]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2-frame.c
Initial support for Fission. http://gcc.gnu.org/wiki/DebugFission
[thirdparty/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 gdb_byte *initial_instructions;
72 gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 gdb_byte *instructions;
120 gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
307 }
308
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
311 {
312 read_memory (addr, buf, len);
313 }
314
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
317 static void
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
320 {
321 ULONGEST reg;
322
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
326
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
334
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
343 }
344
345 /* Virtual method table for execute_stack_op below. */
346
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
348 {
349 read_reg,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
359 };
360
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
365 {
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
369
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
373
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
380
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
383
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 ULONGEST utmp, reg;
420 LONGEST offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
540 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
541
542 if (fs->armcc_cfa_offsets_sf)
543 utmp *= fs->data_align;
544
545 fs->regs.cfa_offset = utmp;
546 fs->regs.cfa_how = CFA_REG_OFFSET;
547 break;
548
549 case DW_CFA_def_cfa_register:
550 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
551 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
552 fs->regs.cfa_reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = read_uleb128 (insn_ptr, insn_end,
572 &fs->regs.cfa_exp_len);
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
630 fs->regs.cfa_reg,
631 eh_frame_p);
632 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
633 fs->regs.cfa_offset = offset * fs->data_align;
634 fs->regs.cfa_how = CFA_REG_OFFSET;
635 break;
636
637 case DW_CFA_def_cfa_offset_sf:
638 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
639 fs->regs.cfa_offset = offset * fs->data_align;
640 /* cfa_how deliberately not set. */
641 break;
642
643 case DW_CFA_GNU_window_save:
644 /* This is SPARC-specific code, and contains hard-coded
645 constants for the register numbering scheme used by
646 GCC. Rather than having a architecture-specific
647 operation that's only ever used by a single
648 architecture, we provide the implementation here.
649 Incidentally that's what GCC does too in its
650 unwinder. */
651 {
652 int size = register_size (gdbarch, 0);
653
654 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
655 for (reg = 8; reg < 16; reg++)
656 {
657 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
658 fs->regs.reg[reg].loc.reg = reg + 16;
659 }
660 for (reg = 16; reg < 32; reg++)
661 {
662 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
663 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
664 }
665 }
666 break;
667
668 case DW_CFA_GNU_args_size:
669 /* Ignored. */
670 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
671 break;
672
673 case DW_CFA_GNU_negative_offset_extended:
674 insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
675 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
676 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
677 offset *= fs->data_align;
678 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
679 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
680 fs->regs.reg[reg].loc.offset = -offset;
681 break;
682
683 default:
684 internal_error (__FILE__, __LINE__,
685 _("Unknown CFI encountered."));
686 }
687 }
688 }
689
690 if (fs->initial.reg == NULL)
691 {
692 /* Don't allow remember/restore between CIE and FDE programs. */
693 dwarf2_frame_state_free_regs (fs->regs.prev);
694 fs->regs.prev = NULL;
695 }
696
697 return insn_ptr;
698 }
699 \f
700
701 /* Architecture-specific operations. */
702
703 /* Per-architecture data key. */
704 static struct gdbarch_data *dwarf2_frame_data;
705
706 struct dwarf2_frame_ops
707 {
708 /* Pre-initialize the register state REG for register REGNUM. */
709 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
710 struct frame_info *);
711
712 /* Check whether the THIS_FRAME is a signal trampoline. */
713 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
714
715 /* Convert .eh_frame register number to DWARF register number, or
716 adjust .debug_frame register number. */
717 int (*adjust_regnum) (struct gdbarch *, int, int);
718 };
719
720 /* Default architecture-specific register state initialization
721 function. */
722
723 static void
724 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
725 struct dwarf2_frame_state_reg *reg,
726 struct frame_info *this_frame)
727 {
728 /* If we have a register that acts as a program counter, mark it as
729 a destination for the return address. If we have a register that
730 serves as the stack pointer, arrange for it to be filled with the
731 call frame address (CFA). The other registers are marked as
732 unspecified.
733
734 We copy the return address to the program counter, since many
735 parts in GDB assume that it is possible to get the return address
736 by unwinding the program counter register. However, on ISA's
737 with a dedicated return address register, the CFI usually only
738 contains information to unwind that return address register.
739
740 The reason we're treating the stack pointer special here is
741 because in many cases GCC doesn't emit CFI for the stack pointer
742 and implicitly assumes that it is equal to the CFA. This makes
743 some sense since the DWARF specification (version 3, draft 8,
744 p. 102) says that:
745
746 "Typically, the CFA is defined to be the value of the stack
747 pointer at the call site in the previous frame (which may be
748 different from its value on entry to the current frame)."
749
750 However, this isn't true for all platforms supported by GCC
751 (e.g. IBM S/390 and zSeries). Those architectures should provide
752 their own architecture-specific initialization function. */
753
754 if (regnum == gdbarch_pc_regnum (gdbarch))
755 reg->how = DWARF2_FRAME_REG_RA;
756 else if (regnum == gdbarch_sp_regnum (gdbarch))
757 reg->how = DWARF2_FRAME_REG_CFA;
758 }
759
760 /* Return a default for the architecture-specific operations. */
761
762 static void *
763 dwarf2_frame_init (struct obstack *obstack)
764 {
765 struct dwarf2_frame_ops *ops;
766
767 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
768 ops->init_reg = dwarf2_frame_default_init_reg;
769 return ops;
770 }
771
772 /* Set the architecture-specific register state initialization
773 function for GDBARCH to INIT_REG. */
774
775 void
776 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
777 void (*init_reg) (struct gdbarch *, int,
778 struct dwarf2_frame_state_reg *,
779 struct frame_info *))
780 {
781 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
782
783 ops->init_reg = init_reg;
784 }
785
786 /* Pre-initialize the register state REG for register REGNUM. */
787
788 static void
789 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
790 struct dwarf2_frame_state_reg *reg,
791 struct frame_info *this_frame)
792 {
793 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794
795 ops->init_reg (gdbarch, regnum, reg, this_frame);
796 }
797
798 /* Set the architecture-specific signal trampoline recognition
799 function for GDBARCH to SIGNAL_FRAME_P. */
800
801 void
802 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
803 int (*signal_frame_p) (struct gdbarch *,
804 struct frame_info *))
805 {
806 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807
808 ops->signal_frame_p = signal_frame_p;
809 }
810
811 /* Query the architecture-specific signal frame recognizer for
812 THIS_FRAME. */
813
814 static int
815 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
