]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2loc.c
Make sect_offset and cu_offset strong typedefs instead of structs
[thirdparty/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46
47 extern int dwarf_always_disassemble;
48
49 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
56
57 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
63 /* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68 enum debug_loc_kind
69 {
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93 };
94
95 /* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98 static void
99 invalid_synthetic_pointer (void)
100 {
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103 }
104
105 /* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110 static enum debug_loc_kind
111 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117 {
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
145 return DEBUG_LOC_START_END;
146 }
147
148 /* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153 static enum debug_loc_kind
154 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162 {
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197 }
198
199 /* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204 static enum debug_loc_kind
205 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
211 {
212 uint64_t low_index, high_index;
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
219 case DW_LLE_GNU_end_of_list_entry:
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
222 case DW_LLE_GNU_base_address_selection_entry:
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
230 case DW_LLE_GNU_start_end_entry:
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
240 return DEBUG_LOC_START_END;
241 case DW_LLE_GNU_start_length_entry:
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255 }
256
257 /* A function for dealing with location lists. Given a
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
265 const gdb_byte *
266 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
268 {
269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
274 /* Adjust base_address for relocatable objects. */
275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
276 CORE_ADDR base_address = baton->base_address + base_offset;
277 const gdb_byte *loc_ptr, *buf_end;
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
292 &low, &high, byte_order);
293 else if (dwarf2_version (baton->per_cu) < 5)
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
304 loc_ptr = new_ptr;
305 switch (kind)
306 {
307 case DEBUG_LOC_END_OF_LIST:
308 *locexpr_length = 0;
309 return NULL;
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
322 }
323
324 /* Otherwise, a location expression entry.
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
334 {
335 low += base_address;
336 high += base_address;
337 }
338
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
351
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
357 const struct block *pc_block = block_for_pc (pc);
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378 }
379
380 /* This is the baton used when performing dwarf2 expression
381 evaluation. */
382 struct dwarf_expr_baton
383 {
384 struct frame_info *frame;
385 struct dwarf2_per_cu_data *per_cu;
386 CORE_ADDR obj_address;
387 };
388
389 /* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392 static void
393 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395 {
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401 }
402
403 /* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
405
406 static CORE_ADDR
407 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
408 {
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436 }
437
438 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442 {
443 locexpr_find_frame_base_location,
444 locexpr_get_frame_base
445 };
446
447 /* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450 static void
451 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453 {
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458 }
459
460 /* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463 static CORE_ADDR
464 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465 {
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493 }
494
495 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499 {
500 loclist_find_frame_base_location,
501 loclist_get_frame_base
502 };
503
504 /* See dwarf2loc.h. */
505
506 void
507 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
509 {
510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
511 {
512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
513
514 ops_block->find_frame_base_location (framefunc, pc, start, length);
515 }
516 else
517 *length = 0;
518
519 if (*length == 0)
520 error (_("Could not find the frame base for \"%s\"."),
521 SYMBOL_NATURAL_NAME (framefunc));
522 }
523
524 static CORE_ADDR
525 get_frame_pc_for_per_cu_dwarf_call (void *baton)
526 {
527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
528
529 return ctx->get_frame_pc ();
530 }
531
532 static void
533 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
534 struct dwarf2_per_cu_data *per_cu)
535 {
536 struct dwarf2_locexpr_baton block;
537
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
545 ctx->eval (block.data, block.size);
546 }
547
548 class dwarf_evaluate_loc_desc : public dwarf_expr_context
549 {
550 public:
551
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
555
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
558
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
563
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
590 {
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
593 error (_("Could not find type for DW_OP_const_type"));
594 if (size != 0 && TYPE_LENGTH (result) != size)
595 error (_("DW_OP_const_type has different sizes for type and data"));
596 return result;
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
645 _("Cannot resolve DW_AT_call_data_value"));
646
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
659 scoped_restore save_offset = make_scoped_restore (&this->offset);
660 this->offset = dwarf2_per_cu_text_offset (per_cu);
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720 };
721
722 /* See dwarf2loc.h. */
723
724 unsigned int entry_values_debug = 0;
725
726 /* Helper to set entry_values_debug. */
727
728 static void
729 show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731 {
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735 }
736
737 /* Find DW_TAG_call_site's DW_AT_call_target address.
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741 static CORE_ADDR
742 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745 {
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
758 struct bound_minimal_symbol msym;
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
762 _("DW_AT_call_target is not specified at %s in %s"),
763 paddress (call_site_gdbarch, call_site->pc),
764 (msym.minsym == NULL ? "???"
765 : MSYMBOL_PRINT_NAME (msym.minsym)));
766
767 }
768 if (caller_frame == NULL)
769 {
770 struct bound_minimal_symbol msym;
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
774 _("DW_AT_call_target DWARF block resolving "
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
778 (msym.minsym == NULL ? "???"
779 : MSYMBOL_PRINT_NAME (msym.minsym)));
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
797 struct bound_minimal_symbol msym;
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
803 if (msym.minsym == NULL)
804 {
805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
812
813 }
814 return BMSYMBOL_VALUE_ADDRESS (msym);
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823 }
824
825 /* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829 static struct symbol *
830 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831 {
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
837 _("DW_TAG_call_site resolving failed to find function "
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846 }
847
848 /* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857 static void
858 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859 {
860 CORE_ADDR addr;
861
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
864 std::vector<CORE_ADDR> todo;
865
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
868
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
875 addr = todo.back ();
876 todo.pop_back ();
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
891 struct bound_minimal_symbol msym;
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
895 _("DW_OP_entry_value resolving has found "
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
898 (msym.minsym == NULL ? "???"
899 : MSYMBOL_PRINT_NAME (msym.minsym)),
900 paddress (gdbarch, verify_addr));
901 }
902
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
905 }
906 }
907 }
908
909 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912 static void
913 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914 {
915 CORE_ADDR addr = call_site->pc;
916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
919 (msym.minsym == NULL ? "???"
920 : MSYMBOL_PRINT_NAME (msym.minsym)));
921
922 }
923
924 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931 static void
932 chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
935 {
936 long length = chain->size ();
937 int callers, callees, idx;
938
939 if (*resultp == NULL)
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
947 result->length = length;
948 result->callers = result->callees = length;
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
951 sizeof (*result->call_site) * length);
952 resultp->reset (result);
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
969 tailcall_dump (gdbarch, chain->at (idx));
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
975 callers = std::min ((long) (*resultp)->callers, length);
976 for (idx = 0; idx < callers; idx++)
977 if ((*resultp)->call_site[idx] != chain->at (idx))
978 {
979 (*resultp)->callers = idx;
980 break;
981 }
982
983 /* Intersect callees. */
984
985 callees = std::min ((long) (*resultp)->callees, length);
986 for (idx = 0; idx < callees; idx++)
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
989 {
990 (*resultp)->callees = idx;
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
999 fputs_unfiltered (" |", gdb_stdlog);
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
1013 resultp->reset (NULL);
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1021 }
1022
1023 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030 static struct call_site_chain *
1031 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033 {
1034 CORE_ADDR save_callee_pc = callee_pc;
1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1036 struct call_site *call_site;
1037
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1042 std::vector<struct call_site *> chain;
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1048 paddress (gdbarch, save_callee_pc));
1049
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
1070 chain_candidate (gdbarch, &retval, &chain);
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
1092 if (addr_hash.insert (target_call_site->pc).second)
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
1096 chain.push_back (target_call_site);
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
1106 while (!chain.empty ())
1107 {
1108 call_site = chain.back ();
1109 chain.pop_back ();
1110
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
1121 if (chain.empty ())
1122 call_site = NULL;
1123 else
1124 call_site = chain.back ();
1125 }
1126
1127 if (retval == NULL)
1128 {
1129 struct bound_minimal_symbol msym_caller, msym_callee;
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
1137 (msym_caller.minsym == NULL
1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1139 paddress (gdbarch, caller_pc),
1140 (msym_callee.minsym == NULL
1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1142 paddress (gdbarch, callee_pc));
1143 }
1144
1145 return retval.release ();
1146 }
1147
1148 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153 struct call_site_chain *
1154 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156 {
1157 struct call_site_chain *retval = NULL;
1158
1159 TRY
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
1163 CATCH (e, RETURN_MASK_ERROR)
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
1175 END_CATCH
1176
1177 return retval;
1178 }
1179
1180 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182 static int
1183 call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186 {
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
1196 }
1197 return 0;
1198 }
1199
1200 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206 static struct call_site_parameter *
1207 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
1210 struct dwarf2_per_cu_data **per_cu_return)
1211 {
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
1215 struct call_site *call_site;
1216 int iparams;
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
1219 CORE_ADDR target_addr;
1220
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
1237 _("DW_OP_entry_value resolving callee gdbarch %s "
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
1241 (msym.minsym == NULL ? "???"
1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
1250
1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
1254 (msym.minsym == NULL ? "???"
1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1267 throw_error (NO_ENTRY_VALUE_ERROR,
1268 _("DW_OP_entry_value resolving expects callee %s at %s "
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
1271 : MSYMBOL_PRINT_NAME (target_msym)),
1272 paddress (gdbarch, target_addr),
1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1274 paddress (gdbarch, func_addr));
1275 }
1276
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
1284 if (call_site_parameter_matches (parameter, kind, kind_u))
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1291
1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1295 "at DW_TAG_call_site %s at %s"),
1296 paddress (gdbarch, caller_pc),
1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302 }
1303
1304 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314 static struct value *
1315 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1316 CORE_ADDR deref_size, struct type *type,
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319 {
1320 const gdb_byte *data_src;
1321 gdb_byte *data;
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
1330 _("Cannot resolve DW_AT_call_data_value"));
1331
1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
1335 data = (gdb_byte *) alloca (size + 1);
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
1338
1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1340 }
1341
1342 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346 static struct value *
1347 entry_data_value_coerce_ref (const struct value *value)
1348 {
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
1352 if (!TYPE_IS_REFERENCE (checked_type))
1353 return NULL;
1354
1355 target_val = (struct value *) value_computed_closure (value);
1356 value_incref (target_val);
1357 return target_val;
1358 }
1359
1360 /* Implement copy_closure. */
1361
1362 static void *
1363 entry_data_value_copy_closure (const struct value *v)
1364 {
1365 struct value *target_val = (struct value *) value_computed_closure (v);
1366
1367 value_incref (target_val);
1368 return target_val;
1369 }
1370
1371 /* Implement free_closure. */
1372
1373 static void
1374 entry_data_value_free_closure (struct value *v)
1375 {
1376 struct value *target_val = (struct value *) value_computed_closure (v);
1377
1378 value_free (target_val);
1379 }
1380
1381 /* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
1383 DW_AT_call_data_value in the caller. */
1384
1385 static const struct lval_funcs entry_data_value_funcs =
1386 {
1387 NULL, /* read */
1388 NULL, /* write */
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394 };
1395
1396 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
1398 DW_TAG_call_site_parameter.
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403 static struct value *
1404 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
1407 {
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1410 struct frame_info *caller_frame = get_prev_frame (frame);
1411 struct value *outer_val, *target_val, *val;
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1416 &caller_per_cu);
1417
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
1427 if (!TYPE_IS_REFERENCE (checked_type)
