]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/cris-tdep.c
* gdbarch.sh (stab_reg_to_regnum, dwarf_reg_to_regnum)
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 /* To get entry_point_address. */
43 #include "objfiles.h"
44
45 #include "solib.h" /* Support for shared libraries. */
46 #include "solib-svr4.h"
47 #include "gdb_string.h"
48 #include "dis-asm.h"
49
50 enum cris_num_regs
51 {
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
65 };
66
67 /* Register numbers of various important registers.
68 CRIS_FP_REGNUM Contains address of executing stack frame.
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
80 enum cris_regnums
81 {
82 /* Enums with respect to the general registers, valid for all
83 CRIS versions. The frame pointer is always in R8. */
84 CRIS_FP_REGNUM = 8,
85 /* ABI related registers. */
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
93 /* Registers which happen to be common. */
94 VR_REGNUM = 17,
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
98 /* CRISv10 et. al. specific registers. */
99 P0_REGNUM = 16,
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
105 BAR_REGNUM = 28,
106 DCCR_REGNUM = 29,
107 BRP_REGNUM = 30,
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
143 };
144
145 extern const struct cris_spec_reg cris_spec_regs[];
146
147 /* CRIS version, set via the user command 'set cris-version'. Affects
148 register names and sizes. */
149 static int usr_cmd_cris_version;
150
151 /* Indicates whether to trust the above variable. */
152 static int usr_cmd_cris_version_valid = 0;
153
154 static const char cris_mode_normal[] = "normal";
155 static const char cris_mode_guru[] = "guru";
156 static const char *cris_modes[] = {
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160 };
161
162 /* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164 static const char *usr_cmd_cris_mode = cris_mode_normal;
165
166 /* Whether to make use of Dwarf-2 CFI (default on). */
167 static int usr_cmd_cris_dwarf2_cfi = 1;
168
169 /* CRIS architecture specific information. */
170 struct gdbarch_tdep
171 {
172 int cris_version;
173 const char *cris_mode;
174 int cris_dwarf2_cfi;
175 };
176
177 /* Functions for accessing target dependent data. */
178
179 static int
180 cris_version (void)
181 {
182 return (gdbarch_tdep (current_gdbarch)->cris_version);
183 }
184
185 static const char *
186 cris_mode (void)
187 {
188 return (gdbarch_tdep (current_gdbarch)->cris_mode);
189 }
190
191 /* Sigtramp identification code copied from i386-linux-tdep.c. */
192
193 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
194 #define SIGTRAMP_OFFSET0 0
195 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
196 #define SIGTRAMP_OFFSET1 4
197
198 static const unsigned short sigtramp_code[] =
199 {
200 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
201 SIGTRAMP_INSN1 /* break 13 */
202 };
203
204 #define SIGTRAMP_LEN (sizeof sigtramp_code)
205
206 /* Note: same length as normal sigtramp code. */
207
208 static const unsigned short rt_sigtramp_code[] =
209 {
210 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
211 SIGTRAMP_INSN1 /* break 13 */
212 };
213
214 /* If PC is in a sigtramp routine, return the address of the start of
215 the routine. Otherwise, return 0. */
216
217 static CORE_ADDR
218 cris_sigtramp_start (struct frame_info *next_frame)
219 {
220 CORE_ADDR pc = frame_pc_unwind (next_frame);
221 gdb_byte buf[SIGTRAMP_LEN];
222
223 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
224 return 0;
225
226 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
227 {
228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
229 return 0;
230
231 pc -= SIGTRAMP_OFFSET1;
232 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
233 return 0;
234 }
235
236 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
237 return 0;
238
239 return pc;
240 }
241
242 /* If PC is in a RT sigtramp routine, return the address of the start of
243 the routine. Otherwise, return 0. */
244
245 static CORE_ADDR
246 cris_rt_sigtramp_start (struct frame_info *next_frame)
247 {
248 CORE_ADDR pc = frame_pc_unwind (next_frame);
249 gdb_byte buf[SIGTRAMP_LEN];
250
251 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
252 return 0;
253
254 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
255 {
256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
257 return 0;
258
259 pc -= SIGTRAMP_OFFSET1;
260 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
261 return 0;
262 }
263
264 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
265 return 0;
266
267 return pc;
268 }
269
270 /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
271 routine, return the address of the associated sigcontext structure. */
272
273 static CORE_ADDR
274 cris_sigcontext_addr (struct frame_info *next_frame)
275 {
276 CORE_ADDR pc;
277 CORE_ADDR sp;
278 char buf[4];
279
280 frame_unwind_register (next_frame,
281 gdbarch_sp_regnum (get_frame_arch (next_frame)), buf);
282 sp = extract_unsigned_integer (buf, 4);
283
284 /* Look for normal sigtramp frame first. */
285 pc = cris_sigtramp_start (next_frame);
286 if (pc)
287 {
288 /* struct signal_frame (arch/cris/kernel/signal.c) contains
289 struct sigcontext as its first member, meaning the SP points to
290 it already. */
291 return sp;
292 }
293
294 pc = cris_rt_sigtramp_start (next_frame);
295 if (pc)
296 {
297 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
298 a struct ucontext, which in turn contains a struct sigcontext.
299 Magic digging:
300 4 + 4 + 128 to struct ucontext, then
301 4 + 4 + 12 to struct sigcontext. */
302 return (sp + 156);
303 }
304
305 error (_("Couldn't recognize signal trampoline."));
306 return 0;
307 }
308
309 struct cris_unwind_cache
310 {
311 /* The previous frame's inner most stack address. Used as this
312 frame ID's stack_addr. */
313 CORE_ADDR prev_sp;
314 /* The frame's base, optionally used by the high-level debug info. */
315 CORE_ADDR base;
316 int size;
317 /* How far the SP and r8 (FP) have been offset from the start of
318 the stack frame (as defined by the previous frame's stack
319 pointer). */
320 LONGEST sp_offset;
321 LONGEST r8_offset;
322 int uses_frame;
323
324 /* From old frame_extra_info struct. */
325 CORE_ADDR return_pc;
326 int leaf_function;
327
328 /* Table indicating the location of each and every register. */
329 struct trad_frame_saved_reg *saved_regs;
330 };
331
332 static struct cris_unwind_cache *
333 cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
334 void **this_cache)
335 {
336 struct gdbarch *gdbarch = get_frame_arch (next_frame);
337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
338 struct cris_unwind_cache *info;
339 CORE_ADDR pc;
340 CORE_ADDR sp;
341 CORE_ADDR addr;
342 char buf[4];
343 int i;
344
345 if ((*this_cache))
346 return (*this_cache);
347
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351
352 /* Zero all fields. */
353 info->prev_sp = 0;
354 info->base = 0;
355 info->size = 0;
356 info->sp_offset = 0;
357 info->r8_offset = 0;
358 info->uses_frame = 0;
359 info->return_pc = 0;
360 info->leaf_function = 0;
361
362 frame_unwind_register (next_frame, gdbarch_sp_regnum (gdbarch), buf);
363 info->base = extract_unsigned_integer (buf, 4);
364
365 addr = cris_sigcontext_addr (next_frame);
366
367 /* Layout of the sigcontext struct:
368 struct sigcontext {
369 struct pt_regs regs;
370 unsigned long oldmask;
371 unsigned long usp;
372 }; */
373
374 if (tdep->cris_version == 10)
375 {
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 struct pt_regs. */
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
389 = info->saved_regs[IRP_REGNUM];
390 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
391 }
392 else
393 {
394 /* CRISv32. */
395 /* R0 to R13 are stored in order at offset (1 * 4) in
396 struct pt_regs. */
397 for (i = 0; i <= 13; i++)
398 info->saved_regs[i].addr = addr + ((i + 1) * 4);
399
400 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
401 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
402 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
403 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
404 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
405 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
406 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
407 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
408 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
409
410 /* FIXME: If ERP is in a delay slot at this point then the PC will
411 be wrong at this point. This problem manifests itself in the
412 sigaltstack.exp test case, which occasionally generates FAILs when
413 the signal is received while in a delay slot.
414
415 This could be solved by a couple of read_memory_unsigned_integer and a
416 trad_frame_set_value. */
417 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
418 = info->saved_regs[ERP_REGNUM];
419
420 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
421 = addr + (25 * 4);
422 }
423
424 return info;
425 }
426
427 static void
428 cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
429 struct frame_id *this_id)
430 {
431 struct cris_unwind_cache *cache =
432 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
433 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
434 }
435
436 /* Forward declaration. */
437
438 static void cris_frame_prev_register (struct frame_info *next_frame,
439 void **this_prologue_cache,
440 int regnum, int *optimizedp,
441 enum lval_type *lvalp, CORE_ADDR *addrp,
442 int *realnump, gdb_byte *bufferp);
443 static void
444 cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
445 void **this_cache,
446 int regnum, int *optimizedp,
447 enum lval_type *lvalp, CORE_ADDR *addrp,
448 int *realnump, gdb_byte *valuep)
449 {
450 /* Make sure we've initialized the cache. */
451 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
452 cris_frame_prev_register (next_frame, this_cache, regnum,
453 optimizedp, lvalp, addrp, realnump, valuep);
454 }
455
456 static const struct frame_unwind cris_sigtramp_frame_unwind =
457 {
458 SIGTRAMP_FRAME,
459 cris_sigtramp_frame_this_id,
460 cris_sigtramp_frame_prev_register
461 };
462
463 static const struct frame_unwind *
464 cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
465 {
466 if (cris_sigtramp_start (next_frame)
467 || cris_rt_sigtramp_start (next_frame))
468 return &cris_sigtramp_frame_unwind;
469
470 return NULL;
471 }
472
473 int
474 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
475 struct frame_info *this_frame)
476 {
477 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
478 ULONGEST erp;
479 int ret = 0;
480 char buf[4];
481
482 if (cris_mode () == cris_mode_guru)
483 {
484 frame_unwind_register (this_frame, NRP_REGNUM, buf);
485 }
486 else
487 {
488 frame_unwind_register (this_frame, ERP_REGNUM, buf);
489 }
490
491 erp = extract_unsigned_integer (buf, 4);
492
493 if (erp & 0x1)
494 {
495 /* In delay slot - check if there's a breakpoint at the preceding
496 instruction. */
497 if (breakpoint_here_p (erp & ~0x1))
498 ret = 1;
499 }
500 return ret;
501 }
502
503 /* Hardware watchpoint support. */
504
505 /* We support 6 hardware data watchpoints, but cannot trigger on execute
506 (any combination of read/write is fine). */
507
508 int
509 cris_can_use_hardware_watchpoint (int type, int count, int other)
510 {
511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
512
513 /* No bookkeeping is done here; it is handled by the remote debug agent. */
514
515 if (tdep->cris_version != 32)
516 return 0;
517 else
518 /* CRISv32: Six data watchpoints, one for instructions. */
519 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
520 || type == bp_hardware_watchpoint) && count <= 6)
521 || (type == bp_hardware_breakpoint && count <= 1));
522 }
523
524 /* The CRISv32 hardware data watchpoints work by specifying ranges,
525 which have no alignment or length restrictions. */
526
527 int
528 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
529 {
530 return 1;
531 }
532
533 /* If the inferior has some watchpoint that triggered, return the
534 address associated with that watchpoint. Otherwise, return
535 zero. */
536
537 CORE_ADDR
538 cris_stopped_data_address (void)
539 {
540 CORE_ADDR eda;
541 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
542 return eda;
543 }
544
545 /* The instruction environment needed to find single-step breakpoints. */
546
547 typedef
548 struct instruction_environment
549 {
550 unsigned long reg[NUM_GENREGS];
551 unsigned long preg[NUM_SPECREGS];
552 unsigned long branch_break_address;
553 unsigned long delay_slot_pc;
554 unsigned long prefix_value;
555 int branch_found;
556 int prefix_found;
557 int invalid;
558 int slot_needed;
559 int delay_slot_pc_active;
560 int xflag_found;
561 int disable_interrupt;
562 } inst_env_type;
563
564 /* Machine-dependencies in CRIS for opcodes. */
565
566 /* Instruction sizes. */
567 enum cris_instruction_sizes
568 {
569 INST_BYTE_SIZE = 0,
570 INST_WORD_SIZE = 1,
571 INST_DWORD_SIZE = 2
572 };
573
574 /* Addressing modes. */
575 enum cris_addressing_modes
576 {
577 REGISTER_MODE = 1,
578 INDIRECT_MODE = 2,
579 AUTOINC_MODE = 3
580 };
581
582 /* Prefix addressing modes. */
583 enum cris_prefix_addressing_modes
584 {
585 PREFIX_INDEX_MODE = 2,
586 PREFIX_ASSIGN_MODE = 3,
587
588 /* Handle immediate byte offset addressing mode prefix format. */
589 PREFIX_OFFSET_MODE = 2
590 };
591
592 /* Masks for opcodes. */
593 enum cris_opcode_masks
594 {
595 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
596 SIGNED_EXTEND_BIT_MASK = 0x2,
597 SIGNED_BYTE_MASK = 0x80,
598 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
599 SIGNED_WORD_MASK = 0x8000,
600 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
601 SIGNED_DWORD_MASK = 0x80000000,
602 SIGNED_QUICK_VALUE_MASK = 0x20,
603 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
604 };
605
606 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
607 Bit 15 - 12 Operand2
608 11 - 10 Mode
609 9 - 6 Opcode
610 5 - 4 Size
611 3 - 0 Operand1 */
612
613 static int
614 cris_get_operand2 (unsigned short insn)
615 {
616 return ((insn & 0xF000) >> 12);
617 }
618
619 static int
620 cris_get_mode (unsigned short insn)
621 {
622 return ((insn & 0x0C00) >> 10);
623 }
624
625 static int
626 cris_get_opcode (unsigned short insn)
627 {
628 return ((insn & 0x03C0) >> 6);
629 }
630
631 static int
632 cris_get_size (unsigned short insn)
633 {
634 return ((insn & 0x0030) >> 4);
635 }
636
637 static int
638 cris_get_operand1 (unsigned short insn)
639 {
640 return (insn & 0x000F);
641 }
642
643 /* Additional functions in order to handle opcodes. */
644
645 static int
646 cris_get_quick_value (unsigned short insn)
647 {
648 return (insn & 0x003F);
649 }
650
651 static int
652 cris_get_bdap_quick_offset (unsigned short insn)
653 {
654 return (insn & 0x00FF);
655 }
656
657 static int
658 cris_get_branch_short_offset (unsigned short insn)
659 {
660 return (insn & 0x00FF);
661 }
662
663 static int
664 cris_get_asr_shift_steps (unsigned long value)
665 {
666 return (value & 0x3F);
667 }
668
669 static int
670 cris_get_clear_size (unsigned short insn)
671 {
672 return ((insn) & 0xC000);
673 }
674
675 static int
676 cris_is_signed_extend_bit_on (unsigned short insn)
677 {
678 return (((insn) & 0x20) == 0x20);
679 }
680
681 static int
682 cris_is_xflag_bit_on (unsigned short insn)
683 {
684 return (((insn) & 0x1000) == 0x1000);
685 }
686
687 static void
688 cris_set_size_to_dword (unsigned short *insn)
689 {
690 *insn &= 0xFFCF;
691 *insn |= 0x20;
692 }
693
694 static signed char
695 cris_get_signed_offset (unsigned short insn)
696 {
697 return ((signed char) (insn & 0x00FF));
698 }
699
700 /* Calls an op function given the op-type, working on the insn and the
701 inst_env. */
702 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
703
704 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
705 struct gdbarch_list *);
706
707 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
708
709 static void set_cris_version (char *ignore_args, int from_tty,
710 struct cmd_list_element *c);
711
712 static void set_cris_mode (char *ignore_args, int from_tty,
713 struct cmd_list_element *c);
714
715 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
716 struct cmd_list_element *c);
717
718 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
719 struct frame_info *next_frame,
720 struct cris_unwind_cache *info);
721
722 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
723 struct frame_info *next_frame,
724 struct cris_unwind_cache *info);
725
726 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
727 struct frame_info *next_frame);
728
729 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
730 struct frame_info *next_frame);
731
732 /* When arguments must be pushed onto the stack, they go on in reverse
733 order. The below implements a FILO (stack) to do this.