816 struct frame_info *this_frame)
817 {
818 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819
820 if (ops->signal_frame_p == NULL)
821 return 0;
822 return ops->signal_frame_p (gdbarch, this_frame);
823 }
824
825 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
826 register numbers. */
827
828 void
829 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
830 int (*adjust_regnum) (struct gdbarch *,
831 int, int))
832 {
833 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834
835 ops->adjust_regnum = adjust_regnum;
836 }
837
838 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
839 register. */
840
841 static int
842 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
843 int regnum, int eh_frame_p)
844 {
845 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846
847 if (ops->adjust_regnum == NULL)
848 return regnum;
849 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
850 }
851
852 static void
853 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
854 struct dwarf2_fde *fde)
855 {
856 struct symtab *s;
857
858 s = find_pc_symtab (fs->pc);
859 if (s == NULL)
860 return;
861
862 if (producer_is_realview (s->producer))
863 {
864 if (fde->cie->version == 1)
865 fs->armcc_cfa_offsets_sf = 1;
866
867 if (fde->cie->version == 1)
868 fs->armcc_cfa_offsets_reversed = 1;
869
870 /* The reversed offset problem is present in some compilers
871 using DWARF3, but it was eventually fixed. Check the ARM
872 defined augmentations, which are in the format "armcc" followed
873 by a list of one-character options. The "+" option means
874 this problem is fixed (no quirk needed). If the armcc
875 augmentation is missing, the quirk is needed. */
876 if (fde->cie->version == 3
877 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
878 || strchr (fde->cie->augmentation + 5, '+') == NULL))
879 fs->armcc_cfa_offsets_reversed = 1;
880
881 return;
882 }
883 }
884 \f
885
886 void
887 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
888 struct gdbarch *gdbarch,
889 CORE_ADDR pc,
890 struct dwarf2_per_cu_data *data)
891 {
892 const int num_regs = gdbarch_num_regs (gdbarch)
893 + gdbarch_num_pseudo_regs (gdbarch);
894 struct dwarf2_fde *fde;
895 CORE_ADDR text_offset, cfa;
896 struct dwarf2_frame_state fs;
897 int addr_size;
898
899 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
900
901 fs.pc = pc;
902
903 /* Find the correct FDE. */
904 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
905 if (fde == NULL)
906 error (_("Could not compute CFA; needed to translate this expression"));
907
908 /* Extract any interesting information from the CIE. */
909 fs.data_align = fde->cie->data_alignment_factor;
910 fs.code_align = fde->cie->code_alignment_factor;
911 fs.retaddr_column = fde->cie->return_address_register;
912 addr_size = fde->cie->addr_size;
913
914 /* Check for "quirks" - known bugs in producers. */
915 dwarf2_frame_find_quirks (&fs, fde);
916
917 /* First decode all the insns in the CIE. */
918 execute_cfa_program (fde, fde->cie->initial_instructions,
919 fde->cie->end, gdbarch, pc, &fs);
920
921 /* Save the initialized register set. */
922 fs.initial = fs.regs;
923 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
924
925 /* Then decode the insns in the FDE up to our target PC. */
926 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
927
928 /* Calculate the CFA. */
929 switch (fs.regs.cfa_how)
930 {
931 case CFA_REG_OFFSET:
932 {
933 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
934
935 if (regnum == -1)
936 error (_("Unable to access DWARF register number %d"),
937 (int) fs.regs.cfa_reg); /* FIXME */
938 ax_reg (expr, regnum);
939
940 if (fs.regs.cfa_offset != 0)
941 {
942 if (fs.armcc_cfa_offsets_reversed)
943 ax_const_l (expr, -fs.regs.cfa_offset);
944 else
945 ax_const_l (expr, fs.regs.cfa_offset);
946 ax_simple (expr, aop_add);
947 }
948 }
949 break;
950
951 case CFA_EXP:
952 ax_const_l (expr, text_offset);
953 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
954 fs.regs.cfa_exp,
955 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
956 data);
957 break;
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962 }
963
964 \f
965 struct dwarf2_frame_cache
966 {
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
983
984 /* Target address size in bytes. */
985 int addr_size;
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
989
990 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
991 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
992 involved. Non-bottom frames of a virtual tail call frames chain use
993 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
994 them. */
995 void *tailcall_cache;
996 };
997
998 static struct dwarf2_frame_cache *
999 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1000 {
1001 struct cleanup *old_chain;
1002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1003 const int num_regs = gdbarch_num_regs (gdbarch)
1004 + gdbarch_num_pseudo_regs (gdbarch);
1005 struct dwarf2_frame_cache *cache;
1006 struct dwarf2_frame_state *fs;
1007 struct dwarf2_fde *fde;
1008 volatile struct gdb_exception ex;
1009 CORE_ADDR entry_pc;
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p = 0;
1012 const gdb_byte *instr;
1013
1014 if (*this_cache)
1015 return *this_cache;
1016
1017 /* Allocate a new cache. */
1018 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1019 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1020 *this_cache = cache;
1021
1022 /* Allocate and initialize the frame state. */
1023 fs = XZALLOC (struct dwarf2_frame_state);
1024 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1025
1026 /* Unwind the PC.
1027
1028 Note that if the next frame is never supposed to return (i.e. a call
1029 to abort), the compiler might optimize away the instruction at
1030 its return address. As a result the return address will
1031 point at some random instruction, and the CFI for that
1032 instruction is probably worthless to us. GCC's unwinder solves
1033 this problem by substracting 1 from the return address to get an
1034 address in the middle of a presumed call instruction (or the
1035 instruction in the associated delay slot). This should only be
1036 done for "normal" frames and not for resume-type frames (signal
1037 handlers, sentinel frames, dummy frames). The function
1038 get_frame_address_in_block does just this. It's not clear how
1039 reliable the method is though; there is the potential for the
1040 register state pre-call being different to that on return. */
1041 fs->pc = get_frame_address_in_block (this_frame);
1042
1043 /* Find the correct FDE. */
1044 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1045 gdb_assert (fde != NULL);
1046
1047 /* Extract any interesting information from the CIE. */
1048 fs->data_align = fde->cie->data_alignment_factor;
1049 fs->code_align = fde->cie->code_alignment_factor;
1050 fs->retaddr_column = fde->cie->return_address_register;
1051 cache->addr_size = fde->cie->addr_size;
1052
1053 /* Check for "quirks" - known bugs in producers. */
1054 dwarf2_frame_find_quirks (fs, fde);
1055
1056 /* First decode all the insns in the CIE. */
1057 execute_cfa_program (fde, fde->cie->initial_instructions,
1058 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs);
1059
1060 /* Save the initialized register set. */
1061 fs->initial = fs->regs;
1062 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1063
1064 if (get_frame_func_if_available (this_frame, &entry_pc))
1065 {
1066 /* Decode the insns in the FDE up to the entry PC. */
1067 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1068 entry_pc, fs);
1069
1070 if (fs->regs.cfa_how == CFA_REG_OFFSET
1071 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1072 == gdbarch_sp_regnum (gdbarch)))
1073 {
1074 entry_cfa_sp_offset = fs->regs.cfa_offset;
1075 entry_cfa_sp_offset_p = 1;
1076 }
1077 }
1078 else
1079 instr = fde->instructions;
1080
1081 /* Then decode the insns in the FDE up to our target PC. */
1082 execute_cfa_program (fde, instr, fde->end, gdbarch,
1083 get_frame_pc (this_frame), fs);
1084
1085 TRY_CATCH (ex, RETURN_MASK_ERROR)
1086 {
