]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dve3900-rom.c
Update/correct copyright notices.
[thirdparty/binutils-gdb.git] / gdb / dve3900-rom.c
1 /* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
3 Copyright 1997, 1998, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "monitor.h"
26 #include "serial.h"
27 #include "inferior.h"
28 #include "command.h"
29 #include "gdb_string.h"
30 #include <time.h>
31 #include "regcache.h"
32
33 /* Type of function passed to bfd_map_over_sections. */
34
35 typedef void (*section_map_func) (bfd * abfd, asection * sect, PTR obj);
36
37 /* Packet escape character used by Densan monitor. */
38
39 #define PESC 0xdc
40
41 /* Maximum packet size. This is actually smaller than necessary
42 just to be safe. */
43
44 #define MAXPSIZE 1024
45
46 /* External functions. */
47
48 extern void report_transfer_performance (unsigned long, time_t, time_t);
49
50 /* Certain registers are "bitmapped", in that the monitor can only display
51 them or let the user modify them as a series of named bitfields.
52 This structure describes a field in a bitmapped register. */
53
54 struct bit_field
55 {
56 char *prefix; /* string appearing before the value */
57 char *suffix; /* string appearing after the value */
58 char *user_name; /* name used by human when entering field value */
59 int length; /* number of bits in the field */
60 int start; /* starting (least significant) bit number of field */
61 };
62
63 /* Local functions for register manipulation. */
64
65 static void r3900_supply_register (char *regname, int regnamelen,
66 char *val, int vallen);
67 static void fetch_bad_vaddr (void);
68 static unsigned long fetch_fields (struct bit_field *bf);
69 static void fetch_bitmapped_register (int regno, struct bit_field *bf);
70 static void r3900_fetch_registers (int regno);
71 static void store_bitmapped_register (int regno, struct bit_field *bf);
72 static void r3900_store_registers (int regno);
73
74 /* Local functions for fast binary loading. */
75
76 static void write_long (char *buf, long n);
77 static void write_long_le (char *buf, long n);
78 static int debug_readchar (int hex);
79 static void debug_write (unsigned char *buf, int buflen);
80 static void ignore_packet (void);
81 static void send_packet (char type, unsigned char *buf, int buflen, int seq);
82 static void process_read_request (unsigned char *buf, int buflen);
83 static void count_section (bfd * abfd, asection * s,
84 unsigned int *section_count);
85 static void load_section (bfd * abfd, asection * s, unsigned int *data_count);
86 static void r3900_load (char *filename, int from_tty);
87
88 /* Miscellaneous local functions. */
89
90 static void r3900_open (char *args, int from_tty);
91
92
93 /* Pointers to static functions in monitor.c for fetching and storing
94 registers. We can't use these function in certain cases where the Densan
95 monitor acts perversely: for registers that it displays in bit-map
96 format, and those that can't be modified at all. In those cases
97 we have to use our own functions to fetch and store their values. */
98
99 static void (*orig_monitor_fetch_registers) (int regno);
100 static void (*orig_monitor_store_registers) (int regno);
101
102 /* Pointer to static function in monitor. for loading programs.