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
1446 }
1447
1448 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
1450 DW_TAG_call_site_parameter.
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455 static struct value *
1456 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458 {
1459 union call_site_parameter_u kind_u;
1460
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
1465
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476 }
1477
1478 struct piece_closure
1479 {
1480 /* Reference count. */
1481 int refc;
1482
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
1489 /* The target address size, used only for DWARF_VALUE_STACK. */
1490 int addr_size;
1491
1492 /* The pieces themselves. */
1493 struct dwarf_expr_piece *pieces;
1494
1495 /* Frame ID of frame to which a register value is relative, used
1496 only by DWARF_VALUE_REGISTER. */
1497 struct frame_id frame_id;
1498 };
1499
1500 /* Allocate a closure for a value formed from separately-described
1501 PIECES. */
1502
1503 static struct piece_closure *
1504 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1505 int n_pieces, struct dwarf_expr_piece *pieces,
1506 int addr_size, struct frame_info *frame)
1507 {
1508 struct piece_closure *c = XCNEW (struct piece_closure);
1509 int i;
1510
1511 c->refc = 1;
1512 c->per_cu = per_cu;
1513 c->n_pieces = n_pieces;
1514 c->addr_size = addr_size;
1515 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1516 if (frame == NULL)
1517 c->frame_id = null_frame_id;
1518 else
1519 c->frame_id = get_frame_id (frame);
1520
1521 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1522 for (i = 0; i < n_pieces; ++i)
1523 if (c->pieces[i].location == DWARF_VALUE_STACK)
1524 value_incref (c->pieces[i].v.value);
1525
1526 return c;
1527 }
1528
1529 /* Copy NBITS bits from SOURCE to DEST starting at the given bit
1530 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1531 Source and destination buffers must not overlap. */
1532
1533 static void
1534 copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1535 const gdb_byte *source, ULONGEST source_offset,
1536 ULONGEST nbits, int bits_big_endian)
1537 {
1538 unsigned int buf, avail;
1539
1540 if (nbits == 0)
1541 return;
1542
1543 if (bits_big_endian)
1544 {
1545 /* Start from the end, then work backwards. */
1546 dest_offset += nbits - 1;
1547 dest += dest_offset / 8;
1548 dest_offset = 7 - dest_offset % 8;
1549 source_offset += nbits - 1;
1550 source += source_offset / 8;
1551 source_offset = 7 - source_offset % 8;
1552 }
1553 else
1554 {
1555 dest += dest_offset / 8;
1556 dest_offset %= 8;
1557 source += source_offset / 8;
1558 source_offset %= 8;
1559 }
1560
1561 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1562 SOURCE_OFFSET bits from the source. */
1563 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1564 buf <<= dest_offset;
1565 buf |= *dest & ((1 << dest_offset) - 1);
1566
1567 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1568 nbits += dest_offset;
1569 avail = dest_offset + 8 - source_offset;
1570
1571 /* Flush 8 bits from BUF, if appropriate. */
1572 if (nbits >= 8 && avail >= 8)
1573 {
1574 *(bits_big_endian ? dest-- : dest++) = buf;
1575 buf >>= 8;
1576 avail -= 8;
1577 nbits -= 8;
1578 }
1579
1580 /* Copy the middle part. */
1581 if (nbits >= 8)
1582 {
1583 size_t len = nbits / 8;
1584
1585 /* Use a faster method for byte-aligned copies. */
1586 if (avail == 0)
1587 {
1588 if (bits_big_endian)
1589 {
1590 dest -= len;
1591 source -= len;
1592 memcpy (dest + 1, source + 1, len);
1593 }
1594 else
1595 {
1596 memcpy (dest, source, len);
1597 dest += len;
1598 source += len;
1599 }
1600 }
1601 else
1602 {
1603 while (len--)
1604 {
1605 buf |= *(bits_big_endian ? source-- : source++) << avail;
1606 *(bits_big_endian ? dest-- : dest++) = buf;
1607 buf >>= 8;
1608 }
1609 }
1610 nbits %= 8;
1611 }
1612
1613 /* Write the last byte. */
1614 if (nbits)
1615 {
1616 if (avail < nbits)
1617 buf |= *source << avail;
1618
1619 buf &= (1 << nbits) - 1;
1620 *dest = (*dest & (~0 << nbits)) | buf;
1621 }
1622 }
1623
1624 #if GDB_SELF_TEST
1625
1626 namespace selftests {
1627
1628 /* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1629 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1630 specifies whether to assume big endian bit numbering. Store the
1631 resulting (not null-terminated) string at STR. */
1632
1633 static void
1634 bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1635 ULONGEST nbits, int msb0)
1636 {
1637 unsigned int j;
1638 size_t i;
1639
1640 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1641 {
1642 unsigned int ch = bits[i];
1643 for (; j < 8 && nbits; j++, nbits--)
1644 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1645 }
1646 }
1647
1648 /* Check one invocation of copy_bitwise with the given parameters. */
1649
1650 static void
1651 check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1652 const gdb_byte *source, unsigned int source_offset,
1653 unsigned int nbits, int msb0)
1654 {
1655 size_t len = align_up (dest_offset + nbits, 8);
1656 char *expected = (char *) alloca (len + 1);
1657 char *actual = (char *) alloca (len + 1);
1658 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1659
1660 /* Compose a '0'/'1'-string that represents the expected result of
1661 copy_bitwise below:
1662 Bits from [0, DEST_OFFSET) are filled from DEST.
1663 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1664 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1665
1666 E.g., with:
1667 dest_offset: 4
1668 nbits: 2
1669 len: 8
1670 dest: 00000000
1671 source: 11111111
1672
1673 We should end up with:
1674 buf: 00001100
1675 DDDDSSDD (D=dest, S=source)
1676 */
1677 bits_to_str (expected, dest, 0, len, msb0);
1678 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1679
1680 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1681 result to a '0'/'1'-string. */
1682 memcpy (buf, dest, len / 8);
1683 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1684 bits_to_str (actual, buf, 0, len, msb0);
1685
1686 /* Compare the resulting strings. */
1687 expected[len] = actual[len] = '\0';
1688 if (strcmp (expected, actual) != 0)
1689 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1690 expected, actual, source_offset, nbits, dest_offset);
1691 }
1692
1693 /* Unit test for copy_bitwise. */
1694
1695 static void
1696 copy_bitwise_tests (void)
1697 {
1698 /* Data to be used as both source and destination buffers. The two
1699 arrays below represent the lsb0- and msb0- encoded versions of the
1700 following bit string, respectively:
1701 00000000 00011111 11111111 01001000 10100101 11110010
1702 This pattern is chosen such that it contains:
1703 - constant 0- and 1- chunks of more than a full byte;
1704 - 0/1- and 1/0 transitions on all bit positions within a byte;
1705 - several sufficiently asymmetric bytes.
1706 */
1707 static const gdb_byte data_lsb0[] = {
1708 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1709 };
1710 static const gdb_byte data_msb0[] = {
1711 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1712 };
1713
1714 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1715 constexpr unsigned max_nbits = 24;
1716
1717 /* Try all combinations of:
1718 lsb0/msb0 bit order (using the respective data array)
1719 X [0, MAX_NBITS] copy bit width
1720 X feasible source offsets for the given copy bit width
1721 X feasible destination offsets
1722 */
1723 for (int msb0 = 0; msb0 < 2; msb0++)
1724 {
1725 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1726
1727 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1728 {
1729 const unsigned int max_offset = data_nbits - nbits;
1730
1731 for (unsigned source_offset = 0;
1732 source_offset <= max_offset;
1733 source_offset++)
1734 {
1735 for (unsigned dest_offset = 0;
1736 dest_offset <= max_offset;
1737 dest_offset++)
1738 {
1739 check_copy_bitwise (data + dest_offset / 8,
1740 dest_offset % 8,
1741 data + source_offset / 8,
1742 source_offset % 8,
1743 nbits, msb0);
1744 }
1745 }
1746 }
1747
1748 /* Special cases: copy all, copy nothing. */
1749 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1750 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1751 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1752 }
1753 }
1754
1755 } /* namespace selftests */
1756
1757 #endif /* GDB_SELF_TEST */
1758
1759 static void
1760 read_pieced_value (struct value *v)
1761 {
1762 int i;
1763 long offset = 0;
1764 ULONGEST bits_to_skip;
1765 gdb_byte *contents;
1766 struct piece_closure *c
1767 = (struct piece_closure *) value_computed_closure (v);
1768 size_t type_len;
1769 size_t buffer_size = 0;
1770 std::vector<gdb_byte> buffer;
1771 int bits_big_endian
1772 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1773
1774 if (value_type (v) != value_enclosing_type (v))
1775 internal_error (__FILE__, __LINE__,
1776 _("Should not be able to create a lazy value with "
1777 "an enclosing type"));
1778
1779 contents = value_contents_raw (v);
1780 bits_to_skip = 8 * value_offset (v);
1781 if (value_bitsize (v))
1782 {
1783 bits_to_skip += value_bitpos (v);
1784 type_len = value_bitsize (v);
1785 }
1786 else
1787 type_len = 8 * TYPE_LENGTH (value_type (v));
1788
1789 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1790 {
1791 struct dwarf_expr_piece *p = &c->pieces[i];
1792 size_t this_size, this_size_bits;
1793 long dest_offset_bits, source_offset_bits, source_offset;
1794 const gdb_byte *intermediate_buffer;
1795
1796 /* Compute size, source, and destination offsets for copying, in
1797 bits. */
1798 this_size_bits = p->size;
1799 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1800 {
1801 bits_to_skip -= this_size_bits;
1802 continue;
1803 }
1804 if (bits_to_skip > 0)
1805 {
1806 dest_offset_bits = 0;
1807 source_offset_bits = bits_to_skip;
1808 this_size_bits -= bits_to_skip;
1809 bits_to_skip = 0;
1810 }
1811 else
1812 {
1813 dest_offset_bits = offset;
1814 source_offset_bits = 0;
1815 }
1816 if (this_size_bits > type_len - offset)
1817 this_size_bits = type_len - offset;
1818
1819 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1820 source_offset = source_offset_bits / 8;
1821 if (buffer_size < this_size)
1822 {
1823 buffer_size = this_size;
1824 buffer.reserve (buffer_size);
1825 }
1826 intermediate_buffer = buffer.data ();
1827
1828 /* Copy from the source to DEST_BUFFER. */
1829 switch (p->location)
1830 {
1831 case DWARF_VALUE_REGISTER:
1832 {
1833 struct frame_info *frame = frame_find_by_id (c->frame_id);
1834 struct gdbarch *arch = get_frame_arch (frame);
1835 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1836 int optim, unavail;
1837 LONGEST reg_offset = source_offset;
1838
1839 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1840 && this_size < register_size (arch, gdb_regnum))
1841 {
1842 /* Big-endian, and we want less than full size. */
1843 reg_offset = register_size (arch, gdb_regnum) - this_size;
1844 /* We want the lower-order THIS_SIZE_BITS of the bytes
1845 we extract from the register. */
1846 source_offset_bits += 8 * this_size - this_size_bits;
1847 }
1848
1849 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1850 this_size, buffer.data (),
1851 &optim, &unavail))
1852 {
1853 /* Just so garbage doesn't ever shine through. */
1854 memset (buffer.data (), 0, this_size);
1855
1856 if (optim)
1857 mark_value_bits_optimized_out (v, offset, this_size_bits);
1858 if (unavail)
1859 mark_value_bits_unavailable (v, offset, this_size_bits);
1860 }
1861 }
1862 break;
1863
1864 case DWARF_VALUE_MEMORY:
1865 read_value_memory (v, offset,
1866 p->v.mem.in_stack_memory,
1867 p->v.mem.addr + source_offset,
1868 buffer.data (), this_size);
1869 break;
1870
1871 case DWARF_VALUE_STACK:
1872 {
1873 size_t n = this_size;
1874
1875 if (n > c->addr_size - source_offset)
1876 n = (c->addr_size >= source_offset
1877 ? c->addr_size - source_offset
1878 : 0);
1879 if (n == 0)
1880 {
1881 /* Nothing. */
1882 }
1883 else
1884 {
1885 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1886
1887 intermediate_buffer = val_bytes + source_offset;
1888 }
1889 }
1890 break;
1891
1892 case DWARF_VALUE_LITERAL:
1893 {
1894 size_t n = this_size;
1895
1896 if (n > p->v.literal.length - source_offset)
1897 n = (p->v.literal.length >= source_offset
1898 ? p->v.literal.length - source_offset
1899 : 0);
1900 if (n != 0)
1901 intermediate_buffer = p->v.literal.data + source_offset;
1902 }
1903 break;
1904
1905 /* These bits show up as zeros -- but do not cause the value
1906 to be considered optimized-out. */
1907 case DWARF_VALUE_IMPLICIT_POINTER:
1908 break;
1909
1910 case DWARF_VALUE_OPTIMIZED_OUT:
1911 mark_value_bits_optimized_out (v, offset, this_size_bits);
1912 break;
1913
1914 default:
1915 internal_error (__FILE__, __LINE__, _("invalid location type"));
1916 }
1917
1918 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1919 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1920 copy_bitwise (contents, dest_offset_bits,
1921 intermediate_buffer, source_offset_bits % 8,
1922 this_size_bits, bits_big_endian);
1923
1924 offset += this_size_bits;
1925 }
1926 }
1927
1928 static void
1929 write_pieced_value (struct value *to, struct value *from)
1930 {
1931 int i;
1932 long offset = 0;
1933 ULONGEST bits_to_skip;
1934 const gdb_byte *contents;
1935 struct piece_closure *c
1936 = (struct piece_closure *) value_computed_closure (to);
1937 size_t type_len;
1938 size_t buffer_size = 0;
1939 std::vector<gdb_byte> buffer;
1940 int bits_big_endian
1941 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1942
1943 contents = value_contents (from);
1944 bits_to_skip = 8 * value_offset (to);
1945 if (value_bitsize (to))
1946 {
1947 bits_to_skip += value_bitpos (to);
1948 type_len = value_bitsize (to);
1949 }
1950 else
1951 type_len = 8 * TYPE_LENGTH (value_type (to));
1952
1953 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1954 {
1955 struct dwarf_expr_piece *p = &c->pieces[i];
1956 size_t this_size_bits, this_size;
1957 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1958 int need_bitwise;
1959 const gdb_byte *source_buffer;
1960
1961 this_size_bits = p->size;
1962 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1963 {
1964 bits_to_skip -= this_size_bits;
1965 continue;
1966 }
1967 if (this_size_bits > type_len - offset)
1968 this_size_bits = type_len - offset;
1969 if (bits_to_skip > 0)
1970 {
1971 dest_offset_bits = bits_to_skip;
1972 source_offset_bits = 0;
1973 this_size_bits -= bits_to_skip;
1974 bits_to_skip = 0;
1975 }
1976 else
1977 {
1978 dest_offset_bits = 0;
1979 source_offset_bits = offset;
1980 }
1981
1982 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1983 source_offset = source_offset_bits / 8;
1984 dest_offset = dest_offset_bits / 8;
1985 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1986 {
1987 source_buffer = contents + source_offset;
1988 need_bitwise = 0;
1989 }
1990 else
1991 {
1992 if (buffer_size < this_size)
1993 {
1994 buffer_size = this_size;
1995 buffer.reserve (buffer_size);
1996 }
1997 source_buffer = buffer.data ();
1998 need_bitwise = 1;
1999 }
2000
2001 switch (p->location)
2002 {
2003 case DWARF_VALUE_REGISTER:
2004 {
2005 struct frame_info *frame = frame_find_by_id (c->frame_id);
2006 struct gdbarch *arch = get_frame_arch (frame);
2007 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2008 int reg_offset = dest_offset;
2009
2010 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2011 && this_size <= register_size (arch, gdb_regnum))
2012 {
2013 /* Big-endian, and we want less than full size. */
2014 reg_offset = register_size (arch, gdb_regnum) - this_size;
2015 }
2016
2017 if (need_bitwise)
2018 {
2019 int optim, unavail;
2020
2021 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
2022 this_size, buffer.data (),
2023 &optim, &unavail))
2024 {
2025 if (optim)
2026 throw_error (OPTIMIZED_OUT_ERROR,
2027 _("Can't do read-modify-write to "
2028 "update bitfield; containing word "
2029 "has been optimized out"));
2030 if (unavail)
2031 throw_error (NOT_AVAILABLE_ERROR,