1087 /* Calculate the CFA. */
1088 switch (fs->regs.cfa_how)
1089 {
1090 case CFA_REG_OFFSET:
1091 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1092 if (fs->armcc_cfa_offsets_reversed)
1093 cache->cfa -= fs->regs.cfa_offset;
1094 else
1095 cache->cfa += fs->regs.cfa_offset;
1096 break;
1097
1098 case CFA_EXP:
1099 cache->cfa =
1100 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1101 cache->addr_size, cache->text_offset,
1102 this_frame, 0, 0);
1103 break;
1104
1105 default:
1106 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1107 }
1108 }
1109 if (ex.reason < 0)
1110 {
1111 if (ex.error == NOT_AVAILABLE_ERROR)
1112 {
1113 cache->unavailable_retaddr = 1;
1114 return cache;
1115 }
1116
1117 throw_exception (ex);
1118 }
1119
1120 /* Initialize the register state. */
1121 {
1122 int regnum;
1123
1124 for (regnum = 0; regnum < num_regs; regnum++)
1125 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1126 }
1127
1128 /* Go through the DWARF2 CFI generated table and save its register
1129 location information in the cache. Note that we don't skip the
1130 return address column; it's perfectly all right for it to
1131 correspond to a real register. If it doesn't correspond to a
1132 real register, or if we shouldn't treat it as such,
1133 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1134 the range [0, gdbarch_num_regs). */
1135 {
1136 int column; /* CFI speak for "register number". */
1137
1138 for (column = 0; column < fs->regs.num_regs; column++)
1139 {
1140 /* Use the GDB register number as the destination index. */
1141 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1142
1143 /* If there's no corresponding GDB register, ignore it. */
1144 if (regnum < 0 || regnum >= num_regs)
1145 continue;
1146
1147 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1148 of all debug info registers. If it doesn't, complain (but
1149 not too loudly). It turns out that GCC assumes that an
1150 unspecified register implies "same value" when CFI (draft
1151 7) specifies nothing at all. Such a register could equally
1152 be interpreted as "undefined". Also note that this check
1153 isn't sufficient; it only checks that all registers in the
1154 range [0 .. max column] are specified, and won't detect
1155 problems when a debug info register falls outside of the
1156 table. We need a way of iterating through all the valid
1157 DWARF2 register numbers. */
1158 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1159 {
1160 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1161 complaint (&symfile_complaints, _("\
1162 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1163 gdbarch_register_name (gdbarch, regnum),
1164 paddress (gdbarch, fs->pc));
1165 }
1166 else
1167 cache->reg[regnum] = fs->regs.reg[column];
1168 }
1169 }
1170
1171 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1172 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1173 {
1174 int regnum;
1175
1176 for (regnum = 0; regnum < num_regs; regnum++)
1177 {
1178 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1179 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1180 {
1181 struct dwarf2_frame_state_reg *retaddr_reg =
1182 &fs->regs.reg[fs->retaddr_column];
1183
1184 /* It seems rather bizarre to specify an "empty" column as
1185 the return adress column. However, this is exactly
1186 what GCC does on some targets. It turns out that GCC
1187 assumes that the return address can be found in the
1188 register corresponding to the return address column.
1189 Incidentally, that's how we should treat a return
1190 address column specifying "same value" too. */
1191 if (fs->retaddr_column < fs->regs.num_regs
1192 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1193 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1194 {
1195 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1196 cache->reg[regnum] = *retaddr_reg;
1197 else
1198 cache->retaddr_reg = *retaddr_reg;
1199 }
1200 else
1201 {
1202 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1203 {
1204 cache->reg[regnum].loc.reg = fs->retaddr_column;
1205 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1206 }
1207 else
1208 {
1209 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1210 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1211 }
1212 }
1213 }
1214 }
1215 }
1216
1217 if (fs->retaddr_column < fs->regs.num_regs
1218 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1219 cache->undefined_retaddr = 1;
1220
1221 do_cleanups (old_chain);
1222
1223 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1224 starting at THIS_FRAME. */
1225 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1226 (entry_cfa_sp_offset_p
1227 ? &entry_cfa_sp_offset : NULL));
1228
1229 return cache;
1230 }
1231
1232 static enum unwind_stop_reason
1233 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1234 void **this_cache)
1235 {
1236 struct dwarf2_frame_cache *cache
1237 = dwarf2_frame_cache (this_frame, this_cache);
1238
1239 if (cache->unavailable_retaddr)
1240 return UNWIND_UNAVAILABLE;
1241
1242 if (cache->undefined_retaddr)
1243 return UNWIND_OUTERMOST;
1244
1245 return UNWIND_NO_REASON;
1246 }
1247
1248 static void
1249 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1250 struct frame_id *this_id)
1251 {
1252 struct dwarf2_frame_cache *cache =
1253 dwarf2_frame_cache (this_frame, this_cache);
1254
1255 if (cache->unavailable_retaddr)
1256 return;
1257
1258 if (cache->undefined_retaddr)
1259 return;
1260
1261 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1262 }
1263
1264 static struct value *
1265 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1266 int regnum)
1267 {
1268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1269 struct dwarf2_frame_cache *cache =
1270 dwarf2_frame_cache (this_frame, this_cache);
1271 CORE_ADDR addr;
1272 int realnum;
1273
1274 /* Non-bottom frames of a virtual tail call frames chain use
1275 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1276 them. If dwarf2_tailcall_prev_register_first does not have specific value
1277 unwind the register, tail call frames are assumed to have the register set
1278 of the top caller. */
1279 if (cache->tailcall_cache)
1280 {
1281 struct value *val;
1282
1283 val = dwarf2_tailcall_prev_register_first (this_frame,
1284 &cache->tailcall_cache,
1285 regnum);
1286 if (val)
1287 return val;
1288 }
1289
1290 switch (cache->reg[regnum].how)
1291 {
1292 case DWARF2_FRAME_REG_UNDEFINED:
1293 /* If CFI explicitly specified that the value isn't defined,
1294 mark it as optimized away; the value isn't available. */
1295 return frame_unwind_got_optimized (this_frame, regnum);
1296
1297 case DWARF2_FRAME_REG_SAVED_OFFSET:
1298 addr = cache->cfa + cache->reg[regnum].loc.offset;
1299 return frame_unwind_got_memory (this_frame, regnum, addr);
1300
1301 case DWARF2_FRAME_REG_SAVED_REG:
1302 realnum
1303 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1304 return frame_unwind_got_register (this_frame, regnum, realnum);
1305
1306 case DWARF2_FRAME_REG_SAVED_EXP:
1307 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1308 cache->reg[regnum].exp_len,
1309 cache->addr_size, cache->text_offset,
1310 this_frame, cache->cfa, 1);
1311 return frame_unwind_got_memory (this_frame, regnum, addr);
1312
1313 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1314 addr = cache->cfa + cache->reg[regnum].loc.offset;
1315 return frame_unwind_got_constant (this_frame, regnum, addr);
1316
1317 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1318 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1319 cache->reg[regnum].exp_len,
1320 cache->addr_size, cache->text_offset,
1321 this_frame, cache->cfa, 1);
1322 return frame_unwind_got_constant (this_frame, regnum, addr);
1323
1324 case DWARF2_FRAME_REG_UNSPECIFIED:
1325 /* GCC, in its infinite wisdom decided to not provide unwind
1326 information for registers that are "same value". Since
1327 DWARF2 (3 draft 7) doesn't define such behavior, said
1328 registers are actually undefined (which is different to CFI
1329 "undefined"). Code above issues a complaint about this.
