]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2-frame.c
frame, cfa: check unwind stop reason first
[thirdparty/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include <string.h>
37
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
44
45 struct comp_unit;
46
47 /* Call Frame Information (CFI). */
48
49 /* Common Information Entry (CIE). */
50
51 struct dwarf2_cie
52 {
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
55
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
59
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
63
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
66
67 /* Return address column. */
68 ULONGEST return_address_register;
69
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
73
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
76
77 /* Encoding of addresses. */
78 gdb_byte encoding;
79
80 /* Target address size in bytes. */
81 int addr_size;
82
83 /* Target pointer size in bytes. */
84 int ptr_size;
85
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
88
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
91
92 /* The version recorded in the CIE. */
93 unsigned char version;
94
95 /* The segment size. */
96 unsigned char segment_size;
97 };
98
99 struct dwarf2_cie_table
100 {
101 int num_entries;
102 struct dwarf2_cie **entries;
103 };
104
105 /* Frame Description Entry (FDE). */
106
107 struct dwarf2_fde
108 {
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
111
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
114
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
117
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
121
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
125 };
126
127 struct dwarf2_fde_table
128 {
129 int num_entries;
130 struct dwarf2_fde **entries;
131 };
132
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
135
136 struct comp_unit
137 {
138 /* Keep the bfd convenient. */
139 bfd *abfd;
140
141 struct objfile *objfile;
142
143 /* Pointer to the .debug_frame section loaded into memory. */
144 const gdb_byte *dwarf_frame_buffer;
145
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
148
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
151
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
154
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
157 };
158
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
161
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
164
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
169 \f
170
171 /* Structure describing a frame state. */
172
173 struct dwarf2_frame_state
174 {
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
178 {
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
181
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
190
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
194
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
197
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
201
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
206
207 /* Flags for known producer quirks. */
208
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
212
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
216 };
217
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
221
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
224
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
228 {
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
230
231 if (num_regs <= rs->num_regs)
232 return;
233
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
236
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
240 }
241
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
244
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
247 {
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
250
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
253
254 return reg;
255 }
256
257 /* Release the memory allocated to register set RS. */
258
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
261 {
262 if (rs)
263 {
264 dwarf2_frame_state_free_regs (rs->prev);
265
266 xfree (rs->reg);
267 xfree (rs);
268 }
269 }
270
271 /* Release the memory allocated to the frame state FS. */
272
273 static void
274 dwarf2_frame_state_free (void *p)
275 {
276 struct dwarf2_frame_state *fs = p;
277
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
283 }
284 \f
285
286 /* Helper functions for execute_stack_op. */
287
288 static CORE_ADDR
289 read_addr_from_reg (void *baton, int reg)
290 {
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
295
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
297
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
300
301 return unpack_pointer (register_type (gdbarch, regnum), buf);
302 }
303
304 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
305
306 static struct value *
307 get_reg_value (void *baton, struct type *type, int reg)
308 {
309 struct frame_info *this_frame = (struct frame_info *) baton;
310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
311 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
312
313 return value_from_register (type, regnum, this_frame);
314 }
315
316 static void
317 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
318 {
319 read_memory (addr, buf, len);
320 }
321
322 /* Execute the required actions for both the DW_CFA_restore and
323 DW_CFA_restore_extended instructions. */
324 static void
325 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
326 struct dwarf2_frame_state *fs, int eh_frame_p)
327 {
328 ULONGEST reg;
329
330 gdb_assert (fs->initial.reg);
331 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
332 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
333
334 /* Check if this register was explicitly initialized in the
335 CIE initial instructions. If not, default the rule to
336 UNSPECIFIED. */
337 if (reg < fs->initial.num_regs)
338 fs->regs.reg[reg] = fs->initial.reg[reg];
339 else
340 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
341
342 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
343 complaint (&symfile_complaints, _("\
344 incomplete CFI data; DW_CFA_restore unspecified\n\
345 register %s (#%d) at %s"),
346 gdbarch_register_name
347 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
348 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
349 paddress (gdbarch, fs->pc));
350 }
351
352 /* Virtual method table for execute_stack_op below. */
353
354 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
355 {
356 read_addr_from_reg,
357 get_reg_value,
358 read_mem,
359 ctx_no_get_frame_base,
360 ctx_no_get_frame_cfa,
361 ctx_no_get_frame_pc,
362 ctx_no_get_tls_address,
363 ctx_no_dwarf_call,
364 ctx_no_get_base_type,
365 ctx_no_push_dwarf_reg_entry_value,
366 ctx_no_get_addr_index
367 };
368
369 static CORE_ADDR
370 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
371 CORE_ADDR offset, struct frame_info *this_frame,
372 CORE_ADDR initial, int initial_in_stack_memory)
373 {
374 struct dwarf_expr_context *ctx;
375 CORE_ADDR result;
376 struct cleanup *old_chain;
377
378 ctx = new_dwarf_expr_context ();
379 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
380 make_cleanup_value_free_to_mark (value_mark ());
381
382 ctx->gdbarch = get_frame_arch (this_frame);
383 ctx->addr_size = addr_size;
384 ctx->ref_addr_size = -1;
385 ctx->offset = offset;
386 ctx->baton = this_frame;
387 ctx->funcs = &dwarf2_frame_ctx_funcs;
388
389 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
390 dwarf_expr_eval (ctx, exp, len);
391
392 if (ctx->location == DWARF_VALUE_MEMORY)
393 result = dwarf_expr_fetch_address (ctx, 0);
394 else if (ctx->location == DWARF_VALUE_REGISTER)
395 result = read_addr_from_reg (this_frame,
396 value_as_long (dwarf_expr_fetch (ctx, 0)));
397 else
398 {
399 /* This is actually invalid DWARF, but if we ever do run across
400 it somehow, we might as well support it. So, instead, report
401 it as unimplemented. */
402 error (_("\
403 Not implemented: computing unwound register using explicit value operator"));
404 }
405
406 do_cleanups (old_chain);
407
408 return result;
409 }
410 \f
411
412 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
413 PC. Modify FS state accordingly. Return current INSN_PTR where the
414 execution has stopped, one can resume it on the next call. */
415
416 static const gdb_byte *
417 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
418 const gdb_byte *insn_end, struct gdbarch *gdbarch,
419 CORE_ADDR pc, struct dwarf2_frame_state *fs)
420 {
421 int eh_frame_p = fde->eh_frame_p;
422 unsigned int bytes_read;
423 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
424
425 while (insn_ptr < insn_end && fs->pc <= pc)
426 {
427 gdb_byte insn = *insn_ptr++;
428 uint64_t utmp, reg;
429 int64_t offset;
430
431 if ((insn & 0xc0) == DW_CFA_advance_loc)
432 fs->pc += (insn & 0x3f) * fs->code_align;
433 else if ((insn & 0xc0) == DW_CFA_offset)
434 {
435 reg = insn & 0x3f;
436 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
438 offset = utmp * fs->data_align;
439 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
440 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
441 fs->regs.reg[reg].loc.offset = offset;
442 }
443 else if ((insn & 0xc0) == DW_CFA_restore)
444 {
445 reg = insn & 0x3f;
446 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
447 }
448 else
449 {
450 switch (insn)
