]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/cris-tdep.c
remove trivialy unused variables
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "dis-asm.h"
46
47 #include "cris-tdep.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static unsigned int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *const cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* Sigtramp identification code copied from i386-linux-tdep.c. */
169
170 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
171 #define SIGTRAMP_OFFSET0 0
172 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
173 #define SIGTRAMP_OFFSET1 4
174
175 static const unsigned short sigtramp_code[] =
176 {
177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
178 SIGTRAMP_INSN1 /* break 13 */
179 };
180
181 #define SIGTRAMP_LEN (sizeof sigtramp_code)
182
183 /* Note: same length as normal sigtramp code. */
184
185 static const unsigned short rt_sigtramp_code[] =
186 {
187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
188 SIGTRAMP_INSN1 /* break 13 */
189 };
190
191 /* If PC is in a sigtramp routine, return the address of the start of
192 the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 cris_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[SIGTRAMP_LEN];
199
200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
201 return 0;
202
203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
204 {
205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= SIGTRAMP_OFFSET1;
209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
210 return 0;
211 }
212
213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
214 return 0;
215
216 return pc;
217 }
218
219 /* If PC is in a RT sigtramp routine, return the address of the start of
220 the routine. Otherwise, return 0. */
221
222 static CORE_ADDR
223 cris_rt_sigtramp_start (struct frame_info *this_frame)
224 {
225 CORE_ADDR pc = get_frame_pc (this_frame);
226 gdb_byte buf[SIGTRAMP_LEN];
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
229 return 0;
230
231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
232 {
233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
234 return 0;
235
236 pc -= SIGTRAMP_OFFSET1;
237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
238 return 0;
239 }
240
241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
242 return 0;
243
244 return pc;
245 }
246
247 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
248 return the address of the associated sigcontext structure. */
249
250 static CORE_ADDR
251 cris_sigcontext_addr (struct frame_info *this_frame)
252 {
253 struct gdbarch *gdbarch = get_frame_arch (this_frame);
254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
255 CORE_ADDR pc;
256 CORE_ADDR sp;
257 gdb_byte buf[4];
258
259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
260 sp = extract_unsigned_integer (buf, 4, byte_order);
261
262 /* Look for normal sigtramp frame first. */
263 pc = cris_sigtramp_start (this_frame);
264 if (pc)
265 {
266 /* struct signal_frame (arch/cris/kernel/signal.c) contains
267 struct sigcontext as its first member, meaning the SP points to
268 it already. */
269 return sp;
270 }
271
272 pc = cris_rt_sigtramp_start (this_frame);
273 if (pc)
274 {
275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
276 a struct ucontext, which in turn contains a struct sigcontext.
277 Magic digging:
278 4 + 4 + 128 to struct ucontext, then
279 4 + 4 + 12 to struct sigcontext. */
280 return (sp + 156);
281 }
282
283 error (_("Couldn't recognize signal trampoline."));
284 return 0;
285 }
286
287 struct cris_unwind_cache
288 {
289 /* The previous frame's inner most stack address. Used as this
290 frame ID's stack_addr. */
291 CORE_ADDR prev_sp;
292 /* The frame's base, optionally used by the high-level debug info. */
293 CORE_ADDR base;
294 int size;
295 /* How far the SP and r8 (FP) have been offset from the start of
296 the stack frame (as defined by the previous frame's stack
297 pointer). */
298 LONGEST sp_offset;
299 LONGEST r8_offset;
300 int uses_frame;
301
302 /* From old frame_extra_info struct. */
303 CORE_ADDR return_pc;
304 int leaf_function;
305
306 /* Table indicating the location of each and every register. */
307 struct trad_frame_saved_reg *saved_regs;
308 };
309
310 static struct cris_unwind_cache *
311 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
312 void **this_cache)
313 {
314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 struct cris_unwind_cache *info;
318 CORE_ADDR addr;
319 gdb_byte buf[4];
320 int i;
321
322 if ((*this_cache))
323 return (struct cris_unwind_cache *) (*this_cache);
324
325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
326 (*this_cache) = info;
327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
328
329 /* Zero all fields. */
330 info->prev_sp = 0;
331 info->base = 0;
332 info->size = 0;
333 info->sp_offset = 0;
334 info->r8_offset = 0;
335 info->uses_frame = 0;
336 info->return_pc = 0;
337 info->leaf_function = 0;
338
339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
340 info->base = extract_unsigned_integer (buf, 4, byte_order);
341
342 addr = cris_sigcontext_addr (this_frame);
343
344 /* Layout of the sigcontext struct:
345 struct sigcontext {
346 struct pt_regs regs;
347 unsigned long oldmask;
348 unsigned long usp;
349 }; */
350
351 if (tdep->cris_version == 10)
352 {
353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
354 struct pt_regs. */
355 for (i = 0; i <= 13; i++)
356 info->saved_regs[i].addr = addr + ((15 - i) * 4);
357
358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
361 /* Note: IRP is off by 2 at this point. There's no point in correcting
362 it though since that will mean that the backtrace will show a PC
363 different from what is shown when stopped. */
364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
365 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
366 = info->saved_regs[IRP_REGNUM];
367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
368 }
369 else
370 {
371 /* CRISv32. */
372 /* R0 to R13 are stored in order at offset (1 * 4) in
373 struct pt_regs. */
374 for (i = 0; i <= 13; i++)
375 info->saved_regs[i].addr = addr + ((i + 1) * 4);
376
377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
386
387 /* FIXME: If ERP is in a delay slot at this point then the PC will
388 be wrong at this point. This problem manifests itself in the
389 sigaltstack.exp test case, which occasionally generates FAILs when
390 the signal is received while in a delay slot.
391
392 This could be solved by a couple of read_memory_unsigned_integer and a
393 trad_frame_set_value. */
394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
395 = info->saved_regs[ERP_REGNUM];
396
397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
398 = addr + (25 * 4);
399 }
400
401 return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
406 struct frame_id *this_id)
407 {
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration. */
414
415 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
416 void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
419 void **this_cache, int regnum)
420 {
421 /* Make sure we've initialized the cache. */
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 struct frame_info *this_frame,
429 void **this_cache)
430 {
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440 SIGTRAMP_FRAME,
441 default_frame_unwind_stop_reason,
442 cris_sigtramp_frame_this_id,
443 cris_sigtramp_frame_prev_register,
444 NULL,
445 cris_sigtramp_frame_sniffer
446 };
447
448 static int
449 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
450 struct frame_info *this_frame)
451 {
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 ULONGEST erp;
454 int ret = 0;
455
456 if (tdep->cris_mode == cris_mode_guru)
457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
458 else
459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
460
461 if (erp & 0x1)
462 {
463 /* In delay slot - check if there's a breakpoint at the preceding
464 instruction. */
465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
466 ret = 1;
467 }
468 return ret;
469 }
470
471 /* The instruction environment needed to find single-step breakpoints. */
472
473 typedef
474 struct instruction_environment
475 {
476 unsigned long reg[NUM_GENREGS];
477 unsigned long preg[NUM_SPECREGS];
478 unsigned long branch_break_address;
479 unsigned long delay_slot_pc;
480 unsigned long prefix_value;
481 int branch_found;
482 int prefix_found;
483 int invalid;
484 int slot_needed;
485 int delay_slot_pc_active;
486 int xflag_found;
487 int disable_interrupt;
488 enum bfd_endian byte_order;
489 } inst_env_type;
490
491 /* Machine-dependencies in CRIS for opcodes. */
492
493 /* Instruction sizes. */
494 enum cris_instruction_sizes
495 {
496 INST_BYTE_SIZE = 0,
497 INST_WORD_SIZE = 1,
498 INST_DWORD_SIZE = 2
499 };
500
501 /* Addressing modes. */
502 enum cris_addressing_modes
503 {
504 REGISTER_MODE = 1,
505 INDIRECT_MODE = 2,
506 AUTOINC_MODE = 3
507 };
508
509 /* Prefix addressing modes. */
510 enum cris_prefix_addressing_modes
511 {
512 PREFIX_INDEX_MODE = 2,
513 PREFIX_ASSIGN_MODE = 3,
514
515 /* Handle immediate byte offset addressing mode prefix format. */
516 PREFIX_OFFSET_MODE = 2
517 };
518
519 /* Masks for opcodes. */
520 enum cris_opcode_masks
521 {
522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
523 SIGNED_EXTEND_BIT_MASK = 0x2,
524 SIGNED_BYTE_MASK = 0x80,
525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
526 SIGNED_WORD_MASK = 0x8000,
527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
528 SIGNED_DWORD_MASK = 0x80000000,
529 SIGNED_QUICK_VALUE_MASK = 0x20,
530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
531 };
532
533 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
534 Bit 15 - 12 Operand2
535 11 - 10 Mode
536 9 - 6 Opcode
537 5 - 4 Size
538 3 - 0 Operand1 */
539
540 static int
541 cris_get_operand2 (unsigned short insn)
542 {
543 return ((insn & 0xF000) >> 12);
544 }
545
546 static int
547 cris_get_mode (unsigned short insn)
548 {
549 return ((insn & 0x0C00) >> 10);
550 }
551
552 static int
553 cris_get_opcode (unsigned short insn)
554 {
555 return ((insn & 0x03C0) >> 6);
556 }
557
558 static int
559 cris_get_size (unsigned short insn)
560 {
561 return ((insn & 0x0030) >> 4);
562 }
563
564 static int
565 cris_get_operand1 (unsigned short insn)
566 {
567 return (insn & 0x000F);
568 }
569
570 /* Additional functions in order to handle opcodes. */
571
572 static int
573 cris_get_quick_value (unsigned short insn)
574 {
575 return (insn & 0x003F);
576 }
577
578 static int
579 cris_get_bdap_quick_offset (unsigned short insn)
580 {
581 return (insn & 0x00FF);
582 }
583
584 static int
585 cris_get_branch_short_offset (unsigned short insn)
586 {
587 return (insn & 0x00FF);
588 }
589
590 static int
591 cris_get_asr_shift_steps (unsigned long value)
592 {
593 return (value & 0x3F);
594 }
595
596 static int
597 cris_get_clear_size (unsigned short insn)
598 {
599 return ((insn) & 0xC000);
600 }
601
602 static int
603 cris_is_signed_extend_bit_on (unsigned short insn)
604 {
605 return (((insn) & 0x20) == 0x20);
606 }
607
608 static int
609 cris_is_xflag_bit_on (unsigned short insn)
610 {
611 return (((insn) & 0x1000) == 0x1000);
612 }
613
614 static void
615 cris_set_size_to_dword (unsigned short *insn)
616 {
617 *insn &= 0xFFCF;
618 *insn |= 0x20;
619 }
620
621 static signed char
622 cris_get_signed_offset (unsigned short insn)
623 {
624 return ((signed char) (insn & 0x00FF));
625 }
626
627 /* Calls an op function given the op-type, working on the insn and the
628 inst_env. */
629 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
630 inst_env_type *);
631
632 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
633 struct gdbarch_list *);
634
635 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
636
637 static void set_cris_version (char *ignore_args, int from_tty,
638 struct cmd_list_element *c);
639
640 static void set_cris_mode (char *ignore_args, int from_tty,
641 struct cmd_list_element *c);
642
643 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
644 struct cmd_list_element *c);
645
646 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
647 struct frame_info *this_frame,
648 struct cris_unwind_cache *info);
649
650 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
651 struct frame_info *this_frame,
652 struct cris_unwind_cache *info);
653
654 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
655 struct frame_info *next_frame);
656
657 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
658 struct frame_info *next_frame);
659
660 /* When arguments must be pushed onto the stack, they go on in reverse
661 order. The below implements a FILO (stack) to do this.