1330 Here just fudge the books, assume GCC, and that the value is
1331 more inner on the stack. */
1332 return frame_unwind_got_register (this_frame, regnum, regnum);
1333
1334 case DWARF2_FRAME_REG_SAME_VALUE:
1335 return frame_unwind_got_register (this_frame, regnum, regnum);
1336
1337 case DWARF2_FRAME_REG_CFA:
1338 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1339
1340 case DWARF2_FRAME_REG_CFA_OFFSET:
1341 addr = cache->cfa + cache->reg[regnum].loc.offset;
1342 return frame_unwind_got_address (this_frame, regnum, addr);
1343
1344 case DWARF2_FRAME_REG_RA_OFFSET:
1345 addr = cache->reg[regnum].loc.offset;
1346 regnum = gdbarch_dwarf2_reg_to_regnum
1347 (gdbarch, cache->retaddr_reg.loc.reg);
1348 addr += get_frame_register_unsigned (this_frame, regnum);
1349 return frame_unwind_got_address (this_frame, regnum, addr);
1350
1351 case DWARF2_FRAME_REG_FN:
1352 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1353
1354 default:
1355 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1356 }
1357 }
1358
1359 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1360 call frames chain. */
1361
1362 static void
1363 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1364 {
1365 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1366
1367 if (cache->tailcall_cache)
1368 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1369 }
1370
1371 static int
1372 dwarf2_frame_sniffer (const struct frame_unwind *self,
1373 struct frame_info *this_frame, void **this_cache)
1374 {
1375 /* Grab an address that is guarenteed to reside somewhere within the
1376 function. get_frame_pc(), with a no-return next function, can
1377 end up returning something past the end of this function's body.
1378 If the frame we're sniffing for is a signal frame whose start
1379 address is placed on the stack by the OS, its FDE must
1380 extend one byte before its start address or we could potentially
1381 select the FDE of the previous function. */
1382 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1383 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1384
1385 if (!fde)
1386 return 0;
1387
1388 /* On some targets, signal trampolines may have unwind information.
1389 We need to recognize them so that we set the frame type
1390 correctly. */
1391
1392 if (fde->cie->signal_frame
1393 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1394 this_frame))
1395 return self->type == SIGTRAMP_FRAME;
1396
1397 if (self->type != NORMAL_FRAME)
1398 return 0;
1399
1400 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1401 dwarf2_tailcall_sniffer_first. */
1402 dwarf2_frame_cache (this_frame, this_cache);
1403
1404 return 1;
1405 }
1406
1407 static const struct frame_unwind dwarf2_frame_unwind =
1408 {
1409 NORMAL_FRAME,
1410 dwarf2_frame_unwind_stop_reason,
1411 dwarf2_frame_this_id,
1412 dwarf2_frame_prev_register,
1413 NULL,
1414 dwarf2_frame_sniffer,
1415 dwarf2_frame_dealloc_cache
1416 };
1417
1418 static const struct frame_unwind dwarf2_signal_frame_unwind =
1419 {
1420 SIGTRAMP_FRAME,
1421 dwarf2_frame_unwind_stop_reason,
1422 dwarf2_frame_this_id,
1423 dwarf2_frame_prev_register,
1424 NULL,
1425 dwarf2_frame_sniffer,
1426
1427 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1428 NULL
1429 };
1430
1431 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1432
1433 void
1434 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1435 {
1436 /* TAILCALL_FRAME must be first to find the record by
1437 dwarf2_tailcall_sniffer_first. */
1438 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1439
1440 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1441 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1442 }
1443 \f
1444
1445 /* There is no explicitly defined relationship between the CFA and the
1446 location of frame's local variables and arguments/parameters.
1447 Therefore, frame base methods on this page should probably only be
1448 used as a last resort, just to avoid printing total garbage as a
1449 response to the "info frame" command. */
1450
1451 static CORE_ADDR
1452 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1453 {
1454 struct dwarf2_frame_cache *cache =
1455 dwarf2_frame_cache (this_frame, this_cache);
1456
1457 return cache->cfa;
1458 }
1459
1460 static const struct frame_base dwarf2_frame_base =
1461 {
1462 &dwarf2_frame_unwind,
1463 dwarf2_frame_base_address,
1464 dwarf2_frame_base_address,
1465 dwarf2_frame_base_address
1466 };
1467
1468 const struct frame_base *
1469 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1470 {
1471 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1472
1473 if (dwarf2_frame_find_fde (&block_addr, NULL))
1474 return &dwarf2_frame_base;
1475
1476 return NULL;
1477 }
1478
1479 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1480 the DWARF unwinder. This is used to implement
1481 DW_OP_call_frame_cfa. */
1482
1483 CORE_ADDR
1484 dwarf2_frame_cfa (struct frame_info *this_frame)
1485 {
1486 while (get_frame_type (this_frame) == INLINE_FRAME)
1487 this_frame = get_prev_frame (this_frame);
1488 /* This restriction could be lifted if other unwinders are known to
1489 compute the frame base in a way compatible with the DWARF
1490 unwinder. */
1491 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1492 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1493 error (_("can't compute CFA for this frame"));
1494 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1495 throw_error (NOT_AVAILABLE_ERROR,
1496 _("can't compute CFA for this frame: "
1497 "required registers or memory are unavailable"));
1498 return get_frame_base (this_frame);
1499 }
1500 \f
1501 const struct objfile_data *dwarf2_frame_objfile_data;
1502
1503 static unsigned int
1504 read_1_byte (bfd *abfd, gdb_byte *buf)
1505 {
1506 return bfd_get_8 (abfd, buf);
1507 }
1508
1509 static unsigned int
1510 read_4_bytes (bfd *abfd, gdb_byte *buf)
1511 {
1512 return bfd_get_32 (abfd, buf);
1513 }
1514
1515 static ULONGEST
1516 read_8_bytes (bfd *abfd, gdb_byte *buf)
1517 {
1518 return bfd_get_64 (abfd, buf);
1519 }
1520
1521 static ULONGEST
1522 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1523 {
1524 ULONGEST result;
1525 unsigned int num_read;
1526 int shift;
1527 gdb_byte byte;
1528
1529 result = 0;
1530 shift = 0;
1531 num_read = 0;
1532
1533 do
1534 {
1535 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1536 buf++;
1537 num_read++;
1538 result |= ((byte & 0x7f) << shift);
1539 shift += 7;
1540 }
1541 while (byte & 0x80);
1542
1543 *bytes_read_ptr = num_read;
1544
1545 return result;
1546 }
1547
1548 static LONGEST
1549 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1550 {
1551 LONGEST result;
1552 int shift;
1553 unsigned int num_read;
1554 gdb_byte byte;
1555
1556 result = 0;
1557 shift = 0;
1558 num_read = 0;
1559
1560 do
1561 {
1562 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1563 buf++;
1564 num_read++;
1565 result |= ((byte & 0x7f) << shift);
1566 shift += 7;
1567 }
1568 while (byte & 0x80);
1569
1570 if (shift < 8 * sizeof (result) && (byte & 0x40))
1571 result |= -(((LONGEST)1) << shift);
1572
1573 *bytes_read_ptr = num_read;
1574
1575 return result;
1576 }
1577
1578 static ULONGEST
1579 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1580 {
1581 LONGEST result;
1582
1583 result = bfd_get_32 (abfd, buf);
1584 if (result == 0xffffffff)
1585 {
1586 result = bfd_get_64 (abfd, buf + 4);
1587 *bytes_read_ptr = 12;
1588 }
1589 else
1590 *bytes_read_ptr = 4;
1591
1592 return result;
1593 }
1594 \f
1595
1596 /* Pointer encoding helper functions. */
1597
1598 /* GCC supports exception handling based on DWARF2 CFI. However, for
1599 technical reasons, it encodes addresses in its FDE's in a different
1600 way. Several "pointer encodings" are supported. The encoding
1601 that's used for a particular FDE is determined by the 'R'
1602 augmentation in the associated CIE. The argument of this
1603 augmentation is a single byte.
