]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
gdb/dwarf2read: Minimal handling of non-constant struct sizes.
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72 #include "namespace.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1612
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1625
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1629
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1631 struct type *,
1632 struct dwarf2_cu *);
1633
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1639
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
1642 static struct using_direct **using_directives (enum language);
1643
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1653
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1655
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1657
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1660
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1663 struct die_info *);
1664
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1669
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
1673
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
1677
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1679
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
1682
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1684
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1694
1695 static const char *dwarf_tag_name (unsigned int);
1696
1697 static const char *dwarf_attr_name (unsigned int);
1698
1699 static const char *dwarf_form_name (unsigned int);
1700
1701 static char *dwarf_bool_name (unsigned int);
1702
1703 static const char *dwarf_type_encoding_name (unsigned int);
1704
1705 static struct die_info *sibling_die (struct die_info *);
1706
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709 static void dump_die_for_error (struct die_info *);
1710
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
1713
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1715
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1718
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1720
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1722
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1726
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1730
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1734
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1741
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1743
1744 static void read_signatured_type (struct signatured_type *);
1745
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
1750 /* memory allocation interface */
1751
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1753
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1755
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1757
1758 static int attr_form_is_block (const struct attribute *);
1759
1760 static int attr_form_is_section_offset (const struct attribute *);
1761
1762 static int attr_form_is_constant (const struct attribute *);
1763
1764 static int attr_form_is_ref (const struct attribute *);
1765
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1769
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1771 struct symbol *sym,
1772 struct dwarf2_cu *cu,
1773 int is_block);
1774
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1778
1779 static void free_stack_comp_unit (void *);
1780
1781 static hashval_t partial_die_hash (const void *item);
1782
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1787
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1790
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1794
1795 static void free_heap_comp_unit (void *);
1796
1797 static void free_cached_comp_units (void *);
1798
1799 static void age_cached_comp_units (void);
1800
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1802
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1805
1806 static void create_all_comp_units (struct objfile *);
1807
1808 static int create_all_type_units (struct objfile *);
1809
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
1812
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
1815
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
1822 static void dwarf2_mark (struct dwarf2_cu *);
1823
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1828
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_release_queue (void *dummy);
1832
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
1836 static void process_queue (void);
1837
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1841
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1850
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1859
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1861
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1867
1868 static struct dwp_file *get_dwp_file (void);
1869
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1872
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1875
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
1878 static void free_dwo_file_cleanup (void *);
1879
1880 static void process_cu_includes (void);
1881
1882 static void check_producer (struct dwarf2_cu *cu);
1883
1884 static void free_line_header_voidp (void *arg);
1885 \f
1886 /* Various complaints about symbol reading that don't abort the process. */
1887
1888 static void
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893 }
1894
1895 static void
1896 dwarf2_debug_line_missing_file_complaint (void)
1897 {
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900 }
1901
1902 static void
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1904 {
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908 }
1909
1910 static void
1911 dwarf2_complex_location_expr_complaint (void)
1912 {
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914 }
1915
1916 static void
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919 {
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923 }
1924
1925 static void
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927 {
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
1931 get_section_name (section),
1932 get_section_file_name (section));
1933 }
1934
1935 static void
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937 {
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942 }
1943
1944 static void
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946 {
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950 }
1951
1952 /* Hash function for line_header_hash. */
1953
1954 static hashval_t
1955 line_header_hash (const struct line_header *ofs)
1956 {
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958 }
1959
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962 static hashval_t
1963 line_header_hash_voidp (const void *item)
1964 {
1965 const struct line_header *ofs = (const struct line_header *) item;
1966
1967 return line_header_hash (ofs);
1968 }
1969
1970 /* Equality function for line_header_hash. */
1971
1972 static int
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974 {
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980 }
1981
1982 \f
1983 #if WORDS_BIGENDIAN
1984
1985 /* Convert VALUE between big- and little-endian. */
1986 static offset_type
1987 byte_swap (offset_type value)
1988 {
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996 }
1997
1998 #define MAYBE_SWAP(V) byte_swap (V)
1999
2000 #else
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2003
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007 static CORE_ADDR
2008 attr_value_as_address (struct attribute *attr)
2009 {
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032 }
2033
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2036
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2041
2042 int
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2045 {
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2053
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2057
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2066 }
2067
2068 /* Return the containing section of virtual section SECTION. */
2069
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2072 {
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2075 }
2076
2077 /* Return the bfd owner of SECTION. */
2078
2079 static struct bfd *
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2081 {
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
2087 return section->s.section->owner;
2088 }
2089
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093 static asection *
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2095 {
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
2101 return section->s.section;
2102 }
2103
2104 /* Return the name of SECTION. */
2105
2106 static const char *
2107 get_section_name (const struct dwarf2_section_info *section)
2108 {
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113 }
2114
2115 /* Return the name of the file SECTION is in. */
2116
2117 static const char *
2118 get_section_file_name (const struct dwarf2_section_info *section)
2119 {
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123 }
2124
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128 static int
2129 get_section_id (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136 }
2137
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2140
2141 static int
2142 get_section_flags (const struct dwarf2_section_info *section)
2143 {
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148 }
2149
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2152
2153 static int
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2156 {
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
2164 }
2165
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170 static void
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2172 {
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
2185 {
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->abbrev))
2190 {
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->line))
2195 {
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->loc))
2200 {
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->macinfo))
2205 {
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->str))
2215 {
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->frame))
2225 {
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2228 }
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2230 {
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2233 }
2234 else if (section_is_p (sectp->name, &names->ranges))
2235 {
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2238 }
2239 else if (section_is_p (sectp->name, &names->types))
2240 {
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
2249 }
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2251 {
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
2255
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2259 }
2260
2261 /* A helper function that decides whether a section is empty,
2262 or not present. */
2263
2264 static int
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2266 {
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2270 }
2271
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
2276 If the section is compressed, uncompress it before returning. */
2277
2278 static void
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2280 {
2281 asection *sectp;
2282 bfd *abfd;
2283 gdb_byte *buf, *retbuf;
2284
2285 if (info->readin)
2286 return;
2287 info->buffer = NULL;
2288 info->readin = 1;
2289
2290 if (dwarf2_section_empty_p (info))
2291 return;
2292
2293 sectp = get_section_bfd_section (info);
2294
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2323 {
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2325 return;
2326 }
2327
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2329 info->buffer = buf;
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
2352 }
2353
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364 {
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368 }
2369
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2371 SECTION_NAME. */
2372
2373 void
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2378 {
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
2404
2405 dwarf2_read_section (objfile, info);
2406
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410 }
2411
2412 /* A helper function to find the sections for a .dwz file. */
2413
2414 static void
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416 {
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
2451 }
2452
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2456
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2459 {
2460 bfd *dwz_bfd;
2461 char *data;
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2466 size_t buildid_len;
2467 bfd_byte *buildid;
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2484
2485 buildid_len = (size_t) buildid_len_arg;
2486
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2506 {
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
2512 }
2513
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2531 return result;
2532 }
2533 \f
2534 /* DWARF quick_symbols_functions support. */
2535
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2542 {
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556 };
2557
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2562 {
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579 };
2580
2581 /* Utility hash function for a stmt_list_hash. */
2582
2583 static hashval_t
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585 {
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592 }
2593
2594 /* Utility equality function for a stmt_list_hash. */
2595
2596 static int
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599 {
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607 }
2608
2609 /* Hash function for a quick_file_names. */
2610
2611 static hashval_t
2612 hash_file_name_entry (const void *e)
2613 {
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2616
2617 return hash_stmt_list_entry (&file_data->hash);
2618 }
2619
2620 /* Equality function for a quick_file_names. */
2621
2622 static int
2623 eq_file_name_entry (const void *a, const void *b)
2624 {
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2627
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2629 }
2630
2631 /* Delete function for a quick_file_names. */
2632
2633 static void
2634 delete_file_name_entry (void *e)
2635 {
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648 }
2649
2650 /* Create a quick_file_names hash table. */
2651
2652 static htab_t
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2654 {
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658 }
2659
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664 static void
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2666 {
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2669 else
2670 load_full_comp_unit (per_cu, language_minimal);
2671
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2676 }
2677
2678 /* Read in the symbols for PER_CU. */
2679
2680 static void
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2682 {
2683 struct cleanup *back_to;
2684
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2710 }
2711
2712 process_queue ();
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719 }
2720
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2724
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2727 {
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2736 }
2737
2738 return per_cu->v.quick->compunit_symtab;
2739 }
2740
2741 /* Return the CU/TU given its index.
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2749
2750 ...;
2751 }
2752 */
2753
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2756 {
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765 }
2766
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
2770
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2773 {
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2775
2776 return dwarf2_per_objfile->all_comp_units[index];
2777 }
2778
2779 /* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2781
2782 static void
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
2788 {
2789 offset_type i;
2790
2791 for (i = 0; i < n_elements; i += 2)
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2811 }
2812 }
2813
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2816
2817 static void
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821 {
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2828
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2831
2832 if (dwz_elements == 0)
2833 return;
2834
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2838 }
2839
2840 /* Create the signatured type hash table from the index. */
2841
2842 static void
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2847 {
2848 offset_type i;
2849 htab_t sig_types_hash;
2850
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2856
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2863 void **slot;
2864
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
2886
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2888 }
2889
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2891 }
2892
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2895
2896 static void
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898 {
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
2924
2925 if (lo > hi)
2926 {
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2930 continue;
2931 }
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2938 continue;
2939 }
2940
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949 }
2950
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2958
2959 static hashval_t
2960 mapped_index_string_hash (int index_version, const void *p)
2961 {
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
2972
2973 return r;
2974 }
2975
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2979
2980 static int
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983 {
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2988
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
2996
2997 if (strchr (name, '(') != NULL)
2998 {
2999 char *without_params = cp_remove_params (name);
3000
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
3006 }
3007 }
3008
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
3031
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3038 return 1;
3039 }
3040
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3042 }
3043 }
3044
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
3055
3056 static int
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3066 {
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3070 int i;
3071
3072 if (dwarf2_section_empty_p (section))
3073 return 0;
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3078 return 0;
3079
3080 dwarf2_read_section (objfile, section);
3081
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3088 indices. */
3089 if (version < 4)
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3095 filename);
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("\
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3117 filename);
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3129
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3132 if (version > 8)
3133 return 0;
3134
3135 map->version = version;
3136 map->total_size = section->size;
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3139
3140 i = 0;
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
3144 ++i;
3145
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
3150 ++i;
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3161 ++i;
3162
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3164
3165 return 1;
3166 }
3167
3168
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172 static int
3173 dwarf2_read_index (struct objfile *objfile)
3174 {
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3179
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3189 return 0;
3190
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
3195 {
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
3215
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3230 }
3231
3232 create_addrmap_from_index (objfile, &local_map);
3233
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3235 *map = local_map;
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3241
3242 return 1;
3243 }
3244
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3247
3248 static void
3249 dw2_setup (struct objfile *objfile)
3250 {
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3254 }
3255
3256 /* die_reader_func for dw2_get_file_names. */
3257
3258 static void
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
3264 {
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3271 int i;
3272 const char *name, *comp_dir;
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3276
3277 gdb_assert (! this_cu->is_debug_types);
3278
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 lh_cu = this_cu;
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3293 if (attr)
3294 {
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3308 return;
3309 }
3310
3311 lh = dwarf_decode_line_header (line_offset, cu);
3312 }
3313 if (lh == NULL)
3314 {
3315 lh_cu->v.quick->no_file_data = 1;
3316 return;
3317 }
3318
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
3324
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3326
3327 qfn->num_file_names = lh->num_file_names;
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3333
3334 free_line_header (lh);
3335
3336 lh_cu->v.quick->file_names = qfn;
3337 }
3338
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3344 {
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3349
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
3361 }
3362
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3365
3366 static const char *
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3369 {
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3373
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3376
3377 return qfn->real_names[index];
3378 }
3379
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3382 {
3383 struct compunit_symtab *cust;
3384 int index;
3385
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
3392 }
3393
3394 /* Traversal function for dw2_forget_cached_source_info. */
3395
3396 static int
3397 dw2_free_cached_file_names (void **slot, void *info)
3398 {
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3400
3401 if (file_data->real_names)
3402 {
3403 int i;
3404
3405 for (i = 0; i < file_data->num_file_names; ++i)
3406 {
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3409 }
3410 }
3411
3412 return 1;
3413 }
3414
3415 static void
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3417 {
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3422 }
3423
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427 static int
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433 {
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3435
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
3442 dw2_instantiate_symtab (per_cu);
3443
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3446 }
3447
3448 /* Implementation of the map_symtabs_matching_filename method. */
3449
3450 static int
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
3455 {
3456 int i;
3457 const char *name_basename = lbasename (name);
3458
3459 dw2_setup (objfile);
3460
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3463
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3465 {
3466 int j;
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3469
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3472 continue;
3473
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3476 continue;
3477
3478 for (j = 0; j < file_data->num_file_names; ++j)
3479 {
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3482
3483 if (compare_filenames_for_search (this_name, name))
3484 {
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3486 callback, data))
3487 return 1;
3488 continue;
3489 }
3490
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3499 {
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
3503 continue;
3504 }
3505
3506 if (real_path != NULL)
3507 {
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3512 {
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3514 callback, data))
3515 return 1;
3516 continue;
3517 }
3518 }
3519 }
3520 }
3521
3522 return 0;
3523 }
3524
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527 struct dw2_symtab_iterator
3528 {
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
3550 };
3551
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3555
3556 static void
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563 {
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
3569 iter->global_seen = 0;
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578 }
3579
3580 /* Return the next matching CU or NULL if there are no more. */
3581
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584 {
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3612 continue;
3613 }
3614
3615 per_cu = dw2_get_cutu (cu_index);
3616
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3619 continue;
3620
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664 }
3665
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3669 {
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3672
3673 dw2_setup (objfile);
3674
3675 index = dwarf2_per_objfile->index_table;
3676
3677 /* index is NULL if OBJF_READNOW. */
3678 if (index)
3679 {
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3684
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3686 {
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3691
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3699
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
3706
3707 /* Keep looking through other CUs. */
3708 }
3709 }
3710
3711 return stab_best;
3712 }
3713
3714 static void
3715 dw2_print_stats (struct objfile *objfile)
3716 {
3717 int i, total, count;
3718
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3721 count = 0;
3722 for (i = 0; i < total; ++i)
3723 {
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725
3726 if (!per_cu->v.quick->compunit_symtab)
3727 ++count;
3728 }
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731 }
3732
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
3738 static void
3739 dw2_dump (struct objfile *objfile)
3740 {
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3752 }
3753
3754 static void
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3758 {
3759 /* There's nothing to relocate here. */
3760 }
3761
3762 static void
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765 {
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
3785 }
3786
3787 static void
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3789 {
3790 int i;
3791
3792 dw2_setup (objfile);
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3796 {
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3798
3799 dw2_instantiate_symtab (per_cu);
3800 }
3801 }
3802
3803 static void
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3817 {
3818 int j;
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3821
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
3835 {
3836 dw2_instantiate_symtab (per_cu);
3837 break;
3838 }
3839 }
3840 }
3841 }
3842
3843 static void
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3846 int global,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3851 {
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3855 }
3856
3857 static void
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3864 void *data)
3865 {
3866 int i;
3867 offset_type iter;
3868 struct mapped_index *index;
3869
3870 dw2_setup (objfile);
3871
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
3875 index = dwarf2_per_objfile->index_table;
3876
3877 if (file_matcher != NULL)
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3895 {
3896 int j;
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3899 void **slot;
3900
3901 QUIT;
3902
3903 per_cu->v.quick->mark = 0;
3904
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3907 continue;
3908
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3911 continue;
3912
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
3923 const char *this_real_name;
3924
3925 if (file_matcher (file_data->file_names[j], data, 0))
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
3955
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3962
3963 QUIT;
3964
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3966 continue;
3967
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3969
3970 if (! (*symbol_matcher) (name, data))
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4033 continue;
4034 }
4035
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
4052 }
4053 }
4054 }
4055
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4057 symtab. */
4058
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
4062 {
4063 int i;
4064
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
4068
4069 if (cust->includes == NULL)
4070 return NULL;
4071
4072 for (i = 0; cust->includes[i]; ++i)
4073 {
4074 struct compunit_symtab *s = cust->includes[i];
4075
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
4090 {
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
4101 if (!data)
4102 return NULL;
4103
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4107
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
4111 gdb_assert (result != NULL);
4112 return result;
4113 }
4114
4115 static void
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4118 {
4119 int i;
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4123
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4126
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4130
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4132 {
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134
4135 if (per_cu->v.quick->compunit_symtab)
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4145 {
4146 int j;
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4149 void **slot;
4150
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4153 continue;
4154
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4157 continue;
4158
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
4167 for (j = 0; j < file_data->num_file_names; ++j)
4168 {
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4176 }
4177 }
4178
4179 do_cleanups (cleanup);
4180 }
4181
4182 static int
4183 dw2_has_symbols (struct objfile *objfile)
4184 {
4185 return 1;
4186 }
4187
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189 {
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4194 dw2_lookup_symbol,
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4205 };
4206
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210 int
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4212 {
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4226
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4229 {
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4231
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
4245 return 0;
4246 }
4247
4248 \f
4249
4250 /* Build a partial symbol table. */
4251
4252 void
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4254 {
4255
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
4261 TRY
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
4276 }
4277
4278 /* Return the total length of the CU described by HEADER. */
4279
4280 static unsigned int
4281 get_cu_length (const struct comp_unit_head *header)
4282 {
4283 return header->initial_length_size + header->length;
4284 }
4285
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288 static inline int
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4290 {
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4293
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4295 }
4296
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303 static void
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305 {
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
4314 cu->base_address = attr_value_as_address (attr);
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
4322 cu->base_address = attr_value_as_address (attr);
4323 cu->base_known = 1;
4324 }
4325 }
4326 }
4327
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
4331
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4335 {
4336 int signed_addr;
4337 unsigned int bytes_read;
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4355
4356 return info_ptr;
4357 }
4358
4359 /* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364 {
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373 }
4374
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379 static void
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4383 {
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
4392 if (header->abbrev_offset.sect_off
4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
4405 (long) header->length, (long) header->offset.sect_off,
4406 filename);
4407 }
4408
4409 /* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
4412
4413 static const gdb_byte *
4414 read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4416 struct dwarf2_section_info *abbrev_section,
4417 const gdb_byte *info_ptr,
4418 int is_debug_types_section)
4419 {
4420 const gdb_byte *beg_of_comp_unit = info_ptr;
4421 bfd *abfd = get_section_bfd_owner (section);
4422
4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4424
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
4429 if (is_debug_types_section)
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4433
4434 error_check_comp_unit_head (header, section, abbrev_section);
4435
4436 return info_ptr;
4437 }
4438
4439 /* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
4442 static const gdb_byte *
4443 read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4445 struct dwarf2_section_info *abbrev_section,
4446 const gdb_byte *info_ptr,
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
4449 {
4450 const gdb_byte *beg_of_comp_unit = info_ptr;
4451 bfd *abfd = get_section_bfd_owner (section);
4452
4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4454
4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4456
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
4465 info_ptr += header->offset_size;
4466
4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4468
4469 error_check_comp_unit_head (header, section, abbrev_section);
4470
4471 return info_ptr;
4472 }
4473
4474 /* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476 static sect_offset
4477 read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479 {
4480 bfd *abfd = get_section_bfd_owner (section);
4481 const gdb_byte *info_ptr;
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492 }
4493
4494 /* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497 static void
4498 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4499 struct objfile *objfile)
4500 {
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
4521 subpst->compunit_symtab = NULL;
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
4527 the regular ones. */
4528 subpst->read_symtab_private = NULL;
4529 }
4530
4531 /* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
4533 partial symtab for each of these included files. */
4534
4535 static void
4536 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4537 struct die_info *die,
4538 struct partial_symtab *pst)
4539 {
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
4542
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4551
4552 free_line_header (lh);
4553 }
4554
4555 static hashval_t
4556 hash_signatured_type (const void *item)
4557 {
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
4560
4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4562 return sig_type->signature;
4563 }
4564
4565 static int
4566 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4567 {
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4570
4571 return lhs->signature == rhs->signature;
4572 }
4573
4574 /* Allocate a hash table for signatured types. */
4575
4576 static htab_t
4577 allocate_signatured_type_table (struct objfile *objfile)
4578 {
4579 return htab_create_alloc_ex (41,
4580 hash_signatured_type,
4581 eq_signatured_type,
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586 }
4587
4588 /* A helper function to add a signatured type CU to a table. */
4589
4590 static int
4591 add_signatured_type_cu_to_table (void **slot, void *datum)
4592 {
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
4595
4596 **datap = sigt;
4597 ++*datap;
4598
4599 return 1;
4600 }
4601
4602 /* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
4610
4611 static htab_t
4612 create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
4614 {
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 htab_t types_htab = NULL;
4617 int ix;
4618 struct dwarf2_section_info *section;
4619 struct dwarf2_section_info *abbrev_section;
4620
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
4623
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
4628 if (dwarf_read_debug)
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
4631 get_section_file_name (abbrev_section));
4632
4633 for (ix = 0;
4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4635 ++ix)
4636 {
4637 bfd *abfd;
4638 const gdb_byte *info_ptr, *end_ptr;
4639
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
4642
4643 if (info_ptr == NULL)
4644 continue;
4645
4646 /* We can't set abfd until now because the section may be empty or
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
4649
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
4657 sect_offset offset;
4658 cu_offset type_offset_in_tu;
4659 ULONGEST signature;
4660 struct signatured_type *sig_type;
4661 struct dwo_unit *dwo_tu;
4662 void **slot;
4663 const gdb_byte *ptr = info_ptr;
4664 struct comp_unit_head header;
4665 unsigned int length;
4666
4667 offset.sect_off = ptr - section->buffer;
4668
4669 /* We need to read the type's signature in order to build the hash
4670 table, but we don't need anything else just yet. */
4671
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
4674 &signature, &type_offset_in_tu);
4675
4676 length = get_cu_length (&header);
4677
4678 /* Skip dummy type units. */
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
4681 {
4682 info_ptr += length;
4683 continue;
4684 }
4685
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4702 dwo_tu->section = section;
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
4717 sig_type->per_cu.section = section;
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
4721
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
4744
4745 complaint (&symfile_complaints,
4746 _("debug type entry at offset 0x%x is duplicate to"
4747 " the entry at offset 0x%x, signature %s"),
4748 offset.sect_off, dup_offset.sect_off,
4749 hex_string (signature));
4750 }
4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4752
4753 if (dwarf_read_debug > 1)
4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4755 offset.sect_off,
4756 hex_string (signature));
4757
4758 info_ptr += length;
4759 }
4760 }
4761
4762 return types_htab;
4763 }
4764
4765 /* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770 static int
4771 create_all_type_units (struct objfile *objfile)
4772 {
4773 htab_t types_htab;
4774 struct signatured_type **iter;
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
4794
4795 return 1;
4796 }
4797
4798 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802 static struct signatured_type *
4803 add_type_unit (ULONGEST sig, void **slot)
4804 {
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845 }
4846
4847 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850 static void
4851 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854 {
4855 /* Make sure we're not clobbering something we don't expect to. */
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877 }
4878
4879 /* Subroutine of lookup_signatured_type.
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891 static struct signatured_type *
4892 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893 {
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
4898 void **slot;
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
4909
4910 /* We only ever need to read in one copy of a signatured type.
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
4915
4916 find_sig_entry.signature = sig;
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
4919 sig_entry = (struct signatured_type *) *slot;
4920
4921 /* We can get here with the TU already read, *or* in the process of being
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4931 return sig_entry;
4932
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4950 sig_entry->per_cu.tu_read = 1;
4951 return sig_entry;
4952 }
4953
4954 /* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
4958
4959 static struct signatured_type *
4960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961 {
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
4966 void **slot;
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
4974 {
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
4977 }
4978
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
4982 sig_entry = (struct signatured_type *) *slot;
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
4990 if (dwp_file->tus == NULL)
4991 return NULL;
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
4997 sig_entry = add_type_unit (sig, slot);
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
5000 return sig_entry;
5001 }
5002
5003 /* Lookup a signature based type for DW_FORM_ref_sig8.
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
5006
5007 static struct signatured_type *
5008 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5009 {
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
5023
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5029 return entry;
5030 }
5031 }
5032 \f
5033 /* Low level DIE reading support. */
5034
5035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037 static void
5038 init_cu_die_reader (struct die_reader_specs *reader,
5039 struct dwarf2_cu *cu,
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
5042 {
5043 gdb_assert (section->readin && section->buffer != NULL);
5044 reader->abfd = get_section_bfd_owner (section);
5045 reader->cu = cu;
5046 reader->dwo_file = dwo_file;
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
5049 reader->buffer_end = section->buffer + section->size;
5050 reader->comp_dir = NULL;
5051 }
5052
5053 /* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070 static int
5071 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
5075 const char *stub_comp_dir,
5076 struct die_reader_specs *result_reader,
5077 const gdb_byte **result_info_ptr,
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080 {
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
5085 const gdb_byte *begin_info_ptr, *info_ptr;
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5095
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
5149 abfd = get_section_bfd_owner (section);
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5204 /* Ensure the DWO abbrev table gets freed. */
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5211 /* Leave any existing abbrev table cleanup as is. */
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
5241 if (dwarf_die_debug)
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
5245 get_section_name (section),
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
5248 dump_die (comp_unit_die, dwarf_die_debug);
5249 }
5250
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265 }
5266
5267 /* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5269 Returns NULL if the specified DWO unit cannot be found. */
5270
5271 static struct dwo_unit *
5272 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274 {
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
5281 gdb_assert (cu != NULL);
5282
5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
5305 dwo_name, objfile_name (this_cu->objfile));
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
5311 return dwo_unit;
5312 }
5313
5314 /* Subroutine of init_cutu_and_read_dies to simplify it.
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
5322
5323 static void
5324 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328 {
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
5356 cu = XNEW (struct dwarf2_cu);
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
5381 /* This duplicates the code in init_cutu_and_read_dies,
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
5385 if (free_cu_cleanup != NULL)
5386 {
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
5392
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
5396
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
5403 }
5404
5405 do_cleanups (cleanups);
5406 }
5407
5408 /* Initialize a CU (or TU) and read its DIEs.
5409 If the CU defers to a DWO file, read the DWO file as well.
5410
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5422 linker) then DIE_READER_FUNC will not get called. */
5423
5424 static void
5425 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5426 struct abbrev_table *abbrev_table,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
5430 {
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct dwarf2_section_info *section = this_cu->section;
5433 bfd *abfd = get_section_bfd_owner (section);
5434 struct dwarf2_cu *cu;
5435 const gdb_byte *begin_info_ptr, *info_ptr;
5436 struct die_reader_specs reader;
5437 struct die_info *comp_unit_die;
5438 int has_children;
5439 struct attribute *attr;
5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5441 struct signatured_type *sig_type = NULL;
5442 struct dwarf2_section_info *abbrev_section;
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
5446 int rereading_dwo_cu = 0;
5447
5448 if (dwarf_die_debug)
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
5453 if (use_existing_cu)
5454 gdb_assert (keep);
5455
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
5465 return;
5466 }
5467
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
5493 cu = XNEW (struct dwarf2_cu);
5494 init_one_comp_unit (cu, this_cu);
5495 /* If an error occurs while loading, release our storage. */
5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5497 }
5498
5499 /* Get the header. */
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
5507 if (this_cu->is_debug_types)
5508 {
5509 ULONGEST signature;
5510 cu_offset type_offset_in_tu;
5511
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
5514 &signature,
5515 &type_offset_in_tu);
5516
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
5527 this_cu->length = get_cu_length (&cu->header);
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5532 }
5533 else
5534 {
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5541 }
5542 }
5543
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
5548 do_cleanups (cleanups);
5549 return;
5550 }
5551
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
5565 {
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
5574
5575 /* Read the top level CU/TU die. */
5576 init_cu_die_reader (&reader, cu, section, NULL);
5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5578
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
5586 struct dwo_unit *dwo_unit;
5587 struct die_info *dwo_comp_unit_die;
5588
5589 if (has_children)
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5597 if (dwo_unit != NULL)
5598 {
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
5601 comp_unit_die, NULL,
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
5618 }
5619 }
5620
5621 /* All of the above is setup for this call. Yikes. */
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
5624 /* Done, clean up. */
5625 if (free_cu_cleanup != NULL)
5626 {
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5632
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5636
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
5643 }
5644
5645 do_cleanups (cleanups);
5646 }
5647
5648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5653 THIS_CU->is_debug_types, but nothing else.
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
5663
5664 static void
5665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5666 struct dwo_file *dwo_file,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_section_info *abbrev_section;
5674 struct dwarf2_cu cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
5681 if (dwarf_die_debug)
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
5686 gdb_assert (this_cu->cu == NULL);
5687
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
5702 this_cu->is_debug_types);
5703
5704 this_cu->length = get_cu_length (&cu.header);
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
5709 {
5710 do_cleanups (cleanups);
5711 return;
5712 }
5713
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723 }
5724
5725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
5728
5729 THIS_CU->cu is always freed when done.
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
5733
5734 static void
5735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738 {
5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5740 }
5741 \f
5742 /* Type Unit Groups.
5743
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
5749
5750 static hashval_t
5751 hash_type_unit_group (const void *item)
5752 {
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
5755
5756 return hash_stmt_list_entry (&tu_group->hash);
5757 }
5758
5759 static int
5760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5761 {
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5764
5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5766 }
5767
5768 /* Allocate a hash table for type unit groups. */
5769
5770 static htab_t
5771 allocate_type_unit_groups_table (void)
5772 {
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780 }
5781
5782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5787
5788 /* Helper routine for get_type_unit_group.
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791 static struct type_unit_group *
5792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5793 {
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
5795 struct dwarf2_per_cu_data *per_cu;
5796 struct type_unit_group *tu_group;
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
5800 per_cu = &tu_group->per_cu;
5801 per_cu->objfile = objfile;
5802
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
5823
5824 xfree (name);
5825 }
5826
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
5829
5830 return tu_group;
5831 }
5832
5833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
5835
5836 static struct type_unit_group *
5837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5838 {
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
5877 tu_group = (struct type_unit_group *) *slot;
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
5885 tu_group = create_type_unit_group (cu, line_offset_struct);
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891 }
5892 \f
5893 /* Partial symbol tables. */
5894
5895 /* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900 static struct partial_symtab *
5901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902 {
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
5906 pst = start_psymtab_common (objfile, name, 0,
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918 }
5919
5920 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923 struct process_psymtab_comp_unit_data
5924 {
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933 };
5934
5935 /* die_reader_func for process_psymtab_comp_unit. */
5936
5937 static void
5938 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5939 const gdb_byte *info_ptr,
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943 {
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
5955
5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
5968 filename = "";
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6024
6025 end_psymtab_common (objfile, pst);
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
6051 if (dwarf_read_debug)
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064 }
6065
6066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069 static void
6070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6071 int want_partial_unit,
6072 enum language pretend_language)
6073 {
6074 struct process_psymtab_comp_unit_data info;
6075
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
6089 &info);
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093 }
6094
6095 /* Reader function for build_type_psymtabs. */
6096
6097 static void
6098 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6099 const gdb_byte *info_ptr,
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103 {
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6107 struct signatured_type *sig_type;
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6122 tu_group = get_type_unit_group (cu, attr);
6123
6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
6137 end_psymtab_common (objfile, pst);
6138 }
6139
6140 /* Struct used to sort TUs by their abbreviation table offset. */
6141
6142 struct tu_abbrev_offset
6143 {
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146 };
6147
6148 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150 static int
6151 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152 {
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161 }
6162
6163 /* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181 static void
6182 build_type_psymtabs_1 (void)
6183 {
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
6218 if (dwarf_read_debug)
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
6268 do_cleanups (cleanups);
6269 }
6270
6271 /* Print collected type unit statistics. */
6272
6273 static void
6274 print_tu_stats (void)
6275 {
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
6291 }
6292
6293 /* Traversal function for build_type_psymtabs. */
6294
6295 static int
6296 build_type_psymtab_dependencies (void **slot, void *info)
6297 {
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6301 struct partial_symtab *pst = per_cu->v.psymtab;
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
6304 int i;
6305
6306 gdb_assert (len > 0);
6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6308
6309 pst->number_of_dependencies = len;
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6312 for (i = 0;
6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6314 ++i)
6315 {
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
6318 iter->type_unit_group = tu_group;
6319 }
6320
6321 VEC_free (sig_type_ptr, tu_group->tus);
6322
6323 return 1;
6324 }
6325
6326 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329 static void
6330 build_type_psymtabs (struct objfile *objfile)
6331 {
6332 if (! create_all_type_units (objfile))
6333 return;
6334
6335 build_type_psymtabs_1 ();
6336 }
6337
6338 /* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341 static int
6342 process_skeletonless_type_unit (void **slot, void *info)
6343 {
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6345 struct objfile *objfile = (struct objfile *) info;
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375 }
6376
6377 /* Traversal function for process_skeletonless_type_units. */
6378
6379 static int
6380 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381 {
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391 }
6392
6393 /* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397 static void
6398 process_skeletonless_type_units (struct objfile *objfile)
6399 {
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
6408 }
6409
6410 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412 static void
6413 psymtabs_addrmap_cleanup (void *o)
6414 {
6415 struct objfile *objfile = (struct objfile *) o;
6416
6417 objfile->psymtabs_addrmap = NULL;
6418 }
6419
6420 /* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422 static void
6423 set_partial_user (struct objfile *objfile)
6424 {
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
6433 if (pst == NULL)
6434 continue;
6435
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443 }
6444
6445 /* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
6447
6448 static void
6449 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6450 {
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
6453 int i;
6454
6455 if (dwarf_read_debug)
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6458 objfile_name (objfile));
6459 }
6460
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6464
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
6468
6469 build_type_psymtabs (objfile);
6470
6471 create_all_comp_units (objfile);
6472
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6479
6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6481 {
6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6483
6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6485 }
6486
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
6497 if (dwarf_read_debug)
6498 print_tu_stats ();
6499
6500 set_partial_user (objfile);
6501
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
6504 discard_cleanups (addrmap_cleanup);
6505
6506 do_cleanups (back_to);
6507
6508 if (dwarf_read_debug)
6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6510 objfile_name (objfile));
6511 }
6512
6513 /* die_reader_func for load_partial_comp_unit. */
6514
6515 static void
6516 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6517 const gdb_byte *info_ptr,
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
6521 {
6522 struct dwarf2_cu *cu = reader->cu;
6523
6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6525
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
6528 If not, there's no more debug_info for this comp unit. */
6529 if (has_children)
6530 load_partial_dies (reader, info_ptr, 0);
6531 }
6532
6533 /* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
6535
6536 static void
6537 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538 {
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
6541 }
6542
6543 static void
6544 read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
6550 {
6551 const gdb_byte *info_ptr;
6552 bfd *abfd = get_section_bfd_owner (section);
6553
6554 if (dwarf_read_debug)
6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6556 get_section_name (section),
6557 get_section_file_name (section));
6558
6559 dwarf2_read_section (objfile, section);
6560
6561 info_ptr = section->buffer;
6562
6563 while (info_ptr < section->buffer + section->size)
6564 {
6565 unsigned int length, initial_length_size;
6566 struct dwarf2_per_cu_data *this_cu;
6567 sect_offset offset;
6568
6569 offset.sect_off = info_ptr - section->buffer;
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6574
6575 /* Save the compilation unit for later lookup. */
6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
6579 this_cu->length = length + initial_length_size;
6580 this_cu->is_dwz = is_dwz;
6581 this_cu->objfile = objfile;
6582 this_cu->section = section;
6583
6584 if (*n_comp_units == *n_allocated)
6585 {
6586 *n_allocated *= 2;
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
6589 }
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
6595 }
6596
6597 /* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600 static void
6601 create_all_comp_units (struct objfile *objfile)
6602 {
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
6606 struct dwz_file *dwz;
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
6620
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
6628 }
6629
6630 /* Process all loaded DIEs for compilation unit CU, starting at
6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6635
6636 static void
6637 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
6640 {
6641 struct partial_die_info *pdi;
6642
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
6646
6647 pdi = first_die;
6648
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
6652
6653 /* Anonymous namespaces or modules have no name but have interesting
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
6656
6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
6660 {
6661 switch (pdi->tag)
6662 {
6663 case DW_TAG_subprogram:
6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6665 break;
6666 case DW_TAG_constant:
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
6669 case DW_TAG_union_type:
6670 if (!pdi->is_declaration)
6671 {
6672 add_partial_symbol (pdi, cu);
6673 }
6674 break;
6675 case DW_TAG_class_type:
6676 case DW_TAG_interface_type:
6677 case DW_TAG_structure_type:
6678 if (!pdi->is_declaration)
6679 {
6680 add_partial_symbol (pdi, cu);
6681 }
6682 break;
6683 case DW_TAG_enumeration_type:
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
6686 break;
6687 case DW_TAG_base_type:
6688 case DW_TAG_subrange_type:
6689 /* File scope base type definitions are added to the partial
6690 symbol table. */
6691 add_partial_symbol (pdi, cu);
6692 break;
6693 case DW_TAG_namespace:
6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6695 break;
6696 case DW_TAG_module:
6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6698 break;
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
6708 objfile_name (cu->objfile));
6709 }
6710
6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6712 pdi->is_dwz,
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
6718
6719 VEC_safe_push (dwarf2_per_cu_ptr,
6720 cu->per_cu->imported_symtabs, per_cu);
6721 }
6722 break;
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
6726 default:
6727 break;
6728 }
6729 }
6730
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735 }
6736
6737 /* Functions used to compute the fully scoped name of a partial DIE.
6738
6739 Normally, this is simple. For C++, the parent DIE's fully scoped
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
6745
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757 /* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
6761 static const char *
6762 partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764 {
6765 const char *grandparent_scope;
6766 struct partial_die_info *parent, *real_pdi;
6767
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
6772 while (real_pdi->has_specification)
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
6785 grandparent_scope = partial_die_parent_scope (parent, cu);
6786
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6791 && parent->tag == DW_TAG_namespace
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
6804 || parent->tag == DW_TAG_module
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
6807 || parent->tag == DW_TAG_interface_type
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
6816 parent->name, 0, cu);
6817 }
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
6824 _("unhandled containing DIE tag %d for DIE at %d"),
6825 parent->tag, pdi->offset.sect_off);
6826 parent->scope = grandparent_scope;
6827 }
6828
6829 parent->scope_set = 1;
6830 return parent->scope;
6831 }
6832
6833 /* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
6835
6836 static char *
6837 partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839 {
6840 const char *parent_scope;
6841
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
6856 /* DW_FORM_ref_addr is using section offset. */
6857 attr.name = (enum dwarf_attribute) 0;
6858 attr.form = DW_FORM_ref_addr;
6859 attr.u.unsnd = pdi->offset.sect_off;
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6871 }
6872
6873 static void
6874 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6875 {
6876 struct objfile *objfile = cu->objfile;
6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6878 CORE_ADDR addr = 0;
6879 const char *actual_name = NULL;
6880 CORE_ADDR baseaddr;
6881 char *built_actual_name;
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6884
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
6888
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6896 if (pdi->is_external || cu->language == language_ada)
6897 {
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6907 }
6908 else
6909 {
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6983 cu->language, objfile);
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
6988 case DW_TAG_subrange_type:
6989 add_psymbol_to_list (actual_name, strlen (actual_name),
6990 built_actual_name != NULL,
6991 VAR_DOMAIN, LOC_TYPEDEF,
6992 &objfile->static_psymbols,
6993 0, cu->language, objfile);
6994 break;
6995 case DW_TAG_imported_declaration:
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
7001 0, cu->language, objfile);
7002 break;
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
7008 0, cu->language, objfile);
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_interface_type:
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
7021 {
7022 xfree (built_actual_name);
7023 return;
7024 }
7025
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 STRUCT_DOMAIN, LOC_TYPEDEF,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, cu->language, objfile);
7036
7037 break;
7038 case DW_TAG_enumerator:
7039 add_psymbol_to_list (actual_name, strlen (actual_name),
7040 built_actual_name != NULL,
7041 VAR_DOMAIN, LOC_CONST,
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
7046 0, cu->language, objfile);
7047 break;
7048 default:
7049 break;
7050 }
7051
7052 xfree (built_actual_name);
7053 }
7054
7055 /* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
7058
7059 static void
7060 add_partial_namespace (struct partial_die_info *pdi,
7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7062 int set_addrmap, struct dwarf2_cu *cu)
7063 {
7064 /* Add a symbol for the namespace. */
7065
7066 add_partial_symbol (pdi, cu);
7067
7068 /* Now scan partial symbols in that namespace. */
7069
7070 if (pdi->has_children)
7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7072 }
7073
7074 /* Read a partial die corresponding to a Fortran module. */
7075
7076 static void
7077 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7079 {
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
7084 /* Now scan partial symbols in that module. */
7085
7086 if (pdi->has_children)
7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7088 }
7089
7090 /* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
7093 that this subprogram contains. If SET_ADDRMAP is true, record the
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
7096
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102 static void
7103 add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7105 int set_addrmap, struct dwarf2_cu *cu)
7106 {
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
7115 if (set_addrmap)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7130 cu->per_cu->v.psymtab);
7131 }
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
7136 if (!pdi->is_declaration)
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
7142 }
7143 }
7144
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160 }
7161
7162 /* Read a partial die corresponding to an enumeration type. */
7163
7164 static void
7165 add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
7167 {
7168 struct partial_die_info *pdi;
7169
7170 if (enum_pdi->name != NULL)
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
7175 {
7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7178 else
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
7181 }
7182 }
7183
7184 /* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186 static unsigned int
7187 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7188 {
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192 }
7193
7194 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199 static struct abbrev_info *
7200 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7201 struct dwarf2_cu *cu)
7202 {
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7213 if (!abbrev)
7214 {
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
7219 }
7220
7221 return abbrev;
7222 }
7223
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
7228 static const gdb_byte *
7229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7230 {
7231 struct dwarf2_cu *cu = reader->cu;
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7242 }
7243 }
7244
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
7251 static const gdb_byte *
7252 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7253 struct abbrev_info *abbrev)
7254 {
7255 unsigned int bytes_read;
7256 struct attribute attr;
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
7259 const gdb_byte *buffer = reader->buffer;
7260 const gdb_byte *buffer_end = reader->buffer_end;
7261 const gdb_byte *start_info_ptr = info_ptr;
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7270 if (attr.form == DW_FORM_ref_addr)
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
7273 else
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7283 else
7284 return sibling_ptr;
7285 }
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
7293 case DW_FORM_ref_addr:
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_addr:
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
7312 case DW_FORM_flag_present:
7313 break;
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
7324 case DW_FORM_ref_sig8:
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
7328 read_direct_string (abfd, info_ptr, &bytes_read);
7329 info_ptr += bytes_read;
7330 break;
7331 case DW_FORM_sec_offset:
7332 case DW_FORM_strp:
7333 case DW_FORM_GNU_strp_alt:
7334 info_ptr += cu->header.offset_size;
7335 break;
7336 case DW_FORM_exprloc:
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
7373 return skip_children (reader, info_ptr);
7374 else
7375 return info_ptr;
7376 }
7377
7378 /* Locate ORIG_PDI's sibling.
