]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2-frame.c
* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[thirdparty/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "value.h"
36
37 #include "gdb_assert.h"
38 #include "gdb_string.h"
39
40 #include "complaints.h"
41 #include "dwarf2-frame.h"
42
43 /* Call Frame Information (CFI). */
44
45 /* Common Information Entry (CIE). */
46
47 struct dwarf2_cie
48 {
49 /* Offset into the .debug_frame section where this CIE was found.
50 Used to identify this CIE. */
51 ULONGEST cie_pointer;
52
53 /* Constant that is factored out of all advance location
54 instructions. */
55 ULONGEST code_alignment_factor;
56
57 /* Constants that is factored out of all offset instructions. */
58 LONGEST data_alignment_factor;
59
60 /* Return address column. */
61 ULONGEST return_address_register;
62
63 /* Instruction sequence to initialize a register set. */
64 gdb_byte *initial_instructions;
65 gdb_byte *end;
66
67 /* Saved augmentation, in case it's needed later. */
68 char *augmentation;
69
70 /* Encoding of addresses. */
71 gdb_byte encoding;
72
73 /* True if a 'z' augmentation existed. */
74 unsigned char saw_z_augmentation;
75
76 /* True if an 'S' augmentation existed. */
77 unsigned char signal_frame;
78
79 /* The version recorded in the CIE. */
80 unsigned char version;
81
82 struct dwarf2_cie *next;
83 };
84
85 /* Frame Description Entry (FDE). */
86
87 struct dwarf2_fde
88 {
89 /* CIE for this FDE. */
90 struct dwarf2_cie *cie;
91
92 /* First location associated with this FDE. */
93 CORE_ADDR initial_location;
94
95 /* Number of bytes of program instructions described by this FDE. */
96 CORE_ADDR address_range;
97
98 /* Instruction sequence. */
99 gdb_byte *instructions;
100 gdb_byte *end;
101
102 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
103 section. */
104 unsigned char eh_frame_p;
105
106 struct dwarf2_fde *next;
107 };
108
109 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
110 \f
111
112 /* Structure describing a frame state. */
113
114 struct dwarf2_frame_state
115 {
116 /* Each register save state can be described in terms of a CFA slot,
117 another register, or a location expression. */
118 struct dwarf2_frame_state_reg_info
119 {
120 struct dwarf2_frame_state_reg *reg;
121 int num_regs;
122
123 /* Used to implement DW_CFA_remember_state. */
124 struct dwarf2_frame_state_reg_info *prev;
125 } regs;
126
127 LONGEST cfa_offset;
128 ULONGEST cfa_reg;
129 gdb_byte *cfa_exp;
130 enum {
131 CFA_UNSET,
132 CFA_REG_OFFSET,
133 CFA_EXP
134 } cfa_how;
135
136 /* The PC described by the current frame state. */
137 CORE_ADDR pc;
138
139 /* Initial register set from the CIE.
140 Used to implement DW_CFA_restore. */
141 struct dwarf2_frame_state_reg_info initial;
142
143 /* The information we care about from the CIE. */
144 LONGEST data_align;
145 ULONGEST code_align;
146 ULONGEST retaddr_column;
147
148 /* Flags for known producer quirks. */
149
150 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
151 and DW_CFA_def_cfa_offset takes a factored offset. */
152 int armcc_cfa_offsets_sf;
153
154 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
155 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
156 int armcc_cfa_offsets_reversed;
157 };
158
159 /* Store the length the expression for the CFA in the `cfa_reg' field,
160 which is unused in that case. */
161 #define cfa_exp_len cfa_reg
162
163 /* Assert that the register set RS is large enough to store NUM_REGS
164 columns. If necessary, enlarge the register set. */
165
166 static void
167 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
168 int num_regs)
169 {
170 size_t size = sizeof (struct dwarf2_frame_state_reg);
171
172 if (num_regs <= rs->num_regs)
173 return;
174
175 rs->reg = (struct dwarf2_frame_state_reg *)
176 xrealloc (rs->reg, num_regs * size);
177
178 /* Initialize newly allocated registers. */
179 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
180 rs->num_regs = num_regs;
181 }
182
183 /* Copy the register columns in register set RS into newly allocated
184 memory and return a pointer to this newly created copy. */
185
186 static struct dwarf2_frame_state_reg *
187 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
188 {
189 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
190 struct dwarf2_frame_state_reg *reg;
191
192 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
193 memcpy (reg, rs->reg, size);
194
195 return reg;
196 }
197
198 /* Release the memory allocated to register set RS. */
199
200 static void
201 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
202 {
203 if (rs)
204 {
205 dwarf2_frame_state_free_regs (rs->prev);
206
207 xfree (rs->reg);
208 xfree (rs);
209 }
210 }
211
212 /* Release the memory allocated to the frame state FS. */
213
214 static void
215 dwarf2_frame_state_free (void *p)
216 {
217 struct dwarf2_frame_state *fs = p;
218
219 dwarf2_frame_state_free_regs (fs->initial.prev);
220 dwarf2_frame_state_free_regs (fs->regs.prev);
221 xfree (fs->initial.reg);
222 xfree (fs->regs.reg);
223 xfree (fs);
224 }
225 \f
226
227 /* Helper functions for execute_stack_op. */
228
229 static CORE_ADDR
230 read_reg (void *baton, int reg)
231 {
232 struct frame_info *next_frame = (struct frame_info *) baton;
233 struct gdbarch *gdbarch = get_frame_arch (next_frame);
234 int regnum;
235 gdb_byte *buf;
236
237 regnum = DWARF2_REG_TO_REGNUM (reg);
238
239 buf = alloca (register_size (gdbarch, regnum));
240 frame_unwind_register (next_frame, regnum, buf);
241
242 /* Convert the register to an integer. This returns a LONGEST
243 rather than a CORE_ADDR, but unpack_pointer does the same thing
244 under the covers, and this makes more sense for non-pointer
245 registers. Maybe read_reg and the associated interfaces should
246 deal with "struct value" instead of CORE_ADDR. */
247 return unpack_long (register_type (gdbarch, regnum), buf);
248 }
249
250 static void
251 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
252 {
253 read_memory (addr, buf, len);
254 }
255
256 static void
257 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
258 {
259 internal_error (__FILE__, __LINE__,
260 _("Support for DW_OP_fbreg is unimplemented"));
261 }
262
263 static CORE_ADDR
264 no_get_tls_address (void *baton, CORE_ADDR offset)
265 {
266 internal_error (__FILE__, __LINE__,
267 _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
268 }
269
270 static CORE_ADDR
271 execute_stack_op (gdb_byte *exp, ULONGEST len,
272 struct frame_info *next_frame, CORE_ADDR initial)
273 {
274 struct dwarf_expr_context *ctx;
275 CORE_ADDR result;
276
277 ctx = new_dwarf_expr_context ();
278 ctx->baton = next_frame;
279 ctx->read_reg = read_reg;
280 ctx->read_mem = read_mem;
281 ctx->get_frame_base = no_get_frame_base;
282 ctx->get_tls_address = no_get_tls_address;
283
284 dwarf_expr_push (ctx, initial);
285 dwarf_expr_eval (ctx, exp, len);
286 result = dwarf_expr_fetch (ctx, 0);
287
288 if (ctx->in_reg)
289 result = read_reg (next_frame, result);
290
291 free_dwarf_expr_context (ctx);
292
293 return result;
294 }
295 \f
296
297 static void
298 execute_cfa_program (gdb_byte *insn_ptr, gdb_byte *insn_end,
299 struct frame_info *next_frame,
300 struct dwarf2_frame_state *fs, int eh_frame_p)
301 {
302 CORE_ADDR pc = frame_pc_unwind (next_frame);
303 int bytes_read;
304 struct gdbarch *gdbarch = get_frame_arch (next_frame);
305
306 while (insn_ptr < insn_end && fs->pc <= pc)
307 {
308 gdb_byte insn = *insn_ptr++;
309 ULONGEST utmp, reg;
310 LONGEST offset;
311
312 if ((insn & 0xc0) == DW_CFA_advance_loc)
313 fs->pc += (insn & 0x3f) * fs->code_align;
314 else if ((insn & 0xc0) == DW_CFA_offset)
315 {
316 reg = insn & 0x3f;
317 if (eh_frame_p)
318 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
