]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2loc.c
the "compile" command
[thirdparty/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41
42 extern int dwarf2_always_disassemble;
43
44 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
46 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
51 LONGEST byte_offset);
52
53 /* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58 enum debug_loc_kind
59 {
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83 };
84
85 /* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88 static void
89 invalid_synthetic_pointer (void)
90 {
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93 }
94
95 /* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100 static enum debug_loc_kind
101 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107 {
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
135 return DEBUG_LOC_START_END;
136 }
137
138 /* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143 static enum debug_loc_kind
144 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
150 {
151 uint64_t low_index, high_index;
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
169 case DEBUG_LOC_START_END:
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194 }
195
196 /* A function for dealing with location lists. Given a
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
204 const gdb_byte *
205 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
207 {
208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
213 /* Adjust base_address for relocatable objects. */
214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
215 CORE_ADDR base_address = baton->base_address + base_offset;
216 const gdb_byte *loc_ptr, *buf_end;
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
231 &low, &high, byte_order);
232 else
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
239 {
240 case DEBUG_LOC_END_OF_LIST:
241 *locexpr_length = 0;
242 return NULL;
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
255 }
256
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
265
266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
267 loc_ptr += 2;
268
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
274 const struct block *pc_block = block_for_pc (pc);
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295 }
296
297 /* This is the baton used when performing dwarf2 expression
298 evaluation. */
299 struct dwarf_expr_baton
300 {
301 struct frame_info *frame;
302 struct dwarf2_per_cu_data *per_cu;
303 CORE_ADDR obj_address;
304 };
305
306 /* Helper functions for dwarf2_evaluate_loc_desc. */
307
308 /* Using the frame specified in BATON, return the value of register
309 REGNUM, treated as a pointer. */
310 static CORE_ADDR
311 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
312 {
313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
315 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
316
317 return address_from_register (regnum, debaton->frame);
318 }
319
320 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322 static struct value *
323 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324 {
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330 }
331
332 /* Read memory at ADDR (length LEN) into BUF. */
333
334 static void
335 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
336 {
337 read_memory (addr, buf, len);
338 }
339
340 /* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343 static void
344 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
345 {
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
349 struct symbol *framefunc;
350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
351 const struct block *bl = get_frame_block (debaton->frame, NULL);
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
355
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
359 framefunc = block_linkage_function (bl);
360
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
369 }
370
371 /* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374 static void
375 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377 {
378 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
379
380 *length = symbaton->size;
381 *start = symbaton->data;
382 }
383
384 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
385 function uses DWARF expression for its DW_AT_frame_base. */
386
387 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
388 {
389 locexpr_find_frame_base_location
390 };
391
392 /* Implement find_frame_base_location method for LOC_BLOCK functions using
393 DWARF location list for its DW_AT_frame_base. */
394
395 static void
396 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
397 const gdb_byte **start, size_t *length)
398 {
399 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
400
401 *start = dwarf2_find_location_expression (symbaton, length, pc);
402 }
403
404 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
405 function uses DWARF location list for its DW_AT_frame_base. */
406
407 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
408 {
409 loclist_find_frame_base_location
410 };
411
412 /* See dwarf2loc.h. */
413
414 void
415 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
417 {
418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
419 {
420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
421
422 ops_block->find_frame_base_location (framefunc, pc, start, length);
423 }
424 else
425 *length = 0;
426
427 if (*length == 0)
428 error (_("Could not find the frame base for \"%s\"."),
429 SYMBOL_NATURAL_NAME (framefunc));
430 }
431
432 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435 static CORE_ADDR
436 dwarf_expr_frame_cfa (void *baton)
437 {
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
439
440 return dwarf2_frame_cfa (debaton->frame);
441 }
442
443 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446 static CORE_ADDR
447 dwarf_expr_frame_pc (void *baton)
448 {
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452 }
453
454 /* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456 static CORE_ADDR
457 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458 {
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
461
462 return target_translate_tls_address (objfile, offset);
463 }
464
465 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
468
469 static void
470 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
474 {
475 struct dwarf2_locexpr_baton block;
476
477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483 }
484
485 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487 static void
488 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
489 {
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
493 ctx->funcs->get_frame_pc, ctx->baton);
494 }
495
496 /* Callback function for dwarf2_evaluate_loc_desc. */
497
498 static struct type *
499 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
501 {
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505 }
506
507 /* See dwarf2loc.h. */
508
509 unsigned int entry_values_debug = 0;
510
511 /* Helper to set entry_values_debug. */
512
513 static void
514 show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516 {
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520 }
521
522 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526 static CORE_ADDR
527 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530 {
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
543 struct bound_minimal_symbol msym;
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
550 (msym.minsym == NULL ? "???"
551 : MSYMBOL_PRINT_NAME (msym.minsym)));
552
553 }
554 if (caller_frame == NULL)
555 {
556 struct bound_minimal_symbol msym;
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
564 (msym.minsym == NULL ? "???"
565 : MSYMBOL_PRINT_NAME (msym.minsym)));
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
584 struct bound_minimal_symbol msym;
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
590 if (msym.minsym == NULL)
591 {
592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
599
600 }
601 return BMSYMBOL_VALUE_ADDRESS (msym);
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610 }
611
612 /* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616 static struct symbol *
617 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618 {
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633 }
634
635 /* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644 static void
645 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646 {
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
689 struct bound_minimal_symbol msym;
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
696 (msym.minsym == NULL ? "???"
697 : MSYMBOL_PRINT_NAME (msym.minsym)),
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712 }
713
714 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717 static void
718 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719 {
720 CORE_ADDR addr = call_site->pc;
721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
724 (msym.minsym == NULL ? "???"
725 : MSYMBOL_PRINT_NAME (msym.minsym)));
726
727 }
728
729 /* vec.h needs single word type name, typedef it. */
730 typedef struct call_site *call_sitep;
731
732 /* Define VEC (call_sitep) functions. */
733 DEF_VEC_P (call_sitep);
734
735 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742 static void
743 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745 {
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831 }
832
833 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840 static struct call_site_chain *
841 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843 {
844 CORE_ADDR save_callee_pc = callee_pc;
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
863 paddress (gdbarch, save_callee_pc));
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
956 struct bound_minimal_symbol msym_caller, msym_callee;
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
964 (msym_caller.minsym == NULL
965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
966 paddress (gdbarch, caller_pc),
967 (msym_callee.minsym == NULL
968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975 }
976
977 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982 struct call_site_chain *
983 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985 {
986 volatile struct gdb_exception e;
987 struct call_site_chain *retval = NULL;
988
989 TRY_CATCH (e, RETURN_MASK_ERROR)
990 {
991 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
992 }
993 if (e.reason < 0)
994 {
995 if (e.error == NO_ENTRY_VALUE_ERROR)
996 {
997 if (entry_values_debug)
998 exception_print (gdb_stdout, e);
999
1000 return NULL;
1001 }
1002 else
1003 throw_exception (e);
1004 }
1005 return retval;
1006 }
1007
1008 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010 static int
1011 call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014 {
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1024 }
1025 return 0;
1026 }
1027
1028 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034 static struct call_site_parameter *
1035 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
1038 struct dwarf2_per_cu_data **per_cu_return)
1039 {
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
1043 struct call_site *call_site;
1044 int iparams;
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
1047 CORE_ADDR target_addr;
1048
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
1069 (msym.minsym == NULL ? "???"
1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
1082 (msym.minsym == NULL ? "???"
1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
1099 : MSYMBOL_PRINT_NAME (target_msym)),
1100 paddress (gdbarch, target_addr),
1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1102 paddress (gdbarch, func_addr));
1103 }
1104
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
1112 if (call_site_parameter_matches (parameter, kind, kind_u))
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130 }
1131
1132 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142 static struct value *
1143 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1144 CORE_ADDR deref_size, struct type *type,
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147 {
1148 const gdb_byte *data_src;
1149 gdb_byte *data;
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
1166
1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1168 }
1169
1170 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177 static void
1178 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
1181 int deref_size)
1182 {
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1198 &caller_per_cu);
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
1209 baton_local.obj_address = 0;
1210
1211 saved_ctx.gdbarch = ctx->gdbarch;
1212 saved_ctx.addr_size = ctx->addr_size;
1213 saved_ctx.offset = ctx->offset;
1214 saved_ctx.baton = ctx->baton;
1215 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1216 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1217 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1218 ctx->baton = &baton_local;
1219
1220 dwarf_expr_eval (ctx, data_src, size);
1221
1222 ctx->gdbarch = saved_ctx.gdbarch;
1223 ctx->addr_size = saved_ctx.addr_size;
1224 ctx->offset = saved_ctx.offset;
1225 ctx->baton = saved_ctx.baton;
1226 }
1227
1228 /* Callback function for dwarf2_evaluate_loc_desc.
1229 Fetch the address indexed by DW_OP_GNU_addr_index. */
1230
1231 static CORE_ADDR
1232 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1233 {
1234 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1235
1236 return dwarf2_read_addr_index (debaton->per_cu, index);
1237 }
1238
1239 /* Callback function for get_object_address. Return the address of the VLA
1240 object. */
1241
1242 static CORE_ADDR
1243 dwarf_expr_get_obj_addr (void *baton)
1244 {
1245 struct dwarf_expr_baton *debaton = baton;
1246
1247 gdb_assert (debaton != NULL);
1248
1249 if (debaton->obj_address == 0)
1250 error (_("Location address is not set."));
1251
1252 return debaton->obj_address;
1253 }
1254
1255 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1256 the indirect method on it, that is use its stored target value, the sole
1257 purpose of entry_data_value_funcs.. */
1258
1259 static struct value *
1260 entry_data_value_coerce_ref (const struct value *value)
1261 {
1262 struct type *checked_type = check_typedef (value_type (value));
1263 struct value *target_val;
1264
1265 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1266 return NULL;
1267
1268 target_val = value_computed_closure (value);
1269 value_incref (target_val);
1270 return target_val;
1271 }
1272
1273 /* Implement copy_closure. */
1274
1275 static void *
1276 entry_data_value_copy_closure (const struct value *v)
1277 {
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_incref (target_val);
1281 return target_val;
1282 }
1283
1284 /* Implement free_closure. */
1285
1286 static void
1287 entry_data_value_free_closure (struct value *v)
1288 {
1289 struct value *target_val = value_computed_closure (v);
1290
1291 value_free (target_val);
1292 }
1293
1294 /* Vector for methods for an entry value reference where the referenced value
1295 is stored in the caller. On the first dereference use
1296 DW_AT_GNU_call_site_data_value in the caller. */
1297
1298 static const struct lval_funcs entry_data_value_funcs =
1299 {
1300 NULL, /* read */
1301 NULL, /* write */
1302 NULL, /* indirect */
1303 entry_data_value_coerce_ref,
1304 NULL, /* check_synthetic_pointer */
1305 entry_data_value_copy_closure,
1306 entry_data_value_free_closure
1307 };
1308
1309 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1310 are used to match DW_AT_location at the caller's