103 We use this function for loading S-records via the serial link. */
104
105 static void (*orig_monitor_load) (char *file, int from_tty);
106
107 /* This flag is set if a fast ethernet download should be used. */
108
109 static int ethernet = 0;
110
111 /* This array of registers needs to match the indexes used by GDB. The
112 whole reason this exists is because the various ROM monitors use
113 different names than GDB does, and don't support all the registers
114 either. */
115
116 static char *r3900_regnames[NUM_REGS] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122
123 "S", /* PS_REGNUM */
124 "l", /* LO_REGNUM */
125 "h", /* HI_REGNUM */
126 "B", /* BADVADDR_REGNUM */
127 "Pcause", /* CAUSE_REGNUM */
128 "p" /* PC_REGNUM */
129 };
130
131
132 /* Table of register names produced by monitor's register dump command. */
133
134 static struct reg_entry
135 {
136 char *name;
137 int regno;
138 }
139 reg_table[] =
140 {
141 {
142 "r0_zero", 0
143 }
144 ,
145 {
146 "r1_at", 1
147 }
148 ,
149 {
150 "r2_v0", 2
151 }
152 ,
153 {
154 "r3_v1", 3
155 }
156 ,
157 {
158 "r4_a0", 4
159 }
160 ,
161 {
162 "r5_a1", 5
163 }
164 ,
165 {
166 "r6_a2", 6
167 }
168 ,
169 {
170 "r7_a3", 7
171 }
172 ,
173 {
174 "r8_t0", 8
175 }
176 ,
177 {
178 "r9_t1", 9
179 }
180 ,
181 {
182 "r10_t2", 10
183 }
184 ,
185 {
186 "r11_t3", 11
187 }
188 ,
189 {
190 "r12_t4", 12
191 }
192 ,
193 {
194 "r13_t5", 13
195 }
196 ,
197 {
198 "r14_t6", 14
199 }
200 ,
201 {
202 "r15_t7", 15
203 }
204 ,
205 {
206 "r16_s0", 16
207 }
208 ,
209 {
210 "r17_s1", 17
211 }
212 ,
213 {
214 "r18_s2", 18
215 }
216 ,
217 {
218 "r19_s3", 19
219 }
220 ,
221 {
222 "r20_s4", 20
223 }
224 ,
225 {
226 "r21_s5", 21
227 }
228 ,
229 {
230 "r22_s6", 22
231 }
232 ,
233 {
234 "r23_s7", 23
235 }
236 ,
237 {
238 "r24_t8", 24
239 }
240 ,
241 {
242 "r25_t9", 25
243 }
244 ,
245 {
246 "r26_k0", 26
247 }
248 ,
249 {
250 "r27_k1", 27
251 }
252 ,
253 {
254 "r28_gp", 28
255 }
256 ,
257 {
258 "r29_sp", 29
259 }
260 ,
261 {
262 "r30_fp", 30
263 }
264 ,
265 {
266 "r31_ra", 31
267 }
268 ,
269 {
270 "HI", HI_REGNUM
271 }
272 ,
273 {
274 "LO", LO_REGNUM
275 }
276 ,
277 {
278 "PC", PC_REGNUM
279 }
280 ,
281 {
282 "BadV", BADVADDR_REGNUM
283 }
284 ,
285 {
286 NULL, 0
287 }
288 };
289
290
291 /* The monitor displays the cache register along with the status register,
292 as if they were a single register. So when we want to fetch the
293 status register, parse but otherwise ignore the fields of the
294 cache register that the monitor displays. Register fields that should
295 be ignored have a length of zero in the tables below. */
296
297 static struct bit_field status_fields[] =
298 {
299 /* Status register portion */
300 {"SR[<CU=", " ", "cu", 4, 28},
301 {"RE=", " ", "re", 1, 25},
302 {"BEV=", " ", "bev", 1, 22},
303 {"TS=", " ", "ts", 1, 21},
304 {"Nmi=", " ", "nmi", 1, 20},
305 {"INT=", " ", "int", 6, 10},
306 {"SW=", ">]", "sw", 2, 8},
307 {"[<KUO=", " ", "kuo", 1, 5},
308 {"IEO=", " ", "ieo", 1, 4},
309 {"KUP=", " ", "kup", 1, 3},
310 {"IEP=", " ", "iep", 1, 2},
311 {"KUC=", " ", "kuc", 1, 1},
312 {"IEC=", ">]", "iec", 1, 0},
313
314 /* Cache register portion (dummy for parsing only) */
315 {"CR[<IalO=", " ", "ialo", 0, 13},
316 {"DalO=", " ", "dalo", 0, 12},
317 {"IalP=", " ", "ialp", 0, 11},
318 {"DalP=", " ", "dalp", 0, 10},
319 {"IalC=", " ", "ialc", 0, 9},
320 {"DalC=", ">] ", "dalc", 0, 8},
321