734 Copied from d10v-tdep.c. */
735
736 struct stack_item
737 {
738 int len;
739 struct stack_item *prev;
740 void *data;
741 };
742
743 static struct stack_item *
744 push_stack_item (struct stack_item *prev, void *contents, int len)
745 {
746 struct stack_item *si;
747 si = xmalloc (sizeof (struct stack_item));
748 si->data = xmalloc (len);
749 si->len = len;
750 si->prev = prev;
751 memcpy (si->data, contents, len);
752 return si;
753 }
754
755 static struct stack_item *
756 pop_stack_item (struct stack_item *si)
757 {
758 struct stack_item *dead = si;
759 si = si->prev;
760 xfree (dead->data);
761 xfree (dead);
762 return si;
763 }
764
765 /* Put here the code to store, into fi->saved_regs, the addresses of
766 the saved registers of frame described by FRAME_INFO. This
767 includes special registers such as pc and fp saved in special ways
768 in the stack frame. sp is even more special: the address we return
769 for it IS the sp for the next frame. */
770
771 struct cris_unwind_cache *
772 cris_frame_unwind_cache (struct frame_info *next_frame,
773 void **this_prologue_cache)
774 {
775 CORE_ADDR pc;
776 struct cris_unwind_cache *info;
777 int i;
778
779 if ((*this_prologue_cache))
780 return (*this_prologue_cache);
781
782 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
783 (*this_prologue_cache) = info;
784 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
785
786 /* Zero all fields. */
787 info->prev_sp = 0;
788 info->base = 0;
789 info->size = 0;
790 info->sp_offset = 0;
791 info->r8_offset = 0;
792 info->uses_frame = 0;
793 info->return_pc = 0;
794 info->leaf_function = 0;
795
796 /* Prologue analysis does the rest... */
797 if (cris_version () == 32)
798 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
799 next_frame, info);
800 else
801 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
802 next_frame, info);
803
804 return info;
805 }
806
807 /* Given a GDB frame, determine the address of the calling function's
808 frame. This will be used to create a new GDB frame struct. */
809
810 static void
811 cris_frame_this_id (struct frame_info *next_frame,
812 void **this_prologue_cache,
813 struct frame_id *this_id)
814 {
815 struct cris_unwind_cache *info
816 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
817 CORE_ADDR base;
818 CORE_ADDR func;
819 struct frame_id id;
820
821 /* The FUNC is easy. */
822 func = frame_func_unwind (next_frame, NORMAL_FRAME);
823
824 /* Hopefully the prologue analysis either correctly determined the
825 frame's base (which is the SP from the previous frame), or set
826 that base to "NULL". */
827 base = info->prev_sp;
828 if (base == 0)
829 return;
830
831 id = frame_id_build (base, func);
832
833 (*this_id) = id;
834 }
835
836 static void
837 cris_frame_prev_register (struct frame_info *next_frame,
838 void **this_prologue_cache,
839 int regnum, int *optimizedp,
840 enum lval_type *lvalp, CORE_ADDR *addrp,
841 int *realnump, gdb_byte *bufferp)
842 {
843 struct cris_unwind_cache *info
844 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
845 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
846 optimizedp, lvalp, addrp, realnump, bufferp);
847 }
848
849 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
850 dummy frame. The frame ID's base needs to match the TOS value
851 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
852 breakpoint. */
853
854 static struct frame_id
855 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
856 {
857 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
858 frame_pc_unwind (next_frame));
859 }
860
861 static CORE_ADDR
862 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
863 {
864 /* Align to the size of an instruction (so that they can safely be
865 pushed onto the stack). */
866 return sp & ~3;
867 }
868
869 static CORE_ADDR
870 cris_push_dummy_code (struct gdbarch *gdbarch,
871 CORE_ADDR sp, CORE_ADDR funaddr,
872 struct value **args, int nargs,
873 struct type *value_type,
874 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
875 struct regcache *regcache)
876 {
877 /* Allocate space sufficient for a breakpoint. */
878 sp = (sp - 4) & ~3;
879 /* Store the address of that breakpoint */
880 *bp_addr = sp;
881 /* CRIS always starts the call at the callee's entry point. */
882 *real_pc = funaddr;
883 return sp;
884 }
885
886 static CORE_ADDR
887 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
888 struct regcache *regcache, CORE_ADDR bp_addr,
889 int nargs, struct value **args, CORE_ADDR sp,
890 int struct_return, CORE_ADDR struct_addr)
891 {
892 int stack_alloc;
893 int stack_offset;
894 int argreg;
895 int argnum;
896
897 CORE_ADDR regval;
898
899 /* The function's arguments and memory allocated by gdb for the arguments to
900 point at reside in separate areas on the stack.
901 Both frame pointers grow toward higher addresses. */
902 CORE_ADDR fp_arg;
903 CORE_ADDR fp_mem;
904
905 struct stack_item *si = NULL;
906
907 /* Push the return address. */
908 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
909
910 /* Are we returning a value using a structure return or a normal value
911 return? struct_addr is the address of the reserved space for the return
912 structure to be written on the stack. */
913 if (struct_return)
914 {
915 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
916 }
917
918 /* Now load as many as possible of the first arguments into registers,
919 and push the rest onto the stack. */
920 argreg = ARG1_REGNUM;
921 stack_offset = 0;
922
923 for (argnum = 0; argnum < nargs; argnum++)
924 {
925 int len;
926 char *val;
927 int reg_demand;
928 int i;
929
930 len = TYPE_LENGTH (value_type (args[argnum]));
931 val = (char *) value_contents (args[argnum]);
932
933 /* How may registers worth of storage do we need for this argument? */
934 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
935
936 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
937 {
938 /* Data passed by value. Fits in available register(s). */
939 for (i = 0; i < reg_demand; i++)
940 {
941 regcache_cooked_write (regcache, argreg, val);
942 argreg++;
943 val += 4;
944 }
945 }
946 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
947 {
948 /* Data passed by value. Does not fit in available register(s).
949 Use the register(s) first, then the stack. */
950 for (i = 0; i < reg_demand; i++)
951 {
952 if (argreg <= ARG4_REGNUM)
953 {
954 regcache_cooked_write (regcache, argreg, val);
955 argreg++;
956 val += 4;
957 }
958 else
959 {
960 /* Push item for later so that pushed arguments
961 come in the right order. */
962 si = push_stack_item (si, val, 4);
963 val += 4;
964 }
965 }
966 }
967 else if (len > (2 * 4))
968 {
969 /* Data passed by reference. Push copy of data onto stack
970 and pass pointer to this copy as argument. */
971 sp = (sp - len) & ~3;
972 write_memory (sp, val, len);
973
974 if (argreg <= ARG4_REGNUM)
975 {
976 regcache_cooked_write_unsigned (regcache, argreg, sp);
977 argreg++;
978 }
979 else
980 {
981 gdb_byte buf[4];
982 store_unsigned_integer (buf, 4, sp);
983 si = push_stack_item (si, buf, 4);
984 }
985 }
986 else
987 {
988 /* Data passed by value. No available registers. Put it on
989 the stack. */
990 si = push_stack_item (si, val, len);
991 }
992 }
993
994 while (si)
995 {
996 /* fp_arg must be word-aligned (i.e., don't += len) to match
997 the function prologue. */
998 sp = (sp - si->len) & ~3;
999 write_memory (sp, si->data, si->len);
1000 si = pop_stack_item (si);
1001 }
1002
1003 /* Finally, update the SP register. */
1004 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
1005
1006 return sp;
1007 }
1008
1009 static const struct frame_unwind cris_frame_unwind =
1010 {
1011 NORMAL_FRAME,
1012 cris_frame_this_id,
1013 cris_frame_prev_register
1014 };
1015
1016 const struct frame_unwind *
1017 cris_frame_sniffer (struct frame_info *next_frame)
1018 {
1019 return &cris_frame_unwind;
1020 }
1021
1022 static CORE_ADDR
1023 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1024 {
1025 struct cris_unwind_cache *info
1026 = cris_frame_unwind_cache (next_frame, this_cache);
1027 return info->base;
1028 }
1029
1030 static const struct frame_base cris_frame_base =
1031 {
1032 &cris_frame_unwind,
1033 cris_frame_base_address,
1034 cris_frame_base_address,
1035 cris_frame_base_address
1036 };
1037
1038 /* Frames information. The definition of the struct frame_info is
1039
1040 CORE_ADDR frame
1041 CORE_ADDR pc
1042 enum frame_type type;
1043 CORE_ADDR return_pc
1044 int leaf_function
1045
1046 If the compilation option -fno-omit-frame-pointer is present the
1047 variable frame will be set to the content of R8 which is the frame
1048 pointer register.
1049
1050 The variable pc contains the address where execution is performed
1051 in the present frame. The innermost frame contains the current content
1052 of the register PC. All other frames contain the content of the
1053 register PC in the next frame.
1054
1055 The variable `type' indicates the frame's type: normal, SIGTRAMP
1056 (associated with a signal handler), dummy (associated with a dummy
1057 frame).
1058
1059 The variable return_pc contains the address where execution should be
1060 resumed when the present frame has finished, the return address.
1061
1062 The variable leaf_function is 1 if the return address is in the register
1063 SRP, and 0 if it is on the stack.
1064
1065 Prologue instructions C-code.
1066 The prologue may consist of (-fno-omit-frame-pointer)
1067 1) 2)
1068 push srp
1069 push r8 push r8
1070 move.d sp,r8 move.d sp,r8
1071 subq X,sp subq X,sp
1072 movem rY,[sp] movem rY,[sp]
1073 move.S rZ,[r8-U] move.S rZ,[r8-U]
1074
1075 where 1 is a non-terminal function, and 2 is a leaf-function.
1076
1077 Note that this assumption is extremely brittle, and will break at the
1078 slightest change in GCC's prologue.
1079
1080 If local variables are declared or register contents are saved on stack
1081 the subq-instruction will be present with X as the number of bytes
1082 needed for storage. The reshuffle with respect to r8 may be performed
1083 with any size S (b, w, d) and any of the general registers Z={0..13}.
1084 The offset U should be representable by a signed 8-bit value in all cases.
1085 Thus, the prefix word is assumed to be immediate byte offset mode followed
1086 by another word containing the instruction.
1087
1088 Degenerate cases:
1089 3)
1090 push r8
1091 move.d sp,r8
1092 move.d r8,sp
1093 pop r8
1094
1095 Prologue instructions C++-code.
1096 Case 1) and 2) in the C-code may be followed by
1097
1098 move.d r10,rS ; this
1099 move.d r11,rT ; P1
1100 move.d r12,rU ; P2
1101 move.d r13,rV ; P3
1102 move.S [r8+U],rZ ; P4
1103
1104 if any of the call parameters are stored. The host expects these
1105 instructions to be executed in order to get the call parameters right. */
1106
1107 /* Examine the prologue of a function. The variable ip is the address of
1108 the first instruction of the prologue. The variable limit is the address
1109 of the first instruction after the prologue. The variable fi contains the
1110 information in struct frame_info. The variable frameless_p controls whether
1111 the entire prologue is examined (0) or just enough instructions to
1112 determine that it is a prologue (1). */
1113
1114 static CORE_ADDR
1115 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1116 struct cris_unwind_cache *info)
1117 {
1118 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1119 /* Present instruction. */
1120 unsigned short insn;
1121
1122 /* Next instruction, lookahead. */
1123 unsigned short insn_next;
1124 int regno;
1125
1126 /* Is there a push fp? */
1127 int have_fp;
1128
1129 /* Number of byte on stack used for local variables and movem. */
1130 int val;
1131
1132 /* Highest register number in a movem. */
1133 int regsave;
1134
1135 /* move.d r<source_register>,rS */
1136 short source_register;
1137
1138 /* Scan limit. */
1139 int limit;
1140
1141 /* This frame is with respect to a leaf until a push srp is found. */
1142 if (info)
1143 {
1144 info->leaf_function = 1;
1145 }
1146
1147 /* Assume nothing on stack. */
1148 val = 0;
1149 regsave = -1;
1150
1151 /* If we were called without a next_frame, that means we were called
1152 from cris_skip_prologue which already tried to find the end of the
1153 prologue through the symbol information. 64 instructions past current
1154 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1155 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
1156
1157 /* Find the prologue instructions. */
1158 while (pc > 0 && pc < limit)
1159 {
1160 insn = read_memory_unsigned_integer (pc, 2);
1161 pc += 2;
1162 if (insn == 0xE1FC)
1163 {
1164 /* push <reg> 32 bit instruction */
1165 insn_next = read_memory_unsigned_integer (pc, 2);
1166 pc += 2;
1167 regno = cris_get_operand2 (insn_next);
1168 if (info)
1169 {
1170 info->sp_offset += 4;
1171 }
1172 /* This check, meant to recognize srp, used to be regno ==
1173 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1174 if (insn_next == 0xBE7E)
1175 {
1176 if (info)
1177 {
1178 info->leaf_function = 0;
1179 }
1180 }
1181 else if (insn_next == 0x8FEE)
1182 {
1183 /* push $r8 */
1184 if (info)
1185 {
1186 info->r8_offset = info->sp_offset;
1187 }
1188 }
1189 }
1190 else if (insn == 0x866E)
1191 {
1192 /* move.d sp,r8 */
1193 if (info)
1194 {
1195 info->uses_frame = 1;
1196 }
1197 continue;
1198 }
1199 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1200 && cris_get_mode (insn) == 0x0000
1201 && cris_get_opcode (insn) == 0x000A)
1202 {
1203 /* subq <val>,sp */
1204 if (info)
1205 {
1206 info->sp_offset += cris_get_quick_value (insn);
1207 }
1208 }
1209 else if (cris_get_mode (insn) == 0x0002
1210 && cris_get_opcode (insn) == 0x000F
1211 && cris_get_size (insn) == 0x0003
1212 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1213 {
1214 /* movem r<regsave>,[sp] */
1215 regsave = cris_get_operand2 (insn);
1216 }
1217 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1218 && ((insn & 0x0F00) >> 8) == 0x0001
1219 && (cris_get_signed_offset (insn) < 0))
1220 {
1221 /* Immediate byte offset addressing prefix word with sp as base
1222 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1223 is between 64 and 128.
