]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2/read.c
gdb: use gdb:hash_enum as hash function in offset_map_type
[thirdparty/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2412 objfile_obstack, and constructed with the specified field
2413 values. */
2414
2415 static dwarf2_per_cu_data *
2416 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2417 struct dwarf2_section_info *section,
2418 int is_dwz,
2419 sect_offset sect_off, ULONGEST length)
2420 {
2421 struct objfile *objfile = dwarf2_per_objfile->objfile;
2422 dwarf2_per_cu_data *the_cu
2423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2424 struct dwarf2_per_cu_data);
2425 the_cu->sect_off = sect_off;
2426 the_cu->length = length;
2427 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2428 the_cu->section = section;
2429 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2430 struct dwarf2_per_cu_quick_data);
2431 the_cu->is_dwz = is_dwz;
2432 return the_cu;
2433 }
2434
2435 /* A helper for create_cus_from_index that handles a given list of
2436 CUs. */
2437
2438 static void
2439 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 const gdb_byte *cu_list, offset_type n_elements,
2441 struct dwarf2_section_info *section,
2442 int is_dwz)
2443 {
2444 for (offset_type i = 0; i < n_elements; i += 2)
2445 {
2446 gdb_static_assert (sizeof (ULONGEST) >= 8);
2447
2448 sect_offset sect_off
2449 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2450 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2451 cu_list += 2 * 8;
2452
2453 dwarf2_per_cu_data *per_cu
2454 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2455 sect_off, length);
2456 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2457 }
2458 }
2459
2460 /* Read the CU list from the mapped index, and use it to create all
2461 the CU objects for this objfile. */
2462
2463 static void
2464 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2465 const gdb_byte *cu_list, offset_type cu_list_elements,
2466 const gdb_byte *dwz_list, offset_type dwz_elements)
2467 {
2468 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2469 dwarf2_per_objfile->all_comp_units.reserve
2470 ((cu_list_elements + dwz_elements) / 2);
2471
2472 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2473 &dwarf2_per_objfile->info, 0);
2474
2475 if (dwz_elements == 0)
2476 return;
2477
2478 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2479 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2480 &dwz->info, 1);
2481 }
2482
2483 /* Create the signatured type hash table from the index. */
2484
2485 static void
2486 create_signatured_type_table_from_index
2487 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 struct dwarf2_section_info *section,
2489 const gdb_byte *bytes,
2490 offset_type elements)
2491 {
2492 struct objfile *objfile = dwarf2_per_objfile->objfile;
2493
2494 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2495 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2496
2497 htab_up sig_types_hash = allocate_signatured_type_table ();
2498
2499 for (offset_type i = 0; i < elements; i += 3)
2500 {
2501 struct signatured_type *sig_type;
2502 ULONGEST signature;
2503 void **slot;
2504 cu_offset type_offset_in_tu;
2505
2506 gdb_static_assert (sizeof (ULONGEST) >= 8);
2507 sect_offset sect_off
2508 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2509 type_offset_in_tu
2510 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2511 BFD_ENDIAN_LITTLE);
2512 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2513 bytes += 3 * 8;
2514
2515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2516 struct signatured_type);
2517 sig_type->signature = signature;
2518 sig_type->type_offset_in_tu = type_offset_in_tu;
2519 sig_type->per_cu.is_debug_types = 1;
2520 sig_type->per_cu.section = section;
2521 sig_type->per_cu.sect_off = sect_off;
2522 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2523 sig_type->per_cu.v.quick
2524 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2525 struct dwarf2_per_cu_quick_data);
2526
2527 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2528 *slot = sig_type;
2529
2530 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2531 }
2532
2533 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2534 }
2535
2536 /* Create the signatured type hash table from .debug_names. */
2537
2538 static void
2539 create_signatured_type_table_from_debug_names
2540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2541 const mapped_debug_names &map,
2542 struct dwarf2_section_info *section,
2543 struct dwarf2_section_info *abbrev_section)
2544 {
2545 struct objfile *objfile = dwarf2_per_objfile->objfile;
2546
2547 section->read (objfile);
2548 abbrev_section->read (objfile);
2549
2550 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2551 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2552
2553 htab_up sig_types_hash = allocate_signatured_type_table ();
2554
2555 for (uint32_t i = 0; i < map.tu_count; ++i)
2556 {
2557 struct signatured_type *sig_type;
2558 void **slot;
2559
2560 sect_offset sect_off
2561 = (sect_offset) (extract_unsigned_integer
2562 (map.tu_table_reordered + i * map.offset_size,
2563 map.offset_size,
2564 map.dwarf5_byte_order));
2565
2566 comp_unit_head cu_header;
2567 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2568 abbrev_section,
2569 section->buffer + to_underlying (sect_off),
2570 rcuh_kind::TYPE);
2571
2572 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2573 struct signatured_type);
2574 sig_type->signature = cu_header.signature;
2575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2576 sig_type->per_cu.is_debug_types = 1;
2577 sig_type->per_cu.section = section;
2578 sig_type->per_cu.sect_off = sect_off;
2579 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2580 sig_type->per_cu.v.quick
2581 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2582 struct dwarf2_per_cu_quick_data);
2583
2584 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2585 *slot = sig_type;
2586
2587 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2588 }
2589
2590 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2591 }
2592
2593 /* Read the address map data from the mapped index, and use it to
2594 populate the objfile's psymtabs_addrmap. */
2595
2596 static void
2597 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2598 struct mapped_index *index)
2599 {
2600 struct objfile *objfile = dwarf2_per_objfile->objfile;
2601 struct gdbarch *gdbarch = objfile->arch ();
2602 const gdb_byte *iter, *end;
2603 struct addrmap *mutable_map;
2604 CORE_ADDR baseaddr;
2605
2606 auto_obstack temp_obstack;
2607
2608 mutable_map = addrmap_create_mutable (&temp_obstack);
2609
2610 iter = index->address_table.data ();
2611 end = iter + index->address_table.size ();
2612
2613 baseaddr = objfile->text_section_offset ();
2614
2615 while (iter < end)
2616 {
2617 ULONGEST hi, lo, cu_index;
2618 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2619 iter += 8;
2620 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2621 iter += 8;
2622 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2623 iter += 4;
2624
2625 if (lo > hi)
2626 {
2627 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2628 hex_string (lo), hex_string (hi));
2629 continue;
2630 }
2631
2632 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2633 {
2634 complaint (_(".gdb_index address table has invalid CU number %u"),
2635 (unsigned) cu_index);
2636 continue;
2637 }
2638
2639 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2640 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2641 addrmap_set_empty (mutable_map, lo, hi - 1,
2642 dwarf2_per_objfile->get_cu (cu_index));
2643 }
2644
2645 objfile->partial_symtabs->psymtabs_addrmap
2646 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2647 }
2648
2649 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2650 populate the objfile's psymtabs_addrmap. */
2651
2652 static void
2653 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2654 struct dwarf2_section_info *section)
2655 {
2656 struct objfile *objfile = dwarf2_per_objfile->objfile;
2657 bfd *abfd = objfile->obfd;
2658 struct gdbarch *gdbarch = objfile->arch ();
2659 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2660
2661 auto_obstack temp_obstack;
2662 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2663
2664 std::unordered_map<sect_offset,
2665 dwarf2_per_cu_data *,
2666 gdb::hash_enum<sect_offset>>
2667 debug_info_offset_to_per_cu;
2668 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2669 {
2670 const auto insertpair
2671 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2672 if (!insertpair.second)
2673 {
2674 warning (_("Section .debug_aranges in %s has duplicate "
2675 "debug_info_offset %s, ignoring .debug_aranges."),
2676 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2677 return;
2678 }
2679 }
2680
2681 section->read (objfile);
2682
2683 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2684
2685 const gdb_byte *addr = section->buffer;
2686
2687 while (addr < section->buffer + section->size)
2688 {
2689 const gdb_byte *const entry_addr = addr;
2690 unsigned int bytes_read;
2691
2692 const LONGEST entry_length = read_initial_length (abfd, addr,
2693 &bytes_read);
2694 addr += bytes_read;
2695
2696 const gdb_byte *const entry_end = addr + entry_length;
2697 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2698 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2699 if (addr + entry_length > section->buffer + section->size)
2700 {
2701 warning (_("Section .debug_aranges in %s entry at offset %s "
2702 "length %s exceeds section length %s, "
2703 "ignoring .debug_aranges."),
2704 objfile_name (objfile),
2705 plongest (entry_addr - section->buffer),
2706 plongest (bytes_read + entry_length),
2707 pulongest (section->size));
2708 return;
2709 }
2710
2711 /* The version number. */
2712 const uint16_t version = read_2_bytes (abfd, addr);
2713 addr += 2;
2714 if (version != 2)
2715 {
2716 warning (_("Section .debug_aranges in %s entry at offset %s "
2717 "has unsupported version %d, ignoring .debug_aranges."),
2718 objfile_name (objfile),
2719 plongest (entry_addr - section->buffer), version);
2720 return;
2721 }
2722
2723 const uint64_t debug_info_offset
2724 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2725 addr += offset_size;
2726 const auto per_cu_it
2727 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2728 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2729 {
2730 warning (_("Section .debug_aranges in %s entry at offset %s "
2731 "debug_info_offset %s does not exists, "
2732 "ignoring .debug_aranges."),
2733 objfile_name (objfile),
2734 plongest (entry_addr - section->buffer),
2735 pulongest (debug_info_offset));
2736 return;
2737 }
2738 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2739
2740 const uint8_t address_size = *addr++;
2741 if (address_size < 1 || address_size > 8)
2742 {
2743 warning (_("Section .debug_aranges in %s entry at offset %s "
2744 "address_size %u is invalid, ignoring .debug_aranges."),
2745 objfile_name (objfile),
2746 plongest (entry_addr - section->buffer), address_size);
2747 return;
2748 }
2749
2750 const uint8_t segment_selector_size = *addr++;
2751 if (segment_selector_size != 0)
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "segment_selector_size %u is not supported, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 segment_selector_size);
2759 return;
2760 }
2761
2762 /* Must pad to an alignment boundary that is twice the address
2763 size. It is undocumented by the DWARF standard but GCC does
2764 use it. */
2765 for (size_t padding = ((-(addr - section->buffer))
2766 & (2 * address_size - 1));
2767 padding > 0; padding--)
2768 if (*addr++ != 0)
2769 {
2770 warning (_("Section .debug_aranges in %s entry at offset %s "
2771 "padding is not zero, ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer));
2774 return;
2775 }
2776
2777 for (;;)
2778 {
2779 if (addr + 2 * address_size > entry_end)
2780 {
2781 warning (_("Section .debug_aranges in %s entry at offset %s "
2782 "address list is not properly terminated, "
2783 "ignoring .debug_aranges."),
2784 objfile_name (objfile),
2785 plongest (entry_addr - section->buffer));
2786 return;
2787 }
2788 ULONGEST start = extract_unsigned_integer (addr, address_size,
2789 dwarf5_byte_order);
2790 addr += address_size;
2791 ULONGEST length = extract_unsigned_integer (addr, address_size,
2792 dwarf5_byte_order);
2793 addr += address_size;
2794 if (start == 0 && length == 0)
2795 break;
2796 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2797 {
2798 /* Symbol was eliminated due to a COMDAT group. */
2799 continue;
2800 }
2801 ULONGEST end = start + length;
2802 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2803 - baseaddr);
2804 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2805 - baseaddr);
2806 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2807 }
2808 }
2809
2810 objfile->partial_symtabs->psymtabs_addrmap
2811 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2812 }
2813
2814 /* Find a slot in the mapped index INDEX for the object named NAME.
2815 If NAME is found, set *VEC_OUT to point to the CU vector in the
2816 constant pool and return true. If NAME cannot be found, return
2817 false. */
2818
2819 static bool
2820 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2821 offset_type **vec_out)
2822 {
2823 offset_type hash;
2824 offset_type slot, step;
2825 int (*cmp) (const char *, const char *);
2826
2827 gdb::unique_xmalloc_ptr<char> without_params;
2828 if (current_language->la_language == language_cplus
2829 || current_language->la_language == language_fortran
2830 || current_language->la_language == language_d)
2831 {
2832 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2833 not contain any. */
2834
2835 if (strchr (name, '(') != NULL)
2836 {
2837 without_params = cp_remove_params (name);
2838
2839 if (without_params != NULL)
2840 name = without_params.get ();
2841 }
2842 }
2843
2844 /* Index version 4 did not support case insensitive searches. But the
2845 indices for case insensitive languages are built in lowercase, therefore
2846 simulate our NAME being searched is also lowercased. */
2847 hash = mapped_index_string_hash ((index->version == 4
2848 && case_sensitivity == case_sensitive_off
2849 ? 5 : index->version),
2850 name);
2851
2852 slot = hash & (index->symbol_table.size () - 1);
2853 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2854 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2855
2856 for (;;)
2857 {
2858 const char *str;
2859
2860 const auto &bucket = index->symbol_table[slot];
2861 if (bucket.name == 0 && bucket.vec == 0)
2862 return false;
2863
2864 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2865 if (!cmp (name, str))
2866 {
2867 *vec_out = (offset_type *) (index->constant_pool
2868 + MAYBE_SWAP (bucket.vec));
2869 return true;
2870 }
2871
2872 slot = (slot + step) & (index->symbol_table.size () - 1);
2873 }
2874 }
2875
2876 /* A helper function that reads the .gdb_index from BUFFER and fills
2877 in MAP. FILENAME is the name of the file containing the data;
2878 it is used for error reporting. DEPRECATED_OK is true if it is
2879 ok to use deprecated sections.
2880
2881 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2882 out parameters that are filled in with information about the CU and
2883 TU lists in the section.
2884
2885 Returns true if all went well, false otherwise. */
2886
2887 static bool
2888 read_gdb_index_from_buffer (const char *filename,
2889 bool deprecated_ok,
2890 gdb::array_view<const gdb_byte> buffer,
2891 struct mapped_index *map,
2892 const gdb_byte **cu_list,
2893 offset_type *cu_list_elements,
2894 const gdb_byte **types_list,
2895 offset_type *types_list_elements)
2896 {
2897 const gdb_byte *addr = &buffer[0];
2898
2899 /* Version check. */
2900 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2901 /* Versions earlier than 3 emitted every copy of a psymbol. This
2902 causes the index to behave very poorly for certain requests. Version 3
2903 contained incomplete addrmap. So, it seems better to just ignore such
2904 indices. */
2905 if (version < 4)
2906 {
2907 static int warning_printed = 0;
2908 if (!warning_printed)
2909 {
2910 warning (_("Skipping obsolete .gdb_index section in %s."),
2911 filename);
2912 warning_printed = 1;
2913 }
2914 return 0;
2915 }
2916 /* Index version 4 uses a different hash function than index version
2917 5 and later.
2918
2919 Versions earlier than 6 did not emit psymbols for inlined
2920 functions. Using these files will cause GDB not to be able to
2921 set breakpoints on inlined functions by name, so we ignore these
2922 indices unless the user has done
2923 "set use-deprecated-index-sections on". */
2924 if (version < 6 && !deprecated_ok)
2925 {
2926 static int warning_printed = 0;
2927 if (!warning_printed)
2928 {
2929 warning (_("\
2930 Skipping deprecated .gdb_index section in %s.\n\
2931 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2932 to use the section anyway."),
2933 filename);
2934 warning_printed = 1;
2935 }
2936 return 0;
2937 }
2938 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2939 of the TU (for symbols coming from TUs),
2940 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2941 Plus gold-generated indices can have duplicate entries for global symbols,
2942 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2943 These are just performance bugs, and we can't distinguish gdb-generated
2944 indices from gold-generated ones, so issue no warning here. */
2945
2946 /* Indexes with higher version than the one supported by GDB may be no
2947 longer backward compatible. */
2948 if (version > 8)
2949 return 0;
2950
2951 map->version = version;
2952
2953 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2954
2955 int i = 0;
2956 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2957 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2958 / 8);
2959 ++i;
2960
2961 *types_list = addr + MAYBE_SWAP (metadata[i]);
2962 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2963 - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2968 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2969 map->address_table
2970 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2971 ++i;
2972
2973 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->symbol_table
2976 = gdb::array_view<mapped_index::symbol_table_slot>
2977 ((mapped_index::symbol_table_slot *) symbol_table,
2978 (mapped_index::symbol_table_slot *) symbol_table_end);
2979
2980 ++i;
2981 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2982
2983 return 1;
2984 }
2985
2986 /* Callback types for dwarf2_read_gdb_index. */
2987
2988 typedef gdb::function_view
2989 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2990 get_gdb_index_contents_ftype;
2991 typedef gdb::function_view
2992 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2993 get_gdb_index_contents_dwz_ftype;
2994
2995 /* Read .gdb_index. If everything went ok, initialize the "quick"
2996 elements of all the CUs and return 1. Otherwise, return 0. */
2997
2998 static int
2999 dwarf2_read_gdb_index
3000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 get_gdb_index_contents_ftype get_gdb_index_contents,
3002 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3003 {
3004 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3005 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3006 struct dwz_file *dwz;
3007 struct objfile *objfile = dwarf2_per_objfile->objfile;
3008
3009 gdb::array_view<const gdb_byte> main_index_contents
3010 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3011
3012 if (main_index_contents.empty ())
3013 return 0;
3014
3015 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3016 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3017 use_deprecated_index_sections,
3018 main_index_contents, map.get (), &cu_list,
3019 &cu_list_elements, &types_list,
3020 &types_list_elements))
3021 return 0;
3022
3023 /* Don't use the index if it's empty. */
3024 if (map->symbol_table.empty ())
3025 return 0;
3026
3027 /* If there is a .dwz file, read it so we can get its CU list as
3028 well. */
3029 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3030 if (dwz != NULL)
3031 {
3032 struct mapped_index dwz_map;
3033 const gdb_byte *dwz_types_ignore;
3034 offset_type dwz_types_elements_ignore;
3035
3036 gdb::array_view<const gdb_byte> dwz_index_content
3037 = get_gdb_index_contents_dwz (objfile, dwz);
3038
3039 if (dwz_index_content.empty ())
3040 return 0;
3041
3042 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3043 1, dwz_index_content, &dwz_map,
3044 &dwz_list, &dwz_list_elements,
3045 &dwz_types_ignore,
3046 &dwz_types_elements_ignore))
3047 {
3048 warning (_("could not read '.gdb_index' section from %s; skipping"),
3049 bfd_get_filename (dwz->dwz_bfd.get ()));
3050 return 0;
3051 }
3052 }
3053
3054 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3055 dwz_list, dwz_list_elements);
3056
3057 if (types_list_elements)
3058 {
3059 /* We can only handle a single .debug_types when we have an
3060 index. */
3061 if (dwarf2_per_objfile->types.size () != 1)
3062 return 0;
3063
3064 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3065
3066 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3067 types_list, types_list_elements);
3068 }
3069
3070 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3071
3072 dwarf2_per_objfile->index_table = std::move (map);
3073 dwarf2_per_objfile->using_index = 1;
3074 dwarf2_per_objfile->quick_file_names_table =
3075 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3076
3077 return 1;
3078 }
3079
3080 /* die_reader_func for dw2_get_file_names. */
3081
3082 static void
3083 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3084 const gdb_byte *info_ptr,
3085 struct die_info *comp_unit_die)
3086 {
3087 struct dwarf2_cu *cu = reader->cu;
3088 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3089 struct dwarf2_per_objfile *dwarf2_per_objfile
3090 = cu->per_cu->dwarf2_per_objfile;
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092 struct dwarf2_per_cu_data *lh_cu;
3093 struct attribute *attr;
3094 void **slot;
3095 struct quick_file_names *qfn;
3096
3097 gdb_assert (! this_cu->is_debug_types);
3098
3099 /* Our callers never want to match partial units -- instead they
3100 will match the enclosing full CU. */
3101 if (comp_unit_die->tag == DW_TAG_partial_unit)
3102 {
3103 this_cu->v.quick->no_file_data = 1;
3104 return;
3105 }
3106
3107 lh_cu = this_cu;
3108 slot = NULL;
3109
3110 line_header_up lh;
3111 sect_offset line_offset {};
3112
3113 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3114 if (attr != nullptr)
3115 {
3116 struct quick_file_names find_entry;
3117
3118 line_offset = (sect_offset) DW_UNSND (attr);
3119
3120 /* We may have already read in this line header (TU line header sharing).
3121 If we have we're done. */
3122 find_entry.hash.dwo_unit = cu->dwo_unit;
3123 find_entry.hash.line_sect_off = line_offset;
3124 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3125 &find_entry, INSERT);
3126 if (*slot != NULL)
3127 {
3128 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3129 return;
3130 }
3131
3132 lh = dwarf_decode_line_header (line_offset, cu);
3133 }
3134 if (lh == NULL)
3135 {
3136 lh_cu->v.quick->no_file_data = 1;
3137 return;
3138 }
3139
3140 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3141 qfn->hash.dwo_unit = cu->dwo_unit;
3142 qfn->hash.line_sect_off = line_offset;
3143 gdb_assert (slot != NULL);
3144 *slot = qfn;
3145
3146 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3147
3148 int offset = 0;
3149 if (strcmp (fnd.name, "<unknown>") != 0)
3150 ++offset;
3151
3152 qfn->num_file_names = offset + lh->file_names_size ();
3153 qfn->file_names =
3154 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3155 if (offset != 0)
3156 qfn->file_names[0] = xstrdup (fnd.name);
3157 for (int i = 0; i < lh->file_names_size (); ++i)
3158 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3159 fnd.comp_dir).release ();
3160 qfn->real_names = NULL;
3161
3162 lh_cu->v.quick->file_names = qfn;
3163 }
3164
3165 /* A helper for the "quick" functions which attempts to read the line
3166 table for THIS_CU. */
3167
3168 static struct quick_file_names *
3169 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3170 {
3171 /* This should never be called for TUs. */
3172 gdb_assert (! this_cu->is_debug_types);
3173 /* Nor type unit groups. */
3174 gdb_assert (! this_cu->type_unit_group_p ());
3175
3176 if (this_cu->v.quick->file_names != NULL)
3177 return this_cu->v.quick->file_names;
3178 /* If we know there is no line data, no point in looking again. */
3179 if (this_cu->v.quick->no_file_data)
3180 return NULL;
3181
3182 cutu_reader reader (this_cu);
3183 if (!reader.dummy_p)
3184 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3185
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188 return this_cu->v.quick->file_names;
3189 }
3190
3191 /* A helper for the "quick" functions which computes and caches the
3192 real path for a given file name from the line table. */
3193
3194 static const char *
3195 dw2_get_real_path (struct objfile *objfile,
3196 struct quick_file_names *qfn, int index)
3197 {
3198 if (qfn->real_names == NULL)
3199 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3200 qfn->num_file_names, const char *);
3201
3202 if (qfn->real_names[index] == NULL)
3203 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3204
3205 return qfn->real_names[index];
3206 }
3207
3208 static struct symtab *
3209 dw2_find_last_source_symtab (struct objfile *objfile)
3210 {
3211 struct dwarf2_per_objfile *dwarf2_per_objfile
3212 = get_dwarf2_per_objfile (objfile);
3213 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3214 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3215
3216 if (cust == NULL)
3217 return NULL;
3218
3219 return compunit_primary_filetab (cust);
3220 }
3221
3222 /* Traversal function for dw2_forget_cached_source_info. */
3223
3224 static int
3225 dw2_free_cached_file_names (void **slot, void *info)
3226 {
3227 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3228
3229 if (file_data->real_names)
3230 {
3231 int i;
3232
3233 for (i = 0; i < file_data->num_file_names; ++i)
3234 {
3235 xfree ((void*) file_data->real_names[i]);
3236 file_data->real_names[i] = NULL;
3237 }
3238 }
3239
3240 return 1;
3241 }
3242
3243 static void
3244 dw2_forget_cached_source_info (struct objfile *objfile)
3245 {
3246 struct dwarf2_per_objfile *dwarf2_per_objfile
3247 = get_dwarf2_per_objfile (objfile);
3248
3249 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3250 dw2_free_cached_file_names, NULL);
3251 }
3252
3253 /* Helper function for dw2_map_symtabs_matching_filename that expands
3254 the symtabs and calls the iterator. */
3255
3256 static int
3257 dw2_map_expand_apply (struct objfile *objfile,
3258 struct dwarf2_per_cu_data *per_cu,
3259 const char *name, const char *real_path,
3260 gdb::function_view<bool (symtab *)> callback)
3261 {
3262 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3263
3264 /* Don't visit already-expanded CUs. */
3265 if (per_cu->v.quick->compunit_symtab)
3266 return 0;
3267
3268 /* This may expand more than one symtab, and we want to iterate over
3269 all of them. */
3270 dw2_instantiate_symtab (per_cu, false);
3271
3272 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3273 last_made, callback);
3274 }
3275
3276 /* Implementation of the map_symtabs_matching_filename method. */
3277
3278 static bool
3279 dw2_map_symtabs_matching_filename
3280 (struct objfile *objfile, const char *name, const char *real_path,
3281 gdb::function_view<bool (symtab *)> callback)
3282 {
3283 const char *name_basename = lbasename (name);
3284 struct dwarf2_per_objfile *dwarf2_per_objfile
3285 = get_dwarf2_per_objfile (objfile);
3286
3287 /* The rule is CUs specify all the files, including those used by
3288 any TU, so there's no need to scan TUs here. */
3289
3290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3291 {
3292 /* We only need to look at symtabs not already expanded. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 continue;
3295
3296 quick_file_names *file_data = dw2_get_file_names (per_cu);
3297 if (file_data == NULL)
3298 continue;
3299
3300 for (int j = 0; j < file_data->num_file_names; ++j)
3301 {
3302 const char *this_name = file_data->file_names[j];
3303 const char *this_real_name;
3304
3305 if (compare_filenames_for_search (this_name, name))
3306 {
3307 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3308 callback))
3309 return true;
3310 continue;
3311 }
3312
3313 /* Before we invoke realpath, which can get expensive when many
3314 files are involved, do a quick comparison of the basenames. */
3315 if (! basenames_may_differ
3316 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3317 continue;
3318
3319 this_real_name = dw2_get_real_path (objfile, file_data, j);
3320 if (compare_filenames_for_search (this_real_name, name))
3321 {
3322 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3323 callback))
3324 return true;
3325 continue;
3326 }
3327
3328 if (real_path != NULL)
3329 {
3330 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3331 gdb_assert (IS_ABSOLUTE_PATH (name));
3332 if (this_real_name != NULL
3333 && FILENAME_CMP (real_path, this_real_name) == 0)
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Struct used to manage iterating over all CUs looking for a symbol. */
3348
3349 struct dw2_symtab_iterator
3350 {
3351 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3352 struct dwarf2_per_objfile *dwarf2_per_objfile;
3353 /* If set, only look for symbols that match that block. Valid values are
3354 GLOBAL_BLOCK and STATIC_BLOCK. */
3355 gdb::optional<block_enum> block_index;
3356 /* The kind of symbol we're looking for. */
3357 domain_enum domain;
3358 /* The list of CUs from the index entry of the symbol,
3359 or NULL if not found. */
3360 offset_type *vec;
3361 /* The next element in VEC to look at. */
3362 int next;
3363 /* The number of elements in VEC, or zero if there is no match. */
3364 int length;
3365 /* Have we seen a global version of the symbol?
3366 If so we can ignore all further global instances.
3367 This is to work around gold/15646, inefficient gold-generated
3368 indices. */
3369 int global_seen;
3370 };
3371
3372 /* Initialize the index symtab iterator ITER. */
3373
3374 static void
3375 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3376 struct dwarf2_per_objfile *dwarf2_per_objfile,
3377 gdb::optional<block_enum> block_index,
3378 domain_enum domain,
3379 const char *name)
3380 {
3381 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3382 iter->block_index = block_index;
3383 iter->domain = domain;
3384 iter->next = 0;
3385 iter->global_seen = 0;
3386
3387 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3388
3389 /* index is NULL if OBJF_READNOW. */
3390 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3391 iter->length = MAYBE_SWAP (*iter->vec);
3392 else
3393 {
3394 iter->vec = NULL;
3395 iter->length = 0;
3396 }
3397 }
3398
3399 /* Return the next matching CU or NULL if there are no more. */
3400
3401 static struct dwarf2_per_cu_data *
3402 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3403 {
3404 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3405
3406 for ( ; iter->next < iter->length; ++iter->next)
3407 {
3408 offset_type cu_index_and_attrs =
3409 MAYBE_SWAP (iter->vec[iter->next + 1]);
3410 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3411 gdb_index_symbol_kind symbol_kind =
3412 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3413 /* Only check the symbol attributes if they're present.
3414 Indices prior to version 7 don't record them,
3415 and indices >= 7 may elide them for certain symbols
3416 (gold does this). */
3417 int attrs_valid =
3418 (dwarf2_per_objfile->index_table->version >= 7
3419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3420
3421 /* Don't crash on bad data. */
3422 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3423 + dwarf2_per_objfile->all_type_units.size ()))
3424 {
3425 complaint (_(".gdb_index entry has bad CU index"
3426 " [in module %s]"),
3427 objfile_name (dwarf2_per_objfile->objfile));
3428 continue;
3429 }
3430
3431 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3432
3433 /* Skip if already read in. */
3434 if (per_cu->v.quick->compunit_symtab)
3435 continue;
3436
3437 /* Check static vs global. */
3438 if (attrs_valid)
3439 {
3440 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3441
3442 if (iter->block_index.has_value ())
3443 {
3444 bool want_static = *iter->block_index == STATIC_BLOCK;
3445
3446 if (is_static != want_static)
3447 continue;
3448 }
3449
3450 /* Work around gold/15646. */
3451 if (!is_static && iter->global_seen)
3452 continue;
3453 if (!is_static)
3454 iter->global_seen = 1;
3455 }
3456
3457 /* Only check the symbol's kind if it has one. */
3458 if (attrs_valid)
3459 {
3460 switch (iter->domain)
3461 {
3462 case VAR_DOMAIN:
3463 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3464 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3465 /* Some types are also in VAR_DOMAIN. */
3466 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3467 continue;
3468 break;
3469 case STRUCT_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3471 continue;
3472 break;
3473 case LABEL_DOMAIN:
3474 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3475 continue;
3476 break;
3477 case MODULE_DOMAIN:
3478 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3479 continue;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485
3486 ++iter->next;
3487 return per_cu;
3488 }
3489
3490 return NULL;
3491 }
3492
3493 static struct compunit_symtab *
3494 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3495 const char *name, domain_enum domain)
3496 {
3497 struct compunit_symtab *stab_best = NULL;
3498 struct dwarf2_per_objfile *dwarf2_per_objfile
3499 = get_dwarf2_per_objfile (objfile);
3500
3501 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3502
3503 struct dw2_symtab_iterator iter;
3504 struct dwarf2_per_cu_data *per_cu;
3505
3506 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3507
3508 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3509 {
3510 struct symbol *sym, *with_opaque = NULL;
3511 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3512 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3513 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3514
3515 sym = block_find_symbol (block, name, domain,
3516 block_find_non_opaque_type_preferred,
3517 &with_opaque);
3518
3519 /* Some caution must be observed with overloaded functions
3520 and methods, since the index will not contain any overload
3521 information (but NAME might contain it). */
3522
3523 if (sym != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3525 return stab;
3526 if (with_opaque != NULL
3527 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3528 stab_best = stab;
3529
3530 /* Keep looking through other CUs. */
3531 }
3532
3533 return stab_best;
3534 }
3535
3536 static void
3537 dw2_print_stats (struct objfile *objfile)
3538 {
3539 struct dwarf2_per_objfile *dwarf2_per_objfile
3540 = get_dwarf2_per_objfile (objfile);
3541 int total = (dwarf2_per_objfile->all_comp_units.size ()
3542 + dwarf2_per_objfile->all_type_units.size ());
3543 int count = 0;
3544
3545 for (int i = 0; i < total; ++i)
3546 {
3547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3548
3549 if (!per_cu->v.quick->compunit_symtab)
3550 ++count;
3551 }
3552 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3553 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3554 }
3555
3556 /* This dumps minimal information about the index.
3557 It is called via "mt print objfiles".
3558 One use is to verify .gdb_index has been loaded by the
3559 gdb.dwarf2/gdb-index.exp testcase. */
3560
3561 static void
3562 dw2_dump (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566
3567 gdb_assert (dwarf2_per_objfile->using_index);
3568 printf_filtered (".gdb_index:");
3569 if (dwarf2_per_objfile->index_table != NULL)
3570 {
3571 printf_filtered (" version %d\n",
3572 dwarf2_per_objfile->index_table->version);
3573 }
3574 else
3575 printf_filtered (" faked for \"readnow\"\n");
3576 printf_filtered ("\n");
3577 }
3578
3579 static void
3580 dw2_expand_symtabs_for_function (struct objfile *objfile,
3581 const char *func_name)
3582 {
3583 struct dwarf2_per_objfile *dwarf2_per_objfile
3584 = get_dwarf2_per_objfile (objfile);
3585
3586 struct dw2_symtab_iterator iter;
3587 struct dwarf2_per_cu_data *per_cu;
3588
3589 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3590
3591 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3592 dw2_instantiate_symtab (per_cu, false);
3593
3594 }
3595
3596 static void
3597 dw2_expand_all_symtabs (struct objfile *objfile)
3598 {
3599 struct dwarf2_per_objfile *dwarf2_per_objfile
3600 = get_dwarf2_per_objfile (objfile);
3601 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3602 + dwarf2_per_objfile->all_type_units.size ());
3603
3604 for (int i = 0; i < total_units; ++i)
3605 {
3606 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3607
3608 /* We don't want to directly expand a partial CU, because if we
3609 read it with the wrong language, then assertion failures can
3610 be triggered later on. See PR symtab/23010. So, tell
3611 dw2_instantiate_symtab to skip partial CUs -- any important
3612 partial CU will be read via DW_TAG_imported_unit anyway. */
3613 dw2_instantiate_symtab (per_cu, true);
3614 }
3615 }
3616
3617 static void
3618 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3619 const char *fullname)
3620 {
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = get_dwarf2_per_objfile (objfile);
3623
3624 /* We don't need to consider type units here.
3625 This is only called for examining code, e.g. expand_line_sal.
3626 There can be an order of magnitude (or more) more type units
3627 than comp units, and we avoid them if we can. */
3628
3629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3630 {
3631 /* We only need to look at symtabs not already expanded. */
3632 if (per_cu->v.quick->compunit_symtab)
3633 continue;
3634
3635 quick_file_names *file_data = dw2_get_file_names (per_cu);
3636 if (file_data == NULL)
3637 continue;
3638
3639 for (int j = 0; j < file_data->num_file_names; ++j)
3640 {
3641 const char *this_fullname = file_data->file_names[j];
3642
3643 if (filename_cmp (this_fullname, fullname) == 0)
3644 {
3645 dw2_instantiate_symtab (per_cu, false);
3646 break;
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 dw2_map_matching_symbols
3654 (struct objfile *objfile,
3655 const lookup_name_info &name, domain_enum domain,
3656 int global,
3657 gdb::function_view<symbol_found_callback_ftype> callback,
3658 symbol_compare_ftype *ordered_compare)
3659 {
3660 /* Used for Ada. */
3661 struct dwarf2_per_objfile *dwarf2_per_objfile
3662 = get_dwarf2_per_objfile (objfile);
3663
3664 if (dwarf2_per_objfile->index_table != nullptr)
3665 {
3666 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3667 here though if the current language is Ada for a non-Ada objfile
3668 using GNU index. As Ada does not look for non-Ada symbols this
3669 function should just return. */
3670 return;
3671 }
3672
3673 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3674 inline psym_map_matching_symbols here, assuming all partial symtabs have
3675 been read in. */
3676 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3677
3678 for (compunit_symtab *cust : objfile->compunits ())
3679 {
3680 const struct block *block;
3681
3682 if (cust == NULL)
3683 continue;
3684 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3685 if (!iterate_over_symbols_terminated (block, name,
3686 domain, callback))
3687 return;
3688 }
3689 }
3690
3691 /* Starting from a search name, return the string that finds the upper
3692 bound of all strings that start with SEARCH_NAME in a sorted name
3693 list. Returns the empty string to indicate that the upper bound is
3694 the end of the list. */
3695
3696 static std::string
3697 make_sort_after_prefix_name (const char *search_name)
3698 {
3699 /* When looking to complete "func", we find the upper bound of all
3700 symbols that start with "func" by looking for where we'd insert
3701 the closest string that would follow "func" in lexicographical
3702 order. Usually, that's "func"-with-last-character-incremented,
3703 i.e. "fund". Mind non-ASCII characters, though. Usually those
3704 will be UTF-8 multi-byte sequences, but we can't be certain.
3705 Especially mind the 0xff character, which is a valid character in
3706 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3707 rule out compilers allowing it in identifiers. Note that
3708 conveniently, strcmp/strcasecmp are specified to compare
3709 characters interpreted as unsigned char. So what we do is treat
3710 the whole string as a base 256 number composed of a sequence of
3711 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3712 to 0, and carries 1 to the following more-significant position.
3713 If the very first character in SEARCH_NAME ends up incremented
3714 and carries/overflows, then the upper bound is the end of the
3715 list. The string after the empty string is also the empty
3716 string.
3717
3718 Some examples of this operation:
3719
3720 SEARCH_NAME => "+1" RESULT
3721
3722 "abc" => "abd"
3723 "ab\xff" => "ac"
3724 "\xff" "a" "\xff" => "\xff" "b"
3725 "\xff" => ""
3726 "\xff\xff" => ""
3727 "" => ""
3728
3729 Then, with these symbols for example:
3730
3731 func
3732 func1
3733 fund
3734
3735 completing "func" looks for symbols between "func" and
3736 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3737 which finds "func" and "func1", but not "fund".
3738
3739 And with:
3740
3741 funcÿ (Latin1 'ÿ' [0xff])
3742 funcÿ1
3743 fund
3744
3745 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3746 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3747
3748 And with:
3749
3750 ÿÿ (Latin1 'ÿ' [0xff])
3751 ÿÿ1
3752
3753 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3754 the end of the list.
3755 */
3756 std::string after = search_name;
3757 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 after.pop_back ();
3759 if (!after.empty ())
3760 after.back () = (unsigned char) after.back () + 1;
3761 return after;
3762 }
3763
3764 /* See declaration. */
3765
3766 std::pair<std::vector<name_component>::const_iterator,
3767 std::vector<name_component>::const_iterator>
3768 mapped_index_base::find_name_components_bounds
3769 (const lookup_name_info &lookup_name_without_params, language lang) const
3770 {
3771 auto *name_cmp
3772 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773
3774 const char *lang_name
3775 = lookup_name_without_params.language_lookup_name (lang);
3776
3777 /* Comparison function object for lower_bound that matches against a
3778 given symbol name. */
3779 auto lookup_compare_lower = [&] (const name_component &elem,
3780 const char *name)
3781 {
3782 const char *elem_qualified = this->symbol_name_at (elem.idx);
3783 const char *elem_name = elem_qualified + elem.name_offset;
3784 return name_cmp (elem_name, name) < 0;
3785 };
3786
3787 /* Comparison function object for upper_bound that matches against a
3788 given symbol name. */
3789 auto lookup_compare_upper = [&] (const char *name,
3790 const name_component &elem)
3791 {
3792 const char *elem_qualified = this->symbol_name_at (elem.idx);
3793 const char *elem_name = elem_qualified + elem.name_offset;
3794 return name_cmp (name, elem_name) < 0;
3795 };
3796
3797 auto begin = this->name_components.begin ();
3798 auto end = this->name_components.end ();
3799
3800 /* Find the lower bound. */
3801 auto lower = [&] ()
3802 {
3803 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3804 return begin;
3805 else
3806 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3807 } ();
3808
3809 /* Find the upper bound. */
3810 auto upper = [&] ()
3811 {
3812 if (lookup_name_without_params.completion_mode ())
3813 {
3814 /* In completion mode, we want UPPER to point past all
3815 symbols names that have the same prefix. I.e., with
3816 these symbols, and completing "func":
3817
3818 function << lower bound
3819 function1
3820 other_function << upper bound
3821
3822 We find the upper bound by looking for the insertion
3823 point of "func"-with-last-character-incremented,
3824 i.e. "fund". */
3825 std::string after = make_sort_after_prefix_name (lang_name);
3826 if (after.empty ())
3827 return end;
3828 return std::lower_bound (lower, end, after.c_str (),
3829 lookup_compare_lower);
3830 }
3831 else
3832 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3833 } ();
3834
3835 return {lower, upper};
3836 }
3837
3838 /* See declaration. */
3839
3840 void
3841 mapped_index_base::build_name_components ()
3842 {
3843 if (!this->name_components.empty ())
3844 return;
3845
3846 this->name_components_casing = case_sensitivity;
3847 auto *name_cmp
3848 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849
3850 /* The code below only knows how to break apart components of C++
3851 symbol names (and other languages that use '::' as
3852 namespace/module separator) and Ada symbol names. */
3853 auto count = this->symbol_name_count ();
3854 for (offset_type idx = 0; idx < count; idx++)
3855 {
3856 if (this->symbol_name_slot_invalid (idx))
3857 continue;
3858
3859 const char *name = this->symbol_name_at (idx);
3860
3861 /* Add each name component to the name component table. */
3862 unsigned int previous_len = 0;
3863
3864 if (strstr (name, "::") != nullptr)
3865 {
3866 for (unsigned int current_len = cp_find_first_component (name);
3867 name[current_len] != '\0';
3868 current_len += cp_find_first_component (name + current_len))
3869 {
3870 gdb_assert (name[current_len] == ':');
3871 this->name_components.push_back ({previous_len, idx});
3872 /* Skip the '::'. */
3873 current_len += 2;
3874 previous_len = current_len;
3875 }
3876 }
3877 else
3878 {
3879 /* Handle the Ada encoded (aka mangled) form here. */
3880 for (const char *iter = strstr (name, "__");
3881 iter != nullptr;
3882 iter = strstr (iter, "__"))
3883 {
3884 this->name_components.push_back ({previous_len, idx});
3885 iter += 2;
3886 previous_len = iter - name;
3887 }
3888 }
3889
3890 this->name_components.push_back ({previous_len, idx});
3891 }
3892
3893 /* Sort name_components elements by name. */
3894 auto name_comp_compare = [&] (const name_component &left,
3895 const name_component &right)
3896 {
3897 const char *left_qualified = this->symbol_name_at (left.idx);
3898 const char *right_qualified = this->symbol_name_at (right.idx);
3899
3900 const char *left_name = left_qualified + left.name_offset;
3901 const char *right_name = right_qualified + right.name_offset;
3902
3903 return name_cmp (left_name, right_name) < 0;
3904 };
3905
3906 std::sort (this->name_components.begin (),
3907 this->name_components.end (),
3908 name_comp_compare);
3909 }
3910
3911 /* Helper for dw2_expand_symtabs_matching that works with a
3912 mapped_index_base instead of the containing objfile. This is split
3913 to a separate function in order to be able to unit test the
3914 name_components matching using a mock mapped_index_base. For each
3915 symbol name that matches, calls MATCH_CALLBACK, passing it the
3916 symbol's index in the mapped_index_base symbol table. */
3917
3918 static void
3919 dw2_expand_symtabs_matching_symbol
3920 (mapped_index_base &index,
3921 const lookup_name_info &lookup_name_in,
3922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3923 enum search_domain kind,
3924 gdb::function_view<bool (offset_type)> match_callback)
3925 {
3926 lookup_name_info lookup_name_without_params
3927 = lookup_name_in.make_ignore_params ();
3928
3929 /* Build the symbol name component sorted vector, if we haven't
3930 yet. */
3931 index.build_name_components ();
3932
3933 /* The same symbol may appear more than once in the range though.
3934 E.g., if we're looking for symbols that complete "w", and we have
3935 a symbol named "w1::w2", we'll find the two name components for
3936 that same symbol in the range. To be sure we only call the
3937 callback once per symbol, we first collect the symbol name
3938 indexes that matched in a temporary vector and ignore
3939 duplicates. */
3940 std::vector<offset_type> matches;
3941
3942 struct name_and_matcher
3943 {
3944 symbol_name_matcher_ftype *matcher;
3945 const char *name;
3946
3947 bool operator== (const name_and_matcher &other) const
3948 {
3949 return matcher == other.matcher && strcmp (name, other.name) == 0;
3950 }
3951 };
3952
3953 /* A vector holding all the different symbol name matchers, for all
3954 languages. */
3955 std::vector<name_and_matcher> matchers;
3956
3957 for (int i = 0; i < nr_languages; i++)
3958 {
3959 enum language lang_e = (enum language) i;
3960
3961 const language_defn *lang = language_def (lang_e);
3962 symbol_name_matcher_ftype *name_matcher
3963 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964
3965 name_and_matcher key {
3966 name_matcher,
3967 lookup_name_without_params.language_lookup_name (lang_e)
3968 };
3969
3970 /* Don't insert the same comparison routine more than once.
3971 Note that we do this linear walk. This is not a problem in
3972 practice because the number of supported languages is
3973 low. */
3974 if (std::find (matchers.begin (), matchers.end (), key)
3975 != matchers.end ())
3976 continue;
3977 matchers.push_back (std::move (key));
3978
3979 auto bounds
3980 = index.find_name_components_bounds (lookup_name_without_params,
3981 lang_e);
3982
3983 /* Now for each symbol name in range, check to see if we have a name
3984 match, and if so, call the MATCH_CALLBACK callback. */
3985
3986 for (; bounds.first != bounds.second; ++bounds.first)
3987 {
3988 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989
3990 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3991 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3992 continue;
3993
3994 matches.push_back (bounds.first->idx);
3995 }
3996 }
3997
3998 std::sort (matches.begin (), matches.end ());
3999
4000 /* Finally call the callback, once per match. */
4001 ULONGEST prev = -1;
4002 for (offset_type idx : matches)
4003 {
4004 if (prev != idx)
4005 {
4006 if (!match_callback (idx))
4007 break;
4008 prev = idx;
4009 }
4010 }
4011
4012 /* Above we use a type wider than idx's for 'prev', since 0 and
4013 (offset_type)-1 are both possible values. */
4014 static_assert (sizeof (prev) > sizeof (offset_type), "");
4015 }
4016
4017 #if GDB_SELF_TEST
4018
4019 namespace selftests { namespace dw2_expand_symtabs_matching {
4020
4021 /* A mock .gdb_index/.debug_names-like name index table, enough to
4022 exercise dw2_expand_symtabs_matching_symbol, which works with the
4023 mapped_index_base interface. Builds an index from the symbol list
4024 passed as parameter to the constructor. */
4025 class mock_mapped_index : public mapped_index_base
4026 {
4027 public:
4028 mock_mapped_index (gdb::array_view<const char *> symbols)
4029 : m_symbol_table (symbols)
4030 {}
4031
4032 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033
4034 /* Return the number of names in the symbol table. */
4035 size_t symbol_name_count () const override
4036 {
4037 return m_symbol_table.size ();
4038 }
4039
4040 /* Get the name of the symbol at IDX in the symbol table. */
4041 const char *symbol_name_at (offset_type idx) const override
4042 {
4043 return m_symbol_table[idx];
4044 }
4045
4046 private:
4047 gdb::array_view<const char *> m_symbol_table;
4048 };
4049
4050 /* Convenience function that converts a NULL pointer to a "<null>"
4051 string, to pass to print routines. */
4052
4053 static const char *
4054 string_or_null (const char *str)
4055 {
4056 return str != NULL ? str : "<null>";
4057 }
4058
4059 /* Check if a lookup_name_info built from
4060 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4061 index. EXPECTED_LIST is the list of expected matches, in expected
4062 matching order. If no match expected, then an empty list is
4063 specified. Returns true on success. On failure prints a warning
4064 indicating the file:line that failed, and returns false. */
4065
4066 static bool
4067 check_match (const char *file, int line,
4068 mock_mapped_index &mock_index,
4069 const char *name, symbol_name_match_type match_type,
4070 bool completion_mode,
4071 std::initializer_list<const char *> expected_list)
4072 {
4073 lookup_name_info lookup_name (name, match_type, completion_mode);
4074
4075 bool matched = true;
4076
4077 auto mismatch = [&] (const char *expected_str,
4078 const char *got)
4079 {
4080 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4081 "expected=\"%s\", got=\"%s\"\n"),
4082 file, line,
4083 (match_type == symbol_name_match_type::FULL
4084 ? "FULL" : "WILD"),
4085 name, string_or_null (expected_str), string_or_null (got));
4086 matched = false;
4087 };
4088
4089 auto expected_it = expected_list.begin ();
4090 auto expected_end = expected_list.end ();
4091
4092 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 NULL, ALL_DOMAIN,
4094 [&] (offset_type idx)
4095 {
4096 const char *matched_name = mock_index.symbol_name_at (idx);
4097 const char *expected_str
4098 = expected_it == expected_end ? NULL : *expected_it++;
4099
4100 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4101 mismatch (expected_str, matched_name);
4102 return true;
4103 });
4104
4105 const char *expected_str
4106 = expected_it == expected_end ? NULL : *expected_it++;
4107 if (expected_str != NULL)
4108 mismatch (expected_str, NULL);
4109
4110 return matched;
4111 }
4112
4113 /* The symbols added to the mock mapped_index for testing (in
4114 canonical form). */
4115 static const char *test_symbols[] = {
4116 "function",
4117 "std::bar",
4118 "std::zfunction",
4119 "std::zfunction2",
4120 "w1::w2",
4121 "ns::foo<char*>",
4122 "ns::foo<int>",
4123 "ns::foo<long>",
4124 "ns2::tmpl<int>::foo2",
4125 "(anonymous namespace)::A::B::C",
4126
4127 /* These are used to check that the increment-last-char in the
4128 matching algorithm for completion doesn't match "t1_fund" when
4129 completing "t1_func". */
4130 "t1_func",
4131 "t1_func1",
4132 "t1_fund",
4133 "t1_fund1",
4134
4135 /* A UTF-8 name with multi-byte sequences to make sure that
4136 cp-name-parser understands this as a single identifier ("função"
4137 is "function" in PT). */
4138 u8"u8função",
4139
4140 /* \377 (0xff) is Latin1 'ÿ'. */
4141 "yfunc\377",
4142
4143 /* \377 (0xff) is Latin1 'ÿ'. */
4144 "\377",
4145 "\377\377123",
4146
4147 /* A name with all sorts of complications. Starts with "z" to make
4148 it easier for the completion tests below. */
4149 #define Z_SYM_NAME \
4150 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4151 "::tuple<(anonymous namespace)::ui*, " \
4152 "std::default_delete<(anonymous namespace)::ui>, void>"
4153
4154 Z_SYM_NAME
4155 };
4156
4157 /* Returns true if the mapped_index_base::find_name_component_bounds
4158 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4159 in completion mode. */
4160
4161 static bool
4162 check_find_bounds_finds (mapped_index_base &index,
4163 const char *search_name,
4164 gdb::array_view<const char *> expected_syms)
4165 {
4166 lookup_name_info lookup_name (search_name,
4167 symbol_name_match_type::FULL, true);
4168
4169 auto bounds = index.find_name_components_bounds (lookup_name,
4170 language_cplus);
4171
4172 size_t distance = std::distance (bounds.first, bounds.second);
4173 if (distance != expected_syms.size ())
4174 return false;
4175
4176 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 {
4178 auto nc_elem = bounds.first + exp_elem;
4179 const char *qualified = index.symbol_name_at (nc_elem->idx);
4180 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4181 return false;
4182 }
4183
4184 return true;
4185 }
4186
4187 /* Test the lower-level mapped_index::find_name_component_bounds
4188 method. */
4189
4190 static void
4191 test_mapped_index_find_name_component_bounds ()
4192 {
4193 mock_mapped_index mock_index (test_symbols);
4194
4195 mock_index.build_name_components ();
4196
4197 /* Test the lower-level mapped_index::find_name_component_bounds
4198 method in completion mode. */
4199 {
4200 static const char *expected_syms[] = {
4201 "t1_func",
4202 "t1_func1",
4203 };
4204
4205 SELF_CHECK (check_find_bounds_finds (mock_index,
4206 "t1_func", expected_syms));
4207 }
4208
4209 /* Check that the increment-last-char in the name matching algorithm
4210 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 {
4212 static const char *expected_syms1[] = {
4213 "\377",
4214 "\377\377123",
4215 };
4216 SELF_CHECK (check_find_bounds_finds (mock_index,
4217 "\377", expected_syms1));
4218
4219 static const char *expected_syms2[] = {
4220 "\377\377123",
4221 };
4222 SELF_CHECK (check_find_bounds_finds (mock_index,
4223 "\377\377", expected_syms2));
4224 }
4225 }
4226
4227 /* Test dw2_expand_symtabs_matching_symbol. */
4228
4229 static void
4230 test_dw2_expand_symtabs_matching_symbol ()
4231 {
4232 mock_mapped_index mock_index (test_symbols);
4233
4234 /* We let all tests run until the end even if some fails, for debug
4235 convenience. */
4236 bool any_mismatch = false;
4237
4238 /* Create the expected symbols list (an initializer_list). Needed
4239 because lists have commas, and we need to pass them to CHECK,
4240 which is a macro. */
4241 #define EXPECT(...) { __VA_ARGS__ }
4242
4243 /* Wrapper for check_match that passes down the current
4244 __FILE__/__LINE__. */
4245 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4246 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 mock_index, \
4248 NAME, MATCH_TYPE, COMPLETION_MODE, \
4249 EXPECTED_LIST)
4250
4251 /* Identity checks. */
4252 for (const char *sym : test_symbols)
4253 {
4254 /* Should be able to match all existing symbols. */
4255 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4256 EXPECT (sym));
4257
4258 /* Should be able to match all existing symbols with
4259 parameters. */
4260 std::string with_params = std::string (sym) + "(int)";
4261 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4262 EXPECT (sym));
4263
4264 /* Should be able to match all existing symbols with
4265 parameters and qualifiers. */
4266 with_params = std::string (sym) + " ( int ) const";
4267 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4268 EXPECT (sym));
4269
4270 /* This should really find sym, but cp-name-parser.y doesn't
4271 know about lvalue/rvalue qualifiers yet. */
4272 with_params = std::string (sym) + " ( int ) &&";
4273 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4274 {});
4275 }
4276
4277 /* Check that the name matching algorithm for completion doesn't get
4278 confused with Latin1 'ÿ' / 0xff. */
4279 {
4280 static const char str[] = "\377";
4281 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4282 EXPECT ("\377", "\377\377123"));
4283 }
4284
4285 /* Check that the increment-last-char in the matching algorithm for
4286 completion doesn't match "t1_fund" when completing "t1_func". */
4287 {
4288 static const char str[] = "t1_func";
4289 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4290 EXPECT ("t1_func", "t1_func1"));
4291 }
4292
4293 /* Check that completion mode works at each prefix of the expected
4294 symbol name. */
4295 {
4296 static const char str[] = "function(int)";
4297 size_t len = strlen (str);
4298 std::string lookup;
4299
4300 for (size_t i = 1; i < len; i++)
4301 {
4302 lookup.assign (str, i);
4303 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4304 EXPECT ("function"));
4305 }
4306 }
4307
4308 /* While "w" is a prefix of both components, the match function
4309 should still only be called once. */
4310 {
4311 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 EXPECT ("w1::w2"));
4313 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4314 EXPECT ("w1::w2"));
4315 }
4316
4317 /* Same, with a "complicated" symbol. */
4318 {
4319 static const char str[] = Z_SYM_NAME;
4320 size_t len = strlen (str);
4321 std::string lookup;
4322
4323 for (size_t i = 1; i < len; i++)
4324 {
4325 lookup.assign (str, i);
4326 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4327 EXPECT (Z_SYM_NAME));
4328 }
4329 }
4330
4331 /* In FULL mode, an incomplete symbol doesn't match. */
4332 {
4333 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4334 {});
4335 }
4336
4337 /* A complete symbol with parameters matches any overload, since the
4338 index has no overload info. */
4339 {
4340 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4341 EXPECT ("std::zfunction", "std::zfunction2"));
4342 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 }
4347
4348 /* Check that whitespace is ignored appropriately. A symbol with a
4349 template argument list. */
4350 {
4351 static const char expected[] = "ns::foo<int>";
4352 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 EXPECT (expected));
4354 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4355 EXPECT (expected));
4356 }
4357
4358 /* Check that whitespace is ignored appropriately. A symbol with a
4359 template argument list that includes a pointer. */
4360 {
4361 static const char expected[] = "ns::foo<char*>";
4362 /* Try both completion and non-completion modes. */
4363 static const bool completion_mode[2] = {false, true};
4364 for (size_t i = 0; i < 2; i++)
4365 {
4366 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4367 completion_mode[i], EXPECT (expected));
4368 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4369 completion_mode[i], EXPECT (expected));
4370
4371 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4372 completion_mode[i], EXPECT (expected));
4373 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4374 completion_mode[i], EXPECT (expected));
4375 }
4376 }
4377
4378 {
4379 /* Check method qualifiers are ignored. */
4380 static const char expected[] = "ns::foo<char*>";
4381 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4382 symbol_name_match_type::FULL, true, EXPECT (expected));
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("foo < char * > ( int ) const",
4386 symbol_name_match_type::WILD, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) &&",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 }
4390
4391 /* Test lookup names that don't match anything. */
4392 {
4393 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4394 {});
4395
4396 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4397 {});
4398 }
4399
4400 /* Some wild matching tests, exercising "(anonymous namespace)",
4401 which should not be confused with a parameter list. */
4402 {
4403 static const char *syms[] = {
4404 "A::B::C",
4405 "B::C",
4406 "C",
4407 "A :: B :: C ( int )",
4408 "B :: C ( int )",
4409 "C ( int )",
4410 };
4411
4412 for (const char *s : syms)
4413 {
4414 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4415 EXPECT ("(anonymous namespace)::A::B::C"));
4416 }
4417 }
4418
4419 {
4420 static const char expected[] = "ns2::tmpl<int>::foo2";
4421 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 EXPECT (expected));
4423 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 }
4426
4427 SELF_CHECK (!any_mismatch);
4428
4429 #undef EXPECT
4430 #undef CHECK_MATCH
4431 }
4432
4433 static void
4434 run_test ()
4435 {
4436 test_mapped_index_find_name_component_bounds ();
4437 test_dw2_expand_symtabs_matching_symbol ();
4438 }
4439
4440 }} // namespace selftests::dw2_expand_symtabs_matching
4441
4442 #endif /* GDB_SELF_TEST */
4443
4444 /* If FILE_MATCHER is NULL or if PER_CU has
4445 dwarf2_per_cu_quick_data::MARK set (see
4446 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4447 EXPANSION_NOTIFY on it. */
4448
4449 static void
4450 dw2_expand_symtabs_matching_one
4451 (struct dwarf2_per_cu_data *per_cu,
4452 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4453 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 {
4455 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 {
4457 bool symtab_was_null
4458 = (per_cu->v.quick->compunit_symtab == NULL);
4459
4460 dw2_instantiate_symtab (per_cu, false);
4461
4462 if (expansion_notify != NULL
4463 && symtab_was_null
4464 && per_cu->v.quick->compunit_symtab != NULL)
4465 expansion_notify (per_cu->v.quick->compunit_symtab);
4466 }
4467 }
4468
4469 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4470 matched, to expand corresponding CUs that were marked. IDX is the
4471 index of the symbol name that matched. */
4472
4473 static void
4474 dw2_expand_marked_cus
4475 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4476 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4477 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4478 search_domain kind)
4479 {
4480 offset_type *vec, vec_len, vec_idx;
4481 bool global_seen = false;
4482 mapped_index &index = *dwarf2_per_objfile->index_table;
4483
4484 vec = (offset_type *) (index.constant_pool
4485 + MAYBE_SWAP (index.symbol_table[idx].vec));
4486 vec_len = MAYBE_SWAP (vec[0]);
4487 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 {
4489 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4490 /* This value is only valid for index versions >= 7. */
4491 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4492 gdb_index_symbol_kind symbol_kind =
4493 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4494 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4495 /* Only check the symbol attributes if they're present.
4496 Indices prior to version 7 don't record them,
4497 and indices >= 7 may elide them for certain symbols
4498 (gold does this). */
4499 int attrs_valid =
4500 (index.version >= 7
4501 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502
4503 /* Work around gold/15646. */
4504 if (attrs_valid)
4505 {
4506 if (!is_static && global_seen)
4507 continue;
4508 if (!is_static)
4509 global_seen = true;
4510 }
4511
4512 /* Only check the symbol's kind if it has one. */
4513 if (attrs_valid)
4514 {
4515 switch (kind)
4516 {
4517 case VARIABLES_DOMAIN:
4518 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4519 continue;
4520 break;
4521 case FUNCTIONS_DOMAIN:
4522 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4523 continue;
4524 break;
4525 case TYPES_DOMAIN:
4526 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4527 continue;
4528 break;
4529 case MODULES_DOMAIN:
4530 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4531 continue;
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* Don't crash on bad data. */
4539 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4540 + dwarf2_per_objfile->all_type_units.size ()))
4541 {
4542 complaint (_(".gdb_index entry has bad CU index"
4543 " [in module %s]"),
4544 objfile_name (dwarf2_per_objfile->objfile));
4545 continue;
4546 }
4547
4548 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4549 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4550 expansion_notify);
4551 }
4552 }
4553
4554 /* If FILE_MATCHER is non-NULL, set all the
4555 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4556 that match FILE_MATCHER. */
4557
4558 static void
4559 dw_expand_symtabs_matching_file_matcher
4560 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4561 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 {
4563 if (file_matcher == NULL)
4564 return;
4565
4566 objfile *const objfile = dwarf2_per_objfile->objfile;
4567
4568 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 htab_eq_pointer,
4570 NULL, xcalloc, xfree));
4571 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 htab_eq_pointer,
4573 NULL, xcalloc, xfree));
4574
4575 /* The rule is CUs specify all the files, including those used by
4576 any TU, so there's no need to scan TUs here. */
4577
4578 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4579 {
4580 QUIT;
4581
4582 per_cu->v.quick->mark = 0;
4583
4584 /* We only need to look at symtabs not already expanded. */
4585 if (per_cu->v.quick->compunit_symtab)
4586 continue;
4587
4588 quick_file_names *file_data = dw2_get_file_names (per_cu);
4589 if (file_data == NULL)
4590 continue;
4591
4592 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 continue;
4594 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 {
4596 per_cu->v.quick->mark = 1;
4597 continue;
4598 }
4599
4600 for (int j = 0; j < file_data->num_file_names; ++j)
4601 {
4602 const char *this_real_name;
4603
4604 if (file_matcher (file_data->file_names[j], false))
4605 {
4606 per_cu->v.quick->mark = 1;
4607 break;
4608 }
4609
4610 /* Before we invoke realpath, which can get expensive when many
4611 files are involved, do a quick comparison of the basenames. */
4612 if (!basenames_may_differ
4613 && !file_matcher (lbasename (file_data->file_names[j]),
4614 true))
4615 continue;
4616
4617 this_real_name = dw2_get_real_path (objfile, file_data, j);
4618 if (file_matcher (this_real_name, false))
4619 {
4620 per_cu->v.quick->mark = 1;
4621 break;
4622 }
4623 }
4624
4625 void **slot = htab_find_slot (per_cu->v.quick->mark
4626 ? visited_found.get ()
4627 : visited_not_found.get (),
4628 file_data, INSERT);
4629 *slot = file_data;
4630 }
4631 }
4632
4633 static void
4634 dw2_expand_symtabs_matching
4635 (struct objfile *objfile,
4636 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4637 const lookup_name_info *lookup_name,
4638 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4639 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4640 enum search_domain kind)
4641 {
4642 struct dwarf2_per_objfile *dwarf2_per_objfile
4643 = get_dwarf2_per_objfile (objfile);
4644
4645 /* index_table is NULL if OBJF_READNOW. */
4646 if (!dwarf2_per_objfile->index_table)
4647 return;
4648
4649 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650
4651 if (symbol_matcher == NULL && lookup_name == NULL)
4652 {
4653 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4654 {
4655 QUIT;
4656
4657 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4658 expansion_notify);
4659 }
4660 return;
4661 }
4662
4663 mapped_index &index = *dwarf2_per_objfile->index_table;
4664
4665 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4666 symbol_matcher,
4667 kind, [&] (offset_type idx)
4668 {
4669 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4670 expansion_notify, kind);
4671 return true;
4672 });
4673 }
4674
4675 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4676 symtab. */
4677
4678 static struct compunit_symtab *
4679 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4680 CORE_ADDR pc)
4681 {
4682 int i;
4683
4684 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4685 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4686 return cust;
4687
4688 if (cust->includes == NULL)
4689 return NULL;
4690
4691 for (i = 0; cust->includes[i]; ++i)
4692 {
4693 struct compunit_symtab *s = cust->includes[i];
4694
4695 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4696 if (s != NULL)
4697 return s;
4698 }
4699
4700 return NULL;
4701 }
4702
4703 static struct compunit_symtab *
4704 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4705 struct bound_minimal_symbol msymbol,
4706 CORE_ADDR pc,
4707 struct obj_section *section,
4708 int warn_if_readin)
4709 {
4710 struct dwarf2_per_cu_data *data;
4711 struct compunit_symtab *result;
4712
4713 if (!objfile->partial_symtabs->psymtabs_addrmap)
4714 return NULL;
4715
4716 CORE_ADDR baseaddr = objfile->text_section_offset ();
4717 data = (struct dwarf2_per_cu_data *) addrmap_find
4718 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4719 if (!data)
4720 return NULL;
4721
4722 if (warn_if_readin && data->v.quick->compunit_symtab)
4723 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4724 paddress (objfile->arch (), pc));
4725
4726 result
4727 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4728 false),
4729 pc);
4730 gdb_assert (result != NULL);
4731 return result;
4732 }
4733
4734 static void
4735 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4736 void *data, int need_fullname)
4737 {
4738 struct dwarf2_per_objfile *dwarf2_per_objfile
4739 = get_dwarf2_per_objfile (objfile);
4740
4741 if (!dwarf2_per_objfile->filenames_cache)
4742 {
4743 dwarf2_per_objfile->filenames_cache.emplace ();
4744
4745 htab_up visited (htab_create_alloc (10,
4746 htab_hash_pointer, htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748
4749 /* The rule is CUs specify all the files, including those used
4750 by any TU, so there's no need to scan TUs here. We can
4751 ignore file names coming from already-expanded CUs. */
4752
4753 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 {
4755 if (per_cu->v.quick->compunit_symtab)
4756 {
4757 void **slot = htab_find_slot (visited.get (),
4758 per_cu->v.quick->file_names,
4759 INSERT);
4760
4761 *slot = per_cu->v.quick->file_names;
4762 }
4763 }
4764
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4766 {
4767 /* We only need to look at symtabs not already expanded. */
4768 if (per_cu->v.quick->compunit_symtab)
4769 continue;
4770
4771 quick_file_names *file_data = dw2_get_file_names (per_cu);
4772 if (file_data == NULL)
4773 continue;
4774
4775 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4776 if (*slot)
4777 {
4778 /* Already visited. */
4779 continue;
4780 }
4781 *slot = file_data;
4782
4783 for (int j = 0; j < file_data->num_file_names; ++j)
4784 {
4785 const char *filename = file_data->file_names[j];
4786 dwarf2_per_objfile->filenames_cache->seen (filename);
4787 }
4788 }
4789 }
4790
4791 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4792 {
4793 gdb::unique_xmalloc_ptr<char> this_real_name;
4794
4795 if (need_fullname)
4796 this_real_name = gdb_realpath (filename);
4797 (*fun) (filename, this_real_name.get (), data);
4798 });
4799 }
4800
4801 static int
4802 dw2_has_symbols (struct objfile *objfile)
4803 {
4804 return 1;
4805 }
4806
4807 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4808 {
4809 dw2_has_symbols,
4810 dw2_find_last_source_symtab,
4811 dw2_forget_cached_source_info,
4812 dw2_map_symtabs_matching_filename,
4813 dw2_lookup_symbol,
4814 NULL,
4815 dw2_print_stats,
4816 dw2_dump,
4817 dw2_expand_symtabs_for_function,
4818 dw2_expand_all_symtabs,
4819 dw2_expand_symtabs_with_fullname,
4820 dw2_map_matching_symbols,
4821 dw2_expand_symtabs_matching,
4822 dw2_find_pc_sect_compunit_symtab,
4823 NULL,
4824 dw2_map_symbol_filenames
4825 };
4826
4827 /* DWARF-5 debug_names reader. */
4828
4829 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4830 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4831
4832 /* A helper function that reads the .debug_names section in SECTION
4833 and fills in MAP. FILENAME is the name of the file containing the
4834 section; it is used for error reporting.