1311 DW_TAG_GNU_call_site_parameter.
1312
1313 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1314 cannot resolve the parameter for any reason. */
1315
1316 static struct value *
1317 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1318 enum call_site_parameter_kind kind,
1319 union call_site_parameter_u kind_u)
1320 {
1321 struct type *checked_type = check_typedef (type);
1322 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1323 struct frame_info *caller_frame = get_prev_frame (frame);
1324 struct value *outer_val, *target_val, *val;
1325 struct call_site_parameter *parameter;
1326 struct dwarf2_per_cu_data *caller_per_cu;
1327
1328 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1329 &caller_per_cu);
1330
1331 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1332 type, caller_frame,
1333 caller_per_cu);
1334
1335 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1336 used and it is not available do not fall back to OUTER_VAL - dereferencing
1337 TYPE_CODE_REF with non-entry data value would give current value - not the
1338 entry value. */
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1341 || TYPE_TARGET_TYPE (checked_type) == NULL)
1342 return outer_val;
1343
1344 target_val = dwarf_entry_parameter_to_value (parameter,
1345 TYPE_LENGTH (target_type),
1346 target_type, caller_frame,
1347 caller_per_cu);
1348
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
1359 }
1360
1361 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368 static struct value *
1369 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371 {
1372 union call_site_parameter_u kind_u;
1373
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
1378
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389 }
1390
1391 struct piece_closure
1392 {
1393 /* Reference count. */
1394 int refc;
1395
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
1404
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407 };
1408
1409 /* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412 static struct piece_closure *
1413 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
1415 int addr_size)
1416 {
1417 struct piece_closure *c = XCNEW (struct piece_closure);
1418 int i;
1419
1420 c->refc = 1;
1421 c->per_cu = per_cu;
1422 c->n_pieces = n_pieces;
1423 c->addr_size = addr_size;
1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
1430
1431 return c;
1432 }
1433
1434 /* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445 static unsigned int
1446 extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449 {
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475 }
1476
1477 /* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488 static unsigned int
1489 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491 {
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512 }
1513
1514 /* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524 static void
1525 insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528 {
1529 unsigned int mask;
1530
1531 gdb_assert (dest_offset_bits + nbits <= 8);
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548 }
1549
1550 /* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559 static void
1560 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564 {
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604 }
1605
1606 static void
1607 read_pieced_value (struct value *v)
1608 {
1609 int i;
1610 long offset = 0;
1611 ULONGEST bits_to_skip;
1612 gdb_byte *contents;
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1616 size_t type_len;
1617 size_t buffer_size = 0;
1618 gdb_byte *buffer = NULL;
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
1627
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
1630 contents = value_contents_raw (v);
1631 bits_to_skip = 8 * value_offset (v);
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
1639
1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
1645 const gdb_byte *intermediate_buffer;
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1651 {
1652 bits_to_skip -= this_size_bits;
1653 continue;
1654 }
1655 if (bits_to_skip > 0)
1656 {
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
1661 }
1662 else
1663 {
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
1666 }
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
1669
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
1680 switch (p->location)
1681 {
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1686
1687 if (gdb_regnum != -1)
1688 {
1689 int optim, unavail;
1690 int reg_offset = source_offset;
1691
1692 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1693 && this_size < register_size (arch, gdb_regnum))
1694 {
1695 /* Big-endian, and we want less than full size. */
1696 reg_offset = register_size (arch, gdb_regnum) - this_size;
1697 /* We want the lower-order THIS_SIZE_BITS of the bytes
1698 we extract from the register. */
1699 source_offset_bits += 8 * this_size - this_size_bits;
1700 }
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
1710 mark_value_bits_optimized_out (v, offset, this_size_bits);
1711 if (unavail)
1712 mark_value_bits_unavailable (v, offset, this_size_bits);
1713 }
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
1718 paddress (arch, p->v.regno));
1719 }
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
1732 size_t n = this_size;
1733
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
1742 else
1743 {
1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1745
1746 intermediate_buffer = val_bytes + source_offset;
1747 }
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
1760 intermediate_buffer = p->v.literal.data + source_offset;
1761 }
1762 break;
1763
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
1769 case DWARF_VALUE_OPTIMIZED_OUT:
1770 mark_value_bits_optimized_out (v, offset, this_size_bits);
1771 break;
1772
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
1775 }
1776
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
1784 }
1785
1786 do_cleanups (cleanup);
1787 }
1788
1789 static void
1790 write_pieced_value (struct value *to, struct value *from)
1791 {
1792 int i;
1793 long offset = 0;
1794 ULONGEST bits_to_skip;
1795 const gdb_byte *contents;
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1799 size_t type_len;
1800 size_t buffer_size = 0;
1801 gdb_byte *buffer = NULL;
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1805
1806 if (frame == NULL)
1807 {
1808 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1809 return;
1810 }
1811
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
1814 contents = value_contents (from);
1815 bits_to_skip = 8 * value_offset (to);
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
1831
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1834 {
1835 bits_to_skip -= this_size_bits;
1836 continue;
1837 }
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
1841 {
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
1846 }
1847 else
1848 {
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
1870 }
1871
1872 switch (p->location)
1873 {
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1878
1879 if (gdb_regnum != -1)
1880 {
1881 int reg_offset = dest_offset;
1882
1883 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1884 && this_size <= register_size (arch, gdb_regnum))
1885 {
1886 /* Big-endian, and we want less than full size. */
1887 reg_offset = register_size (arch, gdb_regnum) - this_size;
1888 }
1889
1890 if (need_bitwise)
1891 {
1892 int optim, unavail;
1893
1894 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1895 this_size, buffer,
1896 &optim, &unavail))
1897 {
1898 if (optim)
1899 throw_error (OPTIMIZED_OUT_ERROR,
1900 _("Can't do read-modify-write to "
1901 "update bitfield; containing word "
1902 "has been optimized out"));
1903 if (unavail)
1904 throw_error (NOT_AVAILABLE_ERROR,
1905 _("Can't do read-modify-write to update "
1906 "bitfield; containing word "
1907 "is unavailable"));
1908 }
1909 copy_bitwise (buffer, dest_offset_bits,
1910 contents, source_offset_bits,
1911 this_size_bits,
1912 bits_big_endian);
1913 }
1914
1915 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1916 this_size, source_buffer);
1917 }
1918 else
1919 {
1920 error (_("Unable to write to DWARF register number %s"),
1921 paddress (arch, p->v.regno));
1922 }
1923 }
1924 break;
1925 case DWARF_VALUE_MEMORY:
1926 if (need_bitwise)
1927 {
1928 /* Only the first and last bytes can possibly have any
1929 bits reused. */
1930 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1931 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1932 buffer + this_size - 1, 1);
1933 copy_bitwise (buffer, dest_offset_bits,
1934 contents, source_offset_bits,
1935 this_size_bits,
1936 bits_big_endian);
1937 }
1938
1939 write_memory (p->v.mem.addr + dest_offset,
1940 source_buffer, this_size);
1941 break;
1942 default:
1943 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
1944 break;
1945 }
1946 offset += this_size_bits;
1947 }
1948
1949 do_cleanups (cleanup);
1950 }
1951
1952 /* An implementation of an lval_funcs method to see whether a value is
1953 a synthetic pointer. */
1954
1955 static int
1956 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1957 int bit_length)
1958 {
1959 struct piece_closure *c
1960 = (struct piece_closure *) value_computed_closure (value);
1961 int i;
1962
1963 bit_offset += 8 * value_offset (value);
1964 if (value_bitsize (value))
1965 bit_offset += value_bitpos (value);
1966
1967 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1968 {
1969 struct dwarf_expr_piece *p = &c->pieces[i];
1970 size_t this_size_bits = p->size;
1971
1972 if (bit_offset > 0)
1973 {
1974 if (bit_offset >= this_size_bits)
1975 {
1976 bit_offset -= this_size_bits;
1977 continue;
1978 }
1979
1980 bit_length -= this_size_bits - bit_offset;
1981 bit_offset = 0;
1982 }
1983 else
1984 bit_length -= this_size_bits;
1985
1986 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1987 return 0;
1988 }
1989
1990 return 1;
1991 }
1992
1993 /* A wrapper function for get_frame_address_in_block. */
1994
1995 static CORE_ADDR
1996 get_frame_address_in_block_wrapper (void *baton)
1997 {
1998 return get_frame_address_in_block (baton);
1999 }
2000
2001 /* An implementation of an lval_funcs method to indirect through a
2002 pointer. This handles the synthetic pointer case when needed. */
2003
2004 static struct value *
2005 indirect_pieced_value (struct value *value)
2006 {
2007 struct piece_closure *c
2008 = (struct piece_closure *) value_computed_closure (value);
2009 struct type *type;
2010 struct frame_info *frame;
2011 struct dwarf2_locexpr_baton baton;
2012 int i, bit_offset, bit_length;
2013 struct dwarf_expr_piece *piece = NULL;
2014 LONGEST byte_offset;
2015
2016 type = check_typedef (value_type (value));
2017 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2018 return NULL;
2019
2020 bit_length = 8 * TYPE_LENGTH (type);
2021 bit_offset = 8 * value_offset (value);
2022 if (value_bitsize (value))
2023 bit_offset += value_bitpos (value);
2024
2025 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2026 {
2027 struct dwarf_expr_piece *p = &c->pieces[i];
2028 size_t this_size_bits = p->size;
2029
2030 if (bit_offset > 0)
2031 {
2032 if (bit_offset >= this_size_bits)
2033 {
2034 bit_offset -= this_size_bits;
2035 continue;
2036 }
2037
2038 bit_length -= this_size_bits - bit_offset;
2039 bit_offset = 0;
2040 }
2041 else
2042 bit_length -= this_size_bits;
2043
2044 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2045 return NULL;
2046
2047 if (bit_length != 0)
2048 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2049
2050 piece = p;
2051 break;
2052 }
2053
2054 frame = get_selected_frame (_("No frame selected."));
2055
2056 /* This is an offset requested by GDB, such as value subscripts.