1224 movem r<regsave>,[sp=sp-<val>] */
1225 if (info)
1226 {
1227 info->sp_offset += -cris_get_signed_offset (insn);
1228 }
1229 insn_next = read_memory_unsigned_integer (pc, 2);
1230 pc += 2;
1231 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1232 && cris_get_opcode (insn_next) == 0x000F
1233 && cris_get_size (insn_next) == 0x0003
1234 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1235 (gdbarch))
1236 {
1237 regsave = cris_get_operand2 (insn_next);
1238 }
1239 else
1240 {
1241 /* The prologue ended before the limit was reached. */
1242 pc -= 4;
1243 break;
1244 }
1245 }
1246 else if (cris_get_mode (insn) == 0x0001
1247 && cris_get_opcode (insn) == 0x0009
1248 && cris_get_size (insn) == 0x0002)
1249 {
1250 /* move.d r<10..13>,r<0..15> */
1251 source_register = cris_get_operand1 (insn);
1252
1253 /* FIXME? In the glibc solibs, the prologue might contain something
1254 like (this example taken from relocate_doit):
1255 move.d $pc,$r0
1256 sub.d 0xfffef426,$r0
1257 which isn't covered by the source_register check below. Question
1258 is whether to add a check for this combo, or make better use of
1259 the limit variable instead. */
1260 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1261 {
1262 /* The prologue ended before the limit was reached. */
1263 pc -= 2;
1264 break;
1265 }
1266 }
1267 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1268 /* The size is a fixed-size. */
1269 && ((insn & 0x0F00) >> 8) == 0x0001
1270 /* A negative offset. */
1271 && (cris_get_signed_offset (insn) < 0))
1272 {
1273 /* move.S rZ,[r8-U] (?) */
1274 insn_next = read_memory_unsigned_integer (pc, 2);
1275 pc += 2;
1276 regno = cris_get_operand2 (insn_next);
1277 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1278 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1279 && cris_get_opcode (insn_next) == 0x000F)
1280 {
1281 /* move.S rZ,[r8-U] */
1282 continue;
1283 }
1284 else
1285 {
1286 /* The prologue ended before the limit was reached. */
1287 pc -= 4;
1288 break;
1289 }
1290 }
1291 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1292 /* The size is a fixed-size. */
1293 && ((insn & 0x0F00) >> 8) == 0x0001
1294 /* A positive offset. */
1295 && (cris_get_signed_offset (insn) > 0))
1296 {
1297 /* move.S [r8+U],rZ (?) */
1298 insn_next = read_memory_unsigned_integer (pc, 2);
1299 pc += 2;
1300 regno = cris_get_operand2 (insn_next);
1301 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1302 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1303 && cris_get_opcode (insn_next) == 0x0009
1304 && cris_get_operand1 (insn_next) == regno)
1305 {
1306 /* move.S [r8+U],rZ */
1307 continue;
1308 }
1309 else
1310 {
1311 /* The prologue ended before the limit was reached. */
1312 pc -= 4;
1313 break;
1314 }
1315 }
1316 else
1317 {
1318 /* The prologue ended before the limit was reached. */
1319 pc -= 2;
1320 break;
1321 }
1322 }
1323
1324 /* We only want to know the end of the prologue when next_frame and info
1325 are NULL (called from cris_skip_prologue i.e.). */
1326 if (next_frame == NULL && info == NULL)
1327 {
1328 return pc;
1329 }
1330
1331 info->size = info->sp_offset;
1332
1333 /* Compute the previous frame's stack pointer (which is also the
1334 frame's ID's stack address), and this frame's base pointer. */
1335 if (info->uses_frame)
1336 {
1337 ULONGEST this_base;
1338 /* The SP was moved to the FP. This indicates that a new frame
1339 was created. Get THIS frame's FP value by unwinding it from
1340 the next frame. */
1341 this_base = frame_unwind_register_unsigned (next_frame, CRIS_FP_REGNUM);
1342 info->base = this_base;
1343 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1344
1345 /* The FP points at the last saved register. Adjust the FP back
1346 to before the first saved register giving the SP. */
1347 info->prev_sp = info->base + info->r8_offset;
1348 }
1349 else
1350 {
1351 ULONGEST this_base;
1352 /* Assume that the FP is this frame's SP but with that pushed
1353 stack space added back. */
1354 this_base = frame_unwind_register_unsigned (next_frame,
1355 gdbarch_sp_regnum (gdbarch));
1356 info->base = this_base;
1357 info->prev_sp = info->base + info->size;
1358 }
1359
1360 /* Calculate the addresses for the saved registers on the stack. */
1361 /* FIXME: The address calculation should really be done on the fly while
1362 we're analyzing the prologue (we only hold one regsave value as it is
1363 now). */
1364 val = info->sp_offset;
1365
1366 for (regno = regsave; regno >= 0; regno--)
1367 {
1368 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1369 val -= 4;
1370 }
1371
1372 /* The previous frame's SP needed to be computed. Save the computed
1373 value. */
1374 trad_frame_set_value (info->saved_regs,
1375 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1376
1377 if (!info->leaf_function)
1378 {
1379 /* SRP saved on the stack. But where? */
1380 if (info->r8_offset == 0)
1381 {
1382 /* R8 not pushed yet. */
1383 info->saved_regs[SRP_REGNUM].addr = info->base;
1384 }
1385 else
1386 {
1387 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1388 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1389 }
1390 }
1391
1392 /* The PC is found in SRP (the actual register or located on the stack). */
1393 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1394 = info->saved_regs[SRP_REGNUM];
1395
1396 return pc;
1397 }
1398
1399 static CORE_ADDR
1400 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1401 struct cris_unwind_cache *info)
1402 {
1403 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1404 ULONGEST this_base;
1405
1406 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1407 meant to be a full-fledged prologue scanner. It is only needed for
1408 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1409
1410 * PLT stubs (library calls)
1411 * call dummys
1412 * signal trampolines
1413
1414 For those cases, it is assumed that there is no actual prologue; that
1415 the stack pointer is not adjusted, and (as a consequence) the return
1416 address is not pushed onto the stack. */
1417
1418 /* We only want to know the end of the prologue when next_frame and info
1419 are NULL (called from cris_skip_prologue i.e.). */
1420 if (next_frame == NULL && info == NULL)
1421 {
1422 return pc;
1423 }
1424
1425 /* The SP is assumed to be unaltered. */
1426 this_base = frame_unwind_register_unsigned (next_frame,
1427 gdbarch_sp_regnum (gdbarch));
1428 info->base = this_base;
1429 info->prev_sp = this_base;
1430
1431 /* The PC is assumed to be found in SRP. */
1432 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1433 = info->saved_regs[SRP_REGNUM];
1434
1435 return pc;
1436 }
1437
1438 /* Advance pc beyond any function entry prologue instructions at pc
1439 to reach some "real" code. */
1440
1441 /* Given a PC value corresponding to the start of a function, return the PC
1442 of the first instruction after the function prologue. */
1443
1444 static CORE_ADDR
1445 cris_skip_prologue (CORE_ADDR pc)
1446 {
1447 CORE_ADDR func_addr, func_end;
1448 struct symtab_and_line sal;
1449 CORE_ADDR pc_after_prologue;
1450
1451 /* If we have line debugging information, then the end of the prologue
1452 should the first assembly instruction of the first source line. */
1453 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1454 {
1455 sal = find_pc_line (func_addr, 0);
1456 if (sal.end > 0 && sal.end < func_end)
1457 return sal.end;
1458 }
1459
1460 if (cris_version () == 32)
1461 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1462 else
1463 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1464
1465 return pc_after_prologue;
1466 }
1467
1468 static CORE_ADDR
1469 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1470 {
1471 ULONGEST pc;
1472 pc = frame_unwind_register_unsigned (next_frame,
1473 gdbarch_pc_regnum (gdbarch));
1474 return pc;
1475 }
1476
1477 static CORE_ADDR
1478 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1479 {
1480 ULONGEST sp;
1481 sp = frame_unwind_register_unsigned (next_frame,
1482 gdbarch_sp_regnum (gdbarch));
1483 return sp;
1484 }
1485
1486 /* Use the program counter to determine the contents and size of a breakpoint
1487 instruction. It returns a pointer to a string of bytes that encode a
1488 breakpoint instruction, stores the length of the string to *lenptr, and
1489 adjusts pcptr (if necessary) to point to the actual memory location where
1490 the breakpoint should be inserted. */
1491
1492 static const unsigned char *
1493 cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
1494 {
1495 static unsigned char break8_insn[] = {0x38, 0xe9};
1496 static unsigned char break15_insn[] = {0x3f, 0xe9};
1497 *lenptr = 2;
1498
1499 if (cris_mode () == cris_mode_guru)
1500 return break15_insn;
1501 else
1502 return break8_insn;
1503 }
1504
1505 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1506 0 otherwise. */
1507
1508 static int
1509 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1510 {
1511 int version = cris_version ();
1512
1513 switch (spec_reg.applicable_version)
1514 {
1515 case cris_ver_version_all:
1516 return 1;
1517 case cris_ver_warning:
1518 /* Indeterminate/obsolete. */
1519 return 0;
1520 case cris_ver_v0_3:
1521 return (version >= 0 && version <= 3);
1522 case cris_ver_v3p:
1523 return (version >= 3);
1524 case cris_ver_v8:
1525 return (version == 8 || version == 9);
1526 case cris_ver_v8p:
1527 return (version >= 8);
1528 case cris_ver_v0_10:
1529 return (version >= 0 && version <= 10);
1530 case cris_ver_v3_10:
1531 return (version >= 3 && version <= 10);
1532 case cris_ver_v8_10:
1533 return (version >= 8 && version <= 10);
1534 case cris_ver_v10:
1535 return (version == 10);
1536 case cris_ver_v10p:
1537 return (version >= 10);
1538 case cris_ver_v32p:
1539 return (version >= 32);
1540 default:
1541 /* Invalid cris version. */
1542 return 0;
1543 }
1544 }
1545
1546 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1547 register, -1 for an invalid register. */
1548
1549 static int
1550 cris_register_size (int regno)
1551 {
1552 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1553 int i;
1554 int spec_regno;
1555
1556 if (regno >= 0 && regno < NUM_GENREGS)
1557 {
1558 /* General registers (R0 - R15) are 32 bits. */
1559 return 4;
1560 }
1561 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1562 {
1563 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1564 Adjust regno accordingly. */
1565 spec_regno = regno - NUM_GENREGS;
1566
1567 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1568 {
1569 if (cris_spec_regs[i].number == spec_regno
1570 && cris_spec_reg_applicable (cris_spec_regs[i]))
1571 /* Go with the first applicable register. */
1572 return cris_spec_regs[i].reg_size;
1573 }
1574 /* Special register not applicable to this CRIS version. */
1575 return 0;
1576 }
1577 else if (regno >= gdbarch_pc_regnum (current_gdbarch)
1578 && regno < gdbarch_num_regs (current_gdbarch))
1579 {
1580 /* This will apply to CRISv32 only where there are additional registers
1581 after the special registers (pseudo PC and support registers). */
1582 return 4;
1583 }
1584
1585
1586 return -1;
1587 }
1588
1589 /* Nonzero if regno should not be fetched from the target. This is the case
1590 for unimplemented (size 0) and non-existant registers. */
1591
1592 static int
1593 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1594 {
1595 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1596 || (cris_register_size (regno) == 0));
1597 }
1598
1599 /* Nonzero if regno should not be written to the target, for various
1600 reasons. */
1601
1602 static int
1603 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1604 {
1605 /* There are three kinds of registers we refuse to write to.
1606 1. Those that not implemented.
1607 2. Those that are read-only (depends on the processor mode).
1608 3. Those registers to which a write has no effect.
1609 */
1610
1611 if (regno < 0
1612 || regno >= gdbarch_num_regs (gdbarch)
1613 || cris_register_size (regno) == 0)
1614 /* Not implemented. */
1615 return 1;
1616
1617 else if (regno == VR_REGNUM)
1618 /* Read-only. */
1619 return 1;
1620
1621 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1622 /* Writing has no effect. */
1623 return 1;
1624
1625 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1626 agent decide whether they are writable. */
1627
1628 return 0;
1629 }
1630
1631 /* Nonzero if regno should not be fetched from the target. This is the case
1632 for unimplemented (size 0) and non-existant registers. */
1633
1634 static int
1635 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1636 {
1637 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1638 || (cris_register_size (regno) == 0));
1639 }
1640
1641 /* Nonzero if regno should not be written to the target, for various
1642 reasons. */
1643
1644 static int
1645 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1646 {
1647 /* There are three kinds of registers we refuse to write to.
1648 1. Those that not implemented.
1649 2. Those that are read-only (depends on the processor mode).
1650 3. Those registers to which a write has no effect.