4835
4836 Returns true if all went well, false otherwise. */
4837
4838 static bool
4839 read_debug_names_from_section (struct objfile *objfile,
4840 const char *filename,
4841 struct dwarf2_section_info *section,
4842 mapped_debug_names &map)
4843 {
4844 if (section->empty ())
4845 return false;
4846
4847 /* Older elfutils strip versions could keep the section in the main
4848 executable while splitting it for the separate debug info file. */
4849 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4850 return false;
4851
4852 section->read (objfile);
4853
4854 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4855
4856 const gdb_byte *addr = section->buffer;
4857
4858 bfd *const abfd = section->get_bfd_owner ();
4859
4860 unsigned int bytes_read;
4861 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4862 addr += bytes_read;
4863
4864 map.dwarf5_is_dwarf64 = bytes_read != 4;
4865 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4866 if (bytes_read + length != section->size)
4867 {
4868 /* There may be multiple per-CU indices. */
4869 warning (_("Section .debug_names in %s length %s does not match "
4870 "section length %s, ignoring .debug_names."),
4871 filename, plongest (bytes_read + length),
4872 pulongest (section->size));
4873 return false;
4874 }
4875
4876 /* The version number. */
4877 uint16_t version = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (version != 5)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported version %d, "
4882 "ignoring .debug_names."),
4883 filename, version);
4884 return false;
4885 }
4886
4887 /* Padding. */
4888 uint16_t padding = read_2_bytes (abfd, addr);
4889 addr += 2;
4890 if (padding != 0)
4891 {
4892 warning (_("Section .debug_names in %s has unsupported padding %d, "
4893 "ignoring .debug_names."),
4894 filename, padding);
4895 return false;
4896 }
4897
4898 /* comp_unit_count - The number of CUs in the CU list. */
4899 map.cu_count = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* local_type_unit_count - The number of TUs in the local TU
4903 list. */
4904 map.tu_count = read_4_bytes (abfd, addr);
4905 addr += 4;
4906
4907 /* foreign_type_unit_count - The number of TUs in the foreign TU
4908 list. */
4909 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4910 addr += 4;
4911 if (foreign_tu_count != 0)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4914 "ignoring .debug_names."),
4915 filename, static_cast<unsigned long> (foreign_tu_count));
4916 return false;
4917 }
4918
4919 /* bucket_count - The number of hash buckets in the hash lookup
4920 table. */
4921 map.bucket_count = read_4_bytes (abfd, addr);
4922 addr += 4;
4923
4924 /* name_count - The number of unique names in the index. */
4925 map.name_count = read_4_bytes (abfd, addr);
4926 addr += 4;
4927
4928 /* abbrev_table_size - The size in bytes of the abbreviations
4929 table. */
4930 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4931 addr += 4;
4932
4933 /* augmentation_string_size - The size in bytes of the augmentation
4934 string. This value is rounded up to a multiple of 4. */
4935 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4936 addr += 4;
4937 map.augmentation_is_gdb = ((augmentation_string_size
4938 == sizeof (dwarf5_augmentation))
4939 && memcmp (addr, dwarf5_augmentation,
4940 sizeof (dwarf5_augmentation)) == 0);
4941 augmentation_string_size += (-augmentation_string_size) & 3;
4942 addr += augmentation_string_size;
4943
4944 /* List of CUs */
4945 map.cu_table_reordered = addr;
4946 addr += map.cu_count * map.offset_size;
4947
4948 /* List of Local TUs */
4949 map.tu_table_reordered = addr;
4950 addr += map.tu_count * map.offset_size;
4951
4952 /* Hash Lookup Table */
4953 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4954 addr += map.bucket_count * 4;
4955 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4956 addr += map.name_count * 4;
4957
4958 /* Name Table */
4959 map.name_table_string_offs_reordered = addr;
4960 addr += map.name_count * map.offset_size;
4961 map.name_table_entry_offs_reordered = addr;
4962 addr += map.name_count * map.offset_size;
4963
4964 const gdb_byte *abbrev_table_start = addr;
4965 for (;;)
4966 {
4967 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4968 addr += bytes_read;
4969 if (index_num == 0)
4970 break;
4971
4972 const auto insertpair
4973 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4974 if (!insertpair.second)
4975 {
4976 warning (_("Section .debug_names in %s has duplicate index %s, "
4977 "ignoring .debug_names."),
4978 filename, pulongest (index_num));
4979 return false;
4980 }
4981 mapped_debug_names::index_val &indexval = insertpair.first->second;
4982 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4983 addr += bytes_read;
4984
4985 for (;;)
4986 {
4987 mapped_debug_names::index_val::attr attr;
4988 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4989 addr += bytes_read;
4990 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4991 addr += bytes_read;
4992 if (attr.form == DW_FORM_implicit_const)
4993 {
4994 attr.implicit_const = read_signed_leb128 (abfd, addr,
4995 &bytes_read);
4996 addr += bytes_read;
4997 }
4998 if (attr.dw_idx == 0 && attr.form == 0)
4999 break;
5000 indexval.attr_vec.push_back (std::move (attr));
5001 }
5002 }
5003 if (addr != abbrev_table_start + abbrev_table_size)
5004 {
5005 warning (_("Section .debug_names in %s has abbreviation_table "
5006 "of size %s vs. written as %u, ignoring .debug_names."),
5007 filename, plongest (addr - abbrev_table_start),
5008 abbrev_table_size);
5009 return false;
5010 }
5011 map.entry_pool = addr;
5012
5013 return true;
5014 }
5015
5016 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5017 list. */
5018
5019 static void
5020 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5021 const mapped_debug_names &map,
5022 dwarf2_section_info &section,
5023 bool is_dwz)
5024 {
5025 sect_offset sect_off_prev;
5026 for (uint32_t i = 0; i <= map.cu_count; ++i)
5027 {
5028 sect_offset sect_off_next;
5029 if (i < map.cu_count)
5030 {
5031 sect_off_next
5032 = (sect_offset) (extract_unsigned_integer
5033 (map.cu_table_reordered + i * map.offset_size,
5034 map.offset_size,
5035 map.dwarf5_byte_order));
5036 }
5037 else
5038 sect_off_next = (sect_offset) section.size;
5039 if (i >= 1)
5040 {
5041 const ULONGEST length = sect_off_next - sect_off_prev;
5042 dwarf2_per_cu_data *per_cu
5043 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5044 sect_off_prev, length);
5045 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5046 }
5047 sect_off_prev = sect_off_next;
5048 }
5049 }
5050
5051 /* Read the CU list from the mapped index, and use it to create all
5052 the CU objects for this dwarf2_per_objfile. */
5053
5054 static void
5055 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5056 const mapped_debug_names &map,
5057 const mapped_debug_names &dwz_map)
5058 {
5059 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5060 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5061
5062 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5063 dwarf2_per_objfile->info,
5064 false /* is_dwz */);
5065
5066 if (dwz_map.cu_count == 0)
5067 return;
5068
5069 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5070 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5071 true /* is_dwz */);
5072 }
5073
5074 /* Read .debug_names. If everything went ok, initialize the "quick"
5075 elements of all the CUs and return true. Otherwise, return false. */
5076
5077 static bool
5078 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5079 {
5080 std::unique_ptr<mapped_debug_names> map
5081 (new mapped_debug_names (dwarf2_per_objfile));
5082 mapped_debug_names dwz_map (dwarf2_per_objfile);
5083 struct objfile *objfile = dwarf2_per_objfile->objfile;
5084
5085 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5086 &dwarf2_per_objfile->debug_names,
5087 *map))
5088 return false;
5089
5090 /* Don't use the index if it's empty. */
5091 if (map->name_count == 0)
5092 return false;
5093
5094 /* If there is a .dwz file, read it so we can get its CU list as
5095 well. */
5096 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5097 if (dwz != NULL)
5098 {
5099 if (!read_debug_names_from_section (objfile,
5100 bfd_get_filename (dwz->dwz_bfd.get ()),
5101 &dwz->debug_names, dwz_map))
5102 {
5103 warning (_("could not read '.debug_names' section from %s; skipping"),
5104 bfd_get_filename (dwz->dwz_bfd.get ()));
5105 return false;
5106 }
5107 }
5108
5109 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5110
5111 if (map->tu_count != 0)
5112 {
5113 /* We can only handle a single .debug_types when we have an
5114 index. */
5115 if (dwarf2_per_objfile->types.size () != 1)
5116 return false;
5117
5118 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5119
5120 create_signatured_type_table_from_debug_names
5121 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5122 }
5123
5124 create_addrmap_from_aranges (dwarf2_per_objfile,
5125 &dwarf2_per_objfile->debug_aranges);
5126
5127 dwarf2_per_objfile->debug_names_table = std::move (map);
5128 dwarf2_per_objfile->using_index = 1;
5129 dwarf2_per_objfile->quick_file_names_table =
5130 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5131
5132 return true;
5133 }
5134
5135 /* Type used to manage iterating over all CUs looking for a symbol for
5136 .debug_names. */
5137
5138 class dw2_debug_names_iterator
5139 {
5140 public:
5141 dw2_debug_names_iterator (const mapped_debug_names &map,
5142 gdb::optional<block_enum> block_index,
5143 domain_enum domain,
5144 const char *name)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, name))
5147 {}
5148
5149 dw2_debug_names_iterator (const mapped_debug_names &map,
5150 search_domain search, uint32_t namei)
5151 : m_map (map),
5152 m_search (search),
5153 m_addr (find_vec_in_debug_names (map, namei))
5154 {}
5155
5156 dw2_debug_names_iterator (const mapped_debug_names &map,
5157 block_enum block_index, domain_enum domain,
5158 uint32_t namei)
5159 : m_map (map), m_block_index (block_index), m_domain (domain),
5160 m_addr (find_vec_in_debug_names (map, namei))
5161 {}
5162
5163 /* Return the next matching CU or NULL if there are no more. */
5164 dwarf2_per_cu_data *next ();
5165
5166 private:
5167 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5168 const char *name);
5169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5170 uint32_t namei);
5171
5172 /* The internalized form of .debug_names. */
5173 const mapped_debug_names &m_map;
5174
5175 /* If set, only look for symbols that match that block. Valid values are
5176 GLOBAL_BLOCK and STATIC_BLOCK. */
5177 const gdb::optional<block_enum> m_block_index;
5178
5179 /* The kind of symbol we're looking for. */
5180 const domain_enum m_domain = UNDEF_DOMAIN;
5181 const search_domain m_search = ALL_DOMAIN;
5182
5183 /* The list of CUs from the index entry of the symbol, or NULL if
5184 not found. */
5185 const gdb_byte *m_addr;
5186 };
5187
5188 const char *
5189 mapped_debug_names::namei_to_name (uint32_t namei) const
5190 {
5191 const ULONGEST namei_string_offs
5192 = extract_unsigned_integer ((name_table_string_offs_reordered
5193 + namei * offset_size),
5194 offset_size,
5195 dwarf5_byte_order);
5196 return read_indirect_string_at_offset (dwarf2_per_objfile,
5197 namei_string_offs);
5198 }
5199
5200 /* Find a slot in .debug_names for the object named NAME. If NAME is
5201 found, return pointer to its pool data. If NAME cannot be found,
5202 return NULL. */
5203
5204 const gdb_byte *
5205 dw2_debug_names_iterator::find_vec_in_debug_names
5206 (const mapped_debug_names &map, const char *name)
5207 {
5208 int (*cmp) (const char *, const char *);
5209
5210 gdb::unique_xmalloc_ptr<char> without_params;
5211 if (current_language->la_language == language_cplus
5212 || current_language->la_language == language_fortran
5213 || current_language->la_language == language_d)
5214 {
5215 /* NAME is already canonical. Drop any qualifiers as
5216 .debug_names does not contain any. */
5217
5218 if (strchr (name, '(') != NULL)
5219 {
5220 without_params = cp_remove_params (name);
5221 if (without_params != NULL)
5222 name = without_params.get ();
5223 }
5224 }
5225
5226 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5227
5228 const uint32_t full_hash = dwarf5_djb_hash (name);
5229 uint32_t namei
5230 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5231 (map.bucket_table_reordered
5232 + (full_hash % map.bucket_count)), 4,
5233 map.dwarf5_byte_order);
5234 if (namei == 0)
5235 return NULL;
5236 --namei;
5237 if (namei >= map.name_count)
5238 {
5239 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5240 "[in module %s]"),
5241 namei, map.name_count,
5242 objfile_name (map.dwarf2_per_objfile->objfile));
5243 return NULL;
5244 }
5245
5246 for (;;)
5247 {
5248 const uint32_t namei_full_hash
5249 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5250 (map.hash_table_reordered + namei), 4,
5251 map.dwarf5_byte_order);
5252 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5253 return NULL;
5254
5255 if (full_hash == namei_full_hash)
5256 {
5257 const char *const namei_string = map.namei_to_name (namei);
5258
5259 #if 0 /* An expensive sanity check. */
5260 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5261 {
5262 complaint (_("Wrong .debug_names hash for string at index %u "
5263 "[in module %s]"),
5264 namei, objfile_name (dwarf2_per_objfile->objfile));
5265 return NULL;
5266 }
5267 #endif
5268
5269 if (cmp (namei_string, name) == 0)
5270 {
5271 const ULONGEST namei_entry_offs
5272 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5273 + namei * map.offset_size),
5274 map.offset_size, map.dwarf5_byte_order);
5275 return map.entry_pool + namei_entry_offs;
5276 }
5277 }
5278
5279 ++namei;
5280 if (namei >= map.name_count)
5281 return NULL;
5282 }
5283 }
5284
5285 const gdb_byte *
5286 dw2_debug_names_iterator::find_vec_in_debug_names
5287 (const mapped_debug_names &map, uint32_t namei)
5288 {
5289 if (namei >= map.name_count)
5290 {
5291 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5292 "[in module %s]"),
5293 namei, map.name_count,
5294 objfile_name (map.dwarf2_per_objfile->objfile));
5295 return NULL;
5296 }
5297
5298 const ULONGEST namei_entry_offs
5299 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5300 + namei * map.offset_size),
5301 map.offset_size, map.dwarf5_byte_order);
5302 return map.entry_pool + namei_entry_offs;
5303 }
5304
5305 /* See dw2_debug_names_iterator. */
5306
5307 dwarf2_per_cu_data *
5308 dw2_debug_names_iterator::next ()
5309 {
5310 if (m_addr == NULL)
5311 return NULL;
5312
5313 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 bfd *const abfd = objfile->obfd;
5316
5317 again:
5318
5319 unsigned int bytes_read;
5320 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5321 m_addr += bytes_read;
5322 if (abbrev == 0)
5323 return NULL;
5324
5325 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5326 if (indexval_it == m_map.abbrev_map.cend ())
5327 {
5328 complaint (_("Wrong .debug_names undefined abbrev code %s "
5329 "[in module %s]"),
5330 pulongest (abbrev), objfile_name (objfile));
5331 return NULL;
5332 }
5333 const mapped_debug_names::index_val &indexval = indexval_it->second;
5334 enum class symbol_linkage {
5335 unknown,
5336 static_,
5337 extern_,
5338 } symbol_linkage_ = symbol_linkage::unknown;
5339 dwarf2_per_cu_data *per_cu = NULL;
5340 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5341 {
5342 ULONGEST ull;
5343 switch (attr.form)
5344 {
5345 case DW_FORM_implicit_const:
5346 ull = attr.implicit_const;
5347 break;
5348 case DW_FORM_flag_present:
5349 ull = 1;
5350 break;
5351 case DW_FORM_udata:
5352 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5353 m_addr += bytes_read;
5354 break;
5355 default:
5356 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5357 dwarf_form_name (attr.form),
5358 objfile_name (objfile));
5359 return NULL;
5360 }
5361 switch (attr.dw_idx)
5362 {
5363 case DW_IDX_compile_unit:
5364 /* Don't crash on bad data. */
5365 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5366 {
5367 complaint (_(".debug_names entry has bad CU index %s"
5368 " [in module %s]"),
5369 pulongest (ull),
5370 objfile_name (dwarf2_per_objfile->objfile));
5371 continue;
5372 }
5373 per_cu = dwarf2_per_objfile->get_cutu (ull);
5374 break;
5375 case DW_IDX_type_unit:
5376 /* Don't crash on bad data. */
5377 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5378 {
5379 complaint (_(".debug_names entry has bad TU index %s"
5380 " [in module %s]"),
5381 pulongest (ull),
5382 objfile_name (dwarf2_per_objfile->objfile));
5383 continue;
5384 }
5385 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5386 break;
5387 case DW_IDX_GNU_internal:
5388 if (!m_map.augmentation_is_gdb)
5389 break;
5390 symbol_linkage_ = symbol_linkage::static_;
5391 break;
5392 case DW_IDX_GNU_external:
5393 if (!m_map.augmentation_is_gdb)
5394 break;
5395 symbol_linkage_ = symbol_linkage::extern_;
5396 break;
5397 }
5398 }
5399
5400 /* Skip if already read in. */
5401 if (per_cu->v.quick->compunit_symtab)
5402 goto again;
5403
5404 /* Check static vs global. */
5405 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5406 {
5407 const bool want_static = *m_block_index == STATIC_BLOCK;
5408 const bool symbol_is_static =
5409 symbol_linkage_ == symbol_linkage::static_;
5410 if (want_static != symbol_is_static)
5411 goto again;
5412 }
5413
5414 /* Match dw2_symtab_iter_next, symbol_kind
5415 and debug_names::psymbol_tag. */
5416 switch (m_domain)
5417 {
5418 case VAR_DOMAIN:
5419 switch (indexval.dwarf_tag)
5420 {
5421 case DW_TAG_variable:
5422 case DW_TAG_subprogram:
5423 /* Some types are also in VAR_DOMAIN. */
5424 case DW_TAG_typedef:
5425 case DW_TAG_structure_type:
5426 break;
5427 default:
5428 goto again;
5429 }
5430 break;
5431 case STRUCT_DOMAIN:
5432 switch (indexval.dwarf_tag)
5433 {
5434 case DW_TAG_typedef:
5435 case DW_TAG_structure_type:
5436 break;
5437 default:
5438 goto again;
5439 }
5440 break;
5441 case LABEL_DOMAIN:
5442 switch (indexval.dwarf_tag)
5443 {
5444 case 0:
5445 case DW_TAG_variable:
5446 break;
5447 default:
5448 goto again;
5449 }
5450 break;
5451 case MODULE_DOMAIN:
5452 switch (indexval.dwarf_tag)
5453 {
5454 case DW_TAG_module:
5455 break;
5456 default:
5457 goto again;
5458 }
5459 break;
5460 default:
5461 break;
5462 }
5463
5464 /* Match dw2_expand_symtabs_matching, symbol_kind and
5465 debug_names::psymbol_tag. */
5466 switch (m_search)
5467 {
5468 case VARIABLES_DOMAIN:
5469 switch (indexval.dwarf_tag)
5470 {
5471 case DW_TAG_variable:
5472 break;
5473 default:
5474 goto again;
5475 }
5476 break;
5477 case FUNCTIONS_DOMAIN:
5478 switch (indexval.dwarf_tag)
5479 {
5480 case DW_TAG_subprogram:
5481 break;
5482 default:
5483 goto again;
5484 }
5485 break;
5486 case TYPES_DOMAIN:
5487 switch (indexval.dwarf_tag)
5488 {
5489 case DW_TAG_typedef:
5490 case DW_TAG_structure_type:
5491 break;
5492 default:
5493 goto again;
5494 }
5495 break;
5496 case MODULES_DOMAIN:
5497 switch (indexval.dwarf_tag)
5498 {
5499 case DW_TAG_module:
5500 break;
5501 default:
5502 goto again;
5503 }
5504 default:
5505 break;
5506 }
5507
5508 return per_cu;
5509 }
5510
5511 static struct compunit_symtab *
5512 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5513 const char *name, domain_enum domain)
5514 {
5515 struct dwarf2_per_objfile *dwarf2_per_objfile
5516 = get_dwarf2_per_objfile (objfile);
5517
5518 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5519 if (!mapp)
5520 {
5521 /* index is NULL if OBJF_READNOW. */
5522 return NULL;
5523 }
5524 const auto &map = *mapp;
5525
5526 dw2_debug_names_iterator iter (map, block_index, domain, name);
5527
5528 struct compunit_symtab *stab_best = NULL;
5529 struct dwarf2_per_cu_data *per_cu;
5530 while ((per_cu = iter.next ()) != NULL)
5531 {
5532 struct symbol *sym, *with_opaque = NULL;
5533 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5534 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5535 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5536
5537 sym = block_find_symbol (block, name, domain,
5538 block_find_non_opaque_type_preferred,
5539 &with_opaque);
5540
5541 /* Some caution must be observed with overloaded functions and
5542 methods, since the index will not contain any overload
5543 information (but NAME might contain it). */
5544
5545 if (sym != NULL
5546 && strcmp_iw (sym->search_name (), name) == 0)
5547 return stab;
5548 if (with_opaque != NULL
5549 && strcmp_iw (with_opaque->search_name (), name) == 0)
5550 stab_best = stab;
5551
5552 /* Keep looking through other CUs. */
5553 }
5554
5555 return stab_best;
5556 }
5557
5558 /* This dumps minimal information about .debug_names. It is called
5559 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5560 uses this to verify that .debug_names has been loaded. */
5561
5562 static void
5563 dw2_debug_names_dump (struct objfile *objfile)
5564 {
5565 struct dwarf2_per_objfile *dwarf2_per_objfile
5566 = get_dwarf2_per_objfile (objfile);
5567
5568 gdb_assert (dwarf2_per_objfile->using_index);
5569 printf_filtered (".debug_names:");
5570 if (dwarf2_per_objfile->debug_names_table)
5571 printf_filtered (" exists\n");
5572 else
5573 printf_filtered (" faked for \"readnow\"\n");
5574 printf_filtered ("\n");
5575 }
5576
5577 static void
5578 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5579 const char *func_name)
5580 {
5581 struct dwarf2_per_objfile *dwarf2_per_objfile
5582 = get_dwarf2_per_objfile (objfile);
5583
5584 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5585 if (dwarf2_per_objfile->debug_names_table)
5586 {
5587 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5588
5589 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5590
5591 struct dwarf2_per_cu_data *per_cu;
5592 while ((per_cu = iter.next ()) != NULL)
5593 dw2_instantiate_symtab (per_cu, false);
5594 }
5595 }
5596
5597 static void
5598 dw2_debug_names_map_matching_symbols
5599 (struct objfile *objfile,
5600 const lookup_name_info &name, domain_enum domain,
5601 int global,
5602 gdb::function_view<symbol_found_callback_ftype> callback,
5603 symbol_compare_ftype *ordered_compare)
5604 {
5605 struct dwarf2_per_objfile *dwarf2_per_objfile
5606 = get_dwarf2_per_objfile (objfile);
5607
5608 /* debug_names_table is NULL if OBJF_READNOW. */
5609 if (!dwarf2_per_objfile->debug_names_table)
5610 return;
5611
5612 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5613 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5614
5615 const char *match_name = name.ada ().lookup_name ().c_str ();
5616 auto matcher = [&] (const char *symname)
5617 {
5618 if (ordered_compare == nullptr)
5619 return true;
5620 return ordered_compare (symname, match_name) == 0;
5621 };
5622
5623 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5624 [&] (offset_type namei)
5625 {
5626 /* The name was matched, now expand corresponding CUs that were
5627 marked. */
5628 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5629
5630 struct dwarf2_per_cu_data *per_cu;
5631 while ((per_cu = iter.next ()) != NULL)
5632 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5633 return true;
5634 });
5635
5636 /* It's a shame we couldn't do this inside the
5637 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5638 that have already been expanded. Instead, this loop matches what
5639 the psymtab code does. */
5640 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5641 {
5642 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5643 if (cust != nullptr)
5644 {
5645 const struct block *block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5647 if (!iterate_over_symbols_terminated (block, name,
5648 domain, callback))
5649 break;
5650 }
5651 }
5652 }
5653
5654 static void
5655 dw2_debug_names_expand_symtabs_matching
5656 (struct objfile *objfile,
5657 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5658 const lookup_name_info *lookup_name,
5659 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5660 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5661 enum search_domain kind)
5662 {
5663 struct dwarf2_per_objfile *dwarf2_per_objfile
5664 = get_dwarf2_per_objfile (objfile);
5665
5666 /* debug_names_table is NULL if OBJF_READNOW. */
5667 if (!dwarf2_per_objfile->debug_names_table)
5668 return;
5669
5670 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5671
5672 if (symbol_matcher == NULL && lookup_name == NULL)
5673 {
5674 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5675 {
5676 QUIT;
5677
5678 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5679 expansion_notify);
5680 }
5681 return;
5682 }
5683
5684 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5685
5686 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5687 symbol_matcher,
5688 kind, [&] (offset_type namei)
5689 {
5690 /* The name was matched, now expand corresponding CUs that were
5691 marked. */
5692 dw2_debug_names_iterator iter (map, kind, namei);
5693
5694 struct dwarf2_per_cu_data *per_cu;
5695 while ((per_cu = iter.next ()) != NULL)
5696 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5697 expansion_notify);
5698 return true;
5699 });
5700 }
5701
5702 const struct quick_symbol_functions dwarf2_debug_names_functions =
5703 {
5704 dw2_has_symbols,
5705 dw2_find_last_source_symtab,
5706 dw2_forget_cached_source_info,
5707 dw2_map_symtabs_matching_filename,
5708 dw2_debug_names_lookup_symbol,
5709 NULL,
5710 dw2_print_stats,
5711 dw2_debug_names_dump,
5712 dw2_debug_names_expand_symtabs_for_function,
5713 dw2_expand_all_symtabs,
5714 dw2_expand_symtabs_with_fullname,
5715 dw2_debug_names_map_matching_symbols,
5716 dw2_debug_names_expand_symtabs_matching,
5717 dw2_find_pc_sect_compunit_symtab,
5718 NULL,
5719 dw2_map_symbol_filenames
5720 };
5721
5722 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5723 to either a dwarf2_per_objfile or dwz_file object. */
5724
5725 template <typename T>
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5728 {
5729 dwarf2_section_info *section = &section_owner->gdb_index;
5730
5731 if (section->empty ())
5732 return {};
5733
5734 /* Older elfutils strip versions could keep the section in the main
5735 executable while splitting it for the separate debug info file. */
5736 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5737 return {};
5738
5739 section->read (obj);
5740
5741 /* dwarf2_section_info::size is a bfd_size_type, while
5742 gdb::array_view works with size_t. On 32-bit hosts, with
5743 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5744 is 32-bit. So we need an explicit narrowing conversion here.
5745 This is fine, because it's impossible to allocate or mmap an
5746 array/buffer larger than what size_t can represent. */
5747 return gdb::make_array_view (section->buffer, section->size);
5748 }
5749
5750 /* Lookup the index cache for the contents of the index associated to
5751 DWARF2_OBJ. */
5752
5753 static gdb::array_view<const gdb_byte>
5754 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5755 {
5756 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5757 if (build_id == nullptr)
5758 return {};
5759
5760 return global_index_cache.lookup_gdb_index (build_id,
5761 &dwarf2_obj->index_cache_res);
5762 }
5763
5764 /* Same as the above, but for DWZ. */
5765
5766 static gdb::array_view<const gdb_byte>
5767 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5768 {
5769 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5770 if (build_id == nullptr)
5771 return {};
5772
5773 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5774 }
5775
5776 /* See symfile.h. */
5777
5778 bool
5779 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5780 {
5781 struct dwarf2_per_objfile *dwarf2_per_objfile
5782 = get_dwarf2_per_objfile (objfile);
5783
5784 /* If we're about to read full symbols, don't bother with the
5785 indices. In this case we also don't care if some other debug
5786 format is making psymtabs, because they are all about to be
5787 expanded anyway. */
5788 if ((objfile->flags & OBJF_READNOW))
5789 {
5790 dwarf2_per_objfile->using_index = 1;
5791 create_all_comp_units (dwarf2_per_objfile);
5792 create_all_type_units (dwarf2_per_objfile);
5793 dwarf2_per_objfile->quick_file_names_table
5794 = create_quick_file_names_table
5795 (dwarf2_per_objfile->all_comp_units.size ());
5796
5797 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5798 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5799 {
5800 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5801
5802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5803 struct dwarf2_per_cu_quick_data);
5804 }
5805
5806 /* Return 1 so that gdb sees the "quick" functions. However,
5807 these functions will be no-ops because we will have expanded
5808 all symtabs. */
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5814 {
5815 *index_kind = dw_index_kind::DEBUG_NAMES;
5816 return true;
5817 }
5818
5819 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5820 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5821 get_gdb_index_contents_from_section<dwz_file>))
5822 {
5823 *index_kind = dw_index_kind::GDB_INDEX;
5824 return true;
5825 }
5826
5827 /* ... otherwise, try to find the index in the index cache. */
5828 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5829 get_gdb_index_contents_from_cache,
5830 get_gdb_index_contents_from_cache_dwz))
5831 {
5832 global_index_cache.hit ();
5833 *index_kind = dw_index_kind::GDB_INDEX;
5834 return true;
5835 }
5836
5837 global_index_cache.miss ();
5838 return false;
5839 }
5840
5841 \f
5842
5843 /* Build a partial symbol table. */
5844
5845 void
5846 dwarf2_build_psymtabs (struct objfile *objfile)
5847 {
5848 struct dwarf2_per_objfile *dwarf2_per_objfile
5849 = get_dwarf2_per_objfile (objfile);
5850
5851 init_psymbol_list (objfile, 1024);
5852
5853 try
5854 {
5855 /* This isn't really ideal: all the data we allocate on the
5856 objfile's obstack is still uselessly kept around. However,
5857 freeing it seems unsafe. */
5858 psymtab_discarder psymtabs (objfile);
5859 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5860 psymtabs.keep ();
5861
5862 /* (maybe) store an index in the cache. */
5863 global_index_cache.store (dwarf2_per_objfile);
5864 }
5865 catch (const gdb_exception_error &except)
5866 {
5867 exception_print (gdb_stderr, except);
5868 }
5869 }
5870
5871 /* Find the base address of the compilation unit for range lists and
5872 location lists. It will normally be specified by DW_AT_low_pc.
5873 In DWARF-3 draft 4, the base address could be overridden by
5874 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5875 compilation units with discontinuous ranges. */
5876
5877 static void
5878 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5879 {
5880 struct attribute *attr;
5881
5882 cu->base_address.reset ();
5883
5884 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5885 if (attr != nullptr)
5886 cu->base_address = attr->value_as_address ();
5887 else
5888 {
5889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5890 if (attr != nullptr)
5891 cu->base_address = attr->value_as_address ();
5892 }
5893 }
5894
5895 /* Helper function that returns the proper abbrev section for
5896 THIS_CU. */
5897
5898 static struct dwarf2_section_info *
5899 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5900 {
5901 struct dwarf2_section_info *abbrev;
5902 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5903
5904 if (this_cu->is_dwz)
5905 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5906 else
5907 abbrev = &dwarf2_per_objfile->abbrev;
5908
5909 return abbrev;
5910 }
5911
5912 /* Fetch the abbreviation table offset from a comp or type unit header. */
5913
5914 static sect_offset
5915 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5916 struct dwarf2_section_info *section,
5917 sect_offset sect_off)
5918 {
5919 bfd *abfd = section->get_bfd_owner ();
5920 const gdb_byte *info_ptr;
5921 unsigned int initial_length_size, offset_size;
5922 uint16_t version;
5923
5924 section->read (dwarf2_per_objfile->objfile);
5925 info_ptr = section->buffer + to_underlying (sect_off);
5926 read_initial_length (abfd, info_ptr, &initial_length_size);
5927 offset_size = initial_length_size == 4 ? 4 : 8;
5928 info_ptr += initial_length_size;
5929
5930 version = read_2_bytes (abfd, info_ptr);
5931 info_ptr += 2;
5932 if (version >= 5)
5933 {
5934 /* Skip unit type and address size. */
5935 info_ptr += 2;
5936 }
5937
5938 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5939 }
5940
5941 /* A partial symtab that is used only for include files. */
5942 struct dwarf2_include_psymtab : public partial_symtab
5943 {
5944 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5945 : partial_symtab (filename, objfile)
5946 {
5947 }
5948
5949 void read_symtab (struct objfile *objfile) override
5950 {
5951 /* It's an include file, no symbols to read for it.
5952 Everything is in the includer symtab. */
5953
5954 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5955 expansion of the includer psymtab. We use the dependencies[0] field to
5956 model the includer. But if we go the regular route of calling
5957 expand_psymtab here, and having expand_psymtab call expand_dependencies
5958 to expand the includer, we'll only use expand_psymtab on the includer
5959 (making it a non-toplevel psymtab), while if we expand the includer via
5960 another path, we'll use read_symtab (making it a toplevel psymtab).
5961 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5962 psymtab, and trigger read_symtab on the includer here directly. */
5963 includer ()->read_symtab (objfile);
5964 }
5965
5966 void expand_psymtab (struct objfile *objfile) override
5967 {
5968 /* This is not called by read_symtab, and should not be called by any
5969 expand_dependencies. */
5970 gdb_assert (false);
5971 }
5972
5973 bool readin_p () const override
5974 {
5975 return includer ()->readin_p ();
5976 }
5977
5978 struct compunit_symtab *get_compunit_symtab () const override
5979 {
5980 return nullptr;
5981 }
5982
5983 private:
5984 partial_symtab *includer () const
5985 {
5986 /* An include psymtab has exactly one dependency: the psymtab that
5987 includes it. */
5988 gdb_assert (this->number_of_dependencies == 1);
5989 return this->dependencies[0];
5990 }
5991 };
5992
5993 /* Allocate a new partial symtab for file named NAME and mark this new
5994 partial symtab as being an include of PST. */
5995
5996 static void
5997 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5998 struct objfile *objfile)
5999 {
6000 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6001
6002 if (!IS_ABSOLUTE_PATH (subpst->filename))
6003 {
6004 /* It shares objfile->objfile_obstack. */
6005 subpst->dirname = pst->dirname;
6006 }
6007
6008 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6009 subpst->dependencies[0] = pst;
6010 subpst->number_of_dependencies = 1;
6011 }
6012
6013 /* Read the Line Number Program data and extract the list of files
6014 included by the source file represented by PST. Build an include
6015 partial symtab for each of these included files. */
6016
6017 static void
6018 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6019 struct die_info *die,
6020 dwarf2_psymtab *pst)
6021 {
6022 line_header_up lh;
6023 struct attribute *attr;
6024
6025 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6026 if (attr != nullptr)
6027 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6028 if (lh == NULL)
6029 return; /* No linetable, so no includes. */
6030
6031 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6032 that we pass in the raw text_low here; that is ok because we're
6033 only decoding the line table to make include partial symtabs, and
6034 so the addresses aren't really used. */
6035 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6036 pst->raw_text_low (), 1);
6037 }
6038
6039 static hashval_t
6040 hash_signatured_type (const void *item)
6041 {
6042 const struct signatured_type *sig_type
6043 = (const struct signatured_type *) item;
6044
6045 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6046 return sig_type->signature;
6047 }
6048
6049 static int
6050 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6051 {
6052 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6053 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6054
6055 return lhs->signature == rhs->signature;
6056 }
6057
6058 /* Allocate a hash table for signatured types. */
6059
6060 static htab_up
6061 allocate_signatured_type_table ()
6062 {
6063 return htab_up (htab_create_alloc (41,
6064 hash_signatured_type,
6065 eq_signatured_type,
6066 NULL, xcalloc, xfree));
6067 }
6068
6069 /* A helper function to add a signatured type CU to a table. */
6070
6071 static int
6072 add_signatured_type_cu_to_table (void **slot, void *datum)
6073 {
6074 struct signatured_type *sigt = (struct signatured_type *) *slot;
6075 std::vector<signatured_type *> *all_type_units
6076 = (std::vector<signatured_type *> *) datum;
6077
6078 all_type_units->push_back (sigt);
6079
6080 return 1;
6081 }
6082
6083 /* A helper for create_debug_types_hash_table. Read types from SECTION
6084 and fill them into TYPES_HTAB. It will process only type units,
6085 therefore DW_UT_type. */
6086
6087 static void
6088 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6089 struct dwo_file *dwo_file,
6090 dwarf2_section_info *section, htab_up &types_htab,
6091 rcuh_kind section_kind)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_section_info *abbrev_section;
6095 bfd *abfd;
6096 const gdb_byte *info_ptr, *end_ptr;
6097
6098 abbrev_section = (dwo_file != NULL
6099 ? &dwo_file->sections.abbrev
6100 : &dwarf2_per_objfile->abbrev);
6101
6102 if (dwarf_read_debug)
6103 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6104 section->get_name (),
6105 abbrev_section->get_file_name ());
6106
6107 section->read (objfile);
6108 info_ptr = section->buffer;
6109
6110 if (info_ptr == NULL)
6111 return;
6112
6113 /* We can't set abfd until now because the section may be empty or
6114 not present, in which case the bfd is unknown. */
6115 abfd = section->get_bfd_owner ();
6116
6117 /* We don't use cutu_reader here because we don't need to read
6118 any dies: the signature is in the header. */
6119
6120 end_ptr = info_ptr + section->size;
6121 while (info_ptr < end_ptr)
6122 {
6123 struct signatured_type *sig_type;
6124 struct dwo_unit *dwo_tu;
6125 void **slot;
6126 const gdb_byte *ptr = info_ptr;
6127 struct comp_unit_head header;
6128 unsigned int length;
6129
6130 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6131
6132 /* Initialize it due to a false compiler warning. */
6133 header.signature = -1;
6134 header.type_cu_offset_in_tu = (cu_offset) -1;
6135
6136 /* We need to read the type's signature in order to build the hash
6137 table, but we don't need anything else just yet. */
6138
6139 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6140 abbrev_section, ptr, section_kind);
6141
6142 length = header.get_length ();
6143
6144 /* Skip dummy type units. */
6145 if (ptr >= info_ptr + length
6146 || peek_abbrev_code (abfd, ptr) == 0
6147 || header.unit_type != DW_UT_type)
6148 {
6149 info_ptr += length;
6150 continue;
6151 }
6152
6153 if (types_htab == NULL)
6154 {
6155 if (dwo_file)
6156 types_htab = allocate_dwo_unit_table ();
6157 else
6158 types_htab = allocate_signatured_type_table ();
6159 }
6160
6161 if (dwo_file)
6162 {
6163 sig_type = NULL;
6164 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6165 struct dwo_unit);
6166 dwo_tu->dwo_file = dwo_file;
6167 dwo_tu->signature = header.signature;
6168 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6169 dwo_tu->section = section;
6170 dwo_tu->sect_off = sect_off;
6171 dwo_tu->length = length;
6172 }
6173 else
6174 {
6175 /* N.B.: type_offset is not usable if this type uses a DWO file.
6176 The real type_offset is in the DWO file. */
6177 dwo_tu = NULL;
6178 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6179 struct signatured_type);
6180 sig_type->signature = header.signature;
6181 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6182 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6183 sig_type->per_cu.is_debug_types = 1;
6184 sig_type->per_cu.section = section;
6185 sig_type->per_cu.sect_off = sect_off;
6186 sig_type->per_cu.length = length;
6187 }
6188
6189 slot = htab_find_slot (types_htab.get (),
6190 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6191 INSERT);
6192 gdb_assert (slot != NULL);
6193 if (*slot != NULL)
6194 {
6195 sect_offset dup_sect_off;
6196
6197 if (dwo_file)
6198 {
6199 const struct dwo_unit *dup_tu
6200 = (const struct dwo_unit *) *slot;
6201
6202 dup_sect_off = dup_tu->sect_off;
6203 }
6204 else
6205 {
6206 const struct signatured_type *dup_tu
6207 = (const struct signatured_type *) *slot;
6208
6209 dup_sect_off = dup_tu->per_cu.sect_off;
6210 }
6211
6212 complaint (_("debug type entry at offset %s is duplicate to"
6213 " the entry at offset %s, signature %s"),
6214 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6215 hex_string (header.signature));
6216 }
6217 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6218
6219 if (dwarf_read_debug > 1)
6220 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6221 sect_offset_str (sect_off),
6222 hex_string (header.signature));
6223
6224 info_ptr += length;
6225 }
6226 }
6227
6228 /* Create the hash table of all entries in the .debug_types
6229 (or .debug_types.dwo) section(s).
6230 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6231 otherwise it is NULL.
6232
6233 The result is a pointer to the hash table or NULL if there are no types.
6234
6235 Note: This function processes DWO files only, not DWP files. */
6236
6237 static void
6238 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6239 struct dwo_file *dwo_file,
6240 gdb::array_view<dwarf2_section_info> type_sections,
6241 htab_up &types_htab)
6242 {
6243 for (dwarf2_section_info &section : type_sections)
6244 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6245 types_htab, rcuh_kind::TYPE);
6246 }
6247
6248 /* Create the hash table of all entries in the .debug_types section,
6249 and initialize all_type_units.
6250 The result is zero if there is an error (e.g. missing .debug_types section),
6251 otherwise non-zero. */
6252
6253 static int
6254 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6255 {
6256 htab_up types_htab;
6257
6258 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6259 &dwarf2_per_objfile->info, types_htab,
6260 rcuh_kind::COMPILE);
6261 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6262 dwarf2_per_objfile->types, types_htab);
6263 if (types_htab == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types = NULL;
6266 return 0;
6267 }
6268
6269 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6270
6271 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6272 dwarf2_per_objfile->all_type_units.reserve
6273 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6274
6275 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6276 add_signatured_type_cu_to_table,
6277 &dwarf2_per_objfile->all_type_units);
6278
6279 return 1;
6280 }
6281
6282 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6283 If SLOT is non-NULL, it is the entry to use in the hash table.
6284 Otherwise we find one. */
6285
6286 static struct signatured_type *
6287 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6288 void **slot)
6289 {
6290 struct objfile *objfile = dwarf2_per_objfile->objfile;
6291
6292 if (dwarf2_per_objfile->all_type_units.size ()
6293 == dwarf2_per_objfile->all_type_units.capacity ())
6294 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6295
6296 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6297 struct signatured_type);
6298
6299 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6300 sig_type->signature = sig;
6301 sig_type->per_cu.is_debug_types = 1;
6302 if (dwarf2_per_objfile->using_index)
6303 {
6304 sig_type->per_cu.v.quick =
6305 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6306 struct dwarf2_per_cu_quick_data);
6307 }
6308
6309 if (slot == NULL)
6310 {
6311 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6312 sig_type, INSERT);
6313 }
6314 gdb_assert (*slot == NULL);
6315 *slot = sig_type;
6316 /* The rest of sig_type must be filled in by the caller. */
6317 return sig_type;
6318 }
6319
6320 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6321 Fill in SIG_ENTRY with DWO_ENTRY. */
6322
6323 static void
6324 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6325 struct signatured_type *sig_entry,
6326 struct dwo_unit *dwo_entry)
6327 {
6328 /* Make sure we're not clobbering something we don't expect to. */
6329 gdb_assert (! sig_entry->per_cu.queued);
6330 gdb_assert (sig_entry->per_cu.cu == NULL);
6331 if (dwarf2_per_objfile->using_index)
6332 {
6333 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6334 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6335 }
6336 else
6337 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6338 gdb_assert (sig_entry->signature == dwo_entry->signature);
6339 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6340 gdb_assert (sig_entry->type_unit_group == NULL);
6341 gdb_assert (sig_entry->dwo_unit == NULL);
6342
6343 sig_entry->per_cu.section = dwo_entry->section;
6344 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6345 sig_entry->per_cu.length = dwo_entry->length;
6346 sig_entry->per_cu.reading_dwo_directly = 1;
6347 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6348 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6349 sig_entry->dwo_unit = dwo_entry;
6350 }
6351
6352 /* Subroutine of lookup_signatured_type.
6353 If we haven't read the TU yet, create the signatured_type data structure
6354 for a TU to be read in directly from a DWO file, bypassing the stub.
6355 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6356 using .gdb_index, then when reading a CU we want to stay in the DWO file
6357 containing that CU. Otherwise we could end up reading several other DWO
6358 files (due to comdat folding) to process the transitive closure of all the
6359 mentioned TUs, and that can be slow. The current DWO file will have every
6360 type signature that it needs.
6361 We only do this for .gdb_index because in the psymtab case we already have
6362 to read all the DWOs to build the type unit groups. */
6363
6364 static struct signatured_type *
6365 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6366 {
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwo_file *dwo_file;
6370 struct dwo_unit find_dwo_entry, *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6372 void **slot;
6373
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375
6376 /* If TU skeletons have been removed then we may not have read in any
6377 TUs yet. */
6378 if (dwarf2_per_objfile->signatured_types == NULL)
6379 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6380
6381 /* We only ever need to read in one copy of a signatured type.
6382 Use the global signatured_types array to do our own comdat-folding
6383 of types. If this is the first time we're reading this TU, and
6384 the TU has an entry in .gdb_index, replace the recorded data from
6385 .gdb_index with this TU. */
6386
6387 find_sig_entry.signature = sig;
6388 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6389 &find_sig_entry, INSERT);
6390 sig_entry = (struct signatured_type *) *slot;
6391
6392 /* We can get here with the TU already read, *or* in the process of being
6393 read. Don't reassign the global entry to point to this DWO if that's
6394 the case. Also note that if the TU is already being read, it may not
6395 have come from a DWO, the program may be a mix of Fission-compiled
6396 code and non-Fission-compiled code. */
6397
6398 /* Have we already tried to read this TU?
6399 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6400 needn't exist in the global table yet). */
6401 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6402 return sig_entry;
6403
6404 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6405 dwo_unit of the TU itself. */
6406 dwo_file = cu->dwo_unit->dwo_file;
6407
6408 /* Ok, this is the first time we're reading this TU. */
6409 if (dwo_file->tus == NULL)
6410 return NULL;
6411 find_dwo_entry.signature = sig;
6412 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6413 &find_dwo_entry);
6414 if (dwo_entry == NULL)
6415 return NULL;
6416
6417 /* If the global table doesn't have an entry for this TU, add one. */
6418 if (sig_entry == NULL)
6419 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6420
6421 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6422 sig_entry->per_cu.tu_read = 1;
6423 return sig_entry;
6424 }
6425
6426 /* Subroutine of lookup_signatured_type.
6427 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6428 then try the DWP file. If the TU stub (skeleton) has been removed then
6429 it won't be in .gdb_index. */
6430
6431 static struct signatured_type *
6432 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6433 {
6434 struct dwarf2_per_objfile *dwarf2_per_objfile
6435 = cu->per_cu->dwarf2_per_objfile;
6436 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6437 struct dwo_unit *dwo_entry;
6438 struct signatured_type find_sig_entry, *sig_entry;
6439 void **slot;
6440
6441 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6442 gdb_assert (dwp_file != NULL);
6443
6444 /* If TU skeletons have been removed then we may not have read in any
6445 TUs yet. */
6446 if (dwarf2_per_objfile->signatured_types == NULL)
6447 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6448
6449 find_sig_entry.signature = sig;
6450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6451 &find_sig_entry, INSERT);
6452 sig_entry = (struct signatured_type *) *slot;
6453
6454 /* Have we already tried to read this TU?
6455 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6456 needn't exist in the global table yet). */
6457 if (sig_entry != NULL)
6458 return sig_entry;
6459
6460 if (dwp_file->tus == NULL)
6461 return NULL;
6462 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6463 sig, 1 /* is_debug_types */);
6464 if (dwo_entry == NULL)
6465 return NULL;
6466
6467 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6468 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6469
6470 return sig_entry;
6471 }
6472
6473 /* Lookup a signature based type for DW_FORM_ref_sig8.
6474 Returns NULL if signature SIG is not present in the table.
6475 It is up to the caller to complain about this. */
6476
6477 static struct signatured_type *
6478 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6479 {
6480 struct dwarf2_per_objfile *dwarf2_per_objfile
6481 = cu->per_cu->dwarf2_per_objfile;
6482
6483 if (cu->dwo_unit
6484 && dwarf2_per_objfile->using_index)
6485 {
6486 /* We're in a DWO/DWP file, and we're using .gdb_index.
6487 These cases require special processing. */
6488 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6489 return lookup_dwo_signatured_type (cu, sig);
6490 else
6491 return lookup_dwp_signatured_type (cu, sig);
6492 }
6493 else
6494 {
6495 struct signatured_type find_entry, *entry;
6496
6497 if (dwarf2_per_objfile->signatured_types == NULL)
6498 return NULL;
6499 find_entry.signature = sig;
6500 entry = ((struct signatured_type *)
6501 htab_find (dwarf2_per_objfile->signatured_types.get (),
6502 &find_entry));
6503 return entry;
6504 }
6505 }
6506
6507 /* Low level DIE reading support. */
6508
6509 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6510
6511 static void
6512 init_cu_die_reader (struct die_reader_specs *reader,
6513 struct dwarf2_cu *cu,
6514 struct dwarf2_section_info *section,
6515 struct dwo_file *dwo_file,
6516 struct abbrev_table *abbrev_table)
6517 {
6518 gdb_assert (section->readin && section->buffer != NULL);
6519 reader->abfd = section->get_bfd_owner ();
6520 reader->cu = cu;
6521 reader->dwo_file = dwo_file;
6522 reader->die_section = section;
6523 reader->buffer = section->buffer;
6524 reader->buffer_end = section->buffer + section->size;
6525 reader->abbrev_table = abbrev_table;
6526 }
6527
6528 /* Subroutine of cutu_reader to simplify it.
6529 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6530 There's just a lot of work to do, and cutu_reader is big enough
6531 already.
6532
6533 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6534 from it to the DIE in the DWO. If NULL we are skipping the stub.
6535 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6536 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6537 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6538 STUB_COMP_DIR may be non-NULL.
6539 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6540 are filled in with the info of the DIE from the DWO file.
6541 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6542 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6543 kept around for at least as long as *RESULT_READER.
6544
6545 The result is non-zero if a valid (non-dummy) DIE was found. */
6546
6547 static int
6548 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6549 struct dwo_unit *dwo_unit,
6550 struct die_info *stub_comp_unit_die,
6551 const char *stub_comp_dir,
6552 struct die_reader_specs *result_reader,
6553 const gdb_byte **result_info_ptr,
6554 struct die_info **result_comp_unit_die,
6555 abbrev_table_up *result_dwo_abbrev_table)
6556 {
6557 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6558 struct objfile *objfile = dwarf2_per_objfile->objfile;
6559 struct dwarf2_cu *cu = this_cu->cu;
6560 bfd *abfd;
6561 const gdb_byte *begin_info_ptr, *info_ptr;
6562 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6563 int i,num_extra_attrs;
6564 struct dwarf2_section_info *dwo_abbrev_section;
6565 struct die_info *comp_unit_die;
6566
6567 /* At most one of these may be provided. */
6568 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6569
6570 /* These attributes aren't processed until later:
6571 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6572 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6573 referenced later. However, these attributes are found in the stub
6574 which we won't have later. In order to not impose this complication
6575 on the rest of the code, we read them here and copy them to the
6576 DWO CU/TU die. */
6577
6578 stmt_list = NULL;
6579 low_pc = NULL;
6580 high_pc = NULL;
6581 ranges = NULL;
6582 comp_dir = NULL;
6583
6584 if (stub_comp_unit_die != NULL)
6585 {
6586 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6587 DWO file. */
6588 if (! this_cu->is_debug_types)
6589 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6590 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6591 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6592 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6593 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6594
6595 cu->addr_base = stub_comp_unit_die->addr_base ();
6596
6597 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6598 here (if needed). We need the value before we can process
6599 DW_AT_ranges. */
6600 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6601 }
6602 else if (stub_comp_dir != NULL)
6603 {
6604 /* Reconstruct the comp_dir attribute to simplify the code below. */
6605 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6606 comp_dir->name = DW_AT_comp_dir;
6607 comp_dir->form = DW_FORM_string;
6608 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6609 DW_STRING (comp_dir) = stub_comp_dir;
6610 }
6611
6612 /* Set up for reading the DWO CU/TU. */
6613 cu->dwo_unit = dwo_unit;
6614 dwarf2_section_info *section = dwo_unit->section;
6615 section->read (objfile);
6616 abfd = section->get_bfd_owner ();
6617 begin_info_ptr = info_ptr = (section->buffer
6618 + to_underlying (dwo_unit->sect_off));
6619 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6620
6621 if (this_cu->is_debug_types)
6622 {
6623 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6624
6625 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6626 &cu->header, section,
6627 dwo_abbrev_section,
6628 info_ptr, rcuh_kind::TYPE);
6629 /* This is not an assert because it can be caused by bad debug info. */
6630 if (sig_type->signature != cu->header.signature)
6631 {
6632 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6633 " TU at offset %s [in module %s]"),
6634 hex_string (sig_type->signature),
6635 hex_string (cu->header.signature),
6636 sect_offset_str (dwo_unit->sect_off),
6637 bfd_get_filename (abfd));
6638 }
6639 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6640 /* For DWOs coming from DWP files, we don't know the CU length
6641 nor the type's offset in the TU until now. */
6642 dwo_unit->length = cu->header.get_length ();
6643 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6644
6645 /* Establish the type offset that can be used to lookup the type.
6646 For DWO files, we don't know it until now. */
6647 sig_type->type_offset_in_section
6648 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6649 }
6650 else
6651 {
6652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6653 &cu->header, section,
6654 dwo_abbrev_section,
6655 info_ptr, rcuh_kind::COMPILE);
6656 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6657 /* For DWOs coming from DWP files, we don't know the CU length
6658 until now. */
6659 dwo_unit->length = cu->header.get_length ();
6660 }
6661
6662 *result_dwo_abbrev_table
6663 = abbrev_table::read (objfile, dwo_abbrev_section,
6664 cu->header.abbrev_sect_off);
6665 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6666 result_dwo_abbrev_table->get ());
6667
6668 /* Read in the die, but leave space to copy over the attributes
6669 from the stub. This has the benefit of simplifying the rest of
6670 the code - all the work to maintain the illusion of a single
6671 DW_TAG_{compile,type}_unit DIE is done here. */
6672 num_extra_attrs = ((stmt_list != NULL)
6673 + (low_pc != NULL)
6674 + (high_pc != NULL)
6675 + (ranges != NULL)
6676 + (comp_dir != NULL));
6677 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6678 num_extra_attrs);
6679
6680 /* Copy over the attributes from the stub to the DIE we just read in. */
6681 comp_unit_die = *result_comp_unit_die;
6682 i = comp_unit_die->num_attrs;
6683 if (stmt_list != NULL)
6684 comp_unit_die->attrs[i++] = *stmt_list;
6685 if (low_pc != NULL)
6686 comp_unit_die->attrs[i++] = *low_pc;
6687 if (high_pc != NULL)
6688 comp_unit_die->attrs[i++] = *high_pc;
6689 if (ranges != NULL)
6690 comp_unit_die->attrs[i++] = *ranges;
6691 if (comp_dir != NULL)
6692 comp_unit_die->attrs[i++] = *comp_dir;
6693 comp_unit_die->num_attrs += num_extra_attrs;
6694
6695 if (dwarf_die_debug)
6696 {
6697 fprintf_unfiltered (gdb_stdlog,
6698 "Read die from %s@0x%x of %s:\n",
6699 section->get_name (),
6700 (unsigned) (begin_info_ptr - section->buffer),
6701 bfd_get_filename (abfd));
6702 dump_die (comp_unit_die, dwarf_die_debug);
6703 }
6704
6705 /* Skip dummy compilation units. */
6706 if (info_ptr >= begin_info_ptr + dwo_unit->length
6707 || peek_abbrev_code (abfd, info_ptr) == 0)
6708 return 0;
6709
6710 *result_info_ptr = info_ptr;
6711 return 1;
6712 }
6713
6714 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6715 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6716 signature is part of the header. */
6717 static gdb::optional<ULONGEST>
6718 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6719 {
6720 if (cu->header.version >= 5)
6721 return cu->header.signature;
6722 struct attribute *attr;
6723 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6724 if (attr == nullptr)
6725 return gdb::optional<ULONGEST> ();
6726 return DW_UNSND (attr);
6727 }
6728
6729 /* Subroutine of cutu_reader to simplify it.
6730 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6731 Returns NULL if the specified DWO unit cannot be found. */
6732
6733 static struct dwo_unit *
6734 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6735 struct die_info *comp_unit_die,
6736 const char *dwo_name)
6737 {
6738 struct dwarf2_cu *cu = this_cu->cu;
6739 struct dwo_unit *dwo_unit;
6740 const char *comp_dir;
6741
6742 gdb_assert (cu != NULL);
6743
6744 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6745 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6746 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6747
6748 if (this_cu->is_debug_types)
6749 {
6750 struct signatured_type *sig_type;
6751
6752 /* Since this_cu is the first member of struct signatured_type,
6753 we can go from a pointer to one to a pointer to the other. */
6754 sig_type = (struct signatured_type *) this_cu;
6755 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6756 }
6757 else
6758 {
6759 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6760 if (!signature.has_value ())
6761 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6762 " [in module %s]"),
6763 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6764 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6765 *signature);
6766 }
6767
6768 return dwo_unit;
6769 }
6770
6771 /* Subroutine of cutu_reader to simplify it.
6772 See it for a description of the parameters.
6773 Read a TU directly from a DWO file, bypassing the stub. */
6774
6775 void
6776 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6777 int use_existing_cu)
6778 {
6779 struct signatured_type *sig_type;
6780
6781 /* Verify we can do the following downcast, and that we have the
6782 data we need. */
6783 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6784 sig_type = (struct signatured_type *) this_cu;
6785 gdb_assert (sig_type->dwo_unit != NULL);
6786
6787 if (use_existing_cu && this_cu->cu != NULL)
6788 {
6789 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6790 /* There's no need to do the rereading_dwo_cu handling that
6791 cutu_reader does since we don't read the stub. */
6792 }
6793 else
6794 {
6795 /* If !use_existing_cu, this_cu->cu must be NULL. */
6796 gdb_assert (this_cu->cu == NULL);
6797 m_new_cu.reset (new dwarf2_cu (this_cu));
6798 }
6799
6800 /* A future optimization, if needed, would be to use an existing
6801 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6802 could share abbrev tables. */
6803
6804 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6805 NULL /* stub_comp_unit_die */,
6806 sig_type->dwo_unit->dwo_file->comp_dir,
6807 this, &info_ptr,
6808 &comp_unit_die,
6809 &m_dwo_abbrev_table) == 0)
6810 {
6811 /* Dummy die. */
6812 dummy_p = true;
6813 }
6814 }
6815
6816 /* Initialize a CU (or TU) and read its DIEs.
6817 If the CU defers to a DWO file, read the DWO file as well.
6818
6819 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6820 Otherwise the table specified in the comp unit header is read in and used.
6821 This is an optimization for when we already have the abbrev table.
6822
6823 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6824 Otherwise, a new CU is allocated with xmalloc. */
6825
6826 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6827 struct abbrev_table *abbrev_table,
6828 int use_existing_cu,
6829 bool skip_partial)
6830 : die_reader_specs {},
6831 m_this_cu (this_cu)
6832 {
6833 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6834 struct objfile *objfile = dwarf2_per_objfile->objfile;
6835 struct dwarf2_section_info *section = this_cu->section;
6836 bfd *abfd = section->get_bfd_owner ();
6837 struct dwarf2_cu *cu;
6838 const gdb_byte *begin_info_ptr;
6839 struct signatured_type *sig_type = NULL;
6840 struct dwarf2_section_info *abbrev_section;
6841 /* Non-zero if CU currently points to a DWO file and we need to
6842 reread it. When this happens we need to reread the skeleton die
6843 before we can reread the DWO file (this only applies to CUs, not TUs). */
6844 int rereading_dwo_cu = 0;
6845
6846 if (dwarf_die_debug)
6847 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6848 this_cu->is_debug_types ? "type" : "comp",
6849 sect_offset_str (this_cu->sect_off));
6850
6851 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6852 file (instead of going through the stub), short-circuit all of this. */
6853 if (this_cu->reading_dwo_directly)
6854 {
6855 /* Narrow down the scope of possibilities to have to understand. */
6856 gdb_assert (this_cu->is_debug_types);
6857 gdb_assert (abbrev_table == NULL);
6858 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6859 return;
6860 }
6861
6862 /* This is cheap if the section is already read in. */
6863 section->read (objfile);
6864
6865 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6866
6867 abbrev_section = get_abbrev_section_for_cu (this_cu);
6868
6869 if (use_existing_cu && this_cu->cu != NULL)
6870 {
6871 cu = this_cu->cu;
6872 /* If this CU is from a DWO file we need to start over, we need to
6873 refetch the attributes from the skeleton CU.
6874 This could be optimized by retrieving those attributes from when we
6875 were here the first time: the previous comp_unit_die was stored in
6876 comp_unit_obstack. But there's no data yet that we need this
6877 optimization. */
6878 if (cu->dwo_unit != NULL)
6879 rereading_dwo_cu = 1;
6880 }
6881 else
6882 {
6883 /* If !use_existing_cu, this_cu->cu must be NULL. */
6884 gdb_assert (this_cu->cu == NULL);
6885 m_new_cu.reset (new dwarf2_cu (this_cu));
6886 cu = m_new_cu.get ();
6887 }
6888
6889 /* Get the header. */
6890 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6891 {
6892 /* We already have the header, there's no need to read it in again. */
6893 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6894 }
6895 else
6896 {
6897 if (this_cu->is_debug_types)
6898 {
6899 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6900 &cu->header, section,
6901 abbrev_section, info_ptr,
6902 rcuh_kind::TYPE);
6903
6904 /* Since per_cu is the first member of struct signatured_type,
6905 we can go from a pointer to one to a pointer to the other. */
6906 sig_type = (struct signatured_type *) this_cu;
6907 gdb_assert (sig_type->signature == cu->header.signature);
6908 gdb_assert (sig_type->type_offset_in_tu
6909 == cu->header.type_cu_offset_in_tu);
6910 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6911
6912 /* LENGTH has not been set yet for type units if we're
6913 using .gdb_index. */
6914 this_cu->length = cu->header.get_length ();
6915
6916 /* Establish the type offset that can be used to lookup the type. */
6917 sig_type->type_offset_in_section =
6918 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6919
6920 this_cu->dwarf_version = cu->header.version;
6921 }
6922 else
6923 {
6924 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6925 &cu->header, section,
6926 abbrev_section,
6927 info_ptr,
6928 rcuh_kind::COMPILE);
6929
6930 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6931 gdb_assert (this_cu->length == cu->header.get_length ());
6932 this_cu->dwarf_version = cu->header.version;
6933 }
6934 }
6935
6936 /* Skip dummy compilation units. */
6937 if (info_ptr >= begin_info_ptr + this_cu->length
6938 || peek_abbrev_code (abfd, info_ptr) == 0)
6939 {
6940 dummy_p = true;
6941 return;
6942 }
6943
6944 /* If we don't have them yet, read the abbrevs for this compilation unit.
6945 And if we need to read them now, make sure they're freed when we're
6946 done. */
6947 if (abbrev_table != NULL)
6948 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6949 else
6950 {
6951 m_abbrev_table_holder
6952 = abbrev_table::read (objfile, abbrev_section,
6953 cu->header.abbrev_sect_off);
6954 abbrev_table = m_abbrev_table_holder.get ();
6955 }
6956
6957 /* Read the top level CU/TU die. */
6958 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6959 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6960
6961 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6962 {
6963 dummy_p = true;
6964 return;
6965 }
6966
6967 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6968 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6969 table from the DWO file and pass the ownership over to us. It will be
6970 referenced from READER, so we must make sure to free it after we're done
6971 with READER.
6972
6973 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6974 DWO CU, that this test will fail (the attribute will not be present). */
6975 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6976 if (dwo_name != nullptr)
6977 {
6978 struct dwo_unit *dwo_unit;
6979 struct die_info *dwo_comp_unit_die;
6980
6981 if (comp_unit_die->has_children)
6982 {
6983 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6984 " has children (offset %s) [in module %s]"),
6985 sect_offset_str (this_cu->sect_off),
6986 bfd_get_filename (abfd));
6987 }
6988 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6989 if (dwo_unit != NULL)
6990 {
6991 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6992 comp_unit_die, NULL,
6993 this, &info_ptr,
6994 &dwo_comp_unit_die,
6995 &m_dwo_abbrev_table) == 0)
6996 {
6997 /* Dummy die. */
6998 dummy_p = true;
6999 return;
7000 }
7001 comp_unit_die = dwo_comp_unit_die;
7002 }
7003 else
7004 {
7005 /* Yikes, we couldn't find the rest of the DIE, we only have
7006 the stub. A complaint has already been logged. There's
7007 not much more we can do except pass on the stub DIE to
7008 die_reader_func. We don't want to throw an error on bad
7009 debug info. */
7010 }
7011 }
7012 }
7013
7014 void
7015 cutu_reader::keep ()
7016 {
7017 /* Done, clean up. */
7018 gdb_assert (!dummy_p);
7019 if (m_new_cu != NULL)
7020 {
7021 struct dwarf2_per_objfile *dwarf2_per_objfile
7022 = m_this_cu->dwarf2_per_objfile;
7023 /* Link this CU into read_in_chain. */
7024 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7025 dwarf2_per_objfile->read_in_chain = m_this_cu;
7026 /* The chain owns it now. */
7027 m_new_cu.release ();
7028 }
7029 }
7030
7031 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7032 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7033 assumed to have already done the lookup to find the DWO file).
7034
7035 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7036 THIS_CU->is_debug_types, but nothing else.
7037
7038 We fill in THIS_CU->length.
7039
7040 THIS_CU->cu is always freed when done.
7041 This is done in order to not leave THIS_CU->cu in a state where we have
7042 to care whether it refers to the "main" CU or the DWO CU.
7043
7044 When parent_cu is passed, it is used to provide a default value for
7045 str_offsets_base and addr_base from the parent. */
7046
7047 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7048 struct dwarf2_cu *parent_cu,
7049 struct dwo_file *dwo_file)
7050 : die_reader_specs {},
7051 m_this_cu (this_cu)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7054 struct objfile *objfile = dwarf2_per_objfile->objfile;
7055 struct dwarf2_section_info *section = this_cu->section;
7056 bfd *abfd = section->get_bfd_owner ();
7057 struct dwarf2_section_info *abbrev_section;
7058 const gdb_byte *begin_info_ptr, *info_ptr;
7059
7060 if (dwarf_die_debug)
7061 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7062 this_cu->is_debug_types ? "type" : "comp",
7063 sect_offset_str (this_cu->sect_off));
7064
7065 gdb_assert (this_cu->cu == NULL);
7066
7067 abbrev_section = (dwo_file != NULL
7068 ? &dwo_file->sections.abbrev
7069 : get_abbrev_section_for_cu (this_cu));
7070
7071 /* This is cheap if the section is already read in. */
7072 section->read (objfile);
7073
7074 m_new_cu.reset (new dwarf2_cu (this_cu));
7075
7076 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7077 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7078 &m_new_cu->header, section,
7079 abbrev_section, info_ptr,
7080 (this_cu->is_debug_types
7081 ? rcuh_kind::TYPE
7082 : rcuh_kind::COMPILE));
7083
7084 if (parent_cu != nullptr)
7085 {
7086 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7087 m_new_cu->addr_base = parent_cu->addr_base;
7088 }
7089 this_cu->length = m_new_cu->header.get_length ();
7090
7091 /* Skip dummy compilation units. */
7092 if (info_ptr >= begin_info_ptr + this_cu->length
7093 || peek_abbrev_code (abfd, info_ptr) == 0)
7094 {
7095 dummy_p = true;
7096 return;
7097 }
7098
7099 m_abbrev_table_holder
7100 = abbrev_table::read (objfile, abbrev_section,
7101 m_new_cu->header.abbrev_sect_off);
7102
7103 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7104 m_abbrev_table_holder.get ());
7105 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7106 }
7107
7108 \f
7109 /* Type Unit Groups.
7110
7111 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7112 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7113 so that all types coming from the same compilation (.o file) are grouped
7114 together. A future step could be to put the types in the same symtab as
7115 the CU the types ultimately came from. */
7116
7117 static hashval_t
7118 hash_type_unit_group (const void *item)
7119 {
7120 const struct type_unit_group *tu_group
7121 = (const struct type_unit_group *) item;
7122
7123 return hash_stmt_list_entry (&tu_group->hash);
7124 }
7125
7126 static int
7127 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7128 {
7129 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7130 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7131
7132 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7133 }
7134
7135 /* Allocate a hash table for type unit groups. */
7136
7137 static htab_up
7138 allocate_type_unit_groups_table ()
7139 {
7140 return htab_up (htab_create_alloc (3,
7141 hash_type_unit_group,
7142 eq_type_unit_group,
7143 NULL, xcalloc, xfree));
7144 }
7145
7146 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7147 partial symtabs. We combine several TUs per psymtab to not let the size
7148 of any one psymtab grow too big. */
7149 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7150 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7151
7152 /* Helper routine for get_type_unit_group.
7153 Create the type_unit_group object used to hold one or more TUs. */
7154
7155 static struct type_unit_group *
7156 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7157 {
7158 struct dwarf2_per_objfile *dwarf2_per_objfile
7159 = cu->per_cu->dwarf2_per_objfile;
7160 struct objfile *objfile = dwarf2_per_objfile->objfile;
7161 struct dwarf2_per_cu_data *per_cu;
7162 struct type_unit_group *tu_group;
7163
7164 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7165 struct type_unit_group);
7166 per_cu = &tu_group->per_cu;
7167 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7168
7169 if (dwarf2_per_objfile->using_index)
7170 {
7171 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7172 struct dwarf2_per_cu_quick_data);
7173 }
7174 else
7175 {
7176 unsigned int line_offset = to_underlying (line_offset_struct);
7177 dwarf2_psymtab *pst;
7178 std::string name;
7179
7180 /* Give the symtab a useful name for debug purposes. */
7181 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7182 name = string_printf ("<type_units_%d>",
7183 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7184 else
7185 name = string_printf ("<type_units_at_0x%x>", line_offset);
7186
7187 pst = create_partial_symtab (per_cu, name.c_str ());
7188 pst->anonymous = true;
7189 }
7190
7191 tu_group->hash.dwo_unit = cu->dwo_unit;
7192 tu_group->hash.line_sect_off = line_offset_struct;
7193
7194 return tu_group;
7195 }
7196
7197 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7198 STMT_LIST is a DW_AT_stmt_list attribute. */
7199
7200 static struct type_unit_group *
7201 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7202 {
7203 struct dwarf2_per_objfile *dwarf2_per_objfile
7204 = cu->per_cu->dwarf2_per_objfile;
7205 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7206 struct type_unit_group *tu_group;
7207 void **slot;
7208 unsigned int line_offset;
7209 struct type_unit_group type_unit_group_for_lookup;
7210
7211 if (dwarf2_per_objfile->type_unit_groups == NULL)
7212 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7213
7214 /* Do we need to create a new group, or can we use an existing one? */
7215
7216 if (stmt_list)
7217 {
7218 line_offset = DW_UNSND (stmt_list);
7219 ++tu_stats->nr_symtab_sharers;
7220 }
7221 else
7222 {
7223 /* Ugh, no stmt_list. Rare, but we have to handle it.
7224 We can do various things here like create one group per TU or
7225 spread them over multiple groups to split up the expansion work.
7226 To avoid worst case scenarios (too many groups or too large groups)
7227 we, umm, group them in bunches. */
7228 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7229 | (tu_stats->nr_stmt_less_type_units
7230 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7231 ++tu_stats->nr_stmt_less_type_units;
7232 }
7233
7234 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7235 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7236 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7237 &type_unit_group_for_lookup, INSERT);
7238 if (*slot != NULL)
7239 {
7240 tu_group = (struct type_unit_group *) *slot;
7241 gdb_assert (tu_group != NULL);
7242 }
7243 else
7244 {
7245 sect_offset line_offset_struct = (sect_offset) line_offset;
7246 tu_group = create_type_unit_group (cu, line_offset_struct);
7247 *slot = tu_group;
7248 ++tu_stats->nr_symtabs;
7249 }
7250
7251 return tu_group;
7252 }
7253 \f
7254 /* Partial symbol tables. */
7255
7256 /* Create a psymtab named NAME and assign it to PER_CU.
7257
7258 The caller must fill in the following details:
7259 dirname, textlow, texthigh. */
7260
7261 static dwarf2_psymtab *
7262 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7263 {
7264 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7265 dwarf2_psymtab *pst;
7266
7267 pst = new dwarf2_psymtab (name, objfile, per_cu);
7268
7269 pst->psymtabs_addrmap_supported = true;
7270
7271 /* This is the glue that links PST into GDB's symbol API. */
7272 per_cu->v.psymtab = pst;
7273
7274 return pst;
7275 }
7276
7277 /* DIE reader function for process_psymtab_comp_unit. */
7278
7279 static void
7280 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7281 const gdb_byte *info_ptr,
7282 struct die_info *comp_unit_die,
7283 enum language pretend_language)
7284 {
7285 struct dwarf2_cu *cu = reader->cu;
7286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7287 struct gdbarch *gdbarch = objfile->arch ();
7288 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7289 CORE_ADDR baseaddr;
7290 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7291 dwarf2_psymtab *pst;
7292 enum pc_bounds_kind cu_bounds_kind;
7293 const char *filename;
7294
7295 gdb_assert (! per_cu->is_debug_types);
7296
7297 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7298
7299 /* Allocate a new partial symbol table structure. */
7300 gdb::unique_xmalloc_ptr<char> debug_filename;
7301 static const char artificial[] = "<artificial>";
7302 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7303 if (filename == NULL)
7304 filename = "";
7305 else if (strcmp (filename, artificial) == 0)
7306 {
7307 debug_filename.reset (concat (artificial, "@",
7308 sect_offset_str (per_cu->sect_off),
7309 (char *) NULL));
7310 filename = debug_filename.get ();
7311 }
7312
7313 pst = create_partial_symtab (per_cu, filename);
7314
7315 /* This must be done before calling dwarf2_build_include_psymtabs. */
7316 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7317
7318 baseaddr = objfile->text_section_offset ();
7319
7320 dwarf2_find_base_address (comp_unit_die, cu);
7321
7322 /* Possibly set the default values of LOWPC and HIGHPC from
7323 `DW_AT_ranges'. */
7324 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7325 &best_highpc, cu, pst);
7326 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7327 {
7328 CORE_ADDR low
7329 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7330 - baseaddr);
7331 CORE_ADDR high
7332 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7333 - baseaddr - 1);
7334 /* Store the contiguous range if it is not empty; it can be
7335 empty for CUs with no code. */
7336 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7337 low, high, pst);
7338 }
7339
7340 /* Check if comp unit has_children.
7341 If so, read the rest of the partial symbols from this comp unit.
7342 If not, there's no more debug_info for this comp unit. */
7343 if (comp_unit_die->has_children)
7344 {
7345 struct partial_die_info *first_die;
7346 CORE_ADDR lowpc, highpc;
7347
7348 lowpc = ((CORE_ADDR) -1);
7349 highpc = ((CORE_ADDR) 0);
7350
7351 first_die = load_partial_dies (reader, info_ptr, 1);
7352
7353 scan_partial_symbols (first_die, &lowpc, &highpc,
7354 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7355
7356 /* If we didn't find a lowpc, set it to highpc to avoid
7357 complaints from `maint check'. */
7358 if (lowpc == ((CORE_ADDR) -1))
7359 lowpc = highpc;
7360
7361 /* If the compilation unit didn't have an explicit address range,
7362 then use the information extracted from its child dies. */
7363 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7364 {
7365 best_lowpc = lowpc;
7366 best_highpc = highpc;
7367 }
7368 }
7369 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7370 best_lowpc + baseaddr)
7371 - baseaddr);
7372 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7373 best_highpc + baseaddr)
7374 - baseaddr);
7375
7376 end_psymtab_common (objfile, pst);
7377
7378 if (!cu->per_cu->imported_symtabs_empty ())
7379 {
7380 int i;
7381 int len = cu->per_cu->imported_symtabs_size ();
7382
7383 /* Fill in 'dependencies' here; we fill in 'users' in a
7384 post-pass. */
7385 pst->number_of_dependencies = len;
7386 pst->dependencies
7387 = objfile->partial_symtabs->allocate_dependencies (len);
7388 for (i = 0; i < len; ++i)
7389 {
7390 pst->dependencies[i]
7391 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7392 }
7393
7394 cu->per_cu->imported_symtabs_free ();
7395 }
7396
7397 /* Get the list of files included in the current compilation unit,
7398 and build a psymtab for each of them. */
7399 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7400
7401 if (dwarf_read_debug)
7402 fprintf_unfiltered (gdb_stdlog,
7403 "Psymtab for %s unit @%s: %s - %s"
7404 ", %d global, %d static syms\n",
7405 per_cu->is_debug_types ? "type" : "comp",
7406 sect_offset_str (per_cu->sect_off),
7407 paddress (gdbarch, pst->text_low (objfile)),
7408 paddress (gdbarch, pst->text_high (objfile)),
7409 pst->n_global_syms, pst->n_static_syms);
7410 }
7411
7412 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7413 Process compilation unit THIS_CU for a psymtab. */
7414
7415 static void
7416 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7417 bool want_partial_unit,
7418 enum language pretend_language)
7419 {
7420 /* If this compilation unit was already read in, free the
7421 cached copy in order to read it in again. This is
7422 necessary because we skipped some symbols when we first
7423 read in the compilation unit (see load_partial_dies).
7424 This problem could be avoided, but the benefit is unclear. */
7425 if (this_cu->cu != NULL)
7426 free_one_cached_comp_unit (this_cu);
7427
7428 cutu_reader reader (this_cu, NULL, 0, false);
7429
7430 switch (reader.comp_unit_die->tag)
7431 {
7432 case DW_TAG_compile_unit:
7433 this_cu->unit_type = DW_UT_compile;
7434 break;
7435 case DW_TAG_partial_unit:
7436 this_cu->unit_type = DW_UT_partial;
7437 break;
7438 default:
7439 abort ();
7440 }
7441
7442 if (reader.dummy_p)
7443 {
7444 /* Nothing. */
7445 }
7446 else if (this_cu->is_debug_types)
7447 build_type_psymtabs_reader (&reader, reader.info_ptr,
7448 reader.comp_unit_die);
7449 else if (want_partial_unit
7450 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7451 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7452 reader.comp_unit_die,
7453 pretend_language);
7454
7455 this_cu->lang = this_cu->cu->language;
7456
7457 /* Age out any secondary CUs. */
7458 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7459 }
7460
7461 /* Reader function for build_type_psymtabs. */
7462
7463 static void
7464 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7465 const gdb_byte *info_ptr,
7466 struct die_info *type_unit_die)
7467 {
7468 struct dwarf2_per_objfile *dwarf2_per_objfile
7469 = reader->cu->per_cu->dwarf2_per_objfile;
7470 struct objfile *objfile = dwarf2_per_objfile->objfile;
7471 struct dwarf2_cu *cu = reader->cu;
7472 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7473 struct signatured_type *sig_type;
7474 struct type_unit_group *tu_group;
7475 struct attribute *attr;
7476 struct partial_die_info *first_die;
7477 CORE_ADDR lowpc, highpc;
7478 dwarf2_psymtab *pst;
7479
7480 gdb_assert (per_cu->is_debug_types);
7481 sig_type = (struct signatured_type *) per_cu;
7482
7483 if (! type_unit_die->has_children)
7484 return;
7485
7486 attr = type_unit_die->attr (DW_AT_stmt_list);
7487 tu_group = get_type_unit_group (cu, attr);
7488
7489 if (tu_group->tus == nullptr)
7490 tu_group->tus = new std::vector<signatured_type *>;
7491 tu_group->tus->push_back (sig_type);
7492
7493 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7494 pst = create_partial_symtab (per_cu, "");
7495 pst->anonymous = true;
7496
7497 first_die = load_partial_dies (reader, info_ptr, 1);
7498
7499 lowpc = (CORE_ADDR) -1;
7500 highpc = (CORE_ADDR) 0;
7501 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7502
7503 end_psymtab_common (objfile, pst);
7504 }
7505
7506 /* Struct used to sort TUs by their abbreviation table offset. */
7507
7508 struct tu_abbrev_offset
7509 {
7510 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7511 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7512 {}
7513
7514 signatured_type *sig_type;
7515 sect_offset abbrev_offset;
7516 };
7517
7518 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7519
7520 static bool
7521 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7522 const struct tu_abbrev_offset &b)
7523 {
7524 return a.abbrev_offset < b.abbrev_offset;
7525 }
7526
7527 /* Efficiently read all the type units.
7528 This does the bulk of the work for build_type_psymtabs.
7529
7530 The efficiency is because we sort TUs by the abbrev table they use and
7531 only read each abbrev table once. In one program there are 200K TUs
7532 sharing 8K abbrev tables.
7533
7534 The main purpose of this function is to support building the
7535 dwarf2_per_objfile->type_unit_groups table.
7536 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7537 can collapse the search space by grouping them by stmt_list.
7538 The savings can be significant, in the same program from above the 200K TUs
7539 share 8K stmt_list tables.
7540
7541 FUNC is expected to call get_type_unit_group, which will create the
7542 struct type_unit_group if necessary and add it to
7543 dwarf2_per_objfile->type_unit_groups. */
7544
7545 static void
7546 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7547 {
7548 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7549 abbrev_table_up abbrev_table;
7550 sect_offset abbrev_offset;
7551
7552 /* It's up to the caller to not call us multiple times. */
7553 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7554
7555 if (dwarf2_per_objfile->all_type_units.empty ())
7556 return;
7557
7558 /* TUs typically share abbrev tables, and there can be way more TUs than
7559 abbrev tables. Sort by abbrev table to reduce the number of times we
7560 read each abbrev table in.
7561 Alternatives are to punt or to maintain a cache of abbrev tables.
7562 This is simpler and efficient enough for now.
7563
7564 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7565 symtab to use). Typically TUs with the same abbrev offset have the same
7566 stmt_list value too so in practice this should work well.
7567
7568 The basic algorithm here is:
7569
7570 sort TUs by abbrev table
7571 for each TU with same abbrev table:
7572 read abbrev table if first user
7573 read TU top level DIE
7574 [IWBN if DWO skeletons had DW_AT_stmt_list]
7575 call FUNC */
7576
7577 if (dwarf_read_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7579
7580 /* Sort in a separate table to maintain the order of all_type_units
7581 for .gdb_index: TU indices directly index all_type_units. */
7582 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7583 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7584
7585 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7586 sorted_by_abbrev.emplace_back
7587 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7588 sig_type->per_cu.section,
7589 sig_type->per_cu.sect_off));
7590
7591 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7592 sort_tu_by_abbrev_offset);
7593
7594 abbrev_offset = (sect_offset) ~(unsigned) 0;
7595
7596 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7597 {
7598 /* Switch to the next abbrev table if necessary. */
7599 if (abbrev_table == NULL
7600 || tu.abbrev_offset != abbrev_offset)
7601 {
7602 abbrev_offset = tu.abbrev_offset;
7603 abbrev_table =
7604 abbrev_table::read (dwarf2_per_objfile->objfile,
7605 &dwarf2_per_objfile->abbrev,
7606 abbrev_offset);
7607 ++tu_stats->nr_uniq_abbrev_tables;
7608 }
7609
7610 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7611 0, false);
7612 if (!reader.dummy_p)
7613 build_type_psymtabs_reader (&reader, reader.info_ptr,
7614 reader.comp_unit_die);
7615 }
7616 }
7617
7618 /* Print collected type unit statistics. */
7619
7620 static void
7621 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7622 {
7623 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7624
7625 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7626 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7627 dwarf2_per_objfile->all_type_units.size ());
7628 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7629 tu_stats->nr_uniq_abbrev_tables);
7630 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7631 tu_stats->nr_symtabs);
7632 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7633 tu_stats->nr_symtab_sharers);
7634 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7635 tu_stats->nr_stmt_less_type_units);
7636 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7637 tu_stats->nr_all_type_units_reallocs);
7638 }
7639
7640 /* Traversal function for build_type_psymtabs. */
7641
7642 static int
7643 build_type_psymtab_dependencies (void **slot, void *info)
7644 {
7645 struct dwarf2_per_objfile *dwarf2_per_objfile
7646 = (struct dwarf2_per_objfile *) info;
7647 struct objfile *objfile = dwarf2_per_objfile->objfile;
7648 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7649 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7650 dwarf2_psymtab *pst = per_cu->v.psymtab;
7651 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7652 int i;
7653
7654 gdb_assert (len > 0);
7655 gdb_assert (per_cu->type_unit_group_p ());
7656
7657 pst->number_of_dependencies = len;
7658 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7659 for (i = 0; i < len; ++i)
7660 {
7661 struct signatured_type *iter = tu_group->tus->at (i);
7662 gdb_assert (iter->per_cu.is_debug_types);
7663 pst->dependencies[i] = iter->per_cu.v.psymtab;
7664 iter->type_unit_group = tu_group;
7665 }
7666
7667 delete tu_group->tus;
7668 tu_group->tus = nullptr;
7669
7670 return 1;
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Build partial symbol tables for the .debug_types comp-units. */
7675
7676 static void
7677 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7678 {
7679 if (! create_all_type_units (dwarf2_per_objfile))
7680 return;
7681
7682 build_type_psymtabs_1 (dwarf2_per_objfile);
7683 }
7684
7685 /* Traversal function for process_skeletonless_type_unit.
7686 Read a TU in a DWO file and build partial symbols for it. */
7687
7688 static int
7689 process_skeletonless_type_unit (void **slot, void *info)
7690 {
7691 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7692 struct dwarf2_per_objfile *dwarf2_per_objfile
7693 = (struct dwarf2_per_objfile *) info;
7694 struct signatured_type find_entry, *entry;
7695
7696 /* If this TU doesn't exist in the global table, add it and read it in. */
7697
7698 if (dwarf2_per_objfile->signatured_types == NULL)
7699 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7700
7701 find_entry.signature = dwo_unit->signature;
7702 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7703 &find_entry, INSERT);
7704 /* If we've already seen this type there's nothing to do. What's happening
7705 is we're doing our own version of comdat-folding here. */
7706 if (*slot != NULL)
7707 return 1;
7708
7709 /* This does the job that create_all_type_units would have done for
7710 this TU. */
7711 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7712 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7713 *slot = entry;
7714
7715 /* This does the job that build_type_psymtabs_1 would have done. */
7716 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7717 if (!reader.dummy_p)
7718 build_type_psymtabs_reader (&reader, reader.info_ptr,
7719 reader.comp_unit_die);
7720
7721 return 1;
7722 }
7723
7724 /* Traversal function for process_skeletonless_type_units. */
7725
7726 static int
7727 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7728 {
7729 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7730
7731 if (dwo_file->tus != NULL)
7732 htab_traverse_noresize (dwo_file->tus.get (),
7733 process_skeletonless_type_unit, info);
7734
7735 return 1;
7736 }
7737
7738 /* Scan all TUs of DWO files, verifying we've processed them.
7739 This is needed in case a TU was emitted without its skeleton.
7740 Note: This can't be done until we know what all the DWO files are. */
7741
7742 static void
7743 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7744 {
7745 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7746 if (get_dwp_file (dwarf2_per_objfile) == NULL
7747 && dwarf2_per_objfile->dwo_files != NULL)
7748 {
7749 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7750 process_dwo_file_for_skeletonless_type_units,
7751 dwarf2_per_objfile);
7752 }
7753 }
7754
7755 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7756
7757 static void
7758 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7759 {
7760 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7761 {
7762 dwarf2_psymtab *pst = per_cu->v.psymtab;
7763
7764 if (pst == NULL)
7765 continue;
7766
7767 for (int j = 0; j < pst->number_of_dependencies; ++j)
7768 {
7769 /* Set the 'user' field only if it is not already set. */
7770 if (pst->dependencies[j]->user == NULL)
7771 pst->dependencies[j]->user = pst;
7772 }
7773 }
7774 }
7775
7776 /* Build the partial symbol table by doing a quick pass through the
7777 .debug_info and .debug_abbrev sections. */
7778
7779 static void
7780 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783
7784 if (dwarf_read_debug)
7785 {
7786 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7787 objfile_name (objfile));
7788 }
7789
7790 scoped_restore restore_reading_psyms
7791 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7792 true);
7793
7794 dwarf2_per_objfile->info.read (objfile);
7795
7796 /* Any cached compilation units will be linked by the per-objfile
7797 read_in_chain. Make sure to free them when we're done. */
7798 free_cached_comp_units freer (dwarf2_per_objfile);
7799
7800 build_type_psymtabs (dwarf2_per_objfile);
7801
7802 create_all_comp_units (dwarf2_per_objfile);
7803
7804 /* Create a temporary address map on a temporary obstack. We later
7805 copy this to the final obstack. */
7806 auto_obstack temp_obstack;
7807
7808 scoped_restore save_psymtabs_addrmap
7809 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7810 addrmap_create_mutable (&temp_obstack));
7811
7812 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7813 {
7814 if (per_cu->v.psymtab != NULL)
7815 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7816 continue;
7817 process_psymtab_comp_unit (per_cu, false, language_minimal);
7818 }
7819
7820 /* This has to wait until we read the CUs, we need the list of DWOs. */
7821 process_skeletonless_type_units (dwarf2_per_objfile);
7822
7823 /* Now that all TUs have been processed we can fill in the dependencies. */
7824 if (dwarf2_per_objfile->type_unit_groups != NULL)
7825 {
7826 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7827 build_type_psymtab_dependencies, dwarf2_per_objfile);
7828 }
7829
7830 if (dwarf_read_debug)
7831 print_tu_stats (dwarf2_per_objfile);
7832
7833 set_partial_user (dwarf2_per_objfile);
7834
7835 objfile->partial_symtabs->psymtabs_addrmap
7836 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7837 objfile->partial_symtabs->obstack ());
7838 /* At this point we want to keep the address map. */
7839 save_psymtabs_addrmap.release ();
7840
7841 if (dwarf_read_debug)
7842 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7843 objfile_name (objfile));
7844 }
7845
7846 /* Load the partial DIEs for a secondary CU into memory.
7847 This is also used when rereading a primary CU with load_all_dies. */
7848
7849 static void
7850 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7851 {
7852 cutu_reader reader (this_cu, NULL, 1, false);
7853
7854 if (!reader.dummy_p)
7855 {
7856 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7857 language_minimal);
7858
7859 /* Check if comp unit has_children.
7860 If so, read the rest of the partial symbols from this comp unit.
7861 If not, there's no more debug_info for this comp unit. */
7862 if (reader.comp_unit_die->has_children)
7863 load_partial_dies (&reader, reader.info_ptr, 0);
7864
7865 reader.keep ();
7866 }
7867 }
7868
7869 static void
7870 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7871 struct dwarf2_section_info *section,
7872 struct dwarf2_section_info *abbrev_section,
7873 unsigned int is_dwz)
7874 {
7875 const gdb_byte *info_ptr;
7876 struct objfile *objfile = dwarf2_per_objfile->objfile;
7877
7878 if (dwarf_read_debug)
7879 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7880 section->get_name (),
7881 section->get_file_name ());
7882
7883 section->read (objfile);
7884
7885 info_ptr = section->buffer;
7886
7887 while (info_ptr < section->buffer + section->size)
7888 {
7889 struct dwarf2_per_cu_data *this_cu;
7890
7891 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7892
7893 comp_unit_head cu_header;
7894 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7895 abbrev_section, info_ptr,
7896 rcuh_kind::COMPILE);
7897
7898 /* Save the compilation unit for later lookup. */
7899 if (cu_header.unit_type != DW_UT_type)
7900 {
7901 this_cu = XOBNEW (&objfile->objfile_obstack,
7902 struct dwarf2_per_cu_data);
7903 memset (this_cu, 0, sizeof (*this_cu));
7904 }
7905 else
7906 {
7907 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7908 struct signatured_type);
7909 memset (sig_type, 0, sizeof (*sig_type));
7910 sig_type->signature = cu_header.signature;
7911 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7912 this_cu = &sig_type->per_cu;
7913 }
7914 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7915 this_cu->sect_off = sect_off;
7916 this_cu->length = cu_header.length + cu_header.initial_length_size;
7917 this_cu->is_dwz = is_dwz;
7918 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7919 this_cu->section = section;
7920
7921 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7922
7923 info_ptr = info_ptr + this_cu->length;
7924 }
7925 }
7926
7927 /* Create a list of all compilation units in OBJFILE.