322 {NULL, NULL, 0, 0} /* end of table marker */
323 };
324
325
326 #if 0 /* FIXME: Enable when we add support for modifying cache register. */
327 static struct bit_field cache_fields[] =
328 {
329 /* Status register portion (dummy for parsing only) */
330 {"SR[<CU=", " ", "cu", 0, 28},
331 {"RE=", " ", "re", 0, 25},
332 {"BEV=", " ", "bev", 0, 22},
333 {"TS=", " ", "ts", 0, 21},
334 {"Nmi=", " ", "nmi", 0, 20},
335 {"INT=", " ", "int", 0, 10},
336 {"SW=", ">]", "sw", 0, 8},
337 {"[<KUO=", " ", "kuo", 0, 5},
338 {"IEO=", " ", "ieo", 0, 4},
339 {"KUP=", " ", "kup", 0, 3},
340 {"IEP=", " ", "iep", 0, 2},
341 {"KUC=", " ", "kuc", 0, 1},
342 {"IEC=", ">]", "iec", 0, 0},
343
344 /* Cache register portion */
345 {"CR[<IalO=", " ", "ialo", 1, 13},
346 {"DalO=", " ", "dalo", 1, 12},
347 {"IalP=", " ", "ialp", 1, 11},
348 {"DalP=", " ", "dalp", 1, 10},
349 {"IalC=", " ", "ialc", 1, 9},
350 {"DalC=", ">] ", "dalc", 1, 8},
351
352 {NULL, NULL, NULL, 0, 0} /* end of table marker */
353 };
354 #endif
355
356
357 static struct bit_field cause_fields[] =
358 {
359 {"<BD=", " ", "bd", 1, 31},
360 {"CE=", " ", "ce", 2, 28},
361 {"IP=", " ", "ip", 6, 10},
362 {"SW=", " ", "sw", 2, 8},
363 {"EC=", ">]", "ec", 5, 2},
364
365 {NULL, NULL, NULL, 0, 0} /* end of table marker */
366 };
367
368
369 /* The monitor prints register values in the form
370
371 regname = xxxx xxxx
372
373 We look up the register name in a table, and remove the embedded space in
374 the hex value before passing it to monitor_supply_register. */
375
376 static void
377 r3900_supply_register (char *regname, int regnamelen, char *val, int vallen)
378 {
379 int regno = -1;
380 int i;
381 char valbuf[10];
382 char *p;
383
384 /* Perform some sanity checks on the register name and value. */
385 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
386 return;
387
388 /* Look up the register name. */
389 for (i = 0; reg_table[i].name != NULL; i++)
390 {
391 int rlen = strlen (reg_table[i].name);
392 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
393 {
394 regno = reg_table[i].regno;
395 break;
396 }
397 }
398 if (regno == -1)
399 return;
400
401 /* Copy the hex value to a buffer and eliminate the embedded space. */
402 for (i = 0, p = valbuf; i < vallen; i++)
403 if (val[i] != ' ')
404 *p++ = val[i];
405 *p = '\0';
406
407 monitor_supply_register (regno, valbuf);
408 }
409
410
411 /* Fetch the BadVaddr register. Unlike the other registers, this
412 one can't be modified, and the monitor won't even prompt to let
413 you modify it. */
414
415 static void
416 fetch_bad_vaddr (void)
417 {
418 char buf[20];
419
420 monitor_printf ("xB\r");
421 monitor_expect ("BadV=", NULL, 0);
422 monitor_expect_prompt (buf, sizeof (buf));
423 monitor_supply_register (BADVADDR_REGNUM, buf);
424 }
425
426
427 /* Read a series of bit fields from the monitor, and return their
428 combined binary value. */
429
430 static unsigned long
431 fetch_fields (struct bit_field *bf)
432 {
433 char buf[20];
434 unsigned long val = 0;
435 unsigned long bits;
436
437 for (; bf->prefix != NULL; bf++)
438 {
439 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
440 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
441 if (bf->length != 0)
442 {
443 bits = strtoul (buf, NULL, 16); /* get field value */
444 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
445 val |= bits << bf->start; /* insert into register */
446 }
447
448 }
449
450 return val;