662 Copied from d10v-tdep.c. */
663
664 struct stack_item
665 {
666 int len;
667 struct stack_item *prev;
668 gdb_byte *data;
669 };
670
671 static struct stack_item *
672 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
673 {
674 struct stack_item *si = XNEW (struct stack_item);
675 si->data = (gdb_byte *) xmalloc (len);
676 si->len = len;
677 si->prev = prev;
678 memcpy (si->data, contents, len);
679 return si;
680 }
681
682 static struct stack_item *
683 pop_stack_item (struct stack_item *si)
684 {
685 struct stack_item *dead = si;
686 si = si->prev;
687 xfree (dead->data);
688 xfree (dead);
689 return si;
690 }
691
692 /* Put here the code to store, into fi->saved_regs, the addresses of
693 the saved registers of frame described by FRAME_INFO. This
694 includes special registers such as pc and fp saved in special ways
695 in the stack frame. sp is even more special: the address we return
696 for it IS the sp for the next frame. */
697
698 static struct cris_unwind_cache *
699 cris_frame_unwind_cache (struct frame_info *this_frame,
700 void **this_prologue_cache)
701 {
702 struct gdbarch *gdbarch = get_frame_arch (this_frame);
703 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
704 struct cris_unwind_cache *info;
705
706 if ((*this_prologue_cache))
707 return (struct cris_unwind_cache *) (*this_prologue_cache);
708
709 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
710 (*this_prologue_cache) = info;
711 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
712
713 /* Zero all fields. */
714 info->prev_sp = 0;
715 info->base = 0;
716 info->size = 0;
717 info->sp_offset = 0;
718 info->r8_offset = 0;
719 info->uses_frame = 0;
720 info->return_pc = 0;
721 info->leaf_function = 0;
722
723 /* Prologue analysis does the rest... */
724 if (tdep->cris_version == 32)
725 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
726 else
727 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
728
729 return info;
730 }
731
732 /* Given a GDB frame, determine the address of the calling function's
733 frame. This will be used to create a new GDB frame struct. */
734
735 static void
736 cris_frame_this_id (struct frame_info *this_frame,
737 void **this_prologue_cache,
738 struct frame_id *this_id)
739 {
740 struct cris_unwind_cache *info
741 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
742 CORE_ADDR base;
743 CORE_ADDR func;
744 struct frame_id id;
745
746 /* The FUNC is easy. */
747 func = get_frame_func (this_frame);
748
749 /* Hopefully the prologue analysis either correctly determined the
750 frame's base (which is the SP from the previous frame), or set
751 that base to "NULL". */
752 base = info->prev_sp;
753 if (base == 0)
754 return;
755
756 id = frame_id_build (base, func);
757
758 (*this_id) = id;
759 }
760
761 static struct value *
762 cris_frame_prev_register (struct frame_info *this_frame,
763 void **this_prologue_cache, int regnum)
764 {
765 struct cris_unwind_cache *info
766 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
767 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
768 }
769
770 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
771 frame. The frame ID's base needs to match the TOS value saved by
772 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
773
774 static struct frame_id
775 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
776 {
777 CORE_ADDR sp;
778 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
779 return frame_id_build (sp, get_frame_pc (this_frame));
780 }
781
782 static CORE_ADDR
783 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
784 {
785 /* Align to the size of an instruction (so that they can safely be
786 pushed onto the stack). */
787 return sp & ~3;
788 }
789
790 static CORE_ADDR
791 cris_push_dummy_code (struct gdbarch *gdbarch,
792 CORE_ADDR sp, CORE_ADDR funaddr,
793 struct value **args, int nargs,
794 struct type *value_type,
795 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
796 struct regcache *regcache)
797 {
798 /* Allocate space sufficient for a breakpoint. */
799 sp = (sp - 4) & ~3;
800 /* Store the address of that breakpoint */
801 *bp_addr = sp;
802 /* CRIS always starts the call at the callee's entry point. */
803 *real_pc = funaddr;
804 return sp;
805 }
806
807 static CORE_ADDR
808 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
809 struct regcache *regcache, CORE_ADDR bp_addr,
810 int nargs, struct value **args, CORE_ADDR sp,
811 int struct_return, CORE_ADDR struct_addr)
812 {
813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
814 int argreg;
815 int argnum;
816
817 struct stack_item *si = NULL;
818
819 /* Push the return address. */
820 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
821
822 /* Are we returning a value using a structure return or a normal value
823 return? struct_addr is the address of the reserved space for the return
824 structure to be written on the stack. */
825 if (struct_return)
826 {
827 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
828 }
829
830 /* Now load as many as possible of the first arguments into registers,
831 and push the rest onto the stack. */
832 argreg = ARG1_REGNUM;
833
834 for (argnum = 0; argnum < nargs; argnum++)
835 {
836 int len;
837 const gdb_byte *val;
838 int reg_demand;
839 int i;
840
841 len = TYPE_LENGTH (value_type (args[argnum]));
842 val = value_contents (args[argnum]);
843
844 /* How may registers worth of storage do we need for this argument? */
845 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
846
847 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
848 {
849 /* Data passed by value. Fits in available register(s). */
850 for (i = 0; i < reg_demand; i++)
851 {
852 regcache_cooked_write (regcache, argreg, val);
853 argreg++;
854 val += 4;
855 }
856 }
857 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
858 {
859 /* Data passed by value. Does not fit in available register(s).
860 Use the register(s) first, then the stack. */
861 for (i = 0; i < reg_demand; i++)
862 {
863 if (argreg <= ARG4_REGNUM)
864 {
865 regcache_cooked_write (regcache, argreg, val);
866 argreg++;
867 val += 4;
868 }
869 else
870 {
871 /* Push item for later so that pushed arguments
872 come in the right order. */
873 si = push_stack_item (si, val, 4);
874 val += 4;
875 }
876 }
877 }
878 else if (len > (2 * 4))
879 {
880 /* Data passed by reference. Push copy of data onto stack
881 and pass pointer to this copy as argument. */
882 sp = (sp - len) & ~3;
883 write_memory (sp, val, len);
884
885 if (argreg <= ARG4_REGNUM)
886 {
887 regcache_cooked_write_unsigned (regcache, argreg, sp);
888 argreg++;
889 }
890 else
891 {
892 gdb_byte buf[4];
893 store_unsigned_integer (buf, 4, byte_order, sp);
894 si = push_stack_item (si, buf, 4);
895 }
896 }
897 else
898 {
899 /* Data passed by value. No available registers. Put it on
900 the stack. */
901 si = push_stack_item (si, val, len);
902 }
903 }
904
905 while (si)
906 {
907 /* fp_arg must be word-aligned (i.e., don't += len) to match
908 the function prologue. */
909 sp = (sp - si->len) & ~3;
910 write_memory (sp, si->data, si->len);
911 si = pop_stack_item (si);
912 }
913
914 /* Finally, update the SP register. */
915 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
916
917 return sp;
918 }
919
920 static const struct frame_unwind cris_frame_unwind =
921 {
922 NORMAL_FRAME,
923 default_frame_unwind_stop_reason,
924 cris_frame_this_id,
925 cris_frame_prev_register,
926 NULL,
927 default_frame_sniffer
928 };
929
930 static CORE_ADDR
931 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
932 {
933 struct cris_unwind_cache *info
934 = cris_frame_unwind_cache (this_frame, this_cache);
935 return info->base;
936 }
937
938 static const struct frame_base cris_frame_base =
939 {
940 &cris_frame_unwind,
941 cris_frame_base_address,
942 cris_frame_base_address,
943 cris_frame_base_address
944 };
945
946 /* Frames information. The definition of the struct frame_info is
947
948 CORE_ADDR frame
949 CORE_ADDR pc
950 enum frame_type type;
951 CORE_ADDR return_pc
952 int leaf_function
953
954 If the compilation option -fno-omit-frame-pointer is present the
955 variable frame will be set to the content of R8 which is the frame
956 pointer register.
957
958 The variable pc contains the address where execution is performed
959 in the present frame. The innermost frame contains the current content
960 of the register PC. All other frames contain the content of the
961 register PC in the next frame.
962
963 The variable `type' indicates the frame's type: normal, SIGTRAMP
964 (associated with a signal handler), dummy (associated with a dummy
965 frame).
966
967 The variable return_pc contains the address where execution should be
968 resumed when the present frame has finished, the return address.
969
970 The variable leaf_function is 1 if the return address is in the register
971 SRP, and 0 if it is on the stack.
972
973 Prologue instructions C-code.
974 The prologue may consist of (-fno-omit-frame-pointer)
975 1) 2)
976 push srp
977 push r8 push r8
978 move.d sp,r8 move.d sp,r8
979 subq X,sp subq X,sp
980 movem rY,[sp] movem rY,[sp]
981 move.S rZ,[r8-U] move.S rZ,[r8-U]
982
983 where 1 is a non-terminal function, and 2 is a leaf-function.
984
985 Note that this assumption is extremely brittle, and will break at the
986 slightest change in GCC's prologue.
987
988 If local variables are declared or register contents are saved on stack
989 the subq-instruction will be present with X as the number of bytes
990 needed for storage. The reshuffle with respect to r8 may be performed
991 with any size S (b, w, d) and any of the general registers Z={0..13}.
992 The offset U should be representable by a signed 8-bit value in all cases.
993 Thus, the prefix word is assumed to be immediate byte offset mode followed
994 by another word containing the instruction.
995
996 Degenerate cases:
997 3)
998 push r8
999 move.d sp,r8
1000 move.d r8,sp
1001 pop r8
1002
1003 Prologue instructions C++-code.
1004 Case 1) and 2) in the C-code may be followed by
1005
1006 move.d r10,rS ; this
1007 move.d r11,rT ; P1
1008 move.d r12,rU ; P2
1009 move.d r13,rV ; P3
1010 move.S [r8+U],rZ ; P4
1011
1012 if any of the call parameters are stored. The host expects these
1013 instructions to be executed in order to get the call parameters right. */
1014
1015 /* Examine the prologue of a function. The variable ip is the address of
1016 the first instruction of the prologue. The variable limit is the address
1017 of the first instruction after the prologue. The variable fi contains the
1018 information in struct frame_info. The variable frameless_p controls whether
1019 the entire prologue is examined (0) or just enough instructions to
1020 determine that it is a prologue (1). */
1021
1022 static CORE_ADDR
1023 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1024 struct cris_unwind_cache *info)
1025 {
1026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1028
1029 /* Present instruction. */
1030 unsigned short insn;
1031
1032 /* Next instruction, lookahead. */
1033 unsigned short insn_next;
1034 int regno;
1035
1036 /* Number of byte on stack used for local variables and movem. */
1037 int val;
1038
1039 /* Highest register number in a movem. */
1040 int regsave;
1041
1042 /* move.d r<source_register>,rS */
1043 short source_register;
1044
1045 /* Scan limit. */
1046 int limit;
1047
1048 /* This frame is with respect to a leaf until a push srp is found. */
1049 if (info)
1050 {
1051 info->leaf_function = 1;
1052 }
1053
1054 /* Assume nothing on stack. */
1055 val = 0;
1056 regsave = -1;
1057
1058 /* If we were called without a this_frame, that means we were called
1059 from cris_skip_prologue which already tried to find the end of the
1060 prologue through the symbol information. 64 instructions past current
1061 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1062 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1063
1064 /* Find the prologue instructions. */
1065 while (pc > 0 && pc < limit)
1066 {
1067 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1068 pc += 2;
1069 if (insn == 0xE1FC)
1070 {
1071 /* push <reg> 32 bit instruction. */
1072 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1073 pc += 2;
1074 regno = cris_get_operand2 (insn_next);
1075 if (info)
1076 {
1077 info->sp_offset += 4;
1078 }
1079 /* This check, meant to recognize srp, used to be regno ==
1080 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1081 if (insn_next == 0xBE7E)
1082 {
1083 if (info)
1084 {
1085 info->leaf_function = 0;
1086 }
1087 }
1088 else if (insn_next == 0x8FEE)
1089 {
1090 /* push $r8 */
1091 if (info)
1092 {
1093 info->r8_offset = info->sp_offset;
1094 }
1095 }
1096 }
1097 else if (insn == 0x866E)
1098 {
1099 /* move.d sp,r8 */
1100 if (info)
1101 {
1102 info->uses_frame = 1;
1103 }
1104 continue;
1105 }
1106 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1107 && cris_get_mode (insn) == 0x0000
1108 && cris_get_opcode (insn) == 0x000A)
1109 {
1110 /* subq <val>,sp */
1111 if (info)
1112 {
1113 info->sp_offset += cris_get_quick_value (insn);
1114 }
1115 }
1116 else if (cris_get_mode (insn) == 0x0002
1117 && cris_get_opcode (insn) == 0x000F
1118 && cris_get_size (insn) == 0x0003
1119 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1120 {
1121 /* movem r<regsave>,[sp] */
1122 regsave = cris_get_operand2 (insn);
1123 }
1124 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1125 && ((insn & 0x0F00) >> 8) == 0x0001
1126 && (cris_get_signed_offset (insn) < 0))
1127 {
1128 /* Immediate byte offset addressing prefix word with sp as base
1129 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1130 is between 64 and 128.