7928 This is only done for -readnow and building partial symtabs. */
7929
7930 static void
7931 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7932 {
7933 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7934 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7935 &dwarf2_per_objfile->abbrev, 0);
7936
7937 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7938 if (dwz != NULL)
7939 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7940 1);
7941 }
7942
7943 /* Process all loaded DIEs for compilation unit CU, starting at
7944 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7945 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7946 DW_AT_ranges). See the comments of add_partial_subprogram on how
7947 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7948
7949 static void
7950 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7951 CORE_ADDR *highpc, int set_addrmap,
7952 struct dwarf2_cu *cu)
7953 {
7954 struct partial_die_info *pdi;
7955
7956 /* Now, march along the PDI's, descending into ones which have
7957 interesting children but skipping the children of the other ones,
7958 until we reach the end of the compilation unit. */
7959
7960 pdi = first_die;
7961
7962 while (pdi != NULL)
7963 {
7964 pdi->fixup (cu);
7965
7966 /* Anonymous namespaces or modules have no name but have interesting
7967 children, so we need to look at them. Ditto for anonymous
7968 enums. */
7969
7970 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7971 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7972 || pdi->tag == DW_TAG_imported_unit
7973 || pdi->tag == DW_TAG_inlined_subroutine)
7974 {
7975 switch (pdi->tag)
7976 {
7977 case DW_TAG_subprogram:
7978 case DW_TAG_inlined_subroutine:
7979 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7980 break;
7981 case DW_TAG_constant:
7982 case DW_TAG_variable:
7983 case DW_TAG_typedef:
7984 case DW_TAG_union_type:
7985 if (!pdi->is_declaration
7986 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7987 {
7988 add_partial_symbol (pdi, cu);
7989 }
7990 break;
7991 case DW_TAG_class_type:
7992 case DW_TAG_interface_type:
7993 case DW_TAG_structure_type:
7994 if (!pdi->is_declaration)
7995 {
7996 add_partial_symbol (pdi, cu);
7997 }
7998 if ((cu->language == language_rust
7999 || cu->language == language_cplus) && pdi->has_children)
8000 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8001 set_addrmap, cu);
8002 break;
8003 case DW_TAG_enumeration_type:
8004 if (!pdi->is_declaration)
8005 add_partial_enumeration (pdi, cu);
8006 break;
8007 case DW_TAG_base_type:
8008 case DW_TAG_subrange_type:
8009 /* File scope base type definitions are added to the partial
8010 symbol table. */
8011 add_partial_symbol (pdi, cu);
8012 break;
8013 case DW_TAG_namespace:
8014 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8015 break;
8016 case DW_TAG_module:
8017 if (!pdi->is_declaration)
8018 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8019 break;
8020 case DW_TAG_imported_unit:
8021 {
8022 struct dwarf2_per_cu_data *per_cu;
8023
8024 /* For now we don't handle imported units in type units. */
8025 if (cu->per_cu->is_debug_types)
8026 {
8027 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8028 " supported in type units [in module %s]"),
8029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8030 }
8031
8032 per_cu = dwarf2_find_containing_comp_unit
8033 (pdi->d.sect_off, pdi->is_dwz,
8034 cu->per_cu->dwarf2_per_objfile);
8035
8036 /* Go read the partial unit, if needed. */
8037 if (per_cu->v.psymtab == NULL)
8038 process_psymtab_comp_unit (per_cu, true, cu->language);
8039
8040 cu->per_cu->imported_symtabs_push (per_cu);
8041 }
8042 break;
8043 case DW_TAG_imported_declaration:
8044 add_partial_symbol (pdi, cu);
8045 break;
8046 default:
8047 break;
8048 }
8049 }
8050
8051 /* If the die has a sibling, skip to the sibling. */
8052
8053 pdi = pdi->die_sibling;
8054 }
8055 }
8056
8057 /* Functions used to compute the fully scoped name of a partial DIE.
8058
8059 Normally, this is simple. For C++, the parent DIE's fully scoped
8060 name is concatenated with "::" and the partial DIE's name.
8061 Enumerators are an exception; they use the scope of their parent
8062 enumeration type, i.e. the name of the enumeration type is not
8063 prepended to the enumerator.
8064
8065 There are two complexities. One is DW_AT_specification; in this
8066 case "parent" means the parent of the target of the specification,
8067 instead of the direct parent of the DIE. The other is compilers
8068 which do not emit DW_TAG_namespace; in this case we try to guess
8069 the fully qualified name of structure types from their members'
8070 linkage names. This must be done using the DIE's children rather
8071 than the children of any DW_AT_specification target. We only need
8072 to do this for structures at the top level, i.e. if the target of
8073 any DW_AT_specification (if any; otherwise the DIE itself) does not
8074 have a parent. */
8075
8076 /* Compute the scope prefix associated with PDI's parent, in
8077 compilation unit CU. The result will be allocated on CU's
8078 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8079 field. NULL is returned if no prefix is necessary. */
8080 static const char *
8081 partial_die_parent_scope (struct partial_die_info *pdi,
8082 struct dwarf2_cu *cu)
8083 {
8084 const char *grandparent_scope;
8085 struct partial_die_info *parent, *real_pdi;
8086
8087 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8088 then this means the parent of the specification DIE. */
8089
8090 real_pdi = pdi;
8091 while (real_pdi->has_specification)
8092 {
8093 auto res = find_partial_die (real_pdi->spec_offset,
8094 real_pdi->spec_is_dwz, cu);
8095 real_pdi = res.pdi;
8096 cu = res.cu;
8097 }
8098
8099 parent = real_pdi->die_parent;
8100 if (parent == NULL)
8101 return NULL;
8102
8103 if (parent->scope_set)
8104 return parent->scope;
8105
8106 parent->fixup (cu);
8107
8108 grandparent_scope = partial_die_parent_scope (parent, cu);
8109
8110 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8111 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8112 Work around this problem here. */
8113 if (cu->language == language_cplus
8114 && parent->tag == DW_TAG_namespace
8115 && strcmp (parent->name, "::") == 0
8116 && grandparent_scope == NULL)
8117 {
8118 parent->scope = NULL;
8119 parent->scope_set = 1;
8120 return NULL;
8121 }
8122
8123 /* Nested subroutines in Fortran get a prefix. */
8124 if (pdi->tag == DW_TAG_enumerator)
8125 /* Enumerators should not get the name of the enumeration as a prefix. */
8126 parent->scope = grandparent_scope;
8127 else if (parent->tag == DW_TAG_namespace
8128 || parent->tag == DW_TAG_module
8129 || parent->tag == DW_TAG_structure_type
8130 || parent->tag == DW_TAG_class_type
8131 || parent->tag == DW_TAG_interface_type
8132 || parent->tag == DW_TAG_union_type
8133 || parent->tag == DW_TAG_enumeration_type
8134 || (cu->language == language_fortran
8135 && parent->tag == DW_TAG_subprogram
8136 && pdi->tag == DW_TAG_subprogram))
8137 {
8138 if (grandparent_scope == NULL)
8139 parent->scope = parent->name;
8140 else
8141 parent->scope = typename_concat (&cu->comp_unit_obstack,
8142 grandparent_scope,
8143 parent->name, 0, cu);
8144 }
8145 else
8146 {
8147 /* FIXME drow/2004-04-01: What should we be doing with
8148 function-local names? For partial symbols, we should probably be
8149 ignoring them. */
8150 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8151 dwarf_tag_name (parent->tag),
8152 sect_offset_str (pdi->sect_off));
8153 parent->scope = grandparent_scope;
8154 }
8155
8156 parent->scope_set = 1;
8157 return parent->scope;
8158 }
8159
8160 /* Return the fully scoped name associated with PDI, from compilation unit
8161 CU. The result will be allocated with malloc. */
8162
8163 static gdb::unique_xmalloc_ptr<char>
8164 partial_die_full_name (struct partial_die_info *pdi,
8165 struct dwarf2_cu *cu)
8166 {
8167 const char *parent_scope;
8168
8169 /* If this is a template instantiation, we can not work out the
8170 template arguments from partial DIEs. So, unfortunately, we have
8171 to go through the full DIEs. At least any work we do building
8172 types here will be reused if full symbols are loaded later. */
8173 if (pdi->has_template_arguments)
8174 {
8175 pdi->fixup (cu);
8176
8177 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8178 {
8179 struct die_info *die;
8180 struct attribute attr;
8181 struct dwarf2_cu *ref_cu = cu;
8182
8183 /* DW_FORM_ref_addr is using section offset. */
8184 attr.name = (enum dwarf_attribute) 0;
8185 attr.form = DW_FORM_ref_addr;
8186 attr.u.unsnd = to_underlying (pdi->sect_off);
8187 die = follow_die_ref (NULL, &attr, &ref_cu);
8188
8189 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8190 }
8191 }
8192
8193 parent_scope = partial_die_parent_scope (pdi, cu);
8194 if (parent_scope == NULL)
8195 return NULL;
8196 else
8197 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8198 pdi->name, 0, cu));
8199 }
8200
8201 static void
8202 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8203 {
8204 struct dwarf2_per_objfile *dwarf2_per_objfile
8205 = cu->per_cu->dwarf2_per_objfile;
8206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8207 struct gdbarch *gdbarch = objfile->arch ();
8208 CORE_ADDR addr = 0;
8209 const char *actual_name = NULL;
8210 CORE_ADDR baseaddr;
8211
8212 baseaddr = objfile->text_section_offset ();
8213
8214 gdb::unique_xmalloc_ptr<char> built_actual_name
8215 = partial_die_full_name (pdi, cu);
8216 if (built_actual_name != NULL)
8217 actual_name = built_actual_name.get ();
8218
8219 if (actual_name == NULL)
8220 actual_name = pdi->name;
8221
8222 partial_symbol psymbol;
8223 memset (&psymbol, 0, sizeof (psymbol));
8224 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8225 psymbol.ginfo.section = -1;
8226
8227 /* The code below indicates that the psymbol should be installed by
8228 setting this. */
8229 gdb::optional<psymbol_placement> where;
8230
8231 switch (pdi->tag)
8232 {
8233 case DW_TAG_inlined_subroutine:
8234 case DW_TAG_subprogram:
8235 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8236 - baseaddr);
8237 if (pdi->is_external
8238 || cu->language == language_ada
8239 || (cu->language == language_fortran
8240 && pdi->die_parent != NULL
8241 && pdi->die_parent->tag == DW_TAG_subprogram))
8242 {
8243 /* Normally, only "external" DIEs are part of the global scope.
8244 But in Ada and Fortran, we want to be able to access nested
8245 procedures globally. So all Ada and Fortran subprograms are
8246 stored in the global scope. */
8247 where = psymbol_placement::GLOBAL;
8248 }
8249 else
8250 where = psymbol_placement::STATIC;
8251
8252 psymbol.domain = VAR_DOMAIN;
8253 psymbol.aclass = LOC_BLOCK;
8254 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8255 psymbol.ginfo.value.address = addr;
8256
8257 if (pdi->main_subprogram && actual_name != NULL)
8258 set_objfile_main_name (objfile, actual_name, cu->language);
8259 break;
8260 case DW_TAG_constant:
8261 psymbol.domain = VAR_DOMAIN;
8262 psymbol.aclass = LOC_STATIC;
8263 where = (pdi->is_external
8264 ? psymbol_placement::GLOBAL
8265 : psymbol_placement::STATIC);
8266 break;
8267 case DW_TAG_variable:
8268 if (pdi->d.locdesc)
8269 addr = decode_locdesc (pdi->d.locdesc, cu);
8270
8271 if (pdi->d.locdesc
8272 && addr == 0
8273 && !dwarf2_per_objfile->has_section_at_zero)
8274 {
8275 /* A global or static variable may also have been stripped
8276 out by the linker if unused, in which case its address
8277 will be nullified; do not add such variables into partial
8278 symbol table then. */
8279 }
8280 else if (pdi->is_external)
8281 {
8282 /* Global Variable.
8283 Don't enter into the minimal symbol tables as there is
8284 a minimal symbol table entry from the ELF symbols already.
8285 Enter into partial symbol table if it has a location
8286 descriptor or a type.
8287 If the location descriptor is missing, new_symbol will create
8288 a LOC_UNRESOLVED symbol, the address of the variable will then
8289 be determined from the minimal symbol table whenever the variable
8290 is referenced.
8291 The address for the partial symbol table entry is not
8292 used by GDB, but it comes in handy for debugging partial symbol
8293 table building. */
8294
8295 if (pdi->d.locdesc || pdi->has_type)
8296 {
8297 psymbol.domain = VAR_DOMAIN;
8298 psymbol.aclass = LOC_STATIC;
8299 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8300 psymbol.ginfo.value.address = addr;
8301 where = psymbol_placement::GLOBAL;
8302 }
8303 }
8304 else
8305 {
8306 int has_loc = pdi->d.locdesc != NULL;
8307
8308 /* Static Variable. Skip symbols whose value we cannot know (those
8309 without location descriptors or constant values). */
8310 if (!has_loc && !pdi->has_const_value)
8311 return;
8312
8313 psymbol.domain = VAR_DOMAIN;
8314 psymbol.aclass = LOC_STATIC;
8315 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8316 if (has_loc)
8317 psymbol.ginfo.value.address = addr;
8318 where = psymbol_placement::STATIC;
8319 }
8320 break;
8321 case DW_TAG_typedef:
8322 case DW_TAG_base_type:
8323 case DW_TAG_subrange_type:
8324 psymbol.domain = VAR_DOMAIN;
8325 psymbol.aclass = LOC_TYPEDEF;
8326 where = psymbol_placement::STATIC;
8327 break;
8328 case DW_TAG_imported_declaration:
8329 case DW_TAG_namespace:
8330 psymbol.domain = VAR_DOMAIN;
8331 psymbol.aclass = LOC_TYPEDEF;
8332 where = psymbol_placement::GLOBAL;
8333 break;
8334 case DW_TAG_module:
8335 /* With Fortran 77 there might be a "BLOCK DATA" module
8336 available without any name. If so, we skip the module as it
8337 doesn't bring any value. */
8338 if (actual_name != nullptr)
8339 {
8340 psymbol.domain = MODULE_DOMAIN;
8341 psymbol.aclass = LOC_TYPEDEF;
8342 where = psymbol_placement::GLOBAL;
8343 }
8344 break;
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 /* Skip external references. The DWARF standard says in the section
8351 about "Structure, Union, and Class Type Entries": "An incomplete
8352 structure, union or class type is represented by a structure,
8353 union or class entry that does not have a byte size attribute
8354 and that has a DW_AT_declaration attribute." */
8355 if (!pdi->has_byte_size && pdi->is_declaration)
8356 return;
8357
8358 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8359 static vs. global. */
8360 psymbol.domain = STRUCT_DOMAIN;
8361 psymbol.aclass = LOC_TYPEDEF;
8362 where = (cu->language == language_cplus
8363 ? psymbol_placement::GLOBAL
8364 : psymbol_placement::STATIC);
8365 break;
8366 case DW_TAG_enumerator:
8367 psymbol.domain = VAR_DOMAIN;
8368 psymbol.aclass = LOC_CONST;
8369 where = (cu->language == language_cplus
8370 ? psymbol_placement::GLOBAL
8371 : psymbol_placement::STATIC);
8372 break;
8373 default:
8374 break;
8375 }
8376
8377 if (where.has_value ())
8378 {
8379 if (built_actual_name != nullptr)
8380 actual_name = objfile->intern (actual_name);
8381 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8382 psymbol.ginfo.set_linkage_name (actual_name);
8383 else
8384 {
8385 psymbol.ginfo.set_demangled_name (actual_name,
8386 &objfile->objfile_obstack);
8387 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8388 }
8389 add_psymbol_to_list (psymbol, *where, objfile);
8390 }
8391 }
8392
8393 /* Read a partial die corresponding to a namespace; also, add a symbol
8394 corresponding to that namespace to the symbol table. NAMESPACE is
8395 the name of the enclosing namespace. */
8396
8397 static void
8398 add_partial_namespace (struct partial_die_info *pdi,
8399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8400 int set_addrmap, struct dwarf2_cu *cu)
8401 {
8402 /* Add a symbol for the namespace. */
8403
8404 add_partial_symbol (pdi, cu);
8405
8406 /* Now scan partial symbols in that namespace. */
8407
8408 if (pdi->has_children)
8409 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8410 }
8411
8412 /* Read a partial die corresponding to a Fortran module. */
8413
8414 static void
8415 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8416 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8417 {
8418 /* Add a symbol for the namespace. */
8419
8420 add_partial_symbol (pdi, cu);
8421
8422 /* Now scan partial symbols in that module. */
8423
8424 if (pdi->has_children)
8425 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8426 }
8427
8428 /* Read a partial die corresponding to a subprogram or an inlined
8429 subprogram and create a partial symbol for that subprogram.
8430 When the CU language allows it, this routine also defines a partial
8431 symbol for each nested subprogram that this subprogram contains.
8432 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8433 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8434
8435 PDI may also be a lexical block, in which case we simply search
8436 recursively for subprograms defined inside that lexical block.
8437 Again, this is only performed when the CU language allows this
8438 type of definitions. */
8439
8440 static void
8441 add_partial_subprogram (struct partial_die_info *pdi,
8442 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8443 int set_addrmap, struct dwarf2_cu *cu)
8444 {
8445 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8446 {
8447 if (pdi->has_pc_info)
8448 {
8449 if (pdi->lowpc < *lowpc)
8450 *lowpc = pdi->lowpc;
8451 if (pdi->highpc > *highpc)
8452 *highpc = pdi->highpc;
8453 if (set_addrmap)
8454 {
8455 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8456 struct gdbarch *gdbarch = objfile->arch ();
8457 CORE_ADDR baseaddr;
8458 CORE_ADDR this_highpc;
8459 CORE_ADDR this_lowpc;
8460
8461 baseaddr = objfile->text_section_offset ();
8462 this_lowpc
8463 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8464 pdi->lowpc + baseaddr)
8465 - baseaddr);
8466 this_highpc
8467 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8468 pdi->highpc + baseaddr)
8469 - baseaddr);
8470 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8471 this_lowpc, this_highpc - 1,
8472 cu->per_cu->v.psymtab);
8473 }
8474 }
8475
8476 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8477 {
8478 if (!pdi->is_declaration)
8479 /* Ignore subprogram DIEs that do not have a name, they are
8480 illegal. Do not emit a complaint at this point, we will
8481 do so when we convert this psymtab into a symtab. */
8482 if (pdi->name)
8483 add_partial_symbol (pdi, cu);
8484 }
8485 }
8486
8487 if (! pdi->has_children)
8488 return;
8489
8490 if (cu->language == language_ada || cu->language == language_fortran)
8491 {
8492 pdi = pdi->die_child;
8493 while (pdi != NULL)
8494 {
8495 pdi->fixup (cu);
8496 if (pdi->tag == DW_TAG_subprogram
8497 || pdi->tag == DW_TAG_inlined_subroutine
8498 || pdi->tag == DW_TAG_lexical_block)
8499 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8500 pdi = pdi->die_sibling;
8501 }
8502 }
8503 }
8504
8505 /* Read a partial die corresponding to an enumeration type. */
8506
8507 static void
8508 add_partial_enumeration (struct partial_die_info *enum_pdi,
8509 struct dwarf2_cu *cu)
8510 {
8511 struct partial_die_info *pdi;
8512
8513 if (enum_pdi->name != NULL)
8514 add_partial_symbol (enum_pdi, cu);
8515
8516 pdi = enum_pdi->die_child;
8517 while (pdi)
8518 {
8519 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8520 complaint (_("malformed enumerator DIE ignored"));
8521 else
8522 add_partial_symbol (pdi, cu);
8523 pdi = pdi->die_sibling;
8524 }
8525 }
8526
8527 /* Return the initial uleb128 in the die at INFO_PTR. */
8528
8529 static unsigned int
8530 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8531 {
8532 unsigned int bytes_read;
8533
8534 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8535 }
8536
8537 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8538 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8539
8540 Return the corresponding abbrev, or NULL if the number is zero (indicating
8541 an empty DIE). In either case *BYTES_READ will be set to the length of
8542 the initial number. */
8543
8544 static struct abbrev_info *
8545 peek_die_abbrev (const die_reader_specs &reader,
8546 const gdb_byte *info_ptr, unsigned int *bytes_read)
8547 {
8548 dwarf2_cu *cu = reader.cu;
8549 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8550 unsigned int abbrev_number
8551 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8552
8553 if (abbrev_number == 0)
8554 return NULL;
8555
8556 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8557 if (!abbrev)
8558 {
8559 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8560 " at offset %s [in module %s]"),
8561 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8562 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8563 }
8564
8565 return abbrev;
8566 }
8567
8568 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8569 Returns a pointer to the end of a series of DIEs, terminated by an empty
8570 DIE. Any children of the skipped DIEs will also be skipped. */
8571
8572 static const gdb_byte *
8573 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8574 {
8575 while (1)
8576 {
8577 unsigned int bytes_read;
8578 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8579
8580 if (abbrev == NULL)
8581 return info_ptr + bytes_read;
8582 else
8583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8584 }
8585 }
8586
8587 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8588 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8589 abbrev corresponding to that skipped uleb128 should be passed in
8590 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8591 children. */
8592
8593 static const gdb_byte *
8594 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8595 struct abbrev_info *abbrev)
8596 {
8597 unsigned int bytes_read;
8598 struct attribute attr;
8599 bfd *abfd = reader->abfd;
8600 struct dwarf2_cu *cu = reader->cu;
8601 const gdb_byte *buffer = reader->buffer;
8602 const gdb_byte *buffer_end = reader->buffer_end;
8603 unsigned int form, i;
8604
8605 for (i = 0; i < abbrev->num_attrs; i++)
8606 {
8607 /* The only abbrev we care about is DW_AT_sibling. */
8608 if (abbrev->attrs[i].name == DW_AT_sibling)
8609 {
8610 bool ignored;
8611 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8612 &ignored);
8613 if (attr.form == DW_FORM_ref_addr)
8614 complaint (_("ignoring absolute DW_AT_sibling"));
8615 else
8616 {
8617 sect_offset off = attr.get_ref_die_offset ();
8618 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8619
8620 if (sibling_ptr < info_ptr)
8621 complaint (_("DW_AT_sibling points backwards"));
8622 else if (sibling_ptr > reader->buffer_end)
8623 reader->die_section->overflow_complaint ();
8624 else
8625 return sibling_ptr;
8626 }
8627 }
8628
8629 /* If it isn't DW_AT_sibling, skip this attribute. */
8630 form = abbrev->attrs[i].form;
8631 skip_attribute:
8632 switch (form)
8633 {
8634 case DW_FORM_ref_addr:
8635 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8636 and later it is offset sized. */
8637 if (cu->header.version == 2)
8638 info_ptr += cu->header.addr_size;
8639 else
8640 info_ptr += cu->header.offset_size;
8641 break;
8642 case DW_FORM_GNU_ref_alt:
8643 info_ptr += cu->header.offset_size;
8644 break;
8645 case DW_FORM_addr:
8646 info_ptr += cu->header.addr_size;
8647 break;
8648 case DW_FORM_data1:
8649 case DW_FORM_ref1:
8650 case DW_FORM_flag:
8651 case DW_FORM_strx1:
8652 info_ptr += 1;
8653 break;
8654 case DW_FORM_flag_present:
8655 case DW_FORM_implicit_const:
8656 break;
8657 case DW_FORM_data2:
8658 case DW_FORM_ref2:
8659 case DW_FORM_strx2:
8660 info_ptr += 2;
8661 break;
8662 case DW_FORM_strx3:
8663 info_ptr += 3;
8664 break;
8665 case DW_FORM_data4:
8666 case DW_FORM_ref4:
8667 case DW_FORM_strx4:
8668 info_ptr += 4;
8669 break;
8670 case DW_FORM_data8:
8671 case DW_FORM_ref8:
8672 case DW_FORM_ref_sig8:
8673 info_ptr += 8;
8674 break;
8675 case DW_FORM_data16:
8676 info_ptr += 16;
8677 break;
8678 case DW_FORM_string:
8679 read_direct_string (abfd, info_ptr, &bytes_read);
8680 info_ptr += bytes_read;
8681 break;
8682 case DW_FORM_sec_offset:
8683 case DW_FORM_strp:
8684 case DW_FORM_GNU_strp_alt:
8685 info_ptr += cu->header.offset_size;
8686 break;
8687 case DW_FORM_exprloc:
8688 case DW_FORM_block:
8689 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8690 info_ptr += bytes_read;
8691 break;
8692 case DW_FORM_block1:
8693 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8694 break;
8695 case DW_FORM_block2:
8696 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8697 break;
8698 case DW_FORM_block4:
8699 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8700 break;
8701 case DW_FORM_addrx:
8702 case DW_FORM_strx:
8703 case DW_FORM_sdata:
8704 case DW_FORM_udata:
8705 case DW_FORM_ref_udata:
8706 case DW_FORM_GNU_addr_index:
8707 case DW_FORM_GNU_str_index:
8708 case DW_FORM_rnglistx:
8709 case DW_FORM_loclistx:
8710 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8711 break;
8712 case DW_FORM_indirect:
8713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8714 info_ptr += bytes_read;
8715 /* We need to continue parsing from here, so just go back to
8716 the top. */
8717 goto skip_attribute;
8718
8719 default:
8720 error (_("Dwarf Error: Cannot handle %s "
8721 "in DWARF reader [in module %s]"),
8722 dwarf_form_name (form),
8723 bfd_get_filename (abfd));
8724 }
8725 }
8726
8727 if (abbrev->has_children)
8728 return skip_children (reader, info_ptr);
8729 else
8730 return info_ptr;
8731 }
8732
8733 /* Locate ORIG_PDI's sibling.
8734 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8735
8736 static const gdb_byte *
8737 locate_pdi_sibling (const struct die_reader_specs *reader,
8738 struct partial_die_info *orig_pdi,
8739 const gdb_byte *info_ptr)
8740 {
8741 /* Do we know the sibling already? */
8742
8743 if (orig_pdi->sibling)
8744 return orig_pdi->sibling;
8745
8746 /* Are there any children to deal with? */
8747
8748 if (!orig_pdi->has_children)
8749 return info_ptr;
8750
8751 /* Skip the children the long way. */
8752
8753 return skip_children (reader, info_ptr);
8754 }
8755
8756 /* Expand this partial symbol table into a full symbol table. SELF is
8757 not NULL. */
8758
8759 void
8760 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8761 {
8762 struct dwarf2_per_objfile *dwarf2_per_objfile
8763 = get_dwarf2_per_objfile (objfile);
8764
8765 gdb_assert (!readin);
8766 /* If this psymtab is constructed from a debug-only objfile, the
8767 has_section_at_zero flag will not necessarily be correct. We
8768 can get the correct value for this flag by looking at the data
8769 associated with the (presumably stripped) associated objfile. */
8770 if (objfile->separate_debug_objfile_backlink)
8771 {
8772 struct dwarf2_per_objfile *dpo_backlink
8773 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8774
8775 dwarf2_per_objfile->has_section_at_zero
8776 = dpo_backlink->has_section_at_zero;
8777 }
8778
8779 expand_psymtab (objfile);
8780
8781 process_cu_includes (dwarf2_per_objfile);
8782 }
8783 \f
8784 /* Reading in full CUs. */
8785
8786 /* Add PER_CU to the queue. */
8787
8788 static void
8789 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8790 enum language pretend_language)
8791 {
8792 per_cu->queued = 1;
8793 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8794 }
8795
8796 /* If PER_CU is not yet queued, add it to the queue.
8797 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8798 dependency.
8799 The result is non-zero if PER_CU was queued, otherwise the result is zero
8800 meaning either PER_CU is already queued or it is already loaded.
8801
8802 N.B. There is an invariant here that if a CU is queued then it is loaded.
8803 The caller is required to load PER_CU if we return non-zero. */
8804
8805 static int
8806 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8807 struct dwarf2_per_cu_data *per_cu,
8808 enum language pretend_language)
8809 {
8810 /* We may arrive here during partial symbol reading, if we need full
8811 DIEs to process an unusual case (e.g. template arguments). Do
8812 not queue PER_CU, just tell our caller to load its DIEs. */
8813 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8814 {
8815 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8816 return 1;
8817 return 0;
8818 }
8819
8820 /* Mark the dependence relation so that we don't flush PER_CU
8821 too early. */
8822 if (dependent_cu != NULL)
8823 dwarf2_add_dependence (dependent_cu, per_cu);
8824
8825 /* If it's already on the queue, we have nothing to do. */
8826 if (per_cu->queued)
8827 return 0;
8828
8829 /* If the compilation unit is already loaded, just mark it as
8830 used. */
8831 if (per_cu->cu != NULL)
8832 {
8833 per_cu->cu->last_used = 0;
8834 return 0;
8835 }
8836
8837 /* Add it to the queue. */
8838 queue_comp_unit (per_cu, pretend_language);
8839
8840 return 1;
8841 }
8842
8843 /* Process the queue. */
8844
8845 static void
8846 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8847 {
8848 if (dwarf_read_debug)
8849 {
8850 fprintf_unfiltered (gdb_stdlog,
8851 "Expanding one or more symtabs of objfile %s ...\n",
8852 objfile_name (dwarf2_per_objfile->objfile));
8853 }
8854
8855 /* The queue starts out with one item, but following a DIE reference
8856 may load a new CU, adding it to the end of the queue. */
8857 while (!dwarf2_per_objfile->queue.empty ())
8858 {
8859 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8860
8861 if ((dwarf2_per_objfile->using_index
8862 ? !item.per_cu->v.quick->compunit_symtab
8863 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8864 /* Skip dummy CUs. */
8865 && item.per_cu->cu != NULL)
8866 {
8867 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8868 unsigned int debug_print_threshold;
8869 char buf[100];
8870
8871 if (per_cu->is_debug_types)
8872 {
8873 struct signatured_type *sig_type =
8874 (struct signatured_type *) per_cu;
8875
8876 sprintf (buf, "TU %s at offset %s",
8877 hex_string (sig_type->signature),
8878 sect_offset_str (per_cu->sect_off));
8879 /* There can be 100s of TUs.
8880 Only print them in verbose mode. */
8881 debug_print_threshold = 2;
8882 }
8883 else
8884 {
8885 sprintf (buf, "CU at offset %s",
8886 sect_offset_str (per_cu->sect_off));
8887 debug_print_threshold = 1;
8888 }
8889
8890 if (dwarf_read_debug >= debug_print_threshold)
8891 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8892
8893 if (per_cu->is_debug_types)
8894 process_full_type_unit (per_cu, item.pretend_language);
8895 else
8896 process_full_comp_unit (per_cu, item.pretend_language);
8897
8898 if (dwarf_read_debug >= debug_print_threshold)
8899 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8900 }
8901
8902 item.per_cu->queued = 0;
8903 dwarf2_per_objfile->queue.pop ();
8904 }
8905
8906 if (dwarf_read_debug)
8907 {
8908 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8909 objfile_name (dwarf2_per_objfile->objfile));
8910 }
8911 }
8912
8913 /* Read in full symbols for PST, and anything it depends on. */
8914
8915 void
8916 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8917 {
8918 gdb_assert (!readin);
8919
8920 expand_dependencies (objfile);
8921
8922 dw2_do_instantiate_symtab (per_cu_data, false);
8923 gdb_assert (get_compunit_symtab () != nullptr);
8924 }
8925
8926 /* Trivial hash function for die_info: the hash value of a DIE
8927 is its offset in .debug_info for this objfile. */
8928
8929 static hashval_t
8930 die_hash (const void *item)
8931 {
8932 const struct die_info *die = (const struct die_info *) item;
8933
8934 return to_underlying (die->sect_off);
8935 }
8936
8937 /* Trivial comparison function for die_info structures: two DIEs
8938 are equal if they have the same offset. */
8939
8940 static int
8941 die_eq (const void *item_lhs, const void *item_rhs)
8942 {
8943 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8944 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8945
8946 return die_lhs->sect_off == die_rhs->sect_off;
8947 }
8948
8949 /* Load the DIEs associated with PER_CU into memory. */
8950
8951 static void
8952 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8953 bool skip_partial,
8954 enum language pretend_language)
8955 {
8956 gdb_assert (! this_cu->is_debug_types);
8957
8958 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8959 if (reader.dummy_p)
8960 return;
8961
8962 struct dwarf2_cu *cu = reader.cu;
8963 const gdb_byte *info_ptr = reader.info_ptr;
8964
8965 gdb_assert (cu->die_hash == NULL);
8966 cu->die_hash =
8967 htab_create_alloc_ex (cu->header.length / 12,
8968 die_hash,
8969 die_eq,
8970 NULL,
8971 &cu->comp_unit_obstack,
8972 hashtab_obstack_allocate,
8973 dummy_obstack_deallocate);
8974
8975 if (reader.comp_unit_die->has_children)
8976 reader.comp_unit_die->child
8977 = read_die_and_siblings (&reader, reader.info_ptr,
8978 &info_ptr, reader.comp_unit_die);
8979 cu->dies = reader.comp_unit_die;
8980 /* comp_unit_die is not stored in die_hash, no need. */
8981
8982 /* We try not to read any attributes in this function, because not
8983 all CUs needed for references have been loaded yet, and symbol
8984 table processing isn't initialized. But we have to set the CU language,
8985 or we won't be able to build types correctly.
8986 Similarly, if we do not read the producer, we can not apply
8987 producer-specific interpretation. */
8988 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8989
8990 reader.keep ();
8991 }
8992
8993 /* Add a DIE to the delayed physname list. */
8994
8995 static void
8996 add_to_method_list (struct type *type, int fnfield_index, int index,
8997 const char *name, struct die_info *die,
8998 struct dwarf2_cu *cu)
8999 {
9000 struct delayed_method_info mi;
9001 mi.type = type;
9002 mi.fnfield_index = fnfield_index;
9003 mi.index = index;
9004 mi.name = name;
9005 mi.die = die;
9006 cu->method_list.push_back (mi);
9007 }
9008
9009 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9010 "const" / "volatile". If so, decrements LEN by the length of the
9011 modifier and return true. Otherwise return false. */
9012
9013 template<size_t N>
9014 static bool
9015 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9016 {
9017 size_t mod_len = sizeof (mod) - 1;
9018 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9019 {
9020 len -= mod_len;
9021 return true;
9022 }
9023 return false;
9024 }
9025
9026 /* Compute the physnames of any methods on the CU's method list.
9027
9028 The computation of method physnames is delayed in order to avoid the
9029 (bad) condition that one of the method's formal parameters is of an as yet
9030 incomplete type. */
9031
9032 static void
9033 compute_delayed_physnames (struct dwarf2_cu *cu)
9034 {
9035 /* Only C++ delays computing physnames. */
9036 if (cu->method_list.empty ())
9037 return;
9038 gdb_assert (cu->language == language_cplus);
9039
9040 for (const delayed_method_info &mi : cu->method_list)
9041 {
9042 const char *physname;
9043 struct fn_fieldlist *fn_flp
9044 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9045 physname = dwarf2_physname (mi.name, mi.die, cu);
9046 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9047 = physname ? physname : "";
9048
9049 /* Since there's no tag to indicate whether a method is a
9050 const/volatile overload, extract that information out of the
9051 demangled name. */
9052 if (physname != NULL)
9053 {
9054 size_t len = strlen (physname);
9055
9056 while (1)
9057 {
9058 if (physname[len] == ')') /* shortcut */
9059 break;
9060 else if (check_modifier (physname, len, " const"))
9061 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9062 else if (check_modifier (physname, len, " volatile"))
9063 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9064 else
9065 break;
9066 }
9067 }
9068 }
9069
9070 /* The list is no longer needed. */
9071 cu->method_list.clear ();
9072 }
9073
9074 /* Go objects should be embedded in a DW_TAG_module DIE,
9075 and it's not clear if/how imported objects will appear.
9076 To keep Go support simple until that's worked out,
9077 go back through what we've read and create something usable.
9078 We could do this while processing each DIE, and feels kinda cleaner,
9079 but that way is more invasive.
9080 This is to, for example, allow the user to type "p var" or "b main"
9081 without having to specify the package name, and allow lookups
9082 of module.object to work in contexts that use the expression
9083 parser. */
9084
9085 static void
9086 fixup_go_packaging (struct dwarf2_cu *cu)
9087 {
9088 gdb::unique_xmalloc_ptr<char> package_name;
9089 struct pending *list;
9090 int i;
9091
9092 for (list = *cu->get_builder ()->get_global_symbols ();
9093 list != NULL;
9094 list = list->next)
9095 {
9096 for (i = 0; i < list->nsyms; ++i)
9097 {
9098 struct symbol *sym = list->symbol[i];
9099
9100 if (sym->language () == language_go
9101 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9102 {
9103 gdb::unique_xmalloc_ptr<char> this_package_name
9104 (go_symbol_package_name (sym));
9105
9106 if (this_package_name == NULL)
9107 continue;
9108 if (package_name == NULL)
9109 package_name = std::move (this_package_name);
9110 else
9111 {
9112 struct objfile *objfile
9113 = cu->per_cu->dwarf2_per_objfile->objfile;
9114 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9115 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9116 (symbol_symtab (sym) != NULL
9117 ? symtab_to_filename_for_display
9118 (symbol_symtab (sym))
9119 : objfile_name (objfile)),
9120 this_package_name.get (), package_name.get ());
9121 }
9122 }
9123 }
9124 }
9125
9126 if (package_name != NULL)
9127 {
9128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9129 const char *saved_package_name = objfile->intern (package_name.get ());
9130 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9131 saved_package_name);
9132 struct symbol *sym;
9133
9134 sym = allocate_symbol (objfile);
9135 sym->set_language (language_go, &objfile->objfile_obstack);
9136 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9137 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9138 e.g., "main" finds the "main" module and not C's main(). */
9139 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9141 SYMBOL_TYPE (sym) = type;
9142
9143 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9144 }
9145 }
9146
9147 /* Allocate a fully-qualified name consisting of the two parts on the
9148 obstack. */
9149
9150 static const char *
9151 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9152 {
9153 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9154 }
9155
9156 /* A helper that allocates a variant part to attach to a Rust enum
9157 type. OBSTACK is where the results should be allocated. TYPE is
9158 the type we're processing. DISCRIMINANT_INDEX is the index of the
9159 discriminant. It must be the index of one of the fields of TYPE.
9160 DEFAULT_INDEX is the index of the default field; or -1 if there is
9161 no default. RANGES is indexed by "effective" field number (the
9162 field index, but omitting the discriminant and default fields) and
9163 must hold the discriminant values used by the variants. Note that
9164 RANGES must have a lifetime at least as long as OBSTACK -- either
9165 already allocated on it, or static. */
9166
9167 static void
9168 alloc_rust_variant (struct obstack *obstack, struct type *type,
9169 int discriminant_index, int default_index,
9170 gdb::array_view<discriminant_range> ranges)
9171 {
9172 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9173 must be handled by the caller. */
9174 gdb_assert (discriminant_index >= 0
9175 && discriminant_index < TYPE_NFIELDS (type));
9176 gdb_assert (default_index == -1
9177 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9178
9179 /* We have one variant for each non-discriminant field. */
9180 int n_variants = TYPE_NFIELDS (type) - 1;
9181
9182 variant *variants = new (obstack) variant[n_variants];
9183 int var_idx = 0;
9184 int range_idx = 0;
9185 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9186 {
9187 if (i == discriminant_index)
9188 continue;
9189
9190 variants[var_idx].first_field = i;
9191 variants[var_idx].last_field = i + 1;
9192
9193 /* The default field does not need a range, but other fields do.
9194 We skipped the discriminant above. */
9195 if (i != default_index)
9196 {
9197 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9198 ++range_idx;
9199 }
9200
9201 ++var_idx;
9202 }
9203
9204 gdb_assert (range_idx == ranges.size ());
9205 gdb_assert (var_idx == n_variants);
9206
9207 variant_part *part = new (obstack) variant_part;
9208 part->discriminant_index = discriminant_index;
9209 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9210 discriminant_index));
9211 part->variants = gdb::array_view<variant> (variants, n_variants);
9212
9213 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9214 gdb::array_view<variant_part> *prop_value
9215 = new (storage) gdb::array_view<variant_part> (part, 1);
9216
9217 struct dynamic_prop prop;
9218 prop.kind = PROP_VARIANT_PARTS;
9219 prop.data.variant_parts = prop_value;
9220
9221 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
9222 }
9223
9224 /* Some versions of rustc emitted enums in an unusual way.
9225
9226 Ordinary enums were emitted as unions. The first element of each
9227 structure in the union was named "RUST$ENUM$DISR". This element
9228 held the discriminant.
9229
9230 These versions of Rust also implemented the "non-zero"
9231 optimization. When the enum had two values, and one is empty and
9232 the other holds a pointer that cannot be zero, the pointer is used
9233 as the discriminant, with a zero value meaning the empty variant.
9234 Here, the union's first member is of the form
9235 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9236 where the fieldnos are the indices of the fields that should be
9237 traversed in order to find the field (which may be several fields deep)
9238 and the variantname is the name of the variant of the case when the
9239 field is zero.
9240
9241 This function recognizes whether TYPE is of one of these forms,
9242 and, if so, smashes it to be a variant type. */
9243
9244 static void
9245 quirk_rust_enum (struct type *type, struct objfile *objfile)
9246 {
9247 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9248
9249 /* We don't need to deal with empty enums. */
9250 if (TYPE_NFIELDS (type) == 0)
9251 return;
9252
9253 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9254 if (TYPE_NFIELDS (type) == 1
9255 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9256 {
9257 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9258
9259 /* Decode the field name to find the offset of the
9260 discriminant. */
9261 ULONGEST bit_offset = 0;
9262 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9263 while (name[0] >= '0' && name[0] <= '9')
9264 {
9265 char *tail;
9266 unsigned long index = strtoul (name, &tail, 10);
9267 name = tail;
9268 if (*name != '$'
9269 || index >= TYPE_NFIELDS (field_type)
9270 || (TYPE_FIELD_LOC_KIND (field_type, index)
9271 != FIELD_LOC_KIND_BITPOS))
9272 {
9273 complaint (_("Could not parse Rust enum encoding string \"%s\""
9274 "[in module %s]"),
9275 TYPE_FIELD_NAME (type, 0),
9276 objfile_name (objfile));
9277 return;
9278 }
9279 ++name;
9280
9281 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9282 field_type = TYPE_FIELD_TYPE (field_type, index);
9283 }
9284
9285 /* Smash this type to be a structure type. We have to do this
9286 because the type has already been recorded. */
9287 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9288 TYPE_NFIELDS (type) = 3;
9289 /* Save the field we care about. */
9290 struct field saved_field = TYPE_FIELD (type, 0);
9291 TYPE_FIELDS (type)
9292 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9293
9294 /* Put the discriminant at index 0. */
9295 TYPE_FIELD_TYPE (type, 0) = field_type;
9296 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9297 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9298 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), bit_offset);
9299
9300 /* The order of fields doesn't really matter, so put the real
9301 field at index 1 and the data-less field at index 2. */
9302 TYPE_FIELD (type, 1) = saved_field;
9303 TYPE_FIELD_NAME (type, 1)
9304 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, 1)));
9305 TYPE_NAME (TYPE_FIELD_TYPE (type, 1))
9306 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9307 TYPE_FIELD_NAME (type, 1));
9308
9309 const char *dataless_name
9310 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9311 name);
9312 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9313 dataless_name);
9314 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9315 /* NAME points into the original discriminant name, which
9316 already has the correct lifetime. */
9317 TYPE_FIELD_NAME (type, 2) = name;
9318 SET_FIELD_BITPOS (TYPE_FIELD (type, 2), 0);
9319
9320 /* Indicate that this is a variant type. */
9321 static discriminant_range ranges[1] = { { 0, 0 } };
9322 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9323 }
9324 /* A union with a single anonymous field is probably an old-style
9325 univariant enum. */
9326 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9327 {
9328 /* Smash this type to be a structure type. We have to do this
9329 because the type has already been recorded. */
9330 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9331
9332 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9333 const char *variant_name
9334 = rust_last_path_segment (TYPE_NAME (field_type));
9335 TYPE_FIELD_NAME (type, 0) = variant_name;
9336 TYPE_NAME (field_type)
9337 = rust_fully_qualify (&objfile->objfile_obstack,
9338 TYPE_NAME (type), variant_name);
9339 }
9340 else
9341 {
9342 struct type *disr_type = nullptr;
9343 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9344 {
9345 disr_type = TYPE_FIELD_TYPE (type, i);
9346
9347 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9348 {
9349 /* All fields of a true enum will be structs. */
9350 return;
9351 }
9352 else if (TYPE_NFIELDS (disr_type) == 0)
9353 {
9354 /* Could be data-less variant, so keep going. */
9355 disr_type = nullptr;
9356 }
9357 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9358 "RUST$ENUM$DISR") != 0)
9359 {
9360 /* Not a Rust enum. */
9361 return;
9362 }
9363 else
9364 {
9365 /* Found one. */
9366 break;
9367 }
9368 }
9369
9370 /* If we got here without a discriminant, then it's probably
9371 just a union. */
9372 if (disr_type == nullptr)
9373 return;
9374
9375 /* Smash this type to be a structure type. We have to do this
9376 because the type has already been recorded. */
9377 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9378
9379 /* Make space for the discriminant field. */
9380 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9381 field *new_fields
9382 = (struct field *) TYPE_ZALLOC (type, (TYPE_NFIELDS (type)
9383 * sizeof (struct field)));
9384 memcpy (new_fields + 1, TYPE_FIELDS (type),
9385 TYPE_NFIELDS (type) * sizeof (struct field));
9386 TYPE_FIELDS (type) = new_fields;
9387 TYPE_NFIELDS (type) = TYPE_NFIELDS (type) + 1;
9388
9389 /* Install the discriminant at index 0 in the union. */
9390 TYPE_FIELD (type, 0) = *disr_field;
9391 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9392 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9393
9394 /* We need a way to find the correct discriminant given a
9395 variant name. For convenience we build a map here. */
9396 struct type *enum_type = FIELD_TYPE (*disr_field);
9397 std::unordered_map<std::string, ULONGEST> discriminant_map;
9398 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9399 {
9400 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9401 {
9402 const char *name
9403 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9404 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9405 }
9406 }
9407
9408 int n_fields = TYPE_NFIELDS (type);
9409 /* We don't need a range entry for the discriminant, but we do
9410 need one for every other field, as there is no default
9411 variant. */
9412 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9413 discriminant_range,
9414 n_fields - 1);
9415 /* Skip the discriminant here. */
9416 for (int i = 1; i < n_fields; ++i)
9417 {
9418 /* Find the final word in the name of this variant's type.
9419 That name can be used to look up the correct
9420 discriminant. */
9421 const char *variant_name
9422 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, i)));
9423
9424 auto iter = discriminant_map.find (variant_name);
9425 if (iter != discriminant_map.end ())
9426 {
9427 ranges[i].low = iter->second;
9428 ranges[i].high = iter->second;
9429 }
9430
9431 /* Remove the discriminant field, if it exists. */
9432 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9433 if (TYPE_NFIELDS (sub_type) > 0)
9434 {
9435 --TYPE_NFIELDS (sub_type);
9436 ++TYPE_FIELDS (sub_type);
9437 }
9438 TYPE_FIELD_NAME (type, i) = variant_name;
9439 TYPE_NAME (sub_type)
9440 = rust_fully_qualify (&objfile->objfile_obstack,
9441 TYPE_NAME (type), variant_name);
9442 }
9443
9444 /* Indicate that this is a variant type. */
9445 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9446 gdb::array_view<discriminant_range> (ranges,
9447 n_fields - 1));
9448 }
9449 }
9450
9451 /* Rewrite some Rust unions to be structures with variants parts. */
9452
9453 static void
9454 rust_union_quirks (struct dwarf2_cu *cu)
9455 {
9456 gdb_assert (cu->language == language_rust);
9457 for (type *type_ : cu->rust_unions)
9458 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9459 /* We don't need this any more. */
9460 cu->rust_unions.clear ();
9461 }
9462
9463 /* Return the symtab for PER_CU. This works properly regardless of
9464 whether we're using the index or psymtabs. */
9465
9466 static struct compunit_symtab *
9467 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9468 {
9469 return (per_cu->dwarf2_per_objfile->using_index
9470 ? per_cu->v.quick->compunit_symtab
9471 : per_cu->v.psymtab->compunit_symtab);
9472 }
9473
9474 /* A helper function for computing the list of all symbol tables
9475 included by PER_CU. */
9476
9477 static void
9478 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9479 htab_t all_children, htab_t all_type_symtabs,
9480 struct dwarf2_per_cu_data *per_cu,
9481 struct compunit_symtab *immediate_parent)
9482 {
9483 void **slot;
9484 struct compunit_symtab *cust;
9485
9486 slot = htab_find_slot (all_children, per_cu, INSERT);
9487 if (*slot != NULL)
9488 {
9489 /* This inclusion and its children have been processed. */
9490 return;
9491 }
9492
9493 *slot = per_cu;
9494 /* Only add a CU if it has a symbol table. */
9495 cust = get_compunit_symtab (per_cu);
9496 if (cust != NULL)
9497 {
9498 /* If this is a type unit only add its symbol table if we haven't
9499 seen it yet (type unit per_cu's can share symtabs). */
9500 if (per_cu->is_debug_types)
9501 {
9502 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9503 if (*slot == NULL)
9504 {
9505 *slot = cust;
9506 result->push_back (cust);
9507 if (cust->user == NULL)
9508 cust->user = immediate_parent;
9509 }
9510 }
9511 else
9512 {
9513 result->push_back (cust);
9514 if (cust->user == NULL)
9515 cust->user = immediate_parent;
9516 }
9517 }
9518
9519 if (!per_cu->imported_symtabs_empty ())
9520 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9521 {
9522 recursively_compute_inclusions (result, all_children,
9523 all_type_symtabs, ptr, cust);
9524 }
9525 }
9526
9527 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9528 PER_CU. */
9529
9530 static void
9531 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9532 {
9533 gdb_assert (! per_cu->is_debug_types);
9534
9535 if (!per_cu->imported_symtabs_empty ())
9536 {
9537 int len;
9538 std::vector<compunit_symtab *> result_symtabs;
9539 htab_t all_children, all_type_symtabs;
9540 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9541
9542 /* If we don't have a symtab, we can just skip this case. */
9543 if (cust == NULL)
9544 return;
9545
9546 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9547 NULL, xcalloc, xfree);
9548 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9549 NULL, xcalloc, xfree);
9550
9551 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9552 {
9553 recursively_compute_inclusions (&result_symtabs, all_children,
9554 all_type_symtabs, ptr, cust);
9555 }
9556
9557 /* Now we have a transitive closure of all the included symtabs. */
9558 len = result_symtabs.size ();
9559 cust->includes
9560 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9561 struct compunit_symtab *, len + 1);
9562 memcpy (cust->includes, result_symtabs.data (),
9563 len * sizeof (compunit_symtab *));
9564 cust->includes[len] = NULL;
9565
9566 htab_delete (all_children);
9567 htab_delete (all_type_symtabs);
9568 }
9569 }
9570
9571 /* Compute the 'includes' field for the symtabs of all the CUs we just
9572 read. */
9573
9574 static void
9575 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9576 {
9577 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9578 {
9579 if (! iter->is_debug_types)
9580 compute_compunit_symtab_includes (iter);
9581 }
9582
9583 dwarf2_per_objfile->just_read_cus.clear ();
9584 }
9585
9586 /* Generate full symbol information for PER_CU, whose DIEs have
9587 already been loaded into memory. */
9588
9589 static void
9590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9591 enum language pretend_language)
9592 {
9593 struct dwarf2_cu *cu = per_cu->cu;
9594 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9595 struct objfile *objfile = dwarf2_per_objfile->objfile;
9596 struct gdbarch *gdbarch = objfile->arch ();
9597 CORE_ADDR lowpc, highpc;
9598 struct compunit_symtab *cust;
9599 CORE_ADDR baseaddr;
9600 struct block *static_block;
9601 CORE_ADDR addr;
9602
9603 baseaddr = objfile->text_section_offset ();
9604
9605 /* Clear the list here in case something was left over. */
9606 cu->method_list.clear ();
9607
9608 cu->language = pretend_language;
9609 cu->language_defn = language_def (cu->language);
9610
9611 /* Do line number decoding in read_file_scope () */
9612 process_die (cu->dies, cu);
9613
9614 /* For now fudge the Go package. */
9615 if (cu->language == language_go)
9616 fixup_go_packaging (cu);
9617
9618 /* Now that we have processed all the DIEs in the CU, all the types
9619 should be complete, and it should now be safe to compute all of the
9620 physnames. */
9621 compute_delayed_physnames (cu);
9622
9623 if (cu->language == language_rust)
9624 rust_union_quirks (cu);
9625
9626 /* Some compilers don't define a DW_AT_high_pc attribute for the
9627 compilation unit. If the DW_AT_high_pc is missing, synthesize
9628 it, by scanning the DIE's below the compilation unit. */
9629 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9630
9631 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9632 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9633
9634 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9635 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9636 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9637 addrmap to help ensure it has an accurate map of pc values belonging to
9638 this comp unit. */
9639 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9640
9641 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9642 SECT_OFF_TEXT (objfile),
9643 0);
9644
9645 if (cust != NULL)
9646 {
9647 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9648
9649 /* Set symtab language to language from DW_AT_language. If the
9650 compilation is from a C file generated by language preprocessors, do
9651 not set the language if it was already deduced by start_subfile. */
9652 if (!(cu->language == language_c
9653 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9654 COMPUNIT_FILETABS (cust)->language = cu->language;
9655
9656 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9657 produce DW_AT_location with location lists but it can be possibly
9658 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9659 there were bugs in prologue debug info, fixed later in GCC-4.5
9660 by "unwind info for epilogues" patch (which is not directly related).
9661
9662 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9663 needed, it would be wrong due to missing DW_AT_producer there.
9664
9665 Still one can confuse GDB by using non-standard GCC compilation
9666 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9667 */
9668 if (cu->has_loclist && gcc_4_minor >= 5)
9669 cust->locations_valid = 1;
9670
9671 if (gcc_4_minor >= 5)
9672 cust->epilogue_unwind_valid = 1;
9673
9674 cust->call_site_htab = cu->call_site_htab;
9675 }
9676
9677 if (dwarf2_per_objfile->using_index)
9678 per_cu->v.quick->compunit_symtab = cust;
9679 else
9680 {
9681 dwarf2_psymtab *pst = per_cu->v.psymtab;
9682 pst->compunit_symtab = cust;
9683 pst->readin = true;
9684 }
9685
9686 /* Push it for inclusion processing later. */
9687 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9688
9689 /* Not needed any more. */
9690 cu->reset_builder ();
9691 }
9692
9693 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9694 already been loaded into memory. */
9695
9696 static void
9697 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9698 enum language pretend_language)
9699 {
9700 struct dwarf2_cu *cu = per_cu->cu;
9701 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9702 struct objfile *objfile = dwarf2_per_objfile->objfile;
9703 struct compunit_symtab *cust;
9704 struct signatured_type *sig_type;
9705
9706 gdb_assert (per_cu->is_debug_types);
9707 sig_type = (struct signatured_type *) per_cu;
9708
9709 /* Clear the list here in case something was left over. */
9710 cu->method_list.clear ();
9711
9712 cu->language = pretend_language;
9713 cu->language_defn = language_def (cu->language);
9714
9715 /* The symbol tables are set up in read_type_unit_scope. */
9716 process_die (cu->dies, cu);
9717
9718 /* For now fudge the Go package. */
9719 if (cu->language == language_go)
9720 fixup_go_packaging (cu);
9721
9722 /* Now that we have processed all the DIEs in the CU, all the types
9723 should be complete, and it should now be safe to compute all of the
9724 physnames. */
9725 compute_delayed_physnames (cu);
9726
9727 if (cu->language == language_rust)
9728 rust_union_quirks (cu);
9729
9730 /* TUs share symbol tables.
9731 If this is the first TU to use this symtab, complete the construction
9732 of it with end_expandable_symtab. Otherwise, complete the addition of
9733 this TU's symbols to the existing symtab. */
9734 if (sig_type->type_unit_group->compunit_symtab == NULL)
9735 {
9736 buildsym_compunit *builder = cu->get_builder ();
9737 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9738 sig_type->type_unit_group->compunit_symtab = cust;
9739
9740 if (cust != NULL)
9741 {
9742 /* Set symtab language to language from DW_AT_language. If the
9743 compilation is from a C file generated by language preprocessors,
9744 do not set the language if it was already deduced by
9745 start_subfile. */
9746 if (!(cu->language == language_c
9747 && COMPUNIT_FILETABS (cust)->language != language_c))
9748 COMPUNIT_FILETABS (cust)->language = cu->language;
9749 }
9750 }
9751 else
9752 {
9753 cu->get_builder ()->augment_type_symtab ();
9754 cust = sig_type->type_unit_group->compunit_symtab;
9755 }
9756
9757 if (dwarf2_per_objfile->using_index)
9758 per_cu->v.quick->compunit_symtab = cust;
9759 else
9760 {
9761 dwarf2_psymtab *pst = per_cu->v.psymtab;
9762 pst->compunit_symtab = cust;
9763 pst->readin = true;
9764 }
9765
9766 /* Not needed any more. */
9767 cu->reset_builder ();
9768 }
9769
9770 /* Process an imported unit DIE. */
9771
9772 static void
9773 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9774 {
9775 struct attribute *attr;
9776
9777 /* For now we don't handle imported units in type units. */
9778 if (cu->per_cu->is_debug_types)
9779 {
9780 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9781 " supported in type units [in module %s]"),
9782 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9783 }
9784
9785 attr = dwarf2_attr (die, DW_AT_import, cu);
9786 if (attr != NULL)
9787 {
9788 sect_offset sect_off = attr->get_ref_die_offset ();
9789 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9790 dwarf2_per_cu_data *per_cu
9791 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9792 cu->per_cu->dwarf2_per_objfile);
9793
9794 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9795 into another compilation unit, at root level. Regard this as a hint,
9796 and ignore it. */
9797 if (die->parent && die->parent->parent == NULL
9798 && per_cu->unit_type == DW_UT_compile
9799 && per_cu->lang == language_cplus)
9800 return;
9801
9802 /* If necessary, add it to the queue and load its DIEs. */
9803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9804 load_full_comp_unit (per_cu, false, cu->language);
9805
9806 cu->per_cu->imported_symtabs_push (per_cu);
9807 }
9808 }
9809
9810 /* RAII object that represents a process_die scope: i.e.,
9811 starts/finishes processing a DIE. */
9812 class process_die_scope
9813 {
9814 public:
9815 process_die_scope (die_info *die, dwarf2_cu *cu)
9816 : m_die (die), m_cu (cu)
9817 {
9818 /* We should only be processing DIEs not already in process. */
9819 gdb_assert (!m_die->in_process);
9820 m_die->in_process = true;
9821 }
9822
9823 ~process_die_scope ()
9824 {
9825 m_die->in_process = false;
9826
9827 /* If we're done processing the DIE for the CU that owns the line
9828 header, we don't need the line header anymore. */
9829 if (m_cu->line_header_die_owner == m_die)
9830 {
9831 delete m_cu->line_header;
9832 m_cu->line_header = NULL;
9833 m_cu->line_header_die_owner = NULL;
9834 }
9835 }
9836
9837 private:
9838 die_info *m_die;
9839 dwarf2_cu *m_cu;
9840 };
9841
9842 /* Process a die and its children. */
9843
9844 static void
9845 process_die (struct die_info *die, struct dwarf2_cu *cu)
9846 {
9847 process_die_scope scope (die, cu);
9848
9849 switch (die->tag)
9850 {
9851 case DW_TAG_padding:
9852 break;
9853 case DW_TAG_compile_unit:
9854 case DW_TAG_partial_unit:
9855 read_file_scope (die, cu);
9856 break;
9857 case DW_TAG_type_unit:
9858 read_type_unit_scope (die, cu);
9859 break;
9860 case DW_TAG_subprogram:
9861 /* Nested subprograms in Fortran get a prefix. */
9862 if (cu->language == language_fortran
9863 && die->parent != NULL
9864 && die->parent->tag == DW_TAG_subprogram)
9865 cu->processing_has_namespace_info = true;
9866 /* Fall through. */
9867 case DW_TAG_inlined_subroutine:
9868 read_func_scope (die, cu);
9869 break;
9870 case DW_TAG_lexical_block:
9871 case DW_TAG_try_block:
9872 case DW_TAG_catch_block:
9873 read_lexical_block_scope (die, cu);
9874 break;
9875 case DW_TAG_call_site:
9876 case DW_TAG_GNU_call_site:
9877 read_call_site_scope (die, cu);
9878 break;
9879 case DW_TAG_class_type:
9880 case DW_TAG_interface_type:
9881 case DW_TAG_structure_type:
9882 case DW_TAG_union_type:
9883 process_structure_scope (die, cu);
9884 break;
9885 case DW_TAG_enumeration_type:
9886 process_enumeration_scope (die, cu);
9887 break;
9888
9889 /* These dies have a type, but processing them does not create
9890 a symbol or recurse to process the children. Therefore we can
9891 read them on-demand through read_type_die. */
9892 case DW_TAG_subroutine_type:
9893 case DW_TAG_set_type:
9894 case DW_TAG_array_type:
9895 case DW_TAG_pointer_type:
9896 case DW_TAG_ptr_to_member_type:
9897 case DW_TAG_reference_type:
9898 case DW_TAG_rvalue_reference_type:
9899 case DW_TAG_string_type:
9900 break;
9901
9902 case DW_TAG_base_type:
9903 case DW_TAG_subrange_type:
9904 case DW_TAG_typedef:
9905 /* Add a typedef symbol for the type definition, if it has a
9906 DW_AT_name. */
9907 new_symbol (die, read_type_die (die, cu), cu);
9908 break;
9909 case DW_TAG_common_block:
9910 read_common_block (die, cu);
9911 break;
9912 case DW_TAG_common_inclusion:
9913 break;
9914 case DW_TAG_namespace:
9915 cu->processing_has_namespace_info = true;
9916 read_namespace (die, cu);
9917 break;
9918 case DW_TAG_module:
9919 cu->processing_has_namespace_info = true;
9920 read_module (die, cu);
9921 break;
9922 case DW_TAG_imported_declaration:
9923 cu->processing_has_namespace_info = true;
9924 if (read_namespace_alias (die, cu))
9925 break;
9926 /* The declaration is not a global namespace alias. */
9927 /* Fall through. */
9928 case DW_TAG_imported_module:
9929 cu->processing_has_namespace_info = true;
9930 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9931 || cu->language != language_fortran))
9932 complaint (_("Tag '%s' has unexpected children"),
9933 dwarf_tag_name (die->tag));
9934 read_import_statement (die, cu);
9935 break;
9936
9937 case DW_TAG_imported_unit:
9938 process_imported_unit_die (die, cu);
9939 break;
9940
9941 case DW_TAG_variable:
9942 read_variable (die, cu);
9943 break;
9944
9945 default:
9946 new_symbol (die, NULL, cu);
9947 break;
9948 }
9949 }
9950 \f
9951 /* DWARF name computation. */
9952
9953 /* A helper function for dwarf2_compute_name which determines whether DIE
9954 needs to have the name of the scope prepended to the name listed in the
9955 die. */
9956
9957 static int
9958 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9959 {
9960 struct attribute *attr;
9961
9962 switch (die->tag)
9963 {
9964 case DW_TAG_namespace:
9965 case DW_TAG_typedef:
9966 case DW_TAG_class_type:
9967 case DW_TAG_interface_type:
9968 case DW_TAG_structure_type:
9969 case DW_TAG_union_type:
9970 case DW_TAG_enumeration_type:
9971 case DW_TAG_enumerator:
9972 case DW_TAG_subprogram:
9973 case DW_TAG_inlined_subroutine:
9974 case DW_TAG_member:
9975 case DW_TAG_imported_declaration:
9976 return 1;
9977
9978 case DW_TAG_variable:
9979 case DW_TAG_constant:
9980 /* We only need to prefix "globally" visible variables. These include
9981 any variable marked with DW_AT_external or any variable that
9982 lives in a namespace. [Variables in anonymous namespaces
9983 require prefixing, but they are not DW_AT_external.] */
9984
9985 if (dwarf2_attr (die, DW_AT_specification, cu))
9986 {
9987 struct dwarf2_cu *spec_cu = cu;
9988
9989 return die_needs_namespace (die_specification (die, &spec_cu),
9990 spec_cu);
9991 }
9992
9993 attr = dwarf2_attr (die, DW_AT_external, cu);
9994 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9995 && die->parent->tag != DW_TAG_module)
9996 return 0;
9997 /* A variable in a lexical block of some kind does not need a
9998 namespace, even though in C++ such variables may be external
9999 and have a mangled name. */
10000 if (die->parent->tag == DW_TAG_lexical_block
10001 || die->parent->tag == DW_TAG_try_block
10002 || die->parent->tag == DW_TAG_catch_block
10003 || die->parent->tag == DW_TAG_subprogram)
10004 return 0;
10005 return 1;
10006
10007 default:
10008 return 0;
10009 }
10010 }
10011
10012 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10013 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10014 defined for the given DIE. */
10015
10016 static struct attribute *
10017 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10018 {
10019 struct attribute *attr;
10020
10021 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10022 if (attr == NULL)
10023 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10024
10025 return attr;
10026 }
10027
10028 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10029 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10030 defined for the given DIE. */
10031
10032 static const char *
10033 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10034 {
10035 const char *linkage_name;
10036
10037 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10038 if (linkage_name == NULL)
10039 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10040
10041 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10042 See https://github.com/rust-lang/rust/issues/32925. */
10043 if (cu->language == language_rust && linkage_name != NULL
10044 && strchr (linkage_name, '{') != NULL)
10045 linkage_name = NULL;
10046
10047 return linkage_name;
10048 }
10049
10050 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10051 compute the physname for the object, which include a method's:
10052 - formal parameters (C++),
10053 - receiver type (Go),
10054
10055 The term "physname" is a bit confusing.
10056 For C++, for example, it is the demangled name.
10057 For Go, for example, it's the mangled name.
10058
10059 For Ada, return the DIE's linkage name rather than the fully qualified
10060 name. PHYSNAME is ignored..
10061
10062 The result is allocated on the objfile_obstack and canonicalized. */
10063
10064 static const char *
10065 dwarf2_compute_name (const char *name,
10066 struct die_info *die, struct dwarf2_cu *cu,
10067 int physname)
10068 {
10069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10070
10071 if (name == NULL)
10072 name = dwarf2_name (die, cu);
10073
10074 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10075 but otherwise compute it by typename_concat inside GDB.
10076 FIXME: Actually this is not really true, or at least not always true.
10077 It's all very confusing. compute_and_set_names doesn't try to demangle
10078 Fortran names because there is no mangling standard. So new_symbol
10079 will set the demangled name to the result of dwarf2_full_name, and it is
10080 the demangled name that GDB uses if it exists. */
10081 if (cu->language == language_ada
10082 || (cu->language == language_fortran && physname))
10083 {
10084 /* For Ada unit, we prefer the linkage name over the name, as
10085 the former contains the exported name, which the user expects
10086 to be able to reference. Ideally, we want the user to be able
10087 to reference this entity using either natural or linkage name,
10088 but we haven't started looking at this enhancement yet. */
10089 const char *linkage_name = dw2_linkage_name (die, cu);
10090
10091 if (linkage_name != NULL)
10092 return linkage_name;
10093 }
10094
10095 /* These are the only languages we know how to qualify names in. */
10096 if (name != NULL
10097 && (cu->language == language_cplus
10098 || cu->language == language_fortran || cu->language == language_d
10099 || cu->language == language_rust))
10100 {
10101 if (die_needs_namespace (die, cu))
10102 {
10103 const char *prefix;
10104 const char *canonical_name = NULL;
10105
10106 string_file buf;
10107
10108 prefix = determine_prefix (die, cu);
10109 if (*prefix != '\0')
10110 {
10111 gdb::unique_xmalloc_ptr<char> prefixed_name
10112 (typename_concat (NULL, prefix, name, physname, cu));
10113
10114 buf.puts (prefixed_name.get ());
10115 }
10116 else
10117 buf.puts (name);
10118
10119 /* Template parameters may be specified in the DIE's DW_AT_name, or
10120 as children with DW_TAG_template_type_param or
10121 DW_TAG_value_type_param. If the latter, add them to the name
10122 here. If the name already has template parameters, then
10123 skip this step; some versions of GCC emit both, and
10124 it is more efficient to use the pre-computed name.
10125
10126 Something to keep in mind about this process: it is very
10127 unlikely, or in some cases downright impossible, to produce
10128 something that will match the mangled name of a function.
10129 If the definition of the function has the same debug info,
10130 we should be able to match up with it anyway. But fallbacks
10131 using the minimal symbol, for instance to find a method
10132 implemented in a stripped copy of libstdc++, will not work.
10133 If we do not have debug info for the definition, we will have to
10134 match them up some other way.
10135
10136 When we do name matching there is a related problem with function
10137 templates; two instantiated function templates are allowed to
10138 differ only by their return types, which we do not add here. */
10139
10140 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10141 {
10142 struct attribute *attr;
10143 struct die_info *child;
10144 int first = 1;
10145
10146 die->building_fullname = 1;
10147
10148 for (child = die->child; child != NULL; child = child->sibling)
10149 {
10150 struct type *type;
10151 LONGEST value;
10152 const gdb_byte *bytes;
10153 struct dwarf2_locexpr_baton *baton;
10154 struct value *v;
10155
10156 if (child->tag != DW_TAG_template_type_param
10157 && child->tag != DW_TAG_template_value_param)
10158 continue;
10159
10160 if (first)
10161 {
10162 buf.puts ("<");
10163 first = 0;
10164 }
10165 else
10166 buf.puts (", ");
10167
10168 attr = dwarf2_attr (child, DW_AT_type, cu);
10169 if (attr == NULL)
10170 {
10171 complaint (_("template parameter missing DW_AT_type"));
10172 buf.puts ("UNKNOWN_TYPE");
10173 continue;
10174 }
10175 type = die_type (child, cu);
10176
10177 if (child->tag == DW_TAG_template_type_param)
10178 {
10179 c_print_type (type, "", &buf, -1, 0, cu->language,
10180 &type_print_raw_options);
10181 continue;
10182 }
10183
10184 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10185 if (attr == NULL)
10186 {
10187 complaint (_("template parameter missing "
10188 "DW_AT_const_value"));
10189 buf.puts ("UNKNOWN_VALUE");
10190 continue;
10191 }
10192
10193 dwarf2_const_value_attr (attr, type, name,
10194 &cu->comp_unit_obstack, cu,
10195 &value, &bytes, &baton);
10196
10197 if (TYPE_NOSIGN (type))
10198 /* GDB prints characters as NUMBER 'CHAR'. If that's
10199 changed, this can use value_print instead. */
10200 c_printchar (value, type, &buf);
10201 else
10202 {
10203 struct value_print_options opts;
10204
10205 if (baton != NULL)
10206 v = dwarf2_evaluate_loc_desc (type, NULL,
10207 baton->data,
10208 baton->size,
10209 baton->per_cu);
10210 else if (bytes != NULL)
10211 {
10212 v = allocate_value (type);
10213 memcpy (value_contents_writeable (v), bytes,
10214 TYPE_LENGTH (type));
10215 }
10216 else
10217 v = value_from_longest (type, value);
10218
10219 /* Specify decimal so that we do not depend on
10220 the radix. */
10221 get_formatted_print_options (&opts, 'd');
10222 opts.raw = 1;
10223 value_print (v, &buf, &opts);
10224 release_value (v);
10225 }
10226 }
10227
10228 die->building_fullname = 0;
10229
10230 if (!first)
10231 {
10232 /* Close the argument list, with a space if necessary
10233 (nested templates). */
10234 if (!buf.empty () && buf.string ().back () == '>')
10235 buf.puts (" >");
10236 else
10237 buf.puts (">");
10238 }
10239 }
10240
10241 /* For C++ methods, append formal parameter type
10242 information, if PHYSNAME. */
10243
10244 if (physname && die->tag == DW_TAG_subprogram
10245 && cu->language == language_cplus)
10246 {
10247 struct type *type = read_type_die (die, cu);
10248
10249 c_type_print_args (type, &buf, 1, cu->language,
10250 &type_print_raw_options);
10251
10252 if (cu->language == language_cplus)
10253 {
10254 /* Assume that an artificial first parameter is
10255 "this", but do not crash if it is not. RealView
10256 marks unnamed (and thus unused) parameters as
10257 artificial; there is no way to differentiate
10258 the two cases. */
10259 if (TYPE_NFIELDS (type) > 0
10260 && TYPE_FIELD_ARTIFICIAL (type, 0)
10261 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10262 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10263 0))))
10264 buf.puts (" const");
10265 }
10266 }
10267
10268 const std::string &intermediate_name = buf.string ();
10269
10270 if (cu->language == language_cplus)
10271 canonical_name
10272 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10273 objfile);
10274
10275 /* If we only computed INTERMEDIATE_NAME, or if
10276 INTERMEDIATE_NAME is already canonical, then we need to
10277 intern it. */
10278 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10279 name = objfile->intern (intermediate_name);
10280 else
10281 name = canonical_name;
10282 }
10283 }
10284
10285 return name;
10286 }
10287
10288 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10289 If scope qualifiers are appropriate they will be added. The result
10290 will be allocated on the storage_obstack, or NULL if the DIE does
10291 not have a name. NAME may either be from a previous call to
10292 dwarf2_name or NULL.
10293
10294 The output string will be canonicalized (if C++). */
10295
10296 static const char *
10297 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10298 {
10299 return dwarf2_compute_name (name, die, cu, 0);
10300 }
10301
10302 /* Construct a physname for the given DIE in CU. NAME may either be
10303 from a previous call to dwarf2_name or NULL. The result will be
10304 allocated on the objfile_objstack or NULL if the DIE does not have a
10305 name.
10306
10307 The output string will be canonicalized (if C++). */
10308
10309 static const char *
10310 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10311 {
10312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10313 const char *retval, *mangled = NULL, *canon = NULL;
10314 int need_copy = 1;
10315
10316 /* In this case dwarf2_compute_name is just a shortcut not building anything
10317 on its own. */
10318 if (!die_needs_namespace (die, cu))
10319 return dwarf2_compute_name (name, die, cu, 1);
10320
10321 if (cu->language != language_rust)
10322 mangled = dw2_linkage_name (die, cu);
10323
10324 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10325 has computed. */
10326 gdb::unique_xmalloc_ptr<char> demangled;
10327 if (mangled != NULL)
10328 {
10329
10330 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10331 {
10332 /* Do nothing (do not demangle the symbol name). */
10333 }
10334 else if (cu->language == language_go)
10335 {
10336 /* This is a lie, but we already lie to the caller new_symbol.
10337 new_symbol assumes we return the mangled name.
10338 This just undoes that lie until things are cleaned up. */
10339 }
10340 else
10341 {
10342 /* Use DMGL_RET_DROP for C++ template functions to suppress
10343 their return type. It is easier for GDB users to search
10344 for such functions as `name(params)' than `long name(params)'.
10345 In such case the minimal symbol names do not match the full
10346 symbol names but for template functions there is never a need
10347 to look up their definition from their declaration so
10348 the only disadvantage remains the minimal symbol variant
10349 `long name(params)' does not have the proper inferior type. */
10350 demangled.reset (gdb_demangle (mangled,
10351 (DMGL_PARAMS | DMGL_ANSI
10352 | DMGL_RET_DROP)));
10353 }
10354 if (demangled)
10355 canon = demangled.get ();
10356 else
10357 {
10358 canon = mangled;
10359 need_copy = 0;
10360 }
10361 }
10362
10363 if (canon == NULL || check_physname)
10364 {
10365 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10366
10367 if (canon != NULL && strcmp (physname, canon) != 0)
10368 {
10369 /* It may not mean a bug in GDB. The compiler could also
10370 compute DW_AT_linkage_name incorrectly. But in such case
10371 GDB would need to be bug-to-bug compatible. */
10372
10373 complaint (_("Computed physname <%s> does not match demangled <%s> "
10374 "(from linkage <%s>) - DIE at %s [in module %s]"),
10375 physname, canon, mangled, sect_offset_str (die->sect_off),
10376 objfile_name (objfile));
10377
10378 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10379 is available here - over computed PHYSNAME. It is safer
10380 against both buggy GDB and buggy compilers. */
10381
10382 retval = canon;
10383 }
10384 else
10385 {
10386 retval = physname;
10387 need_copy = 0;
10388 }
10389 }
10390 else
10391 retval = canon;
10392
10393 if (need_copy)
10394 retval = objfile->intern (retval);
10395
10396 return retval;
10397 }
10398
10399 /* Inspect DIE in CU for a namespace alias. If one exists, record
10400 a new symbol for it.
10401
10402 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10403
10404 static int
10405 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10406 {
10407 struct attribute *attr;
10408
10409 /* If the die does not have a name, this is not a namespace
10410 alias. */
10411 attr = dwarf2_attr (die, DW_AT_name, cu);
10412 if (attr != NULL)
10413 {
10414 int num;
10415 struct die_info *d = die;
10416 struct dwarf2_cu *imported_cu = cu;
10417
10418 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10419 keep inspecting DIEs until we hit the underlying import. */
10420 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10421 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10422 {
10423 attr = dwarf2_attr (d, DW_AT_import, cu);
10424 if (attr == NULL)
10425 break;
10426
10427 d = follow_die_ref (d, attr, &imported_cu);
10428 if (d->tag != DW_TAG_imported_declaration)
10429 break;
10430 }
10431
10432 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10433 {
10434 complaint (_("DIE at %s has too many recursively imported "
10435 "declarations"), sect_offset_str (d->sect_off));
10436 return 0;
10437 }
10438
10439 if (attr != NULL)
10440 {
10441 struct type *type;
10442 sect_offset sect_off = attr->get_ref_die_offset ();
10443
10444 type = get_die_type_at_offset (sect_off, cu->per_cu);
10445 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10446 {
10447 /* This declaration is a global namespace alias. Add
10448 a symbol for it whose type is the aliased namespace. */
10449 new_symbol (die, type, cu);
10450 return 1;
10451 }
10452 }
10453 }
10454
10455 return 0;
10456 }
10457
10458 /* Return the using directives repository (global or local?) to use in the
10459 current context for CU.
10460
10461 For Ada, imported declarations can materialize renamings, which *may* be
10462 global. However it is impossible (for now?) in DWARF to distinguish
10463 "external" imported declarations and "static" ones. As all imported
10464 declarations seem to be static in all other languages, make them all CU-wide
10465 global only in Ada. */
10466
10467 static struct using_direct **
10468 using_directives (struct dwarf2_cu *cu)
10469 {
10470 if (cu->language == language_ada
10471 && cu->get_builder ()->outermost_context_p ())
10472 return cu->get_builder ()->get_global_using_directives ();
10473 else
10474 return cu->get_builder ()->get_local_using_directives ();
10475 }
10476
10477 /* Read the import statement specified by the given die and record it. */
10478
10479 static void
10480 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10481 {
10482 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10483 struct attribute *import_attr;
10484 struct die_info *imported_die, *child_die;
10485 struct dwarf2_cu *imported_cu;
10486 const char *imported_name;
10487 const char *imported_name_prefix;
10488 const char *canonical_name;
10489 const char *import_alias;
10490 const char *imported_declaration = NULL;
10491 const char *import_prefix;
10492 std::vector<const char *> excludes;
10493
10494 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10495 if (import_attr == NULL)
10496 {
10497 complaint (_("Tag '%s' has no DW_AT_import"),
10498 dwarf_tag_name (die->tag));
10499 return;
10500 }
10501
10502 imported_cu = cu;
10503 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10504 imported_name = dwarf2_name (imported_die, imported_cu);
10505 if (imported_name == NULL)
10506 {
10507 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10508
10509 The import in the following code:
10510 namespace A
10511 {
10512 typedef int B;
10513 }
10514
10515 int main ()
10516 {
10517 using A::B;
10518 B b;
10519 return b;
10520 }
10521
10522 ...
10523 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10524 <52> DW_AT_decl_file : 1
10525 <53> DW_AT_decl_line : 6
10526 <54> DW_AT_import : <0x75>
10527 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10528 <59> DW_AT_name : B
10529 <5b> DW_AT_decl_file : 1
10530 <5c> DW_AT_decl_line : 2
10531 <5d> DW_AT_type : <0x6e>
10532 ...
10533 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10534 <76> DW_AT_byte_size : 4
10535 <77> DW_AT_encoding : 5 (signed)
10536
10537 imports the wrong die ( 0x75 instead of 0x58 ).