1604
1605 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1606 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1607 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1608 address should be interpreted (absolute, relative to the current
1609 position in the FDE, ...). Bit 7, indicates that the address
1610 should be dereferenced. */
1611
1612 static gdb_byte
1613 encoding_for_size (unsigned int size)
1614 {
1615 switch (size)
1616 {
1617 case 2:
1618 return DW_EH_PE_udata2;
1619 case 4:
1620 return DW_EH_PE_udata4;
1621 case 8:
1622 return DW_EH_PE_udata8;
1623 default:
1624 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1625 }
1626 }
1627
1628 static CORE_ADDR
1629 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1630 int ptr_len, const gdb_byte *buf,
1631 unsigned int *bytes_read_ptr,
1632 CORE_ADDR func_base)
1633 {
1634 ptrdiff_t offset;
1635 CORE_ADDR base;
1636
1637 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1638 FDE's. */
1639 if (encoding & DW_EH_PE_indirect)
1640 internal_error (__FILE__, __LINE__,
1641 _("Unsupported encoding: DW_EH_PE_indirect"));
1642
1643 *bytes_read_ptr = 0;
1644
1645 switch (encoding & 0x70)
1646 {
1647 case DW_EH_PE_absptr:
1648 base = 0;
1649 break;
1650 case DW_EH_PE_pcrel:
1651 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1652 base += (buf - unit->dwarf_frame_buffer);
1653 break;
1654 case DW_EH_PE_datarel:
1655 base = unit->dbase;
1656 break;
1657 case DW_EH_PE_textrel:
1658 base = unit->tbase;
1659 break;
1660 case DW_EH_PE_funcrel:
1661 base = func_base;
1662 break;
1663 case DW_EH_PE_aligned:
1664 base = 0;
1665 offset = buf - unit->dwarf_frame_buffer;
1666 if ((offset % ptr_len) != 0)
1667 {
1668 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1669 buf += *bytes_read_ptr;
1670 }
1671 break;
1672 default:
1673 internal_error (__FILE__, __LINE__,
1674 _("Invalid or unsupported encoding"));
1675 }
1676
1677 if ((encoding & 0x07) == 0x00)
1678 {
1679 encoding |= encoding_for_size (ptr_len);
1680 if (bfd_get_sign_extend_vma (unit->abfd))
1681 encoding |= DW_EH_PE_signed;
1682 }
1683
1684 switch (encoding & 0x0f)
1685 {
1686 case DW_EH_PE_uleb128:
1687 {
1688 ULONGEST value;
1689 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1690
1691 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1692 return base + value;
1693 }
1694 case DW_EH_PE_udata2:
1695 *bytes_read_ptr += 2;
1696 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1697 case DW_EH_PE_udata4:
1698 *bytes_read_ptr += 4;
1699 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1700 case DW_EH_PE_udata8:
1701 *bytes_read_ptr += 8;
1702 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1703 case DW_EH_PE_sleb128:
1704 {
1705 LONGEST value;
1706 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1707
1708 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1709 return base + value;
1710 }
1711 case DW_EH_PE_sdata2:
1712 *bytes_read_ptr += 2;
1713 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1714 case DW_EH_PE_sdata4:
1715 *bytes_read_ptr += 4;
1716 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1717 case DW_EH_PE_sdata8:
1718 *bytes_read_ptr += 8;
1719 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1720 default:
1721 internal_error (__FILE__, __LINE__,
1722 _("Invalid or unsupported encoding"));
1723 }
1724 }
1725 \f
1726
1727 static int
1728 bsearch_cie_cmp (const void *key, const void *element)
1729 {
1730 ULONGEST cie_pointer = *(ULONGEST *) key;
1731 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1732
1733 if (cie_pointer == cie->cie_pointer)
1734 return 0;
1735
1736 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1737 }
1738
1739 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1740 static struct dwarf2_cie *
1741 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1742 {
1743 struct dwarf2_cie **p_cie;
1744
1745 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1746 bsearch be non-NULL. */
1747 if (cie_table->entries == NULL)
1748 {
1749 gdb_assert (cie_table->num_entries == 0);
1750 return NULL;
1751 }
1752
1753 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1754 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1755 if (p_cie != NULL)
1756 return *p_cie;
1757 return NULL;
1758 }
1759
1760 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1761 static void
1762 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1763 {
1764 const int n = cie_table->num_entries;
1765
1766 gdb_assert (n < 1
1767 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1768
1769 cie_table->entries =
1770 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1771 cie_table->entries[n] = cie;
1772 cie_table->num_entries = n + 1;
1773 }
1774
1775 static int
1776 bsearch_fde_cmp (const void *key, const void *element)
1777 {
1778 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1779 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1780
1781 if (seek_pc < fde->initial_location)
1782 return -1;
1783 if (seek_pc < fde->initial_location + fde->address_range)
1784 return 0;
1785 return 1;
1786 }
1787
1788 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1789 inital location associated with it into *PC. */
1790
1791 static struct dwarf2_fde *
1792 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1793 {
1794 struct objfile *objfile;
1795
1796 ALL_OBJFILES (objfile)
1797 {
1798 struct dwarf2_fde_table *fde_table;
1799 struct dwarf2_fde **p_fde;
1800 CORE_ADDR offset;
1801 CORE_ADDR seek_pc;
1802
1803 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1804 if (fde_table == NULL)
1805 {
1806 dwarf2_build_frame_info (objfile);
1807 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1808 }
1809 gdb_assert (fde_table != NULL);
1810
1811 if (fde_table->num_entries == 0)
1812 continue;
1813
1814 gdb_assert (objfile->section_offsets);
1815 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1816
1817 gdb_assert (fde_table->num_entries > 0);
1818 if (*pc < offset + fde_table->entries[0]->initial_location)
1819 continue;
1820
1821 seek_pc = *pc - offset;
1822 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1823 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1824 if (p_fde != NULL)
1825 {
1826 *pc = (*p_fde)->initial_location + offset;
1827 if (out_offset)
1828 *out_offset = offset;
1829 return *p_fde;
1830 }
1831 }
1832 return NULL;
1833 }
1834
1835 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1836 static void
1837 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1838 {
1839 if (fde->address_range == 0)