1131 movem r<regsave>,[sp=sp-<val>] */
1132 if (info)
1133 {
1134 info->sp_offset += -cris_get_signed_offset (insn);
1135 }
1136 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1137 pc += 2;
1138 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1139 && cris_get_opcode (insn_next) == 0x000F
1140 && cris_get_size (insn_next) == 0x0003
1141 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1142 (gdbarch))
1143 {
1144 regsave = cris_get_operand2 (insn_next);
1145 }
1146 else
1147 {
1148 /* The prologue ended before the limit was reached. */
1149 pc -= 4;
1150 break;
1151 }
1152 }
1153 else if (cris_get_mode (insn) == 0x0001
1154 && cris_get_opcode (insn) == 0x0009
1155 && cris_get_size (insn) == 0x0002)
1156 {
1157 /* move.d r<10..13>,r<0..15> */
1158 source_register = cris_get_operand1 (insn);
1159
1160 /* FIXME? In the glibc solibs, the prologue might contain something
1161 like (this example taken from relocate_doit):
1162 move.d $pc,$r0
1163 sub.d 0xfffef426,$r0
1164 which isn't covered by the source_register check below. Question
1165 is whether to add a check for this combo, or make better use of
1166 the limit variable instead. */
1167 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1168 {
1169 /* The prologue ended before the limit was reached. */
1170 pc -= 2;
1171 break;
1172 }
1173 }
1174 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1175 /* The size is a fixed-size. */
1176 && ((insn & 0x0F00) >> 8) == 0x0001
1177 /* A negative offset. */
1178 && (cris_get_signed_offset (insn) < 0))
1179 {
1180 /* move.S rZ,[r8-U] (?) */
1181 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1182 pc += 2;
1183 regno = cris_get_operand2 (insn_next);
1184 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1185 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1186 && cris_get_opcode (insn_next) == 0x000F)
1187 {
1188 /* move.S rZ,[r8-U] */
1189 continue;
1190 }
1191 else
1192 {
1193 /* The prologue ended before the limit was reached. */
1194 pc -= 4;
1195 break;
1196 }
1197 }
1198 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1199 /* The size is a fixed-size. */
1200 && ((insn & 0x0F00) >> 8) == 0x0001
1201 /* A positive offset. */
1202 && (cris_get_signed_offset (insn) > 0))
1203 {
1204 /* move.S [r8+U],rZ (?) */
1205 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1206 pc += 2;
1207 regno = cris_get_operand2 (insn_next);
1208 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1209 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1210 && cris_get_opcode (insn_next) == 0x0009
1211 && cris_get_operand1 (insn_next) == regno)
1212 {
1213 /* move.S [r8+U],rZ */
1214 continue;
1215 }
1216 else
1217 {
1218 /* The prologue ended before the limit was reached. */
1219 pc -= 4;
1220 break;
1221 }
1222 }
1223 else
1224 {
1225 /* The prologue ended before the limit was reached. */
1226 pc -= 2;
1227 break;
1228 }
1229 }
1230
1231 /* We only want to know the end of the prologue when this_frame and info
1232 are NULL (called from cris_skip_prologue i.e.). */
1233 if (this_frame == NULL && info == NULL)
1234 {
1235 return pc;
1236 }
1237
1238 info->size = info->sp_offset;
1239
1240 /* Compute the previous frame's stack pointer (which is also the
1241 frame's ID's stack address), and this frame's base pointer. */
1242 if (info->uses_frame)
1243 {
1244 ULONGEST this_base;
1245 /* The SP was moved to the FP. This indicates that a new frame
1246 was created. Get THIS frame's FP value by unwinding it from
1247 the next frame. */
1248 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1249 info->base = this_base;
1250 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1251
1252 /* The FP points at the last saved register. Adjust the FP back
1253 to before the first saved register giving the SP. */
1254 info->prev_sp = info->base + info->r8_offset;
1255 }
1256 else
1257 {
1258 ULONGEST this_base;
1259 /* Assume that the FP is this frame's SP but with that pushed
1260 stack space added back. */
1261 this_base = get_frame_register_unsigned (this_frame,
1262 gdbarch_sp_regnum (gdbarch));
1263 info->base = this_base;
1264 info->prev_sp = info->base + info->size;
1265 }
1266
1267 /* Calculate the addresses for the saved registers on the stack. */
1268 /* FIXME: The address calculation should really be done on the fly while
1269 we're analyzing the prologue (we only hold one regsave value as it is
1270 now). */
1271 val = info->sp_offset;
1272
1273 for (regno = regsave; regno >= 0; regno--)
1274 {
1275 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1276 val -= 4;
1277 }
1278
1279 /* The previous frame's SP needed to be computed. Save the computed
1280 value. */
1281 trad_frame_set_value (info->saved_regs,
1282 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1283
1284 if (!info->leaf_function)
1285 {
1286 /* SRP saved on the stack. But where? */
1287 if (info->r8_offset == 0)
1288 {
1289 /* R8 not pushed yet. */
1290 info->saved_regs[SRP_REGNUM].addr = info->base;
1291 }
1292 else
1293 {
1294 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1295 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1296 }
1297 }
1298
1299 /* The PC is found in SRP (the actual register or located on the stack). */
1300 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1301 = info->saved_regs[SRP_REGNUM];
1302
1303 return pc;
1304 }
1305
1306 static CORE_ADDR
1307 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1308 struct cris_unwind_cache *info)
1309 {
1310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1311 ULONGEST this_base;
1312
1313 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1314 meant to be a full-fledged prologue scanner. It is only needed for
1315 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1316
1317 * PLT stubs (library calls)
1318 * call dummys
1319 * signal trampolines
1320
1321 For those cases, it is assumed that there is no actual prologue; that
1322 the stack pointer is not adjusted, and (as a consequence) the return
1323 address is not pushed onto the stack. */
1324
1325 /* We only want to know the end of the prologue when this_frame and info
1326 are NULL (called from cris_skip_prologue i.e.). */
1327 if (this_frame == NULL && info == NULL)
1328 {
1329 return pc;
1330 }
1331
1332 /* The SP is assumed to be unaltered. */
1333 this_base = get_frame_register_unsigned (this_frame,
1334 gdbarch_sp_regnum (gdbarch));
1335 info->base = this_base;
1336 info->prev_sp = this_base;
1337
1338 /* The PC is assumed to be found in SRP. */
1339 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1340 = info->saved_regs[SRP_REGNUM];
1341
1342 return pc;
1343 }
1344
1345 /* Advance pc beyond any function entry prologue instructions at pc
1346 to reach some "real" code. */
1347
1348 /* Given a PC value corresponding to the start of a function, return the PC
1349 of the first instruction after the function prologue. */
1350
1351 static CORE_ADDR
1352 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1353 {
1354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1355 CORE_ADDR func_addr, func_end;
1356 struct symtab_and_line sal;
1357 CORE_ADDR pc_after_prologue;
1358
1359 /* If we have line debugging information, then the end of the prologue
1360 should the first assembly instruction of the first source line. */
1361 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1362 {
1363 sal = find_pc_line (func_addr, 0);
1364 if (sal.end > 0 && sal.end < func_end)
1365 return sal.end;
1366 }
1367
1368 if (tdep->cris_version == 32)
1369 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1370 else
1371 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1372
1373 return pc_after_prologue;
1374 }
1375
1376 static CORE_ADDR
1377 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1378 {
1379 ULONGEST pc;
1380 pc = frame_unwind_register_unsigned (next_frame,
1381 gdbarch_pc_regnum (gdbarch));
1382 return pc;
1383 }
1384
1385 static CORE_ADDR
1386 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1387 {
1388 ULONGEST sp;
1389 sp = frame_unwind_register_unsigned (next_frame,
1390 gdbarch_sp_regnum (gdbarch));
1391 return sp;
1392 }
1393
1394 /* Use the program counter to determine the contents and size of a breakpoint
1395 instruction. It returns a pointer to a string of bytes that encode a
1396 breakpoint instruction, stores the length of the string to *lenptr, and
1397 adjusts pcptr (if necessary) to point to the actual memory location where
1398 the breakpoint should be inserted. */
1399
1400 static const unsigned char *
1401 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1402 CORE_ADDR *pcptr, int *lenptr)
1403 {
1404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1405 static unsigned char break8_insn[] = {0x38, 0xe9};
1406 static unsigned char break15_insn[] = {0x3f, 0xe9};
1407 *lenptr = 2;
1408
1409 if (tdep->cris_mode == cris_mode_guru)
1410 return break15_insn;
1411 else
1412 return break8_insn;
1413 }
1414
1415 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1416 0 otherwise. */
1417
1418 static int
1419 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1420 struct cris_spec_reg spec_reg)
1421 {
1422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1423 unsigned int version = tdep->cris_version;
1424
1425 switch (spec_reg.applicable_version)
1426 {
1427 case cris_ver_version_all:
1428 return 1;
1429 case cris_ver_warning:
1430 /* Indeterminate/obsolete. */
1431 return 0;
1432 case cris_ver_v0_3:
1433 return (version >= 0 && version <= 3);
1434 case cris_ver_v3p:
1435 return (version >= 3);
1436 case cris_ver_v8:
1437 return (version == 8 || version == 9);
1438 case cris_ver_v8p:
1439 return (version >= 8);
1440 case cris_ver_v0_10:
1441 return (version >= 0 && version <= 10);
1442 case cris_ver_v3_10:
1443 return (version >= 3 && version <= 10);
1444 case cris_ver_v8_10:
1445 return (version >= 8 && version <= 10);
1446 case cris_ver_v10:
1447 return (version == 10);
1448 case cris_ver_v10p:
1449 return (version >= 10);
1450 case cris_ver_v32p:
1451 return (version >= 32);
1452 default:
1453 /* Invalid cris version. */
1454 return 0;
1455 }
1456 }
1457
1458 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1459 register, -1 for an invalid register. */
1460
1461 static int
1462 cris_register_size (struct gdbarch *gdbarch, int regno)
1463 {
1464 int i;
1465 int spec_regno;
1466
1467 if (regno >= 0 && regno < NUM_GENREGS)
1468 {
1469 /* General registers (R0 - R15) are 32 bits. */
1470 return 4;
1471 }
1472 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1473 {
1474 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1475 Adjust regno accordingly. */
1476 spec_regno = regno - NUM_GENREGS;
1477
1478 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1479 {
1480 if (cris_spec_regs[i].number == spec_regno
1481 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1482 /* Go with the first applicable register. */
1483 return cris_spec_regs[i].reg_size;
1484 }
1485 /* Special register not applicable to this CRIS version. */
1486 return 0;
1487 }
1488 else if (regno >= gdbarch_pc_regnum (gdbarch)
1489 && regno < gdbarch_num_regs (gdbarch))
1490 {
1491 /* This will apply to CRISv32 only where there are additional registers
1492 after the special registers (pseudo PC and support registers). */
1493 return 4;
1494 }
1495
1496
1497 return -1;
1498 }
1499
1500 /* Nonzero if regno should not be fetched from the target. This is the case
1501 for unimplemented (size 0) and non-existant registers. */
1502
1503 static int
1504 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1505 {
1506 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1507 || (cris_register_size (gdbarch, regno) == 0));
1508 }
1509
1510 /* Nonzero if regno should not be written to the target, for various
1511 reasons. */
1512
1513 static int
1514 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1515 {
1516 /* There are three kinds of registers we refuse to write to.
1517 1. Those that not implemented.
1518 2. Those that are read-only (depends on the processor mode).
1519 3. Those registers to which a write has no effect. */
1520
1521 if (regno < 0
1522 || regno >= gdbarch_num_regs (gdbarch)
1523 || cris_register_size (gdbarch, regno) == 0)
1524 /* Not implemented. */
1525 return 1;
1526
1527 else if (regno == VR_REGNUM)
1528 /* Read-only. */
1529 return 1;
1530
1531 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1532 /* Writing has no effect. */
1533 return 1;
1534
1535 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1536 agent decide whether they are writable. */
1537
1538 return 0;
1539 }
1540
1541 /* Nonzero if regno should not be fetched from the target. This is the case
1542 for unimplemented (size 0) and non-existant registers. */
1543
1544 static int
1545 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1546 {
1547 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1548 || (cris_register_size (gdbarch, regno) == 0));
1549 }
1550
1551 /* Nonzero if regno should not be written to the target, for various
1552 reasons. */
1553
1554 static int
1555 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1556 {
1557 /* There are three kinds of registers we refuse to write to.
1558 1. Those that not implemented.
1559 2. Those that are read-only (depends on the processor mode).
1560 3. Those registers to which a write has no effect. */
1561
1562 if (regno < 0
1563 || regno >= gdbarch_num_regs (gdbarch)
1564 || cris_register_size (gdbarch, regno) == 0)
1565 /* Not implemented. */
1566 return 1;
1567
1568 else if (regno == VR_REGNUM)
1569 /* Read-only. */
1570 return 1;
1571
1572 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1573 /* Writing has no effect. */
1574 return 1;
1575
1576 /* Many special registers are read-only in user mode. Let the debug
1577 agent decide whether they are writable. */
1578
1579 return 0;
1580 }
1581
1582 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1583 of data in register regno. */
1584
1585 static struct type *
1586 cris_register_type (struct gdbarch *gdbarch, int regno)
1587 {
1588 if (regno == gdbarch_pc_regnum (gdbarch))
1589 return builtin_type (gdbarch)->builtin_func_ptr;
1590 else if (regno == gdbarch_sp_regnum (gdbarch)
1591 || regno == CRIS_FP_REGNUM)
1592 return builtin_type (gdbarch)->builtin_data_ptr;
1593 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1594 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1595 /* Note: R8 taken care of previous clause. */
1596 return builtin_type (gdbarch)->builtin_uint32;
1597 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1598 return builtin_type (gdbarch)->builtin_uint16;
1599 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1600 return builtin_type (gdbarch)->builtin_uint8;
1601 else
1602 /* Invalid (unimplemented) register. */
1603 return builtin_type (gdbarch)->builtin_int0;
1604 }
1605
1606 static struct type *
1607 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1608 {
1609 if (regno == gdbarch_pc_regnum (gdbarch))
1610 return builtin_type (gdbarch)->builtin_func_ptr;
1611 else if (regno == gdbarch_sp_regnum (gdbarch)
1612 || regno == CRIS_FP_REGNUM)
1613 return builtin_type (gdbarch)->builtin_data_ptr;
1614 else if ((regno >= 0 && regno <= ACR_REGNUM)
1615 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1616 || (regno == PID_REGNUM)
1617 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1618 /* Note: R8 and SP taken care of by previous clause. */
1619 return builtin_type (gdbarch)->builtin_uint32;
1620 else if (regno == WZ_REGNUM)
1621 return builtin_type (gdbarch)->builtin_uint16;
1622 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1623 return builtin_type (gdbarch)->builtin_uint8;
1624 else
1625 {
1626 /* Invalid (unimplemented) register. Should not happen as there are
1627 no unimplemented CRISv32 registers. */
1628 warning (_("crisv32_register_type: unknown regno %d"), regno);
1629 return builtin_type (gdbarch)->builtin_int0;
1630 }
1631 }
1632
1633 /* Stores a function return value of type type, where valbuf is the address
1634 of the value to be stored. */
1635
1636 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1637
1638 static void
1639 cris_store_return_value (struct type *type, struct regcache *regcache,
1640 const gdb_byte *valbuf)
1641 {
1642 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1643 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1644 ULONGEST val;
1645 int len = TYPE_LENGTH (type);
1646
1647 if (len <= 4)
1648 {
1649 /* Put the return value in R10. */
1650 val = extract_unsigned_integer (valbuf, len, byte_order);
1651 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1652 }
1653 else if (len <= 8)
1654 {
1655 /* Put the return value in R10 and R11. */
1656 val = extract_unsigned_integer (valbuf, 4, byte_order);
1657 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1658 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1659 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1660 }
1661 else
1662 error (_("cris_store_return_value: type length too large."));
1663 }
1664
1665 /* Return the name of register regno as a string. Return NULL for an
1666 invalid or unimplemented register. */
1667
1668 static const char *
1669 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1670 {
1671 int spec_regno;
1672 int i;
1673
1674 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1675 Adjust regno accordingly. */
1676 spec_regno = regno - NUM_GENREGS;
1677
1678 /* Assume nothing about the layout of the cris_spec_regs struct
1679 when searching. */
1680 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1681 {
1682 if (cris_spec_regs[i].number == spec_regno
1683 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1684 /* Go with the first applicable register. */
1685 return cris_spec_regs[i].name;
1686 }
1687 /* Special register not applicable to this CRIS version. */
1688 return NULL;
1689 }
1690
1691 static const char *
1692 cris_register_name (struct gdbarch *gdbarch, int regno)
1693 {
1694 static char *cris_genreg_names[] =
1695 { "r0", "r1", "r2", "r3", \
1696 "r4", "r5", "r6", "r7", \
1697 "r8", "r9", "r10", "r11", \
1698 "r12", "r13", "sp", "pc" };
1699
1700 if (regno >= 0 && regno < NUM_GENREGS)
1701 {
1702 /* General register. */
1703 return cris_genreg_names[regno];
1704 }
1705 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1706 {
1707 return cris_special_register_name (gdbarch, regno);
1708 }
1709 else
1710 {
1711 /* Invalid register. */
1712 return NULL;
1713 }
1714 }
1715
1716 static const char *
1717 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1718 {
1719 static char *crisv32_genreg_names[] =
1720 { "r0", "r1", "r2", "r3", \
1721 "r4", "r5", "r6", "r7", \
1722 "r8", "r9", "r10", "r11", \
1723 "r12", "r13", "sp", "acr"
1724 };
1725
1726 static char *crisv32_sreg_names[] =
1727 { "s0", "s1", "s2", "s3", \
1728 "s4", "s5", "s6", "s7", \
1729 "s8", "s9", "s10", "s11", \
1730 "s12", "s13", "s14", "s15"
1731 };
1732
1733 if (regno >= 0 && regno < NUM_GENREGS)
1734 {
1735 /* General register. */
1736 return crisv32_genreg_names[regno];
1737 }
1738 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1739 {
1740 return cris_special_register_name (gdbarch, regno);
1741 }
1742 else if (regno == gdbarch_pc_regnum (gdbarch))
1743 {
1744 return "pc";
1745 }
1746 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1747 {
1748 return crisv32_sreg_names[regno - S0_REGNUM];
1749 }
1750 else
1751 {
1752 /* Invalid register. */
1753 return NULL;
1754 }
1755 }
1756
1757 /* Convert DWARF register number REG to the appropriate register
1758 number used by GDB. */
1759
1760 static int
1761 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1762 {
1763 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1764 numbering, MOF is 18).