10538 This case will be ignored until the gcc bug is fixed. */
10539 return;
10540 }
10541
10542 /* Figure out the local name after import. */
10543 import_alias = dwarf2_name (die, cu);
10544
10545 /* Figure out where the statement is being imported to. */
10546 import_prefix = determine_prefix (die, cu);
10547
10548 /* Figure out what the scope of the imported die is and prepend it
10549 to the name of the imported die. */
10550 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10551
10552 if (imported_die->tag != DW_TAG_namespace
10553 && imported_die->tag != DW_TAG_module)
10554 {
10555 imported_declaration = imported_name;
10556 canonical_name = imported_name_prefix;
10557 }
10558 else if (strlen (imported_name_prefix) > 0)
10559 canonical_name = obconcat (&objfile->objfile_obstack,
10560 imported_name_prefix,
10561 (cu->language == language_d ? "." : "::"),
10562 imported_name, (char *) NULL);
10563 else
10564 canonical_name = imported_name;
10565
10566 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10567 for (child_die = die->child; child_die && child_die->tag;
10568 child_die = child_die->sibling)
10569 {
10570 /* DWARF-4: A Fortran use statement with a “rename list” may be
10571 represented by an imported module entry with an import attribute
10572 referring to the module and owned entries corresponding to those
10573 entities that are renamed as part of being imported. */
10574
10575 if (child_die->tag != DW_TAG_imported_declaration)
10576 {
10577 complaint (_("child DW_TAG_imported_declaration expected "
10578 "- DIE at %s [in module %s]"),
10579 sect_offset_str (child_die->sect_off),
10580 objfile_name (objfile));
10581 continue;
10582 }
10583
10584 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10585 if (import_attr == NULL)
10586 {
10587 complaint (_("Tag '%s' has no DW_AT_import"),
10588 dwarf_tag_name (child_die->tag));
10589 continue;
10590 }
10591
10592 imported_cu = cu;
10593 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10594 &imported_cu);
10595 imported_name = dwarf2_name (imported_die, imported_cu);
10596 if (imported_name == NULL)
10597 {
10598 complaint (_("child DW_TAG_imported_declaration has unknown "
10599 "imported name - DIE at %s [in module %s]"),
10600 sect_offset_str (child_die->sect_off),
10601 objfile_name (objfile));
10602 continue;
10603 }
10604
10605 excludes.push_back (imported_name);
10606
10607 process_die (child_die, cu);
10608 }
10609
10610 add_using_directive (using_directives (cu),
10611 import_prefix,
10612 canonical_name,
10613 import_alias,
10614 imported_declaration,
10615 excludes,
10616 0,
10617 &objfile->objfile_obstack);
10618 }
10619
10620 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10621 types, but gives them a size of zero. Starting with version 14,
10622 ICC is compatible with GCC. */
10623
10624 static bool
10625 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10626 {
10627 if (!cu->checked_producer)
10628 check_producer (cu);
10629
10630 return cu->producer_is_icc_lt_14;
10631 }
10632
10633 /* ICC generates a DW_AT_type for C void functions. This was observed on
10634 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10635 which says that void functions should not have a DW_AT_type. */
10636
10637 static bool
10638 producer_is_icc (struct dwarf2_cu *cu)
10639 {
10640 if (!cu->checked_producer)
10641 check_producer (cu);
10642
10643 return cu->producer_is_icc;
10644 }
10645
10646 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10647 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10648 this, it was first present in GCC release 4.3.0. */
10649
10650 static bool
10651 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10652 {
10653 if (!cu->checked_producer)
10654 check_producer (cu);
10655
10656 return cu->producer_is_gcc_lt_4_3;
10657 }
10658
10659 static file_and_directory
10660 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10661 {
10662 file_and_directory res;
10663
10664 /* Find the filename. Do not use dwarf2_name here, since the filename
10665 is not a source language identifier. */
10666 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10667 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10668
10669 if (res.comp_dir == NULL
10670 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10671 && IS_ABSOLUTE_PATH (res.name))
10672 {
10673 res.comp_dir_storage = ldirname (res.name);
10674 if (!res.comp_dir_storage.empty ())
10675 res.comp_dir = res.comp_dir_storage.c_str ();
10676 }
10677 if (res.comp_dir != NULL)
10678 {
10679 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10680 directory, get rid of it. */
10681 const char *cp = strchr (res.comp_dir, ':');
10682
10683 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10684 res.comp_dir = cp + 1;
10685 }
10686
10687 if (res.name == NULL)
10688 res.name = "<unknown>";
10689
10690 return res;
10691 }
10692
10693 /* Handle DW_AT_stmt_list for a compilation unit.
10694 DIE is the DW_TAG_compile_unit die for CU.
10695 COMP_DIR is the compilation directory. LOWPC is passed to
10696 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10697
10698 static void
10699 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10700 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10701 {
10702 struct dwarf2_per_objfile *dwarf2_per_objfile
10703 = cu->per_cu->dwarf2_per_objfile;
10704 struct attribute *attr;
10705 struct line_header line_header_local;
10706 hashval_t line_header_local_hash;
10707 void **slot;
10708 int decode_mapping;
10709
10710 gdb_assert (! cu->per_cu->is_debug_types);
10711
10712 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10713 if (attr == NULL)
10714 return;
10715
10716 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10717
10718 /* The line header hash table is only created if needed (it exists to
10719 prevent redundant reading of the line table for partial_units).
10720 If we're given a partial_unit, we'll need it. If we're given a
10721 compile_unit, then use the line header hash table if it's already
10722 created, but don't create one just yet. */
10723
10724 if (dwarf2_per_objfile->line_header_hash == NULL
10725 && die->tag == DW_TAG_partial_unit)
10726 {
10727 dwarf2_per_objfile->line_header_hash
10728 .reset (htab_create_alloc (127, line_header_hash_voidp,
10729 line_header_eq_voidp,
10730 free_line_header_voidp,
10731 xcalloc, xfree));
10732 }
10733
10734 line_header_local.sect_off = line_offset;
10735 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10736 line_header_local_hash = line_header_hash (&line_header_local);
10737 if (dwarf2_per_objfile->line_header_hash != NULL)
10738 {
10739 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10740 &line_header_local,
10741 line_header_local_hash, NO_INSERT);
10742
10743 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10744 is not present in *SLOT (since if there is something in *SLOT then
10745 it will be for a partial_unit). */
10746 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10747 {
10748 gdb_assert (*slot != NULL);
10749 cu->line_header = (struct line_header *) *slot;
10750 return;
10751 }
10752 }
10753
10754 /* dwarf_decode_line_header does not yet provide sufficient information.
10755 We always have to call also dwarf_decode_lines for it. */
10756 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10757 if (lh == NULL)
10758 return;
10759
10760 cu->line_header = lh.release ();
10761 cu->line_header_die_owner = die;
10762
10763 if (dwarf2_per_objfile->line_header_hash == NULL)
10764 slot = NULL;
10765 else
10766 {
10767 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10768 &line_header_local,
10769 line_header_local_hash, INSERT);
10770 gdb_assert (slot != NULL);
10771 }
10772 if (slot != NULL && *slot == NULL)
10773 {
10774 /* This newly decoded line number information unit will be owned
10775 by line_header_hash hash table. */
10776 *slot = cu->line_header;
10777 cu->line_header_die_owner = NULL;
10778 }
10779 else
10780 {
10781 /* We cannot free any current entry in (*slot) as that struct line_header
10782 may be already used by multiple CUs. Create only temporary decoded
10783 line_header for this CU - it may happen at most once for each line
10784 number information unit. And if we're not using line_header_hash
10785 then this is what we want as well. */
10786 gdb_assert (die->tag != DW_TAG_partial_unit);
10787 }
10788 decode_mapping = (die->tag != DW_TAG_partial_unit);
10789 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10790 decode_mapping);
10791
10792 }
10793
10794 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10795
10796 static void
10797 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10798 {
10799 struct dwarf2_per_objfile *dwarf2_per_objfile
10800 = cu->per_cu->dwarf2_per_objfile;
10801 struct objfile *objfile = dwarf2_per_objfile->objfile;
10802 struct gdbarch *gdbarch = objfile->arch ();
10803 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10804 CORE_ADDR highpc = ((CORE_ADDR) 0);
10805 struct attribute *attr;
10806 struct die_info *child_die;
10807 CORE_ADDR baseaddr;
10808
10809 prepare_one_comp_unit (cu, die, cu->language);
10810 baseaddr = objfile->text_section_offset ();
10811
10812 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10813
10814 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10815 from finish_block. */
10816 if (lowpc == ((CORE_ADDR) -1))
10817 lowpc = highpc;
10818 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10819
10820 file_and_directory fnd = find_file_and_directory (die, cu);
10821
10822 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10823 standardised yet. As a workaround for the language detection we fall
10824 back to the DW_AT_producer string. */
10825 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10826 cu->language = language_opencl;
10827
10828 /* Similar hack for Go. */
10829 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10830 set_cu_language (DW_LANG_Go, cu);
10831
10832 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10833
10834 /* Decode line number information if present. We do this before
10835 processing child DIEs, so that the line header table is available
10836 for DW_AT_decl_file. */
10837 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10838
10839 /* Process all dies in compilation unit. */
10840 if (die->child != NULL)
10841 {
10842 child_die = die->child;
10843 while (child_die && child_die->tag)
10844 {
10845 process_die (child_die, cu);
10846 child_die = child_die->sibling;
10847 }
10848 }
10849
10850 /* Decode macro information, if present. Dwarf 2 macro information
10851 refers to information in the line number info statement program
10852 header, so we can only read it if we've read the header
10853 successfully. */
10854 attr = dwarf2_attr (die, DW_AT_macros, cu);
10855 if (attr == NULL)
10856 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10857 if (attr && cu->line_header)
10858 {
10859 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10860 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10861
10862 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10863 }
10864 else
10865 {
10866 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10867 if (attr && cu->line_header)
10868 {
10869 unsigned int macro_offset = DW_UNSND (attr);
10870
10871 dwarf_decode_macros (cu, macro_offset, 0);
10872 }
10873 }
10874 }
10875
10876 void
10877 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10878 {
10879 struct type_unit_group *tu_group;
10880 int first_time;
10881 struct attribute *attr;
10882 unsigned int i;
10883 struct signatured_type *sig_type;
10884
10885 gdb_assert (per_cu->is_debug_types);
10886 sig_type = (struct signatured_type *) per_cu;
10887
10888 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10889
10890 /* If we're using .gdb_index (includes -readnow) then
10891 per_cu->type_unit_group may not have been set up yet. */
10892 if (sig_type->type_unit_group == NULL)
10893 sig_type->type_unit_group = get_type_unit_group (this, attr);
10894 tu_group = sig_type->type_unit_group;
10895
10896 /* If we've already processed this stmt_list there's no real need to
10897 do it again, we could fake it and just recreate the part we need
10898 (file name,index -> symtab mapping). If data shows this optimization
10899 is useful we can do it then. */
10900 first_time = tu_group->compunit_symtab == NULL;
10901
10902 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10903 debug info. */
10904 line_header_up lh;
10905 if (attr != NULL)
10906 {
10907 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10908 lh = dwarf_decode_line_header (line_offset, this);
10909 }
10910 if (lh == NULL)
10911 {
10912 if (first_time)
10913 start_symtab ("", NULL, 0);
10914 else
10915 {
10916 gdb_assert (tu_group->symtabs == NULL);
10917 gdb_assert (m_builder == nullptr);
10918 struct compunit_symtab *cust = tu_group->compunit_symtab;
10919 m_builder.reset (new struct buildsym_compunit
10920 (COMPUNIT_OBJFILE (cust), "",
10921 COMPUNIT_DIRNAME (cust),
10922 compunit_language (cust),
10923 0, cust));
10924 }
10925 return;
10926 }
10927
10928 line_header = lh.release ();
10929 line_header_die_owner = die;
10930
10931 if (first_time)
10932 {
10933 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10934
10935 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10936 still initializing it, and our caller (a few levels up)
10937 process_full_type_unit still needs to know if this is the first
10938 time. */
10939
10940 tu_group->symtabs
10941 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10942 struct symtab *, line_header->file_names_size ());
10943
10944 auto &file_names = line_header->file_names ();
10945 for (i = 0; i < file_names.size (); ++i)
10946 {
10947 file_entry &fe = file_names[i];
10948 dwarf2_start_subfile (this, fe.name,
10949 fe.include_dir (line_header));
10950 buildsym_compunit *b = get_builder ();
10951 if (b->get_current_subfile ()->symtab == NULL)
10952 {
10953 /* NOTE: start_subfile will recognize when it's been
10954 passed a file it has already seen. So we can't
10955 assume there's a simple mapping from
10956 cu->line_header->file_names to subfiles, plus
10957 cu->line_header->file_names may contain dups. */
10958 b->get_current_subfile ()->symtab
10959 = allocate_symtab (cust, b->get_current_subfile ()->name);
10960 }
10961
10962 fe.symtab = b->get_current_subfile ()->symtab;
10963 tu_group->symtabs[i] = fe.symtab;
10964 }
10965 }
10966 else
10967 {
10968 gdb_assert (m_builder == nullptr);
10969 struct compunit_symtab *cust = tu_group->compunit_symtab;
10970 m_builder.reset (new struct buildsym_compunit
10971 (COMPUNIT_OBJFILE (cust), "",
10972 COMPUNIT_DIRNAME (cust),
10973 compunit_language (cust),
10974 0, cust));
10975
10976 auto &file_names = line_header->file_names ();
10977 for (i = 0; i < file_names.size (); ++i)
10978 {
10979 file_entry &fe = file_names[i];
10980 fe.symtab = tu_group->symtabs[i];
10981 }
10982 }
10983
10984 /* The main symtab is allocated last. Type units don't have DW_AT_name
10985 so they don't have a "real" (so to speak) symtab anyway.
10986 There is later code that will assign the main symtab to all symbols
10987 that don't have one. We need to handle the case of a symbol with a
10988 missing symtab (DW_AT_decl_file) anyway. */
10989 }
10990
10991 /* Process DW_TAG_type_unit.
10992 For TUs we want to skip the first top level sibling if it's not the
10993 actual type being defined by this TU. In this case the first top
10994 level sibling is there to provide context only. */
10995
10996 static void
10997 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10998 {
10999 struct die_info *child_die;
11000
11001 prepare_one_comp_unit (cu, die, language_minimal);
11002
11003 /* Initialize (or reinitialize) the machinery for building symtabs.
11004 We do this before processing child DIEs, so that the line header table
11005 is available for DW_AT_decl_file. */
11006 cu->setup_type_unit_groups (die);
11007
11008 if (die->child != NULL)
11009 {
11010 child_die = die->child;
11011 while (child_die && child_die->tag)
11012 {
11013 process_die (child_die, cu);
11014 child_die = child_die->sibling;
11015 }
11016 }
11017 }
11018 \f
11019 /* DWO/DWP files.
11020
11021 http://gcc.gnu.org/wiki/DebugFission
11022 http://gcc.gnu.org/wiki/DebugFissionDWP
11023
11024 To simplify handling of both DWO files ("object" files with the DWARF info)
11025 and DWP files (a file with the DWOs packaged up into one file), we treat
11026 DWP files as having a collection of virtual DWO files. */
11027
11028 static hashval_t
11029 hash_dwo_file (const void *item)
11030 {
11031 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11032 hashval_t hash;
11033
11034 hash = htab_hash_string (dwo_file->dwo_name);
11035 if (dwo_file->comp_dir != NULL)
11036 hash += htab_hash_string (dwo_file->comp_dir);
11037 return hash;
11038 }
11039
11040 static int
11041 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11042 {
11043 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11044 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11045
11046 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11047 return 0;
11048 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11049 return lhs->comp_dir == rhs->comp_dir;
11050 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11051 }
11052
11053 /* Allocate a hash table for DWO files. */
11054
11055 static htab_up
11056 allocate_dwo_file_hash_table ()
11057 {
11058 auto delete_dwo_file = [] (void *item)
11059 {
11060 struct dwo_file *dwo_file = (struct dwo_file *) item;
11061
11062 delete dwo_file;
11063 };
11064
11065 return htab_up (htab_create_alloc (41,
11066 hash_dwo_file,
11067 eq_dwo_file,
11068 delete_dwo_file,
11069 xcalloc, xfree));
11070 }
11071
11072 /* Lookup DWO file DWO_NAME. */
11073
11074 static void **
11075 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11076 const char *dwo_name,
11077 const char *comp_dir)
11078 {
11079 struct dwo_file find_entry;
11080 void **slot;
11081
11082 if (dwarf2_per_objfile->dwo_files == NULL)
11083 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11084
11085 find_entry.dwo_name = dwo_name;
11086 find_entry.comp_dir = comp_dir;
11087 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11088 INSERT);
11089
11090 return slot;
11091 }
11092
11093 static hashval_t
11094 hash_dwo_unit (const void *item)
11095 {
11096 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11097
11098 /* This drops the top 32 bits of the id, but is ok for a hash. */
11099 return dwo_unit->signature;
11100 }
11101
11102 static int
11103 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11104 {
11105 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11106 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11107
11108 /* The signature is assumed to be unique within the DWO file.
11109 So while object file CU dwo_id's always have the value zero,
11110 that's OK, assuming each object file DWO file has only one CU,
11111 and that's the rule for now. */
11112 return lhs->signature == rhs->signature;
11113 }
11114
11115 /* Allocate a hash table for DWO CUs,TUs.
11116 There is one of these tables for each of CUs,TUs for each DWO file. */
11117
11118 static htab_up
11119 allocate_dwo_unit_table ()
11120 {
11121 /* Start out with a pretty small number.
11122 Generally DWO files contain only one CU and maybe some TUs. */
11123 return htab_up (htab_create_alloc (3,
11124 hash_dwo_unit,
11125 eq_dwo_unit,
11126 NULL, xcalloc, xfree));
11127 }
11128
11129 /* die_reader_func for create_dwo_cu. */
11130
11131 static void
11132 create_dwo_cu_reader (const struct die_reader_specs *reader,
11133 const gdb_byte *info_ptr,
11134 struct die_info *comp_unit_die,
11135 struct dwo_file *dwo_file,
11136 struct dwo_unit *dwo_unit)
11137 {
11138 struct dwarf2_cu *cu = reader->cu;
11139 sect_offset sect_off = cu->per_cu->sect_off;
11140 struct dwarf2_section_info *section = cu->per_cu->section;
11141
11142 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11143 if (!signature.has_value ())
11144 {
11145 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11146 " its dwo_id [in module %s]"),
11147 sect_offset_str (sect_off), dwo_file->dwo_name);
11148 return;
11149 }
11150
11151 dwo_unit->dwo_file = dwo_file;
11152 dwo_unit->signature = *signature;
11153 dwo_unit->section = section;
11154 dwo_unit->sect_off = sect_off;
11155 dwo_unit->length = cu->per_cu->length;
11156
11157 if (dwarf_read_debug)
11158 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11159 sect_offset_str (sect_off),
11160 hex_string (dwo_unit->signature));
11161 }
11162
11163 /* Create the dwo_units for the CUs in a DWO_FILE.
11164 Note: This function processes DWO files only, not DWP files. */
11165
11166 static void
11167 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11168 dwarf2_cu *cu, struct dwo_file &dwo_file,
11169 dwarf2_section_info &section, htab_up &cus_htab)
11170 {
11171 struct objfile *objfile = dwarf2_per_objfile->objfile;
11172 const gdb_byte *info_ptr, *end_ptr;
11173
11174 section.read (objfile);
11175 info_ptr = section.buffer;
11176
11177 if (info_ptr == NULL)
11178 return;
11179
11180 if (dwarf_read_debug)
11181 {
11182 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11183 section.get_name (),
11184 section.get_file_name ());
11185 }
11186
11187 end_ptr = info_ptr + section.size;
11188 while (info_ptr < end_ptr)
11189 {
11190 struct dwarf2_per_cu_data per_cu;
11191 struct dwo_unit read_unit {};
11192 struct dwo_unit *dwo_unit;
11193 void **slot;
11194 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11195
11196 memset (&per_cu, 0, sizeof (per_cu));
11197 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11198 per_cu.is_debug_types = 0;
11199 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11200 per_cu.section = &section;
11201
11202 cutu_reader reader (&per_cu, cu, &dwo_file);
11203 if (!reader.dummy_p)
11204 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11205 &dwo_file, &read_unit);
11206 info_ptr += per_cu.length;
11207
11208 // If the unit could not be parsed, skip it.
11209 if (read_unit.dwo_file == NULL)
11210 continue;
11211
11212 if (cus_htab == NULL)
11213 cus_htab = allocate_dwo_unit_table ();
11214
11215 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11216 *dwo_unit = read_unit;
11217 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11218 gdb_assert (slot != NULL);
11219 if (*slot != NULL)
11220 {
11221 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11222 sect_offset dup_sect_off = dup_cu->sect_off;
11223
11224 complaint (_("debug cu entry at offset %s is duplicate to"
11225 " the entry at offset %s, signature %s"),
11226 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11227 hex_string (dwo_unit->signature));
11228 }
11229 *slot = (void *)dwo_unit;
11230 }
11231 }
11232
11233 /* DWP file .debug_{cu,tu}_index section format:
11234 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11235
11236 DWP Version 1:
11237
11238 Both index sections have the same format, and serve to map a 64-bit
11239 signature to a set of section numbers. Each section begins with a header,
11240 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11241 indexes, and a pool of 32-bit section numbers. The index sections will be
11242 aligned at 8-byte boundaries in the file.
11243
11244 The index section header consists of:
11245
11246 V, 32 bit version number
11247 -, 32 bits unused
11248 N, 32 bit number of compilation units or type units in the index
11249 M, 32 bit number of slots in the hash table
11250
11251 Numbers are recorded using the byte order of the application binary.
11252
11253 The hash table begins at offset 16 in the section, and consists of an array
11254 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11255 order of the application binary). Unused slots in the hash table are 0.
11256 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11257
11258 The parallel table begins immediately after the hash table
11259 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11260 array of 32-bit indexes (using the byte order of the application binary),
11261 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11262 table contains a 32-bit index into the pool of section numbers. For unused
11263 hash table slots, the corresponding entry in the parallel table will be 0.
11264
11265 The pool of section numbers begins immediately following the hash table
11266 (at offset 16 + 12 * M from the beginning of the section). The pool of
11267 section numbers consists of an array of 32-bit words (using the byte order
11268 of the application binary). Each item in the array is indexed starting
11269 from 0. The hash table entry provides the index of the first section
11270 number in the set. Additional section numbers in the set follow, and the
11271 set is terminated by a 0 entry (section number 0 is not used in ELF).
11272
11273 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11274 section must be the first entry in the set, and the .debug_abbrev.dwo must
11275 be the second entry. Other members of the set may follow in any order.
11276
11277 ---
11278
11279 DWP Version 2:
11280
11281 DWP Version 2 combines all the .debug_info, etc. sections into one,
11282 and the entries in the index tables are now offsets into these sections.
11283 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11284 section.
11285
11286 Index Section Contents:
11287 Header
11288 Hash Table of Signatures dwp_hash_table.hash_table
11289 Parallel Table of Indices dwp_hash_table.unit_table
11290 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11291 Table of Section Sizes dwp_hash_table.v2.sizes
11292
11293 The index section header consists of:
11294
11295 V, 32 bit version number
11296 L, 32 bit number of columns in the table of section offsets
11297 N, 32 bit number of compilation units or type units in the index
11298 M, 32 bit number of slots in the hash table
11299
11300 Numbers are recorded using the byte order of the application binary.
11301
11302 The hash table has the same format as version 1.
11303 The parallel table of indices has the same format as version 1,
11304 except that the entries are origin-1 indices into the table of sections
11305 offsets and the table of section sizes.
11306
11307 The table of offsets begins immediately following the parallel table
11308 (at offset 16 + 12 * M from the beginning of the section). The table is
11309 a two-dimensional array of 32-bit words (using the byte order of the
11310 application binary), with L columns and N+1 rows, in row-major order.
11311 Each row in the array is indexed starting from 0. The first row provides
11312 a key to the remaining rows: each column in this row provides an identifier
11313 for a debug section, and the offsets in the same column of subsequent rows
11314 refer to that section. The section identifiers are:
11315
11316 DW_SECT_INFO 1 .debug_info.dwo
11317 DW_SECT_TYPES 2 .debug_types.dwo
11318 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11319 DW_SECT_LINE 4 .debug_line.dwo
11320 DW_SECT_LOC 5 .debug_loc.dwo
11321 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11322 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11323 DW_SECT_MACRO 8 .debug_macro.dwo
11324
11325 The offsets provided by the CU and TU index sections are the base offsets
11326 for the contributions made by each CU or TU to the corresponding section
11327 in the package file. Each CU and TU header contains an abbrev_offset
11328 field, used to find the abbreviations table for that CU or TU within the
11329 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11330 be interpreted as relative to the base offset given in the index section.
11331 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11332 should be interpreted as relative to the base offset for .debug_line.dwo,
11333 and offsets into other debug sections obtained from DWARF attributes should
11334 also be interpreted as relative to the corresponding base offset.
11335
11336 The table of sizes begins immediately following the table of offsets.
11337 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11338 with L columns and N rows, in row-major order. Each row in the array is
11339 indexed starting from 1 (row 0 is shared by the two tables).
11340
11341 ---
11342
11343 Hash table lookup is handled the same in version 1 and 2:
11344
11345 We assume that N and M will not exceed 2^32 - 1.
11346 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11347
11348 Given a 64-bit compilation unit signature or a type signature S, an entry
11349 in the hash table is located as follows:
11350
11351 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11352 the low-order k bits all set to 1.
11353
11354 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11355
11356 3) If the hash table entry at index H matches the signature, use that
11357 entry. If the hash table entry at index H is unused (all zeroes),
11358 terminate the search: the signature is not present in the table.
11359
11360 4) Let H = (H + H') modulo M. Repeat at Step 3.
11361
11362 Because M > N and H' and M are relatively prime, the search is guaranteed
11363 to stop at an unused slot or find the match. */
11364
11365 /* Create a hash table to map DWO IDs to their CU/TU entry in
11366 .debug_{info,types}.dwo in DWP_FILE.
11367 Returns NULL if there isn't one.
11368 Note: This function processes DWP files only, not DWO files. */
11369
11370 static struct dwp_hash_table *
11371 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11372 struct dwp_file *dwp_file, int is_debug_types)
11373 {
11374 struct objfile *objfile = dwarf2_per_objfile->objfile;
11375 bfd *dbfd = dwp_file->dbfd.get ();
11376 const gdb_byte *index_ptr, *index_end;
11377 struct dwarf2_section_info *index;
11378 uint32_t version, nr_columns, nr_units, nr_slots;
11379 struct dwp_hash_table *htab;
11380
11381 if (is_debug_types)
11382 index = &dwp_file->sections.tu_index;
11383 else
11384 index = &dwp_file->sections.cu_index;
11385
11386 if (index->empty ())
11387 return NULL;
11388 index->read (objfile);
11389
11390 index_ptr = index->buffer;
11391 index_end = index_ptr + index->size;
11392
11393 version = read_4_bytes (dbfd, index_ptr);
11394 index_ptr += 4;
11395 if (version == 2)
11396 nr_columns = read_4_bytes (dbfd, index_ptr);
11397 else
11398 nr_columns = 0;
11399 index_ptr += 4;
11400 nr_units = read_4_bytes (dbfd, index_ptr);
11401 index_ptr += 4;
11402 nr_slots = read_4_bytes (dbfd, index_ptr);
11403 index_ptr += 4;
11404
11405 if (version != 1 && version != 2)
11406 {
11407 error (_("Dwarf Error: unsupported DWP file version (%s)"
11408 " [in module %s]"),
11409 pulongest (version), dwp_file->name);
11410 }
11411 if (nr_slots != (nr_slots & -nr_slots))
11412 {
11413 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11414 " is not power of 2 [in module %s]"),
11415 pulongest (nr_slots), dwp_file->name);
11416 }
11417
11418 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11419 htab->version = version;
11420 htab->nr_columns = nr_columns;
11421 htab->nr_units = nr_units;
11422 htab->nr_slots = nr_slots;
11423 htab->hash_table = index_ptr;
11424 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11425
11426 /* Exit early if the table is empty. */
11427 if (nr_slots == 0 || nr_units == 0
11428 || (version == 2 && nr_columns == 0))
11429 {
11430 /* All must be zero. */
11431 if (nr_slots != 0 || nr_units != 0
11432 || (version == 2 && nr_columns != 0))
11433 {
11434 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11435 " all zero [in modules %s]"),
11436 dwp_file->name);
11437 }
11438 return htab;
11439 }
11440
11441 if (version == 1)
11442 {
11443 htab->section_pool.v1.indices =
11444 htab->unit_table + sizeof (uint32_t) * nr_slots;
11445 /* It's harder to decide whether the section is too small in v1.
11446 V1 is deprecated anyway so we punt. */
11447 }
11448 else
11449 {
11450 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11451 int *ids = htab->section_pool.v2.section_ids;
11452 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11453 /* Reverse map for error checking. */
11454 int ids_seen[DW_SECT_MAX + 1];
11455 int i;
11456
11457 if (nr_columns < 2)
11458 {
11459 error (_("Dwarf Error: bad DWP hash table, too few columns"
11460 " in section table [in module %s]"),
11461 dwp_file->name);
11462 }
11463 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11464 {
11465 error (_("Dwarf Error: bad DWP hash table, too many columns"
11466 " in section table [in module %s]"),
11467 dwp_file->name);
11468 }
11469 memset (ids, 255, sizeof_ids);
11470 memset (ids_seen, 255, sizeof (ids_seen));
11471 for (i = 0; i < nr_columns; ++i)
11472 {
11473 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11474
11475 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11476 {
11477 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11478 " in section table [in module %s]"),
11479 id, dwp_file->name);
11480 }
11481 if (ids_seen[id] != -1)
11482 {
11483 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11484 " id %d in section table [in module %s]"),
11485 id, dwp_file->name);
11486 }
11487 ids_seen[id] = i;
11488 ids[i] = id;
11489 }
11490 /* Must have exactly one info or types section. */
11491 if (((ids_seen[DW_SECT_INFO] != -1)
11492 + (ids_seen[DW_SECT_TYPES] != -1))
11493 != 1)
11494 {
11495 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11496 " DWO info/types section [in module %s]"),
11497 dwp_file->name);
11498 }
11499 /* Must have an abbrev section. */
11500 if (ids_seen[DW_SECT_ABBREV] == -1)
11501 {
11502 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11503 " section [in module %s]"),
11504 dwp_file->name);
11505 }
11506 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11507 htab->section_pool.v2.sizes =
11508 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11509 * nr_units * nr_columns);
11510 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11511 * nr_units * nr_columns))
11512 > index_end)
11513 {
11514 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11515 " [in module %s]"),
11516 dwp_file->name);
11517 }
11518 }
11519
11520 return htab;
11521 }
11522
11523 /* Update SECTIONS with the data from SECTP.
11524
11525 This function is like the other "locate" section routines that are
11526 passed to bfd_map_over_sections, but in this context the sections to
11527 read comes from the DWP V1 hash table, not the full ELF section table.
11528
11529 The result is non-zero for success, or zero if an error was found. */
11530
11531 static int
11532 locate_v1_virtual_dwo_sections (asection *sectp,
11533 struct virtual_v1_dwo_sections *sections)
11534 {
11535 const struct dwop_section_names *names = &dwop_section_names;
11536
11537 if (section_is_p (sectp->name, &names->abbrev_dwo))
11538 {
11539 /* There can be only one. */
11540 if (sections->abbrev.s.section != NULL)
11541 return 0;
11542 sections->abbrev.s.section = sectp;
11543 sections->abbrev.size = bfd_section_size (sectp);
11544 }
11545 else if (section_is_p (sectp->name, &names->info_dwo)
11546 || section_is_p (sectp->name, &names->types_dwo))
11547 {
11548 /* There can be only one. */
11549 if (sections->info_or_types.s.section != NULL)
11550 return 0;
11551 sections->info_or_types.s.section = sectp;
11552 sections->info_or_types.size = bfd_section_size (sectp);
11553 }
11554 else if (section_is_p (sectp->name, &names->line_dwo))
11555 {
11556 /* There can be only one. */
11557 if (sections->line.s.section != NULL)
11558 return 0;
11559 sections->line.s.section = sectp;
11560 sections->line.size = bfd_section_size (sectp);
11561 }
11562 else if (section_is_p (sectp->name, &names->loc_dwo))
11563 {
11564 /* There can be only one. */
11565 if (sections->loc.s.section != NULL)
11566 return 0;
11567 sections->loc.s.section = sectp;
11568 sections->loc.size = bfd_section_size (sectp);
11569 }
11570 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11571 {
11572 /* There can be only one. */
11573 if (sections->macinfo.s.section != NULL)
11574 return 0;
11575 sections->macinfo.s.section = sectp;
11576 sections->macinfo.size = bfd_section_size (sectp);
11577 }
11578 else if (section_is_p (sectp->name, &names->macro_dwo))
11579 {
11580 /* There can be only one. */
11581 if (sections->macro.s.section != NULL)
11582 return 0;
11583 sections->macro.s.section = sectp;
11584 sections->macro.size = bfd_section_size (sectp);
11585 }
11586 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11587 {
11588 /* There can be only one. */
11589 if (sections->str_offsets.s.section != NULL)
11590 return 0;
11591 sections->str_offsets.s.section = sectp;
11592 sections->str_offsets.size = bfd_section_size (sectp);
11593 }
11594 else
11595 {
11596 /* No other kind of section is valid. */
11597 return 0;
11598 }
11599
11600 return 1;
11601 }
11602
11603 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11604 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11605 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11606 This is for DWP version 1 files. */
11607
11608 static struct dwo_unit *
11609 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11610 struct dwp_file *dwp_file,
11611 uint32_t unit_index,
11612 const char *comp_dir,
11613 ULONGEST signature, int is_debug_types)
11614 {
11615 struct objfile *objfile = dwarf2_per_objfile->objfile;
11616 const struct dwp_hash_table *dwp_htab =
11617 is_debug_types ? dwp_file->tus : dwp_file->cus;
11618 bfd *dbfd = dwp_file->dbfd.get ();
11619 const char *kind = is_debug_types ? "TU" : "CU";
11620 struct dwo_file *dwo_file;
11621 struct dwo_unit *dwo_unit;
11622 struct virtual_v1_dwo_sections sections;
11623 void **dwo_file_slot;
11624 int i;
11625
11626 gdb_assert (dwp_file->version == 1);
11627
11628 if (dwarf_read_debug)
11629 {
11630 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11631 kind,
11632 pulongest (unit_index), hex_string (signature),
11633 dwp_file->name);
11634 }
11635
11636 /* Fetch the sections of this DWO unit.
11637 Put a limit on the number of sections we look for so that bad data
11638 doesn't cause us to loop forever. */
11639
11640 #define MAX_NR_V1_DWO_SECTIONS \
11641 (1 /* .debug_info or .debug_types */ \
11642 + 1 /* .debug_abbrev */ \
11643 + 1 /* .debug_line */ \
11644 + 1 /* .debug_loc */ \
11645 + 1 /* .debug_str_offsets */ \
11646 + 1 /* .debug_macro or .debug_macinfo */ \
11647 + 1 /* trailing zero */)
11648
11649 memset (&sections, 0, sizeof (sections));
11650
11651 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11652 {
11653 asection *sectp;
11654 uint32_t section_nr =
11655 read_4_bytes (dbfd,
11656 dwp_htab->section_pool.v1.indices
11657 + (unit_index + i) * sizeof (uint32_t));
11658
11659 if (section_nr == 0)
11660 break;
11661 if (section_nr >= dwp_file->num_sections)
11662 {
11663 error (_("Dwarf Error: bad DWP hash table, section number too large"
11664 " [in module %s]"),
11665 dwp_file->name);
11666 }
11667
11668 sectp = dwp_file->elf_sections[section_nr];
11669 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11670 {
11671 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11672 " [in module %s]"),
11673 dwp_file->name);
11674 }
11675 }
11676
11677 if (i < 2
11678 || sections.info_or_types.empty ()
11679 || sections.abbrev.empty ())
11680 {
11681 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11682 " [in module %s]"),
11683 dwp_file->name);
11684 }
11685 if (i == MAX_NR_V1_DWO_SECTIONS)
11686 {
11687 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11688 " [in module %s]"),
11689 dwp_file->name);
11690 }
11691
11692 /* It's easier for the rest of the code if we fake a struct dwo_file and
11693 have dwo_unit "live" in that. At least for now.
11694
11695 The DWP file can be made up of a random collection of CUs and TUs.
11696 However, for each CU + set of TUs that came from the same original DWO
11697 file, we can combine them back into a virtual DWO file to save space
11698 (fewer struct dwo_file objects to allocate). Remember that for really
11699 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11700
11701 std::string virtual_dwo_name =
11702 string_printf ("virtual-dwo/%d-%d-%d-%d",
11703 sections.abbrev.get_id (),
11704 sections.line.get_id (),
11705 sections.loc.get_id (),
11706 sections.str_offsets.get_id ());
11707 /* Can we use an existing virtual DWO file? */
11708 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11709 virtual_dwo_name.c_str (),
11710 comp_dir);
11711 /* Create one if necessary. */
11712 if (*dwo_file_slot == NULL)
11713 {
11714 if (dwarf_read_debug)
11715 {
11716 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11717 virtual_dwo_name.c_str ());
11718 }
11719 dwo_file = new struct dwo_file;
11720 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11721 dwo_file->comp_dir = comp_dir;
11722 dwo_file->sections.abbrev = sections.abbrev;
11723 dwo_file->sections.line = sections.line;
11724 dwo_file->sections.loc = sections.loc;
11725 dwo_file->sections.macinfo = sections.macinfo;
11726 dwo_file->sections.macro = sections.macro;
11727 dwo_file->sections.str_offsets = sections.str_offsets;
11728 /* The "str" section is global to the entire DWP file. */
11729 dwo_file->sections.str = dwp_file->sections.str;
11730 /* The info or types section is assigned below to dwo_unit,
11731 there's no need to record it in dwo_file.
11732 Also, we can't simply record type sections in dwo_file because
11733 we record a pointer into the vector in dwo_unit. As we collect more
11734 types we'll grow the vector and eventually have to reallocate space
11735 for it, invalidating all copies of pointers into the previous
11736 contents. */
11737 *dwo_file_slot = dwo_file;
11738 }
11739 else
11740 {
11741 if (dwarf_read_debug)
11742 {
11743 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11744 virtual_dwo_name.c_str ());
11745 }
11746 dwo_file = (struct dwo_file *) *dwo_file_slot;
11747 }
11748
11749 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11750 dwo_unit->dwo_file = dwo_file;
11751 dwo_unit->signature = signature;
11752 dwo_unit->section =
11753 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11754 *dwo_unit->section = sections.info_or_types;
11755 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11756
11757 return dwo_unit;
11758 }
11759
11760 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11761 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11762 piece within that section used by a TU/CU, return a virtual section
11763 of just that piece. */
11764
11765 static struct dwarf2_section_info
11766 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11767 struct dwarf2_section_info *section,
11768 bfd_size_type offset, bfd_size_type size)
11769 {
11770 struct dwarf2_section_info result;
11771 asection *sectp;
11772
11773 gdb_assert (section != NULL);
11774 gdb_assert (!section->is_virtual);
11775
11776 memset (&result, 0, sizeof (result));
11777 result.s.containing_section = section;
11778 result.is_virtual = true;
11779
11780 if (size == 0)
11781 return result;
11782
11783 sectp = section->get_bfd_section ();
11784
11785 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11786 bounds of the real section. This is a pretty-rare event, so just
11787 flag an error (easier) instead of a warning and trying to cope. */
11788 if (sectp == NULL
11789 || offset + size > bfd_section_size (sectp))
11790 {
11791 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11792 " in section %s [in module %s]"),
11793 sectp ? bfd_section_name (sectp) : "<unknown>",
11794 objfile_name (dwarf2_per_objfile->objfile));
11795 }
11796
11797 result.virtual_offset = offset;
11798 result.size = size;
11799 return result;
11800 }
11801
11802 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11803 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11804 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11805 This is for DWP version 2 files. */
11806
11807 static struct dwo_unit *
11808 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11809 struct dwp_file *dwp_file,
11810 uint32_t unit_index,
11811 const char *comp_dir,
11812 ULONGEST signature, int is_debug_types)
11813 {
11814 struct objfile *objfile = dwarf2_per_objfile->objfile;
11815 const struct dwp_hash_table *dwp_htab =
11816 is_debug_types ? dwp_file->tus : dwp_file->cus;
11817 bfd *dbfd = dwp_file->dbfd.get ();
11818 const char *kind = is_debug_types ? "TU" : "CU";
11819 struct dwo_file *dwo_file;
11820 struct dwo_unit *dwo_unit;
11821 struct virtual_v2_dwo_sections sections;
11822 void **dwo_file_slot;
11823 int i;
11824
11825 gdb_assert (dwp_file->version == 2);
11826
11827 if (dwarf_read_debug)
11828 {
11829 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11830 kind,
11831 pulongest (unit_index), hex_string (signature),
11832 dwp_file->name);
11833 }
11834
11835 /* Fetch the section offsets of this DWO unit. */
11836
11837 memset (&sections, 0, sizeof (sections));
11838
11839 for (i = 0; i < dwp_htab->nr_columns; ++i)
11840 {
11841 uint32_t offset = read_4_bytes (dbfd,
11842 dwp_htab->section_pool.v2.offsets
11843 + (((unit_index - 1) * dwp_htab->nr_columns
11844 + i)
11845 * sizeof (uint32_t)));
11846 uint32_t size = read_4_bytes (dbfd,
11847 dwp_htab->section_pool.v2.sizes
11848 + (((unit_index - 1) * dwp_htab->nr_columns
11849 + i)
11850 * sizeof (uint32_t)));
11851
11852 switch (dwp_htab->section_pool.v2.section_ids[i])
11853 {
11854 case DW_SECT_INFO:
11855 case DW_SECT_TYPES:
11856 sections.info_or_types_offset = offset;
11857 sections.info_or_types_size = size;
11858 break;
11859 case DW_SECT_ABBREV:
11860 sections.abbrev_offset = offset;
11861 sections.abbrev_size = size;
11862 break;
11863 case DW_SECT_LINE:
11864 sections.line_offset = offset;
11865 sections.line_size = size;
11866 break;
11867 case DW_SECT_LOC:
11868 sections.loc_offset = offset;
11869 sections.loc_size = size;
11870 break;
11871 case DW_SECT_STR_OFFSETS:
11872 sections.str_offsets_offset = offset;
11873 sections.str_offsets_size = size;
11874 break;
11875 case DW_SECT_MACINFO:
11876 sections.macinfo_offset = offset;
11877 sections.macinfo_size = size;
11878 break;
11879 case DW_SECT_MACRO:
11880 sections.macro_offset = offset;
11881 sections.macro_size = size;
11882 break;
11883 }
11884 }
11885
11886 /* It's easier for the rest of the code if we fake a struct dwo_file and
11887 have dwo_unit "live" in that. At least for now.
11888
11889 The DWP file can be made up of a random collection of CUs and TUs.
11890 However, for each CU + set of TUs that came from the same original DWO
11891 file, we can combine them back into a virtual DWO file to save space
11892 (fewer struct dwo_file objects to allocate). Remember that for really
11893 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11894
11895 std::string virtual_dwo_name =
11896 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11897 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11898 (long) (sections.line_size ? sections.line_offset : 0),
11899 (long) (sections.loc_size ? sections.loc_offset : 0),
11900 (long) (sections.str_offsets_size
11901 ? sections.str_offsets_offset : 0));
11902 /* Can we use an existing virtual DWO file? */
11903 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11904 virtual_dwo_name.c_str (),
11905 comp_dir);
11906 /* Create one if necessary. */
11907 if (*dwo_file_slot == NULL)
11908 {
11909 if (dwarf_read_debug)
11910 {
11911 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11912 virtual_dwo_name.c_str ());
11913 }
11914 dwo_file = new struct dwo_file;
11915 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11916 dwo_file->comp_dir = comp_dir;
11917 dwo_file->sections.abbrev =
11918 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11919 sections.abbrev_offset, sections.abbrev_size);
11920 dwo_file->sections.line =
11921 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11922 sections.line_offset, sections.line_size);
11923 dwo_file->sections.loc =
11924 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11925 sections.loc_offset, sections.loc_size);
11926 dwo_file->sections.macinfo =
11927 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11928 sections.macinfo_offset, sections.macinfo_size);
11929 dwo_file->sections.macro =
11930 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11931 sections.macro_offset, sections.macro_size);
11932 dwo_file->sections.str_offsets =
11933 create_dwp_v2_section (dwarf2_per_objfile,
11934 &dwp_file->sections.str_offsets,
11935 sections.str_offsets_offset,
11936 sections.str_offsets_size);
11937 /* The "str" section is global to the entire DWP file. */
11938 dwo_file->sections.str = dwp_file->sections.str;
11939 /* The info or types section is assigned below to dwo_unit,
11940 there's no need to record it in dwo_file.
11941 Also, we can't simply record type sections in dwo_file because
11942 we record a pointer into the vector in dwo_unit. As we collect more
11943 types we'll grow the vector and eventually have to reallocate space
11944 for it, invalidating all copies of pointers into the previous
11945 contents. */
11946 *dwo_file_slot = dwo_file;
11947 }
11948 else
11949 {
11950 if (dwarf_read_debug)
11951 {
11952 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11953 virtual_dwo_name.c_str ());
11954 }
11955 dwo_file = (struct dwo_file *) *dwo_file_slot;
11956 }
11957
11958 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11959 dwo_unit->dwo_file = dwo_file;
11960 dwo_unit->signature = signature;
11961 dwo_unit->section =
11962 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11963 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11964 is_debug_types
11965 ? &dwp_file->sections.types
11966 : &dwp_file->sections.info,
11967 sections.info_or_types_offset,
11968 sections.info_or_types_size);
11969 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11970
11971 return dwo_unit;
11972 }
11973
11974 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11975 Returns NULL if the signature isn't found. */
11976
11977 static struct dwo_unit *
11978 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11979 struct dwp_file *dwp_file, const char *comp_dir,
11980 ULONGEST signature, int is_debug_types)
11981 {
11982 const struct dwp_hash_table *dwp_htab =
11983 is_debug_types ? dwp_file->tus : dwp_file->cus;
11984 bfd *dbfd = dwp_file->dbfd.get ();
11985 uint32_t mask = dwp_htab->nr_slots - 1;
11986 uint32_t hash = signature & mask;
11987 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11988 unsigned int i;
11989 void **slot;
11990 struct dwo_unit find_dwo_cu;
11991
11992 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11993 find_dwo_cu.signature = signature;
11994 slot = htab_find_slot (is_debug_types
11995 ? dwp_file->loaded_tus.get ()
11996 : dwp_file->loaded_cus.get (),
11997 &find_dwo_cu, INSERT);
11998
11999 if (*slot != NULL)
12000 return (struct dwo_unit *) *slot;
12001
12002 /* Use a for loop so that we don't loop forever on bad debug info. */
12003 for (i = 0; i < dwp_htab->nr_slots; ++i)
12004 {
12005 ULONGEST signature_in_table;
12006
12007 signature_in_table =
12008 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12009 if (signature_in_table == signature)
12010 {
12011 uint32_t unit_index =
12012 read_4_bytes (dbfd,
12013 dwp_htab->unit_table + hash * sizeof (uint32_t));
12014
12015 if (dwp_file->version == 1)
12016 {
12017 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12018 dwp_file, unit_index,
12019 comp_dir, signature,
12020 is_debug_types);
12021 }
12022 else
12023 {
12024 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12025 dwp_file, unit_index,
12026 comp_dir, signature,
12027 is_debug_types);
12028 }
12029 return (struct dwo_unit *) *slot;
12030 }
12031 if (signature_in_table == 0)
12032 return NULL;
12033 hash = (hash + hash2) & mask;
12034 }
12035
12036 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12037 " [in module %s]"),
12038 dwp_file->name);
12039 }
12040
12041 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12042 Open the file specified by FILE_NAME and hand it off to BFD for
12043 preliminary analysis. Return a newly initialized bfd *, which
12044 includes a canonicalized copy of FILE_NAME.
12045 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12046 SEARCH_CWD is true if the current directory is to be searched.
12047 It will be searched before debug-file-directory.
12048 If successful, the file is added to the bfd include table of the
12049 objfile's bfd (see gdb_bfd_record_inclusion).
12050 If unable to find/open the file, return NULL.
12051 NOTE: This function is derived from symfile_bfd_open. */
12052
12053 static gdb_bfd_ref_ptr
12054 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12055 const char *file_name, int is_dwp, int search_cwd)
12056 {
12057 int desc;
12058 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12059 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12060 to debug_file_directory. */
12061 const char *search_path;
12062 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12063
12064 gdb::unique_xmalloc_ptr<char> search_path_holder;
12065 if (search_cwd)
12066 {
12067 if (*debug_file_directory != '\0')
12068 {
12069 search_path_holder.reset (concat (".", dirname_separator_string,
12070 debug_file_directory,
12071 (char *) NULL));
12072 search_path = search_path_holder.get ();
12073 }
12074 else
12075 search_path = ".";
12076 }
12077 else
12078 search_path = debug_file_directory;
12079
12080 openp_flags flags = OPF_RETURN_REALPATH;
12081 if (is_dwp)
12082 flags |= OPF_SEARCH_IN_PATH;
12083
12084 gdb::unique_xmalloc_ptr<char> absolute_name;
12085 desc = openp (search_path, flags, file_name,
12086 O_RDONLY | O_BINARY, &absolute_name);
12087 if (desc < 0)
12088 return NULL;
12089
12090 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12091 gnutarget, desc));
12092 if (sym_bfd == NULL)
12093 return NULL;
12094 bfd_set_cacheable (sym_bfd.get (), 1);
12095
12096 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12097 return NULL;
12098
12099 /* Success. Record the bfd as having been included by the objfile's bfd.
12100 This is important because things like demangled_names_hash lives in the
12101 objfile's per_bfd space and may have references to things like symbol
12102 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12103 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12104
12105 return sym_bfd;
12106 }
12107
12108 /* Try to open DWO file FILE_NAME.
12109 COMP_DIR is the DW_AT_comp_dir attribute.
12110 The result is the bfd handle of the file.
12111 If there is a problem finding or opening the file, return NULL.
12112 Upon success, the canonicalized path of the file is stored in the bfd,
12113 same as symfile_bfd_open. */
12114
12115 static gdb_bfd_ref_ptr
12116 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12117 const char *file_name, const char *comp_dir)
12118 {
12119 if (IS_ABSOLUTE_PATH (file_name))
12120 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12121 0 /*is_dwp*/, 0 /*search_cwd*/);
12122
12123 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12124
12125 if (comp_dir != NULL)
12126 {
12127 gdb::unique_xmalloc_ptr<char> path_to_try
12128 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12129
12130 /* NOTE: If comp_dir is a relative path, this will also try the
12131 search path, which seems useful. */
12132 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12133 path_to_try.get (),
12134 0 /*is_dwp*/,
12135 1 /*search_cwd*/));
12136 if (abfd != NULL)
12137 return abfd;
12138 }
12139
12140 /* That didn't work, try debug-file-directory, which, despite its name,
12141 is a list of paths. */
12142
12143 if (*debug_file_directory == '\0')
12144 return NULL;
12145
12146 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12147 0 /*is_dwp*/, 1 /*search_cwd*/);
12148 }
12149
12150 /* This function is mapped across the sections and remembers the offset and
12151 size of each of the DWO debugging sections we are interested in. */
12152
12153 static void
12154 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12155 {
12156 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12157 const struct dwop_section_names *names = &dwop_section_names;
12158
12159 if (section_is_p (sectp->name, &names->abbrev_dwo))
12160 {
12161 dwo_sections->abbrev.s.section = sectp;
12162 dwo_sections->abbrev.size = bfd_section_size (sectp);
12163 }
12164 else if (section_is_p (sectp->name, &names->info_dwo))
12165 {
12166 dwo_sections->info.s.section = sectp;
12167 dwo_sections->info.size = bfd_section_size (sectp);
12168 }
12169 else if (section_is_p (sectp->name, &names->line_dwo))
12170 {
12171 dwo_sections->line.s.section = sectp;
12172 dwo_sections->line.size = bfd_section_size (sectp);
12173 }
12174 else if (section_is_p (sectp->name, &names->loc_dwo))
12175 {
12176 dwo_sections->loc.s.section = sectp;
12177 dwo_sections->loc.size = bfd_section_size (sectp);
12178 }
12179 else if (section_is_p (sectp->name, &names->loclists_dwo))
12180 {
12181 dwo_sections->loclists.s.section = sectp;
12182 dwo_sections->loclists.size = bfd_section_size (sectp);
12183 }
12184 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12185 {
12186 dwo_sections->macinfo.s.section = sectp;
12187 dwo_sections->macinfo.size = bfd_section_size (sectp);
12188 }
12189 else if (section_is_p (sectp->name, &names->macro_dwo))
12190 {
12191 dwo_sections->macro.s.section = sectp;
12192 dwo_sections->macro.size = bfd_section_size (sectp);
12193 }
12194 else if (section_is_p (sectp->name, &names->str_dwo))
12195 {
12196 dwo_sections->str.s.section = sectp;
12197 dwo_sections->str.size = bfd_section_size (sectp);
12198 }
12199 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12200 {
12201 dwo_sections->str_offsets.s.section = sectp;
12202 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12203 }
12204 else if (section_is_p (sectp->name, &names->types_dwo))
12205 {
12206 struct dwarf2_section_info type_section;
12207
12208 memset (&type_section, 0, sizeof (type_section));
12209 type_section.s.section = sectp;
12210 type_section.size = bfd_section_size (sectp);
12211 dwo_sections->types.push_back (type_section);
12212 }
12213 }
12214
12215 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12216 by PER_CU. This is for the non-DWP case.
12217 The result is NULL if DWO_NAME can't be found. */
12218
12219 static struct dwo_file *
12220 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12221 const char *dwo_name, const char *comp_dir)
12222 {
12223 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12224
12225 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12226 if (dbfd == NULL)
12227 {
12228 if (dwarf_read_debug)
12229 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12230 return NULL;
12231 }
12232
12233 dwo_file_up dwo_file (new struct dwo_file);
12234 dwo_file->dwo_name = dwo_name;
12235 dwo_file->comp_dir = comp_dir;
12236 dwo_file->dbfd = std::move (dbfd);
12237
12238 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12239 &dwo_file->sections);
12240
12241 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12242 dwo_file->sections.info, dwo_file->cus);
12243
12244 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12245 dwo_file->sections.types, dwo_file->tus);
12246
12247 if (dwarf_read_debug)
12248 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12249
12250 return dwo_file.release ();
12251 }
12252
12253 /* This function is mapped across the sections and remembers the offset and
12254 size of each of the DWP debugging sections common to version 1 and 2 that
12255 we are interested in. */
12256
12257 static void
12258 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12259 void *dwp_file_ptr)
12260 {
12261 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12262 const struct dwop_section_names *names = &dwop_section_names;
12263 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12264
12265 /* Record the ELF section number for later lookup: this is what the
12266 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12267 gdb_assert (elf_section_nr < dwp_file->num_sections);
12268 dwp_file->elf_sections[elf_section_nr] = sectp;
12269
12270 /* Look for specific sections that we need. */
12271 if (section_is_p (sectp->name, &names->str_dwo))
12272 {
12273 dwp_file->sections.str.s.section = sectp;
12274 dwp_file->sections.str.size = bfd_section_size (sectp);
12275 }
12276 else if (section_is_p (sectp->name, &names->cu_index))
12277 {
12278 dwp_file->sections.cu_index.s.section = sectp;
12279 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12280 }
12281 else if (section_is_p (sectp->name, &names->tu_index))
12282 {
12283 dwp_file->sections.tu_index.s.section = sectp;
12284 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12285 }
12286 }
12287
12288 /* This function is mapped across the sections and remembers the offset and
12289 size of each of the DWP version 2 debugging sections that we are interested
12290 in. This is split into a separate function because we don't know if we
12291 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12292
12293 static void
12294 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12295 {
12296 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12297 const struct dwop_section_names *names = &dwop_section_names;
12298 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12299
12300 /* Record the ELF section number for later lookup: this is what the
12301 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12302 gdb_assert (elf_section_nr < dwp_file->num_sections);
12303 dwp_file->elf_sections[elf_section_nr] = sectp;
12304
12305 /* Look for specific sections that we need. */
12306 if (section_is_p (sectp->name, &names->abbrev_dwo))
12307 {
12308 dwp_file->sections.abbrev.s.section = sectp;
12309 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->info_dwo))
12312 {
12313 dwp_file->sections.info.s.section = sectp;
12314 dwp_file->sections.info.size = bfd_section_size (sectp);
12315 }
12316 else if (section_is_p (sectp->name, &names->line_dwo))
12317 {
12318 dwp_file->sections.line.s.section = sectp;
12319 dwp_file->sections.line.size = bfd_section_size (sectp);
12320 }
12321 else if (section_is_p (sectp->name, &names->loc_dwo))
12322 {
12323 dwp_file->sections.loc.s.section = sectp;
12324 dwp_file->sections.loc.size = bfd_section_size (sectp);
12325 }
12326 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12327 {
12328 dwp_file->sections.macinfo.s.section = sectp;
12329 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12330 }
12331 else if (section_is_p (sectp->name, &names->macro_dwo))
12332 {
12333 dwp_file->sections.macro.s.section = sectp;
12334 dwp_file->sections.macro.size = bfd_section_size (sectp);
12335 }
12336 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12337 {
12338 dwp_file->sections.str_offsets.s.section = sectp;
12339 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12340 }
12341 else if (section_is_p (sectp->name, &names->types_dwo))
12342 {
12343 dwp_file->sections.types.s.section = sectp;
12344 dwp_file->sections.types.size = bfd_section_size (sectp);
12345 }
12346 }
12347
12348 /* Hash function for dwp_file loaded CUs/TUs. */
12349
12350 static hashval_t
12351 hash_dwp_loaded_cutus (const void *item)
12352 {
12353 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12354
12355 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12356 return dwo_unit->signature;
12357 }
12358
12359 /* Equality function for dwp_file loaded CUs/TUs. */
12360
12361 static int
12362 eq_dwp_loaded_cutus (const void *a, const void *b)
12363 {
12364 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12365 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12366
12367 return dua->signature == dub->signature;
12368 }
12369
12370 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12371
12372 static htab_up
12373 allocate_dwp_loaded_cutus_table ()
12374 {
12375 return htab_up (htab_create_alloc (3,
12376 hash_dwp_loaded_cutus,
12377 eq_dwp_loaded_cutus,
12378 NULL, xcalloc, xfree));
12379 }
12380
12381 /* Try to open DWP file FILE_NAME.
12382 The result is the bfd handle of the file.
12383 If there is a problem finding or opening the file, return NULL.
12384 Upon success, the canonicalized path of the file is stored in the bfd,
12385 same as symfile_bfd_open. */
12386
12387 static gdb_bfd_ref_ptr
12388 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12389 const char *file_name)
12390 {
12391 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12392 1 /*is_dwp*/,
12393 1 /*search_cwd*/));
12394 if (abfd != NULL)
12395 return abfd;
12396
12397 /* Work around upstream bug 15652.
12398 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12399 [Whether that's a "bug" is debatable, but it is getting in our way.]
12400 We have no real idea where the dwp file is, because gdb's realpath-ing
12401 of the executable's path may have discarded the needed info.
12402 [IWBN if the dwp file name was recorded in the executable, akin to
12403 .gnu_debuglink, but that doesn't exist yet.]
12404 Strip the directory from FILE_NAME and search again. */
12405 if (*debug_file_directory != '\0')
12406 {
12407 /* Don't implicitly search the current directory here.
12408 If the user wants to search "." to handle this case,
12409 it must be added to debug-file-directory. */
12410 return try_open_dwop_file (dwarf2_per_objfile,
12411 lbasename (file_name), 1 /*is_dwp*/,
12412 0 /*search_cwd*/);
12413 }
12414
12415 return NULL;
12416 }
12417
12418 /* Initialize the use of the DWP file for the current objfile.
12419 By convention the name of the DWP file is ${objfile}.dwp.
12420 The result is NULL if it can't be found. */
12421
12422 static std::unique_ptr<struct dwp_file>
12423 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12424 {
12425 struct objfile *objfile = dwarf2_per_objfile->objfile;
12426
12427 /* Try to find first .dwp for the binary file before any symbolic links
12428 resolving. */
12429
12430 /* If the objfile is a debug file, find the name of the real binary
12431 file and get the name of dwp file from there. */
12432 std::string dwp_name;
12433 if (objfile->separate_debug_objfile_backlink != NULL)
12434 {
12435 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12436 const char *backlink_basename = lbasename (backlink->original_name);
12437
12438 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12439 }
12440 else
12441 dwp_name = objfile->original_name;
12442
12443 dwp_name += ".dwp";
12444
12445 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12446 if (dbfd == NULL
12447 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12448 {
12449 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12450 dwp_name = objfile_name (objfile);
12451 dwp_name += ".dwp";
12452 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12453 }
12454
12455 if (dbfd == NULL)
12456 {
12457 if (dwarf_read_debug)
12458 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12459 return std::unique_ptr<dwp_file> ();
12460 }
12461
12462 const char *name = bfd_get_filename (dbfd.get ());
12463 std::unique_ptr<struct dwp_file> dwp_file
12464 (new struct dwp_file (name, std::move (dbfd)));
12465
12466 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12467 dwp_file->elf_sections =
12468 OBSTACK_CALLOC (&objfile->objfile_obstack,
12469 dwp_file->num_sections, asection *);
12470
12471 bfd_map_over_sections (dwp_file->dbfd.get (),
12472 dwarf2_locate_common_dwp_sections,
12473 dwp_file.get ());
12474
12475 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12476 0);
12477
12478 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12479 1);
12480
12481 /* The DWP file version is stored in the hash table. Oh well. */
12482 if (dwp_file->cus && dwp_file->tus
12483 && dwp_file->cus->version != dwp_file->tus->version)
12484 {
12485 /* Technically speaking, we should try to limp along, but this is
12486 pretty bizarre. We use pulongest here because that's the established
12487 portability solution (e.g, we cannot use %u for uint32_t). */
12488 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12489 " TU version %s [in DWP file %s]"),
12490 pulongest (dwp_file->cus->version),
12491 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12492 }
12493
12494 if (dwp_file->cus)
12495 dwp_file->version = dwp_file->cus->version;
12496 else if (dwp_file->tus)
12497 dwp_file->version = dwp_file->tus->version;
12498 else
12499 dwp_file->version = 2;
12500
12501 if (dwp_file->version == 2)
12502 bfd_map_over_sections (dwp_file->dbfd.get (),
12503 dwarf2_locate_v2_dwp_sections,
12504 dwp_file.get ());
12505
12506 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12507 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12508
12509 if (dwarf_read_debug)
12510 {
12511 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12512 fprintf_unfiltered (gdb_stdlog,
12513 " %s CUs, %s TUs\n",
12514 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12515 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12516 }
12517
12518 return dwp_file;
12519 }
12520
12521 /* Wrapper around open_and_init_dwp_file, only open it once. */
12522
12523 static struct dwp_file *
12524 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12525 {
12526 if (! dwarf2_per_objfile->dwp_checked)
12527 {
12528 dwarf2_per_objfile->dwp_file
12529 = open_and_init_dwp_file (dwarf2_per_objfile);
12530 dwarf2_per_objfile->dwp_checked = 1;
12531 }
12532 return dwarf2_per_objfile->dwp_file.get ();
12533 }
12534
12535 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12536 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12537 or in the DWP file for the objfile, referenced by THIS_UNIT.
12538 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12539 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12540
12541 This is called, for example, when wanting to read a variable with a
12542 complex location. Therefore we don't want to do file i/o for every call.
12543 Therefore we don't want to look for a DWO file on every call.
12544 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12545 then we check if we've already seen DWO_NAME, and only THEN do we check
12546 for a DWO file.
12547
12548 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12549 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12550
12551 static struct dwo_unit *
12552 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12553 const char *dwo_name, const char *comp_dir,
12554 ULONGEST signature, int is_debug_types)
12555 {
12556 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12557 struct objfile *objfile = dwarf2_per_objfile->objfile;
12558 const char *kind = is_debug_types ? "TU" : "CU";
12559 void **dwo_file_slot;
12560 struct dwo_file *dwo_file;
12561 struct dwp_file *dwp_file;
12562
12563 /* First see if there's a DWP file.
12564 If we have a DWP file but didn't find the DWO inside it, don't
12565 look for the original DWO file. It makes gdb behave differently
12566 depending on whether one is debugging in the build tree. */
12567
12568 dwp_file = get_dwp_file (dwarf2_per_objfile);
12569 if (dwp_file != NULL)
12570 {
12571 const struct dwp_hash_table *dwp_htab =
12572 is_debug_types ? dwp_file->tus : dwp_file->cus;
12573
12574 if (dwp_htab != NULL)
12575 {
12576 struct dwo_unit *dwo_cutu =
12577 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12578 signature, is_debug_types);
12579
12580 if (dwo_cutu != NULL)
12581 {
12582 if (dwarf_read_debug)
12583 {
12584 fprintf_unfiltered (gdb_stdlog,
12585 "Virtual DWO %s %s found: @%s\n",
12586 kind, hex_string (signature),
12587 host_address_to_string (dwo_cutu));
12588 }
12589 return dwo_cutu;
12590 }
12591 }
12592 }
12593 else
12594 {
12595 /* No DWP file, look for the DWO file. */
12596
12597 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12598 dwo_name, comp_dir);
12599 if (*dwo_file_slot == NULL)
12600 {
12601 /* Read in the file and build a table of the CUs/TUs it contains. */
12602 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12603 }
12604 /* NOTE: This will be NULL if unable to open the file. */
12605 dwo_file = (struct dwo_file *) *dwo_file_slot;
12606
12607 if (dwo_file != NULL)
12608 {
12609 struct dwo_unit *dwo_cutu = NULL;
12610
12611 if (is_debug_types && dwo_file->tus)
12612 {
12613 struct dwo_unit find_dwo_cutu;
12614
12615 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12616 find_dwo_cutu.signature = signature;
12617 dwo_cutu
12618 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12619 &find_dwo_cutu);
12620 }
12621 else if (!is_debug_types && dwo_file->cus)
12622 {
12623 struct dwo_unit find_dwo_cutu;
12624
12625 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12626 find_dwo_cutu.signature = signature;
12627 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12628 &find_dwo_cutu);
12629 }
12630
12631 if (dwo_cutu != NULL)
12632 {
12633 if (dwarf_read_debug)
12634 {
12635 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12636 kind, dwo_name, hex_string (signature),
12637 host_address_to_string (dwo_cutu));
12638 }
12639 return dwo_cutu;
12640 }
12641 }
12642 }
12643
12644 /* We didn't find it. This could mean a dwo_id mismatch, or
12645 someone deleted the DWO/DWP file, or the search path isn't set up
12646 correctly to find the file. */
12647
12648 if (dwarf_read_debug)
12649 {
12650 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12651 kind, dwo_name, hex_string (signature));
12652 }
12653
12654 /* This is a warning and not a complaint because it can be caused by
12655 pilot error (e.g., user accidentally deleting the DWO). */
12656 {
12657 /* Print the name of the DWP file if we looked there, helps the user
12658 better diagnose the problem. */
12659 std::string dwp_text;
12660
12661 if (dwp_file != NULL)
12662 dwp_text = string_printf (" [in DWP file %s]",
12663 lbasename (dwp_file->name));
12664
12665 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12666 " [in module %s]"),
12667 kind, dwo_name, hex_string (signature),
12668 dwp_text.c_str (),
12669 this_unit->is_debug_types ? "TU" : "CU",
12670 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12671 }
12672 return NULL;
12673 }
12674
12675 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12676 See lookup_dwo_cutu_unit for details. */
12677
12678 static struct dwo_unit *
12679 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12680 const char *dwo_name, const char *comp_dir,
12681 ULONGEST signature)
12682 {
12683 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12684 }
12685
12686 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12687 See lookup_dwo_cutu_unit for details. */
12688
12689 static struct dwo_unit *
12690 lookup_dwo_type_unit (struct signatured_type *this_tu,
12691 const char *dwo_name, const char *comp_dir)
12692 {
12693 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12694 }
12695
12696 /* Traversal function for queue_and_load_all_dwo_tus. */
12697
12698 static int
12699 queue_and_load_dwo_tu (void **slot, void *info)
12700 {
12701 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12702 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12703 ULONGEST signature = dwo_unit->signature;
12704 struct signatured_type *sig_type =
12705 lookup_dwo_signatured_type (per_cu->cu, signature);
12706
12707 if (sig_type != NULL)
12708 {
12709 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12710
12711 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12712 a real dependency of PER_CU on SIG_TYPE. That is detected later
12713 while processing PER_CU. */
12714 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12715 load_full_type_unit (sig_cu);
12716 per_cu->imported_symtabs_push (sig_cu);
12717 }
12718
12719 return 1;
12720 }
12721
12722 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12723 The DWO may have the only definition of the type, though it may not be
12724 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12725 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12726
12727 static void
12728 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12729 {
12730 struct dwo_unit *dwo_unit;
12731 struct dwo_file *dwo_file;
12732
12733 gdb_assert (!per_cu->is_debug_types);
12734 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12735 gdb_assert (per_cu->cu != NULL);
12736
12737 dwo_unit = per_cu->cu->dwo_unit;
12738 gdb_assert (dwo_unit != NULL);
12739
12740 dwo_file = dwo_unit->dwo_file;
12741 if (dwo_file->tus != NULL)
12742 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12743 per_cu);
12744 }
12745
12746 /* Read in various DIEs. */
12747
12748 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12749 Inherit only the children of the DW_AT_abstract_origin DIE not being
12750 already referenced by DW_AT_abstract_origin from the children of the
12751 current DIE. */
12752
12753 static void
12754 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12755 {
12756 struct die_info *child_die;
12757 sect_offset *offsetp;
12758 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12759 struct die_info *origin_die;
12760 /* Iterator of the ORIGIN_DIE children. */
12761 struct die_info *origin_child_die;
12762 struct attribute *attr;
12763 struct dwarf2_cu *origin_cu;
12764 struct pending **origin_previous_list_in_scope;
12765
12766 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12767 if (!attr)
12768 return;
12769
12770 /* Note that following die references may follow to a die in a
12771 different cu. */
12772
12773 origin_cu = cu;
12774 origin_die = follow_die_ref (die, attr, &origin_cu);
12775
12776 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12777 symbols in. */
12778 origin_previous_list_in_scope = origin_cu->list_in_scope;
12779 origin_cu->list_in_scope = cu->list_in_scope;
12780
12781 if (die->tag != origin_die->tag
12782 && !(die->tag == DW_TAG_inlined_subroutine
12783 && origin_die->tag == DW_TAG_subprogram))
12784 complaint (_("DIE %s and its abstract origin %s have different tags"),
12785 sect_offset_str (die->sect_off),
12786 sect_offset_str (origin_die->sect_off));
12787
12788 std::vector<sect_offset> offsets;
12789
12790 for (child_die = die->child;
12791 child_die && child_die->tag;
12792 child_die = child_die->sibling)
12793 {
12794 struct die_info *child_origin_die;
12795 struct dwarf2_cu *child_origin_cu;
12796
12797 /* We are trying to process concrete instance entries:
12798 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12799 it's not relevant to our analysis here. i.e. detecting DIEs that are
12800 present in the abstract instance but not referenced in the concrete
12801 one. */
12802 if (child_die->tag == DW_TAG_call_site
12803 || child_die->tag == DW_TAG_GNU_call_site)
12804 continue;
12805
12806 /* For each CHILD_DIE, find the corresponding child of
12807 ORIGIN_DIE. If there is more than one layer of
12808 DW_AT_abstract_origin, follow them all; there shouldn't be,
12809 but GCC versions at least through 4.4 generate this (GCC PR
12810 40573). */
12811 child_origin_die = child_die;
12812 child_origin_cu = cu;
12813 while (1)
12814 {
12815 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12816 child_origin_cu);
12817 if (attr == NULL)
12818 break;
12819 child_origin_die = follow_die_ref (child_origin_die, attr,
12820 &child_origin_cu);
12821 }
12822
12823 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12824 counterpart may exist. */
12825 if (child_origin_die != child_die)
12826 {
12827 if (child_die->tag != child_origin_die->tag
12828 && !(child_die->tag == DW_TAG_inlined_subroutine
12829 && child_origin_die->tag == DW_TAG_subprogram))
12830 complaint (_("Child DIE %s and its abstract origin %s have "
12831 "different tags"),
12832 sect_offset_str (child_die->sect_off),
12833 sect_offset_str (child_origin_die->sect_off));
12834 if (child_origin_die->parent != origin_die)
12835 complaint (_("Child DIE %s and its abstract origin %s have "
12836 "different parents"),
12837 sect_offset_str (child_die->sect_off),
12838 sect_offset_str (child_origin_die->sect_off));
12839 else
12840 offsets.push_back (child_origin_die->sect_off);
12841 }
12842 }
12843 std::sort (offsets.begin (), offsets.end ());
12844 sect_offset *offsets_end = offsets.data () + offsets.size ();
12845 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12846 if (offsetp[-1] == *offsetp)
12847 complaint (_("Multiple children of DIE %s refer "
12848 "to DIE %s as their abstract origin"),
12849 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12850
12851 offsetp = offsets.data ();
12852 origin_child_die = origin_die->child;
12853 while (origin_child_die && origin_child_die->tag)
12854 {
12855 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12856 while (offsetp < offsets_end
12857 && *offsetp < origin_child_die->sect_off)
12858 offsetp++;
12859 if (offsetp >= offsets_end
12860 || *offsetp > origin_child_die->sect_off)
12861 {
12862 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12863 Check whether we're already processing ORIGIN_CHILD_DIE.
12864 This can happen with mutually referenced abstract_origins.
12865 PR 16581. */
12866 if (!origin_child_die->in_process)
12867 process_die (origin_child_die, origin_cu);
12868 }
12869 origin_child_die = origin_child_die->sibling;
12870 }
12871 origin_cu->list_in_scope = origin_previous_list_in_scope;
12872
12873 if (cu != origin_cu)
12874 compute_delayed_physnames (origin_cu);
12875 }
12876
12877 static void
12878 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12879 {
12880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12881 struct gdbarch *gdbarch = objfile->arch ();
12882 struct context_stack *newobj;
12883 CORE_ADDR lowpc;
12884 CORE_ADDR highpc;
12885 struct die_info *child_die;
12886 struct attribute *attr, *call_line, *call_file;
12887 const char *name;
12888 CORE_ADDR baseaddr;
12889 struct block *block;
12890 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12891 std::vector<struct symbol *> template_args;
12892 struct template_symbol *templ_func = NULL;
12893
12894 if (inlined_func)
12895 {
12896 /* If we do not have call site information, we can't show the
12897 caller of this inlined function. That's too confusing, so
12898 only use the scope for local variables. */
12899 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12900 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12901 if (call_line == NULL || call_file == NULL)
12902 {
12903 read_lexical_block_scope (die, cu);
12904 return;
12905 }
12906 }
12907
12908 baseaddr = objfile->text_section_offset ();
12909
12910 name = dwarf2_name (die, cu);
12911
12912 /* Ignore functions with missing or empty names. These are actually
12913 illegal according to the DWARF standard. */
12914 if (name == NULL)
12915 {
12916 complaint (_("missing name for subprogram DIE at %s"),
12917 sect_offset_str (die->sect_off));
12918 return;
12919 }
12920
12921 /* Ignore functions with missing or invalid low and high pc attributes. */
12922 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12923 <= PC_BOUNDS_INVALID)
12924 {
12925 attr = dwarf2_attr (die, DW_AT_external, cu);
12926 if (!attr || !DW_UNSND (attr))
12927 complaint (_("cannot get low and high bounds "
12928 "for subprogram DIE at %s"),
12929 sect_offset_str (die->sect_off));
12930 return;
12931 }
12932
12933 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12934 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12935
12936 /* If we have any template arguments, then we must allocate a
12937 different sort of symbol. */
12938 for (child_die = die->child; child_die; child_die = child_die->sibling)
12939 {
12940 if (child_die->tag == DW_TAG_template_type_param
12941 || child_die->tag == DW_TAG_template_value_param)
12942 {
12943 templ_func = allocate_template_symbol (objfile);
12944 templ_func->subclass = SYMBOL_TEMPLATE;
12945 break;
12946 }
12947 }
12948
12949 newobj = cu->get_builder ()->push_context (0, lowpc);
12950 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12951 (struct symbol *) templ_func);
12952
12953 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12954 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12955 cu->language);
12956
12957 /* If there is a location expression for DW_AT_frame_base, record
12958 it. */
12959 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12960 if (attr != nullptr)
12961 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12962
12963 /* If there is a location for the static link, record it. */
12964 newobj->static_link = NULL;
12965 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12966 if (attr != nullptr)
12967 {
12968 newobj->static_link
12969 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12970 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12971 cu->per_cu->addr_type ());
12972 }
12973
12974 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12975
12976 if (die->child != NULL)
12977 {
12978 child_die = die->child;
12979 while (child_die && child_die->tag)
12980 {
12981 if (child_die->tag == DW_TAG_template_type_param
12982 || child_die->tag == DW_TAG_template_value_param)
12983 {
12984 struct symbol *arg = new_symbol (child_die, NULL, cu);
12985
12986 if (arg != NULL)
12987 template_args.push_back (arg);
12988 }
12989 else
12990 process_die (child_die, cu);
12991 child_die = child_die->sibling;
12992 }
12993 }
12994
12995 inherit_abstract_dies (die, cu);
12996
12997 /* If we have a DW_AT_specification, we might need to import using
12998 directives from the context of the specification DIE. See the
12999 comment in determine_prefix. */
13000 if (cu->language == language_cplus
13001 && dwarf2_attr (die, DW_AT_specification, cu))
13002 {
13003 struct dwarf2_cu *spec_cu = cu;
13004 struct die_info *spec_die = die_specification (die, &spec_cu);
13005
13006 while (spec_die)
13007 {
13008 child_die = spec_die->child;
13009 while (child_die && child_die->tag)
13010 {
13011 if (child_die->tag == DW_TAG_imported_module)
13012 process_die (child_die, spec_cu);
13013 child_die = child_die->sibling;
13014 }
13015
13016 /* In some cases, GCC generates specification DIEs that
13017 themselves contain DW_AT_specification attributes. */
13018 spec_die = die_specification (spec_die, &spec_cu);
13019 }
13020 }
13021
13022 struct context_stack cstk = cu->get_builder ()->pop_context ();
13023 /* Make a block for the local symbols within. */
13024 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13025 cstk.static_link, lowpc, highpc);
13026
13027 /* For C++, set the block's scope. */
13028 if ((cu->language == language_cplus
13029 || cu->language == language_fortran
13030 || cu->language == language_d
13031 || cu->language == language_rust)
13032 && cu->processing_has_namespace_info)
13033 block_set_scope (block, determine_prefix (die, cu),
13034 &objfile->objfile_obstack);
13035
13036 /* If we have address ranges, record them. */
13037 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13038
13039 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13040
13041 /* Attach template arguments to function. */
13042 if (!template_args.empty ())
13043 {
13044 gdb_assert (templ_func != NULL);
13045
13046 templ_func->n_template_arguments = template_args.size ();
13047 templ_func->template_arguments
13048 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13049 templ_func->n_template_arguments);
13050 memcpy (templ_func->template_arguments,
13051 template_args.data (),
13052 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13053
13054 /* Make sure that the symtab is set on the new symbols. Even
13055 though they don't appear in this symtab directly, other parts
13056 of gdb assume that symbols do, and this is reasonably
13057 true. */
13058 for (symbol *sym : template_args)
13059 symbol_set_symtab (sym, symbol_symtab (templ_func));
13060 }
13061
13062 /* In C++, we can have functions nested inside functions (e.g., when
13063 a function declares a class that has methods). This means that
13064 when we finish processing a function scope, we may need to go
13065 back to building a containing block's symbol lists. */
13066 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13067 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13068
13069 /* If we've finished processing a top-level function, subsequent
13070 symbols go in the file symbol list. */
13071 if (cu->get_builder ()->outermost_context_p ())
13072 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13073 }
13074
13075 /* Process all the DIES contained within a lexical block scope. Start
13076 a new scope, process the dies, and then close the scope. */
13077
13078 static void
13079 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13080 {
13081 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13082 struct gdbarch *gdbarch = objfile->arch ();
13083 CORE_ADDR lowpc, highpc;
13084 struct die_info *child_die;
13085 CORE_ADDR baseaddr;
13086
13087 baseaddr = objfile->text_section_offset ();
13088
13089 /* Ignore blocks with missing or invalid low and high pc attributes. */
13090 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13091 as multiple lexical blocks? Handling children in a sane way would
13092 be nasty. Might be easier to properly extend generic blocks to
13093 describe ranges. */
13094 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13095 {
13096 case PC_BOUNDS_NOT_PRESENT:
13097 /* DW_TAG_lexical_block has no attributes, process its children as if
13098 there was no wrapping by that DW_TAG_lexical_block.
