
710 {
711 warning (_("Couldn't read NT_AUXV note in core file."));
712 return TARGET_XFER_E_IO;
713 }
714
715 *xfered_len = (ULONGEST) size;
716 return TARGET_XFER_OK;
717 }
718 return TARGET_XFER_E_IO;
719
720 case TARGET_OBJECT_WCOOKIE:
721 if (readbuf)
722 {
723 /* When the StackGhost cookie is stored in core file, BFD
724 represents this with a fake section called
725 ".wcookie". */
726
727 struct bfd_section *section;
728 bfd_size_type size;
729
730 section = bfd_get_section_by_name (core_bfd, ".wcookie");
731 if (section == NULL)
732 return TARGET_XFER_E_IO;
733
734 size = bfd_section_size (core_bfd, section);
735 if (offset >= size)
736 return TARGET_XFER_EOF;
737 size -= offset;
738 if (size > len)
739 size = len;
740
741 if (size == 0)
742 return TARGET_XFER_EOF;
743 if (!bfd_get_section_contents (core_bfd, section, readbuf,
744 (file_ptr) offset, size))
745 {
746 warning (_("Couldn't read StackGhost cookie in core file."));
747 return TARGET_XFER_E_IO;
748 }
749
750 *xfered_len = (ULONGEST) size;
751 return TARGET_XFER_OK;
752
753 }
754 return TARGET_XFER_E_IO;
755
756 case TARGET_OBJECT_LIBRARIES:
757 if (core_gdbarch
758 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
759 {
760 if (writebuf)
761 return TARGET_XFER_E_IO;
762 else
763 {
764 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
765 readbuf,
766 offset, len);
767
768 if (*xfered_len == 0)
769 return TARGET_XFER_EOF;
770 else
771 return TARGET_XFER_OK;
772 }
773 }
774 /* FALL THROUGH */
775
776 case TARGET_OBJECT_LIBRARIES_AIX:
777 if (core_gdbarch
778 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
779 {
780 if (writebuf)
781 return TARGET_XFER_E_IO;
782 else
783 {
784 *xfered_len
785 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
786 readbuf, offset,
787 len);
788
789 if (*xfered_len == 0)
790 return TARGET_XFER_EOF;
791 else
792 return TARGET_XFER_OK;
793 }
794 }
795 /* FALL THROUGH */
796
797 case TARGET_OBJECT_SPU:
798 if (readbuf && annex)
799 {
800 /* When the SPU contexts are stored in a core file, BFD
801 represents this with a fake section called
802 "SPU/<annex>". */
803
804 struct bfd_section *section;
805 bfd_size_type size;
806 char sectionstr[100];
807
808 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
809
810 section = bfd_get_section_by_name (core_bfd, sectionstr);
811 if (section == NULL)
812 return TARGET_XFER_E_IO;
813
814 size = bfd_section_size (core_bfd, section);
815 if (offset >= size)
816 return TARGET_XFER_EOF;
817 size -= offset;
818 if (size > len)
819 size = len;
820
821 if (size == 0)
822 return TARGET_XFER_EOF;
823 if (!bfd_get_section_contents (core_bfd, section, readbuf,
824 (file_ptr) offset, size))
825 {
826 warning (_("Couldn't read SPU section in core file."));
827 return TARGET_XFER_E_IO;
828 }
829
830 *xfered_len = (ULONGEST) size;
831 return TARGET_XFER_OK;
832 }
833 else if (readbuf)
834 {
835 /* NULL annex requests list of all present spuids. */
836 struct spuid_list list;
837
838 list.buf = readbuf;
839 list.offset = offset;
840 list.len = len;
841 list.pos = 0;
842 list.written = 0;
843 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
844
845 if (list.written == 0)
846 return TARGET_XFER_EOF;
847 else
848 {
849 *xfered_len = (ULONGEST) list.written;
850 return TARGET_XFER_OK;
851 }
852 }
853 return TARGET_XFER_E_IO;
854
855 case TARGET_OBJECT_SIGNAL_INFO:
856 if (readbuf)
857 {
858 if (core_gdbarch
859 && gdbarch_core_xfer_siginfo_p (core_gdbarch))
860 {
861 LONGEST l = gdbarch_core_xfer_siginfo (core_gdbarch, readbuf,
862 offset, len);
863
864 if (l >= 0)
865 {
866 *xfered_len = l;
867 if (l == 0)
868 return TARGET_XFER_EOF;
869 else
870 return TARGET_XFER_OK;
871 }
872 }
873 }
874 return TARGET_XFER_E_IO;
875
876 default:
877 return ops->beneath->to_xfer_partial (ops->beneath, object,
878 annex, readbuf,
879 writebuf, offset, len,
880 xfered_len);
881 }
882 }
883
884 \f
885 /* If mourn is being called in all the right places, this could be say
886 `gdb internal error' (since generic_mourn calls
887 breakpoint_init_inferior). */
888
889 static int
890 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
891 struct bp_target_info *bp_tgt)
892 {
893 return 0;
894 }
895
896 /* Implement the to_remove_breakpoint method. */
897
898 static int
899 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
900 struct bp_target_info *bp_tgt,
901 enum remove_bp_reason reason)
902 {
903 return 0;
904 }
905
906
907 /* Okay, let's be honest: threads gleaned from a core file aren't
908 exactly lively, are they? On the other hand, if we don't claim
909 that each & every one is alive, then we don't get any of them
910 to appear in an "info thread" command, which is quite a useful
911 behaviour.