451 {
452 case DW_CFA_set_loc:
453 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
454 fde->cie->ptr_size, insn_ptr,
455 &bytes_read, fde->initial_location);
456 /* Apply the objfile offset for relocatable objects. */
457 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
458 SECT_OFF_TEXT (fde->cie->unit->objfile));
459 insn_ptr += bytes_read;
460 break;
461
462 case DW_CFA_advance_loc1:
463 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
464 fs->pc += utmp * fs->code_align;
465 insn_ptr++;
466 break;
467 case DW_CFA_advance_loc2:
468 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
469 fs->pc += utmp * fs->code_align;
470 insn_ptr += 2;
471 break;
472 case DW_CFA_advance_loc4:
473 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
474 fs->pc += utmp * fs->code_align;
475 insn_ptr += 4;
476 break;
477
478 case DW_CFA_offset_extended:
479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
480 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
481 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
482 offset = utmp * fs->data_align;
483 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
484 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
485 fs->regs.reg[reg].loc.offset = offset;
486 break;
487
488 case DW_CFA_restore_extended:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
490 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
491 break;
492
493 case DW_CFA_undefined:
494 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
495 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
496 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
497 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
498 break;
499
500 case DW_CFA_same_value:
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
502 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
505 break;
506
507 case DW_CFA_register:
508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
509 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
511 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
514 fs->regs.reg[reg].loc.reg = utmp;
515 break;
516
517 case DW_CFA_remember_state:
518 {
519 struct dwarf2_frame_state_reg_info *new_rs;
520
521 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
522 *new_rs = fs->regs;
523 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
524 fs->regs.prev = new_rs;
525 }
526 break;
527
528 case DW_CFA_restore_state:
529 {
530 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
531
532 if (old_rs == NULL)
533 {
534 complaint (&symfile_complaints, _("\
535 bad CFI data; mismatched DW_CFA_restore_state at %s"),
536 paddress (gdbarch, fs->pc));
537 }
538 else
539 {
540 xfree (fs->regs.reg);
541 fs->regs = *old_rs;
542 xfree (old_rs);
543 }
544 }
545 break;
546
547 case DW_CFA_def_cfa:
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
549 fs->regs.cfa_reg = reg;
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
551
552 if (fs->armcc_cfa_offsets_sf)
553 utmp *= fs->data_align;
554
555 fs->regs.cfa_offset = utmp;
556 fs->regs.cfa_how = CFA_REG_OFFSET;
557 break;
558
559 case DW_CFA_def_cfa_register:
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
562 eh_frame_p);
563 fs->regs.cfa_how = CFA_REG_OFFSET;
564 break;
565
566 case DW_CFA_def_cfa_offset:
567 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
568
569 if (fs->armcc_cfa_offsets_sf)
570 utmp *= fs->data_align;
571
572 fs->regs.cfa_offset = utmp;
573 /* cfa_how deliberately not set. */
574 break;
575
576 case DW_CFA_nop:
577 break;
578
579 case DW_CFA_def_cfa_expression:
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
581 fs->regs.cfa_exp_len = utmp;
582 fs->regs.cfa_exp = insn_ptr;
583 fs->regs.cfa_how = CFA_EXP;
584 insn_ptr += fs->regs.cfa_exp_len;
585 break;
586
587 case DW_CFA_expression:
588 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
589 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
590 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
591 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
592 fs->regs.reg[reg].loc.exp = insn_ptr;
593 fs->regs.reg[reg].exp_len = utmp;
594 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
595 insn_ptr += utmp;
596 break;
597
598 case DW_CFA_offset_extended_sf:
599 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
600 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
601 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
602 offset *= fs->data_align;
603 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
612 offset = utmp * fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_offset_sf:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
621 offset *= fs->data_align;
622 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
623 fs->regs.reg[reg].loc.offset = offset;
624 break;
625
626 case DW_CFA_val_expression:
627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
628 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
629 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
630 fs->regs.reg[reg].loc.exp = insn_ptr;
631 fs->regs.reg[reg].exp_len = utmp;
632 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
633 insn_ptr += utmp;
634 break;
635
636 case DW_CFA_def_cfa_sf:
637 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
638 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
639 eh_frame_p);
640 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
641 fs->regs.cfa_offset = offset * fs->data_align;
642 fs->regs.cfa_how = CFA_REG_OFFSET;
643 break;
644
645 case DW_CFA_def_cfa_offset_sf:
646 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
647 fs->regs.cfa_offset = offset * fs->data_align;
648 /* cfa_how deliberately not set. */
649 break;
650
651 case DW_CFA_GNU_window_save:
652 /* This is SPARC-specific code, and contains hard-coded
653 constants for the register numbering scheme used by
654 GCC. Rather than having a architecture-specific
655 operation that's only ever used by a single
656 architecture, we provide the implementation here.
657 Incidentally that's what GCC does too in its
658 unwinder. */
659 {
660 int size = register_size (gdbarch, 0);
661
662 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
663 for (reg = 8; reg < 16; reg++)
664 {
665 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
666 fs->regs.reg[reg].loc.reg = reg + 16;
667 }
668 for (reg = 16; reg < 32; reg++)
669 {
670 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
671 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
672 }
673 }
674 break;
675
676 case DW_CFA_GNU_args_size:
677 /* Ignored. */
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
679 break;
680
681 case DW_CFA_GNU_negative_offset_extended:
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
683 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
684 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
685 offset = utmp * fs->data_align;
686 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
688 fs->regs.reg[reg].loc.offset = -offset;
689 break;
690
691 default:
692 internal_error (__FILE__, __LINE__,
693 _("Unknown CFI encountered."));
694 }
695 }
696 }
697
698 if (fs->initial.reg == NULL)
699 {
700 /* Don't allow remember/restore between CIE and FDE programs. */
701 dwarf2_frame_state_free_regs (fs->regs.prev);
702 fs->regs.prev = NULL;
703 }
704
705 return insn_ptr;
706 }
707 \f
708
709 /* Architecture-specific operations. */
710
711 /* Per-architecture data key. */
712 static struct gdbarch_data *dwarf2_frame_data;
713
714 struct dwarf2_frame_ops
715 {
716 /* Pre-initialize the register state REG for register REGNUM. */
717 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
718 struct frame_info *);
719
720 /* Check whether the THIS_FRAME is a signal trampoline. */
721 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
722
723 /* Convert .eh_frame register number to DWARF register number, or
724 adjust .debug_frame register number. */
725 int (*adjust_regnum) (struct gdbarch *, int, int);
726 };
727
728 /* Default architecture-specific register state initialization
729 function. */
730
731 static void
732 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
733 struct dwarf2_frame_state_reg *reg,
734 struct frame_info *this_frame)
735 {
736 /* If we have a register that acts as a program counter, mark it as
737 a destination for the return address. If we have a register that
738 serves as the stack pointer, arrange for it to be filled with the
739 call frame address (CFA). The other registers are marked as
740 unspecified.
741
742 We copy the return address to the program counter, since many
743 parts in GDB assume that it is possible to get the return address
744 by unwinding the program counter register. However, on ISA's
745 with a dedicated return address register, the CFI usually only
746 contains information to unwind that return address register.
747
748 The reason we're treating the stack pointer special here is
749 because in many cases GCC doesn't emit CFI for the stack pointer
750 and implicitly assumes that it is equal to the CFA. This makes
751 some sense since the DWARF specification (version 3, draft 8,
752 p. 102) says that:
753
754 "Typically, the CFA is defined to be the value of the stack
755 pointer at the call site in the previous frame (which may be
756 different from its value on entry to the current frame)."