13099 GCC does no longer produces such DWARF since GCC r224161. */
13100 for (child_die = die->child;
13101 child_die != NULL && child_die->tag;
13102 child_die = child_die->sibling)
13103 process_die (child_die, cu);
13104 return;
13105 case PC_BOUNDS_INVALID:
13106 return;
13107 }
13108 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13109 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13110
13111 cu->get_builder ()->push_context (0, lowpc);
13112 if (die->child != NULL)
13113 {
13114 child_die = die->child;
13115 while (child_die && child_die->tag)
13116 {
13117 process_die (child_die, cu);
13118 child_die = child_die->sibling;
13119 }
13120 }
13121 inherit_abstract_dies (die, cu);
13122 struct context_stack cstk = cu->get_builder ()->pop_context ();
13123
13124 if (*cu->get_builder ()->get_local_symbols () != NULL
13125 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13126 {
13127 struct block *block
13128 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13129 cstk.start_addr, highpc);
13130
13131 /* Note that recording ranges after traversing children, as we
13132 do here, means that recording a parent's ranges entails
13133 walking across all its children's ranges as they appear in
13134 the address map, which is quadratic behavior.
13135
13136 It would be nicer to record the parent's ranges before
13137 traversing its children, simply overriding whatever you find
13138 there. But since we don't even decide whether to create a
13139 block until after we've traversed its children, that's hard
13140 to do. */
13141 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13142 }
13143 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13144 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13145 }
13146
13147 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13148
13149 static void
13150 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13151 {
13152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13153 struct gdbarch *gdbarch = objfile->arch ();
13154 CORE_ADDR pc, baseaddr;
13155 struct attribute *attr;
13156 struct call_site *call_site, call_site_local;
13157 void **slot;
13158 int nparams;
13159 struct die_info *child_die;
13160
13161 baseaddr = objfile->text_section_offset ();
13162
13163 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13164 if (attr == NULL)
13165 {
13166 /* This was a pre-DWARF-5 GNU extension alias
13167 for DW_AT_call_return_pc. */
13168 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13169 }
13170 if (!attr)
13171 {
13172 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13173 "DIE %s [in module %s]"),
13174 sect_offset_str (die->sect_off), objfile_name (objfile));
13175 return;
13176 }
13177 pc = attr->value_as_address () + baseaddr;
13178 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13179
13180 if (cu->call_site_htab == NULL)
13181 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13182 NULL, &objfile->objfile_obstack,
13183 hashtab_obstack_allocate, NULL);
13184 call_site_local.pc = pc;
13185 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13186 if (*slot != NULL)
13187 {
13188 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13189 "DIE %s [in module %s]"),
13190 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13191 objfile_name (objfile));
13192 return;
13193 }
13194
13195 /* Count parameters at the caller. */
13196
13197 nparams = 0;
13198 for (child_die = die->child; child_die && child_die->tag;
13199 child_die = child_die->sibling)
13200 {
13201 if (child_die->tag != DW_TAG_call_site_parameter
13202 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13203 {
13204 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13205 "DW_TAG_call_site child DIE %s [in module %s]"),
13206 child_die->tag, sect_offset_str (child_die->sect_off),
13207 objfile_name (objfile));
13208 continue;
13209 }
13210
13211 nparams++;
13212 }
13213
13214 call_site
13215 = ((struct call_site *)
13216 obstack_alloc (&objfile->objfile_obstack,
13217 sizeof (*call_site)
13218 + (sizeof (*call_site->parameter) * (nparams - 1))));
13219 *slot = call_site;
13220 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13221 call_site->pc = pc;
13222
13223 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13224 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13225 {
13226 struct die_info *func_die;
13227
13228 /* Skip also over DW_TAG_inlined_subroutine. */
13229 for (func_die = die->parent;
13230 func_die && func_die->tag != DW_TAG_subprogram
13231 && func_die->tag != DW_TAG_subroutine_type;
13232 func_die = func_die->parent);
13233
13234 /* DW_AT_call_all_calls is a superset
13235 of DW_AT_call_all_tail_calls. */
13236 if (func_die
13237 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13238 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13239 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13240 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13241 {
13242 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13243 not complete. But keep CALL_SITE for look ups via call_site_htab,
13244 both the initial caller containing the real return address PC and
13245 the final callee containing the current PC of a chain of tail
13246 calls do not need to have the tail call list complete. But any
13247 function candidate for a virtual tail call frame searched via
13248 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13249 determined unambiguously. */
13250 }
13251 else
13252 {
13253 struct type *func_type = NULL;
13254
13255 if (func_die)
13256 func_type = get_die_type (func_die, cu);
13257 if (func_type != NULL)
13258 {
13259 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13260
13261 /* Enlist this call site to the function. */
13262 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13263 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13264 }
13265 else
13266 complaint (_("Cannot find function owning DW_TAG_call_site "
13267 "DIE %s [in module %s]"),
13268 sect_offset_str (die->sect_off), objfile_name (objfile));
13269 }
13270 }
13271
13272 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13273 if (attr == NULL)
13274 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13275 if (attr == NULL)
13276 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13277 if (attr == NULL)
13278 {
13279 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13280 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13281 }
13282 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13283 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13284 /* Keep NULL DWARF_BLOCK. */;
13285 else if (attr->form_is_block ())
13286 {
13287 struct dwarf2_locexpr_baton *dlbaton;
13288
13289 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13290 dlbaton->data = DW_BLOCK (attr)->data;
13291 dlbaton->size = DW_BLOCK (attr)->size;
13292 dlbaton->per_cu = cu->per_cu;
13293
13294 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13295 }
13296 else if (attr->form_is_ref ())
13297 {
13298 struct dwarf2_cu *target_cu = cu;
13299 struct die_info *target_die;
13300
13301 target_die = follow_die_ref (die, attr, &target_cu);
13302 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13303 if (die_is_declaration (target_die, target_cu))
13304 {
13305 const char *target_physname;
13306
13307 /* Prefer the mangled name; otherwise compute the demangled one. */
13308 target_physname = dw2_linkage_name (target_die, target_cu);
13309 if (target_physname == NULL)
13310 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13311 if (target_physname == NULL)
13312 complaint (_("DW_AT_call_target target DIE has invalid "
13313 "physname, for referencing DIE %s [in module %s]"),
13314 sect_offset_str (die->sect_off), objfile_name (objfile));
13315 else
13316 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13317 }
13318 else
13319 {
13320 CORE_ADDR lowpc;
13321
13322 /* DW_AT_entry_pc should be preferred. */
13323 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13324 <= PC_BOUNDS_INVALID)
13325 complaint (_("DW_AT_call_target target DIE has invalid "
13326 "low pc, for referencing DIE %s [in module %s]"),
13327 sect_offset_str (die->sect_off), objfile_name (objfile));
13328 else
13329 {
13330 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13331 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13332 }
13333 }
13334 }
13335 else
13336 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13337 "block nor reference, for DIE %s [in module %s]"),
13338 sect_offset_str (die->sect_off), objfile_name (objfile));
13339
13340 call_site->per_cu = cu->per_cu;
13341
13342 for (child_die = die->child;
13343 child_die && child_die->tag;
13344 child_die = child_die->sibling)
13345 {
13346 struct call_site_parameter *parameter;
13347 struct attribute *loc, *origin;
13348
13349 if (child_die->tag != DW_TAG_call_site_parameter
13350 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13351 {
13352 /* Already printed the complaint above. */
13353 continue;
13354 }
13355
13356 gdb_assert (call_site->parameter_count < nparams);
13357 parameter = &call_site->parameter[call_site->parameter_count];
13358
13359 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13360 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13361 register is contained in DW_AT_call_value. */
13362
13363 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13364 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13365 if (origin == NULL)
13366 {
13367 /* This was a pre-DWARF-5 GNU extension alias
13368 for DW_AT_call_parameter. */
13369 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13370 }
13371 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13372 {
13373 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13374
13375 sect_offset sect_off = origin->get_ref_die_offset ();
13376 if (!cu->header.offset_in_cu_p (sect_off))
13377 {
13378 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13379 binding can be done only inside one CU. Such referenced DIE
13380 therefore cannot be even moved to DW_TAG_partial_unit. */
13381 complaint (_("DW_AT_call_parameter offset is not in CU for "
13382 "DW_TAG_call_site child DIE %s [in module %s]"),
13383 sect_offset_str (child_die->sect_off),
13384 objfile_name (objfile));
13385 continue;
13386 }
13387 parameter->u.param_cu_off
13388 = (cu_offset) (sect_off - cu->header.sect_off);
13389 }
13390 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13391 {
13392 complaint (_("No DW_FORM_block* DW_AT_location for "
13393 "DW_TAG_call_site child DIE %s [in module %s]"),
13394 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13395 continue;
13396 }
13397 else
13398 {
13399 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13400 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13401 if (parameter->u.dwarf_reg != -1)
13402 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13403 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13404 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13405 &parameter->u.fb_offset))
13406 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13407 else
13408 {
13409 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13410 "for DW_FORM_block* DW_AT_location is supported for "
13411 "DW_TAG_call_site child DIE %s "
13412 "[in module %s]"),
13413 sect_offset_str (child_die->sect_off),
13414 objfile_name (objfile));
13415 continue;
13416 }
13417 }
13418
13419 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13420 if (attr == NULL)
13421 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13422 if (attr == NULL || !attr->form_is_block ())
13423 {
13424 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13425 "DW_TAG_call_site child DIE %s [in module %s]"),
13426 sect_offset_str (child_die->sect_off),
13427 objfile_name (objfile));
13428 continue;
13429 }
13430 parameter->value = DW_BLOCK (attr)->data;
13431 parameter->value_size = DW_BLOCK (attr)->size;
13432
13433 /* Parameters are not pre-cleared by memset above. */
13434 parameter->data_value = NULL;
13435 parameter->data_value_size = 0;
13436 call_site->parameter_count++;
13437
13438 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13439 if (attr == NULL)
13440 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13441 if (attr != nullptr)
13442 {
13443 if (!attr->form_is_block ())
13444 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13445 "DW_TAG_call_site child DIE %s [in module %s]"),
13446 sect_offset_str (child_die->sect_off),
13447 objfile_name (objfile));
13448 else
13449 {
13450 parameter->data_value = DW_BLOCK (attr)->data;
13451 parameter->data_value_size = DW_BLOCK (attr)->size;
13452 }
13453 }
13454 }
13455 }
13456
13457 /* Helper function for read_variable. If DIE represents a virtual
13458 table, then return the type of the concrete object that is
13459 associated with the virtual table. Otherwise, return NULL. */
13460
13461 static struct type *
13462 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13463 {
13464 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13465 if (attr == NULL)
13466 return NULL;
13467
13468 /* Find the type DIE. */
13469 struct die_info *type_die = NULL;
13470 struct dwarf2_cu *type_cu = cu;
13471
13472 if (attr->form_is_ref ())
13473 type_die = follow_die_ref (die, attr, &type_cu);
13474 if (type_die == NULL)
13475 return NULL;
13476
13477 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13478 return NULL;
13479 return die_containing_type (type_die, type_cu);
13480 }
13481
13482 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13483
13484 static void
13485 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13486 {
13487 struct rust_vtable_symbol *storage = NULL;
13488
13489 if (cu->language == language_rust)
13490 {
13491 struct type *containing_type = rust_containing_type (die, cu);
13492
13493 if (containing_type != NULL)
13494 {
13495 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13496
13497 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13498 initialize_objfile_symbol (storage);
13499 storage->concrete_type = containing_type;
13500 storage->subclass = SYMBOL_RUST_VTABLE;
13501 }
13502 }
13503
13504 struct symbol *res = new_symbol (die, NULL, cu, storage);
13505 struct attribute *abstract_origin
13506 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13507 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13508 if (res == NULL && loc && abstract_origin)
13509 {
13510 /* We have a variable without a name, but with a location and an abstract
13511 origin. This may be a concrete instance of an abstract variable
13512 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13513 later. */
13514 struct dwarf2_cu *origin_cu = cu;
13515 struct die_info *origin_die
13516 = follow_die_ref (die, abstract_origin, &origin_cu);
13517 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13518 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13519 }
13520 }
13521
13522 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13523 reading .debug_rnglists.
13524 Callback's type should be:
13525 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13526 Return true if the attributes are present and valid, otherwise,
13527 return false. */
13528
13529 template <typename Callback>
13530 static bool
13531 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13532 Callback &&callback)
13533 {
13534 struct dwarf2_per_objfile *dwarf2_per_objfile
13535 = cu->per_cu->dwarf2_per_objfile;
13536 struct objfile *objfile = dwarf2_per_objfile->objfile;
13537 bfd *obfd = objfile->obfd;
13538 /* Base address selection entry. */
13539 gdb::optional<CORE_ADDR> base;
13540 const gdb_byte *buffer;
13541 CORE_ADDR baseaddr;
13542 bool overflow = false;
13543
13544 base = cu->base_address;
13545
13546 dwarf2_per_objfile->rnglists.read (objfile);
13547 if (offset >= dwarf2_per_objfile->rnglists.size)
13548 {
13549 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13550 offset);
13551 return false;
13552 }
13553 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13554
13555 baseaddr = objfile->text_section_offset ();
13556
13557 while (1)
13558 {
13559 /* Initialize it due to a false compiler warning. */
13560 CORE_ADDR range_beginning = 0, range_end = 0;
13561 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13562 + dwarf2_per_objfile->rnglists.size);
13563 unsigned int bytes_read;
13564
13565 if (buffer == buf_end)
13566 {
13567 overflow = true;
13568 break;
13569 }
13570 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13571 switch (rlet)
13572 {
13573 case DW_RLE_end_of_list:
13574 break;
13575 case DW_RLE_base_address:
13576 if (buffer + cu->header.addr_size > buf_end)
13577 {
13578 overflow = true;
13579 break;
13580 }
13581 base = cu->header.read_address (obfd, buffer, &bytes_read);
13582 buffer += bytes_read;
13583 break;
13584 case DW_RLE_start_length:
13585 if (buffer + cu->header.addr_size > buf_end)
13586 {
13587 overflow = true;
13588 break;
13589 }
13590 range_beginning = cu->header.read_address (obfd, buffer,
13591 &bytes_read);
13592 buffer += bytes_read;
13593 range_end = (range_beginning
13594 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13595 buffer += bytes_read;
13596 if (buffer > buf_end)
13597 {
13598 overflow = true;
13599 break;
13600 }
13601 break;
13602 case DW_RLE_offset_pair:
13603 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13604 buffer += bytes_read;
13605 if (buffer > buf_end)
13606 {
13607 overflow = true;
13608 break;
13609 }
13610 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13611 buffer += bytes_read;
13612 if (buffer > buf_end)
13613 {
13614 overflow = true;
13615 break;
13616 }
13617 break;
13618 case DW_RLE_start_end:
13619 if (buffer + 2 * cu->header.addr_size > buf_end)
13620 {
13621 overflow = true;
13622 break;
13623 }
13624 range_beginning = cu->header.read_address (obfd, buffer,
13625 &bytes_read);
13626 buffer += bytes_read;
13627 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13628 buffer += bytes_read;
13629 break;
13630 default:
13631 complaint (_("Invalid .debug_rnglists data (no base address)"));
13632 return false;
13633 }
13634 if (rlet == DW_RLE_end_of_list || overflow)
13635 break;
13636 if (rlet == DW_RLE_base_address)
13637 continue;
13638
13639 if (!base.has_value ())
13640 {
13641 /* We have no valid base address for the ranges
13642 data. */
13643 complaint (_("Invalid .debug_rnglists data (no base address)"));
13644 return false;
13645 }
13646
13647 if (range_beginning > range_end)
13648 {
13649 /* Inverted range entries are invalid. */
13650 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13651 return false;
13652 }
13653
13654 /* Empty range entries have no effect. */
13655 if (range_beginning == range_end)
13656 continue;
13657
13658 range_beginning += *base;
13659 range_end += *base;
13660
13661 /* A not-uncommon case of bad debug info.
13662 Don't pollute the addrmap with bad data. */
13663 if (range_beginning + baseaddr == 0
13664 && !dwarf2_per_objfile->has_section_at_zero)
13665 {
13666 complaint (_(".debug_rnglists entry has start address of zero"
13667 " [in module %s]"), objfile_name (objfile));
13668 continue;
13669 }
13670
13671 callback (range_beginning, range_end);
13672 }
13673
13674 if (overflow)
13675 {
13676 complaint (_("Offset %d is not terminated "
13677 "for DW_AT_ranges attribute"),
13678 offset);
13679 return false;
13680 }
13681
13682 return true;
13683 }
13684
13685 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13686 Callback's type should be:
13687 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13688 Return 1 if the attributes are present and valid, otherwise, return 0. */
13689
13690 template <typename Callback>
13691 static int
13692 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13693 Callback &&callback)
13694 {
13695 struct dwarf2_per_objfile *dwarf2_per_objfile
13696 = cu->per_cu->dwarf2_per_objfile;
13697 struct objfile *objfile = dwarf2_per_objfile->objfile;
13698 struct comp_unit_head *cu_header = &cu->header;
13699 bfd *obfd = objfile->obfd;
13700 unsigned int addr_size = cu_header->addr_size;
13701 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13702 /* Base address selection entry. */
13703 gdb::optional<CORE_ADDR> base;
13704 unsigned int dummy;
13705 const gdb_byte *buffer;
13706 CORE_ADDR baseaddr;
13707
13708 if (cu_header->version >= 5)
13709 return dwarf2_rnglists_process (offset, cu, callback);
13710
13711 base = cu->base_address;
13712
13713 dwarf2_per_objfile->ranges.read (objfile);
13714 if (offset >= dwarf2_per_objfile->ranges.size)
13715 {
13716 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13717 offset);
13718 return 0;
13719 }
13720 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13721
13722 baseaddr = objfile->text_section_offset ();
13723
13724 while (1)
13725 {
13726 CORE_ADDR range_beginning, range_end;
13727
13728 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13729 buffer += addr_size;
13730 range_end = cu->header.read_address (obfd, buffer, &dummy);
13731 buffer += addr_size;
13732 offset += 2 * addr_size;
13733
13734 /* An end of list marker is a pair of zero addresses. */
13735 if (range_beginning == 0 && range_end == 0)
13736 /* Found the end of list entry. */
13737 break;
13738
13739 /* Each base address selection entry is a pair of 2 values.
13740 The first is the largest possible address, the second is
13741 the base address. Check for a base address here. */
13742 if ((range_beginning & mask) == mask)
13743 {
13744 /* If we found the largest possible address, then we already
13745 have the base address in range_end. */
13746 base = range_end;
13747 continue;
13748 }
13749
13750 if (!base.has_value ())
13751 {
13752 /* We have no valid base address for the ranges
13753 data. */
13754 complaint (_("Invalid .debug_ranges data (no base address)"));
13755 return 0;
13756 }
13757
13758 if (range_beginning > range_end)
13759 {
13760 /* Inverted range entries are invalid. */
13761 complaint (_("Invalid .debug_ranges data (inverted range)"));
13762 return 0;
13763 }
13764
13765 /* Empty range entries have no effect. */
13766 if (range_beginning == range_end)
13767 continue;
13768
13769 range_beginning += *base;
13770 range_end += *base;
13771
13772 /* A not-uncommon case of bad debug info.
13773 Don't pollute the addrmap with bad data. */
13774 if (range_beginning + baseaddr == 0
13775 && !dwarf2_per_objfile->has_section_at_zero)
13776 {
13777 complaint (_(".debug_ranges entry has start address of zero"
13778 " [in module %s]"), objfile_name (objfile));
13779 continue;
13780 }
13781
13782 callback (range_beginning, range_end);
13783 }
13784
13785 return 1;
13786 }
13787
13788 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13789 Return 1 if the attributes are present and valid, otherwise, return 0.
13790 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13791
13792 static int
13793 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13794 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13795 dwarf2_psymtab *ranges_pst)
13796 {
13797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13798 struct gdbarch *gdbarch = objfile->arch ();
13799 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13800 int low_set = 0;
13801 CORE_ADDR low = 0;
13802 CORE_ADDR high = 0;
13803 int retval;
13804
13805 retval = dwarf2_ranges_process (offset, cu,
13806 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13807 {
13808 if (ranges_pst != NULL)
13809 {
13810 CORE_ADDR lowpc;
13811 CORE_ADDR highpc;
13812
13813 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13814 range_beginning + baseaddr)
13815 - baseaddr);
13816 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13817 range_end + baseaddr)
13818 - baseaddr);
13819 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13820 lowpc, highpc - 1, ranges_pst);
13821 }
13822
13823 /* FIXME: This is recording everything as a low-high
13824 segment of consecutive addresses. We should have a
13825 data structure for discontiguous block ranges
13826 instead. */
13827 if (! low_set)
13828 {
13829 low = range_beginning;
13830 high = range_end;
13831 low_set = 1;
13832 }
13833 else
13834 {
13835 if (range_beginning < low)
13836 low = range_beginning;
13837 if (range_end > high)
13838 high = range_end;
13839 }
13840 });
13841 if (!retval)
13842 return 0;
13843
13844 if (! low_set)
13845 /* If the first entry is an end-of-list marker, the range
13846 describes an empty scope, i.e. no instructions. */
13847 return 0;
13848
13849 if (low_return)
13850 *low_return = low;
13851 if (high_return)
13852 *high_return = high;
13853 return 1;
13854 }
13855
13856 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13857 definition for the return value. *LOWPC and *HIGHPC are set iff
13858 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13859
13860 static enum pc_bounds_kind
13861 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13862 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13863 dwarf2_psymtab *pst)
13864 {
13865 struct dwarf2_per_objfile *dwarf2_per_objfile
13866 = cu->per_cu->dwarf2_per_objfile;
13867 struct attribute *attr;
13868 struct attribute *attr_high;
13869 CORE_ADDR low = 0;
13870 CORE_ADDR high = 0;
13871 enum pc_bounds_kind ret;
13872
13873 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13874 if (attr_high)
13875 {
13876 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13877 if (attr != nullptr)
13878 {
13879 low = attr->value_as_address ();
13880 high = attr_high->value_as_address ();
13881 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13882 high += low;
13883 }
13884 else
13885 /* Found high w/o low attribute. */
13886 return PC_BOUNDS_INVALID;
13887
13888 /* Found consecutive range of addresses. */
13889 ret = PC_BOUNDS_HIGH_LOW;
13890 }
13891 else
13892 {
13893 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13894 if (attr != NULL)
13895 {
13896 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13897 We take advantage of the fact that DW_AT_ranges does not appear
13898 in DW_TAG_compile_unit of DWO files. */
13899 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13900 unsigned int ranges_offset = (DW_UNSND (attr)
13901 + (need_ranges_base
13902 ? cu->ranges_base
13903 : 0));
13904
13905 /* Value of the DW_AT_ranges attribute is the offset in the
13906 .debug_ranges section. */
13907 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13908 return PC_BOUNDS_INVALID;
13909 /* Found discontinuous range of addresses. */
13910 ret = PC_BOUNDS_RANGES;
13911 }
13912 else
13913 return PC_BOUNDS_NOT_PRESENT;
13914 }
13915
13916 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13917 if (high <= low)
13918 return PC_BOUNDS_INVALID;
13919
13920 /* When using the GNU linker, .gnu.linkonce. sections are used to
13921 eliminate duplicate copies of functions and vtables and such.
13922 The linker will arbitrarily choose one and discard the others.
13923 The AT_*_pc values for such functions refer to local labels in
13924 these sections. If the section from that file was discarded, the
13925 labels are not in the output, so the relocs get a value of 0.
13926 If this is a discarded function, mark the pc bounds as invalid,
13927 so that GDB will ignore it. */
13928 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13929 return PC_BOUNDS_INVALID;
13930
13931 *lowpc = low;
13932 if (highpc)
13933 *highpc = high;
13934 return ret;
13935 }
13936
13937 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13938 its low and high PC addresses. Do nothing if these addresses could not
13939 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13940 and HIGHPC to the high address if greater than HIGHPC. */
13941
13942 static void
13943 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13944 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13945 struct dwarf2_cu *cu)
13946 {
13947 CORE_ADDR low, high;
13948 struct die_info *child = die->child;
13949
13950 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13951 {
13952 *lowpc = std::min (*lowpc, low);
13953 *highpc = std::max (*highpc, high);
13954 }
13955
13956 /* If the language does not allow nested subprograms (either inside
13957 subprograms or lexical blocks), we're done. */
13958 if (cu->language != language_ada)
13959 return;
13960
13961 /* Check all the children of the given DIE. If it contains nested
13962 subprograms, then check their pc bounds. Likewise, we need to
13963 check lexical blocks as well, as they may also contain subprogram
13964 definitions. */
13965 while (child && child->tag)
13966 {
13967 if (child->tag == DW_TAG_subprogram
13968 || child->tag == DW_TAG_lexical_block)
13969 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13970 child = child->sibling;
13971 }
13972 }
13973
13974 /* Get the low and high pc's represented by the scope DIE, and store
13975 them in *LOWPC and *HIGHPC. If the correct values can't be
13976 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13977
13978 static void
13979 get_scope_pc_bounds (struct die_info *die,
13980 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13981 struct dwarf2_cu *cu)
13982 {
13983 CORE_ADDR best_low = (CORE_ADDR) -1;
13984 CORE_ADDR best_high = (CORE_ADDR) 0;
13985 CORE_ADDR current_low, current_high;
13986
13987 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13988 >= PC_BOUNDS_RANGES)
13989 {
13990 best_low = current_low;
13991 best_high = current_high;
13992 }
13993 else
13994 {
13995 struct die_info *child = die->child;
13996
13997 while (child && child->tag)
13998 {
13999 switch (child->tag) {
14000 case DW_TAG_subprogram:
14001 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14002 break;
14003 case DW_TAG_namespace:
14004 case DW_TAG_module:
14005 /* FIXME: carlton/2004-01-16: Should we do this for
14006 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14007 that current GCC's always emit the DIEs corresponding
14008 to definitions of methods of classes as children of a
14009 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14010 the DIEs giving the declarations, which could be
14011 anywhere). But I don't see any reason why the
14012 standards says that they have to be there. */
14013 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14014
14015 if (current_low != ((CORE_ADDR) -1))
14016 {
14017 best_low = std::min (best_low, current_low);
14018 best_high = std::max (best_high, current_high);
14019 }
14020 break;
14021 default:
14022 /* Ignore. */
14023 break;
14024 }
14025
14026 child = child->sibling;
14027 }
14028 }
14029
14030 *lowpc = best_low;
14031 *highpc = best_high;
14032 }
14033
14034 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14035 in DIE. */
14036
14037 static void
14038 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14039 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14040 {
14041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14042 struct gdbarch *gdbarch = objfile->arch ();
14043 struct attribute *attr;
14044 struct attribute *attr_high;
14045
14046 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14047 if (attr_high)
14048 {
14049 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14050 if (attr != nullptr)
14051 {
14052 CORE_ADDR low = attr->value_as_address ();
14053 CORE_ADDR high = attr_high->value_as_address ();
14054
14055 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14056 high += low;
14057
14058 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14059 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14060 cu->get_builder ()->record_block_range (block, low, high - 1);
14061 }
14062 }
14063
14064 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14065 if (attr != nullptr)
14066 {
14067 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14068 We take advantage of the fact that DW_AT_ranges does not appear
14069 in DW_TAG_compile_unit of DWO files. */
14070 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14071
14072 /* The value of the DW_AT_ranges attribute is the offset of the
14073 address range list in the .debug_ranges section. */
14074 unsigned long offset = (DW_UNSND (attr)
14075 + (need_ranges_base ? cu->ranges_base : 0));
14076
14077 std::vector<blockrange> blockvec;
14078 dwarf2_ranges_process (offset, cu,
14079 [&] (CORE_ADDR start, CORE_ADDR end)
14080 {
14081 start += baseaddr;
14082 end += baseaddr;
14083 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14084 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14085 cu->get_builder ()->record_block_range (block, start, end - 1);
14086 blockvec.emplace_back (start, end);
14087 });
14088
14089 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14090 }
14091 }
14092
14093 /* Check whether the producer field indicates either of GCC < 4.6, or the
14094 Intel C/C++ compiler, and cache the result in CU. */
14095
14096 static void
14097 check_producer (struct dwarf2_cu *cu)
14098 {
14099 int major, minor;
14100
14101 if (cu->producer == NULL)
14102 {
14103 /* For unknown compilers expect their behavior is DWARF version
14104 compliant.
14105
14106 GCC started to support .debug_types sections by -gdwarf-4 since
14107 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14108 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14109 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14110 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14111 }
14112 else if (producer_is_gcc (cu->producer, &major, &minor))
14113 {
14114 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14115 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14116 }
14117 else if (producer_is_icc (cu->producer, &major, &minor))
14118 {
14119 cu->producer_is_icc = true;
14120 cu->producer_is_icc_lt_14 = major < 14;
14121 }
14122 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14123 cu->producer_is_codewarrior = true;
14124 else
14125 {
14126 /* For other non-GCC compilers, expect their behavior is DWARF version
14127 compliant. */
14128 }
14129
14130 cu->checked_producer = true;
14131 }
14132
14133 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14134 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14135 during 4.6.0 experimental. */
14136
14137 static bool
14138 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14139 {
14140 if (!cu->checked_producer)
14141 check_producer (cu);
14142
14143 return cu->producer_is_gxx_lt_4_6;
14144 }
14145
14146
14147 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14148 with incorrect is_stmt attributes. */
14149
14150 static bool
14151 producer_is_codewarrior (struct dwarf2_cu *cu)
14152 {
14153 if (!cu->checked_producer)
14154 check_producer (cu);
14155
14156 return cu->producer_is_codewarrior;
14157 }
14158
14159 /* Return the default accessibility type if it is not overridden by
14160 DW_AT_accessibility. */
14161
14162 static enum dwarf_access_attribute
14163 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14164 {
14165 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14166 {
14167 /* The default DWARF 2 accessibility for members is public, the default
14168 accessibility for inheritance is private. */
14169
14170 if (die->tag != DW_TAG_inheritance)
14171 return DW_ACCESS_public;
14172 else
14173 return DW_ACCESS_private;
14174 }
14175 else
14176 {
14177 /* DWARF 3+ defines the default accessibility a different way. The same
14178 rules apply now for DW_TAG_inheritance as for the members and it only
14179 depends on the container kind. */
14180
14181 if (die->parent->tag == DW_TAG_class_type)
14182 return DW_ACCESS_private;
14183 else
14184 return DW_ACCESS_public;
14185 }
14186 }
14187
14188 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14189 offset. If the attribute was not found return 0, otherwise return
14190 1. If it was found but could not properly be handled, set *OFFSET
14191 to 0. */
14192
14193 static int
14194 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14195 LONGEST *offset)
14196 {
14197 struct attribute *attr;
14198
14199 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14200 if (attr != NULL)
14201 {
14202 *offset = 0;
14203
14204 /* Note that we do not check for a section offset first here.
14205 This is because DW_AT_data_member_location is new in DWARF 4,
14206 so if we see it, we can assume that a constant form is really
14207 a constant and not a section offset. */
14208 if (attr->form_is_constant ())
14209 *offset = attr->constant_value (0);
14210 else if (attr->form_is_section_offset ())
14211 dwarf2_complex_location_expr_complaint ();
14212 else if (attr->form_is_block ())
14213 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14214 else
14215 dwarf2_complex_location_expr_complaint ();
14216
14217 return 1;
14218 }
14219
14220 return 0;
14221 }
14222
14223 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14224
14225 static void
14226 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14227 struct field *field)
14228 {
14229 struct attribute *attr;
14230
14231 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14232 if (attr != NULL)
14233 {
14234 if (attr->form_is_constant ())
14235 {
14236 LONGEST offset = attr->constant_value (0);
14237 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14238 }
14239 else if (attr->form_is_section_offset ())
14240 dwarf2_complex_location_expr_complaint ();
14241 else if (attr->form_is_block ())
14242 {
14243 bool handled;
14244 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14245 if (handled)
14246 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14247 else
14248 {
14249 struct objfile *objfile
14250 = cu->per_cu->dwarf2_per_objfile->objfile;
14251 struct dwarf2_locexpr_baton *dlbaton
14252 = XOBNEW (&objfile->objfile_obstack,
14253 struct dwarf2_locexpr_baton);
14254 dlbaton->data = DW_BLOCK (attr)->data;
14255 dlbaton->size = DW_BLOCK (attr)->size;
14256 /* When using this baton, we want to compute the address
14257 of the field, not the value. This is why
14258 is_reference is set to false here. */
14259 dlbaton->is_reference = false;
14260 dlbaton->per_cu = cu->per_cu;
14261
14262 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14263 }
14264 }
14265 else
14266 dwarf2_complex_location_expr_complaint ();
14267 }
14268 }
14269
14270 /* Add an aggregate field to the field list. */
14271
14272 static void
14273 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14274 struct dwarf2_cu *cu)
14275 {
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14277 struct gdbarch *gdbarch = objfile->arch ();
14278 struct nextfield *new_field;
14279 struct attribute *attr;
14280 struct field *fp;
14281 const char *fieldname = "";
14282
14283 if (die->tag == DW_TAG_inheritance)
14284 {
14285 fip->baseclasses.emplace_back ();
14286 new_field = &fip->baseclasses.back ();
14287 }
14288 else
14289 {
14290 fip->fields.emplace_back ();
14291 new_field = &fip->fields.back ();
14292 }
14293
14294 new_field->offset = die->sect_off;
14295
14296 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14297 if (attr != nullptr)
14298 new_field->accessibility = DW_UNSND (attr);
14299 else
14300 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14301 if (new_field->accessibility != DW_ACCESS_public)
14302 fip->non_public_fields = 1;
14303
14304 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14305 if (attr != nullptr)
14306 new_field->virtuality = DW_UNSND (attr);
14307 else
14308 new_field->virtuality = DW_VIRTUALITY_none;
14309
14310 fp = &new_field->field;
14311
14312 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14313 {
14314 /* Data member other than a C++ static data member. */
14315
14316 /* Get type of field. */
14317 fp->type = die_type (die, cu);
14318
14319 SET_FIELD_BITPOS (*fp, 0);
14320
14321 /* Get bit size of field (zero if none). */
14322 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14323 if (attr != nullptr)
14324 {
14325 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14326 }
14327 else
14328 {
14329 FIELD_BITSIZE (*fp) = 0;
14330 }
14331
14332 /* Get bit offset of field. */
14333 handle_data_member_location (die, cu, fp);
14334 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14335 if (attr != nullptr)
14336 {
14337 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14338 {
14339 /* For big endian bits, the DW_AT_bit_offset gives the
14340 additional bit offset from the MSB of the containing
14341 anonymous object to the MSB of the field. We don't
14342 have to do anything special since we don't need to
14343 know the size of the anonymous object. */
14344 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14345 }
14346 else
14347 {
14348 /* For little endian bits, compute the bit offset to the
14349 MSB of the anonymous object, subtract off the number of
14350 bits from the MSB of the field to the MSB of the
14351 object, and then subtract off the number of bits of
14352 the field itself. The result is the bit offset of
14353 the LSB of the field. */
14354 int anonymous_size;
14355 int bit_offset = DW_UNSND (attr);
14356
14357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14358 if (attr != nullptr)
14359 {
14360 /* The size of the anonymous object containing
14361 the bit field is explicit, so use the
14362 indicated size (in bytes). */
14363 anonymous_size = DW_UNSND (attr);
14364 }
14365 else
14366 {
14367 /* The size of the anonymous object containing
14368 the bit field must be inferred from the type
14369 attribute of the data member containing the
14370 bit field. */
14371 anonymous_size = TYPE_LENGTH (fp->type);
14372 }
14373 SET_FIELD_BITPOS (*fp,
14374 (FIELD_BITPOS (*fp)
14375 + anonymous_size * bits_per_byte
14376 - bit_offset - FIELD_BITSIZE (*fp)));
14377 }
14378 }
14379 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14380 if (attr != NULL)
14381 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14382 + attr->constant_value (0)));
14383
14384 /* Get name of field. */
14385 fieldname = dwarf2_name (die, cu);
14386 if (fieldname == NULL)
14387 fieldname = "";
14388
14389 /* The name is already allocated along with this objfile, so we don't
14390 need to duplicate it for the type. */
14391 fp->name = fieldname;
14392
14393 /* Change accessibility for artificial fields (e.g. virtual table
14394 pointer or virtual base class pointer) to private. */
14395 if (dwarf2_attr (die, DW_AT_artificial, cu))
14396 {
14397 FIELD_ARTIFICIAL (*fp) = 1;
14398 new_field->accessibility = DW_ACCESS_private;
14399 fip->non_public_fields = 1;
14400 }
14401 }
14402 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14403 {
14404 /* C++ static member. */
14405
14406 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14407 is a declaration, but all versions of G++ as of this writing
14408 (so through at least 3.2.1) incorrectly generate
14409 DW_TAG_variable tags. */
14410
14411 const char *physname;
14412
14413 /* Get name of field. */
14414 fieldname = dwarf2_name (die, cu);
14415 if (fieldname == NULL)
14416 return;
14417
14418 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14419 if (attr
14420 /* Only create a symbol if this is an external value.
14421 new_symbol checks this and puts the value in the global symbol
14422 table, which we want. If it is not external, new_symbol
14423 will try to put the value in cu->list_in_scope which is wrong. */
14424 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14425 {
14426 /* A static const member, not much different than an enum as far as
14427 we're concerned, except that we can support more types. */
14428 new_symbol (die, NULL, cu);
14429 }
14430
14431 /* Get physical name. */
14432 physname = dwarf2_physname (fieldname, die, cu);
14433
14434 /* The name is already allocated along with this objfile, so we don't
14435 need to duplicate it for the type. */
14436 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14437 FIELD_TYPE (*fp) = die_type (die, cu);
14438 FIELD_NAME (*fp) = fieldname;
14439 }
14440 else if (die->tag == DW_TAG_inheritance)
14441 {
14442 /* C++ base class field. */
14443 handle_data_member_location (die, cu, fp);
14444 FIELD_BITSIZE (*fp) = 0;
14445 FIELD_TYPE (*fp) = die_type (die, cu);
14446 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14447 }
14448 else
14449 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14450 }
14451
14452 /* Can the type given by DIE define another type? */
14453
14454 static bool
14455 type_can_define_types (const struct die_info *die)
14456 {
14457 switch (die->tag)
14458 {
14459 case DW_TAG_typedef:
14460 case DW_TAG_class_type:
14461 case DW_TAG_structure_type:
14462 case DW_TAG_union_type:
14463 case DW_TAG_enumeration_type:
14464 return true;
14465
14466 default:
14467 return false;
14468 }
14469 }
14470
14471 /* Add a type definition defined in the scope of the FIP's class. */
14472
14473 static void
14474 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14475 struct dwarf2_cu *cu)
14476 {
14477 struct decl_field fp;
14478 memset (&fp, 0, sizeof (fp));
14479
14480 gdb_assert (type_can_define_types (die));
14481
14482 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14483 fp.name = dwarf2_name (die, cu);
14484 fp.type = read_type_die (die, cu);
14485
14486 /* Save accessibility. */
14487 enum dwarf_access_attribute accessibility;
14488 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14489 if (attr != NULL)
14490 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14491 else
14492 accessibility = dwarf2_default_access_attribute (die, cu);
14493 switch (accessibility)
14494 {
14495 case DW_ACCESS_public:
14496 /* The assumed value if neither private nor protected. */
14497 break;
14498 case DW_ACCESS_private:
14499 fp.is_private = 1;
14500 break;
14501 case DW_ACCESS_protected:
14502 fp.is_protected = 1;
14503 break;
14504 default:
14505 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14506 }
14507
14508 if (die->tag == DW_TAG_typedef)
14509 fip->typedef_field_list.push_back (fp);
14510 else
14511 fip->nested_types_list.push_back (fp);
14512 }
14513
14514 /* A convenience typedef that's used when finding the discriminant
14515 field for a variant part. */
14516 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14517 offset_map_type;
14518
14519 /* Compute the discriminant range for a given variant. OBSTACK is
14520 where the results will be stored. VARIANT is the variant to
14521 process. IS_UNSIGNED indicates whether the discriminant is signed
14522 or unsigned. */
14523
14524 static const gdb::array_view<discriminant_range>
14525 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14526 bool is_unsigned)
14527 {
14528 std::vector<discriminant_range> ranges;
14529
14530 if (variant.default_branch)
14531 return {};
14532
14533 if (variant.discr_list_data == nullptr)
14534 {
14535 discriminant_range r
14536 = {variant.discriminant_value, variant.discriminant_value};
14537 ranges.push_back (r);
14538 }
14539 else
14540 {
14541 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14542 variant.discr_list_data->size);
14543 while (!data.empty ())
14544 {
14545 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14546 {
14547 complaint (_("invalid discriminant marker: %d"), data[0]);
14548 break;
14549 }
14550 bool is_range = data[0] == DW_DSC_range;
14551 data = data.slice (1);
14552
14553 ULONGEST low, high;
14554 unsigned int bytes_read;
14555
14556 if (data.empty ())
14557 {
14558 complaint (_("DW_AT_discr_list missing low value"));
14559 break;
14560 }
14561 if (is_unsigned)
14562 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14563 else
14564 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14565 &bytes_read);
14566 data = data.slice (bytes_read);
14567
14568 if (is_range)
14569 {
14570 if (data.empty ())
14571 {
14572 complaint (_("DW_AT_discr_list missing high value"));
14573 break;
14574 }
14575 if (is_unsigned)
14576 high = read_unsigned_leb128 (nullptr, data.data (),
14577 &bytes_read);
14578 else
14579 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14580 &bytes_read);
14581 data = data.slice (bytes_read);
14582 }
14583 else
14584 high = low;
14585
14586 ranges.push_back ({ low, high });
14587 }
14588 }
14589
14590 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14591 ranges.size ());
14592 std::copy (ranges.begin (), ranges.end (), result);
14593 return gdb::array_view<discriminant_range> (result, ranges.size ());
14594 }
14595
14596 static const gdb::array_view<variant_part> create_variant_parts
14597 (struct obstack *obstack,
14598 const offset_map_type &offset_map,
14599 struct field_info *fi,
14600 const std::vector<variant_part_builder> &variant_parts);
14601
14602 /* Fill in a "struct variant" for a given variant field. RESULT is
14603 the variant to fill in. OBSTACK is where any needed allocations
14604 will be done. OFFSET_MAP holds the mapping from section offsets to
14605 fields for the type. FI describes the fields of the type we're
14606 processing. FIELD is the variant field we're converting. */
14607
14608 static void
14609 create_one_variant (variant &result, struct obstack *obstack,
14610 const offset_map_type &offset_map,
14611 struct field_info *fi, const variant_field &field)
14612 {
14613 result.discriminants = convert_variant_range (obstack, field, false);
14614 result.first_field = field.first_field + fi->baseclasses.size ();
14615 result.last_field = field.last_field + fi->baseclasses.size ();
14616 result.parts = create_variant_parts (obstack, offset_map, fi,
14617 field.variant_parts);
14618 }
14619
14620 /* Fill in a "struct variant_part" for a given variant part. RESULT
14621 is the variant part to fill in. OBSTACK is where any needed
14622 allocations will be done. OFFSET_MAP holds the mapping from
14623 section offsets to fields for the type. FI describes the fields of
14624 the type we're processing. BUILDER is the variant part to be
14625 converted. */
14626
14627 static void
14628 create_one_variant_part (variant_part &result,
14629 struct obstack *obstack,
14630 const offset_map_type &offset_map,
14631 struct field_info *fi,
14632 const variant_part_builder &builder)
14633 {
14634 auto iter = offset_map.find (builder.discriminant_offset);
14635 if (iter == offset_map.end ())
14636 {
14637 result.discriminant_index = -1;
14638 /* Doesn't matter. */
14639 result.is_unsigned = false;
14640 }
14641 else
14642 {
14643 result.discriminant_index = iter->second;
14644 result.is_unsigned
14645 = TYPE_UNSIGNED (FIELD_TYPE
14646 (fi->fields[result.discriminant_index].field));
14647 }
14648
14649 size_t n = builder.variants.size ();
14650 variant *output = new (obstack) variant[n];
14651 for (size_t i = 0; i < n; ++i)
14652 create_one_variant (output[i], obstack, offset_map, fi,
14653 builder.variants[i]);
14654
14655 result.variants = gdb::array_view<variant> (output, n);
14656 }
14657
14658 /* Create a vector of variant parts that can be attached to a type.
14659 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14660 holds the mapping from section offsets to fields for the type. FI
14661 describes the fields of the type we're processing. VARIANT_PARTS
14662 is the vector to convert. */
14663
14664 static const gdb::array_view<variant_part>
14665 create_variant_parts (struct obstack *obstack,
14666 const offset_map_type &offset_map,
14667 struct field_info *fi,
14668 const std::vector<variant_part_builder> &variant_parts)
14669 {
14670 if (variant_parts.empty ())
14671 return {};
14672
14673 size_t n = variant_parts.size ();
14674 variant_part *result = new (obstack) variant_part[n];
14675 for (size_t i = 0; i < n; ++i)
14676 create_one_variant_part (result[i], obstack, offset_map, fi,
14677 variant_parts[i]);
14678
14679 return gdb::array_view<variant_part> (result, n);
14680 }
14681
14682 /* Compute the variant part vector for FIP, attaching it to TYPE when
14683 done. */
14684
14685 static void
14686 add_variant_property (struct field_info *fip, struct type *type,
14687 struct dwarf2_cu *cu)
14688 {
14689 /* Map section offsets of fields to their field index. Note the
14690 field index here does not take the number of baseclasses into
14691 account. */
14692 offset_map_type offset_map;
14693 for (int i = 0; i < fip->fields.size (); ++i)
14694 offset_map[fip->fields[i].offset] = i;
14695
14696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14697 gdb::array_view<variant_part> parts
14698 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14699 fip->variant_parts);
14700
14701 struct dynamic_prop prop;
14702 prop.kind = PROP_VARIANT_PARTS;
14703 prop.data.variant_parts
14704 = ((gdb::array_view<variant_part> *)
14705 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14706
14707 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
14708 }
14709
14710 /* Create the vector of fields, and attach it to the type. */
14711
14712 static void
14713 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14714 struct dwarf2_cu *cu)
14715 {
14716 int nfields = fip->nfields ();
14717
14718 /* Record the field count, allocate space for the array of fields,
14719 and create blank accessibility bitfields if necessary. */
14720 TYPE_NFIELDS (type) = nfields;
14721 TYPE_FIELDS (type) = (struct field *)
14722 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14723
14724 if (fip->non_public_fields && cu->language != language_ada)
14725 {
14726 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14727
14728 TYPE_FIELD_PRIVATE_BITS (type) =
14729 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14730 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14731
14732 TYPE_FIELD_PROTECTED_BITS (type) =
14733 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14734 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14735
14736 TYPE_FIELD_IGNORE_BITS (type) =
14737 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14738 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14739 }
14740
14741 /* If the type has baseclasses, allocate and clear a bit vector for
14742 TYPE_FIELD_VIRTUAL_BITS. */
14743 if (!fip->baseclasses.empty () && cu->language != language_ada)
14744 {
14745 int num_bytes = B_BYTES (fip->baseclasses.size ());
14746 unsigned char *pointer;
14747
14748 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14749 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14750 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14751 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14752 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14753 }
14754
14755 if (!fip->variant_parts.empty ())
14756 add_variant_property (fip, type, cu);
14757
14758 /* Copy the saved-up fields into the field vector. */
14759 for (int i = 0; i < nfields; ++i)
14760 {
14761 struct nextfield &field
14762 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14763 : fip->fields[i - fip->baseclasses.size ()]);
14764
14765 TYPE_FIELD (type, i) = field.field;
14766 switch (field.accessibility)
14767 {
14768 case DW_ACCESS_private:
14769 if (cu->language != language_ada)
14770 SET_TYPE_FIELD_PRIVATE (type, i);
14771 break;
14772
14773 case DW_ACCESS_protected:
14774 if (cu->language != language_ada)
14775 SET_TYPE_FIELD_PROTECTED (type, i);
14776 break;
14777
14778 case DW_ACCESS_public:
14779 break;
14780
14781 default:
14782 /* Unknown accessibility. Complain and treat it as public. */
14783 {
14784 complaint (_("unsupported accessibility %d"),
14785 field.accessibility);
14786 }
14787 break;
14788 }
14789 if (i < fip->baseclasses.size ())
14790 {
14791 switch (field.virtuality)
14792 {
14793 case DW_VIRTUALITY_virtual:
14794 case DW_VIRTUALITY_pure_virtual:
14795 if (cu->language == language_ada)
14796 error (_("unexpected virtuality in component of Ada type"));
14797 SET_TYPE_FIELD_VIRTUAL (type, i);
14798 break;
14799 }
14800 }
14801 }
14802 }
14803
14804 /* Return true if this member function is a constructor, false
14805 otherwise. */
14806
14807 static int
14808 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14809 {
14810 const char *fieldname;
14811 const char *type_name;
14812 int len;
14813
14814 if (die->parent == NULL)
14815 return 0;
14816
14817 if (die->parent->tag != DW_TAG_structure_type
14818 && die->parent->tag != DW_TAG_union_type
14819 && die->parent->tag != DW_TAG_class_type)
14820 return 0;
14821
14822 fieldname = dwarf2_name (die, cu);
14823 type_name = dwarf2_name (die->parent, cu);
14824 if (fieldname == NULL || type_name == NULL)
14825 return 0;
14826
14827 len = strlen (fieldname);
14828 return (strncmp (fieldname, type_name, len) == 0
14829 && (type_name[len] == '\0' || type_name[len] == '<'));
14830 }
14831
14832 /* Check if the given VALUE is a recognized enum
14833 dwarf_defaulted_attribute constant according to DWARF5 spec,
14834 Table 7.24. */
14835
14836 static bool
14837 is_valid_DW_AT_defaulted (ULONGEST value)
14838 {
14839 switch (value)
14840 {
14841 case DW_DEFAULTED_no:
14842 case DW_DEFAULTED_in_class:
14843 case DW_DEFAULTED_out_of_class:
14844 return true;
14845 }
14846
14847 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14848 return false;
14849 }
14850
14851 /* Add a member function to the proper fieldlist. */
14852
14853 static void
14854 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14855 struct type *type, struct dwarf2_cu *cu)
14856 {
14857 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14858 struct attribute *attr;
14859 int i;
14860 struct fnfieldlist *flp = nullptr;
14861 struct fn_field *fnp;
14862 const char *fieldname;
14863 struct type *this_type;
14864 enum dwarf_access_attribute accessibility;
14865
14866 if (cu->language == language_ada)
14867 error (_("unexpected member function in Ada type"));
14868
14869 /* Get name of member function. */
14870 fieldname = dwarf2_name (die, cu);
14871 if (fieldname == NULL)
14872 return;
14873
14874 /* Look up member function name in fieldlist. */
14875 for (i = 0; i < fip->fnfieldlists.size (); i++)
14876 {
14877 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14878 {
14879 flp = &fip->fnfieldlists[i];
14880 break;
14881 }
14882 }
14883
14884 /* Create a new fnfieldlist if necessary. */
14885 if (flp == nullptr)
14886 {
14887 fip->fnfieldlists.emplace_back ();
14888 flp = &fip->fnfieldlists.back ();
14889 flp->name = fieldname;
14890 i = fip->fnfieldlists.size () - 1;
14891 }
14892
14893 /* Create a new member function field and add it to the vector of
14894 fnfieldlists. */
14895 flp->fnfields.emplace_back ();
14896 fnp = &flp->fnfields.back ();
14897
14898 /* Delay processing of the physname until later. */
14899 if (cu->language == language_cplus)
14900 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14901 die, cu);
14902 else
14903 {
14904 const char *physname = dwarf2_physname (fieldname, die, cu);
14905 fnp->physname = physname ? physname : "";
14906 }
14907
14908 fnp->type = alloc_type (objfile);
14909 this_type = read_type_die (die, cu);
14910 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14911 {
14912 int nparams = TYPE_NFIELDS (this_type);
14913
14914 /* TYPE is the domain of this method, and THIS_TYPE is the type
14915 of the method itself (TYPE_CODE_METHOD). */
14916 smash_to_method_type (fnp->type, type,
14917 TYPE_TARGET_TYPE (this_type),
14918 TYPE_FIELDS (this_type),
14919 TYPE_NFIELDS (this_type),
14920 TYPE_VARARGS (this_type));
14921
14922 /* Handle static member functions.
14923 Dwarf2 has no clean way to discern C++ static and non-static
14924 member functions. G++ helps GDB by marking the first
14925 parameter for non-static member functions (which is the this
14926 pointer) as artificial. We obtain this information from
14927 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14928 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14929 fnp->voffset = VOFFSET_STATIC;
14930 }
14931 else
14932 complaint (_("member function type missing for '%s'"),
14933 dwarf2_full_name (fieldname, die, cu));
14934
14935 /* Get fcontext from DW_AT_containing_type if present. */
14936 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14937 fnp->fcontext = die_containing_type (die, cu);
14938
14939 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14940 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14941
14942 /* Get accessibility. */
14943 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14944 if (attr != nullptr)
14945 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14946 else
14947 accessibility = dwarf2_default_access_attribute (die, cu);
14948 switch (accessibility)
14949 {
14950 case DW_ACCESS_private:
14951 fnp->is_private = 1;
14952 break;
14953 case DW_ACCESS_protected:
14954 fnp->is_protected = 1;
14955 break;
14956 }
14957
14958 /* Check for artificial methods. */
14959 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14960 if (attr && DW_UNSND (attr) != 0)
14961 fnp->is_artificial = 1;
14962
14963 /* Check for defaulted methods. */
14964 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14965 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14966 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14967
14968 /* Check for deleted methods. */
14969 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14970 if (attr != nullptr && DW_UNSND (attr) != 0)
14971 fnp->is_deleted = 1;
14972
14973 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14974
14975 /* Get index in virtual function table if it is a virtual member
14976 function. For older versions of GCC, this is an offset in the
14977 appropriate virtual table, as specified by DW_AT_containing_type.
14978 For everyone else, it is an expression to be evaluated relative
14979 to the object address. */
14980
14981 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14982 if (attr != nullptr)
14983 {
14984 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14985 {
14986 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14987 {
14988 /* Old-style GCC. */
14989 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14990 }
14991 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14992 || (DW_BLOCK (attr)->size > 1
14993 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14994 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14995 {
14996 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14997 if ((fnp->voffset % cu->header.addr_size) != 0)
14998 dwarf2_complex_location_expr_complaint ();
14999 else
15000 fnp->voffset /= cu->header.addr_size;
15001 fnp->voffset += 2;
15002 }
15003 else
15004 dwarf2_complex_location_expr_complaint ();
15005
15006 if (!fnp->fcontext)
15007 {
15008 /* If there is no `this' field and no DW_AT_containing_type,
15009 we cannot actually find a base class context for the
15010 vtable! */
15011 if (TYPE_NFIELDS (this_type) == 0
15012 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15013 {
15014 complaint (_("cannot determine context for virtual member "
15015 "function \"%s\" (offset %s)"),
15016 fieldname, sect_offset_str (die->sect_off));
15017 }
15018 else
15019 {
15020 fnp->fcontext
15021 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15022 }
15023 }
15024 }
15025 else if (attr->form_is_section_offset ())
15026 {
15027 dwarf2_complex_location_expr_complaint ();
15028 }
15029 else
15030 {
15031 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15032 fieldname);
15033 }
15034 }
15035 else
15036 {
15037 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15038 if (attr && DW_UNSND (attr))
15039 {
15040 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15041 complaint (_("Member function \"%s\" (offset %s) is virtual "
15042 "but the vtable offset is not specified"),
15043 fieldname, sect_offset_str (die->sect_off));
15044 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15045 TYPE_CPLUS_DYNAMIC (type) = 1;
15046 }
15047 }
15048 }
15049
15050 /* Create the vector of member function fields, and attach it to the type. */
15051
15052 static void
15053 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15054 struct dwarf2_cu *cu)
15055 {
15056 if (cu->language == language_ada)
15057 error (_("unexpected member functions in Ada type"));
15058
15059 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15060 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15061 TYPE_ALLOC (type,
15062 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15063
15064 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15065 {
15066 struct fnfieldlist &nf = fip->fnfieldlists[i];
15067 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15068
15069 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15070 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15071 fn_flp->fn_fields = (struct fn_field *)
15072 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15073
15074 for (int k = 0; k < nf.fnfields.size (); ++k)
15075 fn_flp->fn_fields[k] = nf.fnfields[k];
15076 }
15077
15078 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15079 }
15080
15081 /* Returns non-zero if NAME is the name of a vtable member in CU's
15082 language, zero otherwise. */
15083 static int
15084 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15085 {
15086 static const char vptr[] = "_vptr";
15087
15088 /* Look for the C++ form of the vtable. */
15089 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15090 return 1;
15091
15092 return 0;
15093 }
15094
15095 /* GCC outputs unnamed structures that are really pointers to member
15096 functions, with the ABI-specified layout. If TYPE describes
15097 such a structure, smash it into a member function type.
15098
15099 GCC shouldn't do this; it should just output pointer to member DIEs.
15100 This is GCC PR debug/28767. */
15101
15102 static void
15103 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15104 {
15105 struct type *pfn_type, *self_type, *new_type;
15106
15107 /* Check for a structure with no name and two children. */
15108 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15109 return;
15110
15111 /* Check for __pfn and __delta members. */
15112 if (TYPE_FIELD_NAME (type, 0) == NULL
15113 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15114 || TYPE_FIELD_NAME (type, 1) == NULL
15115 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15116 return;
15117
15118 /* Find the type of the method. */
15119 pfn_type = TYPE_FIELD_TYPE (type, 0);
15120 if (pfn_type == NULL
15121 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15122 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15123 return;
15124
15125 /* Look for the "this" argument. */
15126 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15127 if (TYPE_NFIELDS (pfn_type) == 0
15128 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15129 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15130 return;
15131
15132 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15133 new_type = alloc_type (objfile);
15134 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15135 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15136 TYPE_VARARGS (pfn_type));
15137 smash_to_methodptr_type (type, new_type);
15138 }
15139
15140 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15141 appropriate error checking and issuing complaints if there is a
15142 problem. */
15143
15144 static ULONGEST
15145 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15146 {
15147 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15148
15149 if (attr == nullptr)
15150 return 0;
15151
15152 if (!attr->form_is_constant ())
15153 {
15154 complaint (_("DW_AT_alignment must have constant form"
15155 " - DIE at %s [in module %s]"),
15156 sect_offset_str (die->sect_off),
15157 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15158 return 0;
15159 }
15160
15161 ULONGEST align;
15162 if (attr->form == DW_FORM_sdata)
15163 {
15164 LONGEST val = DW_SND (attr);
15165 if (val < 0)
15166 {
15167 complaint (_("DW_AT_alignment value must not be negative"
15168 " - DIE at %s [in module %s]"),
15169 sect_offset_str (die->sect_off),
15170 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15171 return 0;
15172 }
15173 align = val;
15174 }
15175 else
15176 align = DW_UNSND (attr);
15177
15178 if (align == 0)
15179 {
15180 complaint (_("DW_AT_alignment value must not be zero"
15181 " - DIE at %s [in module %s]"),
15182 sect_offset_str (die->sect_off),
15183 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15184 return 0;
15185 }
15186 if ((align & (align - 1)) != 0)
15187 {
15188 complaint (_("DW_AT_alignment value must be a power of 2"
15189 " - DIE at %s [in module %s]"),
15190 sect_offset_str (die->sect_off),
15191 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15192 return 0;
15193 }
15194
15195 return align;
15196 }
15197
15198 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15199 the alignment for TYPE. */
15200
15201 static void
15202 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15203 struct type *type)
15204 {
15205 if (!set_type_align (type, get_alignment (cu, die)))
15206 complaint (_("DW_AT_alignment value too large"
15207 " - DIE at %s [in module %s]"),
15208 sect_offset_str (die->sect_off),
15209 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15210 }
15211
15212 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15213 constant for a type, according to DWARF5 spec, Table 5.5. */
15214
15215 static bool
15216 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15217 {
15218 switch (value)
15219 {
15220 case DW_CC_normal:
15221 case DW_CC_pass_by_reference:
15222 case DW_CC_pass_by_value:
15223 return true;
15224
15225 default:
15226 complaint (_("unrecognized DW_AT_calling_convention value "
15227 "(%s) for a type"), pulongest (value));
15228 return false;
15229 }
15230 }
15231
15232 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15233 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15234 also according to GNU-specific values (see include/dwarf2.h). */
15235
15236 static bool
15237 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15238 {
15239 switch (value)
15240 {
15241 case DW_CC_normal:
15242 case DW_CC_program:
15243 case DW_CC_nocall:
15244 return true;
15245
15246 case DW_CC_GNU_renesas_sh:
15247 case DW_CC_GNU_borland_fastcall_i386:
15248 case DW_CC_GDB_IBM_OpenCL:
15249 return true;
15250
15251 default:
15252 complaint (_("unrecognized DW_AT_calling_convention value "
15253 "(%s) for a subroutine"), pulongest (value));
15254 return false;
15255 }
15256 }
15257
15258 /* Called when we find the DIE that starts a structure or union scope
15259 (definition) to create a type for the structure or union. Fill in
15260 the type's name and general properties; the members will not be
15261 processed until process_structure_scope. A symbol table entry for
15262 the type will also not be done until process_structure_scope (assuming
15263 the type has a name).
15264
15265 NOTE: we need to call these functions regardless of whether or not the
15266 DIE has a DW_AT_name attribute, since it might be an anonymous
15267 structure or union. This gets the type entered into our set of
15268 user defined types. */
15269
15270 static struct type *
15271 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15272 {
15273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15274 struct type *type;
15275 struct attribute *attr;
15276 const char *name;
15277
15278 /* If the definition of this type lives in .debug_types, read that type.
15279 Don't follow DW_AT_specification though, that will take us back up
15280 the chain and we want to go down. */
15281 attr = die->attr (DW_AT_signature);
15282 if (attr != nullptr)
15283 {
15284 type = get_DW_AT_signature_type (die, attr, cu);
15285
15286 /* The type's CU may not be the same as CU.
15287 Ensure TYPE is recorded with CU in die_type_hash. */
15288 return set_die_type (die, type, cu);
15289 }
15290
15291 type = alloc_type (objfile);
15292 INIT_CPLUS_SPECIFIC (type);
15293
15294 name = dwarf2_name (die, cu);
15295 if (name != NULL)
15296 {
15297 if (cu->language == language_cplus
15298 || cu->language == language_d
15299 || cu->language == language_rust)
15300 {
15301 const char *full_name = dwarf2_full_name (name, die, cu);
15302
15303 /* dwarf2_full_name might have already finished building the DIE's
15304 type. If so, there is no need to continue. */
15305 if (get_die_type (die, cu) != NULL)
15306 return get_die_type (die, cu);
15307
15308 TYPE_NAME (type) = full_name;
15309 }
15310 else
15311 {
15312 /* The name is already allocated along with this objfile, so
15313 we don't need to duplicate it for the type. */
15314 TYPE_NAME (type) = name;
15315 }
15316 }
15317
15318 if (die->tag == DW_TAG_structure_type)
15319 {
15320 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15321 }
15322 else if (die->tag == DW_TAG_union_type)
15323 {
15324 TYPE_CODE (type) = TYPE_CODE_UNION;
15325 }
15326 else
15327 {
15328 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15329 }
15330
15331 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15332 TYPE_DECLARED_CLASS (type) = 1;
15333
15334 /* Store the calling convention in the type if it's available in
15335 the die. Otherwise the calling convention remains set to
15336 the default value DW_CC_normal. */
15337 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15338 if (attr != nullptr
15339 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15340 {
15341 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15342 TYPE_CPLUS_CALLING_CONVENTION (type)
15343 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15344 }
15345
15346 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15347 if (attr != nullptr)
15348 {
15349 if (attr->form_is_constant ())
15350 TYPE_LENGTH (type) = DW_UNSND (attr);
15351 else
15352 {
15353 struct dynamic_prop prop;
15354 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15355 cu->per_cu->addr_type ()))
15356 add_dyn_prop (DYN_PROP_BYTE_SIZE, prop, type);
15357 TYPE_LENGTH (type) = 0;
15358 }
15359 }
15360 else
15361 {
15362 TYPE_LENGTH (type) = 0;
15363 }
15364
15365 maybe_set_alignment (cu, die, type);
15366
15367 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15368 {
15369 /* ICC<14 does not output the required DW_AT_declaration on
15370 incomplete types, but gives them a size of zero. */
15371 TYPE_STUB (type) = 1;
15372 }
15373 else
15374 TYPE_STUB_SUPPORTED (type) = 1;
15375
15376 if (die_is_declaration (die, cu))
15377 TYPE_STUB (type) = 1;
15378 else if (attr == NULL && die->child == NULL
15379 && producer_is_realview (cu->producer))
15380 /* RealView does not output the required DW_AT_declaration
15381 on incomplete types. */
15382 TYPE_STUB (type) = 1;
15383
15384 /* We need to add the type field to the die immediately so we don't
15385 infinitely recurse when dealing with pointers to the structure
15386 type within the structure itself. */
15387 set_die_type (die, type, cu);
15388
15389 /* set_die_type should be already done. */
15390 set_descriptive_type (type, die, cu);
15391
15392 return type;
15393 }
15394
15395 static void handle_struct_member_die
15396 (struct die_info *child_die,
15397 struct type *type,
15398 struct field_info *fi,
15399 std::vector<struct symbol *> *template_args,
15400 struct dwarf2_cu *cu);
15401
15402 /* A helper for handle_struct_member_die that handles
15403 DW_TAG_variant_part. */
15404
15405 static void
15406 handle_variant_part (struct die_info *die, struct type *type,
15407 struct field_info *fi,
15408 std::vector<struct symbol *> *template_args,
15409 struct dwarf2_cu *cu)
15410 {
15411 variant_part_builder *new_part;
15412 if (fi->current_variant_part == nullptr)
15413 {
15414 fi->variant_parts.emplace_back ();
15415 new_part = &fi->variant_parts.back ();
15416 }
15417 else if (!fi->current_variant_part->processing_variant)
15418 {
15419 complaint (_("nested DW_TAG_variant_part seen "
15420 "- DIE at %s [in module %s]"),
15421 sect_offset_str (die->sect_off),
15422 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15423 return;
15424 }
15425 else
15426 {
15427 variant_field &current = fi->current_variant_part->variants.back ();
15428 current.variant_parts.emplace_back ();
15429 new_part = &current.variant_parts.back ();
15430 }
15431
15432 /* When we recurse, we want callees to add to this new variant
15433 part. */
15434 scoped_restore save_current_variant_part
15435 = make_scoped_restore (&fi->current_variant_part, new_part);
15436
15437 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15438 if (discr == NULL)
15439 {
15440 /* It's a univariant form, an extension we support. */
15441 }
15442 else if (discr->form_is_ref ())
15443 {
15444 struct dwarf2_cu *target_cu = cu;
15445 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15446
15447 new_part->discriminant_offset = target_die->sect_off;
15448 }
15449 else
15450 {
15451 complaint (_("DW_AT_discr does not have DIE reference form"
15452 " - DIE at %s [in module %s]"),
15453 sect_offset_str (die->sect_off),
15454 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15455 }
15456
15457 for (die_info *child_die = die->child;
15458 child_die != NULL;
15459 child_die = child_die->sibling)
15460 handle_struct_member_die (child_die, type, fi, template_args, cu);
15461 }
15462
15463 /* A helper for handle_struct_member_die that handles
15464 DW_TAG_variant. */
15465
15466 static void
15467 handle_variant (struct die_info *die, struct type *type,
15468 struct field_info *fi,
15469 std::vector<struct symbol *> *template_args,
15470 struct dwarf2_cu *cu)
15471 {
15472 if (fi->current_variant_part == nullptr)
15473 {
15474 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15475 "- DIE at %s [in module %s]"),
15476 sect_offset_str (die->sect_off),
15477 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15478 return;
15479 }
15480 if (fi->current_variant_part->processing_variant)
15481 {
15482 complaint (_("nested DW_TAG_variant seen "
15483 "- DIE at %s [in module %s]"),
15484 sect_offset_str (die->sect_off),
15485 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15486 return;
15487 }
15488
15489 scoped_restore save_processing_variant
15490 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15491 true);
15492
15493 fi->current_variant_part->variants.emplace_back ();
15494 variant_field &variant = fi->current_variant_part->variants.back ();
15495 variant.first_field = fi->fields.size ();
15496
15497 /* In a variant we want to get the discriminant and also add a
15498 field for our sole member child. */
15499 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15500 if (discr == nullptr)
15501 {
15502 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15503 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15504 variant.default_branch = true;
15505 else
15506 variant.discr_list_data = DW_BLOCK (discr);
15507 }
15508 else
15509 variant.discriminant_value = DW_UNSND (discr);
15510
15511 for (die_info *variant_child = die->child;
15512 variant_child != NULL;
15513 variant_child = variant_child->sibling)
15514 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15515
15516 variant.last_field = fi->fields.size ();
15517 }
15518
15519 /* A helper for process_structure_scope that handles a single member
15520 DIE. */
15521
15522 static void
15523 handle_struct_member_die (struct die_info *child_die, struct type *type,
15524 struct field_info *fi,
15525 std::vector<struct symbol *> *template_args,
15526 struct dwarf2_cu *cu)
15527 {
15528 if (child_die->tag == DW_TAG_member
15529 || child_die->tag == DW_TAG_variable)
15530 {
15531 /* NOTE: carlton/2002-11-05: A C++ static data member
15532 should be a DW_TAG_member that is a declaration, but
15533 all versions of G++ as of this writing (so through at
15534 least 3.2.1) incorrectly generate DW_TAG_variable
15535 tags for them instead. */
15536 dwarf2_add_field (fi, child_die, cu);
15537 }
15538 else if (child_die->tag == DW_TAG_subprogram)
15539 {
15540 /* Rust doesn't have member functions in the C++ sense.
15541 However, it does emit ordinary functions as children
15542 of a struct DIE. */
15543 if (cu->language == language_rust)
15544 read_func_scope (child_die, cu);
15545 else
15546 {
15547 /* C++ member function. */
15548 dwarf2_add_member_fn (fi, child_die, type, cu);
15549 }
15550 }
15551 else if (child_die->tag == DW_TAG_inheritance)
15552 {
15553 /* C++ base class field. */
15554 dwarf2_add_field (fi, child_die, cu);
15555 }
15556 else if (type_can_define_types (child_die))
15557 dwarf2_add_type_defn (fi, child_die, cu);
15558 else if (child_die->tag == DW_TAG_template_type_param
15559 || child_die->tag == DW_TAG_template_value_param)
15560 {
15561 struct symbol *arg = new_symbol (child_die, NULL, cu);
15562
15563 if (arg != NULL)
15564 template_args->push_back (arg);
15565 }
15566 else if (child_die->tag == DW_TAG_variant_part)
15567 handle_variant_part (child_die, type, fi, template_args, cu);
15568 else if (child_die->tag == DW_TAG_variant)
15569 handle_variant (child_die, type, fi, template_args, cu);
15570 }
15571
15572 /* Finish creating a structure or union type, including filling in
15573 its members and creating a symbol for it. */
15574
15575 static void
15576 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15577 {
15578 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15579 struct die_info *child_die;
15580 struct type *type;
15581
15582 type = get_die_type (die, cu);
15583 if (type == NULL)
15584 type = read_structure_type (die, cu);
15585
15586 bool has_template_parameters = false;
15587 if (die->child != NULL && ! die_is_declaration (die, cu))
15588 {
15589 struct field_info fi;
15590 std::vector<struct symbol *> template_args;
15591
15592 child_die = die->child;
15593
15594 while (child_die && child_die->tag)
15595 {
15596 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15597 child_die = child_die->sibling;
15598 }
15599
15600 /* Attach template arguments to type. */
15601 if (!template_args.empty ())
15602 {
15603 has_template_parameters = true;
15604 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15605 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15606 TYPE_TEMPLATE_ARGUMENTS (type)
15607 = XOBNEWVEC (&objfile->objfile_obstack,
15608 struct symbol *,
15609 TYPE_N_TEMPLATE_ARGUMENTS (type));
15610 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15611 template_args.data (),
15612 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15613 * sizeof (struct symbol *)));
15614 }
15615
15616 /* Attach fields and member functions to the type. */
15617 if (fi.nfields () > 0)
15618 dwarf2_attach_fields_to_type (&fi, type, cu);
15619 if (!fi.fnfieldlists.empty ())
15620 {
15621 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15622
15623 /* Get the type which refers to the base class (possibly this
15624 class itself) which contains the vtable pointer for the current
15625 class from the DW_AT_containing_type attribute. This use of
15626 DW_AT_containing_type is a GNU extension. */
15627
15628 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15629 {
15630 struct type *t = die_containing_type (die, cu);
15631
15632 set_type_vptr_basetype (type, t);
15633 if (type == t)
15634 {
15635 int i;
15636
15637 /* Our own class provides vtbl ptr. */
15638 for (i = TYPE_NFIELDS (t) - 1;
15639 i >= TYPE_N_BASECLASSES (t);
15640 --i)
15641 {
15642 const char *fieldname = TYPE_FIELD_NAME (t, i);
15643
15644 if (is_vtable_name (fieldname, cu))
15645 {
15646 set_type_vptr_fieldno (type, i);
15647 break;
15648 }
15649 }
15650
15651 /* Complain if virtual function table field not found. */
15652 if (i < TYPE_N_BASECLASSES (t))
15653 complaint (_("virtual function table pointer "
15654 "not found when defining class '%s'"),
15655 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15656 }
15657 else
15658 {
15659 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15660 }
15661 }
15662 else if (cu->producer
15663 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15664 {
15665 /* The IBM XLC compiler does not provide direct indication
15666 of the containing type, but the vtable pointer is
15667 always named __vfp. */
15668
15669 int i;
15670
15671 for (i = TYPE_NFIELDS (type) - 1;
15672 i >= TYPE_N_BASECLASSES (type);
15673 --i)
15674 {
15675 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15676 {
15677 set_type_vptr_fieldno (type, i);
15678 set_type_vptr_basetype (type, type);
15679 break;
15680 }
15681 }
15682 }
15683 }
15684
15685 /* Copy fi.typedef_field_list linked list elements content into the
15686 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15687 if (!fi.typedef_field_list.empty ())
15688 {
15689 int count = fi.typedef_field_list.size ();
15690
15691 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15692 TYPE_TYPEDEF_FIELD_ARRAY (type)
15693 = ((struct decl_field *)
15694 TYPE_ALLOC (type,
15695 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15696 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15697
15698 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15699 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15700 }
15701
15702 /* Copy fi.nested_types_list linked list elements content into the
15703 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15704 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15705 {
15706 int count = fi.nested_types_list.size ();
15707
15708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15709 TYPE_NESTED_TYPES_ARRAY (type)
15710 = ((struct decl_field *)
15711 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15712 TYPE_NESTED_TYPES_COUNT (type) = count;
15713
15714 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15715 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15716 }
15717 }
15718
15719 quirk_gcc_member_function_pointer (type, objfile);
15720 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15721 cu->rust_unions.push_back (type);
15722
15723 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15724 snapshots) has been known to create a die giving a declaration
15725 for a class that has, as a child, a die giving a definition for a
15726 nested class. So we have to process our children even if the
15727 current die is a declaration. Normally, of course, a declaration
15728 won't have any children at all. */
15729
15730 child_die = die->child;
15731
15732 while (child_die != NULL && child_die->tag)
15733 {
15734 if (child_die->tag == DW_TAG_member
15735 || child_die->tag == DW_TAG_variable
15736 || child_die->tag == DW_TAG_inheritance
15737 || child_die->tag == DW_TAG_template_value_param
15738 || child_die->tag == DW_TAG_template_type_param)
15739 {
15740 /* Do nothing. */
15741 }
15742 else
15743 process_die (child_die, cu);
15744
15745 child_die = child_die->sibling;
15746 }
15747
15748 /* Do not consider external references. According to the DWARF standard,
15749 these DIEs are identified by the fact that they have no byte_size
15750 attribute, and a declaration attribute. */
15751 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15752 || !die_is_declaration (die, cu)
15753 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15754 {
15755 struct symbol *sym = new_symbol (die, type, cu);
15756
15757 if (has_template_parameters)
15758 {
15759 struct symtab *symtab;
15760 if (sym != nullptr)
15761 symtab = symbol_symtab (sym);
15762 else if (cu->line_header != nullptr)
15763 {
15764 /* Any related symtab will do. */
15765 symtab
15766 = cu->line_header->file_names ()[0].symtab;
15767 }
15768 else
15769 {
15770 symtab = nullptr;
15771 complaint (_("could not find suitable "
15772 "symtab for template parameter"
15773 " - DIE at %s [in module %s]"),
15774 sect_offset_str (die->sect_off),
15775 objfile_name (objfile));
15776 }
15777
15778 if (symtab != nullptr)
15779 {
15780 /* Make sure that the symtab is set on the new symbols.
15781 Even though they don't appear in this symtab directly,
15782 other parts of gdb assume that symbols do, and this is
15783 reasonably true. */
15784 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15785 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15786 }
15787 }
15788 }
15789 }
15790
15791 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15792 update TYPE using some information only available in DIE's children. */
15793
15794 static void
15795 update_enumeration_type_from_children (struct die_info *die,
15796 struct type *type,
15797 struct dwarf2_cu *cu)
15798 {
15799 struct die_info *child_die;
15800 int unsigned_enum = 1;
15801 int flag_enum = 1;
15802
15803 auto_obstack obstack;
15804
15805 for (child_die = die->child;
15806 child_die != NULL && child_die->tag;
15807 child_die = child_die->sibling)
15808 {
15809 struct attribute *attr;
15810 LONGEST value;
15811 const gdb_byte *bytes;
15812 struct dwarf2_locexpr_baton *baton;
15813 const char *name;
15814
15815 if (child_die->tag != DW_TAG_enumerator)
15816 continue;
15817
15818 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15819 if (attr == NULL)
15820 continue;
15821
15822 name = dwarf2_name (child_die, cu);
15823 if (name == NULL)
15824 name = "<anonymous enumerator>";
15825
15826 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15827 &value, &bytes, &baton);
15828 if (value < 0)
15829 {
15830 unsigned_enum = 0;
15831 flag_enum = 0;
15832 }
15833 else
15834 {
15835 if (count_one_bits_ll (value) >= 2)
15836 flag_enum = 0;
15837 }
15838
15839 /* If we already know that the enum type is neither unsigned, nor
15840 a flag type, no need to look at the rest of the enumerates. */
15841 if (!unsigned_enum && !flag_enum)
15842 break;
15843 }
15844
15845 if (unsigned_enum)
15846 TYPE_UNSIGNED (type) = 1;
15847 if (flag_enum)
15848 TYPE_FLAG_ENUM (type) = 1;
15849 }
15850
15851 /* Given a DW_AT_enumeration_type die, set its type. We do not
15852 complete the type's fields yet, or create any symbols. */
15853
15854 static struct type *
15855 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15856 {
15857 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15858 struct type *type;
15859 struct attribute *attr;
15860 const char *name;
15861
15862 /* If the definition of this type lives in .debug_types, read that type.
15863 Don't follow DW_AT_specification though, that will take us back up
15864 the chain and we want to go down. */
15865 attr = die->attr (DW_AT_signature);
15866 if (attr != nullptr)
15867 {
15868 type = get_DW_AT_signature_type (die, attr, cu);
15869
15870 /* The type's CU may not be the same as CU.
15871 Ensure TYPE is recorded with CU in die_type_hash. */
15872 return set_die_type (die, type, cu);
15873 }
15874
15875 type = alloc_type (objfile);
15876
15877 TYPE_CODE (type) = TYPE_CODE_ENUM;
15878 name = dwarf2_full_name (NULL, die, cu);
15879 if (name != NULL)
15880 TYPE_NAME (type) = name;
15881
15882 attr = dwarf2_attr (die, DW_AT_type, cu);
15883 if (attr != NULL)
15884 {
15885 struct type *underlying_type = die_type (die, cu);
15886
15887 TYPE_TARGET_TYPE (type) = underlying_type;
15888 }
15889
15890 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15891 if (attr != nullptr)
15892 {
15893 TYPE_LENGTH (type) = DW_UNSND (attr);
15894 }
15895 else
15896 {
15897 TYPE_LENGTH (type) = 0;
15898 }
15899
15900 maybe_set_alignment (cu, die, type);
15901
15902 /* The enumeration DIE can be incomplete. In Ada, any type can be
15903 declared as private in the package spec, and then defined only
15904 inside the package body. Such types are known as Taft Amendment
15905 Types. When another package uses such a type, an incomplete DIE
15906 may be generated by the compiler. */
15907 if (die_is_declaration (die, cu))
15908 TYPE_STUB (type) = 1;
15909
15910 /* Finish the creation of this type by using the enum's children.
