]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Remove unnecessary function prototypes.
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 static struct target_ops core_ops;
92
93 /* An arbitrary identifier for the core inferior. */
94 #define CORELOW_PID 1
95
96 /* Link a new core_fns into the global core_file_fns list. Called on
97 gdb startup by the _initialize routine in each core file register
98 reader, to register information about each format the reader is
99 prepared to handle. */
100
101 void
102 deprecated_add_core_fns (struct core_fns *cf)
103 {
104 cf->next = core_file_fns;
105 core_file_fns = cf;
106 }
107
108 /* The default function that core file handlers can use to examine a
109 core file BFD and decide whether or not to accept the job of
110 reading the core file. */
111
112 int
113 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
114 {
115 int result;
116
117 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
118 return (result);
119 }
120
121 /* Walk through the list of core functions to find a set that can
122 handle the core file open on ABFD. Returns pointer to set that is
123 selected. */
124
125 static struct core_fns *
126 sniff_core_bfd (bfd *abfd)
127 {
128 struct core_fns *cf;
129 struct core_fns *yummy = NULL;
130 int matches = 0;
131
132 /* Don't sniff if we have support for register sets in
133 CORE_GDBARCH. */
134 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
135 return NULL;
136
137 for (cf = core_file_fns; cf != NULL; cf = cf->next)
138 {
139 if (cf->core_sniffer (cf, abfd))
140 {
141 yummy = cf;
142 matches++;
143 }
144 }
145 if (matches > 1)
146 {
147 warning (_("\"%s\": ambiguous core format, %d handlers match"),
148 bfd_get_filename (abfd), matches);
149 }
150 else if (matches == 0)
151 error (_("\"%s\": no core file handler recognizes format"),
152 bfd_get_filename (abfd));
153
154 return (yummy);
155 }
156
157 /* The default is to reject every core file format we see. Either
158 BFD has to recognize it, or we have to provide a function in the
159 core file handler that recognizes it. */
160
161 int
162 default_check_format (bfd *abfd)
163 {
164 return (0);
165 }
166
167 /* Attempt to recognize core file formats that BFD rejects. */
168
169 static int
170 gdb_check_format (bfd *abfd)
171 {
172 struct core_fns *cf;
173
174 for (cf = core_file_fns; cf != NULL; cf = cf->next)
175 {
176 if (cf->check_format (abfd))
177 {
178 return (1);
179 }
180 }
181 return (0);
182 }
183
184 /* Discard all vestiges of any previous core file and mark data and
185 stack spaces as empty. */
186
187 static void
188 core_close (struct target_ops *self)
189 {
190 if (core_bfd)
191 {
192 int pid = ptid_get_pid (inferior_ptid);
193 inferior_ptid = null_ptid; /* Avoid confusion from thread
194 stuff. */
195 if (pid != 0)
196 exit_inferior_silent (pid);
197
198 /* Clear out solib state while the bfd is still open. See
199 comments in clear_solib in solib.c. */
200 clear_solib ();
201
202 if (core_data)
203 {
204 xfree (core_data->sections);
205 xfree (core_data);
206 core_data = NULL;
207 }
208
209 gdb_bfd_unref (core_bfd);
210 core_bfd = NULL;
211 }
212 core_vec = NULL;
213 core_gdbarch = NULL;
214 }
215
216 static void
217 core_close_cleanup (void *ignore)
218 {
219 core_close (NULL);
220 }
221
222 /* Look for sections whose names start with `.reg/' so that we can
223 extract the list of threads in a core file. */
224
225 static void
226 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
227 {
228 ptid_t ptid;
229 int core_tid;
230 int pid, lwpid;
231 asection *reg_sect = (asection *) reg_sect_arg;
232 int fake_pid_p = 0;
233 struct inferior *inf;
234
235 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
236 return;
237
238 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
239
240 pid = bfd_core_file_pid (core_bfd);
241 if (pid == 0)
242 {
243 fake_pid_p = 1;