1840 /* Discard useless FDEs. */
1841 return;
1842
1843 fde_table->num_entries += 1;
1844 fde_table->entries =
1845 xrealloc (fde_table->entries,
1846 fde_table->num_entries * sizeof (fde_table->entries[0]));
1847 fde_table->entries[fde_table->num_entries - 1] = fde;
1848 }
1849
1850 #ifdef CC_HAS_LONG_LONG
1851 #define DW64_CIE_ID 0xffffffffffffffffULL
1852 #else
1853 #define DW64_CIE_ID ~0
1854 #endif
1855
1856 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1857 or any of them. */
1858
1859 enum eh_frame_type
1860 {
1861 EH_CIE_TYPE_ID = 1 << 0,
1862 EH_FDE_TYPE_ID = 1 << 1,
1863 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1864 };
1865
1866 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1867 int eh_frame_p,
1868 struct dwarf2_cie_table *cie_table,
1869 struct dwarf2_fde_table *fde_table,
1870 enum eh_frame_type entry_type);
1871
1872 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1873 Return NULL if invalid input, otherwise the next byte to be processed. */
1874
1875 static gdb_byte *
1876 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1877 struct dwarf2_cie_table *cie_table,
1878 struct dwarf2_fde_table *fde_table,
1879 enum eh_frame_type entry_type)
1880 {
1881 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1882 gdb_byte *buf, *end;
1883 LONGEST length;
1884 unsigned int bytes_read;
1885 int dwarf64_p;
1886 ULONGEST cie_id;
1887 ULONGEST cie_pointer;
1888
1889 buf = start;
1890 length = read_initial_length (unit->abfd, buf, &bytes_read);
1891 buf += bytes_read;
1892 end = buf + length;
1893
1894 /* Are we still within the section? */
1895 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1896 return NULL;
1897
1898 if (length == 0)
1899 return end;
1900
1901 /* Distinguish between 32 and 64-bit encoded frame info. */
1902 dwarf64_p = (bytes_read == 12);
1903
1904 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1905 if (eh_frame_p)
1906 cie_id = 0;
1907 else if (dwarf64_p)
1908 cie_id = DW64_CIE_ID;
1909 else
1910 cie_id = DW_CIE_ID;
1911
1912 if (dwarf64_p)
1913 {
1914 cie_pointer = read_8_bytes (unit->abfd, buf);
1915 buf += 8;
1916 }
1917 else
1918 {
1919 cie_pointer = read_4_bytes (unit->abfd, buf);
1920 buf += 4;
1921 }
1922
1923 if (cie_pointer == cie_id)
1924 {
1925 /* This is a CIE. */
1926 struct dwarf2_cie *cie;
1927 char *augmentation;
1928 unsigned int cie_version;
1929
1930 /* Check that a CIE was expected. */
1931 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1932 error (_("Found a CIE when not expecting it."));
1933
1934 /* Record the offset into the .debug_frame section of this CIE. */
1935 cie_pointer = start - unit->dwarf_frame_buffer;
1936
1937 /* Check whether we've already read it. */
1938 if (find_cie (cie_table, cie_pointer))
1939 return end;
1940
1941 cie = (struct dwarf2_cie *)
1942 obstack_alloc (&unit->objfile->objfile_obstack,
1943 sizeof (struct dwarf2_cie));
1944 cie->initial_instructions = NULL;
1945 cie->cie_pointer = cie_pointer;
1946
1947 /* The encoding for FDE's in a normal .debug_frame section
1948 depends on the target address size. */
1949 cie->encoding = DW_EH_PE_absptr;
1950
1951 /* We'll determine the final value later, but we need to
1952 initialize it conservatively. */
1953 cie->signal_frame = 0;
1954
1955 /* Check version number. */
1956 cie_version = read_1_byte (unit->abfd, buf);
1957 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1958 return NULL;
1959 cie->version = cie_version;
1960 buf += 1;
1961
1962 /* Interpret the interesting bits of the augmentation. */
1963 cie->augmentation = augmentation = (char *) buf;
1964 buf += (strlen (augmentation) + 1);
1965
1966 /* Ignore armcc augmentations. We only use them for quirks,
1967 and that doesn't happen until later. */
1968 if (strncmp (augmentation, "armcc", 5) == 0)
1969 augmentation += strlen (augmentation);
1970
1971 /* The GCC 2.x "eh" augmentation has a pointer immediately
1972 following the augmentation string, so it must be handled
1973 first. */
1974 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1975 {
1976 /* Skip. */
1977 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1978 augmentation += 2;
1979 }
1980
1981 if (cie->version >= 4)
1982 {
1983 /* FIXME: check that this is the same as from the CU header. */
1984 cie->addr_size = read_1_byte (unit->abfd, buf);
1985 ++buf;
1986 cie->segment_size = read_1_byte (unit->abfd, buf);
1987 ++buf;
1988 }
1989 else
1990 {
1991 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1992 cie->segment_size = 0;
1993 }
1994 /* Address values in .eh_frame sections are defined to have the
1995 target's pointer size. Watchout: This breaks frame info for
1996 targets with pointer size < address size, unless a .debug_frame
1997 section exists as well. */
1998 if (eh_frame_p)
1999 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
2000 else
2001 cie->ptr_size = cie->addr_size;
2002
2003 cie->code_alignment_factor =
2004 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2005 buf += bytes_read;
2006
2007 cie->data_alignment_factor =
2008 read_signed_leb128 (unit->abfd, buf, &bytes_read);
2009 buf += bytes_read;
2010
2011 if (cie_version == 1)
2012 {
2013 cie->return_address_register = read_1_byte (unit->abfd, buf);
2014 bytes_read = 1;
2015 }
2016 else
2017 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
2018 &bytes_read);
2019 cie->return_address_register
2020 = dwarf2_frame_adjust_regnum (gdbarch,
2021 cie->return_address_register,
2022 eh_frame_p);
2023
2024 buf += bytes_read;
2025
2026 cie->saw_z_augmentation = (*augmentation == 'z');
2027 if (cie->saw_z_augmentation)
2028 {
2029 ULONGEST length;
2030
2031 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2032 buf += bytes_read;
2033 if (buf > end)
2034 return NULL;
2035 cie->initial_instructions = buf + length;
2036 augmentation++;
2037 }
2038
2039 while (*augmentation)
2040 {
2041 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2042 if (*augmentation == 'L')
2043 {
2044 /* Skip. */
2045 buf++;
2046 augmentation++;
2047 }
2048
2049 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2050 else if (*augmentation == 'R')
2051 {
2052 cie->encoding = *buf++;
2053 augmentation++;
2054 }
2055
2056 /* "P" indicates a personality routine in the CIE augmentation. */
2057 else if (*augmentation == 'P')
2058 {
2059 /* Skip. Avoid indirection since we throw away the result. */
2060 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2061 read_encoded_value (unit, encoding, cie->ptr_size,
2062 buf, &bytes_read, 0);