2057 However, due to how synthetic pointers are implemented, this is
2058 always presented to us as a pointer type. This means we have to
2059 sign-extend it manually as appropriate. */
2060 byte_offset = value_as_address (value);
2061 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2062 byte_offset = gdb_sign_extend (byte_offset,
2063 8 * TYPE_LENGTH (value_type (value)));
2064 byte_offset += piece->v.ptr.offset;
2065
2066 gdb_assert (piece);
2067 baton
2068 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2069 get_frame_address_in_block_wrapper,
2070 frame);
2071
2072 if (baton.data != NULL)
2073 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2074 baton.data, baton.size, baton.per_cu,
2075 byte_offset);
2076
2077 {
2078 struct obstack temp_obstack;
2079 struct cleanup *cleanup;
2080 const gdb_byte *bytes;
2081 LONGEST len;
2082 struct value *result;
2083
2084 obstack_init (&temp_obstack);
2085 cleanup = make_cleanup_obstack_free (&temp_obstack);
2086
2087 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2088 &temp_obstack, &len);
2089 if (bytes == NULL)
2090 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2091 else
2092 {
2093 if (byte_offset < 0
2094 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2095 invalid_synthetic_pointer ();
2096 bytes += byte_offset;
2097 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2098 }
2099
2100 do_cleanups (cleanup);
2101 return result;
2102 }
2103 }
2104
2105 static void *
2106 copy_pieced_value_closure (const struct value *v)
2107 {
2108 struct piece_closure *c
2109 = (struct piece_closure *) value_computed_closure (v);
2110
2111 ++c->refc;
2112 return c;
2113 }
2114
2115 static void
2116 free_pieced_value_closure (struct value *v)
2117 {
2118 struct piece_closure *c
2119 = (struct piece_closure *) value_computed_closure (v);
2120
2121 --c->refc;
2122 if (c->refc == 0)
2123 {
2124 int i;
2125
2126 for (i = 0; i < c->n_pieces; ++i)
2127 if (c->pieces[i].location == DWARF_VALUE_STACK)
2128 value_free (c->pieces[i].v.value);
2129
2130 xfree (c->pieces);
2131 xfree (c);
2132 }
2133 }
2134
2135 /* Functions for accessing a variable described by DW_OP_piece. */
2136 static const struct lval_funcs pieced_value_funcs = {
2137 read_pieced_value,
2138 write_pieced_value,
2139 indirect_pieced_value,
2140 NULL, /* coerce_ref */
2141 check_pieced_synthetic_pointer,
2142 copy_pieced_value_closure,
2143 free_pieced_value_closure
2144 };
2145
2146 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2147
2148 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2149 {
2150 dwarf_expr_read_addr_from_reg,
2151 dwarf_expr_get_reg_value,
2152 dwarf_expr_read_mem,
2153 dwarf_expr_frame_base,
2154 dwarf_expr_frame_cfa,
2155 dwarf_expr_frame_pc,
2156 dwarf_expr_tls_address,
2157 dwarf_expr_dwarf_call,
2158 dwarf_expr_get_base_type,
2159 dwarf_expr_push_dwarf_reg_entry_value,
2160 dwarf_expr_get_addr_index,
2161 dwarf_expr_get_obj_addr
2162 };
2163
2164 /* Evaluate a location description, starting at DATA and with length
2165 SIZE, to find the current location of variable of TYPE in the
2166 context of FRAME. BYTE_OFFSET is applied after the contents are
2167 computed. */
2168
2169 static struct value *
2170 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2171 const gdb_byte *data, size_t size,
2172 struct dwarf2_per_cu_data *per_cu,
2173 LONGEST byte_offset)
2174 {
2175 struct value *retval;
2176 struct dwarf_expr_baton baton;
2177 struct dwarf_expr_context *ctx;
2178 struct cleanup *old_chain, *value_chain;
2179 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2180 volatile struct gdb_exception ex;
2181
2182 if (byte_offset < 0)
2183 invalid_synthetic_pointer ();
2184
2185 if (size == 0)
2186 return allocate_optimized_out_value (type);
2187
2188 baton.frame = frame;
2189 baton.per_cu = per_cu;
2190 baton.obj_address = 0;
2191
2192 ctx = new_dwarf_expr_context ();
2193 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2194 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2195
2196 ctx->gdbarch = get_objfile_arch (objfile);
2197 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2198 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2199 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2200 ctx->baton = &baton;
2201 ctx->funcs = &dwarf_expr_ctx_funcs;
2202
2203 TRY_CATCH (ex, RETURN_MASK_ERROR)
2204 {
2205 dwarf_expr_eval (ctx, data, size);
2206 }
2207 if (ex.reason < 0)
2208 {
2209 if (ex.error == NOT_AVAILABLE_ERROR)
2210 {
2211 do_cleanups (old_chain);
2212 retval = allocate_value (type);
2213 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2214 return retval;
2215 }
2216 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2217 {
2218 if (entry_values_debug)
2219 exception_print (gdb_stdout, ex);
2220 do_cleanups (old_chain);
2221 return allocate_optimized_out_value (type);
2222 }
2223 else
2224 throw_exception (ex);
2225 }
2226
2227 if (ctx->num_pieces > 0)
2228 {
2229 struct piece_closure *c;
2230 struct frame_id frame_id = get_frame_id (frame);
2231 ULONGEST bit_size = 0;
2232 int i;
2233
2234 for (i = 0; i < ctx->num_pieces; ++i)
2235 bit_size += ctx->pieces[i].size;
2236 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2237 invalid_synthetic_pointer ();
2238
2239 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2240 ctx->addr_size);
2241 /* We must clean up the value chain after creating the piece
2242 closure but before allocating the result. */
2243 do_cleanups (value_chain);
2244 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2245 VALUE_FRAME_ID (retval) = frame_id;
2246 set_value_offset (retval, byte_offset);
2247 }
2248 else
2249 {
2250 switch (ctx->location)
2251 {
2252 case DWARF_VALUE_REGISTER:
2253 {
2254 struct gdbarch *arch = get_frame_arch (frame);
2255 int dwarf_regnum
2256 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2257 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2258
2259 if (byte_offset != 0)
2260 error (_("cannot use offset on synthetic pointer to register"));
2261 do_cleanups (value_chain);
2262 if (gdb_regnum == -1)
2263 error (_("Unable to access DWARF register number %d"),
2264 dwarf_regnum);
2265 retval = value_from_register (type, gdb_regnum, frame);
2266 if (value_optimized_out (retval))
2267 {
2268 struct value *tmp;
2269
2270 /* This means the register has undefined value / was
2271 not saved. As we're computing the location of some
2272 variable etc. in the program, not a value for
2273 inspecting a register ($pc, $sp, etc.), return a
2274 generic optimized out value instead, so that we show
2275 <optimized out> instead of <not saved>. */
2276 do_cleanups (value_chain);
2277 tmp = allocate_value (type);
2278 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2279 retval = tmp;
2280 }
2281 }
2282 break;
2283
2284 case DWARF_VALUE_MEMORY:
2285 {
2286 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2287 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2288
2289 do_cleanups (value_chain);
2290 retval = value_at_lazy (type, address + byte_offset);
2291 if (in_stack_memory)
2292 set_value_stack (retval, 1);
2293 }
2294 break;
2295
2296 case DWARF_VALUE_STACK:
2297 {
2298 struct value *value = dwarf_expr_fetch (ctx, 0);
2299 gdb_byte *contents;
2300 const gdb_byte *val_bytes;
2301 size_t n = TYPE_LENGTH (value_type (value));
2302
2303 if (byte_offset + TYPE_LENGTH (type) > n)
2304 invalid_synthetic_pointer ();
2305
2306 val_bytes = value_contents_all (value);
2307 val_bytes += byte_offset;
2308 n -= byte_offset;
2309
2310 /* Preserve VALUE because we are going to free values back
2311 to the mark, but we still need the value contents
2312 below. */
2313 value_incref (value);
2314 do_cleanups (value_chain);
2315 make_cleanup_value_free (value);
2316
2317 retval = allocate_value (type);
2318 contents = value_contents_raw (retval);
2319 if (n > TYPE_LENGTH (type))
2320 {
2321 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2322
2323 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2324 val_bytes += n - TYPE_LENGTH (type);
2325 n = TYPE_LENGTH (type);
2326 }
2327 memcpy (contents, val_bytes, n);
2328 }
2329 break;
2330
2331 case DWARF_VALUE_LITERAL:
2332 {
2333 bfd_byte *contents;
2334 const bfd_byte *ldata;
2335 size_t n = ctx->len;
2336
2337 if (byte_offset + TYPE_LENGTH (type) > n)
2338 invalid_synthetic_pointer ();
2339
2340 do_cleanups (value_chain);
2341 retval = allocate_value (type);
2342 contents = value_contents_raw (retval);
2343
2344 ldata = ctx->data + byte_offset;
2345 n -= byte_offset;
2346
2347 if (n > TYPE_LENGTH (type))
2348 {
2349 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2350
2351 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2352 ldata += n - TYPE_LENGTH (type);
2353 n = TYPE_LENGTH (type);
2354 }
2355 memcpy (contents, ldata, n);
2356 }
2357 break;
2358
2359 case DWARF_VALUE_OPTIMIZED_OUT:
2360 do_cleanups (value_chain);
2361 retval = allocate_optimized_out_value (type);
2362 break;
2363
2364 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2365 operation by execute_stack_op. */
2366 case DWARF_VALUE_IMPLICIT_POINTER:
2367 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2368 it can only be encountered when making a piece. */
2369 default:
2370 internal_error (__FILE__, __LINE__, _("invalid location type"));
2371 }
2372 }
2373
2374 set_value_initialized (retval, ctx->initialized);
2375
2376 do_cleanups (old_chain);
2377
2378 return retval;
2379 }
2380
2381 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2382 passes 0 as the byte_offset. */
2383
2384 struct value *
2385 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2386 const gdb_byte *data, size_t size,
2387 struct dwarf2_per_cu_data *per_cu)
2388 {
2389 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2390 }
2391
2392 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2393 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2394 context (location of a variable) and might be needed to evaluate the
2395 location expression.
2396 Returns 1 on success, 0 otherwise. */
2397
2398 static int
2399 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2400 CORE_ADDR addr,
2401 CORE_ADDR *valp)
2402 {
2403 struct dwarf_expr_context *ctx;
2404 struct dwarf_expr_baton baton;
2405 struct objfile *objfile;
2406 struct cleanup *cleanup;
2407
2408 if (dlbaton == NULL || dlbaton->size == 0)
2409 return 0;
2410
2411 ctx = new_dwarf_expr_context ();
2412 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2413
2414 baton.frame = get_selected_frame (NULL);
2415 baton.per_cu = dlbaton->per_cu;
2416 baton.obj_address = addr;
2417
2418 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2419
2420 ctx->gdbarch = get_objfile_arch (objfile);
2421 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2422 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2423 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2424 ctx->funcs = &dwarf_expr_ctx_funcs;
2425 ctx->baton = &baton;
2426
2427 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2428
2429 switch (ctx->location)
2430 {
2431 case DWARF_VALUE_REGISTER:
2432 case DWARF_VALUE_MEMORY:
2433 case DWARF_VALUE_STACK:
2434 *valp = dwarf_expr_fetch_address (ctx, 0);
2435 if (ctx->location == DWARF_VALUE_REGISTER)
2436 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2437 do_cleanups (cleanup);
2438 return 1;
2439 case DWARF_VALUE_LITERAL:
2440 *valp = extract_signed_integer (ctx->data, ctx->len,
2441 gdbarch_byte_order (ctx->gdbarch));
2442 do_cleanups (cleanup);
2443 return 1;
2444 /* Unsupported dwarf values. */
2445 case DWARF_VALUE_OPTIMIZED_OUT:
2446 case DWARF_VALUE_IMPLICIT_POINTER:
2447 break;
2448 }
2449
2450 do_cleanups (cleanup);
2451 return 0;
2452 }
2453