451 }
452
453
454 static void
455 fetch_bitmapped_register (int regno, struct bit_field *bf)
456 {
457 unsigned long val;
458 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
459
460 monitor_printf ("x%s\r", r3900_regnames[regno]);
461 val = fetch_fields (bf);
462 monitor_printf (".\r");
463 monitor_expect_prompt (NULL, 0);
464
465 /* supply register stores in target byte order, so swap here */
466
467 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
468 supply_register (regno, regbuf);
469
470 }
471
472
473 /* Fetch all registers (if regno is -1), or one register from the
474 monitor. For most registers, we can use the generic monitor_
475 monitor_fetch_registers function. But others are displayed in
476 a very unusual fashion by the monitor, and must be handled specially. */
477
478 static void
479 r3900_fetch_registers (int regno)
480 {
481 switch (regno)
482 {
483 case BADVADDR_REGNUM:
484 fetch_bad_vaddr ();
485 return;
486 case PS_REGNUM:
487 fetch_bitmapped_register (PS_REGNUM, status_fields);
488 return;
489 case CAUSE_REGNUM:
490 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
491 return;
492 default:
493 orig_monitor_fetch_registers (regno);
494 }
495 }
496
497
498 /* Write the new value of the bitmapped register to the monitor. */
499
500 static void
501 store_bitmapped_register (int regno, struct bit_field *bf)
502 {
503 unsigned long oldval, newval;
504
505 /* Fetch the current value of the register. */
506 monitor_printf ("x%s\r", r3900_regnames[regno]);
507 oldval = fetch_fields (bf);
508 newval = read_register (regno);
509
510 /* To save time, write just the fields that have changed. */
511 for (; bf->prefix != NULL; bf++)
512 {
513 if (bf->length != 0)
514 {
515 unsigned long oldbits, newbits, mask;
516
517 mask = (1 << bf->length) - 1;
518 oldbits = (oldval >> bf->start) & mask;
519 newbits = (newval >> bf->start) & mask;
520 if (oldbits != newbits)
521 monitor_printf ("%s %lx ", bf->user_name, newbits);
522 }
523 }
524
525 monitor_printf (".\r");
526 monitor_expect_prompt (NULL, 0);
527 }
528
529
530 static void
531 r3900_store_registers (int regno)
532 {
533 switch (regno)
534 {
535 case PS_REGNUM:
536 store_bitmapped_register (PS_REGNUM, status_fields);
537 return;
538 case CAUSE_REGNUM:
539 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
540 return;
541 default:
542 orig_monitor_store_registers (regno);
543 }
544 }
545
546
547 /* Write a 4-byte integer to the buffer in big-endian order. */
548
549 static void
550 write_long (char *buf, long n)
551 {
552 buf[0] = (n >> 24) & 0xff;
553 buf[1] = (n >> 16) & 0xff;
554 buf[2] = (n >> 8) & 0xff;
555 buf[3] = n & 0xff;
556 }
557
558
559 /* Write a 4-byte integer to the buffer in little-endian order. */
560
561 static void
562 write_long_le (char *buf, long n)
563 {
564 buf[0] = n & 0xff;
565 buf[1] = (n >> 8) & 0xff;
566 buf[2] = (n >> 16) & 0xff;
567 buf[3] = (n >> 24) & 0xff;
568 }
569
570
571 /* Read a character from the monitor. If remote debugging is on,
572 print the received character. If HEX is non-zero, print the
573 character in hexadecimal; otherwise, print it in ASCII. */
574
575 static int
576 debug_readchar (int hex)
577 {
578 char buf[10];
579 int c = monitor_readchar ();
580
581 if (remote_debug > 0)
582 {
583 if (hex)
584 sprintf (buf, "[%02x]", c & 0xff);
585 else if (c == '\0')
586 strcpy (buf, "\\0");
587 else
588 {
589 buf[0] = c;