319 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
320 offset = utmp * fs->data_align;
321 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
322 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
323 fs->regs.reg[reg].loc.offset = offset;
324 }
325 else if ((insn & 0xc0) == DW_CFA_restore)
326 {
327 gdb_assert (fs->initial.reg);
328 reg = insn & 0x3f;
329 if (eh_frame_p)
330 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
331 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
332 if (reg < fs->initial.num_regs)
333 fs->regs.reg[reg] = fs->initial.reg[reg];
334 else
335 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
336
337 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
338 complaint (&symfile_complaints, _("\
339 incomplete CFI data; DW_CFA_restore unspecified\n\
340 register %s (#%d) at 0x%s"),
341 REGISTER_NAME(DWARF2_REG_TO_REGNUM(reg)),
342 DWARF2_REG_TO_REGNUM(reg), paddr (fs->pc));
343 }
344 else
345 {
346 switch (insn)
347 {
348 case DW_CFA_set_loc:
349 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
350 insn_ptr += bytes_read;
351 break;
352
353 case DW_CFA_advance_loc1:
354 utmp = extract_unsigned_integer (insn_ptr, 1);
355 fs->pc += utmp * fs->code_align;
356 insn_ptr++;
357 break;
358 case DW_CFA_advance_loc2:
359 utmp = extract_unsigned_integer (insn_ptr, 2);
360 fs->pc += utmp * fs->code_align;
361 insn_ptr += 2;
362 break;
363 case DW_CFA_advance_loc4:
364 utmp = extract_unsigned_integer (insn_ptr, 4);
365 fs->pc += utmp * fs->code_align;
366 insn_ptr += 4;
367 break;
368
369 case DW_CFA_offset_extended:
370 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
371 if (eh_frame_p)
372 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
373 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
374 offset = utmp * fs->data_align;
375 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
376 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
377 fs->regs.reg[reg].loc.offset = offset;
378 break;
379
380 case DW_CFA_restore_extended:
381 gdb_assert (fs->initial.reg);
382 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
383 if (eh_frame_p)
384 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
385 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
386 fs->regs.reg[reg] = fs->initial.reg[reg];
387 break;
388
389 case DW_CFA_undefined:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
391 if (eh_frame_p)
392 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
393 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
394 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
395 break;
396
397 case DW_CFA_same_value:
398 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
399 if (eh_frame_p)
400 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
401 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
402 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
403 break;
404
405 case DW_CFA_register:
406 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
407 if (eh_frame_p)
408 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
409 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
410 if (eh_frame_p)
411 utmp = dwarf2_frame_eh_frame_regnum (gdbarch, utmp);
412 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
413 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
414 fs->regs.reg[reg].loc.reg = utmp;
415 break;
416
417 case DW_CFA_remember_state:
418 {
419 struct dwarf2_frame_state_reg_info *new_rs;
420
421 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
422 *new_rs = fs->regs;
423 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
424 fs->regs.prev = new_rs;
425 }
426 break;
427
428 case DW_CFA_restore_state:
429 {
430 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
431
432 if (old_rs == NULL)
433 {
434 complaint (&symfile_complaints, _("\
435 bad CFI data; mismatched DW_CFA_restore_state at 0x%s"), paddr (fs->pc));
436 }
437 else
438 {
439 xfree (fs->regs.reg);
440 fs->regs = *old_rs;
441 xfree (old_rs);
442 }
443 }
444 break;
445
446 case DW_CFA_def_cfa:
447 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
448 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
449
450 if (fs->armcc_cfa_offsets_sf)
451 utmp *= fs->data_align;
452
453 fs->cfa_offset = utmp;
454 fs->cfa_how = CFA_REG_OFFSET;
455 break;
456
457 case DW_CFA_def_cfa_register:
458 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
459 if (eh_frame_p)
460 fs->cfa_reg = dwarf2_frame_eh_frame_regnum (gdbarch,
461 fs->cfa_reg);
462 fs->cfa_how = CFA_REG_OFFSET;
463 break;
464
465 case DW_CFA_def_cfa_offset:
466 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
467
468 if (fs->armcc_cfa_offsets_sf)
469 utmp *= fs->data_align;
470
471 fs->cfa_offset = utmp;
472 /* cfa_how deliberately not set. */
473 break;
474
475 case DW_CFA_nop:
476 break;
477
478 case DW_CFA_def_cfa_expression:
479 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
480 fs->cfa_exp = insn_ptr;
481 fs->cfa_how = CFA_EXP;
482 insn_ptr += fs->cfa_exp_len;
483 break;
484
485 case DW_CFA_expression:
486 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
487 if (eh_frame_p)
488 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
489 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
490 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
491 fs->regs.reg[reg].loc.exp = insn_ptr;
492 fs->regs.reg[reg].exp_len = utmp;
493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
494 insn_ptr += utmp;
495 break;
496
497 case DW_CFA_offset_extended_sf:
498 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
499 if (eh_frame_p)
500 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
501 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
502 offset *= fs->data_align;
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
505 fs->regs.reg[reg].loc.offset = offset;
506 break;
507
508 case DW_CFA_val_offset:
509 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
510 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
511 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
512 offset = utmp * fs->data_align;
513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
514 fs->regs.reg[reg].loc.offset = offset;
515 break;
516
517 case DW_CFA_val_offset_sf:
518 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
519 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
520 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
521 offset *= fs->data_align;
522 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
523 fs->regs.reg[reg].loc.offset = offset;
524 break;
525
526 case DW_CFA_val_expression:
527 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
528 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
529 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
530 fs->regs.reg[reg].loc.exp = insn_ptr;
531 fs->regs.reg[reg].exp_len = utmp;
532 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
533 insn_ptr += utmp;
534 break;
535
536 case DW_CFA_def_cfa_sf:
537 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
538 if (eh_frame_p)
539 fs->cfa_reg = dwarf2_frame_eh_frame_regnum (gdbarch,
540 fs->cfa_reg);
541 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
542 fs->cfa_offset = offset * fs->data_align;
543 fs->cfa_how = CFA_REG_OFFSET;
544 break;
545
546 case DW_CFA_def_cfa_offset_sf:
547 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
548 fs->cfa_offset = offset * fs->data_align;
549 /* cfa_how deliberately not set. */
550 break;
551
552 case DW_CFA_GNU_window_save:
553 /* This is SPARC-specific code, and contains hard-coded
554 constants for the register numbering scheme used by
555 GCC. Rather than having a architecture-specific
556 operation that's only ever used by a single
557 architecture, we provide the implementation here.