244 pid = CORELOW_PID;
245 }
246
247 lwpid = core_tid;
248
249 inf = current_inferior ();
250 if (inf->pid == 0)
251 {
252 inferior_appeared (inf, pid);
253 inf->fake_pid_p = fake_pid_p;
254 }
255
256 ptid = ptid_build (pid, lwpid, 0);
257
258 add_thread (ptid);
259
260 /* Warning, Will Robinson, looking at BFD private data! */
261
262 if (reg_sect != NULL
263 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
264 inferior_ptid = ptid; /* Yes, make it current. */
265 }
266
267 /* This routine opens and sets up the core file bfd. */
268
269 static void
270 core_open (const char *arg, int from_tty)
271 {
272 const char *p;
273 int siggy;
274 struct cleanup *old_chain;
275 char *temp;
276 int scratch_chan;
277 int flags;
278
279 target_preopen (from_tty);
280 if (!arg)
281 {
282 if (core_bfd)
283 error (_("No core file specified. (Use `detach' "
284 "to stop debugging a core file.)"));
285 else
286 error (_("No core file specified."));
287 }
288
289 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
290 if (!IS_ABSOLUTE_PATH (filename.get ()))
291 filename.reset (concat (current_directory, "/",
292 filename.get (), (char *) NULL));
293
294 flags = O_BINARY | O_LARGEFILE;
295 if (write_files)
296 flags |= O_RDWR;
297 else
298 flags |= O_RDONLY;
299 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
300 if (scratch_chan < 0)
301 perror_with_name (filename.get ());
302
303 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
304 write_files ? FOPEN_RUB : FOPEN_RB,
305 scratch_chan));
306 if (temp_bfd == NULL)
307 perror_with_name (filename.get ());
308
309 if (!bfd_check_format (temp_bfd.get (), bfd_core)
310 && !gdb_check_format (temp_bfd.get ()))
311 {
312 /* Do it after the err msg */
313 /* FIXME: should be checking for errors from bfd_close (for one
314 thing, on error it does not free all the storage associated
315 with the bfd). */
316 error (_("\"%s\" is not a core dump: %s"),
317 filename.get (), bfd_errmsg (bfd_get_error ()));
318 }
319
320 /* Looks semi-reasonable. Toss the old core file and work on the
321 new. */
322
323 unpush_target (&core_ops);
324 core_bfd = temp_bfd.release ();
325 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
326
327 core_gdbarch = gdbarch_from_bfd (core_bfd);
328
329 /* Find a suitable core file handler to munch on core_bfd */
330 core_vec = sniff_core_bfd (core_bfd);
331
332 validate_files ();
333
334 core_data = XCNEW (struct target_section_table);
335
336 /* Find the data section */
337 if (build_section_table (core_bfd,
338 &core_data->sections,
339 &core_data->sections_end))
340 error (_("\"%s\": Can't find sections: %s"),
341 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
342
343 /* If we have no exec file, try to set the architecture from the
344 core file. We don't do this unconditionally since an exec file
345 typically contains more information that helps us determine the
346 architecture than a core file. */
347 if (!exec_bfd)
348 set_gdbarch_from_file (core_bfd);
349
350 push_target (&core_ops);
351 discard_cleanups (old_chain);
352
353 /* Do this before acknowledging the inferior, so if
354 post_create_inferior throws (can happen easilly if you're loading
355 a core file with the wrong exec), we aren't left with threads
356 from the previous inferior. */
357 init_thread_list ();
358
359 inferior_ptid = null_ptid;
360
361 /* Need to flush the register cache (and the frame cache) from a
362 previous debug session. If inferior_ptid ends up the same as the
363 last debug session --- e.g., b foo; run; gcore core1; step; gcore
364 core2; core core1; core core2 --- then there's potential for
365 get_current_regcache to return the cached regcache of the
366 previous session, and the frame cache being stale. */
367 registers_changed ();
368
369 /* Build up thread list from BFD sections, and possibly set the
370 current thread to the .reg/NN section matching the .reg