2454 /* See dwarf2loc.h. */
2455
2456 int
2457 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2458 CORE_ADDR address, CORE_ADDR *value)
2459 {
2460 if (prop == NULL)
2461 return 0;
2462
2463 switch (prop->kind)
2464 {
2465 case PROP_LOCEXPR:
2466 {
2467 const struct dwarf2_property_baton *baton = prop->data.baton;
2468
2469 if (dwarf2_locexpr_baton_eval (&baton->locexpr, address, value))
2470 {
2471 if (baton->referenced_type)
2472 {
2473 struct value *val = value_at (baton->referenced_type, *value);
2474
2475 *value = value_as_address (val);
2476 }
2477 return 1;
2478 }
2479 }
2480 break;
2481
2482 case PROP_LOCLIST:
2483 {
2484 struct dwarf2_property_baton *baton = prop->data.baton;
2485 struct frame_info *frame = get_selected_frame (NULL);
2486 CORE_ADDR pc = get_frame_address_in_block (frame);
2487 const gdb_byte *data;
2488 struct value *val;
2489 size_t size;
2490
2491 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2492 if (data != NULL)
2493 {
2494 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2495 size, baton->loclist.per_cu);
2496 if (!value_optimized_out (val))
2497 {
2498 *value = value_as_address (val);
2499 return 1;
2500 }
2501 }
2502 }
2503 break;
2504
2505 case PROP_CONST:
2506 *value = prop->data.const_val;
2507 return 1;
2508 }
2509
2510 return 0;
2511 }
2512
2513 /* See dwarf2loc.h. */
2514
2515 void
2516 dwarf2_compile_property_to_c (struct ui_file *stream,
2517 const char *result_name,
2518 struct gdbarch *gdbarch,
2519 unsigned char *registers_used,
2520 const struct dynamic_prop *prop,
2521 CORE_ADDR pc,
2522 struct symbol *sym)
2523 {
2524 struct dwarf2_property_baton *baton = prop->data.baton;
2525 const gdb_byte *data;
2526 size_t size;
2527 struct dwarf2_per_cu_data *per_cu;
2528
2529 if (prop->kind == PROP_LOCEXPR)
2530 {
2531 data = baton->locexpr.data;
2532 size = baton->locexpr.size;
2533 per_cu = baton->locexpr.per_cu;
2534 }
2535 else
2536 {
2537 gdb_assert (prop->kind == PROP_LOCLIST);
2538
2539 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2540 per_cu = baton->loclist.per_cu;
2541 }
2542
2543 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2544 gdbarch, registers_used,
2545 dwarf2_per_cu_addr_size (per_cu),
2546 data, data + size, per_cu);
2547 }
2548
2549 \f
2550 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2551
2552 struct needs_frame_baton
2553 {
2554 int needs_frame;
2555 struct dwarf2_per_cu_data *per_cu;
2556 };
2557
2558 /* Reads from registers do require a frame. */
2559 static CORE_ADDR
2560 needs_frame_read_addr_from_reg (void *baton, int regnum)
2561 {
2562 struct needs_frame_baton *nf_baton = baton;
2563
2564 nf_baton->needs_frame = 1;
2565 return 1;
2566 }
2567
2568 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2569 Reads from registers do require a frame. */
2570
2571 static struct value *
2572 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2573 {
2574 struct needs_frame_baton *nf_baton = baton;
2575
2576 nf_baton->needs_frame = 1;
2577 return value_zero (type, not_lval);
2578 }
2579
2580 /* Reads from memory do not require a frame. */
2581 static void
2582 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2583 {
2584 memset (buf, 0, len);
2585 }
2586
2587 /* Frame-relative accesses do require a frame. */
2588 static void
2589 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2590 {
2591 static gdb_byte lit0 = DW_OP_lit0;
2592 struct needs_frame_baton *nf_baton = baton;
2593
2594 *start = &lit0;
2595 *length = 1;
2596
2597 nf_baton->needs_frame = 1;
2598 }
2599
2600 /* CFA accesses require a frame. */
2601
2602 static CORE_ADDR
2603 needs_frame_frame_cfa (void *baton)
2604 {
2605 struct needs_frame_baton *nf_baton = baton;
2606
2607 nf_baton->needs_frame = 1;
2608 return 1;
2609 }
2610
2611 /* Thread-local accesses do require a frame. */
2612 static CORE_ADDR
2613 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2614 {
2615 struct needs_frame_baton *nf_baton = baton;
2616
2617 nf_baton->needs_frame = 1;
2618 return 1;
2619 }
2620
2621 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2622
2623 static void
2624 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2625 {
2626 struct needs_frame_baton *nf_baton = ctx->baton;
2627
2628 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2629 ctx->funcs->get_frame_pc, ctx->baton);
2630 }
2631
2632 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2633
2634 static void
2635 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2636 enum call_site_parameter_kind kind,
2637 union call_site_parameter_u kind_u, int deref_size)
2638 {
2639 struct needs_frame_baton *nf_baton = ctx->baton;
2640
2641 nf_baton->needs_frame = 1;
2642
2643 /* The expression may require some stub values on DWARF stack. */
2644 dwarf_expr_push_address (ctx, 0, 0);
2645 }
2646
2647 /* DW_OP_GNU_addr_index doesn't require a frame. */
2648
2649 static CORE_ADDR
2650 needs_get_addr_index (void *baton, unsigned int index)
2651 {
2652 /* Nothing to do. */
2653 return 1;
2654 }
2655
2656 /* DW_OP_push_object_address has a frame already passed through. */
2657
2658 static CORE_ADDR
2659 needs_get_obj_addr (void *baton)
2660 {
2661 /* Nothing to do. */
2662 return 1;
2663 }
2664
2665 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2666
2667 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2668 {
2669 needs_frame_read_addr_from_reg,
2670 needs_frame_get_reg_value,
2671 needs_frame_read_mem,
2672 needs_frame_frame_base,
2673 needs_frame_frame_cfa,
2674 needs_frame_frame_cfa, /* get_frame_pc */
2675 needs_frame_tls_address,
2676 needs_frame_dwarf_call,
2677 NULL, /* get_base_type */
2678 needs_dwarf_reg_entry_value,
2679 needs_get_addr_index,
2680 needs_get_obj_addr
2681 };
2682
2683 /* Return non-zero iff the location expression at DATA (length SIZE)
2684 requires a frame to evaluate. */
2685
2686 static int
2687 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2688 struct dwarf2_per_cu_data *per_cu)
2689 {
2690 struct needs_frame_baton baton;
2691 struct dwarf_expr_context *ctx;
2692 int in_reg;
2693 struct cleanup *old_chain;
2694 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2695
2696 baton.needs_frame = 0;
2697 baton.per_cu = per_cu;
2698
2699 ctx = new_dwarf_expr_context ();
2700 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2701 make_cleanup_value_free_to_mark (value_mark ());
2702
2703 ctx->gdbarch = get_objfile_arch (objfile);
2704 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2705 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2706 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2707 ctx->baton = &baton;
2708 ctx->funcs = &needs_frame_ctx_funcs;
2709
2710 dwarf_expr_eval (ctx, data, size);
2711
2712 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2713
2714 if (ctx->num_pieces > 0)
2715 {
2716 int i;
2717
2718 /* If the location has several pieces, and any of them are in
2719 registers, then we will need a frame to fetch them from. */
2720 for (i = 0; i < ctx->num_pieces; i++)
2721 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2722 in_reg = 1;
2723 }
2724
2725 do_cleanups (old_chain);
2726
2727 return baton.needs_frame || in_reg;
2728 }
2729
2730 /* A helper function that throws an unimplemented error mentioning a
2731 given DWARF operator. */
2732
2733 static void
2734 unimplemented (unsigned int op)
2735 {
2736 const char *name = get_DW_OP_name (op);
2737
2738 if (name)
2739 error (_("DWARF operator %s cannot be translated to an agent expression"),
2740 name);
2741 else
2742 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2743 "to an agent expression"),
2744 op);
2745 }
2746
2747 /* See dwarf2loc.h. */
2748
2749 int
2750 dwarf2_reg_to_regnum_or_error (struct gdbarch *arch, int dwarf_reg)
2751 {
2752 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2753 if (reg == -1)
2754 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2755 return reg;
2756 }
2757
2758 /* A helper function that emits an access to memory. ARCH is the
2759 target architecture. EXPR is the expression which we are building.
2760 NBITS is the number of bits we want to read. This emits the
2761 opcodes needed to read the memory and then extract the desired
2762 bits. */
2763
2764 static void
2765 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2766 {
2767 ULONGEST nbytes = (nbits + 7) / 8;
2768
2769 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2770
2771 if (expr->tracing)
2772 ax_trace_quick (expr, nbytes);
2773
2774 if (nbits <= 8)
2775 ax_simple (expr, aop_ref8);
2776 else if (nbits <= 16)
2777 ax_simple (expr, aop_ref16);
2778 else if (nbits <= 32)
2779 ax_simple (expr, aop_ref32);
2780 else
2781 ax_simple (expr, aop_ref64);
2782
2783 /* If we read exactly the number of bytes we wanted, we're done. */
2784 if (8 * nbytes == nbits)
2785 return;
2786
2787 if (gdbarch_bits_big_endian (arch))
2788 {
2789 /* On a bits-big-endian machine, we want the high-order
2790 NBITS. */
2791 ax_const_l (expr, 8 * nbytes - nbits);
2792 ax_simple (expr, aop_rsh_unsigned);
2793 }
2794 else
2795 {
2796 /* On a bits-little-endian box, we want the low-order NBITS. */
2797 ax_zero_ext (expr, nbits);
2798 }
2799 }
2800
2801 /* A helper function to return the frame's PC. */
2802
2803 static CORE_ADDR
2804 get_ax_pc (void *baton)
2805 {
2806 struct agent_expr *expr = baton;
2807
2808 return expr->scope;
2809 }
2810
2811 /* Compile a DWARF location expression to an agent expression.
2812
2813 EXPR is the agent expression we are building.
2814 LOC is the agent value we modify.
2815 ARCH is the architecture.
2816 ADDR_SIZE is the size of addresses, in bytes.
2817 OP_PTR is the start of the location expression.
2818 OP_END is one past the last byte of the location expression.
2819
2820 This will throw an exception for various kinds of errors -- for
2821 example, if the expression cannot be compiled, or if the expression
2822 is invalid. */
2823
2824 void
2825 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2826 struct gdbarch *arch, unsigned int addr_size,
2827 const gdb_byte *op_ptr, const gdb_byte *op_end,
2828 struct dwarf2_per_cu_data *per_cu)
2829 {
2830 struct cleanup *cleanups;
2831 int i, *offsets;
2832 VEC(int) *dw_labels = NULL, *patches = NULL;
2833 const gdb_byte * const base = op_ptr;
2834 const gdb_byte *previous_piece = op_ptr;
2835 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2836 ULONGEST bits_collected = 0;
2837 unsigned int addr_size_bits = 8 * addr_size;
2838 int bits_big_endian = gdbarch_bits_big_endian (arch);
2839
2840 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2841 cleanups = make_cleanup (xfree, offsets);
2842
2843 for (i = 0; i < op_end - op_ptr; ++i)
2844 offsets[i] = -1;
2845
2846 make_cleanup (VEC_cleanup (int), &dw_labels);
2847 make_cleanup (VEC_cleanup (int), &patches);
2848
2849 /* By default we are making an address. */
2850 loc->kind = axs_lvalue_memory;
2851
2852 while (op_ptr < op_end)
2853 {
2854 enum dwarf_location_atom op = *op_ptr;
2855 uint64_t uoffset, reg;
2856 int64_t offset;
2857 int i;
2858
2859 offsets[op_ptr - base] = expr->len;
2860 ++op_ptr;
2861
2862 /* Our basic approach to code generation is to map DWARF
2863 operations directly to AX operations. However, there are
2864 some differences.
2865
2866 First, DWARF works on address-sized units, but AX always uses
2867 LONGEST. For most operations we simply ignore this
2868 difference; instead we generate sign extensions as needed
2869 before division and comparison operations. It would be nice
2870 to omit the sign extensions, but there is no way to determine
2871 the size of the target's LONGEST. (This code uses the size
2872 of the host LONGEST in some cases -- that is a bug but it is
2873 difficult to fix.)