558 Incidentally that's what GCC does too in its
559 unwinder. */
560 {
561 struct gdbarch *gdbarch = get_frame_arch (next_frame);
562 int size = register_size(gdbarch, 0);
563 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
564 for (reg = 8; reg < 16; reg++)
565 {
566 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
567 fs->regs.reg[reg].loc.reg = reg + 16;
568 }
569 for (reg = 16; reg < 32; reg++)
570 {
571 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
572 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
573 }
574 }
575 break;
576
577 case DW_CFA_GNU_args_size:
578 /* Ignored. */
579 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
580 break;
581
582 case DW_CFA_GNU_negative_offset_extended:
583 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
584 if (eh_frame_p)
585 reg = dwarf2_frame_eh_frame_regnum (gdbarch, reg);
586 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
587 offset *= fs->data_align;
588 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
589 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
590 fs->regs.reg[reg].loc.offset = -offset;
591 break;
592
593 default:
594 internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
595 }
596 }
597 }
598
599 /* Don't allow remember/restore between CIE and FDE programs. */
600 dwarf2_frame_state_free_regs (fs->regs.prev);
601 fs->regs.prev = NULL;
602 }
603 \f
604
605 /* Architecture-specific operations. */
606
607 /* Per-architecture data key. */
608 static struct gdbarch_data *dwarf2_frame_data;
609
610 struct dwarf2_frame_ops
611 {
612 /* Pre-initialize the register state REG for register REGNUM. */
613 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
614 struct frame_info *);
615
616 /* Check whether the frame preceding NEXT_FRAME will be a signal
617 trampoline. */
618 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
619
620 /* Convert .eh_frame register number to DWARF register number. */
621 int (*eh_frame_regnum) (struct gdbarch *, int);
622 };
623
624 /* Default architecture-specific register state initialization
625 function. */
626
627 static void
628 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
629 struct dwarf2_frame_state_reg *reg,
630 struct frame_info *next_frame)
631 {
632 /* If we have a register that acts as a program counter, mark it as
633 a destination for the return address. If we have a register that
634 serves as the stack pointer, arrange for it to be filled with the
635 call frame address (CFA). The other registers are marked as
636 unspecified.
637
638 We copy the return address to the program counter, since many
639 parts in GDB assume that it is possible to get the return address
640 by unwinding the program counter register. However, on ISA's
641 with a dedicated return address register, the CFI usually only
642 contains information to unwind that return address register.
643
644 The reason we're treating the stack pointer special here is
645 because in many cases GCC doesn't emit CFI for the stack pointer
646 and implicitly assumes that it is equal to the CFA. This makes
647 some sense since the DWARF specification (version 3, draft 8,
648 p. 102) says that:
649
650 "Typically, the CFA is defined to be the value of the stack
651 pointer at the call site in the previous frame (which may be
652 different from its value on entry to the current frame)."
653
654 However, this isn't true for all platforms supported by GCC
655 (e.g. IBM S/390 and zSeries). Those architectures should provide
656 their own architecture-specific initialization function. */
657
658 if (regnum == PC_REGNUM)
659 reg->how = DWARF2_FRAME_REG_RA;
660 else if (regnum == SP_REGNUM)
661 reg->how = DWARF2_FRAME_REG_CFA;
662 }
663
664 /* Return a default for the architecture-specific operations. */
665
666 static void *
667 dwarf2_frame_init (struct obstack *obstack)
668 {
669 struct dwarf2_frame_ops *ops;
670
671 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
672 ops->init_reg = dwarf2_frame_default_init_reg;
673 return ops;
674 }
675
676 /* Set the architecture-specific register state initialization
677 function for GDBARCH to INIT_REG. */
678
679 void
680 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
681 void (*init_reg) (struct gdbarch *, int,
682 struct dwarf2_frame_state_reg *,
683 struct frame_info *))
684 {
685 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
686
687 ops->init_reg = init_reg;
688 }
689
690 /* Pre-initialize the register state REG for register REGNUM. */
691
692 static void
693 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
694 struct dwarf2_frame_state_reg *reg,
695 struct frame_info *next_frame)
696 {
697 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
698
699 ops->init_reg (gdbarch, regnum, reg, next_frame);
700 }
701
702 /* Set the architecture-specific signal trampoline recognition
703 function for GDBARCH to SIGNAL_FRAME_P. */
704
705 void
706 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
707 int (*signal_frame_p) (struct gdbarch *,
708 struct frame_info *))
709 {
710 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
711
712 ops->signal_frame_p = signal_frame_p;
713 }
714
715 /* Query the architecture-specific signal frame recognizer for
716 NEXT_FRAME. */
717
718 static int
719 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
720 struct frame_info *next_frame)
721 {
722 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
723
724 if (ops->signal_frame_p == NULL)
725 return 0;
726 return ops->signal_frame_p (gdbarch, next_frame);
727 }
728
729 /* Set the architecture-specific mapping of .eh_frame register numbers to
730 DWARF register numbers. */
731
732 void
733 dwarf2_frame_set_eh_frame_regnum (struct gdbarch *gdbarch,
734 int (*eh_frame_regnum) (struct gdbarch *,
735 int))
736 {
737 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
738
739 ops->eh_frame_regnum = eh_frame_regnum;
740 }
741
742 /* Translate a .eh_frame register to DWARF register. */
743
744 int
745 dwarf2_frame_eh_frame_regnum (struct gdbarch *gdbarch, int regnum)
746 {
747 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
748
749 if (ops->eh_frame_regnum == NULL)
750 return regnum;
751 return ops->eh_frame_regnum (gdbarch, regnum);
752 }
753
754 static void
755 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
756 struct dwarf2_fde *fde)
757 {
758 static const char *arm_idents[] = {
759 "ARM C Compiler, ADS",
760 "Thumb C Compiler, ADS",
761 "ARM C++ Compiler, ADS",
762 "Thumb C++ Compiler, ADS",
763 "ARM/Thumb C/C++ Compiler, RVCT"
764 };
765 int i;
766
767 struct symtab *s;
768
769 s = find_pc_symtab (fs->pc);
770 if (s == NULL || s->producer == NULL)
771 return;
772
773 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
774 if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
775 {
776 if (fde->cie->version == 1)
777 fs->armcc_cfa_offsets_sf = 1;
778
779 if (fde->cie->version == 1)
780 fs->armcc_cfa_offsets_reversed = 1;
781
782 /* The reversed offset problem is present in some compilers
783 using DWARF3, but it was eventually fixed. Check the ARM
784 defined augmentations, which are in the format "armcc" followed
785 by a list of one-character options. The "+" option means
786 this problem is fixed (no quirk needed). If the armcc
787 augmentation is missing, the quirk is needed. */
788 if (fde->cie->version == 3
789 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
790 || strchr (fde->cie->augmentation + 5, '+') == NULL))
791 fs->armcc_cfa_offsets_reversed = 1;
792
793 return;
794 }
795 }
796 \f
797
798 struct dwarf2_frame_cache
799 {
800 /* DWARF Call Frame Address. */
801 CORE_ADDR cfa;
802
803 /* Set if the return address column was marked as undefined. */
804 int undefined_retaddr;
805
806 /* Saved registers, indexed by GDB register number, not by DWARF
807 register number. */
808 struct dwarf2_frame_state_reg *reg;
809
810 /* Return address register. */
811 struct dwarf2_frame_state_reg retaddr_reg;
812 };
813
814 static struct dwarf2_frame_cache *
815 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
816 {
817 struct cleanup *old_chain;
818 struct gdbarch *gdbarch = get_frame_arch (next_frame);
819 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
820 struct dwarf2_frame_cache *cache;
821 struct dwarf2_frame_state *fs;
822 struct dwarf2_fde *fde;
823
824 if (*this_cache)
825 return *this_cache;
826
827 /* Allocate a new cache. */
828 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
829 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
830
831 /* Allocate and initialize the frame state. */
832 fs = XMALLOC (struct dwarf2_frame_state);
833 memset (fs, 0, sizeof (struct dwarf2_frame_state));
834 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
835
836 /* Unwind the PC.