371 section. */
372 bfd_map_over_sections (core_bfd, add_to_thread_list,
373 bfd_get_section_by_name (core_bfd, ".reg"));
374
375 if (ptid_equal (inferior_ptid, null_ptid))
376 {
377 /* Either we found no .reg/NN section, and hence we have a
378 non-threaded core (single-threaded, from gdb's perspective),
379 or for some reason add_to_thread_list couldn't determine
380 which was the "main" thread. The latter case shouldn't
381 usually happen, but we're dealing with input here, which can
382 always be broken in different ways. */
383 struct thread_info *thread = first_thread_of_process (-1);
384
385 if (thread == NULL)
386 {
387 inferior_appeared (current_inferior (), CORELOW_PID);
388 inferior_ptid = pid_to_ptid (CORELOW_PID);
389 add_thread_silent (inferior_ptid);
390 }
391 else
392 switch_to_thread (thread->ptid);
393 }
394
395 post_create_inferior (&core_ops, from_tty);
396
397 /* Now go through the target stack looking for threads since there
398 may be a thread_stratum target loaded on top of target core by
399 now. The layer above should claim threads found in the BFD
400 sections. */
401 TRY
402 {
403 target_update_thread_list ();
404 }
405
406 CATCH (except, RETURN_MASK_ERROR)
407 {
408 exception_print (gdb_stderr, except);
409 }
410 END_CATCH
411
412 p = bfd_core_file_failing_command (core_bfd);
413 if (p)
414 printf_filtered (_("Core was generated by `%s'.\n"), p);
415
416 /* Clearing any previous state of convenience variables. */
417 clear_exit_convenience_vars ();
418
419 siggy = bfd_core_file_failing_signal (core_bfd);
420 if (siggy > 0)
421 {
422 /* If we don't have a CORE_GDBARCH to work with, assume a native
423 core (map gdb_signal from host signals). If we do have
424 CORE_GDBARCH to work with, but no gdb_signal_from_target
425 implementation for that gdbarch, as a fallback measure,
426 assume the host signal mapping. It'll be correct for native
427 cores, but most likely incorrect for cross-cores. */
428 enum gdb_signal sig = (core_gdbarch != NULL
429 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
430 ? gdbarch_gdb_signal_from_target (core_gdbarch,
431 siggy)
432 : gdb_signal_from_host (siggy));
433
434 printf_filtered (_("Program terminated with signal %s, %s.\n"),
435 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
436
437 /* Set the value of the internal variable $_exitsignal,
438 which holds the signal uncaught by the inferior. */
439 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
440 siggy);
441 }
442
443 /* Fetch all registers from core file. */
444 target_fetch_registers (get_current_regcache (), -1);
445
446 /* Now, set up the frame cache, and print the top of stack. */
447 reinit_frame_cache ();
448 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
449
450 /* Current thread should be NUM 1 but the user does not know that.
451 If a program is single threaded gdb in general does not mention
452 anything about threads. That is why the test is >= 2. */
453 if (thread_count () >= 2)
454 {
455 TRY
456 {
457 thread_command (NULL, from_tty);
458 }
459 CATCH (except, RETURN_MASK_ERROR)
460 {
461 exception_print (gdb_stderr, except);
462 }
463 END_CATCH
464 }
465 }
466
467 static void
468 core_detach (struct target_ops *ops, const char *args, int from_tty)
469 {
470 if (args)
471 error (_("Too many arguments"));
472 unpush_target (ops);
473 reinit_frame_cache ();
474 if (from_tty)
475 printf_filtered (_("No core file now.\n"));
476 }
477
478 /* Try to retrieve registers from a section in core_bfd, and supply
479 them to core_vec->core_read_registers, as the register set numbered
480 WHICH.
481
482 If ptid's lwp member is zero, do the single-threaded
483 thing: look for a section named NAME. If ptid's lwp
484 member is non-zero, do the multi-threaded thing: look for a section
485 named "NAME/LWP", where LWP is the shortest ASCII decimal
486 representation of ptid's lwp member.