7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7380
7381 static const gdb_byte *
7382 locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
7384 const gdb_byte *info_ptr)
7385 {
7386 /* Do we know the sibling already? */
7387
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
7396 /* Skip the children the long way. */
7397
7398 return skip_children (reader, info_ptr);
7399 }
7400
7401 /* Expand this partial symbol table into a full symbol table. SELF is
7402 not NULL. */
7403
7404 static void
7405 dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
7407 {
7408 if (self->readin)
7409 {
7410 warning (_("bug: psymtab for %s is already read in."),
7411 self->filename);
7412 }
7413 else
7414 {
7415 if (info_verbose)
7416 {
7417 printf_filtered (_("Reading in symbols for %s..."),
7418 self->filename);
7419 gdb_flush (gdb_stdout);
7420 }
7421
7422 /* Restore our global data. */
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
7426
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = XNEW (struct dwarf2_queue_item);
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7551 char buf[100];
7552
7553 if (per_cu->is_debug_types)
7554 {
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7564 }
7565 else
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
7570
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7581 }
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
7589
7590 if (dwarf_read_debug)
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7594 }
7595 }
7596
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601 static void
7602 dwarf2_release_queue (void *dummy)
7603 {
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624 }
7625
7626 /* Read in full symbols for PST, and anything it depends on. */
7627
7628 static void
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7630 {
7631 struct dwarf2_per_cu_data *per_cu;
7632 int i;
7633
7634 if (pst->readin)
7635 return;
7636
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7657
7658 if (per_cu == NULL)
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
7665
7666 dw2_do_instantiate_symtab (per_cu);
7667 }
7668
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7671
7672 static hashval_t
7673 die_hash (const void *item)
7674 {
7675 const struct die_info *die = (const struct die_info *) item;
7676
7677 return die->offset.sect_off;
7678 }
7679
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7682
7683 static int
7684 die_eq (const void *item_lhs, const void *item_rhs)
7685 {
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7688
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690 }
7691
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7695
7696 static void
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702 {
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = (enum language *) data;
7705
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7715
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7721
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7729 }
7730
7731 /* Load the DIEs associated with PER_CU into memory. */
7732
7733 static void
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7736 {
7737 gdb_assert (! this_cu->is_debug_types);
7738
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7741 }
7742
7743 /* Add a DIE to the delayed physname list. */
7744
7745 static void
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749 {
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757 }
7758
7759 /* A cleanup for freeing the delayed method list. */
7760
7761 static void
7762 free_delayed_list (void *ptr)
7763 {
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770 }
7771
7772 /* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778 static void
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7780 {
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7791 }
7792 }
7793
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805 static void
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7807 {
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870 }
7871
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7877 {
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7881 }
7882
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886 static void
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7891 {
7892 void **slot;
7893 int ix;
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7914 if (*slot == NULL)
7915 {
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7920 }
7921 }
7922 else
7923 {
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7927 }
7928 }
7929
7930 for (ix = 0;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7932 ++ix)
7933 {
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7936 }
7937 }
7938
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7940 PER_CU. */
7941
7942 static void
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7944 {
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7948 {
7949 int ix, len;
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7955
7956 /* If we don't have a symtab, we can just skip this case. */
7957 if (cust == NULL)
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7964
7965 for (ix = 0;
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7967 ix, per_cu_iter);
7968 ++ix)
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7972 cust);
7973 }
7974
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
7980 for (ix = 0;
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7983 ++ix)
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7986
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7990 }
7991 }
7992
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996 static void
7997 process_cu_includes (void)
7998 {
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8009 }
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012 }
8013
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8016
8017 static void
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8020 {
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 CORE_ADDR baseaddr;
8028 struct block *static_block;
8029 CORE_ADDR addr;
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8059
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8072
8073 if (cust != NULL)
8074 {
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8076
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8098
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8101
8102 cust->call_site_htab = cu->call_site_htab;
8103 }
8104
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8111 pst->readin = 1;
8112 }
8113
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
8117 do_cleanups (back_to);
8118 }
8119
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123 static void
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126 {
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8163 {
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8166
8167 if (cust != NULL)
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176 }
8177 }
8178 else
8179 {
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8190 pst->readin = 1;
8191 }
8192
8193 do_cleanups (back_to);
8194 }
8195
8196 /* Process an imported unit DIE. */
8197
8198 static void
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200 {
8201 struct attribute *attr;
8202
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8209 }
8210
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
8217 int is_dwz;
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8222
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8228 per_cu);
8229 }
8230 }
8231
8232 /* Reset the in_process bit of a die. */
8233
8234 static void
8235 reset_die_in_process (void *arg)
8236 {
8237 struct die_info *die = (struct die_info *) arg;
8238
8239 die->in_process = 0;
8240 }
8241
8242 /* Process a die and its children. */
8243
8244 static void
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8246 {
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8262 break;
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8269 break;
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8274 break;
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8283 break;
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8286 break;
8287
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8298 break;
8299
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
8305 new_symbol (die, read_type_die (die, cu), cu);
8306 break;
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8315 break;
8316 case DW_TAG_module:
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8319 break;
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8332 break;
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
8338 default:
8339 new_symbol (die, NULL, cu);
8340 break;
8341 }
8342
8343 do_cleanups (in_process);
8344 }
8345 \f
8346 /* DWARF name computation. */
8347
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352 static int
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354 {
8355 struct attribute *attr;
8356
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8369 case DW_TAG_member:
8370 case DW_TAG_imported_declaration:
8371 return 1;
8372
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
8383
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8399 return 0;
8400 return 1;
8401
8402 default:
8403 return 0;
8404 }
8405 }
8406
8407 /* Retrieve the last character from a mem_file. */
8408
8409 static void
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8411 {
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416 }
8417
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8427
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433 static const char *
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8436 int physname)
8437 {
8438 struct objfile *objfile = cu->objfile;
8439
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
8458 const char *linkage_name;
8459
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
8465 }
8466
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
8469 && (cu->language == language_cplus || cu->language == language_java
8470 || cu->language == language_fortran || cu->language == language_d))
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
8475 const char *prefix;
8476 struct ui_file *buf;
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
8486
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
8491 fputs_unfiltered (name, buf);
8492
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
8525 LONGEST value;
8526 const gdb_byte *bytes;
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
8621
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
8634 names. */
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8637 0, 0, &type_print_raw_options);
8638 }
8639 else if (cu->language == language_cplus)
8640 {
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
8655 intermediate_name = ui_file_xstrdup (buf, &length);
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
8671 else
8672 name = canonical_name;
8673
8674 xfree (intermediate_name);
8675 }
8676 }
8677
8678 return name;
8679 }
8680
8681 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
8683 will be allocated on the storage_obstack, or NULL if the DIE does
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
8687 The output string will be canonicalized (if C++/Java). */
8688
8689 static const char *
8690 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8691 {
8692 return dwarf2_compute_name (name, die, cu, 0);
8693 }
8694
8695 /* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
8699
8700 The output string will be canonicalized (if C++/Java). */
8701
8702 static const char *
8703 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8704 {
8705 struct objfile *objfile = cu->objfile;
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
8724 if (mangled != NULL)
8725 {
8726 char *demangled;
8727
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
8751 }
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
8799
8800 do_cleanups (back_to);
8801 return retval;
8802 }
8803
8804 /* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809 static int
8810 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811 {
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862 }
8863
8864 /* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873 static struct using_direct **
8874 using_directives (enum language language)
8875 {
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880 }
8881
8882 /* Read the import statement specified by the given die and record it. */
8883
8884 static void
8885 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886 {
8887 struct objfile *objfile = cu->objfile;
8888 struct attribute *import_attr;
8889 struct die_info *imported_die, *child_die;
8890 struct dwarf2_cu *imported_cu;
8891 const char *imported_name;
8892 const char *imported_name_prefix;
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
8896 const char *import_prefix;
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
8899
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
8950
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8957
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
8960 {
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
8963 }
8964 else if (strlen (imported_name_prefix) > 0)
8965 canonical_name = obconcat (&objfile->objfile_obstack,
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
8969 else
8970 canonical_name = imported_name;
8971
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
8988 child_die->offset.sect_off, objfile_name (objfile));
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
9009 child_die->offset.sect_off, objfile_name (objfile));
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
9026
9027 do_cleanups (cleanups);
9028 }
9029
9030 /* Cleanup function for handle_DW_AT_stmt_list. */
9031
9032 static void
9033 free_cu_line_header (void *arg)
9034 {
9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039 }
9040
9041 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045 static int
9046 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047 {
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052 }
9053
9054 static void
9055 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9056 const char **name, const char **comp_dir)
9057 {
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9062
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9066 {
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 const char *cp = strchr (*comp_dir, ':');
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085 }
9086
9087 /* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9091
9092 static void
9093 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9095 {
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct attribute *attr;
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
9104
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
9121 {
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
9130
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9144 {
9145 gdb_assert (*slot != NULL);
9146 cu->line_header = (struct line_header *) *slot;
9147 return;
9148 }
9149 }
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
9185 }
9186
9187 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9188
9189 static void
9190 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9191 {
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
9202 CORE_ADDR baseaddr;
9203
9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9205
9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
9210 if (lowpc == ((CORE_ADDR) -1))
9211 lowpc = highpc;
9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9213
9214 find_file_and_directory (die, cu, &name, &comp_dir);
9215
9216 prepare_one_comp_unit (cu, die, cu->language);
9217
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
9266 dwarf_decode_macros (cu, macro_offset, 0);
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271 }
9272
9273 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
9278
9279 static void
9280 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9281 {
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
9287 struct attribute *attr;
9288 unsigned int i, line_offset;
9289 struct signatured_type *sig_type;
9290
9291 gdb_assert (per_cu->is_debug_types);
9292 sig_type = (struct signatured_type *) per_cu;
9293
9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9295
9296 /* If we're using .gdb_index (includes -readnow) then
9297 per_cu->type_unit_group may not have been set up yet. */
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
9306 first_time = tu_group->compunit_symtab == NULL;
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
9312 {
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
9323 restart_symtab (tu_group->compunit_symtab, "", 0);
9324 }
9325 return;
9326 }
9327
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
9330
9331 if (first_time)
9332 {
9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9334
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9342
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
9345 const char *dir = NULL;
9346 struct file_entry *fe = &lh->file_names[i];
9347
9348 if (fe->dir_index && lh->include_dirs != NULL)
9349 dir = lh->include_dirs[fe->dir_index - 1];
9350 dwarf2_start_subfile (fe->name, dir);
9351
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
9356 simple mapping from lh->file_names to subfiles, plus
9357 lh->file_names may contain dups. */
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
9367 {
9368 restart_symtab (tu_group->compunit_symtab, "", 0);
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
9376 }
9377
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383 }
9384
9385 /* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
9389
9390 static void
9391 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392 {
9393 struct die_info *child_die;
9394
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
9411 }
9412 \f
9413 /* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
9421
9422 static hashval_t
9423 hash_dwo_file (const void *item)
9424 {
9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9426 hashval_t hash;
9427
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
9432 }
9433
9434 static int
9435 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436 {
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9439
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9445 }
9446
9447 /* Allocate a hash table for DWO files. */
9448
9449 static htab_t
9450 allocate_dwo_file_hash_table (void)
9451 {
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461 }
9462
9463 /* Lookup DWO file DWO_NAME. */
9464
9465 static void **
9466 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9467 {
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480 }
9481
9482 static hashval_t
9483 hash_dwo_unit (const void *item)
9484 {
9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489 }
9490
9491 static int
9492 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493 {
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502 }
9503
9504 /* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507 static htab_t
9508 allocate_dwo_unit_table (struct objfile *objfile)
9509 {
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519 }
9520
9521 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9522
9523 struct create_dwo_cu_data
9524 {
9525 struct dwo_file *dwo_file;
9526 struct dwo_unit dwo_unit;
9527 };
9528
9529 /* die_reader_func for create_dwo_cu. */
9530
9531 static void
9532 create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
9537 {
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9554 return;
9555 }
9556
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9566 }
9567
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9570
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
9578 const gdb_byte *info_ptr, *end_ptr;
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
9590 abfd = get_section_bfd_owner (section);
9591
9592 if (dwarf_read_debug)
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9595 get_section_name (section),
9596 get_section_file_name (section));
9597 }
9598
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
9613 per_cu.section = section;
9614
9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
9628 dwo_file->dwo_name, objfile_name (objfile));
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
9635
9636 info_ptr += per_cu.length;
9637 }
9638
9639 return dwo_unit;
9640 }
9641
9642 /* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
9645 DWP Version 1:
9646
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
9659
9660 Numbers are recorded using the byte order of the application binary.
9661
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9666
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
9673
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
9759
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
9762
9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9764
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
9768
9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
9770
9771 Because M > N and H' and M are relatively prime, the search is guaranteed
9772 to stop at an unused slot or find the match. */
9773
9774 /* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779 static struct dwp_hash_table *
9780 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781 {
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
9784 const gdb_byte *index_ptr, *index_end;
9785 struct dwarf2_section_info *index;
9786 uint32_t version, nr_columns, nr_units, nr_slots;
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
9813 if (version != 1 && version != 2)
9814 {
9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
9816 " [in module %s]"),
9817 pulongest (version), dwp_file->name);
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9822 " is not power of 2 [in module %s]"),
9823 pulongest (nr_slots), dwp_file->name);
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
9927
9928 return htab;
9929 }
9930
9931 /* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
9935 read comes from the DWP V1 hash table, not the full ELF section table.
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939 static int
9940 locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
9942 {
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->abbrev.s.section != NULL)
9949 return 0;
9950 sections->abbrev.s.section = sectp;
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
9957 if (sections->info_or_types.s.section != NULL)
9958 return 0;
9959 sections->info_or_types.s.section = sectp;
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
9965 if (sections->line.s.section != NULL)
9966 return 0;
9967 sections->line.s.section = sectp;
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
9973 if (sections->loc.s.section != NULL)
9974 return 0;
9975 sections->loc.s.section = sectp;
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
9981 if (sections->macinfo.s.section != NULL)
9982 return 0;
9983 sections->macinfo.s.section = sectp;
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
9989 if (sections->macro.s.section != NULL)
9990 return 0;
9991 sections->macro.s.section = sectp;
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
9997 if (sections->str_offsets.s.section != NULL)
9998 return 0;
9999 sections->str_offsets.s.section = sectp;
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009 }
10010
10011 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
10015
10016 static struct dwo_unit *
10017 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
10021 {
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
10029 struct virtual_v1_dwo_sections sections;
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
10036 gdb_assert (dwp_file->version == 1);
10037
10038 if (dwarf_read_debug)
10039 {
10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10041 kind,
10042 pulongest (unit_index), hex_string (signature),
10043 dwp_file->name);
10044 }
10045
10046 /* Fetch the sections of this DWO unit.
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
10050 #define MAX_NR_V1_DWO_SECTIONS \
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
10056 + 1 /* .debug_macro or .debug_macinfo */ \
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
10096 if (i == MAX_NR_V1_DWO_SECTIONS)
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
10107 However, for each CU + set of TUs that came from the same original DWO
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
10124 if (dwarf_read_debug)
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
10143 /* The info or types section is assigned below to dwo_unit,
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
10154 if (dwarf_read_debug)
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10168 *dwo_unit->section = sections.info_or_types;
10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10170
10171 return dwo_unit;
10172 }
10173
10174 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179 static struct dwarf2_section_info
10180 create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182 {
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215 }
10216
10217 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222 static struct dwo_unit *
10223 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227 {
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
10244 if (dwarf_read_debug)
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
10326 if (dwarf_read_debug)
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
10369 if (dwarf_read_debug)
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391 }
10392
10393 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
10395
10396 static struct dwo_unit *
10397 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
10399 {
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
10402 bfd *dbfd = dwp_file->dbfd;
10403 uint32_t mask = dwp_htab->nr_slots - 1;
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
10416
10417 if (*slot != NULL)
10418 return (struct dwo_unit *) *slot;
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10427 if (signature_in_table == signature)
10428 {
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
10432
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
10445 return (struct dwo_unit *) *slot;
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455 }
10456
10457 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
10466 If unable to find/open the file, return NULL.
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469 static bfd *
10470 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10471 {
10472 bfd *sym_bfd;
10473 int desc, flags;
10474 char *absolute_name;
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
10489 else
10490 search_path = xstrdup (debug_file_directory);
10491
10492 flags = OPF_RETURN_REALPATH;
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
10495 desc = openp (search_path, flags, file_name,
10496 O_RDONLY | O_BINARY, &absolute_name);
10497 xfree (search_path);
10498 if (desc < 0)
10499 return NULL;
10500
10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10502 xfree (absolute_name);
10503 if (sym_bfd == NULL)
10504 return NULL;
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10510 return NULL;
10511 }
10512
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
10519 return sym_bfd;
10520 }
10521
10522 /* Try to open DWO file FILE_NAME.
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529 static bfd *
10530 open_dwo_file (const char *file_name, const char *comp_dir)
10531 {
10532 bfd *abfd;
10533
10534 if (IS_ABSOLUTE_PATH (file_name))
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10558 }
10559
10560 /* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563 static void
10564 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565 {
10566 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
10571 dwo_sections->abbrev.s.section = sectp;
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
10576 dwo_sections->info.s.section = sectp;
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
10581 dwo_sections->line.s.section = sectp;
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
10586 dwo_sections->loc.s.section = sectp;
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
10591 dwo_sections->macinfo.s.section = sectp;
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
10596 dwo_sections->macro.s.section = sectp;
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
10601 dwo_sections->str.s.section = sectp;
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
10606 dwo_sections->str_offsets.s.section = sectp;
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
10614 type_section.s.section = sectp;
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619 }
10620
10621 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10622 by PER_CU. This is for the non-DWP case.
10623 The result is NULL if DWO_NAME can't be found. */
10624
10625 static struct dwo_file *
10626 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
10628 {
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
10632 struct cleanup *cleanups;
10633
10634 dbfd = open_dwo_file (dwo_name, comp_dir);
10635 if (dbfd == NULL)
10636 {
10637 if (dwarf_read_debug)
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
10644 dwo_file->dbfd = dbfd;
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10649
10650 dwo_file->cu = create_dwo_cu (dwo_file);
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
10657 if (dwarf_read_debug)
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
10660 return dwo_file;
10661 }
10662
10663 /* This function is mapped across the sections and remembers the offset and
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
10666
10667 static void
10668 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
10670 {
10671 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10674
10675 /* Record the ELF section number for later lookup: this is what the
10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
10679
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
10683 dwp_file->sections.str.s.section = sectp;
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
10688 dwp_file->sections.cu_index.s.section = sectp;
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
10693 dwp_file->sections.tu_index.s.section = sectp;
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696 }
10697
10698 /* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703 static void
10704 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705 {
10706 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
10718 dwp_file->sections.abbrev.s.section = sectp;
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
10723 dwp_file->sections.info.s.section = sectp;
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
10728 dwp_file->sections.line.s.section = sectp;
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
10733 dwp_file->sections.loc.s.section = sectp;
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
10738 dwp_file->sections.macinfo.s.section = sectp;
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
10743 dwp_file->sections.macro.s.section = sectp;
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
10748 dwp_file->sections.str_offsets.s.section = sectp;
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
10753 dwp_file->sections.types.s.section = sectp;
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756 }
10757
10758 /* Hash function for dwp_file loaded CUs/TUs. */
10759
10760 static hashval_t
10761 hash_dwp_loaded_cutus (const void *item)
10762 {
10763 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10764
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
10767 }
10768
10769 /* Equality function for dwp_file loaded CUs/TUs. */
10770
10771 static int
10772 eq_dwp_loaded_cutus (const void *a, const void *b)
10773 {
10774 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10775 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10776
10777 return dua->signature == dub->signature;
10778 }
10779
10780 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10781
10782 static htab_t
10783 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784 {
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792 }
10793
10794 /* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800 static bfd *
10801 open_dwp_file (const char *file_name)
10802 {
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
10827 }
10828
10829 /* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
10832
10833 static struct dwp_file *
10834 open_and_init_dwp_file (void)
10835 {
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
10847 dbfd = open_dwp_file (dwp_name);
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
10857 if (dbfd == NULL)
10858 {
10859 if (dwarf_read_debug)
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
10863 }
10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10865 dwp_file->name = bfd_get_filename (dbfd);
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
10868
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
10885 pretty bizarre. We use pulongest here because that's the established
10886 portability solution (e.g, we cannot use %u for uint32_t). */
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10899
10900 if (dwarf_read_debug)
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10907 }
10908
10909 return dwp_file;
10910 }
10911
10912 /* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914 static struct dwp_file *
10915 get_dwp_file (void)
10916 {
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923 }
10924
10925 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10940
10941 static struct dwo_unit *
10942 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
10945 {
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
10949 struct dwo_file *dwo_file;
10950 struct dwp_file *dwp_file;
10951
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
10956
10957 dwp_file = get_dwp_file ();
10958 if (dwp_file != NULL)
10959 {
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
10968
10969 if (dwo_cutu != NULL)
10970 {
10971 if (dwarf_read_debug)
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
10982 else
10983 {
10984 /* No DWP file, look for the DWO file. */
10985
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
10988 {
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10991 }
10992 /* NOTE: This will be NULL if unable to open the file. */
10993 dwo_file = (struct dwo_file *) *dwo_file_slot;
10994
10995 if (dwo_file != NULL)
10996 {
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
11005 dwo_cutu
11006 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11007 }
11008 else if (!is_debug_types && dwo_file->cu)
11009 {
11010 if (signature == dwo_file->cu->signature)
11011 dwo_cutu = dwo_file->cu;
11012 }
11013
11014 if (dwo_cutu != NULL)
11015 {
11016 if (dwarf_read_debug)
11017 {
11018 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11019 kind, dwo_name, hex_string (signature),
11020 host_address_to_string (dwo_cutu));
11021 }
11022 return dwo_cutu;
11023 }
11024 }
11025 }
11026
11027 /* We didn't find it. This could mean a dwo_id mismatch, or
11028 someone deleted the DWO/DWP file, or the search path isn't set up
11029 correctly to find the file. */
11030
11031 if (dwarf_read_debug)
11032 {
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11034 kind, dwo_name, hex_string (signature));
11035 }
11036
11037 /* This is a warning and not a complaint because it can be caused by
11038 pilot error (e.g., user accidentally deleting the DWO). */
11039 {
11040 /* Print the name of the DWP file if we looked there, helps the user
11041 better diagnose the problem. */
11042 char *dwp_text = NULL;
11043 struct cleanup *cleanups;
11044
11045 if (dwp_file != NULL)
11046 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11047 cleanups = make_cleanup (xfree, dwp_text);
11048
11049 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11050 " [in module %s]"),
11051 kind, dwo_name, hex_string (signature),
11052 dwp_text != NULL ? dwp_text : "",
11053 this_unit->is_debug_types ? "TU" : "CU",
11054 this_unit->offset.sect_off, objfile_name (objfile));
11055
11056 do_cleanups (cleanups);
11057 }
11058 return NULL;
11059 }
11060
11061 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11062 See lookup_dwo_cutu_unit for details. */
11063
11064 static struct dwo_unit *
11065 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11066 const char *dwo_name, const char *comp_dir,
11067 ULONGEST signature)
11068 {
11069 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11070 }
11071
11072 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11073 See lookup_dwo_cutu_unit for details. */
11074
11075 static struct dwo_unit *
11076 lookup_dwo_type_unit (struct signatured_type *this_tu,
11077 const char *dwo_name, const char *comp_dir)
11078 {
11079 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11080 }
11081
11082 /* Traversal function for queue_and_load_all_dwo_tus. */
11083
11084 static int
11085 queue_and_load_dwo_tu (void **slot, void *info)
11086 {
11087 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11088 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11089 ULONGEST signature = dwo_unit->signature;
11090 struct signatured_type *sig_type =
11091 lookup_dwo_signatured_type (per_cu->cu, signature);
11092
11093 if (sig_type != NULL)
11094 {
11095 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11096
11097 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11098 a real dependency of PER_CU on SIG_TYPE. That is detected later
11099 while processing PER_CU. */
11100 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11101 load_full_type_unit (sig_cu);
11102 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11103 }
11104
11105 return 1;
11106 }
11107
11108 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11109 The DWO may have the only definition of the type, though it may not be
11110 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11111 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11112
11113 static void
11114 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11115 {
11116 struct dwo_unit *dwo_unit;
11117 struct dwo_file *dwo_file;
11118
11119 gdb_assert (!per_cu->is_debug_types);
11120 gdb_assert (get_dwp_file () == NULL);
11121 gdb_assert (per_cu->cu != NULL);
11122
11123 dwo_unit = per_cu->cu->dwo_unit;
11124 gdb_assert (dwo_unit != NULL);
11125
11126 dwo_file = dwo_unit->dwo_file;
11127 if (dwo_file->tus != NULL)
11128 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11129 }
11130
11131 /* Free all resources associated with DWO_FILE.
11132 Close the DWO file and munmap the sections.
11133 All memory should be on the objfile obstack. */
11134
11135 static void
11136 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11137 {
11138 int ix;
11139 struct dwarf2_section_info *section;
11140
11141 /* Note: dbfd is NULL for virtual DWO files. */
11142 gdb_bfd_unref (dwo_file->dbfd);
11143
11144 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11145 }
11146
11147 /* Wrapper for free_dwo_file for use in cleanups. */
11148
11149 static void
11150 free_dwo_file_cleanup (void *arg)
11151 {
11152 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
11154
11155 free_dwo_file (dwo_file, objfile);
11156 }
11157
11158 /* Traversal function for free_dwo_files. */
11159
11160 static int
11161 free_dwo_file_from_slot (void **slot, void *info)
11162 {
11163 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11164 struct objfile *objfile = (struct objfile *) info;
11165
11166 free_dwo_file (dwo_file, objfile);
11167
11168 return 1;
11169 }
11170
11171 /* Free all resources associated with DWO_FILES. */
11172
11173 static void
11174 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11175 {
11176 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11177 }
11178 \f
11179 /* Read in various DIEs. */
11180
11181 /* qsort helper for inherit_abstract_dies. */
11182
11183 static int
11184 unsigned_int_compar (const void *ap, const void *bp)
11185 {
11186 unsigned int a = *(unsigned int *) ap;
11187 unsigned int b = *(unsigned int *) bp;
11188
11189 return (a > b) - (b > a);
11190 }
11191
11192 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11193 Inherit only the children of the DW_AT_abstract_origin DIE not being
11194 already referenced by DW_AT_abstract_origin from the children of the
11195 current DIE. */
11196
11197 static void
11198 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11199 {
11200 struct die_info *child_die;
11201 unsigned die_children_count;
11202 /* CU offsets which were referenced by children of the current DIE. */
11203 sect_offset *offsets;
11204 sect_offset *offsets_end, *offsetp;
11205 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11206 struct die_info *origin_die;
11207 /* Iterator of the ORIGIN_DIE children. */
11208 struct die_info *origin_child_die;
11209 struct cleanup *cleanups;
11210 struct attribute *attr;
11211 struct dwarf2_cu *origin_cu;
11212 struct pending **origin_previous_list_in_scope;
11213
11214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11215 if (!attr)
11216 return;
11217
11218 /* Note that following die references may follow to a die in a
11219 different cu. */
11220
11221 origin_cu = cu;
11222 origin_die = follow_die_ref (die, attr, &origin_cu);
11223
11224 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11225 symbols in. */
11226 origin_previous_list_in_scope = origin_cu->list_in_scope;
11227 origin_cu->list_in_scope = cu->list_in_scope;
11228
11229 if (die->tag != origin_die->tag
11230 && !(die->tag == DW_TAG_inlined_subroutine
11231 && origin_die->tag == DW_TAG_subprogram))
11232 complaint (&symfile_complaints,
11233 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11234 die->offset.sect_off, origin_die->offset.sect_off);
11235
11236 child_die = die->child;
11237 die_children_count = 0;
11238 while (child_die && child_die->tag)
11239 {
11240 child_die = sibling_die (child_die);
11241 die_children_count++;
11242 }
11243 offsets = XNEWVEC (sect_offset, die_children_count);
11244 cleanups = make_cleanup (xfree, offsets);
11245
11246 offsets_end = offsets;
11247 for (child_die = die->child;
11248 child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 struct die_info *child_origin_die;
11252 struct dwarf2_cu *child_origin_cu;
11253
11254 /* We are trying to process concrete instance entries:
11255 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11256 it's not relevant to our analysis here. i.e. detecting DIEs that are
11257 present in the abstract instance but not referenced in the concrete
11258 one. */
11259 if (child_die->tag == DW_TAG_GNU_call_site)
11260 continue;
11261
11262 /* For each CHILD_DIE, find the corresponding child of
11263 ORIGIN_DIE. If there is more than one layer of
11264 DW_AT_abstract_origin, follow them all; there shouldn't be,
11265 but GCC versions at least through 4.4 generate this (GCC PR
11266 40573). */
11267 child_origin_die = child_die;
11268 child_origin_cu = cu;
11269 while (1)
11270 {
11271 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11272 child_origin_cu);
11273 if (attr == NULL)
11274 break;
11275 child_origin_die = follow_die_ref (child_origin_die, attr,
11276 &child_origin_cu);
11277 }
11278
11279 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11280 counterpart may exist. */
11281 if (child_origin_die != child_die)
11282 {
11283 if (child_die->tag != child_origin_die->tag
11284 && !(child_die->tag == DW_TAG_inlined_subroutine
11285 && child_origin_die->tag == DW_TAG_subprogram))
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
11288 "different tags"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
11290 if (child_origin_die->parent != origin_die)
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
11293 "different parents"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
11295 else
11296 *offsets_end++ = child_origin_die->offset;
11297 }
11298 }
11299 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11300 unsigned_int_compar);
11301 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11302 if (offsetp[-1].sect_off == offsetp->sect_off)
11303 complaint (&symfile_complaints,
11304 _("Multiple children of DIE 0x%x refer "
11305 "to DIE 0x%x as their abstract origin"),
11306 die->offset.sect_off, offsetp->sect_off);
11307
11308 offsetp = offsets;
11309 origin_child_die = origin_die->child;
11310 while (origin_child_die && origin_child_die->tag)
11311 {
11312 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11313 while (offsetp < offsets_end
11314 && offsetp->sect_off < origin_child_die->offset.sect_off)
11315 offsetp++;
11316 if (offsetp >= offsets_end
11317 || offsetp->sect_off > origin_child_die->offset.sect_off)
11318 {
11319 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11320 Check whether we're already processing ORIGIN_CHILD_DIE.
11321 This can happen with mutually referenced abstract_origins.
11322 PR 16581. */
11323 if (!origin_child_die->in_process)
11324 process_die (origin_child_die, origin_cu);
11325 }
11326 origin_child_die = sibling_die (origin_child_die);
11327 }
11328 origin_cu->list_in_scope = origin_previous_list_in_scope;
11329
11330 do_cleanups (cleanups);
11331 }
11332
11333 static void
11334 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11335 {
11336 struct objfile *objfile = cu->objfile;
11337 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11338 struct context_stack *newobj;
11339 CORE_ADDR lowpc;
11340 CORE_ADDR highpc;
11341 struct die_info *child_die;
11342 struct attribute *attr, *call_line, *call_file;
11343 const char *name;
11344 CORE_ADDR baseaddr;
11345 struct block *block;
11346 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11347 VEC (symbolp) *template_args = NULL;
11348 struct template_symbol *templ_func = NULL;
11349
11350 if (inlined_func)
11351 {
11352 /* If we do not have call site information, we can't show the
11353 caller of this inlined function. That's too confusing, so
11354 only use the scope for local variables. */
11355 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11356 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11357 if (call_line == NULL || call_file == NULL)
11358 {
11359 read_lexical_block_scope (die, cu);
11360 return;
11361 }
11362 }
11363
11364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11365
11366 name = dwarf2_name (die, cu);
11367
11368 /* Ignore functions with missing or empty names. These are actually
11369 illegal according to the DWARF standard. */
11370 if (name == NULL)
11371 {
11372 complaint (&symfile_complaints,
11373 _("missing name for subprogram DIE at %d"),
11374 die->offset.sect_off);
11375 return;
11376 }
11377
11378 /* Ignore functions with missing or invalid low and high pc attributes. */
11379 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11380 {
11381 attr = dwarf2_attr (die, DW_AT_external, cu);
11382 if (!attr || !DW_UNSND (attr))
11383 complaint (&symfile_complaints,
11384 _("cannot get low and high bounds "
11385 "for subprogram DIE at %d"),
11386 die->offset.sect_off);
11387 return;
11388 }
11389
11390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11392
11393 /* If we have any template arguments, then we must allocate a
11394 different sort of symbol. */
11395 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11396 {
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11399 {
11400 templ_func = allocate_template_symbol (objfile);
11401 templ_func->base.is_cplus_template_function = 1;
11402 break;
11403 }
11404 }
11405
11406 newobj = push_context (0, lowpc);
11407 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11408 (struct symbol *) templ_func);
11409
11410 /* If there is a location expression for DW_AT_frame_base, record
11411 it. */
11412 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11413 if (attr)
11414 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11415
11416 /* If there is a location for the static link, record it. */
11417 newobj->static_link = NULL;
11418 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11419 if (attr)
11420 {
11421 newobj->static_link
11422 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11423 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11424 }
11425
11426 cu->list_in_scope = &local_symbols;
11427
11428 if (die->child != NULL)
11429 {
11430 child_die = die->child;
11431 while (child_die && child_die->tag)
11432 {
11433 if (child_die->tag == DW_TAG_template_type_param
11434 || child_die->tag == DW_TAG_template_value_param)
11435 {
11436 struct symbol *arg = new_symbol (child_die, NULL, cu);
11437
11438 if (arg != NULL)
11439 VEC_safe_push (symbolp, template_args, arg);
11440 }
11441 else
11442 process_die (child_die, cu);
11443 child_die = sibling_die (child_die);
11444 }
11445 }
11446
11447 inherit_abstract_dies (die, cu);
11448
11449 /* If we have a DW_AT_specification, we might need to import using
11450 directives from the context of the specification DIE. See the
11451 comment in determine_prefix. */
11452 if (cu->language == language_cplus
11453 && dwarf2_attr (die, DW_AT_specification, cu))
11454 {
11455 struct dwarf2_cu *spec_cu = cu;
11456 struct die_info *spec_die = die_specification (die, &spec_cu);
11457
11458 while (spec_die)
11459 {
11460 child_die = spec_die->child;
11461 while (child_die && child_die->tag)
11462 {
11463 if (child_die->tag == DW_TAG_imported_module)
11464 process_die (child_die, spec_cu);
11465 child_die = sibling_die (child_die);
11466 }
11467
11468 /* In some cases, GCC generates specification DIEs that
11469 themselves contain DW_AT_specification attributes. */
11470 spec_die = die_specification (spec_die, &spec_cu);
11471 }
11472 }
11473
11474 newobj = pop_context ();
11475 /* Make a block for the local symbols within. */
11476 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11477 newobj->static_link, lowpc, highpc);
11478
11479 /* For C++, set the block's scope. */
11480 if ((cu->language == language_cplus
11481 || cu->language == language_fortran
11482 || cu->language == language_d)
11483 && cu->processing_has_namespace_info)
11484 block_set_scope (block, determine_prefix (die, cu),
11485 &objfile->objfile_obstack);
11486
11487 /* If we have address ranges, record them. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11489
11490 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11491
11492 /* Attach template arguments to function. */
11493 if (! VEC_empty (symbolp, template_args))
11494 {
11495 gdb_assert (templ_func != NULL);
11496
11497 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11498 templ_func->template_arguments
11499 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11500 templ_func->n_template_arguments);
11501 memcpy (templ_func->template_arguments,
11502 VEC_address (symbolp, template_args),
11503 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11504 VEC_free (symbolp, template_args);
11505 }
11506
11507 /* In C++, we can have functions nested inside functions (e.g., when
11508 a function declares a class that has methods). This means that
11509 when we finish processing a function scope, we may need to go
11510 back to building a containing block's symbol lists. */
11511 local_symbols = newobj->locals;
11512 local_using_directives = newobj->local_using_directives;
11513
11514 /* If we've finished processing a top-level function, subsequent
11515 symbols go in the file symbol list. */
11516 if (outermost_context_p ())
11517 cu->list_in_scope = &file_symbols;
11518 }
11519
11520 /* Process all the DIES contained within a lexical block scope. Start
11521 a new scope, process the dies, and then close the scope. */
11522
11523 static void
11524 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11525 {
11526 struct objfile *objfile = cu->objfile;
11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11528 struct context_stack *newobj;
11529 CORE_ADDR lowpc, highpc;
11530 struct die_info *child_die;
11531 CORE_ADDR baseaddr;
11532
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11534
11535 /* Ignore blocks with missing or invalid low and high pc attributes. */
11536 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11537 as multiple lexical blocks? Handling children in a sane way would
11538 be nasty. Might be easier to properly extend generic blocks to
11539 describe ranges. */
11540 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11541 return;
11542 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11543 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11544
11545 push_context (0, lowpc);
11546 if (die->child != NULL)
11547 {
11548 child_die = die->child;
11549 while (child_die && child_die->tag)
11550 {
11551 process_die (child_die, cu);
11552 child_die = sibling_die (child_die);
11553 }
11554 }
11555 inherit_abstract_dies (die, cu);
11556 newobj = pop_context ();
11557
11558 if (local_symbols != NULL || local_using_directives != NULL)
11559 {
11560 struct block *block
11561 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11562 newobj->start_addr, highpc);
11563
11564 /* Note that recording ranges after traversing children, as we
11565 do here, means that recording a parent's ranges entails
11566 walking across all its children's ranges as they appear in
11567 the address map, which is quadratic behavior.
11568
11569 It would be nicer to record the parent's ranges before
11570 traversing its children, simply overriding whatever you find
11571 there. But since we don't even decide whether to create a
11572 block until after we've traversed its children, that's hard
11573 to do. */
11574 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11575 }
11576 local_symbols = newobj->locals;
11577 local_using_directives = newobj->local_using_directives;
11578 }
11579
11580 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11581
11582 static void
11583 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11584 {
11585 struct objfile *objfile = cu->objfile;
11586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11587 CORE_ADDR pc, baseaddr;
11588 struct attribute *attr;
11589 struct call_site *call_site, call_site_local;
11590 void **slot;
11591 int nparams;
11592 struct die_info *child_die;
11593
11594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11595
11596 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11597 if (!attr)
11598 {
11599 complaint (&symfile_complaints,
11600 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11601 "DIE 0x%x [in module %s]"),
11602 die->offset.sect_off, objfile_name (objfile));
11603 return;
11604 }
11605 pc = attr_value_as_address (attr) + baseaddr;
11606 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11607
11608 if (cu->call_site_htab == NULL)
11609 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11610 NULL, &objfile->objfile_obstack,
11611 hashtab_obstack_allocate, NULL);
11612 call_site_local.pc = pc;
11613 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11614 if (*slot != NULL)
11615 {
11616 complaint (&symfile_complaints,
11617 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11618 "DIE 0x%x [in module %s]"),
11619 paddress (gdbarch, pc), die->offset.sect_off,
11620 objfile_name (objfile));
11621 return;
11622 }
11623
11624 /* Count parameters at the caller. */
11625
11626 nparams = 0;
11627 for (child_die = die->child; child_die && child_die->tag;
11628 child_die = sibling_die (child_die))
11629 {
11630 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11631 {
11632 complaint (&symfile_complaints,
11633 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11634 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11635 child_die->tag, child_die->offset.sect_off,
11636 objfile_name (objfile));
11637 continue;
11638 }
11639
11640 nparams++;
11641 }
11642
11643 call_site
11644 = ((struct call_site *)
11645 obstack_alloc (&objfile->objfile_obstack,
11646 sizeof (*call_site)
11647 + (sizeof (*call_site->parameter) * (nparams - 1))));
11648 *slot = call_site;
11649 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11650 call_site->pc = pc;
11651
11652 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11653 {
11654 struct die_info *func_die;
11655
11656 /* Skip also over DW_TAG_inlined_subroutine. */
11657 for (func_die = die->parent;
11658 func_die && func_die->tag != DW_TAG_subprogram
11659 && func_die->tag != DW_TAG_subroutine_type;
11660 func_die = func_die->parent);
11661
11662 /* DW_AT_GNU_all_call_sites is a superset
11663 of DW_AT_GNU_all_tail_call_sites. */
11664 if (func_die
11665 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11667 {
11668 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11669 not complete. But keep CALL_SITE for look ups via call_site_htab,
11670 both the initial caller containing the real return address PC and
11671 the final callee containing the current PC of a chain of tail
11672 calls do not need to have the tail call list complete. But any
11673 function candidate for a virtual tail call frame searched via
11674 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11675 determined unambiguously. */
11676 }
11677 else
11678 {
11679 struct type *func_type = NULL;
11680
11681 if (func_die)
11682 func_type = get_die_type (func_die, cu);
11683 if (func_type != NULL)
11684 {
11685 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11686
11687 /* Enlist this call site to the function. */
11688 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11689 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11690 }
11691 else
11692 complaint (&symfile_complaints,
11693 _("Cannot find function owning DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
11695 die->offset.sect_off, objfile_name (objfile));
11696 }
11697 }
11698
11699 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11700 if (attr == NULL)
11701 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11702 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11703 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11704 /* Keep NULL DWARF_BLOCK. */;
11705 else if (attr_form_is_block (attr))
11706 {
11707 struct dwarf2_locexpr_baton *dlbaton;
11708
11709 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11710 dlbaton->data = DW_BLOCK (attr)->data;
11711 dlbaton->size = DW_BLOCK (attr)->size;
11712 dlbaton->per_cu = cu->per_cu;
11713
11714 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11715 }
11716 else if (attr_form_is_ref (attr))
11717 {
11718 struct dwarf2_cu *target_cu = cu;
11719 struct die_info *target_die;
11720
11721 target_die = follow_die_ref (die, attr, &target_cu);
11722 gdb_assert (target_cu->objfile == objfile);
11723 if (die_is_declaration (target_die, target_cu))
11724 {
11725 const char *target_physname;
11726
11727 /* Prefer the mangled name; otherwise compute the demangled one. */
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_linkage_name,
11730 target_cu);
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_string_attr (target_die,
11733 DW_AT_MIPS_linkage_name,
11734 target_cu);
11735 if (target_physname == NULL)
11736 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11737 if (target_physname == NULL)
11738 complaint (&symfile_complaints,
11739 _("DW_AT_GNU_call_site_target target DIE has invalid "
11740 "physname, for referencing DIE 0x%x [in module %s]"),
11741 die->offset.sect_off, objfile_name (objfile));
11742 else
11743 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11744 }
11745 else
11746 {
11747 CORE_ADDR lowpc;
11748
11749 /* DW_AT_entry_pc should be preferred. */
11750 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11751 complaint (&symfile_complaints,
11752 _("DW_AT_GNU_call_site_target target DIE has invalid "
11753 "low pc, for referencing DIE 0x%x [in module %s]"),
11754 die->offset.sect_off, objfile_name (objfile));
11755 else
11756 {
11757 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11758 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11759 }
11760 }
11761 }
11762 else
11763 complaint (&symfile_complaints,
11764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11765 "block nor reference, for DIE 0x%x [in module %s]"),
11766 die->offset.sect_off, objfile_name (objfile));
11767
11768 call_site->per_cu = cu->per_cu;
11769
11770 for (child_die = die->child;
11771 child_die && child_die->tag;
11772 child_die = sibling_die (child_die))
11773 {
11774 struct call_site_parameter *parameter;
11775 struct attribute *loc, *origin;
11776
11777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11778 {
11779 /* Already printed the complaint above. */
11780 continue;
11781 }
11782
11783 gdb_assert (call_site->parameter_count < nparams);
11784 parameter = &call_site->parameter[call_site->parameter_count];
11785
11786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11788 register is contained in DW_AT_GNU_call_site_value. */
11789
11790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11792 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11793 {
11794 sect_offset offset;
11795
11796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11797 offset = dwarf2_get_ref_die_offset (origin);
11798 if (!offset_in_cu_p (&cu->header, offset))
11799 {
11800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11801 binding can be done only inside one CU. Such referenced DIE
11802 therefore cannot be even moved to DW_TAG_partial_unit. */
11803 complaint (&symfile_complaints,
11804 _("DW_AT_abstract_origin offset is not in CU for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x "
11806 "[in module %s]"),
11807 child_die->offset.sect_off, objfile_name (objfile));
11808 continue;
11809 }
11810 parameter->u.param_offset.cu_off = (offset.sect_off
11811 - cu->header.offset.sect_off);
11812 }
11813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11814 {
11815 complaint (&symfile_complaints,
11816 _("No DW_FORM_block* DW_AT_location for "
11817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11818 child_die->offset.sect_off, objfile_name (objfile));
11819 continue;
11820 }
11821 else
11822 {
11823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11825 if (parameter->u.dwarf_reg != -1)
11826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11829 &parameter->u.fb_offset))
11830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11831 else
11832 {
11833 complaint (&symfile_complaints,
11834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11835 "for DW_FORM_block* DW_AT_location is supported for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11837 "[in module %s]"),
11838 child_die->offset.sect_off, objfile_name (objfile));
11839 continue;
11840 }
11841 }
11842
11843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11844 if (!attr_form_is_block (attr))
11845 {
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11849 child_die->offset.sect_off, objfile_name (objfile));
11850 continue;
11851 }
11852 parameter->value = DW_BLOCK (attr)->data;
11853 parameter->value_size = DW_BLOCK (attr)->size;
11854
11855 /* Parameters are not pre-cleared by memset above. */
11856 parameter->data_value = NULL;
11857 parameter->data_value_size = 0;
11858 call_site->parameter_count++;
11859
11860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11861 if (attr)
11862 {
11863 if (!attr_form_is_block (attr))
11864 complaint (&symfile_complaints,
11865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11867 child_die->offset.sect_off, objfile_name (objfile));
11868 else
11869 {
11870 parameter->data_value = DW_BLOCK (attr)->data;
11871 parameter->data_value_size = DW_BLOCK (attr)->size;
11872 }
11873 }
11874 }
11875 }
11876
11877 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11878 Return 1 if the attributes are present and valid, otherwise, return 0.
11879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11880
11881 static int
11882 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11884 struct partial_symtab *ranges_pst)
11885 {
11886 struct objfile *objfile = cu->objfile;
11887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11888 struct comp_unit_head *cu_header = &cu->header;
11889 bfd *obfd = objfile->obfd;
11890 unsigned int addr_size = cu_header->addr_size;
11891 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11892 /* Base address selection entry. */
11893 CORE_ADDR base;
11894 int found_base;
11895 unsigned int dummy;
11896 const gdb_byte *buffer;
11897 CORE_ADDR marker;
11898 int low_set;
11899 CORE_ADDR low = 0;
11900 CORE_ADDR high = 0;
11901 CORE_ADDR baseaddr;
11902
11903 found_base = cu->base_known;
11904 base = cu->base_address;
11905
11906 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11907 if (offset >= dwarf2_per_objfile->ranges.size)
11908 {
11909 complaint (&symfile_complaints,
11910 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11911 offset);
11912 return 0;
11913 }
11914 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11915
11916 /* Read in the largest possible address. */
11917 marker = read_address (obfd, buffer, cu, &dummy);
11918 if ((marker & mask) == mask)
11919 {
11920 /* If we found the largest possible address, then
11921 read the base address. */
11922 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11923 buffer += 2 * addr_size;
11924 offset += 2 * addr_size;
11925 found_base = 1;
11926 }
11927
11928 low_set = 0;
11929
11930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11931
11932 while (1)
11933 {
11934 CORE_ADDR range_beginning, range_end;
11935
11936 range_beginning = read_address (obfd, buffer, cu, &dummy);
11937 buffer += addr_size;
11938 range_end = read_address (obfd, buffer, cu, &dummy);
11939 buffer += addr_size;
11940 offset += 2 * addr_size;
11941
11942 /* An end of list marker is a pair of zero addresses. */
11943 if (range_beginning == 0 && range_end == 0)
11944 /* Found the end of list entry. */
11945 break;
11946
11947 /* Each base address selection entry is a pair of 2 values.
11948 The first is the largest possible address, the second is
11949 the base address. Check for a base address here. */
11950 if ((range_beginning & mask) == mask)
11951 {
11952 /* If we found the largest possible address, then
11953 read the base address. */
11954 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11955 found_base = 1;
11956 continue;
11957 }
11958
11959 if (!found_base)
11960 {
11961 /* We have no valid base address for the ranges
11962 data. */
11963 complaint (&symfile_complaints,
11964 _("Invalid .debug_ranges data (no base address)"));
11965 return 0;
11966 }
11967
11968 if (range_beginning > range_end)
11969 {
11970 /* Inverted range entries are invalid. */
11971 complaint (&symfile_complaints,
11972 _("Invalid .debug_ranges data (inverted range)"));
11973 return 0;
11974 }
11975
11976 /* Empty range entries have no effect. */
11977 if (range_beginning == range_end)
11978 continue;
11979
11980 range_beginning += base;
11981 range_end += base;
11982
11983 /* A not-uncommon case of bad debug info.
11984 Don't pollute the addrmap with bad data. */
11985 if (range_beginning + baseaddr == 0
11986 && !dwarf2_per_objfile->has_section_at_zero)
11987 {
11988 complaint (&symfile_complaints,
11989 _(".debug_ranges entry has start address of zero"
11990 " [in module %s]"), objfile_name (objfile));
11991 continue;
11992 }
11993
11994 if (ranges_pst != NULL)
11995 {
11996 CORE_ADDR lowpc;
11997 CORE_ADDR highpc;
11998
11999 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12000 range_beginning + baseaddr);
12001 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12002 range_end + baseaddr);
12003 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12004 ranges_pst);
12005 }
12006
12007 /* FIXME: This is recording everything as a low-high
12008 segment of consecutive addresses. We should have a
12009 data structure for discontiguous block ranges
12010 instead. */
12011 if (! low_set)
12012 {
12013 low = range_beginning;
12014 high = range_end;
12015 low_set = 1;
12016 }
12017 else
12018 {
12019 if (range_beginning < low)
12020 low = range_beginning;
12021 if (range_end > high)
12022 high = range_end;
12023 }
12024 }
12025
12026 if (! low_set)
12027 /* If the first entry is an end-of-list marker, the range
12028 describes an empty scope, i.e. no instructions. */
12029 return 0;
12030
12031 if (low_return)
12032 *low_return = low;
12033 if (high_return)
12034 *high_return = high;
12035 return 1;
12036 }
12037
12038 /* Get low and high pc attributes from a die. Return 1 if the attributes
12039 are present and valid, otherwise, return 0. Return -1 if the range is
12040 discontinuous, i.e. derived from DW_AT_ranges information. */
12041
12042 static int
12043 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12044 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12045 struct partial_symtab *pst)
12046 {
12047 struct attribute *attr;
12048 struct attribute *attr_high;
12049 CORE_ADDR low = 0;
12050 CORE_ADDR high = 0;
12051 int ret = 0;
12052
12053 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12054 if (attr_high)
12055 {
12056 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12057 if (attr)
12058 {
12059 low = attr_value_as_address (attr);
12060 high = attr_value_as_address (attr_high);
12061 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12062 high += low;
12063 }
12064 else
12065 /* Found high w/o low attribute. */
12066 return 0;
12067
12068 /* Found consecutive range of addresses. */
12069 ret = 1;
12070 }
12071 else
12072 {
12073 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12074 if (attr != NULL)
12075 {
12076 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12077 We take advantage of the fact that DW_AT_ranges does not appear
12078 in DW_TAG_compile_unit of DWO files. */
12079 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12080 unsigned int ranges_offset = (DW_UNSND (attr)
12081 + (need_ranges_base
12082 ? cu->ranges_base
12083 : 0));
12084
12085 /* Value of the DW_AT_ranges attribute is the offset in the
12086 .debug_ranges section. */
12087 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12088 return 0;
12089 /* Found discontinuous range of addresses. */
12090 ret = -1;
12091 }
12092 }
12093
12094 /* read_partial_die has also the strict LOW < HIGH requirement. */
12095 if (high <= low)
12096 return 0;
12097
12098 /* When using the GNU linker, .gnu.linkonce. sections are used to
12099 eliminate duplicate copies of functions and vtables and such.