2032 _("Can't do read-modify-write to update "
2033 "bitfield; containing word "
2034 "is unavailable"));
2035 }
2036 copy_bitwise (buffer.data (), dest_offset_bits,
2037 contents, source_offset_bits,
2038 this_size_bits,
2039 bits_big_endian);
2040 }
2041
2042 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2043 this_size, source_buffer);
2044 }
2045 break;
2046 case DWARF_VALUE_MEMORY:
2047 if (need_bitwise)
2048 {
2049 /* Only the first and last bytes can possibly have any
2050 bits reused. */
2051 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
2052 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
2053 &buffer[this_size - 1], 1);
2054 copy_bitwise (buffer.data (), dest_offset_bits,
2055 contents, source_offset_bits,
2056 this_size_bits,
2057 bits_big_endian);
2058 }
2059
2060 write_memory (p->v.mem.addr + dest_offset,
2061 source_buffer, this_size);
2062 break;
2063 default:
2064 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
2065 break;
2066 }
2067 offset += this_size_bits;
2068 }
2069 }
2070
2071 /* An implementation of an lval_funcs method to see whether a value is
2072 a synthetic pointer. */
2073
2074 static int
2075 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
2076 int bit_length)
2077 {
2078 struct piece_closure *c
2079 = (struct piece_closure *) value_computed_closure (value);
2080 int i;
2081
2082 bit_offset += 8 * value_offset (value);
2083 if (value_bitsize (value))
2084 bit_offset += value_bitpos (value);
2085
2086 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2087 {
2088 struct dwarf_expr_piece *p = &c->pieces[i];
2089 size_t this_size_bits = p->size;
2090
2091 if (bit_offset > 0)
2092 {
2093 if (bit_offset >= this_size_bits)
2094 {
2095 bit_offset -= this_size_bits;
2096 continue;
2097 }
2098
2099 bit_length -= this_size_bits - bit_offset;
2100 bit_offset = 0;
2101 }
2102 else
2103 bit_length -= this_size_bits;
2104
2105 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2106 return 0;
2107 }
2108
2109 return 1;
2110 }
2111
2112 /* A wrapper function for get_frame_address_in_block. */
2113
2114 static CORE_ADDR
2115 get_frame_address_in_block_wrapper (void *baton)
2116 {
2117 return get_frame_address_in_block ((struct frame_info *) baton);
2118 }
2119
2120 /* Fetch a DW_AT_const_value through a synthetic pointer. */
2121
2122 static struct value *
2123 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2124 struct dwarf2_per_cu_data *per_cu,
2125 struct type *type)
2126 {
2127 struct value *result = NULL;
2128 struct obstack temp_obstack;
2129 struct cleanup *cleanup;
2130 const gdb_byte *bytes;
2131 LONGEST len;
2132
2133 obstack_init (&temp_obstack);
2134 cleanup = make_cleanup_obstack_free (&temp_obstack);
2135 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2136
2137 if (bytes != NULL)
2138 {
2139 if (byte_offset >= 0
2140 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2141 {
2142 bytes += byte_offset;
2143 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2144 }
2145 else
2146 invalid_synthetic_pointer ();
2147 }
2148 else
2149 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2150
2151 do_cleanups (cleanup);
2152
2153 return result;
2154 }
2155
2156 /* Fetch the value pointed to by a synthetic pointer. */
2157
2158 static struct value *
2159 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2160 struct dwarf2_per_cu_data *per_cu,
2161 struct frame_info *frame, struct type *type)
2162 {
2163 /* Fetch the location expression of the DIE we're pointing to. */
2164 struct dwarf2_locexpr_baton baton
2165 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2166 get_frame_address_in_block_wrapper, frame);
2167
2168 /* Get type of pointed-to DIE. */
2169 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2170 if (orig_type == NULL)
2171 invalid_synthetic_pointer ();
2172
2173 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2174 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2175 or it may've been optimized out. */
2176 if (baton.data != NULL)
2177 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2178 baton.size, baton.per_cu,
2179 TYPE_TARGET_TYPE (type),
2180 byte_offset);
2181 else
2182 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2183 type);
2184 }
2185
2186 /* An implementation of an lval_funcs method to indirect through a
2187 pointer. This handles the synthetic pointer case when needed. */
2188
2189 static struct value *
2190 indirect_pieced_value (struct value *value)
2191 {
2192 struct piece_closure *c
2193 = (struct piece_closure *) value_computed_closure (value);
2194 struct type *type;
2195 struct frame_info *frame;
2196 struct dwarf2_locexpr_baton baton;
2197 int i, bit_length;
2198 LONGEST bit_offset;
2199 struct dwarf_expr_piece *piece = NULL;
2200 LONGEST byte_offset;
2201 enum bfd_endian byte_order;
2202
2203 type = check_typedef (value_type (value));
2204 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2205 return NULL;
2206
2207 bit_length = 8 * TYPE_LENGTH (type);
2208 bit_offset = 8 * value_offset (value);
2209 if (value_bitsize (value))
2210 bit_offset += value_bitpos (value);
2211
2212 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2213 {
2214 struct dwarf_expr_piece *p = &c->pieces[i];
2215 size_t this_size_bits = p->size;
2216
2217 if (bit_offset > 0)
2218 {
2219 if (bit_offset >= this_size_bits)
2220 {
2221 bit_offset -= this_size_bits;
2222 continue;
2223 }
2224
2225 bit_length -= this_size_bits - bit_offset;
2226 bit_offset = 0;
2227 }
2228 else
2229 bit_length -= this_size_bits;
2230
2231 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2232 return NULL;
2233
2234 if (bit_length != 0)
2235 error (_("Invalid use of DW_OP_implicit_pointer"));
2236
2237 piece = p;
2238 break;
2239 }
2240
2241 gdb_assert (piece != NULL);
2242 frame = get_selected_frame (_("No frame selected."));
2243
2244 /* This is an offset requested by GDB, such as value subscripts.
2245 However, due to how synthetic pointers are implemented, this is
2246 always presented to us as a pointer type. This means we have to
2247 sign-extend it manually as appropriate. Use raw
2248 extract_signed_integer directly rather than value_as_address and
2249 sign extend afterwards on architectures that would need it
2250 (mostly everywhere except MIPS, which has signed addresses) as
2251 the later would go through gdbarch_pointer_to_address and thus
2252 return a CORE_ADDR with high bits set on architectures that
2253 encode address spaces and other things in CORE_ADDR. */
2254 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2255 byte_offset = extract_signed_integer (value_contents (value),
2256 TYPE_LENGTH (type), byte_order);
2257 byte_offset += piece->v.ptr.offset;
2258
2259 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2260 byte_offset, c->per_cu,
2261 frame, type);
2262 }
2263
2264 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2265 references. */
2266
2267 static struct value *
2268 coerce_pieced_ref (const struct value *value)
2269 {
2270 struct type *type = check_typedef (value_type (value));
2271
2272 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2274 {
2275 const struct piece_closure *closure
2276 = (struct piece_closure *) value_computed_closure (value);
2277 struct frame_info *frame
2278 = get_selected_frame (_("No frame selected."));
2279
2280 /* gdb represents synthetic pointers as pieced values with a single
2281 piece. */
2282 gdb_assert (closure != NULL);
2283 gdb_assert (closure->n_pieces == 1);
2284
2285 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
2286 closure->pieces->v.ptr.offset,
2287 closure->per_cu, frame, type);
2288 }
2289 else
2290 {
2291 /* Else: not a synthetic reference; do nothing. */
2292 return NULL;
2293 }
2294 }
2295
2296 static void *
2297 copy_pieced_value_closure (const struct value *v)
2298 {
2299 struct piece_closure *c
2300 = (struct piece_closure *) value_computed_closure (v);
2301
2302 ++c->refc;
2303 return c;
2304 }
2305
2306 static void
2307 free_pieced_value_closure (struct value *v)
2308 {
2309 struct piece_closure *c
2310 = (struct piece_closure *) value_computed_closure (v);
2311
2312 --c->refc;
2313 if (c->refc == 0)
2314 {
2315 int i;
2316
2317 for (i = 0; i < c->n_pieces; ++i)
2318 if (c->pieces[i].location == DWARF_VALUE_STACK)
2319 value_free (c->pieces[i].v.value);
2320
2321 xfree (c->pieces);
2322 xfree (c);
2323 }
2324 }
2325
2326 /* Functions for accessing a variable described by DW_OP_piece. */
2327 static const struct lval_funcs pieced_value_funcs = {
2328 read_pieced_value,
2329 write_pieced_value,
2330 indirect_pieced_value,
2331 coerce_pieced_ref,
2332 check_pieced_synthetic_pointer,
2333 copy_pieced_value_closure,
2334 free_pieced_value_closure
2335 };
2336
2337 /* Evaluate a location description, starting at DATA and with length
2338 SIZE, to find the current location of variable of TYPE in the
2339 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2340 location of the subobject of type SUBOBJ_TYPE at byte offset
2341 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2342
2343 static struct value *
2344 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2345 const gdb_byte *data, size_t size,
2346 struct dwarf2_per_cu_data *per_cu,
2347 struct type *subobj_type,
2348 LONGEST subobj_byte_offset)
2349 {
2350 struct value *retval;
2351 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2352
2353 if (subobj_type == NULL)
2354 {
2355 subobj_type = type;
2356 subobj_byte_offset = 0;
2357 }
2358 else if (subobj_byte_offset < 0)
2359 invalid_synthetic_pointer ();
2360
2361 if (size == 0)
2362 return allocate_optimized_out_value (subobj_type);
2363
2364 dwarf_evaluate_loc_desc ctx;
2365 ctx.frame = frame;
2366 ctx.per_cu = per_cu;
2367 ctx.obj_address = 0;
2368
2369 scoped_value_mark free_values;
2370
2371 ctx.gdbarch = get_objfile_arch (objfile);
2372 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2373 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2374 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2375
2376 TRY
2377 {
2378 ctx.eval (data, size);
2379 }
2380 CATCH (ex, RETURN_MASK_ERROR)
2381 {
2382 if (ex.error == NOT_AVAILABLE_ERROR)
2383 {
2384 free_values.free_to_mark ();
2385 retval = allocate_value (subobj_type);
2386 mark_value_bytes_unavailable (retval, 0,
2387 TYPE_LENGTH (subobj_type));
2388 return retval;
2389 }
2390 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2391 {
2392 if (entry_values_debug)
2393 exception_print (gdb_stdout, ex);
2394 free_values.free_to_mark ();
2395 return allocate_optimized_out_value (subobj_type);
2396 }
2397 else
2398 throw_exception (ex);
2399 }
2400 END_CATCH
2401
2402 if (ctx.num_pieces > 0)
2403 {
2404 struct piece_closure *c;
2405 ULONGEST bit_size = 0;
2406 int i;
2407
2408 for (i = 0; i < ctx.num_pieces; ++i)
2409 bit_size += ctx.pieces[i].size;
2410 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
2411 invalid_synthetic_pointer ();
2412
2413 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
2414 ctx.addr_size, frame);
2415 /* We must clean up the value chain after creating the piece
2416 closure but before allocating the result. */
2417 free_values.free_to_mark ();
2418 retval = allocate_computed_value (subobj_type,
2419 &pieced_value_funcs, c);
2420 set_value_offset (retval, subobj_byte_offset);
2421 }
2422 else
2423 {
2424 switch (ctx.location)
2425 {
2426 case DWARF_VALUE_REGISTER:
2427 {
2428 struct gdbarch *arch = get_frame_arch (frame);
2429 int dwarf_regnum
2430 = longest_to_int (value_as_long (ctx.fetch (0)));
2431 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2432
2433 if (subobj_byte_offset != 0)
2434 error (_("cannot use offset on synthetic pointer to register"));
2435 free_values.free_to_mark ();
2436 retval = value_from_register (subobj_type, gdb_regnum, frame);
2437 if (value_optimized_out (retval))
2438 {
2439 struct value *tmp;
2440
2441 /* This means the register has undefined value / was
2442 not saved. As we're computing the location of some
2443 variable etc. in the program, not a value for
2444 inspecting a register ($pc, $sp, etc.), return a
2445 generic optimized out value instead, so that we show
2446 <optimized out> instead of <not saved>. */
2447 tmp = allocate_value (subobj_type);
2448 value_contents_copy (tmp, 0, retval, 0,
2449 TYPE_LENGTH (subobj_type));
2450 retval = tmp;
2451 }
2452 }
2453 break;
2454
2455 case DWARF_VALUE_MEMORY:
2456 {
2457 struct type *ptr_type;
2458 CORE_ADDR address = ctx.fetch_address (0);
2459 int in_stack_memory = ctx.fetch_in_stack_memory (0);
2460
2461 /* DW_OP_deref_size (and possibly other operations too) may
2462 create a pointer instead of an address. Ideally, the
2463 pointer to address conversion would be performed as part
2464 of those operations, but the type of the object to
2465 which the address refers is not known at the time of
2466 the operation. Therefore, we do the conversion here
2467 since the type is readily available. */
2468
2469 switch (TYPE_CODE (subobj_type))
2470 {
2471 case TYPE_CODE_FUNC:
2472 case TYPE_CODE_METHOD:
2473 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2474 break;
2475 default:
2476 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2477 break;
2478 }
2479 address = value_as_address (value_from_pointer (ptr_type, address));
2480
2481 free_values.free_to_mark ();
2482 retval = value_at_lazy (subobj_type,
2483 address + subobj_byte_offset);
2484 if (in_stack_memory)
2485 set_value_stack (retval, 1);
2486 }
2487 break;
2488
2489 case DWARF_VALUE_STACK:
2490 {
2491 struct value *value = ctx.fetch (0);
2492 size_t n = TYPE_LENGTH (value_type (value));
2493 size_t len = TYPE_LENGTH (subobj_type);
2494 size_t max = TYPE_LENGTH (type);
2495 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2496 struct cleanup *cleanup;
2497
2498 if (subobj_byte_offset + len > max)
2499 invalid_synthetic_pointer ();
2500
2501 /* Preserve VALUE because we are going to free values back
2502 to the mark, but we still need the value contents
2503 below. */
2504 value_incref (value);
2505 free_values.free_to_mark ();
2506 cleanup = make_cleanup_value_free (value);
2507
2508 retval = allocate_value (subobj_type);
2509
2510 /* The given offset is relative to the actual object. */
2511 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2512 subobj_byte_offset += n - max;
2513
2514 memcpy (value_contents_raw (retval),
2515 value_contents_all (value) + subobj_byte_offset, len);
2516
2517 do_cleanups (cleanup);
2518 }
2519 break;
2520
2521 case DWARF_VALUE_LITERAL:
2522 {
2523 bfd_byte *contents;
2524 size_t n = TYPE_LENGTH (subobj_type);
2525
2526 if (subobj_byte_offset + n > ctx.len)
2527 invalid_synthetic_pointer ();
2528
2529 free_values.free_to_mark ();
2530 retval = allocate_value (subobj_type);
2531 contents = value_contents_raw (retval);
2532 memcpy (contents, ctx.data + subobj_byte_offset, n);
2533 }
2534 break;
2535
2536 case DWARF_VALUE_OPTIMIZED_OUT:
2537 free_values.free_to_mark ();
2538 retval = allocate_optimized_out_value (subobj_type);
2539 break;
2540
2541 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2542 operation by execute_stack_op. */
2543 case DWARF_VALUE_IMPLICIT_POINTER:
2544 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2545 it can only be encountered when making a piece. */
2546 default:
2547 internal_error (__FILE__, __LINE__, _("invalid location type"));
2548 }
2549 }
2550
2551 set_value_initialized (retval, ctx.initialized);
2552
2553 return retval;
2554 }
2555
2556 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2557 passes 0 as the byte_offset. */
2558
2559 struct value *
2560 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2561 const gdb_byte *data, size_t size,
2562 struct dwarf2_per_cu_data *per_cu)
2563 {
2564 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2565 NULL, 0);
2566 }
2567
2568 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2569 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2570 frame in which the expression is evaluated. ADDR is a context (location of
2571 a variable) and might be needed to evaluate the location expression.