487
488 HUMAN_NAME is a human-readable name for the kind of registers the
489 NAME section contains, for use in error messages.
490
491 If REQUIRED is non-zero, print an error if the core file doesn't
492 have a section by the appropriate name. Otherwise, just do
493 nothing. */
494
495 static void
496 get_core_register_section (struct regcache *regcache,
497 const struct regset *regset,
498 const char *name,
499 int min_size,
500 int which,
501 const char *human_name,
502 int required)
503 {
504 struct bfd_section *section;
505 bfd_size_type size;
506 char *contents;
507 bool variable_size_section = (regset != NULL
508 && regset->flags & REGSET_VARIABLE_SIZE);
509
510 thread_section_name section_name (name, regcache->ptid ());
511
512 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
513 if (! section)
514 {
515 if (required)
516 warning (_("Couldn't find %s registers in core file."),
517 human_name);
518 return;
519 }
520
521 size = bfd_section_size (core_bfd, section);
522 if (size < min_size)
523 {
524 warning (_("Section `%s' in core file too small."),
525 section_name.c_str ());
526 return;
527 }
528 if (size != min_size && !variable_size_section)
529 {
530 warning (_("Unexpected size of section `%s' in core file."),
531 section_name.c_str ());
532 }
533
534 contents = (char *) alloca (size);
535 if (! bfd_get_section_contents (core_bfd, section, contents,
536 (file_ptr) 0, size))
537 {
538 warning (_("Couldn't read %s registers from `%s' section in core file."),
539 human_name, section_name.c_str ());
540 return;
541 }
542
543 if (regset != NULL)
544 {
545 regset->supply_regset (regset, regcache, -1, contents, size);
546 return;
547 }
548
549 gdb_assert (core_vec);
550 core_vec->core_read_registers (regcache, contents, size, which,
551 ((CORE_ADDR)
552 bfd_section_vma (core_bfd, section)));
553 }
554
555 /* Callback for get_core_registers that handles a single core file
556 register note section. */
557
558 static void
559 get_core_registers_cb (const char *sect_name, int size,
560 const struct regset *regset,
561 const char *human_name, void *cb_data)
562 {
563 struct regcache *regcache = (struct regcache *) cb_data;
564 int required = 0;
565
566 if (strcmp (sect_name, ".reg") == 0)
567 {
568 required = 1;
569 if (human_name == NULL)
570 human_name = "general-purpose";
571 }
572 else if (strcmp (sect_name, ".reg2") == 0)
573 {
574 if (human_name == NULL)
575 human_name = "floating-point";
576 }
577
578 /* The 'which' parameter is only used when no regset is provided.
579 Thus we just set it to -1. */
580 get_core_register_section (regcache, regset, sect_name,
581 size, -1, human_name, required);
582 }
583
584 /* Get the registers out of a core file. This is the machine-
585 independent part. Fetch_core_registers is the machine-dependent
586 part, typically implemented in the xm-file for each
587 architecture. */
588
589 /* We just get all the registers, so we don't use regno. */
590
591 static void
592 get_core_registers (struct target_ops *ops,
593 struct regcache *regcache, int regno)
594 {
595 int i;
596 struct gdbarch *gdbarch;
597
598 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
599 && (core_vec == NULL || core_vec->core_read_registers == NULL))
600 {
601 fprintf_filtered (gdb_stderr,
602 "Can't fetch registers from this type of core file\n");
603 return;
604 }
605
606 gdbarch = get_regcache_arch (regcache);
607 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
608 gdbarch_iterate_over_regset_sections (gdbarch,
609 get_core_registers_cb,
610 (void *) regcache, NULL);
611 else
612 {
613 get_core_register_section (regcache, NULL,