1651 */
1652
1653 if (regno < 0
1654 || regno >= gdbarch_num_regs (gdbarch)
1655 || cris_register_size (regno) == 0)
1656 /* Not implemented. */
1657 return 1;
1658
1659 else if (regno == VR_REGNUM)
1660 /* Read-only. */
1661 return 1;
1662
1663 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1664 /* Writing has no effect. */
1665 return 1;
1666
1667 /* Many special registers are read-only in user mode. Let the debug
1668 agent decide whether they are writable. */
1669
1670 return 0;
1671 }
1672
1673 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1674 of data in register regno. */
1675
1676 static struct type *
1677 cris_register_type (struct gdbarch *gdbarch, int regno)
1678 {
1679 if (regno == gdbarch_pc_regnum (gdbarch))
1680 return builtin_type_void_func_ptr;
1681 else if (regno == gdbarch_sp_regnum (gdbarch)
1682 || regno == CRIS_FP_REGNUM)
1683 return builtin_type_void_data_ptr;
1684 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1685 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1686 /* Note: R8 taken care of previous clause. */
1687 return builtin_type_uint32;
1688 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1689 return builtin_type_uint16;
1690 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1691 return builtin_type_uint8;
1692 else
1693 /* Invalid (unimplemented) register. */
1694 return builtin_type_int0;
1695 }
1696
1697 static struct type *
1698 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1699 {
1700 if (regno == gdbarch_pc_regnum (gdbarch))
1701 return builtin_type_void_func_ptr;
1702 else if (regno == gdbarch_sp_regnum (gdbarch)
1703 || regno == CRIS_FP_REGNUM)
1704 return builtin_type_void_data_ptr;
1705 else if ((regno >= 0 && regno <= ACR_REGNUM)
1706 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1707 || (regno == PID_REGNUM)
1708 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1709 /* Note: R8 and SP taken care of by previous clause. */
1710 return builtin_type_uint32;
1711 else if (regno == WZ_REGNUM)
1712 return builtin_type_uint16;
1713 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1714 return builtin_type_uint8;
1715 else
1716 {
1717 /* Invalid (unimplemented) register. Should not happen as there are
1718 no unimplemented CRISv32 registers. */
1719 warning (_("crisv32_register_type: unknown regno %d"), regno);
1720 return builtin_type_int0;
1721 }
1722 }
1723
1724 /* Stores a function return value of type type, where valbuf is the address
1725 of the value to be stored. */
1726
1727 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1728
1729 static void
1730 cris_store_return_value (struct type *type, struct regcache *regcache,
1731 const void *valbuf)
1732 {
1733 ULONGEST val;
1734 int len = TYPE_LENGTH (type);
1735
1736 if (len <= 4)
1737 {
1738 /* Put the return value in R10. */
1739 val = extract_unsigned_integer (valbuf, len);
1740 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1741 }
1742 else if (len <= 8)
1743 {
1744 /* Put the return value in R10 and R11. */
1745 val = extract_unsigned_integer (valbuf, 4);
1746 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1747 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1748 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1749 }
1750 else
1751 error (_("cris_store_return_value: type length too large."));
1752 }
1753
1754 /* Return the name of register regno as a string. Return NULL for an invalid or
1755 unimplemented register. */
1756
1757 static const char *
1758 cris_special_register_name (int regno)
1759 {
1760 int spec_regno;
1761 int i;
1762
1763 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1764 Adjust regno accordingly. */
1765 spec_regno = regno - NUM_GENREGS;
1766
1767 /* Assume nothing about the layout of the cris_spec_regs struct
1768 when searching. */
1769 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1770 {
1771 if (cris_spec_regs[i].number == spec_regno
1772 && cris_spec_reg_applicable (cris_spec_regs[i]))
1773 /* Go with the first applicable register. */
1774 return cris_spec_regs[i].name;
1775 }
1776 /* Special register not applicable to this CRIS version. */
1777 return NULL;
1778 }
1779
1780 static const char *
1781 cris_register_name (struct gdbarch *gdbarch, int regno)
1782 {
1783 static char *cris_genreg_names[] =
1784 { "r0", "r1", "r2", "r3", \
1785 "r4", "r5", "r6", "r7", \
1786 "r8", "r9", "r10", "r11", \
1787 "r12", "r13", "sp", "pc" };
1788
1789 if (regno >= 0 && regno < NUM_GENREGS)
1790 {
1791 /* General register. */
1792 return cris_genreg_names[regno];
1793 }
1794 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1795 {
1796 return cris_special_register_name (regno);
1797 }
1798 else
1799 {
1800 /* Invalid register. */
1801 return NULL;
1802 }
1803 }
1804
1805 static const char *
1806 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1807 {
1808 static char *crisv32_genreg_names[] =
1809 { "r0", "r1", "r2", "r3", \
1810 "r4", "r5", "r6", "r7", \
1811 "r8", "r9", "r10", "r11", \
1812 "r12", "r13", "sp", "acr"
1813 };
1814
1815 static char *crisv32_sreg_names[] =
1816 { "s0", "s1", "s2", "s3", \
1817 "s4", "s5", "s6", "s7", \
1818 "s8", "s9", "s10", "s11", \
1819 "s12", "s13", "s14", "s15"
1820 };
1821
1822 if (regno >= 0 && regno < NUM_GENREGS)
1823 {
1824 /* General register. */
1825 return crisv32_genreg_names[regno];
1826 }
1827 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1828 {
1829 return cris_special_register_name (regno);
1830 }
1831 else if (regno == gdbarch_pc_regnum (gdbarch))
1832 {
1833 return "pc";
1834 }
1835 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1836 {
1837 return crisv32_sreg_names[regno - S0_REGNUM];
1838 }
1839 else
1840 {
1841 /* Invalid register. */
1842 return NULL;
1843 }
1844 }
1845
1846 /* Convert DWARF register number REG to the appropriate register
1847 number used by GDB. */
1848
1849 static int
1850 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1851 {
1852 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1853 numbering, MOF is 18).
1854 Adapted from gcc/config/cris/cris.h. */
1855 static int cris_dwarf_regmap[] = {
1856 0, 1, 2, 3,
1857 4, 5, 6, 7,
1858 8, 9, 10, 11,
1859 12, 13, 14, 15,
1860 27, -1, -1, -1,
1861 -1, -1, -1, 23,
1862 -1, -1, -1, 27,
1863 -1, -1, -1, -1
1864 };
1865 int regnum = -1;
1866
1867 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1868 regnum = cris_dwarf_regmap[reg];
1869
1870 if (regnum == -1)
1871 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1872
1873 return regnum;
1874 }
1875
1876 /* DWARF-2 frame support. */
1877
1878 static void
1879 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1880 struct dwarf2_frame_state_reg *reg,
1881 struct frame_info *next_frame)
1882 {
1883 /* The return address column. */
1884 if (regnum == gdbarch_pc_regnum (gdbarch))
1885 reg->how = DWARF2_FRAME_REG_RA;
1886
1887 /* The call frame address. */
1888 else if (regnum == gdbarch_sp_regnum (gdbarch))
1889 reg->how = DWARF2_FRAME_REG_CFA;
1890 }
1891
1892 /* Extract from an array regbuf containing the raw register state a function
1893 return value of type type, and copy that, in virtual format, into
1894 valbuf. */
1895
1896 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1897
1898 static void
1899 cris_extract_return_value (struct type *type, struct regcache *regcache,
1900 void *valbuf)
1901 {
1902 ULONGEST val;
1903 int len = TYPE_LENGTH (type);
1904
1905 if (len <= 4)
1906 {
1907 /* Get the return value from R10. */
1908 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1909 store_unsigned_integer (valbuf, len, val);
1910 }
1911 else if (len <= 8)
1912 {
1913 /* Get the return value from R10 and R11. */
1914 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1915 store_unsigned_integer (valbuf, 4, val);
1916 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1917 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1918 }
1919 else
1920 error (_("cris_extract_return_value: type length too large"));
1921 }
1922
1923 /* Handle the CRIS return value convention. */
1924
1925 static enum return_value_convention
1926 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1927 struct regcache *regcache, gdb_byte *readbuf,
1928 const gdb_byte *writebuf)
1929 {
1930 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 || TYPE_CODE (type) == TYPE_CODE_UNION
1932 || TYPE_LENGTH (type) > 8)
1933 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1934 goes on the stack. */
1935 return RETURN_VALUE_STRUCT_CONVENTION;
1936
1937 if (readbuf)
1938 cris_extract_return_value (type, regcache, readbuf);
1939 if (writebuf)
1940 cris_store_return_value (type, regcache, writebuf);
1941
1942 return RETURN_VALUE_REGISTER_CONVENTION;
1943 }
1944
1945 /* Calculates a value that measures how good inst_args constraints an
1946 instruction. It stems from cris_constraint, found in cris-dis.c. */
1947
1948 static int
1949 constraint (unsigned int insn, const signed char *inst_args,
1950 inst_env_type *inst_env)
1951 {
1952 int retval = 0;
1953 int tmp, i;
1954
1955 const char *s = inst_args;
1956
1957 for (; *s; s++)
1958 switch (*s)
1959 {
1960 case 'm':
1961 if ((insn & 0x30) == 0x30)
1962 return -1;
1963 break;
1964
1965 case 'S':
1966 /* A prefix operand. */
1967 if (inst_env->prefix_found)
1968 break;
1969 else
1970 return -1;
1971
1972 case 'B':
1973 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1974 valid "push" size. In case of special register, it may be != 4. */
1975 if (inst_env->prefix_found)
1976 break;
1977 else
1978 return -1;
1979
1980 case 'D':
1981 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1982 if (!retval)
1983 return -1;
1984 else
1985 retval += 4;
1986 break;
1987
1988 case 'P':
1989 tmp = (insn >> 0xC) & 0xF;
1990
1991 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1992 {
1993 /* Since we match four bits, we will give a value of
1994 4 - 1 = 3 in a match. If there is a corresponding
1995 exact match of a special register in another pattern, it
1996 will get a value of 4, which will be higher. This should
1997 be correct in that an exact pattern would match better that
1998 a general pattern.
1999 Note that there is a reason for not returning zero; the
2000 pattern for "clear" is partly matched in the bit-pattern
2001 (the two lower bits must be zero), while the bit-pattern
2002 for a move from a special register is matched in the
2003 register constraint.
2004 This also means we will will have a race condition if
2005 there is a partly match in three bits in the bit pattern. */
2006 if (tmp == cris_spec_regs[i].number)
2007 {
2008 retval += 3;
2009 break;
2010 }
2011 }
2012
2013 if (cris_spec_regs[i].name == NULL)
2014 return -1;
2015 break;
2016 }
2017 return retval;
2018 }
2019
2020 /* Returns the number of bits set in the variable value. */
2021
2022 static int
2023 number_of_bits (unsigned int value)
2024 {
2025 int number_of_bits = 0;
2026
2027 while (value != 0)
2028 {
2029 number_of_bits += 1;
2030 value &= (value - 1);
2031 }
2032 return number_of_bits;
2033 }
2034
2035 /* Finds the address that should contain the single step breakpoint(s).
2036 It stems from code in cris-dis.c. */
2037
2038 static int
2039 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2040 {
2041 int i;
2042 int max_level_of_match = -1;
2043 int max_matched = -1;
2044 int level_of_match;
2045
2046 for (i = 0; cris_opcodes[i].name != NULL; i++)
2047 {
2048 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2049 && ((cris_opcodes[i].lose & insn) == 0)
2050 /* Only CRISv10 instructions, please. */
2051 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2052 {
2053 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2054 if (level_of_match >= 0)
2055 {
2056 level_of_match +=
2057 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2058 if (level_of_match > max_level_of_match)
2059 {
2060 max_matched = i;
2061 max_level_of_match = level_of_match;
2062 if (level_of_match == 16)
2063 {
2064 /* All bits matched, cannot find better. */
2065 break;
2066 }
2067 }
2068 }
2069 }
2070 }
2071 return max_matched;
2072 }
2073
2074 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2075 actually an internal error. */
2076
2077 static int
2078 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2079 {
2080 int i;
2081 int offset;
2082 unsigned short insn;
2083 struct gdbarch *gdbarch = get_frame_arch (frame);
2084
2085 /* Create a local register image and set the initial state. */
2086 for (i = 0; i < NUM_GENREGS; i++)
2087 {
2088 inst_env->reg[i] =
2089 (unsigned long) get_frame_register_unsigned (frame, i);
2090 }
2091 offset = NUM_GENREGS;
2092 for (i = 0; i < NUM_SPECREGS; i++)
2093 {
2094 inst_env->preg[i] =
2095 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2096 }
2097 inst_env->branch_found = 0;
2098 inst_env->slot_needed = 0;
2099 inst_env->delay_slot_pc_active = 0;
2100 inst_env->prefix_found = 0;
2101 inst_env->invalid = 0;
2102 inst_env->xflag_found = 0;
2103 inst_env->disable_interrupt = 0;
2104
2105 /* Look for a step target. */
2106 do
2107 {
2108 /* Read an instruction from the client. */
2109 insn = read_memory_unsigned_integer
2110 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2);
2111
2112 /* If the instruction is not in a delay slot the new content of the
2113 PC is [PC] + 2. If the instruction is in a delay slot it is not
2114 that simple. Since a instruction in a delay slot cannot change
2115 the content of the PC, it does not matter what value PC will have.
2116 Just make sure it is a valid instruction. */
2117 if (!inst_env->delay_slot_pc_active)
2118 {
2119 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2120 }
2121 else
2122 {
2123 inst_env->delay_slot_pc_active = 0;
2124 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2125 = inst_env->delay_slot_pc;
2126 }
2127 /* Analyse the present instruction. */
2128 i = find_cris_op (insn, inst_env);
2129 if (i == -1)
2130 {
2131 inst_env->invalid = 1;
2132 }
2133 else
2134 {
2135 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2136 }
2137 } while (!inst_env->invalid
2138 && (inst_env->prefix_found || inst_env->xflag_found
2139 || inst_env->slot_needed));
2140 return i;
2141 }
2142
2143 /* There is no hardware single-step support. The function find_step_target
2144 digs through the opcodes in order to find all possible targets.