837
838 Note that if NEXT_FRAME is never supposed to return (i.e. a call
839 to abort), the compiler might optimize away the instruction at
840 NEXT_FRAME's return address. As a result the return address will
841 point at some random instruction, and the CFI for that
842 instruction is probably worthless to us. GCC's unwinder solves
843 this problem by substracting 1 from the return address to get an
844 address in the middle of a presumed call instruction (or the
845 instruction in the associated delay slot). This should only be
846 done for "normal" frames and not for resume-type frames (signal
847 handlers, sentinel frames, dummy frames). The function
848 frame_unwind_address_in_block does just this. It's not clear how
849 reliable the method is though; there is the potential for the
850 register state pre-call being different to that on return. */
851 fs->pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
852
853 /* Find the correct FDE. */
854 fde = dwarf2_frame_find_fde (&fs->pc);
855 gdb_assert (fde != NULL);
856
857 /* Extract any interesting information from the CIE. */
858 fs->data_align = fde->cie->data_alignment_factor;
859 fs->code_align = fde->cie->code_alignment_factor;
860 fs->retaddr_column = fde->cie->return_address_register;
861
862 /* Check for "quirks" - known bugs in producers. */
863 dwarf2_frame_find_quirks (fs, fde);
864
865 /* First decode all the insns in the CIE. */
866 execute_cfa_program (fde->cie->initial_instructions,
867 fde->cie->end, next_frame, fs, fde->eh_frame_p);
868
869 /* Save the initialized register set. */
870 fs->initial = fs->regs;
871 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
872
873 /* Then decode the insns in the FDE up to our target PC. */
874 execute_cfa_program (fde->instructions, fde->end, next_frame, fs,
875 fde->eh_frame_p);
876
877 /* Caclulate the CFA. */
878 switch (fs->cfa_how)
879 {
880 case CFA_REG_OFFSET:
881 cache->cfa = read_reg (next_frame, fs->cfa_reg);
882 if (fs->armcc_cfa_offsets_reversed)
883 cache->cfa -= fs->cfa_offset;
884 else
885 cache->cfa += fs->cfa_offset;
886 break;
887
888 case CFA_EXP:
889 cache->cfa =
890 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
891 break;
892
893 default:
894 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
895 }
896
897 /* Initialize the register state. */
898 {
899 int regnum;
900
901 for (regnum = 0; regnum < num_regs; regnum++)
902 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], next_frame);
903 }
904
905 /* Go through the DWARF2 CFI generated table and save its register
906 location information in the cache. Note that we don't skip the
907 return address column; it's perfectly all right for it to
908 correspond to a real register. If it doesn't correspond to a
909 real register, or if we shouldn't treat it as such,
910 DWARF2_REG_TO_REGNUM should be defined to return a number outside
911 the range [0, NUM_REGS). */
912 {
913 int column; /* CFI speak for "register number". */
914
915 for (column = 0; column < fs->regs.num_regs; column++)
916 {
917 /* Use the GDB register number as the destination index. */
918 int regnum = DWARF2_REG_TO_REGNUM (column);
919
920 /* If there's no corresponding GDB register, ignore it. */
921 if (regnum < 0 || regnum >= num_regs)
922 continue;
923
924 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
925 of all debug info registers. If it doesn't, complain (but
926 not too loudly). It turns out that GCC assumes that an
927 unspecified register implies "same value" when CFI (draft
928 7) specifies nothing at all. Such a register could equally
929 be interpreted as "undefined". Also note that this check
930 isn't sufficient; it only checks that all registers in the
931 range [0 .. max column] are specified, and won't detect
932 problems when a debug info register falls outside of the
933 table. We need a way of iterating through all the valid
934 DWARF2 register numbers. */
935 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
936 {
937 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
938 complaint (&symfile_complaints, _("\
939 incomplete CFI data; unspecified registers (e.g., %s) at 0x%s"),
940 gdbarch_register_name (gdbarch, regnum),
941 paddr_nz (fs->pc));
942 }
943 else
944 cache->reg[regnum] = fs->regs.reg[column];
945 }
946 }
947
948 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
949 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
950 {
951 int regnum;
952
953 for (regnum = 0; regnum < num_regs; regnum++)
954 {
955 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
956 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
957 {
958 struct dwarf2_frame_state_reg *retaddr_reg =
959 &fs->regs.reg[fs->retaddr_column];
960
961 /* It seems rather bizarre to specify an "empty" column as
962 the return adress column. However, this is exactly
963 what GCC does on some targets. It turns out that GCC
964 assumes that the return address can be found in the
965 register corresponding to the return address column.
