]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2-frame.c
Remove spurious exceptions.h inclusions
[thirdparty/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* Target pointer size in bytes. */
81 int ptr_size;
82
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
89 /* The version recorded in the CIE. */
90 unsigned char version;
91
92 /* The segment size. */
93 unsigned char segment_size;
94 };
95
96 struct dwarf2_cie_table
97 {
98 int num_entries;
99 struct dwarf2_cie **entries;
100 };
101
102 /* Frame Description Entry (FDE). */
103
104 struct dwarf2_fde
105 {
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
118
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
122 };
123
124 struct dwarf2_fde_table
125 {
126 int num_entries;
127 struct dwarf2_fde **entries;
128 };
129
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133 struct comp_unit
134 {
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
142
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154 };
155
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
158
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
161
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
166 \f
167
168 /* Structure describing a frame state. */
169
170 struct dwarf2_frame_state
171 {
172 /* Each register save state can be described in terms of a CFA slot,
173 another register, or a location expression. */
174 struct dwarf2_frame_state_reg_info
175 {
176 struct dwarf2_frame_state_reg *reg;
177 int num_regs;
178
179 LONGEST cfa_offset;
180 ULONGEST cfa_reg;
181 enum {
182 CFA_UNSET,
183 CFA_REG_OFFSET,
184 CFA_EXP
185 } cfa_how;
186 const gdb_byte *cfa_exp;
187
188 /* Used to implement DW_CFA_remember_state. */
189 struct dwarf2_frame_state_reg_info *prev;
190 } regs;
191
192 /* The PC described by the current frame state. */
193 CORE_ADDR pc;
194
195 /* Initial register set from the CIE.
196 Used to implement DW_CFA_restore. */
197 struct dwarf2_frame_state_reg_info initial;
198
199 /* The information we care about from the CIE. */
200 LONGEST data_align;
201 ULONGEST code_align;
202 ULONGEST retaddr_column;
203
204 /* Flags for known producer quirks. */
205
206 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
207 and DW_CFA_def_cfa_offset takes a factored offset. */
208 int armcc_cfa_offsets_sf;
209
210 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
211 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
212 int armcc_cfa_offsets_reversed;
213 };
214
215 /* Store the length the expression for the CFA in the `cfa_reg' field,
216 which is unused in that case. */
217 #define cfa_exp_len cfa_reg
218
219 /* Assert that the register set RS is large enough to store gdbarch_num_regs
220 columns. If necessary, enlarge the register set. */
221
222 static void
223 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
224 int num_regs)
225 {
226 size_t size = sizeof (struct dwarf2_frame_state_reg);
227
228 if (num_regs <= rs->num_regs)
229 return;
230
231 rs->reg = (struct dwarf2_frame_state_reg *)
232 xrealloc (rs->reg, num_regs * size);
233
234 /* Initialize newly allocated registers. */
235 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
236 rs->num_regs = num_regs;
237 }
238
239 /* Copy the register columns in register set RS into newly allocated
240 memory and return a pointer to this newly created copy. */
241
242 static struct dwarf2_frame_state_reg *
243 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
244 {
245 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
246 struct dwarf2_frame_state_reg *reg;
247
248 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
249 memcpy (reg, rs->reg, size);
250
251 return reg;
252 }
253
254 /* Release the memory allocated to register set RS. */
255
256 static void
257 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
258 {
259 if (rs)
260 {
261 dwarf2_frame_state_free_regs (rs->prev);
262
263 xfree (rs->reg);
264 xfree (rs);
265 }
266 }
267
268 /* Release the memory allocated to the frame state FS. */
269
270 static void
271 dwarf2_frame_state_free (void *p)
272 {
273 struct dwarf2_frame_state *fs = p;
274
275 dwarf2_frame_state_free_regs (fs->initial.prev);
276 dwarf2_frame_state_free_regs (fs->regs.prev);
277 xfree (fs->initial.reg);
278 xfree (fs->regs.reg);
279 xfree (fs);
280 }
281 \f
282
283 /* Helper functions for execute_stack_op. */
284
285 static CORE_ADDR
286 read_addr_from_reg (void *baton, int reg)
287 {
288 struct frame_info *this_frame = (struct frame_info *) baton;
289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
290 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
291
292 return address_from_register (regnum, this_frame);
293 }
294
295 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
296
297 static struct value *
298 get_reg_value (void *baton, struct type *type, int reg)
299 {
300 struct frame_info *this_frame = (struct frame_info *) baton;
301 struct gdbarch *gdbarch = get_frame_arch (this_frame);
302 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
303
304 return value_from_register (type, regnum, this_frame);
305 }
306
307 static void
308 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
309 {
310 read_memory (addr, buf, len);
311 }
312
313 /* Execute the required actions for both the DW_CFA_restore and
314 DW_CFA_restore_extended instructions. */
315 static void
316 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
317 struct dwarf2_frame_state *fs, int eh_frame_p)
318 {
319 ULONGEST reg;
320
321 gdb_assert (fs->initial.reg);
322 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324
325 /* Check if this register was explicitly initialized in the
326 CIE initial instructions. If not, default the rule to
327 UNSPECIFIED. */
328 if (reg < fs->initial.num_regs)
329 fs->regs.reg[reg] = fs->initial.reg[reg];
330 else
331 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
332
333 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
334 complaint (&symfile_complaints, _("\
335 incomplete CFI data; DW_CFA_restore unspecified\n\
336 register %s (#%d) at %s"),
337 gdbarch_register_name
338 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
339 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
340 paddress (gdbarch, fs->pc));
341 }
342
343 /* Virtual method table for execute_stack_op below. */
344
345 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
346 {
347 read_addr_from_reg,
348 get_reg_value,
349 read_mem,
350 ctx_no_get_frame_base,
351 ctx_no_get_frame_cfa,
352 ctx_no_get_frame_pc,
353 ctx_no_get_tls_address,
354 ctx_no_dwarf_call,
355 ctx_no_get_base_type,
356 ctx_no_push_dwarf_reg_entry_value,
357 ctx_no_get_addr_index
358 };
359
360 static CORE_ADDR
361 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
362 CORE_ADDR offset, struct frame_info *this_frame,
363 CORE_ADDR initial, int initial_in_stack_memory)
364 {
365 struct dwarf_expr_context *ctx;
366 CORE_ADDR result;
367 struct cleanup *old_chain;
368
369 ctx = new_dwarf_expr_context ();
370 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
371 make_cleanup_value_free_to_mark (value_mark ());
372
373 ctx->gdbarch = get_frame_arch (this_frame);
374 ctx->addr_size = addr_size;
375 ctx->ref_addr_size = -1;
376 ctx->offset = offset;
377 ctx->baton = this_frame;
378 ctx->funcs = &dwarf2_frame_ctx_funcs;
379
380 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
381 dwarf_expr_eval (ctx, exp, len);
382
383 if (ctx->location == DWARF_VALUE_MEMORY)