2063 buf += bytes_read;
2064 augmentation++;
2065 }
2066
2067 /* "S" indicates a signal frame, such that the return
2068 address must not be decremented to locate the call frame
2069 info for the previous frame; it might even be the first
2070 instruction of a function, so decrementing it would take
2071 us to a different function. */
2072 else if (*augmentation == 'S')
2073 {
2074 cie->signal_frame = 1;
2075 augmentation++;
2076 }
2077
2078 /* Otherwise we have an unknown augmentation. Assume that either
2079 there is no augmentation data, or we saw a 'z' prefix. */
2080 else
2081 {
2082 if (cie->initial_instructions)
2083 buf = cie->initial_instructions;
2084 break;
2085 }
2086 }
2087
2088 cie->initial_instructions = buf;
2089 cie->end = end;
2090 cie->unit = unit;
2091
2092 add_cie (cie_table, cie);
2093 }
2094 else
2095 {
2096 /* This is a FDE. */
2097 struct dwarf2_fde *fde;
2098
2099 /* Check that an FDE was expected. */
2100 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2101 error (_("Found an FDE when not expecting it."));
2102
2103 /* In an .eh_frame section, the CIE pointer is the delta between the
2104 address within the FDE where the CIE pointer is stored and the
2105 address of the CIE. Convert it to an offset into the .eh_frame
2106 section. */
2107 if (eh_frame_p)
2108 {
2109 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2110 cie_pointer -= (dwarf64_p ? 8 : 4);
2111 }
2112
2113 /* In either case, validate the result is still within the section. */
2114 if (cie_pointer >= unit->dwarf_frame_size)
2115 return NULL;
2116
2117 fde = (struct dwarf2_fde *)
2118 obstack_alloc (&unit->objfile->objfile_obstack,
2119 sizeof (struct dwarf2_fde));
2120 fde->cie = find_cie (cie_table, cie_pointer);
2121 if (fde->cie == NULL)
2122 {
2123 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2124 eh_frame_p, cie_table, fde_table,
2125 EH_CIE_TYPE_ID);
2126 fde->cie = find_cie (cie_table, cie_pointer);
2127 }
2128
2129 gdb_assert (fde->cie != NULL);
2130
2131 fde->initial_location =
2132 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2133 buf, &bytes_read, 0);
2134 buf += bytes_read;
2135
2136 fde->address_range =
2137 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2138 fde->cie->ptr_size, buf, &bytes_read, 0);
2139 buf += bytes_read;
2140
2141 /* A 'z' augmentation in the CIE implies the presence of an
2142 augmentation field in the FDE as well. The only thing known
2143 to be in here at present is the LSDA entry for EH. So we
2144 can skip the whole thing. */
2145 if (fde->cie->saw_z_augmentation)
2146 {
2147 ULONGEST length;
2148
2149 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
2150 buf += bytes_read + length;
2151 if (buf > end)
2152 return NULL;
2153 }
2154
2155 fde->instructions = buf;
2156 fde->end = end;
2157
2158 fde->eh_frame_p = eh_frame_p;
2159
2160 add_fde (fde_table, fde);
2161 }
2162
2163 return end;
2164 }
2165
2166 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2167 expect an FDE or a CIE. */
2168
2169 static gdb_byte *
2170 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
2171 struct dwarf2_cie_table *cie_table,
2172 struct dwarf2_fde_table *fde_table,
2173 enum eh_frame_type entry_type)
2174 {
2175 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2176 gdb_byte *ret;
2177 ptrdiff_t start_offset;
2178
2179 while (1)
2180 {
2181 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2182 cie_table, fde_table, entry_type);
2183 if (ret != NULL)
2184 break;
2185
2186 /* We have corrupt input data of some form. */
2187
2188 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2189 and mismatches wrt padding and alignment of debug sections. */
2190 /* Note that there is no requirement in the standard for any
2191 alignment at all in the frame unwind sections. Testing for
2192 alignment before trying to interpret data would be incorrect.
2193
2194 However, GCC traditionally arranged for frame sections to be
2195 sized such that the FDE length and CIE fields happen to be
2196 aligned (in theory, for performance). This, unfortunately,
2197 was done with .align directives, which had the side effect of
2198 forcing the section to be aligned by the linker.
2199
2200 This becomes a problem when you have some other producer that
2201 creates frame sections that are not as strictly aligned. That
2202 produces a hole in the frame info that gets filled by the
2203 linker with zeros.
2204
2205 The GCC behaviour is arguably a bug, but it's effectively now
2206 part of the ABI, so we're now stuck with it, at least at the
2207 object file level. A smart linker may decide, in the process
2208 of compressing duplicate CIE information, that it can rewrite
2209 the entire output section without this extra padding. */
2210
2211 start_offset = start - unit->dwarf_frame_buffer;
2212 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2213 {
2214 start += 4 - (start_offset & 3);
2215 workaround = ALIGN4;
2216 continue;
2217 }
2218 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2219 {
2220 start += 8 - (start_offset & 7);
2221 workaround = ALIGN8;
2222 continue;
2223 }
2224
2225 /* Nothing left to try. Arrange to return as if we've consumed
2226 the entire input section. Hopefully we'll get valid info from
2227 the other of .debug_frame/.eh_frame. */
2228 workaround = FAIL;
2229 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2230 break;
2231 }
2232
2233 switch (workaround)
2234 {
2235 case NONE:
2236 break;
2237
2238 case ALIGN4:
2239 complaint (&symfile_complaints, _("\
2240 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2241 unit->dwarf_frame_section->owner->filename,
2242 unit->dwarf_frame_section->name);
2243 break;
2244
2245 case ALIGN8:
2246 complaint (&symfile_complaints, _("\
2247 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2248 unit->dwarf_frame_section->owner->filename,
2249 unit->dwarf_frame_section->name);
2250 break;
2251
2252 default:
2253 complaint (&symfile_complaints,
2254 _("Corrupt data in %s:%s"),
2255 unit->dwarf_frame_section->owner->filename,
2256 unit->dwarf_frame_section->name);
2257 break;
2258 }
2259
2260 return ret;
2261 }
2262 \f
2263 static int
2264 qsort_fde_cmp (const void *a, const void *b)
2265 {
2266 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2267 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2268
2269 if (aa->initial_location == bb->initial_location)
2270 {
2271 if (aa->address_range != bb->address_range
2272 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2273 /* Linker bug, e.g. gold/10400.