2145 Either one ordinary target or two targets for branches may be found. */
2146
2147 static int
2148 cris_software_single_step (struct frame_info *frame)
2149 {
2150 inst_env_type inst_env;
2151
2152 /* Analyse the present instruction environment and insert
2153 breakpoints. */
2154 int status = find_step_target (frame, &inst_env);
2155 if (status == -1)
2156 {
2157 /* Could not find a target. Things are likely to go downhill
2158 from here. */
2159 warning (_("CRIS software single step could not find a step target."));
2160 }
2161 else
2162 {
2163 /* Insert at most two breakpoints. One for the next PC content
2164 and possibly another one for a branch, jump, etc. */
2165 CORE_ADDR next_pc =
2166 (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (get_frame_arch (frame))];
2167 insert_single_step_breakpoint (next_pc);
2168 if (inst_env.branch_found
2169 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2170 {
2171 CORE_ADDR branch_target_address
2172 = (CORE_ADDR) inst_env.branch_break_address;
2173 insert_single_step_breakpoint (branch_target_address);
2174 }
2175 }
2176
2177 return 1;
2178 }
2179
2180 /* Calculates the prefix value for quick offset addressing mode. */
2181
2182 static void
2183 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2184 {
2185 /* It's invalid to be in a delay slot. You can't have a prefix to this
2186 instruction (not 100% sure). */
2187 if (inst_env->slot_needed || inst_env->prefix_found)
2188 {
2189 inst_env->invalid = 1;
2190 return;
2191 }
2192
2193 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2194 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2195
2196 /* A prefix doesn't change the xflag_found. But the rest of the flags
2197 need updating. */
2198 inst_env->slot_needed = 0;
2199 inst_env->prefix_found = 1;
2200 }
2201
2202 /* Updates the autoincrement register. The size of the increment is derived
2203 from the size of the operation. The PC is always kept aligned on even
2204 word addresses. */
2205
2206 static void
2207 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2208 {
2209 if (size == INST_BYTE_SIZE)
2210 {
2211 inst_env->reg[cris_get_operand1 (inst)] += 1;
2212
2213 /* The PC must be word aligned, so increase the PC with one
2214 word even if the size is byte. */
2215 if (cris_get_operand1 (inst) == REG_PC)
2216 {
2217 inst_env->reg[REG_PC] += 1;
2218 }
2219 }
2220 else if (size == INST_WORD_SIZE)
2221 {
2222 inst_env->reg[cris_get_operand1 (inst)] += 2;
2223 }
2224 else if (size == INST_DWORD_SIZE)
2225 {
2226 inst_env->reg[cris_get_operand1 (inst)] += 4;
2227 }
2228 else
2229 {
2230 /* Invalid size. */
2231 inst_env->invalid = 1;
2232 }
2233 }
2234
2235 /* Just a forward declaration. */
2236
2237 static unsigned long get_data_from_address (unsigned short *inst,
2238 CORE_ADDR address);
2239
2240 /* Calculates the prefix value for the general case of offset addressing
2241 mode. */
2242
2243 static void
2244 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2245 {
2246
2247 long offset;
2248
2249 /* It's invalid to be in a delay slot. */
2250 if (inst_env->slot_needed || inst_env->prefix_found)
2251 {
2252 inst_env->invalid = 1;
2253 return;
2254 }
2255
2256 /* The calculation of prefix_value used to be after process_autoincrement,
2257 but that fails for an instruction such as jsr [$r0+12] which is encoded
2258 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2259 mustn't be incremented until we have read it and what it points at. */
2260 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2261
2262 /* The offset is an indirection of the contents of the operand1 register. */
2263 inst_env->prefix_value +=
2264 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2265
2266 if (cris_get_mode (inst) == AUTOINC_MODE)
2267 {
2268 process_autoincrement (cris_get_size (inst), inst, inst_env);
2269 }
2270
2271 /* A prefix doesn't change the xflag_found. But the rest of the flags
2272 need updating. */
2273 inst_env->slot_needed = 0;
2274 inst_env->prefix_found = 1;
2275 }
2276
2277 /* Calculates the prefix value for the index addressing mode. */
2278
2279 static void
2280 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2281 {
2282 /* It's invalid to be in a delay slot. I can't see that it's possible to
2283 have a prefix to this instruction. So I will treat this as invalid. */
2284 if (inst_env->slot_needed || inst_env->prefix_found)
2285 {
2286 inst_env->invalid = 1;
2287 return;
2288 }
2289
2290 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2291
2292 /* The offset is the operand2 value shifted the size of the instruction
2293 to the left. */
2294 inst_env->prefix_value +=
2295 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2296
2297 /* If the PC is operand1 (base) the address used is the address after
2298 the main instruction, i.e. address + 2 (the PC is already compensated
2299 for the prefix operation). */
2300 if (cris_get_operand1 (inst) == REG_PC)
2301 {
2302 inst_env->prefix_value += 2;
2303 }
2304
2305 /* A prefix doesn't change the xflag_found. But the rest of the flags
2306 need updating. */
2307 inst_env->slot_needed = 0;
2308 inst_env->xflag_found = 0;
2309 inst_env->prefix_found = 1;
2310 }
2311
2312 /* Calculates the prefix value for the double indirect addressing mode. */
2313
2314 static void
2315 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2316 {
2317
2318 CORE_ADDR address;
2319
2320 /* It's invalid to be in a delay slot. */
2321 if (inst_env->slot_needed || inst_env->prefix_found)
2322 {
2323 inst_env->invalid = 1;
2324 return;
2325 }
2326
2327 /* The prefix value is one dereference of the contents of the operand1
2328 register. */
2329 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2330 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2331
2332 /* Check if the mode is autoincrement. */
2333 if (cris_get_mode (inst) == AUTOINC_MODE)
2334 {
2335 inst_env->reg[cris_get_operand1 (inst)] += 4;
2336 }
2337
2338 /* A prefix doesn't change the xflag_found. But the rest of the flags
2339 need updating. */
2340 inst_env->slot_needed = 0;
2341 inst_env->xflag_found = 0;
2342 inst_env->prefix_found = 1;
2343 }
2344
2345 /* Finds the destination for a branch with 8-bits offset. */
2346
2347 static void
2348 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2349 {
2350
2351 short offset;
2352
2353 /* If we have a prefix or are in a delay slot it's bad. */
2354 if (inst_env->slot_needed || inst_env->prefix_found)
2355 {
2356 inst_env->invalid = 1;
2357 return;
2358 }
2359
2360 /* We have a branch, find out where the branch will land. */
2361 offset = cris_get_branch_short_offset (inst);
2362
2363 /* Check if the offset is signed. */
2364 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2365 {
2366 offset |= 0xFF00;
2367 }
2368
2369 /* The offset ends with the sign bit, set it to zero. The address
2370 should always be word aligned. */
2371 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2372
2373 inst_env->branch_found = 1;
2374 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2375
2376 inst_env->slot_needed = 1;
2377 inst_env->prefix_found = 0;
2378 inst_env->xflag_found = 0;
2379 inst_env->disable_interrupt = 1;
2380 }
2381
2382 /* Finds the destination for a branch with 16-bits offset. */
2383
2384 static void
2385 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2386 {
2387 short offset;
2388
2389 /* If we have a prefix or is in a delay slot it's bad. */
2390 if (inst_env->slot_needed || inst_env->prefix_found)
2391 {
2392 inst_env->invalid = 1;
2393 return;
2394 }
2395
2396 /* We have a branch, find out the offset for the branch. */
2397 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2398
2399 /* The instruction is one word longer than normal, so add one word
2400 to the PC. */
2401 inst_env->reg[REG_PC] += 2;
2402
2403 inst_env->branch_found = 1;
2404 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2405
2406
2407 inst_env->slot_needed = 1;
2408 inst_env->prefix_found = 0;
2409 inst_env->xflag_found = 0;
2410 inst_env->disable_interrupt = 1;
2411 }
2412
2413 /* Handles the ABS instruction. */
2414
2415 static void
2416 abs_op (unsigned short inst, inst_env_type *inst_env)
2417 {
2418
2419 long value;
2420
2421 /* ABS can't have a prefix, so it's bad if it does. */
2422 if (inst_env->prefix_found)
2423 {
2424 inst_env->invalid = 1;
2425 return;
2426 }
2427
2428 /* Check if the operation affects the PC. */
2429 if (cris_get_operand2 (inst) == REG_PC)
2430 {
2431
2432 /* It's invalid to change to the PC if we are in a delay slot. */
2433 if (inst_env->slot_needed)
2434 {
2435 inst_env->invalid = 1;
2436 return;
2437 }
2438
2439 value = (long) inst_env->reg[REG_PC];
2440
2441 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2442 if (value != SIGNED_DWORD_MASK)
2443 {
2444 value = -value;
2445 inst_env->reg[REG_PC] = (long) value;
2446 }
2447 }
2448
2449 inst_env->slot_needed = 0;
2450 inst_env->prefix_found = 0;
2451 inst_env->xflag_found = 0;
2452 inst_env->disable_interrupt = 0;
2453 }
2454
2455 /* Handles the ADDI instruction. */
2456
2457 static void
2458 addi_op (unsigned short inst, inst_env_type *inst_env)
2459 {
2460 /* It's invalid to have the PC as base register. And ADDI can't have
2461 a prefix. */
2462 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2463 {
2464 inst_env->invalid = 1;
2465 return;
2466 }
2467
2468 inst_env->slot_needed = 0;
2469 inst_env->prefix_found = 0;
2470 inst_env->xflag_found = 0;
2471 inst_env->disable_interrupt = 0;
2472 }
2473
2474 /* Handles the ASR instruction. */
2475
2476 static void
2477 asr_op (unsigned short inst, inst_env_type *inst_env)
2478 {
2479 int shift_steps;
2480 unsigned long value;
2481 unsigned long signed_extend_mask = 0;
2482
2483 /* ASR can't have a prefix, so check that it doesn't. */
2484 if (inst_env->prefix_found)
2485 {
2486 inst_env->invalid = 1;
2487 return;
2488 }
2489
2490 /* Check if the PC is the target register. */
2491 if (cris_get_operand2 (inst) == REG_PC)
2492 {
2493 /* It's invalid to change the PC in a delay slot. */
2494 if (inst_env->slot_needed)
2495 {
2496 inst_env->invalid = 1;
2497 return;
2498 }
2499 /* Get the number of bits to shift. */
2500 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2501 value = inst_env->reg[REG_PC];
2502
2503 /* Find out how many bits the operation should apply to. */
2504 if (cris_get_size (inst) == INST_BYTE_SIZE)
2505 {
2506 if (value & SIGNED_BYTE_MASK)
2507 {
2508 signed_extend_mask = 0xFF;
2509 signed_extend_mask = signed_extend_mask >> shift_steps;
2510 signed_extend_mask = ~signed_extend_mask;
2511 }
2512 value = value >> shift_steps;
2513 value |= signed_extend_mask;
2514 value &= 0xFF;
2515 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2516 inst_env->reg[REG_PC] |= value;
2517 }
2518 else if (cris_get_size (inst) == INST_WORD_SIZE)
2519 {
2520 if (value & SIGNED_WORD_MASK)
2521 {
2522 signed_extend_mask = 0xFFFF;
2523 signed_extend_mask = signed_extend_mask >> shift_steps;
2524 signed_extend_mask = ~signed_extend_mask;
2525 }
2526 value = value >> shift_steps;
2527 value |= signed_extend_mask;
2528 value &= 0xFFFF;
2529 inst_env->reg[REG_PC] &= 0xFFFF0000;
2530 inst_env->reg[REG_PC] |= value;
2531 }
2532 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2533 {
2534 if (value & SIGNED_DWORD_MASK)
2535 {
2536 signed_extend_mask = 0xFFFFFFFF;
2537 signed_extend_mask = signed_extend_mask >> shift_steps;
2538 signed_extend_mask = ~signed_extend_mask;
2539 }
2540 value = value >> shift_steps;
2541 value |= signed_extend_mask;
2542 inst_env->reg[REG_PC] = value;
2543 }
2544 }
2545 inst_env->slot_needed = 0;
2546 inst_env->prefix_found = 0;
2547 inst_env->xflag_found = 0;
2548 inst_env->disable_interrupt = 0;
2549 }
2550
2551 /* Handles the ASRQ instruction. */
2552
2553 static void
2554 asrq_op (unsigned short inst, inst_env_type *inst_env)
2555 {
2556
2557 int shift_steps;
2558 unsigned long value;
2559 unsigned long signed_extend_mask = 0;
2560
2561 /* ASRQ can't have a prefix, so check that it doesn't. */
2562 if (inst_env->prefix_found)
2563 {
2564 inst_env->invalid = 1;
2565 return;
2566 }
2567
2568 /* Check if the PC is the target register. */
2569 if (cris_get_operand2 (inst) == REG_PC)
2570 {
2571
2572 /* It's invalid to change the PC in a delay slot. */
2573 if (inst_env->slot_needed)
2574 {
2575 inst_env->invalid = 1;
2576 return;
2577 }
2578 /* The shift size is given as a 5 bit quick value, i.e. we don't
2579 want the the sign bit of the quick value. */
2580 shift_steps = cris_get_asr_shift_steps (inst);
2581 value = inst_env->reg[REG_PC];
2582 if (value & SIGNED_DWORD_MASK)
2583 {
2584 signed_extend_mask = 0xFFFFFFFF;
2585 signed_extend_mask = signed_extend_mask >> shift_steps;
2586 signed_extend_mask = ~signed_extend_mask;
2587 }
2588 value = value >> shift_steps;
2589 value |= signed_extend_mask;
2590 inst_env->reg[REG_PC] = value;
2591 }
2592 inst_env->slot_needed = 0;
2593 inst_env->prefix_found = 0;
2594 inst_env->xflag_found = 0;
2595 inst_env->disable_interrupt = 0;
2596 }
2597
2598 /* Handles the AX, EI and SETF instruction. */
2599
2600 static void
2601 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2602 {
2603 if (inst_env->prefix_found)
2604 {
2605 inst_env->invalid = 1;
2606 return;
2607 }
2608 /* Check if the instruction is setting the X flag. */
2609 if (cris_is_xflag_bit_on (inst))
2610 {
2611 inst_env->xflag_found = 1;
2612 }
2613 else
2614 {
2615 inst_env->xflag_found = 0;
2616 }
2617 inst_env->slot_needed = 0;
2618 inst_env->prefix_found = 0;
2619 inst_env->disable_interrupt = 1;
2620 }
2621
2622 /* Checks if the instruction is in assign mode. If so, it updates the assign
2623 register. Note that check_assign assumes that the caller has checked that
2624 there is a prefix to this instruction. The mode check depends on this. */
2625
2626 static void
2627 check_assign (unsigned short inst, inst_env_type *inst_env)
2628 {
2629 /* Check if it's an assign addressing mode. */
2630 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2631 {
2632 /* Assign the prefix value to operand 1. */
2633 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2634 }
2635 }
2636
2637 /* Handles the 2-operand BOUND instruction. */
2638
2639 static void
2640 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2641 {
2642 /* It's invalid to have the PC as the index operand. */
2643 if (cris_get_operand2 (inst) == REG_PC)
2644 {
2645 inst_env->invalid = 1;
2646 return;
2647 }
2648 /* Check if we have a prefix. */
2649 if (inst_env->prefix_found)
2650 {
2651 check_assign (inst, inst_env);
2652 }
2653 /* Check if this is an autoincrement mode. */
2654 else if (cris_get_mode (inst) == AUTOINC_MODE)
2655 {
2656 /* It's invalid to change the PC in a delay slot. */
2657 if (inst_env->slot_needed)
2658 {
2659 inst_env->invalid = 1;
2660 return;
2661 }
2662 process_autoincrement (cris_get_size (inst), inst, inst_env);
2663 }
2664 inst_env->slot_needed = 0;
2665 inst_env->prefix_found = 0;
2666 inst_env->xflag_found = 0;
2667 inst_env->disable_interrupt = 0;
2668 }
2669
2670 /* Handles the 3-operand BOUND instruction. */
2671
2672 static void
2673 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2674 {
2675 /* It's an error if we haven't got a prefix. And it's also an error
2676 if the PC is the destination register. */
2677 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2678 {
2679 inst_env->invalid = 1;
2680 return;
2681 }
2682 inst_env->slot_needed = 0;
2683 inst_env->prefix_found = 0;
2684 inst_env->xflag_found = 0;
2685 inst_env->disable_interrupt = 0;
2686 }
2687
2688 /* Clears the status flags in inst_env. */
2689
2690 static void
2691 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2692 {
2693 /* It's an error if we have got a prefix. */
2694 if (inst_env->prefix_found)
2695 {
2696 inst_env->invalid = 1;
2697 return;
2698 }
2699
2700 inst_env->slot_needed = 0;
2701 inst_env->prefix_found = 0;
2702 inst_env->xflag_found = 0;
2703 inst_env->disable_interrupt = 0;
2704 }
2705
2706 /* Clears the status flags in inst_env. */
2707
2708 static void
2709 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2710 {
2711 /* It's an error if we have got a prefix. */
2712 if (inst_env->prefix_found)
2713 {
2714 inst_env->invalid = 1;
2715 return;
2716 }
2717
2718 inst_env->slot_needed = 0;
2719 inst_env->prefix_found = 0;
2720 inst_env->xflag_found = 0;
2721 inst_env->disable_interrupt = 1;
2722 }
2723
2724 /* Handles the CLEAR instruction if it's in register mode. */
2725
2726 static void
2727 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2728 {
2729 /* Check if the target is the PC. */
2730 if (cris_get_operand2 (inst) == REG_PC)
2731 {
2732 /* The instruction will clear the instruction's size bits. */
2733 int clear_size = cris_get_clear_size (inst);