384 result = dwarf_expr_fetch_address (ctx, 0);
385 else if (ctx->location == DWARF_VALUE_REGISTER)
386 result = read_addr_from_reg (this_frame,
387 value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 unsigned int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 uint64_t utmp, reg;
420 int64_t offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
549
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
641
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
651 int size = register_size (gdbarch, 0);
652
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
671
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
676 offset = utmp * fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
685 }
686 }
687 }
688
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
697 }
698 \f
699
700 /* Architecture-specific operations. */
701
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
704
705 struct dwarf2_frame_ops
706 {
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
710
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
713
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
717 };
718
719 /* Default architecture-specific register state initialization
720 function. */
721
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
726 {
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
752
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
757 }
758
759 /* Return a default for the architecture-specific operations. */
760
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
763 {
764 struct dwarf2_frame_ops *ops;
765
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769 }
770
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg = init_reg;
783 }
784
785 /* Pre-initialize the register state REG for register REGNUM. */
786
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
791 {
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
795 }
796
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808 }
809
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
812
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
816 {
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
822 }
823
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
826
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
831 {
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
834 ops->adjust_regnum = adjust_regnum;
835 }
836
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
839
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
843 {
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
849 }
850
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854 {
855 struct symtab *s;
856
857 s = find_pc_symtab (fs->pc);
858 if (s == NULL)
859 return;
860
861 if (producer_is_realview (s->producer))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
882 }
883 \f
884
885 void
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
890 {
891 struct dwarf2_fde *fde;
892 CORE_ADDR text_offset;
893 struct dwarf2_frame_state fs;
894 int addr_size;
895
896 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
897
898 fs.pc = pc;
899
900 /* Find the correct FDE. */
901 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
902 if (fde == NULL)
903 error (_("Could not compute CFA; needed to translate this expression"));
904
905 /* Extract any interesting information from the CIE. */
906 fs.data_align = fde->cie->data_alignment_factor;
907 fs.code_align = fde->cie->code_alignment_factor;
908 fs.retaddr_column = fde->cie->return_address_register;
909 addr_size = fde->cie->addr_size;
910
911 /* Check for "quirks" - known bugs in producers. */
912 dwarf2_frame_find_quirks (&fs, fde);
913
914 /* First decode all the insns in the CIE. */
915 execute_cfa_program (fde, fde->cie->initial_instructions,
916 fde->cie->end, gdbarch, pc, &fs);
917
918 /* Save the initialized register set. */
919 fs.initial = fs.regs;
920 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
921
922 /* Then decode the insns in the FDE up to our target PC. */
923 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
924
925 /* Calculate the CFA. */
926 switch (fs.regs.cfa_how)
927 {
928 case CFA_REG_OFFSET:
929 {
930 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
931
932 if (regnum == -1)
933 error (_("Unable to access DWARF register number %d"),
934 (int) fs.regs.cfa_reg); /* FIXME */
935 ax_reg (expr, regnum);
936
937 if (fs.regs.cfa_offset != 0)
938 {
939 if (fs.armcc_cfa_offsets_reversed)
940 ax_const_l (expr, -fs.regs.cfa_offset);
941 else
942 ax_const_l (expr, fs.regs.cfa_offset);
943 ax_simple (expr, aop_add);
944 }
945 }
946 break;
947
948 case CFA_EXP:
949 ax_const_l (expr, text_offset);
950 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
951 fs.regs.cfa_exp,
952 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
953 data);
954 break;
955
956 default:
957 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
958 }
959 }
960
961 \f
962 struct dwarf2_frame_cache
963 {
964 /* DWARF Call Frame Address. */
965 CORE_ADDR cfa;
966
967 /* Set if the return address column was marked as unavailable
968 (required non-collected memory or registers to compute). */
969 int unavailable_retaddr;
970
971 /* Set if the return address column was marked as undefined. */
972 int undefined_retaddr;
973
974 /* Saved registers, indexed by GDB register number, not by DWARF
975 register number. */
976 struct dwarf2_frame_state_reg *reg;
977
978 /* Return address register. */
979 struct dwarf2_frame_state_reg retaddr_reg;
980
981 /* Target address size in bytes. */
982 int addr_size;
983
984 /* The .text offset. */
985 CORE_ADDR text_offset;
986
987 /* True if we already checked whether this frame is the bottom frame
988 of a virtual tail call frame chain. */
989 int checked_tailcall_bottom;
990
991 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
992 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
993 involved. Non-bottom frames of a virtual tail call frames chain use
994 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
995 them. */
996 void *tailcall_cache;
997
998 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
999 base to get the SP, to simulate the return address pushed on the
1000 stack. */
1001 LONGEST entry_cfa_sp_offset;
1002 int entry_cfa_sp_offset_p;
1003 };
1004
1005 /* A cleanup that sets a pointer to NULL. */
1006
1007 static void
1008 clear_pointer_cleanup (void *arg)
1009 {
1010 void **ptr = arg;
1011
1012 *ptr = NULL;
1013 }
1014
1015 static struct dwarf2_frame_cache *
1016 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1017 {
1018 struct cleanup *reset_cache_cleanup, *old_chain;
1019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1020 const int num_regs = gdbarch_num_regs (gdbarch)
1021 + gdbarch_num_pseudo_regs (gdbarch);
1022 struct dwarf2_frame_cache *cache;
1023 struct dwarf2_frame_state *fs;
1024 struct dwarf2_fde *fde;
1025 volatile struct gdb_exception ex;
1026 CORE_ADDR entry_pc;
1027 const gdb_byte *instr;
1028
1029 if (*this_cache)
1030 return *this_cache;
1031
1032 /* Allocate a new cache. */
1033 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1034 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1035 *this_cache = cache;
1036 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1037
1038 /* Allocate and initialize the frame state. */
1039 fs = XCNEW (struct dwarf2_frame_state);
1040 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1041
1042 /* Unwind the PC.