757
758 However, this isn't true for all platforms supported by GCC
759 (e.g. IBM S/390 and zSeries). Those architectures should provide
760 their own architecture-specific initialization function. */
761
762 if (regnum == gdbarch_pc_regnum (gdbarch))
763 reg->how = DWARF2_FRAME_REG_RA;
764 else if (regnum == gdbarch_sp_regnum (gdbarch))
765 reg->how = DWARF2_FRAME_REG_CFA;
766 }
767
768 /* Return a default for the architecture-specific operations. */
769
770 static void *
771 dwarf2_frame_init (struct obstack *obstack)
772 {
773 struct dwarf2_frame_ops *ops;
774
775 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
776 ops->init_reg = dwarf2_frame_default_init_reg;
777 return ops;
778 }
779
780 /* Set the architecture-specific register state initialization
781 function for GDBARCH to INIT_REG. */
782
783 void
784 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
785 void (*init_reg) (struct gdbarch *, int,
786 struct dwarf2_frame_state_reg *,
787 struct frame_info *))
788 {
789 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
790
791 ops->init_reg = init_reg;
792 }
793
794 /* Pre-initialize the register state REG for register REGNUM. */
795
796 static void
797 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
798 struct dwarf2_frame_state_reg *reg,
799 struct frame_info *this_frame)
800 {
801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
802
803 ops->init_reg (gdbarch, regnum, reg, this_frame);
804 }
805
806 /* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809 void
810 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813 {
814 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->signal_frame_p = signal_frame_p;
817 }
818
819 /* Query the architecture-specific signal frame recognizer for
820 THIS_FRAME. */
821
822 static int
823 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
824 struct frame_info *this_frame)
825 {
826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->signal_frame_p == NULL)
829 return 0;
830 return ops->signal_frame_p (gdbarch, this_frame);
831 }
832
833 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
834 register numbers. */
835
836 void
837 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
838 int (*adjust_regnum) (struct gdbarch *,
839 int, int))
840 {
841 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
842
843 ops->adjust_regnum = adjust_regnum;
844 }
845
846 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
847 register. */
848
849 static int
850 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
851 int regnum, int eh_frame_p)
852 {
853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
854
855 if (ops->adjust_regnum == NULL)
856 return regnum;
857 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
858 }
859
860 static void
861 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
862 struct dwarf2_fde *fde)
863 {
864 struct symtab *s;
865
866 s = find_pc_symtab (fs->pc);
867 if (s == NULL)
868 return;
869
870 if (producer_is_realview (s->producer))
871 {
872 if (fde->cie->version == 1)
873 fs->armcc_cfa_offsets_sf = 1;
874
875 if (fde->cie->version == 1)
876 fs->armcc_cfa_offsets_reversed = 1;
877
878 /* The reversed offset problem is present in some compilers
879 using DWARF3, but it was eventually fixed. Check the ARM
880 defined augmentations, which are in the format "armcc" followed
881 by a list of one-character options. The "+" option means
882 this problem is fixed (no quirk needed). If the armcc
883 augmentation is missing, the quirk is needed. */
884 if (fde->cie->version == 3
885 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
886 || strchr (fde->cie->augmentation + 5, '+') == NULL))
887 fs->armcc_cfa_offsets_reversed = 1;
888
889 return;
890 }
891 }
892 \f
893
894 void
895 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
896 struct gdbarch *gdbarch,
897 CORE_ADDR pc,
898 struct dwarf2_per_cu_data *data)
899 {
900 struct dwarf2_fde *fde;
901 CORE_ADDR text_offset;
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944 ax_reg (expr, regnum);
945
946 if (fs.regs.cfa_offset != 0)
947 {
948 if (fs.armcc_cfa_offsets_reversed)
949 ax_const_l (expr, -fs.regs.cfa_offset);
950 else
951 ax_const_l (expr, fs.regs.cfa_offset);
952 ax_simple (expr, aop_add);
953 }
954 }
955 break;
956
957 case CFA_EXP:
958 ax_const_l (expr, text_offset);
959 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
960 fs.regs.cfa_exp,
961 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
962 data);
963 break;
964
965 default:
966 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
967 }
968 }
969
970 \f
971 struct dwarf2_frame_cache
972 {
973 /* DWARF Call Frame Address. */
974 CORE_ADDR cfa;
975
976 /* Set if the return address column was marked as unavailable
977 (required non-collected memory or registers to compute). */
978 int unavailable_retaddr;
979
980 /* Set if the return address column was marked as undefined. */
981 int undefined_retaddr;
982
983 /* Saved registers, indexed by GDB register number, not by DWARF
984 register number. */
985 struct dwarf2_frame_state_reg *reg;
986
987 /* Return address register. */
988 struct dwarf2_frame_state_reg retaddr_reg;
989
990 /* Target address size in bytes. */
991 int addr_size;
992
993 /* The .text offset. */
994 CORE_ADDR text_offset;
995
996 /* True if we already checked whether this frame is the bottom frame
997 of a virtual tail call frame chain. */
998 int checked_tailcall_bottom;
999
1000 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1001 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1002 involved. Non-bottom frames of a virtual tail call frames chain use
1003 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1004 them. */
1005 void *tailcall_cache;
1006
1007 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1008 base to get the SP, to simulate the return address pushed on the
1009 stack. */
1010 LONGEST entry_cfa_sp_offset;
1011 int entry_cfa_sp_offset_p;
1012 };
1013
1014 /* A cleanup that sets a pointer to NULL. */
1015
1016 static void
1017 clear_pointer_cleanup (void *arg)
1018 {
1019 void **ptr = arg;
1020
1021 *ptr = NULL;
1022 }
1023
1024 static struct dwarf2_frame_cache *
1025 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1026 {
1027 struct cleanup *reset_cache_cleanup, *old_chain;
1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1029 const int num_regs = gdbarch_num_regs (gdbarch)
1030 + gdbarch_num_pseudo_regs (gdbarch);
1031 struct dwarf2_frame_cache *cache;
1032 struct dwarf2_frame_state *fs;
1033 struct dwarf2_fde *fde;
1034 volatile struct gdb_exception ex;
1035 CORE_ADDR entry_pc;
1036 const gdb_byte *instr;
1037
1038 if (*this_cache)
1039 return *this_cache;
1040
1041 /* Allocate a new cache. */
1042 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1043 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1044 *this_cache = cache;
1045 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1046
1047 /* Allocate and initialize the frame state. */
1048 fs = XCNEW (struct dwarf2_frame_state);
1049 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1050
1051 /* Unwind the PC.
1052
1053 Note that if the next frame is never supposed to return (i.e. a call
1054 to abort), the compiler might optimize away the instruction at
1055 its return address. As a result the return address will
1056 point at some random instruction, and the CFI for that
1057 instruction is probably worthless to us. GCC's unwinder solves
1058 this problem by substracting 1 from the return address to get an
1059 address in the middle of a presumed call instruction (or the
1060 instruction in the associated delay slot). This should only be
1061 done for "normal" frames and not for resume-type frames (signal
1062 handlers, sentinel frames, dummy frames). The function
1063 get_frame_address_in_block does just this. It's not clear how
1064 reliable the method is though; there is the potential for the
1065 register state pre-call being different to that on return. */
1066 fs->pc = get_frame_address_in_block (this_frame);
1067
1068 /* Find the correct FDE. */
1069 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1070 gdb_assert (fde != NULL);
1071
1072 /* Extract any interesting information from the CIE. */
1073 fs->data_align = fde->cie->data_alignment_factor;
1074 fs->code_align = fde->cie->code_alignment_factor;
1075 fs->retaddr_column = fde->cie->return_address_register;
1076 cache->addr_size = fde->cie->addr_size;
1077
1078 /* Check for "quirks" - known bugs in producers. */
1079 dwarf2_frame_find_quirks (fs, fde);
1080
1081 /* First decode all the insns in the CIE. */
1082 execute_cfa_program (fde, fde->cie->initial_instructions,
1083 fde->cie->end, gdbarch,
1084 get_frame_address_in_block (this_frame), fs);
1085
1086 /* Save the initialized register set. */
1087 fs->initial = fs->regs;
1088 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1089
1090 if (get_frame_func_if_available (this_frame, &entry_pc))
1091 {
1092 /* Decode the insns in the FDE up to the entry PC. */
1093 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1094 entry_pc, fs);
1095
1096 if (fs->regs.cfa_how == CFA_REG_OFFSET
1097 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1098 == gdbarch_sp_regnum (gdbarch)))
1099 {
1100 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1101 cache->entry_cfa_sp_offset_p = 1;
1102 }
1103 }
1104 else
1105 instr = fde->instructions;
1106
1107 /* Then decode the insns in the FDE up to our target PC. */
1108 execute_cfa_program (fde, instr, fde->end, gdbarch,
1109 get_frame_address_in_block (this_frame), fs);
1110
1111 TRY_CATCH (ex, RETURN_MASK_ERROR)
1112 {
1113 /* Calculate the CFA. */
1114 switch (fs->regs.cfa_how)
1115 {
1116 case CFA_REG_OFFSET:
1117 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1118 if (fs->armcc_cfa_offsets_reversed)
1119 cache->cfa -= fs->regs.cfa_offset;