2274 Work around it by keeping stable sort order. */
2275 return (a < b) ? -1 : 1;
2276 else
2277 /* Put eh_frame entries after debug_frame ones. */
2278 return aa->eh_frame_p - bb->eh_frame_p;
2279 }
2280
2281 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2282 }
2283
2284 void
2285 dwarf2_build_frame_info (struct objfile *objfile)
2286 {
2287 struct comp_unit *unit;
2288 gdb_byte *frame_ptr;
2289 struct dwarf2_cie_table cie_table;
2290 struct dwarf2_fde_table fde_table;
2291 struct dwarf2_fde_table *fde_table2;
2292 volatile struct gdb_exception e;
2293
2294 cie_table.num_entries = 0;
2295 cie_table.entries = NULL;
2296
2297 fde_table.num_entries = 0;
2298 fde_table.entries = NULL;
2299
2300 /* Build a minimal decoding of the DWARF2 compilation unit. */
2301 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2302 sizeof (struct comp_unit));
2303 unit->abfd = objfile->obfd;
2304 unit->objfile = objfile;
2305 unit->dbase = 0;
2306 unit->tbase = 0;
2307
2308 if (objfile->separate_debug_objfile_backlink == NULL)
2309 {
2310 /* Do not read .eh_frame from separate file as they must be also
2311 present in the main file. */
2312 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2313 &unit->dwarf_frame_section,
2314 &unit->dwarf_frame_buffer,
2315 &unit->dwarf_frame_size);
2316 if (unit->dwarf_frame_size)
2317 {
2318 asection *got, *txt;
2319
2320 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2321 that is used for the i386/amd64 target, which currently is
2322 the only target in GCC that supports/uses the
2323 DW_EH_PE_datarel encoding. */
2324 got = bfd_get_section_by_name (unit->abfd, ".got");
2325 if (got)
2326 unit->dbase = got->vma;
2327
2328 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2329 so far. */
2330 txt = bfd_get_section_by_name (unit->abfd, ".text");
2331 if (txt)
2332 unit->tbase = txt->vma;
2333
2334 TRY_CATCH (e, RETURN_MASK_ERROR)
2335 {
2336 frame_ptr = unit->dwarf_frame_buffer;
2337 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2338 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2339 &cie_table, &fde_table,
2340 EH_CIE_OR_FDE_TYPE_ID);
2341 }
2342
2343 if (e.reason < 0)
2344 {
2345 warning (_("skipping .eh_frame info of %s: %s"),
2346 objfile->name, e.message);
2347
2348 if (fde_table.num_entries != 0)
2349 {
2350 xfree (fde_table.entries);
2351 fde_table.entries = NULL;
2352 fde_table.num_entries = 0;
2353 }
2354 /* The cie_table is discarded by the next if. */
2355 }
2356
2357 if (cie_table.num_entries != 0)
2358 {
2359 /* Reinit cie_table: debug_frame has different CIEs. */
2360 xfree (cie_table.entries);
2361 cie_table.num_entries = 0;
2362 cie_table.entries = NULL;
2363 }
2364 }
2365 }
2366
2367 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2368 &unit->dwarf_frame_section,
2369 &unit->dwarf_frame_buffer,
2370 &unit->dwarf_frame_size);
2371 if (unit->dwarf_frame_size)
2372 {
2373 int num_old_fde_entries = fde_table.num_entries;
2374
2375 TRY_CATCH (e, RETURN_MASK_ERROR)
2376 {
2377 frame_ptr = unit->dwarf_frame_buffer;
2378 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2379 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2380 &cie_table, &fde_table,
2381 EH_CIE_OR_FDE_TYPE_ID);
2382 }
2383 if (e.reason < 0)
2384 {
2385 warning (_("skipping .debug_frame info of %s: %s"),
2386 objfile->name, e.message);
2387
2388 if (fde_table.num_entries != 0)
2389 {
2390 fde_table.num_entries = num_old_fde_entries;
2391 if (num_old_fde_entries == 0)
2392 {
2393 xfree (fde_table.entries);
2394 fde_table.entries = NULL;
2395 }
2396 else
2397 {
2398 fde_table.entries = xrealloc (fde_table.entries,
2399 fde_table.num_entries *
2400 sizeof (fde_table.entries[0]));
2401 }
2402 }
2403 fde_table.num_entries = num_old_fde_entries;
2404 /* The cie_table is discarded by the next if. */
2405 }
2406 }
2407
2408 /* Discard the cie_table, it is no longer needed. */
2409 if (cie_table.num_entries != 0)
2410 {
2411 xfree (cie_table.entries);
2412 cie_table.entries = NULL; /* Paranoia. */
2413 cie_table.num_entries = 0; /* Paranoia. */
2414 }
2415
2416 /* Copy fde_table to obstack: it is needed at runtime. */
2417 fde_table2 = (struct dwarf2_fde_table *)
2418 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2419
2420 if (fde_table.num_entries == 0)
2421 {
2422 fde_table2->entries = NULL;
2423 fde_table2->num_entries = 0;
2424 }
2425 else
2426 {
2427 struct dwarf2_fde *fde_prev = NULL;
2428 struct dwarf2_fde *first_non_zero_fde = NULL;
2429 int i;
2430
2431 /* Prepare FDE table for lookups. */
2432 qsort (fde_table.entries, fde_table.num_entries,
2433 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2434
2435 /* Check for leftovers from --gc-sections. The GNU linker sets
2436 the relevant symbols to zero, but doesn't zero the FDE *end*
2437 ranges because there's no relocation there. It's (offset,
2438 length), not (start, end). On targets where address zero is
2439 just another valid address this can be a problem, since the
2440 FDEs appear to be non-empty in the output --- we could pick
2441 out the wrong FDE. To work around this, when overlaps are
2442 detected, we prefer FDEs that do not start at zero.
2443
2444 Start by finding the first FDE with non-zero start. Below
2445 we'll discard all FDEs that start at zero and overlap this
2446 one. */
2447 for (i = 0; i < fde_table.num_entries; i++)
2448 {
2449 struct dwarf2_fde *fde = fde_table.entries[i];
2450
2451 if (fde->initial_location != 0)
2452 {
2453 first_non_zero_fde = fde;
2454 break;
2455 }
2456 }
2457
2458 /* Since we'll be doing bsearch, squeeze out identical (except
2459 for eh_frame_p) fde entries so bsearch result is predictable.
2460 Also discard leftovers from --gc-sections. */
2461 fde_table2->num_entries = 0;
2462 for (i = 0; i < fde_table.num_entries; i++)
2463 {
2464 struct dwarf2_fde *fde = fde_table.entries[i];
2465
2466 if (fde->initial_location == 0
2467 && first_non_zero_fde != NULL
2468 && (first_non_zero_fde->initial_location
2469 < fde->initial_location + fde->address_range))
2470 continue;
2471
2472 if (fde_prev != NULL
2473 && fde_prev->initial_location == fde->initial_location)
2474 continue;
2475
2476 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2477 sizeof (fde_table.entries[0]));
2478 ++fde_table2->num_entries;
2479 fde_prev = fde;
2480 }
2481 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2482
2483 /* Discard the original fde_table. */
2484 xfree (fde_table.entries);
2485 }
2486
2487 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2488 }
2489
2490 /* Provide a prototype to silence -Wmissing-prototypes. */
2491 void _initialize_dwarf2_frame (void);
2492
2493 void
2494 _initialize_dwarf2_frame (void)
2495 {
2496 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2497 dwarf2_frame_objfile_data = register_objfile_data ();
2498 }