1043
1044 Note that if the next frame is never supposed to return (i.e. a call
1045 to abort), the compiler might optimize away the instruction at
1046 its return address. As a result the return address will
1047 point at some random instruction, and the CFI for that
1048 instruction is probably worthless to us. GCC's unwinder solves
1049 this problem by substracting 1 from the return address to get an
1050 address in the middle of a presumed call instruction (or the
1051 instruction in the associated delay slot). This should only be
1052 done for "normal" frames and not for resume-type frames (signal
1053 handlers, sentinel frames, dummy frames). The function
1054 get_frame_address_in_block does just this. It's not clear how
1055 reliable the method is though; there is the potential for the
1056 register state pre-call being different to that on return. */
1057 fs->pc = get_frame_address_in_block (this_frame);
1058
1059 /* Find the correct FDE. */
1060 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1061 gdb_assert (fde != NULL);
1062
1063 /* Extract any interesting information from the CIE. */
1064 fs->data_align = fde->cie->data_alignment_factor;
1065 fs->code_align = fde->cie->code_alignment_factor;
1066 fs->retaddr_column = fde->cie->return_address_register;
1067 cache->addr_size = fde->cie->addr_size;
1068
1069 /* Check for "quirks" - known bugs in producers. */
1070 dwarf2_frame_find_quirks (fs, fde);
1071
1072 /* First decode all the insns in the CIE. */
1073 execute_cfa_program (fde, fde->cie->initial_instructions,
1074 fde->cie->end, gdbarch,
1075 get_frame_address_in_block (this_frame), fs);
1076
1077 /* Save the initialized register set. */
1078 fs->initial = fs->regs;
1079 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1080
1081 if (get_frame_func_if_available (this_frame, &entry_pc))
1082 {
1083 /* Decode the insns in the FDE up to the entry PC. */
1084 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1085 entry_pc, fs);
1086
1087 if (fs->regs.cfa_how == CFA_REG_OFFSET
1088 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1089 == gdbarch_sp_regnum (gdbarch)))
1090 {
1091 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1092 cache->entry_cfa_sp_offset_p = 1;
1093 }
1094 }
1095 else
1096 instr = fde->instructions;
1097
1098 /* Then decode the insns in the FDE up to our target PC. */
1099 execute_cfa_program (fde, instr, fde->end, gdbarch,
1100 get_frame_address_in_block (this_frame), fs);
1101
1102 TRY_CATCH (ex, RETURN_MASK_ERROR)
1103 {
1104 /* Calculate the CFA. */
1105 switch (fs->regs.cfa_how)
1106 {
1107 case CFA_REG_OFFSET:
1108 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1109 if (fs->armcc_cfa_offsets_reversed)
1110 cache->cfa -= fs->regs.cfa_offset;
1111 else
1112 cache->cfa += fs->regs.cfa_offset;
1113 break;
1114
1115 case CFA_EXP:
1116 cache->cfa =
1117 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1118 cache->addr_size, cache->text_offset,
1119 this_frame, 0, 0);
1120 break;
1121
1122 default:
1123 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1124 }
1125 }
1126 if (ex.reason < 0)
1127 {
1128 if (ex.error == NOT_AVAILABLE_ERROR)
1129 {
1130 cache->unavailable_retaddr = 1;
1131 do_cleanups (old_chain);
1132 discard_cleanups (reset_cache_cleanup);
1133 return cache;
1134 }
1135
1136 throw_exception (ex);
1137 }
1138
1139 /* Initialize the register state. */
1140 {
1141 int regnum;
1142
1143 for (regnum = 0; regnum < num_regs; regnum++)
1144 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1145 }
1146
1147 /* Go through the DWARF2 CFI generated table and save its register
1148 location information in the cache. Note that we don't skip the
1149 return address column; it's perfectly all right for it to
1150 correspond to a real register. If it doesn't correspond to a
1151 real register, or if we shouldn't treat it as such,
1152 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1153 the range [0, gdbarch_num_regs). */
1154 {
1155 int column; /* CFI speak for "register number". */
1156
1157 for (column = 0; column < fs->regs.num_regs; column++)
1158 {
1159 /* Use the GDB register number as the destination index. */
1160 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1161
1162 /* If there's no corresponding GDB register, ignore it. */
1163 if (regnum < 0 || regnum >= num_regs)
1164 continue;
1165
1166 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1167 of all debug info registers. If it doesn't, complain (but
1168 not too loudly). It turns out that GCC assumes that an
1169 unspecified register implies "same value" when CFI (draft
1170 7) specifies nothing at all. Such a register could equally
1171 be interpreted as "undefined". Also note that this check
1172 isn't sufficient; it only checks that all registers in the
1173 range [0 .. max column] are specified, and won't detect
1174 problems when a debug info register falls outside of the
1175 table. We need a way of iterating through all the valid
1176 DWARF2 register numbers. */
1177 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1178 {
1179 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1180 complaint (&symfile_complaints, _("\
1181 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1182 gdbarch_register_name (gdbarch, regnum),
1183 paddress (gdbarch, fs->pc));
1184 }
1185 else
1186 cache->reg[regnum] = fs->regs.reg[column];
1187 }
1188 }
1189
1190 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1191 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1192 {
1193 int regnum;
1194
1195 for (regnum = 0; regnum < num_regs; regnum++)
1196 {
1197 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1198 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1199 {
1200 struct dwarf2_frame_state_reg *retaddr_reg =
1201 &fs->regs.reg[fs->retaddr_column];
1202
1203 /* It seems rather bizarre to specify an "empty" column as
1204 the return adress column. However, this is exactly
1205 what GCC does on some targets. It turns out that GCC
1206 assumes that the return address can be found in the
1207 register corresponding to the return address column.
1208 Incidentally, that's how we should treat a return
1209 address column specifying "same value" too. */
1210 if (fs->retaddr_column < fs->regs.num_regs
1211 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1212 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1213 {
1214 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1215 cache->reg[regnum] = *retaddr_reg;
1216 else
1217 cache->retaddr_reg = *retaddr_reg;
1218 }
1219 else
1220 {
1221 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1222 {
1223 cache->reg[regnum].loc.reg = fs->retaddr_column;
1224 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1225 }
1226 else
1227 {
1228 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1229 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1230 }
1231 }
1232 }
1233 }
1234 }
1235
1236 if (fs->retaddr_column < fs->regs.num_regs
1237 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1238 cache->undefined_retaddr = 1;
1239
1240 do_cleanups (old_chain);
1241 discard_cleanups (reset_cache_cleanup);
1242 return cache;
1243 }
1244
1245 static enum unwind_stop_reason
1246 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1247 void **this_cache)
1248 {
1249 struct dwarf2_frame_cache *cache
1250 = dwarf2_frame_cache (this_frame, this_cache);
1251
1252 if (cache->unavailable_retaddr)
1253 return UNWIND_UNAVAILABLE;
1254
1255 if (cache->undefined_retaddr)
1256 return UNWIND_OUTERMOST;
1257
1258 return UNWIND_NO_REASON;
1259 }
1260
1261 static void
1262 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1263 struct frame_id *this_id)
1264 {
1265 struct dwarf2_frame_cache *cache =
1266 dwarf2_frame_cache (this_frame, this_cache);
1267
1268 if (cache->unavailable_retaddr)
1269 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1270 else if (cache->undefined_retaddr)
1271 return;
1272 else
1273 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1274 }
1275
1276 static struct value *
1277 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1278 int regnum)
1279 {
1280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1281 struct dwarf2_frame_cache *cache =
1282 dwarf2_frame_cache (this_frame, this_cache);
1283 CORE_ADDR addr;
1284 int realnum;
1285
1286 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1287 call frame chain. */
1288 if (!cache->checked_tailcall_bottom)
1289 {
1290 cache->checked_tailcall_bottom = 1;
1291 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1292 (cache->entry_cfa_sp_offset_p
1293 ? &cache->entry_cfa_sp_offset : NULL));
1294 }
1295
1296 /* Non-bottom frames of a virtual tail call frames chain use
1297 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1298 them. If dwarf2_tailcall_prev_register_first does not have specific value
1299 unwind the register, tail call frames are assumed to have the register set
1300 of the top caller. */
1301 if (cache->tailcall_cache)
1302 {
1303 struct value *val;
1304
1305 val = dwarf2_tailcall_prev_register_first (this_frame,
1306 &cache->tailcall_cache,
1307 regnum);
1308 if (val)
1309 return val;
1310 }
1311
1312 switch (cache->reg[regnum].how)
1313 {
1314 case DWARF2_FRAME_REG_UNDEFINED:
1315 /* If CFI explicitly specified that the value isn't defined,
1316 mark it as optimized away; the value isn't available. */
1317 return frame_unwind_got_optimized (this_frame, regnum);
1318
1319 case DWARF2_FRAME_REG_SAVED_OFFSET:
1320 addr = cache->cfa + cache->reg[regnum].loc.offset;
1321 return frame_unwind_got_memory (this_frame, regnum, addr);
1322
1323 case DWARF2_FRAME_REG_SAVED_REG:
1324 realnum
1325 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1326 return frame_unwind_got_register (this_frame, regnum, realnum);
1327
1328 case DWARF2_FRAME_REG_SAVED_EXP:
1329 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1330 cache->reg[regnum].exp_len,
1331 cache->addr_size, cache->text_offset,
1332 this_frame, cache->cfa, 1);
1333 return frame_unwind_got_memory (this_frame, regnum, addr);
1334
1335 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1336 addr = cache->cfa + cache->reg[regnum].loc.offset;
1337 return frame_unwind_got_constant (this_frame, regnum, addr);
1338
1339 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1340 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1341 cache->reg[regnum].exp_len,
1342 cache->addr_size, cache->text_offset,
1343 this_frame, cache->cfa, 1);
1344 return frame_unwind_got_constant (this_frame, regnum, addr);
1345
1346 case DWARF2_FRAME_REG_UNSPECIFIED:
1347 /* GCC, in its infinite wisdom decided to not provide unwind
1348 information for registers that are "same value". Since
1349 DWARF2 (3 draft 7) doesn't define such behavior, said
1350 registers are actually undefined (which is different to CFI
1351 "undefined"). Code above issues a complaint about this.