2572 Returns 1 on success, 0 otherwise. */
2573
2574 static int
2575 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2576 struct frame_info *frame,
2577 CORE_ADDR addr,
2578 CORE_ADDR *valp)
2579 {
2580 struct objfile *objfile;
2581
2582 if (dlbaton == NULL || dlbaton->size == 0)
2583 return 0;
2584
2585 dwarf_evaluate_loc_desc ctx;
2586
2587 ctx.frame = frame;
2588 ctx.per_cu = dlbaton->per_cu;
2589 ctx.obj_address = addr;
2590
2591 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2592
2593 ctx.gdbarch = get_objfile_arch (objfile);
2594 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2595 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2596 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2597
2598 ctx.eval (dlbaton->data, dlbaton->size);
2599
2600 switch (ctx.location)
2601 {
2602 case DWARF_VALUE_REGISTER:
2603 case DWARF_VALUE_MEMORY:
2604 case DWARF_VALUE_STACK:
2605 *valp = ctx.fetch_address (0);
2606 if (ctx.location == DWARF_VALUE_REGISTER)
2607 *valp = ctx.read_addr_from_reg (*valp);
2608 return 1;
2609 case DWARF_VALUE_LITERAL:
2610 *valp = extract_signed_integer (ctx.data, ctx.len,
2611 gdbarch_byte_order (ctx.gdbarch));
2612 return 1;
2613 /* Unsupported dwarf values. */
2614 case DWARF_VALUE_OPTIMIZED_OUT:
2615 case DWARF_VALUE_IMPLICIT_POINTER:
2616 break;
2617 }
2618
2619 return 0;
2620 }
2621
2622 /* See dwarf2loc.h. */
2623
2624 int
2625 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2626 struct frame_info *frame,
2627 struct property_addr_info *addr_stack,
2628 CORE_ADDR *value)
2629 {
2630 if (prop == NULL)
2631 return 0;
2632
2633 if (frame == NULL && has_stack_frames ())
2634 frame = get_selected_frame (NULL);
2635
2636 switch (prop->kind)
2637 {
2638 case PROP_LOCEXPR:
2639 {
2640 const struct dwarf2_property_baton *baton
2641 = (const struct dwarf2_property_baton *) prop->data.baton;
2642
2643 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2644 addr_stack ? addr_stack->addr : 0,
2645 value))
2646 {
2647 if (baton->referenced_type)
2648 {
2649 struct value *val = value_at (baton->referenced_type, *value);
2650
2651 *value = value_as_address (val);
2652 }
2653 return 1;
2654 }
2655 }
2656 break;
2657
2658 case PROP_LOCLIST:
2659 {
2660 struct dwarf2_property_baton *baton
2661 = (struct dwarf2_property_baton *) prop->data.baton;
2662 CORE_ADDR pc = get_frame_address_in_block (frame);
2663 const gdb_byte *data;
2664 struct value *val;
2665 size_t size;
2666
2667 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2668 if (data != NULL)
2669 {
2670 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2671 size, baton->loclist.per_cu);
2672 if (!value_optimized_out (val))
2673 {
2674 *value = value_as_address (val);
2675 return 1;
2676 }
2677 }
2678 }
2679 break;
2680
2681 case PROP_CONST:
2682 *value = prop->data.const_val;
2683 return 1;
2684
2685 case PROP_ADDR_OFFSET:
2686 {
2687 struct dwarf2_property_baton *baton
2688 = (struct dwarf2_property_baton *) prop->data.baton;
2689 struct property_addr_info *pinfo;
2690 struct value *val;
2691
2692 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2693 if (pinfo->type == baton->referenced_type)
2694 break;
2695 if (pinfo == NULL)
2696 error (_("cannot find reference address for offset property"));
2697 if (pinfo->valaddr != NULL)
2698 val = value_from_contents
2699 (baton->offset_info.type,
2700 pinfo->valaddr + baton->offset_info.offset);
2701 else
2702 val = value_at (baton->offset_info.type,
2703 pinfo->addr + baton->offset_info.offset);
2704 *value = value_as_address (val);
2705 return 1;
2706 }
2707 }
2708
2709 return 0;
2710 }
2711
2712 /* See dwarf2loc.h. */
2713
2714 void
2715 dwarf2_compile_property_to_c (string_file &stream,
2716 const char *result_name,
2717 struct gdbarch *gdbarch,
2718 unsigned char *registers_used,
2719 const struct dynamic_prop *prop,
2720 CORE_ADDR pc,
2721 struct symbol *sym)
2722 {
2723 struct dwarf2_property_baton *baton
2724 = (struct dwarf2_property_baton *) prop->data.baton;
2725 const gdb_byte *data;
2726 size_t size;
2727 struct dwarf2_per_cu_data *per_cu;
2728
2729 if (prop->kind == PROP_LOCEXPR)
2730 {
2731 data = baton->locexpr.data;
2732 size = baton->locexpr.size;
2733 per_cu = baton->locexpr.per_cu;
2734 }
2735 else
2736 {
2737 gdb_assert (prop->kind == PROP_LOCLIST);
2738
2739 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2740 per_cu = baton->loclist.per_cu;
2741 }
2742
2743 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2744 gdbarch, registers_used,
2745 dwarf2_per_cu_addr_size (per_cu),
2746 data, data + size, per_cu);
2747 }
2748
2749 \f
2750 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2751
2752 class symbol_needs_eval_context : public dwarf_expr_context
2753 {
2754 public:
2755
2756 enum symbol_needs_kind needs;
2757 struct dwarf2_per_cu_data *per_cu;
2758
2759 /* Reads from registers do require a frame. */
2760 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2761 {
2762 needs = SYMBOL_NEEDS_FRAME;
2763 return 1;
2764 }
2765
2766 /* "get_reg_value" callback: Reads from registers do require a
2767 frame. */
2768
2769 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2770 {
2771 needs = SYMBOL_NEEDS_FRAME;
2772 return value_zero (type, not_lval);
2773 }
2774
2775 /* Reads from memory do not require a frame. */
2776 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2777 {
2778 memset (buf, 0, len);
2779 }
2780
2781 /* Frame-relative accesses do require a frame. */
2782 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2783 {
2784 static gdb_byte lit0 = DW_OP_lit0;
2785
2786 *start = &lit0;
2787 *length = 1;
2788
2789 needs = SYMBOL_NEEDS_FRAME;
2790 }
2791
2792 /* CFA accesses require a frame. */
2793 CORE_ADDR get_frame_cfa () OVERRIDE
2794 {
2795 needs = SYMBOL_NEEDS_FRAME;
2796 return 1;
2797 }
2798
2799 CORE_ADDR get_frame_pc () OVERRIDE
2800 {
2801 needs = SYMBOL_NEEDS_FRAME;
2802 return 1;
2803 }
2804
2805 /* Thread-local accesses require registers, but not a frame. */
2806 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2807 {
2808 if (needs <= SYMBOL_NEEDS_REGISTERS)
2809 needs = SYMBOL_NEEDS_REGISTERS;
2810 return 1;
2811 }
2812
2813 /* Helper interface of per_cu_dwarf_call for
2814 dwarf2_loc_desc_get_symbol_read_needs. */
2815
2816 void dwarf_call (cu_offset die_offset) OVERRIDE
2817 {
2818 per_cu_dwarf_call (this, die_offset, per_cu);
2819 }
2820
2821 /* DW_OP_entry_value accesses require a caller, therefore a
2822 frame. */
2823
2824 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2825 union call_site_parameter_u kind_u,
2826 int deref_size) OVERRIDE
2827 {
2828 needs = SYMBOL_NEEDS_FRAME;
2829
2830 /* The expression may require some stub values on DWARF stack. */
2831 push_address (0, 0);
2832 }
2833
2834 /* DW_OP_GNU_addr_index doesn't require a frame. */
2835
2836 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2837 {
2838 /* Nothing to do. */
2839 return 1;
2840 }
2841
2842 /* DW_OP_push_object_address has a frame already passed through. */
2843
2844 CORE_ADDR get_object_address () OVERRIDE
2845 {
2846 /* Nothing to do. */
2847 return 1;
2848 }
2849 };
2850
2851 /* Compute the correct symbol_needs_kind value for the location
2852 expression at DATA (length SIZE). */
2853
2854 static enum symbol_needs_kind
2855 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2856 struct dwarf2_per_cu_data *per_cu)
2857 {
2858 int in_reg;
2859 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2860
2861 scoped_value_mark free_values;
2862
2863 symbol_needs_eval_context ctx;
2864
2865 ctx.needs = SYMBOL_NEEDS_NONE;
2866 ctx.per_cu = per_cu;
2867 ctx.gdbarch = get_objfile_arch (objfile);
2868 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2869 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2870 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2871
2872 ctx.eval (data, size);
2873
2874 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2875
2876 if (ctx.num_pieces > 0)
2877 {
2878 int i;
2879
2880 /* If the location has several pieces, and any of them are in
2881 registers, then we will need a frame to fetch them from. */
2882 for (i = 0; i < ctx.num_pieces; i++)
2883 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
2884 in_reg = 1;
2885 }
2886
2887 if (in_reg)
2888 ctx.needs = SYMBOL_NEEDS_FRAME;
2889 return ctx.needs;
2890 }
2891
2892 /* A helper function that throws an unimplemented error mentioning a
2893 given DWARF operator. */
2894
2895 static void
2896 unimplemented (unsigned int op)
2897 {
2898 const char *name = get_DW_OP_name (op);
2899
2900 if (name)
2901 error (_("DWARF operator %s cannot be translated to an agent expression"),
2902 name);
2903 else
2904 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2905 "to an agent expression"),
2906 op);
2907 }
2908
2909 /* See dwarf2loc.h.
2910
2911 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2912 can issue a complaint, which is better than having every target's
2913 implementation of dwarf2_reg_to_regnum do it. */
2914
2915 int
2916 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2917 {
2918 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2919
2920 if (reg == -1)
2921 {
2922 complaint (&symfile_complaints,
2923 _("bad DWARF register number %d"), dwarf_reg);
2924 }
2925 return reg;
2926 }
2927
2928 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2929 Throw an error because DWARF_REG is bad. */
2930
2931 static void
2932 throw_bad_regnum_error (ULONGEST dwarf_reg)
2933 {
2934 /* Still want to print -1 as "-1".