966 Incidentally, that's how we should treat a return
967 address column specifying "same value" too. */
968 if (fs->retaddr_column < fs->regs.num_regs
969 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
970 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
971 {
972 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
973 cache->reg[regnum] = *retaddr_reg;
974 else
975 cache->retaddr_reg = *retaddr_reg;
976 }
977 else
978 {
979 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
980 {
981 cache->reg[regnum].loc.reg = fs->retaddr_column;
982 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
983 }
984 else
985 {
986 cache->retaddr_reg.loc.reg = fs->retaddr_column;
987 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
988 }
989 }
990 }
991 }
992 }
993
994 if (fs->retaddr_column < fs->regs.num_regs
995 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
996 cache->undefined_retaddr = 1;
997
998 do_cleanups (old_chain);
999
1000 *this_cache = cache;
1001 return cache;
1002 }
1003
1004 static void
1005 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
1006 struct frame_id *this_id)
1007 {
1008 struct dwarf2_frame_cache *cache =
1009 dwarf2_frame_cache (next_frame, this_cache);
1010
1011 if (cache->undefined_retaddr)
1012 return;
1013
1014 (*this_id) = frame_id_build (cache->cfa,
1015 frame_func_unwind (next_frame, NORMAL_FRAME));
1016 }
1017
1018 static void
1019 dwarf2_signal_frame_this_id (struct frame_info *next_frame, void **this_cache,
1020 struct frame_id *this_id)
1021 {
1022 struct dwarf2_frame_cache *cache =
1023 dwarf2_frame_cache (next_frame, this_cache);
1024
1025 if (cache->undefined_retaddr)
1026 return;
1027
1028 (*this_id) = frame_id_build (cache->cfa,
1029 frame_func_unwind (next_frame, SIGTRAMP_FRAME));
1030 }
1031
1032 static void
1033 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1034 int regnum, int *optimizedp,
1035 enum lval_type *lvalp, CORE_ADDR *addrp,
1036 int *realnump, gdb_byte *valuep)
1037 {
1038 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1039 struct dwarf2_frame_cache *cache =
1040 dwarf2_frame_cache (next_frame, this_cache);
1041
1042 switch (cache->reg[regnum].how)
1043 {
1044 case DWARF2_FRAME_REG_UNDEFINED:
1045 /* If CFI explicitly specified that the value isn't defined,
1046 mark it as optimized away; the value isn't available. */
1047 *optimizedp = 1;
1048 *lvalp = not_lval;
1049 *addrp = 0;
1050 *realnump = -1;
1051 if (valuep)
1052 {
1053 /* In some cases, for example %eflags on the i386, we have
1054 to provide a sane value, even though this register wasn't
1055 saved. Assume we can get it from NEXT_FRAME. */
1056 frame_unwind_register (next_frame, regnum, valuep);
1057 }
1058 break;
1059
1060 case DWARF2_FRAME_REG_SAVED_OFFSET:
1061 *optimizedp = 0;
1062 *lvalp = lval_memory;
1063 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
1064 *realnump = -1;
1065 if (valuep)
1066 {
1067 /* Read the value in from memory. */
1068 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1069 }
1070 break;
1071
1072 case DWARF2_FRAME_REG_SAVED_REG:
1073 *optimizedp = 0;
1074 *lvalp = lval_register;
1075 *addrp = 0;
1076 *realnump = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
1077 if (valuep)
1078 frame_unwind_register (next_frame, (*realnump), valuep);
1079 break;
1080
1081 case DWARF2_FRAME_REG_SAVED_EXP:
1082 *optimizedp = 0;
1083 *lvalp = lval_memory;
1084 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
1085 cache->reg[regnum].exp_len,
1086 next_frame, cache->cfa);
1087 *realnump = -1;
1088 if (valuep)
1089 {
1090 /* Read the value in from memory. */
1091 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1092 }
1093 break;
1094
1095 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1096 *optimizedp = 0;
1097 *lvalp = not_lval;
1098 *addrp = 0;
1099 *realnump = -1;
1100 if (valuep)
1101 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1102 cache->cfa + cache->reg[regnum].loc.offset);
1103 break;
1104
1105 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1106 *optimizedp = 0;
1107 *lvalp = not_lval;
1108 *addrp = 0;
1109 *realnump = -1;
1110 if (valuep)
1111 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1112 execute_stack_op (cache->reg[regnum].loc.exp,
1113 cache->reg[regnum].exp_len,
1114 next_frame, cache->cfa));
1115 break;
1116
1117 case DWARF2_FRAME_REG_UNSPECIFIED:
1118 /* GCC, in its infinite wisdom decided to not provide unwind
1119 information for registers that are "same value". Since
1120 DWARF2 (3 draft 7) doesn't define such behavior, said
1121 registers are actually undefined (which is different to CFI
1122 "undefined"). Code above issues a complaint about this.
1123 Here just fudge the books, assume GCC, and that the value is
1124 more inner on the stack. */
1125 *optimizedp = 0;
1126 *lvalp = lval_register;
1127 *addrp = 0;
1128 *realnump = regnum;
1129 if (valuep)
1130 frame_unwind_register (next_frame, (*realnump), valuep);
1131 break;
1132
1133 case DWARF2_FRAME_REG_SAME_VALUE:
1134 *optimizedp = 0;
1135 *lvalp = lval_register;
1136 *addrp = 0;
1137 *realnump = regnum;
1138 if (valuep)
1139 frame_unwind_register (next_frame, (*realnump), valuep);
1140 break;
1141
1142 case DWARF2_FRAME_REG_CFA:
1143 *optimizedp = 0;
1144 *lvalp = not_lval;
1145 *addrp = 0;
1146 *realnump = -1;
1147 if (valuep)
1148 {
1149 /* Store the value. */
1150 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
1151 }
1152 break;
1153
1154 case DWARF2_FRAME_REG_CFA_OFFSET:
1155 *optimizedp = 0;
1156 *lvalp = not_lval;
1157 *addrp = 0;
1158 *realnump = -1;
1159 if (valuep)
1160 {
1161 /* Store the value. */
1162 store_typed_address (valuep, builtin_type_void_data_ptr,
1163 cache->cfa + cache->reg[regnum].loc.offset);
1164 }
1165 break;
1166
1167 case DWARF2_FRAME_REG_RA_OFFSET:
1168 *optimizedp = 0;
1169 *lvalp = not_lval;
1170 *addrp = 0;
1171 *realnump = -1;
1172 if (valuep)
1173 {
1174 CORE_ADDR pc = cache->reg[regnum].loc.offset;
1175
1176 regnum = DWARF2_REG_TO_REGNUM (cache->retaddr_reg.loc.reg);
1177 pc += frame_unwind_register_unsigned (next_frame, regnum);
1178 store_typed_address (valuep, builtin_type_void_func_ptr, pc);
1179 }
1180 break;
1181
1182 default:
1183 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1184 }
1185 }
1186
1187 static const struct frame_unwind dwarf2_frame_unwind =
1188 {
1189 NORMAL_FRAME,
1190 dwarf2_frame_this_id,
1191 dwarf2_frame_prev_register
1192 };
1193
1194 static const struct frame_unwind dwarf2_signal_frame_unwind =
1195 {
1196 SIGTRAMP_FRAME,
1197 dwarf2_signal_frame_this_id,
1198 dwarf2_frame_prev_register
1199 };
1200
1201 const struct frame_unwind *
1202 dwarf2_frame_sniffer (struct frame_info *next_frame)
1203 {
1204 /* Grab an address that is guarenteed to reside somewhere within the
1205 function. frame_pc_unwind(), for a no-return next function, can
1206 end up returning something past the end of this function's body.
1207 If the frame we're sniffing for is a signal frame whose start
1208 address is placed on the stack by the OS, its FDE must
1209 extend one byte before its start address or we will miss it. */
1210 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1211 NORMAL_FRAME);
1212 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1213 if (!fde)
1214 return NULL;
1215
1216 /* On some targets, signal trampolines may have unwind information.
1217 We need to recognize them so that we set the frame type
1218 correctly. */
1219
1220 if (fde->cie->signal_frame
1221 || dwarf2_frame_signal_frame_p (get_frame_arch (next_frame),
1222 next_frame))
1223 return &dwarf2_signal_frame_unwind;
1224
1225 return &dwarf2_frame_unwind;
1226 }
1227 \f
1228
1229 /* There is no explicitly defined relationship between the CFA and the
1230 location of frame's local variables and arguments/parameters.