1765 Adapted from gcc/config/cris/cris.h. */
1766 static int cris_dwarf_regmap[] = {
1767 0, 1, 2, 3,
1768 4, 5, 6, 7,
1769 8, 9, 10, 11,
1770 12, 13, 14, 15,
1771 27, -1, -1, -1,
1772 -1, -1, -1, 23,
1773 -1, -1, -1, 27,
1774 -1, -1, -1, -1
1775 };
1776 int regnum = -1;
1777
1778 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1779 regnum = cris_dwarf_regmap[reg];
1780
1781 return regnum;
1782 }
1783
1784 /* DWARF-2 frame support. */
1785
1786 static void
1787 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1788 struct dwarf2_frame_state_reg *reg,
1789 struct frame_info *this_frame)
1790 {
1791 /* The return address column. */
1792 if (regnum == gdbarch_pc_regnum (gdbarch))
1793 reg->how = DWARF2_FRAME_REG_RA;
1794
1795 /* The call frame address. */
1796 else if (regnum == gdbarch_sp_regnum (gdbarch))
1797 reg->how = DWARF2_FRAME_REG_CFA;
1798 }
1799
1800 /* Extract from an array regbuf containing the raw register state a function
1801 return value of type type, and copy that, in virtual format, into
1802 valbuf. */
1803
1804 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1805
1806 static void
1807 cris_extract_return_value (struct type *type, struct regcache *regcache,
1808 gdb_byte *valbuf)
1809 {
1810 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1811 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1812 ULONGEST val;
1813 int len = TYPE_LENGTH (type);
1814
1815 if (len <= 4)
1816 {
1817 /* Get the return value from R10. */
1818 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1819 store_unsigned_integer (valbuf, len, byte_order, val);
1820 }
1821 else if (len <= 8)
1822 {
1823 /* Get the return value from R10 and R11. */
1824 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1825 store_unsigned_integer (valbuf, 4, byte_order, val);
1826 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1827 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1828 }
1829 else
1830 error (_("cris_extract_return_value: type length too large"));
1831 }
1832
1833 /* Handle the CRIS return value convention. */
1834
1835 static enum return_value_convention
1836 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1837 struct type *type, struct regcache *regcache,
1838 gdb_byte *readbuf, const gdb_byte *writebuf)
1839 {
1840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (type) == TYPE_CODE_UNION
1842 || TYPE_LENGTH (type) > 8)
1843 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1844 goes on the stack. */
1845 return RETURN_VALUE_STRUCT_CONVENTION;
1846
1847 if (readbuf)
1848 cris_extract_return_value (type, regcache, readbuf);
1849 if (writebuf)
1850 cris_store_return_value (type, regcache, writebuf);
1851
1852 return RETURN_VALUE_REGISTER_CONVENTION;
1853 }
1854
1855 /* Calculates a value that measures how good inst_args constraints an
1856 instruction. It stems from cris_constraint, found in cris-dis.c. */
1857
1858 static int
1859 constraint (unsigned int insn, const char *inst_args,
1860 inst_env_type *inst_env)
1861 {
1862 int retval = 0;
1863 int tmp, i;
1864
1865 const gdb_byte *s = (const gdb_byte *) inst_args;
1866
1867 for (; *s; s++)
1868 switch (*s)
1869 {
1870 case 'm':
1871 if ((insn & 0x30) == 0x30)
1872 return -1;
1873 break;
1874
1875 case 'S':
1876 /* A prefix operand. */
1877 if (inst_env->prefix_found)
1878 break;
1879 else
1880 return -1;
1881
1882 case 'B':
1883 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1884 valid "push" size. In case of special register, it may be != 4. */
1885 if (inst_env->prefix_found)
1886 break;
1887 else
1888 return -1;
1889
1890 case 'D':
1891 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1892 if (!retval)
1893 return -1;
1894 else
1895 retval += 4;
1896 break;
1897
1898 case 'P':
1899 tmp = (insn >> 0xC) & 0xF;
1900
1901 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1902 {
1903 /* Since we match four bits, we will give a value of
1904 4 - 1 = 3 in a match. If there is a corresponding
1905 exact match of a special register in another pattern, it
1906 will get a value of 4, which will be higher. This should
1907 be correct in that an exact pattern would match better that
1908 a general pattern.
1909 Note that there is a reason for not returning zero; the
1910 pattern for "clear" is partly matched in the bit-pattern
1911 (the two lower bits must be zero), while the bit-pattern
1912 for a move from a special register is matched in the
1913 register constraint.
1914 This also means we will will have a race condition if
1915 there is a partly match in three bits in the bit pattern. */
1916 if (tmp == cris_spec_regs[i].number)
1917 {
1918 retval += 3;
1919 break;
1920 }
1921 }
1922
1923 if (cris_spec_regs[i].name == NULL)
1924 return -1;
1925 break;
1926 }
1927 return retval;
1928 }
1929
1930 /* Returns the number of bits set in the variable value. */
1931
1932 static int
1933 number_of_bits (unsigned int value)
1934 {
1935 int number_of_bits = 0;
1936
1937 while (value != 0)
1938 {
1939 number_of_bits += 1;
1940 value &= (value - 1);
1941 }
1942 return number_of_bits;
1943 }
1944
1945 /* Finds the address that should contain the single step breakpoint(s).
1946 It stems from code in cris-dis.c. */
1947
1948 static int
1949 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1950 {
1951 int i;
1952 int max_level_of_match = -1;
1953 int max_matched = -1;
1954 int level_of_match;
1955
1956 for (i = 0; cris_opcodes[i].name != NULL; i++)
1957 {
1958 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1959 && ((cris_opcodes[i].lose & insn) == 0)
1960 /* Only CRISv10 instructions, please. */
1961 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1962 {
1963 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1964 if (level_of_match >= 0)
1965 {
1966 level_of_match +=
1967 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1968 if (level_of_match > max_level_of_match)
1969 {
1970 max_matched = i;
1971 max_level_of_match = level_of_match;
1972 if (level_of_match == 16)
1973 {
1974 /* All bits matched, cannot find better. */
1975 break;
1976 }
1977 }
1978 }
1979 }
1980 }
1981 return max_matched;
1982 }
1983
1984 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1985 actually an internal error. */
1986
1987 static int
1988 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
1989 {
1990 int i;
1991 int offset;
1992 unsigned short insn;
1993 struct gdbarch *gdbarch = get_frame_arch (frame);
1994 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1995
1996 /* Create a local register image and set the initial state. */
1997 for (i = 0; i < NUM_GENREGS; i++)
1998 {
1999 inst_env->reg[i] =
2000 (unsigned long) get_frame_register_unsigned (frame, i);
2001 }
2002 offset = NUM_GENREGS;
2003 for (i = 0; i < NUM_SPECREGS; i++)
2004 {
2005 inst_env->preg[i] =
2006 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2007 }
2008 inst_env->branch_found = 0;
2009 inst_env->slot_needed = 0;
2010 inst_env->delay_slot_pc_active = 0;
2011 inst_env->prefix_found = 0;
2012 inst_env->invalid = 0;
2013 inst_env->xflag_found = 0;
2014 inst_env->disable_interrupt = 0;
2015 inst_env->byte_order = byte_order;
2016
2017 /* Look for a step target. */
2018 do
2019 {
2020 /* Read an instruction from the client. */
2021 insn = read_memory_unsigned_integer
2022 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2023
2024 /* If the instruction is not in a delay slot the new content of the
2025 PC is [PC] + 2. If the instruction is in a delay slot it is not
2026 that simple. Since a instruction in a delay slot cannot change
2027 the content of the PC, it does not matter what value PC will have.
2028 Just make sure it is a valid instruction. */
2029 if (!inst_env->delay_slot_pc_active)
2030 {
2031 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2032 }
2033 else
2034 {
2035 inst_env->delay_slot_pc_active = 0;
2036 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2037 = inst_env->delay_slot_pc;
2038 }
2039 /* Analyse the present instruction. */
2040 i = find_cris_op (insn, inst_env);
2041 if (i == -1)
2042 {
2043 inst_env->invalid = 1;
2044 }
2045 else
2046 {
2047 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2048 }
2049 } while (!inst_env->invalid
2050 && (inst_env->prefix_found || inst_env->xflag_found
2051 || inst_env->slot_needed));
2052 return i;
2053 }
2054
2055 /* There is no hardware single-step support. The function find_step_target
2056 digs through the opcodes in order to find all possible targets.
2057 Either one ordinary target or two targets for branches may be found. */
2058
2059 static int
2060 cris_software_single_step (struct frame_info *frame)
2061 {
2062 struct gdbarch *gdbarch = get_frame_arch (frame);
2063 struct address_space *aspace = get_frame_address_space (frame);
2064 inst_env_type inst_env;
2065
2066 /* Analyse the present instruction environment and insert
2067 breakpoints. */
2068 int status = find_step_target (frame, &inst_env);
2069 if (status == -1)
2070 {
2071 /* Could not find a target. Things are likely to go downhill
2072 from here. */
2073 warning (_("CRIS software single step could not find a step target."));
2074 }
2075 else
2076 {
2077 /* Insert at most two breakpoints. One for the next PC content
2078 and possibly another one for a branch, jump, etc. */
2079 CORE_ADDR next_pc
2080 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2081 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2082 if (inst_env.branch_found
2083 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2084 {
2085 CORE_ADDR branch_target_address
2086 = (CORE_ADDR) inst_env.branch_break_address;
2087 insert_single_step_breakpoint (gdbarch,
2088 aspace, branch_target_address);
2089 }
2090 }
2091
2092 return 1;
2093 }
2094
2095 /* Calculates the prefix value for quick offset addressing mode. */
2096
2097 static void
2098 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2099 {
2100 /* It's invalid to be in a delay slot. You can't have a prefix to this
2101 instruction (not 100% sure). */
2102 if (inst_env->slot_needed || inst_env->prefix_found)
2103 {
2104 inst_env->invalid = 1;
2105 return;
2106 }
2107
2108 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2109 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2110
2111 /* A prefix doesn't change the xflag_found. But the rest of the flags
2112 need updating. */
2113 inst_env->slot_needed = 0;
2114 inst_env->prefix_found = 1;
2115 }
2116
2117 /* Updates the autoincrement register. The size of the increment is derived
2118 from the size of the operation. The PC is always kept aligned on even
2119 word addresses. */
2120
2121 static void
2122 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2123 {
2124 if (size == INST_BYTE_SIZE)
2125 {
2126 inst_env->reg[cris_get_operand1 (inst)] += 1;
2127
2128 /* The PC must be word aligned, so increase the PC with one
2129 word even if the size is byte. */
2130 if (cris_get_operand1 (inst) == REG_PC)
2131 {
2132 inst_env->reg[REG_PC] += 1;
2133 }
2134 }
2135 else if (size == INST_WORD_SIZE)
2136 {
2137 inst_env->reg[cris_get_operand1 (inst)] += 2;
2138 }
2139 else if (size == INST_DWORD_SIZE)
2140 {
2141 inst_env->reg[cris_get_operand1 (inst)] += 4;
2142 }
2143 else
2144 {
2145 /* Invalid size. */
2146 inst_env->invalid = 1;
2147 }
2148 }
2149
2150 /* Just a forward declaration. */
2151
2152 static unsigned long get_data_from_address (unsigned short *inst,
2153 CORE_ADDR address,
2154 enum bfd_endian byte_order);
2155
2156 /* Calculates the prefix value for the general case of offset addressing
2157 mode. */
2158
2159 static void
2160 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2161 {
2162 /* It's invalid to be in a delay slot. */
2163 if (inst_env->slot_needed || inst_env->prefix_found)
2164 {
2165 inst_env->invalid = 1;
2166 return;
2167 }
2168
2169 /* The calculation of prefix_value used to be after process_autoincrement,
2170 but that fails for an instruction such as jsr [$r0+12] which is encoded
2171 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2172 mustn't be incremented until we have read it and what it points at. */
2173 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2174
2175 /* The offset is an indirection of the contents of the operand1 register. */
2176 inst_env->prefix_value +=
2177 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2178 inst_env->byte_order);
2179
2180 if (cris_get_mode (inst) == AUTOINC_MODE)
2181 {
2182 process_autoincrement (cris_get_size (inst), inst, inst_env);
2183 }
2184
2185 /* A prefix doesn't change the xflag_found. But the rest of the flags
2186 need updating. */
2187 inst_env->slot_needed = 0;
2188 inst_env->prefix_found = 1;
2189 }
2190
2191 /* Calculates the prefix value for the index addressing mode. */
2192
2193 static void
2194 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2195 {
2196 /* It's invalid to be in a delay slot. I can't see that it's possible to
2197 have a prefix to this instruction. So I will treat this as invalid. */
2198 if (inst_env->slot_needed || inst_env->prefix_found)
2199 {
2200 inst_env->invalid = 1;
2201 return;
2202 }
2203
2204 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2205
2206 /* The offset is the operand2 value shifted the size of the instruction
2207 to the left. */
2208 inst_env->prefix_value +=
2209 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2210
2211 /* If the PC is operand1 (base) the address used is the address after
2212 the main instruction, i.e. address + 2 (the PC is already compensated
2213 for the prefix operation). */
2214 if (cris_get_operand1 (inst) == REG_PC)
2215 {
2216 inst_env->prefix_value += 2;
2217 }
2218
2219 /* A prefix doesn't change the xflag_found. But the rest of the flags
2220 need updating. */
2221 inst_env->slot_needed = 0;
2222 inst_env->xflag_found = 0;
2223 inst_env->prefix_found = 1;
2224 }
2225
2226 /* Calculates the prefix value for the double indirect addressing mode. */
2227
2228 static void
2229 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2230 {
2231
2232 CORE_ADDR address;
2233
2234 /* It's invalid to be in a delay slot. */
2235 if (inst_env->slot_needed || inst_env->prefix_found)
2236 {
2237 inst_env->invalid = 1;