2935 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2936 but that's overkill for now. */
2937 if ((int) dwarf_reg == dwarf_reg)
2938 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2939 error (_("Unable to access DWARF register number %s"),
2940 pulongest (dwarf_reg));
2941 }
2942
2943 /* See dwarf2loc.h. */
2944
2945 int
2946 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2947 {
2948 int reg;
2949
2950 if (dwarf_reg > INT_MAX)
2951 throw_bad_regnum_error (dwarf_reg);
2952 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2953 bad, but that's ok. */
2954 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2955 if (reg == -1)
2956 throw_bad_regnum_error (dwarf_reg);
2957 return reg;
2958 }
2959
2960 /* A helper function that emits an access to memory. ARCH is the
2961 target architecture. EXPR is the expression which we are building.
2962 NBITS is the number of bits we want to read. This emits the
2963 opcodes needed to read the memory and then extract the desired
2964 bits. */
2965
2966 static void
2967 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2968 {
2969 ULONGEST nbytes = (nbits + 7) / 8;
2970
2971 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2972
2973 if (expr->tracing)
2974 ax_trace_quick (expr, nbytes);
2975
2976 if (nbits <= 8)
2977 ax_simple (expr, aop_ref8);
2978 else if (nbits <= 16)
2979 ax_simple (expr, aop_ref16);
2980 else if (nbits <= 32)
2981 ax_simple (expr, aop_ref32);
2982 else
2983 ax_simple (expr, aop_ref64);
2984
2985 /* If we read exactly the number of bytes we wanted, we're done. */
2986 if (8 * nbytes == nbits)
2987 return;
2988
2989 if (gdbarch_bits_big_endian (arch))
2990 {
2991 /* On a bits-big-endian machine, we want the high-order
2992 NBITS. */
2993 ax_const_l (expr, 8 * nbytes - nbits);
2994 ax_simple (expr, aop_rsh_unsigned);
2995 }
2996 else
2997 {
2998 /* On a bits-little-endian box, we want the low-order NBITS. */
2999 ax_zero_ext (expr, nbits);
3000 }
3001 }
3002
3003 /* A helper function to return the frame's PC. */
3004
3005 static CORE_ADDR
3006 get_ax_pc (void *baton)
3007 {
3008 struct agent_expr *expr = (struct agent_expr *) baton;
3009
3010 return expr->scope;
3011 }
3012
3013 /* Compile a DWARF location expression to an agent expression.
3014
3015 EXPR is the agent expression we are building.
3016 LOC is the agent value we modify.
3017 ARCH is the architecture.
3018 ADDR_SIZE is the size of addresses, in bytes.
3019 OP_PTR is the start of the location expression.
3020 OP_END is one past the last byte of the location expression.
3021
3022 This will throw an exception for various kinds of errors -- for
3023 example, if the expression cannot be compiled, or if the expression
3024 is invalid. */
3025
3026 void
3027 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3028 struct gdbarch *arch, unsigned int addr_size,
3029 const gdb_byte *op_ptr, const gdb_byte *op_end,
3030 struct dwarf2_per_cu_data *per_cu)
3031 {
3032 int i;
3033 std::vector<int> dw_labels, patches;
3034 const gdb_byte * const base = op_ptr;
3035 const gdb_byte *previous_piece = op_ptr;
3036 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3037 ULONGEST bits_collected = 0;
3038 unsigned int addr_size_bits = 8 * addr_size;
3039 int bits_big_endian = gdbarch_bits_big_endian (arch);
3040
3041 std::vector<int> offsets (op_end - op_ptr, -1);
3042
3043 /* By default we are making an address. */
3044 loc->kind = axs_lvalue_memory;
3045
3046 while (op_ptr < op_end)
3047 {
3048 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
3049 uint64_t uoffset, reg;
3050 int64_t offset;
3051 int i;
3052
3053 offsets[op_ptr - base] = expr->len;
3054 ++op_ptr;
3055
3056 /* Our basic approach to code generation is to map DWARF
3057 operations directly to AX operations. However, there are
3058 some differences.
3059
3060 First, DWARF works on address-sized units, but AX always uses
3061 LONGEST. For most operations we simply ignore this
3062 difference; instead we generate sign extensions as needed
3063 before division and comparison operations. It would be nice
3064 to omit the sign extensions, but there is no way to determine
3065 the size of the target's LONGEST. (This code uses the size
3066 of the host LONGEST in some cases -- that is a bug but it is
3067 difficult to fix.)
3068
3069 Second, some DWARF operations cannot be translated to AX.
3070 For these we simply fail. See
3071 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3072 switch (op)
3073 {
3074 case DW_OP_lit0:
3075 case DW_OP_lit1:
3076 case DW_OP_lit2:
3077 case DW_OP_lit3:
3078 case DW_OP_lit4:
3079 case DW_OP_lit5:
3080 case DW_OP_lit6:
3081 case DW_OP_lit7:
3082 case DW_OP_lit8:
3083 case DW_OP_lit9:
3084 case DW_OP_lit10:
3085 case DW_OP_lit11:
3086 case DW_OP_lit12:
3087 case DW_OP_lit13:
3088 case DW_OP_lit14:
3089 case DW_OP_lit15:
3090 case DW_OP_lit16:
3091 case DW_OP_lit17:
3092 case DW_OP_lit18:
3093 case DW_OP_lit19:
3094 case DW_OP_lit20:
3095 case DW_OP_lit21:
3096 case DW_OP_lit22:
3097 case DW_OP_lit23:
3098 case DW_OP_lit24:
3099 case DW_OP_lit25:
3100 case DW_OP_lit26:
3101 case DW_OP_lit27:
3102 case DW_OP_lit28:
3103 case DW_OP_lit29:
3104 case DW_OP_lit30:
3105 case DW_OP_lit31:
3106 ax_const_l (expr, op - DW_OP_lit0);
3107 break;
3108
3109 case DW_OP_addr:
3110 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3111 op_ptr += addr_size;
3112 /* Some versions of GCC emit DW_OP_addr before
3113 DW_OP_GNU_push_tls_address. In this case the value is an
3114 index, not an address. We don't support things like
3115 branching between the address and the TLS op. */
3116 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
3117 uoffset += dwarf2_per_cu_text_offset (per_cu);
3118 ax_const_l (expr, uoffset);
3119 break;
3120
3121 case DW_OP_const1u:
3122 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3123 op_ptr += 1;
3124 break;
3125 case DW_OP_const1s:
3126 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3127 op_ptr += 1;
3128 break;
3129 case DW_OP_const2u:
3130 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3131 op_ptr += 2;
3132 break;
3133 case DW_OP_const2s:
3134 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3135 op_ptr += 2;
3136 break;
3137 case DW_OP_const4u:
3138 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3139 op_ptr += 4;
3140 break;
3141 case DW_OP_const4s:
3142 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3143 op_ptr += 4;
3144 break;
3145 case DW_OP_const8u:
3146 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3147 op_ptr += 8;
3148 break;
3149 case DW_OP_const8s:
3150 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3151 op_ptr += 8;
3152 break;
3153 case DW_OP_constu:
3154 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3155 ax_const_l (expr, uoffset);
3156 break;
3157 case DW_OP_consts:
3158 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3159 ax_const_l (expr, offset);
3160 break;
3161
3162 case DW_OP_reg0:
3163 case DW_OP_reg1:
3164 case DW_OP_reg2:
3165 case DW_OP_reg3:
3166 case DW_OP_reg4:
3167 case DW_OP_reg5:
3168 case DW_OP_reg6:
3169 case DW_OP_reg7:
3170 case DW_OP_reg8:
3171 case DW_OP_reg9:
3172 case DW_OP_reg10:
3173 case DW_OP_reg11:
3174 case DW_OP_reg12:
3175 case DW_OP_reg13:
3176 case DW_OP_reg14:
3177 case DW_OP_reg15:
3178 case DW_OP_reg16:
3179 case DW_OP_reg17:
3180 case DW_OP_reg18:
3181 case DW_OP_reg19:
3182 case DW_OP_reg20:
3183 case DW_OP_reg21:
3184 case DW_OP_reg22:
3185 case DW_OP_reg23:
3186 case DW_OP_reg24:
3187 case DW_OP_reg25:
3188 case DW_OP_reg26:
3189 case DW_OP_reg27:
3190 case DW_OP_reg28:
3191 case DW_OP_reg29:
3192 case DW_OP_reg30:
3193 case DW_OP_reg31:
3194 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3195 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3196 loc->kind = axs_lvalue_register;
3197 break;
3198
3199 case DW_OP_regx:
3200 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3201 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3202 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3203 loc->kind = axs_lvalue_register;
3204 break;
3205
3206 case DW_OP_implicit_value:
3207 {
3208 uint64_t len;
3209
3210 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3211 if (op_ptr + len > op_end)
3212 error (_("DW_OP_implicit_value: too few bytes available."));
3213 if (len > sizeof (ULONGEST))
3214 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3215 (int) len);
3216
3217 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3218 byte_order));
3219 op_ptr += len;
3220 dwarf_expr_require_composition (op_ptr, op_end,
3221 "DW_OP_implicit_value");
3222
3223 loc->kind = axs_rvalue;
3224 }
3225 break;
3226
3227 case DW_OP_stack_value:
3228 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3229 loc->kind = axs_rvalue;
3230 break;
3231
3232 case DW_OP_breg0:
3233 case DW_OP_breg1:
3234 case DW_OP_breg2:
3235 case DW_OP_breg3:
3236 case DW_OP_breg4:
3237 case DW_OP_breg5:
3238 case DW_OP_breg6:
3239 case DW_OP_breg7:
3240 case DW_OP_breg8:
3241 case DW_OP_breg9:
3242 case DW_OP_breg10:
3243 case DW_OP_breg11:
3244 case DW_OP_breg12:
3245 case DW_OP_breg13:
3246 case DW_OP_breg14:
3247 case DW_OP_breg15:
3248 case DW_OP_breg16:
3249 case DW_OP_breg17:
3250 case DW_OP_breg18:
3251 case DW_OP_breg19:
3252 case DW_OP_breg20:
3253 case DW_OP_breg21:
3254 case DW_OP_breg22:
3255 case DW_OP_breg23:
3256 case DW_OP_breg24:
3257 case DW_OP_breg25:
3258 case DW_OP_breg26:
3259 case DW_OP_breg27:
3260 case DW_OP_breg28:
3261 case DW_OP_breg29:
3262 case DW_OP_breg30:
3263 case DW_OP_breg31:
3264 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3265 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3266 ax_reg (expr, i);
3267 if (offset != 0)
3268 {
3269 ax_const_l (expr, offset);
3270 ax_simple (expr, aop_add);
3271 }
3272 break;
3273 case DW_OP_bregx:
3274 {
3275 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3276 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3277 i = dwarf_reg_to_regnum_or_error (arch, reg);
3278 ax_reg (expr, i);
3279 if (offset != 0)
3280 {
3281 ax_const_l (expr, offset);
3282 ax_simple (expr, aop_add);
3283 }
3284 }
3285 break;
3286 case DW_OP_fbreg:
3287 {
3288 const gdb_byte *datastart;
3289 size_t datalen;
3290 const struct block *b;
3291 struct symbol *framefunc;
3292
3293 b = block_for_pc (expr->scope);
3294
3295 if (!b)
3296 error (_("No block found for address"));
3297
3298 framefunc = block_linkage_function (b);
3299
3300 if (!framefunc)
3301 error (_("No function found for block"));
3302
3303 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3304 &datastart, &datalen);
3305
3306 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3307 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3308 datastart + datalen, per_cu);
3309 if (loc->kind == axs_lvalue_register)
3310 require_rvalue (expr, loc);
3311
3312 if (offset != 0)
3313 {
3314 ax_const_l (expr, offset);
3315 ax_simple (expr, aop_add);
3316 }
3317