1352 Here just fudge the books, assume GCC, and that the value is
1353 more inner on the stack. */
1354 return frame_unwind_got_register (this_frame, regnum, regnum);
1355
1356 case DWARF2_FRAME_REG_SAME_VALUE:
1357 return frame_unwind_got_register (this_frame, regnum, regnum);
1358
1359 case DWARF2_FRAME_REG_CFA:
1360 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1361
1362 case DWARF2_FRAME_REG_CFA_OFFSET:
1363 addr = cache->cfa + cache->reg[regnum].loc.offset;
1364 return frame_unwind_got_address (this_frame, regnum, addr);
1365
1366 case DWARF2_FRAME_REG_RA_OFFSET:
1367 addr = cache->reg[regnum].loc.offset;
1368 regnum = gdbarch_dwarf2_reg_to_regnum
1369 (gdbarch, cache->retaddr_reg.loc.reg);
1370 addr += get_frame_register_unsigned (this_frame, regnum);
1371 return frame_unwind_got_address (this_frame, regnum, addr);
1372
1373 case DWARF2_FRAME_REG_FN:
1374 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1375
1376 default:
1377 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1378 }
1379 }
1380
1381 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1382 call frames chain. */
1383
1384 static void
1385 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1386 {
1387 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1388
1389 if (cache->tailcall_cache)
1390 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1391 }
1392
1393 static int
1394 dwarf2_frame_sniffer (const struct frame_unwind *self,
1395 struct frame_info *this_frame, void **this_cache)
1396 {
1397 /* Grab an address that is guarenteed to reside somewhere within the
1398 function. get_frame_pc(), with a no-return next function, can
1399 end up returning something past the end of this function's body.
1400 If the frame we're sniffing for is a signal frame whose start
1401 address is placed on the stack by the OS, its FDE must
1402 extend one byte before its start address or we could potentially
1403 select the FDE of the previous function. */
1404 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1405 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1406
1407 if (!fde)
1408 return 0;
1409
1410 /* On some targets, signal trampolines may have unwind information.
1411 We need to recognize them so that we set the frame type
1412 correctly. */
1413
1414 if (fde->cie->signal_frame
1415 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1416 this_frame))
1417 return self->type == SIGTRAMP_FRAME;
1418
1419 if (self->type != NORMAL_FRAME)
1420 return 0;
1421
1422 return 1;
1423 }
1424
1425 static const struct frame_unwind dwarf2_frame_unwind =
1426 {
1427 NORMAL_FRAME,
1428 dwarf2_frame_unwind_stop_reason,
1429 dwarf2_frame_this_id,
1430 dwarf2_frame_prev_register,
1431 NULL,
1432 dwarf2_frame_sniffer,
1433 dwarf2_frame_dealloc_cache
1434 };
1435
1436 static const struct frame_unwind dwarf2_signal_frame_unwind =
1437 {
1438 SIGTRAMP_FRAME,
1439 dwarf2_frame_unwind_stop_reason,
1440 dwarf2_frame_this_id,
1441 dwarf2_frame_prev_register,
1442 NULL,
1443 dwarf2_frame_sniffer,
1444
1445 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1446 NULL
1447 };
1448
1449 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1450
1451 void
1452 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1453 {
1454 /* TAILCALL_FRAME must be first to find the record by
1455 dwarf2_tailcall_sniffer_first. */
1456 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1457
1458 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1460 }
1461 \f
1462
1463 /* There is no explicitly defined relationship between the CFA and the
1464 location of frame's local variables and arguments/parameters.
1465 Therefore, frame base methods on this page should probably only be
1466 used as a last resort, just to avoid printing total garbage as a
1467 response to the "info frame" command. */
1468
1469 static CORE_ADDR
1470 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1471 {
1472 struct dwarf2_frame_cache *cache =
1473 dwarf2_frame_cache (this_frame, this_cache);
1474
1475 return cache->cfa;
1476 }
1477
1478 static const struct frame_base dwarf2_frame_base =
1479 {
1480 &dwarf2_frame_unwind,
1481 dwarf2_frame_base_address,
1482 dwarf2_frame_base_address,
1483 dwarf2_frame_base_address
1484 };
1485
1486 const struct frame_base *
1487 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1488 {
1489 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1490
1491 if (dwarf2_frame_find_fde (&block_addr, NULL))
1492 return &dwarf2_frame_base;
1493
1494 return NULL;
1495 }
1496
1497 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1498 the DWARF unwinder. This is used to implement
1499 DW_OP_call_frame_cfa. */
1500
1501 CORE_ADDR
1502 dwarf2_frame_cfa (struct frame_info *this_frame)
1503 {
1504 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1505 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1506 throw_error (NOT_AVAILABLE_ERROR,
1507 _("cfa not available for record btrace target"));
1508
1509 while (get_frame_type (this_frame) == INLINE_FRAME)
1510 this_frame = get_prev_frame (this_frame);
1511 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1512 throw_error (NOT_AVAILABLE_ERROR,
1513 _("can't compute CFA for this frame: "
1514 "required registers or memory are unavailable"));
1515 /* This restriction could be lifted if other unwinders are known to
1516 compute the frame base in a way compatible with the DWARF
1517 unwinder. */
1518 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1519 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1520 error (_("can't compute CFA for this frame"));
1521 return get_frame_base (this_frame);
1522 }
1523 \f
1524 const struct objfile_data *dwarf2_frame_objfile_data;
1525
1526 static unsigned int
1527 read_1_byte (bfd *abfd, const gdb_byte *buf)
1528 {
1529 return bfd_get_8 (abfd, buf);
1530 }
1531
1532 static unsigned int
1533 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1534 {
1535 return bfd_get_32 (abfd, buf);
1536 }
1537
1538 static ULONGEST
1539 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1540 {
1541 return bfd_get_64 (abfd, buf);
1542 }
1543
1544 static ULONGEST
1545 read_initial_length (bfd *abfd, const gdb_byte *buf,
1546 unsigned int *bytes_read_ptr)
1547 {
1548 LONGEST result;
1549
1550 result = bfd_get_32 (abfd, buf);
1551 if (result == 0xffffffff)
1552 {
1553 result = bfd_get_64 (abfd, buf + 4);
1554 *bytes_read_ptr = 12;
1555 }
1556 else
1557 *bytes_read_ptr = 4;
1558
1559 return result;
1560 }
1561 \f
1562
1563 /* Pointer encoding helper functions. */
1564
1565 /* GCC supports exception handling based on DWARF2 CFI. However, for
1566 technical reasons, it encodes addresses in its FDE's in a different
1567 way. Several "pointer encodings" are supported. The encoding
1568 that's used for a particular FDE is determined by the 'R'
1569 augmentation in the associated CIE. The argument of this
1570 augmentation is a single byte.