614 ".reg", 0, 0, "general-purpose", 1);
615 get_core_register_section (regcache, NULL,
616 ".reg2", 0, 2, "floating-point", 0);
617 }
618
619 /* Mark all registers not found in the core as unavailable. */
620 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
621 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
622 regcache_raw_supply (regcache, i, NULL);
623 }
624
625 static void
626 core_files_info (struct target_ops *t)
627 {
628 print_section_info (core_data, core_bfd);
629 }
630 \f
631 struct spuid_list
632 {
633 gdb_byte *buf;
634 ULONGEST offset;
635 LONGEST len;
636 ULONGEST pos;
637 ULONGEST written;
638 };
639
640 static void
641 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
642 {
643 struct spuid_list *list = (struct spuid_list *) list_p;
644 enum bfd_endian byte_order
645 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
646 int fd, pos = 0;
647
648 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
649 if (pos == 0)
650 return;
651
652 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
653 {
654 store_unsigned_integer (list->buf + list->pos - list->offset,
655 4, byte_order, fd);
656 list->written += 4;
657 }
658 list->pos += 4;
659 }
660
661 static enum target_xfer_status
662 core_xfer_partial (struct target_ops *ops, enum target_object object,
663 const char *annex, gdb_byte *readbuf,
664 const gdb_byte *writebuf, ULONGEST offset,
665 ULONGEST len, ULONGEST *xfered_len)
666 {
667 switch (object)
668 {
669 case TARGET_OBJECT_MEMORY:
670 return section_table_xfer_memory_partial (readbuf, writebuf,
671 offset, len, xfered_len,
672 core_data->sections,
673 core_data->sections_end,
674 NULL);
675
676 case TARGET_OBJECT_AUXV:
677 if (readbuf)
678 {
679 /* When the aux vector is stored in core file, BFD
680 represents this with a fake section called ".auxv". */
681
682 struct bfd_section *section;
683 bfd_size_type size;
684
685 section = bfd_get_section_by_name (core_bfd, ".auxv");
686 if (section == NULL)
687 return TARGET_XFER_E_IO;
688
689 size = bfd_section_size (core_bfd, section);
690 if (offset >= size)
691 return TARGET_XFER_EOF;
692 size -= offset;
693 if (size > len)
694 size = len;
695
696 if (size == 0)
697 return TARGET_XFER_EOF;
698 if (!bfd_get_section_contents (core_bfd, section, readbuf,
699 (file_ptr) offset, size))
700 {
701 warning (_("Couldn't read NT_AUXV note in core file."));
702 return TARGET_XFER_E_IO;
703 }
704
705 *xfered_len = (ULONGEST) size;
706 return TARGET_XFER_OK;
707 }
708 return TARGET_XFER_E_IO;
709
710 case TARGET_OBJECT_WCOOKIE:
711 if (readbuf)
712 {
713 /* When the StackGhost cookie is stored in core file, BFD
714 represents this with a fake section called
715 ".wcookie". */
716
717 struct bfd_section *section;
718 bfd_size_type size;
719
720 section = bfd_get_section_by_name (core_bfd, ".wcookie");
721 if (section == NULL)
722 return TARGET_XFER_E_IO;
723
724 size = bfd_section_size (core_bfd, section);
725 if (offset >= size)
726 return TARGET_XFER_EOF;
727 size -= offset;
728 if (size > len)
729 size = len;
730
731 if (size == 0)
732 return TARGET_XFER_EOF;
733 if (!bfd_get_section_contents (core_bfd, section, readbuf,
734 (file_ptr) offset, size))
735 {
736 warning (_("Couldn't read StackGhost cookie in core file."));
737 return TARGET_XFER_E_IO;
738 }
739
740 *xfered_len = (ULONGEST) size;
741 return TARGET_XFER_OK;
742
743 }
744 return TARGET_XFER_E_IO;
745
746 case TARGET_OBJECT_LIBRARIES:
747 if (core_gdbarch
748 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
749 {
750 if (writebuf)
751 return TARGET_XFER_E_IO;
752 else
753 {