1120 else
1121 cache->cfa += fs->regs.cfa_offset;
1122 break;
1123
1124 case CFA_EXP:
1125 cache->cfa =
1126 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1127 cache->addr_size, cache->text_offset,
1128 this_frame, 0, 0);
1129 break;
1130
1131 default:
1132 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1133 }
1134 }
1135 if (ex.reason < 0)
1136 {
1137 if (ex.error == NOT_AVAILABLE_ERROR)
1138 {
1139 cache->unavailable_retaddr = 1;
1140 do_cleanups (old_chain);
1141 discard_cleanups (reset_cache_cleanup);
1142 return cache;
1143 }
1144
1145 throw_exception (ex);
1146 }
1147
1148 /* Initialize the register state. */
1149 {
1150 int regnum;
1151
1152 for (regnum = 0; regnum < num_regs; regnum++)
1153 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1154 }
1155
1156 /* Go through the DWARF2 CFI generated table and save its register
1157 location information in the cache. Note that we don't skip the
1158 return address column; it's perfectly all right for it to
1159 correspond to a real register. If it doesn't correspond to a
1160 real register, or if we shouldn't treat it as such,
1161 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1162 the range [0, gdbarch_num_regs). */
1163 {
1164 int column; /* CFI speak for "register number". */
1165
1166 for (column = 0; column < fs->regs.num_regs; column++)
1167 {
1168 /* Use the GDB register number as the destination index. */
1169 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1170
1171 /* If there's no corresponding GDB register, ignore it. */
1172 if (regnum < 0 || regnum >= num_regs)
1173 continue;
1174
1175 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1176 of all debug info registers. If it doesn't, complain (but
1177 not too loudly). It turns out that GCC assumes that an
1178 unspecified register implies "same value" when CFI (draft
1179 7) specifies nothing at all. Such a register could equally
1180 be interpreted as "undefined". Also note that this check
1181 isn't sufficient; it only checks that all registers in the
1182 range [0 .. max column] are specified, and won't detect
1183 problems when a debug info register falls outside of the
1184 table. We need a way of iterating through all the valid
1185 DWARF2 register numbers. */
1186 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1187 {
1188 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1189 complaint (&symfile_complaints, _("\
1190 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1191 gdbarch_register_name (gdbarch, regnum),
1192 paddress (gdbarch, fs->pc));
1193 }
1194 else
1195 cache->reg[regnum] = fs->regs.reg[column];
1196 }
1197 }
1198
1199 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1200 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1201 {
1202 int regnum;
1203
1204 for (regnum = 0; regnum < num_regs; regnum++)
1205 {
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1207 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1208 {
1209 struct dwarf2_frame_state_reg *retaddr_reg =
1210 &fs->regs.reg[fs->retaddr_column];
1211
1212 /* It seems rather bizarre to specify an "empty" column as
1213 the return adress column. However, this is exactly
1214 what GCC does on some targets. It turns out that GCC
1215 assumes that the return address can be found in the
1216 register corresponding to the return address column.
1217 Incidentally, that's how we should treat a return
1218 address column specifying "same value" too. */
1219 if (fs->retaddr_column < fs->regs.num_regs
1220 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1221 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1222 {
1223 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1224 cache->reg[regnum] = *retaddr_reg;
1225 else
1226 cache->retaddr_reg = *retaddr_reg;
1227 }
1228 else
1229 {
1230 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1231 {
1232 cache->reg[regnum].loc.reg = fs->retaddr_column;
1233 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
1235 else
1236 {
1237 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1238 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1239 }
1240 }
1241 }
1242 }
1243 }
1244
1245 if (fs->retaddr_column < fs->regs.num_regs
1246 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1247 cache->undefined_retaddr = 1;
1248
1249 do_cleanups (old_chain);
1250 discard_cleanups (reset_cache_cleanup);
1251 return cache;
1252 }
1253
1254 static enum unwind_stop_reason
1255 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1256 void **this_cache)
1257 {
1258 struct dwarf2_frame_cache *cache
1259 = dwarf2_frame_cache (this_frame, this_cache);
1260
1261 if (cache->unavailable_retaddr)
1262 return UNWIND_UNAVAILABLE;
1263
1264 if (cache->undefined_retaddr)
1265 return UNWIND_OUTERMOST;
1266
1267 return UNWIND_NO_REASON;
1268 }
1269
1270 static void
1271 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1272 struct frame_id *this_id)
1273 {
1274 struct dwarf2_frame_cache *cache =
1275 dwarf2_frame_cache (this_frame, this_cache);
1276
1277 if (cache->unavailable_retaddr)
1278 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1279 else if (cache->undefined_retaddr)
1280 return;
1281 else
1282 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1283 }
1284
1285 static struct value *
1286 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1287 int regnum)
1288 {
1289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1290 struct dwarf2_frame_cache *cache =
1291 dwarf2_frame_cache (this_frame, this_cache);
1292 CORE_ADDR addr;
1293 int realnum;
1294
1295 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1296 call frame chain. */
1297 if (!cache->checked_tailcall_bottom)
1298 {
1299 cache->checked_tailcall_bottom = 1;
1300 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1301 (cache->entry_cfa_sp_offset_p
1302 ? &cache->entry_cfa_sp_offset : NULL));
1303 }
1304
1305 /* Non-bottom frames of a virtual tail call frames chain use
1306 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1307 them. If dwarf2_tailcall_prev_register_first does not have specific value
1308 unwind the register, tail call frames are assumed to have the register set
1309 of the top caller. */
1310 if (cache->tailcall_cache)
1311 {
1312 struct value *val;
1313
1314 val = dwarf2_tailcall_prev_register_first (this_frame,
1315 &cache->tailcall_cache,
1316 regnum);
1317 if (val)
1318 return val;
1319 }
1320
1321 switch (cache->reg[regnum].how)
1322 {
1323 case DWARF2_FRAME_REG_UNDEFINED:
1324 /* If CFI explicitly specified that the value isn't defined,
1325 mark it as optimized away; the value isn't available. */
1326 return frame_unwind_got_optimized (this_frame, regnum);
1327
1328 case DWARF2_FRAME_REG_SAVED_OFFSET:
1329 addr = cache->cfa + cache->reg[regnum].loc.offset;
1330 return frame_unwind_got_memory (this_frame, regnum, addr);
1331
1332 case DWARF2_FRAME_REG_SAVED_REG:
1333 realnum
1334 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1335 return frame_unwind_got_register (this_frame, regnum, realnum);
1336
1337 case DWARF2_FRAME_REG_SAVED_EXP:
1338 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1339 cache->reg[regnum].exp_len,
1340 cache->addr_size, cache->text_offset,
1341 this_frame, cache->cfa, 1);
1342 return frame_unwind_got_memory (this_frame, regnum, addr);
1343
1344 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1345 addr = cache->cfa + cache->reg[regnum].loc.offset;
1346 return frame_unwind_got_constant (this_frame, regnum, addr);
1347
1348 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1349 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1350 cache->reg[regnum].exp_len,
1351 cache->addr_size, cache->text_offset,
1352 this_frame, cache->cfa, 1);
1353 return frame_unwind_got_constant (this_frame, regnum, addr);
1354
1355 case DWARF2_FRAME_REG_UNSPECIFIED:
1356 /* GCC, in its infinite wisdom decided to not provide unwind
1357 information for registers that are "same value". Since
1358 DWARF2 (3 draft 7) doesn't define such behavior, said
1359 registers are actually undefined (which is different to CFI
1360 "undefined"). Code above issues a complaint about this.
1361 Here just fudge the books, assume GCC, and that the value is
1362 more inner on the stack. */
1363 return frame_unwind_got_register (this_frame, regnum, regnum);
1364
1365 case DWARF2_FRAME_REG_SAME_VALUE:
1366 return frame_unwind_got_register (this_frame, regnum, regnum);
1367
1368 case DWARF2_FRAME_REG_CFA:
1369 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1370
1371 case DWARF2_FRAME_REG_CFA_OFFSET:
1372 addr = cache->cfa + cache->reg[regnum].loc.offset;
1373 return frame_unwind_got_address (this_frame, regnum, addr);
1374
1375 case DWARF2_FRAME_REG_RA_OFFSET:
1376 addr = cache->reg[regnum].loc.offset;
1377 regnum = gdbarch_dwarf2_reg_to_regnum
1378 (gdbarch, cache->retaddr_reg.loc.reg);
1379 addr += get_frame_register_unsigned (this_frame, regnum);
1380 return frame_unwind_got_address (this_frame, regnum, addr);
1381
1382 case DWARF2_FRAME_REG_FN:
1383 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1384
1385 default:
1386 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1387 }
1388 }
1389
1390 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1391 call frames chain. */
1392
1393 static void
1394 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1395 {
1396 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1397
1398 if (cache->tailcall_cache)
1399 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1400 }
1401
1402 static int
1403 dwarf2_frame_sniffer (const struct frame_unwind *self,
1404 struct frame_info *this_frame, void **this_cache)
1405 {
1406 /* Grab an address that is guarenteed to reside somewhere within the
1407 function. get_frame_pc(), with a no-return next function, can
1408 end up returning something past the end of this function's body.