2874
2875 Second, some DWARF operations cannot be translated to AX.
2876 For these we simply fail. See
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2878 switch (op)
2879 {
2880 case DW_OP_lit0:
2881 case DW_OP_lit1:
2882 case DW_OP_lit2:
2883 case DW_OP_lit3:
2884 case DW_OP_lit4:
2885 case DW_OP_lit5:
2886 case DW_OP_lit6:
2887 case DW_OP_lit7:
2888 case DW_OP_lit8:
2889 case DW_OP_lit9:
2890 case DW_OP_lit10:
2891 case DW_OP_lit11:
2892 case DW_OP_lit12:
2893 case DW_OP_lit13:
2894 case DW_OP_lit14:
2895 case DW_OP_lit15:
2896 case DW_OP_lit16:
2897 case DW_OP_lit17:
2898 case DW_OP_lit18:
2899 case DW_OP_lit19:
2900 case DW_OP_lit20:
2901 case DW_OP_lit21:
2902 case DW_OP_lit22:
2903 case DW_OP_lit23:
2904 case DW_OP_lit24:
2905 case DW_OP_lit25:
2906 case DW_OP_lit26:
2907 case DW_OP_lit27:
2908 case DW_OP_lit28:
2909 case DW_OP_lit29:
2910 case DW_OP_lit30:
2911 case DW_OP_lit31:
2912 ax_const_l (expr, op - DW_OP_lit0);
2913 break;
2914
2915 case DW_OP_addr:
2916 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2917 op_ptr += addr_size;
2918 /* Some versions of GCC emit DW_OP_addr before
2919 DW_OP_GNU_push_tls_address. In this case the value is an
2920 index, not an address. We don't support things like
2921 branching between the address and the TLS op. */
2922 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2923 uoffset += dwarf2_per_cu_text_offset (per_cu);
2924 ax_const_l (expr, uoffset);
2925 break;
2926
2927 case DW_OP_const1u:
2928 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2929 op_ptr += 1;
2930 break;
2931 case DW_OP_const1s:
2932 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2933 op_ptr += 1;
2934 break;
2935 case DW_OP_const2u:
2936 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2937 op_ptr += 2;
2938 break;
2939 case DW_OP_const2s:
2940 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2941 op_ptr += 2;
2942 break;
2943 case DW_OP_const4u:
2944 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2945 op_ptr += 4;
2946 break;
2947 case DW_OP_const4s:
2948 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2949 op_ptr += 4;
2950 break;
2951 case DW_OP_const8u:
2952 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2953 op_ptr += 8;
2954 break;
2955 case DW_OP_const8s:
2956 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2957 op_ptr += 8;
2958 break;
2959 case DW_OP_constu:
2960 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2961 ax_const_l (expr, uoffset);
2962 break;
2963 case DW_OP_consts:
2964 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2965 ax_const_l (expr, offset);
2966 break;
2967
2968 case DW_OP_reg0:
2969 case DW_OP_reg1:
2970 case DW_OP_reg2:
2971 case DW_OP_reg3:
2972 case DW_OP_reg4:
2973 case DW_OP_reg5:
2974 case DW_OP_reg6:
2975 case DW_OP_reg7:
2976 case DW_OP_reg8:
2977 case DW_OP_reg9:
2978 case DW_OP_reg10:
2979 case DW_OP_reg11:
2980 case DW_OP_reg12:
2981 case DW_OP_reg13:
2982 case DW_OP_reg14:
2983 case DW_OP_reg15:
2984 case DW_OP_reg16:
2985 case DW_OP_reg17:
2986 case DW_OP_reg18:
2987 case DW_OP_reg19:
2988 case DW_OP_reg20:
2989 case DW_OP_reg21:
2990 case DW_OP_reg22:
2991 case DW_OP_reg23:
2992 case DW_OP_reg24:
2993 case DW_OP_reg25:
2994 case DW_OP_reg26:
2995 case DW_OP_reg27:
2996 case DW_OP_reg28:
2997 case DW_OP_reg29:
2998 case DW_OP_reg30:
2999 case DW_OP_reg31:
3000 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3001 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3002 loc->kind = axs_lvalue_register;
3003 break;
3004
3005 case DW_OP_regx:
3006 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3007 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3008 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, reg);
3009 loc->kind = axs_lvalue_register;
3010 break;
3011
3012 case DW_OP_implicit_value:
3013 {
3014 uint64_t len;
3015
3016 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3017 if (op_ptr + len > op_end)
3018 error (_("DW_OP_implicit_value: too few bytes available."));
3019 if (len > sizeof (ULONGEST))
3020 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3021 (int) len);
3022
3023 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3024 byte_order));
3025 op_ptr += len;
3026 dwarf_expr_require_composition (op_ptr, op_end,
3027 "DW_OP_implicit_value");
3028
3029 loc->kind = axs_rvalue;
3030 }
3031 break;
3032
3033 case DW_OP_stack_value:
3034 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3035 loc->kind = axs_rvalue;
3036 break;
3037
3038 case DW_OP_breg0:
3039 case DW_OP_breg1:
3040 case DW_OP_breg2:
3041 case DW_OP_breg3:
3042 case DW_OP_breg4:
3043 case DW_OP_breg5:
3044 case DW_OP_breg6:
3045 case DW_OP_breg7:
3046 case DW_OP_breg8:
3047 case DW_OP_breg9:
3048 case DW_OP_breg10:
3049 case DW_OP_breg11:
3050 case DW_OP_breg12:
3051 case DW_OP_breg13:
3052 case DW_OP_breg14:
3053 case DW_OP_breg15:
3054 case DW_OP_breg16:
3055 case DW_OP_breg17:
3056 case DW_OP_breg18:
3057 case DW_OP_breg19:
3058 case DW_OP_breg20:
3059 case DW_OP_breg21:
3060 case DW_OP_breg22:
3061 case DW_OP_breg23:
3062 case DW_OP_breg24:
3063 case DW_OP_breg25:
3064 case DW_OP_breg26:
3065 case DW_OP_breg27:
3066 case DW_OP_breg28:
3067 case DW_OP_breg29:
3068 case DW_OP_breg30:
3069 case DW_OP_breg31:
3070 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3071 i = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3072 ax_reg (expr, i);
3073 if (offset != 0)
3074 {
3075 ax_const_l (expr, offset);
3076 ax_simple (expr, aop_add);
3077 }
3078 break;
3079 case DW_OP_bregx:
3080 {
3081 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3082 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3083 i = dwarf2_reg_to_regnum_or_error (arch, reg);
3084 ax_reg (expr, i);
3085 if (offset != 0)
3086 {
3087 ax_const_l (expr, offset);
3088 ax_simple (expr, aop_add);
3089 }
3090 }
3091 break;
3092 case DW_OP_fbreg:
3093 {
3094 const gdb_byte *datastart;
3095 size_t datalen;
3096 const struct block *b;
3097 struct symbol *framefunc;
3098
3099 b = block_for_pc (expr->scope);
3100
3101 if (!b)
3102 error (_("No block found for address"));
3103
3104 framefunc = block_linkage_function (b);
3105
3106 if (!framefunc)
3107 error (_("No function found for block"));
3108
3109 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3110 &datastart, &datalen);
3111
3112 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3113 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3114 datastart + datalen, per_cu);
3115 if (loc->kind == axs_lvalue_register)
3116 require_rvalue (expr, loc);
3117
3118 if (offset != 0)
3119 {
3120 ax_const_l (expr, offset);
3121 ax_simple (expr, aop_add);
3122 }
3123
3124 loc->kind = axs_lvalue_memory;
3125 }
3126 break;
3127
3128 case DW_OP_dup:
3129 ax_simple (expr, aop_dup);
3130 break;
3131
3132 case DW_OP_drop:
3133 ax_simple (expr, aop_pop);
3134 break;
3135
3136 case DW_OP_pick:
3137 offset = *op_ptr++;
3138 ax_pick (expr, offset);
3139 break;
3140
3141 case DW_OP_swap:
3142 ax_simple (expr, aop_swap);
3143 break;
3144
3145 case DW_OP_over:
3146 ax_pick (expr, 1);
3147 break;
3148
3149 case DW_OP_rot:
3150 ax_simple (expr, aop_rot);
3151 break;
3152
3153 case DW_OP_deref:
3154 case DW_OP_deref_size:
3155 {
3156 int size;
3157
3158 if (op == DW_OP_deref_size)
3159 size = *op_ptr++;
3160 else
3161 size = addr_size;
3162
3163 if (size != 1 && size != 2 && size != 4 && size != 8)
3164 error (_("Unsupported size %d in %s"),
3165 size, get_DW_OP_name (op));
3166 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3167 }
3168 break;
3169
3170 case DW_OP_abs:
3171 /* Sign extend the operand. */
3172 ax_ext (expr, addr_size_bits);
3173 ax_simple (expr, aop_dup);
3174 ax_const_l (expr, 0);
3175 ax_simple (expr, aop_less_signed);
3176 ax_simple (expr, aop_log_not);
3177 i = ax_goto (expr, aop_if_goto);
3178 /* We have to emit 0 - X. */
3179 ax_const_l (expr, 0);
3180 ax_simple (expr, aop_swap);
3181 ax_simple (expr, aop_sub);
3182 ax_label (expr, i, expr->len);
3183 break;
3184
3185 case DW_OP_neg:
3186 /* No need to sign extend here. */
3187 ax_const_l (expr, 0);
3188 ax_simple (expr, aop_swap);
3189 ax_simple (expr, aop_sub);
3190 break;
3191
3192 case DW_OP_not:
3193 /* Sign extend the operand. */
3194 ax_ext (expr, addr_size_bits);
3195 ax_simple (expr, aop_bit_not);
3196 break;
3197
3198 case DW_OP_plus_uconst:
3199 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3200 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3201 but we micro-optimize anyhow. */
3202 if (reg != 0)
3203 {
3204 ax_const_l (expr, reg);
3205 ax_simple (expr, aop_add);
3206 }
3207 break;
3208
3209 case DW_OP_and:
3210 ax_simple (expr, aop_bit_and);
3211 break;
3212
3213 case DW_OP_div:
3214 /* Sign extend the operands. */
3215 ax_ext (expr, addr_size_bits);
3216 ax_simple (expr, aop_swap);
3217 ax_ext (expr, addr_size_bits);
3218 ax_simple (expr, aop_swap);
3219 ax_simple (expr, aop_div_signed);
3220 break;
3221
3222 case DW_OP_minus:
3223 ax_simple (expr, aop_sub);
3224 break;
3225
3226 case DW_OP_mod:
3227 ax_simple (expr, aop_rem_unsigned);
3228 break;
3229
3230 case DW_OP_mul:
3231 ax_simple (expr, aop_mul);
3232 break;
3233
3234 case DW_OP_or:
3235 ax_simple (expr, aop_bit_or);
3236 break;
3237
3238 case DW_OP_plus:
3239 ax_simple (expr, aop_add);
3240 break;
3241
3242 case DW_OP_shl:
3243 ax_simple (expr, aop_lsh);
3244 break;
3245
3246 case DW_OP_shr:
3247 ax_simple (expr, aop_rsh_unsigned);
3248 break;
3249
3250 case DW_OP_shra:
3251 ax_simple (expr, aop_rsh_signed);
3252 break;
3253
3254 case DW_OP_xor:
3255 ax_simple (expr, aop_bit_xor);
3256 break;
3257
3258 case DW_OP_le:
3259 /* Sign extend the operands. */
3260 ax_ext (expr, addr_size_bits);
3261 ax_simple (expr, aop_swap);
3262 ax_ext (expr, addr_size_bits);
3263 /* Note no swap here: A <= B is !(B < A). */
3264 ax_simple (expr, aop_less_signed);
3265 ax_simple (expr, aop_log_not);
3266 break;
3267
3268 case DW_OP_ge:
3269 /* Sign extend the operands. */
3270 ax_ext (expr, addr_size_bits);
3271 ax_simple (expr, aop_swap);
3272 ax_ext (expr, addr_size_bits);
3273 ax_simple (expr, aop_swap);
3274 /* A >= B is !(A < B). */
3275 ax_simple (expr, aop_less_signed);
3276 ax_simple (expr, aop_log_not);
3277 break;
3278
3279 case DW_OP_eq:
3280 /* Sign extend the operands. */
3281 ax_ext (expr, addr_size_bits);
3282 ax_simple (expr, aop_swap);
3283 ax_ext (expr, addr_size_bits);
3284 /* No need for a second swap here. */
3285 ax_simple (expr, aop_equal);
3286 break;
3287
3288 case DW_OP_lt:
3289 /* Sign extend the operands. */
3290 ax_ext (expr, addr_size_bits);
3291 ax_simple (expr, aop_swap);
3292 ax_ext (expr, addr_size_bits);
3293 ax_simple (expr, aop_swap);
3294 ax_simple (expr, aop_less_signed);
3295 break;
3296
3297 case DW_OP_gt:
3298 /* Sign extend the operands. */
3299 ax_ext (expr, addr_size_bits);
3300 ax_simple (expr, aop_swap);
3301 ax_ext (expr, addr_size_bits);
3302 /* Note no swap here: A > B is B < A. */
3303 ax_simple (expr, aop_less_signed);
3304 break;
3305
3306 case DW_OP_ne:
3307 /* Sign extend the operands. */
3308 ax_ext (expr, addr_size_bits);
3309 ax_simple (expr, aop_swap);
3310 ax_ext (expr, addr_size_bits);
3311 /* No need for a swap here. */
3312 ax_simple (expr, aop_equal);
3313 ax_simple (expr, aop_log_not);
3314 break;
3315
3316 case DW_OP_call_frame_cfa:
3317 {
3318 int regnum;
3319 CORE_ADDR text_offset;
3320 LONGEST off;
3321 const gdb_byte *cfa_start, *cfa_end;
3322
3323 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3324 &regnum, &off,
3325 &text_offset, &cfa_start, &cfa_end))
3326 {
3327 /* Register. */