12100 The linker will arbitrarily choose one and discard the others.
12101 The AT_*_pc values for such functions refer to local labels in
12102 these sections. If the section from that file was discarded, the
12103 labels are not in the output, so the relocs get a value of 0.
12104 If this is a discarded function, mark the pc bounds as invalid,
12105 so that GDB will ignore it. */
12106 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12107 return 0;
12108
12109 *lowpc = low;
12110 if (highpc)
12111 *highpc = high;
12112 return ret;
12113 }
12114
12115 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12116 its low and high PC addresses. Do nothing if these addresses could not
12117 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12118 and HIGHPC to the high address if greater than HIGHPC. */
12119
12120 static void
12121 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12122 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12123 struct dwarf2_cu *cu)
12124 {
12125 CORE_ADDR low, high;
12126 struct die_info *child = die->child;
12127
12128 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12129 {
12130 *lowpc = min (*lowpc, low);
12131 *highpc = max (*highpc, high);
12132 }
12133
12134 /* If the language does not allow nested subprograms (either inside
12135 subprograms or lexical blocks), we're done. */
12136 if (cu->language != language_ada)
12137 return;
12138
12139 /* Check all the children of the given DIE. If it contains nested
12140 subprograms, then check their pc bounds. Likewise, we need to
12141 check lexical blocks as well, as they may also contain subprogram
12142 definitions. */
12143 while (child && child->tag)
12144 {
12145 if (child->tag == DW_TAG_subprogram
12146 || child->tag == DW_TAG_lexical_block)
12147 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12148 child = sibling_die (child);
12149 }
12150 }
12151
12152 /* Get the low and high pc's represented by the scope DIE, and store
12153 them in *LOWPC and *HIGHPC. If the correct values can't be
12154 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12155
12156 static void
12157 get_scope_pc_bounds (struct die_info *die,
12158 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12159 struct dwarf2_cu *cu)
12160 {
12161 CORE_ADDR best_low = (CORE_ADDR) -1;
12162 CORE_ADDR best_high = (CORE_ADDR) 0;
12163 CORE_ADDR current_low, current_high;
12164
12165 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12166 {
12167 best_low = current_low;
12168 best_high = current_high;
12169 }
12170 else
12171 {
12172 struct die_info *child = die->child;
12173
12174 while (child && child->tag)
12175 {
12176 switch (child->tag) {
12177 case DW_TAG_subprogram:
12178 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12179 break;
12180 case DW_TAG_namespace:
12181 case DW_TAG_module:
12182 /* FIXME: carlton/2004-01-16: Should we do this for
12183 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12184 that current GCC's always emit the DIEs corresponding
12185 to definitions of methods of classes as children of a
12186 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12187 the DIEs giving the declarations, which could be
12188 anywhere). But I don't see any reason why the
12189 standards says that they have to be there. */
12190 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12191
12192 if (current_low != ((CORE_ADDR) -1))
12193 {
12194 best_low = min (best_low, current_low);
12195 best_high = max (best_high, current_high);
12196 }
12197 break;
12198 default:
12199 /* Ignore. */
12200 break;
12201 }
12202
12203 child = sibling_die (child);
12204 }
12205 }
12206
12207 *lowpc = best_low;
12208 *highpc = best_high;
12209 }
12210
12211 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12212 in DIE. */
12213
12214 static void
12215 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12216 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12217 {
12218 struct objfile *objfile = cu->objfile;
12219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12220 struct attribute *attr;
12221 struct attribute *attr_high;
12222
12223 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12224 if (attr_high)
12225 {
12226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12227 if (attr)
12228 {
12229 CORE_ADDR low = attr_value_as_address (attr);
12230 CORE_ADDR high = attr_value_as_address (attr_high);
12231
12232 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12233 high += low;
12234
12235 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12236 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12237 record_block_range (block, low, high - 1);
12238 }
12239 }
12240
12241 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12242 if (attr)
12243 {
12244 bfd *obfd = objfile->obfd;
12245 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12246 We take advantage of the fact that DW_AT_ranges does not appear
12247 in DW_TAG_compile_unit of DWO files. */
12248 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12249
12250 /* The value of the DW_AT_ranges attribute is the offset of the
12251 address range list in the .debug_ranges section. */
12252 unsigned long offset = (DW_UNSND (attr)
12253 + (need_ranges_base ? cu->ranges_base : 0));
12254 const gdb_byte *buffer;
12255
12256 /* For some target architectures, but not others, the
12257 read_address function sign-extends the addresses it returns.
12258 To recognize base address selection entries, we need a
12259 mask. */
12260 unsigned int addr_size = cu->header.addr_size;
12261 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12262
12263 /* The base address, to which the next pair is relative. Note
12264 that this 'base' is a DWARF concept: most entries in a range
12265 list are relative, to reduce the number of relocs against the
12266 debugging information. This is separate from this function's
12267 'baseaddr' argument, which GDB uses to relocate debugging
12268 information from a shared library based on the address at
12269 which the library was loaded. */
12270 CORE_ADDR base = cu->base_address;
12271 int base_known = cu->base_known;
12272
12273 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12274 if (offset >= dwarf2_per_objfile->ranges.size)
12275 {
12276 complaint (&symfile_complaints,
12277 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12278 offset);
12279 return;
12280 }
12281 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12282
12283 for (;;)
12284 {
12285 unsigned int bytes_read;
12286 CORE_ADDR start, end;
12287
12288 start = read_address (obfd, buffer, cu, &bytes_read);
12289 buffer += bytes_read;
12290 end = read_address (obfd, buffer, cu, &bytes_read);
12291 buffer += bytes_read;
12292
12293 /* Did we find the end of the range list? */
12294 if (start == 0 && end == 0)
12295 break;
12296
12297 /* Did we find a base address selection entry? */
12298 else if ((start & base_select_mask) == base_select_mask)
12299 {
12300 base = end;
12301 base_known = 1;
12302 }
12303
12304 /* We found an ordinary address range. */
12305 else
12306 {
12307 if (!base_known)
12308 {
12309 complaint (&symfile_complaints,
12310 _("Invalid .debug_ranges data "
12311 "(no base address)"));
12312 return;
12313 }
12314
12315 if (start > end)
12316 {
12317 /* Inverted range entries are invalid. */
12318 complaint (&symfile_complaints,
12319 _("Invalid .debug_ranges data "
12320 "(inverted range)"));
12321 return;
12322 }
12323
12324 /* Empty range entries have no effect. */
12325 if (start == end)
12326 continue;
12327
12328 start += base + baseaddr;
12329 end += base + baseaddr;
12330
12331 /* A not-uncommon case of bad debug info.
12332 Don't pollute the addrmap with bad data. */
12333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12334 {
12335 complaint (&symfile_complaints,
12336 _(".debug_ranges entry has start address of zero"
12337 " [in module %s]"), objfile_name (objfile));
12338 continue;
12339 }
12340
12341 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12342 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12343 record_block_range (block, start, end - 1);
12344 }
12345 }
12346 }
12347 }
12348
12349 /* Check whether the producer field indicates either of GCC < 4.6, or the
12350 Intel C/C++ compiler, and cache the result in CU. */
12351
12352 static void
12353 check_producer (struct dwarf2_cu *cu)
12354 {
12355 const char *cs;
12356 int major, minor;
12357
12358 if (cu->producer == NULL)
12359 {
12360 /* For unknown compilers expect their behavior is DWARF version
12361 compliant.
12362
12363 GCC started to support .debug_types sections by -gdwarf-4 since
12364 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12365 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12366 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12367 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12368 }
12369 else if (producer_is_gcc (cu->producer, &major, &minor))
12370 {
12371 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12372 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12373 }
12374 else if (startswith (cu->producer, "Intel(R) C"))
12375 cu->producer_is_icc = 1;
12376 else
12377 {
12378 /* For other non-GCC compilers, expect their behavior is DWARF version
12379 compliant. */
12380 }
12381
12382 cu->checked_producer = 1;
12383 }
12384
12385 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12386 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12387 during 4.6.0 experimental. */
12388
12389 static int
12390 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12391 {
12392 if (!cu->checked_producer)
12393 check_producer (cu);
12394
12395 return cu->producer_is_gxx_lt_4_6;
12396 }
12397
12398 /* Return the default accessibility type if it is not overriden by
12399 DW_AT_accessibility. */
12400
12401 static enum dwarf_access_attribute
12402 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12403 {
12404 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12405 {
12406 /* The default DWARF 2 accessibility for members is public, the default
12407 accessibility for inheritance is private. */
12408
12409 if (die->tag != DW_TAG_inheritance)
12410 return DW_ACCESS_public;
12411 else
12412 return DW_ACCESS_private;
12413 }
12414 else
12415 {
12416 /* DWARF 3+ defines the default accessibility a different way. The same
12417 rules apply now for DW_TAG_inheritance as for the members and it only
12418 depends on the container kind. */
12419
12420 if (die->parent->tag == DW_TAG_class_type)
12421 return DW_ACCESS_private;
12422 else
12423 return DW_ACCESS_public;
12424 }
12425 }
12426
12427 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12428 offset. If the attribute was not found return 0, otherwise return
12429 1. If it was found but could not properly be handled, set *OFFSET
12430 to 0. */
12431
12432 static int
12433 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12434 LONGEST *offset)
12435 {
12436 struct attribute *attr;
12437
12438 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12439 if (attr != NULL)
12440 {
12441 *offset = 0;
12442
12443 /* Note that we do not check for a section offset first here.
12444 This is because DW_AT_data_member_location is new in DWARF 4,
12445 so if we see it, we can assume that a constant form is really
12446 a constant and not a section offset. */
12447 if (attr_form_is_constant (attr))
12448 *offset = dwarf2_get_attr_constant_value (attr, 0);
12449 else if (attr_form_is_section_offset (attr))
12450 dwarf2_complex_location_expr_complaint ();
12451 else if (attr_form_is_block (attr))
12452 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12453 else
12454 dwarf2_complex_location_expr_complaint ();
12455
12456 return 1;
12457 }
12458
12459 return 0;
12460 }
12461
12462 /* Add an aggregate field to the field list. */
12463
12464 static void
12465 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12466 struct dwarf2_cu *cu)
12467 {
12468 struct objfile *objfile = cu->objfile;
12469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12470 struct nextfield *new_field;
12471 struct attribute *attr;
12472 struct field *fp;
12473 const char *fieldname = "";
12474
12475 /* Allocate a new field list entry and link it in. */
12476 new_field = XNEW (struct nextfield);
12477 make_cleanup (xfree, new_field);
12478 memset (new_field, 0, sizeof (struct nextfield));
12479
12480 if (die->tag == DW_TAG_inheritance)
12481 {
12482 new_field->next = fip->baseclasses;
12483 fip->baseclasses = new_field;
12484 }
12485 else
12486 {
12487 new_field->next = fip->fields;
12488 fip->fields = new_field;
12489 }
12490 fip->nfields++;
12491
12492 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12493 if (attr)
12494 new_field->accessibility = DW_UNSND (attr);
12495 else
12496 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12497 if (new_field->accessibility != DW_ACCESS_public)
12498 fip->non_public_fields = 1;
12499
12500 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12501 if (attr)
12502 new_field->virtuality = DW_UNSND (attr);
12503 else
12504 new_field->virtuality = DW_VIRTUALITY_none;
12505
12506 fp = &new_field->field;
12507
12508 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12509 {
12510 LONGEST offset;
12511
12512 /* Data member other than a C++ static data member. */
12513
12514 /* Get type of field. */
12515 fp->type = die_type (die, cu);
12516
12517 SET_FIELD_BITPOS (*fp, 0);
12518
12519 /* Get bit size of field (zero if none). */
12520 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12521 if (attr)
12522 {
12523 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12524 }
12525 else
12526 {
12527 FIELD_BITSIZE (*fp) = 0;
12528 }
12529
12530 /* Get bit offset of field. */
12531 if (handle_data_member_location (die, cu, &offset))
12532 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12533 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12534 if (attr)
12535 {
12536 if (gdbarch_bits_big_endian (gdbarch))
12537 {
12538 /* For big endian bits, the DW_AT_bit_offset gives the
12539 additional bit offset from the MSB of the containing
12540 anonymous object to the MSB of the field. We don't
12541 have to do anything special since we don't need to
12542 know the size of the anonymous object. */
12543 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12544 }
12545 else
12546 {
12547 /* For little endian bits, compute the bit offset to the
12548 MSB of the anonymous object, subtract off the number of
12549 bits from the MSB of the field to the MSB of the
12550 object, and then subtract off the number of bits of
12551 the field itself. The result is the bit offset of
12552 the LSB of the field. */
12553 int anonymous_size;
12554 int bit_offset = DW_UNSND (attr);
12555
12556 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12557 if (attr)
12558 {
12559 /* The size of the anonymous object containing
12560 the bit field is explicit, so use the
12561 indicated size (in bytes). */
12562 anonymous_size = DW_UNSND (attr);
12563 }
12564 else
12565 {
12566 /* The size of the anonymous object containing
12567 the bit field must be inferred from the type
12568 attribute of the data member containing the
12569 bit field. */
12570 anonymous_size = TYPE_LENGTH (fp->type);
12571 }
12572 SET_FIELD_BITPOS (*fp,
12573 (FIELD_BITPOS (*fp)
12574 + anonymous_size * bits_per_byte
12575 - bit_offset - FIELD_BITSIZE (*fp)));
12576 }
12577 }
12578
12579 /* Get name of field. */
12580 fieldname = dwarf2_name (die, cu);
12581 if (fieldname == NULL)
12582 fieldname = "";
12583
12584 /* The name is already allocated along with this objfile, so we don't
12585 need to duplicate it for the type. */
12586 fp->name = fieldname;
12587
12588 /* Change accessibility for artificial fields (e.g. virtual table
12589 pointer or virtual base class pointer) to private. */
12590 if (dwarf2_attr (die, DW_AT_artificial, cu))
12591 {
12592 FIELD_ARTIFICIAL (*fp) = 1;
12593 new_field->accessibility = DW_ACCESS_private;
12594 fip->non_public_fields = 1;
12595 }
12596 }
12597 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12598 {
12599 /* C++ static member. */
12600
12601 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12602 is a declaration, but all versions of G++ as of this writing
12603 (so through at least 3.2.1) incorrectly generate
12604 DW_TAG_variable tags. */
12605
12606 const char *physname;
12607
12608 /* Get name of field. */
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 return;
12612
12613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12614 if (attr
12615 /* Only create a symbol if this is an external value.
12616 new_symbol checks this and puts the value in the global symbol
12617 table, which we want. If it is not external, new_symbol
12618 will try to put the value in cu->list_in_scope which is wrong. */
12619 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12620 {
12621 /* A static const member, not much different than an enum as far as
12622 we're concerned, except that we can support more types. */
12623 new_symbol (die, NULL, cu);
12624 }
12625
12626 /* Get physical name. */
12627 physname = dwarf2_physname (fieldname, die, cu);
12628
12629 /* The name is already allocated along with this objfile, so we don't
12630 need to duplicate it for the type. */
12631 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12632 FIELD_TYPE (*fp) = die_type (die, cu);
12633 FIELD_NAME (*fp) = fieldname;
12634 }
12635 else if (die->tag == DW_TAG_inheritance)
12636 {
12637 LONGEST offset;
12638
12639 /* C++ base class field. */
12640 if (handle_data_member_location (die, cu, &offset))
12641 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12642 FIELD_BITSIZE (*fp) = 0;
12643 FIELD_TYPE (*fp) = die_type (die, cu);
12644 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12645 fip->nbaseclasses++;
12646 }
12647 }
12648
12649 /* Add a typedef defined in the scope of the FIP's class. */
12650
12651 static void
12652 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12653 struct dwarf2_cu *cu)
12654 {
12655 struct objfile *objfile = cu->objfile;
12656 struct typedef_field_list *new_field;
12657 struct attribute *attr;
12658 struct typedef_field *fp;
12659 char *fieldname = "";
12660
12661 /* Allocate a new field list entry and link it in. */
12662 new_field = XCNEW (struct typedef_field_list);
12663 make_cleanup (xfree, new_field);
12664
12665 gdb_assert (die->tag == DW_TAG_typedef);
12666
12667 fp = &new_field->field;
12668
12669 /* Get name of field. */
12670 fp->name = dwarf2_name (die, cu);
12671 if (fp->name == NULL)
12672 return;
12673
12674 fp->type = read_type_die (die, cu);
12675
12676 new_field->next = fip->typedef_field_list;
12677 fip->typedef_field_list = new_field;
12678 fip->typedef_field_list_count++;
12679 }
12680
12681 /* Create the vector of fields, and attach it to the type. */
12682
12683 static void
12684 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12685 struct dwarf2_cu *cu)
12686 {
12687 int nfields = fip->nfields;
12688
12689 /* Record the field count, allocate space for the array of fields,
12690 and create blank accessibility bitfields if necessary. */
12691 TYPE_NFIELDS (type) = nfields;
12692 TYPE_FIELDS (type) = (struct field *)
12693 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12694 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12695
12696 if (fip->non_public_fields && cu->language != language_ada)
12697 {
12698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12699
12700 TYPE_FIELD_PRIVATE_BITS (type) =
12701 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12702 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12703
12704 TYPE_FIELD_PROTECTED_BITS (type) =
12705 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12706 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12707
12708 TYPE_FIELD_IGNORE_BITS (type) =
12709 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12710 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12711 }
12712
12713 /* If the type has baseclasses, allocate and clear a bit vector for
12714 TYPE_FIELD_VIRTUAL_BITS. */
12715 if (fip->nbaseclasses && cu->language != language_ada)
12716 {
12717 int num_bytes = B_BYTES (fip->nbaseclasses);
12718 unsigned char *pointer;
12719
12720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12721 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12722 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12723 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12724 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12725 }
12726
12727 /* Copy the saved-up fields into the field vector. Start from the head of
12728 the list, adding to the tail of the field array, so that they end up in
12729 the same order in the array in which they were added to the list. */
12730 while (nfields-- > 0)
12731 {
12732 struct nextfield *fieldp;
12733
12734 if (fip->fields)
12735 {
12736 fieldp = fip->fields;
12737 fip->fields = fieldp->next;
12738 }
12739 else
12740 {
12741 fieldp = fip->baseclasses;
12742 fip->baseclasses = fieldp->next;
12743 }
12744
12745 TYPE_FIELD (type, nfields) = fieldp->field;
12746 switch (fieldp->accessibility)
12747 {
12748 case DW_ACCESS_private:
12749 if (cu->language != language_ada)
12750 SET_TYPE_FIELD_PRIVATE (type, nfields);
12751 break;
12752
12753 case DW_ACCESS_protected:
12754 if (cu->language != language_ada)
12755 SET_TYPE_FIELD_PROTECTED (type, nfields);
12756 break;
12757
12758 case DW_ACCESS_public:
12759 break;
12760
12761 default:
12762 /* Unknown accessibility. Complain and treat it as public. */
12763 {
12764 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12765 fieldp->accessibility);
12766 }
12767 break;
12768 }
12769 if (nfields < fip->nbaseclasses)
12770 {
12771 switch (fieldp->virtuality)
12772 {
12773 case DW_VIRTUALITY_virtual:
12774 case DW_VIRTUALITY_pure_virtual:
12775 if (cu->language == language_ada)
12776 error (_("unexpected virtuality in component of Ada type"));
12777 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12778 break;
12779 }
12780 }
12781 }
12782 }
12783
12784 /* Return true if this member function is a constructor, false
12785 otherwise. */
12786
12787 static int
12788 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12789 {
12790 const char *fieldname;
12791 const char *type_name;
12792 int len;
12793
12794 if (die->parent == NULL)
12795 return 0;
12796
12797 if (die->parent->tag != DW_TAG_structure_type
12798 && die->parent->tag != DW_TAG_union_type
12799 && die->parent->tag != DW_TAG_class_type)
12800 return 0;
12801
12802 fieldname = dwarf2_name (die, cu);
12803 type_name = dwarf2_name (die->parent, cu);
12804 if (fieldname == NULL || type_name == NULL)
12805 return 0;
12806
12807 len = strlen (fieldname);
12808 return (strncmp (fieldname, type_name, len) == 0
12809 && (type_name[len] == '\0' || type_name[len] == '<'));
12810 }
12811
12812 /* Add a member function to the proper fieldlist. */
12813
12814 static void
12815 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12816 struct type *type, struct dwarf2_cu *cu)
12817 {
12818 struct objfile *objfile = cu->objfile;
12819 struct attribute *attr;
12820 struct fnfieldlist *flp;
12821 int i;
12822 struct fn_field *fnp;
12823 const char *fieldname;
12824 struct nextfnfield *new_fnfield;
12825 struct type *this_type;
12826 enum dwarf_access_attribute accessibility;
12827
12828 if (cu->language == language_ada)
12829 error (_("unexpected member function in Ada type"));
12830
12831 /* Get name of member function. */
12832 fieldname = dwarf2_name (die, cu);
12833 if (fieldname == NULL)
12834 return;
12835
12836 /* Look up member function name in fieldlist. */
12837 for (i = 0; i < fip->nfnfields; i++)
12838 {
12839 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12840 break;
12841 }
12842
12843 /* Create new list element if necessary. */
12844 if (i < fip->nfnfields)
12845 flp = &fip->fnfieldlists[i];
12846 else
12847 {
12848 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12849 {
12850 fip->fnfieldlists = (struct fnfieldlist *)
12851 xrealloc (fip->fnfieldlists,
12852 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12853 * sizeof (struct fnfieldlist));
12854 if (fip->nfnfields == 0)
12855 make_cleanup (free_current_contents, &fip->fnfieldlists);
12856 }
12857 flp = &fip->fnfieldlists[fip->nfnfields];
12858 flp->name = fieldname;
12859 flp->length = 0;
12860 flp->head = NULL;
12861 i = fip->nfnfields++;
12862 }
12863
12864 /* Create a new member function field and chain it to the field list
12865 entry. */
12866 new_fnfield = XNEW (struct nextfnfield);
12867 make_cleanup (xfree, new_fnfield);
12868 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12869 new_fnfield->next = flp->head;
12870 flp->head = new_fnfield;
12871 flp->length++;
12872
12873 /* Fill in the member function field info. */
12874 fnp = &new_fnfield->fnfield;
12875
12876 /* Delay processing of the physname until later. */
12877 if (cu->language == language_cplus || cu->language == language_java)
12878 {
12879 add_to_method_list (type, i, flp->length - 1, fieldname,
12880 die, cu);
12881 }
12882 else
12883 {
12884 const char *physname = dwarf2_physname (fieldname, die, cu);
12885 fnp->physname = physname ? physname : "";
12886 }
12887
12888 fnp->type = alloc_type (objfile);
12889 this_type = read_type_die (die, cu);
12890 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12891 {
12892 int nparams = TYPE_NFIELDS (this_type);
12893
12894 /* TYPE is the domain of this method, and THIS_TYPE is the type
12895 of the method itself (TYPE_CODE_METHOD). */
12896 smash_to_method_type (fnp->type, type,
12897 TYPE_TARGET_TYPE (this_type),
12898 TYPE_FIELDS (this_type),
12899 TYPE_NFIELDS (this_type),
12900 TYPE_VARARGS (this_type));
12901
12902 /* Handle static member functions.
12903 Dwarf2 has no clean way to discern C++ static and non-static
12904 member functions. G++ helps GDB by marking the first
12905 parameter for non-static member functions (which is the this
12906 pointer) as artificial. We obtain this information from
12907 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12908 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12909 fnp->voffset = VOFFSET_STATIC;
12910 }
12911 else
12912 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12913 dwarf2_full_name (fieldname, die, cu));
12914
12915 /* Get fcontext from DW_AT_containing_type if present. */
12916 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12917 fnp->fcontext = die_containing_type (die, cu);
12918
12919 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12920 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12921
12922 /* Get accessibility. */
12923 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12924 if (attr)
12925 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12926 else
12927 accessibility = dwarf2_default_access_attribute (die, cu);
12928 switch (accessibility)
12929 {
12930 case DW_ACCESS_private:
12931 fnp->is_private = 1;
12932 break;
12933 case DW_ACCESS_protected:
12934 fnp->is_protected = 1;
12935 break;
12936 }
12937
12938 /* Check for artificial methods. */
12939 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12940 if (attr && DW_UNSND (attr) != 0)
12941 fnp->is_artificial = 1;
12942
12943 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12944
12945 /* Get index in virtual function table if it is a virtual member
12946 function. For older versions of GCC, this is an offset in the
12947 appropriate virtual table, as specified by DW_AT_containing_type.
12948 For everyone else, it is an expression to be evaluated relative
12949 to the object address. */
12950
12951 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12952 if (attr)
12953 {
12954 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12955 {
12956 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12957 {
12958 /* Old-style GCC. */
12959 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12960 }
12961 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12962 || (DW_BLOCK (attr)->size > 1
12963 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12964 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12965 {
12966 struct dwarf_block blk;
12967 int offset;
12968
12969 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12970 ? 1 : 2);
12971 blk.size = DW_BLOCK (attr)->size - offset;
12972 blk.data = DW_BLOCK (attr)->data + offset;
12973 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12974 if ((fnp->voffset % cu->header.addr_size) != 0)
12975 dwarf2_complex_location_expr_complaint ();
12976 else
12977 fnp->voffset /= cu->header.addr_size;
12978 fnp->voffset += 2;
12979 }
12980 else
12981 dwarf2_complex_location_expr_complaint ();
12982
12983 if (!fnp->fcontext)
12984 {
12985 /* If there is no `this' field and no DW_AT_containing_type,
12986 we cannot actually find a base class context for the
12987 vtable! */
12988 if (TYPE_NFIELDS (this_type) == 0
12989 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12990 {
12991 complaint (&symfile_complaints,
12992 _("cannot determine context for virtual member "
12993 "function \"%s\" (offset %d)"),
12994 fieldname, die->offset.sect_off);
12995 }
12996 else
12997 {
12998 fnp->fcontext
12999 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13000 }
13001 }
13002 }
13003 else if (attr_form_is_section_offset (attr))
13004 {
13005 dwarf2_complex_location_expr_complaint ();
13006 }
13007 else
13008 {
13009 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13010 fieldname);
13011 }
13012 }
13013 else
13014 {
13015 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13016 if (attr && DW_UNSND (attr))
13017 {
13018 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13019 complaint (&symfile_complaints,
13020 _("Member function \"%s\" (offset %d) is virtual "
13021 "but the vtable offset is not specified"),
13022 fieldname, die->offset.sect_off);
13023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13024 TYPE_CPLUS_DYNAMIC (type) = 1;
13025 }
13026 }
13027 }
13028
13029 /* Create the vector of member function fields, and attach it to the type. */
13030
13031 static void
13032 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13033 struct dwarf2_cu *cu)
13034 {
13035 struct fnfieldlist *flp;
13036 int i;
13037
13038 if (cu->language == language_ada)
13039 error (_("unexpected member functions in Ada type"));
13040
13041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13042 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13043 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13044
13045 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13046 {
13047 struct nextfnfield *nfp = flp->head;
13048 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13049 int k;
13050
13051 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13052 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13053 fn_flp->fn_fields = (struct fn_field *)
13054 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13055 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13056 fn_flp->fn_fields[k] = nfp->fnfield;
13057 }
13058
13059 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13060 }
13061
13062 /* Returns non-zero if NAME is the name of a vtable member in CU's
13063 language, zero otherwise. */
13064 static int
13065 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13066 {
13067 static const char vptr[] = "_vptr";
13068 static const char vtable[] = "vtable";
13069
13070 /* Look for the C++ and Java forms of the vtable. */
13071 if ((cu->language == language_java
13072 && startswith (name, vtable))
13073 || (startswith (name, vptr)
13074 && is_cplus_marker (name[sizeof (vptr) - 1])))
13075 return 1;
13076
13077 return 0;
13078 }
13079
13080 /* GCC outputs unnamed structures that are really pointers to member
13081 functions, with the ABI-specified layout. If TYPE describes
13082 such a structure, smash it into a member function type.
13083
13084 GCC shouldn't do this; it should just output pointer to member DIEs.
13085 This is GCC PR debug/28767. */
13086
13087 static void
13088 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13089 {
13090 struct type *pfn_type, *self_type, *new_type;
13091
13092 /* Check for a structure with no name and two children. */
13093 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13094 return;
13095
13096 /* Check for __pfn and __delta members. */
13097 if (TYPE_FIELD_NAME (type, 0) == NULL
13098 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13099 || TYPE_FIELD_NAME (type, 1) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13101 return;
13102
13103 /* Find the type of the method. */
13104 pfn_type = TYPE_FIELD_TYPE (type, 0);
13105 if (pfn_type == NULL
13106 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13107 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13108 return;
13109
13110 /* Look for the "this" argument. */
13111 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13112 if (TYPE_NFIELDS (pfn_type) == 0
13113 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13114 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13115 return;
13116
13117 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13118 new_type = alloc_type (objfile);
13119 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13120 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13121 TYPE_VARARGS (pfn_type));
13122 smash_to_methodptr_type (type, new_type);
13123 }
13124
13125 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13126 (icc). */
13127
13128 static int
13129 producer_is_icc (struct dwarf2_cu *cu)
13130 {
13131 if (!cu->checked_producer)
13132 check_producer (cu);
13133
13134 return cu->producer_is_icc;
13135 }
13136
13137 /* Called when we find the DIE that starts a structure or union scope
13138 (definition) to create a type for the structure or union. Fill in
13139 the type's name and general properties; the members will not be
13140 processed until process_structure_scope. A symbol table entry for
13141 the type will also not be done until process_structure_scope (assuming
13142 the type has a name).
13143
13144 NOTE: we need to call these functions regardless of whether or not the
13145 DIE has a DW_AT_name attribute, since it might be an anonymous
13146 structure or union. This gets the type entered into our set of
13147 user defined types. */
13148
13149 static struct type *
13150 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13151 {
13152 struct objfile *objfile = cu->objfile;
13153 struct type *type;
13154 struct attribute *attr;
13155 const char *name;
13156
13157 /* If the definition of this type lives in .debug_types, read that type.
13158 Don't follow DW_AT_specification though, that will take us back up
13159 the chain and we want to go down. */
13160 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13161 if (attr)
13162 {
13163 type = get_DW_AT_signature_type (die, attr, cu);
13164
13165 /* The type's CU may not be the same as CU.
13166 Ensure TYPE is recorded with CU in die_type_hash. */
13167 return set_die_type (die, type, cu);
13168 }
13169
13170 type = alloc_type (objfile);
13171 INIT_CPLUS_SPECIFIC (type);
13172
13173 name = dwarf2_name (die, cu);
13174 if (name != NULL)
13175 {
13176 if (cu->language == language_cplus
13177 || cu->language == language_java
13178 || cu->language == language_d)
13179 {
13180 const char *full_name = dwarf2_full_name (name, die, cu);
13181
13182 /* dwarf2_full_name might have already finished building the DIE's
13183 type. If so, there is no need to continue. */
13184 if (get_die_type (die, cu) != NULL)
13185 return get_die_type (die, cu);
13186
13187 TYPE_TAG_NAME (type) = full_name;
13188 if (die->tag == DW_TAG_structure_type
13189 || die->tag == DW_TAG_class_type)
13190 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13191 }
13192 else
13193 {
13194 /* The name is already allocated along with this objfile, so
13195 we don't need to duplicate it for the type. */
13196 TYPE_TAG_NAME (type) = name;
13197 if (die->tag == DW_TAG_class_type)
13198 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13199 }
13200 }
13201
13202 if (die->tag == DW_TAG_structure_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13205 }
13206 else if (die->tag == DW_TAG_union_type)
13207 {
13208 TYPE_CODE (type) = TYPE_CODE_UNION;
13209 }
13210 else
13211 {
13212 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13213 }
13214
13215 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13216 TYPE_DECLARED_CLASS (type) = 1;
13217
13218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13219 if (attr)
13220 {
13221 if (attr_form_is_constant (attr))
13222 TYPE_LENGTH (type) = DW_UNSND (attr);
13223 else
13224 {
13225 /* For the moment, dynamic type sizes are not supported
13226 by GDB's struct type. The actual size is determined
13227 on-demand when resolving the type of a given object,
13228 so set the type's length to zero for now. Otherwise,
13229 we record an expression as the length, and that expression
13230 could lead to a very large value, which could eventually
13231 lead to us trying to allocate that much memory when creating
13232 a value of that type. */
13233 TYPE_LENGTH (type) = 0;
13234 }
13235 }
13236 else
13237 {
13238 TYPE_LENGTH (type) = 0;
13239 }
13240
13241 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13242 {
13243 /* ICC does not output the required DW_AT_declaration
13244 on incomplete types, but gives them a size of zero. */
13245 TYPE_STUB (type) = 1;
13246 }
13247 else
13248 TYPE_STUB_SUPPORTED (type) = 1;
13249
13250 if (die_is_declaration (die, cu))
13251 TYPE_STUB (type) = 1;
13252 else if (attr == NULL && die->child == NULL
13253 && producer_is_realview (cu->producer))
13254 /* RealView does not output the required DW_AT_declaration
13255 on incomplete types. */
13256 TYPE_STUB (type) = 1;
13257
13258 /* We need to add the type field to the die immediately so we don't
13259 infinitely recurse when dealing with pointers to the structure
13260 type within the structure itself. */
13261 set_die_type (die, type, cu);
13262
13263 /* set_die_type should be already done. */
13264 set_descriptive_type (type, die, cu);
13265
13266 return type;
13267 }
13268
13269 /* Finish creating a structure or union type, including filling in
13270 its members and creating a symbol for it. */
13271
13272 static void
13273 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13274 {
13275 struct objfile *objfile = cu->objfile;
13276 struct die_info *child_die;
13277 struct type *type;
13278
13279 type = get_die_type (die, cu);
13280 if (type == NULL)
13281 type = read_structure_type (die, cu);
13282
13283 if (die->child != NULL && ! die_is_declaration (die, cu))
13284 {
13285 struct field_info fi;
13286 VEC (symbolp) *template_args = NULL;
13287 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13288
13289 memset (&fi, 0, sizeof (struct field_info));
13290
13291 child_die = die->child;
13292
13293 while (child_die && child_die->tag)
13294 {
13295 if (child_die->tag == DW_TAG_member
13296 || child_die->tag == DW_TAG_variable)
13297 {
13298 /* NOTE: carlton/2002-11-05: A C++ static data member
13299 should be a DW_TAG_member that is a declaration, but
13300 all versions of G++ as of this writing (so through at
13301 least 3.2.1) incorrectly generate DW_TAG_variable
13302 tags for them instead. */
13303 dwarf2_add_field (&fi, child_die, cu);
13304 }
13305 else if (child_die->tag == DW_TAG_subprogram)
13306 {
13307 /* C++ member function. */
13308 dwarf2_add_member_fn (&fi, child_die, type, cu);
13309 }
13310 else if (child_die->tag == DW_TAG_inheritance)
13311 {
13312 /* C++ base class field. */
13313 dwarf2_add_field (&fi, child_die, cu);
13314 }
13315 else if (child_die->tag == DW_TAG_typedef)
13316 dwarf2_add_typedef (&fi, child_die, cu);
13317 else if (child_die->tag == DW_TAG_template_type_param
13318 || child_die->tag == DW_TAG_template_value_param)
13319 {
13320 struct symbol *arg = new_symbol (child_die, NULL, cu);
13321
13322 if (arg != NULL)
13323 VEC_safe_push (symbolp, template_args, arg);
13324 }
13325
13326 child_die = sibling_die (child_die);
13327 }
13328
13329 /* Attach template arguments to type. */
13330 if (! VEC_empty (symbolp, template_args))
13331 {
13332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13333 TYPE_N_TEMPLATE_ARGUMENTS (type)
13334 = VEC_length (symbolp, template_args);
13335 TYPE_TEMPLATE_ARGUMENTS (type)
13336 = XOBNEWVEC (&objfile->objfile_obstack,
13337 struct symbol *,
13338 TYPE_N_TEMPLATE_ARGUMENTS (type));
13339 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13340 VEC_address (symbolp, template_args),
13341 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13342 * sizeof (struct symbol *)));
13343 VEC_free (symbolp, template_args);
13344 }
13345
13346 /* Attach fields and member functions to the type. */
13347 if (fi.nfields)
13348 dwarf2_attach_fields_to_type (&fi, type, cu);
13349 if (fi.nfnfields)
13350 {
13351 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13352
13353 /* Get the type which refers to the base class (possibly this
13354 class itself) which contains the vtable pointer for the current
13355 class from the DW_AT_containing_type attribute. This use of
13356 DW_AT_containing_type is a GNU extension. */
13357
13358 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13359 {
13360 struct type *t = die_containing_type (die, cu);
13361
13362 set_type_vptr_basetype (type, t);
13363 if (type == t)
13364 {
13365 int i;
13366
13367 /* Our own class provides vtbl ptr. */
13368 for (i = TYPE_NFIELDS (t) - 1;
13369 i >= TYPE_N_BASECLASSES (t);
13370 --i)
13371 {
13372 const char *fieldname = TYPE_FIELD_NAME (t, i);
13373
13374 if (is_vtable_name (fieldname, cu))
13375 {
13376 set_type_vptr_fieldno (type, i);
13377 break;
13378 }
13379 }
13380
13381 /* Complain if virtual function table field not found. */
13382 if (i < TYPE_N_BASECLASSES (t))
13383 complaint (&symfile_complaints,
13384 _("virtual function table pointer "
13385 "not found when defining class '%s'"),
13386 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13387 "");
13388 }
13389 else
13390 {
13391 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13392 }
13393 }
13394 else if (cu->producer
13395 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13396 {
13397 /* The IBM XLC compiler does not provide direct indication
13398 of the containing type, but the vtable pointer is
13399 always named __vfp. */
13400
13401 int i;
13402
13403 for (i = TYPE_NFIELDS (type) - 1;
13404 i >= TYPE_N_BASECLASSES (type);
13405 --i)
13406 {
13407 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13408 {
13409 set_type_vptr_fieldno (type, i);
13410 set_type_vptr_basetype (type, type);
13411 break;
13412 }
13413 }
13414 }
13415 }
13416
13417 /* Copy fi.typedef_field_list linked list elements content into the
13418 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13419 if (fi.typedef_field_list)
13420 {
13421 int i = fi.typedef_field_list_count;
13422
13423 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13424 TYPE_TYPEDEF_FIELD_ARRAY (type)
13425 = ((struct typedef_field *)
13426 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13427 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13428
13429 /* Reverse the list order to keep the debug info elements order. */
13430 while (--i >= 0)
13431 {
13432 struct typedef_field *dest, *src;
13433
13434 dest = &TYPE_TYPEDEF_FIELD (type, i);
13435 src = &fi.typedef_field_list->field;
13436 fi.typedef_field_list = fi.typedef_field_list->next;
13437 *dest = *src;
13438 }
13439 }
13440
13441 do_cleanups (back_to);
13442
13443 if (HAVE_CPLUS_STRUCT (type))
13444 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13445 }
13446
13447 quirk_gcc_member_function_pointer (type, objfile);
13448
13449 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13450 snapshots) has been known to create a die giving a declaration
13451 for a class that has, as a child, a die giving a definition for a
13452 nested class. So we have to process our children even if the
13453 current die is a declaration. Normally, of course, a declaration
13454 won't have any children at all. */
13455
13456 child_die = die->child;
13457
13458 while (child_die != NULL && child_die->tag)
13459 {
13460 if (child_die->tag == DW_TAG_member
13461 || child_die->tag == DW_TAG_variable
13462 || child_die->tag == DW_TAG_inheritance
13463 || child_die->tag == DW_TAG_template_value_param
13464 || child_die->tag == DW_TAG_template_type_param)
13465 {
13466 /* Do nothing. */
13467 }
13468 else
13469 process_die (child_die, cu);
13470
13471 child_die = sibling_die (child_die);
13472 }
13473
13474 /* Do not consider external references. According to the DWARF standard,
13475 these DIEs are identified by the fact that they have no byte_size
13476 attribute, and a declaration attribute. */
13477 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13478 || !die_is_declaration (die, cu))
13479 new_symbol (die, type, cu);
13480 }
13481
13482 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13483 update TYPE using some information only available in DIE's children. */
13484
13485 static void
13486 update_enumeration_type_from_children (struct die_info *die,
13487 struct type *type,
13488 struct dwarf2_cu *cu)
13489 {
13490 struct obstack obstack;
13491 struct die_info *child_die;
13492 int unsigned_enum = 1;
13493 int flag_enum = 1;
13494 ULONGEST mask = 0;
13495 struct cleanup *old_chain;
13496
13497 obstack_init (&obstack);
13498 old_chain = make_cleanup_obstack_free (&obstack);
13499
13500 for (child_die = die->child;
13501 child_die != NULL && child_die->tag;
13502 child_die = sibling_die (child_die))
13503 {
13504 struct attribute *attr;
13505 LONGEST value;
13506 const gdb_byte *bytes;
13507 struct dwarf2_locexpr_baton *baton;
13508 const char *name;
13509
13510 if (child_die->tag != DW_TAG_enumerator)
13511 continue;
13512
13513 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13514 if (attr == NULL)
13515 continue;
13516
13517 name = dwarf2_name (child_die, cu);
13518 if (name == NULL)
13519 name = "<anonymous enumerator>";
13520
13521 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13522 &value, &bytes, &baton);
13523 if (value < 0)
13524 {
13525 unsigned_enum = 0;
13526 flag_enum = 0;
13527 }
13528 else if ((mask & value) != 0)
13529 flag_enum = 0;
13530 else
13531 mask |= value;
13532
13533 /* If we already know that the enum type is neither unsigned, nor
13534 a flag type, no need to look at the rest of the enumerates. */
13535 if (!unsigned_enum && !flag_enum)
13536 break;
13537 }
13538
13539 if (unsigned_enum)
13540 TYPE_UNSIGNED (type) = 1;
13541 if (flag_enum)
13542 TYPE_FLAG_ENUM (type) = 1;
13543
13544 do_cleanups (old_chain);
13545 }
13546
13547 /* Given a DW_AT_enumeration_type die, set its type. We do not
13548 complete the type's fields yet, or create any symbols. */
13549
13550 static struct type *
13551 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13552 {
13553 struct objfile *objfile = cu->objfile;
13554 struct type *type;
13555 struct attribute *attr;
13556 const char *name;
13557
13558 /* If the definition of this type lives in .debug_types, read that type.
13559 Don't follow DW_AT_specification though, that will take us back up
13560 the chain and we want to go down. */
13561 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13562 if (attr)
13563 {
13564 type = get_DW_AT_signature_type (die, attr, cu);
13565
13566 /* The type's CU may not be the same as CU.
13567 Ensure TYPE is recorded with CU in die_type_hash. */
13568 return set_die_type (die, type, cu);
13569 }
13570
13571 type = alloc_type (objfile);
13572
13573 TYPE_CODE (type) = TYPE_CODE_ENUM;
13574 name = dwarf2_full_name (NULL, die, cu);
13575 if (name != NULL)
13576 TYPE_TAG_NAME (type) = name;
13577
13578 attr = dwarf2_attr (die, DW_AT_type, cu);
13579 if (attr != NULL)
13580 {
13581 struct type *underlying_type = die_type (die, cu);
13582
13583 TYPE_TARGET_TYPE (type) = underlying_type;
13584 }
13585
13586 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13587 if (attr)
13588 {
13589 TYPE_LENGTH (type) = DW_UNSND (attr);
13590 }
13591 else
13592 {
13593 TYPE_LENGTH (type) = 0;
13594 }
13595
13596 /* The enumeration DIE can be incomplete. In Ada, any type can be
13597 declared as private in the package spec, and then defined only
13598 inside the package body. Such types are known as Taft Amendment
13599 Types. When another package uses such a type, an incomplete DIE
13600 may be generated by the compiler. */
13601 if (die_is_declaration (die, cu))
13602 TYPE_STUB (type) = 1;
13603
13604 /* Finish the creation of this type by using the enum's children.
13605 We must call this even when the underlying type has been provided
13606 so that we can determine if we're looking at a "flag" enum. */
13607 update_enumeration_type_from_children (die, type, cu);
13608
13609 /* If this type has an underlying type that is not a stub, then we
13610 may use its attributes. We always use the "unsigned" attribute
13611 in this situation, because ordinarily we guess whether the type
13612 is unsigned -- but the guess can be wrong and the underlying type
13613 can tell us the reality. However, we defer to a local size
13614 attribute if one exists, because this lets the compiler override
13615 the underlying type if needed. */
13616 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13617 {
13618 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13619 if (TYPE_LENGTH (type) == 0)
13620 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13621 }
13622
13623 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13624
13625 return set_die_type (die, type, cu);
13626 }
13627
13628 /* Given a pointer to a die which begins an enumeration, process all
13629 the dies that define the members of the enumeration, and create the
13630 symbol for the enumeration type.