1409 If the frame we're sniffing for is a signal frame whose start
1410 address is placed on the stack by the OS, its FDE must
1411 extend one byte before its start address or we could potentially
1412 select the FDE of the previous function. */
1413 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1414 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1415
1416 if (!fde)
1417 return 0;
1418
1419 /* On some targets, signal trampolines may have unwind information.
1420 We need to recognize them so that we set the frame type
1421 correctly. */
1422
1423 if (fde->cie->signal_frame
1424 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1425 this_frame))
1426 return self->type == SIGTRAMP_FRAME;
1427
1428 if (self->type != NORMAL_FRAME)
1429 return 0;
1430
1431 return 1;
1432 }
1433
1434 static const struct frame_unwind dwarf2_frame_unwind =
1435 {
1436 NORMAL_FRAME,
1437 dwarf2_frame_unwind_stop_reason,
1438 dwarf2_frame_this_id,
1439 dwarf2_frame_prev_register,
1440 NULL,
1441 dwarf2_frame_sniffer,
1442 dwarf2_frame_dealloc_cache
1443 };
1444
1445 static const struct frame_unwind dwarf2_signal_frame_unwind =
1446 {
1447 SIGTRAMP_FRAME,
1448 dwarf2_frame_unwind_stop_reason,
1449 dwarf2_frame_this_id,
1450 dwarf2_frame_prev_register,
1451 NULL,
1452 dwarf2_frame_sniffer,
1453
1454 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1455 NULL
1456 };
1457
1458 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1459
1460 void
1461 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1462 {
1463 /* TAILCALL_FRAME must be first to find the record by
1464 dwarf2_tailcall_sniffer_first. */
1465 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1466
1467 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1468 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1469 }
1470 \f
1471
1472 /* There is no explicitly defined relationship between the CFA and the
1473 location of frame's local variables and arguments/parameters.
1474 Therefore, frame base methods on this page should probably only be
1475 used as a last resort, just to avoid printing total garbage as a
1476 response to the "info frame" command. */
1477
1478 static CORE_ADDR
1479 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1480 {
1481 struct dwarf2_frame_cache *cache =
1482 dwarf2_frame_cache (this_frame, this_cache);
1483
1484 return cache->cfa;
1485 }
1486
1487 static const struct frame_base dwarf2_frame_base =
1488 {
1489 &dwarf2_frame_unwind,
1490 dwarf2_frame_base_address,
1491 dwarf2_frame_base_address,
1492 dwarf2_frame_base_address
1493 };
1494
1495 const struct frame_base *
1496 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1497 {
1498 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1499
1500 if (dwarf2_frame_find_fde (&block_addr, NULL))
1501 return &dwarf2_frame_base;
1502
1503 return NULL;
1504 }
1505
1506 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1507 the DWARF unwinder. This is used to implement
1508 DW_OP_call_frame_cfa. */
1509
1510 CORE_ADDR
1511 dwarf2_frame_cfa (struct frame_info *this_frame)
1512 {
1513 while (get_frame_type (this_frame) == INLINE_FRAME)
1514 this_frame = get_prev_frame (this_frame);
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
1519 /* This restriction could be lifted if other unwinders are known to
1520 compute the frame base in a way compatible with the DWARF
1521 unwinder. */
1522 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1523 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1524 error (_("can't compute CFA for this frame"));
1525 return get_frame_base (this_frame);
1526 }
1527 \f
1528 const struct objfile_data *dwarf2_frame_objfile_data;
1529
1530 static unsigned int
1531 read_1_byte (bfd *abfd, const gdb_byte *buf)
1532 {
1533 return bfd_get_8 (abfd, buf);
1534 }
1535
1536 static unsigned int
1537 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1538 {
1539 return bfd_get_32 (abfd, buf);
1540 }
1541
1542 static ULONGEST
1543 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1544 {
1545 return bfd_get_64 (abfd, buf);
1546 }
1547
1548 static ULONGEST
1549 read_initial_length (bfd *abfd, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr)
1551 {
1552 LONGEST result;
1553
1554 result = bfd_get_32 (abfd, buf);
1555 if (result == 0xffffffff)
1556 {
1557 result = bfd_get_64 (abfd, buf + 4);
1558 *bytes_read_ptr = 12;
1559 }
1560 else
1561 *bytes_read_ptr = 4;
1562
1563 return result;
1564 }
1565 \f
1566
1567 /* Pointer encoding helper functions. */
1568
1569 /* GCC supports exception handling based on DWARF2 CFI. However, for
1570 technical reasons, it encodes addresses in its FDE's in a different
1571 way. Several "pointer encodings" are supported. The encoding
1572 that's used for a particular FDE is determined by the 'R'
1573 augmentation in the associated CIE. The argument of this
1574 augmentation is a single byte.
1575
1576 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1577 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1578 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1579 address should be interpreted (absolute, relative to the current
1580 position in the FDE, ...). Bit 7, indicates that the address
1581 should be dereferenced. */
1582
1583 static gdb_byte
1584 encoding_for_size (unsigned int size)
1585 {
1586 switch (size)
1587 {
1588 case 2:
1589 return DW_EH_PE_udata2;
1590 case 4:
1591 return DW_EH_PE_udata4;
1592 case 8:
1593 return DW_EH_PE_udata8;
1594 default:
1595 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1596 }
1597 }
1598
1599 static CORE_ADDR
1600 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1601 int ptr_len, const gdb_byte *buf,
1602 unsigned int *bytes_read_ptr,
1603 CORE_ADDR func_base)
1604 {
1605 ptrdiff_t offset;
1606 CORE_ADDR base;
1607
1608 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1609 FDE's. */
1610 if (encoding & DW_EH_PE_indirect)
1611 internal_error (__FILE__, __LINE__,
1612 _("Unsupported encoding: DW_EH_PE_indirect"));
1613
1614 *bytes_read_ptr = 0;
1615
1616 switch (encoding & 0x70)
1617 {
1618 case DW_EH_PE_absptr:
1619 base = 0;
1620 break;
1621 case DW_EH_PE_pcrel:
1622 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1623 base += (buf - unit->dwarf_frame_buffer);
1624 break;
1625 case DW_EH_PE_datarel:
1626 base = unit->dbase;
1627 break;
1628 case DW_EH_PE_textrel:
1629 base = unit->tbase;
1630 break;
1631 case DW_EH_PE_funcrel:
1632 base = func_base;
1633 break;
1634 case DW_EH_PE_aligned:
1635 base = 0;
1636 offset = buf - unit->dwarf_frame_buffer;
1637 if ((offset % ptr_len) != 0)
1638 {
1639 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1640 buf += *bytes_read_ptr;
1641 }
1642 break;
1643 default:
1644 internal_error (__FILE__, __LINE__,
1645 _("Invalid or unsupported encoding"));
1646 }
1647
1648 if ((encoding & 0x07) == 0x00)
1649 {
1650 encoding |= encoding_for_size (ptr_len);
1651 if (bfd_get_sign_extend_vma (unit->abfd))
1652 encoding |= DW_EH_PE_signed;
1653 }
1654
1655 switch (encoding & 0x0f)
1656 {
1657 case DW_EH_PE_uleb128:
1658 {
1659 uint64_t value;
1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1661
1662 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1663 return base + value;
1664 }
1665 case DW_EH_PE_udata2:
1666 *bytes_read_ptr += 2;
1667 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata4:
1669 *bytes_read_ptr += 4;
1670 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_udata8:
1672 *bytes_read_ptr += 8;
1673 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_sleb128:
1675 {
1676 int64_t value;
1677 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1678
1679 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1680 return base + value;
1681 }
1682 case DW_EH_PE_sdata2:
1683 *bytes_read_ptr += 2;
1684 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata4:
1686 *bytes_read_ptr += 4;
1687 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1688 case DW_EH_PE_sdata8:
1689 *bytes_read_ptr += 8;
1690 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1691 default:
1692 internal_error (__FILE__, __LINE__,
1693 _("Invalid or unsupported encoding"));
1694 }
1695 }
1696 \f