3328 ax_reg (expr, regnum);
3329 if (off != 0)
3330 {
3331 ax_const_l (expr, off);
3332 ax_simple (expr, aop_add);
3333 }
3334 }
3335 else
3336 {
3337 /* Another expression. */
3338 ax_const_l (expr, text_offset);
3339 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3340 cfa_start, cfa_end, per_cu);
3341 }
3342
3343 loc->kind = axs_lvalue_memory;
3344 }
3345 break;
3346
3347 case DW_OP_GNU_push_tls_address:
3348 unimplemented (op);
3349 break;
3350
3351 case DW_OP_push_object_address:
3352 unimplemented (op);
3353 break;
3354
3355 case DW_OP_skip:
3356 offset = extract_signed_integer (op_ptr, 2, byte_order);
3357 op_ptr += 2;
3358 i = ax_goto (expr, aop_goto);
3359 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3360 VEC_safe_push (int, patches, i);
3361 break;
3362
3363 case DW_OP_bra:
3364 offset = extract_signed_integer (op_ptr, 2, byte_order);
3365 op_ptr += 2;
3366 /* Zero extend the operand. */
3367 ax_zero_ext (expr, addr_size_bits);
3368 i = ax_goto (expr, aop_if_goto);
3369 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3370 VEC_safe_push (int, patches, i);
3371 break;
3372
3373 case DW_OP_nop:
3374 break;
3375
3376 case DW_OP_piece:
3377 case DW_OP_bit_piece:
3378 {
3379 uint64_t size, offset;
3380
3381 if (op_ptr - 1 == previous_piece)
3382 error (_("Cannot translate empty pieces to agent expressions"));
3383 previous_piece = op_ptr - 1;
3384
3385 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3386 if (op == DW_OP_piece)
3387 {
3388 size *= 8;
3389 offset = 0;
3390 }
3391 else
3392 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3393
3394 if (bits_collected + size > 8 * sizeof (LONGEST))
3395 error (_("Expression pieces exceed word size"));
3396
3397 /* Access the bits. */
3398 switch (loc->kind)
3399 {
3400 case axs_lvalue_register:
3401 ax_reg (expr, loc->u.reg);
3402 break;
3403
3404 case axs_lvalue_memory:
3405 /* Offset the pointer, if needed. */
3406 if (offset > 8)
3407 {
3408 ax_const_l (expr, offset / 8);
3409 ax_simple (expr, aop_add);
3410 offset %= 8;
3411 }
3412 access_memory (arch, expr, size);
3413 break;
3414 }
3415
3416 /* For a bits-big-endian target, shift up what we already
3417 have. For a bits-little-endian target, shift up the
3418 new data. Note that there is a potential bug here if
3419 the DWARF expression leaves multiple values on the
3420 stack. */
3421 if (bits_collected > 0)
3422 {
3423 if (bits_big_endian)
3424 {
3425 ax_simple (expr, aop_swap);
3426 ax_const_l (expr, size);
3427 ax_simple (expr, aop_lsh);
3428 /* We don't need a second swap here, because
3429 aop_bit_or is symmetric. */
3430 }
3431 else
3432 {
3433 ax_const_l (expr, size);
3434 ax_simple (expr, aop_lsh);
3435 }
3436 ax_simple (expr, aop_bit_or);
3437 }
3438
3439 bits_collected += size;
3440 loc->kind = axs_rvalue;
3441 }
3442 break;
3443
3444 case DW_OP_GNU_uninit:
3445 unimplemented (op);
3446
3447 case DW_OP_call2:
3448 case DW_OP_call4:
3449 {
3450 struct dwarf2_locexpr_baton block;
3451 int size = (op == DW_OP_call2 ? 2 : 4);
3452 cu_offset offset;
3453
3454 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3455 op_ptr += size;
3456
3457 offset.cu_off = uoffset;
3458 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3459 get_ax_pc, expr);
3460
3461 /* DW_OP_call_ref is currently not supported. */
3462 gdb_assert (block.per_cu == per_cu);
3463
3464 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3465 block.data, block.data + block.size,
3466 per_cu);
3467 }
3468 break;
3469
3470 case DW_OP_call_ref:
3471 unimplemented (op);
3472
3473 default:
3474 unimplemented (op);
3475 }
3476 }
3477
3478 /* Patch all the branches we emitted. */
3479 for (i = 0; i < VEC_length (int, patches); ++i)
3480 {
3481 int targ = offsets[VEC_index (int, dw_labels, i)];
3482 if (targ == -1)
3483 internal_error (__FILE__, __LINE__, _("invalid label"));
3484 ax_label (expr, VEC_index (int, patches, i), targ);
3485 }
3486
3487 do_cleanups (cleanups);
3488 }
3489
3490 \f
3491 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3492 evaluator to calculate the location. */
3493 static struct value *
3494 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3495 {
3496 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3497 struct value *val;
3498
3499 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3500 dlbaton->size, dlbaton->per_cu);
3501
3502 return val;
3503 }
3504
3505 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3506 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3507 will be thrown. */
3508
3509 static struct value *
3510 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3511 {
3512 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3513
3514 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3515 dlbaton->size);
3516 }
3517
3518 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3519 static int
3520 locexpr_read_needs_frame (struct symbol *symbol)
3521 {
3522 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3523
3524 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3525 dlbaton->per_cu);
3526 }
3527
3528 /* Return true if DATA points to the end of a piece. END is one past
3529 the last byte in the expression. */
3530
3531 static int
3532 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3533 {
3534 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3535 }
3536
3537 /* Helper for locexpr_describe_location_piece that finds the name of a
3538 DWARF register. */
3539
3540 static const char *
3541 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3542 {
3543 int regnum;
3544
3545 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3546 return gdbarch_register_name (gdbarch, regnum);
3547 }
3548
3549 /* Nicely describe a single piece of a location, returning an updated
3550 position in the bytecode sequence. This function cannot recognize
3551 all locations; if a location is not recognized, it simply returns
3552 DATA. If there is an error during reading, e.g. we run off the end
3553 of the buffer, an error is thrown. */
3554
3555 static const gdb_byte *
3556 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3557 CORE_ADDR addr, struct objfile *objfile,
3558 struct dwarf2_per_cu_data *per_cu,
3559 const gdb_byte *data, const gdb_byte *end,
3560 unsigned int addr_size)
3561 {
3562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3563 size_t leb128_size;
3564
3565 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3566 {
3567 fprintf_filtered (stream, _("a variable in $%s"),
3568 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3569 data += 1;
3570 }
3571 else if (data[0] == DW_OP_regx)
3572 {
3573 uint64_t reg;
3574
3575 data = safe_read_uleb128 (data + 1, end, &reg);
3576 fprintf_filtered (stream, _("a variable in $%s"),
3577 locexpr_regname (gdbarch, reg));
3578 }
3579 else if (data[0] == DW_OP_fbreg)
3580 {
3581 const struct block *b;
3582 struct symbol *framefunc;
3583 int frame_reg = 0;
3584 int64_t frame_offset;
3585 const gdb_byte *base_data, *new_data, *save_data = data;
3586 size_t base_size;
3587 int64_t base_offset = 0;
3588
3589 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3590 if (!piece_end_p (new_data, end))
3591 return data;
3592 data = new_data;
3593
3594 b = block_for_pc (addr);
3595
3596 if (!b)
3597 error (_("No block found for address for symbol \"%s\"."),
3598 SYMBOL_PRINT_NAME (symbol));
3599
3600 framefunc = block_linkage_function (b);
3601
3602 if (!framefunc)
3603 error (_("No function found for block for symbol \"%s\"."),
3604 SYMBOL_PRINT_NAME (symbol));
3605
3606 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3607
3608 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3609 {
3610 const gdb_byte *buf_end;
3611
3612 frame_reg = base_data[0] - DW_OP_breg0;
3613 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3614 &base_offset);
3615 if (buf_end != base_data + base_size)
3616 error (_("Unexpected opcode after "
3617 "DW_OP_breg%u for symbol \"%s\"."),
3618 frame_reg, SYMBOL_PRINT_NAME (symbol));
3619 }
3620 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3621 {
3622 /* The frame base is just the register, with no offset. */
3623 frame_reg = base_data[0] - DW_OP_reg0;
3624 base_offset = 0;
3625 }
3626 else
3627 {
3628 /* We don't know what to do with the frame base expression,
3629 so we can't trace this variable; give up. */
3630 return save_data;
3631 }
3632
3633 fprintf_filtered (stream,
3634 _("a variable at frame base reg $%s offset %s+%s"),
3635 locexpr_regname (gdbarch, frame_reg),
3636 plongest (base_offset), plongest (frame_offset));
3637 }
3638 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3639 && piece_end_p (data, end))
3640 {
3641 int64_t offset;
3642
3643 data = safe_read_sleb128 (data + 1, end, &offset);
3644
3645 fprintf_filtered (stream,
3646 _("a variable at offset %s from base reg $%s"),
3647 plongest (offset),
3648 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3649 }
3650
3651 /* The location expression for a TLS variable looks like this (on a
3652 64-bit LE machine):
3653
3654 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3655 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3656
3657 0x3 is the encoding for DW_OP_addr, which has an operand as long
3658 as the size of an address on the target machine (here is 8
3659 bytes). Note that more recent version of GCC emit DW_OP_const4u
3660 or DW_OP_const8u, depending on address size, rather than
3661 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3662 The operand represents the offset at which the variable is within
3663 the thread local storage. */
3664
3665 else if (data + 1 + addr_size < end
3666 && (data[0] == DW_OP_addr
3667 || (addr_size == 4 && data[0] == DW_OP_const4u)
3668 || (addr_size == 8 && data[0] == DW_OP_const8u))
3669 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3670 && piece_end_p (data + 2 + addr_size, end))
3671 {
3672 ULONGEST offset;
3673 offset = extract_unsigned_integer (data + 1, addr_size,
3674 gdbarch_byte_order (gdbarch));
3675
3676 fprintf_filtered (stream,
3677 _("a thread-local variable at offset 0x%s "
3678 "in the thread-local storage for `%s'"),
3679 phex_nz (offset, addr_size), objfile_name (objfile));
3680
3681 data += 1 + addr_size + 1;
3682 }
3683
3684 /* With -gsplit-dwarf a TLS variable can also look like this:
3685 DW_AT_location : 3 byte block: fc 4 e0
3686 (DW_OP_GNU_const_index: 4;
3687 DW_OP_GNU_push_tls_address) */
3688 else if (data + 3 <= end
3689 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3690 && data[0] == DW_OP_GNU_const_index
3691 && leb128_size > 0
3692 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3693 && piece_end_p (data + 2 + leb128_size, end))
3694 {
3695 uint64_t offset;
3696
3697 data = safe_read_uleb128 (data + 1, end, &offset);
3698 offset = dwarf2_read_addr_index (per_cu, offset);
3699 fprintf_filtered (stream,
3700 _("a thread-local variable at offset 0x%s "
3701 "in the thread-local storage for `%s'"),
3702 phex_nz (offset, addr_size), objfile_name (objfile));
3703 ++data;
3704 }
3705
3706 else if (data[0] >= DW_OP_lit0
3707 && data[0] <= DW_OP_lit31
3708 && data + 1 < end
3709 && data[1] == DW_OP_stack_value)
3710 {
3711 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3712 data += 2;
3713 }
3714
3715 return data;
3716 }
3717
3718 /* Disassemble an expression, stopping at the end of a piece or at the
3719 end of the expression. Returns a pointer to the next unread byte
3720 in the input expression. If ALL is nonzero, then this function
3721 will keep going until it reaches the end of the expression.