2734 if (clear_size == INST_BYTE_SIZE)
2735 {
2736 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2737 }
2738 if (clear_size == INST_WORD_SIZE)
2739 {
2740 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2741 }
2742 if (clear_size == INST_DWORD_SIZE)
2743 {
2744 inst_env->delay_slot_pc = 0x0;
2745 }
2746 /* The jump will be delayed with one delay slot. So we need a delay
2747 slot. */
2748 inst_env->slot_needed = 1;
2749 inst_env->delay_slot_pc_active = 1;
2750 }
2751 else
2752 {
2753 /* The PC will not change => no delay slot. */
2754 inst_env->slot_needed = 0;
2755 }
2756 inst_env->prefix_found = 0;
2757 inst_env->xflag_found = 0;
2758 inst_env->disable_interrupt = 0;
2759 }
2760
2761 /* Handles the TEST instruction if it's in register mode. */
2762
2763 static void
2764 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2765 {
2766 /* It's an error if we have got a prefix. */
2767 if (inst_env->prefix_found)
2768 {
2769 inst_env->invalid = 1;
2770 return;
2771 }
2772 inst_env->slot_needed = 0;
2773 inst_env->prefix_found = 0;
2774 inst_env->xflag_found = 0;
2775 inst_env->disable_interrupt = 0;
2776
2777 }
2778
2779 /* Handles the CLEAR and TEST instruction if the instruction isn't
2780 in register mode. */
2781
2782 static void
2783 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2784 {
2785 /* Check if we are in a prefix mode. */
2786 if (inst_env->prefix_found)
2787 {
2788 /* The only way the PC can change is if this instruction is in
2789 assign addressing mode. */
2790 check_assign (inst, inst_env);
2791 }
2792 /* Indirect mode can't change the PC so just check if the mode is
2793 autoincrement. */
2794 else if (cris_get_mode (inst) == AUTOINC_MODE)
2795 {
2796 process_autoincrement (cris_get_size (inst), inst, inst_env);
2797 }
2798 inst_env->slot_needed = 0;
2799 inst_env->prefix_found = 0;
2800 inst_env->xflag_found = 0;
2801 inst_env->disable_interrupt = 0;
2802 }
2803
2804 /* Checks that the PC isn't the destination register or the instructions has
2805 a prefix. */
2806
2807 static void
2808 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2809 {
2810 /* It's invalid to have the PC as the destination. The instruction can't
2811 have a prefix. */
2812 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2813 {
2814 inst_env->invalid = 1;
2815 return;
2816 }
2817
2818 inst_env->slot_needed = 0;
2819 inst_env->prefix_found = 0;
2820 inst_env->xflag_found = 0;
2821 inst_env->disable_interrupt = 0;
2822 }
2823
2824 /* Checks that the instruction doesn't have a prefix. */
2825
2826 static void
2827 break_op (unsigned short inst, inst_env_type *inst_env)
2828 {
2829 /* The instruction can't have a prefix. */
2830 if (inst_env->prefix_found)
2831 {
2832 inst_env->invalid = 1;
2833 return;
2834 }
2835
2836 inst_env->slot_needed = 0;
2837 inst_env->prefix_found = 0;
2838 inst_env->xflag_found = 0;
2839 inst_env->disable_interrupt = 1;
2840 }
2841
2842 /* Checks that the PC isn't the destination register and that the instruction
2843 doesn't have a prefix. */
2844
2845 static void
2846 scc_op (unsigned short inst, inst_env_type *inst_env)
2847 {
2848 /* It's invalid to have the PC as the destination. The instruction can't
2849 have a prefix. */
2850 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2851 {
2852 inst_env->invalid = 1;
2853 return;
2854 }
2855
2856 inst_env->slot_needed = 0;
2857 inst_env->prefix_found = 0;
2858 inst_env->xflag_found = 0;
2859 inst_env->disable_interrupt = 1;
2860 }
2861
2862 /* Handles the register mode JUMP instruction. */
2863
2864 static void
2865 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2866 {
2867 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2868 you can't have a prefix. */
2869 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2870 {
2871 inst_env->invalid = 1;
2872 return;
2873 }
2874
2875 /* Just change the PC. */
2876 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2877 inst_env->slot_needed = 0;
2878 inst_env->prefix_found = 0;
2879 inst_env->xflag_found = 0;
2880 inst_env->disable_interrupt = 1;
2881 }
2882
2883 /* Handles the JUMP instruction for all modes except register. */
2884
2885 static void
2886 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2887 {
2888 unsigned long newpc;
2889 CORE_ADDR address;
2890
2891 /* It's invalid to do a JUMP in a delay slot. */
2892 if (inst_env->slot_needed)
2893 {
2894 inst_env->invalid = 1;
2895 }
2896 else
2897 {
2898 /* Check if we have a prefix. */
2899 if (inst_env->prefix_found)
2900 {
2901 check_assign (inst, inst_env);
2902
2903 /* Get the new value for the the PC. */
2904 newpc =
2905 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2906 4);
2907 }
2908 else
2909 {
2910 /* Get the new value for the PC. */
2911 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2912 newpc = read_memory_unsigned_integer (address, 4);
2913
2914 /* Check if we should increment a register. */
2915 if (cris_get_mode (inst) == AUTOINC_MODE)
2916 {
2917 inst_env->reg[cris_get_operand1 (inst)] += 4;
2918 }
2919 }
2920 inst_env->reg[REG_PC] = newpc;
2921 }
2922 inst_env->slot_needed = 0;
2923 inst_env->prefix_found = 0;
2924 inst_env->xflag_found = 0;
2925 inst_env->disable_interrupt = 1;
2926 }
2927
2928 /* Handles moves to special registers (aka P-register) for all modes. */
2929
2930 static void
2931 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2932 {
2933 if (inst_env->prefix_found)
2934 {
2935 /* The instruction has a prefix that means we are only interested if
2936 the instruction is in assign mode. */
2937 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2938 {
2939 /* The prefix handles the problem if we are in a delay slot. */
2940 if (cris_get_operand1 (inst) == REG_PC)
2941 {
2942 /* Just take care of the assign. */
2943 check_assign (inst, inst_env);
2944 }
2945 }
2946 }
2947 else if (cris_get_mode (inst) == AUTOINC_MODE)
2948 {
2949 /* The instruction doesn't have a prefix, the only case left that we
2950 are interested in is the autoincrement mode. */
2951 if (cris_get_operand1 (inst) == REG_PC)
2952 {
2953 /* If the PC is to be incremented it's invalid to be in a
2954 delay slot. */
2955 if (inst_env->slot_needed)
2956 {
2957 inst_env->invalid = 1;
2958 return;
2959 }
2960
2961 /* The increment depends on the size of the special register. */
2962 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2963 {
2964 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2965 }
2966 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2967 {
2968 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2969 }
2970 else
2971 {
2972 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2973 }
2974 }
2975 }
2976 inst_env->slot_needed = 0;
2977 inst_env->prefix_found = 0;
2978 inst_env->xflag_found = 0;
2979 inst_env->disable_interrupt = 1;
2980 }
2981
2982 /* Handles moves from special registers (aka P-register) for all modes
2983 except register. */
2984
2985 static void
2986 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2987 {
2988 if (inst_env->prefix_found)
2989 {
2990 /* The instruction has a prefix that means we are only interested if
2991 the instruction is in assign mode. */
2992 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2993 {
2994 /* The prefix handles the problem if we are in a delay slot. */
2995 if (cris_get_operand1 (inst) == REG_PC)
2996 {
2997 /* Just take care of the assign. */
2998 check_assign (inst, inst_env);
2999 }
3000 }
3001 }
3002 /* The instruction doesn't have a prefix, the only case left that we
3003 are interested in is the autoincrement mode. */
3004 else if (cris_get_mode (inst) == AUTOINC_MODE)
3005 {
3006 if (cris_get_operand1 (inst) == REG_PC)
3007 {
3008 /* If the PC is to be incremented it's invalid to be in a
3009 delay slot. */
3010 if (inst_env->slot_needed)
3011 {
3012 inst_env->invalid = 1;
3013 return;
3014 }
3015
3016 /* The increment depends on the size of the special register. */
3017 if (cris_register_size (cris_get_operand2 (inst)) == 1)
3018 {
3019 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3020 }
3021 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
3022 {
3023 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3024 }
3025 else
3026 {
3027 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3028 }
3029 }
3030 }
3031 inst_env->slot_needed = 0;
3032 inst_env->prefix_found = 0;
3033 inst_env->xflag_found = 0;
3034 inst_env->disable_interrupt = 1;
3035 }
3036
3037 /* Handles moves from special registers (aka P-register) when the mode
3038 is register. */
3039
3040 static void
3041 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3042 {
3043 /* Register mode move from special register can't have a prefix. */
3044 if (inst_env->prefix_found)
3045 {
3046 inst_env->invalid = 1;
3047 return;
3048 }
3049
3050 if (cris_get_operand1 (inst) == REG_PC)
3051 {
3052 /* It's invalid to change the PC in a delay slot. */
3053 if (inst_env->slot_needed)
3054 {
3055 inst_env->invalid = 1;
3056 return;
3057 }
3058 /* The destination is the PC, the jump will have a delay slot. */
3059 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3060 inst_env->slot_needed = 1;
3061 inst_env->delay_slot_pc_active = 1;
3062 }
3063 else
3064 {
3065 /* If the destination isn't PC, there will be no jump. */
3066 inst_env->slot_needed = 0;
3067 }
3068 inst_env->prefix_found = 0;
3069 inst_env->xflag_found = 0;
3070 inst_env->disable_interrupt = 1;
3071 }
3072
3073 /* Handles the MOVEM from memory to general register instruction. */
3074
3075 static void
3076 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3077 {
3078 if (inst_env->prefix_found)
3079 {
3080 /* The prefix handles the problem if we are in a delay slot. Is the
3081 MOVEM instruction going to change the PC? */
3082 if (cris_get_operand2 (inst) >= REG_PC)
3083 {
3084 inst_env->reg[REG_PC] =
3085 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3086 }
3087 /* The assign value is the value after the increment. Normally, the
3088 assign value is the value before the increment. */
3089 if ((cris_get_operand1 (inst) == REG_PC)
3090 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3091 {
3092 inst_env->reg[REG_PC] = inst_env->prefix_value;
3093 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3094 }
3095 }
3096 else
3097 {
3098 /* Is the MOVEM instruction going to change the PC? */
3099 if (cris_get_operand2 (inst) == REG_PC)
3100 {
3101 /* It's invalid to change the PC in a delay slot. */
3102 if (inst_env->slot_needed)
3103 {
3104 inst_env->invalid = 1;
3105 return;
3106 }
3107 inst_env->reg[REG_PC] =
3108 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3109 4);
3110 }
3111 /* The increment is not depending on the size, instead it's depending
3112 on the number of registers loaded from memory. */
3113 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3114 {
3115 /* It's invalid to change the PC in a delay slot. */
3116 if (inst_env->slot_needed)
3117 {
3118 inst_env->invalid = 1;
3119 return;
3120 }
3121 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3122 }
3123 }
3124 inst_env->slot_needed = 0;
3125 inst_env->prefix_found = 0;
3126 inst_env->xflag_found = 0;
3127 inst_env->disable_interrupt = 0;
3128 }
3129
3130 /* Handles the MOVEM to memory from general register instruction. */
3131
3132 static void
3133 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3134 {
3135 if (inst_env->prefix_found)
3136 {
3137 /* The assign value is the value after the increment. Normally, the
3138 assign value is the value before the increment. */
3139 if ((cris_get_operand1 (inst) == REG_PC) &&
3140 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3141 {
3142 /* The prefix handles the problem if we are in a delay slot. */
3143 inst_env->reg[REG_PC] = inst_env->prefix_value;
3144 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3145 }
3146 }
3147 else
3148 {
3149 /* The increment is not depending on the size, instead it's depending
3150 on the number of registers loaded to memory. */
3151 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3152 {
3153 /* It's invalid to change the PC in a delay slot. */
3154 if (inst_env->slot_needed)
3155 {
3156 inst_env->invalid = 1;
3157 return;
3158 }
3159 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3160 }
3161 }
3162 inst_env->slot_needed = 0;
3163 inst_env->prefix_found = 0;
3164 inst_env->xflag_found = 0;
3165 inst_env->disable_interrupt = 0;
3166 }
3167
3168 /* Handles the intructions that's not yet implemented, by setting
3169 inst_env->invalid to true. */
3170
3171 static void
3172 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3173 {
3174 inst_env->invalid = 1;
3175 }
3176
3177 /* Handles the XOR instruction. */
3178
3179 static void
3180 xor_op (unsigned short inst, inst_env_type *inst_env)
3181 {
3182 /* XOR can't have a prefix. */
3183 if (inst_env->prefix_found)
3184 {
3185 inst_env->invalid = 1;
3186 return;
3187 }
3188
3189 /* Check if the PC is the target. */
3190 if (cris_get_operand2 (inst) == REG_PC)
3191 {
3192 /* It's invalid to change the PC in a delay slot. */
3193 if (inst_env->slot_needed)
3194 {
3195 inst_env->invalid = 1;
3196 return;
3197 }
3198 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3199 }
3200 inst_env->slot_needed = 0;
3201 inst_env->prefix_found = 0;
3202 inst_env->xflag_found = 0;
3203 inst_env->disable_interrupt = 0;
3204 }
3205
3206 /* Handles the MULS instruction. */
3207
3208 static void
3209 muls_op (unsigned short inst, inst_env_type *inst_env)
3210 {
3211 /* MULS/U can't have a prefix. */
3212 if (inst_env->prefix_found)
3213 {
3214 inst_env->invalid = 1;
3215 return;
3216 }
3217
3218 /* Consider it invalid if the PC is the target. */
3219 if (cris_get_operand2 (inst) == REG_PC)
3220 {
3221 inst_env->invalid = 1;
3222 return;
3223 }
3224 inst_env->slot_needed = 0;
3225 inst_env->prefix_found = 0;
3226 inst_env->xflag_found = 0;
3227 inst_env->disable_interrupt = 0;
3228 }
3229
3230 /* Handles the MULU instruction. */
3231
3232 static void
3233 mulu_op (unsigned short inst, inst_env_type *inst_env)
3234 {
3235 /* MULS/U can't have a prefix. */
3236 if (inst_env->prefix_found)
3237 {
3238 inst_env->invalid = 1;
3239 return;
3240 }
3241
3242 /* Consider it invalid if the PC is the target. */
3243 if (cris_get_operand2 (inst) == REG_PC)
3244 {
3245 inst_env->invalid = 1;
3246 return;
3247 }
3248 inst_env->slot_needed = 0;
3249 inst_env->prefix_found = 0;
3250 inst_env->xflag_found = 0;
3251 inst_env->disable_interrupt = 0;
3252 }
3253
3254 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3255 The MOVE instruction is the move from source to register. */
3256
3257 static void
3258 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3259 unsigned long source1, unsigned long source2)
3260 {
3261 unsigned long pc_mask;
3262 unsigned long operation_mask;
3263
3264 /* Find out how many bits the operation should apply to. */
3265 if (cris_get_size (inst) == INST_BYTE_SIZE)
3266 {
3267 pc_mask = 0xFFFFFF00;
3268 operation_mask = 0xFF;
3269 }
3270 else if (cris_get_size (inst) == INST_WORD_SIZE)
3271 {
3272 pc_mask = 0xFFFF0000;
3273 operation_mask = 0xFFFF;
3274 }
3275 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3276 {
3277 pc_mask = 0x0;
3278 operation_mask = 0xFFFFFFFF;
3279 }
3280 else
3281 {
3282 /* The size is out of range. */
3283 inst_env->invalid = 1;
3284 return;
3285 }
3286
3287 /* The instruction just works on uw_operation_mask bits. */
3288 source2 &= operation_mask;
3289 source1 &= operation_mask;
3290
3291 /* Now calculate the result. The opcode's 3 first bits separates
3292 the different actions. */
3293 switch (cris_get_opcode (inst) & 7)
3294 {
3295 case 0: /* add */
3296 source1 += source2;
3297 break;
3298
3299 case 1: /* move */
3300 source1 = source2;
3301 break;
3302
3303 case 2: /* subtract */
3304 source1 -= source2;
3305 break;
3306
3307 case 3: /* compare */
3308 break;
3309
3310 case 4: /* and */
3311 source1 &= source2;
3312 break;
3313
3314 case 5: /* or */
3315 source1 |= source2;
3316 break;
3317
3318 default:
3319 inst_env->invalid = 1;
3320 return;
3321
3322 break;
3323 }
3324
3325 /* Make sure that the result doesn't contain more than the instruction
3326 size bits. */
3327 source2 &= operation_mask;
3328
3329 /* Calculate the new breakpoint address. */
3330 inst_env->reg[REG_PC] &= pc_mask;
3331 inst_env->reg[REG_PC] |= source1;
3332
3333 }
3334
3335 /* Extends the value from either byte or word size to a dword. If the mode
3336 is zero extend then the value is extended with zero. If instead the mode
3337 is signed extend the sign bit of the value is taken into consideration. */
3338
3339 static unsigned long
3340 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3341 {
3342 /* The size can be either byte or word, check which one it is.