2238 return;
2239 }
2240
2241 /* The prefix value is one dereference of the contents of the operand1
2242 register. */
2243 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2244 inst_env->prefix_value
2245 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2246
2247 /* Check if the mode is autoincrement. */
2248 if (cris_get_mode (inst) == AUTOINC_MODE)
2249 {
2250 inst_env->reg[cris_get_operand1 (inst)] += 4;
2251 }
2252
2253 /* A prefix doesn't change the xflag_found. But the rest of the flags
2254 need updating. */
2255 inst_env->slot_needed = 0;
2256 inst_env->xflag_found = 0;
2257 inst_env->prefix_found = 1;
2258 }
2259
2260 /* Finds the destination for a branch with 8-bits offset. */
2261
2262 static void
2263 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2264 {
2265
2266 short offset;
2267
2268 /* If we have a prefix or are in a delay slot it's bad. */
2269 if (inst_env->slot_needed || inst_env->prefix_found)
2270 {
2271 inst_env->invalid = 1;
2272 return;
2273 }
2274
2275 /* We have a branch, find out where the branch will land. */
2276 offset = cris_get_branch_short_offset (inst);
2277
2278 /* Check if the offset is signed. */
2279 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2280 {
2281 offset |= 0xFF00;
2282 }
2283
2284 /* The offset ends with the sign bit, set it to zero. The address
2285 should always be word aligned. */
2286 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2287
2288 inst_env->branch_found = 1;
2289 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2290
2291 inst_env->slot_needed = 1;
2292 inst_env->prefix_found = 0;
2293 inst_env->xflag_found = 0;
2294 inst_env->disable_interrupt = 1;
2295 }
2296
2297 /* Finds the destination for a branch with 16-bits offset. */
2298
2299 static void
2300 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2301 {
2302 short offset;
2303
2304 /* If we have a prefix or is in a delay slot it's bad. */
2305 if (inst_env->slot_needed || inst_env->prefix_found)
2306 {
2307 inst_env->invalid = 1;
2308 return;
2309 }
2310
2311 /* We have a branch, find out the offset for the branch. */
2312 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2313 inst_env->byte_order);
2314
2315 /* The instruction is one word longer than normal, so add one word
2316 to the PC. */
2317 inst_env->reg[REG_PC] += 2;
2318
2319 inst_env->branch_found = 1;
2320 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2321
2322
2323 inst_env->slot_needed = 1;
2324 inst_env->prefix_found = 0;
2325 inst_env->xflag_found = 0;
2326 inst_env->disable_interrupt = 1;
2327 }
2328
2329 /* Handles the ABS instruction. */
2330
2331 static void
2332 abs_op (unsigned short inst, inst_env_type *inst_env)
2333 {
2334
2335 long value;
2336
2337 /* ABS can't have a prefix, so it's bad if it does. */
2338 if (inst_env->prefix_found)
2339 {
2340 inst_env->invalid = 1;
2341 return;
2342 }
2343
2344 /* Check if the operation affects the PC. */
2345 if (cris_get_operand2 (inst) == REG_PC)
2346 {
2347
2348 /* It's invalid to change to the PC if we are in a delay slot. */
2349 if (inst_env->slot_needed)
2350 {
2351 inst_env->invalid = 1;
2352 return;
2353 }
2354
2355 value = (long) inst_env->reg[REG_PC];
2356
2357 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2358 if (value != SIGNED_DWORD_MASK)
2359 {
2360 value = -value;
2361 inst_env->reg[REG_PC] = (long) value;
2362 }
2363 }
2364
2365 inst_env->slot_needed = 0;
2366 inst_env->prefix_found = 0;
2367 inst_env->xflag_found = 0;
2368 inst_env->disable_interrupt = 0;
2369 }
2370
2371 /* Handles the ADDI instruction. */
2372
2373 static void
2374 addi_op (unsigned short inst, inst_env_type *inst_env)
2375 {
2376 /* It's invalid to have the PC as base register. And ADDI can't have
2377 a prefix. */
2378 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2379 {
2380 inst_env->invalid = 1;
2381 return;
2382 }
2383
2384 inst_env->slot_needed = 0;
2385 inst_env->prefix_found = 0;
2386 inst_env->xflag_found = 0;
2387 inst_env->disable_interrupt = 0;
2388 }
2389
2390 /* Handles the ASR instruction. */
2391
2392 static void
2393 asr_op (unsigned short inst, inst_env_type *inst_env)
2394 {
2395 int shift_steps;
2396 unsigned long value;
2397 unsigned long signed_extend_mask = 0;
2398
2399 /* ASR can't have a prefix, so check that it doesn't. */
2400 if (inst_env->prefix_found)
2401 {
2402 inst_env->invalid = 1;
2403 return;
2404 }
2405
2406 /* Check if the PC is the target register. */
2407 if (cris_get_operand2 (inst) == REG_PC)
2408 {
2409 /* It's invalid to change the PC in a delay slot. */
2410 if (inst_env->slot_needed)
2411 {
2412 inst_env->invalid = 1;
2413 return;
2414 }
2415 /* Get the number of bits to shift. */
2416 shift_steps
2417 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2418 value = inst_env->reg[REG_PC];
2419
2420 /* Find out how many bits the operation should apply to. */
2421 if (cris_get_size (inst) == INST_BYTE_SIZE)
2422 {
2423 if (value & SIGNED_BYTE_MASK)
2424 {
2425 signed_extend_mask = 0xFF;
2426 signed_extend_mask = signed_extend_mask >> shift_steps;
2427 signed_extend_mask = ~signed_extend_mask;
2428 }
2429 value = value >> shift_steps;
2430 value |= signed_extend_mask;
2431 value &= 0xFF;
2432 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2433 inst_env->reg[REG_PC] |= value;
2434 }
2435 else if (cris_get_size (inst) == INST_WORD_SIZE)
2436 {
2437 if (value & SIGNED_WORD_MASK)
2438 {
2439 signed_extend_mask = 0xFFFF;
2440 signed_extend_mask = signed_extend_mask >> shift_steps;
2441 signed_extend_mask = ~signed_extend_mask;
2442 }
2443 value = value >> shift_steps;
2444 value |= signed_extend_mask;
2445 value &= 0xFFFF;
2446 inst_env->reg[REG_PC] &= 0xFFFF0000;
2447 inst_env->reg[REG_PC] |= value;
2448 }
2449 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2450 {
2451 if (value & SIGNED_DWORD_MASK)
2452 {
2453 signed_extend_mask = 0xFFFFFFFF;
2454 signed_extend_mask = signed_extend_mask >> shift_steps;
2455 signed_extend_mask = ~signed_extend_mask;
2456 }
2457 value = value >> shift_steps;
2458 value |= signed_extend_mask;
2459 inst_env->reg[REG_PC] = value;
2460 }
2461 }
2462 inst_env->slot_needed = 0;
2463 inst_env->prefix_found = 0;
2464 inst_env->xflag_found = 0;
2465 inst_env->disable_interrupt = 0;
2466 }
2467
2468 /* Handles the ASRQ instruction. */
2469
2470 static void
2471 asrq_op (unsigned short inst, inst_env_type *inst_env)
2472 {
2473
2474 int shift_steps;
2475 unsigned long value;
2476 unsigned long signed_extend_mask = 0;
2477
2478 /* ASRQ can't have a prefix, so check that it doesn't. */
2479 if (inst_env->prefix_found)
2480 {
2481 inst_env->invalid = 1;
2482 return;
2483 }
2484
2485 /* Check if the PC is the target register. */
2486 if (cris_get_operand2 (inst) == REG_PC)
2487 {
2488
2489 /* It's invalid to change the PC in a delay slot. */
2490 if (inst_env->slot_needed)
2491 {
2492 inst_env->invalid = 1;
2493 return;
2494 }
2495 /* The shift size is given as a 5 bit quick value, i.e. we don't
2496 want the sign bit of the quick value. */
2497 shift_steps = cris_get_asr_shift_steps (inst);
2498 value = inst_env->reg[REG_PC];
2499 if (value & SIGNED_DWORD_MASK)
2500 {
2501 signed_extend_mask = 0xFFFFFFFF;
2502 signed_extend_mask = signed_extend_mask >> shift_steps;
2503 signed_extend_mask = ~signed_extend_mask;
2504 }
2505 value = value >> shift_steps;
2506 value |= signed_extend_mask;
2507 inst_env->reg[REG_PC] = value;
2508 }
2509 inst_env->slot_needed = 0;
2510 inst_env->prefix_found = 0;
2511 inst_env->xflag_found = 0;
2512 inst_env->disable_interrupt = 0;
2513 }
2514
2515 /* Handles the AX, EI and SETF instruction. */
2516
2517 static void
2518 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2519 {
2520 if (inst_env->prefix_found)
2521 {
2522 inst_env->invalid = 1;
2523 return;
2524 }
2525 /* Check if the instruction is setting the X flag. */
2526 if (cris_is_xflag_bit_on (inst))
2527 {
2528 inst_env->xflag_found = 1;
2529 }
2530 else
2531 {
2532 inst_env->xflag_found = 0;
2533 }
2534 inst_env->slot_needed = 0;
2535 inst_env->prefix_found = 0;
2536 inst_env->disable_interrupt = 1;
2537 }
2538
2539 /* Checks if the instruction is in assign mode. If so, it updates the assign
2540 register. Note that check_assign assumes that the caller has checked that
2541 there is a prefix to this instruction. The mode check depends on this. */
2542
2543 static void
2544 check_assign (unsigned short inst, inst_env_type *inst_env)
2545 {
2546 /* Check if it's an assign addressing mode. */
2547 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2548 {
2549 /* Assign the prefix value to operand 1. */
2550 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2551 }
2552 }
2553
2554 /* Handles the 2-operand BOUND instruction. */
2555
2556 static void
2557 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2558 {
2559 /* It's invalid to have the PC as the index operand. */
2560 if (cris_get_operand2 (inst) == REG_PC)
2561 {
2562 inst_env->invalid = 1;
2563 return;
2564 }
2565 /* Check if we have a prefix. */
2566 if (inst_env->prefix_found)
2567 {
2568 check_assign (inst, inst_env);
2569 }
2570 /* Check if this is an autoincrement mode. */
2571 else if (cris_get_mode (inst) == AUTOINC_MODE)
2572 {
2573 /* It's invalid to change the PC in a delay slot. */
2574 if (inst_env->slot_needed)
2575 {
2576 inst_env->invalid = 1;
2577 return;
2578 }
2579 process_autoincrement (cris_get_size (inst), inst, inst_env);
2580 }
2581 inst_env->slot_needed = 0;
2582 inst_env->prefix_found = 0;
2583 inst_env->xflag_found = 0;
2584 inst_env->disable_interrupt = 0;
2585 }
2586
2587 /* Handles the 3-operand BOUND instruction. */
2588
2589 static void
2590 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2591 {
2592 /* It's an error if we haven't got a prefix. And it's also an error
2593 if the PC is the destination register. */
2594 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2595 {
2596 inst_env->invalid = 1;
2597 return;
2598 }
2599 inst_env->slot_needed = 0;
2600 inst_env->prefix_found = 0;
2601 inst_env->xflag_found = 0;
2602 inst_env->disable_interrupt = 0;
2603 }
2604
2605 /* Clears the status flags in inst_env. */
2606
2607 static void
2608 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2609 {
2610 /* It's an error if we have got a prefix. */
2611 if (inst_env->prefix_found)
2612 {
2613 inst_env->invalid = 1;
2614 return;
2615 }
2616
2617 inst_env->slot_needed = 0;
2618 inst_env->prefix_found = 0;
2619 inst_env->xflag_found = 0;
2620 inst_env->disable_interrupt = 0;
2621 }
2622
2623 /* Clears the status flags in inst_env. */
2624
2625 static void
2626 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2627 {
2628 /* It's an error if we have got a prefix. */
2629 if (inst_env->prefix_found)
2630 {
2631 inst_env->invalid = 1;
2632 return;
2633 }
2634
2635 inst_env->slot_needed = 0;
2636 inst_env->prefix_found = 0;
2637 inst_env->xflag_found = 0;
2638 inst_env->disable_interrupt = 1;
2639 }
2640
2641 /* Handles the CLEAR instruction if it's in register mode. */
2642
2643 static void
2644 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2645 {
2646 /* Check if the target is the PC. */
2647 if (cris_get_operand2 (inst) == REG_PC)
2648 {
2649 /* The instruction will clear the instruction's size bits. */
2650 int clear_size = cris_get_clear_size (inst);
2651 if (clear_size == INST_BYTE_SIZE)
2652 {
2653 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2654 }
2655 if (clear_size == INST_WORD_SIZE)
2656 {
2657 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2658 }
2659 if (clear_size == INST_DWORD_SIZE)
2660 {
2661 inst_env->delay_slot_pc = 0x0;
2662 }
2663 /* The jump will be delayed with one delay slot. So we need a delay
2664 slot. */
2665 inst_env->slot_needed = 1;
2666 inst_env->delay_slot_pc_active = 1;
2667 }
2668 else
2669 {
2670 /* The PC will not change => no delay slot. */
2671 inst_env->slot_needed = 0;
2672 }
2673 inst_env->prefix_found = 0;
2674 inst_env->xflag_found = 0;
2675 inst_env->disable_interrupt = 0;
2676 }
2677
2678 /* Handles the TEST instruction if it's in register mode. */
2679
2680 static void
2681 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2682 {
2683 /* It's an error if we have got a prefix. */
2684 if (inst_env->prefix_found)
2685 {
2686 inst_env->invalid = 1;
2687 return;
2688 }
2689 inst_env->slot_needed = 0;
2690 inst_env->prefix_found = 0;
2691 inst_env->xflag_found = 0;
2692 inst_env->disable_interrupt = 0;
2693
2694 }
2695
2696 /* Handles the CLEAR and TEST instruction if the instruction isn't
2697 in register mode. */
2698
2699 static void
2700 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2701 {
2702 /* Check if we are in a prefix mode. */
2703 if (inst_env->prefix_found)
2704 {
2705 /* The only way the PC can change is if this instruction is in
2706 assign addressing mode. */
2707 check_assign (inst, inst_env);
2708 }
2709 /* Indirect mode can't change the PC so just check if the mode is
2710 autoincrement. */
2711 else if (cris_get_mode (inst) == AUTOINC_MODE)
2712 {
2713 process_autoincrement (cris_get_size (inst), inst, inst_env);
2714 }
2715 inst_env->slot_needed = 0;
2716 inst_env->prefix_found = 0;
2717 inst_env->xflag_found = 0;
2718 inst_env->disable_interrupt = 0;
2719 }
2720
2721 /* Checks that the PC isn't the destination register or the instructions has
2722 a prefix. */
2723
2724 static void
2725 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2726 {
2727 /* It's invalid to have the PC as the destination. The instruction can't
2728 have a prefix. */
2729 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2730 {
2731 inst_env->invalid = 1;
2732 return;
2733 }
2734
2735 inst_env->slot_needed = 0;
2736 inst_env->prefix_found = 0;
2737 inst_env->xflag_found = 0;
2738 inst_env->disable_interrupt = 0;
2739 }
2740
2741 /* Checks that the instruction doesn't have a prefix. */
2742
2743 static void
2744 break_op (unsigned short inst, inst_env_type *inst_env)
2745 {
2746 /* The instruction can't have a prefix. */
2747 if (inst_env->prefix_found)
2748 {
2749 inst_env->invalid = 1;
2750 return;
2751 }
2752
2753 inst_env->slot_needed = 0;
2754 inst_env->prefix_found = 0;