13631
13632 NOTE: We reverse the order of the element list. */
13633
13634 static void
13635 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13636 {
13637 struct type *this_type;
13638
13639 this_type = get_die_type (die, cu);
13640 if (this_type == NULL)
13641 this_type = read_enumeration_type (die, cu);
13642
13643 if (die->child != NULL)
13644 {
13645 struct die_info *child_die;
13646 struct symbol *sym;
13647 struct field *fields = NULL;
13648 int num_fields = 0;
13649 const char *name;
13650
13651 child_die = die->child;
13652 while (child_die && child_die->tag)
13653 {
13654 if (child_die->tag != DW_TAG_enumerator)
13655 {
13656 process_die (child_die, cu);
13657 }
13658 else
13659 {
13660 name = dwarf2_name (child_die, cu);
13661 if (name)
13662 {
13663 sym = new_symbol (child_die, this_type, cu);
13664
13665 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13666 {
13667 fields = (struct field *)
13668 xrealloc (fields,
13669 (num_fields + DW_FIELD_ALLOC_CHUNK)
13670 * sizeof (struct field));
13671 }
13672
13673 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13674 FIELD_TYPE (fields[num_fields]) = NULL;
13675 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13676 FIELD_BITSIZE (fields[num_fields]) = 0;
13677
13678 num_fields++;
13679 }
13680 }
13681
13682 child_die = sibling_die (child_die);
13683 }
13684
13685 if (num_fields)
13686 {
13687 TYPE_NFIELDS (this_type) = num_fields;
13688 TYPE_FIELDS (this_type) = (struct field *)
13689 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13690 memcpy (TYPE_FIELDS (this_type), fields,
13691 sizeof (struct field) * num_fields);
13692 xfree (fields);
13693 }
13694 }
13695
13696 /* If we are reading an enum from a .debug_types unit, and the enum
13697 is a declaration, and the enum is not the signatured type in the
13698 unit, then we do not want to add a symbol for it. Adding a
13699 symbol would in some cases obscure the true definition of the
13700 enum, giving users an incomplete type when the definition is
13701 actually available. Note that we do not want to do this for all
13702 enums which are just declarations, because C++0x allows forward
13703 enum declarations. */
13704 if (cu->per_cu->is_debug_types
13705 && die_is_declaration (die, cu))
13706 {
13707 struct signatured_type *sig_type;
13708
13709 sig_type = (struct signatured_type *) cu->per_cu;
13710 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13711 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13712 return;
13713 }
13714
13715 new_symbol (die, this_type, cu);
13716 }
13717
13718 /* Extract all information from a DW_TAG_array_type DIE and put it in
13719 the DIE's type field. For now, this only handles one dimensional
13720 arrays. */
13721
13722 static struct type *
13723 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13724 {
13725 struct objfile *objfile = cu->objfile;
13726 struct die_info *child_die;
13727 struct type *type;
13728 struct type *element_type, *range_type, *index_type;
13729 struct type **range_types = NULL;
13730 struct attribute *attr;
13731 int ndim = 0;
13732 struct cleanup *back_to;
13733 const char *name;
13734 unsigned int bit_stride = 0;
13735
13736 element_type = die_type (die, cu);
13737
13738 /* The die_type call above may have already set the type for this DIE. */
13739 type = get_die_type (die, cu);
13740 if (type)
13741 return type;
13742
13743 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13744 if (attr != NULL)
13745 bit_stride = DW_UNSND (attr) * 8;
13746
13747 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13748 if (attr != NULL)
13749 bit_stride = DW_UNSND (attr);
13750
13751 /* Irix 6.2 native cc creates array types without children for
13752 arrays with unspecified length. */
13753 if (die->child == NULL)
13754 {
13755 index_type = objfile_type (objfile)->builtin_int;
13756 range_type = create_static_range_type (NULL, index_type, 0, -1);
13757 type = create_array_type_with_stride (NULL, element_type, range_type,
13758 bit_stride);
13759 return set_die_type (die, type, cu);
13760 }
13761
13762 back_to = make_cleanup (null_cleanup, NULL);
13763 child_die = die->child;
13764 while (child_die && child_die->tag)
13765 {
13766 if (child_die->tag == DW_TAG_subrange_type)
13767 {
13768 struct type *child_type = read_type_die (child_die, cu);
13769
13770 if (child_type != NULL)
13771 {
13772 /* The range type was succesfully read. Save it for the
13773 array type creation. */
13774 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13775 {
13776 range_types = (struct type **)
13777 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13778 * sizeof (struct type *));
13779 if (ndim == 0)
13780 make_cleanup (free_current_contents, &range_types);
13781 }
13782 range_types[ndim++] = child_type;
13783 }
13784 }
13785 child_die = sibling_die (child_die);
13786 }
13787
13788 /* Dwarf2 dimensions are output from left to right, create the
13789 necessary array types in backwards order. */
13790
13791 type = element_type;
13792
13793 if (read_array_order (die, cu) == DW_ORD_col_major)
13794 {
13795 int i = 0;
13796
13797 while (i < ndim)
13798 type = create_array_type_with_stride (NULL, type, range_types[i++],
13799 bit_stride);
13800 }
13801 else
13802 {
13803 while (ndim-- > 0)
13804 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13805 bit_stride);
13806 }
13807
13808 /* Understand Dwarf2 support for vector types (like they occur on
13809 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13810 array type. This is not part of the Dwarf2/3 standard yet, but a
13811 custom vendor extension. The main difference between a regular
13812 array and the vector variant is that vectors are passed by value
13813 to functions. */
13814 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13815 if (attr)
13816 make_vector_type (type);
13817
13818 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13819 implementation may choose to implement triple vectors using this
13820 attribute. */
13821 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13822 if (attr)
13823 {
13824 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13825 TYPE_LENGTH (type) = DW_UNSND (attr);
13826 else
13827 complaint (&symfile_complaints,
13828 _("DW_AT_byte_size for array type smaller "
13829 "than the total size of elements"));
13830 }
13831
13832 name = dwarf2_name (die, cu);
13833 if (name)
13834 TYPE_NAME (type) = name;
13835
13836 /* Install the type in the die. */
13837 set_die_type (die, type, cu);
13838
13839 /* set_die_type should be already done. */
13840 set_descriptive_type (type, die, cu);
13841
13842 do_cleanups (back_to);
13843
13844 return type;
13845 }
13846
13847 static enum dwarf_array_dim_ordering
13848 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13849 {
13850 struct attribute *attr;
13851
13852 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13853
13854 if (attr)
13855 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13856
13857 /* GNU F77 is a special case, as at 08/2004 array type info is the
13858 opposite order to the dwarf2 specification, but data is still
13859 laid out as per normal fortran.
13860
13861 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13862 version checking. */
13863
13864 if (cu->language == language_fortran
13865 && cu->producer && strstr (cu->producer, "GNU F77"))
13866 {
13867 return DW_ORD_row_major;
13868 }
13869
13870 switch (cu->language_defn->la_array_ordering)
13871 {
13872 case array_column_major:
13873 return DW_ORD_col_major;
13874 case array_row_major:
13875 default:
13876 return DW_ORD_row_major;
13877 };
13878 }
13879
13880 /* Extract all information from a DW_TAG_set_type DIE and put it in
13881 the DIE's type field. */
13882
13883 static struct type *
13884 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13885 {
13886 struct type *domain_type, *set_type;
13887 struct attribute *attr;
13888
13889 domain_type = die_type (die, cu);
13890
13891 /* The die_type call above may have already set the type for this DIE. */
13892 set_type = get_die_type (die, cu);
13893 if (set_type)
13894 return set_type;
13895
13896 set_type = create_set_type (NULL, domain_type);
13897
13898 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13899 if (attr)
13900 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13901
13902 return set_die_type (die, set_type, cu);
13903 }
13904
13905 /* A helper for read_common_block that creates a locexpr baton.
13906 SYM is the symbol which we are marking as computed.
13907 COMMON_DIE is the DIE for the common block.
13908 COMMON_LOC is the location expression attribute for the common
13909 block itself.
13910 MEMBER_LOC is the location expression attribute for the particular
13911 member of the common block that we are processing.
13912 CU is the CU from which the above come. */
13913
13914 static void
13915 mark_common_block_symbol_computed (struct symbol *sym,
13916 struct die_info *common_die,
13917 struct attribute *common_loc,
13918 struct attribute *member_loc,
13919 struct dwarf2_cu *cu)
13920 {
13921 struct objfile *objfile = dwarf2_per_objfile->objfile;
13922 struct dwarf2_locexpr_baton *baton;
13923 gdb_byte *ptr;
13924 unsigned int cu_off;
13925 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13926 LONGEST offset = 0;
13927
13928 gdb_assert (common_loc && member_loc);
13929 gdb_assert (attr_form_is_block (common_loc));
13930 gdb_assert (attr_form_is_block (member_loc)
13931 || attr_form_is_constant (member_loc));
13932
13933 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13934 baton->per_cu = cu->per_cu;
13935 gdb_assert (baton->per_cu);
13936
13937 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13938
13939 if (attr_form_is_constant (member_loc))
13940 {
13941 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13942 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13943 }
13944 else
13945 baton->size += DW_BLOCK (member_loc)->size;
13946
13947 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13948 baton->data = ptr;
13949
13950 *ptr++ = DW_OP_call4;
13951 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13952 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13953 ptr += 4;
13954
13955 if (attr_form_is_constant (member_loc))
13956 {
13957 *ptr++ = DW_OP_addr;
13958 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13959 ptr += cu->header.addr_size;
13960 }
13961 else
13962 {
13963 /* We have to copy the data here, because DW_OP_call4 will only
13964 use a DW_AT_location attribute. */
13965 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13966 ptr += DW_BLOCK (member_loc)->size;
13967 }
13968
13969 *ptr++ = DW_OP_plus;
13970 gdb_assert (ptr - baton->data == baton->size);
13971
13972 SYMBOL_LOCATION_BATON (sym) = baton;
13973 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13974 }
13975
13976 /* Create appropriate locally-scoped variables for all the
13977 DW_TAG_common_block entries. Also create a struct common_block
13978 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13979 is used to sepate the common blocks name namespace from regular
13980 variable names. */
13981
13982 static void
13983 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13984 {
13985 struct attribute *attr;
13986
13987 attr = dwarf2_attr (die, DW_AT_location, cu);
13988 if (attr)
13989 {
13990 /* Support the .debug_loc offsets. */
13991 if (attr_form_is_block (attr))
13992 {
13993 /* Ok. */
13994 }
13995 else if (attr_form_is_section_offset (attr))
13996 {
13997 dwarf2_complex_location_expr_complaint ();
13998 attr = NULL;
13999 }
14000 else
14001 {
14002 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14003 "common block member");
14004 attr = NULL;
14005 }
14006 }
14007
14008 if (die->child != NULL)
14009 {
14010 struct objfile *objfile = cu->objfile;
14011 struct die_info *child_die;
14012 size_t n_entries = 0, size;
14013 struct common_block *common_block;
14014 struct symbol *sym;
14015
14016 for (child_die = die->child;
14017 child_die && child_die->tag;
14018 child_die = sibling_die (child_die))
14019 ++n_entries;
14020
14021 size = (sizeof (struct common_block)
14022 + (n_entries - 1) * sizeof (struct symbol *));
14023 common_block
14024 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14025 size);
14026 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14027 common_block->n_entries = 0;
14028
14029 for (child_die = die->child;
14030 child_die && child_die->tag;
14031 child_die = sibling_die (child_die))
14032 {
14033 /* Create the symbol in the DW_TAG_common_block block in the current
14034 symbol scope. */
14035 sym = new_symbol (child_die, NULL, cu);
14036 if (sym != NULL)
14037 {
14038 struct attribute *member_loc;
14039
14040 common_block->contents[common_block->n_entries++] = sym;
14041
14042 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14043 cu);
14044 if (member_loc)
14045 {
14046 /* GDB has handled this for a long time, but it is
14047 not specified by DWARF. It seems to have been
14048 emitted by gfortran at least as recently as:
14049 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14050 complaint (&symfile_complaints,
14051 _("Variable in common block has "
14052 "DW_AT_data_member_location "
14053 "- DIE at 0x%x [in module %s]"),
14054 child_die->offset.sect_off,
14055 objfile_name (cu->objfile));
14056
14057 if (attr_form_is_section_offset (member_loc))
14058 dwarf2_complex_location_expr_complaint ();
14059 else if (attr_form_is_constant (member_loc)
14060 || attr_form_is_block (member_loc))
14061 {
14062 if (attr)
14063 mark_common_block_symbol_computed (sym, die, attr,
14064 member_loc, cu);
14065 }
14066 else
14067 dwarf2_complex_location_expr_complaint ();
14068 }
14069 }
14070 }
14071
14072 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14073 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14074 }
14075 }
14076
14077 /* Create a type for a C++ namespace. */
14078
14079 static struct type *
14080 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14081 {
14082 struct objfile *objfile = cu->objfile;
14083 const char *previous_prefix, *name;
14084 int is_anonymous;
14085 struct type *type;
14086
14087 /* For extensions, reuse the type of the original namespace. */
14088 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14089 {
14090 struct die_info *ext_die;
14091 struct dwarf2_cu *ext_cu = cu;
14092
14093 ext_die = dwarf2_extension (die, &ext_cu);
14094 type = read_type_die (ext_die, ext_cu);
14095
14096 /* EXT_CU may not be the same as CU.
14097 Ensure TYPE is recorded with CU in die_type_hash. */
14098 return set_die_type (die, type, cu);
14099 }
14100
14101 name = namespace_name (die, &is_anonymous, cu);
14102
14103 /* Now build the name of the current namespace. */
14104
14105 previous_prefix = determine_prefix (die, cu);
14106 if (previous_prefix[0] != '\0')
14107 name = typename_concat (&objfile->objfile_obstack,
14108 previous_prefix, name, 0, cu);
14109
14110 /* Create the type. */
14111 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14112 objfile);
14113 TYPE_NAME (type) = name;
14114 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14115
14116 return set_die_type (die, type, cu);
14117 }
14118
14119 /* Read a namespace scope. */
14120
14121 static void
14122 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14123 {
14124 struct objfile *objfile = cu->objfile;
14125 int is_anonymous;
14126
14127 /* Add a symbol associated to this if we haven't seen the namespace
14128 before. Also, add a using directive if it's an anonymous
14129 namespace. */
14130
14131 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14132 {
14133 struct type *type;
14134
14135 type = read_type_die (die, cu);
14136 new_symbol (die, type, cu);
14137
14138 namespace_name (die, &is_anonymous, cu);
14139 if (is_anonymous)
14140 {
14141 const char *previous_prefix = determine_prefix (die, cu);
14142
14143 add_using_directive (using_directives (cu->language),
14144 previous_prefix, TYPE_NAME (type), NULL,
14145 NULL, NULL, 0, &objfile->objfile_obstack);
14146 }
14147 }
14148
14149 if (die->child != NULL)
14150 {
14151 struct die_info *child_die = die->child;
14152
14153 while (child_die && child_die->tag)
14154 {
14155 process_die (child_die, cu);
14156 child_die = sibling_die (child_die);
14157 }
14158 }
14159 }
14160
14161 /* Read a Fortran module as type. This DIE can be only a declaration used for
14162 imported module. Still we need that type as local Fortran "use ... only"
14163 declaration imports depend on the created type in determine_prefix. */
14164
14165 static struct type *
14166 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14167 {
14168 struct objfile *objfile = cu->objfile;
14169 const char *module_name;
14170 struct type *type;
14171
14172 module_name = dwarf2_name (die, cu);
14173 if (!module_name)
14174 complaint (&symfile_complaints,
14175 _("DW_TAG_module has no name, offset 0x%x"),
14176 die->offset.sect_off);
14177 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14178
14179 /* determine_prefix uses TYPE_TAG_NAME. */
14180 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14181
14182 return set_die_type (die, type, cu);
14183 }
14184
14185 /* Read a Fortran module. */
14186
14187 static void
14188 read_module (struct die_info *die, struct dwarf2_cu *cu)
14189 {
14190 struct die_info *child_die = die->child;
14191 struct type *type;
14192
14193 type = read_type_die (die, cu);
14194 new_symbol (die, type, cu);
14195
14196 while (child_die && child_die->tag)
14197 {
14198 process_die (child_die, cu);
14199 child_die = sibling_die (child_die);
14200 }
14201 }
14202
14203 /* Return the name of the namespace represented by DIE. Set
14204 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14205 namespace. */
14206
14207 static const char *
14208 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14209 {
14210 struct die_info *current_die;
14211 const char *name = NULL;
14212
14213 /* Loop through the extensions until we find a name. */
14214
14215 for (current_die = die;
14216 current_die != NULL;
14217 current_die = dwarf2_extension (die, &cu))
14218 {
14219 /* We don't use dwarf2_name here so that we can detect the absence
14220 of a name -> anonymous namespace. */
14221 name = dwarf2_string_attr (die, DW_AT_name, cu);
14222
14223 if (name != NULL)
14224 break;
14225 }
14226
14227 /* Is it an anonymous namespace? */
14228
14229 *is_anonymous = (name == NULL);
14230 if (*is_anonymous)
14231 name = CP_ANONYMOUS_NAMESPACE_STR;
14232
14233 return name;
14234 }
14235
14236 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14237 the user defined type vector. */
14238
14239 static struct type *
14240 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14241 {
14242 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14243 struct comp_unit_head *cu_header = &cu->header;
14244 struct type *type;
14245 struct attribute *attr_byte_size;
14246 struct attribute *attr_address_class;
14247 int byte_size, addr_class;
14248 struct type *target_type;
14249
14250 target_type = die_type (die, cu);
14251
14252 /* The die_type call above may have already set the type for this DIE. */
14253 type = get_die_type (die, cu);
14254 if (type)
14255 return type;
14256
14257 type = lookup_pointer_type (target_type);
14258
14259 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14260 if (attr_byte_size)
14261 byte_size = DW_UNSND (attr_byte_size);
14262 else
14263 byte_size = cu_header->addr_size;
14264
14265 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14266 if (attr_address_class)
14267 addr_class = DW_UNSND (attr_address_class);
14268 else
14269 addr_class = DW_ADDR_none;
14270
14271 /* If the pointer size or address class is different than the
14272 default, create a type variant marked as such and set the
14273 length accordingly. */
14274 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14275 {
14276 if (gdbarch_address_class_type_flags_p (gdbarch))
14277 {
14278 int type_flags;
14279
14280 type_flags = gdbarch_address_class_type_flags
14281 (gdbarch, byte_size, addr_class);
14282 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14283 == 0);
14284 type = make_type_with_address_space (type, type_flags);
14285 }
14286 else if (TYPE_LENGTH (type) != byte_size)
14287 {
14288 complaint (&symfile_complaints,
14289 _("invalid pointer size %d"), byte_size);
14290 }
14291 else
14292 {
14293 /* Should we also complain about unhandled address classes? */
14294 }
14295 }
14296
14297 TYPE_LENGTH (type) = byte_size;
14298 return set_die_type (die, type, cu);
14299 }
14300
14301 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14302 the user defined type vector. */
14303
14304 static struct type *
14305 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14306 {
14307 struct type *type;
14308 struct type *to_type;
14309 struct type *domain;
14310
14311 to_type = die_type (die, cu);
14312 domain = die_containing_type (die, cu);
14313
14314 /* The calls above may have already set the type for this DIE. */
14315 type = get_die_type (die, cu);
14316 if (type)
14317 return type;
14318
14319 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14320 type = lookup_methodptr_type (to_type);
14321 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14322 {
14323 struct type *new_type = alloc_type (cu->objfile);
14324
14325 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14326 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14327 TYPE_VARARGS (to_type));
14328 type = lookup_methodptr_type (new_type);
14329 }
14330 else
14331 type = lookup_memberptr_type (to_type, domain);
14332
14333 return set_die_type (die, type, cu);
14334 }
14335
14336 /* Extract all information from a DW_TAG_reference_type DIE and add to
14337 the user defined type vector. */
14338
14339 static struct type *
14340 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14341 {
14342 struct comp_unit_head *cu_header = &cu->header;
14343 struct type *type, *target_type;
14344 struct attribute *attr;
14345
14346 target_type = die_type (die, cu);
14347
14348 /* The die_type call above may have already set the type for this DIE. */
14349 type = get_die_type (die, cu);
14350 if (type)
14351 return type;
14352
14353 type = lookup_reference_type (target_type);
14354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14355 if (attr)
14356 {
14357 TYPE_LENGTH (type) = DW_UNSND (attr);
14358 }
14359 else
14360 {
14361 TYPE_LENGTH (type) = cu_header->addr_size;
14362 }
14363 return set_die_type (die, type, cu);
14364 }
14365
14366 /* Add the given cv-qualifiers to the element type of the array. GCC
14367 outputs DWARF type qualifiers that apply to an array, not the
14368 element type. But GDB relies on the array element type to carry
14369 the cv-qualifiers. This mimics section 6.7.3 of the C99
14370 specification. */
14371
14372 static struct type *
14373 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14374 struct type *base_type, int cnst, int voltl)
14375 {
14376 struct type *el_type, *inner_array;
14377
14378 base_type = copy_type (base_type);
14379 inner_array = base_type;
14380
14381 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14382 {
14383 TYPE_TARGET_TYPE (inner_array) =
14384 copy_type (TYPE_TARGET_TYPE (inner_array));
14385 inner_array = TYPE_TARGET_TYPE (inner_array);
14386 }
14387
14388 el_type = TYPE_TARGET_TYPE (inner_array);
14389 cnst |= TYPE_CONST (el_type);
14390 voltl |= TYPE_VOLATILE (el_type);
14391 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14392
14393 return set_die_type (die, base_type, cu);
14394 }
14395
14396 static struct type *
14397 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14398 {
14399 struct type *base_type, *cv_type;
14400
14401 base_type = die_type (die, cu);
14402
14403 /* The die_type call above may have already set the type for this DIE. */
14404 cv_type = get_die_type (die, cu);
14405 if (cv_type)
14406 return cv_type;
14407
14408 /* In case the const qualifier is applied to an array type, the element type
14409 is so qualified, not the array type (section 6.7.3 of C99). */
14410 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14411 return add_array_cv_type (die, cu, base_type, 1, 0);
14412
14413 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14414 return set_die_type (die, cv_type, cu);
14415 }
14416
14417 static struct type *
14418 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14419 {
14420 struct type *base_type, *cv_type;
14421
14422 base_type = die_type (die, cu);
14423
14424 /* The die_type call above may have already set the type for this DIE. */
14425 cv_type = get_die_type (die, cu);
14426 if (cv_type)
14427 return cv_type;
14428
14429 /* In case the volatile qualifier is applied to an array type, the
14430 element type is so qualified, not the array type (section 6.7.3
14431 of C99). */
14432 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14433 return add_array_cv_type (die, cu, base_type, 0, 1);
14434
14435 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14436 return set_die_type (die, cv_type, cu);
14437 }
14438
14439 /* Handle DW_TAG_restrict_type. */
14440
14441 static struct type *
14442 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14443 {
14444 struct type *base_type, *cv_type;
14445
14446 base_type = die_type (die, cu);
14447
14448 /* The die_type call above may have already set the type for this DIE. */
14449 cv_type = get_die_type (die, cu);
14450 if (cv_type)
14451 return cv_type;
14452
14453 cv_type = make_restrict_type (base_type);
14454 return set_die_type (die, cv_type, cu);
14455 }
14456
14457 /* Handle DW_TAG_atomic_type. */
14458
14459 static struct type *
14460 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14461 {
14462 struct type *base_type, *cv_type;
14463
14464 base_type = die_type (die, cu);
14465
14466 /* The die_type call above may have already set the type for this DIE. */
14467 cv_type = get_die_type (die, cu);
14468 if (cv_type)
14469 return cv_type;
14470
14471 cv_type = make_atomic_type (base_type);
14472 return set_die_type (die, cv_type, cu);
14473 }
14474
14475 /* Extract all information from a DW_TAG_string_type DIE and add to
14476 the user defined type vector. It isn't really a user defined type,
14477 but it behaves like one, with other DIE's using an AT_user_def_type
14478 attribute to reference it. */
14479
14480 static struct type *
14481 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14482 {
14483 struct objfile *objfile = cu->objfile;
14484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14485 struct type *type, *range_type, *index_type, *char_type;
14486 struct attribute *attr;
14487 unsigned int length;
14488
14489 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14490 if (attr)
14491 {
14492 length = DW_UNSND (attr);
14493 }
14494 else
14495 {
14496 /* Check for the DW_AT_byte_size attribute. */
14497 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14498 if (attr)
14499 {
14500 length = DW_UNSND (attr);
14501 }
14502 else
14503 {
14504 length = 1;
14505 }
14506 }
14507
14508 index_type = objfile_type (objfile)->builtin_int;
14509 range_type = create_static_range_type (NULL, index_type, 1, length);
14510 char_type = language_string_char_type (cu->language_defn, gdbarch);
14511 type = create_string_type (NULL, char_type, range_type);
14512
14513 return set_die_type (die, type, cu);
14514 }
14515
14516 /* Assuming that DIE corresponds to a function, returns nonzero
14517 if the function is prototyped. */
14518
14519 static int
14520 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14521 {
14522 struct attribute *attr;
14523
14524 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14525 if (attr && (DW_UNSND (attr) != 0))
14526 return 1;
14527
14528 /* The DWARF standard implies that the DW_AT_prototyped attribute
14529 is only meaninful for C, but the concept also extends to other
14530 languages that allow unprototyped functions (Eg: Objective C).
14531 For all other languages, assume that functions are always
14532 prototyped. */
14533 if (cu->language != language_c
14534 && cu->language != language_objc
14535 && cu->language != language_opencl)
14536 return 1;
14537
14538 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14539 prototyped and unprototyped functions; default to prototyped,
14540 since that is more common in modern code (and RealView warns
14541 about unprototyped functions). */
14542 if (producer_is_realview (cu->producer))
14543 return 1;
14544
14545 return 0;
14546 }
14547
14548 /* Handle DIES due to C code like:
14549
14550 struct foo
14551 {
14552 int (*funcp)(int a, long l);
14553 int b;
14554 };
14555
14556 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14557
14558 static struct type *
14559 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14560 {
14561 struct objfile *objfile = cu->objfile;
14562 struct type *type; /* Type that this function returns. */
14563 struct type *ftype; /* Function that returns above type. */
14564 struct attribute *attr;
14565
14566 type = die_type (die, cu);
14567
14568 /* The die_type call above may have already set the type for this DIE. */
14569 ftype = get_die_type (die, cu);
14570 if (ftype)
14571 return ftype;
14572
14573 ftype = lookup_function_type (type);
14574
14575 if (prototyped_function_p (die, cu))
14576 TYPE_PROTOTYPED (ftype) = 1;
14577
14578 /* Store the calling convention in the type if it's available in
14579 the subroutine die. Otherwise set the calling convention to
14580 the default value DW_CC_normal. */
14581 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14582 if (attr)
14583 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14584 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14585 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14586 else
14587 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14588
14589 /* Record whether the function returns normally to its caller or not
14590 if the DWARF producer set that information. */
14591 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14592 if (attr && (DW_UNSND (attr) != 0))
14593 TYPE_NO_RETURN (ftype) = 1;
14594
14595 /* We need to add the subroutine type to the die immediately so
14596 we don't infinitely recurse when dealing with parameters
14597 declared as the same subroutine type. */
14598 set_die_type (die, ftype, cu);
14599
14600 if (die->child != NULL)
14601 {
14602 struct type *void_type = objfile_type (objfile)->builtin_void;
14603 struct die_info *child_die;
14604 int nparams, iparams;
14605
14606 /* Count the number of parameters.
14607 FIXME: GDB currently ignores vararg functions, but knows about
14608 vararg member functions. */
14609 nparams = 0;
14610 child_die = die->child;
14611 while (child_die && child_die->tag)
14612 {
14613 if (child_die->tag == DW_TAG_formal_parameter)
14614 nparams++;
14615 else if (child_die->tag == DW_TAG_unspecified_parameters)
14616 TYPE_VARARGS (ftype) = 1;
14617 child_die = sibling_die (child_die);
14618 }
14619
14620 /* Allocate storage for parameters and fill them in. */
14621 TYPE_NFIELDS (ftype) = nparams;
14622 TYPE_FIELDS (ftype) = (struct field *)
14623 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14624
14625 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14626 even if we error out during the parameters reading below. */
14627 for (iparams = 0; iparams < nparams; iparams++)
14628 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14629
14630 iparams = 0;
14631 child_die = die->child;
14632 while (child_die && child_die->tag)
14633 {
14634 if (child_die->tag == DW_TAG_formal_parameter)
14635 {
14636 struct type *arg_type;
14637
14638 /* DWARF version 2 has no clean way to discern C++
14639 static and non-static member functions. G++ helps
14640 GDB by marking the first parameter for non-static
14641 member functions (which is the this pointer) as
14642 artificial. We pass this information to
14643 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14644
14645 DWARF version 3 added DW_AT_object_pointer, which GCC
14646 4.5 does not yet generate. */
14647 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14648 if (attr)
14649 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14650 else
14651 {
14652 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14653
14654 /* GCC/43521: In java, the formal parameter
14655 "this" is sometimes not marked with DW_AT_artificial. */
14656 if (cu->language == language_java)
14657 {
14658 const char *name = dwarf2_name (child_die, cu);
14659
14660 if (name && !strcmp (name, "this"))
14661 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14662 }
14663 }
14664 arg_type = die_type (child_die, cu);
14665
14666 /* RealView does not mark THIS as const, which the testsuite
14667 expects. GCC marks THIS as const in method definitions,
14668 but not in the class specifications (GCC PR 43053). */
14669 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14670 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14671 {
14672 int is_this = 0;
14673 struct dwarf2_cu *arg_cu = cu;
14674 const char *name = dwarf2_name (child_die, cu);
14675
14676 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14677 if (attr)
14678 {
14679 /* If the compiler emits this, use it. */
14680 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14681 is_this = 1;
14682 }
14683 else if (name && strcmp (name, "this") == 0)
14684 /* Function definitions will have the argument names. */
14685 is_this = 1;
14686 else if (name == NULL && iparams == 0)
14687 /* Declarations may not have the names, so like
14688 elsewhere in GDB, assume an artificial first
14689 argument is "this". */
14690 is_this = 1;
14691
14692 if (is_this)
14693 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14694 arg_type, 0);
14695 }
14696
14697 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14698 iparams++;
14699 }
14700 child_die = sibling_die (child_die);
14701 }
14702 }
14703
14704 return ftype;
14705 }
14706
14707 static struct type *
14708 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14709 {
14710 struct objfile *objfile = cu->objfile;
14711 const char *name = NULL;
14712 struct type *this_type, *target_type;
14713
14714 name = dwarf2_full_name (NULL, die, cu);
14715 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14716 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14717 TYPE_NAME (this_type) = name;
14718 set_die_type (die, this_type, cu);
14719 target_type = die_type (die, cu);
14720 if (target_type != this_type)
14721 TYPE_TARGET_TYPE (this_type) = target_type;
14722 else
14723 {
14724 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14725 spec and cause infinite loops in GDB. */
14726 complaint (&symfile_complaints,
14727 _("Self-referential DW_TAG_typedef "
14728 "- DIE at 0x%x [in module %s]"),
14729 die->offset.sect_off, objfile_name (objfile));
14730 TYPE_TARGET_TYPE (this_type) = NULL;
14731 }
14732 return this_type;
14733 }
14734
14735 /* Find a representation of a given base type and install
14736 it in the TYPE field of the die. */
14737
14738 static struct type *
14739 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14740 {
14741 struct objfile *objfile = cu->objfile;
14742 struct type *type;
14743 struct attribute *attr;
14744 int encoding = 0, size = 0;
14745 const char *name;
14746 enum type_code code = TYPE_CODE_INT;
14747 int type_flags = 0;
14748 struct type *target_type = NULL;
14749
14750 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14751 if (attr)
14752 {
14753 encoding = DW_UNSND (attr);
14754 }
14755 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14756 if (attr)
14757 {
14758 size = DW_UNSND (attr);
14759 }
14760 name = dwarf2_name (die, cu);
14761 if (!name)
14762 {
14763 complaint (&symfile_complaints,
14764 _("DW_AT_name missing from DW_TAG_base_type"));
14765 }
14766
14767 switch (encoding)
14768 {
14769 case DW_ATE_address:
14770 /* Turn DW_ATE_address into a void * pointer. */
14771 code = TYPE_CODE_PTR;
14772 type_flags |= TYPE_FLAG_UNSIGNED;
14773 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14774 break;
14775 case DW_ATE_boolean:
14776 code = TYPE_CODE_BOOL;
14777 type_flags |= TYPE_FLAG_UNSIGNED;
14778 break;
14779 case DW_ATE_complex_float:
14780 code = TYPE_CODE_COMPLEX;
14781 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14782 break;
14783 case DW_ATE_decimal_float:
14784 code = TYPE_CODE_DECFLOAT;
14785 break;
14786 case DW_ATE_float:
14787 code = TYPE_CODE_FLT;
14788 break;
14789 case DW_ATE_signed:
14790 break;
14791 case DW_ATE_unsigned:
14792 type_flags |= TYPE_FLAG_UNSIGNED;
14793 if (cu->language == language_fortran
14794 && name
14795 && startswith (name, "character("))
14796 code = TYPE_CODE_CHAR;
14797 break;
14798 case DW_ATE_signed_char:
14799 if (cu->language == language_ada || cu->language == language_m2
14800 || cu->language == language_pascal
14801 || cu->language == language_fortran)
14802 code = TYPE_CODE_CHAR;
14803 break;
14804 case DW_ATE_unsigned_char:
14805 if (cu->language == language_ada || cu->language == language_m2
14806 || cu->language == language_pascal
14807 || cu->language == language_fortran)
14808 code = TYPE_CODE_CHAR;
14809 type_flags |= TYPE_FLAG_UNSIGNED;
14810 break;
14811 case DW_ATE_UTF:
14812 /* We just treat this as an integer and then recognize the
14813 type by name elsewhere. */
14814 break;
14815
14816 default:
14817 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14818 dwarf_type_encoding_name (encoding));
14819 break;
14820 }
14821
14822 type = init_type (code, size, type_flags, NULL, objfile);
14823 TYPE_NAME (type) = name;
14824 TYPE_TARGET_TYPE (type) = target_type;
14825
14826 if (name && strcmp (name, "char") == 0)
14827 TYPE_NOSIGN (type) = 1;
14828
14829 return set_die_type (die, type, cu);
14830 }
14831
14832 /* Parse dwarf attribute if it's a block, reference or constant and put the
14833 resulting value of the attribute into struct bound_prop.
14834 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14835
14836 static int
14837 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14838 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14839 {
14840 struct dwarf2_property_baton *baton;
14841 struct obstack *obstack = &cu->objfile->objfile_obstack;
14842
14843 if (attr == NULL || prop == NULL)
14844 return 0;
14845
14846 if (attr_form_is_block (attr))
14847 {
14848 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14849 baton->referenced_type = NULL;
14850 baton->locexpr.per_cu = cu->per_cu;
14851 baton->locexpr.size = DW_BLOCK (attr)->size;
14852 baton->locexpr.data = DW_BLOCK (attr)->data;
14853 prop->data.baton = baton;
14854 prop->kind = PROP_LOCEXPR;
14855 gdb_assert (prop->data.baton != NULL);
14856 }
14857 else if (attr_form_is_ref (attr))
14858 {
14859 struct dwarf2_cu *target_cu = cu;
14860 struct die_info *target_die;
14861 struct attribute *target_attr;
14862
14863 target_die = follow_die_ref (die, attr, &target_cu);
14864 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14865 if (target_attr == NULL)
14866 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14867 target_cu);
14868 if (target_attr == NULL)
14869 return 0;
14870
14871 switch (target_attr->name)
14872 {
14873 case DW_AT_location:
14874 if (attr_form_is_section_offset (target_attr))
14875 {
14876 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14877 baton->referenced_type = die_type (target_die, target_cu);
14878 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14879 prop->data.baton = baton;
14880 prop->kind = PROP_LOCLIST;
14881 gdb_assert (prop->data.baton != NULL);
14882 }
14883 else if (attr_form_is_block (target_attr))
14884 {
14885 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14886 baton->referenced_type = die_type (target_die, target_cu);
14887 baton->locexpr.per_cu = cu->per_cu;
14888 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14889 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14890 prop->data.baton = baton;
14891 prop->kind = PROP_LOCEXPR;
14892 gdb_assert (prop->data.baton != NULL);
14893 }
14894 else
14895 {
14896 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14897 "dynamic property");
14898 return 0;
14899 }
14900 break;
14901 case DW_AT_data_member_location:
14902 {
14903 LONGEST offset;
14904
14905 if (!handle_data_member_location (target_die, target_cu,
14906 &offset))
14907 return 0;
14908
14909 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14910 baton->referenced_type = read_type_die (target_die->parent,
14911 target_cu);
14912 baton->offset_info.offset = offset;
14913 baton->offset_info.type = die_type (target_die, target_cu);
14914 prop->data.baton = baton;
14915 prop->kind = PROP_ADDR_OFFSET;
14916 break;
14917 }
14918 }
14919 }
14920 else if (attr_form_is_constant (attr))
14921 {
14922 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14923 prop->kind = PROP_CONST;
14924 }
14925 else
14926 {
14927 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14928 dwarf2_name (die, cu));
14929 return 0;
14930 }
14931
14932 return 1;
14933 }
14934
14935 /* Read the given DW_AT_subrange DIE. */
14936
14937 static struct type *
14938 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14939 {
14940 struct type *base_type, *orig_base_type;
14941 struct type *range_type;
14942 struct attribute *attr;
14943 struct dynamic_prop low, high;
14944 int low_default_is_valid;
14945 int high_bound_is_count = 0;
14946 const char *name;
14947 LONGEST negative_mask;
14948
14949 orig_base_type = die_type (die, cu);
14950 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14951 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14952 creating the range type, but we use the result of check_typedef
14953 when examining properties of the type. */
14954 base_type = check_typedef (orig_base_type);
14955
14956 /* The die_type call above may have already set the type for this DIE. */
14957 range_type = get_die_type (die, cu);
14958 if (range_type)
14959 return range_type;
14960
14961 low.kind = PROP_CONST;
14962 high.kind = PROP_CONST;
14963 high.data.const_val = 0;
14964
14965 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14966 omitting DW_AT_lower_bound. */
14967 switch (cu->language)
14968 {
14969 case language_c:
14970 case language_cplus:
14971 low.data.const_val = 0;
14972 low_default_is_valid = 1;
14973 break;
14974 case language_fortran:
14975 low.data.const_val = 1;
14976 low_default_is_valid = 1;
14977 break;
14978 case language_d:
14979 case language_java:
14980 case language_objc:
14981 low.data.const_val = 0;
14982 low_default_is_valid = (cu->header.version >= 4);
14983 break;
14984 case language_ada:
14985 case language_m2:
14986 case language_pascal:
14987 low.data.const_val = 1;
14988 low_default_is_valid = (cu->header.version >= 4);
14989 break;
14990 default:
14991 low.data.const_val = 0;
14992 low_default_is_valid = 0;
14993 break;
14994 }
14995
14996 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14997 if (attr)
14998 attr_to_dynamic_prop (attr, die, cu, &low);
14999 else if (!low_default_is_valid)
15000 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15001 "- DIE at 0x%x [in module %s]"),
15002 die->offset.sect_off, objfile_name (cu->objfile));
15003
15004 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15005 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15006 {
15007 attr = dwarf2_attr (die, DW_AT_count, cu);
15008 if (attr_to_dynamic_prop (attr, die, cu, &high))
15009 {
15010 /* If bounds are constant do the final calculation here. */
15011 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15012 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15013 else
15014 high_bound_is_count = 1;
15015 }
15016 }
15017
15018 /* Dwarf-2 specifications explicitly allows to create subrange types
15019 without specifying a base type.
15020 In that case, the base type must be set to the type of
15021 the lower bound, upper bound or count, in that order, if any of these
15022 three attributes references an object that has a type.
15023 If no base type is found, the Dwarf-2 specifications say that
15024 a signed integer type of size equal to the size of an address should
15025 be used.
15026 For the following C code: `extern char gdb_int [];'
15027 GCC produces an empty range DIE.
15028 FIXME: muller/2010-05-28: Possible references to object for low bound,
15029 high bound or count are not yet handled by this code. */
15030 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15031 {
15032 struct objfile *objfile = cu->objfile;
15033 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15034 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15035 struct type *int_type = objfile_type (objfile)->builtin_int;
15036
15037 /* Test "int", "long int", and "long long int" objfile types,
15038 and select the first one having a size above or equal to the
15039 architecture address size. */
15040 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15041 base_type = int_type;
15042 else
15043 {
15044 int_type = objfile_type (objfile)->builtin_long;
15045 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15046 base_type = int_type;
15047 else
15048 {
15049 int_type = objfile_type (objfile)->builtin_long_long;
15050 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15051 base_type = int_type;
15052 }
15053 }
15054 }
15055
15056 /* Normally, the DWARF producers are expected to use a signed
15057 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15058 But this is unfortunately not always the case, as witnessed
15059 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15060 is used instead. To work around that ambiguity, we treat
15061 the bounds as signed, and thus sign-extend their values, when
15062 the base type is signed. */
15063 negative_mask =
15064 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15065 if (low.kind == PROP_CONST
15066 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15067 low.data.const_val |= negative_mask;
15068 if (high.kind == PROP_CONST
15069 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15070 high.data.const_val |= negative_mask;
15071
15072 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15073
15074 if (high_bound_is_count)
15075 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15076
15077 /* Ada expects an empty array on no boundary attributes. */
15078 if (attr == NULL && cu->language != language_ada)
15079 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15080
15081 name = dwarf2_name (die, cu);
15082 if (name)
15083 TYPE_NAME (range_type) = name;
15084
15085 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15086 if (attr)
15087 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15088
15089 set_die_type (die, range_type, cu);
15090
15091 /* set_die_type should be already done. */
15092 set_descriptive_type (range_type, die, cu);
15093
15094 return range_type;
15095 }
15096
15097 static struct type *
15098 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15099 {
15100 struct type *type;
15101
15102 /* For now, we only support the C meaning of an unspecified type: void. */
15103
15104 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15105 TYPE_NAME (type) = dwarf2_name (die, cu);
15106
15107 return set_die_type (die, type, cu);
15108 }
15109
15110 /* Read a single die and all its descendents. Set the die's sibling
15111 field to NULL; set other fields in the die correctly, and set all
15112 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15113 location of the info_ptr after reading all of those dies. PARENT
15114 is the parent of the die in question. */
15115
15116 static struct die_info *
15117 read_die_and_children (const struct die_reader_specs *reader,
15118 const gdb_byte *info_ptr,
15119 const gdb_byte **new_info_ptr,
15120 struct die_info *parent)
15121 {
15122 struct die_info *die;
15123 const gdb_byte *cur_ptr;
15124 int has_children;
15125
15126 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15127 if (die == NULL)
15128 {
15129 *new_info_ptr = cur_ptr;
15130 return NULL;
15131 }
15132 store_in_ref_table (die, reader->cu);
15133
15134 if (has_children)
15135 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15136 else
15137 {
15138 die->child = NULL;
15139 *new_info_ptr = cur_ptr;
15140 }
15141
15142 die->sibling = NULL;
15143 die->parent = parent;
15144 return die;
15145 }
15146
15147 /* Read a die, all of its descendents, and all of its siblings; set
15148 all of the fields of all of the dies correctly. Arguments are as
15149 in read_die_and_children. */
15150
15151 static struct die_info *
15152 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15153 const gdb_byte *info_ptr,
15154 const gdb_byte **new_info_ptr,
15155 struct die_info *parent)
15156 {
15157 struct die_info *first_die, *last_sibling;
15158 const gdb_byte *cur_ptr;
15159
15160 cur_ptr = info_ptr;
15161 first_die = last_sibling = NULL;
15162
15163 while (1)
15164 {
15165 struct die_info *die
15166 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15167
15168 if (die == NULL)
15169 {
15170 *new_info_ptr = cur_ptr;
15171 return first_die;
15172 }
15173
15174 if (!first_die)
15175 first_die = die;
15176 else
15177 last_sibling->sibling = die;
15178
15179 last_sibling = die;
15180 }
15181 }
15182
15183 /* Read a die, all of its descendents, and all of its siblings; set
15184 all of the fields of all of the dies correctly. Arguments are as
15185 in read_die_and_children.
15186 This the main entry point for reading a DIE and all its children. */
15187
15188 static struct die_info *
15189 read_die_and_siblings (const struct die_reader_specs *reader,
15190 const gdb_byte *info_ptr,
15191 const gdb_byte **new_info_ptr,
15192 struct die_info *parent)
15193 {
15194 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15195 new_info_ptr, parent);
15196
15197 if (dwarf_die_debug)
15198 {
15199 fprintf_unfiltered (gdb_stdlog,
15200 "Read die from %s@0x%x of %s:\n",
15201 get_section_name (reader->die_section),
15202 (unsigned) (info_ptr - reader->die_section->buffer),
15203 bfd_get_filename (reader->abfd));
15204 dump_die (die, dwarf_die_debug);
15205 }
15206
15207 return die;
15208 }
15209
15210 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15211 attributes.
15212 The caller is responsible for filling in the extra attributes
15213 and updating (*DIEP)->num_attrs.
15214 Set DIEP to point to a newly allocated die with its information,
15215 except for its child, sibling, and parent fields.
15216 Set HAS_CHILDREN to tell whether the die has children or not. */
15217
15218 static const gdb_byte *
15219 read_full_die_1 (const struct die_reader_specs *reader,
15220 struct die_info **diep, const gdb_byte *info_ptr,
15221 int *has_children, int num_extra_attrs)
15222 {
15223 unsigned int abbrev_number, bytes_read, i;
15224 sect_offset offset;
15225 struct abbrev_info *abbrev;
15226 struct die_info *die;
15227 struct dwarf2_cu *cu = reader->cu;
15228 bfd *abfd = reader->abfd;
15229
15230 offset.sect_off = info_ptr - reader->buffer;
15231 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15232 info_ptr += bytes_read;
15233 if (!abbrev_number)
15234 {
15235 *diep = NULL;
15236 *has_children = 0;
15237 return info_ptr;
15238 }
15239
15240 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15241 if (!abbrev)
15242 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15243 abbrev_number,
15244 bfd_get_filename (abfd));
15245
15246 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15247 die->offset = offset;
15248 die->tag = abbrev->tag;
15249 die->abbrev = abbrev_number;
15250
15251 /* Make the result usable.
15252 The caller needs to update num_attrs after adding the extra
15253 attributes. */
15254 die->num_attrs = abbrev->num_attrs;
15255
15256 for (i = 0; i < abbrev->num_attrs; ++i)
15257 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15258 info_ptr);
15259
15260 *diep = die;
15261 *has_children = abbrev->has_children;
15262 return info_ptr;
15263 }
15264
15265 /* Read a die and all its attributes.
15266 Set DIEP to point to a newly allocated die with its information,
15267 except for its child, sibling, and parent fields.
15268 Set HAS_CHILDREN to tell whether the die has children or not. */
15269
15270 static const gdb_byte *
15271 read_full_die (const struct die_reader_specs *reader,
15272 struct die_info **diep, const gdb_byte *info_ptr,
15273 int *has_children)
15274 {
15275 const gdb_byte *result;
15276
15277 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15278
15279 if (dwarf_die_debug)
15280 {
15281 fprintf_unfiltered (gdb_stdlog,
15282 "Read die from %s@0x%x of %s:\n",
15283 get_section_name (reader->die_section),
15284 (unsigned) (info_ptr - reader->die_section->buffer),
15285 bfd_get_filename (reader->abfd));
15286 dump_die (*diep, dwarf_die_debug);
15287 }
15288
15289 return result;
15290 }
15291 \f
15292 /* Abbreviation tables.
15293
15294 In DWARF version 2, the description of the debugging information is
15295 stored in a separate .debug_abbrev section. Before we read any
15296 dies from a section we read in all abbreviations and install them
15297 in a hash table. */
15298
15299 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15300
15301 static struct abbrev_info *
15302 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15303 {
15304 struct abbrev_info *abbrev;
15305
15306 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15307 memset (abbrev, 0, sizeof (struct abbrev_info));
15308
15309 return abbrev;
15310 }
15311
15312 /* Add an abbreviation to the table. */
15313
15314 static void
15315 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15316 unsigned int abbrev_number,
15317 struct abbrev_info *abbrev)
15318 {
15319 unsigned int hash_number;
15320
15321 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15322 abbrev->next = abbrev_table->abbrevs[hash_number];
15323 abbrev_table->abbrevs[hash_number] = abbrev;
15324 }
15325
15326 /* Look up an abbrev in the table.