15911 We must call this even when the underlying type has been provided
15912 so that we can determine if we're looking at a "flag" enum. */
15913 update_enumeration_type_from_children (die, type, cu);
15914
15915 /* If this type has an underlying type that is not a stub, then we
15916 may use its attributes. We always use the "unsigned" attribute
15917 in this situation, because ordinarily we guess whether the type
15918 is unsigned -- but the guess can be wrong and the underlying type
15919 can tell us the reality. However, we defer to a local size
15920 attribute if one exists, because this lets the compiler override
15921 the underlying type if needed. */
15922 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15923 {
15924 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15925 underlying_type = check_typedef (underlying_type);
15926 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15927 if (TYPE_LENGTH (type) == 0)
15928 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15929 if (TYPE_RAW_ALIGN (type) == 0
15930 && TYPE_RAW_ALIGN (underlying_type) != 0)
15931 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15932 }
15933
15934 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15935
15936 return set_die_type (die, type, cu);
15937 }
15938
15939 /* Given a pointer to a die which begins an enumeration, process all
15940 the dies that define the members of the enumeration, and create the
15941 symbol for the enumeration type.
15942
15943 NOTE: We reverse the order of the element list. */
15944
15945 static void
15946 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15947 {
15948 struct type *this_type;
15949
15950 this_type = get_die_type (die, cu);
15951 if (this_type == NULL)
15952 this_type = read_enumeration_type (die, cu);
15953
15954 if (die->child != NULL)
15955 {
15956 struct die_info *child_die;
15957 struct symbol *sym;
15958 std::vector<struct field> fields;
15959 const char *name;
15960
15961 child_die = die->child;
15962 while (child_die && child_die->tag)
15963 {
15964 if (child_die->tag != DW_TAG_enumerator)
15965 {
15966 process_die (child_die, cu);
15967 }
15968 else
15969 {
15970 name = dwarf2_name (child_die, cu);
15971 if (name)
15972 {
15973 sym = new_symbol (child_die, this_type, cu);
15974
15975 fields.emplace_back ();
15976 struct field &field = fields.back ();
15977
15978 FIELD_NAME (field) = sym->linkage_name ();
15979 FIELD_TYPE (field) = NULL;
15980 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15981 FIELD_BITSIZE (field) = 0;
15982 }
15983 }
15984
15985 child_die = child_die->sibling;
15986 }
15987
15988 if (!fields.empty ())
15989 {
15990 TYPE_NFIELDS (this_type) = fields.size ();
15991 TYPE_FIELDS (this_type) = (struct field *)
15992 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15993 memcpy (TYPE_FIELDS (this_type), fields.data (),
15994 sizeof (struct field) * fields.size ());
15995 }
15996 }
15997
15998 /* If we are reading an enum from a .debug_types unit, and the enum
15999 is a declaration, and the enum is not the signatured type in the
16000 unit, then we do not want to add a symbol for it. Adding a
16001 symbol would in some cases obscure the true definition of the
16002 enum, giving users an incomplete type when the definition is
16003 actually available. Note that we do not want to do this for all
16004 enums which are just declarations, because C++0x allows forward
16005 enum declarations. */
16006 if (cu->per_cu->is_debug_types
16007 && die_is_declaration (die, cu))
16008 {
16009 struct signatured_type *sig_type;
16010
16011 sig_type = (struct signatured_type *) cu->per_cu;
16012 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16013 if (sig_type->type_offset_in_section != die->sect_off)
16014 return;
16015 }
16016
16017 new_symbol (die, this_type, cu);
16018 }
16019
16020 /* Extract all information from a DW_TAG_array_type DIE and put it in
16021 the DIE's type field. For now, this only handles one dimensional
16022 arrays. */
16023
16024 static struct type *
16025 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16026 {
16027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16028 struct die_info *child_die;
16029 struct type *type;
16030 struct type *element_type, *range_type, *index_type;
16031 struct attribute *attr;
16032 const char *name;
16033 struct dynamic_prop *byte_stride_prop = NULL;
16034 unsigned int bit_stride = 0;
16035
16036 element_type = die_type (die, cu);
16037
16038 /* The die_type call above may have already set the type for this DIE. */
16039 type = get_die_type (die, cu);
16040 if (type)
16041 return type;
16042
16043 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16044 if (attr != NULL)
16045 {
16046 int stride_ok;
16047 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16048
16049 byte_stride_prop
16050 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16051 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16052 prop_type);
16053 if (!stride_ok)
16054 {
16055 complaint (_("unable to read array DW_AT_byte_stride "
16056 " - DIE at %s [in module %s]"),
16057 sect_offset_str (die->sect_off),
16058 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16059 /* Ignore this attribute. We will likely not be able to print
16060 arrays of this type correctly, but there is little we can do
16061 to help if we cannot read the attribute's value. */
16062 byte_stride_prop = NULL;
16063 }
16064 }
16065
16066 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16067 if (attr != NULL)
16068 bit_stride = DW_UNSND (attr);
16069
16070 /* Irix 6.2 native cc creates array types without children for
16071 arrays with unspecified length. */
16072 if (die->child == NULL)
16073 {
16074 index_type = objfile_type (objfile)->builtin_int;
16075 range_type = create_static_range_type (NULL, index_type, 0, -1);
16076 type = create_array_type_with_stride (NULL, element_type, range_type,
16077 byte_stride_prop, bit_stride);
16078 return set_die_type (die, type, cu);
16079 }
16080
16081 std::vector<struct type *> range_types;
16082 child_die = die->child;
16083 while (child_die && child_die->tag)
16084 {
16085 if (child_die->tag == DW_TAG_subrange_type)
16086 {
16087 struct type *child_type = read_type_die (child_die, cu);
16088
16089 if (child_type != NULL)
16090 {
16091 /* The range type was succesfully read. Save it for the
16092 array type creation. */
16093 range_types.push_back (child_type);
16094 }
16095 }
16096 child_die = child_die->sibling;
16097 }
16098
16099 /* Dwarf2 dimensions are output from left to right, create the
16100 necessary array types in backwards order. */
16101
16102 type = element_type;
16103
16104 if (read_array_order (die, cu) == DW_ORD_col_major)
16105 {
16106 int i = 0;
16107
16108 while (i < range_types.size ())
16109 type = create_array_type_with_stride (NULL, type, range_types[i++],
16110 byte_stride_prop, bit_stride);
16111 }
16112 else
16113 {
16114 size_t ndim = range_types.size ();
16115 while (ndim-- > 0)
16116 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16117 byte_stride_prop, bit_stride);
16118 }
16119
16120 /* Understand Dwarf2 support for vector types (like they occur on
16121 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16122 array type. This is not part of the Dwarf2/3 standard yet, but a
16123 custom vendor extension. The main difference between a regular
16124 array and the vector variant is that vectors are passed by value
16125 to functions. */
16126 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16127 if (attr != nullptr)
16128 make_vector_type (type);
16129
16130 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16131 implementation may choose to implement triple vectors using this
16132 attribute. */
16133 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16134 if (attr != nullptr)
16135 {
16136 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16137 TYPE_LENGTH (type) = DW_UNSND (attr);
16138 else
16139 complaint (_("DW_AT_byte_size for array type smaller "
16140 "than the total size of elements"));
16141 }
16142
16143 name = dwarf2_name (die, cu);
16144 if (name)
16145 TYPE_NAME (type) = name;
16146
16147 maybe_set_alignment (cu, die, type);
16148
16149 /* Install the type in the die. */
16150 set_die_type (die, type, cu);
16151
16152 /* set_die_type should be already done. */
16153 set_descriptive_type (type, die, cu);
16154
16155 return type;
16156 }
16157
16158 static enum dwarf_array_dim_ordering
16159 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16160 {
16161 struct attribute *attr;
16162
16163 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16164
16165 if (attr != nullptr)
16166 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16167
16168 /* GNU F77 is a special case, as at 08/2004 array type info is the
16169 opposite order to the dwarf2 specification, but data is still
16170 laid out as per normal fortran.
16171
16172 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16173 version checking. */
16174
16175 if (cu->language == language_fortran
16176 && cu->producer && strstr (cu->producer, "GNU F77"))
16177 {
16178 return DW_ORD_row_major;
16179 }
16180
16181 switch (cu->language_defn->la_array_ordering)
16182 {
16183 case array_column_major:
16184 return DW_ORD_col_major;
16185 case array_row_major:
16186 default:
16187 return DW_ORD_row_major;
16188 };
16189 }
16190
16191 /* Extract all information from a DW_TAG_set_type DIE and put it in
16192 the DIE's type field. */
16193
16194 static struct type *
16195 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16196 {
16197 struct type *domain_type, *set_type;
16198 struct attribute *attr;
16199
16200 domain_type = die_type (die, cu);
16201
16202 /* The die_type call above may have already set the type for this DIE. */
16203 set_type = get_die_type (die, cu);
16204 if (set_type)
16205 return set_type;
16206
16207 set_type = create_set_type (NULL, domain_type);
16208
16209 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16210 if (attr != nullptr)
16211 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16212
16213 maybe_set_alignment (cu, die, set_type);
16214
16215 return set_die_type (die, set_type, cu);
16216 }
16217
16218 /* A helper for read_common_block that creates a locexpr baton.
16219 SYM is the symbol which we are marking as computed.
16220 COMMON_DIE is the DIE for the common block.
16221 COMMON_LOC is the location expression attribute for the common
16222 block itself.
16223 MEMBER_LOC is the location expression attribute for the particular
16224 member of the common block that we are processing.
16225 CU is the CU from which the above come. */
16226
16227 static void
16228 mark_common_block_symbol_computed (struct symbol *sym,
16229 struct die_info *common_die,
16230 struct attribute *common_loc,
16231 struct attribute *member_loc,
16232 struct dwarf2_cu *cu)
16233 {
16234 struct dwarf2_per_objfile *dwarf2_per_objfile
16235 = cu->per_cu->dwarf2_per_objfile;
16236 struct objfile *objfile = dwarf2_per_objfile->objfile;
16237 struct dwarf2_locexpr_baton *baton;
16238 gdb_byte *ptr;
16239 unsigned int cu_off;
16240 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16241 LONGEST offset = 0;
16242
16243 gdb_assert (common_loc && member_loc);
16244 gdb_assert (common_loc->form_is_block ());
16245 gdb_assert (member_loc->form_is_block ()
16246 || member_loc->form_is_constant ());
16247
16248 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16249 baton->per_cu = cu->per_cu;
16250 gdb_assert (baton->per_cu);
16251
16252 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16253
16254 if (member_loc->form_is_constant ())
16255 {
16256 offset = member_loc->constant_value (0);
16257 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16258 }
16259 else
16260 baton->size += DW_BLOCK (member_loc)->size;
16261
16262 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16263 baton->data = ptr;
16264
16265 *ptr++ = DW_OP_call4;
16266 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16267 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16268 ptr += 4;
16269
16270 if (member_loc->form_is_constant ())
16271 {
16272 *ptr++ = DW_OP_addr;
16273 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16274 ptr += cu->header.addr_size;
16275 }
16276 else
16277 {
16278 /* We have to copy the data here, because DW_OP_call4 will only
16279 use a DW_AT_location attribute. */
16280 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16281 ptr += DW_BLOCK (member_loc)->size;
16282 }
16283
16284 *ptr++ = DW_OP_plus;
16285 gdb_assert (ptr - baton->data == baton->size);
16286
16287 SYMBOL_LOCATION_BATON (sym) = baton;
16288 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16289 }
16290
16291 /* Create appropriate locally-scoped variables for all the
16292 DW_TAG_common_block entries. Also create a struct common_block
16293 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16294 is used to separate the common blocks name namespace from regular
16295 variable names. */
16296
16297 static void
16298 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16299 {
16300 struct attribute *attr;
16301
16302 attr = dwarf2_attr (die, DW_AT_location, cu);
16303 if (attr != nullptr)
16304 {
16305 /* Support the .debug_loc offsets. */
16306 if (attr->form_is_block ())
16307 {
16308 /* Ok. */
16309 }
16310 else if (attr->form_is_section_offset ())
16311 {
16312 dwarf2_complex_location_expr_complaint ();
16313 attr = NULL;
16314 }
16315 else
16316 {
16317 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16318 "common block member");
16319 attr = NULL;
16320 }
16321 }
16322
16323 if (die->child != NULL)
16324 {
16325 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16326 struct die_info *child_die;
16327 size_t n_entries = 0, size;
16328 struct common_block *common_block;
16329 struct symbol *sym;
16330
16331 for (child_die = die->child;
16332 child_die && child_die->tag;
16333 child_die = child_die->sibling)
16334 ++n_entries;
16335
16336 size = (sizeof (struct common_block)
16337 + (n_entries - 1) * sizeof (struct symbol *));
16338 common_block
16339 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16340 size);
16341 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16342 common_block->n_entries = 0;
16343
16344 for (child_die = die->child;
16345 child_die && child_die->tag;
16346 child_die = child_die->sibling)
16347 {
16348 /* Create the symbol in the DW_TAG_common_block block in the current
16349 symbol scope. */
16350 sym = new_symbol (child_die, NULL, cu);
16351 if (sym != NULL)
16352 {
16353 struct attribute *member_loc;
16354
16355 common_block->contents[common_block->n_entries++] = sym;
16356
16357 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16358 cu);
16359 if (member_loc)
16360 {
16361 /* GDB has handled this for a long time, but it is
16362 not specified by DWARF. It seems to have been
16363 emitted by gfortran at least as recently as:
16364 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16365 complaint (_("Variable in common block has "
16366 "DW_AT_data_member_location "
16367 "- DIE at %s [in module %s]"),
16368 sect_offset_str (child_die->sect_off),
16369 objfile_name (objfile));
16370
16371 if (member_loc->form_is_section_offset ())
16372 dwarf2_complex_location_expr_complaint ();
16373 else if (member_loc->form_is_constant ()
16374 || member_loc->form_is_block ())
16375 {
16376 if (attr != nullptr)
16377 mark_common_block_symbol_computed (sym, die, attr,
16378 member_loc, cu);
16379 }
16380 else
16381 dwarf2_complex_location_expr_complaint ();
16382 }
16383 }
16384 }
16385
16386 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16387 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16388 }
16389 }
16390
16391 /* Create a type for a C++ namespace. */
16392
16393 static struct type *
16394 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16395 {
16396 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16397 const char *previous_prefix, *name;
16398 int is_anonymous;
16399 struct type *type;
16400
16401 /* For extensions, reuse the type of the original namespace. */
16402 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16403 {
16404 struct die_info *ext_die;
16405 struct dwarf2_cu *ext_cu = cu;
16406
16407 ext_die = dwarf2_extension (die, &ext_cu);
16408 type = read_type_die (ext_die, ext_cu);
16409
16410 /* EXT_CU may not be the same as CU.
16411 Ensure TYPE is recorded with CU in die_type_hash. */
16412 return set_die_type (die, type, cu);
16413 }
16414
16415 name = namespace_name (die, &is_anonymous, cu);
16416
16417 /* Now build the name of the current namespace. */
16418
16419 previous_prefix = determine_prefix (die, cu);
16420 if (previous_prefix[0] != '\0')
16421 name = typename_concat (&objfile->objfile_obstack,
16422 previous_prefix, name, 0, cu);
16423
16424 /* Create the type. */
16425 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16426
16427 return set_die_type (die, type, cu);
16428 }
16429
16430 /* Read a namespace scope. */
16431
16432 static void
16433 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16434 {
16435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16436 int is_anonymous;
16437
16438 /* Add a symbol associated to this if we haven't seen the namespace
16439 before. Also, add a using directive if it's an anonymous
16440 namespace. */
16441
16442 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16443 {
16444 struct type *type;
16445
16446 type = read_type_die (die, cu);
16447 new_symbol (die, type, cu);
16448
16449 namespace_name (die, &is_anonymous, cu);
16450 if (is_anonymous)
16451 {
16452 const char *previous_prefix = determine_prefix (die, cu);
16453
16454 std::vector<const char *> excludes;
16455 add_using_directive (using_directives (cu),
16456 previous_prefix, TYPE_NAME (type), NULL,
16457 NULL, excludes, 0, &objfile->objfile_obstack);
16458 }
16459 }
16460
16461 if (die->child != NULL)
16462 {
16463 struct die_info *child_die = die->child;
16464
16465 while (child_die && child_die->tag)
16466 {
16467 process_die (child_die, cu);
16468 child_die = child_die->sibling;
16469 }
16470 }
16471 }
16472
16473 /* Read a Fortran module as type. This DIE can be only a declaration used for
16474 imported module. Still we need that type as local Fortran "use ... only"
16475 declaration imports depend on the created type in determine_prefix. */
16476
16477 static struct type *
16478 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16479 {
16480 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16481 const char *module_name;
16482 struct type *type;
16483
16484 module_name = dwarf2_name (die, cu);
16485 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16486
16487 return set_die_type (die, type, cu);
16488 }
16489
16490 /* Read a Fortran module. */
16491
16492 static void
16493 read_module (struct die_info *die, struct dwarf2_cu *cu)
16494 {
16495 struct die_info *child_die = die->child;
16496 struct type *type;
16497
16498 type = read_type_die (die, cu);
16499 new_symbol (die, type, cu);
16500
16501 while (child_die && child_die->tag)
16502 {
16503 process_die (child_die, cu);
16504 child_die = child_die->sibling;
16505 }
16506 }
16507
16508 /* Return the name of the namespace represented by DIE. Set
16509 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16510 namespace. */
16511
16512 static const char *
16513 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16514 {
16515 struct die_info *current_die;
16516 const char *name = NULL;
16517
16518 /* Loop through the extensions until we find a name. */
16519
16520 for (current_die = die;
16521 current_die != NULL;
16522 current_die = dwarf2_extension (die, &cu))
16523 {
16524 /* We don't use dwarf2_name here so that we can detect the absence
16525 of a name -> anonymous namespace. */
16526 name = dwarf2_string_attr (die, DW_AT_name, cu);
16527
16528 if (name != NULL)
16529 break;
16530 }
16531
16532 /* Is it an anonymous namespace? */
16533
16534 *is_anonymous = (name == NULL);
16535 if (*is_anonymous)
16536 name = CP_ANONYMOUS_NAMESPACE_STR;
16537
16538 return name;
16539 }
16540
16541 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16542 the user defined type vector. */
16543
16544 static struct type *
16545 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16546 {
16547 struct gdbarch *gdbarch
16548 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16549 struct comp_unit_head *cu_header = &cu->header;
16550 struct type *type;
16551 struct attribute *attr_byte_size;
16552 struct attribute *attr_address_class;
16553 int byte_size, addr_class;
16554 struct type *target_type;
16555
16556 target_type = die_type (die, cu);
16557
16558 /* The die_type call above may have already set the type for this DIE. */
16559 type = get_die_type (die, cu);
16560 if (type)
16561 return type;
16562
16563 type = lookup_pointer_type (target_type);
16564
16565 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16566 if (attr_byte_size)
16567 byte_size = DW_UNSND (attr_byte_size);
16568 else
16569 byte_size = cu_header->addr_size;
16570
16571 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16572 if (attr_address_class)
16573 addr_class = DW_UNSND (attr_address_class);
16574 else
16575 addr_class = DW_ADDR_none;
16576
16577 ULONGEST alignment = get_alignment (cu, die);
16578
16579 /* If the pointer size, alignment, or address class is different
16580 than the default, create a type variant marked as such and set
16581 the length accordingly. */
16582 if (TYPE_LENGTH (type) != byte_size
16583 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16584 && alignment != TYPE_RAW_ALIGN (type))
16585 || addr_class != DW_ADDR_none)
16586 {
16587 if (gdbarch_address_class_type_flags_p (gdbarch))
16588 {
16589 int type_flags;
16590
16591 type_flags = gdbarch_address_class_type_flags
16592 (gdbarch, byte_size, addr_class);
16593 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16594 == 0);
16595 type = make_type_with_address_space (type, type_flags);
16596 }
16597 else if (TYPE_LENGTH (type) != byte_size)
16598 {
16599 complaint (_("invalid pointer size %d"), byte_size);
16600 }
16601 else if (TYPE_RAW_ALIGN (type) != alignment)
16602 {
16603 complaint (_("Invalid DW_AT_alignment"
16604 " - DIE at %s [in module %s]"),
16605 sect_offset_str (die->sect_off),
16606 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16607 }
16608 else
16609 {
16610 /* Should we also complain about unhandled address classes? */
16611 }
16612 }
16613
16614 TYPE_LENGTH (type) = byte_size;
16615 set_type_align (type, alignment);
16616 return set_die_type (die, type, cu);
16617 }
16618
16619 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16620 the user defined type vector. */
16621
16622 static struct type *
16623 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16624 {
16625 struct type *type;
16626 struct type *to_type;
16627 struct type *domain;
16628
16629 to_type = die_type (die, cu);
16630 domain = die_containing_type (die, cu);
16631
16632 /* The calls above may have already set the type for this DIE. */
16633 type = get_die_type (die, cu);
16634 if (type)
16635 return type;
16636
16637 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16638 type = lookup_methodptr_type (to_type);
16639 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16640 {
16641 struct type *new_type
16642 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16643
16644 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16645 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16646 TYPE_VARARGS (to_type));
16647 type = lookup_methodptr_type (new_type);
16648 }
16649 else
16650 type = lookup_memberptr_type (to_type, domain);
16651
16652 return set_die_type (die, type, cu);
16653 }
16654
16655 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16656 the user defined type vector. */
16657
16658 static struct type *
16659 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16660 enum type_code refcode)
16661 {
16662 struct comp_unit_head *cu_header = &cu->header;
16663 struct type *type, *target_type;
16664 struct attribute *attr;
16665
16666 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16667
16668 target_type = die_type (die, cu);
16669
16670 /* The die_type call above may have already set the type for this DIE. */
16671 type = get_die_type (die, cu);
16672 if (type)
16673 return type;
16674
16675 type = lookup_reference_type (target_type, refcode);
16676 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16677 if (attr != nullptr)
16678 {
16679 TYPE_LENGTH (type) = DW_UNSND (attr);
16680 }
16681 else
16682 {
16683 TYPE_LENGTH (type) = cu_header->addr_size;
16684 }
16685 maybe_set_alignment (cu, die, type);
16686 return set_die_type (die, type, cu);
16687 }
16688
16689 /* Add the given cv-qualifiers to the element type of the array. GCC
16690 outputs DWARF type qualifiers that apply to an array, not the
16691 element type. But GDB relies on the array element type to carry
16692 the cv-qualifiers. This mimics section 6.7.3 of the C99
16693 specification. */
16694
16695 static struct type *
16696 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16697 struct type *base_type, int cnst, int voltl)
16698 {
16699 struct type *el_type, *inner_array;
16700
16701 base_type = copy_type (base_type);
16702 inner_array = base_type;
16703
16704 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16705 {
16706 TYPE_TARGET_TYPE (inner_array) =
16707 copy_type (TYPE_TARGET_TYPE (inner_array));
16708 inner_array = TYPE_TARGET_TYPE (inner_array);
16709 }
16710
16711 el_type = TYPE_TARGET_TYPE (inner_array);
16712 cnst |= TYPE_CONST (el_type);
16713 voltl |= TYPE_VOLATILE (el_type);
16714 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16715
16716 return set_die_type (die, base_type, cu);
16717 }
16718
16719 static struct type *
16720 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16721 {
16722 struct type *base_type, *cv_type;
16723
16724 base_type = die_type (die, cu);
16725
16726 /* The die_type call above may have already set the type for this DIE. */
16727 cv_type = get_die_type (die, cu);
16728 if (cv_type)
16729 return cv_type;
16730
16731 /* In case the const qualifier is applied to an array type, the element type
16732 is so qualified, not the array type (section 6.7.3 of C99). */
16733 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16734 return add_array_cv_type (die, cu, base_type, 1, 0);
16735
16736 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16737 return set_die_type (die, cv_type, cu);
16738 }
16739
16740 static struct type *
16741 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16742 {
16743 struct type *base_type, *cv_type;
16744
16745 base_type = die_type (die, cu);
16746
16747 /* The die_type call above may have already set the type for this DIE. */
16748 cv_type = get_die_type (die, cu);
16749 if (cv_type)
16750 return cv_type;
16751
16752 /* In case the volatile qualifier is applied to an array type, the
16753 element type is so qualified, not the array type (section 6.7.3
16754 of C99). */
16755 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16756 return add_array_cv_type (die, cu, base_type, 0, 1);
16757
16758 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16759 return set_die_type (die, cv_type, cu);
16760 }
16761
16762 /* Handle DW_TAG_restrict_type. */
16763
16764 static struct type *
16765 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16766 {
16767 struct type *base_type, *cv_type;
16768
16769 base_type = die_type (die, cu);
16770
16771 /* The die_type call above may have already set the type for this DIE. */
16772 cv_type = get_die_type (die, cu);
16773 if (cv_type)
16774 return cv_type;
16775
16776 cv_type = make_restrict_type (base_type);
16777 return set_die_type (die, cv_type, cu);
16778 }
16779
16780 /* Handle DW_TAG_atomic_type. */
16781
16782 static struct type *
16783 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16784 {
16785 struct type *base_type, *cv_type;
16786
16787 base_type = die_type (die, cu);
16788
16789 /* The die_type call above may have already set the type for this DIE. */
16790 cv_type = get_die_type (die, cu);
16791 if (cv_type)
16792 return cv_type;
16793
16794 cv_type = make_atomic_type (base_type);
16795 return set_die_type (die, cv_type, cu);
16796 }
16797
16798 /* Extract all information from a DW_TAG_string_type DIE and add to
16799 the user defined type vector. It isn't really a user defined type,
16800 but it behaves like one, with other DIE's using an AT_user_def_type
16801 attribute to reference it. */
16802
16803 static struct type *
16804 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16805 {
16806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16807 struct gdbarch *gdbarch = objfile->arch ();
16808 struct type *type, *range_type, *index_type, *char_type;
16809 struct attribute *attr;
16810 struct dynamic_prop prop;
16811 bool length_is_constant = true;
16812 LONGEST length;
16813
16814 /* There are a couple of places where bit sizes might be made use of
16815 when parsing a DW_TAG_string_type, however, no producer that we know
16816 of make use of these. Handling bit sizes that are a multiple of the
16817 byte size is easy enough, but what about other bit sizes? Lets deal
16818 with that problem when we have to. Warn about these attributes being
16819 unsupported, then parse the type and ignore them like we always
16820 have. */
16821 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16822 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16823 {
16824 static bool warning_printed = false;
16825 if (!warning_printed)
16826 {
16827 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16828 "currently supported on DW_TAG_string_type."));
16829 warning_printed = true;
16830 }
16831 }
16832
16833 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16834 if (attr != nullptr && !attr->form_is_constant ())
16835 {
16836 /* The string length describes the location at which the length of
16837 the string can be found. The size of the length field can be
16838 specified with one of the attributes below. */
16839 struct type *prop_type;
16840 struct attribute *len
16841 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16842 if (len == nullptr)
16843 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16844 if (len != nullptr && len->form_is_constant ())
16845 {
16846 /* Pass 0 as the default as we know this attribute is constant
16847 and the default value will not be returned. */
16848 LONGEST sz = len->constant_value (0);
16849 prop_type = cu->per_cu->int_type (sz, true);
16850 }
16851 else
16852 {
16853 /* If the size is not specified then we assume it is the size of
16854 an address on this target. */
16855 prop_type = cu->per_cu->addr_sized_int_type (true);
16856 }
16857
16858 /* Convert the attribute into a dynamic property. */
16859 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16860 length = 1;
16861 else
16862 length_is_constant = false;
16863 }
16864 else if (attr != nullptr)
16865 {
16866 /* This DW_AT_string_length just contains the length with no
16867 indirection. There's no need to create a dynamic property in this
16868 case. Pass 0 for the default value as we know it will not be
16869 returned in this case. */
16870 length = attr->constant_value (0);
16871 }
16872 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16873 {
16874 /* We don't currently support non-constant byte sizes for strings. */
16875 length = attr->constant_value (1);
16876 }
16877 else
16878 {
16879 /* Use 1 as a fallback length if we have nothing else. */
16880 length = 1;
16881 }
16882
16883 index_type = objfile_type (objfile)->builtin_int;
16884 if (length_is_constant)
16885 range_type = create_static_range_type (NULL, index_type, 1, length);
16886 else
16887 {
16888 struct dynamic_prop low_bound;
16889
16890 low_bound.kind = PROP_CONST;
16891 low_bound.data.const_val = 1;
16892 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16893 }
16894 char_type = language_string_char_type (cu->language_defn, gdbarch);
16895 type = create_string_type (NULL, char_type, range_type);
16896
16897 return set_die_type (die, type, cu);
16898 }
16899
16900 /* Assuming that DIE corresponds to a function, returns nonzero
16901 if the function is prototyped. */
16902
16903 static int
16904 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16905 {
16906 struct attribute *attr;
16907
16908 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16909 if (attr && (DW_UNSND (attr) != 0))
16910 return 1;
16911
16912 /* The DWARF standard implies that the DW_AT_prototyped attribute
16913 is only meaningful for C, but the concept also extends to other
16914 languages that allow unprototyped functions (Eg: Objective C).
16915 For all other languages, assume that functions are always
16916 prototyped. */
16917 if (cu->language != language_c
16918 && cu->language != language_objc
16919 && cu->language != language_opencl)
16920 return 1;
16921
16922 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16923 prototyped and unprototyped functions; default to prototyped,
16924 since that is more common in modern code (and RealView warns
16925 about unprototyped functions). */
16926 if (producer_is_realview (cu->producer))
16927 return 1;
16928
16929 return 0;
16930 }
16931
16932 /* Handle DIES due to C code like:
16933
16934 struct foo
16935 {
16936 int (*funcp)(int a, long l);
16937 int b;
16938 };
16939
16940 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16941
16942 static struct type *
16943 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16944 {
16945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16946 struct type *type; /* Type that this function returns. */
16947 struct type *ftype; /* Function that returns above type. */
16948 struct attribute *attr;
16949
16950 type = die_type (die, cu);
16951
16952 /* The die_type call above may have already set the type for this DIE. */
16953 ftype = get_die_type (die, cu);
16954 if (ftype)
16955 return ftype;
16956
16957 ftype = lookup_function_type (type);
16958
16959 if (prototyped_function_p (die, cu))
16960 TYPE_PROTOTYPED (ftype) = 1;
16961
16962 /* Store the calling convention in the type if it's available in
16963 the subroutine die. Otherwise set the calling convention to
16964 the default value DW_CC_normal. */
16965 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16966 if (attr != nullptr
16967 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16968 TYPE_CALLING_CONVENTION (ftype)
16969 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16970 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16971 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16972 else
16973 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16974
16975 /* Record whether the function returns normally to its caller or not
16976 if the DWARF producer set that information. */
16977 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16978 if (attr && (DW_UNSND (attr) != 0))
16979 TYPE_NO_RETURN (ftype) = 1;
16980
16981 /* We need to add the subroutine type to the die immediately so
16982 we don't infinitely recurse when dealing with parameters
16983 declared as the same subroutine type. */
16984 set_die_type (die, ftype, cu);
16985
16986 if (die->child != NULL)
16987 {
16988 struct type *void_type = objfile_type (objfile)->builtin_void;
16989 struct die_info *child_die;
16990 int nparams, iparams;
16991
16992 /* Count the number of parameters.
16993 FIXME: GDB currently ignores vararg functions, but knows about
16994 vararg member functions. */
16995 nparams = 0;
16996 child_die = die->child;
16997 while (child_die && child_die->tag)
16998 {
16999 if (child_die->tag == DW_TAG_formal_parameter)
17000 nparams++;
17001 else if (child_die->tag == DW_TAG_unspecified_parameters)
17002 TYPE_VARARGS (ftype) = 1;
17003 child_die = child_die->sibling;
17004 }
17005
17006 /* Allocate storage for parameters and fill them in. */
17007 TYPE_NFIELDS (ftype) = nparams;
17008 TYPE_FIELDS (ftype) = (struct field *)
17009 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17010
17011 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17012 even if we error out during the parameters reading below. */
17013 for (iparams = 0; iparams < nparams; iparams++)
17014 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17015
17016 iparams = 0;
17017 child_die = die->child;
17018 while (child_die && child_die->tag)
17019 {
17020 if (child_die->tag == DW_TAG_formal_parameter)
17021 {
17022 struct type *arg_type;
17023
17024 /* DWARF version 2 has no clean way to discern C++
17025 static and non-static member functions. G++ helps
17026 GDB by marking the first parameter for non-static
17027 member functions (which is the this pointer) as
17028 artificial. We pass this information to
17029 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17030
17031 DWARF version 3 added DW_AT_object_pointer, which GCC
17032 4.5 does not yet generate. */
17033 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17034 if (attr != nullptr)
17035 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17036 else
17037 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17038 arg_type = die_type (child_die, cu);
17039
17040 /* RealView does not mark THIS as const, which the testsuite
17041 expects. GCC marks THIS as const in method definitions,
17042 but not in the class specifications (GCC PR 43053). */
17043 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17044 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17045 {
17046 int is_this = 0;
17047 struct dwarf2_cu *arg_cu = cu;
17048 const char *name = dwarf2_name (child_die, cu);
17049
17050 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17051 if (attr != nullptr)
17052 {
17053 /* If the compiler emits this, use it. */
17054 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17055 is_this = 1;
17056 }
17057 else if (name && strcmp (name, "this") == 0)
17058 /* Function definitions will have the argument names. */
17059 is_this = 1;
17060 else if (name == NULL && iparams == 0)
17061 /* Declarations may not have the names, so like
17062 elsewhere in GDB, assume an artificial first
17063 argument is "this". */
17064 is_this = 1;
17065
17066 if (is_this)
17067 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17068 arg_type, 0);
17069 }
17070
17071 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17072 iparams++;
17073 }
17074 child_die = child_die->sibling;
17075 }
17076 }
17077
17078 return ftype;
17079 }
17080
17081 static struct type *
17082 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17083 {
17084 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17085 const char *name = NULL;
17086 struct type *this_type, *target_type;
17087
17088 name = dwarf2_full_name (NULL, die, cu);
17089 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17090 TYPE_TARGET_STUB (this_type) = 1;
17091 set_die_type (die, this_type, cu);
17092 target_type = die_type (die, cu);
17093 if (target_type != this_type)
17094 TYPE_TARGET_TYPE (this_type) = target_type;
17095 else
17096 {
17097 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17098 spec and cause infinite loops in GDB. */
17099 complaint (_("Self-referential DW_TAG_typedef "
17100 "- DIE at %s [in module %s]"),
17101 sect_offset_str (die->sect_off), objfile_name (objfile));
17102 TYPE_TARGET_TYPE (this_type) = NULL;
17103 }
17104 if (name == NULL)
17105 {
17106 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17107 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17108 Handle these by just returning the target type, rather than
17109 constructing an anonymous typedef type and trying to handle this
17110 elsewhere. */
17111 set_die_type (die, target_type, cu);
17112 return target_type;
17113 }
17114 return this_type;
17115 }
17116
17117 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17118 (which may be different from NAME) to the architecture back-end to allow
17119 it to guess the correct format if necessary. */
17120
17121 static struct type *
17122 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17123 const char *name_hint, enum bfd_endian byte_order)
17124 {
17125 struct gdbarch *gdbarch = objfile->arch ();
17126 const struct floatformat **format;
17127 struct type *type;
17128
17129 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17130 if (format)
17131 type = init_float_type (objfile, bits, name, format, byte_order);
17132 else
17133 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17134
17135 return type;
17136 }
17137
17138 /* Allocate an integer type of size BITS and name NAME. */
17139
17140 static struct type *
17141 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17142 int bits, int unsigned_p, const char *name)
17143 {
17144 struct type *type;
17145
17146 /* Versions of Intel's C Compiler generate an integer type called "void"
17147 instead of using DW_TAG_unspecified_type. This has been seen on
17148 at least versions 14, 17, and 18. */
17149 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17150 && strcmp (name, "void") == 0)
17151 type = objfile_type (objfile)->builtin_void;
17152 else
17153 type = init_integer_type (objfile, bits, unsigned_p, name);
17154
17155 return type;
17156 }
17157
17158 /* Initialise and return a floating point type of size BITS suitable for
17159 use as a component of a complex number. The NAME_HINT is passed through
17160 when initialising the floating point type and is the name of the complex
17161 type.
17162
17163 As DWARF doesn't currently provide an explicit name for the components
17164 of a complex number, but it can be helpful to have these components
17165 named, we try to select a suitable name based on the size of the
17166 component. */
17167 static struct type *
17168 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17169 struct objfile *objfile,
17170 int bits, const char *name_hint,
17171 enum bfd_endian byte_order)
17172 {
17173 gdbarch *gdbarch = objfile->arch ();
17174 struct type *tt = nullptr;
17175
17176 /* Try to find a suitable floating point builtin type of size BITS.
17177 We're going to use the name of this type as the name for the complex
17178 target type that we are about to create. */
17179 switch (cu->language)
17180 {
17181 case language_fortran:
17182 switch (bits)
17183 {
17184 case 32:
17185 tt = builtin_f_type (gdbarch)->builtin_real;
17186 break;
17187 case 64:
17188 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17189 break;
17190 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17191 case 128:
17192 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17193 break;
17194 }
17195 break;
17196 default:
17197 switch (bits)
17198 {
17199 case 32:
17200 tt = builtin_type (gdbarch)->builtin_float;
17201 break;
17202 case 64:
17203 tt = builtin_type (gdbarch)->builtin_double;
17204 break;
17205 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17206 case 128:
17207 tt = builtin_type (gdbarch)->builtin_long_double;
17208 break;
17209 }
17210 break;
17211 }
17212
17213 /* If the type we found doesn't match the size we were looking for, then
17214 pretend we didn't find a type at all, the complex target type we
17215 create will then be nameless. */
17216 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17217 tt = nullptr;
17218
17219 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17220 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17221 }
17222
17223 /* Find a representation of a given base type and install
17224 it in the TYPE field of the die. */
17225
17226 static struct type *
17227 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17228 {
17229 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17230 struct type *type;
17231 struct attribute *attr;
17232 int encoding = 0, bits = 0;
17233 const char *name;
17234 gdbarch *arch;
17235
17236 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17237 if (attr != nullptr)
17238 encoding = DW_UNSND (attr);
17239 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17240 if (attr != nullptr)
17241 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17242 name = dwarf2_name (die, cu);
17243 if (!name)
17244 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17245
17246 arch = objfile->arch ();
17247 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17248
17249 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17250 if (attr)
17251 {
17252 int endianity = DW_UNSND (attr);
17253
17254 switch (endianity)
17255 {
17256 case DW_END_big:
17257 byte_order = BFD_ENDIAN_BIG;
17258 break;
17259 case DW_END_little:
17260 byte_order = BFD_ENDIAN_LITTLE;
17261 break;
17262 default:
17263 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17264 break;
17265 }
17266 }
17267
17268 switch (encoding)
17269 {
17270 case DW_ATE_address:
17271 /* Turn DW_ATE_address into a void * pointer. */
17272 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17273 type = init_pointer_type (objfile, bits, name, type);
17274 break;
17275 case DW_ATE_boolean:
17276 type = init_boolean_type (objfile, bits, 1, name);
17277 break;
17278 case DW_ATE_complex_float:
17279 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17280 byte_order);
17281 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
17282 {
17283 if (name == nullptr)
17284 {
17285 struct obstack *obstack
17286 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17287 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17288 nullptr);
17289 }
17290 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17291 }
17292 else
17293 type = init_complex_type (name, type);
17294 break;
17295 case DW_ATE_decimal_float:
17296 type = init_decfloat_type (objfile, bits, name);
17297 break;
17298 case DW_ATE_float:
17299 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17300 break;
17301 case DW_ATE_signed:
17302 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17303 break;
17304 case DW_ATE_unsigned:
17305 if (cu->language == language_fortran
17306 && name
17307 && startswith (name, "character("))
17308 type = init_character_type (objfile, bits, 1, name);
17309 else
17310 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17311 break;
17312 case DW_ATE_signed_char:
17313 if (cu->language == language_ada || cu->language == language_m2
17314 || cu->language == language_pascal
17315 || cu->language == language_fortran)
17316 type = init_character_type (objfile, bits, 0, name);
17317 else
17318 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17319 break;
17320 case DW_ATE_unsigned_char:
17321 if (cu->language == language_ada || cu->language == language_m2
17322 || cu->language == language_pascal
17323 || cu->language == language_fortran
17324 || cu->language == language_rust)
17325 type = init_character_type (objfile, bits, 1, name);
17326 else
17327 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17328 break;
17329 case DW_ATE_UTF:
17330 {
17331 if (bits == 16)
17332 type = builtin_type (arch)->builtin_char16;
17333 else if (bits == 32)
17334 type = builtin_type (arch)->builtin_char32;
17335 else
17336 {
17337 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17338 bits);
17339 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17340 }
17341 return set_die_type (die, type, cu);
17342 }
17343 break;
17344
17345 default:
17346 complaint (_("unsupported DW_AT_encoding: '%s'"),
17347 dwarf_type_encoding_name (encoding));
17348 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17349 break;
17350 }
17351
17352 if (name && strcmp (name, "char") == 0)
17353 TYPE_NOSIGN (type) = 1;
17354
17355 maybe_set_alignment (cu, die, type);
17356
17357 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17358
17359 return set_die_type (die, type, cu);
17360 }
17361
17362 /* Parse dwarf attribute if it's a block, reference or constant and put the
17363 resulting value of the attribute into struct bound_prop.
17364 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17365
17366 static int
17367 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17368 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17369 struct type *default_type)
17370 {
17371 struct dwarf2_property_baton *baton;
17372 struct obstack *obstack
17373 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17374
17375 gdb_assert (default_type != NULL);
17376
17377 if (attr == NULL || prop == NULL)
17378 return 0;
17379
17380 if (attr->form_is_block ())
17381 {
17382 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17383 baton->property_type = default_type;
17384 baton->locexpr.per_cu = cu->per_cu;
17385 baton->locexpr.size = DW_BLOCK (attr)->size;
17386 baton->locexpr.data = DW_BLOCK (attr)->data;
17387 switch (attr->name)
17388 {
17389 case DW_AT_string_length:
17390 baton->locexpr.is_reference = true;
17391 break;
17392 default:
17393 baton->locexpr.is_reference = false;
17394 break;
17395 }
17396 prop->data.baton = baton;
17397 prop->kind = PROP_LOCEXPR;
17398 gdb_assert (prop->data.baton != NULL);
17399 }
17400 else if (attr->form_is_ref ())
17401 {
17402 struct dwarf2_cu *target_cu = cu;
17403 struct die_info *target_die;
17404 struct attribute *target_attr;
17405
17406 target_die = follow_die_ref (die, attr, &target_cu);
17407 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17408 if (target_attr == NULL)
17409 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17410 target_cu);
17411 if (target_attr == NULL)
17412 return 0;
17413
17414 switch (target_attr->name)
17415 {
17416 case DW_AT_location:
17417 if (target_attr->form_is_section_offset ())
17418 {
17419 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17420 baton->property_type = die_type (target_die, target_cu);
17421 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17422 prop->data.baton = baton;
17423 prop->kind = PROP_LOCLIST;
17424 gdb_assert (prop->data.baton != NULL);
17425 }
17426 else if (target_attr->form_is_block ())
17427 {
17428 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17429 baton->property_type = die_type (target_die, target_cu);
17430 baton->locexpr.per_cu = cu->per_cu;
17431 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17432 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17433 baton->locexpr.is_reference = true;
17434 prop->data.baton = baton;
17435 prop->kind = PROP_LOCEXPR;
17436 gdb_assert (prop->data.baton != NULL);
17437 }
17438 else
17439 {
17440 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17441 "dynamic property");
17442 return 0;
17443 }
17444 break;
17445 case DW_AT_data_member_location:
17446 {
17447 LONGEST offset;
17448
17449 if (!handle_data_member_location (target_die, target_cu,
17450 &offset))
17451 return 0;
17452
17453 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17454 baton->property_type = read_type_die (target_die->parent,
17455 target_cu);
17456 baton->offset_info.offset = offset;
17457 baton->offset_info.type = die_type (target_die, target_cu);
17458 prop->data.baton = baton;
17459 prop->kind = PROP_ADDR_OFFSET;
17460 break;
17461 }
17462 }
17463 }
17464 else if (attr->form_is_constant ())
17465 {
17466 prop->data.const_val = attr->constant_value (0);
17467 prop->kind = PROP_CONST;
17468 }
17469 else
17470 {
17471 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17472 dwarf2_name (die, cu));
17473 return 0;
17474 }
17475
17476 return 1;
17477 }
17478
17479 /* See read.h. */
17480
17481 struct type *
17482 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17483 {
17484 struct objfile *objfile = dwarf2_per_objfile->objfile;
17485 struct type *int_type;
17486
17487 /* Helper macro to examine the various builtin types. */
17488 #define TRY_TYPE(F) \
17489 int_type = (unsigned_p \
17490 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17491 : objfile_type (objfile)->builtin_ ## F); \
17492 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17493 return int_type
17494
17495 TRY_TYPE (char);
17496 TRY_TYPE (short);
17497 TRY_TYPE (int);
17498 TRY_TYPE (long);
17499 TRY_TYPE (long_long);
17500
17501 #undef TRY_TYPE
17502
17503 gdb_assert_not_reached ("unable to find suitable integer type");
17504 }
17505
17506 /* See read.h. */
17507
17508 struct type *
17509 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17510 {
17511 int addr_size = this->addr_size ();
17512 return int_type (addr_size, unsigned_p);
17513 }
17514
17515 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17516 present (which is valid) then compute the default type based on the
17517 compilation units address size. */
17518
17519 static struct type *
17520 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17521 {
17522 struct type *index_type = die_type (die, cu);
17523
17524 /* Dwarf-2 specifications explicitly allows to create subrange types
17525 without specifying a base type.
17526 In that case, the base type must be set to the type of
17527 the lower bound, upper bound or count, in that order, if any of these
17528 three attributes references an object that has a type.
17529 If no base type is found, the Dwarf-2 specifications say that
17530 a signed integer type of size equal to the size of an address should
17531 be used.
17532 For the following C code: `extern char gdb_int [];'
17533 GCC produces an empty range DIE.
17534 FIXME: muller/2010-05-28: Possible references to object for low bound,
17535 high bound or count are not yet handled by this code. */
17536 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17537 index_type = cu->per_cu->addr_sized_int_type (false);
17538
17539 return index_type;
17540 }
17541
17542 /* Read the given DW_AT_subrange DIE. */
17543
17544 static struct type *
17545 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17546 {
17547 struct type *base_type, *orig_base_type;
17548 struct type *range_type;
17549 struct attribute *attr;
17550 struct dynamic_prop low, high;
17551 int low_default_is_valid;
17552 int high_bound_is_count = 0;
17553 const char *name;
17554 ULONGEST negative_mask;
17555
17556 orig_base_type = read_subrange_index_type (die, cu);
17557
17558 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17559 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17560 creating the range type, but we use the result of check_typedef
17561 when examining properties of the type. */
17562 base_type = check_typedef (orig_base_type);
17563
17564 /* The die_type call above may have already set the type for this DIE. */
17565 range_type = get_die_type (die, cu);
17566 if (range_type)
17567 return range_type;
17568
17569 low.kind = PROP_CONST;
17570 high.kind = PROP_CONST;
17571 high.data.const_val = 0;
17572
17573 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17574 omitting DW_AT_lower_bound. */
17575 switch (cu->language)
17576 {
17577 case language_c:
17578 case language_cplus:
17579 low.data.const_val = 0;
17580 low_default_is_valid = 1;
17581 break;
17582 case language_fortran:
17583 low.data.const_val = 1;
17584 low_default_is_valid = 1;
17585 break;
17586 case language_d:
17587 case language_objc:
17588 case language_rust:
17589 low.data.const_val = 0;
17590 low_default_is_valid = (cu->header.version >= 4);
17591 break;
17592 case language_ada:
17593 case language_m2:
17594 case language_pascal:
17595 low.data.const_val = 1;
17596 low_default_is_valid = (cu->header.version >= 4);
17597 break;
17598 default:
17599 low.data.const_val = 0;
17600 low_default_is_valid = 0;
17601 break;
17602 }
17603
17604 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17605 if (attr != nullptr)
17606 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17607 else if (!low_default_is_valid)
17608 complaint (_("Missing DW_AT_lower_bound "
17609 "- DIE at %s [in module %s]"),
17610 sect_offset_str (die->sect_off),
17611 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17612
17613 struct attribute *attr_ub, *attr_count;
17614 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17615 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17616 {
17617 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17618 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17619 {
17620 /* If bounds are constant do the final calculation here. */
17621 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17622 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17623 else
17624 high_bound_is_count = 1;
17625 }
17626 else
17627 {
17628 if (attr_ub != NULL)
17629 complaint (_("Unresolved DW_AT_upper_bound "
17630 "- DIE at %s [in module %s]"),
17631 sect_offset_str (die->sect_off),
17632 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17633 if (attr_count != NULL)
17634 complaint (_("Unresolved DW_AT_count "
17635 "- DIE at %s [in module %s]"),
17636 sect_offset_str (die->sect_off),
17637 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17638 }
17639 }
17640
17641 LONGEST bias = 0;
17642 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17643 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17644 bias = bias_attr->constant_value (0);
17645
17646 /* Normally, the DWARF producers are expected to use a signed
17647 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17648 But this is unfortunately not always the case, as witnessed
17649 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17650 is used instead. To work around that ambiguity, we treat
17651 the bounds as signed, and thus sign-extend their values, when
17652 the base type is signed. */
17653 negative_mask =
17654 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17655 if (low.kind == PROP_CONST
17656 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17657 low.data.const_val |= negative_mask;
17658 if (high.kind == PROP_CONST
17659 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17660 high.data.const_val |= negative_mask;
17661
17662 /* Check for bit and byte strides. */
17663 struct dynamic_prop byte_stride_prop;
17664 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17665 if (attr_byte_stride != nullptr)
17666 {
17667 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17668 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17669 prop_type);
17670 }
17671
17672 struct dynamic_prop bit_stride_prop;
17673 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17674 if (attr_bit_stride != nullptr)
17675 {
17676 /* It only makes sense to have either a bit or byte stride. */
17677 if (attr_byte_stride != nullptr)
17678 {
17679 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17680 "- DIE at %s [in module %s]"),
17681 sect_offset_str (die->sect_off),
17682 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17683 attr_bit_stride = nullptr;
17684 }
17685 else
17686 {
17687 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17688 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17689 prop_type);
17690 }
17691 }
17692
17693 if (attr_byte_stride != nullptr
17694 || attr_bit_stride != nullptr)
17695 {
17696 bool byte_stride_p = (attr_byte_stride != nullptr);
17697 struct dynamic_prop *stride
17698 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17699
17700 range_type
17701 = create_range_type_with_stride (NULL, orig_base_type, &low,
17702 &high, bias, stride, byte_stride_p);
17703 }
17704 else
17705 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17706
17707 if (high_bound_is_count)
17708 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17709
17710 /* Ada expects an empty array on no boundary attributes. */
17711 if (attr == NULL && cu->language != language_ada)
17712 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17713
17714 name = dwarf2_name (die, cu);
17715 if (name)
17716 TYPE_NAME (range_type) = name;
17717
17718 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17719 if (attr != nullptr)
17720 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17721
17722 maybe_set_alignment (cu, die, range_type);
17723
17724 set_die_type (die, range_type, cu);
17725
17726 /* set_die_type should be already done. */
17727 set_descriptive_type (range_type, die, cu);
17728
17729 return range_type;
17730 }
17731
17732 static struct type *
17733 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17734 {
17735 struct type *type;
17736
17737 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17738 NULL);
17739 TYPE_NAME (type) = dwarf2_name (die, cu);
17740
17741 /* In Ada, an unspecified type is typically used when the description
17742 of the type is deferred to a different unit. When encountering
17743 such a type, we treat it as a stub, and try to resolve it later on,
17744 when needed. */
17745 if (cu->language == language_ada)
17746 TYPE_STUB (type) = 1;
17747
17748 return set_die_type (die, type, cu);
17749 }
17750
17751 /* Read a single die and all its descendents. Set the die's sibling
17752 field to NULL; set other fields in the die correctly, and set all
17753 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17754 location of the info_ptr after reading all of those dies. PARENT
17755 is the parent of the die in question. */
17756
17757 static struct die_info *
17758 read_die_and_children (const struct die_reader_specs *reader,
17759 const gdb_byte *info_ptr,
17760 const gdb_byte **new_info_ptr,
17761 struct die_info *parent)
17762 {
17763 struct die_info *die;
17764 const gdb_byte *cur_ptr;
17765
17766 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17767 if (die == NULL)
17768 {
17769 *new_info_ptr = cur_ptr;
17770 return NULL;
17771 }
17772 store_in_ref_table (die, reader->cu);
17773
17774 if (die->has_children)
17775 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17776 else
17777 {
17778 die->child = NULL;
17779 *new_info_ptr = cur_ptr;
17780 }
17781
17782 die->sibling = NULL;
17783 die->parent = parent;
17784 return die;
17785 }
17786
17787 /* Read a die, all of its descendents, and all of its siblings; set
17788 all of the fields of all of the dies correctly. Arguments are as
17789 in read_die_and_children. */
17790
17791 static struct die_info *
17792 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17793 const gdb_byte *info_ptr,
17794 const gdb_byte **new_info_ptr,
17795 struct die_info *parent)
17796 {
17797 struct die_info *first_die, *last_sibling;
17798 const gdb_byte *cur_ptr;
17799
17800 cur_ptr = info_ptr;
17801 first_die = last_sibling = NULL;
17802
17803 while (1)
17804 {
17805 struct die_info *die
17806 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17807
17808 if (die == NULL)
17809 {
17810 *new_info_ptr = cur_ptr;
17811 return first_die;
17812 }
17813
17814 if (!first_die)
17815 first_die = die;
17816 else
17817 last_sibling->sibling = die;
17818
17819 last_sibling = die;
17820 }
17821 }
17822
17823 /* Read a die, all of its descendents, and all of its siblings; set
17824 all of the fields of all of the dies correctly. Arguments are as
17825 in read_die_and_children.
17826 This the main entry point for reading a DIE and all its children. */
17827
17828 static struct die_info *
17829 read_die_and_siblings (const struct die_reader_specs *reader,
17830 const gdb_byte *info_ptr,
17831 const gdb_byte **new_info_ptr,
17832 struct die_info *parent)
17833 {
17834 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17835 new_info_ptr, parent);
17836
17837 if (dwarf_die_debug)
17838 {
17839 fprintf_unfiltered (gdb_stdlog,
17840 "Read die from %s@0x%x of %s:\n",
17841 reader->die_section->get_name (),
17842 (unsigned) (info_ptr - reader->die_section->buffer),
17843 bfd_get_filename (reader->abfd));
17844 dump_die (die, dwarf_die_debug);
17845 }
17846
17847 return die;
17848 }
17849
17850 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17851 attributes.
17852 The caller is responsible for filling in the extra attributes
17853 and updating (*DIEP)->num_attrs.
17854 Set DIEP to point to a newly allocated die with its information,
17855 except for its child, sibling, and parent fields. */
17856
17857 static const gdb_byte *
17858 read_full_die_1 (const struct die_reader_specs *reader,
17859 struct die_info **diep, const gdb_byte *info_ptr,
17860 int num_extra_attrs)
17861 {
17862 unsigned int abbrev_number, bytes_read, i;
17863 struct abbrev_info *abbrev;
17864 struct die_info *die;
17865 struct dwarf2_cu *cu = reader->cu;
17866 bfd *abfd = reader->abfd;
17867
17868 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17869 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17870 info_ptr += bytes_read;
17871 if (!abbrev_number)
17872 {
17873 *diep = NULL;
17874 return info_ptr;
17875 }
17876
17877 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17878 if (!abbrev)
17879 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17880 abbrev_number,
17881 bfd_get_filename (abfd));
17882
17883 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17884 die->sect_off = sect_off;
17885 die->tag = abbrev->tag;
17886 die->abbrev = abbrev_number;
17887 die->has_children = abbrev->has_children;
17888
17889 /* Make the result usable.
17890 The caller needs to update num_attrs after adding the extra
17891 attributes. */
17892 die->num_attrs = abbrev->num_attrs;
17893
17894 std::vector<int> indexes_that_need_reprocess;
17895 for (i = 0; i < abbrev->num_attrs; ++i)
17896 {
17897 bool need_reprocess;
17898 info_ptr =
17899 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17900 info_ptr, &need_reprocess);
17901 if (need_reprocess)
17902 indexes_that_need_reprocess.push_back (i);
17903 }
17904
17905 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17906 if (attr != nullptr)
17907 cu->str_offsets_base = DW_UNSND (attr);
17908
17909 attr = die->attr (DW_AT_loclists_base);
17910 if (attr != nullptr)
17911 cu->loclist_base = DW_UNSND (attr);
17912
17913 auto maybe_addr_base = die->addr_base ();
17914 if (maybe_addr_base.has_value ())
17915 cu->addr_base = *maybe_addr_base;
17916 for (int index : indexes_that_need_reprocess)
17917 read_attribute_reprocess (reader, &die->attrs[index]);
17918 *diep = die;
17919 return info_ptr;
17920 }
17921
17922 /* Read a die and all its attributes.
17923 Set DIEP to point to a newly allocated die with its information,
17924 except for its child, sibling, and parent fields. */
17925
17926 static const gdb_byte *
17927 read_full_die (const struct die_reader_specs *reader,
17928 struct die_info **diep, const gdb_byte *info_ptr)
17929 {
17930 const gdb_byte *result;
17931
17932 result = read_full_die_1 (reader, diep, info_ptr, 0);
17933
17934 if (dwarf_die_debug)
17935 {
17936 fprintf_unfiltered (gdb_stdlog,
17937 "Read die from %s@0x%x of %s:\n",
17938 reader->die_section->get_name (),
17939 (unsigned) (info_ptr - reader->die_section->buffer),
17940 bfd_get_filename (reader->abfd));
17941 dump_die (*diep, dwarf_die_debug);
17942 }
17943
17944 return result;
17945 }
17946 \f
17947
17948 /* Returns nonzero if TAG represents a type that we might generate a partial
17949 symbol for. */
17950
17951 static int
17952 is_type_tag_for_partial (int tag)
17953 {
17954 switch (tag)
17955 {
17956 #if 0
17957 /* Some types that would be reasonable to generate partial symbols for,
17958 that we don't at present. */
17959 case DW_TAG_array_type:
17960 case DW_TAG_file_type:
17961 case DW_TAG_ptr_to_member_type:
17962 case DW_TAG_set_type:
17963 case DW_TAG_string_type:
17964 case DW_TAG_subroutine_type:
17965 #endif
17966 case DW_TAG_base_type:
17967 case DW_TAG_class_type:
17968 case DW_TAG_interface_type:
17969 case DW_TAG_enumeration_type:
17970 case DW_TAG_structure_type:
17971 case DW_TAG_subrange_type:
17972 case DW_TAG_typedef:
17973 case DW_TAG_union_type:
17974 return 1;
17975 default:
17976 return 0;
17977 }
17978 }
17979
17980 /* Load all DIEs that are interesting for partial symbols into memory. */
17981
17982 static struct partial_die_info *
17983 load_partial_dies (const struct die_reader_specs *reader,
17984 const gdb_byte *info_ptr, int building_psymtab)
17985 {
17986 struct dwarf2_cu *cu = reader->cu;
17987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17988 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17989 unsigned int bytes_read;
17990 unsigned int load_all = 0;
17991 int nesting_level = 1;
17992
17993 parent_die = NULL;
17994 last_die = NULL;
17995
17996 gdb_assert (cu->per_cu != NULL);
17997 if (cu->per_cu->load_all_dies)
17998 load_all = 1;
17999
18000 cu->partial_dies
18001 = htab_create_alloc_ex (cu->header.length / 12,
18002 partial_die_hash,
18003 partial_die_eq,
18004 NULL,
18005 &cu->comp_unit_obstack,
18006 hashtab_obstack_allocate,
18007 dummy_obstack_deallocate);
18008
18009 while (1)
18010 {
18011 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18012
18013 /* A NULL abbrev means the end of a series of children. */
18014 if (abbrev == NULL)
18015 {
18016 if (--nesting_level == 0)
18017 return first_die;
18018
18019 info_ptr += bytes_read;
18020 last_die = parent_die;
18021 parent_die = parent_die->die_parent;
18022 continue;
18023 }
18024
18025 /* Check for template arguments. We never save these; if
18026 they're seen, we just mark the parent, and go on our way. */
18027 if (parent_die != NULL
18028 && cu->language == language_cplus
18029 && (abbrev->tag == DW_TAG_template_type_param
18030 || abbrev->tag == DW_TAG_template_value_param))
18031 {
18032 parent_die->has_template_arguments = 1;
18033
18034 if (!load_all)
18035 {
18036 /* We don't need a partial DIE for the template argument. */
18037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18038 continue;
18039 }
18040 }
18041
18042 /* We only recurse into c++ subprograms looking for template arguments.
18043 Skip their other children. */
18044 if (!load_all
18045 && cu->language == language_cplus
18046 && parent_die != NULL
18047 && parent_die->tag == DW_TAG_subprogram)
18048 {
18049 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18050 continue;
18051 }
18052
18053 /* Check whether this DIE is interesting enough to save. Normally
18054 we would not be interested in members here, but there may be
18055 later variables referencing them via DW_AT_specification (for
18056 static members). */
18057 if (!load_all
18058 && !is_type_tag_for_partial (abbrev->tag)
18059 && abbrev->tag != DW_TAG_constant
18060 && abbrev->tag != DW_TAG_enumerator
18061 && abbrev->tag != DW_TAG_subprogram
18062 && abbrev->tag != DW_TAG_inlined_subroutine
18063 && abbrev->tag != DW_TAG_lexical_block
18064 && abbrev->tag != DW_TAG_variable
18065 && abbrev->tag != DW_TAG_namespace
18066 && abbrev->tag != DW_TAG_module
18067 && abbrev->tag != DW_TAG_member
18068 && abbrev->tag != DW_TAG_imported_unit
18069 && abbrev->tag != DW_TAG_imported_declaration)
18070 {
18071 /* Otherwise we skip to the next sibling, if any. */
18072 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18073 continue;
18074 }
18075
18076 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18077 abbrev);
18078
18079 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18080
18081 /* This two-pass algorithm for processing partial symbols has a
18082 high cost in cache pressure. Thus, handle some simple cases
18083 here which cover the majority of C partial symbols. DIEs
18084 which neither have specification tags in them, nor could have
18085 specification tags elsewhere pointing at them, can simply be
18086 processed and discarded.
18087
18088 This segment is also optional; scan_partial_symbols and
18089 add_partial_symbol will handle these DIEs if we chain
18090 them in normally. When compilers which do not emit large
18091 quantities of duplicate debug information are more common,
18092 this code can probably be removed. */
18093
18094 /* Any complete simple types at the top level (pretty much all
18095 of them, for a language without namespaces), can be processed
18096 directly. */
18097 if (parent_die == NULL
18098 && pdi.has_specification == 0
18099 && pdi.is_declaration == 0
18100 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18101 || pdi.tag == DW_TAG_base_type
18102 || pdi.tag == DW_TAG_subrange_type))
18103 {
18104 if (building_psymtab && pdi.name != NULL)
18105 add_psymbol_to_list (pdi.name, false,
18106 VAR_DOMAIN, LOC_TYPEDEF, -1,
18107 psymbol_placement::STATIC,
18108 0, cu->language, objfile);
18109 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18110 continue;
18111 }
18112
18113 /* The exception for DW_TAG_typedef with has_children above is
18114 a workaround of GCC PR debug/47510. In the case of this complaint
18115 type_name_or_error will error on such types later.
18116
18117 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18118 it could not find the child DIEs referenced later, this is checked
18119 above. In correct DWARF DW_TAG_typedef should have no children. */
18120
18121 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18122 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18123 "- DIE at %s [in module %s]"),
18124 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18125
18126 /* If we're at the second level, and we're an enumerator, and
18127 our parent has no specification (meaning possibly lives in a
18128 namespace elsewhere), then we can add the partial symbol now
18129 instead of queueing it. */
18130 if (pdi.tag == DW_TAG_enumerator
18131 && parent_die != NULL
18132 && parent_die->die_parent == NULL
18133 && parent_die->tag == DW_TAG_enumeration_type
18134 && parent_die->has_specification == 0)
18135 {
18136 if (pdi.name == NULL)
18137 complaint (_("malformed enumerator DIE ignored"));
18138 else if (building_psymtab)
18139 add_psymbol_to_list (pdi.name, false,
18140 VAR_DOMAIN, LOC_CONST, -1,
18141 cu->language == language_cplus
18142 ? psymbol_placement::GLOBAL
18143 : psymbol_placement::STATIC,
18144 0, cu->language, objfile);
18145
18146 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18147 continue;
18148 }
18149
18150 struct partial_die_info *part_die
18151 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18152
18153 /* We'll save this DIE so link it in. */
18154 part_die->die_parent = parent_die;
18155 part_die->die_sibling = NULL;
18156 part_die->die_child = NULL;
18157
18158 if (last_die && last_die == parent_die)
18159 last_die->die_child = part_die;
18160 else if (last_die)
18161 last_die->die_sibling = part_die;
18162
18163 last_die = part_die;
18164
18165 if (first_die == NULL)
18166 first_die = part_die;
18167
18168 /* Maybe add the DIE to the hash table. Not all DIEs that we
18169 find interesting need to be in the hash table, because we
18170 also have the parent/sibling/child chains; only those that we
18171 might refer to by offset later during partial symbol reading.
18172
18173 For now this means things that might have be the target of a
18174 DW_AT_specification, DW_AT_abstract_origin, or
18175 DW_AT_extension. DW_AT_extension will refer only to
18176 namespaces; DW_AT_abstract_origin refers to functions (and
18177 many things under the function DIE, but we do not recurse
18178 into function DIEs during partial symbol reading) and
18179 possibly variables as well; DW_AT_specification refers to
18180 declarations. Declarations ought to have the DW_AT_declaration
18181 flag. It happens that GCC forgets to put it in sometimes, but
18182 only for functions, not for types.
18183
18184 Adding more things than necessary to the hash table is harmless
18185 except for the performance cost. Adding too few will result in
18186 wasted time in find_partial_die, when we reread the compilation
18187 unit with load_all_dies set. */
18188
18189 if (load_all
18190 || abbrev->tag == DW_TAG_constant
18191 || abbrev->tag == DW_TAG_subprogram
18192 || abbrev->tag == DW_TAG_variable
18193 || abbrev->tag == DW_TAG_namespace
18194 || part_die->is_declaration)
18195 {
18196 void **slot;
18197
18198 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18199 to_underlying (part_die->sect_off),
18200 INSERT);
18201 *slot = part_die;
18202 }
18203
18204 /* For some DIEs we want to follow their children (if any). For C
18205 we have no reason to follow the children of structures; for other
18206 languages we have to, so that we can get at method physnames
18207 to infer fully qualified class names, for DW_AT_specification,
18208 and for C++ template arguments. For C++, we also look one level
18209 inside functions to find template arguments (if the name of the
18210 function does not already contain the template arguments).
18211
18212 For Ada and Fortran, we need to scan the children of subprograms
18213 and lexical blocks as well because these languages allow the
18214 definition of nested entities that could be interesting for the
18215 debugger, such as nested subprograms for instance. */
18216 if (last_die->has_children
18217 && (load_all
18218 || last_die->tag == DW_TAG_namespace
18219 || last_die->tag == DW_TAG_module
18220 || last_die->tag == DW_TAG_enumeration_type
18221 || (cu->language == language_cplus
18222 && last_die->tag == DW_TAG_subprogram
18223 && (last_die->name == NULL
18224 || strchr (last_die->name, '<') == NULL))
18225 || (cu->language != language_c
18226 && (last_die->tag == DW_TAG_class_type
18227 || last_die->tag == DW_TAG_interface_type
18228 || last_die->tag == DW_TAG_structure_type
18229 || last_die->tag == DW_TAG_union_type))
18230 || ((cu->language == language_ada
18231 || cu->language == language_fortran)
18232 && (last_die->tag == DW_TAG_subprogram
18233 || last_die->tag == DW_TAG_lexical_block))))
18234 {
18235 nesting_level++;
18236 parent_die = last_die;
18237 continue;
18238 }
18239
18240 /* Otherwise we skip to the next sibling, if any. */
18241 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18242
18243 /* Back to the top, do it again. */
18244 }
18245 }
18246
18247 partial_die_info::partial_die_info (sect_offset sect_off_,
18248 struct abbrev_info *abbrev)
18249 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18250 {
18251 }
18252
18253 /* Read a minimal amount of information into the minimal die structure.
18254 INFO_PTR should point just after the initial uleb128 of a DIE. */
18255
18256 const gdb_byte *
18257 partial_die_info::read (const struct die_reader_specs *reader,
18258 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18259 {
18260 struct dwarf2_cu *cu = reader->cu;
18261 struct dwarf2_per_objfile *dwarf2_per_objfile
18262 = cu->per_cu->dwarf2_per_objfile;
18263 unsigned int i;
18264 int has_low_pc_attr = 0;
18265 int has_high_pc_attr = 0;
18266 int high_pc_relative = 0;
18267
18268 for (i = 0; i < abbrev.num_attrs; ++i)
18269 {
18270 attribute attr;
18271 bool need_reprocess;
18272 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18273 info_ptr, &need_reprocess);
18274 /* String and address offsets that need to do the reprocessing have
18275 already been read at this point, so there is no need to wait until
18276 the loop terminates to do the reprocessing. */
18277 if (need_reprocess)
18278 read_attribute_reprocess (reader, &attr);
18279 /* Store the data if it is of an attribute we want to keep in a
18280 partial symbol table. */
18281 switch (attr.name)
18282 {
18283 case DW_AT_name:
18284 switch (tag)
18285 {
18286 case DW_TAG_compile_unit:
18287 case DW_TAG_partial_unit:
18288 case DW_TAG_type_unit:
18289 /* Compilation units have a DW_AT_name that is a filename, not
18290 a source language identifier. */
18291 case DW_TAG_enumeration_type:
18292 case DW_TAG_enumerator:
18293 /* These tags always have simple identifiers already; no need
18294 to canonicalize them. */
18295 name = DW_STRING (&attr);
18296 break;
18297 default:
18298 {
18299 struct objfile *objfile = dwarf2_per_objfile->objfile;
18300
18301 name
18302 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18303 }
18304 break;
18305 }
18306 break;
18307 case DW_AT_linkage_name:
18308 case DW_AT_MIPS_linkage_name:
18309 /* Note that both forms of linkage name might appear. We
18310 assume they will be the same, and we only store the last
18311 one we see. */
18312 linkage_name = attr.value_as_string ();
18313 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18314 See https://github.com/rust-lang/rust/issues/32925. */
18315 if (cu->language == language_rust && linkage_name != NULL
18316 && strchr (linkage_name, '{') != NULL)
18317 linkage_name = NULL;
18318 break;
18319 case DW_AT_low_pc:
18320 has_low_pc_attr = 1;
18321 lowpc = attr.value_as_address ();
18322 break;
18323 case DW_AT_high_pc:
18324 has_high_pc_attr = 1;
18325 highpc = attr.value_as_address ();
18326 if (cu->header.version >= 4 && attr.form_is_constant ())
18327 high_pc_relative = 1;
18328 break;
18329 case DW_AT_location:
18330 /* Support the .debug_loc offsets. */
18331 if (attr.form_is_block ())
18332 {
18333 d.locdesc = DW_BLOCK (&attr);
18334 }
18335 else if (attr.form_is_section_offset ())
18336 {
18337 dwarf2_complex_location_expr_complaint ();
18338 }
18339 else
18340 {
18341 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18342 "partial symbol information");
18343 }
18344 break;
18345 case DW_AT_external:
18346 is_external = DW_UNSND (&attr);
18347 break;
18348 case DW_AT_declaration:
18349 is_declaration = DW_UNSND (&attr);
18350 break;
18351 case DW_AT_type:
18352 has_type = 1;
18353 break;
18354 case DW_AT_abstract_origin:
18355 case DW_AT_specification:
18356 case DW_AT_extension:
18357 has_specification = 1;
18358 spec_offset = attr.get_ref_die_offset ();
18359 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18360 || cu->per_cu->is_dwz);
18361 break;
18362 case DW_AT_sibling:
18363 /* Ignore absolute siblings, they might point outside of
18364 the current compile unit. */
18365 if (attr.form == DW_FORM_ref_addr)
18366 complaint (_("ignoring absolute DW_AT_sibling"));
18367 else
18368 {
18369 const gdb_byte *buffer = reader->buffer;
18370 sect_offset off = attr.get_ref_die_offset ();
18371 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18372
18373 if (sibling_ptr < info_ptr)
18374 complaint (_("DW_AT_sibling points backwards"));
18375 else if (sibling_ptr > reader->buffer_end)
18376 reader->die_section->overflow_complaint ();
18377 else
18378 sibling = sibling_ptr;
18379 }
18380 break;
18381 case DW_AT_byte_size:
18382 has_byte_size = 1;
18383 break;
18384 case DW_AT_const_value:
18385 has_const_value = 1;
18386 break;
18387 case DW_AT_calling_convention:
18388 /* DWARF doesn't provide a way to identify a program's source-level
18389 entry point. DW_AT_calling_convention attributes are only meant
18390 to describe functions' calling conventions.
18391
18392 However, because it's a necessary piece of information in
18393 Fortran, and before DWARF 4 DW_CC_program was the only
18394 piece of debugging information whose definition refers to
18395 a 'main program' at all, several compilers marked Fortran
18396 main programs with DW_CC_program --- even when those
18397 functions use the standard calling conventions.
18398
18399 Although DWARF now specifies a way to provide this
18400 information, we support this practice for backward
18401 compatibility. */
18402 if (DW_UNSND (&attr) == DW_CC_program
18403 && cu->language == language_fortran)
18404 main_subprogram = 1;
18405 break;
18406 case DW_AT_inline:
18407 if (DW_UNSND (&attr) == DW_INL_inlined
18408 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18409 may_be_inlined = 1;
18410 break;
18411
18412 case DW_AT_import:
18413 if (tag == DW_TAG_imported_unit)
18414 {
18415 d.sect_off = attr.get_ref_die_offset ();
18416 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18417 || cu->per_cu->is_dwz);
18418 }
18419 break;
18420
18421 case DW_AT_main_subprogram:
18422 main_subprogram = DW_UNSND (&attr);
18423 break;
18424
18425 case DW_AT_ranges:
18426 {
18427 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18428 but that requires a full DIE, so instead we just
18429 reimplement it. */
18430 int need_ranges_base = tag != DW_TAG_compile_unit;
18431 unsigned int ranges_offset = (DW_UNSND (&attr)
18432 + (need_ranges_base
18433 ? cu->ranges_base
18434 : 0));
18435
18436 /* Value of the DW_AT_ranges attribute is the offset in the
18437 .debug_ranges section. */
18438 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18439 nullptr))
18440 has_pc_info = 1;
18441 }
18442 break;
18443
18444 default:
18445 break;
18446 }
18447 }
18448
18449 /* For Ada, if both the name and the linkage name appear, we prefer
18450 the latter. This lets "catch exception" work better, regardless
18451 of the order in which the name and linkage name were emitted.
18452 Really, though, this is just a workaround for the fact that gdb
18453 doesn't store both the name and the linkage name. */
18454 if (cu->language == language_ada && linkage_name != nullptr)
18455 name = linkage_name;
18456
18457 if (high_pc_relative)
18458 highpc += lowpc;
18459
18460 if (has_low_pc_attr && has_high_pc_attr)
18461 {
18462 /* When using the GNU linker, .gnu.linkonce. sections are used to
18463 eliminate duplicate copies of functions and vtables and such.
18464 The linker will arbitrarily choose one and discard the others.
18465 The AT_*_pc values for such functions refer to local labels in
18466 these sections. If the section from that file was discarded, the
18467 labels are not in the output, so the relocs get a value of 0.
18468 If this is a discarded function, mark the pc bounds as invalid,
18469 so that GDB will ignore it. */
18470 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18471 {
18472 struct objfile *objfile = dwarf2_per_objfile->objfile;
18473 struct gdbarch *gdbarch = objfile->arch ();
18474
18475 complaint (_("DW_AT_low_pc %s is zero "
18476 "for DIE at %s [in module %s]"),
18477 paddress (gdbarch, lowpc),
18478 sect_offset_str (sect_off),
18479 objfile_name (objfile));
18480 }
18481 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18482 else if (lowpc >= highpc)
18483 {
18484 struct objfile *objfile = dwarf2_per_objfile->objfile;
18485 struct gdbarch *gdbarch = objfile->arch ();
18486
18487 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18488 "for DIE at %s [in module %s]"),
18489 paddress (gdbarch, lowpc),
18490 paddress (gdbarch, highpc),
18491 sect_offset_str (sect_off),
18492 objfile_name (objfile));
18493 }
18494 else
18495 has_pc_info = 1;
18496 }
18497
18498 return info_ptr;
18499 }
18500
18501 /* Find a cached partial DIE at OFFSET in CU. */
18502
18503 struct partial_die_info *
18504 dwarf2_cu::find_partial_die (sect_offset sect_off)
18505 {
18506 struct partial_die_info *lookup_die = NULL;
18507 struct partial_die_info part_die (sect_off);
18508
18509 lookup_die = ((struct partial_die_info *)
18510 htab_find_with_hash (partial_dies, &part_die,
18511 to_underlying (sect_off)));
18512
18513 return lookup_die;
18514 }
18515
18516 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18517 except in the case of .debug_types DIEs which do not reference
18518 outside their CU (they do however referencing other types via
18519 DW_FORM_ref_sig8). */
18520
18521 static const struct cu_partial_die_info
18522 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18523 {
18524 struct dwarf2_per_objfile *dwarf2_per_objfile
18525 = cu->per_cu->dwarf2_per_objfile;
18526 struct objfile *objfile = dwarf2_per_objfile->objfile;
18527 struct dwarf2_per_cu_data *per_cu = NULL;
18528 struct partial_die_info *pd = NULL;
18529
18530 if (offset_in_dwz == cu->per_cu->is_dwz
18531 && cu->header.offset_in_cu_p (sect_off))
18532 {
18533 pd = cu->find_partial_die (sect_off);
18534 if (pd != NULL)
18535 return { cu, pd };
18536 /* We missed recording what we needed.