2755 inst_env->xflag_found = 0;
2756 inst_env->disable_interrupt = 1;
2757 }
2758
2759 /* Checks that the PC isn't the destination register and that the instruction
2760 doesn't have a prefix. */
2761
2762 static void
2763 scc_op (unsigned short inst, inst_env_type *inst_env)
2764 {
2765 /* It's invalid to have the PC as the destination. The instruction can't
2766 have a prefix. */
2767 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2768 {
2769 inst_env->invalid = 1;
2770 return;
2771 }
2772
2773 inst_env->slot_needed = 0;
2774 inst_env->prefix_found = 0;
2775 inst_env->xflag_found = 0;
2776 inst_env->disable_interrupt = 1;
2777 }
2778
2779 /* Handles the register mode JUMP instruction. */
2780
2781 static void
2782 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2783 {
2784 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2785 you can't have a prefix. */
2786 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2787 {
2788 inst_env->invalid = 1;
2789 return;
2790 }
2791
2792 /* Just change the PC. */
2793 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2794 inst_env->slot_needed = 0;
2795 inst_env->prefix_found = 0;
2796 inst_env->xflag_found = 0;
2797 inst_env->disable_interrupt = 1;
2798 }
2799
2800 /* Handles the JUMP instruction for all modes except register. */
2801
2802 static void
2803 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2804 {
2805 unsigned long newpc;
2806 CORE_ADDR address;
2807
2808 /* It's invalid to do a JUMP in a delay slot. */
2809 if (inst_env->slot_needed)
2810 {
2811 inst_env->invalid = 1;
2812 }
2813 else
2814 {
2815 /* Check if we have a prefix. */
2816 if (inst_env->prefix_found)
2817 {
2818 check_assign (inst, inst_env);
2819
2820 /* Get the new value for the PC. */
2821 newpc =
2822 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2823 4, inst_env->byte_order);
2824 }
2825 else
2826 {
2827 /* Get the new value for the PC. */
2828 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2829 newpc = read_memory_unsigned_integer (address,
2830 4, inst_env->byte_order);
2831
2832 /* Check if we should increment a register. */
2833 if (cris_get_mode (inst) == AUTOINC_MODE)
2834 {
2835 inst_env->reg[cris_get_operand1 (inst)] += 4;
2836 }
2837 }
2838 inst_env->reg[REG_PC] = newpc;
2839 }
2840 inst_env->slot_needed = 0;
2841 inst_env->prefix_found = 0;
2842 inst_env->xflag_found = 0;
2843 inst_env->disable_interrupt = 1;
2844 }
2845
2846 /* Handles moves to special registers (aka P-register) for all modes. */
2847
2848 static void
2849 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2850 inst_env_type *inst_env)
2851 {
2852 if (inst_env->prefix_found)
2853 {
2854 /* The instruction has a prefix that means we are only interested if
2855 the instruction is in assign mode. */
2856 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2857 {
2858 /* The prefix handles the problem if we are in a delay slot. */
2859 if (cris_get_operand1 (inst) == REG_PC)
2860 {
2861 /* Just take care of the assign. */
2862 check_assign (inst, inst_env);
2863 }
2864 }
2865 }
2866 else if (cris_get_mode (inst) == AUTOINC_MODE)
2867 {
2868 /* The instruction doesn't have a prefix, the only case left that we
2869 are interested in is the autoincrement mode. */
2870 if (cris_get_operand1 (inst) == REG_PC)
2871 {
2872 /* If the PC is to be incremented it's invalid to be in a
2873 delay slot. */
2874 if (inst_env->slot_needed)
2875 {
2876 inst_env->invalid = 1;
2877 return;
2878 }
2879
2880 /* The increment depends on the size of the special register. */
2881 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2882 {
2883 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2884 }
2885 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2886 {
2887 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2888 }
2889 else
2890 {
2891 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2892 }
2893 }
2894 }
2895 inst_env->slot_needed = 0;
2896 inst_env->prefix_found = 0;
2897 inst_env->xflag_found = 0;
2898 inst_env->disable_interrupt = 1;
2899 }
2900
2901 /* Handles moves from special registers (aka P-register) for all modes
2902 except register. */
2903
2904 static void
2905 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2906 inst_env_type *inst_env)
2907 {
2908 if (inst_env->prefix_found)
2909 {
2910 /* The instruction has a prefix that means we are only interested if
2911 the instruction is in assign mode. */
2912 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2913 {
2914 /* The prefix handles the problem if we are in a delay slot. */
2915 if (cris_get_operand1 (inst) == REG_PC)
2916 {
2917 /* Just take care of the assign. */
2918 check_assign (inst, inst_env);
2919 }
2920 }
2921 }
2922 /* The instruction doesn't have a prefix, the only case left that we
2923 are interested in is the autoincrement mode. */
2924 else if (cris_get_mode (inst) == AUTOINC_MODE)
2925 {
2926 if (cris_get_operand1 (inst) == REG_PC)
2927 {
2928 /* If the PC is to be incremented it's invalid to be in a
2929 delay slot. */
2930 if (inst_env->slot_needed)
2931 {
2932 inst_env->invalid = 1;
2933 return;
2934 }
2935
2936 /* The increment depends on the size of the special register. */
2937 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2938 {
2939 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2940 }
2941 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2942 {
2943 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2944 }
2945 else
2946 {
2947 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2948 }
2949 }
2950 }
2951 inst_env->slot_needed = 0;
2952 inst_env->prefix_found = 0;
2953 inst_env->xflag_found = 0;
2954 inst_env->disable_interrupt = 1;
2955 }
2956
2957 /* Handles moves from special registers (aka P-register) when the mode
2958 is register. */
2959
2960 static void
2961 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2962 {
2963 /* Register mode move from special register can't have a prefix. */
2964 if (inst_env->prefix_found)
2965 {
2966 inst_env->invalid = 1;
2967 return;
2968 }
2969
2970 if (cris_get_operand1 (inst) == REG_PC)
2971 {
2972 /* It's invalid to change the PC in a delay slot. */
2973 if (inst_env->slot_needed)
2974 {
2975 inst_env->invalid = 1;
2976 return;
2977 }
2978 /* The destination is the PC, the jump will have a delay slot. */
2979 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2980 inst_env->slot_needed = 1;
2981 inst_env->delay_slot_pc_active = 1;
2982 }
2983 else
2984 {
2985 /* If the destination isn't PC, there will be no jump. */
2986 inst_env->slot_needed = 0;
2987 }
2988 inst_env->prefix_found = 0;
2989 inst_env->xflag_found = 0;
2990 inst_env->disable_interrupt = 1;
2991 }
2992
2993 /* Handles the MOVEM from memory to general register instruction. */
2994
2995 static void
2996 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2997 {
2998 if (inst_env->prefix_found)
2999 {
3000 /* The prefix handles the problem if we are in a delay slot. Is the
3001 MOVEM instruction going to change the PC? */
3002 if (cris_get_operand2 (inst) >= REG_PC)
3003 {
3004 inst_env->reg[REG_PC] =
3005 read_memory_unsigned_integer (inst_env->prefix_value,
3006 4, inst_env->byte_order);
3007 }
3008 /* The assign value is the value after the increment. Normally, the
3009 assign value is the value before the increment. */
3010 if ((cris_get_operand1 (inst) == REG_PC)
3011 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3012 {
3013 inst_env->reg[REG_PC] = inst_env->prefix_value;
3014 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3015 }
3016 }
3017 else
3018 {
3019 /* Is the MOVEM instruction going to change the PC? */
3020 if (cris_get_operand2 (inst) == REG_PC)
3021 {
3022 /* It's invalid to change the PC in a delay slot. */
3023 if (inst_env->slot_needed)
3024 {
3025 inst_env->invalid = 1;
3026 return;
3027 }
3028 inst_env->reg[REG_PC] =
3029 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3030 4, inst_env->byte_order);
3031 }
3032 /* The increment is not depending on the size, instead it's depending
3033 on the number of registers loaded from memory. */
3034 if ((cris_get_operand1 (inst) == REG_PC)
3035 && (cris_get_mode (inst) == AUTOINC_MODE))
3036 {
3037 /* It's invalid to change the PC in a delay slot. */
3038 if (inst_env->slot_needed)
3039 {
3040 inst_env->invalid = 1;
3041 return;
3042 }
3043 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3044 }
3045 }
3046 inst_env->slot_needed = 0;
3047 inst_env->prefix_found = 0;
3048 inst_env->xflag_found = 0;
3049 inst_env->disable_interrupt = 0;
3050 }
3051
3052 /* Handles the MOVEM to memory from general register instruction. */
3053
3054 static void
3055 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3056 {
3057 if (inst_env->prefix_found)
3058 {
3059 /* The assign value is the value after the increment. Normally, the
3060 assign value is the value before the increment. */
3061 if ((cris_get_operand1 (inst) == REG_PC)
3062 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3063 {
3064 /* The prefix handles the problem if we are in a delay slot. */
3065 inst_env->reg[REG_PC] = inst_env->prefix_value;
3066 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3067 }
3068 }
3069 else
3070 {
3071 /* The increment is not depending on the size, instead it's depending
3072 on the number of registers loaded to memory. */
3073 if ((cris_get_operand1 (inst) == REG_PC)
3074 && (cris_get_mode (inst) == AUTOINC_MODE))
3075 {
3076 /* It's invalid to change the PC in a delay slot. */
3077 if (inst_env->slot_needed)
3078 {
3079 inst_env->invalid = 1;
3080 return;
3081 }
3082 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3083 }
3084 }
3085 inst_env->slot_needed = 0;
3086 inst_env->prefix_found = 0;
3087 inst_env->xflag_found = 0;
3088 inst_env->disable_interrupt = 0;
3089 }
3090
3091 /* Handles the intructions that's not yet implemented, by setting
3092 inst_env->invalid to true. */
3093
3094 static void
3095 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3096 {
3097 inst_env->invalid = 1;
3098 }
3099
3100 /* Handles the XOR instruction. */
3101
3102 static void
3103 xor_op (unsigned short inst, inst_env_type *inst_env)
3104 {
3105 /* XOR can't have a prefix. */
3106 if (inst_env->prefix_found)
3107 {
3108 inst_env->invalid = 1;
3109 return;
3110 }
3111
3112 /* Check if the PC is the target. */
3113 if (cris_get_operand2 (inst) == REG_PC)
3114 {
3115 /* It's invalid to change the PC in a delay slot. */
3116 if (inst_env->slot_needed)
3117 {
3118 inst_env->invalid = 1;
3119 return;
3120 }
3121 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3122 }
3123 inst_env->slot_needed = 0;
3124 inst_env->prefix_found = 0;
3125 inst_env->xflag_found = 0;
3126 inst_env->disable_interrupt = 0;
3127 }
3128
3129 /* Handles the MULS instruction. */
3130
3131 static void
3132 muls_op (unsigned short inst, inst_env_type *inst_env)
3133 {
3134 /* MULS/U can't have a prefix. */
3135 if (inst_env->prefix_found)
3136 {
3137 inst_env->invalid = 1;
3138 return;
3139 }
3140
3141 /* Consider it invalid if the PC is the target. */
3142 if (cris_get_operand2 (inst) == REG_PC)
3143 {
3144 inst_env->invalid = 1;
3145 return;
3146 }
3147 inst_env->slot_needed = 0;
3148 inst_env->prefix_found = 0;
3149 inst_env->xflag_found = 0;
3150 inst_env->disable_interrupt = 0;
3151 }
3152
3153 /* Handles the MULU instruction. */
3154
3155 static void
3156 mulu_op (unsigned short inst, inst_env_type *inst_env)
3157 {
3158 /* MULS/U can't have a prefix. */
3159 if (inst_env->prefix_found)
3160 {
3161 inst_env->invalid = 1;
3162 return;
3163 }
3164
3165 /* Consider it invalid if the PC is the target. */
3166 if (cris_get_operand2 (inst) == REG_PC)
3167 {
3168 inst_env->invalid = 1;
3169 return;
3170 }
3171 inst_env->slot_needed = 0;
3172 inst_env->prefix_found = 0;
3173 inst_env->xflag_found = 0;
3174 inst_env->disable_interrupt = 0;
3175 }
3176
3177 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3178 The MOVE instruction is the move from source to register. */
3179
3180 static void
3181 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3182 unsigned long source1, unsigned long source2)
3183 {
3184 unsigned long pc_mask;
3185 unsigned long operation_mask;
3186
3187 /* Find out how many bits the operation should apply to. */
3188 if (cris_get_size (inst) == INST_BYTE_SIZE)
3189 {
3190 pc_mask = 0xFFFFFF00;
3191 operation_mask = 0xFF;
3192 }
3193 else if (cris_get_size (inst) == INST_WORD_SIZE)
3194 {
3195 pc_mask = 0xFFFF0000;
3196 operation_mask = 0xFFFF;
3197 }
3198 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3199 {
3200 pc_mask = 0x0;
3201 operation_mask = 0xFFFFFFFF;
3202 }
3203 else
3204 {
3205 /* The size is out of range. */
3206 inst_env->invalid = 1;
3207 return;
3208 }
3209
3210 /* The instruction just works on uw_operation_mask bits. */
3211 source2 &= operation_mask;
3212 source1 &= operation_mask;
3213
3214 /* Now calculate the result. The opcode's 3 first bits separates
3215 the different actions. */
3216 switch (cris_get_opcode (inst) & 7)
3217 {
3218 case 0: /* add */
3219 source1 += source2;
3220 break;
3221
3222 case 1: /* move */
3223 source1 = source2;
3224 break;
3225
3226 case 2: /* subtract */
3227 source1 -= source2;
3228 break;
3229
3230 case 3: /* compare */
3231 break;
3232
3233 case 4: /* and */
3234 source1 &= source2;
3235 break;
3236
3237 case 5: /* or */
3238 source1 |= source2;
3239 break;
3240
3241 default:
3242 inst_env->invalid = 1;
3243 return;
3244
3245 break;
3246 }
3247
3248 /* Make sure that the result doesn't contain more than the instruction
3249 size bits. */
3250 source2 &= operation_mask;
3251
3252 /* Calculate the new breakpoint address. */
3253 inst_env->reg[REG_PC] &= pc_mask;
3254 inst_env->reg[REG_PC] |= source1;
3255
3256 }
3257
3258 /* Extends the value from either byte or word size to a dword. If the mode
3259 is zero extend then the value is extended with zero. If instead the mode
3260 is signed extend the sign bit of the value is taken into consideration. */
3261
3262 static unsigned long
3263 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3264 {
3265 /* The size can be either byte or word, check which one it is.