590 buf[1] = '\0';
591 }
592 puts_debug ("Read -->", buf, "<--");
593 }
594 return c;
595 }
596
597
598 /* Send a buffer of characters to the monitor. If remote debugging is on,
599 print the sent buffer in hex. */
600
601 static void
602 debug_write (unsigned char *buf, int buflen)
603 {
604 char s[10];
605
606 monitor_write (buf, buflen);
607
608 if (remote_debug > 0)
609 {
610 while (buflen-- > 0)
611 {
612 sprintf (s, "[%02x]", *buf & 0xff);
613 puts_debug ("Sent -->", s, "<--");
614 buf++;
615 }
616 }
617 }
618
619
620 /* Ignore a packet sent to us by the monitor. It send packets
621 when its console is in "communications interface" mode. A packet
622 is of this form:
623
624 start of packet flag (one byte: 0xdc)
625 packet type (one byte)
626 length (low byte)
627 length (high byte)
628 data (length bytes)
629
630 The last two bytes of the data field are a checksum, but we don't
631 bother to verify it.
632 */
633
634 static void
635 ignore_packet (void)
636 {
637 int c;
638 int len;
639
640 /* Ignore lots of trash (messages about section addresses, for example)
641 until we see the start of a packet. */
642 for (len = 0; len < 256; len++)
643 {
644 c = debug_readchar (0);
645 if (c == PESC)
646 break;
647 }
648 if (len == 8)
649 error ("Packet header byte not found; %02x seen instead.", c);
650
651 /* Read the packet type and length. */
652 c = debug_readchar (1); /* type */
653
654 c = debug_readchar (1); /* low byte of length */
655 len = c & 0xff;
656
657 c = debug_readchar (1); /* high byte of length */
658 len += (c & 0xff) << 8;
659
660 /* Ignore the rest of the packet. */
661 while (len-- > 0)
662 c = debug_readchar (1);
663 }
664
665
666 /* Encapsulate some data into a packet and send it to the monitor.
667
668 The 'p' packet is a special case. This is a packet we send
669 in response to a read ('r') packet from the monitor. This function
670 appends a one-byte sequence number to the data field of such a packet.
671 */
672
673 static void
674 send_packet (char type, unsigned char *buf, int buflen, int seq)
675 {
676 unsigned char hdr[4];
677 int len = buflen;
678 int sum, i;
679
680 /* If this is a 'p' packet, add one byte for a sequence number. */
681 if (type == 'p')
682 len++;
683
684 /* If the buffer has a non-zero length, add two bytes for a checksum. */
685 if (len > 0)
686 len += 2;
687
688 /* Write the packet header. */
689 hdr[0] = PESC;
690 hdr[1] = type;
691 hdr[2] = len & 0xff;
692 hdr[3] = (len >> 8) & 0xff;
693 debug_write (hdr, sizeof (hdr));
694
695 if (len)
696 {
697 /* Write the packet data. */
698 debug_write (buf, buflen);
699
700 /* Write the sequence number if this is a 'p' packet. */
701 if (type == 'p')
702 {
703 hdr[0] = seq;
704 debug_write (hdr, 1);
705 }
706
707 /* Write the checksum. */
708 sum = 0;
709 for (i = 0; i < buflen; i++)
710 {
711 int tmp = (buf[i] & 0xff);
712 if (i & 1)
713 sum += tmp;
714 else
715 sum += tmp << 8;
716 }
717 if (type == 'p')
718 {
719 if (buflen & 1)
720 sum += (seq & 0xff);
721 else
722 sum += (seq & 0xff) << 8;
723 }
724 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
725 sum += (sum >> 16) & 1;
726 sum = ~sum;
727
728 hdr[0] = (sum >> 8) & 0xff;
729 hdr[1] = sum & 0xff;
730 debug_write (hdr, 2);
731 }
732 }
733
734
735 /* Respond to an expected read request from the monitor by sending
736 data in chunks. Handle all acknowledgements and handshaking packets.