1571
1572 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1573 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1574 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1575 address should be interpreted (absolute, relative to the current
1576 position in the FDE, ...). Bit 7, indicates that the address
1577 should be dereferenced. */
1578
1579 static gdb_byte
1580 encoding_for_size (unsigned int size)
1581 {
1582 switch (size)
1583 {
1584 case 2:
1585 return DW_EH_PE_udata2;
1586 case 4:
1587 return DW_EH_PE_udata4;
1588 case 8:
1589 return DW_EH_PE_udata8;
1590 default:
1591 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1592 }
1593 }
1594
1595 static CORE_ADDR
1596 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1597 int ptr_len, const gdb_byte *buf,
1598 unsigned int *bytes_read_ptr,
1599 CORE_ADDR func_base)
1600 {
1601 ptrdiff_t offset;
1602 CORE_ADDR base;
1603
1604 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1605 FDE's. */
1606 if (encoding & DW_EH_PE_indirect)
1607 internal_error (__FILE__, __LINE__,
1608 _("Unsupported encoding: DW_EH_PE_indirect"));
1609
1610 *bytes_read_ptr = 0;
1611
1612 switch (encoding & 0x70)
1613 {
1614 case DW_EH_PE_absptr:
1615 base = 0;
1616 break;
1617 case DW_EH_PE_pcrel:
1618 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1619 base += (buf - unit->dwarf_frame_buffer);
1620 break;
1621 case DW_EH_PE_datarel:
1622 base = unit->dbase;
1623 break;
1624 case DW_EH_PE_textrel:
1625 base = unit->tbase;
1626 break;
1627 case DW_EH_PE_funcrel:
1628 base = func_base;
1629 break;
1630 case DW_EH_PE_aligned:
1631 base = 0;
1632 offset = buf - unit->dwarf_frame_buffer;
1633 if ((offset % ptr_len) != 0)
1634 {
1635 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1636 buf += *bytes_read_ptr;
1637 }
1638 break;
1639 default:
1640 internal_error (__FILE__, __LINE__,
1641 _("Invalid or unsupported encoding"));
1642 }
1643
1644 if ((encoding & 0x07) == 0x00)
1645 {
1646 encoding |= encoding_for_size (ptr_len);
1647 if (bfd_get_sign_extend_vma (unit->abfd))
1648 encoding |= DW_EH_PE_signed;
1649 }
1650
1651 switch (encoding & 0x0f)
1652 {
1653 case DW_EH_PE_uleb128:
1654 {
1655 uint64_t value;
1656 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1657
1658 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1659 return base + value;
1660 }
1661 case DW_EH_PE_udata2:
1662 *bytes_read_ptr += 2;
1663 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1664 case DW_EH_PE_udata4:
1665 *bytes_read_ptr += 4;
1666 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata8:
1668 *bytes_read_ptr += 8;
1669 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_sleb128:
1671 {
1672 int64_t value;
1673 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1674
1675 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1676 return base + value;
1677 }
1678 case DW_EH_PE_sdata2:
1679 *bytes_read_ptr += 2;
1680 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1681 case DW_EH_PE_sdata4:
1682 *bytes_read_ptr += 4;
1683 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata8:
1685 *bytes_read_ptr += 8;
1686 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1687 default:
1688 internal_error (__FILE__, __LINE__,
1689 _("Invalid or unsupported encoding"));
1690 }
1691 }
1692 \f
1693
1694 static int
1695 bsearch_cie_cmp (const void *key, const void *element)
1696 {
1697 ULONGEST cie_pointer = *(ULONGEST *) key;
1698 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1699
1700 if (cie_pointer == cie->cie_pointer)
1701 return 0;
1702
1703 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1704 }
1705
1706 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1707 static struct dwarf2_cie *
1708 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1709 {
1710 struct dwarf2_cie **p_cie;
1711
1712 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1713 bsearch be non-NULL. */
1714 if (cie_table->entries == NULL)
1715 {
1716 gdb_assert (cie_table->num_entries == 0);
1717 return NULL;
1718 }
1719
1720 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1721 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1722 if (p_cie != NULL)
1723 return *p_cie;
1724 return NULL;
1725 }
1726
1727 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1728 static void
1729 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1730 {
1731 const int n = cie_table->num_entries;
1732
1733 gdb_assert (n < 1
1734 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1735
1736 cie_table->entries =
1737 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1738 cie_table->entries[n] = cie;
1739 cie_table->num_entries = n + 1;
1740 }
1741
1742 static int
1743 bsearch_fde_cmp (const void *key, const void *element)
1744 {
1745 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1746 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1747
1748 if (seek_pc < fde->initial_location)
1749 return -1;
1750 if (seek_pc < fde->initial_location + fde->address_range)
1751 return 0;
1752 return 1;
1753 }
1754
1755 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1756 inital location associated with it into *PC. */
1757
1758 static struct dwarf2_fde *
1759 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1760 {
1761 struct objfile *objfile;
1762
1763 ALL_OBJFILES (objfile)
1764 {
1765 struct dwarf2_fde_table *fde_table;
1766 struct dwarf2_fde **p_fde;
1767 CORE_ADDR offset;
1768 CORE_ADDR seek_pc;
1769
1770 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1771 if (fde_table == NULL)
1772 {
1773 dwarf2_build_frame_info (objfile);
1774 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1775 }
1776 gdb_assert (fde_table != NULL);
1777
1778 if (fde_table->num_entries == 0)
1779 continue;
1780
1781 gdb_assert (objfile->section_offsets);
1782 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1783
1784 gdb_assert (fde_table->num_entries > 0);
1785 if (*pc < offset + fde_table->entries[0]->initial_location)
1786 continue;
1787
1788 seek_pc = *pc - offset;
1789 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1790 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1791 if (p_fde != NULL)
1792 {
1793 *pc = (*p_fde)->initial_location + offset;
1794 if (out_offset)
1795 *out_offset = offset;
1796 return *p_fde;
1797 }
1798 }
1799 return NULL;
1800 }
1801
1802 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1803 static void
1804 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1805 {
1806 if (fde->address_range == 0)
1807 /* Discard useless FDEs. */
1808 return;
1809
1810 fde_table->num_entries += 1;