1231 Therefore, frame base methods on this page should probably only be
1232 used as a last resort, just to avoid printing total garbage as a
1233 response to the "info frame" command. */
1234
1235 static CORE_ADDR
1236 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
1237 {
1238 struct dwarf2_frame_cache *cache =
1239 dwarf2_frame_cache (next_frame, this_cache);
1240
1241 return cache->cfa;
1242 }
1243
1244 static const struct frame_base dwarf2_frame_base =
1245 {
1246 &dwarf2_frame_unwind,
1247 dwarf2_frame_base_address,
1248 dwarf2_frame_base_address,
1249 dwarf2_frame_base_address
1250 };
1251
1252 const struct frame_base *
1253 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
1254 {
1255 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame,
1256 NORMAL_FRAME);
1257 if (dwarf2_frame_find_fde (&block_addr))
1258 return &dwarf2_frame_base;
1259
1260 return NULL;
1261 }
1262 \f
1263 /* A minimal decoding of DWARF2 compilation units. We only decode
1264 what's needed to get to the call frame information. */
1265
1266 struct comp_unit
1267 {
1268 /* Keep the bfd convenient. */
1269 bfd *abfd;
1270
1271 struct objfile *objfile;
1272
1273 /* Linked list of CIEs for this object. */
1274 struct dwarf2_cie *cie;
1275
1276 /* Pointer to the .debug_frame section loaded into memory. */
1277 gdb_byte *dwarf_frame_buffer;
1278
1279 /* Length of the loaded .debug_frame section. */
1280 unsigned long dwarf_frame_size;
1281
1282 /* Pointer to the .debug_frame section. */
1283 asection *dwarf_frame_section;
1284
1285 /* Base for DW_EH_PE_datarel encodings. */
1286 bfd_vma dbase;
1287
1288 /* Base for DW_EH_PE_textrel encodings. */
1289 bfd_vma tbase;
1290 };
1291
1292 const struct objfile_data *dwarf2_frame_objfile_data;
1293
1294 static unsigned int
1295 read_1_byte (bfd *abfd, gdb_byte *buf)
1296 {
1297 return bfd_get_8 (abfd, buf);
1298 }
1299
1300 static unsigned int
1301 read_4_bytes (bfd *abfd, gdb_byte *buf)
1302 {
1303 return bfd_get_32 (abfd, buf);
1304 }
1305
1306 static ULONGEST
1307 read_8_bytes (bfd *abfd, gdb_byte *buf)
1308 {
1309 return bfd_get_64 (abfd, buf);
1310 }
1311
1312 static ULONGEST
1313 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1314 {
1315 ULONGEST result;
1316 unsigned int num_read;
1317 int shift;
1318 gdb_byte byte;
1319
1320 result = 0;
1321 shift = 0;
1322 num_read = 0;
1323
1324 do
1325 {
1326 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1327 buf++;
1328 num_read++;
1329 result |= ((byte & 0x7f) << shift);
1330 shift += 7;
1331 }
1332 while (byte & 0x80);
1333
1334 *bytes_read_ptr = num_read;
1335
1336 return result;
1337 }
1338
1339 static LONGEST
1340 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1341 {
1342 LONGEST result;
1343 int shift;
1344 unsigned int num_read;
1345 gdb_byte byte;
1346
1347 result = 0;
1348 shift = 0;
1349 num_read = 0;
1350
1351 do
1352 {
1353 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1354 buf++;
1355 num_read++;
1356 result |= ((byte & 0x7f) << shift);
1357 shift += 7;
1358 }
1359 while (byte & 0x80);
1360
1361 if (shift < 8 * sizeof (result) && (byte & 0x40))
1362 result |= -(((LONGEST)1) << shift);
1363
1364 *bytes_read_ptr = num_read;
1365
1366 return result;
1367 }
1368
1369 static ULONGEST
1370 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1371 {
1372 LONGEST result;
1373
1374 result = bfd_get_32 (abfd, buf);
1375 if (result == 0xffffffff)
1376 {
1377 result = bfd_get_64 (abfd, buf + 4);
1378 *bytes_read_ptr = 12;
1379 }
1380 else
1381 *bytes_read_ptr = 4;
1382
1383 return result;
1384 }
1385 \f
1386
1387 /* Pointer encoding helper functions. */
1388
1389 /* GCC supports exception handling based on DWARF2 CFI. However, for
1390 technical reasons, it encodes addresses in its FDE's in a different
1391 way. Several "pointer encodings" are supported. The encoding
1392 that's used for a particular FDE is determined by the 'R'
1393 augmentation in the associated CIE. The argument of this
1394 augmentation is a single byte.
1395
1396 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1397 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1398 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1399 address should be interpreted (absolute, relative to the current
1400 position in the FDE, ...). Bit 7, indicates that the address
1401 should be dereferenced. */
1402
1403 static gdb_byte
1404 encoding_for_size (unsigned int size)
1405 {
1406 switch (size)
1407 {
1408 case 2:
1409 return DW_EH_PE_udata2;
1410 case 4:
1411 return DW_EH_PE_udata4;
1412 case 8:
1413 return DW_EH_PE_udata8;
1414 default:
1415 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1416 }
1417 }
1418
1419 static unsigned int
1420 size_of_encoded_value (gdb_byte encoding)
1421 {
1422 if (encoding == DW_EH_PE_omit)
1423 return 0;
1424
1425 switch (encoding & 0x07)
1426 {
1427 case DW_EH_PE_absptr:
1428 return TYPE_LENGTH (builtin_type_void_data_ptr);
1429 case DW_EH_PE_udata2:
1430 return 2;
1431 case DW_EH_PE_udata4:
1432 return 4;
1433 case DW_EH_PE_udata8:
1434 return 8;
1435 default:
1436 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1437 }
1438 }
1439
1440 static CORE_ADDR
1441 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1442 gdb_byte *buf, unsigned int *bytes_read_ptr)
1443 {
1444 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1445 ptrdiff_t offset;
1446 CORE_ADDR base;
1447
1448 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1449 FDE's. */
1450 if (encoding & DW_EH_PE_indirect)
1451 internal_error (__FILE__, __LINE__,
1452 _("Unsupported encoding: DW_EH_PE_indirect"));
1453
1454 *bytes_read_ptr = 0;
1455
1456 switch (encoding & 0x70)
1457 {
1458 case DW_EH_PE_absptr:
1459 base = 0;
1460 break;
1461 case DW_EH_PE_pcrel:
1462 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1463 base += (buf - unit->dwarf_frame_buffer);
1464 break;
1465 case DW_EH_PE_datarel:
1466 base = unit->dbase;
1467 break;
1468 case DW_EH_PE_textrel:
1469 base = unit->tbase;
1470 break;
1471 case DW_EH_PE_funcrel:
1472 /* FIXME: kettenis/20040501: For now just pretend
1473 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1474 reading the initial location of an FDE it should be treated
1475 as such, and currently that's the only place where this code
1476 is used. */
1477 base = 0;
1478 break;
1479 case DW_EH_PE_aligned:
1480 base = 0;
1481 offset = buf - unit->dwarf_frame_buffer;
1482 if ((offset % ptr_len) != 0)
1483 {
1484 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1485 buf += *bytes_read_ptr;
1486 }
1487 break;
1488 default:
1489 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1490 }
1491
1492 if ((encoding & 0x07) == 0x00)
1493 encoding |= encoding_for_size (ptr_len);
1494
1495 switch (encoding & 0x0f)
1496 {
1497 case DW_EH_PE_uleb128:
1498 {
1499 ULONGEST value;
1500 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1501 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1502 return base + value;
1503 }
1504 case DW_EH_PE_udata2:
1505 *bytes_read_ptr += 2;
1506 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1507 case DW_EH_PE_udata4:
1508 *bytes_read_ptr += 4;
1509 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1510 case DW_EH_PE_udata8:
1511 *bytes_read_ptr += 8;
1512 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1513 case DW_EH_PE_sleb128:
1514 {
1515 LONGEST value;
1516 gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1517 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1518 return base + value;