754 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
755 readbuf,
756 offset, len);
757
758 if (*xfered_len == 0)
759 return TARGET_XFER_EOF;
760 else
761 return TARGET_XFER_OK;
762 }
763 }
764 /* FALL THROUGH */
765
766 case TARGET_OBJECT_LIBRARIES_AIX:
767 if (core_gdbarch
768 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
769 {
770 if (writebuf)
771 return TARGET_XFER_E_IO;
772 else
773 {
774 *xfered_len
775 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
776 readbuf, offset,
777 len);
778
779 if (*xfered_len == 0)
780 return TARGET_XFER_EOF;
781 else
782 return TARGET_XFER_OK;
783 }
784 }
785 /* FALL THROUGH */
786
787 case TARGET_OBJECT_SPU:
788 if (readbuf && annex)
789 {
790 /* When the SPU contexts are stored in a core file, BFD
791 represents this with a fake section called
792 "SPU/<annex>". */
793
794 struct bfd_section *section;
795 bfd_size_type size;
796 char sectionstr[100];
797
798 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
799
800 section = bfd_get_section_by_name (core_bfd, sectionstr);
801 if (section == NULL)
802 return TARGET_XFER_E_IO;
803
804 size = bfd_section_size (core_bfd, section);
805 if (offset >= size)
806 return TARGET_XFER_EOF;
807 size -= offset;
808 if (size > len)
809 size = len;
810
811 if (size == 0)
812 return TARGET_XFER_EOF;
813 if (!bfd_get_section_contents (core_bfd, section, readbuf,
814 (file_ptr) offset, size))
815 {
816 warning (_("Couldn't read SPU section in core file."));
817 return TARGET_XFER_E_IO;
818 }
819
820 *xfered_len = (ULONGEST) size;
821 return TARGET_XFER_OK;
822 }
823 else if (readbuf)
824 {
825 /* NULL annex requests list of all present spuids. */
826 struct spuid_list list;
827
828 list.buf = readbuf;
829 list.offset = offset;
830 list.len = len;
831 list.pos = 0;
832 list.written = 0;
833 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
834
835 if (list.written == 0)
836 return TARGET_XFER_EOF;
837 else
838 {
839 *xfered_len = (ULONGEST) list.written;
840 return TARGET_XFER_OK;
841 }
842 }
843 return TARGET_XFER_E_IO;
844
845 case TARGET_OBJECT_SIGNAL_INFO:
846 if (readbuf)
847 {
848 if (core_gdbarch
849 && gdbarch_core_xfer_siginfo_p (core_gdbarch))
850 {
851 LONGEST l = gdbarch_core_xfer_siginfo (core_gdbarch, readbuf,
852 offset, len);
853
854 if (l >= 0)
855 {
856 *xfered_len = l;
857 if (l == 0)
858 return TARGET_XFER_EOF;
859 else
860 return TARGET_XFER_OK;
861 }
862 }
863 }
864 return TARGET_XFER_E_IO;
865
866 default:
867 return ops->beneath->to_xfer_partial (ops->beneath, object,
868 annex, readbuf,
869 writebuf, offset, len,
870 xfered_len);
871 }
872 }
873
874 \f
875 /* If mourn is being called in all the right places, this could be say
876 `gdb internal error' (since generic_mourn calls
877 breakpoint_init_inferior). */
878
879 static int
880 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
881 struct bp_target_info *bp_tgt)
882 {
883 return 0;
884 }
885
886 /* Implement the to_remove_breakpoint method. */
887
888 static int
889 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
890 struct bp_target_info *bp_tgt,
891 enum remove_bp_reason reason)
892 {
893 return 0;
894 }
895
896
897 /* Okay, let's be honest: threads gleaned from a core file aren't
898 exactly lively, are they? On the other hand, if we don't claim
899 that each & every one is alive, then we don't get any of them
900 to appear in an "info thread" command, which is quite a useful
901 behaviour.
902 */
903 static int
904 core_thread_alive (struct target_ops *ops, ptid_t ptid)
905 {
906 return 1;
907 }
908
909 /* Ask the current architecture what it knows about this core file.