15327 Returns NULL if the abbrev is not found. */
15328
15329 static struct abbrev_info *
15330 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15331 unsigned int abbrev_number)
15332 {
15333 unsigned int hash_number;
15334 struct abbrev_info *abbrev;
15335
15336 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15337 abbrev = abbrev_table->abbrevs[hash_number];
15338
15339 while (abbrev)
15340 {
15341 if (abbrev->number == abbrev_number)
15342 return abbrev;
15343 abbrev = abbrev->next;
15344 }
15345 return NULL;
15346 }
15347
15348 /* Read in an abbrev table. */
15349
15350 static struct abbrev_table *
15351 abbrev_table_read_table (struct dwarf2_section_info *section,
15352 sect_offset offset)
15353 {
15354 struct objfile *objfile = dwarf2_per_objfile->objfile;
15355 bfd *abfd = get_section_bfd_owner (section);
15356 struct abbrev_table *abbrev_table;
15357 const gdb_byte *abbrev_ptr;
15358 struct abbrev_info *cur_abbrev;
15359 unsigned int abbrev_number, bytes_read, abbrev_name;
15360 unsigned int abbrev_form;
15361 struct attr_abbrev *cur_attrs;
15362 unsigned int allocated_attrs;
15363
15364 abbrev_table = XNEW (struct abbrev_table);
15365 abbrev_table->offset = offset;
15366 obstack_init (&abbrev_table->abbrev_obstack);
15367 abbrev_table->abbrevs =
15368 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15369 ABBREV_HASH_SIZE);
15370 memset (abbrev_table->abbrevs, 0,
15371 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15372
15373 dwarf2_read_section (objfile, section);
15374 abbrev_ptr = section->buffer + offset.sect_off;
15375 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15376 abbrev_ptr += bytes_read;
15377
15378 allocated_attrs = ATTR_ALLOC_CHUNK;
15379 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15380
15381 /* Loop until we reach an abbrev number of 0. */
15382 while (abbrev_number)
15383 {
15384 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15385
15386 /* read in abbrev header */
15387 cur_abbrev->number = abbrev_number;
15388 cur_abbrev->tag
15389 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15390 abbrev_ptr += bytes_read;
15391 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15392 abbrev_ptr += 1;
15393
15394 /* now read in declarations */
15395 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15396 abbrev_ptr += bytes_read;
15397 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15398 abbrev_ptr += bytes_read;
15399 while (abbrev_name)
15400 {
15401 if (cur_abbrev->num_attrs == allocated_attrs)
15402 {
15403 allocated_attrs += ATTR_ALLOC_CHUNK;
15404 cur_attrs
15405 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15406 }
15407
15408 cur_attrs[cur_abbrev->num_attrs].name
15409 = (enum dwarf_attribute) abbrev_name;
15410 cur_attrs[cur_abbrev->num_attrs++].form
15411 = (enum dwarf_form) abbrev_form;
15412 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
15414 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15415 abbrev_ptr += bytes_read;
15416 }
15417
15418 cur_abbrev->attrs =
15419 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15420 cur_abbrev->num_attrs);
15421 memcpy (cur_abbrev->attrs, cur_attrs,
15422 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15423
15424 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15425
15426 /* Get next abbreviation.
15427 Under Irix6 the abbreviations for a compilation unit are not
15428 always properly terminated with an abbrev number of 0.
15429 Exit loop if we encounter an abbreviation which we have
15430 already read (which means we are about to read the abbreviations
15431 for the next compile unit) or if the end of the abbreviation
15432 table is reached. */
15433 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15434 break;
15435 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15436 abbrev_ptr += bytes_read;
15437 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15438 break;
15439 }
15440
15441 xfree (cur_attrs);
15442 return abbrev_table;
15443 }
15444
15445 /* Free the resources held by ABBREV_TABLE. */
15446
15447 static void
15448 abbrev_table_free (struct abbrev_table *abbrev_table)
15449 {
15450 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15451 xfree (abbrev_table);
15452 }
15453
15454 /* Same as abbrev_table_free but as a cleanup.
15455 We pass in a pointer to the pointer to the table so that we can
15456 set the pointer to NULL when we're done. It also simplifies
15457 build_type_psymtabs_1. */
15458
15459 static void
15460 abbrev_table_free_cleanup (void *table_ptr)
15461 {
15462 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15463
15464 if (*abbrev_table_ptr != NULL)
15465 abbrev_table_free (*abbrev_table_ptr);
15466 *abbrev_table_ptr = NULL;
15467 }
15468
15469 /* Read the abbrev table for CU from ABBREV_SECTION. */
15470
15471 static void
15472 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15473 struct dwarf2_section_info *abbrev_section)
15474 {
15475 cu->abbrev_table =
15476 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15477 }
15478
15479 /* Release the memory used by the abbrev table for a compilation unit. */
15480
15481 static void
15482 dwarf2_free_abbrev_table (void *ptr_to_cu)
15483 {
15484 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15485
15486 if (cu->abbrev_table != NULL)
15487 abbrev_table_free (cu->abbrev_table);
15488 /* Set this to NULL so that we SEGV if we try to read it later,
15489 and also because free_comp_unit verifies this is NULL. */
15490 cu->abbrev_table = NULL;
15491 }
15492 \f
15493 /* Returns nonzero if TAG represents a type that we might generate a partial
15494 symbol for. */
15495
15496 static int
15497 is_type_tag_for_partial (int tag)
15498 {
15499 switch (tag)
15500 {
15501 #if 0
15502 /* Some types that would be reasonable to generate partial symbols for,
15503 that we don't at present. */
15504 case DW_TAG_array_type:
15505 case DW_TAG_file_type:
15506 case DW_TAG_ptr_to_member_type:
15507 case DW_TAG_set_type:
15508 case DW_TAG_string_type:
15509 case DW_TAG_subroutine_type:
15510 #endif
15511 case DW_TAG_base_type:
15512 case DW_TAG_class_type:
15513 case DW_TAG_interface_type:
15514 case DW_TAG_enumeration_type:
15515 case DW_TAG_structure_type:
15516 case DW_TAG_subrange_type:
15517 case DW_TAG_typedef:
15518 case DW_TAG_union_type:
15519 return 1;
15520 default:
15521 return 0;
15522 }
15523 }
15524
15525 /* Load all DIEs that are interesting for partial symbols into memory. */
15526
15527 static struct partial_die_info *
15528 load_partial_dies (const struct die_reader_specs *reader,
15529 const gdb_byte *info_ptr, int building_psymtab)
15530 {
15531 struct dwarf2_cu *cu = reader->cu;
15532 struct objfile *objfile = cu->objfile;
15533 struct partial_die_info *part_die;
15534 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15535 struct abbrev_info *abbrev;
15536 unsigned int bytes_read;
15537 unsigned int load_all = 0;
15538 int nesting_level = 1;
15539
15540 parent_die = NULL;
15541 last_die = NULL;
15542
15543 gdb_assert (cu->per_cu != NULL);
15544 if (cu->per_cu->load_all_dies)
15545 load_all = 1;
15546
15547 cu->partial_dies
15548 = htab_create_alloc_ex (cu->header.length / 12,
15549 partial_die_hash,
15550 partial_die_eq,
15551 NULL,
15552 &cu->comp_unit_obstack,
15553 hashtab_obstack_allocate,
15554 dummy_obstack_deallocate);
15555
15556 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15557
15558 while (1)
15559 {
15560 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15561
15562 /* A NULL abbrev means the end of a series of children. */
15563 if (abbrev == NULL)
15564 {
15565 if (--nesting_level == 0)
15566 {
15567 /* PART_DIE was probably the last thing allocated on the
15568 comp_unit_obstack, so we could call obstack_free
15569 here. We don't do that because the waste is small,
15570 and will be cleaned up when we're done with this
15571 compilation unit. This way, we're also more robust
15572 against other users of the comp_unit_obstack. */
15573 return first_die;
15574 }
15575 info_ptr += bytes_read;
15576 last_die = parent_die;
15577 parent_die = parent_die->die_parent;
15578 continue;
15579 }
15580
15581 /* Check for template arguments. We never save these; if
15582 they're seen, we just mark the parent, and go on our way. */
15583 if (parent_die != NULL
15584 && cu->language == language_cplus
15585 && (abbrev->tag == DW_TAG_template_type_param
15586 || abbrev->tag == DW_TAG_template_value_param))
15587 {
15588 parent_die->has_template_arguments = 1;
15589
15590 if (!load_all)
15591 {
15592 /* We don't need a partial DIE for the template argument. */
15593 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15594 continue;
15595 }
15596 }
15597
15598 /* We only recurse into c++ subprograms looking for template arguments.
15599 Skip their other children. */
15600 if (!load_all
15601 && cu->language == language_cplus
15602 && parent_die != NULL
15603 && parent_die->tag == DW_TAG_subprogram)
15604 {
15605 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15606 continue;
15607 }
15608
15609 /* Check whether this DIE is interesting enough to save. Normally
15610 we would not be interested in members here, but there may be
15611 later variables referencing them via DW_AT_specification (for
15612 static members). */
15613 if (!load_all
15614 && !is_type_tag_for_partial (abbrev->tag)
15615 && abbrev->tag != DW_TAG_constant
15616 && abbrev->tag != DW_TAG_enumerator
15617 && abbrev->tag != DW_TAG_subprogram
15618 && abbrev->tag != DW_TAG_lexical_block
15619 && abbrev->tag != DW_TAG_variable
15620 && abbrev->tag != DW_TAG_namespace
15621 && abbrev->tag != DW_TAG_module
15622 && abbrev->tag != DW_TAG_member
15623 && abbrev->tag != DW_TAG_imported_unit
15624 && abbrev->tag != DW_TAG_imported_declaration)
15625 {
15626 /* Otherwise we skip to the next sibling, if any. */
15627 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15628 continue;
15629 }
15630
15631 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15632 info_ptr);
15633
15634 /* This two-pass algorithm for processing partial symbols has a
15635 high cost in cache pressure. Thus, handle some simple cases
15636 here which cover the majority of C partial symbols. DIEs
15637 which neither have specification tags in them, nor could have
15638 specification tags elsewhere pointing at them, can simply be
15639 processed and discarded.
15640
15641 This segment is also optional; scan_partial_symbols and
15642 add_partial_symbol will handle these DIEs if we chain
15643 them in normally. When compilers which do not emit large
15644 quantities of duplicate debug information are more common,
15645 this code can probably be removed. */
15646
15647 /* Any complete simple types at the top level (pretty much all
15648 of them, for a language without namespaces), can be processed
15649 directly. */
15650 if (parent_die == NULL
15651 && part_die->has_specification == 0
15652 && part_die->is_declaration == 0
15653 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15654 || part_die->tag == DW_TAG_base_type
15655 || part_die->tag == DW_TAG_subrange_type))
15656 {
15657 if (building_psymtab && part_die->name != NULL)
15658 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15659 VAR_DOMAIN, LOC_TYPEDEF,
15660 &objfile->static_psymbols,
15661 0, cu->language, objfile);
15662 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15663 continue;
15664 }
15665
15666 /* The exception for DW_TAG_typedef with has_children above is
15667 a workaround of GCC PR debug/47510. In the case of this complaint
15668 type_name_no_tag_or_error will error on such types later.
15669
15670 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15671 it could not find the child DIEs referenced later, this is checked
15672 above. In correct DWARF DW_TAG_typedef should have no children. */
15673
15674 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15675 complaint (&symfile_complaints,
15676 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15677 "- DIE at 0x%x [in module %s]"),
15678 part_die->offset.sect_off, objfile_name (objfile));
15679
15680 /* If we're at the second level, and we're an enumerator, and
15681 our parent has no specification (meaning possibly lives in a
15682 namespace elsewhere), then we can add the partial symbol now
15683 instead of queueing it. */
15684 if (part_die->tag == DW_TAG_enumerator
15685 && parent_die != NULL
15686 && parent_die->die_parent == NULL
15687 && parent_die->tag == DW_TAG_enumeration_type
15688 && parent_die->has_specification == 0)
15689 {
15690 if (part_die->name == NULL)
15691 complaint (&symfile_complaints,
15692 _("malformed enumerator DIE ignored"));
15693 else if (building_psymtab)
15694 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15695 VAR_DOMAIN, LOC_CONST,
15696 (cu->language == language_cplus
15697 || cu->language == language_java)
15698 ? &objfile->global_psymbols
15699 : &objfile->static_psymbols,
15700 0, cu->language, objfile);
15701
15702 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15703 continue;
15704 }
15705
15706 /* We'll save this DIE so link it in. */
15707 part_die->die_parent = parent_die;
15708 part_die->die_sibling = NULL;
15709 part_die->die_child = NULL;
15710
15711 if (last_die && last_die == parent_die)
15712 last_die->die_child = part_die;
15713 else if (last_die)
15714 last_die->die_sibling = part_die;
15715
15716 last_die = part_die;
15717
15718 if (first_die == NULL)
15719 first_die = part_die;
15720
15721 /* Maybe add the DIE to the hash table. Not all DIEs that we
15722 find interesting need to be in the hash table, because we
15723 also have the parent/sibling/child chains; only those that we
15724 might refer to by offset later during partial symbol reading.
15725
15726 For now this means things that might have be the target of a
15727 DW_AT_specification, DW_AT_abstract_origin, or
15728 DW_AT_extension. DW_AT_extension will refer only to
15729 namespaces; DW_AT_abstract_origin refers to functions (and
15730 many things under the function DIE, but we do not recurse
15731 into function DIEs during partial symbol reading) and
15732 possibly variables as well; DW_AT_specification refers to
15733 declarations. Declarations ought to have the DW_AT_declaration
15734 flag. It happens that GCC forgets to put it in sometimes, but
15735 only for functions, not for types.
15736
15737 Adding more things than necessary to the hash table is harmless
15738 except for the performance cost. Adding too few will result in
15739 wasted time in find_partial_die, when we reread the compilation
15740 unit with load_all_dies set. */
15741
15742 if (load_all
15743 || abbrev->tag == DW_TAG_constant
15744 || abbrev->tag == DW_TAG_subprogram
15745 || abbrev->tag == DW_TAG_variable
15746 || abbrev->tag == DW_TAG_namespace
15747 || part_die->is_declaration)
15748 {
15749 void **slot;
15750
15751 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15752 part_die->offset.sect_off, INSERT);
15753 *slot = part_die;
15754 }
15755
15756 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15757
15758 /* For some DIEs we want to follow their children (if any). For C
15759 we have no reason to follow the children of structures; for other
15760 languages we have to, so that we can get at method physnames
15761 to infer fully qualified class names, for DW_AT_specification,
15762 and for C++ template arguments. For C++, we also look one level
15763 inside functions to find template arguments (if the name of the
15764 function does not already contain the template arguments).
15765
15766 For Ada, we need to scan the children of subprograms and lexical
15767 blocks as well because Ada allows the definition of nested
15768 entities that could be interesting for the debugger, such as
15769 nested subprograms for instance. */
15770 if (last_die->has_children
15771 && (load_all
15772 || last_die->tag == DW_TAG_namespace
15773 || last_die->tag == DW_TAG_module
15774 || last_die->tag == DW_TAG_enumeration_type
15775 || (cu->language == language_cplus
15776 && last_die->tag == DW_TAG_subprogram
15777 && (last_die->name == NULL
15778 || strchr (last_die->name, '<') == NULL))
15779 || (cu->language != language_c
15780 && (last_die->tag == DW_TAG_class_type
15781 || last_die->tag == DW_TAG_interface_type
15782 || last_die->tag == DW_TAG_structure_type
15783 || last_die->tag == DW_TAG_union_type))
15784 || (cu->language == language_ada
15785 && (last_die->tag == DW_TAG_subprogram
15786 || last_die->tag == DW_TAG_lexical_block))))
15787 {
15788 nesting_level++;
15789 parent_die = last_die;
15790 continue;
15791 }
15792
15793 /* Otherwise we skip to the next sibling, if any. */
15794 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15795
15796 /* Back to the top, do it again. */
15797 }
15798 }
15799
15800 /* Read a minimal amount of information into the minimal die structure. */
15801
15802 static const gdb_byte *
15803 read_partial_die (const struct die_reader_specs *reader,
15804 struct partial_die_info *part_die,
15805 struct abbrev_info *abbrev, unsigned int abbrev_len,
15806 const gdb_byte *info_ptr)
15807 {
15808 struct dwarf2_cu *cu = reader->cu;
15809 struct objfile *objfile = cu->objfile;
15810 const gdb_byte *buffer = reader->buffer;
15811 unsigned int i;
15812 struct attribute attr;
15813 int has_low_pc_attr = 0;
15814 int has_high_pc_attr = 0;
15815 int high_pc_relative = 0;
15816
15817 memset (part_die, 0, sizeof (struct partial_die_info));
15818
15819 part_die->offset.sect_off = info_ptr - buffer;
15820
15821 info_ptr += abbrev_len;
15822
15823 if (abbrev == NULL)
15824 return info_ptr;
15825
15826 part_die->tag = abbrev->tag;
15827 part_die->has_children = abbrev->has_children;
15828
15829 for (i = 0; i < abbrev->num_attrs; ++i)
15830 {
15831 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15832
15833 /* Store the data if it is of an attribute we want to keep in a
15834 partial symbol table. */
15835 switch (attr.name)
15836 {
15837 case DW_AT_name:
15838 switch (part_die->tag)
15839 {
15840 case DW_TAG_compile_unit:
15841 case DW_TAG_partial_unit:
15842 case DW_TAG_type_unit:
15843 /* Compilation units have a DW_AT_name that is a filename, not
15844 a source language identifier. */
15845 case DW_TAG_enumeration_type:
15846 case DW_TAG_enumerator:
15847 /* These tags always have simple identifiers already; no need
15848 to canonicalize them. */
15849 part_die->name = DW_STRING (&attr);
15850 break;
15851 default:
15852 part_die->name
15853 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15854 &objfile->per_bfd->storage_obstack);
15855 break;
15856 }
15857 break;
15858 case DW_AT_linkage_name:
15859 case DW_AT_MIPS_linkage_name:
15860 /* Note that both forms of linkage name might appear. We
15861 assume they will be the same, and we only store the last
15862 one we see. */
15863 if (cu->language == language_ada)
15864 part_die->name = DW_STRING (&attr);
15865 part_die->linkage_name = DW_STRING (&attr);
15866 break;
15867 case DW_AT_low_pc:
15868 has_low_pc_attr = 1;
15869 part_die->lowpc = attr_value_as_address (&attr);
15870 break;
15871 case DW_AT_high_pc:
15872 has_high_pc_attr = 1;
15873 part_die->highpc = attr_value_as_address (&attr);
15874 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15875 high_pc_relative = 1;
15876 break;
15877 case DW_AT_location:
15878 /* Support the .debug_loc offsets. */
15879 if (attr_form_is_block (&attr))
15880 {
15881 part_die->d.locdesc = DW_BLOCK (&attr);
15882 }
15883 else if (attr_form_is_section_offset (&attr))
15884 {
15885 dwarf2_complex_location_expr_complaint ();
15886 }
15887 else
15888 {
15889 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15890 "partial symbol information");
15891 }
15892 break;
15893 case DW_AT_external:
15894 part_die->is_external = DW_UNSND (&attr);
15895 break;
15896 case DW_AT_declaration:
15897 part_die->is_declaration = DW_UNSND (&attr);
15898 break;
15899 case DW_AT_type:
15900 part_die->has_type = 1;
15901 break;
15902 case DW_AT_abstract_origin:
15903 case DW_AT_specification:
15904 case DW_AT_extension:
15905 part_die->has_specification = 1;
15906 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15907 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15908 || cu->per_cu->is_dwz);
15909 break;
15910 case DW_AT_sibling:
15911 /* Ignore absolute siblings, they might point outside of
15912 the current compile unit. */
15913 if (attr.form == DW_FORM_ref_addr)
15914 complaint (&symfile_complaints,
15915 _("ignoring absolute DW_AT_sibling"));
15916 else
15917 {
15918 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15919 const gdb_byte *sibling_ptr = buffer + off;
15920
15921 if (sibling_ptr < info_ptr)
15922 complaint (&symfile_complaints,
15923 _("DW_AT_sibling points backwards"));
15924 else if (sibling_ptr > reader->buffer_end)
15925 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15926 else
15927 part_die->sibling = sibling_ptr;
15928 }
15929 break;
15930 case DW_AT_byte_size:
15931 part_die->has_byte_size = 1;
15932 break;
15933 case DW_AT_const_value:
15934 part_die->has_const_value = 1;
15935 break;
15936 case DW_AT_calling_convention:
15937 /* DWARF doesn't provide a way to identify a program's source-level
15938 entry point. DW_AT_calling_convention attributes are only meant
15939 to describe functions' calling conventions.
15940
15941 However, because it's a necessary piece of information in
15942 Fortran, and because DW_CC_program is the only piece of debugging
15943 information whose definition refers to a 'main program' at all,
15944 several compilers have begun marking Fortran main programs with
15945 DW_CC_program --- even when those functions use the standard
15946 calling conventions.
15947
15948 So until DWARF specifies a way to provide this information and
15949 compilers pick up the new representation, we'll support this
15950 practice. */
15951 if (DW_UNSND (&attr) == DW_CC_program
15952 && cu->language == language_fortran)
15953 set_objfile_main_name (objfile, part_die->name, language_fortran);
15954 break;
15955 case DW_AT_inline:
15956 if (DW_UNSND (&attr) == DW_INL_inlined
15957 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15958 part_die->may_be_inlined = 1;
15959 break;
15960
15961 case DW_AT_import:
15962 if (part_die->tag == DW_TAG_imported_unit)
15963 {
15964 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15965 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15966 || cu->per_cu->is_dwz);
15967 }
15968 break;
15969
15970 default:
15971 break;
15972 }
15973 }
15974
15975 if (high_pc_relative)
15976 part_die->highpc += part_die->lowpc;
15977
15978 if (has_low_pc_attr && has_high_pc_attr)
15979 {
15980 /* When using the GNU linker, .gnu.linkonce. sections are used to
15981 eliminate duplicate copies of functions and vtables and such.
15982 The linker will arbitrarily choose one and discard the others.
15983 The AT_*_pc values for such functions refer to local labels in
15984 these sections. If the section from that file was discarded, the
15985 labels are not in the output, so the relocs get a value of 0.
15986 If this is a discarded function, mark the pc bounds as invalid,
15987 so that GDB will ignore it. */
15988 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15989 {
15990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15991
15992 complaint (&symfile_complaints,
15993 _("DW_AT_low_pc %s is zero "
15994 "for DIE at 0x%x [in module %s]"),
15995 paddress (gdbarch, part_die->lowpc),
15996 part_die->offset.sect_off, objfile_name (objfile));
15997 }
15998 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15999 else if (part_die->lowpc >= part_die->highpc)
16000 {
16001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16002
16003 complaint (&symfile_complaints,
16004 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16005 "for DIE at 0x%x [in module %s]"),
16006 paddress (gdbarch, part_die->lowpc),
16007 paddress (gdbarch, part_die->highpc),
16008 part_die->offset.sect_off, objfile_name (objfile));
16009 }
16010 else
16011 part_die->has_pc_info = 1;
16012 }
16013
16014 return info_ptr;
16015 }
16016
16017 /* Find a cached partial DIE at OFFSET in CU. */
16018
16019 static struct partial_die_info *
16020 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16021 {
16022 struct partial_die_info *lookup_die = NULL;
16023 struct partial_die_info part_die;
16024
16025 part_die.offset = offset;
16026 lookup_die = ((struct partial_die_info *)
16027 htab_find_with_hash (cu->partial_dies, &part_die,
16028 offset.sect_off));
16029
16030 return lookup_die;
16031 }
16032
16033 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16034 except in the case of .debug_types DIEs which do not reference
16035 outside their CU (they do however referencing other types via
16036 DW_FORM_ref_sig8). */
16037
16038 static struct partial_die_info *
16039 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16040 {
16041 struct objfile *objfile = cu->objfile;
16042 struct dwarf2_per_cu_data *per_cu = NULL;
16043 struct partial_die_info *pd = NULL;
16044
16045 if (offset_in_dwz == cu->per_cu->is_dwz
16046 && offset_in_cu_p (&cu->header, offset))
16047 {
16048 pd = find_partial_die_in_comp_unit (offset, cu);
16049 if (pd != NULL)
16050 return pd;
16051 /* We missed recording what we needed.
16052 Load all dies and try again. */
16053 per_cu = cu->per_cu;
16054 }
16055 else
16056 {
16057 /* TUs don't reference other CUs/TUs (except via type signatures). */
16058 if (cu->per_cu->is_debug_types)
16059 {
16060 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16061 " external reference to offset 0x%lx [in module %s].\n"),
16062 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16063 bfd_get_filename (objfile->obfd));
16064 }
16065 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16066 objfile);
16067
16068 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16069 load_partial_comp_unit (per_cu);
16070
16071 per_cu->cu->last_used = 0;
16072 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16073 }
16074
16075 /* If we didn't find it, and not all dies have been loaded,
16076 load them all and try again. */
16077
16078 if (pd == NULL && per_cu->load_all_dies == 0)
16079 {
16080 per_cu->load_all_dies = 1;
16081
16082 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16083 THIS_CU->cu may already be in use. So we can't just free it and
16084 replace its DIEs with the ones we read in. Instead, we leave those
16085 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16086 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16087 set. */
16088 load_partial_comp_unit (per_cu);
16089
16090 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16091 }
16092
16093 if (pd == NULL)
16094 internal_error (__FILE__, __LINE__,
16095 _("could not find partial DIE 0x%x "
16096 "in cache [from module %s]\n"),
16097 offset.sect_off, bfd_get_filename (objfile->obfd));
16098 return pd;
16099 }
16100
16101 /* See if we can figure out if the class lives in a namespace. We do
16102 this by looking for a member function; its demangled name will
16103 contain namespace info, if there is any. */
16104
16105 static void
16106 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16107 struct dwarf2_cu *cu)
16108 {
16109 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16110 what template types look like, because the demangler
16111 frequently doesn't give the same name as the debug info. We
16112 could fix this by only using the demangled name to get the
16113 prefix (but see comment in read_structure_type). */
16114
16115 struct partial_die_info *real_pdi;
16116 struct partial_die_info *child_pdi;
16117
16118 /* If this DIE (this DIE's specification, if any) has a parent, then
16119 we should not do this. We'll prepend the parent's fully qualified
16120 name when we create the partial symbol. */
16121
16122 real_pdi = struct_pdi;
16123 while (real_pdi->has_specification)
16124 real_pdi = find_partial_die (real_pdi->spec_offset,
16125 real_pdi->spec_is_dwz, cu);
16126
16127 if (real_pdi->die_parent != NULL)
16128 return;
16129
16130 for (child_pdi = struct_pdi->die_child;
16131 child_pdi != NULL;
16132 child_pdi = child_pdi->die_sibling)
16133 {
16134 if (child_pdi->tag == DW_TAG_subprogram
16135 && child_pdi->linkage_name != NULL)
16136 {
16137 char *actual_class_name
16138 = language_class_name_from_physname (cu->language_defn,
16139 child_pdi->linkage_name);
16140 if (actual_class_name != NULL)
16141 {
16142 struct_pdi->name
16143 = ((const char *)
16144 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16145 actual_class_name,
16146 strlen (actual_class_name)));
16147 xfree (actual_class_name);
16148 }
16149 break;
16150 }
16151 }
16152 }
16153
16154 /* Adjust PART_DIE before generating a symbol for it. This function
16155 may set the is_external flag or change the DIE's name. */
16156
16157 static void
16158 fixup_partial_die (struct partial_die_info *part_die,
16159 struct dwarf2_cu *cu)
16160 {
16161 /* Once we've fixed up a die, there's no point in doing so again.
16162 This also avoids a memory leak if we were to call
16163 guess_partial_die_structure_name multiple times. */
16164 if (part_die->fixup_called)
16165 return;
16166
16167 /* If we found a reference attribute and the DIE has no name, try
16168 to find a name in the referred to DIE. */
16169
16170 if (part_die->name == NULL && part_die->has_specification)
16171 {
16172 struct partial_die_info *spec_die;
16173
16174 spec_die = find_partial_die (part_die->spec_offset,
16175 part_die->spec_is_dwz, cu);
16176
16177 fixup_partial_die (spec_die, cu);
16178
16179 if (spec_die->name)
16180 {
16181 part_die->name = spec_die->name;
16182
16183 /* Copy DW_AT_external attribute if it is set. */
16184 if (spec_die->is_external)
16185 part_die->is_external = spec_die->is_external;
16186 }
16187 }
16188
16189 /* Set default names for some unnamed DIEs. */
16190
16191 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16192 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16193
16194 /* If there is no parent die to provide a namespace, and there are
16195 children, see if we can determine the namespace from their linkage
16196 name. */
16197 if (cu->language == language_cplus
16198 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16199 && part_die->die_parent == NULL
16200 && part_die->has_children
16201 && (part_die->tag == DW_TAG_class_type
16202 || part_die->tag == DW_TAG_structure_type
16203 || part_die->tag == DW_TAG_union_type))
16204 guess_partial_die_structure_name (part_die, cu);
16205
16206 /* GCC might emit a nameless struct or union that has a linkage
16207 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16208 if (part_die->name == NULL
16209 && (part_die->tag == DW_TAG_class_type
16210 || part_die->tag == DW_TAG_interface_type
16211 || part_die->tag == DW_TAG_structure_type
16212 || part_die->tag == DW_TAG_union_type)
16213 && part_die->linkage_name != NULL)
16214 {
16215 char *demangled;
16216
16217 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16218 if (demangled)
16219 {
16220 const char *base;
16221
16222 /* Strip any leading namespaces/classes, keep only the base name.
16223 DW_AT_name for named DIEs does not contain the prefixes. */
16224 base = strrchr (demangled, ':');
16225 if (base && base > demangled && base[-1] == ':')
16226 base++;
16227 else
16228 base = demangled;
16229
16230 part_die->name
16231 = ((const char *)
16232 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16233 base, strlen (base)));
16234 xfree (demangled);
16235 }
16236 }
16237
16238 part_die->fixup_called = 1;
16239 }
16240
16241 /* Read an attribute value described by an attribute form. */
16242
16243 static const gdb_byte *
16244 read_attribute_value (const struct die_reader_specs *reader,
16245 struct attribute *attr, unsigned form,
16246 const gdb_byte *info_ptr)
16247 {
16248 struct dwarf2_cu *cu = reader->cu;
16249 struct objfile *objfile = cu->objfile;
16250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16251 bfd *abfd = reader->abfd;
16252 struct comp_unit_head *cu_header = &cu->header;
16253 unsigned int bytes_read;
16254 struct dwarf_block *blk;
16255
16256 attr->form = (enum dwarf_form) form;
16257 switch (form)
16258 {
16259 case DW_FORM_ref_addr:
16260 if (cu->header.version == 2)
16261 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16262 else
16263 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16264 &cu->header, &bytes_read);
16265 info_ptr += bytes_read;
16266 break;
16267 case DW_FORM_GNU_ref_alt:
16268 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16269 info_ptr += bytes_read;
16270 break;
16271 case DW_FORM_addr:
16272 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16273 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16274 info_ptr += bytes_read;
16275 break;
16276 case DW_FORM_block2:
16277 blk = dwarf_alloc_block (cu);
16278 blk->size = read_2_bytes (abfd, info_ptr);
16279 info_ptr += 2;
16280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16281 info_ptr += blk->size;
16282 DW_BLOCK (attr) = blk;
16283 break;
16284 case DW_FORM_block4:
16285 blk = dwarf_alloc_block (cu);
16286 blk->size = read_4_bytes (abfd, info_ptr);
16287 info_ptr += 4;
16288 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16289 info_ptr += blk->size;
16290 DW_BLOCK (attr) = blk;
16291 break;
16292 case DW_FORM_data2:
16293 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16294 info_ptr += 2;
16295 break;
16296 case DW_FORM_data4:
16297 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16298 info_ptr += 4;
16299 break;
16300 case DW_FORM_data8:
16301 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16302 info_ptr += 8;
16303 break;
16304 case DW_FORM_sec_offset:
16305 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16306 info_ptr += bytes_read;
16307 break;
16308 case DW_FORM_string:
16309 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16310 DW_STRING_IS_CANONICAL (attr) = 0;
16311 info_ptr += bytes_read;
16312 break;
16313 case DW_FORM_strp:
16314 if (!cu->per_cu->is_dwz)
16315 {
16316 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16317 &bytes_read);
16318 DW_STRING_IS_CANONICAL (attr) = 0;
16319 info_ptr += bytes_read;
16320 break;
16321 }
16322 /* FALLTHROUGH */
16323 case DW_FORM_GNU_strp_alt:
16324 {
16325 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16326 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16327 &bytes_read);
16328
16329 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16330 DW_STRING_IS_CANONICAL (attr) = 0;
16331 info_ptr += bytes_read;
16332 }
16333 break;
16334 case DW_FORM_exprloc:
16335 case DW_FORM_block:
16336 blk = dwarf_alloc_block (cu);
16337 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16338 info_ptr += bytes_read;
16339 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16340 info_ptr += blk->size;
16341 DW_BLOCK (attr) = blk;
16342 break;
16343 case DW_FORM_block1:
16344 blk = dwarf_alloc_block (cu);
16345 blk->size = read_1_byte (abfd, info_ptr);
16346 info_ptr += 1;
16347 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16348 info_ptr += blk->size;
16349 DW_BLOCK (attr) = blk;
16350 break;
16351 case DW_FORM_data1:
16352 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16353 info_ptr += 1;
16354 break;
16355 case DW_FORM_flag:
16356 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16357 info_ptr += 1;
16358 break;
16359 case DW_FORM_flag_present:
16360 DW_UNSND (attr) = 1;
16361 break;
16362 case DW_FORM_sdata:
16363 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16364 info_ptr += bytes_read;
16365 break;
16366 case DW_FORM_udata:
16367 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16368 info_ptr += bytes_read;
16369 break;
16370 case DW_FORM_ref1:
16371 DW_UNSND (attr) = (cu->header.offset.sect_off
16372 + read_1_byte (abfd, info_ptr));
16373 info_ptr += 1;
16374 break;
16375 case DW_FORM_ref2:
16376 DW_UNSND (attr) = (cu->header.offset.sect_off
16377 + read_2_bytes (abfd, info_ptr));
16378 info_ptr += 2;
16379 break;
16380 case DW_FORM_ref4:
16381 DW_UNSND (attr) = (cu->header.offset.sect_off
16382 + read_4_bytes (abfd, info_ptr));
16383 info_ptr += 4;
16384 break;
16385 case DW_FORM_ref8:
16386 DW_UNSND (attr) = (cu->header.offset.sect_off
16387 + read_8_bytes (abfd, info_ptr));
16388 info_ptr += 8;
16389 break;
16390 case DW_FORM_ref_sig8:
16391 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16392 info_ptr += 8;
16393 break;
16394 case DW_FORM_ref_udata:
16395 DW_UNSND (attr) = (cu->header.offset.sect_off
16396 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16397 info_ptr += bytes_read;
16398 break;
16399 case DW_FORM_indirect:
16400 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16401 info_ptr += bytes_read;
16402 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16403 break;
16404 case DW_FORM_GNU_addr_index:
16405 if (reader->dwo_file == NULL)
16406 {
16407 /* For now flag a hard error.
16408 Later we can turn this into a complaint. */
16409 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16410 dwarf_form_name (form),
16411 bfd_get_filename (abfd));
16412 }
16413 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16414 info_ptr += bytes_read;
16415 break;
16416 case DW_FORM_GNU_str_index:
16417 if (reader->dwo_file == NULL)
16418 {
16419 /* For now flag a hard error.
16420 Later we can turn this into a complaint if warranted. */
16421 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16422 dwarf_form_name (form),
16423 bfd_get_filename (abfd));
16424 }
16425 {
16426 ULONGEST str_index =
16427 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16428
16429 DW_STRING (attr) = read_str_index (reader, str_index);
16430 DW_STRING_IS_CANONICAL (attr) = 0;
16431 info_ptr += bytes_read;
16432 }
16433 break;
16434 default:
16435 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16436 dwarf_form_name (form),
16437 bfd_get_filename (abfd));
16438 }
16439
16440 /* Super hack. */
16441 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16442 attr->form = DW_FORM_GNU_ref_alt;
16443
16444 /* We have seen instances where the compiler tried to emit a byte
16445 size attribute of -1 which ended up being encoded as an unsigned
16446 0xffffffff. Although 0xffffffff is technically a valid size value,
16447 an object of this size seems pretty unlikely so we can relatively
16448 safely treat these cases as if the size attribute was invalid and
16449 treat them as zero by default. */
16450 if (attr->name == DW_AT_byte_size
16451 && form == DW_FORM_data4
16452 && DW_UNSND (attr) >= 0xffffffff)
16453 {
16454 complaint
16455 (&symfile_complaints,
16456 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16457 hex_string (DW_UNSND (attr)));
16458 DW_UNSND (attr) = 0;
16459 }
16460
16461 return info_ptr;
16462 }
16463
16464 /* Read an attribute described by an abbreviated attribute. */
16465
16466 static const gdb_byte *
16467 read_attribute (const struct die_reader_specs *reader,
16468 struct attribute *attr, struct attr_abbrev *abbrev,
16469 const gdb_byte *info_ptr)
16470 {
16471 attr->name = abbrev->name;
16472 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16473 }
16474
16475 /* Read dwarf information from a buffer. */
16476
16477 static unsigned int
16478 read_1_byte (bfd *abfd, const gdb_byte *buf)
16479 {
16480 return bfd_get_8 (abfd, buf);
16481 }
16482
16483 static int
16484 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16485 {
16486 return bfd_get_signed_8 (abfd, buf);
16487 }
16488
16489 static unsigned int
16490 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16491 {
16492 return bfd_get_16 (abfd, buf);
16493 }
16494
16495 static int
16496 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16497 {
16498 return bfd_get_signed_16 (abfd, buf);
16499 }
16500
16501 static unsigned int
16502 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16503 {
16504 return bfd_get_32 (abfd, buf);
16505 }
16506
16507 static int
16508 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16509 {
16510 return bfd_get_signed_32 (abfd, buf);
16511 }
16512
16513 static ULONGEST
16514 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16515 {
16516 return bfd_get_64 (abfd, buf);
16517 }
16518
16519 static CORE_ADDR
16520 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16521 unsigned int *bytes_read)
16522 {
16523 struct comp_unit_head *cu_header = &cu->header;
16524 CORE_ADDR retval = 0;
16525
16526 if (cu_header->signed_addr_p)
16527 {
16528 switch (cu_header->addr_size)
16529 {
16530 case 2:
16531 retval = bfd_get_signed_16 (abfd, buf);
16532 break;
16533 case 4:
16534 retval = bfd_get_signed_32 (abfd, buf);
16535 break;
16536 case 8:
16537 retval = bfd_get_signed_64 (abfd, buf);
16538 break;
16539 default:
16540 internal_error (__FILE__, __LINE__,
16541 _("read_address: bad switch, signed [in module %s]"),
16542 bfd_get_filename (abfd));
16543 }
16544 }
16545 else
16546 {
16547 switch (cu_header->addr_size)
16548 {
16549 case 2:
16550 retval = bfd_get_16 (abfd, buf);
16551 break;
16552 case 4:
16553 retval = bfd_get_32 (abfd, buf);
16554 break;
16555 case 8:
16556 retval = bfd_get_64 (abfd, buf);
16557 break;
16558 default:
16559 internal_error (__FILE__, __LINE__,
16560 _("read_address: bad switch, "
16561 "unsigned [in module %s]"),
16562 bfd_get_filename (abfd));
16563 }
16564 }
16565
16566 *bytes_read = cu_header->addr_size;
16567 return retval;
16568 }
16569
16570 /* Read the initial length from a section. The (draft) DWARF 3
16571 specification allows the initial length to take up either 4 bytes
16572 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16573 bytes describe the length and all offsets will be 8 bytes in length
16574 instead of 4.
16575
16576 An older, non-standard 64-bit format is also handled by this
16577 function. The older format in question stores the initial length
16578 as an 8-byte quantity without an escape value. Lengths greater
16579 than 2^32 aren't very common which means that the initial 4 bytes
16580 is almost always zero. Since a length value of zero doesn't make
16581 sense for the 32-bit format, this initial zero can be considered to
16582 be an escape value which indicates the presence of the older 64-bit
16583 format. As written, the code can't detect (old format) lengths
16584 greater than 4GB. If it becomes necessary to handle lengths
16585 somewhat larger than 4GB, we could allow other small values (such
16586 as the non-sensical values of 1, 2, and 3) to also be used as
16587 escape values indicating the presence of the old format.
16588
16589 The value returned via bytes_read should be used to increment the
16590 relevant pointer after calling read_initial_length().
16591
16592 [ Note: read_initial_length() and read_offset() are based on the
16593 document entitled "DWARF Debugging Information Format", revision
16594 3, draft 8, dated November 19, 2001. This document was obtained
16595 from:
16596
16597 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16598
16599 This document is only a draft and is subject to change. (So beware.)
16600
16601 Details regarding the older, non-standard 64-bit format were
16602 determined empirically by examining 64-bit ELF files produced by
16603 the SGI toolchain on an IRIX 6.5 machine.
16604
16605 - Kevin, July 16, 2002
16606 ] */
16607
16608 static LONGEST
16609 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16610 {
16611 LONGEST length = bfd_get_32 (abfd, buf);
16612
16613 if (length == 0xffffffff)
16614 {
16615 length = bfd_get_64 (abfd, buf + 4);
16616 *bytes_read = 12;
16617 }
16618 else if (length == 0)
16619 {
16620 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16621 length = bfd_get_64 (abfd, buf);
16622 *bytes_read = 8;
16623 }
16624 else
16625 {
16626 *bytes_read = 4;
16627 }
16628
16629 return length;
16630 }
16631
16632 /* Cover function for read_initial_length.
16633 Returns the length of the object at BUF, and stores the size of the
16634 initial length in *BYTES_READ and stores the size that offsets will be in
16635 *OFFSET_SIZE.
16636 If the initial length size is not equivalent to that specified in
16637 CU_HEADER then issue a complaint.
16638 This is useful when reading non-comp-unit headers. */
16639
16640 static LONGEST
16641 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16642 const struct comp_unit_head *cu_header,
16643 unsigned int *bytes_read,
16644 unsigned int *offset_size)
16645 {
16646 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16647
16648 gdb_assert (cu_header->initial_length_size == 4
16649 || cu_header->initial_length_size == 8
16650 || cu_header->initial_length_size == 12);
16651
16652 if (cu_header->initial_length_size != *bytes_read)
16653 complaint (&symfile_complaints,
16654 _("intermixed 32-bit and 64-bit DWARF sections"));
16655
16656 *offset_size = (*bytes_read == 4) ? 4 : 8;
16657 return length;
16658 }
16659
16660 /* Read an offset from the data stream. The size of the offset is
16661 given by cu_header->offset_size. */
16662
16663 static LONGEST
16664 read_offset (bfd *abfd, const gdb_byte *buf,
16665 const struct comp_unit_head *cu_header,
16666 unsigned int *bytes_read)
16667 {
16668 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16669
16670 *bytes_read = cu_header->offset_size;
16671 return offset;
16672 }
16673
16674 /* Read an offset from the data stream. */
16675
16676 static LONGEST
16677 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16678 {
16679 LONGEST retval = 0;
16680
16681 switch (offset_size)
16682 {
16683 case 4:
16684 retval = bfd_get_32 (abfd, buf);
16685 break;
16686 case 8:
16687 retval = bfd_get_64 (abfd, buf);
16688 break;
16689 default:
16690 internal_error (__FILE__, __LINE__,
16691 _("read_offset_1: bad switch [in module %s]"),
16692 bfd_get_filename (abfd));
16693 }
16694
16695 return retval;
16696 }
16697
16698 static const gdb_byte *
16699 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16700 {
16701 /* If the size of a host char is 8 bits, we can return a pointer
16702 to the buffer, otherwise we have to copy the data to a buffer
16703 allocated on the temporary obstack. */
16704 gdb_assert (HOST_CHAR_BIT == 8);
16705 return buf;
16706 }
16707
16708 static const char *
16709 read_direct_string (bfd *abfd, const gdb_byte *buf,
16710 unsigned int *bytes_read_ptr)
16711 {
16712 /* If the size of a host char is 8 bits, we can return a pointer
16713 to the string, otherwise we have to copy the string to a buffer
16714 allocated on the temporary obstack. */
16715 gdb_assert (HOST_CHAR_BIT == 8);
16716 if (*buf == '\0')
16717 {
16718 *bytes_read_ptr = 1;
16719 return NULL;
16720 }
16721 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16722 return (const char *) buf;
16723 }
16724
16725 static const char *
16726 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16727 {
16728 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16729 if (dwarf2_per_objfile->str.buffer == NULL)
16730 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16731 bfd_get_filename (abfd));
16732 if (str_offset >= dwarf2_per_objfile->str.size)
16733 error (_("DW_FORM_strp pointing outside of "
16734 ".debug_str section [in module %s]"),
16735 bfd_get_filename (abfd));
16736 gdb_assert (HOST_CHAR_BIT == 8);
16737 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16738 return NULL;
16739 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16740 }
16741
16742 /* Read a string at offset STR_OFFSET in the .debug_str section from
16743 the .dwz file DWZ. Throw an error if the offset is too large. If
16744 the string consists of a single NUL byte, return NULL; otherwise
16745 return a pointer to the string. */
16746
16747 static const char *
16748 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16749 {
16750 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16751
16752 if (dwz->str.buffer == NULL)
16753 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16754 "section [in module %s]"),
16755 bfd_get_filename (dwz->dwz_bfd));
16756 if (str_offset >= dwz->str.size)
16757 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16758 ".debug_str section [in module %s]"),
16759 bfd_get_filename (dwz->dwz_bfd));
16760 gdb_assert (HOST_CHAR_BIT == 8);
16761 if (dwz->str.buffer[str_offset] == '\0')
16762 return NULL;
16763 return (const char *) (dwz->str.buffer + str_offset);
16764 }
16765
16766 static const char *
16767 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16768 const struct comp_unit_head *cu_header,
16769 unsigned int *bytes_read_ptr)
16770 {
16771 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16772
16773 return read_indirect_string_at_offset (abfd, str_offset);
16774 }
16775
16776 static ULONGEST
16777 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16778 unsigned int *bytes_read_ptr)
16779 {
16780 ULONGEST result;
16781 unsigned int num_read;
16782 int i, shift;
16783 unsigned char byte;
16784
16785 result = 0;
16786 shift = 0;
16787 num_read = 0;
16788 i = 0;
16789 while (1)
16790 {
16791 byte = bfd_get_8 (abfd, buf);
16792 buf++;
16793 num_read++;
16794 result |= ((ULONGEST) (byte & 127) << shift);
16795 if ((byte & 128) == 0)
16796 {
16797 break;
16798 }
16799 shift += 7;
16800 }
16801 *bytes_read_ptr = num_read;
16802 return result;
16803 }
16804
16805 static LONGEST
16806 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16807 unsigned int *bytes_read_ptr)
16808 {
16809 LONGEST result;
16810 int i, shift, num_read;
16811 unsigned char byte;
16812
16813 result = 0;
16814 shift = 0;
16815 num_read = 0;
16816 i = 0;
16817 while (1)
16818 {
16819 byte = bfd_get_8 (abfd, buf);
16820 buf++;
16821 num_read++;
16822 result |= ((LONGEST) (byte & 127) << shift);
16823 shift += 7;
16824 if ((byte & 128) == 0)
16825 {
16826 break;
16827 }
16828 }
16829 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16830 result |= -(((LONGEST) 1) << shift);
16831 *bytes_read_ptr = num_read;
16832 return result;
16833 }
16834
16835 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16836 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16837 ADDR_SIZE is the size of addresses from the CU header. */
16838
16839 static CORE_ADDR
16840 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16841 {
16842 struct objfile *objfile = dwarf2_per_objfile->objfile;
16843 bfd *abfd = objfile->obfd;
16844 const gdb_byte *info_ptr;
16845
16846 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16847 if (dwarf2_per_objfile->addr.buffer == NULL)
16848 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16849 objfile_name (objfile));
16850 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16851 error (_("DW_FORM_addr_index pointing outside of "
16852 ".debug_addr section [in module %s]"),
16853 objfile_name (objfile));
16854 info_ptr = (dwarf2_per_objfile->addr.buffer
16855 + addr_base + addr_index * addr_size);
16856 if (addr_size == 4)
16857 return bfd_get_32 (abfd, info_ptr);
16858 else
16859 return bfd_get_64 (abfd, info_ptr);
16860 }
16861
16862 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16863
16864 static CORE_ADDR
16865 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16866 {
16867 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16868 }
16869
16870 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16871
16872 static CORE_ADDR
16873 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16874 unsigned int *bytes_read)
16875 {
16876 bfd *abfd = cu->objfile->obfd;
16877 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16878
16879 return read_addr_index (cu, addr_index);
16880 }
16881
16882 /* Data structure to pass results from dwarf2_read_addr_index_reader
16883 back to dwarf2_read_addr_index. */
16884
16885 struct dwarf2_read_addr_index_data
16886 {
16887 ULONGEST addr_base;
16888 int addr_size;
16889 };
16890
16891 /* die_reader_func for dwarf2_read_addr_index. */
16892
16893 static void
16894 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16895 const gdb_byte *info_ptr,
16896 struct die_info *comp_unit_die,
16897 int has_children,
16898 void *data)
16899 {
16900 struct dwarf2_cu *cu = reader->cu;
16901 struct dwarf2_read_addr_index_data *aidata =
16902 (struct dwarf2_read_addr_index_data *) data;
16903
16904 aidata->addr_base = cu->addr_base;
16905 aidata->addr_size = cu->header.addr_size;
16906 }
16907
16908 /* Given an index in .debug_addr, fetch the value.