1697
1698 static int
1699 bsearch_cie_cmp (const void *key, const void *element)
1700 {
1701 ULONGEST cie_pointer = *(ULONGEST *) key;
1702 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1703
1704 if (cie_pointer == cie->cie_pointer)
1705 return 0;
1706
1707 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1708 }
1709
1710 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1711 static struct dwarf2_cie *
1712 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1713 {
1714 struct dwarf2_cie **p_cie;
1715
1716 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1717 bsearch be non-NULL. */
1718 if (cie_table->entries == NULL)
1719 {
1720 gdb_assert (cie_table->num_entries == 0);
1721 return NULL;
1722 }
1723
1724 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1725 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1726 if (p_cie != NULL)
1727 return *p_cie;
1728 return NULL;
1729 }
1730
1731 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1732 static void
1733 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1734 {
1735 const int n = cie_table->num_entries;
1736
1737 gdb_assert (n < 1
1738 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1739
1740 cie_table->entries =
1741 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1742 cie_table->entries[n] = cie;
1743 cie_table->num_entries = n + 1;
1744 }
1745
1746 static int
1747 bsearch_fde_cmp (const void *key, const void *element)
1748 {
1749 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1750 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1751
1752 if (seek_pc < fde->initial_location)
1753 return -1;
1754 if (seek_pc < fde->initial_location + fde->address_range)
1755 return 0;
1756 return 1;
1757 }
1758
1759 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1760 inital location associated with it into *PC. */
1761
1762 static struct dwarf2_fde *
1763 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1764 {
1765 struct objfile *objfile;
1766
1767 ALL_OBJFILES (objfile)
1768 {
1769 struct dwarf2_fde_table *fde_table;
1770 struct dwarf2_fde **p_fde;
1771 CORE_ADDR offset;
1772 CORE_ADDR seek_pc;
1773
1774 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1775 if (fde_table == NULL)
1776 {
1777 dwarf2_build_frame_info (objfile);
1778 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1779 }
1780 gdb_assert (fde_table != NULL);
1781
1782 if (fde_table->num_entries == 0)
1783 continue;
1784
1785 gdb_assert (objfile->section_offsets);
1786 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1787
1788 gdb_assert (fde_table->num_entries > 0);
1789 if (*pc < offset + fde_table->entries[0]->initial_location)
1790 continue;
1791
1792 seek_pc = *pc - offset;
1793 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1794 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1795 if (p_fde != NULL)
1796 {
1797 *pc = (*p_fde)->initial_location + offset;
1798 if (out_offset)
1799 *out_offset = offset;
1800 return *p_fde;
1801 }
1802 }
1803 return NULL;
1804 }
1805
1806 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1807 static void
1808 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1809 {
1810 if (fde->address_range == 0)
1811 /* Discard useless FDEs. */
1812 return;
1813
1814 fde_table->num_entries += 1;
1815 fde_table->entries =
1816 xrealloc (fde_table->entries,
1817 fde_table->num_entries * sizeof (fde_table->entries[0]));
1818 fde_table->entries[fde_table->num_entries - 1] = fde;
1819 }
1820
1821 #define DW64_CIE_ID 0xffffffffffffffffULL
1822
1823 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1824 or any of them. */
1825
1826 enum eh_frame_type
1827 {
1828 EH_CIE_TYPE_ID = 1 << 0,
1829 EH_FDE_TYPE_ID = 1 << 1,
1830 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1831 };
1832
1833 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1834 const gdb_byte *start,
1835 int eh_frame_p,
1836 struct dwarf2_cie_table *cie_table,
1837 struct dwarf2_fde_table *fde_table,
1838 enum eh_frame_type entry_type);
1839
1840 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1841 Return NULL if invalid input, otherwise the next byte to be processed. */
1842
1843 static const gdb_byte *
1844 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1845 int eh_frame_p,
1846 struct dwarf2_cie_table *cie_table,
1847 struct dwarf2_fde_table *fde_table,
1848 enum eh_frame_type entry_type)
1849 {
1850 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1851 const gdb_byte *buf, *end;
1852 LONGEST length;
1853 unsigned int bytes_read;
1854 int dwarf64_p;
1855 ULONGEST cie_id;
1856 ULONGEST cie_pointer;
1857 int64_t sleb128;
1858 uint64_t uleb128;
1859
1860 buf = start;
1861 length = read_initial_length (unit->abfd, buf, &bytes_read);
1862 buf += bytes_read;
1863 end = buf + length;
1864
1865 /* Are we still within the section? */
1866 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1867 return NULL;
1868
1869 if (length == 0)
1870 return end;
1871
1872 /* Distinguish between 32 and 64-bit encoded frame info. */
1873 dwarf64_p = (bytes_read == 12);
1874
1875 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1876 if (eh_frame_p)
1877 cie_id = 0;
1878 else if (dwarf64_p)
1879 cie_id = DW64_CIE_ID;
1880 else
1881 cie_id = DW_CIE_ID;
1882
1883 if (dwarf64_p)
1884 {
1885 cie_pointer = read_8_bytes (unit->abfd, buf);
1886 buf += 8;
1887 }
1888 else
1889 {
1890 cie_pointer = read_4_bytes (unit->abfd, buf);
1891 buf += 4;
1892 }
1893
1894 if (cie_pointer == cie_id)
1895 {
1896 /* This is a CIE. */
1897 struct dwarf2_cie *cie;
1898 char *augmentation;
1899 unsigned int cie_version;
1900
1901 /* Check that a CIE was expected. */
1902 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1903 error (_("Found a CIE when not expecting it."));
1904
1905 /* Record the offset into the .debug_frame section of this CIE. */
1906 cie_pointer = start - unit->dwarf_frame_buffer;
1907
1908 /* Check whether we've already read it. */
1909 if (find_cie (cie_table, cie_pointer))
1910 return end;
1911
1912 cie = (struct dwarf2_cie *)
1913 obstack_alloc (&unit->objfile->objfile_obstack,
1914 sizeof (struct dwarf2_cie));
1915 cie->initial_instructions = NULL;
1916 cie->cie_pointer = cie_pointer;
1917
1918 /* The encoding for FDE's in a normal .debug_frame section
1919 depends on the target address size. */
1920 cie->encoding = DW_EH_PE_absptr;
1921
1922 /* We'll determine the final value later, but we need to
1923 initialize it conservatively. */
1924 cie->signal_frame = 0;
1925
1926 /* Check version number. */
1927 cie_version = read_1_byte (unit->abfd, buf);
1928 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1929 return NULL;
1930 cie->version = cie_version;
1931 buf += 1;
1932
1933 /* Interpret the interesting bits of the augmentation. */
1934 cie->augmentation = augmentation = (char *) buf;
1935 buf += (strlen (augmentation) + 1);
1936
1937 /* Ignore armcc augmentations. We only use them for quirks,
1938 and that doesn't happen until later. */
1939 if (strncmp (augmentation, "armcc", 5) == 0)
1940 augmentation += strlen (augmentation);
1941
1942 /* The GCC 2.x "eh" augmentation has a pointer immediately
1943 following the augmentation string, so it must be handled
1944 first. */
1945 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1946 {
1947 /* Skip. */
1948 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1949 augmentation += 2;
1950 }
1951
1952 if (cie->version >= 4)
1953 {
1954 /* FIXME: check that this is the same as from the CU header. */
1955 cie->addr_size = read_1_byte (unit->abfd, buf);
1956 ++buf;
1957 cie->segment_size = read_1_byte (unit->abfd, buf);
1958 ++buf;
1959 }
1960 else
1961 {
1962 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1963 cie->segment_size = 0;
1964 }
1965 /* Address values in .eh_frame sections are defined to have the
1966 target's pointer size. Watchout: This breaks frame info for
1967 targets with pointer size < address size, unless a .debug_frame
1968 section exists as well. */
1969 if (eh_frame_p)
1970 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1971 else
1972 cie->ptr_size = cie->addr_size;
1973
1974 buf = gdb_read_uleb128 (buf, end, &uleb128);