3318 loc->kind = axs_lvalue_memory;
3319 }
3320 break;
3321
3322 case DW_OP_dup:
3323 ax_simple (expr, aop_dup);
3324 break;
3325
3326 case DW_OP_drop:
3327 ax_simple (expr, aop_pop);
3328 break;
3329
3330 case DW_OP_pick:
3331 offset = *op_ptr++;
3332 ax_pick (expr, offset);
3333 break;
3334
3335 case DW_OP_swap:
3336 ax_simple (expr, aop_swap);
3337 break;
3338
3339 case DW_OP_over:
3340 ax_pick (expr, 1);
3341 break;
3342
3343 case DW_OP_rot:
3344 ax_simple (expr, aop_rot);
3345 break;
3346
3347 case DW_OP_deref:
3348 case DW_OP_deref_size:
3349 {
3350 int size;
3351
3352 if (op == DW_OP_deref_size)
3353 size = *op_ptr++;
3354 else
3355 size = addr_size;
3356
3357 if (size != 1 && size != 2 && size != 4 && size != 8)
3358 error (_("Unsupported size %d in %s"),
3359 size, get_DW_OP_name (op));
3360 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3361 }
3362 break;
3363
3364 case DW_OP_abs:
3365 /* Sign extend the operand. */
3366 ax_ext (expr, addr_size_bits);
3367 ax_simple (expr, aop_dup);
3368 ax_const_l (expr, 0);
3369 ax_simple (expr, aop_less_signed);
3370 ax_simple (expr, aop_log_not);
3371 i = ax_goto (expr, aop_if_goto);
3372 /* We have to emit 0 - X. */
3373 ax_const_l (expr, 0);
3374 ax_simple (expr, aop_swap);
3375 ax_simple (expr, aop_sub);
3376 ax_label (expr, i, expr->len);
3377 break;
3378
3379 case DW_OP_neg:
3380 /* No need to sign extend here. */
3381 ax_const_l (expr, 0);
3382 ax_simple (expr, aop_swap);
3383 ax_simple (expr, aop_sub);
3384 break;
3385
3386 case DW_OP_not:
3387 /* Sign extend the operand. */
3388 ax_ext (expr, addr_size_bits);
3389 ax_simple (expr, aop_bit_not);
3390 break;
3391
3392 case DW_OP_plus_uconst:
3393 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3394 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3395 but we micro-optimize anyhow. */
3396 if (reg != 0)
3397 {
3398 ax_const_l (expr, reg);
3399 ax_simple (expr, aop_add);
3400 }
3401 break;
3402
3403 case DW_OP_and:
3404 ax_simple (expr, aop_bit_and);
3405 break;
3406
3407 case DW_OP_div:
3408 /* Sign extend the operands. */
3409 ax_ext (expr, addr_size_bits);
3410 ax_simple (expr, aop_swap);
3411 ax_ext (expr, addr_size_bits);
3412 ax_simple (expr, aop_swap);
3413 ax_simple (expr, aop_div_signed);
3414 break;
3415
3416 case DW_OP_minus:
3417 ax_simple (expr, aop_sub);
3418 break;
3419
3420 case DW_OP_mod:
3421 ax_simple (expr, aop_rem_unsigned);
3422 break;
3423
3424 case DW_OP_mul:
3425 ax_simple (expr, aop_mul);
3426 break;
3427
3428 case DW_OP_or:
3429 ax_simple (expr, aop_bit_or);
3430 break;
3431
3432 case DW_OP_plus:
3433 ax_simple (expr, aop_add);
3434 break;
3435
3436 case DW_OP_shl:
3437 ax_simple (expr, aop_lsh);
3438 break;
3439
3440 case DW_OP_shr:
3441 ax_simple (expr, aop_rsh_unsigned);
3442 break;
3443
3444 case DW_OP_shra:
3445 ax_simple (expr, aop_rsh_signed);
3446 break;
3447
3448 case DW_OP_xor:
3449 ax_simple (expr, aop_bit_xor);
3450 break;
3451
3452 case DW_OP_le:
3453 /* Sign extend the operands. */
3454 ax_ext (expr, addr_size_bits);
3455 ax_simple (expr, aop_swap);
3456 ax_ext (expr, addr_size_bits);
3457 /* Note no swap here: A <= B is !(B < A). */
3458 ax_simple (expr, aop_less_signed);
3459 ax_simple (expr, aop_log_not);
3460 break;
3461
3462 case DW_OP_ge:
3463 /* Sign extend the operands. */
3464 ax_ext (expr, addr_size_bits);
3465 ax_simple (expr, aop_swap);
3466 ax_ext (expr, addr_size_bits);
3467 ax_simple (expr, aop_swap);
3468 /* A >= B is !(A < B). */
3469 ax_simple (expr, aop_less_signed);
3470 ax_simple (expr, aop_log_not);
3471 break;
3472
3473 case DW_OP_eq:
3474 /* Sign extend the operands. */
3475 ax_ext (expr, addr_size_bits);
3476 ax_simple (expr, aop_swap);
3477 ax_ext (expr, addr_size_bits);
3478 /* No need for a second swap here. */
3479 ax_simple (expr, aop_equal);
3480 break;
3481
3482 case DW_OP_lt:
3483 /* Sign extend the operands. */
3484 ax_ext (expr, addr_size_bits);
3485 ax_simple (expr, aop_swap);
3486 ax_ext (expr, addr_size_bits);
3487 ax_simple (expr, aop_swap);
3488 ax_simple (expr, aop_less_signed);
3489 break;
3490
3491 case DW_OP_gt:
3492 /* Sign extend the operands. */
3493 ax_ext (expr, addr_size_bits);
3494 ax_simple (expr, aop_swap);
3495 ax_ext (expr, addr_size_bits);
3496 /* Note no swap here: A > B is B < A. */
3497 ax_simple (expr, aop_less_signed);
3498 break;
3499
3500 case DW_OP_ne:
3501 /* Sign extend the operands. */
3502 ax_ext (expr, addr_size_bits);
3503 ax_simple (expr, aop_swap);
3504 ax_ext (expr, addr_size_bits);
3505 /* No need for a swap here. */
3506 ax_simple (expr, aop_equal);
3507 ax_simple (expr, aop_log_not);
3508 break;
3509
3510 case DW_OP_call_frame_cfa:
3511 {
3512 int regnum;
3513 CORE_ADDR text_offset;
3514 LONGEST off;
3515 const gdb_byte *cfa_start, *cfa_end;
3516
3517 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3518 &regnum, &off,
3519 &text_offset, &cfa_start, &cfa_end))
3520 {
3521 /* Register. */
3522 ax_reg (expr, regnum);
3523 if (off != 0)
3524 {
3525 ax_const_l (expr, off);
3526 ax_simple (expr, aop_add);
3527 }
3528 }
3529 else
3530 {
3531 /* Another expression. */
3532 ax_const_l (expr, text_offset);
3533 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3534 cfa_start, cfa_end, per_cu);
3535 }
3536
3537 loc->kind = axs_lvalue_memory;
3538 }
3539 break;
3540
3541 case DW_OP_GNU_push_tls_address:
3542 case DW_OP_form_tls_address:
3543 unimplemented (op);
3544 break;
3545
3546 case DW_OP_push_object_address:
3547 unimplemented (op);
3548 break;
3549
3550 case DW_OP_skip:
3551 offset = extract_signed_integer (op_ptr, 2, byte_order);
3552 op_ptr += 2;
3553 i = ax_goto (expr, aop_goto);
3554 dw_labels.push_back (op_ptr + offset - base);
3555 patches.push_back (i);
3556 break;
3557
3558 case DW_OP_bra:
3559 offset = extract_signed_integer (op_ptr, 2, byte_order);
3560 op_ptr += 2;
3561 /* Zero extend the operand. */
3562 ax_zero_ext (expr, addr_size_bits);
3563 i = ax_goto (expr, aop_if_goto);
3564 dw_labels.push_back (op_ptr + offset - base);
3565 patches.push_back (i);
3566 break;
3567
3568 case DW_OP_nop:
3569 break;
3570
3571 case DW_OP_piece:
3572 case DW_OP_bit_piece:
3573 {
3574 uint64_t size, offset;
3575
3576 if (op_ptr - 1 == previous_piece)
3577 error (_("Cannot translate empty pieces to agent expressions"));
3578 previous_piece = op_ptr - 1;
3579
3580 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3581 if (op == DW_OP_piece)
3582 {
3583 size *= 8;
3584 offset = 0;
3585 }
3586 else
3587 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3588
3589 if (bits_collected + size > 8 * sizeof (LONGEST))
3590 error (_("Expression pieces exceed word size"));
3591
3592 /* Access the bits. */
3593 switch (loc->kind)
3594 {
3595 case axs_lvalue_register:
3596 ax_reg (expr, loc->u.reg);
3597 break;
3598
3599 case axs_lvalue_memory:
3600 /* Offset the pointer, if needed. */
3601 if (offset > 8)
3602 {
3603 ax_const_l (expr, offset / 8);
3604 ax_simple (expr, aop_add);
3605 offset %= 8;
3606 }
3607 access_memory (arch, expr, size);
3608 break;
3609 }
3610
3611 /* For a bits-big-endian target, shift up what we already
3612 have. For a bits-little-endian target, shift up the
3613 new data. Note that there is a potential bug here if
3614 the DWARF expression leaves multiple values on the
3615 stack. */
3616 if (bits_collected > 0)
3617 {
3618 if (bits_big_endian)
3619 {
3620 ax_simple (expr, aop_swap);
3621 ax_const_l (expr, size);
3622 ax_simple (expr, aop_lsh);
3623 /* We don't need a second swap here, because
3624 aop_bit_or is symmetric. */
3625 }
3626 else
3627 {
3628 ax_const_l (expr, size);
3629 ax_simple (expr, aop_lsh);
3630 }
3631 ax_simple (expr, aop_bit_or);
3632 }
3633
3634 bits_collected += size;
3635 loc->kind = axs_rvalue;
3636 }
3637 break;
3638
3639 case DW_OP_GNU_uninit:
3640 unimplemented (op);
3641
3642 case DW_OP_call2:
3643 case DW_OP_call4:
3644 {
3645 struct dwarf2_locexpr_baton block;
3646 int size = (op == DW_OP_call2 ? 2 : 4);
3647
3648 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3649 op_ptr += size;
3650
3651 cu_offset offset = (cu_offset) uoffset;
3652 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3653 get_ax_pc, expr);
3654
3655 /* DW_OP_call_ref is currently not supported. */
3656 gdb_assert (block.per_cu == per_cu);
3657
3658 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3659 block.data, block.data + block.size,
3660 per_cu);
3661 }
3662 break;
3663
3664 case DW_OP_call_ref:
3665 unimplemented (op);
3666
3667 default:
3668 unimplemented (op);
3669 }
3670 }
3671
3672 /* Patch all the branches we emitted. */
3673 for (i = 0; i < patches.size (); ++i)
3674 {
3675 int targ = offsets[dw_labels[i]];
3676 if (targ == -1)
3677 internal_error (__FILE__, __LINE__, _("invalid label"));
3678 ax_label (expr, patches[i], targ);
3679 }
3680 }
3681
3682 \f
3683 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3684 evaluator to calculate the location. */
3685 static struct value *
3686 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3687 {
3688 struct dwarf2_locexpr_baton *dlbaton
3689 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3690 struct value *val;
3691
3692 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3693 dlbaton->size, dlbaton->per_cu);
3694
3695 return val;
3696 }
3697
3698 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3699 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3700 will be thrown. */
3701
3702 static struct value *
3703 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3704 {
3705 struct dwarf2_locexpr_baton *dlbaton
3706 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3707
3708 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3709 dlbaton->size);
3710 }
3711
3712 /* Implementation of get_symbol_read_needs from
3713 symbol_computed_ops. */
3714
3715 static enum symbol_needs_kind
3716 locexpr_get_symbol_read_needs (struct symbol *symbol)
3717 {
3718 struct dwarf2_locexpr_baton *dlbaton
3719 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3720
3721 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3722 dlbaton->per_cu);
3723 }
3724
3725 /* Return true if DATA points to the end of a piece. END is one past
3726 the last byte in the expression. */
3727
3728 static int
3729 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3730 {
3731 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3732 }
3733
3734 /* Helper for locexpr_describe_location_piece that finds the name of a
3735 DWARF register. */
3736
3737 static const char *
3738 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3739 {
3740 int regnum;
3741
3742 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3743 We'd rather print *something* here than throw an error. */
3744 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3745 /* gdbarch_register_name may just return "", return something more
3746 descriptive for bad register numbers. */
3747 if (regnum == -1)
3748 {
3749 /* The text is output as "$bad_register_number".