737
738 The monitor expects a response consisting of a one or more 'p' packets,
739 each followed by a portion of the data requested. The 'p' packet
740 contains only a four-byte integer, the value of which is the number
741 of bytes of data we are about to send. Following the 'p' packet,
742 the monitor expects the data bytes themselves in raw, unpacketized,
743 form, without even a checksum.
744 */
745
746 static void
747 process_read_request (unsigned char *buf, int buflen)
748 {
749 unsigned char len[4];
750 int i, chunk;
751 unsigned char seq;
752
753 /* Discard the read request. FIXME: we have to hope it's for
754 the exact number of bytes we want to send; should check for this. */
755 ignore_packet ();
756
757 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
758 {
759 /* Don't send more than MAXPSIZE bytes at a time. */
760 chunk = buflen - i;
761 if (chunk > MAXPSIZE)
762 chunk = MAXPSIZE;
763
764 /* Write a packet containing the number of bytes we are sending. */
765 write_long_le (len, chunk);
766 send_packet ('p', len, sizeof (len), seq);
767
768 /* Write the data in raw form following the packet. */
769 debug_write (&buf[i], chunk);
770
771 /* Discard the ACK packet. */
772 ignore_packet ();
773 }
774
775 /* Send an "end of data" packet. */
776 send_packet ('e', "", 0, 0);
777 }
778
779
780 /* Count loadable sections (helper function for r3900_load). */
781
782 static void
783 count_section (bfd *abfd, asection *s, unsigned int *section_count)
784 {
785 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
786 (*section_count)++;
787 }
788
789
790 /* Load a single BFD section (helper function for r3900_load).
791
792 WARNING: this code is filled with assumptions about how
793 the Densan monitor loads programs. The monitor issues
794 packets containing read requests, but rather than respond
795 to them in an general way, we expect them to following
796 a certain pattern.
797
798 For example, we know that the monitor will start loading by
799 issuing an 8-byte read request for the binary file header.
800 We know this is coming and ignore the actual contents
801 of the read request packet.
802 */
803
804 static void
805 load_section (bfd *abfd, asection *s, unsigned int *data_count)
806 {
807 if (s->flags & SEC_LOAD)
808 {
809 bfd_size_type section_size = bfd_section_size (abfd, s);
810 bfd_vma section_base = bfd_section_lma (abfd, s);
811 unsigned char *buffer;
812 unsigned char header[8];
813
814 /* Don't output zero-length sections. */
815 if (section_size == 0)
816 return;
817 if (data_count)
818 *data_count += section_size;
819
820 /* Print some fluff about the section being loaded. */
821 printf_filtered ("Loading section %s, size 0x%lx lma ",
822 bfd_section_name (abfd, s), (long) section_size);
823 print_address_numeric (section_base, 1, gdb_stdout);
824 printf_filtered ("\n");
825 gdb_flush (gdb_stdout);
826
827 /* Write the section header (location and size). */
828 write_long (&header[0], (long) section_base);
829 write_long (&header[4], (long) section_size);
830 process_read_request (header, sizeof (header));
831
832 /* Read the section contents into a buffer, write it out,
833 then free the buffer. */
834 buffer = (unsigned char *) xmalloc (section_size);
835 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
836 process_read_request (buffer, section_size);
837 xfree (buffer);
838 }
839 }
840
841
842 /* When the ethernet is used as the console port on the Densan board,
843 we can use the "Rm" command to do a fast binary load. The format
844 of the download data is:
845
846 number of sections (4 bytes)
847 starting address (4 bytes)
848 repeat for each section:
849 location address (4 bytes)
850 section size (4 bytes)
851 binary data
852
853 The 4-byte fields are all in big-endian order.
854
855 Using this command is tricky because we have to put the monitor
856 into a special funky "communications interface" mode, in which
857 it sends and receives packets of data along with the normal prompt.