1975 if (buf == NULL)
1976 return NULL;
1977 cie->code_alignment_factor = uleb128;
1978
1979 buf = gdb_read_sleb128 (buf, end, &sleb128);
1980 if (buf == NULL)
1981 return NULL;
1982 cie->data_alignment_factor = sleb128;
1983
1984 if (cie_version == 1)
1985 {
1986 cie->return_address_register = read_1_byte (unit->abfd, buf);
1987 ++buf;
1988 }
1989 else
1990 {
1991 buf = gdb_read_uleb128 (buf, end, &uleb128);
1992 if (buf == NULL)
1993 return NULL;
1994 cie->return_address_register = uleb128;
1995 }
1996
1997 cie->return_address_register
1998 = dwarf2_frame_adjust_regnum (gdbarch,
1999 cie->return_address_register,
2000 eh_frame_p);
2001
2002 cie->saw_z_augmentation = (*augmentation == 'z');
2003 if (cie->saw_z_augmentation)
2004 {
2005 uint64_t length;
2006
2007 buf = gdb_read_uleb128 (buf, end, &length);
2008 if (buf == NULL)
2009 return NULL;
2010 cie->initial_instructions = buf + length;
2011 augmentation++;
2012 }
2013
2014 while (*augmentation)
2015 {
2016 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2017 if (*augmentation == 'L')
2018 {
2019 /* Skip. */
2020 buf++;
2021 augmentation++;
2022 }
2023
2024 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2025 else if (*augmentation == 'R')
2026 {
2027 cie->encoding = *buf++;
2028 augmentation++;
2029 }
2030
2031 /* "P" indicates a personality routine in the CIE augmentation. */
2032 else if (*augmentation == 'P')
2033 {
2034 /* Skip. Avoid indirection since we throw away the result. */
2035 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2036 read_encoded_value (unit, encoding, cie->ptr_size,
2037 buf, &bytes_read, 0);
2038 buf += bytes_read;
2039 augmentation++;
2040 }
2041
2042 /* "S" indicates a signal frame, such that the return
2043 address must not be decremented to locate the call frame
2044 info for the previous frame; it might even be the first
2045 instruction of a function, so decrementing it would take
2046 us to a different function. */
2047 else if (*augmentation == 'S')
2048 {
2049 cie->signal_frame = 1;
2050 augmentation++;
2051 }
2052
2053 /* Otherwise we have an unknown augmentation. Assume that either
2054 there is no augmentation data, or we saw a 'z' prefix. */
2055 else
2056 {
2057 if (cie->initial_instructions)
2058 buf = cie->initial_instructions;
2059 break;
2060 }
2061 }
2062
2063 cie->initial_instructions = buf;
2064 cie->end = end;
2065 cie->unit = unit;
2066
2067 add_cie (cie_table, cie);
2068 }
2069 else
2070 {
2071 /* This is a FDE. */
2072 struct dwarf2_fde *fde;
2073
2074 /* Check that an FDE was expected. */
2075 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2076 error (_("Found an FDE when not expecting it."));
2077
2078 /* In an .eh_frame section, the CIE pointer is the delta between the
2079 address within the FDE where the CIE pointer is stored and the
2080 address of the CIE. Convert it to an offset into the .eh_frame
2081 section. */
2082 if (eh_frame_p)
2083 {
2084 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2085 cie_pointer -= (dwarf64_p ? 8 : 4);
2086 }
2087
2088 /* In either case, validate the result is still within the section. */
2089 if (cie_pointer >= unit->dwarf_frame_size)
2090 return NULL;
2091
2092 fde = (struct dwarf2_fde *)
2093 obstack_alloc (&unit->objfile->objfile_obstack,
2094 sizeof (struct dwarf2_fde));
2095 fde->cie = find_cie (cie_table, cie_pointer);
2096 if (fde->cie == NULL)
2097 {
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
2101 fde->cie = find_cie (cie_table, cie_pointer);
2102 }
2103
2104 gdb_assert (fde->cie != NULL);
2105
2106 fde->initial_location =
2107 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2108 buf, &bytes_read, 0);
2109 buf += bytes_read;
2110
2111 fde->address_range =
2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2113 fde->cie->ptr_size, buf, &bytes_read, 0);
2114 buf += bytes_read;
2115
2116 /* A 'z' augmentation in the CIE implies the presence of an
2117 augmentation field in the FDE as well. The only thing known
2118 to be in here at present is the LSDA entry for EH. So we
2119 can skip the whole thing. */
2120 if (fde->cie->saw_z_augmentation)
2121 {
2122 uint64_t length;
2123
2124 buf = gdb_read_uleb128 (buf, end, &length);
2125 if (buf == NULL)
2126 return NULL;
2127 buf += length;
2128 if (buf > end)
2129 return NULL;
2130 }
2131
2132 fde->instructions = buf;
2133 fde->end = end;
2134
2135 fde->eh_frame_p = eh_frame_p;
2136
2137 add_fde (fde_table, fde);
2138 }
2139
2140 return end;
2141 }
2142
2143 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2144 expect an FDE or a CIE. */
2145
2146 static const gdb_byte *
2147 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2148 int eh_frame_p,
2149 struct dwarf2_cie_table *cie_table,
2150 struct dwarf2_fde_table *fde_table,
2151 enum eh_frame_type entry_type)
2152 {
2153 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2154 const gdb_byte *ret;
2155 ptrdiff_t start_offset;
2156
2157 while (1)
2158 {
2159 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2160 cie_table, fde_table, entry_type);
2161 if (ret != NULL)
2162 break;
2163
2164 /* We have corrupt input data of some form. */
2165
2166 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2167 and mismatches wrt padding and alignment of debug sections. */
2168 /* Note that there is no requirement in the standard for any
2169 alignment at all in the frame unwind sections. Testing for
2170 alignment before trying to interpret data would be incorrect.
2171
2172 However, GCC traditionally arranged for frame sections to be
2173 sized such that the FDE length and CIE fields happen to be
2174 aligned (in theory, for performance). This, unfortunately,
2175 was done with .align directives, which had the side effect of
2176 forcing the section to be aligned by the linker.
2177
2178 This becomes a problem when you have some other producer that
2179 creates frame sections that are not as strictly aligned. That
2180 produces a hole in the frame info that gets filled by the
2181 linker with zeros.
2182
2183 The GCC behaviour is arguably a bug, but it's effectively now
2184 part of the ABI, so we're now stuck with it, at least at the
2185 object file level. A smart linker may decide, in the process
2186 of compressing duplicate CIE information, that it can rewrite
2187 the entire output section without this extra padding. */
2188
2189 start_offset = start - unit->dwarf_frame_buffer;
2190 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2191 {
2192 start += 4 - (start_offset & 3);
2193 workaround = ALIGN4;
2194 continue;
2195 }
2196 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2197 {
2198 start += 8 - (start_offset & 7);
2199 workaround = ALIGN8;
2200 continue;
2201 }
2202
2203 /* Nothing left to try. Arrange to return as if we've consumed
2204 the entire input section. Hopefully we'll get valid info from
2205 the other of .debug_frame/.eh_frame. */
2206 workaround = FAIL;
2207 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2208 break;
2209 }
2210
2211 switch (workaround)
2212 {
2213 case NONE:
2214 break;
2215
2216 case ALIGN4:
2217 complaint (&symfile_complaints, _("\
2218 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2219 unit->dwarf_frame_section->owner->filename,
2220 unit->dwarf_frame_section->name);
2221 break;
2222
2223 case ALIGN8:
2224 complaint (&symfile_complaints, _("\
2225 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2226 unit->dwarf_frame_section->owner->filename,
2227 unit->dwarf_frame_section->name);
2228 break;
2229
2230 default:
2231 complaint (&symfile_complaints,
2232 _("Corrupt data in %s:%s"),
2233 unit->dwarf_frame_section->owner->filename,
2234 unit->dwarf_frame_section->name);
2235 break;
2236 }
2237
2238 return ret;
2239 }
2240 \f
2241 static int
2242 qsort_fde_cmp (const void *a, const void *b)
2243 {
2244 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2245 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2246
2247 if (aa->initial_location == bb->initial_location)
2248 {
2249 if (aa->address_range != bb->address_range
2250 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2251 /* Linker bug, e.g. gold/10400.