18537 Load all dies and try again. */
18538 per_cu = cu->per_cu;
18539 }
18540 else
18541 {
18542 /* TUs don't reference other CUs/TUs (except via type signatures). */
18543 if (cu->per_cu->is_debug_types)
18544 {
18545 error (_("Dwarf Error: Type Unit at offset %s contains"
18546 " external reference to offset %s [in module %s].\n"),
18547 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18548 bfd_get_filename (objfile->obfd));
18549 }
18550 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18551 dwarf2_per_objfile);
18552
18553 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18554 load_partial_comp_unit (per_cu);
18555
18556 per_cu->cu->last_used = 0;
18557 pd = per_cu->cu->find_partial_die (sect_off);
18558 }
18559
18560 /* If we didn't find it, and not all dies have been loaded,
18561 load them all and try again. */
18562
18563 if (pd == NULL && per_cu->load_all_dies == 0)
18564 {
18565 per_cu->load_all_dies = 1;
18566
18567 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18568 THIS_CU->cu may already be in use. So we can't just free it and
18569 replace its DIEs with the ones we read in. Instead, we leave those
18570 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18571 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18572 set. */
18573 load_partial_comp_unit (per_cu);
18574
18575 pd = per_cu->cu->find_partial_die (sect_off);
18576 }
18577
18578 if (pd == NULL)
18579 internal_error (__FILE__, __LINE__,
18580 _("could not find partial DIE %s "
18581 "in cache [from module %s]\n"),
18582 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18583 return { per_cu->cu, pd };
18584 }
18585
18586 /* See if we can figure out if the class lives in a namespace. We do
18587 this by looking for a member function; its demangled name will
18588 contain namespace info, if there is any. */
18589
18590 static void
18591 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18592 struct dwarf2_cu *cu)
18593 {
18594 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18595 what template types look like, because the demangler
18596 frequently doesn't give the same name as the debug info. We
18597 could fix this by only using the demangled name to get the
18598 prefix (but see comment in read_structure_type). */
18599
18600 struct partial_die_info *real_pdi;
18601 struct partial_die_info *child_pdi;
18602
18603 /* If this DIE (this DIE's specification, if any) has a parent, then
18604 we should not do this. We'll prepend the parent's fully qualified
18605 name when we create the partial symbol. */
18606
18607 real_pdi = struct_pdi;
18608 while (real_pdi->has_specification)
18609 {
18610 auto res = find_partial_die (real_pdi->spec_offset,
18611 real_pdi->spec_is_dwz, cu);
18612 real_pdi = res.pdi;
18613 cu = res.cu;
18614 }
18615
18616 if (real_pdi->die_parent != NULL)
18617 return;
18618
18619 for (child_pdi = struct_pdi->die_child;
18620 child_pdi != NULL;
18621 child_pdi = child_pdi->die_sibling)
18622 {
18623 if (child_pdi->tag == DW_TAG_subprogram
18624 && child_pdi->linkage_name != NULL)
18625 {
18626 gdb::unique_xmalloc_ptr<char> actual_class_name
18627 (language_class_name_from_physname (cu->language_defn,
18628 child_pdi->linkage_name));
18629 if (actual_class_name != NULL)
18630 {
18631 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18632 struct_pdi->name = objfile->intern (actual_class_name.get ());
18633 }
18634 break;
18635 }
18636 }
18637 }
18638
18639 /* Return true if a DIE with TAG may have the DW_AT_const_value
18640 attribute. */
18641
18642 static bool
18643 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18644 {
18645 switch (tag)
18646 {
18647 case DW_TAG_constant:
18648 case DW_TAG_enumerator:
18649 case DW_TAG_formal_parameter:
18650 case DW_TAG_template_value_param:
18651 case DW_TAG_variable:
18652 return true;
18653 }
18654
18655 return false;
18656 }
18657
18658 void
18659 partial_die_info::fixup (struct dwarf2_cu *cu)
18660 {
18661 /* Once we've fixed up a die, there's no point in doing so again.
18662 This also avoids a memory leak if we were to call
18663 guess_partial_die_structure_name multiple times. */
18664 if (fixup_called)
18665 return;
18666
18667 /* If we found a reference attribute and the DIE has no name, try
18668 to find a name in the referred to DIE. */
18669
18670 if (name == NULL && has_specification)
18671 {
18672 struct partial_die_info *spec_die;
18673
18674 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18675 spec_die = res.pdi;
18676 cu = res.cu;
18677
18678 spec_die->fixup (cu);
18679
18680 if (spec_die->name)
18681 {
18682 name = spec_die->name;
18683
18684 /* Copy DW_AT_external attribute if it is set. */
18685 if (spec_die->is_external)
18686 is_external = spec_die->is_external;
18687 }
18688 }
18689
18690 if (!has_const_value && has_specification
18691 && can_have_DW_AT_const_value_p (tag))
18692 {
18693 struct partial_die_info *spec_die;
18694
18695 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18696 spec_die = res.pdi;
18697 cu = res.cu;
18698
18699 spec_die->fixup (cu);
18700
18701 if (spec_die->has_const_value)
18702 {
18703 /* Copy DW_AT_const_value attribute if it is set. */
18704 has_const_value = spec_die->has_const_value;
18705 }
18706 }
18707
18708 /* Set default names for some unnamed DIEs. */
18709
18710 if (name == NULL && tag == DW_TAG_namespace)
18711 name = CP_ANONYMOUS_NAMESPACE_STR;
18712
18713 /* If there is no parent die to provide a namespace, and there are
18714 children, see if we can determine the namespace from their linkage
18715 name. */
18716 if (cu->language == language_cplus
18717 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18718 && die_parent == NULL
18719 && has_children
18720 && (tag == DW_TAG_class_type
18721 || tag == DW_TAG_structure_type
18722 || tag == DW_TAG_union_type))
18723 guess_partial_die_structure_name (this, cu);
18724
18725 /* GCC might emit a nameless struct or union that has a linkage
18726 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18727 if (name == NULL
18728 && (tag == DW_TAG_class_type
18729 || tag == DW_TAG_interface_type
18730 || tag == DW_TAG_structure_type
18731 || tag == DW_TAG_union_type)
18732 && linkage_name != NULL)
18733 {
18734 gdb::unique_xmalloc_ptr<char> demangled
18735 (gdb_demangle (linkage_name, DMGL_TYPES));
18736 if (demangled != nullptr)
18737 {
18738 const char *base;
18739
18740 /* Strip any leading namespaces/classes, keep only the base name.
18741 DW_AT_name for named DIEs does not contain the prefixes. */
18742 base = strrchr (demangled.get (), ':');
18743 if (base && base > demangled.get () && base[-1] == ':')
18744 base++;
18745 else
18746 base = demangled.get ();
18747
18748 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18749 name = objfile->intern (base);
18750 }
18751 }
18752
18753 fixup_called = 1;
18754 }
18755
18756 /* Read the .debug_loclists header contents from the given SECTION in the
18757 HEADER. */
18758 static void
18759 read_loclist_header (struct loclist_header *header,
18760 struct dwarf2_section_info *section)
18761 {
18762 unsigned int bytes_read;
18763 bfd *abfd = section->get_bfd_owner ();
18764 const gdb_byte *info_ptr = section->buffer;
18765 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18766 info_ptr += bytes_read;
18767 header->version = read_2_bytes (abfd, info_ptr);
18768 info_ptr += 2;
18769 header->addr_size = read_1_byte (abfd, info_ptr);
18770 info_ptr += 1;
18771 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18772 info_ptr += 1;
18773 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18774 }
18775
18776 /* Return the DW_AT_loclists_base value for the CU. */
18777 static ULONGEST
18778 lookup_loclist_base (struct dwarf2_cu *cu)
18779 {
18780 /* For the .dwo unit, the loclist_base points to the first offset following
18781 the header. The header consists of the following entities-
18782 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18783 bit format)
18784 2. version (2 bytes)
18785 3. address size (1 byte)
18786 4. segment selector size (1 byte)
18787 5. offset entry count (4 bytes)
18788 These sizes are derived as per the DWARFv5 standard. */
18789 if (cu->dwo_unit != nullptr)
18790 {
18791 if (cu->header.initial_length_size == 4)
18792 return LOCLIST_HEADER_SIZE32;
18793 return LOCLIST_HEADER_SIZE64;
18794 }
18795 return cu->loclist_base;
18796 }
18797
18798 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18799 array of offsets in the .debug_loclists section. */
18800 static CORE_ADDR
18801 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18802 {
18803 struct dwarf2_per_objfile *dwarf2_per_objfile
18804 = cu->per_cu->dwarf2_per_objfile;
18805 struct objfile *objfile = dwarf2_per_objfile->objfile;
18806 bfd *abfd = objfile->obfd;
18807 ULONGEST loclist_base = lookup_loclist_base (cu);
18808 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18809
18810 section->read (objfile);
18811 if (section->buffer == NULL)
18812 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18813 "section [in module %s]"), objfile_name (objfile));
18814 struct loclist_header header;
18815 read_loclist_header (&header, section);
18816 if (loclist_index >= header.offset_entry_count)
18817 complaint (_("DW_FORM_loclistx pointing outside of "
18818 ".debug_loclists offset array [in module %s]"),
18819 objfile_name (objfile));
18820 if (loclist_base + loclist_index * cu->header.offset_size
18821 >= section->size)
18822 complaint (_("DW_FORM_loclistx pointing outside of "
18823 ".debug_loclists section [in module %s]"),
18824 objfile_name (objfile));
18825 const gdb_byte *info_ptr
18826 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18827
18828 if (cu->header.offset_size == 4)
18829 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18830 else
18831 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18832 }
18833
18834 /* Process the attributes that had to be skipped in the first round. These
18835 attributes are the ones that need str_offsets_base or addr_base attributes.
18836 They could not have been processed in the first round, because at the time
18837 the values of str_offsets_base or addr_base may not have been known. */
18838 static void
18839 read_attribute_reprocess (const struct die_reader_specs *reader,
18840 struct attribute *attr)
18841 {
18842 struct dwarf2_cu *cu = reader->cu;
18843 switch (attr->form)
18844 {
18845 case DW_FORM_addrx:
18846 case DW_FORM_GNU_addr_index:
18847 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18848 break;
18849 case DW_FORM_loclistx:
18850 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18851 break;
18852 case DW_FORM_strx:
18853 case DW_FORM_strx1:
18854 case DW_FORM_strx2:
18855 case DW_FORM_strx3:
18856 case DW_FORM_strx4:
18857 case DW_FORM_GNU_str_index:
18858 {
18859 unsigned int str_index = DW_UNSND (attr);
18860 if (reader->dwo_file != NULL)
18861 {
18862 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18863 DW_STRING_IS_CANONICAL (attr) = 0;
18864 }
18865 else
18866 {
18867 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18868 DW_STRING_IS_CANONICAL (attr) = 0;
18869 }
18870 break;
18871 }
18872 default:
18873 gdb_assert_not_reached (_("Unexpected DWARF form."));
18874 }
18875 }
18876
18877 /* Read an attribute value described by an attribute form. */
18878
18879 static const gdb_byte *
18880 read_attribute_value (const struct die_reader_specs *reader,
18881 struct attribute *attr, unsigned form,
18882 LONGEST implicit_const, const gdb_byte *info_ptr,
18883 bool *need_reprocess)
18884 {
18885 struct dwarf2_cu *cu = reader->cu;
18886 struct dwarf2_per_objfile *dwarf2_per_objfile
18887 = cu->per_cu->dwarf2_per_objfile;
18888 struct objfile *objfile = dwarf2_per_objfile->objfile;
18889 bfd *abfd = reader->abfd;
18890 struct comp_unit_head *cu_header = &cu->header;
18891 unsigned int bytes_read;
18892 struct dwarf_block *blk;
18893 *need_reprocess = false;
18894
18895 attr->form = (enum dwarf_form) form;
18896 switch (form)
18897 {
18898 case DW_FORM_ref_addr:
18899 if (cu->header.version == 2)
18900 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18901 &bytes_read);
18902 else
18903 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18904 &bytes_read);
18905 info_ptr += bytes_read;
18906 break;
18907 case DW_FORM_GNU_ref_alt:
18908 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18909 info_ptr += bytes_read;
18910 break;
18911 case DW_FORM_addr:
18912 {
18913 struct gdbarch *gdbarch = objfile->arch ();
18914 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18915 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18916 info_ptr += bytes_read;
18917 }
18918 break;
18919 case DW_FORM_block2:
18920 blk = dwarf_alloc_block (cu);
18921 blk->size = read_2_bytes (abfd, info_ptr);
18922 info_ptr += 2;
18923 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18924 info_ptr += blk->size;
18925 DW_BLOCK (attr) = blk;
18926 break;
18927 case DW_FORM_block4:
18928 blk = dwarf_alloc_block (cu);
18929 blk->size = read_4_bytes (abfd, info_ptr);
18930 info_ptr += 4;
18931 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18932 info_ptr += blk->size;
18933 DW_BLOCK (attr) = blk;
18934 break;
18935 case DW_FORM_data2:
18936 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18937 info_ptr += 2;
18938 break;
18939 case DW_FORM_data4:
18940 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18941 info_ptr += 4;
18942 break;
18943 case DW_FORM_data8:
18944 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18945 info_ptr += 8;
18946 break;
18947 case DW_FORM_data16:
18948 blk = dwarf_alloc_block (cu);
18949 blk->size = 16;
18950 blk->data = read_n_bytes (abfd, info_ptr, 16);
18951 info_ptr += 16;
18952 DW_BLOCK (attr) = blk;
18953 break;
18954 case DW_FORM_sec_offset:
18955 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18956 info_ptr += bytes_read;
18957 break;
18958 case DW_FORM_loclistx:
18959 {
18960 *need_reprocess = true;
18961 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18962 info_ptr += bytes_read;
18963 }
18964 break;
18965 case DW_FORM_string:
18966 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18967 DW_STRING_IS_CANONICAL (attr) = 0;
18968 info_ptr += bytes_read;
18969 break;
18970 case DW_FORM_strp:
18971 if (!cu->per_cu->is_dwz)
18972 {
18973 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18974 abfd, info_ptr, cu_header,
18975 &bytes_read);
18976 DW_STRING_IS_CANONICAL (attr) = 0;
18977 info_ptr += bytes_read;
18978 break;
18979 }
18980 /* FALLTHROUGH */
18981 case DW_FORM_line_strp:
18982 if (!cu->per_cu->is_dwz)
18983 {
18984 DW_STRING (attr)
18985 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18986 &bytes_read);
18987 DW_STRING_IS_CANONICAL (attr) = 0;
18988 info_ptr += bytes_read;
18989 break;
18990 }
18991 /* FALLTHROUGH */
18992 case DW_FORM_GNU_strp_alt:
18993 {
18994 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18995 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18996 &bytes_read);
18997
18998 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
18999 DW_STRING_IS_CANONICAL (attr) = 0;
19000 info_ptr += bytes_read;
19001 }
19002 break;
19003 case DW_FORM_exprloc:
19004 case DW_FORM_block:
19005 blk = dwarf_alloc_block (cu);
19006 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19007 info_ptr += bytes_read;
19008 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19009 info_ptr += blk->size;
19010 DW_BLOCK (attr) = blk;
19011 break;
19012 case DW_FORM_block1:
19013 blk = dwarf_alloc_block (cu);
19014 blk->size = read_1_byte (abfd, info_ptr);
19015 info_ptr += 1;
19016 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19017 info_ptr += blk->size;
19018 DW_BLOCK (attr) = blk;
19019 break;
19020 case DW_FORM_data1:
19021 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19022 info_ptr += 1;
19023 break;
19024 case DW_FORM_flag:
19025 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19026 info_ptr += 1;
19027 break;
19028 case DW_FORM_flag_present:
19029 DW_UNSND (attr) = 1;
19030 break;
19031 case DW_FORM_sdata:
19032 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19033 info_ptr += bytes_read;
19034 break;
19035 case DW_FORM_udata:
19036 case DW_FORM_rnglistx:
19037 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19038 info_ptr += bytes_read;
19039 break;
19040 case DW_FORM_ref1:
19041 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19042 + read_1_byte (abfd, info_ptr));
19043 info_ptr += 1;
19044 break;
19045 case DW_FORM_ref2:
19046 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19047 + read_2_bytes (abfd, info_ptr));
19048 info_ptr += 2;
19049 break;
19050 case DW_FORM_ref4:
19051 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19052 + read_4_bytes (abfd, info_ptr));
19053 info_ptr += 4;
19054 break;
19055 case DW_FORM_ref8:
19056 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19057 + read_8_bytes (abfd, info_ptr));
19058 info_ptr += 8;
19059 break;
19060 case DW_FORM_ref_sig8:
19061 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19062 info_ptr += 8;
19063 break;
19064 case DW_FORM_ref_udata:
19065 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19066 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19067 info_ptr += bytes_read;
19068 break;
19069 case DW_FORM_indirect:
19070 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19071 info_ptr += bytes_read;
19072 if (form == DW_FORM_implicit_const)
19073 {
19074 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19075 info_ptr += bytes_read;
19076 }
19077 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19078 info_ptr, need_reprocess);
19079 break;
19080 case DW_FORM_implicit_const:
19081 DW_SND (attr) = implicit_const;
19082 break;
19083 case DW_FORM_addrx:
19084 case DW_FORM_GNU_addr_index:
19085 *need_reprocess = true;
19086 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19087 info_ptr += bytes_read;
19088 break;
19089 case DW_FORM_strx:
19090 case DW_FORM_strx1:
19091 case DW_FORM_strx2:
19092 case DW_FORM_strx3:
19093 case DW_FORM_strx4:
19094 case DW_FORM_GNU_str_index:
19095 {
19096 ULONGEST str_index;
19097 if (form == DW_FORM_strx1)
19098 {
19099 str_index = read_1_byte (abfd, info_ptr);
19100 info_ptr += 1;
19101 }
19102 else if (form == DW_FORM_strx2)
19103 {
19104 str_index = read_2_bytes (abfd, info_ptr);
19105 info_ptr += 2;
19106 }
19107 else if (form == DW_FORM_strx3)
19108 {
19109 str_index = read_3_bytes (abfd, info_ptr);
19110 info_ptr += 3;
19111 }
19112 else if (form == DW_FORM_strx4)
19113 {
19114 str_index = read_4_bytes (abfd, info_ptr);
19115 info_ptr += 4;
19116 }
19117 else
19118 {
19119 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19120 info_ptr += bytes_read;
19121 }
19122 *need_reprocess = true;
19123 DW_UNSND (attr) = str_index;
19124 }
19125 break;
19126 default:
19127 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19128 dwarf_form_name (form),
19129 bfd_get_filename (abfd));
19130 }
19131
19132 /* Super hack. */
19133 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19134 attr->form = DW_FORM_GNU_ref_alt;
19135
19136 /* We have seen instances where the compiler tried to emit a byte
19137 size attribute of -1 which ended up being encoded as an unsigned
19138 0xffffffff. Although 0xffffffff is technically a valid size value,
19139 an object of this size seems pretty unlikely so we can relatively
19140 safely treat these cases as if the size attribute was invalid and
19141 treat them as zero by default. */
19142 if (attr->name == DW_AT_byte_size
19143 && form == DW_FORM_data4
19144 && DW_UNSND (attr) >= 0xffffffff)
19145 {
19146 complaint
19147 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19148 hex_string (DW_UNSND (attr)));
19149 DW_UNSND (attr) = 0;
19150 }
19151
19152 return info_ptr;
19153 }
19154
19155 /* Read an attribute described by an abbreviated attribute. */
19156
19157 static const gdb_byte *
19158 read_attribute (const struct die_reader_specs *reader,
19159 struct attribute *attr, struct attr_abbrev *abbrev,
19160 const gdb_byte *info_ptr, bool *need_reprocess)
19161 {
19162 attr->name = abbrev->name;
19163 return read_attribute_value (reader, attr, abbrev->form,
19164 abbrev->implicit_const, info_ptr,
19165 need_reprocess);
19166 }
19167
19168 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19169
19170 static const char *
19171 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19172 LONGEST str_offset)
19173 {
19174 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19175 str_offset, "DW_FORM_strp");
19176 }
19177
19178 /* Return pointer to string at .debug_str offset as read from BUF.
19179 BUF is assumed to be in a compilation unit described by CU_HEADER.
19180 Return *BYTES_READ_PTR count of bytes read from BUF. */
19181
19182 static const char *
19183 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19184 const gdb_byte *buf,
19185 const struct comp_unit_head *cu_header,
19186 unsigned int *bytes_read_ptr)
19187 {
19188 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19189
19190 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19191 }
19192
19193 /* See read.h. */
19194
19195 const char *
19196 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19197 const struct comp_unit_head *cu_header,
19198 unsigned int *bytes_read_ptr)
19199 {
19200 bfd *abfd = objfile->obfd;
19201 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19202
19203 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19204 }
19205
19206 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19207 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19208 ADDR_SIZE is the size of addresses from the CU header. */
19209
19210 static CORE_ADDR
19211 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19212 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19213 int addr_size)
19214 {
19215 struct objfile *objfile = dwarf2_per_objfile->objfile;
19216 bfd *abfd = objfile->obfd;
19217 const gdb_byte *info_ptr;
19218 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19219
19220 dwarf2_per_objfile->addr.read (objfile);
19221 if (dwarf2_per_objfile->addr.buffer == NULL)
19222 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19223 objfile_name (objfile));
19224 if (addr_base_or_zero + addr_index * addr_size
19225 >= dwarf2_per_objfile->addr.size)
19226 error (_("DW_FORM_addr_index pointing outside of "
19227 ".debug_addr section [in module %s]"),
19228 objfile_name (objfile));
19229 info_ptr = (dwarf2_per_objfile->addr.buffer
19230 + addr_base_or_zero + addr_index * addr_size);
19231 if (addr_size == 4)
19232 return bfd_get_32 (abfd, info_ptr);
19233 else
19234 return bfd_get_64 (abfd, info_ptr);
19235 }
19236
19237 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19238
19239 static CORE_ADDR
19240 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19241 {
19242 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19243 cu->addr_base, cu->header.addr_size);
19244 }
19245
19246 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19247
19248 static CORE_ADDR
19249 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19250 unsigned int *bytes_read)
19251 {
19252 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19253 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19254
19255 return read_addr_index (cu, addr_index);
19256 }
19257
19258 /* See read.h. */
19259
19260 CORE_ADDR
19261 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19262 {
19263 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19264 struct dwarf2_cu *cu = per_cu->cu;
19265 gdb::optional<ULONGEST> addr_base;
19266 int addr_size;
19267
19268 /* We need addr_base and addr_size.
19269 If we don't have PER_CU->cu, we have to get it.
19270 Nasty, but the alternative is storing the needed info in PER_CU,
19271 which at this point doesn't seem justified: it's not clear how frequently
19272 it would get used and it would increase the size of every PER_CU.
19273 Entry points like dwarf2_per_cu_addr_size do a similar thing
19274 so we're not in uncharted territory here.
19275 Alas we need to be a bit more complicated as addr_base is contained
19276 in the DIE.
19277
19278 We don't need to read the entire CU(/TU).
19279 We just need the header and top level die.
19280
19281 IWBN to use the aging mechanism to let us lazily later discard the CU.
19282 For now we skip this optimization. */
19283
19284 if (cu != NULL)
19285 {
19286 addr_base = cu->addr_base;
19287 addr_size = cu->header.addr_size;
19288 }
19289 else
19290 {
19291 cutu_reader reader (per_cu, NULL, 0, false);
19292 addr_base = reader.cu->addr_base;
19293 addr_size = reader.cu->header.addr_size;
19294 }
19295
19296 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19297 addr_size);
19298 }
19299
19300 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19301 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19302 DWO file. */
19303
19304 static const char *
19305 read_str_index (struct dwarf2_cu *cu,
19306 struct dwarf2_section_info *str_section,
19307 struct dwarf2_section_info *str_offsets_section,
19308 ULONGEST str_offsets_base, ULONGEST str_index)
19309 {
19310 struct dwarf2_per_objfile *dwarf2_per_objfile
19311 = cu->per_cu->dwarf2_per_objfile;
19312 struct objfile *objfile = dwarf2_per_objfile->objfile;
19313 const char *objf_name = objfile_name (objfile);
19314 bfd *abfd = objfile->obfd;
19315 const gdb_byte *info_ptr;
19316 ULONGEST str_offset;
19317 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19318
19319 str_section->read (objfile);
19320 str_offsets_section->read (objfile);
19321 if (str_section->buffer == NULL)
19322 error (_("%s used without %s section"
19323 " in CU at offset %s [in module %s]"),
19324 form_name, str_section->get_name (),
19325 sect_offset_str (cu->header.sect_off), objf_name);
19326 if (str_offsets_section->buffer == NULL)
19327 error (_("%s used without %s section"
19328 " in CU at offset %s [in module %s]"),
19329 form_name, str_section->get_name (),
19330 sect_offset_str (cu->header.sect_off), objf_name);
19331 info_ptr = (str_offsets_section->buffer
19332 + str_offsets_base
19333 + str_index * cu->header.offset_size);
19334 if (cu->header.offset_size == 4)
19335 str_offset = bfd_get_32 (abfd, info_ptr);
19336 else
19337 str_offset = bfd_get_64 (abfd, info_ptr);
19338 if (str_offset >= str_section->size)
19339 error (_("Offset from %s pointing outside of"
19340 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19341 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19342 return (const char *) (str_section->buffer + str_offset);
19343 }
19344
19345 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19346
19347 static const char *
19348 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19349 {
19350 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19351 ? reader->cu->header.addr_size : 0;
19352 return read_str_index (reader->cu,
19353 &reader->dwo_file->sections.str,
19354 &reader->dwo_file->sections.str_offsets,
19355 str_offsets_base, str_index);
19356 }
19357
19358 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19359
19360 static const char *
19361 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19362 {
19363 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19364 const char *objf_name = objfile_name (objfile);
19365 static const char form_name[] = "DW_FORM_GNU_str_index";
19366 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19367
19368 if (!cu->str_offsets_base.has_value ())
19369 error (_("%s used in Fission stub without %s"
19370 " in CU at offset 0x%lx [in module %s]"),
19371 form_name, str_offsets_attr_name,
19372 (long) cu->header.offset_size, objf_name);
19373
19374 return read_str_index (cu,
19375 &cu->per_cu->dwarf2_per_objfile->str,
19376 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19377 *cu->str_offsets_base, str_index);
19378 }
19379
19380 /* Return the length of an LEB128 number in BUF. */
19381
19382 static int
19383 leb128_size (const gdb_byte *buf)
19384 {
19385 const gdb_byte *begin = buf;
19386 gdb_byte byte;
19387
19388 while (1)
19389 {
19390 byte = *buf++;
19391 if ((byte & 128) == 0)
19392 return buf - begin;
19393 }
19394 }
19395
19396 static void
19397 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19398 {
19399 switch (lang)
19400 {
19401 case DW_LANG_C89:
19402 case DW_LANG_C99:
19403 case DW_LANG_C11:
19404 case DW_LANG_C:
19405 case DW_LANG_UPC:
19406 cu->language = language_c;
19407 break;
19408 case DW_LANG_Java:
19409 case DW_LANG_C_plus_plus:
19410 case DW_LANG_C_plus_plus_11:
19411 case DW_LANG_C_plus_plus_14:
19412 cu->language = language_cplus;
19413 break;
19414 case DW_LANG_D:
19415 cu->language = language_d;
19416 break;
19417 case DW_LANG_Fortran77:
19418 case DW_LANG_Fortran90:
19419 case DW_LANG_Fortran95:
19420 case DW_LANG_Fortran03:
19421 case DW_LANG_Fortran08:
19422 cu->language = language_fortran;
19423 break;
19424 case DW_LANG_Go:
19425 cu->language = language_go;
19426 break;
19427 case DW_LANG_Mips_Assembler:
19428 cu->language = language_asm;
19429 break;
19430 case DW_LANG_Ada83:
19431 case DW_LANG_Ada95:
19432 cu->language = language_ada;
19433 break;
19434 case DW_LANG_Modula2:
19435 cu->language = language_m2;
19436 break;
19437 case DW_LANG_Pascal83:
19438 cu->language = language_pascal;
19439 break;
19440 case DW_LANG_ObjC:
19441 cu->language = language_objc;
19442 break;
19443 case DW_LANG_Rust:
19444 case DW_LANG_Rust_old:
19445 cu->language = language_rust;
19446 break;
19447 case DW_LANG_Cobol74:
19448 case DW_LANG_Cobol85:
19449 default:
19450 cu->language = language_minimal;
19451 break;
19452 }
19453 cu->language_defn = language_def (cu->language);
19454 }
19455
19456 /* Return the named attribute or NULL if not there. */
19457
19458 static struct attribute *
19459 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19460 {
19461 for (;;)
19462 {
19463 unsigned int i;
19464 struct attribute *spec = NULL;
19465
19466 for (i = 0; i < die->num_attrs; ++i)
19467 {
19468 if (die->attrs[i].name == name)
19469 return &die->attrs[i];
19470 if (die->attrs[i].name == DW_AT_specification
19471 || die->attrs[i].name == DW_AT_abstract_origin)
19472 spec = &die->attrs[i];
19473 }
19474
19475 if (!spec)
19476 break;
19477
19478 die = follow_die_ref (die, spec, &cu);
19479 }
19480
19481 return NULL;
19482 }
19483
19484 /* Return the string associated with a string-typed attribute, or NULL if it
19485 is either not found or is of an incorrect type. */
19486
19487 static const char *
19488 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19489 {
19490 struct attribute *attr;
19491 const char *str = NULL;
19492
19493 attr = dwarf2_attr (die, name, cu);
19494
19495 if (attr != NULL)
19496 {
19497 str = attr->value_as_string ();
19498 if (str == nullptr)
19499 complaint (_("string type expected for attribute %s for "
19500 "DIE at %s in module %s"),
19501 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19502 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19503 }
19504
19505 return str;
19506 }
19507
19508 /* Return the dwo name or NULL if not present. If present, it is in either
19509 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19510 static const char *
19511 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19512 {
19513 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19514 if (dwo_name == nullptr)
19515 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19516 return dwo_name;
19517 }
19518
19519 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19520 and holds a non-zero value. This function should only be used for
19521 DW_FORM_flag or DW_FORM_flag_present attributes. */
19522
19523 static int
19524 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19525 {
19526 struct attribute *attr = dwarf2_attr (die, name, cu);
19527
19528 return (attr && DW_UNSND (attr));
19529 }
19530
19531 static int
19532 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19533 {
19534 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19535 which value is non-zero. However, we have to be careful with
19536 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19537 (via dwarf2_flag_true_p) follows this attribute. So we may
19538 end up accidently finding a declaration attribute that belongs
19539 to a different DIE referenced by the specification attribute,
19540 even though the given DIE does not have a declaration attribute. */
19541 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19542 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19543 }
19544
19545 /* Return the die giving the specification for DIE, if there is
19546 one. *SPEC_CU is the CU containing DIE on input, and the CU
19547 containing the return value on output. If there is no
19548 specification, but there is an abstract origin, that is
19549 returned. */
19550
19551 static struct die_info *
19552 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19553 {
19554 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19555 *spec_cu);
19556
19557 if (spec_attr == NULL)
19558 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19559
19560 if (spec_attr == NULL)
19561 return NULL;
19562 else
19563 return follow_die_ref (die, spec_attr, spec_cu);
19564 }
19565
19566 /* Stub for free_line_header to match void * callback types. */
19567
19568 static void
19569 free_line_header_voidp (void *arg)
19570 {
19571 struct line_header *lh = (struct line_header *) arg;
19572
19573 delete lh;
19574 }
19575
19576 /* A convenience function to find the proper .debug_line section for a CU. */
19577
19578 static struct dwarf2_section_info *
19579 get_debug_line_section (struct dwarf2_cu *cu)
19580 {
19581 struct dwarf2_section_info *section;
19582 struct dwarf2_per_objfile *dwarf2_per_objfile
19583 = cu->per_cu->dwarf2_per_objfile;
19584
19585 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19586 DWO file. */
19587 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19588 section = &cu->dwo_unit->dwo_file->sections.line;
19589 else if (cu->per_cu->is_dwz)
19590 {
19591 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19592
19593 section = &dwz->line;
19594 }
19595 else
19596 section = &dwarf2_per_objfile->line;
19597
19598 return section;
19599 }
19600
19601 /* Read the statement program header starting at OFFSET in
19602 .debug_line, or .debug_line.dwo. Return a pointer
19603 to a struct line_header, allocated using xmalloc.
19604 Returns NULL if there is a problem reading the header, e.g., if it
19605 has a version we don't understand.
19606
19607 NOTE: the strings in the include directory and file name tables of
19608 the returned object point into the dwarf line section buffer,
19609 and must not be freed. */
19610
19611 static line_header_up
19612 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19613 {
19614 struct dwarf2_section_info *section;
19615 struct dwarf2_per_objfile *dwarf2_per_objfile
19616 = cu->per_cu->dwarf2_per_objfile;
19617
19618 section = get_debug_line_section (cu);
19619 section->read (dwarf2_per_objfile->objfile);
19620 if (section->buffer == NULL)
19621 {
19622 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19623 complaint (_("missing .debug_line.dwo section"));
19624 else
19625 complaint (_("missing .debug_line section"));
19626 return 0;
19627 }
19628
19629 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19630 dwarf2_per_objfile, section,
19631 &cu->header);
19632 }
19633
19634 /* Subroutine of dwarf_decode_lines to simplify it.
19635 Return the file name of the psymtab for the given file_entry.
19636 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19637 If space for the result is malloc'd, *NAME_HOLDER will be set.
19638 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19639
19640 static const char *
19641 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19642 const dwarf2_psymtab *pst,
19643 const char *comp_dir,
19644 gdb::unique_xmalloc_ptr<char> *name_holder)
19645 {
19646 const char *include_name = fe.name;
19647 const char *include_name_to_compare = include_name;
19648 const char *pst_filename;
19649 int file_is_pst;
19650
19651 const char *dir_name = fe.include_dir (lh);
19652
19653 gdb::unique_xmalloc_ptr<char> hold_compare;
19654 if (!IS_ABSOLUTE_PATH (include_name)
19655 && (dir_name != NULL || comp_dir != NULL))
19656 {
19657 /* Avoid creating a duplicate psymtab for PST.
19658 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19659 Before we do the comparison, however, we need to account
19660 for DIR_NAME and COMP_DIR.
19661 First prepend dir_name (if non-NULL). If we still don't
19662 have an absolute path prepend comp_dir (if non-NULL).
19663 However, the directory we record in the include-file's
19664 psymtab does not contain COMP_DIR (to match the
19665 corresponding symtab(s)).
19666
19667 Example:
19668
19669 bash$ cd /tmp
19670 bash$ gcc -g ./hello.c
19671 include_name = "hello.c"
19672 dir_name = "."
19673 DW_AT_comp_dir = comp_dir = "/tmp"
19674 DW_AT_name = "./hello.c"
19675
19676 */
19677
19678 if (dir_name != NULL)
19679 {
19680 name_holder->reset (concat (dir_name, SLASH_STRING,
19681 include_name, (char *) NULL));
19682 include_name = name_holder->get ();
19683 include_name_to_compare = include_name;
19684 }
19685 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19686 {
19687 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19688 include_name, (char *) NULL));
19689 include_name_to_compare = hold_compare.get ();
19690 }
19691 }
19692
19693 pst_filename = pst->filename;
19694 gdb::unique_xmalloc_ptr<char> copied_name;
19695 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19696 {
19697 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19698 pst_filename, (char *) NULL));
19699 pst_filename = copied_name.get ();
19700 }
19701
19702 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19703
19704 if (file_is_pst)
19705 return NULL;
19706 return include_name;
19707 }
19708
19709 /* State machine to track the state of the line number program. */
19710
19711 class lnp_state_machine
19712 {
19713 public:
19714 /* Initialize a machine state for the start of a line number
19715 program. */
19716 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19717 bool record_lines_p);
19718
19719 file_entry *current_file ()
19720 {
19721 /* lh->file_names is 0-based, but the file name numbers in the
19722 statement program are 1-based. */
19723 return m_line_header->file_name_at (m_file);
19724 }
19725
19726 /* Record the line in the state machine. END_SEQUENCE is true if
19727 we're processing the end of a sequence. */
19728 void record_line (bool end_sequence);
19729
19730 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19731 nop-out rest of the lines in this sequence. */
19732 void check_line_address (struct dwarf2_cu *cu,
19733 const gdb_byte *line_ptr,
19734 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19735
19736 void handle_set_discriminator (unsigned int discriminator)
19737 {
19738 m_discriminator = discriminator;
19739 m_line_has_non_zero_discriminator |= discriminator != 0;
19740 }
19741
19742 /* Handle DW_LNE_set_address. */
19743 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19744 {
19745 m_op_index = 0;
19746 address += baseaddr;
19747 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19748 }
19749
19750 /* Handle DW_LNS_advance_pc. */
19751 void handle_advance_pc (CORE_ADDR adjust);
19752
19753 /* Handle a special opcode. */
19754 void handle_special_opcode (unsigned char op_code);
19755
19756 /* Handle DW_LNS_advance_line. */
19757 void handle_advance_line (int line_delta)
19758 {
19759 advance_line (line_delta);
19760 }
19761
19762 /* Handle DW_LNS_set_file. */
19763 void handle_set_file (file_name_index file);
19764
19765 /* Handle DW_LNS_negate_stmt. */
19766 void handle_negate_stmt ()
19767 {
19768 m_is_stmt = !m_is_stmt;
19769 }
19770
19771 /* Handle DW_LNS_const_add_pc. */
19772 void handle_const_add_pc ();
19773
19774 /* Handle DW_LNS_fixed_advance_pc. */
19775 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19776 {
19777 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19778 m_op_index = 0;
19779 }
19780
19781 /* Handle DW_LNS_copy. */
19782 void handle_copy ()
19783 {
19784 record_line (false);
19785 m_discriminator = 0;
19786 }
19787
19788 /* Handle DW_LNE_end_sequence. */
19789 void handle_end_sequence ()
19790 {
19791 m_currently_recording_lines = true;
19792 }
19793
19794 private:
19795 /* Advance the line by LINE_DELTA. */
19796 void advance_line (int line_delta)
19797 {
19798 m_line += line_delta;
19799
19800 if (line_delta != 0)
19801 m_line_has_non_zero_discriminator = m_discriminator != 0;
19802 }
19803
19804 struct dwarf2_cu *m_cu;
19805
19806 gdbarch *m_gdbarch;
19807
19808 /* True if we're recording lines.
19809 Otherwise we're building partial symtabs and are just interested in
19810 finding include files mentioned by the line number program. */
19811 bool m_record_lines_p;
19812
19813 /* The line number header. */
19814 line_header *m_line_header;
19815
19816 /* These are part of the standard DWARF line number state machine,
19817 and initialized according to the DWARF spec. */
19818
19819 unsigned char m_op_index = 0;
19820 /* The line table index of the current file. */
19821 file_name_index m_file = 1;
19822 unsigned int m_line = 1;
19823
19824 /* These are initialized in the constructor. */
19825
19826 CORE_ADDR m_address;
19827 bool m_is_stmt;
19828 unsigned int m_discriminator;
19829
19830 /* Additional bits of state we need to track. */
19831
19832 /* The last file that we called dwarf2_start_subfile for.
19833 This is only used for TLLs. */
19834 unsigned int m_last_file = 0;
19835 /* The last file a line number was recorded for. */
19836 struct subfile *m_last_subfile = NULL;
19837
19838 /* When true, record the lines we decode. */
19839 bool m_currently_recording_lines = false;
19840
19841 /* The last line number that was recorded, used to coalesce
19842 consecutive entries for the same line. This can happen, for
19843 example, when discriminators are present. PR 17276. */
19844 unsigned int m_last_line = 0;
19845 bool m_line_has_non_zero_discriminator = false;
19846 };
19847
19848 void
19849 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19850 {
19851 CORE_ADDR addr_adj = (((m_op_index + adjust)
19852 / m_line_header->maximum_ops_per_instruction)
19853 * m_line_header->minimum_instruction_length);
19854 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19855 m_op_index = ((m_op_index + adjust)
19856 % m_line_header->maximum_ops_per_instruction);
19857 }
19858
19859 void
19860 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19861 {
19862 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19863 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19864 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19865 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19866 / m_line_header->maximum_ops_per_instruction)
19867 * m_line_header->minimum_instruction_length);
19868 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19869 m_op_index = ((m_op_index + adj_opcode_d)
19870 % m_line_header->maximum_ops_per_instruction);
19871
19872 int line_delta = m_line_header->line_base + adj_opcode_r;
19873 advance_line (line_delta);
19874 record_line (false);
19875 m_discriminator = 0;
19876 }
19877
19878 void
19879 lnp_state_machine::handle_set_file (file_name_index file)
19880 {
19881 m_file = file;
19882
19883 const file_entry *fe = current_file ();
19884 if (fe == NULL)
19885 dwarf2_debug_line_missing_file_complaint ();
19886 else if (m_record_lines_p)
19887 {
19888 const char *dir = fe->include_dir (m_line_header);
19889
19890 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19891 m_line_has_non_zero_discriminator = m_discriminator != 0;
19892 dwarf2_start_subfile (m_cu, fe->name, dir);
19893 }
19894 }
19895
19896 void
19897 lnp_state_machine::handle_const_add_pc ()
19898 {
19899 CORE_ADDR adjust
19900 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19901
19902 CORE_ADDR addr_adj
19903 = (((m_op_index + adjust)
19904 / m_line_header->maximum_ops_per_instruction)
19905 * m_line_header->minimum_instruction_length);
19906
19907 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19908 m_op_index = ((m_op_index + adjust)
19909 % m_line_header->maximum_ops_per_instruction);
19910 }
19911
19912 /* Return non-zero if we should add LINE to the line number table.
19913 LINE is the line to add, LAST_LINE is the last line that was added,
19914 LAST_SUBFILE is the subfile for LAST_LINE.
19915 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19916 had a non-zero discriminator.
19917
19918 We have to be careful in the presence of discriminators.
19919 E.g., for this line:
19920
19921 for (i = 0; i < 100000; i++);
19922
19923 clang can emit four line number entries for that one line,
19924 each with a different discriminator.
19925 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19926
19927 However, we want gdb to coalesce all four entries into one.
19928 Otherwise the user could stepi into the middle of the line and
19929 gdb would get confused about whether the pc really was in the
19930 middle of the line.
19931
19932 Things are further complicated by the fact that two consecutive
19933 line number entries for the same line is a heuristic used by gcc
19934 to denote the end of the prologue. So we can't just discard duplicate
19935 entries, we have to be selective about it. The heuristic we use is
19936 that we only collapse consecutive entries for the same line if at least
19937 one of those entries has a non-zero discriminator. PR 17276.
19938
19939 Note: Addresses in the line number state machine can never go backwards
19940 within one sequence, thus this coalescing is ok. */
19941
19942 static int
19943 dwarf_record_line_p (struct dwarf2_cu *cu,
19944 unsigned int line, unsigned int last_line,
19945 int line_has_non_zero_discriminator,
19946 struct subfile *last_subfile)
19947 {
19948 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19949 return 1;
19950 if (line != last_line)
19951 return 1;
19952 /* Same line for the same file that we've seen already.
19953 As a last check, for pr 17276, only record the line if the line
19954 has never had a non-zero discriminator. */
19955 if (!line_has_non_zero_discriminator)
19956 return 1;
19957 return 0;
19958 }
19959
19960 /* Use the CU's builder to record line number LINE beginning at
19961 address ADDRESS in the line table of subfile SUBFILE. */
19962
19963 static void
19964 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19965 unsigned int line, CORE_ADDR address, bool is_stmt,
19966 struct dwarf2_cu *cu)
19967 {
19968 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19969
19970 if (dwarf_line_debug)
19971 {
19972 fprintf_unfiltered (gdb_stdlog,
19973 "Recording line %u, file %s, address %s\n",
19974 line, lbasename (subfile->name),
19975 paddress (gdbarch, address));
19976 }
19977
19978 if (cu != nullptr)
19979 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19980 }
19981
19982 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19983 Mark the end of a set of line number records.
19984 The arguments are the same as for dwarf_record_line_1.
19985 If SUBFILE is NULL the request is ignored. */
19986
19987 static void
19988 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19989 CORE_ADDR address, struct dwarf2_cu *cu)
19990 {
19991 if (subfile == NULL)
19992 return;
19993
19994 if (dwarf_line_debug)
19995 {
19996 fprintf_unfiltered (gdb_stdlog,
19997 "Finishing current line, file %s, address %s\n",
19998 lbasename (subfile->name),
19999 paddress (gdbarch, address));
20000 }
20001
20002 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20003 }
20004
20005 void
20006 lnp_state_machine::record_line (bool end_sequence)
20007 {
20008 if (dwarf_line_debug)
20009 {
20010 fprintf_unfiltered (gdb_stdlog,
20011 "Processing actual line %u: file %u,"
20012 " address %s, is_stmt %u, discrim %u%s\n",
20013 m_line, m_file,
20014 paddress (m_gdbarch, m_address),
20015 m_is_stmt, m_discriminator,
20016 (end_sequence ? "\t(end sequence)" : ""));
20017 }
20018
20019 file_entry *fe = current_file ();
20020
20021 if (fe == NULL)
20022 dwarf2_debug_line_missing_file_complaint ();
20023 /* For now we ignore lines not starting on an instruction boundary.
20024 But not when processing end_sequence for compatibility with the
20025 previous version of the code. */
20026 else if (m_op_index == 0 || end_sequence)
20027 {
20028 fe->included_p = 1;
20029 if (m_record_lines_p)
20030 {
20031 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20032 || end_sequence)
20033 {
20034 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20035 m_currently_recording_lines ? m_cu : nullptr);
20036 }
20037
20038 if (!end_sequence)
20039 {
20040 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20041
20042 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20043 m_line_has_non_zero_discriminator,
20044 m_last_subfile))
20045 {
20046 buildsym_compunit *builder = m_cu->get_builder ();
20047 dwarf_record_line_1 (m_gdbarch,
20048 builder->get_current_subfile (),
20049 m_line, m_address, is_stmt,
20050 m_currently_recording_lines ? m_cu : nullptr);
20051 }
20052 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20053 m_last_line = m_line;
20054 }
20055 }
20056 }
20057 }
20058
20059 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20060 line_header *lh, bool record_lines_p)
20061 {
20062 m_cu = cu;
20063 m_gdbarch = arch;
20064 m_record_lines_p = record_lines_p;
20065 m_line_header = lh;
20066
20067 m_currently_recording_lines = true;
20068
20069 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20070 was a line entry for it so that the backend has a chance to adjust it
20071 and also record it in case it needs it. This is currently used by MIPS
20072 code, cf. `mips_adjust_dwarf2_line'. */
20073 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20074 m_is_stmt = lh->default_is_stmt;
20075 m_discriminator = 0;
20076 }
20077
20078 void
20079 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20080 const gdb_byte *line_ptr,
20081 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20082 {
20083 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20084 the pc range of the CU. However, we restrict the test to only ADDRESS
20085 values of zero to preserve GDB's previous behaviour which is to handle
20086 the specific case of a function being GC'd by the linker. */
20087
20088 if (address == 0 && address < unrelocated_lowpc)
20089 {
20090 /* This line table is for a function which has been
20091 GCd by the linker. Ignore it. PR gdb/12528 */
20092
20093 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20094 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20095
20096 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20097 line_offset, objfile_name (objfile));
20098 m_currently_recording_lines = false;
20099 /* Note: m_currently_recording_lines is left as false until we see
20100 DW_LNE_end_sequence. */
20101 }
20102 }
20103
20104 /* Subroutine of dwarf_decode_lines to simplify it.
20105 Process the line number information in LH.
20106 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20107 program in order to set included_p for every referenced header. */
20108
20109 static void
20110 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20111 const int decode_for_pst_p, CORE_ADDR lowpc)
20112 {
20113 const gdb_byte *line_ptr, *extended_end;
20114 const gdb_byte *line_end;
20115 unsigned int bytes_read, extended_len;
20116 unsigned char op_code, extended_op;
20117 CORE_ADDR baseaddr;
20118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20119 bfd *abfd = objfile->obfd;
20120 struct gdbarch *gdbarch = objfile->arch ();
20121 /* True if we're recording line info (as opposed to building partial
20122 symtabs and just interested in finding include files mentioned by
20123 the line number program). */
20124 bool record_lines_p = !decode_for_pst_p;
20125
20126 baseaddr = objfile->text_section_offset ();
20127
20128 line_ptr = lh->statement_program_start;
20129 line_end = lh->statement_program_end;
20130
20131 /* Read the statement sequences until there's nothing left. */
20132 while (line_ptr < line_end)
20133 {
20134 /* The DWARF line number program state machine. Reset the state
20135 machine at the start of each sequence. */
20136 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20137 bool end_sequence = false;
20138
20139 if (record_lines_p)
20140 {
20141 /* Start a subfile for the current file of the state
20142 machine. */
20143 const file_entry *fe = state_machine.current_file ();
20144
20145 if (fe != NULL)
20146 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20147 }
20148
20149 /* Decode the table. */
20150 while (line_ptr < line_end && !end_sequence)
20151 {
20152 op_code = read_1_byte (abfd, line_ptr);
20153 line_ptr += 1;
20154
20155 if (op_code >= lh->opcode_base)
20156 {
20157 /* Special opcode. */
20158 state_machine.handle_special_opcode (op_code);
20159 }
20160 else switch (op_code)
20161 {
20162 case DW_LNS_extended_op:
20163 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20164 &bytes_read);
20165 line_ptr += bytes_read;
20166 extended_end = line_ptr + extended_len;
20167 extended_op = read_1_byte (abfd, line_ptr);
20168 line_ptr += 1;
20169 switch (extended_op)
20170 {
20171 case DW_LNE_end_sequence:
20172 state_machine.handle_end_sequence ();
20173 end_sequence = true;
20174 break;
20175 case DW_LNE_set_address:
20176 {
20177 CORE_ADDR address
20178 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20179 line_ptr += bytes_read;
20180
20181 state_machine.check_line_address (cu, line_ptr,
20182 lowpc - baseaddr, address);
20183 state_machine.handle_set_address (baseaddr, address);
20184 }
20185 break;
20186 case DW_LNE_define_file:
20187 {
20188 const char *cur_file;
20189 unsigned int mod_time, length;
20190 dir_index dindex;
20191
20192 cur_file = read_direct_string (abfd, line_ptr,
20193 &bytes_read);
20194 line_ptr += bytes_read;
20195 dindex = (dir_index)
20196 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20197 line_ptr += bytes_read;
20198 mod_time =
20199 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20200 line_ptr += bytes_read;
20201 length =
20202 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20203 line_ptr += bytes_read;
20204 lh->add_file_name (cur_file, dindex, mod_time, length);
20205 }
20206 break;
20207 case DW_LNE_set_discriminator:
20208 {
20209 /* The discriminator is not interesting to the
20210 debugger; just ignore it. We still need to
20211 check its value though:
20212 if there are consecutive entries for the same
20213 (non-prologue) line we want to coalesce them.
20214 PR 17276. */
20215 unsigned int discr
20216 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20217 line_ptr += bytes_read;
20218
20219 state_machine.handle_set_discriminator (discr);
20220 }
20221 break;
20222 default:
20223 complaint (_("mangled .debug_line section"));
20224 return;
20225 }
20226 /* Make sure that we parsed the extended op correctly. If e.g.
20227 we expected a different address size than the producer used,
20228 we may have read the wrong number of bytes. */
20229 if (line_ptr != extended_end)
20230 {
20231 complaint (_("mangled .debug_line section"));
20232 return;
20233 }
20234 break;
20235 case DW_LNS_copy:
20236 state_machine.handle_copy ();
20237 break;
20238 case DW_LNS_advance_pc:
20239 {
20240 CORE_ADDR adjust
20241 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20242 line_ptr += bytes_read;
20243
20244 state_machine.handle_advance_pc (adjust);
20245 }
20246 break;
20247 case DW_LNS_advance_line:
20248 {
20249 int line_delta
20250 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20251 line_ptr += bytes_read;
20252
20253 state_machine.handle_advance_line (line_delta);
20254 }
20255 break;
20256 case DW_LNS_set_file:
20257 {
20258 file_name_index file
20259 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20260 &bytes_read);
20261 line_ptr += bytes_read;
20262
20263 state_machine.handle_set_file (file);
20264 }
20265 break;
20266 case DW_LNS_set_column:
20267 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20268 line_ptr += bytes_read;
20269 break;
20270 case DW_LNS_negate_stmt:
20271 state_machine.handle_negate_stmt ();
20272 break;
20273 case DW_LNS_set_basic_block:
20274 break;
20275 /* Add to the address register of the state machine the
20276 address increment value corresponding to special opcode
20277 255. I.e., this value is scaled by the minimum
20278 instruction length since special opcode 255 would have
20279 scaled the increment. */
20280 case DW_LNS_const_add_pc:
20281 state_machine.handle_const_add_pc ();
20282 break;
20283 case DW_LNS_fixed_advance_pc:
20284 {
20285 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20286 line_ptr += 2;
20287
20288 state_machine.handle_fixed_advance_pc (addr_adj);
20289 }
20290 break;
20291 default:
20292 {
20293 /* Unknown standard opcode, ignore it. */
20294 int i;
20295
20296 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20297 {
20298 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20299 line_ptr += bytes_read;
20300 }
20301 }
20302 }
20303 }
20304
20305 if (!end_sequence)
20306 dwarf2_debug_line_missing_end_sequence_complaint ();
20307
20308 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20309 in which case we still finish recording the last line). */
20310 state_machine.record_line (true);
20311 }
20312 }
20313
20314 /* Decode the Line Number Program (LNP) for the given line_header
20315 structure and CU. The actual information extracted and the type
20316 of structures created from the LNP depends on the value of PST.
20317
20318 1. If PST is NULL, then this procedure uses the data from the program
20319 to create all necessary symbol tables, and their linetables.
20320
20321 2. If PST is not NULL, this procedure reads the program to determine
20322 the list of files included by the unit represented by PST, and
20323 builds all the associated partial symbol tables.
20324
20325 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20326 It is used for relative paths in the line table.
20327 NOTE: When processing partial symtabs (pst != NULL),
20328 comp_dir == pst->dirname.
20329
20330 NOTE: It is important that psymtabs have the same file name (via strcmp)
20331 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20332 symtab we don't use it in the name of the psymtabs we create.
20333 E.g. expand_line_sal requires this when finding psymtabs to expand.
20334 A good testcase for this is mb-inline.exp.
20335
20336 LOWPC is the lowest address in CU (or 0 if not known).
20337
20338 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20339 for its PC<->lines mapping information. Otherwise only the filename
20340 table is read in. */
20341
20342 static void
20343 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20344 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20345 CORE_ADDR lowpc, int decode_mapping)
20346 {
20347 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20348 const int decode_for_pst_p = (pst != NULL);
20349
20350 if (decode_mapping)
20351 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20352
20353 if (decode_for_pst_p)
20354 {
20355 /* Now that we're done scanning the Line Header Program, we can
20356 create the psymtab of each included file. */
20357 for (auto &file_entry : lh->file_names ())
20358 if (file_entry.included_p == 1)
20359 {
20360 gdb::unique_xmalloc_ptr<char> name_holder;
20361 const char *include_name =
20362 psymtab_include_file_name (lh, file_entry, pst,
20363 comp_dir, &name_holder);
20364 if (include_name != NULL)
20365 dwarf2_create_include_psymtab (include_name, pst, objfile);
20366 }
20367 }
20368 else
20369 {
20370 /* Make sure a symtab is created for every file, even files
20371 which contain only variables (i.e. no code with associated
20372 line numbers). */
20373 buildsym_compunit *builder = cu->get_builder ();
20374 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20375
20376 for (auto &fe : lh->file_names ())
20377 {
20378 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20379 if (builder->get_current_subfile ()->symtab == NULL)
20380 {
20381 builder->get_current_subfile ()->symtab
20382 = allocate_symtab (cust,
20383 builder->get_current_subfile ()->name);
20384 }
20385 fe.symtab = builder->get_current_subfile ()->symtab;
20386 }
20387 }
20388 }
20389
20390 /* Start a subfile for DWARF. FILENAME is the name of the file and
20391 DIRNAME the name of the source directory which contains FILENAME
20392 or NULL if not known.
20393 This routine tries to keep line numbers from identical absolute and
20394 relative file names in a common subfile.
20395
20396 Using the `list' example from the GDB testsuite, which resides in
20397 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20398 of /srcdir/list0.c yields the following debugging information for list0.c:
20399
20400 DW_AT_name: /srcdir/list0.c
20401 DW_AT_comp_dir: /compdir
20402 files.files[0].name: list0.h
20403 files.files[0].dir: /srcdir
20404 files.files[1].name: list0.c
20405 files.files[1].dir: /srcdir
20406
20407 The line number information for list0.c has to end up in a single
20408 subfile, so that `break /srcdir/list0.c:1' works as expected.
20409 start_subfile will ensure that this happens provided that we pass the
20410 concatenation of files.files[1].dir and files.files[1].name as the
20411 subfile's name. */
20412
20413 static void
20414 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20415 const char *dirname)
20416 {
20417 gdb::unique_xmalloc_ptr<char> copy;
20418
20419 /* In order not to lose the line information directory,
20420 we concatenate it to the filename when it makes sense.
20421 Note that the Dwarf3 standard says (speaking of filenames in line
20422 information): ``The directory index is ignored for file names
20423 that represent full path names''. Thus ignoring dirname in the
20424 `else' branch below isn't an issue. */
20425
20426 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20427 {
20428 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20429 filename = copy.get ();
20430 }
20431
20432 cu->get_builder ()->start_subfile (filename);
20433 }
20434
20435 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20436 buildsym_compunit constructor. */
20437
20438 struct compunit_symtab *
20439 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20440 CORE_ADDR low_pc)
20441 {
20442 gdb_assert (m_builder == nullptr);
20443
20444 m_builder.reset (new struct buildsym_compunit
20445 (per_cu->dwarf2_per_objfile->objfile,
20446 name, comp_dir, language, low_pc));
20447
20448 list_in_scope = get_builder ()->get_file_symbols ();
20449
20450 get_builder ()->record_debugformat ("DWARF 2");
20451 get_builder ()->record_producer (producer);
20452
20453 processing_has_namespace_info = false;
20454
20455 return get_builder ()->get_compunit_symtab ();
20456 }
20457
20458 static void
20459 var_decode_location (struct attribute *attr, struct symbol *sym,
20460 struct dwarf2_cu *cu)
20461 {
20462 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20463 struct comp_unit_head *cu_header = &cu->header;
20464
20465 /* NOTE drow/2003-01-30: There used to be a comment and some special
20466 code here to turn a symbol with DW_AT_external and a
20467 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20468 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20469 with some versions of binutils) where shared libraries could have
20470 relocations against symbols in their debug information - the
20471 minimal symbol would have the right address, but the debug info
20472 would not. It's no longer necessary, because we will explicitly
20473 apply relocations when we read in the debug information now. */
20474
20475 /* A DW_AT_location attribute with no contents indicates that a
20476 variable has been optimized away. */
20477 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20478 {
20479 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20480 return;
20481 }
20482
20483 /* Handle one degenerate form of location expression specially, to
20484 preserve GDB's previous behavior when section offsets are
20485 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20486 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20487
20488 if (attr->form_is_block ()
20489 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20490 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20491 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20492 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20493 && (DW_BLOCK (attr)->size
20494 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20495 {
20496 unsigned int dummy;
20497
20498 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20499 SET_SYMBOL_VALUE_ADDRESS
20500 (sym, cu->header.read_address (objfile->obfd,
20501 DW_BLOCK (attr)->data + 1,
20502 &dummy));
20503 else
20504 SET_SYMBOL_VALUE_ADDRESS
20505 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20506 &dummy));
20507 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20508 fixup_symbol_section (sym, objfile);
20509 SET_SYMBOL_VALUE_ADDRESS
20510 (sym,
20511 SYMBOL_VALUE_ADDRESS (sym)
20512 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20513 return;
20514 }
20515
20516 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20517 expression evaluator, and use LOC_COMPUTED only when necessary
20518 (i.e. when the value of a register or memory location is
20519 referenced, or a thread-local block, etc.). Then again, it might
20520 not be worthwhile. I'm assuming that it isn't unless performance
20521 or memory numbers show me otherwise. */
20522
20523 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20524
20525 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20526 cu->has_loclist = true;
20527 }
20528
20529 /* Given a pointer to a DWARF information entry, figure out if we need
20530 to make a symbol table entry for it, and if so, create a new entry
20531 and return a pointer to it.
20532 If TYPE is NULL, determine symbol type from the die, otherwise
20533 used the passed type.
20534 If SPACE is not NULL, use it to hold the new symbol. If it is
20535 NULL, allocate a new symbol on the objfile's obstack. */
20536
20537 static struct symbol *
20538 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20539 struct symbol *space)
20540 {
20541 struct dwarf2_per_objfile *dwarf2_per_objfile
20542 = cu->per_cu->dwarf2_per_objfile;
20543 struct objfile *objfile = dwarf2_per_objfile->objfile;
20544 struct gdbarch *gdbarch = objfile->arch ();
20545 struct symbol *sym = NULL;
20546 const char *name;
20547 struct attribute *attr = NULL;
20548 struct attribute *attr2 = NULL;
20549 CORE_ADDR baseaddr;
20550 struct pending **list_to_add = NULL;
20551
20552 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20553
20554 baseaddr = objfile->text_section_offset ();
20555
20556 name = dwarf2_name (die, cu);
20557 if (name)
20558 {
20559 int suppress_add = 0;
20560
20561 if (space)
20562 sym = space;
20563 else
20564 sym = allocate_symbol (objfile);
20565 OBJSTAT (objfile, n_syms++);
20566
20567 /* Cache this symbol's name and the name's demangled form (if any). */
20568 sym->set_language (cu->language, &objfile->objfile_obstack);
20569 /* Fortran does not have mangling standard and the mangling does differ
20570 between gfortran, iFort etc. */
20571 const char *physname
20572 = (cu->language == language_fortran
20573 ? dwarf2_full_name (name, die, cu)
20574 : dwarf2_physname (name, die, cu));
20575 const char *linkagename = dw2_linkage_name (die, cu);
20576
20577 if (linkagename == nullptr || cu->language == language_ada)
20578 sym->set_linkage_name (physname);
20579 else
20580 {
20581 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20582 sym->set_linkage_name (linkagename);
20583 }
20584
20585 /* Default assumptions.
20586 Use the passed type or decode it from the die. */
20587 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20588 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20589 if (type != NULL)
20590 SYMBOL_TYPE (sym) = type;
20591 else
20592 SYMBOL_TYPE (sym) = die_type (die, cu);
20593 attr = dwarf2_attr (die,
20594 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20595 cu);
20596 if (attr != nullptr)
20597 {
20598 SYMBOL_LINE (sym) = DW_UNSND (attr);
20599 }
20600
20601 attr = dwarf2_attr (die,
20602 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20603 cu);
20604 if (attr != nullptr)
20605 {
20606 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20607 struct file_entry *fe;
20608
20609 if (cu->line_header != NULL)
20610 fe = cu->line_header->file_name_at (file_index);
20611 else
20612 fe = NULL;
20613
20614 if (fe == NULL)
20615 complaint (_("file index out of range"));
20616 else
20617 symbol_set_symtab (sym, fe->symtab);
20618 }
20619
20620 switch (die->tag)
20621 {
20622 case DW_TAG_label:
20623 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20624 if (attr != nullptr)
20625 {
20626 CORE_ADDR addr;
20627
20628 addr = attr->value_as_address ();
20629 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20630 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20631 }
20632 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20633 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20634 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20635 add_symbol_to_list (sym, cu->list_in_scope);
20636 break;
20637 case DW_TAG_subprogram:
20638 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20639 finish_block. */
20640 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20641 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20642 if ((attr2 && (DW_UNSND (attr2) != 0))
20643 || cu->language == language_ada
20644 || cu->language == language_fortran)
20645 {
20646 /* Subprograms marked external are stored as a global symbol.
20647 Ada and Fortran subprograms, whether marked external or
20648 not, are always stored as a global symbol, because we want
20649 to be able to access them globally. For instance, we want
20650 to be able to break on a nested subprogram without having
20651 to specify the context. */
20652 list_to_add = cu->get_builder ()->get_global_symbols ();
20653 }
20654 else
20655 {
20656 list_to_add = cu->list_in_scope;
20657 }
20658 break;
20659 case DW_TAG_inlined_subroutine:
20660 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20661 finish_block. */
20662 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20663 SYMBOL_INLINED (sym) = 1;
20664 list_to_add = cu->list_in_scope;
20665 break;
20666 case DW_TAG_template_value_param:
20667 suppress_add = 1;
20668 /* Fall through. */
20669 case DW_TAG_constant:
20670 case DW_TAG_variable:
20671 case DW_TAG_member:
20672 /* Compilation with minimal debug info may result in
20673 variables with missing type entries. Change the
20674 misleading `void' type to something sensible. */
20675 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20676 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20677
20678 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20679 /* In the case of DW_TAG_member, we should only be called for
20680 static const members. */
20681 if (die->tag == DW_TAG_member)
20682 {
20683 /* dwarf2_add_field uses die_is_declaration,
20684 so we do the same. */
20685 gdb_assert (die_is_declaration (die, cu));
20686 gdb_assert (attr);
20687 }
20688 if (attr != nullptr)
20689 {
20690 dwarf2_const_value (attr, sym, cu);
20691 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20692 if (!suppress_add)
20693 {
20694 if (attr2 && (DW_UNSND (attr2) != 0))
20695 list_to_add = cu->get_builder ()->get_global_symbols ();
20696 else
20697 list_to_add = cu->list_in_scope;
20698 }
20699 break;
20700 }
20701 attr = dwarf2_attr (die, DW_AT_location, cu);
20702 if (attr != nullptr)
20703 {
20704 var_decode_location (attr, sym, cu);
20705 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20706
20707 /* Fortran explicitly imports any global symbols to the local
20708 scope by DW_TAG_common_block. */
20709 if (cu->language == language_fortran && die->parent
20710 && die->parent->tag == DW_TAG_common_block)
20711 attr2 = NULL;
20712
20713 if (SYMBOL_CLASS (sym) == LOC_STATIC
20714 && SYMBOL_VALUE_ADDRESS (sym) == 0
20715 && !dwarf2_per_objfile->has_section_at_zero)
20716 {
20717 /* When a static variable is eliminated by the linker,
20718 the corresponding debug information is not stripped
20719 out, but the variable address is set to null;
20720 do not add such variables into symbol table. */
20721 }
20722 else if (attr2 && (DW_UNSND (attr2) != 0))
20723 {
20724 if (SYMBOL_CLASS (sym) == LOC_STATIC
20725 && (objfile->flags & OBJF_MAINLINE) == 0
20726 && dwarf2_per_objfile->can_copy)
20727 {
20728 /* A global static variable might be subject to
20729 copy relocation. We first check for a local
20730 minsym, though, because maybe the symbol was
20731 marked hidden, in which case this would not
20732 apply. */
20733 bound_minimal_symbol found
20734 = (lookup_minimal_symbol_linkage
20735 (sym->linkage_name (), objfile));
20736 if (found.minsym != nullptr)
20737 sym->maybe_copied = 1;
20738 }
20739
20740 /* A variable with DW_AT_external is never static,
20741 but it may be block-scoped. */
20742 list_to_add
20743 = ((cu->list_in_scope
20744 == cu->get_builder ()->get_file_symbols ())
20745 ? cu->get_builder ()->get_global_symbols ()
20746 : cu->list_in_scope);
20747 }
20748 else
20749 list_to_add = cu->list_in_scope;
20750 }
20751 else
20752 {
20753 /* We do not know the address of this symbol.
20754 If it is an external symbol and we have type information
20755 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20756 The address of the variable will then be determined from
20757 the minimal symbol table whenever the variable is
20758 referenced. */
20759 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20760
20761 /* Fortran explicitly imports any global symbols to the local
20762 scope by DW_TAG_common_block. */
20763 if (cu->language == language_fortran && die->parent
20764 && die->parent->tag == DW_TAG_common_block)
20765 {
20766 /* SYMBOL_CLASS doesn't matter here because
20767 read_common_block is going to reset it. */
20768 if (!suppress_add)
20769 list_to_add = cu->list_in_scope;
20770 }
20771 else if (attr2 && (DW_UNSND (attr2) != 0)
20772 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20773 {
20774 /* A variable with DW_AT_external is never static, but it
20775 may be block-scoped. */
20776 list_to_add
20777 = ((cu->list_in_scope
20778 == cu->get_builder ()->get_file_symbols ())
20779 ? cu->get_builder ()->get_global_symbols ()
20780 : cu->list_in_scope);
20781
20782 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20783 }
20784 else if (!die_is_declaration (die, cu))
20785 {
20786 /* Use the default LOC_OPTIMIZED_OUT class. */
20787 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20788 if (!suppress_add)
20789 list_to_add = cu->list_in_scope;
20790 }
20791 }
20792 break;
20793 case DW_TAG_formal_parameter:
20794 {
20795 /* If we are inside a function, mark this as an argument. If
20796 not, we might be looking at an argument to an inlined function
20797 when we do not have enough information to show inlined frames;
20798 pretend it's a local variable in that case so that the user can
20799 still see it. */
20800 struct context_stack *curr
20801 = cu->get_builder ()->get_current_context_stack ();
20802 if (curr != nullptr && curr->name != nullptr)
20803 SYMBOL_IS_ARGUMENT (sym) = 1;
20804 attr = dwarf2_attr (die, DW_AT_location, cu);
20805 if (attr != nullptr)
20806 {
20807 var_decode_location (attr, sym, cu);
20808 }
20809 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20810 if (attr != nullptr)
20811 {
20812 dwarf2_const_value (attr, sym, cu);
20813 }
20814
20815 list_to_add = cu->list_in_scope;
20816 }
20817 break;
20818 case DW_TAG_unspecified_parameters:
20819 /* From varargs functions; gdb doesn't seem to have any
20820 interest in this information, so just ignore it for now.
20821 (FIXME?) */
20822 break;
20823 case DW_TAG_template_type_param:
20824 suppress_add = 1;
20825 /* Fall through. */
20826 case DW_TAG_class_type:
20827 case DW_TAG_interface_type:
20828 case DW_TAG_structure_type:
20829 case DW_TAG_union_type:
20830 case DW_TAG_set_type:
20831 case DW_TAG_enumeration_type:
20832 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20833 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20834
20835 {
20836 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20837 really ever be static objects: otherwise, if you try
20838 to, say, break of a class's method and you're in a file
20839 which doesn't mention that class, it won't work unless
20840 the check for all static symbols in lookup_symbol_aux
20841 saves you. See the OtherFileClass tests in
20842 gdb.c++/namespace.exp. */
20843
20844 if (!suppress_add)
20845 {
20846 buildsym_compunit *builder = cu->get_builder ();
20847 list_to_add
20848 = (cu->list_in_scope == builder->get_file_symbols ()
20849 && cu->language == language_cplus
20850 ? builder->get_global_symbols ()
20851 : cu->list_in_scope);
20852
20853 /* The semantics of C++ state that "struct foo {
20854 ... }" also defines a typedef for "foo". */
20855 if (cu->language == language_cplus
20856 || cu->language == language_ada
20857 || cu->language == language_d
20858 || cu->language == language_rust)
20859 {
20860 /* The symbol's name is already allocated along
20861 with this objfile, so we don't need to
20862 duplicate it for the type. */
20863 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20864 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20865 }
20866 }
20867 }
20868 break;
20869 case DW_TAG_typedef:
20870 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20871 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20872 list_to_add = cu->list_in_scope;
20873 break;
20874 case DW_TAG_base_type:
20875 case DW_TAG_subrange_type:
20876 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20877 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20878 list_to_add = cu->list_in_scope;
20879 break;
20880 case DW_TAG_enumerator:
20881 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20882 if (attr != nullptr)
20883 {
20884 dwarf2_const_value (attr, sym, cu);
20885 }
20886 {
20887 /* NOTE: carlton/2003-11-10: See comment above in the
20888 DW_TAG_class_type, etc. block. */
20889
20890 list_to_add
20891 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20892 && cu->language == language_cplus
20893 ? cu->get_builder ()->get_global_symbols ()
20894 : cu->list_in_scope);
20895 }
20896 break;
20897 case DW_TAG_imported_declaration:
20898 case DW_TAG_namespace:
20899 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20900 list_to_add = cu->get_builder ()->get_global_symbols ();
20901 break;
20902 case DW_TAG_module:
20903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20904 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20905 list_to_add = cu->get_builder ()->get_global_symbols ();
20906 break;
20907 case DW_TAG_common_block:
20908 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20909 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20910 add_symbol_to_list (sym, cu->list_in_scope);
20911 break;
20912 default:
20913 /* Not a tag we recognize. Hopefully we aren't processing
20914 trash data, but since we must specifically ignore things
20915 we don't recognize, there is nothing else we should do at
20916 this point. */
20917 complaint (_("unsupported tag: '%s'"),
20918 dwarf_tag_name (die->tag));
20919 break;
20920 }
20921
20922 if (suppress_add)
20923 {
20924 sym->hash_next = objfile->template_symbols;
20925 objfile->template_symbols = sym;
20926 list_to_add = NULL;
20927 }
20928
20929 if (list_to_add != NULL)
20930 add_symbol_to_list (sym, list_to_add);
20931
20932 /* For the benefit of old versions of GCC, check for anonymous
20933 namespaces based on the demangled name. */
20934 if (!cu->processing_has_namespace_info
20935 && cu->language == language_cplus)
20936 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20937 }
20938 return (sym);
20939 }
20940
20941 /* Given an attr with a DW_FORM_dataN value in host byte order,
20942 zero-extend it as appropriate for the symbol's type. The DWARF
20943 standard (v4) is not entirely clear about the meaning of using
20944 DW_FORM_dataN for a constant with a signed type, where the type is
20945 wider than the data. The conclusion of a discussion on the DWARF
20946 list was that this is unspecified. We choose to always zero-extend
20947 because that is the interpretation long in use by GCC. */
20948
20949 static gdb_byte *
20950 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20951 struct dwarf2_cu *cu, LONGEST *value, int bits)
20952 {
20953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20954 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20955 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20956 LONGEST l = DW_UNSND (attr);
20957
20958 if (bits < sizeof (*value) * 8)
20959 {
20960 l &= ((LONGEST) 1 << bits) - 1;
20961 *value = l;
20962 }
20963 else if (bits == sizeof (*value) * 8)
20964 *value = l;
20965 else
20966 {
20967 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20968 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20969 return bytes;
20970 }
20971
20972 return NULL;
20973 }
20974
20975 /* Read a constant value from an attribute. Either set *VALUE, or if
20976 the value does not fit in *VALUE, set *BYTES - either already
20977 allocated on the objfile obstack, or newly allocated on OBSTACK,
20978 or, set *BATON, if we translated the constant to a location
20979 expression. */
20980
20981 static void
20982 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20983 const char *name, struct obstack *obstack,
20984 struct dwarf2_cu *cu,
20985 LONGEST *value, const gdb_byte **bytes,
20986 struct dwarf2_locexpr_baton **baton)
20987 {
20988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20989 struct comp_unit_head *cu_header = &cu->header;
20990 struct dwarf_block *blk;
20991 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20992 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20993
20994 *value = 0;
20995 *bytes = NULL;
20996 *baton = NULL;
20997
20998 switch (attr->form)
20999 {
21000 case DW_FORM_addr:
21001 case DW_FORM_addrx:
21002 case DW_FORM_GNU_addr_index:
21003 {
21004 gdb_byte *data;
21005
21006 if (TYPE_LENGTH (type) != cu_header->addr_size)
21007 dwarf2_const_value_length_mismatch_complaint (name,
21008 cu_header->addr_size,
21009 TYPE_LENGTH (type));
21010 /* Symbols of this form are reasonably rare, so we just
21011 piggyback on the existing location code rather than writing
21012 a new implementation of symbol_computed_ops. */
21013 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21014 (*baton)->per_cu = cu->per_cu;
21015 gdb_assert ((*baton)->per_cu);
21016
21017 (*baton)->size = 2 + cu_header->addr_size;
21018 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21019 (*baton)->data = data;
21020
21021 data[0] = DW_OP_addr;
21022 store_unsigned_integer (&data[1], cu_header->addr_size,
21023 byte_order, DW_ADDR (attr));
21024 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21025 }
21026 break;
21027 case DW_FORM_string:
21028 case DW_FORM_strp:
21029 case DW_FORM_strx:
21030 case DW_FORM_GNU_str_index:
21031 case DW_FORM_GNU_strp_alt:
21032 /* DW_STRING is already allocated on the objfile obstack, point
21033 directly to it. */
21034 *bytes = (const gdb_byte *) DW_STRING (attr);
21035 break;
21036 case DW_FORM_block1:
21037 case DW_FORM_block2:
21038 case DW_FORM_block4:
21039 case DW_FORM_block:
21040 case DW_FORM_exprloc:
21041 case DW_FORM_data16:
21042 blk = DW_BLOCK (attr);
21043 if (TYPE_LENGTH (type) != blk->size)
21044 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21045 TYPE_LENGTH (type));
21046 *bytes = blk->data;
21047 break;
21048
21049 /* The DW_AT_const_value attributes are supposed to carry the
21050 symbol's value "represented as it would be on the target
21051 architecture." By the time we get here, it's already been
21052 converted to host endianness, so we just need to sign- or
21053 zero-extend it as appropriate. */
21054 case DW_FORM_data1:
21055 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21056 break;
21057 case DW_FORM_data2:
21058 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21059 break;
21060 case DW_FORM_data4:
21061 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21062 break;
21063 case DW_FORM_data8:
21064 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21065 break;
21066
21067 case DW_FORM_sdata:
21068 case DW_FORM_implicit_const:
21069 *value = DW_SND (attr);
21070 break;
21071
21072 case DW_FORM_udata:
21073 *value = DW_UNSND (attr);
21074 break;
21075
21076 default:
21077 complaint (_("unsupported const value attribute form: '%s'"),
21078 dwarf_form_name (attr->form));
21079 *value = 0;
21080 break;
21081 }
21082 }
21083
21084
21085 /* Copy constant value from an attribute to a symbol. */
21086
21087 static void
21088 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21089 struct dwarf2_cu *cu)
21090 {
21091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21092 LONGEST value;
21093 const gdb_byte *bytes;
21094 struct dwarf2_locexpr_baton *baton;
21095
21096 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21097 sym->print_name (),
21098 &objfile->objfile_obstack, cu,
21099 &value, &bytes, &baton);
21100
21101 if (baton != NULL)
21102 {
21103 SYMBOL_LOCATION_BATON (sym) = baton;
21104 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21105 }
21106 else if (bytes != NULL)
21107 {
21108 SYMBOL_VALUE_BYTES (sym) = bytes;
21109 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21110 }
21111 else
21112 {
21113 SYMBOL_VALUE (sym) = value;
21114 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21115 }
21116 }
21117
21118 /* Return the type of the die in question using its DW_AT_type attribute. */
21119
21120 static struct type *
21121 die_type (struct die_info *die, struct dwarf2_cu *cu)
21122 {
21123 struct attribute *type_attr;
21124
21125 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21126 if (!type_attr)
21127 {
21128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21129 /* A missing DW_AT_type represents a void type. */
21130 return objfile_type (objfile)->builtin_void;
21131 }
21132
21133 return lookup_die_type (die, type_attr, cu);
21134 }
21135
21136 /* True iff CU's producer generates GNAT Ada auxiliary information
21137 that allows to find parallel types through that information instead
21138 of having to do expensive parallel lookups by type name. */
21139
21140 static int
21141 need_gnat_info (struct dwarf2_cu *cu)
21142 {
21143 /* Assume that the Ada compiler was GNAT, which always produces
21144 the auxiliary information. */
21145 return (cu->language == language_ada);
21146 }
21147
21148 /* Return the auxiliary type of the die in question using its
21149 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21150 attribute is not present. */
21151
21152 static struct type *
21153 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21154 {
21155 struct attribute *type_attr;
21156
21157 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21158 if (!type_attr)
21159 return NULL;
21160
21161 return lookup_die_type (die, type_attr, cu);
21162 }
21163
21164 /* If DIE has a descriptive_type attribute, then set the TYPE's
21165 descriptive type accordingly. */
21166
21167 static void
21168 set_descriptive_type (struct type *type, struct die_info *die,
21169 struct dwarf2_cu *cu)
21170 {
21171 struct type *descriptive_type = die_descriptive_type (die, cu);
21172
21173 if (descriptive_type)
21174 {
21175 ALLOCATE_GNAT_AUX_TYPE (type);
21176 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21177 }
21178 }
21179
21180 /* Return the containing type of the die in question using its
21181 DW_AT_containing_type attribute. */
21182
21183 static struct type *
21184 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21185 {
21186 struct attribute *type_attr;
21187 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21188
21189 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21190 if (!type_attr)
21191 error (_("Dwarf Error: Problem turning containing type into gdb type "
21192 "[in module %s]"), objfile_name (objfile));
21193
21194 return lookup_die_type (die, type_attr, cu);
21195 }
21196
21197 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21198
21199 static struct type *
21200 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21201 {
21202 struct dwarf2_per_objfile *dwarf2_per_objfile
21203 = cu->per_cu->dwarf2_per_objfile;
21204 struct objfile *objfile = dwarf2_per_objfile->objfile;
21205 char *saved;
21206
21207 std::string message
21208 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21209 objfile_name (objfile),
21210 sect_offset_str (cu->header.sect_off),
21211 sect_offset_str (die->sect_off));
21212 saved = obstack_strdup (&objfile->objfile_obstack, message);
21213
21214 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21215 }
21216
21217 /* Look up the type of DIE in CU using its type attribute ATTR.
21218 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21219 DW_AT_containing_type.