3722 If there is an error during reading, e.g. we run off the end
3723 of the buffer, an error is thrown. */
3724
3725 static const gdb_byte *
3726 disassemble_dwarf_expression (struct ui_file *stream,
3727 struct gdbarch *arch, unsigned int addr_size,
3728 int offset_size, const gdb_byte *start,
3729 const gdb_byte *data, const gdb_byte *end,
3730 int indent, int all,
3731 struct dwarf2_per_cu_data *per_cu)
3732 {
3733 while (data < end
3734 && (all
3735 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3736 {
3737 enum dwarf_location_atom op = *data++;
3738 uint64_t ul;
3739 int64_t l;
3740 const char *name;
3741
3742 name = get_DW_OP_name (op);
3743
3744 if (!name)
3745 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3746 op, (long) (data - 1 - start));
3747 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3748 (long) (data - 1 - start), name);
3749
3750 switch (op)
3751 {
3752 case DW_OP_addr:
3753 ul = extract_unsigned_integer (data, addr_size,
3754 gdbarch_byte_order (arch));
3755 data += addr_size;
3756 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3757 break;
3758
3759 case DW_OP_const1u:
3760 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3761 data += 1;
3762 fprintf_filtered (stream, " %s", pulongest (ul));
3763 break;
3764 case DW_OP_const1s:
3765 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3766 data += 1;
3767 fprintf_filtered (stream, " %s", plongest (l));
3768 break;
3769 case DW_OP_const2u:
3770 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3771 data += 2;
3772 fprintf_filtered (stream, " %s", pulongest (ul));
3773 break;
3774 case DW_OP_const2s:
3775 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3776 data += 2;
3777 fprintf_filtered (stream, " %s", plongest (l));
3778 break;
3779 case DW_OP_const4u:
3780 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3781 data += 4;
3782 fprintf_filtered (stream, " %s", pulongest (ul));
3783 break;
3784 case DW_OP_const4s:
3785 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3786 data += 4;
3787 fprintf_filtered (stream, " %s", plongest (l));
3788 break;
3789 case DW_OP_const8u:
3790 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3791 data += 8;
3792 fprintf_filtered (stream, " %s", pulongest (ul));
3793 break;
3794 case DW_OP_const8s:
3795 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3796 data += 8;
3797 fprintf_filtered (stream, " %s", plongest (l));
3798 break;
3799 case DW_OP_constu:
3800 data = safe_read_uleb128 (data, end, &ul);
3801 fprintf_filtered (stream, " %s", pulongest (ul));
3802 break;
3803 case DW_OP_consts:
3804 data = safe_read_sleb128 (data, end, &l);
3805 fprintf_filtered (stream, " %s", plongest (l));
3806 break;
3807
3808 case DW_OP_reg0:
3809 case DW_OP_reg1:
3810 case DW_OP_reg2:
3811 case DW_OP_reg3:
3812 case DW_OP_reg4:
3813 case DW_OP_reg5:
3814 case DW_OP_reg6:
3815 case DW_OP_reg7:
3816 case DW_OP_reg8:
3817 case DW_OP_reg9:
3818 case DW_OP_reg10:
3819 case DW_OP_reg11:
3820 case DW_OP_reg12:
3821 case DW_OP_reg13:
3822 case DW_OP_reg14:
3823 case DW_OP_reg15:
3824 case DW_OP_reg16:
3825 case DW_OP_reg17:
3826 case DW_OP_reg18:
3827 case DW_OP_reg19:
3828 case DW_OP_reg20:
3829 case DW_OP_reg21:
3830 case DW_OP_reg22:
3831 case DW_OP_reg23:
3832 case DW_OP_reg24:
3833 case DW_OP_reg25:
3834 case DW_OP_reg26:
3835 case DW_OP_reg27:
3836 case DW_OP_reg28:
3837 case DW_OP_reg29:
3838 case DW_OP_reg30:
3839 case DW_OP_reg31:
3840 fprintf_filtered (stream, " [$%s]",
3841 locexpr_regname (arch, op - DW_OP_reg0));
3842 break;
3843
3844 case DW_OP_regx:
3845 data = safe_read_uleb128 (data, end, &ul);
3846 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3847 locexpr_regname (arch, (int) ul));
3848 break;
3849
3850 case DW_OP_implicit_value:
3851 data = safe_read_uleb128 (data, end, &ul);
3852 data += ul;
3853 fprintf_filtered (stream, " %s", pulongest (ul));
3854 break;
3855
3856 case DW_OP_breg0:
3857 case DW_OP_breg1:
3858 case DW_OP_breg2:
3859 case DW_OP_breg3:
3860 case DW_OP_breg4:
3861 case DW_OP_breg5:
3862 case DW_OP_breg6:
3863 case DW_OP_breg7:
3864 case DW_OP_breg8:
3865 case DW_OP_breg9:
3866 case DW_OP_breg10:
3867 case DW_OP_breg11:
3868 case DW_OP_breg12:
3869 case DW_OP_breg13:
3870 case DW_OP_breg14:
3871 case DW_OP_breg15:
3872 case DW_OP_breg16:
3873 case DW_OP_breg17:
3874 case DW_OP_breg18:
3875 case DW_OP_breg19:
3876 case DW_OP_breg20:
3877 case DW_OP_breg21:
3878 case DW_OP_breg22:
3879 case DW_OP_breg23:
3880 case DW_OP_breg24:
3881 case DW_OP_breg25:
3882 case DW_OP_breg26:
3883 case DW_OP_breg27:
3884 case DW_OP_breg28:
3885 case DW_OP_breg29:
3886 case DW_OP_breg30:
3887 case DW_OP_breg31:
3888 data = safe_read_sleb128 (data, end, &l);
3889 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3890 locexpr_regname (arch, op - DW_OP_breg0));
3891 break;
3892
3893 case DW_OP_bregx:
3894 data = safe_read_uleb128 (data, end, &ul);
3895 data = safe_read_sleb128 (data, end, &l);
3896 fprintf_filtered (stream, " register %s [$%s] offset %s",
3897 pulongest (ul),
3898 locexpr_regname (arch, (int) ul),
3899 plongest (l));
3900 break;
3901
3902 case DW_OP_fbreg:
3903 data = safe_read_sleb128 (data, end, &l);
3904 fprintf_filtered (stream, " %s", plongest (l));
3905 break;
3906
3907 case DW_OP_xderef_size:
3908 case DW_OP_deref_size:
3909 case DW_OP_pick:
3910 fprintf_filtered (stream, " %d", *data);
3911 ++data;
3912 break;
3913
3914 case DW_OP_plus_uconst:
3915 data = safe_read_uleb128 (data, end, &ul);
3916 fprintf_filtered (stream, " %s", pulongest (ul));
3917 break;
3918
3919 case DW_OP_skip:
3920 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3921 data += 2;
3922 fprintf_filtered (stream, " to %ld",
3923 (long) (data + l - start));
3924 break;
3925
3926 case DW_OP_bra:
3927 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3928 data += 2;
3929 fprintf_filtered (stream, " %ld",
3930 (long) (data + l - start));
3931 break;
3932
3933 case DW_OP_call2:
3934 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3935 data += 2;
3936 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3937 break;
3938
3939 case DW_OP_call4:
3940 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3941 data += 4;
3942 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3943 break;
3944
3945 case DW_OP_call_ref:
3946 ul = extract_unsigned_integer (data, offset_size,
3947 gdbarch_byte_order (arch));
3948 data += offset_size;
3949 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3950 break;
3951
3952 case DW_OP_piece:
3953 data = safe_read_uleb128 (data, end, &ul);
3954 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3955 break;
3956
3957 case DW_OP_bit_piece:
3958 {
3959 uint64_t offset;
3960
3961 data = safe_read_uleb128 (data, end, &ul);
3962 data = safe_read_uleb128 (data, end, &offset);
3963 fprintf_filtered (stream, " size %s offset %s (bits)",
3964 pulongest (ul), pulongest (offset));
3965 }
3966 break;
3967
3968 case DW_OP_GNU_implicit_pointer:
3969 {
3970 ul = extract_unsigned_integer (data, offset_size,
3971 gdbarch_byte_order (arch));
3972 data += offset_size;
3973
3974 data = safe_read_sleb128 (data, end, &l);
3975
3976 fprintf_filtered (stream, " DIE %s offset %s",
3977 phex_nz (ul, offset_size),
3978 plongest (l));
3979 }
3980 break;
3981
3982 case DW_OP_GNU_deref_type:
3983 {
3984 int addr_size = *data++;
3985 cu_offset offset;
3986 struct type *type;
3987
3988 data = safe_read_uleb128 (data, end, &ul);
3989 offset.cu_off = ul;
3990 type = dwarf2_get_die_type (offset, per_cu);
3991 fprintf_filtered (stream, "<");
3992 type_print (type, "", stream, -1);
3993 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3994 addr_size);
3995 }
3996 break;
3997
3998 case DW_OP_GNU_const_type:
3999 {
4000 cu_offset type_die;
4001 struct type *type;
4002
4003 data = safe_read_uleb128 (data, end, &ul);
4004 type_die.cu_off = ul;
4005 type = dwarf2_get_die_type (type_die, per_cu);
4006 fprintf_filtered (stream, "<");
4007 type_print (type, "", stream, -1);
4008 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4009 }
4010 break;
4011
4012 case DW_OP_GNU_regval_type:
4013 {
4014 uint64_t reg;
4015 cu_offset type_die;
4016 struct type *type;
4017
4018 data = safe_read_uleb128 (data, end, &reg);
4019 data = safe_read_uleb128 (data, end, &ul);
4020 type_die.cu_off = ul;
4021
4022 type = dwarf2_get_die_type (type_die, per_cu);
4023 fprintf_filtered (stream, "<");
4024 type_print (type, "", stream, -1);
4025 fprintf_filtered (stream, " [0x%s]> [$%s]",
4026 phex_nz (type_die.cu_off, 0),
4027 locexpr_regname (arch, reg));
4028 }
4029 break;
4030
4031 case DW_OP_GNU_convert:
4032 case DW_OP_GNU_reinterpret:
4033 {
4034 cu_offset type_die;
4035
4036 data = safe_read_uleb128 (data, end, &ul);
4037 type_die.cu_off = ul;
4038
4039 if (type_die.cu_off == 0)
4040 fprintf_filtered (stream, "<0>");
4041 else
4042 {
4043 struct type *type;
4044
4045 type = dwarf2_get_die_type (type_die, per_cu);
4046 fprintf_filtered (stream, "<");
4047 type_print (type, "", stream, -1);
4048 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
4049 }
4050 }
4051 break;
4052
4053 case DW_OP_GNU_entry_value:
4054 data = safe_read_uleb128 (data, end, &ul);
4055 fputc_filtered ('\n', stream);
4056 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4057 start, data, data + ul, indent + 2,
4058 all, per_cu);
4059 data += ul;
4060 continue;
4061
4062 case DW_OP_GNU_parameter_ref:
4063 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4064 data += 4;
4065 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4066 break;
4067
4068 case DW_OP_GNU_addr_index:
4069 data = safe_read_uleb128 (data, end, &ul);
4070 ul = dwarf2_read_addr_index (per_cu, ul);
4071 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4072 break;
4073 case DW_OP_GNU_const_index:
4074 data = safe_read_uleb128 (data, end, &ul);
4075 ul = dwarf2_read_addr_index (per_cu, ul);
4076 fprintf_filtered (stream, " %s", pulongest (ul));
4077 break;
4078 }
4079
4080 fprintf_filtered (stream, "\n");
4081 }
4082
4083 return data;
4084 }
4085
4086 /* Describe a single location, which may in turn consist of multiple
4087 pieces. */
4088
4089 static void
4090 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4091 struct ui_file *stream,
4092 const gdb_byte *data, size_t size,
4093 struct objfile *objfile, unsigned int addr_size,
4094 int offset_size, struct dwarf2_per_cu_data *per_cu)
4095 {
4096 const gdb_byte *end = data + size;
4097 int first_piece = 1, bad = 0;
4098
4099 while (data < end)
4100 {
4101 const gdb_byte *here = data;
4102 int disassemble = 1;
4103
4104 if (first_piece)
4105 first_piece = 0;
4106 else
4107 fprintf_filtered (stream, _(", and "));
4108
4109 if (!dwarf2_always_disassemble)
4110 {
4111 data = locexpr_describe_location_piece (symbol, stream,
4112 addr, objfile, per_cu,
4113 data, end, addr_size);
4114 /* If we printed anything, or if we have an empty piece,
4115 then don't disassemble. */
4116 if (data != here
4117 || data[0] == DW_OP_piece
4118 || data[0] == DW_OP_bit_piece)
4119 disassemble = 0;