1519 }
1520 case DW_EH_PE_sdata2:
1521 *bytes_read_ptr += 2;
1522 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1523 case DW_EH_PE_sdata4:
1524 *bytes_read_ptr += 4;
1525 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1526 case DW_EH_PE_sdata8:
1527 *bytes_read_ptr += 8;
1528 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1529 default:
1530 internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1531 }
1532 }
1533 \f
1534
1535 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1536 That's why we use a simple linked list here. */
1537
1538 static struct dwarf2_cie *
1539 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1540 {
1541 struct dwarf2_cie *cie = unit->cie;
1542
1543 while (cie)
1544 {
1545 if (cie->cie_pointer == cie_pointer)
1546 return cie;
1547
1548 cie = cie->next;
1549 }
1550
1551 return NULL;
1552 }
1553
1554 static void
1555 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1556 {
1557 cie->next = unit->cie;
1558 unit->cie = cie;
1559 }
1560
1561 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1562 inital location associated with it into *PC. */
1563
1564 static struct dwarf2_fde *
1565 dwarf2_frame_find_fde (CORE_ADDR *pc)
1566 {
1567 struct objfile *objfile;
1568
1569 ALL_OBJFILES (objfile)
1570 {
1571 struct dwarf2_fde *fde;
1572 CORE_ADDR offset;
1573
1574 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1575 if (fde == NULL)
1576 continue;
1577
1578 gdb_assert (objfile->section_offsets);
1579 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1580
1581 while (fde)
1582 {
1583 if (*pc >= fde->initial_location + offset
1584 && *pc < fde->initial_location + offset + fde->address_range)
1585 {
1586 *pc = fde->initial_location + offset;
1587 return fde;
1588 }
1589
1590 fde = fde->next;
1591 }
1592 }
1593
1594 return NULL;
1595 }
1596
1597 static void
1598 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1599 {
1600 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1601 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1602 }
1603
1604 #ifdef CC_HAS_LONG_LONG
1605 #define DW64_CIE_ID 0xffffffffffffffffULL
1606 #else
1607 #define DW64_CIE_ID ~0
1608 #endif
1609
1610 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1611 int eh_frame_p);
1612
1613 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1614 the next byte to be processed. */
1615 static gdb_byte *
1616 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1617 {
1618 gdb_byte *buf, *end;
1619 LONGEST length;
1620 unsigned int bytes_read;
1621 int dwarf64_p;
1622 ULONGEST cie_id;
1623 ULONGEST cie_pointer;
1624
1625 buf = start;
1626 length = read_initial_length (unit->abfd, buf, &bytes_read);
1627 buf += bytes_read;
1628 end = buf + length;
1629
1630 /* Are we still within the section? */
1631 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1632 return NULL;
1633
1634 if (length == 0)
1635 return end;
1636
1637 /* Distinguish between 32 and 64-bit encoded frame info. */
1638 dwarf64_p = (bytes_read == 12);
1639
1640 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1641 if (eh_frame_p)
1642 cie_id = 0;
1643 else if (dwarf64_p)
1644 cie_id = DW64_CIE_ID;
1645 else
1646 cie_id = DW_CIE_ID;
1647
1648 if (dwarf64_p)
1649 {
1650 cie_pointer = read_8_bytes (unit->abfd, buf);
1651 buf += 8;
1652 }
1653 else
1654 {
1655 cie_pointer = read_4_bytes (unit->abfd, buf);
1656 buf += 4;
1657 }
1658
1659 if (cie_pointer == cie_id)
1660 {
1661 /* This is a CIE. */
1662 struct dwarf2_cie *cie;
1663 char *augmentation;
1664 unsigned int cie_version;
1665
1666 /* Record the offset into the .debug_frame section of this CIE. */
1667 cie_pointer = start - unit->dwarf_frame_buffer;
1668
1669 /* Check whether we've already read it. */
1670 if (find_cie (unit, cie_pointer))
1671 return end;
1672
1673 cie = (struct dwarf2_cie *)
1674 obstack_alloc (&unit->objfile->objfile_obstack,
1675 sizeof (struct dwarf2_cie));
1676 cie->initial_instructions = NULL;
1677 cie->cie_pointer = cie_pointer;
1678
1679 /* The encoding for FDE's in a normal .debug_frame section
1680 depends on the target address size. */
1681 cie->encoding = DW_EH_PE_absptr;
1682
1683 /* We'll determine the final value later, but we need to
1684 initialize it conservatively. */
1685 cie->signal_frame = 0;
1686
1687 /* Check version number. */
1688 cie_version = read_1_byte (unit->abfd, buf);
1689 if (cie_version != 1 && cie_version != 3)
1690 return NULL;
1691 cie->version = cie_version;
1692 buf += 1;
1693
1694 /* Interpret the interesting bits of the augmentation. */
1695 cie->augmentation = augmentation = (char *) buf;
1696 buf += (strlen (augmentation) + 1);
1697
1698 /* Ignore armcc augmentations. We only use them for quirks,
1699 and that doesn't happen until later. */
1700 if (strncmp (augmentation, "armcc", 5) == 0)
1701 augmentation += strlen (augmentation);
1702
1703 /* The GCC 2.x "eh" augmentation has a pointer immediately
1704 following the augmentation string, so it must be handled
1705 first. */
1706 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1707 {
1708 /* Skip. */
1709 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1710 augmentation += 2;
1711 }
1712
1713 cie->code_alignment_factor =
1714 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1715 buf += bytes_read;
1716
1717 cie->data_alignment_factor =
1718 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1719 buf += bytes_read;
1720
1721 if (cie_version == 1)
1722 {
1723 cie->return_address_register = read_1_byte (unit->abfd, buf);
1724 bytes_read = 1;
1725 }
1726 else
1727 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1728 &bytes_read);
1729 if (eh_frame_p)
1730 cie->return_address_register
1731 = dwarf2_frame_eh_frame_regnum (current_gdbarch,
1732 cie->return_address_register);
1733
1734 buf += bytes_read;
1735
1736 cie->saw_z_augmentation = (*augmentation == 'z');
1737 if (cie->saw_z_augmentation)
1738 {
1739 ULONGEST length;
1740
1741 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1742 buf += bytes_read;
1743 if (buf > end)
1744 return NULL;
1745 cie->initial_instructions = buf + length;
1746 augmentation++;
1747 }
1748
1749 while (*augmentation)
1750 {
1751 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1752 if (*augmentation == 'L')
1753 {
1754 /* Skip. */
1755 buf++;
1756 augmentation++;
1757 }
1758
1759 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1760 else if (*augmentation == 'R')
1761 {
1762 cie->encoding = *buf++;
1763 augmentation++;
1764 }
1765
1766 /* "P" indicates a personality routine in the CIE augmentation. */
1767 else if (*augmentation == 'P')
1768 {
1769 /* Skip. Avoid indirection since we throw away the result. */
1770 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1771 read_encoded_value (unit, encoding, buf, &bytes_read);
1772 buf += bytes_read;
1773 augmentation++;
1774 }
1775
1776 /* "S" indicates a signal frame, such that the return
1777 address must not be decremented to locate the call frame
1778 info for the previous frame; it might even be the first
1779 instruction of a function, so decrementing it would take
1780 us to a different function. */
1781 else if (*augmentation == 'S')
1782 {
1783 cie->signal_frame = 1;
1784 augmentation++;
1785 }
1786
1787 /* Otherwise we have an unknown augmentation. Assume that either
1788 there is no augmentation data, or we saw a 'z' prefix. */
1789 else
1790 {
1791 if (cie->initial_instructions)
1792 buf = cie->initial_instructions;