21220 If there is no type substitute an error marker. */
21221
21222 static struct type *
21223 lookup_die_type (struct die_info *die, const struct attribute *attr,
21224 struct dwarf2_cu *cu)
21225 {
21226 struct dwarf2_per_objfile *dwarf2_per_objfile
21227 = cu->per_cu->dwarf2_per_objfile;
21228 struct objfile *objfile = dwarf2_per_objfile->objfile;
21229 struct type *this_type;
21230
21231 gdb_assert (attr->name == DW_AT_type
21232 || attr->name == DW_AT_GNAT_descriptive_type
21233 || attr->name == DW_AT_containing_type);
21234
21235 /* First see if we have it cached. */
21236
21237 if (attr->form == DW_FORM_GNU_ref_alt)
21238 {
21239 struct dwarf2_per_cu_data *per_cu;
21240 sect_offset sect_off = attr->get_ref_die_offset ();
21241
21242 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21243 dwarf2_per_objfile);
21244 this_type = get_die_type_at_offset (sect_off, per_cu);
21245 }
21246 else if (attr->form_is_ref ())
21247 {
21248 sect_offset sect_off = attr->get_ref_die_offset ();
21249
21250 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21251 }
21252 else if (attr->form == DW_FORM_ref_sig8)
21253 {
21254 ULONGEST signature = DW_SIGNATURE (attr);
21255
21256 return get_signatured_type (die, signature, cu);
21257 }
21258 else
21259 {
21260 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21261 " at %s [in module %s]"),
21262 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21263 objfile_name (objfile));
21264 return build_error_marker_type (cu, die);
21265 }
21266
21267 /* If not cached we need to read it in. */
21268
21269 if (this_type == NULL)
21270 {
21271 struct die_info *type_die = NULL;
21272 struct dwarf2_cu *type_cu = cu;
21273
21274 if (attr->form_is_ref ())
21275 type_die = follow_die_ref (die, attr, &type_cu);
21276 if (type_die == NULL)
21277 return build_error_marker_type (cu, die);
21278 /* If we find the type now, it's probably because the type came
21279 from an inter-CU reference and the type's CU got expanded before
21280 ours. */
21281 this_type = read_type_die (type_die, type_cu);
21282 }
21283
21284 /* If we still don't have a type use an error marker. */
21285
21286 if (this_type == NULL)
21287 return build_error_marker_type (cu, die);
21288
21289 return this_type;
21290 }
21291
21292 /* Return the type in DIE, CU.
21293 Returns NULL for invalid types.
21294
21295 This first does a lookup in die_type_hash,
21296 and only reads the die in if necessary.
21297
21298 NOTE: This can be called when reading in partial or full symbols. */
21299
21300 static struct type *
21301 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21302 {
21303 struct type *this_type;
21304
21305 this_type = get_die_type (die, cu);
21306 if (this_type)
21307 return this_type;
21308
21309 return read_type_die_1 (die, cu);
21310 }
21311
21312 /* Read the type in DIE, CU.
21313 Returns NULL for invalid types. */
21314
21315 static struct type *
21316 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21317 {
21318 struct type *this_type = NULL;
21319
21320 switch (die->tag)
21321 {
21322 case DW_TAG_class_type:
21323 case DW_TAG_interface_type:
21324 case DW_TAG_structure_type:
21325 case DW_TAG_union_type:
21326 this_type = read_structure_type (die, cu);
21327 break;
21328 case DW_TAG_enumeration_type:
21329 this_type = read_enumeration_type (die, cu);
21330 break;
21331 case DW_TAG_subprogram:
21332 case DW_TAG_subroutine_type:
21333 case DW_TAG_inlined_subroutine:
21334 this_type = read_subroutine_type (die, cu);
21335 break;
21336 case DW_TAG_array_type:
21337 this_type = read_array_type (die, cu);
21338 break;
21339 case DW_TAG_set_type:
21340 this_type = read_set_type (die, cu);
21341 break;
21342 case DW_TAG_pointer_type:
21343 this_type = read_tag_pointer_type (die, cu);
21344 break;
21345 case DW_TAG_ptr_to_member_type:
21346 this_type = read_tag_ptr_to_member_type (die, cu);
21347 break;
21348 case DW_TAG_reference_type:
21349 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21350 break;
21351 case DW_TAG_rvalue_reference_type:
21352 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21353 break;
21354 case DW_TAG_const_type:
21355 this_type = read_tag_const_type (die, cu);
21356 break;
21357 case DW_TAG_volatile_type:
21358 this_type = read_tag_volatile_type (die, cu);
21359 break;
21360 case DW_TAG_restrict_type:
21361 this_type = read_tag_restrict_type (die, cu);
21362 break;
21363 case DW_TAG_string_type:
21364 this_type = read_tag_string_type (die, cu);
21365 break;
21366 case DW_TAG_typedef:
21367 this_type = read_typedef (die, cu);
21368 break;
21369 case DW_TAG_subrange_type:
21370 this_type = read_subrange_type (die, cu);
21371 break;
21372 case DW_TAG_base_type:
21373 this_type = read_base_type (die, cu);
21374 break;
21375 case DW_TAG_unspecified_type:
21376 this_type = read_unspecified_type (die, cu);
21377 break;
21378 case DW_TAG_namespace:
21379 this_type = read_namespace_type (die, cu);
21380 break;
21381 case DW_TAG_module:
21382 this_type = read_module_type (die, cu);
21383 break;
21384 case DW_TAG_atomic_type:
21385 this_type = read_tag_atomic_type (die, cu);
21386 break;
21387 default:
21388 complaint (_("unexpected tag in read_type_die: '%s'"),
21389 dwarf_tag_name (die->tag));
21390 break;
21391 }
21392
21393 return this_type;
21394 }
21395
21396 /* See if we can figure out if the class lives in a namespace. We do
21397 this by looking for a member function; its demangled name will
21398 contain namespace info, if there is any.
21399 Return the computed name or NULL.
21400 Space for the result is allocated on the objfile's obstack.
21401 This is the full-die version of guess_partial_die_structure_name.
21402 In this case we know DIE has no useful parent. */
21403
21404 static const char *
21405 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21406 {
21407 struct die_info *spec_die;
21408 struct dwarf2_cu *spec_cu;
21409 struct die_info *child;
21410 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21411
21412 spec_cu = cu;
21413 spec_die = die_specification (die, &spec_cu);
21414 if (spec_die != NULL)
21415 {
21416 die = spec_die;
21417 cu = spec_cu;
21418 }
21419
21420 for (child = die->child;
21421 child != NULL;
21422 child = child->sibling)
21423 {
21424 if (child->tag == DW_TAG_subprogram)
21425 {
21426 const char *linkage_name = dw2_linkage_name (child, cu);
21427
21428 if (linkage_name != NULL)
21429 {
21430 gdb::unique_xmalloc_ptr<char> actual_name
21431 (language_class_name_from_physname (cu->language_defn,
21432 linkage_name));
21433 const char *name = NULL;
21434
21435 if (actual_name != NULL)
21436 {
21437 const char *die_name = dwarf2_name (die, cu);
21438
21439 if (die_name != NULL
21440 && strcmp (die_name, actual_name.get ()) != 0)
21441 {
21442 /* Strip off the class name from the full name.
21443 We want the prefix. */
21444 int die_name_len = strlen (die_name);
21445 int actual_name_len = strlen (actual_name.get ());
21446 const char *ptr = actual_name.get ();
21447
21448 /* Test for '::' as a sanity check. */
21449 if (actual_name_len > die_name_len + 2
21450 && ptr[actual_name_len - die_name_len - 1] == ':')
21451 name = obstack_strndup (
21452 &objfile->per_bfd->storage_obstack,
21453 ptr, actual_name_len - die_name_len - 2);
21454 }
21455 }
21456 return name;
21457 }
21458 }
21459 }
21460
21461 return NULL;
21462 }
21463
21464 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21465 prefix part in such case. See
21466 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21467
21468 static const char *
21469 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21470 {
21471 struct attribute *attr;
21472 const char *base;
21473
21474 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21475 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21476 return NULL;
21477
21478 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21479 return NULL;
21480
21481 attr = dw2_linkage_name_attr (die, cu);
21482 if (attr == NULL || DW_STRING (attr) == NULL)
21483 return NULL;
21484
21485 /* dwarf2_name had to be already called. */
21486 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21487
21488 /* Strip the base name, keep any leading namespaces/classes. */
21489 base = strrchr (DW_STRING (attr), ':');
21490 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21491 return "";
21492
21493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21494 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21495 DW_STRING (attr),
21496 &base[-1] - DW_STRING (attr));
21497 }
21498
21499 /* Return the name of the namespace/class that DIE is defined within,
21500 or "" if we can't tell. The caller should not xfree the result.
21501
21502 For example, if we're within the method foo() in the following
21503 code:
21504
21505 namespace N {
21506 class C {
21507 void foo () {
21508 }
21509 };
21510 }
21511
21512 then determine_prefix on foo's die will return "N::C". */
21513
21514 static const char *
21515 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21516 {
21517 struct dwarf2_per_objfile *dwarf2_per_objfile
21518 = cu->per_cu->dwarf2_per_objfile;
21519 struct die_info *parent, *spec_die;
21520 struct dwarf2_cu *spec_cu;
21521 struct type *parent_type;
21522 const char *retval;
21523
21524 if (cu->language != language_cplus
21525 && cu->language != language_fortran && cu->language != language_d
21526 && cu->language != language_rust)
21527 return "";
21528
21529 retval = anonymous_struct_prefix (die, cu);
21530 if (retval)
21531 return retval;
21532
21533 /* We have to be careful in the presence of DW_AT_specification.
21534 For example, with GCC 3.4, given the code
21535
21536 namespace N {
21537 void foo() {
21538 // Definition of N::foo.
21539 }
21540 }
21541
21542 then we'll have a tree of DIEs like this:
21543
21544 1: DW_TAG_compile_unit
21545 2: DW_TAG_namespace // N
21546 3: DW_TAG_subprogram // declaration of N::foo
21547 4: DW_TAG_subprogram // definition of N::foo
21548 DW_AT_specification // refers to die #3
21549
21550 Thus, when processing die #4, we have to pretend that we're in
21551 the context of its DW_AT_specification, namely the contex of die
21552 #3. */
21553 spec_cu = cu;
21554 spec_die = die_specification (die, &spec_cu);
21555 if (spec_die == NULL)
21556 parent = die->parent;
21557 else
21558 {
21559 parent = spec_die->parent;
21560 cu = spec_cu;
21561 }
21562
21563 if (parent == NULL)
21564 return "";
21565 else if (parent->building_fullname)
21566 {
21567 const char *name;
21568 const char *parent_name;
21569
21570 /* It has been seen on RealView 2.2 built binaries,
21571 DW_TAG_template_type_param types actually _defined_ as
21572 children of the parent class:
21573
21574 enum E {};
21575 template class <class Enum> Class{};
21576 Class<enum E> class_e;
21577
21578 1: DW_TAG_class_type (Class)
21579 2: DW_TAG_enumeration_type (E)
21580 3: DW_TAG_enumerator (enum1:0)
21581 3: DW_TAG_enumerator (enum2:1)
21582 ...
21583 2: DW_TAG_template_type_param
21584 DW_AT_type DW_FORM_ref_udata (E)
21585
21586 Besides being broken debug info, it can put GDB into an
21587 infinite loop. Consider:
21588
21589 When we're building the full name for Class<E>, we'll start
21590 at Class, and go look over its template type parameters,
21591 finding E. We'll then try to build the full name of E, and
21592 reach here. We're now trying to build the full name of E,
21593 and look over the parent DIE for containing scope. In the
21594 broken case, if we followed the parent DIE of E, we'd again
21595 find Class, and once again go look at its template type
21596 arguments, etc., etc. Simply don't consider such parent die
21597 as source-level parent of this die (it can't be, the language
21598 doesn't allow it), and break the loop here. */
21599 name = dwarf2_name (die, cu);
21600 parent_name = dwarf2_name (parent, cu);
21601 complaint (_("template param type '%s' defined within parent '%s'"),
21602 name ? name : "<unknown>",
21603 parent_name ? parent_name : "<unknown>");
21604 return "";
21605 }
21606 else
21607 switch (parent->tag)
21608 {
21609 case DW_TAG_namespace:
21610 parent_type = read_type_die (parent, cu);
21611 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21612 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21613 Work around this problem here. */
21614 if (cu->language == language_cplus
21615 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21616 return "";
21617 /* We give a name to even anonymous namespaces. */
21618 return TYPE_NAME (parent_type);
21619 case DW_TAG_class_type:
21620 case DW_TAG_interface_type:
21621 case DW_TAG_structure_type:
21622 case DW_TAG_union_type:
21623 case DW_TAG_module:
21624 parent_type = read_type_die (parent, cu);
21625 if (TYPE_NAME (parent_type) != NULL)
21626 return TYPE_NAME (parent_type);
21627 else
21628 /* An anonymous structure is only allowed non-static data
21629 members; no typedefs, no member functions, et cetera.
21630 So it does not need a prefix. */
21631 return "";
21632 case DW_TAG_compile_unit:
21633 case DW_TAG_partial_unit:
21634 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21635 if (cu->language == language_cplus
21636 && !dwarf2_per_objfile->types.empty ()
21637 && die->child != NULL
21638 && (die->tag == DW_TAG_class_type
21639 || die->tag == DW_TAG_structure_type
21640 || die->tag == DW_TAG_union_type))
21641 {
21642 const char *name = guess_full_die_structure_name (die, cu);
21643 if (name != NULL)
21644 return name;
21645 }
21646 return "";
21647 case DW_TAG_subprogram:
21648 /* Nested subroutines in Fortran get a prefix with the name
21649 of the parent's subroutine. */
21650 if (cu->language == language_fortran)
21651 {
21652 if ((die->tag == DW_TAG_subprogram)
21653 && (dwarf2_name (parent, cu) != NULL))
21654 return dwarf2_name (parent, cu);
21655 }
21656 return determine_prefix (parent, cu);
21657 case DW_TAG_enumeration_type:
21658 parent_type = read_type_die (parent, cu);
21659 if (TYPE_DECLARED_CLASS (parent_type))
21660 {
21661 if (TYPE_NAME (parent_type) != NULL)
21662 return TYPE_NAME (parent_type);
21663 return "";
21664 }
21665 /* Fall through. */
21666 default:
21667 return determine_prefix (parent, cu);
21668 }
21669 }
21670
21671 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21672 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21673 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21674 an obconcat, otherwise allocate storage for the result. The CU argument is
21675 used to determine the language and hence, the appropriate separator. */
21676
21677 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21678
21679 static char *
21680 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21681 int physname, struct dwarf2_cu *cu)
21682 {
21683 const char *lead = "";
21684 const char *sep;
21685
21686 if (suffix == NULL || suffix[0] == '\0'
21687 || prefix == NULL || prefix[0] == '\0')
21688 sep = "";
21689 else if (cu->language == language_d)
21690 {
21691 /* For D, the 'main' function could be defined in any module, but it
21692 should never be prefixed. */
21693 if (strcmp (suffix, "D main") == 0)
21694 {
21695 prefix = "";
21696 sep = "";
21697 }
21698 else
21699 sep = ".";
21700 }
21701 else if (cu->language == language_fortran && physname)
21702 {
21703 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21704 DW_AT_MIPS_linkage_name is preferred and used instead. */
21705
21706 lead = "__";
21707 sep = "_MOD_";
21708 }
21709 else
21710 sep = "::";
21711
21712 if (prefix == NULL)
21713 prefix = "";
21714 if (suffix == NULL)
21715 suffix = "";
21716
21717 if (obs == NULL)
21718 {
21719 char *retval
21720 = ((char *)
21721 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21722
21723 strcpy (retval, lead);
21724 strcat (retval, prefix);
21725 strcat (retval, sep);
21726 strcat (retval, suffix);
21727 return retval;
21728 }
21729 else
21730 {
21731 /* We have an obstack. */
21732 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21733 }
21734 }
21735
21736 /* Get name of a die, return NULL if not found. */
21737
21738 static const char *
21739 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21740 struct objfile *objfile)
21741 {
21742 if (name && cu->language == language_cplus)
21743 {
21744 std::string canon_name = cp_canonicalize_string (name);
21745
21746 if (!canon_name.empty ())
21747 {
21748 if (canon_name != name)
21749 name = objfile->intern (canon_name);
21750 }
21751 }
21752
21753 return name;
21754 }
21755
21756 /* Get name of a die, return NULL if not found.
21757 Anonymous namespaces are converted to their magic string. */
21758
21759 static const char *
21760 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21761 {
21762 struct attribute *attr;
21763 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21764
21765 attr = dwarf2_attr (die, DW_AT_name, cu);
21766 if ((!attr || !DW_STRING (attr))
21767 && die->tag != DW_TAG_namespace
21768 && die->tag != DW_TAG_class_type
21769 && die->tag != DW_TAG_interface_type
21770 && die->tag != DW_TAG_structure_type
21771 && die->tag != DW_TAG_union_type)
21772 return NULL;
21773
21774 switch (die->tag)
21775 {
21776 case DW_TAG_compile_unit:
21777 case DW_TAG_partial_unit:
21778 /* Compilation units have a DW_AT_name that is a filename, not
21779 a source language identifier. */
21780 case DW_TAG_enumeration_type:
21781 case DW_TAG_enumerator:
21782 /* These tags always have simple identifiers already; no need
21783 to canonicalize them. */
21784 return DW_STRING (attr);
21785
21786 case DW_TAG_namespace:
21787 if (attr != NULL && DW_STRING (attr) != NULL)
21788 return DW_STRING (attr);
21789 return CP_ANONYMOUS_NAMESPACE_STR;
21790
21791 case DW_TAG_class_type:
21792 case DW_TAG_interface_type:
21793 case DW_TAG_structure_type:
21794 case DW_TAG_union_type:
21795 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21796 structures or unions. These were of the form "._%d" in GCC 4.1,
21797 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21798 and GCC 4.4. We work around this problem by ignoring these. */
21799 if (attr && DW_STRING (attr)
21800 && (startswith (DW_STRING (attr), "._")
21801 || startswith (DW_STRING (attr), "<anonymous")))
21802 return NULL;
21803
21804 /* GCC might emit a nameless typedef that has a linkage name. See
21805 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21806 if (!attr || DW_STRING (attr) == NULL)
21807 {
21808 attr = dw2_linkage_name_attr (die, cu);
21809 if (attr == NULL || DW_STRING (attr) == NULL)
21810 return NULL;
21811
21812 /* Avoid demangling DW_STRING (attr) the second time on a second
21813 call for the same DIE. */
21814 if (!DW_STRING_IS_CANONICAL (attr))
21815 {
21816 gdb::unique_xmalloc_ptr<char> demangled
21817 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21818 if (demangled == nullptr)
21819 return nullptr;
21820
21821 DW_STRING (attr) = objfile->intern (demangled.get ());
21822 DW_STRING_IS_CANONICAL (attr) = 1;
21823 }
21824
21825 /* Strip any leading namespaces/classes, keep only the base name.
21826 DW_AT_name for named DIEs does not contain the prefixes. */
21827 const char *base = strrchr (DW_STRING (attr), ':');
21828 if (base && base > DW_STRING (attr) && base[-1] == ':')
21829 return &base[1];
21830 else
21831 return DW_STRING (attr);
21832 }
21833 break;
21834
21835 default:
21836 break;
21837 }
21838
21839 if (!DW_STRING_IS_CANONICAL (attr))
21840 {
21841 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21842 objfile);
21843 DW_STRING_IS_CANONICAL (attr) = 1;
21844 }
21845 return DW_STRING (attr);
21846 }
21847
21848 /* Return the die that this die in an extension of, or NULL if there
21849 is none. *EXT_CU is the CU containing DIE on input, and the CU
21850 containing the return value on output. */
21851
21852 static struct die_info *
21853 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21854 {
21855 struct attribute *attr;
21856
21857 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21858 if (attr == NULL)
21859 return NULL;
21860
21861 return follow_die_ref (die, attr, ext_cu);
21862 }
21863
21864 static void
21865 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21866 {
21867 unsigned int i;
21868
21869 print_spaces (indent, f);
21870 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21871 dwarf_tag_name (die->tag), die->abbrev,
21872 sect_offset_str (die->sect_off));
21873
21874 if (die->parent != NULL)
21875 {
21876 print_spaces (indent, f);
21877 fprintf_unfiltered (f, " parent at offset: %s\n",
21878 sect_offset_str (die->parent->sect_off));
21879 }
21880
21881 print_spaces (indent, f);
21882 fprintf_unfiltered (f, " has children: %s\n",
21883 dwarf_bool_name (die->child != NULL));
21884
21885 print_spaces (indent, f);
21886 fprintf_unfiltered (f, " attributes:\n");
21887
21888 for (i = 0; i < die->num_attrs; ++i)
21889 {
21890 print_spaces (indent, f);
21891 fprintf_unfiltered (f, " %s (%s) ",
21892 dwarf_attr_name (die->attrs[i].name),
21893 dwarf_form_name (die->attrs[i].form));
21894
21895 switch (die->attrs[i].form)
21896 {
21897 case DW_FORM_addr:
21898 case DW_FORM_addrx:
21899 case DW_FORM_GNU_addr_index:
21900 fprintf_unfiltered (f, "address: ");
21901 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21902 break;
21903 case DW_FORM_block2:
21904 case DW_FORM_block4:
21905 case DW_FORM_block:
21906 case DW_FORM_block1:
21907 fprintf_unfiltered (f, "block: size %s",
21908 pulongest (DW_BLOCK (&die->attrs[i])->size));
21909 break;
21910 case DW_FORM_exprloc:
21911 fprintf_unfiltered (f, "expression: size %s",
21912 pulongest (DW_BLOCK (&die->attrs[i])->size));
21913 break;
21914 case DW_FORM_data16:
21915 fprintf_unfiltered (f, "constant of 16 bytes");
21916 break;
21917 case DW_FORM_ref_addr:
21918 fprintf_unfiltered (f, "ref address: ");
21919 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21920 break;
21921 case DW_FORM_GNU_ref_alt:
21922 fprintf_unfiltered (f, "alt ref address: ");
21923 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21924 break;
21925 case DW_FORM_ref1:
21926 case DW_FORM_ref2:
21927 case DW_FORM_ref4:
21928 case DW_FORM_ref8:
21929 case DW_FORM_ref_udata:
21930 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21931 (long) (DW_UNSND (&die->attrs[i])));
21932 break;
21933 case DW_FORM_data1:
21934 case DW_FORM_data2:
21935 case DW_FORM_data4:
21936 case DW_FORM_data8:
21937 case DW_FORM_udata:
21938 case DW_FORM_sdata:
21939 fprintf_unfiltered (f, "constant: %s",
21940 pulongest (DW_UNSND (&die->attrs[i])));
21941 break;
21942 case DW_FORM_sec_offset:
21943 fprintf_unfiltered (f, "section offset: %s",
21944 pulongest (DW_UNSND (&die->attrs[i])));
21945 break;
21946 case DW_FORM_ref_sig8:
21947 fprintf_unfiltered (f, "signature: %s",
21948 hex_string (DW_SIGNATURE (&die->attrs[i])));
21949 break;
21950 case DW_FORM_string:
21951 case DW_FORM_strp:
21952 case DW_FORM_line_strp:
21953 case DW_FORM_strx:
21954 case DW_FORM_GNU_str_index:
21955 case DW_FORM_GNU_strp_alt:
21956 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21957 DW_STRING (&die->attrs[i])
21958 ? DW_STRING (&die->attrs[i]) : "",
21959 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21960 break;
21961 case DW_FORM_flag:
21962 if (DW_UNSND (&die->attrs[i]))
21963 fprintf_unfiltered (f, "flag: TRUE");
21964 else
21965 fprintf_unfiltered (f, "flag: FALSE");
21966 break;
21967 case DW_FORM_flag_present:
21968 fprintf_unfiltered (f, "flag: TRUE");
21969 break;
21970 case DW_FORM_indirect:
21971 /* The reader will have reduced the indirect form to
21972 the "base form" so this form should not occur. */
21973 fprintf_unfiltered (f,
21974 "unexpected attribute form: DW_FORM_indirect");
21975 break;
21976 case DW_FORM_implicit_const:
21977 fprintf_unfiltered (f, "constant: %s",
21978 plongest (DW_SND (&die->attrs[i])));
21979 break;
21980 default:
21981 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21982 die->attrs[i].form);
21983 break;
21984 }
21985 fprintf_unfiltered (f, "\n");
21986 }
21987 }
21988
21989 static void
21990 dump_die_for_error (struct die_info *die)
21991 {
21992 dump_die_shallow (gdb_stderr, 0, die);
21993 }
21994
21995 static void
21996 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21997 {
21998 int indent = level * 4;
21999
22000 gdb_assert (die != NULL);
22001
22002 if (level >= max_level)
22003 return;
22004
22005 dump_die_shallow (f, indent, die);
22006
22007 if (die->child != NULL)
22008 {
22009 print_spaces (indent, f);
22010 fprintf_unfiltered (f, " Children:");
22011 if (level + 1 < max_level)
22012 {
22013 fprintf_unfiltered (f, "\n");
22014 dump_die_1 (f, level + 1, max_level, die->child);
22015 }
22016 else
22017 {
22018 fprintf_unfiltered (f,
22019 " [not printed, max nesting level reached]\n");
22020 }
22021 }
22022
22023 if (die->sibling != NULL && level > 0)
22024 {
22025 dump_die_1 (f, level, max_level, die->sibling);
22026 }
22027 }
22028
22029 /* This is called from the pdie macro in gdbinit.in.
22030 It's not static so gcc will keep a copy callable from gdb. */
22031
22032 void
22033 dump_die (struct die_info *die, int max_level)
22034 {
22035 dump_die_1 (gdb_stdlog, 0, max_level, die);
22036 }
22037
22038 static void
22039 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22040 {
22041 void **slot;
22042
22043 slot = htab_find_slot_with_hash (cu->die_hash, die,
22044 to_underlying (die->sect_off),
22045 INSERT);
22046
22047 *slot = die;
22048 }
22049
22050 /* Follow reference or signature attribute ATTR of SRC_DIE.
22051 On entry *REF_CU is the CU of SRC_DIE.
22052 On exit *REF_CU is the CU of the result. */
22053
22054 static struct die_info *
22055 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22056 struct dwarf2_cu **ref_cu)
22057 {
22058 struct die_info *die;
22059
22060 if (attr->form_is_ref ())
22061 die = follow_die_ref (src_die, attr, ref_cu);
22062 else if (attr->form == DW_FORM_ref_sig8)
22063 die = follow_die_sig (src_die, attr, ref_cu);
22064 else
22065 {
22066 dump_die_for_error (src_die);
22067 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22068 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22069 }
22070
22071 return die;
22072 }
22073
22074 /* Follow reference OFFSET.
22075 On entry *REF_CU is the CU of the source die referencing OFFSET.
22076 On exit *REF_CU is the CU of the result.
22077 Returns NULL if OFFSET is invalid. */
22078
22079 static struct die_info *
22080 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22081 struct dwarf2_cu **ref_cu)
22082 {
22083 struct die_info temp_die;
22084 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22085 struct dwarf2_per_objfile *dwarf2_per_objfile
22086 = cu->per_cu->dwarf2_per_objfile;
22087
22088 gdb_assert (cu->per_cu != NULL);
22089
22090 target_cu = cu;
22091
22092 if (cu->per_cu->is_debug_types)
22093 {
22094 /* .debug_types CUs cannot reference anything outside their CU.
22095 If they need to, they have to reference a signatured type via
22096 DW_FORM_ref_sig8. */
22097 if (!cu->header.offset_in_cu_p (sect_off))
22098 return NULL;
22099 }
22100 else if (offset_in_dwz != cu->per_cu->is_dwz
22101 || !cu->header.offset_in_cu_p (sect_off))
22102 {
22103 struct dwarf2_per_cu_data *per_cu;
22104
22105 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22106 dwarf2_per_objfile);
22107
22108 /* If necessary, add it to the queue and load its DIEs. */
22109 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22110 load_full_comp_unit (per_cu, false, cu->language);
22111
22112 target_cu = per_cu->cu;
22113 }
22114 else if (cu->dies == NULL)
22115 {
22116 /* We're loading full DIEs during partial symbol reading. */
22117 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22118 load_full_comp_unit (cu->per_cu, false, language_minimal);
22119 }
22120
22121 *ref_cu = target_cu;
22122 temp_die.sect_off = sect_off;
22123
22124 if (target_cu != cu)
22125 target_cu->ancestor = cu;
22126
22127 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22128 &temp_die,
22129 to_underlying (sect_off));
22130 }
22131
22132 /* Follow reference attribute ATTR of SRC_DIE.
22133 On entry *REF_CU is the CU of SRC_DIE.
22134 On exit *REF_CU is the CU of the result. */
22135
22136 static struct die_info *
22137 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22138 struct dwarf2_cu **ref_cu)
22139 {
22140 sect_offset sect_off = attr->get_ref_die_offset ();
22141 struct dwarf2_cu *cu = *ref_cu;
22142 struct die_info *die;
22143
22144 die = follow_die_offset (sect_off,
22145 (attr->form == DW_FORM_GNU_ref_alt
22146 || cu->per_cu->is_dwz),
22147 ref_cu);
22148 if (!die)
22149 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22150 "at %s [in module %s]"),
22151 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22152 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22153
22154 return die;
22155 }
22156
22157 /* See read.h. */
22158
22159 struct dwarf2_locexpr_baton
22160 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22161 dwarf2_per_cu_data *per_cu,
22162 CORE_ADDR (*get_frame_pc) (void *baton),
22163 void *baton, bool resolve_abstract_p)
22164 {
22165 struct dwarf2_cu *cu;
22166 struct die_info *die;
22167 struct attribute *attr;
22168 struct dwarf2_locexpr_baton retval;
22169 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22170 struct objfile *objfile = dwarf2_per_objfile->objfile;
22171
22172 if (per_cu->cu == NULL)
22173 load_cu (per_cu, false);
22174 cu = per_cu->cu;
22175 if (cu == NULL)
22176 {
22177 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22178 Instead just throw an error, not much else we can do. */
22179 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22180 sect_offset_str (sect_off), objfile_name (objfile));
22181 }
22182
22183 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22184 if (!die)
22185 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22186 sect_offset_str (sect_off), objfile_name (objfile));
22187
22188 attr = dwarf2_attr (die, DW_AT_location, cu);
22189 if (!attr && resolve_abstract_p
22190 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22191 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22192 {
22193 CORE_ADDR pc = (*get_frame_pc) (baton);
22194 CORE_ADDR baseaddr = objfile->text_section_offset ();
22195 struct gdbarch *gdbarch = objfile->arch ();
22196
22197 for (const auto &cand_off
22198 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22199 {
22200 struct dwarf2_cu *cand_cu = cu;
22201 struct die_info *cand
22202 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22203 if (!cand
22204 || !cand->parent
22205 || cand->parent->tag != DW_TAG_subprogram)
22206 continue;
22207
22208 CORE_ADDR pc_low, pc_high;
22209 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22210 if (pc_low == ((CORE_ADDR) -1))
22211 continue;
22212 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22213 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22214 if (!(pc_low <= pc && pc < pc_high))
22215 continue;
22216
22217 die = cand;
22218 attr = dwarf2_attr (die, DW_AT_location, cu);
22219 break;
22220 }
22221 }
22222
22223 if (!attr)
22224 {
22225 /* DWARF: "If there is no such attribute, then there is no effect.".
22226 DATA is ignored if SIZE is 0. */
22227
22228 retval.data = NULL;
22229 retval.size = 0;
22230 }
22231 else if (attr->form_is_section_offset ())
22232 {
22233 struct dwarf2_loclist_baton loclist_baton;
22234 CORE_ADDR pc = (*get_frame_pc) (baton);
22235 size_t size;
22236
22237 fill_in_loclist_baton (cu, &loclist_baton, attr);
22238
22239 retval.data = dwarf2_find_location_expression (&loclist_baton,
22240 &size, pc);
22241 retval.size = size;
22242 }
22243 else
22244 {
22245 if (!attr->form_is_block ())
22246 error (_("Dwarf Error: DIE at %s referenced in module %s "
22247 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22248 sect_offset_str (sect_off), objfile_name (objfile));
22249
22250 retval.data = DW_BLOCK (attr)->data;
22251 retval.size = DW_BLOCK (attr)->size;
22252 }
22253 retval.per_cu = cu->per_cu;
22254
22255 age_cached_comp_units (dwarf2_per_objfile);
22256
22257 return retval;
22258 }
22259
22260 /* See read.h. */
22261
22262 struct dwarf2_locexpr_baton
22263 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22264 dwarf2_per_cu_data *per_cu,
22265 CORE_ADDR (*get_frame_pc) (void *baton),
22266 void *baton)
22267 {
22268 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22269
22270 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22271 }
22272
22273 /* Write a constant of a given type as target-ordered bytes into
22274 OBSTACK. */
22275
22276 static const gdb_byte *
22277 write_constant_as_bytes (struct obstack *obstack,
22278 enum bfd_endian byte_order,
22279 struct type *type,
22280 ULONGEST value,
22281 LONGEST *len)
22282 {
22283 gdb_byte *result;
22284
22285 *len = TYPE_LENGTH (type);
22286 result = (gdb_byte *) obstack_alloc (obstack, *len);
22287 store_unsigned_integer (result, *len, byte_order, value);
22288
22289 return result;
22290 }
22291
22292 /* See read.h. */
22293
22294 const gdb_byte *
22295 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22296 dwarf2_per_cu_data *per_cu,
22297 obstack *obstack,
22298 LONGEST *len)
22299 {
22300 struct dwarf2_cu *cu;
22301 struct die_info *die;
22302 struct attribute *attr;
22303 const gdb_byte *result = NULL;
22304 struct type *type;
22305 LONGEST value;
22306 enum bfd_endian byte_order;
22307 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22308
22309 if (per_cu->cu == NULL)
22310 load_cu (per_cu, false);
22311 cu = per_cu->cu;
22312 if (cu == NULL)
22313 {
22314 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22315 Instead just throw an error, not much else we can do. */
22316 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22317 sect_offset_str (sect_off), objfile_name (objfile));
22318 }
22319
22320 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22321 if (!die)
22322 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22323 sect_offset_str (sect_off), objfile_name (objfile));
22324
22325 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22326 if (attr == NULL)
22327 return NULL;
22328
22329 byte_order = (bfd_big_endian (objfile->obfd)
22330 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22331
22332 switch (attr->form)
22333 {
22334 case DW_FORM_addr:
22335 case DW_FORM_addrx:
22336 case DW_FORM_GNU_addr_index:
22337 {
22338 gdb_byte *tem;
22339
22340 *len = cu->header.addr_size;
22341 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22342 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22343 result = tem;
22344 }
22345 break;
22346 case DW_FORM_string:
22347 case DW_FORM_strp:
22348 case DW_FORM_strx:
22349 case DW_FORM_GNU_str_index:
22350 case DW_FORM_GNU_strp_alt:
22351 /* DW_STRING is already allocated on the objfile obstack, point
22352 directly to it. */
22353 result = (const gdb_byte *) DW_STRING (attr);
22354 *len = strlen (DW_STRING (attr));
22355 break;
22356 case DW_FORM_block1:
22357 case DW_FORM_block2:
22358 case DW_FORM_block4:
22359 case DW_FORM_block:
22360 case DW_FORM_exprloc:
22361 case DW_FORM_data16:
22362 result = DW_BLOCK (attr)->data;
22363 *len = DW_BLOCK (attr)->size;
22364 break;
22365
22366 /* The DW_AT_const_value attributes are supposed to carry the
22367 symbol's value "represented as it would be on the target
22368 architecture." By the time we get here, it's already been
22369 converted to host endianness, so we just need to sign- or
22370 zero-extend it as appropriate. */
22371 case DW_FORM_data1:
22372 type = die_type (die, cu);
22373 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22374 if (result == NULL)
22375 result = write_constant_as_bytes (obstack, byte_order,
22376 type, value, len);
22377 break;
22378 case DW_FORM_data2:
22379 type = die_type (die, cu);
22380 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22381 if (result == NULL)
22382 result = write_constant_as_bytes (obstack, byte_order,
22383 type, value, len);
22384 break;
22385 case DW_FORM_data4:
22386 type = die_type (die, cu);
22387 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22388 if (result == NULL)
22389 result = write_constant_as_bytes (obstack, byte_order,
22390 type, value, len);
22391 break;
22392 case DW_FORM_data8:
22393 type = die_type (die, cu);
22394 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22395 if (result == NULL)
22396 result = write_constant_as_bytes (obstack, byte_order,
22397 type, value, len);
22398 break;
22399
22400 case DW_FORM_sdata:
22401 case DW_FORM_implicit_const:
22402 type = die_type (die, cu);
22403 result = write_constant_as_bytes (obstack, byte_order,
22404 type, DW_SND (attr), len);
22405 break;
22406
22407 case DW_FORM_udata:
22408 type = die_type (die, cu);
22409 result = write_constant_as_bytes (obstack, byte_order,
22410 type, DW_UNSND (attr), len);
22411 break;
22412
22413 default:
22414 complaint (_("unsupported const value attribute form: '%s'"),
22415 dwarf_form_name (attr->form));
22416 break;
22417 }
22418
22419 return result;
22420 }
22421
22422 /* See read.h. */
22423
22424 struct type *
22425 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22426 dwarf2_per_cu_data *per_cu)
22427 {
22428 struct dwarf2_cu *cu;
22429 struct die_info *die;
22430
22431 if (per_cu->cu == NULL)
22432 load_cu (per_cu, false);
22433 cu = per_cu->cu;
22434 if (!cu)
22435 return NULL;
22436
22437 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22438 if (!die)
22439 return NULL;
22440
22441 return die_type (die, cu);
22442 }
22443
22444 /* See read.h. */
22445
22446 struct type *
22447 dwarf2_get_die_type (cu_offset die_offset,
22448 struct dwarf2_per_cu_data *per_cu)
22449 {
22450 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22451 return get_die_type_at_offset (die_offset_sect, per_cu);
22452 }
22453
22454 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22455 On entry *REF_CU is the CU of SRC_DIE.
22456 On exit *REF_CU is the CU of the result.
22457 Returns NULL if the referenced DIE isn't found. */
22458
22459 static struct die_info *
22460 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22461 struct dwarf2_cu **ref_cu)
22462 {
22463 struct die_info temp_die;
22464 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22465 struct die_info *die;
22466
22467 /* While it might be nice to assert sig_type->type == NULL here,
22468 we can get here for DW_AT_imported_declaration where we need
22469 the DIE not the type. */
22470
22471 /* If necessary, add it to the queue and load its DIEs. */
22472
22473 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22474 read_signatured_type (sig_type);
22475
22476 sig_cu = sig_type->per_cu.cu;
22477 gdb_assert (sig_cu != NULL);
22478 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22479 temp_die.sect_off = sig_type->type_offset_in_section;
22480 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22481 to_underlying (temp_die.sect_off));
22482 if (die)
22483 {
22484 struct dwarf2_per_objfile *dwarf2_per_objfile
22485 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22486
22487 /* For .gdb_index version 7 keep track of included TUs.
22488 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22489 if (dwarf2_per_objfile->index_table != NULL
22490 && dwarf2_per_objfile->index_table->version <= 7)
22491 {
22492 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22493 }
22494
22495 *ref_cu = sig_cu;
22496 if (sig_cu != cu)
22497 sig_cu->ancestor = cu;
22498
22499 return die;
22500 }
22501
22502 return NULL;
22503 }
22504
22505 /* Follow signatured type referenced by ATTR in SRC_DIE.
22506 On entry *REF_CU is the CU of SRC_DIE.
22507 On exit *REF_CU is the CU of the result.
22508 The result is the DIE of the type.
22509 If the referenced type cannot be found an error is thrown. */
22510
22511 static struct die_info *
22512 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22513 struct dwarf2_cu **ref_cu)
22514 {
22515 ULONGEST signature = DW_SIGNATURE (attr);
22516 struct signatured_type *sig_type;
22517 struct die_info *die;
22518
22519 gdb_assert (attr->form == DW_FORM_ref_sig8);
22520
22521 sig_type = lookup_signatured_type (*ref_cu, signature);
22522 /* sig_type will be NULL if the signatured type is missing from
22523 the debug info. */
22524 if (sig_type == NULL)
22525 {
22526 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22527 " from DIE at %s [in module %s]"),
22528 hex_string (signature), sect_offset_str (src_die->sect_off),
22529 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22530 }
22531
22532 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22533 if (die == NULL)
22534 {
22535 dump_die_for_error (src_die);
22536 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22537 " from DIE at %s [in module %s]"),
22538 hex_string (signature), sect_offset_str (src_die->sect_off),
22539 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22540 }
22541
22542 return die;
22543 }
22544
22545 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22546 reading in and processing the type unit if necessary. */
22547
22548 static struct type *
22549 get_signatured_type (struct die_info *die, ULONGEST signature,
22550 struct dwarf2_cu *cu)
22551 {
22552 struct dwarf2_per_objfile *dwarf2_per_objfile
22553 = cu->per_cu->dwarf2_per_objfile;
22554 struct signatured_type *sig_type;
22555 struct dwarf2_cu *type_cu;
22556 struct die_info *type_die;
22557 struct type *type;
22558
22559 sig_type = lookup_signatured_type (cu, signature);
22560 /* sig_type will be NULL if the signatured type is missing from
22561 the debug info. */
22562 if (sig_type == NULL)
22563 {
22564 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22565 " from DIE at %s [in module %s]"),
22566 hex_string (signature), sect_offset_str (die->sect_off),
22567 objfile_name (dwarf2_per_objfile->objfile));
22568 return build_error_marker_type (cu, die);
22569 }
22570
22571 /* If we already know the type we're done. */
22572 if (sig_type->type != NULL)
22573 return sig_type->type;
22574
22575 type_cu = cu;
22576 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22577 if (type_die != NULL)
22578 {
22579 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22580 is created. This is important, for example, because for c++ classes
22581 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22582 type = read_type_die (type_die, type_cu);
22583 if (type == NULL)
22584 {
22585 complaint (_("Dwarf Error: Cannot build signatured type %s"
22586 " referenced from DIE at %s [in module %s]"),
22587 hex_string (signature), sect_offset_str (die->sect_off),
22588 objfile_name (dwarf2_per_objfile->objfile));
22589 type = build_error_marker_type (cu, die);
22590 }
22591 }
22592 else
22593 {
22594 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22595 " from DIE at %s [in module %s]"),
22596 hex_string (signature), sect_offset_str (die->sect_off),
22597 objfile_name (dwarf2_per_objfile->objfile));
22598 type = build_error_marker_type (cu, die);
22599 }
22600 sig_type->type = type;
22601
22602 return type;
22603 }
22604
22605 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22606 reading in and processing the type unit if necessary. */
22607
22608 static struct type *
22609 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22610 struct dwarf2_cu *cu) /* ARI: editCase function */
22611 {
22612 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22613 if (attr->form_is_ref ())
22614 {
22615 struct dwarf2_cu *type_cu = cu;
22616 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22617
22618 return read_type_die (type_die, type_cu);
22619 }
22620 else if (attr->form == DW_FORM_ref_sig8)
22621 {
22622 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22623 }
22624 else
22625 {
22626 struct dwarf2_per_objfile *dwarf2_per_objfile
22627 = cu->per_cu->dwarf2_per_objfile;
22628
22629 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22630 " at %s [in module %s]"),
22631 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22632 objfile_name (dwarf2_per_objfile->objfile));
22633 return build_error_marker_type (cu, die);
22634 }
22635 }
22636
22637 /* Load the DIEs associated with type unit PER_CU into memory. */
22638
22639 static void
22640 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22641 {
22642 struct signatured_type *sig_type;
22643
22644 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22645 gdb_assert (! per_cu->type_unit_group_p ());
22646
22647 /* We have the per_cu, but we need the signatured_type.
22648 Fortunately this is an easy translation. */
22649 gdb_assert (per_cu->is_debug_types);
22650 sig_type = (struct signatured_type *) per_cu;
22651
22652 gdb_assert (per_cu->cu == NULL);
22653
22654 read_signatured_type (sig_type);
22655
22656 gdb_assert (per_cu->cu != NULL);
22657 }
22658
22659 /* Read in a signatured type and build its CU and DIEs.
22660 If the type is a stub for the real type in a DWO file,
22661 read in the real type from the DWO file as well. */
22662
22663 static void
22664 read_signatured_type (struct signatured_type *sig_type)
22665 {
22666 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22667
22668 gdb_assert (per_cu->is_debug_types);
22669 gdb_assert (per_cu->cu == NULL);
22670
22671 cutu_reader reader (per_cu, NULL, 0, false);
22672
22673 if (!reader.dummy_p)
22674 {
22675 struct dwarf2_cu *cu = reader.cu;
22676 const gdb_byte *info_ptr = reader.info_ptr;
22677
22678 gdb_assert (cu->die_hash == NULL);
22679 cu->die_hash =
22680 htab_create_alloc_ex (cu->header.length / 12,
22681 die_hash,
22682 die_eq,
22683 NULL,
22684 &cu->comp_unit_obstack,
22685 hashtab_obstack_allocate,
22686 dummy_obstack_deallocate);
22687
22688 if (reader.comp_unit_die->has_children)
22689 reader.comp_unit_die->child
22690 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22691 reader.comp_unit_die);
22692 cu->dies = reader.comp_unit_die;
22693 /* comp_unit_die is not stored in die_hash, no need. */
22694
22695 /* We try not to read any attributes in this function, because
22696 not all CUs needed for references have been loaded yet, and
22697 symbol table processing isn't initialized. But we have to
22698 set the CU language, or we won't be able to build types
22699 correctly. Similarly, if we do not read the producer, we can
22700 not apply producer-specific interpretation. */
22701 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22702
22703 reader.keep ();
22704 }
22705
22706 sig_type->per_cu.tu_read = 1;
22707 }
22708
22709 /* Decode simple location descriptions.
22710 Given a pointer to a dwarf block that defines a location, compute
22711 the location and return the value. If COMPUTED is non-null, it is
22712 set to true to indicate that decoding was successful, and false
22713 otherwise. If COMPUTED is null, then this function may emit a
22714 complaint. */
22715
22716 static CORE_ADDR
22717 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22718 {
22719 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22720 size_t i;
22721 size_t size = blk->size;
22722 const gdb_byte *data = blk->data;
22723 CORE_ADDR stack[64];
22724 int stacki;
22725 unsigned int bytes_read, unsnd;
22726 gdb_byte op;
22727
22728 if (computed != nullptr)
22729 *computed = false;
22730
22731 i = 0;
22732 stacki = 0;
22733 stack[stacki] = 0;
22734 stack[++stacki] = 0;
22735
22736 while (i < size)
22737 {
22738 op = data[i++];
22739 switch (op)
22740 {
22741 case DW_OP_lit0:
22742 case DW_OP_lit1:
22743 case DW_OP_lit2:
22744 case DW_OP_lit3:
22745 case DW_OP_lit4:
22746 case DW_OP_lit5:
22747 case DW_OP_lit6:
22748 case DW_OP_lit7:
22749 case DW_OP_lit8:
22750 case DW_OP_lit9:
22751 case DW_OP_lit10:
22752 case DW_OP_lit11:
22753 case DW_OP_lit12:
22754 case DW_OP_lit13:
22755 case DW_OP_lit14:
22756 case DW_OP_lit15:
22757 case DW_OP_lit16:
22758 case DW_OP_lit17:
22759 case DW_OP_lit18:
22760 case DW_OP_lit19:
22761 case DW_OP_lit20:
22762 case DW_OP_lit21:
22763 case DW_OP_lit22:
22764 case DW_OP_lit23:
22765 case DW_OP_lit24:
22766 case DW_OP_lit25:
22767 case DW_OP_lit26:
22768 case DW_OP_lit27:
22769 case DW_OP_lit28:
22770 case DW_OP_lit29:
22771 case DW_OP_lit30:
22772 case DW_OP_lit31:
22773 stack[++stacki] = op - DW_OP_lit0;
22774 break;
22775
22776 case DW_OP_reg0:
22777 case DW_OP_reg1:
22778 case DW_OP_reg2:
22779 case DW_OP_reg3:
22780 case DW_OP_reg4:
22781 case DW_OP_reg5:
22782 case DW_OP_reg6:
22783 case DW_OP_reg7:
22784 case DW_OP_reg8:
22785 case DW_OP_reg9:
22786 case DW_OP_reg10:
22787 case DW_OP_reg11:
22788 case DW_OP_reg12:
22789 case DW_OP_reg13:
22790 case DW_OP_reg14:
22791 case DW_OP_reg15:
22792 case DW_OP_reg16:
22793 case DW_OP_reg17:
22794 case DW_OP_reg18:
22795 case DW_OP_reg19:
22796 case DW_OP_reg20:
22797 case DW_OP_reg21:
22798 case DW_OP_reg22:
22799 case DW_OP_reg23:
22800 case DW_OP_reg24:
22801 case DW_OP_reg25:
22802 case DW_OP_reg26:
22803 case DW_OP_reg27:
22804 case DW_OP_reg28:
22805 case DW_OP_reg29:
22806 case DW_OP_reg30:
22807 case DW_OP_reg31:
22808 stack[++stacki] = op - DW_OP_reg0;
22809 if (i < size)
22810 {
22811 if (computed == nullptr)
22812 dwarf2_complex_location_expr_complaint ();
22813 else
22814 return 0;
22815 }
22816 break;
22817
22818 case DW_OP_regx:
22819 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22820 i += bytes_read;
22821 stack[++stacki] = unsnd;
22822 if (i < size)
22823 {
22824 if (computed == nullptr)
22825 dwarf2_complex_location_expr_complaint ();
22826 else
22827 return 0;
22828 }
22829 break;
22830
22831 case DW_OP_addr:
22832 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22833 &bytes_read);
22834 i += bytes_read;
22835 break;
22836
22837 case DW_OP_const1u:
22838 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22839 i += 1;
22840 break;
22841
22842 case DW_OP_const1s:
22843 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22844 i += 1;
22845 break;
22846
22847 case DW_OP_const2u:
22848 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22849 i += 2;
22850 break;
22851
22852 case DW_OP_const2s:
22853 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22854 i += 2;
22855 break;
22856
22857 case DW_OP_const4u:
22858 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22859 i += 4;
22860 break;
22861
22862 case DW_OP_const4s:
22863 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22864 i += 4;
22865 break;
22866
22867 case DW_OP_const8u:
22868 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22869 i += 8;
22870 break;
22871
22872 case DW_OP_constu:
22873 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22874 &bytes_read);
22875 i += bytes_read;
22876 break;
22877
22878 case DW_OP_consts:
22879 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22880 i += bytes_read;
22881 break;
22882
22883 case DW_OP_dup:
22884 stack[stacki + 1] = stack[stacki];
22885 stacki++;
22886 break;
22887
22888 case DW_OP_plus:
22889 stack[stacki - 1] += stack[stacki];
22890 stacki--;
22891 break;
22892
22893 case DW_OP_plus_uconst:
22894 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22895 &bytes_read);
22896 i += bytes_read;
22897 break;
22898
22899 case DW_OP_minus:
22900 stack[stacki - 1] -= stack[stacki];
22901 stacki--;
22902 break;
22903
22904 case DW_OP_deref:
22905 /* If we're not the last op, then we definitely can't encode
22906 this using GDB's address_class enum. This is valid for partial
22907 global symbols, although the variable's address will be bogus
22908 in the psymtab. */
22909 if (i < size)
22910 {
22911 if (computed == nullptr)
22912 dwarf2_complex_location_expr_complaint ();
22913 else
22914 return 0;
22915 }
22916 break;
22917
22918 case DW_OP_GNU_push_tls_address:
22919 case DW_OP_form_tls_address:
22920 /* The top of the stack has the offset from the beginning
22921 of the thread control block at which the variable is located. */
22922 /* Nothing should follow this operator, so the top of stack would
22923 be returned. */
22924 /* This is valid for partial global symbols, but the variable's
22925 address will be bogus in the psymtab. Make it always at least
22926 non-zero to not look as a variable garbage collected by linker
22927 which have DW_OP_addr 0. */
22928 if (i < size)
22929 {
22930 if (computed == nullptr)
22931 dwarf2_complex_location_expr_complaint ();
22932 else
22933 return 0;
22934 }
22935 stack[stacki]++;
22936 break;
22937
22938 case DW_OP_GNU_uninit:
22939 if (computed != nullptr)
22940 return 0;
22941 break;
22942
22943 case DW_OP_addrx:
22944 case DW_OP_GNU_addr_index:
22945 case DW_OP_GNU_const_index:
22946 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22947 &bytes_read);
22948 i += bytes_read;
22949 break;
22950
22951 default:
22952 if (computed == nullptr)
22953 {
22954 const char *name = get_DW_OP_name (op);
22955
22956 if (name)
22957 complaint (_("unsupported stack op: '%s'"),
22958 name);
22959 else
22960 complaint (_("unsupported stack op: '%02x'"),
22961 op);
22962 }
22963
22964 return (stack[stacki]);
22965 }
22966
22967 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22968 outside of the allocated space. Also enforce minimum>0. */
22969 if (stacki >= ARRAY_SIZE (stack) - 1)
22970 {
22971 if (computed == nullptr)
22972 complaint (_("location description stack overflow"));
22973 return 0;
22974 }
22975
22976 if (stacki <= 0)
22977 {
22978 if (computed == nullptr)
22979 complaint (_("location description stack underflow"));
22980 return 0;
22981 }
22982 }
22983
22984 if (computed != nullptr)
22985 *computed = true;
22986 return (stack[stacki]);
22987 }
22988
22989 /* memory allocation interface */
22990
22991 static struct dwarf_block *
22992 dwarf_alloc_block (struct dwarf2_cu *cu)
22993 {
22994 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22995 }
22996
22997 static struct die_info *
22998 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22999 {
23000 struct die_info *die;
23001 size_t size = sizeof (struct die_info);
23002
23003 if (num_attrs > 1)
23004 size += (num_attrs - 1) * sizeof (struct attribute);
23005
23006 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23007 memset (die, 0, sizeof (struct die_info));
23008 return (die);
23009 }
23010
23011 \f
23012
23013 /* Macro support. */
23014
23015 /* An overload of dwarf_decode_macros that finds the correct section
23016 and ensures it is read in before calling the other overload. */
23017
23018 static void
23019 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23020 int section_is_gnu)
23021 {
23022 struct dwarf2_per_objfile *dwarf2_per_objfile
23023 = cu->per_cu->dwarf2_per_objfile;
23024 struct objfile *objfile = dwarf2_per_objfile->objfile;
23025 const struct line_header *lh = cu->line_header;
23026 unsigned int offset_size = cu->header.offset_size;
23027 struct dwarf2_section_info *section;
23028 const char *section_name;
23029
23030 if (cu->dwo_unit != nullptr)
23031 {
23032 if (section_is_gnu)
23033 {
23034 section = &cu->dwo_unit->dwo_file->sections.macro;
23035 section_name = ".debug_macro.dwo";
23036 }
23037 else
23038 {
23039 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23040 section_name = ".debug_macinfo.dwo";
23041 }
23042 }
23043 else
23044 {
23045 if (section_is_gnu)
23046 {
23047 section = &dwarf2_per_objfile->macro;
23048 section_name = ".debug_macro";
23049 }
23050 else
23051 {
23052 section = &dwarf2_per_objfile->macinfo;
23053 section_name = ".debug_macinfo";
23054 }
23055 }
23056
23057 section->read (objfile);
23058 if (section->buffer == nullptr)
23059 {
23060 complaint (_("missing %s section"), section_name);
23061 return;
23062 }
23063
23064 buildsym_compunit *builder = cu->get_builder ();
23065
23066 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23067 offset_size, offset, section_is_gnu);
23068 }
23069
23070 /* Return the .debug_loc section to use for CU.
23071 For DWO files use .debug_loc.dwo. */
23072
23073 static struct dwarf2_section_info *
23074 cu_debug_loc_section (struct dwarf2_cu *cu)
23075 {
23076 struct dwarf2_per_objfile *dwarf2_per_objfile
23077 = cu->per_cu->dwarf2_per_objfile;
23078
23079 if (cu->dwo_unit)
23080 {
23081 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23082
23083 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23084 }
23085 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23086 : &dwarf2_per_objfile->loc);
23087 }
23088
23089 /* A helper function that fills in a dwarf2_loclist_baton. */
23090
23091 static void
23092 fill_in_loclist_baton (struct dwarf2_cu *cu,
23093 struct dwarf2_loclist_baton *baton,
23094 const struct attribute *attr)
23095 {
23096 struct dwarf2_per_objfile *dwarf2_per_objfile
23097 = cu->per_cu->dwarf2_per_objfile;
23098 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23099
23100 section->read (dwarf2_per_objfile->objfile);
23101
23102 baton->per_cu = cu->per_cu;
23103 gdb_assert (baton->per_cu);
23104 /* We don't know how long the location list is, but make sure we
23105 don't run off the edge of the section. */
23106 baton->size = section->size - DW_UNSND (attr);
23107 baton->data = section->buffer + DW_UNSND (attr);
23108 if (cu->base_address.has_value ())
23109 baton->base_address = *cu->base_address;
23110 else
23111 baton->base_address = 0;
23112 baton->from_dwo = cu->dwo_unit != NULL;
23113 }
23114
23115 static void
23116 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23117 struct dwarf2_cu *cu, int is_block)
23118 {
23119 struct dwarf2_per_objfile *dwarf2_per_objfile
23120 = cu->per_cu->dwarf2_per_objfile;
23121 struct objfile *objfile = dwarf2_per_objfile->objfile;
23122 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23123
23124 if (attr->form_is_section_offset ()
23125 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23126 the section. If so, fall through to the complaint in the
23127 other branch. */
23128 && DW_UNSND (attr) < section->get_size (objfile))
23129 {
23130 struct dwarf2_loclist_baton *baton;
23131
23132 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23133
23134 fill_in_loclist_baton (cu, baton, attr);
23135
23136 if (!cu->base_address.has_value ())
23137 complaint (_("Location list used without "
23138 "specifying the CU base address."));
23139
23140 SYMBOL_ACLASS_INDEX (sym) = (is_block
23141 ? dwarf2_loclist_block_index
23142 : dwarf2_loclist_index);
23143 SYMBOL_LOCATION_BATON (sym) = baton;
23144 }
23145 else
23146 {
23147 struct dwarf2_locexpr_baton *baton;
23148
23149 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23150 baton->per_cu = cu->per_cu;
23151 gdb_assert (baton->per_cu);
23152
23153 if (attr->form_is_block ())
23154 {
23155 /* Note that we're just copying the block's data pointer
23156 here, not the actual data. We're still pointing into the
23157 info_buffer for SYM's objfile; right now we never release
23158 that buffer, but when we do clean up properly this may
23159 need to change. */
23160 baton->size = DW_BLOCK (attr)->size;
23161 baton->data = DW_BLOCK (attr)->data;
23162 }
23163 else
23164 {
23165 dwarf2_invalid_attrib_class_complaint ("location description",
23166 sym->natural_name ());
23167 baton->size = 0;
23168 }
23169
23170 SYMBOL_ACLASS_INDEX (sym) = (is_block
23171 ? dwarf2_locexpr_block_index
23172 : dwarf2_locexpr_index);
23173 SYMBOL_LOCATION_BATON (sym) = baton;
23174 }
23175 }
23176
23177 /* See read.h. */
23178
23179 struct objfile *
23180 dwarf2_per_cu_data::objfile () const
23181 {
23182 struct objfile *objfile = dwarf2_per_objfile->objfile;
23183
23184 /* Return the master objfile, so that we can report and look up the
23185 correct file containing this variable. */
23186 if (objfile->separate_debug_objfile_backlink)
23187 objfile = objfile->separate_debug_objfile_backlink;
23188
23189 return objfile;
23190 }
23191
23192 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23193 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23194 CU_HEADERP first. */
23195
23196 static const struct comp_unit_head *
23197 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23198 const struct dwarf2_per_cu_data *per_cu)
23199 {
23200 const gdb_byte *info_ptr;
23201
23202 if (per_cu->cu)
23203 return &per_cu->cu->header;
23204
23205 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23206
23207 memset (cu_headerp, 0, sizeof (*cu_headerp));
23208 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23209 rcuh_kind::COMPILE);
23210
23211 return cu_headerp;
23212 }
23213
23214 /* See read.h. */
23215
23216 int
23217 dwarf2_per_cu_data::addr_size () const
23218 {
23219 struct comp_unit_head cu_header_local;
23220 const struct comp_unit_head *cu_headerp;
23221
23222 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23223
23224 return cu_headerp->addr_size;
23225 }
23226
23227 /* See read.h. */
23228
23229 int
23230 dwarf2_per_cu_data::offset_size () const
23231 {
23232 struct comp_unit_head cu_header_local;
23233 const struct comp_unit_head *cu_headerp;
23234
23235 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23236
23237 return cu_headerp->offset_size;
23238 }
23239
23240 /* See read.h. */
23241
23242 int
23243 dwarf2_per_cu_data::ref_addr_size () const
23244 {
23245 struct comp_unit_head cu_header_local;
23246 const struct comp_unit_head *cu_headerp;
23247
23248 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23249
23250 if (cu_headerp->version == 2)
23251 return cu_headerp->addr_size;
23252 else
23253 return cu_headerp->offset_size;
23254 }
23255
23256 /* See read.h. */
23257
23258 CORE_ADDR
23259 dwarf2_per_cu_data::text_offset () const
23260 {
23261 struct objfile *objfile = dwarf2_per_objfile->objfile;
23262
23263 return objfile->text_section_offset ();
23264 }
23265
23266 /* See read.h. */
23267
23268 struct type *
23269 dwarf2_per_cu_data::addr_type () const
23270 {
23271 struct objfile *objfile = dwarf2_per_objfile->objfile;
23272 struct type *void_type = objfile_type (objfile)->builtin_void;
23273 struct type *addr_type = lookup_pointer_type (void_type);
23274 int addr_size = this->addr_size ();
23275
23276 if (TYPE_LENGTH (addr_type) == addr_size)
23277 return addr_type;
23278
23279 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23280 return addr_type;
23281 }
23282
23283 /* A helper function for dwarf2_find_containing_comp_unit that returns
23284 the index of the result, and that searches a vector. It will
23285 return a result even if the offset in question does not actually
23286 occur in any CU. This is separate so that it can be unit
23287 tested. */
23288
23289 static int
23290 dwarf2_find_containing_comp_unit
23291 (sect_offset sect_off,
23292 unsigned int offset_in_dwz,
23293 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23294 {
23295 int low, high;
23296
23297 low = 0;
23298 high = all_comp_units.size () - 1;
23299 while (high > low)
23300 {
23301 struct dwarf2_per_cu_data *mid_cu;
23302 int mid = low + (high - low) / 2;
23303
23304 mid_cu = all_comp_units[mid];
23305 if (mid_cu->is_dwz > offset_in_dwz
23306 || (mid_cu->is_dwz == offset_in_dwz
23307 && mid_cu->sect_off + mid_cu->length > sect_off))
23308 high = mid;
23309 else
23310 low = mid + 1;
23311 }
23312 gdb_assert (low == high);
23313 return low;
23314 }
23315
23316 /* Locate the .debug_info compilation unit from CU's objfile which contains
23317 the DIE at OFFSET. Raises an error on failure. */
23318
23319 static struct dwarf2_per_cu_data *
23320 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23321 unsigned int offset_in_dwz,
23322 struct dwarf2_per_objfile *dwarf2_per_objfile)
23323 {
23324 int low
23325 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23326 dwarf2_per_objfile->all_comp_units);
23327 struct dwarf2_per_cu_data *this_cu
23328 = dwarf2_per_objfile->all_comp_units[low];
23329
23330 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23331 {
23332 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23333 error (_("Dwarf Error: could not find partial DIE containing "
23334 "offset %s [in module %s]"),
23335 sect_offset_str (sect_off),
23336 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23337
23338 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23339 <= sect_off);
23340 return dwarf2_per_objfile->all_comp_units[low-1];
23341 }
23342 else
23343 {
23344 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23345 && sect_off >= this_cu->sect_off + this_cu->length)
23346 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23347 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23348 return this_cu;
23349 }
23350 }
23351
23352 #if GDB_SELF_TEST
23353
23354 namespace selftests {
23355 namespace find_containing_comp_unit {
23356
23357 static void
23358 run_test ()
23359 {
23360 struct dwarf2_per_cu_data one {};
23361 struct dwarf2_per_cu_data two {};
23362 struct dwarf2_per_cu_data three {};
23363 struct dwarf2_per_cu_data four {};
23364
23365 one.length = 5;
23366 two.sect_off = sect_offset (one.length);
23367 two.length = 7;
23368
23369 three.length = 5;
23370 three.is_dwz = 1;
23371 four.sect_off = sect_offset (three.length);
23372 four.length = 7;
23373 four.is_dwz = 1;
23374
23375 std::vector<dwarf2_per_cu_data *> units;
23376 units.push_back (&one);
23377 units.push_back (&two);
23378 units.push_back (&three);
23379 units.push_back (&four);
23380
23381 int result;
23382
23383 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23384 SELF_CHECK (units[result] == &one);
23385 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23386 SELF_CHECK (units[result] == &one);
23387 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23388 SELF_CHECK (units[result] == &two);
23389
23390 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23391 SELF_CHECK (units[result] == &three);
23392 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23393 SELF_CHECK (units[result] == &three);
23394 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23395 SELF_CHECK (units[result] == &four);
23396 }
23397
23398 }
23399 }
23400
23401 #endif /* GDB_SELF_TEST */
23402
23403 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23404
23405 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23406 : per_cu (per_cu_),
23407 mark (false),
23408 has_loclist (false),
23409 checked_producer (false),
23410 producer_is_gxx_lt_4_6 (false),
23411 producer_is_gcc_lt_4_3 (false),
23412 producer_is_icc (false),
23413 producer_is_icc_lt_14 (false),
23414 producer_is_codewarrior (false),
23415 processing_has_namespace_info (false)
23416 {
23417 per_cu->cu = this;
23418 }
23419
23420 /* Destroy a dwarf2_cu. */
23421
23422 dwarf2_cu::~dwarf2_cu ()
23423 {
23424 per_cu->cu = NULL;
23425 }
23426
23427 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23428
23429 static void
23430 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23431 enum language pretend_language)
23432 {
23433 struct attribute *attr;
23434
23435 /* Set the language we're debugging. */
23436 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23437 if (attr != nullptr)
23438 set_cu_language (DW_UNSND (attr), cu);
23439 else
23440 {
23441 cu->language = pretend_language;
23442 cu->language_defn = language_def (cu->language);
23443 }
23444
23445 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23446 }
23447
23448 /* Increase the age counter on each cached compilation unit, and free
23449 any that are too old. */
23450
23451 static void
23452 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23453 {
23454 struct dwarf2_per_cu_data *per_cu, **last_chain;
23455
23456 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23457 per_cu = dwarf2_per_objfile->read_in_chain;
23458 while (per_cu != NULL)
23459 {
23460 per_cu->cu->last_used ++;
23461 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23462 dwarf2_mark (per_cu->cu);
23463 per_cu = per_cu->cu->read_in_chain;
23464 }
23465
23466 per_cu = dwarf2_per_objfile->read_in_chain;
23467 last_chain = &dwarf2_per_objfile->read_in_chain;
23468 while (per_cu != NULL)
23469 {
23470 struct dwarf2_per_cu_data *next_cu;
23471
23472 next_cu = per_cu->cu->read_in_chain;
23473
23474 if (!per_cu->cu->mark)
23475 {
23476 delete per_cu->cu;
23477 *last_chain = next_cu;
23478 }
23479 else
23480 last_chain = &per_cu->cu->read_in_chain;
23481
23482 per_cu = next_cu;
23483 }
23484 }
23485
23486 /* Remove a single compilation unit from the cache. */
23487
23488 static void
23489 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23490 {
23491 struct dwarf2_per_cu_data *per_cu, **last_chain;
23492 struct dwarf2_per_objfile *dwarf2_per_objfile
23493 = target_per_cu->dwarf2_per_objfile;
23494
23495 per_cu = dwarf2_per_objfile->read_in_chain;
23496 last_chain = &dwarf2_per_objfile->read_in_chain;
23497 while (per_cu != NULL)
23498 {
23499 struct dwarf2_per_cu_data *next_cu;
23500
23501 next_cu = per_cu->cu->read_in_chain;
23502
23503 if (per_cu == target_per_cu)
23504 {
23505 delete per_cu->cu;
23506 per_cu->cu = NULL;
23507 *last_chain = next_cu;
23508 break;
23509 }
23510 else
23511 last_chain = &per_cu->cu->read_in_chain;
23512
23513 per_cu = next_cu;
23514 }
23515 }
23516
23517 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23518 We store these in a hash table separate from the DIEs, and preserve them
23519 when the DIEs are flushed out of cache.
23520
23521 The CU "per_cu" pointer is needed because offset alone is not enough to
23522 uniquely identify the type. A file may have multiple .debug_types sections,
23523 or the type may come from a DWO file. Furthermore, while it's more logical
23524 to use per_cu->section+offset, with Fission the section with the data is in
23525 the DWO file but we don't know that section at the point we need it.
23526 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23527 because we can enter the lookup routine, get_die_type_at_offset, from
23528 outside this file, and thus won't necessarily have PER_CU->cu.
23529 Fortunately, PER_CU is stable for the life of the objfile. */
23530
23531 struct dwarf2_per_cu_offset_and_type
23532 {
23533 const struct dwarf2_per_cu_data *per_cu;
23534 sect_offset sect_off;
23535 struct type *type;
23536 };
23537
23538 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23539
23540 static hashval_t
23541 per_cu_offset_and_type_hash (const void *item)
23542 {
23543 const struct dwarf2_per_cu_offset_and_type *ofs
23544 = (const struct dwarf2_per_cu_offset_and_type *) item;
23545
23546 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23547 }
23548
23549 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23550
23551 static int
23552 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23553 {
23554 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23555 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23556 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23557 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23558
23559 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23560 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23561 }
23562
23563 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23564 table if necessary. For convenience, return TYPE.
23565
23566 The DIEs reading must have careful ordering to:
23567 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23568 reading current DIE.
23569 * Not trying to dereference contents of still incompletely read in types
23570 while reading in other DIEs.
23571 * Enable referencing still incompletely read in types just by a pointer to
23572 the type without accessing its fields.
23573
23574 Therefore caller should follow these rules:
23575 * Try to fetch any prerequisite types we may need to build this DIE type
23576 before building the type and calling set_die_type.
23577 * After building type call set_die_type for current DIE as soon as
23578 possible before fetching more types to complete the current type.
23579 * Make the type as complete as possible before fetching more types. */
23580
23581 static struct type *
23582 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23583 {
23584 struct dwarf2_per_objfile *dwarf2_per_objfile
23585 = cu->per_cu->dwarf2_per_objfile;
23586 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23587 struct objfile *objfile = dwarf2_per_objfile->objfile;
23588 struct attribute *attr;
23589 struct dynamic_prop prop;
23590
23591 /* For Ada types, make sure that the gnat-specific data is always
23592 initialized (if not already set). There are a few types where
23593 we should not be doing so, because the type-specific area is
23594 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23595 where the type-specific area is used to store the floatformat).
23596 But this is not a problem, because the gnat-specific information
23597 is actually not needed for these types. */
23598 if (need_gnat_info (cu)
23599 && TYPE_CODE (type) != TYPE_CODE_FUNC
23600 && TYPE_CODE (type) != TYPE_CODE_FLT
23601 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23602 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23603 && TYPE_CODE (type) != TYPE_CODE_METHOD
23604 && !HAVE_GNAT_AUX_INFO (type))
23605 INIT_GNAT_SPECIFIC (type);
23606
23607 /* Read DW_AT_allocated and set in type. */
23608 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23609 if (attr != NULL && attr->form_is_block ())
23610 {
23611 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23612 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23613 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
23614 }
23615 else if (attr != NULL)
23616 {
23617 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23618 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23619 sect_offset_str (die->sect_off));
23620 }
23621
23622 /* Read DW_AT_associated and set in type. */
23623 attr = dwarf2_attr (die, DW_AT_associated, cu);
23624 if (attr != NULL && attr->form_is_block ())
23625 {
23626 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23627 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23628 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
23629 }
23630 else if (attr != NULL)
23631 {
23632 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23633 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23634 sect_offset_str (die->sect_off));
23635 }
23636
23637 /* Read DW_AT_data_location and set in type. */
23638 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23639 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23640 cu->per_cu->addr_type ()))
23641 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
23642
23643 if (dwarf2_per_objfile->die_type_hash == NULL)
23644 dwarf2_per_objfile->die_type_hash
23645 = htab_up (htab_create_alloc (127,
23646 per_cu_offset_and_type_hash,
23647 per_cu_offset_and_type_eq,
23648 NULL, xcalloc, xfree));
23649
23650 ofs.per_cu = cu->per_cu;
23651 ofs.sect_off = die->sect_off;
23652 ofs.type = type;
23653 slot = (struct dwarf2_per_cu_offset_and_type **)
23654 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23655 if (*slot)
23656 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23657 sect_offset_str (die->sect_off));
23658 *slot = XOBNEW (&objfile->objfile_obstack,
23659 struct dwarf2_per_cu_offset_and_type);
23660 **slot = ofs;
23661 return type;
23662 }
23663
23664 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23665 or return NULL if the die does not have a saved type. */
23666
23667 static struct type *
23668 get_die_type_at_offset (sect_offset sect_off,
23669 struct dwarf2_per_cu_data *per_cu)
23670 {
23671 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23672 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23673
23674 if (dwarf2_per_objfile->die_type_hash == NULL)
23675 return NULL;
23676
23677 ofs.per_cu = per_cu;
23678 ofs.sect_off = sect_off;
23679 slot = ((struct dwarf2_per_cu_offset_and_type *)
23680 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23681 if (slot)
23682 return slot->type;
23683 else
23684 return NULL;
23685 }
23686
23687 /* Look up the type for DIE in CU in die_type_hash,
23688 or return NULL if DIE does not have a saved type. */
23689
23690 static struct type *
23691 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23692 {
23693 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23694 }
23695
23696 /* Add a dependence relationship from CU to REF_PER_CU. */
23697
23698 static void
23699 dwarf2_add_dependence (struct dwarf2_cu *cu,
23700 struct dwarf2_per_cu_data *ref_per_cu)
23701 {
23702 void **slot;
23703
23704 if (cu->dependencies == NULL)
23705 cu->dependencies
23706 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23707 NULL, &cu->comp_unit_obstack,
23708 hashtab_obstack_allocate,
23709 dummy_obstack_deallocate);
23710
23711 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23712 if (*slot == NULL)
23713 *slot = ref_per_cu;
23714 }
23715
23716 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23717 Set the mark field in every compilation unit in the
23718 cache that we must keep because we are keeping CU. */
23719
23720 static int
23721 dwarf2_mark_helper (void **slot, void *data)
23722 {
23723 struct dwarf2_per_cu_data *per_cu;
23724
23725 per_cu = (struct dwarf2_per_cu_data *) *slot;
23726
23727 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23728 reading of the chain. As such dependencies remain valid it is not much
23729 useful to track and undo them during QUIT cleanups. */
23730 if (per_cu->cu == NULL)
23731 return 1;
23732
23733 if (per_cu->cu->mark)
23734 return 1;
23735 per_cu->cu->mark = true;
23736
23737 if (per_cu->cu->dependencies != NULL)
23738 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23739
23740 return 1;
23741 }
23742
23743 /* Set the mark field in CU and in every other compilation unit in the
23744 cache that we must keep because we are keeping CU. */
23745
23746 static void
23747 dwarf2_mark (struct dwarf2_cu *cu)
23748 {
23749 if (cu->mark)
23750 return;
23751 cu->mark = true;
23752 if (cu->dependencies != NULL)
23753 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23754 }
23755
23756 static void
23757 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23758 {
23759 while (per_cu)
23760 {
23761 per_cu->cu->mark = false;
23762 per_cu = per_cu->cu->read_in_chain;
23763 }
23764 }
23765
23766 /* Trivial hash function for partial_die_info: the hash value of a DIE
23767 is its offset in .debug_info for this objfile. */
23768
23769 static hashval_t
23770 partial_die_hash (const void *item)
23771 {
23772 const struct partial_die_info *part_die
23773 = (const struct partial_die_info *) item;
23774
23775 return to_underlying (part_die->sect_off);
23776 }
23777
23778 /* Trivial comparison function for partial_die_info structures: two DIEs
23779 are equal if they have the same offset. */
23780
23781 static int
23782 partial_die_eq (const void *item_lhs, const void *item_rhs)
23783 {
23784 const struct partial_die_info *part_die_lhs
23785 = (const struct partial_die_info *) item_lhs;
23786 const struct partial_die_info *part_die_rhs
23787 = (const struct partial_die_info *) item_rhs;
23788
23789 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23790 }
23791
23792 struct cmd_list_element *set_dwarf_cmdlist;
23793 struct cmd_list_element *show_dwarf_cmdlist;
23794
23795 static void
23796 show_check_physname (struct ui_file *file, int from_tty,
23797 struct cmd_list_element *c, const char *value)
23798 {
23799 fprintf_filtered (file,
23800 _("Whether to check \"physname\" is %s.\n"),
23801 value);
23802 }
23803
23804 void _initialize_dwarf2_read ();
23805 void
23806 _initialize_dwarf2_read ()
23807 {
23808 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23809 Set DWARF specific variables.\n\
23810 Configure DWARF variables such as the cache size."),
23811 &set_dwarf_cmdlist, "maintenance set dwarf ",
23812 0/*allow-unknown*/, &maintenance_set_cmdlist);
23813
23814 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23815 Show DWARF specific variables.\n\
23816 Show DWARF variables such as the cache size."),
23817 &show_dwarf_cmdlist, "maintenance show dwarf ",
23818 0/*allow-unknown*/, &maintenance_show_cmdlist);
23819
23820 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23821 &dwarf_max_cache_age, _("\
23822 Set the upper bound on the age of cached DWARF compilation units."), _("\
23823 Show the upper bound on the age of cached DWARF compilation units."), _("\
23824 A higher limit means that cached compilation units will be stored\n\
23825 in memory longer, and more total memory will be used. Zero disables\n\
23826 caching, which can slow down startup."),
23827 NULL,
23828 show_dwarf_max_cache_age,
23829 &set_dwarf_cmdlist,
23830 &show_dwarf_cmdlist);
23831
23832 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23833 Set debugging of the DWARF reader."), _("\
23834 Show debugging of the DWARF reader."), _("\
23835 When enabled (non-zero), debugging messages are printed during DWARF\n\
23836 reading and symtab expansion. A value of 1 (one) provides basic\n\
23837 information. A value greater than 1 provides more verbose information."),
23838 NULL,
23839 NULL,
23840 &setdebuglist, &showdebuglist);
23841
23842 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23843 Set debugging of the DWARF DIE reader."), _("\
23844 Show debugging of the DWARF DIE reader."), _("\
23845 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23846 The value is the maximum depth to print."),
23847 NULL,
23848 NULL,
23849 &setdebuglist, &showdebuglist);
23850
23851 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23852 Set debugging of the dwarf line reader."), _("\
23853 Show debugging of the dwarf line reader."), _("\
23854 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23855 A value of 1 (one) provides basic information.\n\
23856 A value greater than 1 provides more verbose information."),
23857 NULL,
23858 NULL,
23859 &setdebuglist, &showdebuglist);
23860
23861 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23862 Set cross-checking of \"physname\" code against demangler."), _("\
23863 Show cross-checking of \"physname\" code against demangler."), _("\
23864 When enabled, GDB's internal \"physname\" code is checked against\n\
23865 the demangler."),
23866 NULL, show_check_physname,
23867 &setdebuglist, &showdebuglist);
23868
23869 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23870 no_class, &use_deprecated_index_sections, _("\
23871 Set whether to use deprecated gdb_index sections."), _("\
23872 Show whether to use deprecated gdb_index sections."), _("\
23873 When enabled, deprecated .gdb_index sections are used anyway.\n\
23874 Normally they are ignored either because of a missing feature or\n\
23875 performance issue.\n\
23876 Warning: This option must be enabled before gdb reads the file."),
23877 NULL,
23878 NULL,
23879 &setlist, &showlist);
23880
23881 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23882 &dwarf2_locexpr_funcs);
23883 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23884 &dwarf2_loclist_funcs);
23885
23886 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23887 &dwarf2_block_frame_base_locexpr_funcs);
23888 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23889 &dwarf2_block_frame_base_loclist_funcs);
23890
23891 #if GDB_SELF_TEST
23892 selftests::register_test ("dw2_expand_symtabs_matching",
23893 selftests::dw2_expand_symtabs_matching::run_test);
23894 selftests::register_test ("dwarf2_find_containing_comp_unit",
23895 selftests::find_containing_comp_unit::run_test);
23896 #endif
23897 }