16909 NOTE: This can be called during dwarf expression evaluation,
16910 long after the debug information has been read, and thus per_cu->cu
16911 may no longer exist. */
16912
16913 CORE_ADDR
16914 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16915 unsigned int addr_index)
16916 {
16917 struct objfile *objfile = per_cu->objfile;
16918 struct dwarf2_cu *cu = per_cu->cu;
16919 ULONGEST addr_base;
16920 int addr_size;
16921
16922 /* This is intended to be called from outside this file. */
16923 dw2_setup (objfile);
16924
16925 /* We need addr_base and addr_size.
16926 If we don't have PER_CU->cu, we have to get it.
16927 Nasty, but the alternative is storing the needed info in PER_CU,
16928 which at this point doesn't seem justified: it's not clear how frequently
16929 it would get used and it would increase the size of every PER_CU.
16930 Entry points like dwarf2_per_cu_addr_size do a similar thing
16931 so we're not in uncharted territory here.
16932 Alas we need to be a bit more complicated as addr_base is contained
16933 in the DIE.
16934
16935 We don't need to read the entire CU(/TU).
16936 We just need the header and top level die.
16937
16938 IWBN to use the aging mechanism to let us lazily later discard the CU.
16939 For now we skip this optimization. */
16940
16941 if (cu != NULL)
16942 {
16943 addr_base = cu->addr_base;
16944 addr_size = cu->header.addr_size;
16945 }
16946 else
16947 {
16948 struct dwarf2_read_addr_index_data aidata;
16949
16950 /* Note: We can't use init_cutu_and_read_dies_simple here,
16951 we need addr_base. */
16952 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16953 dwarf2_read_addr_index_reader, &aidata);
16954 addr_base = aidata.addr_base;
16955 addr_size = aidata.addr_size;
16956 }
16957
16958 return read_addr_index_1 (addr_index, addr_base, addr_size);
16959 }
16960
16961 /* Given a DW_FORM_GNU_str_index, fetch the string.
16962 This is only used by the Fission support. */
16963
16964 static const char *
16965 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16966 {
16967 struct objfile *objfile = dwarf2_per_objfile->objfile;
16968 const char *objf_name = objfile_name (objfile);
16969 bfd *abfd = objfile->obfd;
16970 struct dwarf2_cu *cu = reader->cu;
16971 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16972 struct dwarf2_section_info *str_offsets_section =
16973 &reader->dwo_file->sections.str_offsets;
16974 const gdb_byte *info_ptr;
16975 ULONGEST str_offset;
16976 static const char form_name[] = "DW_FORM_GNU_str_index";
16977
16978 dwarf2_read_section (objfile, str_section);
16979 dwarf2_read_section (objfile, str_offsets_section);
16980 if (str_section->buffer == NULL)
16981 error (_("%s used without .debug_str.dwo section"
16982 " in CU at offset 0x%lx [in module %s]"),
16983 form_name, (long) cu->header.offset.sect_off, objf_name);
16984 if (str_offsets_section->buffer == NULL)
16985 error (_("%s used without .debug_str_offsets.dwo section"
16986 " in CU at offset 0x%lx [in module %s]"),
16987 form_name, (long) cu->header.offset.sect_off, objf_name);
16988 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16989 error (_("%s pointing outside of .debug_str_offsets.dwo"
16990 " section in CU at offset 0x%lx [in module %s]"),
16991 form_name, (long) cu->header.offset.sect_off, objf_name);
16992 info_ptr = (str_offsets_section->buffer
16993 + str_index * cu->header.offset_size);
16994 if (cu->header.offset_size == 4)
16995 str_offset = bfd_get_32 (abfd, info_ptr);
16996 else
16997 str_offset = bfd_get_64 (abfd, info_ptr);
16998 if (str_offset >= str_section->size)
16999 error (_("Offset from %s pointing outside of"
17000 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17001 form_name, (long) cu->header.offset.sect_off, objf_name);
17002 return (const char *) (str_section->buffer + str_offset);
17003 }
17004
17005 /* Return the length of an LEB128 number in BUF. */
17006
17007 static int
17008 leb128_size (const gdb_byte *buf)
17009 {
17010 const gdb_byte *begin = buf;
17011 gdb_byte byte;
17012
17013 while (1)
17014 {
17015 byte = *buf++;
17016 if ((byte & 128) == 0)
17017 return buf - begin;
17018 }
17019 }
17020
17021 static void
17022 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17023 {
17024 switch (lang)
17025 {
17026 case DW_LANG_C89:
17027 case DW_LANG_C99:
17028 case DW_LANG_C11:
17029 case DW_LANG_C:
17030 case DW_LANG_UPC:
17031 cu->language = language_c;
17032 break;
17033 case DW_LANG_C_plus_plus:
17034 case DW_LANG_C_plus_plus_11:
17035 case DW_LANG_C_plus_plus_14:
17036 cu->language = language_cplus;
17037 break;
17038 case DW_LANG_D:
17039 cu->language = language_d;
17040 break;
17041 case DW_LANG_Fortran77:
17042 case DW_LANG_Fortran90:
17043 case DW_LANG_Fortran95:
17044 case DW_LANG_Fortran03:
17045 case DW_LANG_Fortran08:
17046 cu->language = language_fortran;
17047 break;
17048 case DW_LANG_Go:
17049 cu->language = language_go;
17050 break;
17051 case DW_LANG_Mips_Assembler:
17052 cu->language = language_asm;
17053 break;
17054 case DW_LANG_Java:
17055 cu->language = language_java;
17056 break;
17057 case DW_LANG_Ada83:
17058 case DW_LANG_Ada95:
17059 cu->language = language_ada;
17060 break;
17061 case DW_LANG_Modula2:
17062 cu->language = language_m2;
17063 break;
17064 case DW_LANG_Pascal83:
17065 cu->language = language_pascal;
17066 break;
17067 case DW_LANG_ObjC:
17068 cu->language = language_objc;
17069 break;
17070 case DW_LANG_Cobol74:
17071 case DW_LANG_Cobol85:
17072 default:
17073 cu->language = language_minimal;
17074 break;
17075 }
17076 cu->language_defn = language_def (cu->language);
17077 }
17078
17079 /* Return the named attribute or NULL if not there. */
17080
17081 static struct attribute *
17082 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17083 {
17084 for (;;)
17085 {
17086 unsigned int i;
17087 struct attribute *spec = NULL;
17088
17089 for (i = 0; i < die->num_attrs; ++i)
17090 {
17091 if (die->attrs[i].name == name)
17092 return &die->attrs[i];
17093 if (die->attrs[i].name == DW_AT_specification
17094 || die->attrs[i].name == DW_AT_abstract_origin)
17095 spec = &die->attrs[i];
17096 }
17097
17098 if (!spec)
17099 break;
17100
17101 die = follow_die_ref (die, spec, &cu);
17102 }
17103
17104 return NULL;
17105 }
17106
17107 /* Return the named attribute or NULL if not there,
17108 but do not follow DW_AT_specification, etc.
17109 This is for use in contexts where we're reading .debug_types dies.
17110 Following DW_AT_specification, DW_AT_abstract_origin will take us
17111 back up the chain, and we want to go down. */
17112
17113 static struct attribute *
17114 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17115 {
17116 unsigned int i;
17117
17118 for (i = 0; i < die->num_attrs; ++i)
17119 if (die->attrs[i].name == name)
17120 return &die->attrs[i];
17121
17122 return NULL;
17123 }
17124
17125 /* Return the string associated with a string-typed attribute, or NULL if it
17126 is either not found or is of an incorrect type. */
17127
17128 static const char *
17129 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17130 {
17131 struct attribute *attr;
17132 const char *str = NULL;
17133
17134 attr = dwarf2_attr (die, name, cu);
17135
17136 if (attr != NULL)
17137 {
17138 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17139 || attr->form == DW_FORM_GNU_strp_alt)
17140 str = DW_STRING (attr);
17141 else
17142 complaint (&symfile_complaints,
17143 _("string type expected for attribute %s for "
17144 "DIE at 0x%x in module %s"),
17145 dwarf_attr_name (name), die->offset.sect_off,
17146 objfile_name (cu->objfile));
17147 }
17148
17149 return str;
17150 }
17151
17152 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17153 and holds a non-zero value. This function should only be used for
17154 DW_FORM_flag or DW_FORM_flag_present attributes. */
17155
17156 static int
17157 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17158 {
17159 struct attribute *attr = dwarf2_attr (die, name, cu);
17160
17161 return (attr && DW_UNSND (attr));
17162 }
17163
17164 static int
17165 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17166 {
17167 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17168 which value is non-zero. However, we have to be careful with
17169 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17170 (via dwarf2_flag_true_p) follows this attribute. So we may
17171 end up accidently finding a declaration attribute that belongs
17172 to a different DIE referenced by the specification attribute,
17173 even though the given DIE does not have a declaration attribute. */
17174 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17175 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17176 }
17177
17178 /* Return the die giving the specification for DIE, if there is
17179 one. *SPEC_CU is the CU containing DIE on input, and the CU
17180 containing the return value on output. If there is no
17181 specification, but there is an abstract origin, that is
17182 returned. */
17183
17184 static struct die_info *
17185 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17186 {
17187 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17188 *spec_cu);
17189
17190 if (spec_attr == NULL)
17191 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17192
17193 if (spec_attr == NULL)
17194 return NULL;
17195 else
17196 return follow_die_ref (die, spec_attr, spec_cu);
17197 }
17198
17199 /* Free the line_header structure *LH, and any arrays and strings it
17200 refers to.
17201 NOTE: This is also used as a "cleanup" function. */
17202
17203 static void
17204 free_line_header (struct line_header *lh)
17205 {
17206 if (lh->standard_opcode_lengths)
17207 xfree (lh->standard_opcode_lengths);
17208
17209 /* Remember that all the lh->file_names[i].name pointers are
17210 pointers into debug_line_buffer, and don't need to be freed. */
17211 if (lh->file_names)
17212 xfree (lh->file_names);
17213
17214 /* Similarly for the include directory names. */
17215 if (lh->include_dirs)
17216 xfree (lh->include_dirs);
17217
17218 xfree (lh);
17219 }
17220
17221 /* Stub for free_line_header to match void * callback types. */
17222
17223 static void
17224 free_line_header_voidp (void *arg)
17225 {
17226 struct line_header *lh = (struct line_header *) arg;
17227
17228 free_line_header (lh);
17229 }
17230
17231 /* Add an entry to LH's include directory table. */
17232
17233 static void
17234 add_include_dir (struct line_header *lh, const char *include_dir)
17235 {
17236 if (dwarf_line_debug >= 2)
17237 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17238 lh->num_include_dirs + 1, include_dir);
17239
17240 /* Grow the array if necessary. */
17241 if (lh->include_dirs_size == 0)
17242 {
17243 lh->include_dirs_size = 1; /* for testing */
17244 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17245 }
17246 else if (lh->num_include_dirs >= lh->include_dirs_size)
17247 {
17248 lh->include_dirs_size *= 2;
17249 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17250 lh->include_dirs_size);
17251 }
17252
17253 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17254 }
17255
17256 /* Add an entry to LH's file name table. */
17257
17258 static void
17259 add_file_name (struct line_header *lh,
17260 const char *name,
17261 unsigned int dir_index,
17262 unsigned int mod_time,
17263 unsigned int length)
17264 {
17265 struct file_entry *fe;
17266
17267 if (dwarf_line_debug >= 2)
17268 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17269 lh->num_file_names + 1, name);
17270
17271 /* Grow the array if necessary. */
17272 if (lh->file_names_size == 0)
17273 {
17274 lh->file_names_size = 1; /* for testing */
17275 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17276 }
17277 else if (lh->num_file_names >= lh->file_names_size)
17278 {
17279 lh->file_names_size *= 2;
17280 lh->file_names
17281 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17282 }
17283
17284 fe = &lh->file_names[lh->num_file_names++];
17285 fe->name = name;
17286 fe->dir_index = dir_index;
17287 fe->mod_time = mod_time;
17288 fe->length = length;
17289 fe->included_p = 0;
17290 fe->symtab = NULL;
17291 }
17292
17293 /* A convenience function to find the proper .debug_line section for a CU. */
17294
17295 static struct dwarf2_section_info *
17296 get_debug_line_section (struct dwarf2_cu *cu)
17297 {
17298 struct dwarf2_section_info *section;
17299
17300 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17301 DWO file. */
17302 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17303 section = &cu->dwo_unit->dwo_file->sections.line;
17304 else if (cu->per_cu->is_dwz)
17305 {
17306 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17307
17308 section = &dwz->line;
17309 }
17310 else
17311 section = &dwarf2_per_objfile->line;
17312
17313 return section;
17314 }
17315
17316 /* Read the statement program header starting at OFFSET in
17317 .debug_line, or .debug_line.dwo. Return a pointer
17318 to a struct line_header, allocated using xmalloc.
17319 Returns NULL if there is a problem reading the header, e.g., if it
17320 has a version we don't understand.
17321
17322 NOTE: the strings in the include directory and file name tables of
17323 the returned object point into the dwarf line section buffer,
17324 and must not be freed. */
17325
17326 static struct line_header *
17327 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17328 {
17329 struct cleanup *back_to;
17330 struct line_header *lh;
17331 const gdb_byte *line_ptr;
17332 unsigned int bytes_read, offset_size;
17333 int i;
17334 const char *cur_dir, *cur_file;
17335 struct dwarf2_section_info *section;
17336 bfd *abfd;
17337
17338 section = get_debug_line_section (cu);
17339 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17340 if (section->buffer == NULL)
17341 {
17342 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17343 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17344 else
17345 complaint (&symfile_complaints, _("missing .debug_line section"));
17346 return 0;
17347 }
17348
17349 /* We can't do this until we know the section is non-empty.
17350 Only then do we know we have such a section. */
17351 abfd = get_section_bfd_owner (section);
17352
17353 /* Make sure that at least there's room for the total_length field.
17354 That could be 12 bytes long, but we're just going to fudge that. */
17355 if (offset + 4 >= section->size)
17356 {
17357 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17358 return 0;
17359 }
17360
17361 lh = XNEW (struct line_header);
17362 memset (lh, 0, sizeof (*lh));
17363 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17364 (void *) lh);
17365
17366 lh->offset.sect_off = offset;
17367 lh->offset_in_dwz = cu->per_cu->is_dwz;
17368
17369 line_ptr = section->buffer + offset;
17370
17371 /* Read in the header. */
17372 lh->total_length =
17373 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17374 &bytes_read, &offset_size);
17375 line_ptr += bytes_read;
17376 if (line_ptr + lh->total_length > (section->buffer + section->size))
17377 {
17378 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17379 do_cleanups (back_to);
17380 return 0;
17381 }
17382 lh->statement_program_end = line_ptr + lh->total_length;
17383 lh->version = read_2_bytes (abfd, line_ptr);
17384 line_ptr += 2;
17385 if (lh->version > 4)
17386 {
17387 /* This is a version we don't understand. The format could have
17388 changed in ways we don't handle properly so just punt. */
17389 complaint (&symfile_complaints,
17390 _("unsupported version in .debug_line section"));
17391 return NULL;
17392 }
17393 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17394 line_ptr += offset_size;
17395 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17396 line_ptr += 1;
17397 if (lh->version >= 4)
17398 {
17399 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17400 line_ptr += 1;
17401 }
17402 else
17403 lh->maximum_ops_per_instruction = 1;
17404
17405 if (lh->maximum_ops_per_instruction == 0)
17406 {
17407 lh->maximum_ops_per_instruction = 1;
17408 complaint (&symfile_complaints,
17409 _("invalid maximum_ops_per_instruction "
17410 "in `.debug_line' section"));
17411 }
17412
17413 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17414 line_ptr += 1;
17415 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17416 line_ptr += 1;
17417 lh->line_range = read_1_byte (abfd, line_ptr);
17418 line_ptr += 1;
17419 lh->opcode_base = read_1_byte (abfd, line_ptr);
17420 line_ptr += 1;
17421 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17422
17423 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17424 for (i = 1; i < lh->opcode_base; ++i)
17425 {
17426 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17427 line_ptr += 1;
17428 }
17429
17430 /* Read directory table. */
17431 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17432 {
17433 line_ptr += bytes_read;
17434 add_include_dir (lh, cur_dir);
17435 }
17436 line_ptr += bytes_read;
17437
17438 /* Read file name table. */
17439 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17440 {
17441 unsigned int dir_index, mod_time, length;
17442
17443 line_ptr += bytes_read;
17444 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17445 line_ptr += bytes_read;
17446 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17447 line_ptr += bytes_read;
17448 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17449 line_ptr += bytes_read;
17450
17451 add_file_name (lh, cur_file, dir_index, mod_time, length);
17452 }
17453 line_ptr += bytes_read;
17454 lh->statement_program_start = line_ptr;
17455
17456 if (line_ptr > (section->buffer + section->size))
17457 complaint (&symfile_complaints,
17458 _("line number info header doesn't "
17459 "fit in `.debug_line' section"));
17460
17461 discard_cleanups (back_to);
17462 return lh;
17463 }
17464
17465 /* Subroutine of dwarf_decode_lines to simplify it.
17466 Return the file name of the psymtab for included file FILE_INDEX
17467 in line header LH of PST.
17468 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17469 If space for the result is malloc'd, it will be freed by a cleanup.
17470 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17471
17472 The function creates dangling cleanup registration. */
17473
17474 static const char *
17475 psymtab_include_file_name (const struct line_header *lh, int file_index,
17476 const struct partial_symtab *pst,
17477 const char *comp_dir)
17478 {
17479 const struct file_entry fe = lh->file_names [file_index];
17480 const char *include_name = fe.name;
17481 const char *include_name_to_compare = include_name;
17482 const char *dir_name = NULL;
17483 const char *pst_filename;
17484 char *copied_name = NULL;
17485 int file_is_pst;
17486
17487 if (fe.dir_index && lh->include_dirs != NULL)
17488 dir_name = lh->include_dirs[fe.dir_index - 1];
17489
17490 if (!IS_ABSOLUTE_PATH (include_name)
17491 && (dir_name != NULL || comp_dir != NULL))
17492 {
17493 /* Avoid creating a duplicate psymtab for PST.
17494 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17495 Before we do the comparison, however, we need to account
17496 for DIR_NAME and COMP_DIR.
17497 First prepend dir_name (if non-NULL). If we still don't
17498 have an absolute path prepend comp_dir (if non-NULL).
17499 However, the directory we record in the include-file's
17500 psymtab does not contain COMP_DIR (to match the
17501 corresponding symtab(s)).
17502
17503 Example:
17504
17505 bash$ cd /tmp
17506 bash$ gcc -g ./hello.c
17507 include_name = "hello.c"
17508 dir_name = "."
17509 DW_AT_comp_dir = comp_dir = "/tmp"
17510 DW_AT_name = "./hello.c"
17511
17512 */
17513
17514 if (dir_name != NULL)
17515 {
17516 char *tem = concat (dir_name, SLASH_STRING,
17517 include_name, (char *)NULL);
17518
17519 make_cleanup (xfree, tem);
17520 include_name = tem;
17521 include_name_to_compare = include_name;
17522 }
17523 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17524 {
17525 char *tem = concat (comp_dir, SLASH_STRING,
17526 include_name, (char *)NULL);
17527
17528 make_cleanup (xfree, tem);
17529 include_name_to_compare = tem;
17530 }
17531 }
17532
17533 pst_filename = pst->filename;
17534 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17535 {
17536 copied_name = concat (pst->dirname, SLASH_STRING,
17537 pst_filename, (char *)NULL);
17538 pst_filename = copied_name;
17539 }
17540
17541 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17542
17543 if (copied_name != NULL)
17544 xfree (copied_name);
17545
17546 if (file_is_pst)
17547 return NULL;
17548 return include_name;
17549 }
17550
17551 /* State machine to track the state of the line number program. */
17552
17553 typedef struct
17554 {
17555 /* These are part of the standard DWARF line number state machine. */
17556
17557 unsigned char op_index;
17558 unsigned int file;
17559 unsigned int line;
17560 CORE_ADDR address;
17561 int is_stmt;
17562 unsigned int discriminator;
17563
17564 /* Additional bits of state we need to track. */
17565
17566 /* The last file that we called dwarf2_start_subfile for.
17567 This is only used for TLLs. */
17568 unsigned int last_file;
17569 /* The last file a line number was recorded for. */
17570 struct subfile *last_subfile;
17571
17572 /* The function to call to record a line. */
17573 record_line_ftype *record_line;
17574
17575 /* The last line number that was recorded, used to coalesce
17576 consecutive entries for the same line. This can happen, for
17577 example, when discriminators are present. PR 17276. */
17578 unsigned int last_line;
17579 int line_has_non_zero_discriminator;
17580 } lnp_state_machine;
17581
17582 /* There's a lot of static state to pass to dwarf_record_line.
17583 This keeps it all together. */
17584
17585 typedef struct
17586 {
17587 /* The gdbarch. */
17588 struct gdbarch *gdbarch;
17589
17590 /* The line number header. */
17591 struct line_header *line_header;
17592
17593 /* Non-zero if we're recording lines.
17594 Otherwise we're building partial symtabs and are just interested in
17595 finding include files mentioned by the line number program. */
17596 int record_lines_p;
17597 } lnp_reader_state;
17598
17599 /* Ignore this record_line request. */
17600
17601 static void
17602 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17603 {
17604 return;
17605 }
17606
17607 /* Return non-zero if we should add LINE to the line number table.
17608 LINE is the line to add, LAST_LINE is the last line that was added,
17609 LAST_SUBFILE is the subfile for LAST_LINE.
17610 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17611 had a non-zero discriminator.
17612
17613 We have to be careful in the presence of discriminators.
17614 E.g., for this line:
17615
17616 for (i = 0; i < 100000; i++);
17617
17618 clang can emit four line number entries for that one line,
17619 each with a different discriminator.
17620 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17621
17622 However, we want gdb to coalesce all four entries into one.
17623 Otherwise the user could stepi into the middle of the line and
17624 gdb would get confused about whether the pc really was in the
17625 middle of the line.
17626
17627 Things are further complicated by the fact that two consecutive
17628 line number entries for the same line is a heuristic used by gcc
17629 to denote the end of the prologue. So we can't just discard duplicate
17630 entries, we have to be selective about it. The heuristic we use is
17631 that we only collapse consecutive entries for the same line if at least
17632 one of those entries has a non-zero discriminator. PR 17276.
17633
17634 Note: Addresses in the line number state machine can never go backwards
17635 within one sequence, thus this coalescing is ok. */
17636
17637 static int
17638 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17639 int line_has_non_zero_discriminator,
17640 struct subfile *last_subfile)
17641 {
17642 if (current_subfile != last_subfile)
17643 return 1;
17644 if (line != last_line)
17645 return 1;
17646 /* Same line for the same file that we've seen already.
17647 As a last check, for pr 17276, only record the line if the line
17648 has never had a non-zero discriminator. */
17649 if (!line_has_non_zero_discriminator)
17650 return 1;
17651 return 0;
17652 }
17653
17654 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17655 in the line table of subfile SUBFILE. */
17656
17657 static void
17658 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17659 unsigned int line, CORE_ADDR address,
17660 record_line_ftype p_record_line)
17661 {
17662 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17663
17664 if (dwarf_line_debug)
17665 {
17666 fprintf_unfiltered (gdb_stdlog,
17667 "Recording line %u, file %s, address %s\n",
17668 line, lbasename (subfile->name),
17669 paddress (gdbarch, address));
17670 }
17671
17672 (*p_record_line) (subfile, line, addr);
17673 }
17674
17675 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17676 Mark the end of a set of line number records.
17677 The arguments are the same as for dwarf_record_line_1.
17678 If SUBFILE is NULL the request is ignored. */
17679
17680 static void
17681 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17682 CORE_ADDR address, record_line_ftype p_record_line)
17683 {
17684 if (subfile == NULL)
17685 return;
17686
17687 if (dwarf_line_debug)
17688 {
17689 fprintf_unfiltered (gdb_stdlog,
17690 "Finishing current line, file %s, address %s\n",
17691 lbasename (subfile->name),
17692 paddress (gdbarch, address));
17693 }
17694
17695 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17696 }
17697
17698 /* Record the line in STATE.
17699 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17700
17701 static void
17702 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17703 int end_sequence)
17704 {
17705 const struct line_header *lh = reader->line_header;
17706 unsigned int file, line, discriminator;
17707 int is_stmt;
17708
17709 file = state->file;
17710 line = state->line;
17711 is_stmt = state->is_stmt;
17712 discriminator = state->discriminator;
17713
17714 if (dwarf_line_debug)
17715 {
17716 fprintf_unfiltered (gdb_stdlog,
17717 "Processing actual line %u: file %u,"
17718 " address %s, is_stmt %u, discrim %u\n",
17719 line, file,
17720 paddress (reader->gdbarch, state->address),
17721 is_stmt, discriminator);
17722 }
17723
17724 if (file == 0 || file - 1 >= lh->num_file_names)
17725 dwarf2_debug_line_missing_file_complaint ();
17726 /* For now we ignore lines not starting on an instruction boundary.
17727 But not when processing end_sequence for compatibility with the
17728 previous version of the code. */
17729 else if (state->op_index == 0 || end_sequence)
17730 {
17731 lh->file_names[file - 1].included_p = 1;
17732 if (reader->record_lines_p && is_stmt)
17733 {
17734 if (state->last_subfile != current_subfile || end_sequence)
17735 {
17736 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17737 state->address, state->record_line);
17738 }
17739
17740 if (!end_sequence)
17741 {
17742 if (dwarf_record_line_p (line, state->last_line,
17743 state->line_has_non_zero_discriminator,
17744 state->last_subfile))
17745 {
17746 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17747 line, state->address,
17748 state->record_line);
17749 }
17750 state->last_subfile = current_subfile;
17751 state->last_line = line;
17752 }
17753 }
17754 }
17755 }
17756
17757 /* Initialize STATE for the start of a line number program. */
17758
17759 static void
17760 init_lnp_state_machine (lnp_state_machine *state,
17761 const lnp_reader_state *reader)
17762 {
17763 memset (state, 0, sizeof (*state));
17764
17765 /* Just starting, there is no "last file". */
17766 state->last_file = 0;
17767 state->last_subfile = NULL;
17768
17769 state->record_line = record_line;
17770
17771 state->last_line = 0;
17772 state->line_has_non_zero_discriminator = 0;
17773
17774 /* Initialize these according to the DWARF spec. */
17775 state->op_index = 0;
17776 state->file = 1;
17777 state->line = 1;
17778 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17779 was a line entry for it so that the backend has a chance to adjust it
17780 and also record it in case it needs it. This is currently used by MIPS
17781 code, cf. `mips_adjust_dwarf2_line'. */
17782 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17783 state->is_stmt = reader->line_header->default_is_stmt;
17784 state->discriminator = 0;
17785 }
17786
17787 /* Check address and if invalid nop-out the rest of the lines in this
17788 sequence. */
17789
17790 static void
17791 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17792 const gdb_byte *line_ptr,
17793 CORE_ADDR lowpc, CORE_ADDR address)
17794 {
17795 /* If address < lowpc then it's not a usable value, it's outside the
17796 pc range of the CU. However, we restrict the test to only address
17797 values of zero to preserve GDB's previous behaviour which is to
17798 handle the specific case of a function being GC'd by the linker. */
17799
17800 if (address == 0 && address < lowpc)
17801 {
17802 /* This line table is for a function which has been
17803 GCd by the linker. Ignore it. PR gdb/12528 */
17804
17805 struct objfile *objfile = cu->objfile;
17806 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17807
17808 complaint (&symfile_complaints,
17809 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17810 line_offset, objfile_name (objfile));
17811 state->record_line = noop_record_line;
17812 /* Note: sm.record_line is left as noop_record_line
17813 until we see DW_LNE_end_sequence. */
17814 }
17815 }
17816
17817 /* Subroutine of dwarf_decode_lines to simplify it.
17818 Process the line number information in LH.
17819 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17820 program in order to set included_p for every referenced header. */
17821
17822 static void
17823 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17824 const int decode_for_pst_p, CORE_ADDR lowpc)
17825 {
17826 const gdb_byte *line_ptr, *extended_end;
17827 const gdb_byte *line_end;
17828 unsigned int bytes_read, extended_len;
17829 unsigned char op_code, extended_op;
17830 CORE_ADDR baseaddr;
17831 struct objfile *objfile = cu->objfile;
17832 bfd *abfd = objfile->obfd;
17833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17834 /* Non-zero if we're recording line info (as opposed to building partial
17835 symtabs). */
17836 int record_lines_p = !decode_for_pst_p;
17837 /* A collection of things we need to pass to dwarf_record_line. */
17838 lnp_reader_state reader_state;
17839
17840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17841
17842 line_ptr = lh->statement_program_start;
17843 line_end = lh->statement_program_end;
17844
17845 reader_state.gdbarch = gdbarch;
17846 reader_state.line_header = lh;
17847 reader_state.record_lines_p = record_lines_p;
17848
17849 /* Read the statement sequences until there's nothing left. */
17850 while (line_ptr < line_end)
17851 {
17852 /* The DWARF line number program state machine. */
17853 lnp_state_machine state_machine;
17854 int end_sequence = 0;
17855
17856 /* Reset the state machine at the start of each sequence. */
17857 init_lnp_state_machine (&state_machine, &reader_state);
17858
17859 if (record_lines_p && lh->num_file_names >= state_machine.file)
17860 {
17861 /* Start a subfile for the current file of the state machine. */
17862 /* lh->include_dirs and lh->file_names are 0-based, but the
17863 directory and file name numbers in the statement program
17864 are 1-based. */
17865 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17866 const char *dir = NULL;
17867
17868 if (fe->dir_index && lh->include_dirs != NULL)
17869 dir = lh->include_dirs[fe->dir_index - 1];
17870
17871 dwarf2_start_subfile (fe->name, dir);
17872 }
17873
17874 /* Decode the table. */
17875 while (line_ptr < line_end && !end_sequence)
17876 {
17877 op_code = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
17879
17880 if (op_code >= lh->opcode_base)
17881 {
17882 /* Special opcode. */
17883 unsigned char adj_opcode;
17884 CORE_ADDR addr_adj;
17885 int line_delta;
17886
17887 adj_opcode = op_code - lh->opcode_base;
17888 addr_adj = (((state_machine.op_index
17889 + (adj_opcode / lh->line_range))
17890 / lh->maximum_ops_per_instruction)
17891 * lh->minimum_instruction_length);
17892 state_machine.address
17893 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17894 state_machine.op_index = ((state_machine.op_index
17895 + (adj_opcode / lh->line_range))
17896 % lh->maximum_ops_per_instruction);
17897 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17898 state_machine.line += line_delta;
17899 if (line_delta != 0)
17900 state_machine.line_has_non_zero_discriminator
17901 = state_machine.discriminator != 0;
17902
17903 dwarf_record_line (&reader_state, &state_machine, 0);
17904 state_machine.discriminator = 0;
17905 }
17906 else switch (op_code)
17907 {
17908 case DW_LNS_extended_op:
17909 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17910 &bytes_read);
17911 line_ptr += bytes_read;
17912 extended_end = line_ptr + extended_len;
17913 extended_op = read_1_byte (abfd, line_ptr);
17914 line_ptr += 1;
17915 switch (extended_op)
17916 {
17917 case DW_LNE_end_sequence:
17918 state_machine.record_line = record_line;
17919 end_sequence = 1;
17920 break;
17921 case DW_LNE_set_address:
17922 {
17923 CORE_ADDR address
17924 = read_address (abfd, line_ptr, cu, &bytes_read);
17925
17926 line_ptr += bytes_read;
17927 check_line_address (cu, &state_machine, line_ptr,
17928 lowpc, address);
17929 state_machine.op_index = 0;
17930 address += baseaddr;
17931 state_machine.address
17932 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17933 }
17934 break;
17935 case DW_LNE_define_file:
17936 {
17937 const char *cur_file;
17938 unsigned int dir_index, mod_time, length;
17939
17940 cur_file = read_direct_string (abfd, line_ptr,
17941 &bytes_read);
17942 line_ptr += bytes_read;
17943 dir_index =
17944 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17945 line_ptr += bytes_read;
17946 mod_time =
17947 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17948 line_ptr += bytes_read;
17949 length =
17950 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17951 line_ptr += bytes_read;
17952 add_file_name (lh, cur_file, dir_index, mod_time, length);
17953 }
17954 break;
17955 case DW_LNE_set_discriminator:
17956 /* The discriminator is not interesting to the debugger;
17957 just ignore it. We still need to check its value though:
17958 if there are consecutive entries for the same
17959 (non-prologue) line we want to coalesce them.
17960 PR 17276. */
17961 state_machine.discriminator
17962 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17963 state_machine.line_has_non_zero_discriminator
17964 |= state_machine.discriminator != 0;
17965 line_ptr += bytes_read;
17966 break;
17967 default:
17968 complaint (&symfile_complaints,
17969 _("mangled .debug_line section"));
17970 return;
17971 }
17972 /* Make sure that we parsed the extended op correctly. If e.g.
17973 we expected a different address size than the producer used,
17974 we may have read the wrong number of bytes. */
17975 if (line_ptr != extended_end)
17976 {
17977 complaint (&symfile_complaints,
17978 _("mangled .debug_line section"));
17979 return;
17980 }
17981 break;
17982 case DW_LNS_copy:
17983 dwarf_record_line (&reader_state, &state_machine, 0);
17984 state_machine.discriminator = 0;
17985 break;
17986 case DW_LNS_advance_pc:
17987 {
17988 CORE_ADDR adjust
17989 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17990 CORE_ADDR addr_adj;
17991
17992 addr_adj = (((state_machine.op_index + adjust)
17993 / lh->maximum_ops_per_instruction)
17994 * lh->minimum_instruction_length);
17995 state_machine.address
17996 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17997 state_machine.op_index = ((state_machine.op_index + adjust)
17998 % lh->maximum_ops_per_instruction);
17999 line_ptr += bytes_read;
18000 }
18001 break;
18002 case DW_LNS_advance_line:
18003 {
18004 int line_delta
18005 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18006
18007 state_machine.line += line_delta;
18008 if (line_delta != 0)
18009 state_machine.line_has_non_zero_discriminator
18010 = state_machine.discriminator != 0;
18011 line_ptr += bytes_read;
18012 }
18013 break;
18014 case DW_LNS_set_file:
18015 {
18016 /* The arrays lh->include_dirs and lh->file_names are
18017 0-based, but the directory and file name numbers in
18018 the statement program are 1-based. */
18019 struct file_entry *fe;
18020 const char *dir = NULL;
18021
18022 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18023 &bytes_read);
18024 line_ptr += bytes_read;
18025 if (state_machine.file == 0
18026 || state_machine.file - 1 >= lh->num_file_names)
18027 dwarf2_debug_line_missing_file_complaint ();
18028 else
18029 {
18030 fe = &lh->file_names[state_machine.file - 1];
18031 if (fe->dir_index && lh->include_dirs != NULL)
18032 dir = lh->include_dirs[fe->dir_index - 1];
18033 if (record_lines_p)
18034 {
18035 state_machine.last_subfile = current_subfile;
18036 state_machine.line_has_non_zero_discriminator
18037 = state_machine.discriminator != 0;
18038 dwarf2_start_subfile (fe->name, dir);
18039 }
18040 }
18041 }
18042 break;
18043 case DW_LNS_set_column:
18044 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18045 line_ptr += bytes_read;
18046 break;
18047 case DW_LNS_negate_stmt:
18048 state_machine.is_stmt = (!state_machine.is_stmt);
18049 break;
18050 case DW_LNS_set_basic_block:
18051 break;
18052 /* Add to the address register of the state machine the
18053 address increment value corresponding to special opcode
18054 255. I.e., this value is scaled by the minimum
18055 instruction length since special opcode 255 would have
18056 scaled the increment. */
18057 case DW_LNS_const_add_pc:
18058 {
18059 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18060 CORE_ADDR addr_adj;
18061
18062 addr_adj = (((state_machine.op_index + adjust)
18063 / lh->maximum_ops_per_instruction)
18064 * lh->minimum_instruction_length);
18065 state_machine.address
18066 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18067 state_machine.op_index = ((state_machine.op_index + adjust)
18068 % lh->maximum_ops_per_instruction);
18069 }
18070 break;
18071 case DW_LNS_fixed_advance_pc:
18072 {
18073 CORE_ADDR addr_adj;
18074
18075 addr_adj = read_2_bytes (abfd, line_ptr);
18076 state_machine.address
18077 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18078 state_machine.op_index = 0;
18079 line_ptr += 2;
18080 }
18081 break;
18082 default:
18083 {
18084 /* Unknown standard opcode, ignore it. */
18085 int i;
18086
18087 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18088 {
18089 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18090 line_ptr += bytes_read;
18091 }
18092 }
18093 }
18094 }
18095
18096 if (!end_sequence)
18097 dwarf2_debug_line_missing_end_sequence_complaint ();
18098
18099 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18100 in which case we still finish recording the last line). */
18101 dwarf_record_line (&reader_state, &state_machine, 1);
18102 }
18103 }
18104
18105 /* Decode the Line Number Program (LNP) for the given line_header
18106 structure and CU. The actual information extracted and the type
18107 of structures created from the LNP depends on the value of PST.
18108
18109 1. If PST is NULL, then this procedure uses the data from the program
18110 to create all necessary symbol tables, and their linetables.
18111
18112 2. If PST is not NULL, this procedure reads the program to determine
18113 the list of files included by the unit represented by PST, and
18114 builds all the associated partial symbol tables.
18115
18116 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18117 It is used for relative paths in the line table.
18118 NOTE: When processing partial symtabs (pst != NULL),
18119 comp_dir == pst->dirname.
18120
18121 NOTE: It is important that psymtabs have the same file name (via strcmp)
18122 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18123 symtab we don't use it in the name of the psymtabs we create.
18124 E.g. expand_line_sal requires this when finding psymtabs to expand.
18125 A good testcase for this is mb-inline.exp.
18126
18127 LOWPC is the lowest address in CU (or 0 if not known).
18128
18129 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18130 for its PC<->lines mapping information. Otherwise only the filename
18131 table is read in. */
18132
18133 static void
18134 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18135 struct dwarf2_cu *cu, struct partial_symtab *pst,
18136 CORE_ADDR lowpc, int decode_mapping)
18137 {
18138 struct objfile *objfile = cu->objfile;
18139 const int decode_for_pst_p = (pst != NULL);
18140
18141 if (decode_mapping)
18142 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18143
18144 if (decode_for_pst_p)
18145 {
18146 int file_index;
18147
18148 /* Now that we're done scanning the Line Header Program, we can
18149 create the psymtab of each included file. */
18150 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18151 if (lh->file_names[file_index].included_p == 1)
18152 {
18153 const char *include_name =
18154 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18155 if (include_name != NULL)
18156 dwarf2_create_include_psymtab (include_name, pst, objfile);
18157 }
18158 }
18159 else
18160 {
18161 /* Make sure a symtab is created for every file, even files
18162 which contain only variables (i.e. no code with associated
18163 line numbers). */
18164 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18165 int i;
18166
18167 for (i = 0; i < lh->num_file_names; i++)
18168 {
18169 const char *dir = NULL;
18170 struct file_entry *fe;
18171
18172 fe = &lh->file_names[i];
18173 if (fe->dir_index && lh->include_dirs != NULL)
18174 dir = lh->include_dirs[fe->dir_index - 1];
18175 dwarf2_start_subfile (fe->name, dir);
18176
18177 if (current_subfile->symtab == NULL)
18178 {
18179 current_subfile->symtab
18180 = allocate_symtab (cust, current_subfile->name);
18181 }
18182 fe->symtab = current_subfile->symtab;
18183 }
18184 }
18185 }
18186
18187 /* Start a subfile for DWARF. FILENAME is the name of the file and
18188 DIRNAME the name of the source directory which contains FILENAME
18189 or NULL if not known.
18190 This routine tries to keep line numbers from identical absolute and
18191 relative file names in a common subfile.
18192
18193 Using the `list' example from the GDB testsuite, which resides in
18194 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18195 of /srcdir/list0.c yields the following debugging information for list0.c:
18196
18197 DW_AT_name: /srcdir/list0.c
18198 DW_AT_comp_dir: /compdir
18199 files.files[0].name: list0.h
18200 files.files[0].dir: /srcdir
18201 files.files[1].name: list0.c
18202 files.files[1].dir: /srcdir
18203
18204 The line number information for list0.c has to end up in a single
18205 subfile, so that `break /srcdir/list0.c:1' works as expected.
18206 start_subfile will ensure that this happens provided that we pass the
18207 concatenation of files.files[1].dir and files.files[1].name as the
18208 subfile's name. */
18209
18210 static void
18211 dwarf2_start_subfile (const char *filename, const char *dirname)
18212 {
18213 char *copy = NULL;
18214
18215 /* In order not to lose the line information directory,
18216 we concatenate it to the filename when it makes sense.
18217 Note that the Dwarf3 standard says (speaking of filenames in line
18218 information): ``The directory index is ignored for file names
18219 that represent full path names''. Thus ignoring dirname in the
18220 `else' branch below isn't an issue. */
18221
18222 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18223 {
18224 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18225 filename = copy;
18226 }
18227
18228 start_subfile (filename);
18229
18230 if (copy != NULL)
18231 xfree (copy);
18232 }
18233
18234 /* Start a symtab for DWARF.
18235 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18236
18237 static struct compunit_symtab *
18238 dwarf2_start_symtab (struct dwarf2_cu *cu,
18239 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18240 {
18241 struct compunit_symtab *cust
18242 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18243
18244 record_debugformat ("DWARF 2");
18245 record_producer (cu->producer);
18246
18247 /* We assume that we're processing GCC output. */
18248 processing_gcc_compilation = 2;
18249
18250 cu->processing_has_namespace_info = 0;
18251
18252 return cust;
18253 }
18254
18255 static void
18256 var_decode_location (struct attribute *attr, struct symbol *sym,
18257 struct dwarf2_cu *cu)
18258 {
18259 struct objfile *objfile = cu->objfile;
18260 struct comp_unit_head *cu_header = &cu->header;
18261
18262 /* NOTE drow/2003-01-30: There used to be a comment and some special
18263 code here to turn a symbol with DW_AT_external and a
18264 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18265 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18266 with some versions of binutils) where shared libraries could have
18267 relocations against symbols in their debug information - the
18268 minimal symbol would have the right address, but the debug info
18269 would not. It's no longer necessary, because we will explicitly
18270 apply relocations when we read in the debug information now. */
18271
18272 /* A DW_AT_location attribute with no contents indicates that a
18273 variable has been optimized away. */
18274 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18275 {
18276 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18277 return;
18278 }
18279
18280 /* Handle one degenerate form of location expression specially, to
18281 preserve GDB's previous behavior when section offsets are
18282 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18283 then mark this symbol as LOC_STATIC. */
18284
18285 if (attr_form_is_block (attr)
18286 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18287 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18288 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18289 && (DW_BLOCK (attr)->size
18290 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18291 {
18292 unsigned int dummy;
18293
18294 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18295 SYMBOL_VALUE_ADDRESS (sym) =
18296 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18297 else
18298 SYMBOL_VALUE_ADDRESS (sym) =
18299 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18300 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18301 fixup_symbol_section (sym, objfile);
18302 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18303 SYMBOL_SECTION (sym));
18304 return;
18305 }
18306
18307 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18308 expression evaluator, and use LOC_COMPUTED only when necessary
18309 (i.e. when the value of a register or memory location is
18310 referenced, or a thread-local block, etc.). Then again, it might
18311 not be worthwhile. I'm assuming that it isn't unless performance
18312 or memory numbers show me otherwise. */
18313
18314 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18315
18316 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18317 cu->has_loclist = 1;
18318 }
18319
18320 /* Given a pointer to a DWARF information entry, figure out if we need
18321 to make a symbol table entry for it, and if so, create a new entry
18322 and return a pointer to it.
18323 If TYPE is NULL, determine symbol type from the die, otherwise
18324 used the passed type.