1793 break;
1794 }
1795 }
1796
1797 cie->initial_instructions = buf;
1798 cie->end = end;
1799
1800 add_cie (unit, cie);
1801 }
1802 else
1803 {
1804 /* This is a FDE. */
1805 struct dwarf2_fde *fde;
1806
1807 /* In an .eh_frame section, the CIE pointer is the delta between the
1808 address within the FDE where the CIE pointer is stored and the
1809 address of the CIE. Convert it to an offset into the .eh_frame
1810 section. */
1811 if (eh_frame_p)
1812 {
1813 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1814 cie_pointer -= (dwarf64_p ? 8 : 4);
1815 }
1816
1817 /* In either case, validate the result is still within the section. */
1818 if (cie_pointer >= unit->dwarf_frame_size)
1819 return NULL;
1820
1821 fde = (struct dwarf2_fde *)
1822 obstack_alloc (&unit->objfile->objfile_obstack,
1823 sizeof (struct dwarf2_fde));
1824 fde->cie = find_cie (unit, cie_pointer);
1825 if (fde->cie == NULL)
1826 {
1827 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1828 eh_frame_p);
1829 fde->cie = find_cie (unit, cie_pointer);
1830 }
1831
1832 gdb_assert (fde->cie != NULL);
1833
1834 fde->initial_location =
1835 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1836 buf += bytes_read;
1837
1838 fde->address_range =
1839 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1840 buf += bytes_read;
1841
1842 /* A 'z' augmentation in the CIE implies the presence of an
1843 augmentation field in the FDE as well. The only thing known
1844 to be in here at present is the LSDA entry for EH. So we
1845 can skip the whole thing. */
1846 if (fde->cie->saw_z_augmentation)
1847 {
1848 ULONGEST length;
1849
1850 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1851 buf += bytes_read + length;
1852 if (buf > end)
1853 return NULL;
1854 }
1855
1856 fde->instructions = buf;
1857 fde->end = end;
1858
1859 fde->eh_frame_p = eh_frame_p;
1860
1861 add_fde (unit, fde);
1862 }
1863
1864 return end;
1865 }
1866
1867 /* Read a CIE or FDE in BUF and decode it. */
1868 static gdb_byte *
1869 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p)
1870 {
1871 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1872 gdb_byte *ret;
1873 const char *msg;
1874 ptrdiff_t start_offset;
1875
1876 while (1)
1877 {
1878 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1879 if (ret != NULL)
1880 break;
1881
1882 /* We have corrupt input data of some form. */
1883
1884 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1885 and mismatches wrt padding and alignment of debug sections. */
1886 /* Note that there is no requirement in the standard for any
1887 alignment at all in the frame unwind sections. Testing for
1888 alignment before trying to interpret data would be incorrect.
1889
1890 However, GCC traditionally arranged for frame sections to be
1891 sized such that the FDE length and CIE fields happen to be
1892 aligned (in theory, for performance). This, unfortunately,
1893 was done with .align directives, which had the side effect of
1894 forcing the section to be aligned by the linker.
1895
1896 This becomes a problem when you have some other producer that
1897 creates frame sections that are not as strictly aligned. That
1898 produces a hole in the frame info that gets filled by the
1899 linker with zeros.
1900
1901 The GCC behaviour is arguably a bug, but it's effectively now
1902 part of the ABI, so we're now stuck with it, at least at the
1903 object file level. A smart linker may decide, in the process
1904 of compressing duplicate CIE information, that it can rewrite
1905 the entire output section without this extra padding. */
1906
1907 start_offset = start - unit->dwarf_frame_buffer;
1908 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1909 {
1910 start += 4 - (start_offset & 3);
1911 workaround = ALIGN4;
1912 continue;
1913 }
1914 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1915 {
1916 start += 8 - (start_offset & 7);
1917 workaround = ALIGN8;
1918 continue;
1919 }
1920
1921 /* Nothing left to try. Arrange to return as if we've consumed
1922 the entire input section. Hopefully we'll get valid info from
1923 the other of .debug_frame/.eh_frame. */
1924 workaround = FAIL;
1925 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1926 break;
1927 }
1928
1929 switch (workaround)
1930 {
1931 case NONE:
1932 break;
1933
1934 case ALIGN4:
1935 complaint (&symfile_complaints,
1936 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1937 unit->dwarf_frame_section->owner->filename,
1938 unit->dwarf_frame_section->name);
1939 break;
1940
1941 case ALIGN8:
1942 complaint (&symfile_complaints,
1943 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1944 unit->dwarf_frame_section->owner->filename,
1945 unit->dwarf_frame_section->name);
1946 break;
1947
1948 default:
1949 complaint (&symfile_complaints,
1950 _("Corrupt data in %s:%s"),
1951 unit->dwarf_frame_section->owner->filename,
1952 unit->dwarf_frame_section->name);
1953 break;
1954 }
1955
1956 return ret;
1957 }
1958 \f
1959
1960 /* FIXME: kettenis/20030504: This still needs to be integrated with
1961 dwarf2read.c in a better way. */
1962
1963 /* Imported from dwarf2read.c. */
1964 extern asection *dwarf_frame_section;
1965 extern asection *dwarf_eh_frame_section;
1966
1967 /* Imported from dwarf2read.c. */
1968 extern gdb_byte *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1969
1970 void
1971 dwarf2_build_frame_info (struct objfile *objfile)
1972 {
1973 struct comp_unit unit;
1974 gdb_byte *frame_ptr;
1975
1976 /* Build a minimal decoding of the DWARF2 compilation unit. */
1977 unit.abfd = objfile->obfd;
1978 unit.objfile = objfile;
1979 unit.dbase = 0;
1980 unit.tbase = 0;
1981
1982 /* First add the information from the .eh_frame section. That way,
1983 the FDEs from that section are searched last. */
1984 if (dwarf_eh_frame_section)
1985 {
1986 asection *got, *txt;
1987
1988 unit.cie = NULL;
1989 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1990 dwarf_eh_frame_section);
1991
1992 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1993 unit.dwarf_frame_section = dwarf_eh_frame_section;
1994
1995 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1996 that is used for the i386/amd64 target, which currently is
1997 the only target in GCC that supports/uses the
1998 DW_EH_PE_datarel encoding. */
1999 got = bfd_get_section_by_name (unit.abfd, ".got");
2000 if (got)
2001 unit.dbase = got->vma;
2002
2003 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2004 so far. */
2005 txt = bfd_get_section_by_name (unit.abfd, ".text");
2006 if (txt)
2007 unit.tbase = txt->vma;
2008
2009 frame_ptr = unit.dwarf_frame_buffer;
2010 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2011 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
2012 }
2013
2014 if (dwarf_frame_section)
2015 {
2016 unit.cie = NULL;
2017 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
2018 dwarf_frame_section);
2019 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
2020 unit.dwarf_frame_section = dwarf_frame_section;
2021
2022 frame_ptr = unit.dwarf_frame_buffer;
2023 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
2024 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
2025 }
2026 }
2027
2028 /* Provide a prototype to silence -Wmissing-prototypes. */
2029 void _initialize_dwarf2_frame (void);
2030
2031 void
2032 _initialize_dwarf2_frame (void)
2033 {
2034 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2035 dwarf2_frame_objfile_data = register_objfile_data ();
2036 }