4120 }
4121 if (disassemble)
4122 {
4123 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4124 data = disassemble_dwarf_expression (stream,
4125 get_objfile_arch (objfile),
4126 addr_size, offset_size, data,
4127 data, end, 0,
4128 dwarf2_always_disassemble,
4129 per_cu);
4130 }
4131
4132 if (data < end)
4133 {
4134 int empty = data == here;
4135
4136 if (disassemble)
4137 fprintf_filtered (stream, " ");
4138 if (data[0] == DW_OP_piece)
4139 {
4140 uint64_t bytes;
4141
4142 data = safe_read_uleb128 (data + 1, end, &bytes);
4143
4144 if (empty)
4145 fprintf_filtered (stream, _("an empty %s-byte piece"),
4146 pulongest (bytes));
4147 else
4148 fprintf_filtered (stream, _(" [%s-byte piece]"),
4149 pulongest (bytes));
4150 }
4151 else if (data[0] == DW_OP_bit_piece)
4152 {
4153 uint64_t bits, offset;
4154
4155 data = safe_read_uleb128 (data + 1, end, &bits);
4156 data = safe_read_uleb128 (data, end, &offset);
4157
4158 if (empty)
4159 fprintf_filtered (stream,
4160 _("an empty %s-bit piece"),
4161 pulongest (bits));
4162 else
4163 fprintf_filtered (stream,
4164 _(" [%s-bit piece, offset %s bits]"),
4165 pulongest (bits), pulongest (offset));
4166 }
4167 else
4168 {
4169 bad = 1;
4170 break;
4171 }
4172 }
4173 }
4174
4175 if (bad || data > end)
4176 error (_("Corrupted DWARF2 expression for \"%s\"."),
4177 SYMBOL_PRINT_NAME (symbol));
4178 }
4179
4180 /* Print a natural-language description of SYMBOL to STREAM. This
4181 version is for a symbol with a single location. */
4182
4183 static void
4184 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4185 struct ui_file *stream)
4186 {
4187 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4188 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4189 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4190 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4191
4192 locexpr_describe_location_1 (symbol, addr, stream,
4193 dlbaton->data, dlbaton->size,
4194 objfile, addr_size, offset_size,
4195 dlbaton->per_cu);
4196 }
4197
4198 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4199 any necessary bytecode in AX. */
4200
4201 static void
4202 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4203 struct agent_expr *ax, struct axs_value *value)
4204 {
4205 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4206 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4207
4208 if (dlbaton->size == 0)
4209 value->optimized_out = 1;
4210 else
4211 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4212 dlbaton->data, dlbaton->data + dlbaton->size,
4213 dlbaton->per_cu);
4214 }
4215
4216 /* symbol_computed_ops 'generate_c_location' method. */
4217
4218 static void
4219 locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4220 struct gdbarch *gdbarch,
4221 unsigned char *registers_used,
4222 CORE_ADDR pc, const char *result_name)
4223 {
4224 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4225 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4226
4227 if (dlbaton->size == 0)
4228 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4229
4230 compile_dwarf_expr_to_c (stream, result_name,
4231 sym, pc, gdbarch, registers_used, addr_size,
4232 dlbaton->data, dlbaton->data + dlbaton->size,
4233 dlbaton->per_cu);
4234 }
4235
4236 /* The set of location functions used with the DWARF-2 expression
4237 evaluator. */
4238 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4239 locexpr_read_variable,
4240 locexpr_read_variable_at_entry,
4241 locexpr_read_needs_frame,
4242 locexpr_describe_location,
4243 0, /* location_has_loclist */
4244 locexpr_tracepoint_var_ref,
4245 locexpr_generate_c_location
4246 };
4247
4248
4249 /* Wrapper functions for location lists. These generally find
4250 the appropriate location expression and call something above. */
4251
4252 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4253 evaluator to calculate the location. */
4254 static struct value *
4255 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4256 {
4257 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4258 struct value *val;
4259 const gdb_byte *data;
4260 size_t size;
4261 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4262
4263 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4264 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4265 dlbaton->per_cu);
4266
4267 return val;
4268 }
4269
4270 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4271 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4272 will be thrown.
4273
4274 Function always returns non-NULL value, it may be marked optimized out if
4275 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4276 if it cannot resolve the parameter for any reason. */
4277
4278 static struct value *
4279 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4280 {
4281 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4282 const gdb_byte *data;
4283 size_t size;
4284 CORE_ADDR pc;
4285
4286 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4287 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4288
4289 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4290 if (data == NULL)
4291 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4292
4293 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4294 }
4295
4296 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4297 static int
4298 loclist_read_needs_frame (struct symbol *symbol)
4299 {
4300 /* If there's a location list, then assume we need to have a frame
4301 to choose the appropriate location expression. With tracking of
4302 global variables this is not necessarily true, but such tracking
4303 is disabled in GCC at the moment until we figure out how to
4304 represent it. */
4305
4306 return 1;
4307 }
4308
4309 /* Print a natural-language description of SYMBOL to STREAM. This
4310 version applies when there is a list of different locations, each
4311 with a specified address range. */
4312
4313 static void
4314 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4315 struct ui_file *stream)
4316 {
4317 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4318 const gdb_byte *loc_ptr, *buf_end;
4319 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4322 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4323 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4324 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4325 /* Adjust base_address for relocatable objects. */
4326 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4327 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4328 int done = 0;
4329
4330 loc_ptr = dlbaton->data;
4331 buf_end = dlbaton->data + dlbaton->size;
4332
4333 fprintf_filtered (stream, _("multi-location:\n"));
4334
4335 /* Iterate through locations until we run out. */
4336 while (!done)
4337 {
4338 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4339 int length;
4340 enum debug_loc_kind kind;
4341 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4342
4343 if (dlbaton->from_dwo)
4344 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4345 loc_ptr, buf_end, &new_ptr,
4346 &low, &high, byte_order);
4347 else
4348 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4349 &low, &high,
4350 byte_order, addr_size,
4351 signed_addr_p);
4352 loc_ptr = new_ptr;
4353 switch (kind)
4354 {
4355 case DEBUG_LOC_END_OF_LIST:
4356 done = 1;
4357 continue;
4358 case DEBUG_LOC_BASE_ADDRESS:
4359 base_address = high + base_offset;
4360 fprintf_filtered (stream, _(" Base address %s"),
4361 paddress (gdbarch, base_address));
4362 continue;
4363 case DEBUG_LOC_START_END:
4364 case DEBUG_LOC_START_LENGTH:
4365 break;
4366 case DEBUG_LOC_BUFFER_OVERFLOW:
4367 case DEBUG_LOC_INVALID_ENTRY:
4368 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4369 SYMBOL_PRINT_NAME (symbol));
4370 default:
4371 gdb_assert_not_reached ("bad debug_loc_kind");
4372 }
4373
4374 /* Otherwise, a location expression entry. */
4375 low += base_address;
4376 high += base_address;
4377
4378 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4379 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4380
4381 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4382 loc_ptr += 2;
4383
4384 /* (It would improve readability to print only the minimum
4385 necessary digits of the second number of the range.) */
4386 fprintf_filtered (stream, _(" Range %s-%s: "),
4387 paddress (gdbarch, low), paddress (gdbarch, high));
4388
4389 /* Now describe this particular location. */
4390 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4391 objfile, addr_size, offset_size,
4392 dlbaton->per_cu);
4393
4394 fprintf_filtered (stream, "\n");
4395
4396 loc_ptr += length;
4397 }
4398 }
4399
4400 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4401 any necessary bytecode in AX. */
4402 static void
4403 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4404 struct agent_expr *ax, struct axs_value *value)
4405 {
4406 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4407 const gdb_byte *data;
4408 size_t size;
4409 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4410
4411 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4412 if (size == 0)
4413 value->optimized_out = 1;
4414 else
4415 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4416 dlbaton->per_cu);
4417 }
4418
4419 /* symbol_computed_ops 'generate_c_location' method. */
4420
4421 static void
4422 loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4423 struct gdbarch *gdbarch,
4424 unsigned char *registers_used,
4425 CORE_ADDR pc, const char *result_name)
4426 {
4427 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4428 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4429 const gdb_byte *data;
4430 size_t size;
4431
4432 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4433 if (size == 0)
4434 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4435
4436 compile_dwarf_expr_to_c (stream, result_name,
4437 sym, pc, gdbarch, registers_used, addr_size,
4438 data, data + size,
4439 dlbaton->per_cu);
4440 }
4441
4442 /* The set of location functions used with the DWARF-2 expression
4443 evaluator and location lists. */
4444 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4445 loclist_read_variable,
4446 loclist_read_variable_at_entry,
4447 loclist_read_needs_frame,
4448 loclist_describe_location,
4449 1, /* location_has_loclist */
4450 loclist_tracepoint_var_ref,
4451 loclist_generate_c_location
4452 };
4453
4454 /* Provide a prototype to silence -Wmissing-prototypes. */
4455 extern initialize_file_ftype _initialize_dwarf2loc;
4456
4457 void
4458 _initialize_dwarf2loc (void)
4459 {
4460 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4461 &entry_values_debug,
4462 _("Set entry values and tail call frames "
4463 "debugging."),
4464 _("Show entry values and tail call frames "
4465 "debugging."),
4466 _("When non-zero, the process of determining "
4467 "parameter values from function entry point "
4468 "and tail call frames will be printed."),
4469 NULL,
4470 show_entry_values_debug,
4471 &setdebuglist, &showdebuglist);
4472 }