3266 Don't check the highest bit, it's indicating if it's a zero
3267 or sign extend. */
3268 if (cris_get_size (*inst) & INST_WORD_SIZE)
3269 {
3270 /* Word size. */
3271 value &= 0xFFFF;
3272
3273 /* Check if the instruction is signed extend. If so, check if value has
3274 the sign bit on. */
3275 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3276 {
3277 value |= SIGNED_WORD_EXTEND_MASK;
3278 }
3279 }
3280 else
3281 {
3282 /* Byte size. */
3283 value &= 0xFF;
3284
3285 /* Check if the instruction is signed extend. If so, check if value has
3286 the sign bit on. */
3287 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3288 {
3289 value |= SIGNED_BYTE_EXTEND_MASK;
3290 }
3291 }
3292 /* The size should now be dword. */
3293 cris_set_size_to_dword (inst);
3294 return value;
3295 }
3296
3297 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3298 instruction. The MOVE instruction is the move from source to register. */
3299
3300 static void
3301 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3302 inst_env_type *inst_env)
3303 {
3304 unsigned long operand1;
3305 unsigned long operand2;
3306
3307 /* It's invalid to have a prefix to the instruction. This is a register
3308 mode instruction and can't have a prefix. */
3309 if (inst_env->prefix_found)
3310 {
3311 inst_env->invalid = 1;
3312 return;
3313 }
3314 /* Check if the instruction has PC as its target. */
3315 if (cris_get_operand2 (inst) == REG_PC)
3316 {
3317 if (inst_env->slot_needed)
3318 {
3319 inst_env->invalid = 1;
3320 return;
3321 }
3322 /* The instruction has the PC as its target register. */
3323 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3324 operand2 = inst_env->reg[REG_PC];
3325
3326 /* Check if it's a extend, signed or zero instruction. */
3327 if (cris_get_opcode (inst) < 4)
3328 {
3329 operand1 = do_sign_or_zero_extend (operand1, &inst);
3330 }
3331 /* Calculate the PC value after the instruction, i.e. where the
3332 breakpoint should be. The order of the udw_operands is vital. */
3333 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3334 }
3335 inst_env->slot_needed = 0;
3336 inst_env->prefix_found = 0;
3337 inst_env->xflag_found = 0;
3338 inst_env->disable_interrupt = 0;
3339 }
3340
3341 /* Returns the data contained at address. The size of the data is derived from
3342 the size of the operation. If the instruction is a zero or signed
3343 extend instruction, the size field is changed in instruction. */
3344
3345 static unsigned long
3346 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3347 enum bfd_endian byte_order)
3348 {
3349 int size = cris_get_size (*inst);
3350 unsigned long value;
3351
3352 /* If it's an extend instruction we don't want the signed extend bit,
3353 because it influences the size. */
3354 if (cris_get_opcode (*inst) < 4)
3355 {
3356 size &= ~SIGNED_EXTEND_BIT_MASK;
3357 }
3358 /* Is there a need for checking the size? Size should contain the number of
3359 bytes to read. */
3360 size = 1 << size;
3361 value = read_memory_unsigned_integer (address, size, byte_order);
3362
3363 /* Check if it's an extend, signed or zero instruction. */
3364 if (cris_get_opcode (*inst) < 4)
3365 {
3366 value = do_sign_or_zero_extend (value, inst);
3367 }
3368 return value;
3369 }
3370
3371 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3372 instructions. The MOVE instruction is the move from source to register. */
3373
3374 static void
3375 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3376 inst_env_type *inst_env)
3377 {
3378 unsigned long operand2;
3379 unsigned long operand3;
3380
3381 check_assign (inst, inst_env);
3382 if (cris_get_operand2 (inst) == REG_PC)
3383 {
3384 operand2 = inst_env->reg[REG_PC];
3385
3386 /* Get the value of the third operand. */
3387 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3388 inst_env->byte_order);
3389
3390 /* Calculate the PC value after the instruction, i.e. where the
3391 breakpoint should be. The order of the udw_operands is vital. */
3392 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3393 }
3394 inst_env->slot_needed = 0;
3395 inst_env->prefix_found = 0;
3396 inst_env->xflag_found = 0;
3397 inst_env->disable_interrupt = 0;
3398 }
3399
3400 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3401 OR instructions. Note that for this to work as expected, the calling
3402 function must have made sure that there is a prefix to this instruction. */
3403
3404 static void
3405 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3406 inst_env_type *inst_env)
3407 {
3408 unsigned long operand2;
3409 unsigned long operand3;
3410
3411 if (cris_get_operand1 (inst) == REG_PC)
3412 {
3413 /* The PC will be changed by the instruction. */
3414 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3415
3416 /* Get the value of the third operand. */
3417 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3418 inst_env->byte_order);
3419
3420 /* Calculate the PC value after the instruction, i.e. where the
3421 breakpoint should be. */
3422 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3423 }
3424 inst_env->slot_needed = 0;
3425 inst_env->prefix_found = 0;
3426 inst_env->xflag_found = 0;
3427 inst_env->disable_interrupt = 0;
3428 }
3429
3430 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3431 instructions. The MOVE instruction is the move from source to register. */
3432
3433 static void
3434 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3435 inst_env_type *inst_env)
3436 {
3437 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3438 {
3439 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3440 SUB, AND or OR something weird is going on (if everything works these
3441 instructions should end up in the three operand version). */
3442 inst_env->invalid = 1;
3443 return;
3444 }
3445 else
3446 {
3447 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3448 so use it. */
3449 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3450 }
3451 inst_env->slot_needed = 0;
3452 inst_env->prefix_found = 0;
3453 inst_env->xflag_found = 0;
3454 inst_env->disable_interrupt = 0;
3455 }
3456
3457 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3458 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3459 source to register. */
3460
3461 static void
3462 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3463 inst_env_type *inst_env)
3464 {
3465 unsigned long operand1;
3466 unsigned long operand2;
3467 unsigned long operand3;
3468 int size;
3469
3470 /* The instruction is either an indirect or autoincrement addressing mode.
3471 Check if the destination register is the PC. */
3472 if (cris_get_operand2 (inst) == REG_PC)
3473 {
3474 /* Must be done here, get_data_from_address may change the size
3475 field. */
3476 size = cris_get_size (inst);
3477 operand2 = inst_env->reg[REG_PC];
3478
3479 /* Get the value of the third operand, i.e. the indirect operand. */
3480 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3481 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3482
3483 /* Calculate the PC value after the instruction, i.e. where the
3484 breakpoint should be. The order of the udw_operands is vital. */
3485 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3486 }
3487 /* If this is an autoincrement addressing mode, check if the increment
3488 changes the PC. */
3489 if ((cris_get_operand1 (inst) == REG_PC)
3490 && (cris_get_mode (inst) == AUTOINC_MODE))
3491 {
3492 /* Get the size field. */
3493 size = cris_get_size (inst);
3494
3495 /* If it's an extend instruction we don't want the signed extend bit,
3496 because it influences the size. */
3497 if (cris_get_opcode (inst) < 4)
3498 {
3499 size &= ~SIGNED_EXTEND_BIT_MASK;
3500 }
3501 process_autoincrement (size, inst, inst_env);
3502 }
3503 inst_env->slot_needed = 0;
3504 inst_env->prefix_found = 0;
3505 inst_env->xflag_found = 0;
3506 inst_env->disable_interrupt = 0;
3507 }
3508
3509 /* Handles the two-operand addressing mode, all modes except register, for
3510 the ADD, SUB CMP, AND and OR instruction. */
3511
3512 static void
3513 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3514 inst_env_type *inst_env)
3515 {
3516 if (inst_env->prefix_found)
3517 {
3518 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3519 {
3520 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3521 }
3522 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3523 {
3524 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3525 }
3526 else
3527 {
3528 /* The mode is invalid for a prefixed base instruction. */
3529 inst_env->invalid = 1;
3530 return;
3531 }
3532 }
3533 else
3534 {
3535 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3536 }
3537 }
3538
3539 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3540
3541 static void
3542 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3543 {
3544 unsigned long operand1;
3545 unsigned long operand2;
3546
3547 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3548 instruction and can't have a prefix. */
3549 if (inst_env->prefix_found)
3550 {
3551 inst_env->invalid = 1;
3552 return;
3553 }
3554
3555 /* Check if the instruction has PC as its target. */
3556 if (cris_get_operand2 (inst) == REG_PC)
3557 {
3558 if (inst_env->slot_needed)
3559 {
3560 inst_env->invalid = 1;
3561 return;
3562 }
3563 operand1 = cris_get_quick_value (inst);
3564 operand2 = inst_env->reg[REG_PC];
3565
3566 /* The size should now be dword. */
3567 cris_set_size_to_dword (&inst);
3568
3569 /* Calculate the PC value after the instruction, i.e. where the
3570 breakpoint should be. */
3571 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3572 }
3573 inst_env->slot_needed = 0;
3574 inst_env->prefix_found = 0;
3575 inst_env->xflag_found = 0;
3576 inst_env->disable_interrupt = 0;
3577 }
3578
3579 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3580
3581 static void
3582 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3583 {
3584 unsigned long operand1;
3585 unsigned long operand2;
3586
3587 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3588 instruction and can't have a prefix. */
3589 if (inst_env->prefix_found)
3590 {
3591 inst_env->invalid = 1;
3592 return;
3593 }
3594 /* Check if the instruction has PC as its target. */
3595 if (cris_get_operand2 (inst) == REG_PC)
3596 {
3597 if (inst_env->slot_needed)
3598 {
3599 inst_env->invalid = 1;
3600 return;
3601 }
3602 /* The instruction has the PC as its target register. */
3603 operand1 = cris_get_quick_value (inst);
3604 operand2 = inst_env->reg[REG_PC];
3605
3606 /* The quick value is signed, so check if we must do a signed extend. */
3607 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3608 {
3609 /* sign extend */
3610 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3611 }
3612 /* The size should now be dword. */
3613 cris_set_size_to_dword (&inst);
3614
3615 /* Calculate the PC value after the instruction, i.e. where the
3616 breakpoint should be. */
3617 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3618 }
3619 inst_env->slot_needed = 0;
3620 inst_env->prefix_found = 0;
3621 inst_env->xflag_found = 0;
3622 inst_env->disable_interrupt = 0;
3623 }
3624
3625 /* Translate op_type to a function and call it. */
3626
3627 static void
3628 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3629 unsigned short inst, inst_env_type *inst_env)
3630 {
3631 switch (op_type)
3632 {
3633 case cris_not_implemented_op:
3634 not_implemented_op (inst, inst_env);
3635 break;
3636
3637 case cris_abs_op:
3638 abs_op (inst, inst_env);
3639 break;
3640
3641 case cris_addi_op:
3642 addi_op (inst, inst_env);
3643 break;
3644
3645 case cris_asr_op:
3646 asr_op (inst, inst_env);
3647 break;
3648
3649 case cris_asrq_op:
3650 asrq_op (inst, inst_env);
3651 break;
3652
3653 case cris_ax_ei_setf_op:
3654 ax_ei_setf_op (inst, inst_env);
3655 break;
3656
3657 case cris_bdap_prefix:
3658 bdap_prefix (inst, inst_env);
3659 break;
3660
3661 case cris_biap_prefix:
3662 biap_prefix (inst, inst_env);
3663 break;
3664
3665 case cris_break_op:
3666 break_op (inst, inst_env);
3667 break;
3668
3669 case cris_btst_nop_op:
3670 btst_nop_op (inst, inst_env);
3671 break;
3672
3673 case cris_clearf_di_op:
3674 clearf_di_op (inst, inst_env);
3675 break;
3676
3677 case cris_dip_prefix:
3678 dip_prefix (inst, inst_env);
3679 break;
3680
3681 case cris_dstep_logshift_mstep_neg_not_op:
3682 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3683 break;
3684
3685 case cris_eight_bit_offset_branch_op:
3686 eight_bit_offset_branch_op (inst, inst_env);
3687 break;
3688
3689 case cris_move_mem_to_reg_movem_op:
3690 move_mem_to_reg_movem_op (inst, inst_env);
3691 break;
3692
3693 case cris_move_reg_to_mem_movem_op:
3694 move_reg_to_mem_movem_op (inst, inst_env);
3695 break;
3696
3697 case cris_move_to_preg_op:
3698 move_to_preg_op (gdbarch, inst, inst_env);
3699 break;
3700
3701 case cris_muls_op:
3702 muls_op (inst, inst_env);
3703 break;
3704
3705 case cris_mulu_op:
3706 mulu_op (inst, inst_env);
3707 break;
3708
3709 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3710 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3711 break;
3712
3713 case cris_none_reg_mode_clear_test_op:
3714 none_reg_mode_clear_test_op (inst, inst_env);
3715 break;
3716
3717 case cris_none_reg_mode_jump_op:
3718 none_reg_mode_jump_op (inst, inst_env);
3719 break;
3720
3721 case cris_none_reg_mode_move_from_preg_op:
3722 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3723 break;
3724
3725 case cris_quick_mode_add_sub_op:
3726 quick_mode_add_sub_op (inst, inst_env);
3727 break;
3728