858 */
859
860 static void
861 r3900_load (char *filename, int from_tty)
862 {
863 bfd *abfd;
864 unsigned int data_count = 0;
865 time_t start_time, end_time; /* for timing of download */
866 int section_count = 0;
867 unsigned char buffer[8];
868
869 /* If we are not using the ethernet, use the normal monitor load,
870 which sends S-records over the serial link. */
871 if (!ethernet)
872 {
873 orig_monitor_load (filename, from_tty);
874 return;
875 }
876
877 /* Open the file. */
878 if (filename == NULL || filename[0] == 0)
879 filename = get_exec_file (1);
880 abfd = bfd_openr (filename, 0);
881 if (!abfd)
882 error ("Unable to open file %s\n", filename);
883 if (bfd_check_format (abfd, bfd_object) == 0)
884 error ("File is not an object file\n");
885
886 /* Output the "vconsi" command to get the monitor in the communication
887 state where it will accept a load command. This will cause
888 the monitor to emit a packet before each prompt, so ignore the packet. */
889 monitor_printf ("vconsi\r");
890 ignore_packet ();
891 monitor_expect_prompt (NULL, 0);
892
893 /* Output the "Rm" (load) command and respond to the subsequent "open"
894 packet by sending an ACK packet. */
895 monitor_printf ("Rm\r");
896 ignore_packet ();
897 send_packet ('a', "", 0, 0);
898
899 /* Output the fast load header (number of sections and starting address). */
900 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
901 &section_count);
902 write_long (&buffer[0], (long) section_count);
903 if (exec_bfd)
904 write_long (&buffer[4], (long) bfd_get_start_address (exec_bfd));
905 else
906 write_long (&buffer[4], 0);
907 process_read_request (buffer, sizeof (buffer));
908
909 /* Output the section data. */
910 start_time = time (NULL);
911 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
912 end_time = time (NULL);
913
914 /* Acknowledge the close packet and put the monitor back into
915 "normal" mode so it won't send packets any more. */
916 ignore_packet ();
917 send_packet ('a', "", 0, 0);
918 monitor_expect_prompt (NULL, 0);
919 monitor_printf ("vconsx\r");
920 monitor_expect_prompt (NULL, 0);
921
922 /* Print start address and download performance information. */
923 printf_filtered ("Start address 0x%lx\n", (long) bfd_get_start_address (abfd));
924 report_transfer_performance (data_count, start_time, end_time);
925
926 /* Finally, make the PC point at the start address */
927 if (exec_bfd)
928 write_pc (bfd_get_start_address (exec_bfd));
929
930 inferior_pid = 0; /* No process now */
931
932 /* This is necessary because many things were based on the PC at the
933 time that we attached to the monitor, which is no longer valid
934 now that we have loaded new code (and just changed the PC).
935 Another way to do this might be to call normal_stop, except that
936 the stack may not be valid, and things would get horribly
937 confused... */
938 clear_symtab_users ();
939 }
940
941
942 /* Commands to send to the monitor when first connecting:
943 * The bare carriage return forces a prompt from the monitor
944 (monitor doesn't prompt immediately after a reset).
945 * The "vconsx" switches the monitor back to interactive mode
946 in case an aborted download had left it in packet mode.
947 * The "Xtr" command causes subsequent "t" (trace) commands to display
948 the general registers only.
949 * The "Xxr" command does the same thing for the "x" (examine
950 registers) command.
951 * The "bx" command clears all breakpoints.