2252 Work around it by keeping stable sort order. */
2253 return (a < b) ? -1 : 1;
2254 else
2255 /* Put eh_frame entries after debug_frame ones. */
2256 return aa->eh_frame_p - bb->eh_frame_p;
2257 }
2258
2259 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2260 }
2261
2262 void
2263 dwarf2_build_frame_info (struct objfile *objfile)
2264 {
2265 struct comp_unit *unit;
2266 const gdb_byte *frame_ptr;
2267 struct dwarf2_cie_table cie_table;
2268 struct dwarf2_fde_table fde_table;
2269 struct dwarf2_fde_table *fde_table2;
2270 volatile struct gdb_exception e;
2271
2272 cie_table.num_entries = 0;
2273 cie_table.entries = NULL;
2274
2275 fde_table.num_entries = 0;
2276 fde_table.entries = NULL;
2277
2278 /* Build a minimal decoding of the DWARF2 compilation unit. */
2279 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2280 sizeof (struct comp_unit));
2281 unit->abfd = objfile->obfd;
2282 unit->objfile = objfile;
2283 unit->dbase = 0;
2284 unit->tbase = 0;
2285
2286 if (objfile->separate_debug_objfile_backlink == NULL)
2287 {
2288 /* Do not read .eh_frame from separate file as they must be also
2289 present in the main file. */
2290 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2291 &unit->dwarf_frame_section,
2292 &unit->dwarf_frame_buffer,
2293 &unit->dwarf_frame_size);
2294 if (unit->dwarf_frame_size)
2295 {
2296 asection *got, *txt;
2297
2298 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2299 that is used for the i386/amd64 target, which currently is
2300 the only target in GCC that supports/uses the
2301 DW_EH_PE_datarel encoding. */
2302 got = bfd_get_section_by_name (unit->abfd, ".got");
2303 if (got)
2304 unit->dbase = got->vma;
2305
2306 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2307 so far. */
2308 txt = bfd_get_section_by_name (unit->abfd, ".text");
2309 if (txt)
2310 unit->tbase = txt->vma;
2311
2312 TRY_CATCH (e, RETURN_MASK_ERROR)
2313 {
2314 frame_ptr = unit->dwarf_frame_buffer;
2315 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2316 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2317 &cie_table, &fde_table,
2318 EH_CIE_OR_FDE_TYPE_ID);
2319 }
2320
2321 if (e.reason < 0)
2322 {
2323 warning (_("skipping .eh_frame info of %s: %s"),
2324 objfile_name (objfile), e.message);
2325
2326 if (fde_table.num_entries != 0)
2327 {
2328 xfree (fde_table.entries);
2329 fde_table.entries = NULL;
2330 fde_table.num_entries = 0;
2331 }
2332 /* The cie_table is discarded by the next if. */
2333 }
2334
2335 if (cie_table.num_entries != 0)
2336 {
2337 /* Reinit cie_table: debug_frame has different CIEs. */
2338 xfree (cie_table.entries);
2339 cie_table.num_entries = 0;
2340 cie_table.entries = NULL;
2341 }
2342 }
2343 }
2344
2345 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2346 &unit->dwarf_frame_section,
2347 &unit->dwarf_frame_buffer,
2348 &unit->dwarf_frame_size);
2349 if (unit->dwarf_frame_size)
2350 {
2351 int num_old_fde_entries = fde_table.num_entries;
2352
2353 TRY_CATCH (e, RETURN_MASK_ERROR)
2354 {
2355 frame_ptr = unit->dwarf_frame_buffer;
2356 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2357 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2358 &cie_table, &fde_table,
2359 EH_CIE_OR_FDE_TYPE_ID);
2360 }
2361 if (e.reason < 0)
2362 {
2363 warning (_("skipping .debug_frame info of %s: %s"),
2364 objfile_name (objfile), e.message);
2365
2366 if (fde_table.num_entries != 0)
2367 {
2368 fde_table.num_entries = num_old_fde_entries;
2369 if (num_old_fde_entries == 0)
2370 {
2371 xfree (fde_table.entries);
2372 fde_table.entries = NULL;
2373 }
2374 else
2375 {
2376 fde_table.entries = xrealloc (fde_table.entries,
2377 fde_table.num_entries *
2378 sizeof (fde_table.entries[0]));
2379 }
2380 }
2381 fde_table.num_entries = num_old_fde_entries;
2382 /* The cie_table is discarded by the next if. */
2383 }
2384 }
2385
2386 /* Discard the cie_table, it is no longer needed. */
2387 if (cie_table.num_entries != 0)
2388 {
2389 xfree (cie_table.entries);
2390 cie_table.entries = NULL; /* Paranoia. */
2391 cie_table.num_entries = 0; /* Paranoia. */
2392 }
2393
2394 /* Copy fde_table to obstack: it is needed at runtime. */
2395 fde_table2 = (struct dwarf2_fde_table *)
2396 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2397
2398 if (fde_table.num_entries == 0)
2399 {
2400 fde_table2->entries = NULL;
2401 fde_table2->num_entries = 0;
2402 }
2403 else
2404 {
2405 struct dwarf2_fde *fde_prev = NULL;
2406 struct dwarf2_fde *first_non_zero_fde = NULL;
2407 int i;
2408
2409 /* Prepare FDE table for lookups. */
2410 qsort (fde_table.entries, fde_table.num_entries,
2411 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2412
2413 /* Check for leftovers from --gc-sections. The GNU linker sets
2414 the relevant symbols to zero, but doesn't zero the FDE *end*
2415 ranges because there's no relocation there. It's (offset,
2416 length), not (start, end). On targets where address zero is
2417 just another valid address this can be a problem, since the
2418 FDEs appear to be non-empty in the output --- we could pick
2419 out the wrong FDE. To work around this, when overlaps are
2420 detected, we prefer FDEs that do not start at zero.
2421
2422 Start by finding the first FDE with non-zero start. Below
2423 we'll discard all FDEs that start at zero and overlap this
2424 one. */
2425 for (i = 0; i < fde_table.num_entries; i++)
2426 {
2427 struct dwarf2_fde *fde = fde_table.entries[i];
2428
2429 if (fde->initial_location != 0)
2430 {
2431 first_non_zero_fde = fde;
2432 break;
2433 }
2434 }
2435
2436 /* Since we'll be doing bsearch, squeeze out identical (except
2437 for eh_frame_p) fde entries so bsearch result is predictable.
2438 Also discard leftovers from --gc-sections. */
2439 fde_table2->num_entries = 0;
2440 for (i = 0; i < fde_table.num_entries; i++)
2441 {
2442 struct dwarf2_fde *fde = fde_table.entries[i];
2443
2444 if (fde->initial_location == 0
2445 && first_non_zero_fde != NULL
2446 && (first_non_zero_fde->initial_location
2447 < fde->initial_location + fde->address_range))
2448 continue;
2449
2450 if (fde_prev != NULL
2451 && fde_prev->initial_location == fde->initial_location)
2452 continue;
2453
2454 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2455 sizeof (fde_table.entries[0]));
2456 ++fde_table2->num_entries;
2457 fde_prev = fde;
2458 }
2459 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2460
2461 /* Discard the original fde_table. */
2462 xfree (fde_table.entries);
2463 }
2464
2465 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2466 }
2467
2468 /* Provide a prototype to silence -Wmissing-prototypes. */
2469 void _initialize_dwarf2_frame (void);
2470
2471 void
2472 _initialize_dwarf2_frame (void)
2473 {
2474 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2475 dwarf2_frame_objfile_data = register_objfile_data ();
2476 }