1811 fde_table->entries =
1812 xrealloc (fde_table->entries,
1813 fde_table->num_entries * sizeof (fde_table->entries[0]));
1814 fde_table->entries[fde_table->num_entries - 1] = fde;
1815 }
1816
1817 #define DW64_CIE_ID 0xffffffffffffffffULL
1818
1819 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1820 or any of them. */
1821
1822 enum eh_frame_type
1823 {
1824 EH_CIE_TYPE_ID = 1 << 0,
1825 EH_FDE_TYPE_ID = 1 << 1,
1826 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1827 };
1828
1829 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1830 const gdb_byte *start,
1831 int eh_frame_p,
1832 struct dwarf2_cie_table *cie_table,
1833 struct dwarf2_fde_table *fde_table,
1834 enum eh_frame_type entry_type);
1835
1836 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1837 Return NULL if invalid input, otherwise the next byte to be processed. */
1838
1839 static const gdb_byte *
1840 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1841 int eh_frame_p,
1842 struct dwarf2_cie_table *cie_table,
1843 struct dwarf2_fde_table *fde_table,
1844 enum eh_frame_type entry_type)
1845 {
1846 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1847 const gdb_byte *buf, *end;
1848 LONGEST length;
1849 unsigned int bytes_read;
1850 int dwarf64_p;
1851 ULONGEST cie_id;
1852 ULONGEST cie_pointer;
1853 int64_t sleb128;
1854 uint64_t uleb128;
1855
1856 buf = start;
1857 length = read_initial_length (unit->abfd, buf, &bytes_read);
1858 buf += bytes_read;
1859 end = buf + length;
1860
1861 /* Are we still within the section? */
1862 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1863 return NULL;
1864
1865 if (length == 0)
1866 return end;
1867
1868 /* Distinguish between 32 and 64-bit encoded frame info. */
1869 dwarf64_p = (bytes_read == 12);
1870
1871 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1872 if (eh_frame_p)
1873 cie_id = 0;
1874 else if (dwarf64_p)
1875 cie_id = DW64_CIE_ID;
1876 else
1877 cie_id = DW_CIE_ID;
1878
1879 if (dwarf64_p)
1880 {
1881 cie_pointer = read_8_bytes (unit->abfd, buf);
1882 buf += 8;
1883 }
1884 else
1885 {
1886 cie_pointer = read_4_bytes (unit->abfd, buf);
1887 buf += 4;
1888 }
1889
1890 if (cie_pointer == cie_id)
1891 {
1892 /* This is a CIE. */
1893 struct dwarf2_cie *cie;
1894 char *augmentation;
1895 unsigned int cie_version;
1896
1897 /* Check that a CIE was expected. */
1898 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1899 error (_("Found a CIE when not expecting it."));
1900
1901 /* Record the offset into the .debug_frame section of this CIE. */
1902 cie_pointer = start - unit->dwarf_frame_buffer;
1903
1904 /* Check whether we've already read it. */
1905 if (find_cie (cie_table, cie_pointer))
1906 return end;
1907
1908 cie = (struct dwarf2_cie *)
1909 obstack_alloc (&unit->objfile->objfile_obstack,
1910 sizeof (struct dwarf2_cie));
1911 cie->initial_instructions = NULL;
1912 cie->cie_pointer = cie_pointer;
1913
1914 /* The encoding for FDE's in a normal .debug_frame section
1915 depends on the target address size. */
1916 cie->encoding = DW_EH_PE_absptr;
1917
1918 /* We'll determine the final value later, but we need to
1919 initialize it conservatively. */
1920 cie->signal_frame = 0;
1921
1922 /* Check version number. */
1923 cie_version = read_1_byte (unit->abfd, buf);
1924 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1925 return NULL;
1926 cie->version = cie_version;
1927 buf += 1;
1928
1929 /* Interpret the interesting bits of the augmentation. */
1930 cie->augmentation = augmentation = (char *) buf;
1931 buf += (strlen (augmentation) + 1);
1932
1933 /* Ignore armcc augmentations. We only use them for quirks,
1934 and that doesn't happen until later. */
1935 if (strncmp (augmentation, "armcc", 5) == 0)
1936 augmentation += strlen (augmentation);
1937
1938 /* The GCC 2.x "eh" augmentation has a pointer immediately
1939 following the augmentation string, so it must be handled
1940 first. */
1941 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1942 {
1943 /* Skip. */
1944 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1945 augmentation += 2;
1946 }
1947
1948 if (cie->version >= 4)
1949 {
1950 /* FIXME: check that this is the same as from the CU header. */
1951 cie->addr_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 cie->segment_size = read_1_byte (unit->abfd, buf);
1954 ++buf;
1955 }
1956 else
1957 {
1958 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1959 cie->segment_size = 0;
1960 }
1961 /* Address values in .eh_frame sections are defined to have the
1962 target's pointer size. Watchout: This breaks frame info for
1963 targets with pointer size < address size, unless a .debug_frame
1964 section exists as well. */
1965 if (eh_frame_p)
1966 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1967 else
1968 cie->ptr_size = cie->addr_size;
1969
1970 buf = gdb_read_uleb128 (buf, end, &uleb128);
1971 if (buf == NULL)
1972 return NULL;
1973 cie->code_alignment_factor = uleb128;
1974
1975 buf = gdb_read_sleb128 (buf, end, &sleb128);
1976 if (buf == NULL)
1977 return NULL;
1978 cie->data_alignment_factor = sleb128;
1979
1980 if (cie_version == 1)
1981 {
1982 cie->return_address_register = read_1_byte (unit->abfd, buf);
1983 ++buf;
1984 }
1985 else
1986 {
1987 buf = gdb_read_uleb128 (buf, end, &uleb128);
1988 if (buf == NULL)
1989 return NULL;
1990 cie->return_address_register = uleb128;
1991 }
1992
1993 cie->return_address_register
1994 = dwarf2_frame_adjust_regnum (gdbarch,
1995 cie->return_address_register,
1996 eh_frame_p);
1997
1998 cie->saw_z_augmentation = (*augmentation == 'z');
1999 if (cie->saw_z_augmentation)
2000 {
2001 uint64_t length;
2002
2003 buf = gdb_read_uleb128 (buf, end, &length);
2004 if (buf == NULL)
2005 return NULL;
2006 cie->initial_instructions = buf + length;
2007 augmentation++;
2008 }
2009
2010 while (*augmentation)
2011 {
2012 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2013 if (*augmentation == 'L')
2014 {
2015 /* Skip. */
2016 buf++;
2017 augmentation++;
2018 }
2019
2020 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2021 else if (*augmentation == 'R')
2022 {
2023 cie->encoding = *buf++;
2024 augmentation++;
2025 }
2026
2027 /* "P" indicates a personality routine in the CIE augmentation. */
2028 else if (*augmentation == 'P')
2029 {
2030 /* Skip. Avoid indirection since we throw away the result. */
2031 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2032 read_encoded_value (unit, encoding, cie->ptr_size,
2033 buf, &bytes_read, 0);
2034 buf += bytes_read;
2035 augmentation++;