18325 If SPACE is not NULL, use it to hold the new symbol. If it is
18326 NULL, allocate a new symbol on the objfile's obstack. */
18327
18328 static struct symbol *
18329 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18330 struct symbol *space)
18331 {
18332 struct objfile *objfile = cu->objfile;
18333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18334 struct symbol *sym = NULL;
18335 const char *name;
18336 struct attribute *attr = NULL;
18337 struct attribute *attr2 = NULL;
18338 CORE_ADDR baseaddr;
18339 struct pending **list_to_add = NULL;
18340
18341 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18342
18343 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18344
18345 name = dwarf2_name (die, cu);
18346 if (name)
18347 {
18348 const char *linkagename;
18349 int suppress_add = 0;
18350
18351 if (space)
18352 sym = space;
18353 else
18354 sym = allocate_symbol (objfile);
18355 OBJSTAT (objfile, n_syms++);
18356
18357 /* Cache this symbol's name and the name's demangled form (if any). */
18358 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18359 linkagename = dwarf2_physname (name, die, cu);
18360 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18361
18362 /* Fortran does not have mangling standard and the mangling does differ
18363 between gfortran, iFort etc. */
18364 if (cu->language == language_fortran
18365 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18366 symbol_set_demangled_name (&(sym->ginfo),
18367 dwarf2_full_name (name, die, cu),
18368 NULL);
18369
18370 /* Default assumptions.
18371 Use the passed type or decode it from the die. */
18372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18373 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18374 if (type != NULL)
18375 SYMBOL_TYPE (sym) = type;
18376 else
18377 SYMBOL_TYPE (sym) = die_type (die, cu);
18378 attr = dwarf2_attr (die,
18379 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18380 cu);
18381 if (attr)
18382 {
18383 SYMBOL_LINE (sym) = DW_UNSND (attr);
18384 }
18385
18386 attr = dwarf2_attr (die,
18387 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18388 cu);
18389 if (attr)
18390 {
18391 int file_index = DW_UNSND (attr);
18392
18393 if (cu->line_header == NULL
18394 || file_index > cu->line_header->num_file_names)
18395 complaint (&symfile_complaints,
18396 _("file index out of range"));
18397 else if (file_index > 0)
18398 {
18399 struct file_entry *fe;
18400
18401 fe = &cu->line_header->file_names[file_index - 1];
18402 symbol_set_symtab (sym, fe->symtab);
18403 }
18404 }
18405
18406 switch (die->tag)
18407 {
18408 case DW_TAG_label:
18409 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18410 if (attr)
18411 {
18412 CORE_ADDR addr;
18413
18414 addr = attr_value_as_address (attr);
18415 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18416 SYMBOL_VALUE_ADDRESS (sym) = addr;
18417 }
18418 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18419 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18420 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18421 add_symbol_to_list (sym, cu->list_in_scope);
18422 break;
18423 case DW_TAG_subprogram:
18424 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18425 finish_block. */
18426 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18427 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18428 if ((attr2 && (DW_UNSND (attr2) != 0))
18429 || cu->language == language_ada)
18430 {
18431 /* Subprograms marked external are stored as a global symbol.
18432 Ada subprograms, whether marked external or not, are always
18433 stored as a global symbol, because we want to be able to
18434 access them globally. For instance, we want to be able
18435 to break on a nested subprogram without having to
18436 specify the context. */
18437 list_to_add = &global_symbols;
18438 }
18439 else
18440 {
18441 list_to_add = cu->list_in_scope;
18442 }
18443 break;
18444 case DW_TAG_inlined_subroutine:
18445 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18446 finish_block. */
18447 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18448 SYMBOL_INLINED (sym) = 1;
18449 list_to_add = cu->list_in_scope;
18450 break;
18451 case DW_TAG_template_value_param:
18452 suppress_add = 1;
18453 /* Fall through. */
18454 case DW_TAG_constant:
18455 case DW_TAG_variable:
18456 case DW_TAG_member:
18457 /* Compilation with minimal debug info may result in
18458 variables with missing type entries. Change the
18459 misleading `void' type to something sensible. */
18460 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18461 SYMBOL_TYPE (sym)
18462 = objfile_type (objfile)->nodebug_data_symbol;
18463
18464 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18465 /* In the case of DW_TAG_member, we should only be called for
18466 static const members. */
18467 if (die->tag == DW_TAG_member)
18468 {
18469 /* dwarf2_add_field uses die_is_declaration,
18470 so we do the same. */
18471 gdb_assert (die_is_declaration (die, cu));
18472 gdb_assert (attr);
18473 }
18474 if (attr)
18475 {
18476 dwarf2_const_value (attr, sym, cu);
18477 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18478 if (!suppress_add)
18479 {
18480 if (attr2 && (DW_UNSND (attr2) != 0))
18481 list_to_add = &global_symbols;
18482 else
18483 list_to_add = cu->list_in_scope;
18484 }
18485 break;
18486 }
18487 attr = dwarf2_attr (die, DW_AT_location, cu);
18488 if (attr)
18489 {
18490 var_decode_location (attr, sym, cu);
18491 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18492
18493 /* Fortran explicitly imports any global symbols to the local
18494 scope by DW_TAG_common_block. */
18495 if (cu->language == language_fortran && die->parent
18496 && die->parent->tag == DW_TAG_common_block)
18497 attr2 = NULL;
18498
18499 if (SYMBOL_CLASS (sym) == LOC_STATIC
18500 && SYMBOL_VALUE_ADDRESS (sym) == 0
18501 && !dwarf2_per_objfile->has_section_at_zero)
18502 {
18503 /* When a static variable is eliminated by the linker,
18504 the corresponding debug information is not stripped
18505 out, but the variable address is set to null;
18506 do not add such variables into symbol table. */
18507 }
18508 else if (attr2 && (DW_UNSND (attr2) != 0))
18509 {
18510 /* Workaround gfortran PR debug/40040 - it uses
18511 DW_AT_location for variables in -fPIC libraries which may
18512 get overriden by other libraries/executable and get
18513 a different address. Resolve it by the minimal symbol
18514 which may come from inferior's executable using copy
18515 relocation. Make this workaround only for gfortran as for
18516 other compilers GDB cannot guess the minimal symbol
18517 Fortran mangling kind. */
18518 if (cu->language == language_fortran && die->parent
18519 && die->parent->tag == DW_TAG_module
18520 && cu->producer
18521 && startswith (cu->producer, "GNU Fortran "))
18522 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18523
18524 /* A variable with DW_AT_external is never static,
18525 but it may be block-scoped. */
18526 list_to_add = (cu->list_in_scope == &file_symbols
18527 ? &global_symbols : cu->list_in_scope);
18528 }
18529 else
18530 list_to_add = cu->list_in_scope;
18531 }
18532 else
18533 {
18534 /* We do not know the address of this symbol.
18535 If it is an external symbol and we have type information
18536 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18537 The address of the variable will then be determined from
18538 the minimal symbol table whenever the variable is
18539 referenced. */
18540 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18541
18542 /* Fortran explicitly imports any global symbols to the local
18543 scope by DW_TAG_common_block. */
18544 if (cu->language == language_fortran && die->parent
18545 && die->parent->tag == DW_TAG_common_block)
18546 {
18547 /* SYMBOL_CLASS doesn't matter here because
18548 read_common_block is going to reset it. */
18549 if (!suppress_add)
18550 list_to_add = cu->list_in_scope;
18551 }
18552 else if (attr2 && (DW_UNSND (attr2) != 0)
18553 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18554 {
18555 /* A variable with DW_AT_external is never static, but it
18556 may be block-scoped. */
18557 list_to_add = (cu->list_in_scope == &file_symbols
18558 ? &global_symbols : cu->list_in_scope);
18559
18560 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18561 }
18562 else if (!die_is_declaration (die, cu))
18563 {
18564 /* Use the default LOC_OPTIMIZED_OUT class. */
18565 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18566 if (!suppress_add)
18567 list_to_add = cu->list_in_scope;
18568 }
18569 }
18570 break;
18571 case DW_TAG_formal_parameter:
18572 /* If we are inside a function, mark this as an argument. If
18573 not, we might be looking at an argument to an inlined function
18574 when we do not have enough information to show inlined frames;
18575 pretend it's a local variable in that case so that the user can
18576 still see it. */
18577 if (context_stack_depth > 0
18578 && context_stack[context_stack_depth - 1].name != NULL)
18579 SYMBOL_IS_ARGUMENT (sym) = 1;
18580 attr = dwarf2_attr (die, DW_AT_location, cu);
18581 if (attr)
18582 {
18583 var_decode_location (attr, sym, cu);
18584 }
18585 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18586 if (attr)
18587 {
18588 dwarf2_const_value (attr, sym, cu);
18589 }
18590
18591 list_to_add = cu->list_in_scope;
18592 break;
18593 case DW_TAG_unspecified_parameters:
18594 /* From varargs functions; gdb doesn't seem to have any
18595 interest in this information, so just ignore it for now.
18596 (FIXME?) */
18597 break;
18598 case DW_TAG_template_type_param:
18599 suppress_add = 1;
18600 /* Fall through. */
18601 case DW_TAG_class_type:
18602 case DW_TAG_interface_type:
18603 case DW_TAG_structure_type:
18604 case DW_TAG_union_type:
18605 case DW_TAG_set_type:
18606 case DW_TAG_enumeration_type:
18607 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18608 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18609
18610 {
18611 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18612 really ever be static objects: otherwise, if you try
18613 to, say, break of a class's method and you're in a file
18614 which doesn't mention that class, it won't work unless
18615 the check for all static symbols in lookup_symbol_aux
18616 saves you. See the OtherFileClass tests in
18617 gdb.c++/namespace.exp. */
18618
18619 if (!suppress_add)
18620 {
18621 list_to_add = (cu->list_in_scope == &file_symbols
18622 && (cu->language == language_cplus
18623 || cu->language == language_java)
18624 ? &global_symbols : cu->list_in_scope);
18625
18626 /* The semantics of C++ state that "struct foo {
18627 ... }" also defines a typedef for "foo". A Java
18628 class declaration also defines a typedef for the
18629 class. */
18630 if (cu->language == language_cplus
18631 || cu->language == language_java
18632 || cu->language == language_ada
18633 || cu->language == language_d)
18634 {
18635 /* The symbol's name is already allocated along
18636 with this objfile, so we don't need to
18637 duplicate it for the type. */
18638 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18639 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18640 }
18641 }
18642 }
18643 break;
18644 case DW_TAG_typedef:
18645 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18646 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18647 list_to_add = cu->list_in_scope;
18648 break;
18649 case DW_TAG_base_type:
18650 case DW_TAG_subrange_type:
18651 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18652 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18653 list_to_add = cu->list_in_scope;
18654 break;
18655 case DW_TAG_enumerator:
18656 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18657 if (attr)
18658 {
18659 dwarf2_const_value (attr, sym, cu);
18660 }
18661 {
18662 /* NOTE: carlton/2003-11-10: See comment above in the
18663 DW_TAG_class_type, etc. block. */
18664
18665 list_to_add = (cu->list_in_scope == &file_symbols
18666 && (cu->language == language_cplus
18667 || cu->language == language_java)
18668 ? &global_symbols : cu->list_in_scope);
18669 }
18670 break;
18671 case DW_TAG_imported_declaration:
18672 case DW_TAG_namespace:
18673 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18674 list_to_add = &global_symbols;
18675 break;
18676 case DW_TAG_module:
18677 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18678 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18679 list_to_add = &global_symbols;
18680 break;
18681 case DW_TAG_common_block:
18682 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18683 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18684 add_symbol_to_list (sym, cu->list_in_scope);
18685 break;
18686 default:
18687 /* Not a tag we recognize. Hopefully we aren't processing
18688 trash data, but since we must specifically ignore things
18689 we don't recognize, there is nothing else we should do at
18690 this point. */
18691 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18692 dwarf_tag_name (die->tag));
18693 break;
18694 }
18695
18696 if (suppress_add)
18697 {
18698 sym->hash_next = objfile->template_symbols;
18699 objfile->template_symbols = sym;
18700 list_to_add = NULL;
18701 }
18702
18703 if (list_to_add != NULL)
18704 add_symbol_to_list (sym, list_to_add);
18705
18706 /* For the benefit of old versions of GCC, check for anonymous
18707 namespaces based on the demangled name. */
18708 if (!cu->processing_has_namespace_info
18709 && cu->language == language_cplus)
18710 cp_scan_for_anonymous_namespaces (sym, objfile);
18711 }
18712 return (sym);
18713 }
18714
18715 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18716
18717 static struct symbol *
18718 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18719 {
18720 return new_symbol_full (die, type, cu, NULL);
18721 }
18722
18723 /* Given an attr with a DW_FORM_dataN value in host byte order,
18724 zero-extend it as appropriate for the symbol's type. The DWARF
18725 standard (v4) is not entirely clear about the meaning of using
18726 DW_FORM_dataN for a constant with a signed type, where the type is
18727 wider than the data. The conclusion of a discussion on the DWARF
18728 list was that this is unspecified. We choose to always zero-extend
18729 because that is the interpretation long in use by GCC. */
18730
18731 static gdb_byte *
18732 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18733 struct dwarf2_cu *cu, LONGEST *value, int bits)
18734 {
18735 struct objfile *objfile = cu->objfile;
18736 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18737 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18738 LONGEST l = DW_UNSND (attr);
18739
18740 if (bits < sizeof (*value) * 8)
18741 {
18742 l &= ((LONGEST) 1 << bits) - 1;
18743 *value = l;
18744 }
18745 else if (bits == sizeof (*value) * 8)
18746 *value = l;
18747 else
18748 {
18749 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18750 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18751 return bytes;
18752 }
18753
18754 return NULL;
18755 }
18756
18757 /* Read a constant value from an attribute. Either set *VALUE, or if
18758 the value does not fit in *VALUE, set *BYTES - either already
18759 allocated on the objfile obstack, or newly allocated on OBSTACK,
18760 or, set *BATON, if we translated the constant to a location
18761 expression. */
18762
18763 static void
18764 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18765 const char *name, struct obstack *obstack,
18766 struct dwarf2_cu *cu,
18767 LONGEST *value, const gdb_byte **bytes,
18768 struct dwarf2_locexpr_baton **baton)
18769 {
18770 struct objfile *objfile = cu->objfile;
18771 struct comp_unit_head *cu_header = &cu->header;
18772 struct dwarf_block *blk;
18773 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18774 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18775
18776 *value = 0;
18777 *bytes = NULL;
18778 *baton = NULL;
18779
18780 switch (attr->form)
18781 {
18782 case DW_FORM_addr:
18783 case DW_FORM_GNU_addr_index:
18784 {
18785 gdb_byte *data;
18786
18787 if (TYPE_LENGTH (type) != cu_header->addr_size)
18788 dwarf2_const_value_length_mismatch_complaint (name,
18789 cu_header->addr_size,
18790 TYPE_LENGTH (type));
18791 /* Symbols of this form are reasonably rare, so we just
18792 piggyback on the existing location code rather than writing
18793 a new implementation of symbol_computed_ops. */
18794 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18795 (*baton)->per_cu = cu->per_cu;
18796 gdb_assert ((*baton)->per_cu);
18797
18798 (*baton)->size = 2 + cu_header->addr_size;
18799 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18800 (*baton)->data = data;
18801
18802 data[0] = DW_OP_addr;
18803 store_unsigned_integer (&data[1], cu_header->addr_size,
18804 byte_order, DW_ADDR (attr));
18805 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18806 }
18807 break;
18808 case DW_FORM_string:
18809 case DW_FORM_strp:
18810 case DW_FORM_GNU_str_index:
18811 case DW_FORM_GNU_strp_alt:
18812 /* DW_STRING is already allocated on the objfile obstack, point
18813 directly to it. */
18814 *bytes = (const gdb_byte *) DW_STRING (attr);
18815 break;
18816 case DW_FORM_block1:
18817 case DW_FORM_block2:
18818 case DW_FORM_block4:
18819 case DW_FORM_block:
18820 case DW_FORM_exprloc:
18821 blk = DW_BLOCK (attr);
18822 if (TYPE_LENGTH (type) != blk->size)
18823 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18824 TYPE_LENGTH (type));
18825 *bytes = blk->data;
18826 break;
18827
18828 /* The DW_AT_const_value attributes are supposed to carry the
18829 symbol's value "represented as it would be on the target
18830 architecture." By the time we get here, it's already been
18831 converted to host endianness, so we just need to sign- or
18832 zero-extend it as appropriate. */
18833 case DW_FORM_data1:
18834 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18835 break;
18836 case DW_FORM_data2:
18837 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18838 break;
18839 case DW_FORM_data4:
18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18841 break;
18842 case DW_FORM_data8:
18843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18844 break;
18845
18846 case DW_FORM_sdata:
18847 *value = DW_SND (attr);
18848 break;
18849
18850 case DW_FORM_udata:
18851 *value = DW_UNSND (attr);
18852 break;
18853
18854 default:
18855 complaint (&symfile_complaints,
18856 _("unsupported const value attribute form: '%s'"),
18857 dwarf_form_name (attr->form));
18858 *value = 0;
18859 break;
18860 }
18861 }
18862
18863
18864 /* Copy constant value from an attribute to a symbol. */
18865
18866 static void
18867 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18868 struct dwarf2_cu *cu)
18869 {
18870 struct objfile *objfile = cu->objfile;
18871 struct comp_unit_head *cu_header = &cu->header;
18872 LONGEST value;
18873 const gdb_byte *bytes;
18874 struct dwarf2_locexpr_baton *baton;
18875
18876 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18877 SYMBOL_PRINT_NAME (sym),
18878 &objfile->objfile_obstack, cu,
18879 &value, &bytes, &baton);
18880
18881 if (baton != NULL)
18882 {
18883 SYMBOL_LOCATION_BATON (sym) = baton;
18884 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18885 }
18886 else if (bytes != NULL)
18887 {
18888 SYMBOL_VALUE_BYTES (sym) = bytes;
18889 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18890 }
18891 else
18892 {
18893 SYMBOL_VALUE (sym) = value;
18894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18895 }
18896 }
18897
18898 /* Return the type of the die in question using its DW_AT_type attribute. */
18899
18900 static struct type *
18901 die_type (struct die_info *die, struct dwarf2_cu *cu)
18902 {
18903 struct attribute *type_attr;
18904
18905 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18906 if (!type_attr)
18907 {
18908 /* A missing DW_AT_type represents a void type. */
18909 return objfile_type (cu->objfile)->builtin_void;
18910 }
18911
18912 return lookup_die_type (die, type_attr, cu);
18913 }
18914
18915 /* True iff CU's producer generates GNAT Ada auxiliary information
18916 that allows to find parallel types through that information instead
18917 of having to do expensive parallel lookups by type name. */
18918
18919 static int
18920 need_gnat_info (struct dwarf2_cu *cu)
18921 {
18922 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18923 of GNAT produces this auxiliary information, without any indication
18924 that it is produced. Part of enhancing the FSF version of GNAT
18925 to produce that information will be to put in place an indicator
18926 that we can use in order to determine whether the descriptive type
18927 info is available or not. One suggestion that has been made is
18928 to use a new attribute, attached to the CU die. For now, assume
18929 that the descriptive type info is not available. */
18930 return 0;
18931 }
18932
18933 /* Return the auxiliary type of the die in question using its
18934 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18935 attribute is not present. */
18936
18937 static struct type *
18938 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18939 {
18940 struct attribute *type_attr;
18941
18942 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18943 if (!type_attr)
18944 return NULL;
18945
18946 return lookup_die_type (die, type_attr, cu);
18947 }
18948
18949 /* If DIE has a descriptive_type attribute, then set the TYPE's
18950 descriptive type accordingly. */
18951
18952 static void
18953 set_descriptive_type (struct type *type, struct die_info *die,
18954 struct dwarf2_cu *cu)
18955 {
18956 struct type *descriptive_type = die_descriptive_type (die, cu);
18957
18958 if (descriptive_type)
18959 {
18960 ALLOCATE_GNAT_AUX_TYPE (type);
18961 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18962 }
18963 }
18964
18965 /* Return the containing type of the die in question using its
18966 DW_AT_containing_type attribute. */
18967
18968 static struct type *
18969 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18970 {
18971 struct attribute *type_attr;
18972
18973 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18974 if (!type_attr)
18975 error (_("Dwarf Error: Problem turning containing type into gdb type "
18976 "[in module %s]"), objfile_name (cu->objfile));
18977
18978 return lookup_die_type (die, type_attr, cu);
18979 }
18980
18981 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18982
18983 static struct type *
18984 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18985 {
18986 struct objfile *objfile = dwarf2_per_objfile->objfile;
18987 char *message, *saved;
18988
18989 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18990 objfile_name (objfile),
18991 cu->header.offset.sect_off,
18992 die->offset.sect_off);
18993 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18994 message, strlen (message));
18995 xfree (message);
18996
18997 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18998 }
18999
19000 /* Look up the type of DIE in CU using its type attribute ATTR.
19001 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19002 DW_AT_containing_type.
19003 If there is no type substitute an error marker. */
19004
19005 static struct type *
19006 lookup_die_type (struct die_info *die, const struct attribute *attr,
19007 struct dwarf2_cu *cu)
19008 {
19009 struct objfile *objfile = cu->objfile;
19010 struct type *this_type;
19011
19012 gdb_assert (attr->name == DW_AT_type
19013 || attr->name == DW_AT_GNAT_descriptive_type
19014 || attr->name == DW_AT_containing_type);
19015
19016 /* First see if we have it cached. */
19017
19018 if (attr->form == DW_FORM_GNU_ref_alt)
19019 {
19020 struct dwarf2_per_cu_data *per_cu;
19021 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19022
19023 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19024 this_type = get_die_type_at_offset (offset, per_cu);
19025 }
19026 else if (attr_form_is_ref (attr))
19027 {
19028 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19029
19030 this_type = get_die_type_at_offset (offset, cu->per_cu);
19031 }
19032 else if (attr->form == DW_FORM_ref_sig8)
19033 {
19034 ULONGEST signature = DW_SIGNATURE (attr);
19035
19036 return get_signatured_type (die, signature, cu);
19037 }
19038 else
19039 {
19040 complaint (&symfile_complaints,
19041 _("Dwarf Error: Bad type attribute %s in DIE"
19042 " at 0x%x [in module %s]"),
19043 dwarf_attr_name (attr->name), die->offset.sect_off,
19044 objfile_name (objfile));
19045 return build_error_marker_type (cu, die);
19046 }
19047
19048 /* If not cached we need to read it in. */
19049
19050 if (this_type == NULL)
19051 {
19052 struct die_info *type_die = NULL;
19053 struct dwarf2_cu *type_cu = cu;
19054
19055 if (attr_form_is_ref (attr))
19056 type_die = follow_die_ref (die, attr, &type_cu);
19057 if (type_die == NULL)
19058 return build_error_marker_type (cu, die);
19059 /* If we find the type now, it's probably because the type came
19060 from an inter-CU reference and the type's CU got expanded before
19061 ours. */
19062 this_type = read_type_die (type_die, type_cu);
19063 }
19064
19065 /* If we still don't have a type use an error marker. */
19066
19067 if (this_type == NULL)
19068 return build_error_marker_type (cu, die);
19069
19070 return this_type;
19071 }
19072
19073 /* Return the type in DIE, CU.
19074 Returns NULL for invalid types.
19075
19076 This first does a lookup in die_type_hash,
19077 and only reads the die in if necessary.
19078
19079 NOTE: This can be called when reading in partial or full symbols. */
19080
19081 static struct type *
19082 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19083 {
19084 struct type *this_type;
19085
19086 this_type = get_die_type (die, cu);
19087 if (this_type)
19088 return this_type;
19089
19090 return read_type_die_1 (die, cu);
19091 }
19092
19093 /* Read the type in DIE, CU.
19094 Returns NULL for invalid types. */
19095
19096 static struct type *
19097 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19098 {
19099 struct type *this_type = NULL;
19100
19101 switch (die->tag)
19102 {
19103 case DW_TAG_class_type:
19104 case DW_TAG_interface_type:
19105 case DW_TAG_structure_type:
19106 case DW_TAG_union_type:
19107 this_type = read_structure_type (die, cu);
19108 break;
19109 case DW_TAG_enumeration_type:
19110 this_type = read_enumeration_type (die, cu);
19111 break;
19112 case DW_TAG_subprogram:
19113 case DW_TAG_subroutine_type:
19114 case DW_TAG_inlined_subroutine:
19115 this_type = read_subroutine_type (die, cu);
19116 break;
19117 case DW_TAG_array_type:
19118 this_type = read_array_type (die, cu);
19119 break;
19120 case DW_TAG_set_type:
19121 this_type = read_set_type (die, cu);
19122 break;
19123 case DW_TAG_pointer_type:
19124 this_type = read_tag_pointer_type (die, cu);
19125 break;
19126 case DW_TAG_ptr_to_member_type:
19127 this_type = read_tag_ptr_to_member_type (die, cu);
19128 break;
19129 case DW_TAG_reference_type:
19130 this_type = read_tag_reference_type (die, cu);
19131 break;
19132 case DW_TAG_const_type:
19133 this_type = read_tag_const_type (die, cu);
19134 break;
19135 case DW_TAG_volatile_type:
19136 this_type = read_tag_volatile_type (die, cu);
19137 break;
19138 case DW_TAG_restrict_type:
19139 this_type = read_tag_restrict_type (die, cu);
19140 break;
19141 case DW_TAG_string_type:
19142 this_type = read_tag_string_type (die, cu);
19143 break;
19144 case DW_TAG_typedef:
19145 this_type = read_typedef (die, cu);
19146 break;
19147 case DW_TAG_subrange_type:
19148 this_type = read_subrange_type (die, cu);
19149 break;
19150 case DW_TAG_base_type:
19151 this_type = read_base_type (die, cu);
19152 break;
19153 case DW_TAG_unspecified_type:
19154 this_type = read_unspecified_type (die, cu);
19155 break;
19156 case DW_TAG_namespace:
19157 this_type = read_namespace_type (die, cu);
19158 break;
19159 case DW_TAG_module:
19160 this_type = read_module_type (die, cu);
19161 break;
19162 case DW_TAG_atomic_type:
19163 this_type = read_tag_atomic_type (die, cu);
19164 break;
19165 default:
19166 complaint (&symfile_complaints,
19167 _("unexpected tag in read_type_die: '%s'"),
19168 dwarf_tag_name (die->tag));
19169 break;
19170 }
19171
19172 return this_type;
19173 }
19174
19175 /* See if we can figure out if the class lives in a namespace. We do
19176 this by looking for a member function; its demangled name will
19177 contain namespace info, if there is any.
19178 Return the computed name or NULL.
19179 Space for the result is allocated on the objfile's obstack.
19180 This is the full-die version of guess_partial_die_structure_name.
19181 In this case we know DIE has no useful parent. */
19182
19183 static char *
19184 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19185 {
19186 struct die_info *spec_die;
19187 struct dwarf2_cu *spec_cu;
19188 struct die_info *child;
19189
19190 spec_cu = cu;
19191 spec_die = die_specification (die, &spec_cu);
19192 if (spec_die != NULL)
19193 {
19194 die = spec_die;
19195 cu = spec_cu;
19196 }
19197
19198 for (child = die->child;
19199 child != NULL;
19200 child = child->sibling)
19201 {
19202 if (child->tag == DW_TAG_subprogram)
19203 {
19204 const char *linkage_name;
19205
19206 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19207 if (linkage_name == NULL)
19208 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19209 cu);
19210 if (linkage_name != NULL)
19211 {
19212 char *actual_name
19213 = language_class_name_from_physname (cu->language_defn,
19214 linkage_name);
19215 char *name = NULL;
19216
19217 if (actual_name != NULL)
19218 {
19219 const char *die_name = dwarf2_name (die, cu);
19220
19221 if (die_name != NULL
19222 && strcmp (die_name, actual_name) != 0)
19223 {
19224 /* Strip off the class name from the full name.
19225 We want the prefix. */
19226 int die_name_len = strlen (die_name);
19227 int actual_name_len = strlen (actual_name);
19228
19229 /* Test for '::' as a sanity check. */
19230 if (actual_name_len > die_name_len + 2
19231 && actual_name[actual_name_len
19232 - die_name_len - 1] == ':')
19233 name = (char *) obstack_copy0 (
19234 &cu->objfile->per_bfd->storage_obstack,
19235 actual_name, actual_name_len - die_name_len - 2);
19236 }
19237 }
19238 xfree (actual_name);
19239 return name;
19240 }
19241 }
19242 }
19243
19244 return NULL;
19245 }
19246
19247 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19248 prefix part in such case. See
19249 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19250
19251 static char *
19252 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19253 {
19254 struct attribute *attr;
19255 const char *base;
19256
19257 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19258 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19259 return NULL;
19260
19261 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19262 return NULL;
19263
19264 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19265 if (attr == NULL)
19266 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19267 if (attr == NULL || DW_STRING (attr) == NULL)
19268 return NULL;
19269
19270 /* dwarf2_name had to be already called. */
19271 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19272
19273 /* Strip the base name, keep any leading namespaces/classes. */
19274 base = strrchr (DW_STRING (attr), ':');
19275 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19276 return "";
19277
19278 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19279 DW_STRING (attr),
19280 &base[-1] - DW_STRING (attr));
19281 }
19282
19283 /* Return the name of the namespace/class that DIE is defined within,
19284 or "" if we can't tell. The caller should not xfree the result.
19285
19286 For example, if we're within the method foo() in the following
19287 code:
19288
19289 namespace N {
19290 class C {
19291 void foo () {
19292 }
19293 };
19294 }
19295
19296 then determine_prefix on foo's die will return "N::C". */
19297
19298 static const char *
19299 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19300 {
19301 struct die_info *parent, *spec_die;
19302 struct dwarf2_cu *spec_cu;
19303 struct type *parent_type;
19304 char *retval;
19305
19306 if (cu->language != language_cplus && cu->language != language_java
19307 && cu->language != language_fortran && cu->language != language_d)
19308 return "";
19309
19310 retval = anonymous_struct_prefix (die, cu);
19311 if (retval)
19312 return retval;
19313
19314 /* We have to be careful in the presence of DW_AT_specification.
19315 For example, with GCC 3.4, given the code
19316
19317 namespace N {
19318 void foo() {
19319 // Definition of N::foo.
19320 }
19321 }
19322
19323 then we'll have a tree of DIEs like this:
19324
19325 1: DW_TAG_compile_unit
19326 2: DW_TAG_namespace // N
19327 3: DW_TAG_subprogram // declaration of N::foo
19328 4: DW_TAG_subprogram // definition of N::foo
19329 DW_AT_specification // refers to die #3
19330
19331 Thus, when processing die #4, we have to pretend that we're in
19332 the context of its DW_AT_specification, namely the contex of die
19333 #3. */
19334 spec_cu = cu;
19335 spec_die = die_specification (die, &spec_cu);
19336 if (spec_die == NULL)
19337 parent = die->parent;
19338 else
19339 {
19340 parent = spec_die->parent;
19341 cu = spec_cu;
19342 }
19343
19344 if (parent == NULL)
19345 return "";
19346 else if (parent->building_fullname)
19347 {
19348 const char *name;
19349 const char *parent_name;
19350
19351 /* It has been seen on RealView 2.2 built binaries,
19352 DW_TAG_template_type_param types actually _defined_ as
19353 children of the parent class:
19354
19355 enum E {};
19356 template class <class Enum> Class{};
19357 Class<enum E> class_e;
19358
19359 1: DW_TAG_class_type (Class)
19360 2: DW_TAG_enumeration_type (E)
19361 3: DW_TAG_enumerator (enum1:0)
19362 3: DW_TAG_enumerator (enum2:1)
19363 ...
19364 2: DW_TAG_template_type_param
19365 DW_AT_type DW_FORM_ref_udata (E)
19366
19367 Besides being broken debug info, it can put GDB into an
19368 infinite loop. Consider:
19369
19370 When we're building the full name for Class<E>, we'll start
19371 at Class, and go look over its template type parameters,
19372 finding E. We'll then try to build the full name of E, and
19373 reach here. We're now trying to build the full name of E,
19374 and look over the parent DIE for containing scope. In the
19375 broken case, if we followed the parent DIE of E, we'd again
19376 find Class, and once again go look at its template type
19377 arguments, etc., etc. Simply don't consider such parent die
19378 as source-level parent of this die (it can't be, the language
19379 doesn't allow it), and break the loop here. */
19380 name = dwarf2_name (die, cu);
19381 parent_name = dwarf2_name (parent, cu);
19382 complaint (&symfile_complaints,
19383 _("template param type '%s' defined within parent '%s'"),
19384 name ? name : "<unknown>",
19385 parent_name ? parent_name : "<unknown>");
19386 return "";
19387 }
19388 else
19389 switch (parent->tag)
19390 {
19391 case DW_TAG_namespace:
19392 parent_type = read_type_die (parent, cu);
19393 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19394 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19395 Work around this problem here. */
19396 if (cu->language == language_cplus
19397 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19398 return "";
19399 /* We give a name to even anonymous namespaces. */
19400 return TYPE_TAG_NAME (parent_type);
19401 case DW_TAG_class_type:
19402 case DW_TAG_interface_type:
19403 case DW_TAG_structure_type:
19404 case DW_TAG_union_type:
19405 case DW_TAG_module:
19406 parent_type = read_type_die (parent, cu);
19407 if (TYPE_TAG_NAME (parent_type) != NULL)
19408 return TYPE_TAG_NAME (parent_type);
19409 else
19410 /* An anonymous structure is only allowed non-static data
19411 members; no typedefs, no member functions, et cetera.
19412 So it does not need a prefix. */
19413 return "";
19414 case DW_TAG_compile_unit:
19415 case DW_TAG_partial_unit:
19416 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19417 if (cu->language == language_cplus
19418 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19419 && die->child != NULL
19420 && (die->tag == DW_TAG_class_type
19421 || die->tag == DW_TAG_structure_type
19422 || die->tag == DW_TAG_union_type))
19423 {
19424 char *name = guess_full_die_structure_name (die, cu);
19425 if (name != NULL)
19426 return name;
19427 }
19428 return "";
19429 case DW_TAG_enumeration_type:
19430 parent_type = read_type_die (parent, cu);
19431 if (TYPE_DECLARED_CLASS (parent_type))
19432 {
19433 if (TYPE_TAG_NAME (parent_type) != NULL)
19434 return TYPE_TAG_NAME (parent_type);
19435 return "";
19436 }
19437 /* Fall through. */
19438 default:
19439 return determine_prefix (parent, cu);
19440 }
19441 }
19442
19443 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19444 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19445 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19446 an obconcat, otherwise allocate storage for the result. The CU argument is
19447 used to determine the language and hence, the appropriate separator. */
19448
19449 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19450
19451 static char *
19452 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19453 int physname, struct dwarf2_cu *cu)
19454 {
19455 const char *lead = "";
19456 const char *sep;
19457
19458 if (suffix == NULL || suffix[0] == '\0'
19459 || prefix == NULL || prefix[0] == '\0')
19460 sep = "";
19461 else if (cu->language == language_java)
19462 sep = ".";
19463 else if (cu->language == language_d)
19464 {
19465 /* For D, the 'main' function could be defined in any module, but it
19466 should never be prefixed. */
19467 if (strcmp (suffix, "D main") == 0)
19468 {
19469 prefix = "";
19470 sep = "";
19471 }
19472 else
19473 sep = ".";
19474 }
19475 else if (cu->language == language_fortran && physname)
19476 {
19477 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19478 DW_AT_MIPS_linkage_name is preferred and used instead. */
19479
19480 lead = "__";
19481 sep = "_MOD_";
19482 }
19483 else
19484 sep = "::";
19485
19486 if (prefix == NULL)
19487 prefix = "";
19488 if (suffix == NULL)
19489 suffix = "";
19490
19491 if (obs == NULL)
19492 {
19493 char *retval
19494 = ((char *)
19495 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19496
19497 strcpy (retval, lead);
19498 strcat (retval, prefix);
19499 strcat (retval, sep);
19500 strcat (retval, suffix);
19501 return retval;
19502 }
19503 else
19504 {
19505 /* We have an obstack. */
19506 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19507 }
19508 }
19509
19510 /* Return sibling of die, NULL if no sibling. */
19511
19512 static struct die_info *
19513 sibling_die (struct die_info *die)
19514 {
19515 return die->sibling;
19516 }
19517
19518 /* Get name of a die, return NULL if not found. */
19519
19520 static const char *
19521 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19522 struct obstack *obstack)
19523 {
19524 if (name && cu->language == language_cplus)
19525 {
19526 char *canon_name = cp_canonicalize_string (name);
19527
19528 if (canon_name != NULL)
19529 {
19530 if (strcmp (canon_name, name) != 0)
19531 name = (const char *) obstack_copy0 (obstack, canon_name,
19532 strlen (canon_name));
19533 xfree (canon_name);
19534 }
19535 }
19536
19537 return name;
19538 }
19539
19540 /* Get name of a die, return NULL if not found.
19541 Anonymous namespaces are converted to their magic string. */
19542
19543 static const char *
19544 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19545 {
19546 struct attribute *attr;
19547
19548 attr = dwarf2_attr (die, DW_AT_name, cu);
19549 if ((!attr || !DW_STRING (attr))
19550 && die->tag != DW_TAG_namespace
19551 && die->tag != DW_TAG_class_type
19552 && die->tag != DW_TAG_interface_type
19553 && die->tag != DW_TAG_structure_type
19554 && die->tag != DW_TAG_union_type)
19555 return NULL;
19556
19557 switch (die->tag)
19558 {
19559 case DW_TAG_compile_unit:
19560 case DW_TAG_partial_unit:
19561 /* Compilation units have a DW_AT_name that is a filename, not
19562 a source language identifier. */
19563 case DW_TAG_enumeration_type:
19564 case DW_TAG_enumerator:
19565 /* These tags always have simple identifiers already; no need
19566 to canonicalize them. */
19567 return DW_STRING (attr);
19568
19569 case DW_TAG_namespace:
19570 if (attr != NULL && DW_STRING (attr) != NULL)
19571 return DW_STRING (attr);
19572 return CP_ANONYMOUS_NAMESPACE_STR;
19573
19574 case DW_TAG_subprogram:
19575 /* Java constructors will all be named "<init>", so return
19576 the class name when we see this special case. */
19577 if (cu->language == language_java
19578 && DW_STRING (attr) != NULL
19579 && strcmp (DW_STRING (attr), "<init>") == 0)
19580 {
19581 struct dwarf2_cu *spec_cu = cu;
19582 struct die_info *spec_die;
19583
19584 /* GCJ will output '<init>' for Java constructor names.
19585 For this special case, return the name of the parent class. */
19586
19587 /* GCJ may output subprogram DIEs with AT_specification set.
19588 If so, use the name of the specified DIE. */
19589 spec_die = die_specification (die, &spec_cu);
19590 if (spec_die != NULL)
19591 return dwarf2_name (spec_die, spec_cu);
19592
19593 do
19594 {
19595 die = die->parent;
19596 if (die->tag == DW_TAG_class_type)
19597 return dwarf2_name (die, cu);
19598 }
19599 while (die->tag != DW_TAG_compile_unit
19600 && die->tag != DW_TAG_partial_unit);
19601 }
19602 break;
19603
19604 case DW_TAG_class_type:
19605 case DW_TAG_interface_type:
19606 case DW_TAG_structure_type:
19607 case DW_TAG_union_type:
19608 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19609 structures or unions. These were of the form "._%d" in GCC 4.1,
19610 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19611 and GCC 4.4. We work around this problem by ignoring these. */
19612 if (attr && DW_STRING (attr)
19613 && (startswith (DW_STRING (attr), "._")
19614 || startswith (DW_STRING (attr), "<anonymous")))
19615 return NULL;
19616
19617 /* GCC might emit a nameless typedef that has a linkage name. See
19618 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19619 if (!attr || DW_STRING (attr) == NULL)
19620 {
19621 char *demangled = NULL;
19622
19623 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19624 if (attr == NULL)
19625 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19626
19627 if (attr == NULL || DW_STRING (attr) == NULL)
19628 return NULL;
19629
19630 /* Avoid demangling DW_STRING (attr) the second time on a second
19631 call for the same DIE. */
19632 if (!DW_STRING_IS_CANONICAL (attr))
19633 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19634
19635 if (demangled)
19636 {
19637 const char *base;
19638
19639 /* FIXME: we already did this for the partial symbol... */
19640 DW_STRING (attr)
19641 = ((const char *)
19642 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19643 demangled, strlen (demangled)));
19644 DW_STRING_IS_CANONICAL (attr) = 1;
19645 xfree (demangled);
19646
19647 /* Strip any leading namespaces/classes, keep only the base name.
19648 DW_AT_name for named DIEs does not contain the prefixes. */
19649 base = strrchr (DW_STRING (attr), ':');
19650 if (base && base > DW_STRING (attr) && base[-1] == ':')
19651 return &base[1];
19652 else
19653 return DW_STRING (attr);
19654 }
19655 }
19656 break;
19657
19658 default:
19659 break;
19660 }
19661
19662 if (!DW_STRING_IS_CANONICAL (attr))
19663 {
19664 DW_STRING (attr)
19665 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19666 &cu->objfile->per_bfd->storage_obstack);
19667 DW_STRING_IS_CANONICAL (attr) = 1;
19668 }
19669 return DW_STRING (attr);
19670 }
19671
19672 /* Return the die that this die in an extension of, or NULL if there
19673 is none. *EXT_CU is the CU containing DIE on input, and the CU
19674 containing the return value on output. */
19675
19676 static struct die_info *
19677 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19678 {
19679 struct attribute *attr;
19680
19681 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19682 if (attr == NULL)
19683 return NULL;
19684
19685 return follow_die_ref (die, attr, ext_cu);
19686 }
19687
19688 /* Convert a DIE tag into its string name. */
19689
19690 static const char *
19691 dwarf_tag_name (unsigned tag)
19692 {
19693 const char *name = get_DW_TAG_name (tag);
19694
19695 if (name == NULL)
19696 return "DW_TAG_<unknown>";
19697
19698 return name;
19699 }
19700
19701 /* Convert a DWARF attribute code into its string name. */
19702
19703 static const char *
19704 dwarf_attr_name (unsigned attr)
19705 {
19706 const char *name;
19707
19708 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19709 if (attr == DW_AT_MIPS_fde)
19710 return "DW_AT_MIPS_fde";
19711 #else
19712 if (attr == DW_AT_HP_block_index)
19713 return "DW_AT_HP_block_index";
19714 #endif
19715
19716 name = get_DW_AT_name (attr);
19717
19718 if (name == NULL)
19719 return "DW_AT_<unknown>";
19720
19721 return name;
19722 }
19723
19724 /* Convert a DWARF value form code into its string name. */
19725
19726 static const char *
19727 dwarf_form_name (unsigned form)
19728 {
19729 const char *name = get_DW_FORM_name (form);
19730
19731 if (name == NULL)
19732 return "DW_FORM_<unknown>";
19733
19734 return name;
19735 }
19736
19737 static char *
19738 dwarf_bool_name (unsigned mybool)
19739 {
19740 if (mybool)
19741 return "TRUE";
19742 else
19743 return "FALSE";
19744 }
19745
19746 /* Convert a DWARF type code into its string name. */
19747
19748 static const char *
19749 dwarf_type_encoding_name (unsigned enc)
19750 {
19751 const char *name = get_DW_ATE_name (enc);
19752
19753 if (name == NULL)
19754 return "DW_ATE_<unknown>";
19755
19756 return name;
19757 }
19758
19759 static void
19760 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19761 {
19762 unsigned int i;
19763
19764 print_spaces (indent, f);
19765 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19766 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19767
19768 if (die->parent != NULL)
19769 {
19770 print_spaces (indent, f);
19771 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19772 die->parent->offset.sect_off);
19773 }
19774
19775 print_spaces (indent, f);
19776 fprintf_unfiltered (f, " has children: %s\n",
19777 dwarf_bool_name (die->child != NULL));
19778
19779 print_spaces (indent, f);
19780 fprintf_unfiltered (f, " attributes:\n");
19781
19782 for (i = 0; i < die->num_attrs; ++i)
19783 {
19784 print_spaces (indent, f);
19785 fprintf_unfiltered (f, " %s (%s) ",
19786 dwarf_attr_name (die->attrs[i].name),
19787 dwarf_form_name (die->attrs[i].form));
19788
19789 switch (die->attrs[i].form)
19790 {
19791 case DW_FORM_addr:
19792 case DW_FORM_GNU_addr_index:
19793 fprintf_unfiltered (f, "address: ");
19794 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19795 break;
19796 case DW_FORM_block2:
19797 case DW_FORM_block4:
19798 case DW_FORM_block:
19799 case DW_FORM_block1:
19800 fprintf_unfiltered (f, "block: size %s",
19801 pulongest (DW_BLOCK (&die->attrs[i])->size));
19802 break;
19803 case DW_FORM_exprloc:
19804 fprintf_unfiltered (f, "expression: size %s",
19805 pulongest (DW_BLOCK (&die->attrs[i])->size));
19806 break;
19807 case DW_FORM_ref_addr:
19808 fprintf_unfiltered (f, "ref address: ");
19809 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19810 break;
19811 case DW_FORM_GNU_ref_alt:
19812 fprintf_unfiltered (f, "alt ref address: ");
19813 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19814 break;
19815 case DW_FORM_ref1:
19816 case DW_FORM_ref2:
19817 case DW_FORM_ref4:
19818 case DW_FORM_ref8:
19819 case DW_FORM_ref_udata:
19820 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19821 (long) (DW_UNSND (&die->attrs[i])));
19822 break;
19823 case DW_FORM_data1:
19824 case DW_FORM_data2:
19825 case DW_FORM_data4:
19826 case DW_FORM_data8:
19827 case DW_FORM_udata:
19828 case DW_FORM_sdata:
19829 fprintf_unfiltered (f, "constant: %s",
19830 pulongest (DW_UNSND (&die->attrs[i])));
19831 break;
19832 case DW_FORM_sec_offset:
19833 fprintf_unfiltered (f, "section offset: %s",
19834 pulongest (DW_UNSND (&die->attrs[i])));
19835 break;
19836 case DW_FORM_ref_sig8:
19837 fprintf_unfiltered (f, "signature: %s",
19838 hex_string (DW_SIGNATURE (&die->attrs[i])));
19839 break;
19840 case DW_FORM_string:
19841 case DW_FORM_strp:
19842 case DW_FORM_GNU_str_index:
19843 case DW_FORM_GNU_strp_alt:
19844 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19845 DW_STRING (&die->attrs[i])
19846 ? DW_STRING (&die->attrs[i]) : "",
19847 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19848 break;
19849 case DW_FORM_flag:
19850 if (DW_UNSND (&die->attrs[i]))
19851 fprintf_unfiltered (f, "flag: TRUE");
19852 else
19853 fprintf_unfiltered (f, "flag: FALSE");
19854 break;
19855 case DW_FORM_flag_present:
19856 fprintf_unfiltered (f, "flag: TRUE");
19857 break;
19858 case DW_FORM_indirect:
19859 /* The reader will have reduced the indirect form to
19860 the "base form" so this form should not occur. */
19861 fprintf_unfiltered (f,
19862 "unexpected attribute form: DW_FORM_indirect");
19863 break;
19864 default:
19865 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19866 die->attrs[i].form);
19867 break;
19868 }
19869 fprintf_unfiltered (f, "\n");
19870 }
19871 }
19872
19873 static void
19874 dump_die_for_error (struct die_info *die)
19875 {
19876 dump_die_shallow (gdb_stderr, 0, die);
19877 }
19878
19879 static void
19880 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19881 {
19882 int indent = level * 4;
19883
19884 gdb_assert (die != NULL);
19885
19886 if (level >= max_level)
19887 return;
19888
19889 dump_die_shallow (f, indent, die);
19890
19891 if (die->child != NULL)
19892 {
19893 print_spaces (indent, f);
19894 fprintf_unfiltered (f, " Children:");
19895 if (level + 1 < max_level)
19896 {
19897 fprintf_unfiltered (f, "\n");
19898 dump_die_1 (f, level + 1, max_level, die->child);
19899 }
19900 else
19901 {
19902 fprintf_unfiltered (f,
19903 " [not printed, max nesting level reached]\n");
19904 }
19905 }
19906
19907 if (die->sibling != NULL && level > 0)
19908 {
19909 dump_die_1 (f, level, max_level, die->sibling);
19910 }
19911 }
19912
19913 /* This is called from the pdie macro in gdbinit.in.