910 That will be used, in turn, to pick a better architecture. This
911 wrapper could be avoided if targets got a chance to specialize
912 core_ops. */
913
914 static const struct target_desc *
915 core_read_description (struct target_ops *target)
916 {
917 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
918 {
919 const struct target_desc *result;
920
921 result = gdbarch_core_read_description (core_gdbarch,
922 target, core_bfd);
923 if (result != NULL)
924 return result;
925 }
926
927 return target->beneath->to_read_description (target->beneath);
928 }
929
930 static const char *
931 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
932 {
933 static char buf[64];
934 struct inferior *inf;
935 int pid;
936
937 /* The preferred way is to have a gdbarch/OS specific
938 implementation. */
939 if (core_gdbarch
940 && gdbarch_core_pid_to_str_p (core_gdbarch))
941 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
942
943 /* Otherwise, if we don't have one, we'll just fallback to
944 "process", with normal_pid_to_str. */
945
946 /* Try the LWPID field first. */
947 pid = ptid_get_lwp (ptid);
948 if (pid != 0)
949 return normal_pid_to_str (pid_to_ptid (pid));
950
951 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
952 only if it isn't a fake PID. */
953 inf = find_inferior_ptid (ptid);
954 if (inf != NULL && !inf->fake_pid_p)
955 return normal_pid_to_str (ptid);
956
957 /* No luck. We simply don't have a valid PID to print. */
958 xsnprintf (buf, sizeof buf, "<main task>");
959 return buf;
960 }
961
962 static const char *
963 core_thread_name (struct target_ops *self, struct thread_info *thr)
964 {
965 if (core_gdbarch
966 && gdbarch_core_thread_name_p (core_gdbarch))
967 return gdbarch_core_thread_name (core_gdbarch, thr);
968 return NULL;
969 }
970
971 static int
972 core_has_memory (struct target_ops *ops)
973 {
974 return (core_bfd != NULL);
975 }
976
977 static int
978 core_has_stack (struct target_ops *ops)
979 {
980 return (core_bfd != NULL);
981 }
982
983 static int
984 core_has_registers (struct target_ops *ops)
985 {
986 return (core_bfd != NULL);
987 }
988
989 /* Implement the to_info_proc method. */
990
991 static void
992 core_info_proc (struct target_ops *ops, const char *args,
993 enum info_proc_what request)
994 {
995 struct gdbarch *gdbarch = get_current_arch ();
996
997 /* Since this is the core file target, call the 'core_info_proc'
998 method on gdbarch, not 'info_proc'. */
999 if (gdbarch_core_info_proc_p (gdbarch))
1000 gdbarch_core_info_proc (gdbarch, args, request);
1001 }
1002
1003 /* Fill in core_ops with its defined operations and properties. */
1004
1005 static void
1006 init_core_ops (void)
1007 {
1008 core_ops.to_shortname = "core";
1009 core_ops.to_longname = "Local core dump file";
1010 core_ops.to_doc =
1011 "Use a core file as a target. Specify the filename of the core file.";
1012 core_ops.to_open = core_open;
1013 core_ops.to_close = core_close;
1014 core_ops.to_detach = core_detach;
1015 core_ops.to_fetch_registers = get_core_registers;
1016 core_ops.to_xfer_partial = core_xfer_partial;
1017 core_ops.to_files_info = core_files_info;
1018 core_ops.to_insert_breakpoint = ignore;
1019 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1020 core_ops.to_thread_alive = core_thread_alive;
1021 core_ops.to_read_description = core_read_description;
1022 core_ops.to_pid_to_str = core_pid_to_str;
1023 core_ops.to_thread_name = core_thread_name;
1024 core_ops.to_stratum = process_stratum;
1025 core_ops.to_has_memory = core_has_memory;
1026 core_ops.to_has_stack = core_has_stack;
1027 core_ops.to_has_registers = core_has_registers;
1028 core_ops.to_info_proc = core_info_proc;
1029 core_ops.to_magic = OPS_MAGIC;
1030
1031 if (core_target)
1032 internal_error (__FILE__, __LINE__,
1033 _("init_core_ops: core target already exists (\"%s\")."),
1034 core_target->to_longname);
1035 core_target = &core_ops;
1036 }
1037
1038 void
1039 _initialize_corelow (void)
1040 {
1041 init_core_ops ();
1042
1043 add_target_with_completer (&core_ops, filename_completer);
1044 }