3750 That is why we use the underscores. */
3751 return _("bad_register_number");
3752 }
3753 return gdbarch_register_name (gdbarch, regnum);
3754 }
3755
3756 /* Nicely describe a single piece of a location, returning an updated
3757 position in the bytecode sequence. This function cannot recognize
3758 all locations; if a location is not recognized, it simply returns
3759 DATA. If there is an error during reading, e.g. we run off the end
3760 of the buffer, an error is thrown. */
3761
3762 static const gdb_byte *
3763 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3764 CORE_ADDR addr, struct objfile *objfile,
3765 struct dwarf2_per_cu_data *per_cu,
3766 const gdb_byte *data, const gdb_byte *end,
3767 unsigned int addr_size)
3768 {
3769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3770 size_t leb128_size;
3771
3772 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3773 {
3774 fprintf_filtered (stream, _("a variable in $%s"),
3775 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3776 data += 1;
3777 }
3778 else if (data[0] == DW_OP_regx)
3779 {
3780 uint64_t reg;
3781
3782 data = safe_read_uleb128 (data + 1, end, &reg);
3783 fprintf_filtered (stream, _("a variable in $%s"),
3784 locexpr_regname (gdbarch, reg));
3785 }
3786 else if (data[0] == DW_OP_fbreg)
3787 {
3788 const struct block *b;
3789 struct symbol *framefunc;
3790 int frame_reg = 0;
3791 int64_t frame_offset;
3792 const gdb_byte *base_data, *new_data, *save_data = data;
3793 size_t base_size;
3794 int64_t base_offset = 0;
3795
3796 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3797 if (!piece_end_p (new_data, end))
3798 return data;
3799 data = new_data;
3800
3801 b = block_for_pc (addr);
3802
3803 if (!b)
3804 error (_("No block found for address for symbol \"%s\"."),
3805 SYMBOL_PRINT_NAME (symbol));
3806
3807 framefunc = block_linkage_function (b);
3808
3809 if (!framefunc)
3810 error (_("No function found for block for symbol \"%s\"."),
3811 SYMBOL_PRINT_NAME (symbol));
3812
3813 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3814
3815 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3816 {
3817 const gdb_byte *buf_end;
3818
3819 frame_reg = base_data[0] - DW_OP_breg0;
3820 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3821 &base_offset);
3822 if (buf_end != base_data + base_size)
3823 error (_("Unexpected opcode after "
3824 "DW_OP_breg%u for symbol \"%s\"."),
3825 frame_reg, SYMBOL_PRINT_NAME (symbol));
3826 }
3827 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3828 {
3829 /* The frame base is just the register, with no offset. */
3830 frame_reg = base_data[0] - DW_OP_reg0;
3831 base_offset = 0;
3832 }
3833 else
3834 {
3835 /* We don't know what to do with the frame base expression,
3836 so we can't trace this variable; give up. */
3837 return save_data;
3838 }
3839
3840 fprintf_filtered (stream,
3841 _("a variable at frame base reg $%s offset %s+%s"),
3842 locexpr_regname (gdbarch, frame_reg),
3843 plongest (base_offset), plongest (frame_offset));
3844 }
3845 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3846 && piece_end_p (data, end))
3847 {
3848 int64_t offset;
3849
3850 data = safe_read_sleb128 (data + 1, end, &offset);
3851
3852 fprintf_filtered (stream,
3853 _("a variable at offset %s from base reg $%s"),
3854 plongest (offset),
3855 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3856 }
3857
3858 /* The location expression for a TLS variable looks like this (on a
3859 64-bit LE machine):
3860
3861 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3862 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3863
3864 0x3 is the encoding for DW_OP_addr, which has an operand as long
3865 as the size of an address on the target machine (here is 8
3866 bytes). Note that more recent version of GCC emit DW_OP_const4u
3867 or DW_OP_const8u, depending on address size, rather than
3868 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3869 The operand represents the offset at which the variable is within
3870 the thread local storage. */
3871
3872 else if (data + 1 + addr_size < end
3873 && (data[0] == DW_OP_addr
3874 || (addr_size == 4 && data[0] == DW_OP_const4u)
3875 || (addr_size == 8 && data[0] == DW_OP_const8u))
3876 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3877 || data[1 + addr_size] == DW_OP_form_tls_address)
3878 && piece_end_p (data + 2 + addr_size, end))
3879 {
3880 ULONGEST offset;
3881 offset = extract_unsigned_integer (data + 1, addr_size,
3882 gdbarch_byte_order (gdbarch));
3883
3884 fprintf_filtered (stream,
3885 _("a thread-local variable at offset 0x%s "
3886 "in the thread-local storage for `%s'"),
3887 phex_nz (offset, addr_size), objfile_name (objfile));
3888
3889 data += 1 + addr_size + 1;
3890 }
3891
3892 /* With -gsplit-dwarf a TLS variable can also look like this:
3893 DW_AT_location : 3 byte block: fc 4 e0
3894 (DW_OP_GNU_const_index: 4;
3895 DW_OP_GNU_push_tls_address) */
3896 else if (data + 3 <= end
3897 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3898 && data[0] == DW_OP_GNU_const_index
3899 && leb128_size > 0
3900 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3901 || data[1 + leb128_size] == DW_OP_form_tls_address)
3902 && piece_end_p (data + 2 + leb128_size, end))
3903 {
3904 uint64_t offset;
3905
3906 data = safe_read_uleb128 (data + 1, end, &offset);
3907 offset = dwarf2_read_addr_index (per_cu, offset);
3908 fprintf_filtered (stream,
3909 _("a thread-local variable at offset 0x%s "
3910 "in the thread-local storage for `%s'"),
3911 phex_nz (offset, addr_size), objfile_name (objfile));
3912 ++data;
3913 }
3914
3915 else if (data[0] >= DW_OP_lit0
3916 && data[0] <= DW_OP_lit31
3917 && data + 1 < end
3918 && data[1] == DW_OP_stack_value)
3919 {
3920 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3921 data += 2;
3922 }
3923
3924 return data;
3925 }
3926
3927 /* Disassemble an expression, stopping at the end of a piece or at the
3928 end of the expression. Returns a pointer to the next unread byte
3929 in the input expression. If ALL is nonzero, then this function
3930 will keep going until it reaches the end of the expression.
3931 If there is an error during reading, e.g. we run off the end
3932 of the buffer, an error is thrown. */
3933
3934 static const gdb_byte *
3935 disassemble_dwarf_expression (struct ui_file *stream,
3936 struct gdbarch *arch, unsigned int addr_size,
3937 int offset_size, const gdb_byte *start,
3938 const gdb_byte *data, const gdb_byte *end,
3939 int indent, int all,
3940 struct dwarf2_per_cu_data *per_cu)
3941 {
3942 while (data < end
3943 && (all
3944 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3945 {
3946 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3947 uint64_t ul;
3948 int64_t l;
3949 const char *name;
3950
3951 name = get_DW_OP_name (op);
3952
3953 if (!name)
3954 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3955 op, (long) (data - 1 - start));
3956 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3957 (long) (data - 1 - start), name);
3958
3959 switch (op)
3960 {
3961 case DW_OP_addr:
3962 ul = extract_unsigned_integer (data, addr_size,
3963 gdbarch_byte_order (arch));
3964 data += addr_size;
3965 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3966 break;
3967
3968 case DW_OP_const1u:
3969 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3970 data += 1;
3971 fprintf_filtered (stream, " %s", pulongest (ul));
3972 break;
3973 case DW_OP_const1s:
3974 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3975 data += 1;
3976 fprintf_filtered (stream, " %s", plongest (l));
3977 break;
3978 case DW_OP_const2u:
3979 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3980 data += 2;
3981 fprintf_filtered (stream, " %s", pulongest (ul));
3982 break;
3983 case DW_OP_const2s:
3984 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3985 data += 2;
3986 fprintf_filtered (stream, " %s", plongest (l));
3987 break;
3988 case DW_OP_const4u:
3989 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3990 data += 4;
3991 fprintf_filtered (stream, " %s", pulongest (ul));
3992 break;
3993 case DW_OP_const4s:
3994 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3995 data += 4;
3996 fprintf_filtered (stream, " %s", plongest (l));
3997 break;
3998 case DW_OP_const8u:
3999 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4000 data += 8;
4001 fprintf_filtered (stream, " %s", pulongest (ul));
4002 break;
4003 case DW_OP_const8s:
4004 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4005 data += 8;
4006 fprintf_filtered (stream, " %s", plongest (l));
4007 break;
4008 case DW_OP_constu:
4009 data = safe_read_uleb128 (data, end, &ul);
4010 fprintf_filtered (stream, " %s", pulongest (ul));
4011 break;
4012 case DW_OP_consts:
4013 data = safe_read_sleb128 (data, end, &l);
4014 fprintf_filtered (stream, " %s", plongest (l));
4015 break;
4016
4017 case DW_OP_reg0:
4018 case DW_OP_reg1:
4019 case DW_OP_reg2:
4020 case DW_OP_reg3:
4021 case DW_OP_reg4:
4022 case DW_OP_reg5:
4023 case DW_OP_reg6:
4024 case DW_OP_reg7:
4025 case DW_OP_reg8:
4026 case DW_OP_reg9:
4027 case DW_OP_reg10:
4028 case DW_OP_reg11:
4029 case DW_OP_reg12:
4030 case DW_OP_reg13:
4031 case DW_OP_reg14:
4032 case DW_OP_reg15:
4033 case DW_OP_reg16:
4034 case DW_OP_reg17:
4035 case DW_OP_reg18:
4036 case DW_OP_reg19:
4037 case DW_OP_reg20:
4038 case DW_OP_reg21:
4039 case DW_OP_reg22:
4040 case DW_OP_reg23:
4041 case DW_OP_reg24:
4042 case DW_OP_reg25:
4043 case DW_OP_reg26:
4044 case DW_OP_reg27:
4045 case DW_OP_reg28:
4046 case DW_OP_reg29:
4047 case DW_OP_reg30:
4048 case DW_OP_reg31:
4049 fprintf_filtered (stream, " [$%s]",
4050 locexpr_regname (arch, op - DW_OP_reg0));
4051 break;
4052
4053 case DW_OP_regx:
4054 data = safe_read_uleb128 (data, end, &ul);
4055 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
4056 locexpr_regname (arch, (int) ul));
4057 break;
4058
4059 case DW_OP_implicit_value:
4060 data = safe_read_uleb128 (data, end, &ul);
4061 data += ul;
4062 fprintf_filtered (stream, " %s", pulongest (ul));
4063 break;
4064
4065 case DW_OP_breg0:
4066 case DW_OP_breg1:
4067 case DW_OP_breg2:
4068 case DW_OP_breg3:
4069 case DW_OP_breg4:
4070 case DW_OP_breg5:
4071 case DW_OP_breg6:
4072 case DW_OP_breg7:
4073 case DW_OP_breg8:
4074 case DW_OP_breg9:
4075 case DW_OP_breg10:
4076 case DW_OP_breg11:
4077 case DW_OP_breg12:
4078 case DW_OP_breg13:
4079 case DW_OP_breg14:
4080 case DW_OP_breg15:
4081 case DW_OP_breg16:
4082 case DW_OP_breg17:
4083 case DW_OP_breg18:
4084 case DW_OP_breg19:
4085 case DW_OP_breg20:
4086 case DW_OP_breg21:
4087 case DW_OP_breg22:
4088 case DW_OP_breg23:
4089 case DW_OP_breg24:
4090 case DW_OP_breg25:
4091 case DW_OP_breg26:
4092 case DW_OP_breg27:
4093 case DW_OP_breg28:
4094 case DW_OP_breg29:
4095 case DW_OP_breg30:
4096 case DW_OP_breg31:
4097 data = safe_read_sleb128 (data, end, &l);
4098 fprintf_filtered (stream, " %s [$%s]", plongest (l),
4099 locexpr_regname (arch, op - DW_OP_breg0));
4100 break;
4101
4102 case DW_OP_bregx:
4103 data = safe_read_uleb128 (data, end, &ul);
4104 data = safe_read_sleb128 (data, end, &l);
4105 fprintf_filtered (stream, " register %s [$%s] offset %s",
4106 pulongest (ul),
4107 locexpr_regname (arch, (int) ul),
4108 plongest (l));
4109 break;
4110
4111 case DW_OP_fbreg:
4112 data = safe_read_sleb128 (data, end, &l);
4113 fprintf_filtered (stream, " %s", plongest (l));
4114 break;
4115
4116 case DW_OP_xderef_size:
4117 case DW_OP_deref_size:
4118 case DW_OP_pick:
4119 fprintf_filtered (stream, " %d", *data);
4120 ++data;
4121 break;
4122
4123 case DW_OP_plus_uconst:
4124 data = safe_read_uleb128 (data, end, &ul);
4125 fprintf_filtered (stream, " %s", pulongest (ul));
4126 break;
4127
4128 case DW_OP_skip:
4129 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4130 data += 2;
4131 fprintf_filtered (stream, " to %ld",
4132 (long) (data + l - start));
4133 break;
4134
4135 case DW_OP_bra:
4136 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4137 data += 2;
4138 fprintf_filtered (stream, " %ld",
4139 (long) (data + l - start));
4140 break;
4141
4142 case DW_OP_call2:
4143 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4144 data += 2;
4145 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4146 break;
4147
4148 case DW_OP_call4:
4149 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4150 data += 4;
4151 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4152 break;
4153
4154 case DW_OP_call_ref:
4155 ul = extract_unsigned_integer (data, offset_size,
4156 gdbarch_byte_order (arch));
4157 data += offset_size;
4158 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4159 break;
4160
4161 case DW_OP_piece:
4162 data = safe_read_uleb128 (data, end, &ul);
4163 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4164 break;
4165
4166 case DW_OP_bit_piece:
4167 {
4168 uint64_t offset;
4169
4170 data = safe_read_uleb128 (data, end, &ul);
4171 data = safe_read_uleb128 (data, end, &offset);
4172 fprintf_filtered (stream, " size %s offset %s (bits)",
4173 pulongest (ul), pulongest (offset));
4174 }
4175 break;
4176
4177 case DW_OP_implicit_pointer:
4178 case DW_OP_GNU_implicit_pointer:
4179 {
4180 ul = extract_unsigned_integer (data, offset_size,
4181 gdbarch_byte_order (arch));
4182 data += offset_size;
4183
4184 data = safe_read_sleb128 (data, end, &l);
4185
4186 fprintf_filtered (stream, " DIE %s offset %s",
4187 phex_nz (ul, offset_size),
4188 plongest (l));
4189 }
4190 break;
4191
4192 case DW_OP_deref_type:
4193 case DW_OP_GNU_deref_type:
4194 {
4195 int addr_size = *data++;
4196 struct type *type;
4197
4198 data = safe_read_uleb128 (data, end, &ul);
4199 cu_offset offset = (cu_offset) ul;
4200 type = dwarf2_get_die_type (offset, per_cu);
4201 fprintf_filtered (stream, "<");
4202 type_print (type, "", stream, -1);
4203 fprintf_filtered (stream, " [0x%s]> %d",
4204 phex_nz (to_underlying (offset), 0),
4205 addr_size);
4206 }
4207 break;
4208
4209 case DW_OP_const_type:
4210 case DW_OP_GNU_const_type:
4211 {
4212 struct type *type;
4213
4214 data = safe_read_uleb128 (data, end, &ul);
4215 cu_offset type_die = (cu_offset) ul;
4216 type = dwarf2_get_die_type (type_die, per_cu);
4217 fprintf_filtered (stream, "<");
4218 type_print (type, "", stream, -1);
4219 fprintf_filtered (stream, " [0x%s]>",
4220 phex_nz (to_underlying (type_die), 0));
4221 }
4222 break;
4223
4224 case DW_OP_regval_type:
4225 case DW_OP_GNU_regval_type:
4226 {
4227 uint64_t reg;
4228 struct type *type;
4229
4230 data = safe_read_uleb128 (data, end, &reg);