912 */
913 static int
914 core_thread_alive (struct target_ops *ops, ptid_t ptid)
915 {
916 return 1;
917 }
918
919 /* Ask the current architecture what it knows about this core file.
920 That will be used, in turn, to pick a better architecture. This
921 wrapper could be avoided if targets got a chance to specialize
922 core_ops. */
923
924 static const struct target_desc *
925 core_read_description (struct target_ops *target)
926 {
927 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
928 {
929 const struct target_desc *result;
930
931 result = gdbarch_core_read_description (core_gdbarch,
932 target, core_bfd);
933 if (result != NULL)
934 return result;
935 }
936
937 return target->beneath->to_read_description (target->beneath);
938 }
939
940 static const char *
941 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
942 {
943 static char buf[64];
944 struct inferior *inf;
945 int pid;
946
947 /* The preferred way is to have a gdbarch/OS specific
948 implementation. */
949 if (core_gdbarch
950 && gdbarch_core_pid_to_str_p (core_gdbarch))
951 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
952
953 /* Otherwise, if we don't have one, we'll just fallback to
954 "process", with normal_pid_to_str. */
955
956 /* Try the LWPID field first. */
957 pid = ptid_get_lwp (ptid);
958 if (pid != 0)
959 return normal_pid_to_str (pid_to_ptid (pid));
960
961 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
962 only if it isn't a fake PID. */
963 inf = find_inferior_ptid (ptid);
964 if (inf != NULL && !inf->fake_pid_p)
965 return normal_pid_to_str (ptid);
966
967 /* No luck. We simply don't have a valid PID to print. */
968 xsnprintf (buf, sizeof buf, "<main task>");
969 return buf;
970 }
971
972 static const char *
973 core_thread_name (struct target_ops *self, struct thread_info *thr)
974 {
975 if (core_gdbarch
976 && gdbarch_core_thread_name_p (core_gdbarch))
977 return gdbarch_core_thread_name (core_gdbarch, thr);
978 return NULL;
979 }
980
981 static int
982 core_has_memory (struct target_ops *ops)
983 {
984 return (core_bfd != NULL);
985 }
986
987 static int
988 core_has_stack (struct target_ops *ops)
989 {
990 return (core_bfd != NULL);
991 }
992
993 static int
994 core_has_registers (struct target_ops *ops)
995 {
996 return (core_bfd != NULL);
997 }
998
999 /* Implement the to_info_proc method. */
1000
1001 static void
1002 core_info_proc (struct target_ops *ops, const char *args,
1003 enum info_proc_what request)
1004 {
1005 struct gdbarch *gdbarch = get_current_arch ();
1006
1007 /* Since this is the core file target, call the 'core_info_proc'
1008 method on gdbarch, not 'info_proc'. */
1009 if (gdbarch_core_info_proc_p (gdbarch))
1010 gdbarch_core_info_proc (gdbarch, args, request);
1011 }
1012
1013 /* Fill in core_ops with its defined operations and properties. */
1014
1015 static void
1016 init_core_ops (void)
1017 {
1018 core_ops.to_shortname = "core";
1019 core_ops.to_longname = "Local core dump file";
1020 core_ops.to_doc =
1021 "Use a core file as a target. Specify the filename of the core file.";
1022 core_ops.to_open = core_open;
1023 core_ops.to_close = core_close;
1024 core_ops.to_detach = core_detach;
1025 core_ops.to_fetch_registers = get_core_registers;
1026 core_ops.to_xfer_partial = core_xfer_partial;
1027 core_ops.to_files_info = core_files_info;
1028 core_ops.to_insert_breakpoint = ignore;
1029 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1030 core_ops.to_thread_alive = core_thread_alive;
1031 core_ops.to_read_description = core_read_description;
1032 core_ops.to_pid_to_str = core_pid_to_str;
1033 core_ops.to_thread_name = core_thread_name;
1034 core_ops.to_stratum = process_stratum;
1035 core_ops.to_has_memory = core_has_memory;
1036 core_ops.to_has_stack = core_has_stack;
1037 core_ops.to_has_registers = core_has_registers;
1038 core_ops.to_info_proc = core_info_proc;
1039 core_ops.to_magic = OPS_MAGIC;
1040
1041 if (core_target)
1042 internal_error (__FILE__, __LINE__,
1043 _("init_core_ops: core target already exists (\"%s\")."),
1044 core_target->to_longname);
1045 core_target = &core_ops;
1046 }
1047
1048 void
1049 _initialize_corelow (void)
1050 {
1051 init_core_ops ();
1052
1053 add_target_with_completer (&core_ops, filename_completer);
1054 }