3343 Don't check the highest bit, it's indicating if it's a zero
3344 or sign extend. */
3345 if (cris_get_size (*inst) & INST_WORD_SIZE)
3346 {
3347 /* Word size. */
3348 value &= 0xFFFF;
3349
3350 /* Check if the instruction is signed extend. If so, check if value has
3351 the sign bit on. */
3352 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3353 {
3354 value |= SIGNED_WORD_EXTEND_MASK;
3355 }
3356 }
3357 else
3358 {
3359 /* Byte size. */
3360 value &= 0xFF;
3361
3362 /* Check if the instruction is signed extend. If so, check if value has
3363 the sign bit on. */
3364 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3365 {
3366 value |= SIGNED_BYTE_EXTEND_MASK;
3367 }
3368 }
3369 /* The size should now be dword. */
3370 cris_set_size_to_dword (inst);
3371 return value;
3372 }
3373
3374 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3375 instruction. The MOVE instruction is the move from source to register. */
3376
3377 static void
3378 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3379 inst_env_type *inst_env)
3380 {
3381 unsigned long operand1;
3382 unsigned long operand2;
3383
3384 /* It's invalid to have a prefix to the instruction. This is a register
3385 mode instruction and can't have a prefix. */
3386 if (inst_env->prefix_found)
3387 {
3388 inst_env->invalid = 1;
3389 return;
3390 }
3391 /* Check if the instruction has PC as its target. */
3392 if (cris_get_operand2 (inst) == REG_PC)
3393 {
3394 if (inst_env->slot_needed)
3395 {
3396 inst_env->invalid = 1;
3397 return;
3398 }
3399 /* The instruction has the PC as its target register. */
3400 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3401 operand2 = inst_env->reg[REG_PC];
3402
3403 /* Check if it's a extend, signed or zero instruction. */
3404 if (cris_get_opcode (inst) < 4)
3405 {
3406 operand1 = do_sign_or_zero_extend (operand1, &inst);
3407 }
3408 /* Calculate the PC value after the instruction, i.e. where the
3409 breakpoint should be. The order of the udw_operands is vital. */
3410 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3411 }
3412 inst_env->slot_needed = 0;
3413 inst_env->prefix_found = 0;
3414 inst_env->xflag_found = 0;
3415 inst_env->disable_interrupt = 0;
3416 }
3417
3418 /* Returns the data contained at address. The size of the data is derived from
3419 the size of the operation. If the instruction is a zero or signed
3420 extend instruction, the size field is changed in instruction. */
3421
3422 static unsigned long
3423 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3424 {
3425 int size = cris_get_size (*inst);
3426 unsigned long value;
3427
3428 /* If it's an extend instruction we don't want the signed extend bit,
3429 because it influences the size. */
3430 if (cris_get_opcode (*inst) < 4)
3431 {
3432 size &= ~SIGNED_EXTEND_BIT_MASK;
3433 }
3434 /* Is there a need for checking the size? Size should contain the number of
3435 bytes to read. */
3436 size = 1 << size;
3437 value = read_memory_unsigned_integer (address, size);
3438
3439 /* Check if it's an extend, signed or zero instruction. */
3440 if (cris_get_opcode (*inst) < 4)
3441 {
3442 value = do_sign_or_zero_extend (value, inst);
3443 }
3444 return value;
3445 }
3446
3447 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3448 instructions. The MOVE instruction is the move from source to register. */
3449
3450 static void
3451 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3452 inst_env_type *inst_env)
3453 {
3454 unsigned long operand2;
3455 unsigned long operand3;
3456
3457 check_assign (inst, inst_env);
3458 if (cris_get_operand2 (inst) == REG_PC)
3459 {
3460 operand2 = inst_env->reg[REG_PC];
3461
3462 /* Get the value of the third operand. */
3463 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3464
3465 /* Calculate the PC value after the instruction, i.e. where the
3466 breakpoint should be. The order of the udw_operands is vital. */
3467 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3468 }
3469 inst_env->slot_needed = 0;
3470 inst_env->prefix_found = 0;
3471 inst_env->xflag_found = 0;
3472 inst_env->disable_interrupt = 0;
3473 }
3474
3475 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3476 OR instructions. Note that for this to work as expected, the calling
3477 function must have made sure that there is a prefix to this instruction. */
3478
3479 static void
3480 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3481 inst_env_type *inst_env)
3482 {
3483 unsigned long operand2;
3484 unsigned long operand3;
3485
3486 if (cris_get_operand1 (inst) == REG_PC)
3487 {
3488 /* The PC will be changed by the instruction. */
3489 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3490
3491 /* Get the value of the third operand. */
3492 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3493
3494 /* Calculate the PC value after the instruction, i.e. where the
3495 breakpoint should be. */
3496 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3497 }
3498 inst_env->slot_needed = 0;
3499 inst_env->prefix_found = 0;
3500 inst_env->xflag_found = 0;
3501 inst_env->disable_interrupt = 0;
3502 }
3503
3504 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3505 instructions. The MOVE instruction is the move from source to register. */
3506
3507 static void
3508 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3509 inst_env_type *inst_env)
3510 {
3511 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3512 {
3513 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3514 SUB, AND or OR something weird is going on (if everything works these
3515 instructions should end up in the three operand version). */
3516 inst_env->invalid = 1;
3517 return;
3518 }
3519 else
3520 {
3521 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3522 so use it. */
3523 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3524 }
3525 inst_env->slot_needed = 0;
3526 inst_env->prefix_found = 0;
3527 inst_env->xflag_found = 0;
3528 inst_env->disable_interrupt = 0;
3529 }
3530
3531 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3532 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3533 source to register. */
3534
3535 static void
3536 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3537 inst_env_type *inst_env)
3538 {
3539 unsigned long operand1;
3540 unsigned long operand2;
3541 unsigned long operand3;
3542 int size;
3543
3544 /* The instruction is either an indirect or autoincrement addressing mode.
3545 Check if the destination register is the PC. */
3546 if (cris_get_operand2 (inst) == REG_PC)
3547 {
3548 /* Must be done here, get_data_from_address may change the size
3549 field. */
3550 size = cris_get_size (inst);
3551 operand2 = inst_env->reg[REG_PC];
3552
3553 /* Get the value of the third operand, i.e. the indirect operand. */
3554 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3555 operand3 = get_data_from_address (&inst, operand1);
3556
3557 /* Calculate the PC value after the instruction, i.e. where the
3558 breakpoint should be. The order of the udw_operands is vital. */
3559 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3560 }
3561 /* If this is an autoincrement addressing mode, check if the increment
3562 changes the PC. */
3563 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3564 {
3565 /* Get the size field. */
3566 size = cris_get_size (inst);
3567
3568 /* If it's an extend instruction we don't want the signed extend bit,
3569 because it influences the size. */
3570 if (cris_get_opcode (inst) < 4)
3571 {
3572 size &= ~SIGNED_EXTEND_BIT_MASK;
3573 }
3574 process_autoincrement (size, inst, inst_env);
3575 }
3576 inst_env->slot_needed = 0;
3577 inst_env->prefix_found = 0;
3578 inst_env->xflag_found = 0;
3579 inst_env->disable_interrupt = 0;
3580 }
3581
3582 /* Handles the two-operand addressing mode, all modes except register, for
3583 the ADD, SUB CMP, AND and OR instruction. */
3584
3585 static void
3586 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3587 inst_env_type *inst_env)
3588 {
3589 if (inst_env->prefix_found)
3590 {
3591 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3592 {
3593 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3594 }
3595 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3596 {
3597 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3598 }
3599 else
3600 {
3601 /* The mode is invalid for a prefixed base instruction. */
3602 inst_env->invalid = 1;
3603 return;
3604 }
3605 }
3606 else
3607 {
3608 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3609 }
3610 }
3611
3612 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3613
3614 static void
3615 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3616 {
3617 unsigned long operand1;
3618 unsigned long operand2;
3619
3620 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3621 instruction and can't have a prefix. */
3622 if (inst_env->prefix_found)
3623 {
3624 inst_env->invalid = 1;
3625 return;
3626 }
3627
3628 /* Check if the instruction has PC as its target. */
3629 if (cris_get_operand2 (inst) == REG_PC)
3630 {
3631 if (inst_env->slot_needed)
3632 {
3633 inst_env->invalid = 1;
3634 return;
3635 }
3636 operand1 = cris_get_quick_value (inst);
3637 operand2 = inst_env->reg[REG_PC];
3638
3639 /* The size should now be dword. */
3640 cris_set_size_to_dword (&inst);
3641
3642 /* Calculate the PC value after the instruction, i.e. where the
3643 breakpoint should be. */
3644 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3645 }
3646 inst_env->slot_needed = 0;
3647 inst_env->prefix_found = 0;
3648 inst_env->xflag_found = 0;
3649 inst_env->disable_interrupt = 0;
3650 }
3651
3652 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3653
3654 static void
3655 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3656 {
3657 unsigned long operand1;
3658 unsigned long operand2;
3659
3660 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3661 instruction and can't have a prefix. */
3662 if (inst_env->prefix_found)
3663 {
3664 inst_env->invalid = 1;
3665 return;
3666 }
3667 /* Check if the instruction has PC as its target. */
3668 if (cris_get_operand2 (inst) == REG_PC)
3669 {
3670 if (inst_env->slot_needed)
3671 {
3672 inst_env->invalid = 1;
3673 return;
3674 }
3675 /* The instruction has the PC as its target register. */
3676 operand1 = cris_get_quick_value (inst);
3677 operand2 = inst_env->reg[REG_PC];
3678
3679 /* The quick value is signed, so check if we must do a signed extend. */
3680 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3681 {
3682 /* sign extend */
3683 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3684 }
3685 /* The size should now be dword. */
3686 cris_set_size_to_dword (&inst);
3687
3688 /* Calculate the PC value after the instruction, i.e. where the
3689 breakpoint should be. */
3690 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3691 }
3692 inst_env->slot_needed = 0;
3693 inst_env->prefix_found = 0;
3694 inst_env->xflag_found = 0;
3695 inst_env->disable_interrupt = 0;
3696 }
3697
3698 /* Translate op_type to a function and call it. */
3699
3700 static void
3701 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3702 inst_env_type *inst_env)
3703 {
3704 switch (op_type)
3705 {
3706 case cris_not_implemented_op:
3707 not_implemented_op (inst, inst_env);
3708 break;
3709
3710 case cris_abs_op:
3711 abs_op (inst, inst_env);
3712 break;
3713
3714 case cris_addi_op:
3715 addi_op (inst, inst_env);
3716 break;
3717
3718 case cris_asr_op:
3719 asr_op (inst, inst_env);
3720 break;
3721
3722 case cris_asrq_op:
3723 asrq_op (inst, inst_env);
3724 break;
3725
3726 case cris_ax_ei_setf_op:
3727 ax_ei_setf_op (inst, inst_env);
3728 break;
3729
3730 case cris_bdap_prefix:
3731 bdap_prefix (inst, inst_env);
3732 break;
3733
3734 case cris_biap_prefix:
3735 biap_prefix (inst, inst_env);
3736 break;
3737
3738 case cris_break_op:
3739 break_op (inst, inst_env);
3740 break;
3741
3742 case cris_btst_nop_op:
3743 btst_nop_op (inst, inst_env);
3744 break;
3745
3746 case cris_clearf_di_op:
3747 clearf_di_op (inst, inst_env);
3748 break;
3749
3750 case cris_dip_prefix:
3751 dip_prefix (inst, inst_env);
3752 break;
3753
3754 case cris_dstep_logshift_mstep_neg_not_op:
3755 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3756 break;
3757
3758 case cris_eight_bit_offset_branch_op:
3759 eight_bit_offset_branch_op (inst, inst_env);
3760 break;
3761
3762 case cris_move_mem_to_reg_movem_op:
3763 move_mem_to_reg_movem_op (inst, inst_env);
3764 break;
3765
3766 case cris_move_reg_to_mem_movem_op:
3767 move_reg_to_mem_movem_op (inst, inst_env);
3768 break;
3769
3770 case cris_move_to_preg_op:
3771 move_to_preg_op (inst, inst_env);
3772 break;
3773
3774 case cris_muls_op:
3775 muls_op (inst, inst_env);
3776 break;
3777
3778 case cris_mulu_op:
3779 mulu_op (inst, inst_env);
3780 break;
3781
3782 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3783 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3784 break;
3785
3786 case cris_none_reg_mode_clear_test_op:
3787 none_reg_mode_clear_test_op (inst, inst_env);
3788 break;
3789
3790 case cris_none_reg_mode_jump_op:
3791 none_reg_mode_jump_op (inst, inst_env);
3792 break;
3793
3794 case cris_none_reg_mode_move_from_preg_op:
3795 none_reg_mode_move_from_preg_op (inst, inst_env);
3796 break;
3797
3798 case cris_quick_mode_add_sub_op:
3799 quick_mode_add_sub_op (inst, inst_env);
3800 break;
3801
3802 case cris_quick_mode_and_cmp_move_or_op:
3803 quick_mode_and_cmp_move_or_op (inst, inst_env);
3804 break;
3805
3806 case cris_quick_mode_bdap_prefix:
3807 quick_mode_bdap_prefix (inst, inst_env);
3808 break;
3809
3810 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3811 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3812 break;
3813
3814 case cris_reg_mode_clear_op:
3815 reg_mode_clear_op (inst, inst_env);
3816 break;
3817
3818 case cris_reg_mode_jump_op:
3819 reg_mode_jump_op (inst, inst_env);
3820 break;
3821
3822 case cris_reg_mode_move_from_preg_op:
3823 reg_mode_move_from_preg_op (inst, inst_env);
3824 break;
3825
3826 case cris_reg_mode_test_op:
3827 reg_mode_test_op (inst, inst_env);
3828 break;
3829
3830 case cris_scc_op:
3831 scc_op (inst, inst_env);
3832 break;
3833
3834 case cris_sixteen_bit_offset_branch_op:
3835 sixteen_bit_offset_branch_op (inst, inst_env);
3836 break;
3837
3838 case cris_three_operand_add_sub_cmp_and_or_op:
3839 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3840 break;
3841
3842 case cris_three_operand_bound_op:
3843 three_operand_bound_op (inst, inst_env);
3844 break;
3845
3846 case cris_two_operand_bound_op:
3847 two_operand_bound_op (inst, inst_env);
3848 break;
3849
3850 case cris_xor_op:
3851 xor_op (inst, inst_env);
3852 break;
3853 }
3854 }
3855
3856 /* This wrapper is to avoid cris_get_assembler being called before
3857 exec_bfd has been set. */
3858
3859 static int
3860 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3861 {
3862 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3863 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3864 disassembler, even when there is no BFD. Does something like
3865 "gdb; target remote; disassmeble *0x123" work? */
3866 gdb_assert (exec_bfd != NULL);
3867 print_insn = cris_get_disassembler (exec_bfd);
3868 gdb_assert (print_insn != NULL);
3869 return print_insn (addr, info);
3870 }
3871
3872 /* Copied from <asm/elf.h>. */
3873 typedef unsigned long elf_greg_t;
3874
3875 /* Same as user_regs_struct struct in <asm/user.h>. */
3876 #define CRISV10_ELF_NGREG 35
3877 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3878
3879 #define CRISV32_ELF_NGREG 32
3880 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3881
3882 /* Unpack an elf_gregset_t into GDB's register cache. */
3883
3884 static void
3885 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3886 {
3887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3889 int i;
3890 elf_greg_t *regp = *gregsetp;
3891 static char zerobuf[4] = {0};
3892
3893 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3894 knows about the actual size of each register so that's no problem. */
3895 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3896 {
3897 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3898 }
3899
3900 if (tdep->cris_version == 32)
3901 {
3902 /* Needed to set pseudo-register PC for CRISv32. */
3903 /* FIXME: If ERP is in a delay slot at this point then the PC will
3904 be wrong. Issue a warning to alert the user. */
3905 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3906 (char *)&regp[ERP_REGNUM]);
3907
3908 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3909 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3910 }
3911 }
3912
3913 /* Use a local version of this function to get the correct types for
3914 regsets, until multi-arch core support is ready. */
3915
3916 static void
3917 fetch_core_registers (struct regcache *regcache,
3918 char *core_reg_sect, unsigned core_reg_size,
3919 int which, CORE_ADDR reg_addr)
3920 {
3921 elf_gregset_t gregset;
3922
3923 switch (which)
3924 {
3925 case 0:
3926 if (core_reg_size != sizeof (elf_gregset_t)
3927 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3928 {
3929 warning (_("wrong size gregset struct in core file"));
3930 }
3931 else
3932 {
3933 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3934 cris_supply_gregset (regcache, &gregset);
3935 }
3936
3937 default:
3938 /* We've covered all the kinds of registers we know about here,
3939 so this must be something we wouldn't know what to do with
3940 anyway. Just ignore it. */
3941 break;
3942 }
3943 }
3944
3945 static struct core_fns cris_elf_core_fns =
3946 {
3947 bfd_target_elf_flavour, /* core_flavour */
3948 default_check_format, /* check_format */
3949 default_core_sniffer, /* core_sniffer */
3950 fetch_core_registers, /* core_read_registers */
3951 NULL /* next */
3952 };
3953
3954 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3955
3956 void
3957 _initialize_cris_tdep (void)
3958 {
3959 static struct cmd_list_element *cris_set_cmdlist;
3960 static struct cmd_list_element *cris_show_cmdlist;
3961
3962 struct cmd_list_element *c;
3963
3964 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3965
3966 /* CRIS-specific user-commands. */
3967 add_setshow_uinteger_cmd ("cris-version", class_support,
3968 &usr_cmd_cris_version,
3969 _("Set the current CRIS version."),
3970 _("Show the current CRIS version."),
3971 _("\
3972 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3973 Defaults to 10. "),
3974 set_cris_version,
3975 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3976 &setlist, &showlist);
3977
3978 add_setshow_enum_cmd ("cris-mode", class_support,
3979 cris_modes, &usr_cmd_cris_mode,
3980 _("Set the current CRIS mode."),
3981 _("Show the current CRIS mode."),
3982 _("\
3983 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3984 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3985 set_cris_mode,
3986 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3987 &setlist, &showlist);
3988
3989 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3990 &usr_cmd_cris_dwarf2_cfi,
3991 _("Set the usage of Dwarf-2 CFI for CRIS."),
3992 _("Show the usage of Dwarf-2 CFI for CRIS."),
3993 _("Set this to \"off\" if using gcc-cris < R59."),
3994 set_cris_dwarf2_cfi,
3995 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3996 &setlist, &showlist);
3997
3998 deprecated_add_core_fns (&cris_elf_core_fns);
3999 }
4000
4001 /* Prints out all target specific values. */
4002
4003 static void
4004 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4005 {
4006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4007 if (tdep != NULL)
4008 {
4009 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4010 tdep->cris_version);
4011 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4012 tdep->cris_mode);
4013 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4014 tdep->cris_dwarf2_cfi);
4015 }
4016 }
4017
4018 static void
4019 set_cris_version (char *ignore_args, int from_tty,
4020 struct cmd_list_element *c)
4021 {
4022 struct gdbarch_info info;
4023
4024 usr_cmd_cris_version_valid = 1;
4025
4026 /* Update the current architecture, if needed. */
4027 gdbarch_info_init (&info);
4028 if (!gdbarch_update_p (info))
4029 internal_error (__FILE__, __LINE__,
4030 _("cris_gdbarch_update: failed to update architecture."));
4031 }
4032
4033 static void
4034 set_cris_mode (char *ignore_args, int from_tty,
4035 struct cmd_list_element *c)
4036 {
4037 struct gdbarch_info info;
4038
4039 /* Update the current architecture, if needed. */
4040 gdbarch_info_init (&info);
4041 if (!gdbarch_update_p (info))
4042 internal_error (__FILE__, __LINE__,
4043 "cris_gdbarch_update: failed to update architecture.");
4044 }
4045
4046 static void
4047 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4048 struct cmd_list_element *c)
4049 {
4050 struct gdbarch_info info;
4051
4052 /* Update the current architecture, if needed. */
4053 gdbarch_info_init (&info);
4054 if (!gdbarch_update_p (info))
4055 internal_error (__FILE__, __LINE__,
4056 _("cris_gdbarch_update: failed to update architecture."));
4057 }
4058
4059 static struct gdbarch *
4060 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4061 {
4062 struct gdbarch *gdbarch;
4063 struct gdbarch_tdep *tdep;
4064 int cris_version;
4065
4066 if (usr_cmd_cris_version_valid)
4067 {
4068 /* Trust the user's CRIS version setting. */
4069 cris_version = usr_cmd_cris_version;
4070 }
4071 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4072 {
4073 cris_version = 32;
4074 }
4075 else
4076 {
4077 /* Assume it's CRIS version 10. */
4078 cris_version = 10;
4079 }
4080
4081 /* Make the current settings visible to the user. */
4082 usr_cmd_cris_version = cris_version;
4083
4084 /* Find a candidate among the list of pre-declared architectures. */
4085 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4086 arches != NULL;
4087 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4088 {
4089 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4090 == usr_cmd_cris_version)
4091 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4092 == usr_cmd_cris_mode)
4093 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4094 == usr_cmd_cris_dwarf2_cfi))
4095 return arches->gdbarch;
4096 }
4097
4098 /* No matching architecture was found. Create a new one. */
4099 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4100 gdbarch = gdbarch_alloc (&info, tdep);
4101
4102 tdep->cris_version = usr_cmd_cris_version;
4103 tdep->cris_mode = usr_cmd_cris_mode;
4104 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4105
4106 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4107 switch (info.byte_order)
4108 {
4109 case BFD_ENDIAN_LITTLE:
4110 /* Ok. */
4111 break;
4112
4113 case BFD_ENDIAN_BIG:
4114 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4115 break;
4116
4117 default:
4118 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4119 }
4120
4121 set_gdbarch_return_value (gdbarch, cris_return_value);
4122
4123 set_gdbarch_sp_regnum (gdbarch, 14);
4124
4125 /* Length of ordinary registers used in push_word and a few other
4126 places. register_size() is the real way to know how big a
4127 register is. */
4128
4129 set_gdbarch_double_bit (gdbarch, 64);
4130 /* The default definition of a long double is 2 * gdbarch_double_bit,
4131 which means we have to set this explicitly. */
4132 set_gdbarch_long_double_bit (gdbarch, 64);
4133
4134 /* The total amount of space needed to store (in an array called registers)
4135 GDB's copy of the machine's register state. Note: We can not use
4136 cris_register_size at this point, since it relies on gdbarch
4137 being set. */
4138 switch (tdep->cris_version)
4139 {
4140 case 0:
4141 case 1:
4142 case 2:
4143 case 3:
4144 case 8:
4145 case 9:
4146 /* Old versions; not supported. */
4147 internal_error (__FILE__, __LINE__,
4148 _("cris_gdbarch_init: unsupported CRIS version"));
4149 break;
4150
4151 case 10:
4152 case 11:
4153 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4154 P7 (32 bits), and P15 (32 bits) have been implemented. */
4155 set_gdbarch_pc_regnum (gdbarch, 15);
4156 set_gdbarch_register_type (gdbarch, cris_register_type);
4157 /* There are 32 registers (some of which may not be implemented). */
4158 set_gdbarch_num_regs (gdbarch, 32);
4159 set_gdbarch_register_name (gdbarch, cris_register_name);
4160 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4161 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4162
4163 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4164 break;
4165
4166 case 32:
4167 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4168 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4169 and pseudo-register PC (32 bits). */
4170 set_gdbarch_pc_regnum (gdbarch, 32);
4171 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4172 /* 32 registers + pseudo-register PC + 16 support registers. */
4173 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4174 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4175
4176 set_gdbarch_cannot_store_register
4177 (gdbarch, crisv32_cannot_store_register);
4178 set_gdbarch_cannot_fetch_register
4179 (gdbarch, crisv32_cannot_fetch_register);
4180
4181 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4182
4183 set_gdbarch_single_step_through_delay
4184 (gdbarch, crisv32_single_step_through_delay);
4185
4186 break;
4187
4188 default:
4189 internal_error (__FILE__, __LINE__,
4190 _("cris_gdbarch_init: unknown CRIS version"));
4191 }
4192
4193 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4194 have the same ABI). */
4195 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4196 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4197 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4198 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4199
4200 /* The stack grows downward. */
4201 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4202
4203 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4204
4205 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4206 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4207 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4208
4209 if (tdep->cris_dwarf2_cfi == 1)
4210 {
4211 /* Hook in the Dwarf-2 frame sniffer. */
4212 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4213 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4214 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4215 }
4216
4217 if (tdep->cris_mode != cris_mode_guru)
4218 {
4219 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4220 }
4221
4222 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4223 frame_base_set_default (gdbarch, &cris_frame_base);
4224
4225 set_solib_svr4_fetch_link_map_offsets
4226 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4227
4228 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4229 disassembler, even when there is no BFD. Does something like
4230 "gdb; target remote; disassmeble *0x123" work? */
4231 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4232
4233 return gdbarch;
4234 }