4231 data = safe_read_uleb128 (data, end, &ul);
4232 cu_offset type_die = (cu_offset) ul;
4233
4234 type = dwarf2_get_die_type (type_die, per_cu);
4235 fprintf_filtered (stream, "<");
4236 type_print (type, "", stream, -1);
4237 fprintf_filtered (stream, " [0x%s]> [$%s]",
4238 phex_nz (to_underlying (type_die), 0),
4239 locexpr_regname (arch, reg));
4240 }
4241 break;
4242
4243 case DW_OP_convert:
4244 case DW_OP_GNU_convert:
4245 case DW_OP_reinterpret:
4246 case DW_OP_GNU_reinterpret:
4247 {
4248 data = safe_read_uleb128 (data, end, &ul);
4249 cu_offset type_die = (cu_offset) ul;
4250
4251 if (to_underlying (type_die) == 0)
4252 fprintf_filtered (stream, "<0>");
4253 else
4254 {
4255 struct type *type;
4256
4257 type = dwarf2_get_die_type (type_die, per_cu);
4258 fprintf_filtered (stream, "<");
4259 type_print (type, "", stream, -1);
4260 fprintf_filtered (stream, " [0x%s]>",
4261 phex_nz (to_underlying (type_die), 0));
4262 }
4263 }
4264 break;
4265
4266 case DW_OP_entry_value:
4267 case DW_OP_GNU_entry_value:
4268 data = safe_read_uleb128 (data, end, &ul);
4269 fputc_filtered ('\n', stream);
4270 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4271 start, data, data + ul, indent + 2,
4272 all, per_cu);
4273 data += ul;
4274 continue;
4275
4276 case DW_OP_GNU_parameter_ref:
4277 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4278 data += 4;
4279 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4280 break;
4281
4282 case DW_OP_GNU_addr_index:
4283 data = safe_read_uleb128 (data, end, &ul);
4284 ul = dwarf2_read_addr_index (per_cu, ul);
4285 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4286 break;
4287 case DW_OP_GNU_const_index:
4288 data = safe_read_uleb128 (data, end, &ul);
4289 ul = dwarf2_read_addr_index (per_cu, ul);
4290 fprintf_filtered (stream, " %s", pulongest (ul));
4291 break;
4292 }
4293
4294 fprintf_filtered (stream, "\n");
4295 }
4296
4297 return data;
4298 }
4299
4300 /* Describe a single location, which may in turn consist of multiple
4301 pieces. */
4302
4303 static void
4304 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4305 struct ui_file *stream,
4306 const gdb_byte *data, size_t size,
4307 struct objfile *objfile, unsigned int addr_size,
4308 int offset_size, struct dwarf2_per_cu_data *per_cu)
4309 {
4310 const gdb_byte *end = data + size;
4311 int first_piece = 1, bad = 0;
4312
4313 while (data < end)
4314 {
4315 const gdb_byte *here = data;
4316 int disassemble = 1;
4317
4318 if (first_piece)
4319 first_piece = 0;
4320 else
4321 fprintf_filtered (stream, _(", and "));
4322
4323 if (!dwarf_always_disassemble)
4324 {
4325 data = locexpr_describe_location_piece (symbol, stream,
4326 addr, objfile, per_cu,
4327 data, end, addr_size);
4328 /* If we printed anything, or if we have an empty piece,
4329 then don't disassemble. */
4330 if (data != here
4331 || data[0] == DW_OP_piece
4332 || data[0] == DW_OP_bit_piece)
4333 disassemble = 0;
4334 }
4335 if (disassemble)
4336 {
4337 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4338 data = disassemble_dwarf_expression (stream,
4339 get_objfile_arch (objfile),
4340 addr_size, offset_size, data,
4341 data, end, 0,
4342 dwarf_always_disassemble,
4343 per_cu);
4344 }
4345
4346 if (data < end)
4347 {
4348 int empty = data == here;
4349
4350 if (disassemble)
4351 fprintf_filtered (stream, " ");
4352 if (data[0] == DW_OP_piece)
4353 {
4354 uint64_t bytes;
4355
4356 data = safe_read_uleb128 (data + 1, end, &bytes);
4357
4358 if (empty)
4359 fprintf_filtered (stream, _("an empty %s-byte piece"),
4360 pulongest (bytes));
4361 else
4362 fprintf_filtered (stream, _(" [%s-byte piece]"),
4363 pulongest (bytes));
4364 }
4365 else if (data[0] == DW_OP_bit_piece)
4366 {
4367 uint64_t bits, offset;
4368
4369 data = safe_read_uleb128 (data + 1, end, &bits);
4370 data = safe_read_uleb128 (data, end, &offset);
4371
4372 if (empty)
4373 fprintf_filtered (stream,
4374 _("an empty %s-bit piece"),
4375 pulongest (bits));
4376 else
4377 fprintf_filtered (stream,
4378 _(" [%s-bit piece, offset %s bits]"),
4379 pulongest (bits), pulongest (offset));
4380 }
4381 else
4382 {
4383 bad = 1;
4384 break;
4385 }
4386 }
4387 }
4388
4389 if (bad || data > end)
4390 error (_("Corrupted DWARF2 expression for \"%s\"."),
4391 SYMBOL_PRINT_NAME (symbol));
4392 }
4393
4394 /* Print a natural-language description of SYMBOL to STREAM. This
4395 version is for a symbol with a single location. */
4396
4397 static void
4398 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4399 struct ui_file *stream)
4400 {
4401 struct dwarf2_locexpr_baton *dlbaton
4402 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4403 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4404 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4405 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4406
4407 locexpr_describe_location_1 (symbol, addr, stream,
4408 dlbaton->data, dlbaton->size,
4409 objfile, addr_size, offset_size,
4410 dlbaton->per_cu);
4411 }
4412
4413 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4414 any necessary bytecode in AX. */
4415
4416 static void
4417 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4418 struct agent_expr *ax, struct axs_value *value)
4419 {
4420 struct dwarf2_locexpr_baton *dlbaton
4421 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4422 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4423
4424 if (dlbaton->size == 0)
4425 value->optimized_out = 1;
4426 else
4427 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4428 dlbaton->data, dlbaton->data + dlbaton->size,
4429 dlbaton->per_cu);
4430 }
4431
4432 /* symbol_computed_ops 'generate_c_location' method. */
4433
4434 static void
4435 locexpr_generate_c_location (struct symbol *sym, string_file &stream,
4436 struct gdbarch *gdbarch,
4437 unsigned char *registers_used,
4438 CORE_ADDR pc, const char *result_name)
4439 {
4440 struct dwarf2_locexpr_baton *dlbaton
4441 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4442 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4443
4444 if (dlbaton->size == 0)
4445 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4446
4447 compile_dwarf_expr_to_c (stream, result_name,
4448 sym, pc, gdbarch, registers_used, addr_size,
4449 dlbaton->data, dlbaton->data + dlbaton->size,
4450 dlbaton->per_cu);
4451 }
4452
4453 /* The set of location functions used with the DWARF-2 expression
4454 evaluator. */
4455 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4456 locexpr_read_variable,
4457 locexpr_read_variable_at_entry,
4458 locexpr_get_symbol_read_needs,
4459 locexpr_describe_location,
4460 0, /* location_has_loclist */
4461 locexpr_tracepoint_var_ref,
4462 locexpr_generate_c_location
4463 };
4464
4465
4466 /* Wrapper functions for location lists. These generally find
4467 the appropriate location expression and call something above. */
4468
4469 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4470 evaluator to calculate the location. */
4471 static struct value *
4472 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4473 {
4474 struct dwarf2_loclist_baton *dlbaton
4475 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4476 struct value *val;
4477 const gdb_byte *data;
4478 size_t size;
4479 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4480
4481 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4482 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4483 dlbaton->per_cu);
4484
4485 return val;
4486 }
4487
4488 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4489 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4490 will be thrown.
4491
4492 Function always returns non-NULL value, it may be marked optimized out if
4493 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4494 if it cannot resolve the parameter for any reason. */
4495
4496 static struct value *
4497 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4498 {
4499 struct dwarf2_loclist_baton *dlbaton
4500 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4501 const gdb_byte *data;
4502 size_t size;
4503 CORE_ADDR pc;
4504
4505 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4506 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4507
4508 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4509 if (data == NULL)
4510 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4511
4512 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4513 }
4514
4515 /* Implementation of get_symbol_read_needs from
4516 symbol_computed_ops. */
4517
4518 static enum symbol_needs_kind
4519 loclist_symbol_needs (struct symbol *symbol)
4520 {
4521 /* If there's a location list, then assume we need to have a frame
4522 to choose the appropriate location expression. With tracking of
4523 global variables this is not necessarily true, but such tracking
4524 is disabled in GCC at the moment until we figure out how to
4525 represent it. */
4526
4527 return SYMBOL_NEEDS_FRAME;
4528 }
4529
4530 /* Print a natural-language description of SYMBOL to STREAM. This
4531 version applies when there is a list of different locations, each
4532 with a specified address range. */
4533
4534 static void
4535 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4536 struct ui_file *stream)
4537 {
4538 struct dwarf2_loclist_baton *dlbaton
4539 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4540 const gdb_byte *loc_ptr, *buf_end;
4541 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4544 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4545 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4546 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4547 /* Adjust base_address for relocatable objects. */
4548 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4549 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4550 int done = 0;
4551
4552 loc_ptr = dlbaton->data;
4553 buf_end = dlbaton->data + dlbaton->size;
4554
4555 fprintf_filtered (stream, _("multi-location:\n"));
4556
4557 /* Iterate through locations until we run out. */
4558 while (!done)
4559 {
4560 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4561 int length;
4562 enum debug_loc_kind kind;
4563 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4564
4565 if (dlbaton->from_dwo)
4566 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4567 loc_ptr, buf_end, &new_ptr,
4568 &low, &high, byte_order);
4569 else
4570 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4571 &low, &high,
4572 byte_order, addr_size,
4573 signed_addr_p);
4574 loc_ptr = new_ptr;
4575 switch (kind)
4576 {
4577 case DEBUG_LOC_END_OF_LIST:
4578 done = 1;
4579 continue;
4580 case DEBUG_LOC_BASE_ADDRESS:
4581 base_address = high + base_offset;
4582 fprintf_filtered (stream, _(" Base address %s"),
4583 paddress (gdbarch, base_address));
4584 continue;
4585 case DEBUG_LOC_START_END:
4586 case DEBUG_LOC_START_LENGTH:
4587 break;
4588 case DEBUG_LOC_BUFFER_OVERFLOW:
4589 case DEBUG_LOC_INVALID_ENTRY:
4590 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4591 SYMBOL_PRINT_NAME (symbol));
4592 default:
4593 gdb_assert_not_reached ("bad debug_loc_kind");
4594 }
4595
4596 /* Otherwise, a location expression entry. */
4597 low += base_address;
4598 high += base_address;
4599
4600 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4601 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4602
4603 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4604 loc_ptr += 2;
4605
4606 /* (It would improve readability to print only the minimum
4607 necessary digits of the second number of the range.) */
4608 fprintf_filtered (stream, _(" Range %s-%s: "),
4609 paddress (gdbarch, low), paddress (gdbarch, high));
4610
4611 /* Now describe this particular location. */
4612 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4613 objfile, addr_size, offset_size,
4614 dlbaton->per_cu);
4615
4616 fprintf_filtered (stream, "\n");
4617
4618 loc_ptr += length;
4619 }
4620 }
4621
4622 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4623 any necessary bytecode in AX. */
4624 static void
4625 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4626 struct agent_expr *ax, struct axs_value *value)
4627 {
4628 struct dwarf2_loclist_baton *dlbaton
4629 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4630 const gdb_byte *data;
4631 size_t size;
4632 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4633
4634 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4635 if (size == 0)
4636 value->optimized_out = 1;
4637 else
4638 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4639 dlbaton->per_cu);
4640 }
4641
4642 /* symbol_computed_ops 'generate_c_location' method. */
4643
4644 static void
4645 loclist_generate_c_location (struct symbol *sym, string_file &stream,
4646 struct gdbarch *gdbarch,
4647 unsigned char *registers_used,
4648 CORE_ADDR pc, const char *result_name)
4649 {
4650 struct dwarf2_loclist_baton *dlbaton
4651 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4652 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4653 const gdb_byte *data;
4654 size_t size;
4655
4656 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4657 if (size == 0)
4658 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4659
4660 compile_dwarf_expr_to_c (stream, result_name,
4661 sym, pc, gdbarch, registers_used, addr_size,
4662 data, data + size,
4663 dlbaton->per_cu);
4664 }
4665
4666 /* The set of location functions used with the DWARF-2 expression
4667 evaluator and location lists. */
4668 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4669 loclist_read_variable,
4670 loclist_read_variable_at_entry,
4671 loclist_symbol_needs,
4672 loclist_describe_location,
4673 1, /* location_has_loclist */
4674 loclist_tracepoint_var_ref,
4675 loclist_generate_c_location
4676 };
4677
4678 /* Provide a prototype to silence -Wmissing-prototypes. */
4679 extern initialize_file_ftype _initialize_dwarf2loc;
4680
4681 void
4682 _initialize_dwarf2loc (void)
4683 {
4684 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4685 &entry_values_debug,
4686 _("Set entry values and tail call frames "
4687 "debugging."),
4688 _("Show entry values and tail call frames "
4689 "debugging."),
4690 _("When non-zero, the process of determining "
4691 "parameter values from function entry point "
4692 "and tail call frames will be printed."),
4693 NULL,
4694 show_entry_values_debug,
4695 &setdebuglist, &showdebuglist);
4696
4697 #if GDB_SELF_TEST
4698 register_self_test (selftests::copy_bitwise_tests);
4699 #endif
4700 }