3729 case cris_quick_mode_and_cmp_move_or_op:
3730 quick_mode_and_cmp_move_or_op (inst, inst_env);
3731 break;
3732
3733 case cris_quick_mode_bdap_prefix:
3734 quick_mode_bdap_prefix (inst, inst_env);
3735 break;
3736
3737 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3738 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3739 break;
3740
3741 case cris_reg_mode_clear_op:
3742 reg_mode_clear_op (inst, inst_env);
3743 break;
3744
3745 case cris_reg_mode_jump_op:
3746 reg_mode_jump_op (inst, inst_env);
3747 break;
3748
3749 case cris_reg_mode_move_from_preg_op:
3750 reg_mode_move_from_preg_op (inst, inst_env);
3751 break;
3752
3753 case cris_reg_mode_test_op:
3754 reg_mode_test_op (inst, inst_env);
3755 break;
3756
3757 case cris_scc_op:
3758 scc_op (inst, inst_env);
3759 break;
3760
3761 case cris_sixteen_bit_offset_branch_op:
3762 sixteen_bit_offset_branch_op (inst, inst_env);
3763 break;
3764
3765 case cris_three_operand_add_sub_cmp_and_or_op:
3766 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3767 break;
3768
3769 case cris_three_operand_bound_op:
3770 three_operand_bound_op (inst, inst_env);
3771 break;
3772
3773 case cris_two_operand_bound_op:
3774 two_operand_bound_op (inst, inst_env);
3775 break;
3776
3777 case cris_xor_op:
3778 xor_op (inst, inst_env);
3779 break;
3780 }
3781 }
3782
3783 /* This wrapper is to avoid cris_get_assembler being called before
3784 exec_bfd has been set. */
3785
3786 static int
3787 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3788 {
3789 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3790 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3791 disassembler, even when there is no BFD. Does something like
3792 "gdb; target remote; disassmeble *0x123" work? */
3793 gdb_assert (exec_bfd != NULL);
3794 print_insn = cris_get_disassembler (exec_bfd);
3795 gdb_assert (print_insn != NULL);
3796 return print_insn (addr, info);
3797 }
3798
3799 /* Originally from <asm/elf.h>. */
3800 typedef unsigned char cris_elf_greg_t[4];
3801
3802 /* Same as user_regs_struct struct in <asm/user.h>. */
3803 #define CRISV10_ELF_NGREG 35
3804 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3805
3806 #define CRISV32_ELF_NGREG 32
3807 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3808
3809 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3810
3811 static void
3812 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
3813 {
3814 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3815 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3816 int i;
3817 cris_elf_greg_t *regp = *gregsetp;
3818
3819 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3820 knows about the actual size of each register so that's no problem. */
3821 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3822 {
3823 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3824 }
3825
3826 if (tdep->cris_version == 32)
3827 {
3828 /* Needed to set pseudo-register PC for CRISv32. */
3829 /* FIXME: If ERP is in a delay slot at this point then the PC will
3830 be wrong. Issue a warning to alert the user. */
3831 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3832 (char *)&regp[ERP_REGNUM]);
3833
3834 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3835 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3836 }
3837 }
3838
3839 /* Use a local version of this function to get the correct types for
3840 regsets, until multi-arch core support is ready. */
3841
3842 static void
3843 fetch_core_registers (struct regcache *regcache,
3844 char *core_reg_sect, unsigned core_reg_size,
3845 int which, CORE_ADDR reg_addr)
3846 {
3847 cris_elf_gregset_t gregset;
3848
3849 switch (which)
3850 {
3851 case 0:
3852 if (core_reg_size != sizeof (cris_elf_gregset_t)
3853 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3854 {
3855 warning (_("wrong size gregset struct in core file"));
3856 }
3857 else
3858 {
3859 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3860 cris_supply_gregset (regcache, &gregset);
3861 }
3862
3863 default:
3864 /* We've covered all the kinds of registers we know about here,
3865 so this must be something we wouldn't know what to do with
3866 anyway. Just ignore it. */
3867 break;
3868 }
3869 }
3870
3871 static struct core_fns cris_elf_core_fns =
3872 {
3873 bfd_target_elf_flavour, /* core_flavour */
3874 default_check_format, /* check_format */
3875 default_core_sniffer, /* core_sniffer */
3876 fetch_core_registers, /* core_read_registers */
3877 NULL /* next */
3878 };
3879
3880 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3881
3882 void
3883 _initialize_cris_tdep (void)
3884 {
3885 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3886
3887 /* CRIS-specific user-commands. */
3888 add_setshow_zuinteger_cmd ("cris-version", class_support,
3889 &usr_cmd_cris_version,
3890 _("Set the current CRIS version."),
3891 _("Show the current CRIS version."),
3892 _("\
3893 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3894 Defaults to 10. "),
3895 set_cris_version,
3896 NULL, /* FIXME: i18n: Current CRIS version
3897 is %s. */
3898 &setlist, &showlist);
3899
3900 add_setshow_enum_cmd ("cris-mode", class_support,
3901 cris_modes, &usr_cmd_cris_mode,
3902 _("Set the current CRIS mode."),
3903 _("Show the current CRIS mode."),
3904 _("\
3905 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3906 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3907 set_cris_mode,
3908 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3909 &setlist, &showlist);
3910
3911 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3912 &usr_cmd_cris_dwarf2_cfi,
3913 _("Set the usage of Dwarf-2 CFI for CRIS."),
3914 _("Show the usage of Dwarf-2 CFI for CRIS."),
3915 _("Set this to \"off\" if using gcc-cris < R59."),
3916 set_cris_dwarf2_cfi,
3917 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3918 for CRIS is %d. */
3919 &setlist, &showlist);
3920
3921 deprecated_add_core_fns (&cris_elf_core_fns);
3922 }
3923
3924 /* Prints out all target specific values. */
3925
3926 static void
3927 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3928 {
3929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3930 if (tdep != NULL)
3931 {
3932 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3933 tdep->cris_version);
3934 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3935 tdep->cris_mode);
3936 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3937 tdep->cris_dwarf2_cfi);
3938 }
3939 }
3940
3941 static void
3942 set_cris_version (char *ignore_args, int from_tty,
3943 struct cmd_list_element *c)
3944 {
3945 struct gdbarch_info info;
3946
3947 usr_cmd_cris_version_valid = 1;
3948
3949 /* Update the current architecture, if needed. */
3950 gdbarch_info_init (&info);
3951 if (!gdbarch_update_p (info))
3952 internal_error (__FILE__, __LINE__,
3953 _("cris_gdbarch_update: failed to update architecture."));
3954 }
3955
3956 static void
3957 set_cris_mode (char *ignore_args, int from_tty,
3958 struct cmd_list_element *c)
3959 {
3960 struct gdbarch_info info;
3961
3962 /* Update the current architecture, if needed. */
3963 gdbarch_info_init (&info);
3964 if (!gdbarch_update_p (info))
3965 internal_error (__FILE__, __LINE__,
3966 "cris_gdbarch_update: failed to update architecture.");
3967 }
3968
3969 static void
3970 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
3971 struct cmd_list_element *c)
3972 {
3973 struct gdbarch_info info;
3974
3975 /* Update the current architecture, if needed. */
3976 gdbarch_info_init (&info);
3977 if (!gdbarch_update_p (info))
3978 internal_error (__FILE__, __LINE__,
3979 _("cris_gdbarch_update: failed to update architecture."));
3980 }
3981
3982 static struct gdbarch *
3983 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3984 {
3985 struct gdbarch *gdbarch;
3986 struct gdbarch_tdep *tdep;
3987 unsigned int cris_version;
3988
3989 if (usr_cmd_cris_version_valid)
3990 {
3991 /* Trust the user's CRIS version setting. */
3992 cris_version = usr_cmd_cris_version;
3993 }
3994 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3995 {
3996 cris_version = 32;
3997 }
3998 else
3999 {
4000 /* Assume it's CRIS version 10. */
4001 cris_version = 10;
4002 }
4003
4004 /* Make the current settings visible to the user. */
4005 usr_cmd_cris_version = cris_version;
4006
4007 /* Find a candidate among the list of pre-declared architectures. */
4008 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4009 arches != NULL;
4010 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4011 {
4012 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4013 == usr_cmd_cris_version)
4014 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4015 == usr_cmd_cris_mode)
4016 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4017 == usr_cmd_cris_dwarf2_cfi))
4018 return arches->gdbarch;
4019 }
4020
4021 /* No matching architecture was found. Create a new one. */
4022 tdep = XNEW (struct gdbarch_tdep);
4023 gdbarch = gdbarch_alloc (&info, tdep);
4024
4025 tdep->cris_version = usr_cmd_cris_version;
4026 tdep->cris_mode = usr_cmd_cris_mode;
4027 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4028
4029 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4030 switch (info.byte_order)
4031 {
4032 case BFD_ENDIAN_LITTLE:
4033 /* Ok. */
4034 break;
4035
4036 case BFD_ENDIAN_BIG:
4037 /* Cris is always little endian, but the user could have forced
4038 big endian with "set endian". */
4039 return 0;
4040
4041 default:
4042 internal_error (__FILE__, __LINE__,
4043 _("cris_gdbarch_init: unknown byte order in info"));
4044 }
4045
4046 set_gdbarch_return_value (gdbarch, cris_return_value);
4047
4048 set_gdbarch_sp_regnum (gdbarch, 14);
4049
4050 /* Length of ordinary registers used in push_word and a few other
4051 places. register_size() is the real way to know how big a
4052 register is. */
4053
4054 set_gdbarch_double_bit (gdbarch, 64);
4055 /* The default definition of a long double is 2 * gdbarch_double_bit,
4056 which means we have to set this explicitly. */
4057 set_gdbarch_long_double_bit (gdbarch, 64);
4058
4059 /* The total amount of space needed to store (in an array called registers)
4060 GDB's copy of the machine's register state. Note: We can not use
4061 cris_register_size at this point, since it relies on gdbarch
4062 being set. */
4063 switch (tdep->cris_version)
4064 {
4065 case 0:
4066 case 1:
4067 case 2:
4068 case 3:
4069 case 8:
4070 case 9:
4071 /* Old versions; not supported. */
4072 return 0;
4073
4074 case 10:
4075 case 11:
4076 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4077 P7 (32 bits), and P15 (32 bits) have been implemented. */
4078 set_gdbarch_pc_regnum (gdbarch, 15);
4079 set_gdbarch_register_type (gdbarch, cris_register_type);
4080 /* There are 32 registers (some of which may not be implemented). */
4081 set_gdbarch_num_regs (gdbarch, 32);
4082 set_gdbarch_register_name (gdbarch, cris_register_name);
4083 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4084 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4085
4086 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4087 break;
4088
4089 case 32:
4090 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4091 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4092 and pseudo-register PC (32 bits). */
4093 set_gdbarch_pc_regnum (gdbarch, 32);
4094 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4095 /* 32 registers + pseudo-register PC + 16 support registers. */
4096 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4097 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4098
4099 set_gdbarch_cannot_store_register
4100 (gdbarch, crisv32_cannot_store_register);
4101 set_gdbarch_cannot_fetch_register
4102 (gdbarch, crisv32_cannot_fetch_register);
4103
4104 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4105
4106 set_gdbarch_single_step_through_delay
4107 (gdbarch, crisv32_single_step_through_delay);
4108
4109 break;
4110
4111 default:
4112 /* Unknown version. */
4113 return 0;
4114 }
4115
4116 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4117 have the same ABI). */
4118 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4119 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4120 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4121 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4122
4123 /* The stack grows downward. */
4124 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4125
4126 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4127
4128 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4129 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4130 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4131
4132 if (tdep->cris_dwarf2_cfi == 1)
4133 {
4134 /* Hook in the Dwarf-2 frame sniffer. */
4135 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4136 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4137 dwarf2_append_unwinders (gdbarch);
4138 }
4139
4140 if (tdep->cris_mode != cris_mode_guru)
4141 {
4142 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4143 }
4144
4145 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4146 frame_base_set_default (gdbarch, &cris_frame_base);
4147
4148 /* Hook in ABI-specific overrides, if they have been registered. */
4149 gdbarch_init_osabi (info, gdbarch);
4150
4151 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4152 disassembler, even when there is no BFD. Does something like
4153 "gdb; target remote; disassmeble *0x123" work? */
4154 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4155
4156 return gdbarch;
4157 }