2036 }
2037
2038 /* "S" indicates a signal frame, such that the return
2039 address must not be decremented to locate the call frame
2040 info for the previous frame; it might even be the first
2041 instruction of a function, so decrementing it would take
2042 us to a different function. */
2043 else if (*augmentation == 'S')
2044 {
2045 cie->signal_frame = 1;
2046 augmentation++;
2047 }
2048
2049 /* Otherwise we have an unknown augmentation. Assume that either
2050 there is no augmentation data, or we saw a 'z' prefix. */
2051 else
2052 {
2053 if (cie->initial_instructions)
2054 buf = cie->initial_instructions;
2055 break;
2056 }
2057 }
2058
2059 cie->initial_instructions = buf;
2060 cie->end = end;
2061 cie->unit = unit;
2062
2063 add_cie (cie_table, cie);
2064 }
2065 else
2066 {
2067 /* This is a FDE. */
2068 struct dwarf2_fde *fde;
2069
2070 /* Check that an FDE was expected. */
2071 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2072 error (_("Found an FDE when not expecting it."));
2073
2074 /* In an .eh_frame section, the CIE pointer is the delta between the
2075 address within the FDE where the CIE pointer is stored and the
2076 address of the CIE. Convert it to an offset into the .eh_frame
2077 section. */
2078 if (eh_frame_p)
2079 {
2080 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2081 cie_pointer -= (dwarf64_p ? 8 : 4);
2082 }
2083
2084 /* In either case, validate the result is still within the section. */
2085 if (cie_pointer >= unit->dwarf_frame_size)
2086 return NULL;
2087
2088 fde = (struct dwarf2_fde *)
2089 obstack_alloc (&unit->objfile->objfile_obstack,
2090 sizeof (struct dwarf2_fde));
2091 fde->cie = find_cie (cie_table, cie_pointer);
2092 if (fde->cie == NULL)
2093 {
2094 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2095 eh_frame_p, cie_table, fde_table,
2096 EH_CIE_TYPE_ID);
2097 fde->cie = find_cie (cie_table, cie_pointer);
2098 }
2099
2100 gdb_assert (fde->cie != NULL);
2101
2102 fde->initial_location =
2103 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2104 buf, &bytes_read, 0);
2105 buf += bytes_read;
2106
2107 fde->address_range =
2108 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2109 fde->cie->ptr_size, buf, &bytes_read, 0);
2110 buf += bytes_read;
2111
2112 /* A 'z' augmentation in the CIE implies the presence of an
2113 augmentation field in the FDE as well. The only thing known
2114 to be in here at present is the LSDA entry for EH. So we
2115 can skip the whole thing. */
2116 if (fde->cie->saw_z_augmentation)
2117 {
2118 uint64_t length;
2119
2120 buf = gdb_read_uleb128 (buf, end, &length);
2121 if (buf == NULL)
2122 return NULL;
2123 buf += length;
2124 if (buf > end)
2125 return NULL;
2126 }
2127
2128 fde->instructions = buf;
2129 fde->end = end;
2130
2131 fde->eh_frame_p = eh_frame_p;
2132
2133 add_fde (fde_table, fde);
2134 }
2135
2136 return end;
2137 }
2138
2139 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2140 expect an FDE or a CIE. */
2141
2142 static const gdb_byte *
2143 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2144 int eh_frame_p,
2145 struct dwarf2_cie_table *cie_table,
2146 struct dwarf2_fde_table *fde_table,
2147 enum eh_frame_type entry_type)
2148 {
2149 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2150 const gdb_byte *ret;
2151 ptrdiff_t start_offset;
2152
2153 while (1)
2154 {
2155 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2156 cie_table, fde_table, entry_type);
2157 if (ret != NULL)
2158 break;
2159
2160 /* We have corrupt input data of some form. */
2161
2162 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2163 and mismatches wrt padding and alignment of debug sections. */
2164 /* Note that there is no requirement in the standard for any
2165 alignment at all in the frame unwind sections. Testing for
2166 alignment before trying to interpret data would be incorrect.
2167
2168 However, GCC traditionally arranged for frame sections to be
2169 sized such that the FDE length and CIE fields happen to be
2170 aligned (in theory, for performance). This, unfortunately,
2171 was done with .align directives, which had the side effect of
2172 forcing the section to be aligned by the linker.
2173
2174 This becomes a problem when you have some other producer that
2175 creates frame sections that are not as strictly aligned. That
2176 produces a hole in the frame info that gets filled by the
2177 linker with zeros.
2178
2179 The GCC behaviour is arguably a bug, but it's effectively now
2180 part of the ABI, so we're now stuck with it, at least at the
2181 object file level. A smart linker may decide, in the process
2182 of compressing duplicate CIE information, that it can rewrite
2183 the entire output section without this extra padding. */
2184
2185 start_offset = start - unit->dwarf_frame_buffer;
2186 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2187 {
2188 start += 4 - (start_offset & 3);
2189 workaround = ALIGN4;
2190 continue;
2191 }
2192 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2193 {
2194 start += 8 - (start_offset & 7);
2195 workaround = ALIGN8;
2196 continue;
2197 }
2198
2199 /* Nothing left to try. Arrange to return as if we've consumed
2200 the entire input section. Hopefully we'll get valid info from
2201 the other of .debug_frame/.eh_frame. */
2202 workaround = FAIL;
2203 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2204 break;
2205 }
2206
2207 switch (workaround)
2208 {
2209 case NONE:
2210 break;
2211
2212 case ALIGN4:
2213 complaint (&symfile_complaints, _("\
2214 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2215 unit->dwarf_frame_section->owner->filename,
2216 unit->dwarf_frame_section->name);
2217 break;
2218
2219 case ALIGN8:
2220 complaint (&symfile_complaints, _("\
2221 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2222 unit->dwarf_frame_section->owner->filename,
2223 unit->dwarf_frame_section->name);
2224 break;
2225
2226 default:
2227 complaint (&symfile_complaints,
2228 _("Corrupt data in %s:%s"),
2229 unit->dwarf_frame_section->owner->filename,
2230 unit->dwarf_frame_section->name);
2231 break;
2232 }
2233
2234 return ret;
2235 }
2236 \f
2237 static int
2238 qsort_fde_cmp (const void *a, const void *b)
2239 {
2240 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2241 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2242
2243 if (aa->initial_location == bb->initial_location)
2244 {
2245 if (aa->address_range != bb->address_range
2246 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2247 /* Linker bug, e.g. gold/10400.