952 */
953
954 static char *r3900_inits[] =
955 {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
956 static char *dummy_inits[] =
957 {NULL};
958
959 static struct target_ops r3900_ops;
960 static struct monitor_ops r3900_cmds;
961
962 static void
963 r3900_open (char *args, int from_tty)
964 {
965 char buf[64];
966 int i;
967
968 monitor_open (args, &r3900_cmds, from_tty);
969
970 /* We have to handle sending the init strings ourselves, because
971 the first two strings we send (carriage returns) may not be echoed
972 by the monitor, but the rest will be. */
973 monitor_printf_noecho ("\r\r");
974 for (i = 0; r3900_inits[i] != NULL; i++)
975 {
976 monitor_printf (r3900_inits[i]);
977 monitor_expect_prompt (NULL, 0);
978 }
979
980 /* Attempt to determine whether the console device is ethernet or serial.
981 This will tell us which kind of load to use (S-records over a serial
982 link, or the Densan fast binary multi-section format over the net). */
983
984 ethernet = 0;
985 monitor_printf ("v\r");
986 if (monitor_expect ("console device :", NULL, 0) != -1)
987 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
988 if (strstr (buf, "ethernet") != NULL)
989 ethernet = 1;
990 monitor_expect_prompt (NULL, 0);
991 }
992
993 void
994 _initialize_r3900_rom (void)
995 {
996 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
997 MO_ADDR_BITS_REMOVE |
998 MO_CLR_BREAK_USES_ADDR |
999 MO_GETMEM_READ_SINGLE |
1000 MO_PRINT_PROGRAM_OUTPUT;
1001
1002 r3900_cmds.init = dummy_inits;
1003 r3900_cmds.cont = "g\r";
1004 r3900_cmds.step = "t\r";
1005 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
1006 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
1007 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
1008
1009 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
1010 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
1011 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
1012
1013 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
1014 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
1015 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
1016 r3900_cmds.getmem.resp_delim = " : ";
1017 r3900_cmds.getmem.term = " ";
1018 r3900_cmds.getmem.term_cmd = ".\r";
1019
1020 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
1021
1022 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
1023 r3900_cmds.getreg.resp_delim = "=";
1024 r3900_cmds.getreg.term = " ";
1025 r3900_cmds.getreg.term_cmd = ".\r";
1026
1027 r3900_cmds.dump_registers = "x\r";
1028 r3900_cmds.register_pattern =
1029 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
1030 r3900_cmds.supply_register = r3900_supply_register;
1031 /* S-record download, via "keyboard port". */
1032 r3900_cmds.load = "r0\r";
1033 r3900_cmds.prompt = "#";
1034 r3900_cmds.line_term = "\r";
1035 r3900_cmds.target = &r3900_ops;
1036 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
1037 r3900_cmds.regnames = r3900_regnames;
1038 r3900_cmds.magic = MONITOR_OPS_MAGIC;
1039
1040 init_monitor_ops (&r3900_ops);
1041
1042 r3900_ops.to_shortname = "r3900";
1043 r3900_ops.to_longname = "R3900 monitor";
1044 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
1045 Specify the serial device it is connected to (e.g. /dev/ttya).";
1046 r3900_ops.to_open = r3900_open;
1047
1048 /* Override the functions to fetch and store registers. But save the
1049 addresses of the default functions, because we will use those functions
1050 for "normal" registers. */
1051
1052 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
1053 orig_monitor_store_registers = r3900_ops.to_store_registers;
1054 r3900_ops.to_fetch_registers = r3900_fetch_registers;
1055 r3900_ops.to_store_registers = r3900_store_registers;
1056
1057 /* Override the load function, but save the address of the default
1058 function to use when loading S-records over a serial link. */
1059 orig_monitor_load = r3900_ops.to_load;
1060 r3900_ops.to_load = r3900_load;
1061
1062 add_target (&r3900_ops);
1063 }