2248 Work around it by keeping stable sort order. */
2249 return (a < b) ? -1 : 1;
2250 else
2251 /* Put eh_frame entries after debug_frame ones. */
2252 return aa->eh_frame_p - bb->eh_frame_p;
2253 }
2254
2255 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2256 }
2257
2258 void
2259 dwarf2_build_frame_info (struct objfile *objfile)
2260 {
2261 struct comp_unit *unit;
2262 const gdb_byte *frame_ptr;
2263 struct dwarf2_cie_table cie_table;
2264 struct dwarf2_fde_table fde_table;
2265 struct dwarf2_fde_table *fde_table2;
2266 volatile struct gdb_exception e;
2267
2268 cie_table.num_entries = 0;
2269 cie_table.entries = NULL;
2270
2271 fde_table.num_entries = 0;
2272 fde_table.entries = NULL;
2273
2274 /* Build a minimal decoding of the DWARF2 compilation unit. */
2275 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2276 sizeof (struct comp_unit));
2277 unit->abfd = objfile->obfd;
2278 unit->objfile = objfile;
2279 unit->dbase = 0;
2280 unit->tbase = 0;
2281
2282 if (objfile->separate_debug_objfile_backlink == NULL)
2283 {
2284 /* Do not read .eh_frame from separate file as they must be also
2285 present in the main file. */
2286 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2287 &unit->dwarf_frame_section,
2288 &unit->dwarf_frame_buffer,
2289 &unit->dwarf_frame_size);
2290 if (unit->dwarf_frame_size)
2291 {
2292 asection *got, *txt;
2293
2294 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2295 that is used for the i386/amd64 target, which currently is
2296 the only target in GCC that supports/uses the
2297 DW_EH_PE_datarel encoding. */
2298 got = bfd_get_section_by_name (unit->abfd, ".got");
2299 if (got)
2300 unit->dbase = got->vma;
2301
2302 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2303 so far. */
2304 txt = bfd_get_section_by_name (unit->abfd, ".text");
2305 if (txt)
2306 unit->tbase = txt->vma;
2307
2308 TRY_CATCH (e, RETURN_MASK_ERROR)
2309 {
2310 frame_ptr = unit->dwarf_frame_buffer;
2311 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2312 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2313 &cie_table, &fde_table,
2314 EH_CIE_OR_FDE_TYPE_ID);
2315 }
2316
2317 if (e.reason < 0)
2318 {
2319 warning (_("skipping .eh_frame info of %s: %s"),
2320 objfile_name (objfile), e.message);
2321
2322 if (fde_table.num_entries != 0)
2323 {
2324 xfree (fde_table.entries);
2325 fde_table.entries = NULL;
2326 fde_table.num_entries = 0;
2327 }
2328 /* The cie_table is discarded by the next if. */
2329 }
2330
2331 if (cie_table.num_entries != 0)
2332 {
2333 /* Reinit cie_table: debug_frame has different CIEs. */
2334 xfree (cie_table.entries);
2335 cie_table.num_entries = 0;
2336 cie_table.entries = NULL;
2337 }
2338 }
2339 }
2340
2341 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2342 &unit->dwarf_frame_section,
2343 &unit->dwarf_frame_buffer,
2344 &unit->dwarf_frame_size);
2345 if (unit->dwarf_frame_size)
2346 {
2347 int num_old_fde_entries = fde_table.num_entries;
2348
2349 TRY_CATCH (e, RETURN_MASK_ERROR)
2350 {
2351 frame_ptr = unit->dwarf_frame_buffer;
2352 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2353 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2354 &cie_table, &fde_table,
2355 EH_CIE_OR_FDE_TYPE_ID);
2356 }
2357 if (e.reason < 0)
2358 {
2359 warning (_("skipping .debug_frame info of %s: %s"),
2360 objfile_name (objfile), e.message);
2361
2362 if (fde_table.num_entries != 0)
2363 {
2364 fde_table.num_entries = num_old_fde_entries;
2365 if (num_old_fde_entries == 0)
2366 {
2367 xfree (fde_table.entries);
2368 fde_table.entries = NULL;
2369 }
2370 else
2371 {
2372 fde_table.entries = xrealloc (fde_table.entries,
2373 fde_table.num_entries *
2374 sizeof (fde_table.entries[0]));
2375 }
2376 }
2377 fde_table.num_entries = num_old_fde_entries;
2378 /* The cie_table is discarded by the next if. */
2379 }
2380 }
2381
2382 /* Discard the cie_table, it is no longer needed. */
2383 if (cie_table.num_entries != 0)
2384 {
2385 xfree (cie_table.entries);
2386 cie_table.entries = NULL; /* Paranoia. */
2387 cie_table.num_entries = 0; /* Paranoia. */
2388 }
2389
2390 /* Copy fde_table to obstack: it is needed at runtime. */
2391 fde_table2 = (struct dwarf2_fde_table *)
2392 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2393
2394 if (fde_table.num_entries == 0)
2395 {
2396 fde_table2->entries = NULL;
2397 fde_table2->num_entries = 0;
2398 }
2399 else
2400 {
2401 struct dwarf2_fde *fde_prev = NULL;
2402 struct dwarf2_fde *first_non_zero_fde = NULL;
2403 int i;
2404
2405 /* Prepare FDE table for lookups. */
2406 qsort (fde_table.entries, fde_table.num_entries,
2407 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2408
2409 /* Check for leftovers from --gc-sections. The GNU linker sets
2410 the relevant symbols to zero, but doesn't zero the FDE *end*
2411 ranges because there's no relocation there. It's (offset,
2412 length), not (start, end). On targets where address zero is
2413 just another valid address this can be a problem, since the
2414 FDEs appear to be non-empty in the output --- we could pick
2415 out the wrong FDE. To work around this, when overlaps are
2416 detected, we prefer FDEs that do not start at zero.
2417
2418 Start by finding the first FDE with non-zero start. Below
2419 we'll discard all FDEs that start at zero and overlap this
2420 one. */
2421 for (i = 0; i < fde_table.num_entries; i++)
2422 {
2423 struct dwarf2_fde *fde = fde_table.entries[i];
2424
2425 if (fde->initial_location != 0)
2426 {
2427 first_non_zero_fde = fde;
2428 break;
2429 }
2430 }
2431
2432 /* Since we'll be doing bsearch, squeeze out identical (except
2433 for eh_frame_p) fde entries so bsearch result is predictable.
2434 Also discard leftovers from --gc-sections. */
2435 fde_table2->num_entries = 0;
2436 for (i = 0; i < fde_table.num_entries; i++)
2437 {
2438 struct dwarf2_fde *fde = fde_table.entries[i];
2439
2440 if (fde->initial_location == 0
2441 && first_non_zero_fde != NULL
2442 && (first_non_zero_fde->initial_location
2443 < fde->initial_location + fde->address_range))
2444 continue;
2445
2446 if (fde_prev != NULL
2447 && fde_prev->initial_location == fde->initial_location)
2448 continue;
2449
2450 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2451 sizeof (fde_table.entries[0]));
2452 ++fde_table2->num_entries;
2453 fde_prev = fde;
2454 }
2455 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2456
2457 /* Discard the original fde_table. */
2458 xfree (fde_table.entries);
2459 }
2460
2461 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2462 }
2463
2464 /* Provide a prototype to silence -Wmissing-prototypes. */
2465 void _initialize_dwarf2_frame (void);
2466
2467 void
2468 _initialize_dwarf2_frame (void)
2469 {
2470 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2471 dwarf2_frame_objfile_data = register_objfile_data ();
2472 }