19914 It's not static so gcc will keep a copy callable from gdb. */
19915
19916 void
19917 dump_die (struct die_info *die, int max_level)
19918 {
19919 dump_die_1 (gdb_stdlog, 0, max_level, die);
19920 }
19921
19922 static void
19923 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19924 {
19925 void **slot;
19926
19927 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19928 INSERT);
19929
19930 *slot = die;
19931 }
19932
19933 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19934 required kind. */
19935
19936 static sect_offset
19937 dwarf2_get_ref_die_offset (const struct attribute *attr)
19938 {
19939 sect_offset retval = { DW_UNSND (attr) };
19940
19941 if (attr_form_is_ref (attr))
19942 return retval;
19943
19944 retval.sect_off = 0;
19945 complaint (&symfile_complaints,
19946 _("unsupported die ref attribute form: '%s'"),
19947 dwarf_form_name (attr->form));
19948 return retval;
19949 }
19950
19951 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19952 * the value held by the attribute is not constant. */
19953
19954 static LONGEST
19955 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19956 {
19957 if (attr->form == DW_FORM_sdata)
19958 return DW_SND (attr);
19959 else if (attr->form == DW_FORM_udata
19960 || attr->form == DW_FORM_data1
19961 || attr->form == DW_FORM_data2
19962 || attr->form == DW_FORM_data4
19963 || attr->form == DW_FORM_data8)
19964 return DW_UNSND (attr);
19965 else
19966 {
19967 complaint (&symfile_complaints,
19968 _("Attribute value is not a constant (%s)"),
19969 dwarf_form_name (attr->form));
19970 return default_value;
19971 }
19972 }
19973
19974 /* Follow reference or signature attribute ATTR of SRC_DIE.
19975 On entry *REF_CU is the CU of SRC_DIE.
19976 On exit *REF_CU is the CU of the result. */
19977
19978 static struct die_info *
19979 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19980 struct dwarf2_cu **ref_cu)
19981 {
19982 struct die_info *die;
19983
19984 if (attr_form_is_ref (attr))
19985 die = follow_die_ref (src_die, attr, ref_cu);
19986 else if (attr->form == DW_FORM_ref_sig8)
19987 die = follow_die_sig (src_die, attr, ref_cu);
19988 else
19989 {
19990 dump_die_for_error (src_die);
19991 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19992 objfile_name ((*ref_cu)->objfile));
19993 }
19994
19995 return die;
19996 }
19997
19998 /* Follow reference OFFSET.
19999 On entry *REF_CU is the CU of the source die referencing OFFSET.
20000 On exit *REF_CU is the CU of the result.
20001 Returns NULL if OFFSET is invalid. */
20002
20003 static struct die_info *
20004 follow_die_offset (sect_offset offset, int offset_in_dwz,
20005 struct dwarf2_cu **ref_cu)
20006 {
20007 struct die_info temp_die;
20008 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20009
20010 gdb_assert (cu->per_cu != NULL);
20011
20012 target_cu = cu;
20013
20014 if (cu->per_cu->is_debug_types)
20015 {
20016 /* .debug_types CUs cannot reference anything outside their CU.
20017 If they need to, they have to reference a signatured type via
20018 DW_FORM_ref_sig8. */
20019 if (! offset_in_cu_p (&cu->header, offset))
20020 return NULL;
20021 }
20022 else if (offset_in_dwz != cu->per_cu->is_dwz
20023 || ! offset_in_cu_p (&cu->header, offset))
20024 {
20025 struct dwarf2_per_cu_data *per_cu;
20026
20027 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20028 cu->objfile);
20029
20030 /* If necessary, add it to the queue and load its DIEs. */
20031 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20032 load_full_comp_unit (per_cu, cu->language);
20033
20034 target_cu = per_cu->cu;
20035 }
20036 else if (cu->dies == NULL)
20037 {
20038 /* We're loading full DIEs during partial symbol reading. */
20039 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20040 load_full_comp_unit (cu->per_cu, language_minimal);
20041 }
20042
20043 *ref_cu = target_cu;
20044 temp_die.offset = offset;
20045 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20046 &temp_die, offset.sect_off);
20047 }
20048
20049 /* Follow reference attribute ATTR of SRC_DIE.
20050 On entry *REF_CU is the CU of SRC_DIE.
20051 On exit *REF_CU is the CU of the result. */
20052
20053 static struct die_info *
20054 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20055 struct dwarf2_cu **ref_cu)
20056 {
20057 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20058 struct dwarf2_cu *cu = *ref_cu;
20059 struct die_info *die;
20060
20061 die = follow_die_offset (offset,
20062 (attr->form == DW_FORM_GNU_ref_alt
20063 || cu->per_cu->is_dwz),
20064 ref_cu);
20065 if (!die)
20066 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20067 "at 0x%x [in module %s]"),
20068 offset.sect_off, src_die->offset.sect_off,
20069 objfile_name (cu->objfile));
20070
20071 return die;
20072 }
20073
20074 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20075 Returned value is intended for DW_OP_call*. Returned
20076 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20077
20078 struct dwarf2_locexpr_baton
20079 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20080 struct dwarf2_per_cu_data *per_cu,
20081 CORE_ADDR (*get_frame_pc) (void *baton),
20082 void *baton)
20083 {
20084 struct dwarf2_cu *cu;
20085 struct die_info *die;
20086 struct attribute *attr;
20087 struct dwarf2_locexpr_baton retval;
20088
20089 dw2_setup (per_cu->objfile);
20090
20091 if (per_cu->cu == NULL)
20092 load_cu (per_cu);
20093 cu = per_cu->cu;
20094 if (cu == NULL)
20095 {
20096 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20097 Instead just throw an error, not much else we can do. */
20098 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20099 offset.sect_off, objfile_name (per_cu->objfile));
20100 }
20101
20102 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20103 if (!die)
20104 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20105 offset.sect_off, objfile_name (per_cu->objfile));
20106
20107 attr = dwarf2_attr (die, DW_AT_location, cu);
20108 if (!attr)
20109 {
20110 /* DWARF: "If there is no such attribute, then there is no effect.".
20111 DATA is ignored if SIZE is 0. */
20112
20113 retval.data = NULL;
20114 retval.size = 0;
20115 }
20116 else if (attr_form_is_section_offset (attr))
20117 {
20118 struct dwarf2_loclist_baton loclist_baton;
20119 CORE_ADDR pc = (*get_frame_pc) (baton);
20120 size_t size;
20121
20122 fill_in_loclist_baton (cu, &loclist_baton, attr);
20123
20124 retval.data = dwarf2_find_location_expression (&loclist_baton,
20125 &size, pc);
20126 retval.size = size;
20127 }
20128 else
20129 {
20130 if (!attr_form_is_block (attr))
20131 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20132 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20133 offset.sect_off, objfile_name (per_cu->objfile));
20134
20135 retval.data = DW_BLOCK (attr)->data;
20136 retval.size = DW_BLOCK (attr)->size;
20137 }
20138 retval.per_cu = cu->per_cu;
20139
20140 age_cached_comp_units ();
20141
20142 return retval;
20143 }
20144
20145 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20146 offset. */
20147
20148 struct dwarf2_locexpr_baton
20149 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20150 struct dwarf2_per_cu_data *per_cu,
20151 CORE_ADDR (*get_frame_pc) (void *baton),
20152 void *baton)
20153 {
20154 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20155
20156 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20157 }
20158
20159 /* Write a constant of a given type as target-ordered bytes into
20160 OBSTACK. */
20161
20162 static const gdb_byte *
20163 write_constant_as_bytes (struct obstack *obstack,
20164 enum bfd_endian byte_order,
20165 struct type *type,
20166 ULONGEST value,
20167 LONGEST *len)
20168 {
20169 gdb_byte *result;
20170
20171 *len = TYPE_LENGTH (type);
20172 result = (gdb_byte *) obstack_alloc (obstack, *len);
20173 store_unsigned_integer (result, *len, byte_order, value);
20174
20175 return result;
20176 }
20177
20178 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20179 pointer to the constant bytes and set LEN to the length of the
20180 data. If memory is needed, allocate it on OBSTACK. If the DIE
20181 does not have a DW_AT_const_value, return NULL. */
20182
20183 const gdb_byte *
20184 dwarf2_fetch_constant_bytes (sect_offset offset,
20185 struct dwarf2_per_cu_data *per_cu,
20186 struct obstack *obstack,
20187 LONGEST *len)
20188 {
20189 struct dwarf2_cu *cu;
20190 struct die_info *die;
20191 struct attribute *attr;
20192 const gdb_byte *result = NULL;
20193 struct type *type;
20194 LONGEST value;
20195 enum bfd_endian byte_order;
20196
20197 dw2_setup (per_cu->objfile);
20198
20199 if (per_cu->cu == NULL)
20200 load_cu (per_cu);
20201 cu = per_cu->cu;
20202 if (cu == NULL)
20203 {
20204 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20205 Instead just throw an error, not much else we can do. */
20206 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20207 offset.sect_off, objfile_name (per_cu->objfile));
20208 }
20209
20210 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20211 if (!die)
20212 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20213 offset.sect_off, objfile_name (per_cu->objfile));
20214
20215
20216 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20217 if (attr == NULL)
20218 return NULL;
20219
20220 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20221 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20222
20223 switch (attr->form)
20224 {
20225 case DW_FORM_addr:
20226 case DW_FORM_GNU_addr_index:
20227 {
20228 gdb_byte *tem;
20229
20230 *len = cu->header.addr_size;
20231 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20232 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20233 result = tem;
20234 }
20235 break;
20236 case DW_FORM_string:
20237 case DW_FORM_strp:
20238 case DW_FORM_GNU_str_index:
20239 case DW_FORM_GNU_strp_alt:
20240 /* DW_STRING is already allocated on the objfile obstack, point
20241 directly to it. */
20242 result = (const gdb_byte *) DW_STRING (attr);
20243 *len = strlen (DW_STRING (attr));
20244 break;
20245 case DW_FORM_block1:
20246 case DW_FORM_block2:
20247 case DW_FORM_block4:
20248 case DW_FORM_block:
20249 case DW_FORM_exprloc:
20250 result = DW_BLOCK (attr)->data;
20251 *len = DW_BLOCK (attr)->size;
20252 break;
20253
20254 /* The DW_AT_const_value attributes are supposed to carry the
20255 symbol's value "represented as it would be on the target
20256 architecture." By the time we get here, it's already been
20257 converted to host endianness, so we just need to sign- or
20258 zero-extend it as appropriate. */
20259 case DW_FORM_data1:
20260 type = die_type (die, cu);
20261 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20262 if (result == NULL)
20263 result = write_constant_as_bytes (obstack, byte_order,
20264 type, value, len);
20265 break;
20266 case DW_FORM_data2:
20267 type = die_type (die, cu);
20268 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20269 if (result == NULL)
20270 result = write_constant_as_bytes (obstack, byte_order,
20271 type, value, len);
20272 break;
20273 case DW_FORM_data4:
20274 type = die_type (die, cu);
20275 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20276 if (result == NULL)
20277 result = write_constant_as_bytes (obstack, byte_order,
20278 type, value, len);
20279 break;
20280 case DW_FORM_data8:
20281 type = die_type (die, cu);
20282 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20283 if (result == NULL)
20284 result = write_constant_as_bytes (obstack, byte_order,
20285 type, value, len);
20286 break;
20287
20288 case DW_FORM_sdata:
20289 type = die_type (die, cu);
20290 result = write_constant_as_bytes (obstack, byte_order,
20291 type, DW_SND (attr), len);
20292 break;
20293
20294 case DW_FORM_udata:
20295 type = die_type (die, cu);
20296 result = write_constant_as_bytes (obstack, byte_order,
20297 type, DW_UNSND (attr), len);
20298 break;
20299
20300 default:
20301 complaint (&symfile_complaints,
20302 _("unsupported const value attribute form: '%s'"),
20303 dwarf_form_name (attr->form));
20304 break;
20305 }
20306
20307 return result;
20308 }
20309
20310 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20311 PER_CU. */
20312
20313 struct type *
20314 dwarf2_get_die_type (cu_offset die_offset,
20315 struct dwarf2_per_cu_data *per_cu)
20316 {
20317 sect_offset die_offset_sect;
20318
20319 dw2_setup (per_cu->objfile);
20320
20321 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20322 return get_die_type_at_offset (die_offset_sect, per_cu);
20323 }
20324
20325 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20326 On entry *REF_CU is the CU of SRC_DIE.
20327 On exit *REF_CU is the CU of the result.
20328 Returns NULL if the referenced DIE isn't found. */
20329
20330 static struct die_info *
20331 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20332 struct dwarf2_cu **ref_cu)
20333 {
20334 struct objfile *objfile = (*ref_cu)->objfile;
20335 struct die_info temp_die;
20336 struct dwarf2_cu *sig_cu;
20337 struct die_info *die;
20338
20339 /* While it might be nice to assert sig_type->type == NULL here,
20340 we can get here for DW_AT_imported_declaration where we need
20341 the DIE not the type. */
20342
20343 /* If necessary, add it to the queue and load its DIEs. */
20344
20345 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20346 read_signatured_type (sig_type);
20347
20348 sig_cu = sig_type->per_cu.cu;
20349 gdb_assert (sig_cu != NULL);
20350 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20351 temp_die.offset = sig_type->type_offset_in_section;
20352 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20353 temp_die.offset.sect_off);
20354 if (die)
20355 {
20356 /* For .gdb_index version 7 keep track of included TUs.
20357 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20358 if (dwarf2_per_objfile->index_table != NULL
20359 && dwarf2_per_objfile->index_table->version <= 7)
20360 {
20361 VEC_safe_push (dwarf2_per_cu_ptr,
20362 (*ref_cu)->per_cu->imported_symtabs,
20363 sig_cu->per_cu);
20364 }
20365
20366 *ref_cu = sig_cu;
20367 return die;
20368 }
20369
20370 return NULL;
20371 }
20372
20373 /* Follow signatured type referenced by ATTR in SRC_DIE.
20374 On entry *REF_CU is the CU of SRC_DIE.
20375 On exit *REF_CU is the CU of the result.
20376 The result is the DIE of the type.
20377 If the referenced type cannot be found an error is thrown. */
20378
20379 static struct die_info *
20380 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20381 struct dwarf2_cu **ref_cu)
20382 {
20383 ULONGEST signature = DW_SIGNATURE (attr);
20384 struct signatured_type *sig_type;
20385 struct die_info *die;
20386
20387 gdb_assert (attr->form == DW_FORM_ref_sig8);
20388
20389 sig_type = lookup_signatured_type (*ref_cu, signature);
20390 /* sig_type will be NULL if the signatured type is missing from
20391 the debug info. */
20392 if (sig_type == NULL)
20393 {
20394 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20395 " from DIE at 0x%x [in module %s]"),
20396 hex_string (signature), src_die->offset.sect_off,
20397 objfile_name ((*ref_cu)->objfile));
20398 }
20399
20400 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20401 if (die == NULL)
20402 {
20403 dump_die_for_error (src_die);
20404 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20405 " from DIE at 0x%x [in module %s]"),
20406 hex_string (signature), src_die->offset.sect_off,
20407 objfile_name ((*ref_cu)->objfile));
20408 }
20409
20410 return die;
20411 }
20412
20413 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20414 reading in and processing the type unit if necessary. */
20415
20416 static struct type *
20417 get_signatured_type (struct die_info *die, ULONGEST signature,
20418 struct dwarf2_cu *cu)
20419 {
20420 struct signatured_type *sig_type;
20421 struct dwarf2_cu *type_cu;
20422 struct die_info *type_die;
20423 struct type *type;
20424
20425 sig_type = lookup_signatured_type (cu, signature);
20426 /* sig_type will be NULL if the signatured type is missing from
20427 the debug info. */
20428 if (sig_type == NULL)
20429 {
20430 complaint (&symfile_complaints,
20431 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20432 " from DIE at 0x%x [in module %s]"),
20433 hex_string (signature), die->offset.sect_off,
20434 objfile_name (dwarf2_per_objfile->objfile));
20435 return build_error_marker_type (cu, die);
20436 }
20437
20438 /* If we already know the type we're done. */
20439 if (sig_type->type != NULL)
20440 return sig_type->type;
20441
20442 type_cu = cu;
20443 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20444 if (type_die != NULL)
20445 {
20446 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20447 is created. This is important, for example, because for c++ classes
20448 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20449 type = read_type_die (type_die, type_cu);
20450 if (type == NULL)
20451 {
20452 complaint (&symfile_complaints,
20453 _("Dwarf Error: Cannot build signatured type %s"
20454 " referenced from DIE at 0x%x [in module %s]"),
20455 hex_string (signature), die->offset.sect_off,
20456 objfile_name (dwarf2_per_objfile->objfile));
20457 type = build_error_marker_type (cu, die);
20458 }
20459 }
20460 else
20461 {
20462 complaint (&symfile_complaints,
20463 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20464 " from DIE at 0x%x [in module %s]"),
20465 hex_string (signature), die->offset.sect_off,
20466 objfile_name (dwarf2_per_objfile->objfile));
20467 type = build_error_marker_type (cu, die);
20468 }
20469 sig_type->type = type;
20470
20471 return type;
20472 }
20473
20474 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20475 reading in and processing the type unit if necessary. */
20476
20477 static struct type *
20478 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20479 struct dwarf2_cu *cu) /* ARI: editCase function */
20480 {
20481 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20482 if (attr_form_is_ref (attr))
20483 {
20484 struct dwarf2_cu *type_cu = cu;
20485 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20486
20487 return read_type_die (type_die, type_cu);
20488 }
20489 else if (attr->form == DW_FORM_ref_sig8)
20490 {
20491 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20492 }
20493 else
20494 {
20495 complaint (&symfile_complaints,
20496 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20497 " at 0x%x [in module %s]"),
20498 dwarf_form_name (attr->form), die->offset.sect_off,
20499 objfile_name (dwarf2_per_objfile->objfile));
20500 return build_error_marker_type (cu, die);
20501 }
20502 }
20503
20504 /* Load the DIEs associated with type unit PER_CU into memory. */
20505
20506 static void
20507 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20508 {
20509 struct signatured_type *sig_type;
20510
20511 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20512 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20513
20514 /* We have the per_cu, but we need the signatured_type.
20515 Fortunately this is an easy translation. */
20516 gdb_assert (per_cu->is_debug_types);
20517 sig_type = (struct signatured_type *) per_cu;
20518
20519 gdb_assert (per_cu->cu == NULL);
20520
20521 read_signatured_type (sig_type);
20522
20523 gdb_assert (per_cu->cu != NULL);
20524 }
20525
20526 /* die_reader_func for read_signatured_type.
20527 This is identical to load_full_comp_unit_reader,
20528 but is kept separate for now. */
20529
20530 static void
20531 read_signatured_type_reader (const struct die_reader_specs *reader,
20532 const gdb_byte *info_ptr,
20533 struct die_info *comp_unit_die,
20534 int has_children,
20535 void *data)
20536 {
20537 struct dwarf2_cu *cu = reader->cu;
20538
20539 gdb_assert (cu->die_hash == NULL);
20540 cu->die_hash =
20541 htab_create_alloc_ex (cu->header.length / 12,
20542 die_hash,
20543 die_eq,
20544 NULL,
20545 &cu->comp_unit_obstack,
20546 hashtab_obstack_allocate,
20547 dummy_obstack_deallocate);
20548
20549 if (has_children)
20550 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20551 &info_ptr, comp_unit_die);
20552 cu->dies = comp_unit_die;
20553 /* comp_unit_die is not stored in die_hash, no need. */
20554
20555 /* We try not to read any attributes in this function, because not
20556 all CUs needed for references have been loaded yet, and symbol
20557 table processing isn't initialized. But we have to set the CU language,
20558 or we won't be able to build types correctly.
20559 Similarly, if we do not read the producer, we can not apply
20560 producer-specific interpretation. */
20561 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20562 }
20563
20564 /* Read in a signatured type and build its CU and DIEs.
20565 If the type is a stub for the real type in a DWO file,
20566 read in the real type from the DWO file as well. */
20567
20568 static void
20569 read_signatured_type (struct signatured_type *sig_type)
20570 {
20571 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20572
20573 gdb_assert (per_cu->is_debug_types);
20574 gdb_assert (per_cu->cu == NULL);
20575
20576 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20577 read_signatured_type_reader, NULL);
20578 sig_type->per_cu.tu_read = 1;
20579 }
20580
20581 /* Decode simple location descriptions.
20582 Given a pointer to a dwarf block that defines a location, compute
20583 the location and return the value.
20584
20585 NOTE drow/2003-11-18: This function is called in two situations
20586 now: for the address of static or global variables (partial symbols
20587 only) and for offsets into structures which are expected to be
20588 (more or less) constant. The partial symbol case should go away,
20589 and only the constant case should remain. That will let this
20590 function complain more accurately. A few special modes are allowed
20591 without complaint for global variables (for instance, global
20592 register values and thread-local values).
20593
20594 A location description containing no operations indicates that the
20595 object is optimized out. The return value is 0 for that case.
20596 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20597 callers will only want a very basic result and this can become a
20598 complaint.
20599
20600 Note that stack[0] is unused except as a default error return. */
20601
20602 static CORE_ADDR
20603 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20604 {
20605 struct objfile *objfile = cu->objfile;
20606 size_t i;
20607 size_t size = blk->size;
20608 const gdb_byte *data = blk->data;
20609 CORE_ADDR stack[64];
20610 int stacki;
20611 unsigned int bytes_read, unsnd;
20612 gdb_byte op;
20613
20614 i = 0;
20615 stacki = 0;
20616 stack[stacki] = 0;
20617 stack[++stacki] = 0;
20618
20619 while (i < size)
20620 {
20621 op = data[i++];
20622 switch (op)
20623 {
20624 case DW_OP_lit0:
20625 case DW_OP_lit1:
20626 case DW_OP_lit2:
20627 case DW_OP_lit3:
20628 case DW_OP_lit4:
20629 case DW_OP_lit5:
20630 case DW_OP_lit6:
20631 case DW_OP_lit7:
20632 case DW_OP_lit8:
20633 case DW_OP_lit9:
20634 case DW_OP_lit10:
20635 case DW_OP_lit11:
20636 case DW_OP_lit12:
20637 case DW_OP_lit13:
20638 case DW_OP_lit14:
20639 case DW_OP_lit15:
20640 case DW_OP_lit16:
20641 case DW_OP_lit17:
20642 case DW_OP_lit18:
20643 case DW_OP_lit19:
20644 case DW_OP_lit20:
20645 case DW_OP_lit21:
20646 case DW_OP_lit22:
20647 case DW_OP_lit23:
20648 case DW_OP_lit24:
20649 case DW_OP_lit25:
20650 case DW_OP_lit26:
20651 case DW_OP_lit27:
20652 case DW_OP_lit28:
20653 case DW_OP_lit29:
20654 case DW_OP_lit30:
20655 case DW_OP_lit31:
20656 stack[++stacki] = op - DW_OP_lit0;
20657 break;
20658
20659 case DW_OP_reg0:
20660 case DW_OP_reg1:
20661 case DW_OP_reg2:
20662 case DW_OP_reg3:
20663 case DW_OP_reg4:
20664 case DW_OP_reg5:
20665 case DW_OP_reg6:
20666 case DW_OP_reg7:
20667 case DW_OP_reg8:
20668 case DW_OP_reg9:
20669 case DW_OP_reg10:
20670 case DW_OP_reg11:
20671 case DW_OP_reg12:
20672 case DW_OP_reg13:
20673 case DW_OP_reg14:
20674 case DW_OP_reg15:
20675 case DW_OP_reg16:
20676 case DW_OP_reg17:
20677 case DW_OP_reg18:
20678 case DW_OP_reg19:
20679 case DW_OP_reg20:
20680 case DW_OP_reg21:
20681 case DW_OP_reg22:
20682 case DW_OP_reg23:
20683 case DW_OP_reg24:
20684 case DW_OP_reg25:
20685 case DW_OP_reg26:
20686 case DW_OP_reg27:
20687 case DW_OP_reg28:
20688 case DW_OP_reg29:
20689 case DW_OP_reg30:
20690 case DW_OP_reg31:
20691 stack[++stacki] = op - DW_OP_reg0;
20692 if (i < size)
20693 dwarf2_complex_location_expr_complaint ();
20694 break;
20695
20696 case DW_OP_regx:
20697 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20698 i += bytes_read;
20699 stack[++stacki] = unsnd;
20700 if (i < size)
20701 dwarf2_complex_location_expr_complaint ();
20702 break;
20703
20704 case DW_OP_addr:
20705 stack[++stacki] = read_address (objfile->obfd, &data[i],
20706 cu, &bytes_read);
20707 i += bytes_read;
20708 break;
20709
20710 case DW_OP_const1u:
20711 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20712 i += 1;
20713 break;
20714
20715 case DW_OP_const1s:
20716 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20717 i += 1;
20718 break;
20719
20720 case DW_OP_const2u:
20721 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20722 i += 2;
20723 break;
20724
20725 case DW_OP_const2s:
20726 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20727 i += 2;
20728 break;
20729
20730 case DW_OP_const4u:
20731 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20732 i += 4;
20733 break;
20734
20735 case DW_OP_const4s:
20736 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20737 i += 4;
20738 break;
20739
20740 case DW_OP_const8u:
20741 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20742 i += 8;
20743 break;
20744
20745 case DW_OP_constu:
20746 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20747 &bytes_read);
20748 i += bytes_read;
20749 break;
20750
20751 case DW_OP_consts:
20752 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20753 i += bytes_read;
20754 break;
20755
20756 case DW_OP_dup:
20757 stack[stacki + 1] = stack[stacki];
20758 stacki++;
20759 break;
20760
20761 case DW_OP_plus:
20762 stack[stacki - 1] += stack[stacki];
20763 stacki--;
20764 break;
20765
20766 case DW_OP_plus_uconst:
20767 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20768 &bytes_read);
20769 i += bytes_read;
20770 break;
20771
20772 case DW_OP_minus:
20773 stack[stacki - 1] -= stack[stacki];
20774 stacki--;
20775 break;
20776
20777 case DW_OP_deref:
20778 /* If we're not the last op, then we definitely can't encode
20779 this using GDB's address_class enum. This is valid for partial
20780 global symbols, although the variable's address will be bogus
20781 in the psymtab. */
20782 if (i < size)
20783 dwarf2_complex_location_expr_complaint ();
20784 break;
20785
20786 case DW_OP_GNU_push_tls_address:
20787 /* The top of the stack has the offset from the beginning
20788 of the thread control block at which the variable is located. */
20789 /* Nothing should follow this operator, so the top of stack would
20790 be returned. */
20791 /* This is valid for partial global symbols, but the variable's
20792 address will be bogus in the psymtab. Make it always at least
20793 non-zero to not look as a variable garbage collected by linker
20794 which have DW_OP_addr 0. */
20795 if (i < size)
20796 dwarf2_complex_location_expr_complaint ();
20797 stack[stacki]++;
20798 break;
20799
20800 case DW_OP_GNU_uninit:
20801 break;
20802
20803 case DW_OP_GNU_addr_index:
20804 case DW_OP_GNU_const_index:
20805 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20806 &bytes_read);
20807 i += bytes_read;
20808 break;
20809
20810 default:
20811 {
20812 const char *name = get_DW_OP_name (op);
20813
20814 if (name)
20815 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20816 name);
20817 else
20818 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20819 op);
20820 }
20821
20822 return (stack[stacki]);
20823 }
20824
20825 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20826 outside of the allocated space. Also enforce minimum>0. */
20827 if (stacki >= ARRAY_SIZE (stack) - 1)
20828 {
20829 complaint (&symfile_complaints,
20830 _("location description stack overflow"));
20831 return 0;
20832 }
20833
20834 if (stacki <= 0)
20835 {
20836 complaint (&symfile_complaints,
20837 _("location description stack underflow"));
20838 return 0;
20839 }
20840 }
20841 return (stack[stacki]);
20842 }
20843
20844 /* memory allocation interface */
20845
20846 static struct dwarf_block *
20847 dwarf_alloc_block (struct dwarf2_cu *cu)
20848 {
20849 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20850 }
20851
20852 static struct die_info *
20853 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20854 {
20855 struct die_info *die;
20856 size_t size = sizeof (struct die_info);
20857
20858 if (num_attrs > 1)
20859 size += (num_attrs - 1) * sizeof (struct attribute);
20860
20861 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20862 memset (die, 0, sizeof (struct die_info));
20863 return (die);
20864 }
20865
20866 \f
20867 /* Macro support. */
20868
20869 /* Return file name relative to the compilation directory of file number I in
20870 *LH's file name table. The result is allocated using xmalloc; the caller is
20871 responsible for freeing it. */
20872
20873 static char *
20874 file_file_name (int file, struct line_header *lh)
20875 {
20876 /* Is the file number a valid index into the line header's file name
20877 table? Remember that file numbers start with one, not zero. */
20878 if (1 <= file && file <= lh->num_file_names)
20879 {
20880 struct file_entry *fe = &lh->file_names[file - 1];
20881
20882 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20883 || lh->include_dirs == NULL)
20884 return xstrdup (fe->name);
20885 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20886 fe->name, NULL);
20887 }
20888 else
20889 {
20890 /* The compiler produced a bogus file number. We can at least
20891 record the macro definitions made in the file, even if we
20892 won't be able to find the file by name. */
20893 char fake_name[80];
20894
20895 xsnprintf (fake_name, sizeof (fake_name),
20896 "<bad macro file number %d>", file);
20897
20898 complaint (&symfile_complaints,
20899 _("bad file number in macro information (%d)"),
20900 file);
20901
20902 return xstrdup (fake_name);
20903 }
20904 }
20905
20906 /* Return the full name of file number I in *LH's file name table.
20907 Use COMP_DIR as the name of the current directory of the
20908 compilation. The result is allocated using xmalloc; the caller is
20909 responsible for freeing it. */
20910 static char *
20911 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20912 {
20913 /* Is the file number a valid index into the line header's file name
20914 table? Remember that file numbers start with one, not zero. */
20915 if (1 <= file && file <= lh->num_file_names)
20916 {
20917 char *relative = file_file_name (file, lh);
20918
20919 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20920 return relative;
20921 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20922 }
20923 else
20924 return file_file_name (file, lh);
20925 }
20926
20927
20928 static struct macro_source_file *
20929 macro_start_file (int file, int line,
20930 struct macro_source_file *current_file,
20931 struct line_header *lh)
20932 {
20933 /* File name relative to the compilation directory of this source file. */
20934 char *file_name = file_file_name (file, lh);
20935
20936 if (! current_file)
20937 {
20938 /* Note: We don't create a macro table for this compilation unit
20939 at all until we actually get a filename. */
20940 struct macro_table *macro_table = get_macro_table ();
20941
20942 /* If we have no current file, then this must be the start_file
20943 directive for the compilation unit's main source file. */
20944 current_file = macro_set_main (macro_table, file_name);
20945 macro_define_special (macro_table);
20946 }
20947 else
20948 current_file = macro_include (current_file, line, file_name);
20949
20950 xfree (file_name);
20951
20952 return current_file;
20953 }
20954
20955
20956 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20957 followed by a null byte. */
20958 static char *
20959 copy_string (const char *buf, int len)
20960 {
20961 char *s = (char *) xmalloc (len + 1);
20962
20963 memcpy (s, buf, len);
20964 s[len] = '\0';
20965 return s;
20966 }
20967
20968
20969 static const char *
20970 consume_improper_spaces (const char *p, const char *body)
20971 {
20972 if (*p == ' ')
20973 {
20974 complaint (&symfile_complaints,
20975 _("macro definition contains spaces "
20976 "in formal argument list:\n`%s'"),
20977 body);
20978
20979 while (*p == ' ')
20980 p++;
20981 }
20982
20983 return p;
20984 }
20985
20986
20987 static void
20988 parse_macro_definition (struct macro_source_file *file, int line,
20989 const char *body)
20990 {
20991 const char *p;
20992
20993 /* The body string takes one of two forms. For object-like macro
20994 definitions, it should be:
20995
20996 <macro name> " " <definition>
20997
20998 For function-like macro definitions, it should be:
20999
21000 <macro name> "() " <definition>
21001 or
21002 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21003
21004 Spaces may appear only where explicitly indicated, and in the
21005 <definition>.
21006
21007 The Dwarf 2 spec says that an object-like macro's name is always
21008 followed by a space, but versions of GCC around March 2002 omit
21009 the space when the macro's definition is the empty string.
21010
21011 The Dwarf 2 spec says that there should be no spaces between the
21012 formal arguments in a function-like macro's formal argument list,
21013 but versions of GCC around March 2002 include spaces after the
21014 commas. */
21015
21016
21017 /* Find the extent of the macro name. The macro name is terminated
21018 by either a space or null character (for an object-like macro) or
21019 an opening paren (for a function-like macro). */
21020 for (p = body; *p; p++)
21021 if (*p == ' ' || *p == '(')
21022 break;
21023
21024 if (*p == ' ' || *p == '\0')
21025 {
21026 /* It's an object-like macro. */
21027 int name_len = p - body;
21028 char *name = copy_string (body, name_len);
21029 const char *replacement;
21030
21031 if (*p == ' ')
21032 replacement = body + name_len + 1;
21033 else
21034 {
21035 dwarf2_macro_malformed_definition_complaint (body);
21036 replacement = body + name_len;
21037 }
21038
21039 macro_define_object (file, line, name, replacement);
21040
21041 xfree (name);
21042 }
21043 else if (*p == '(')
21044 {
21045 /* It's a function-like macro. */
21046 char *name = copy_string (body, p - body);
21047 int argc = 0;
21048 int argv_size = 1;
21049 char **argv = XNEWVEC (char *, argv_size);
21050
21051 p++;
21052
21053 p = consume_improper_spaces (p, body);
21054
21055 /* Parse the formal argument list. */
21056 while (*p && *p != ')')
21057 {
21058 /* Find the extent of the current argument name. */
21059 const char *arg_start = p;
21060
21061 while (*p && *p != ',' && *p != ')' && *p != ' ')
21062 p++;
21063
21064 if (! *p || p == arg_start)
21065 dwarf2_macro_malformed_definition_complaint (body);
21066 else
21067 {
21068 /* Make sure argv has room for the new argument. */
21069 if (argc >= argv_size)
21070 {
21071 argv_size *= 2;
21072 argv = XRESIZEVEC (char *, argv, argv_size);
21073 }
21074
21075 argv[argc++] = copy_string (arg_start, p - arg_start);
21076 }
21077
21078 p = consume_improper_spaces (p, body);
21079
21080 /* Consume the comma, if present. */
21081 if (*p == ',')
21082 {
21083 p++;
21084
21085 p = consume_improper_spaces (p, body);
21086 }
21087 }
21088
21089 if (*p == ')')
21090 {
21091 p++;
21092
21093 if (*p == ' ')
21094 /* Perfectly formed definition, no complaints. */
21095 macro_define_function (file, line, name,
21096 argc, (const char **) argv,
21097 p + 1);
21098 else if (*p == '\0')
21099 {
21100 /* Complain, but do define it. */
21101 dwarf2_macro_malformed_definition_complaint (body);
21102 macro_define_function (file, line, name,
21103 argc, (const char **) argv,
21104 p);
21105 }
21106 else
21107 /* Just complain. */
21108 dwarf2_macro_malformed_definition_complaint (body);
21109 }
21110 else
21111 /* Just complain. */
21112 dwarf2_macro_malformed_definition_complaint (body);
21113
21114 xfree (name);
21115 {
21116 int i;
21117
21118 for (i = 0; i < argc; i++)
21119 xfree (argv[i]);
21120 }
21121 xfree (argv);
21122 }
21123 else
21124 dwarf2_macro_malformed_definition_complaint (body);
21125 }
21126
21127 /* Skip some bytes from BYTES according to the form given in FORM.
21128 Returns the new pointer. */
21129
21130 static const gdb_byte *
21131 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21132 enum dwarf_form form,
21133 unsigned int offset_size,
21134 struct dwarf2_section_info *section)
21135 {
21136 unsigned int bytes_read;
21137
21138 switch (form)
21139 {
21140 case DW_FORM_data1:
21141 case DW_FORM_flag:
21142 ++bytes;
21143 break;
21144
21145 case DW_FORM_data2:
21146 bytes += 2;
21147 break;
21148
21149 case DW_FORM_data4:
21150 bytes += 4;
21151 break;
21152
21153 case DW_FORM_data8:
21154 bytes += 8;
21155 break;
21156
21157 case DW_FORM_string:
21158 read_direct_string (abfd, bytes, &bytes_read);
21159 bytes += bytes_read;
21160 break;
21161
21162 case DW_FORM_sec_offset:
21163 case DW_FORM_strp:
21164 case DW_FORM_GNU_strp_alt:
21165 bytes += offset_size;
21166 break;
21167
21168 case DW_FORM_block:
21169 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21170 bytes += bytes_read;
21171 break;
21172
21173 case DW_FORM_block1:
21174 bytes += 1 + read_1_byte (abfd, bytes);
21175 break;
21176 case DW_FORM_block2:
21177 bytes += 2 + read_2_bytes (abfd, bytes);
21178 break;
21179 case DW_FORM_block4:
21180 bytes += 4 + read_4_bytes (abfd, bytes);
21181 break;
21182
21183 case DW_FORM_sdata:
21184 case DW_FORM_udata:
21185 case DW_FORM_GNU_addr_index:
21186 case DW_FORM_GNU_str_index:
21187 bytes = gdb_skip_leb128 (bytes, buffer_end);
21188 if (bytes == NULL)
21189 {
21190 dwarf2_section_buffer_overflow_complaint (section);
21191 return NULL;
21192 }
21193 break;
21194
21195 default:
21196 {
21197 complain:
21198 complaint (&symfile_complaints,
21199 _("invalid form 0x%x in `%s'"),
21200 form, get_section_name (section));
21201 return NULL;
21202 }
21203 }
21204
21205 return bytes;
21206 }
21207
21208 /* A helper for dwarf_decode_macros that handles skipping an unknown
21209 opcode. Returns an updated pointer to the macro data buffer; or,
21210 on error, issues a complaint and returns NULL. */
21211
21212 static const gdb_byte *
21213 skip_unknown_opcode (unsigned int opcode,
21214 const gdb_byte **opcode_definitions,
21215 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21216 bfd *abfd,
21217 unsigned int offset_size,
21218 struct dwarf2_section_info *section)
21219 {
21220 unsigned int bytes_read, i;
21221 unsigned long arg;
21222 const gdb_byte *defn;
21223
21224 if (opcode_definitions[opcode] == NULL)
21225 {
21226 complaint (&symfile_complaints,
21227 _("unrecognized DW_MACFINO opcode 0x%x"),
21228 opcode);
21229 return NULL;
21230 }
21231
21232 defn = opcode_definitions[opcode];
21233 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21234 defn += bytes_read;
21235
21236 for (i = 0; i < arg; ++i)
21237 {
21238 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21239 (enum dwarf_form) defn[i], offset_size,
21240 section);
21241 if (mac_ptr == NULL)
21242 {
21243 /* skip_form_bytes already issued the complaint. */
21244 return NULL;
21245 }
21246 }
21247
21248 return mac_ptr;
21249 }
21250
21251 /* A helper function which parses the header of a macro section.
21252 If the macro section is the extended (for now called "GNU") type,
21253 then this updates *OFFSET_SIZE. Returns a pointer to just after
21254 the header, or issues a complaint and returns NULL on error. */
21255
21256 static const gdb_byte *
21257 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21258 bfd *abfd,
21259 const gdb_byte *mac_ptr,
21260 unsigned int *offset_size,
21261 int section_is_gnu)
21262 {
21263 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21264
21265 if (section_is_gnu)
21266 {
21267 unsigned int version, flags;
21268
21269 version = read_2_bytes (abfd, mac_ptr);
21270 if (version != 4)
21271 {
21272 complaint (&symfile_complaints,
21273 _("unrecognized version `%d' in .debug_macro section"),
21274 version);
21275 return NULL;
21276 }
21277 mac_ptr += 2;
21278
21279 flags = read_1_byte (abfd, mac_ptr);
21280 ++mac_ptr;
21281 *offset_size = (flags & 1) ? 8 : 4;
21282
21283 if ((flags & 2) != 0)
21284 /* We don't need the line table offset. */
21285 mac_ptr += *offset_size;
21286
21287 /* Vendor opcode descriptions. */
21288 if ((flags & 4) != 0)
21289 {
21290 unsigned int i, count;
21291
21292 count = read_1_byte (abfd, mac_ptr);
21293 ++mac_ptr;
21294 for (i = 0; i < count; ++i)
21295 {
21296 unsigned int opcode, bytes_read;
21297 unsigned long arg;
21298
21299 opcode = read_1_byte (abfd, mac_ptr);
21300 ++mac_ptr;
21301 opcode_definitions[opcode] = mac_ptr;
21302 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21303 mac_ptr += bytes_read;
21304 mac_ptr += arg;
21305 }
21306 }
21307 }
21308
21309 return mac_ptr;
21310 }
21311
21312 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21313 including DW_MACRO_GNU_transparent_include. */
21314
21315 static void
21316 dwarf_decode_macro_bytes (bfd *abfd,
21317 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21318 struct macro_source_file *current_file,
21319 struct line_header *lh,
21320 struct dwarf2_section_info *section,
21321 int section_is_gnu, int section_is_dwz,
21322 unsigned int offset_size,
21323 htab_t include_hash)
21324 {
21325 struct objfile *objfile = dwarf2_per_objfile->objfile;
21326 enum dwarf_macro_record_type macinfo_type;
21327 int at_commandline;
21328 const gdb_byte *opcode_definitions[256];
21329
21330 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21331 &offset_size, section_is_gnu);
21332 if (mac_ptr == NULL)
21333 {
21334 /* We already issued a complaint. */
21335 return;
21336 }
21337
21338 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21339 GDB is still reading the definitions from command line. First
21340 DW_MACINFO_start_file will need to be ignored as it was already executed
21341 to create CURRENT_FILE for the main source holding also the command line
21342 definitions. On first met DW_MACINFO_start_file this flag is reset to
21343 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21344
21345 at_commandline = 1;
21346
21347 do
21348 {
21349 /* Do we at least have room for a macinfo type byte? */
21350 if (mac_ptr >= mac_end)
21351 {
21352 dwarf2_section_buffer_overflow_complaint (section);
21353 break;
21354 }
21355
21356 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21357 mac_ptr++;
21358
21359 /* Note that we rely on the fact that the corresponding GNU and
21360 DWARF constants are the same. */
21361 switch (macinfo_type)
21362 {
21363 /* A zero macinfo type indicates the end of the macro
21364 information. */
21365 case 0:
21366 break;
21367
21368 case DW_MACRO_GNU_define:
21369 case DW_MACRO_GNU_undef:
21370 case DW_MACRO_GNU_define_indirect:
21371 case DW_MACRO_GNU_undef_indirect:
21372 case DW_MACRO_GNU_define_indirect_alt:
21373 case DW_MACRO_GNU_undef_indirect_alt:
21374 {
21375 unsigned int bytes_read;
21376 int line;
21377 const char *body;
21378 int is_define;
21379
21380 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21381 mac_ptr += bytes_read;
21382
21383 if (macinfo_type == DW_MACRO_GNU_define
21384 || macinfo_type == DW_MACRO_GNU_undef)
21385 {
21386 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21387 mac_ptr += bytes_read;
21388 }
21389 else
21390 {
21391 LONGEST str_offset;
21392
21393 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21394 mac_ptr += offset_size;
21395
21396 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21397 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21398 || section_is_dwz)
21399 {
21400 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21401
21402 body = read_indirect_string_from_dwz (dwz, str_offset);
21403 }
21404 else
21405 body = read_indirect_string_at_offset (abfd, str_offset);
21406 }
21407
21408 is_define = (macinfo_type == DW_MACRO_GNU_define
21409 || macinfo_type == DW_MACRO_GNU_define_indirect
21410 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21411 if (! current_file)
21412 {
21413 /* DWARF violation as no main source is present. */
21414 complaint (&symfile_complaints,
21415 _("debug info with no main source gives macro %s "
21416 "on line %d: %s"),
21417 is_define ? _("definition") : _("undefinition"),
21418 line, body);
21419 break;
21420 }
21421 if ((line == 0 && !at_commandline)
21422 || (line != 0 && at_commandline))
21423 complaint (&symfile_complaints,
21424 _("debug info gives %s macro %s with %s line %d: %s"),
21425 at_commandline ? _("command-line") : _("in-file"),
21426 is_define ? _("definition") : _("undefinition"),
21427 line == 0 ? _("zero") : _("non-zero"), line, body);
21428
21429 if (is_define)
21430 parse_macro_definition (current_file, line, body);
21431 else
21432 {
21433 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21434 || macinfo_type == DW_MACRO_GNU_undef_indirect
21435 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21436 macro_undef (current_file, line, body);
21437 }
21438 }
21439 break;
21440
21441 case DW_MACRO_GNU_start_file:
21442 {
21443 unsigned int bytes_read;
21444 int line, file;
21445
21446 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21447 mac_ptr += bytes_read;
21448 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21449 mac_ptr += bytes_read;
21450
21451 if ((line == 0 && !at_commandline)
21452 || (line != 0 && at_commandline))
21453 complaint (&symfile_complaints,
21454 _("debug info gives source %d included "
21455 "from %s at %s line %d"),
21456 file, at_commandline ? _("command-line") : _("file"),
21457 line == 0 ? _("zero") : _("non-zero"), line);
21458
21459 if (at_commandline)
21460 {
21461 /* This DW_MACRO_GNU_start_file was executed in the
21462 pass one. */
21463 at_commandline = 0;
21464 }
21465 else
21466 current_file = macro_start_file (file, line, current_file, lh);
21467 }
21468 break;
21469
21470 case DW_MACRO_GNU_end_file:
21471 if (! current_file)
21472 complaint (&symfile_complaints,
21473 _("macro debug info has an unmatched "
21474 "`close_file' directive"));
21475 else
21476 {
21477 current_file = current_file->included_by;
21478 if (! current_file)
21479 {
21480 enum dwarf_macro_record_type next_type;
21481
21482 /* GCC circa March 2002 doesn't produce the zero
21483 type byte marking the end of the compilation
21484 unit. Complain if it's not there, but exit no
21485 matter what. */
21486
21487 /* Do we at least have room for a macinfo type byte? */
21488 if (mac_ptr >= mac_end)
21489 {
21490 dwarf2_section_buffer_overflow_complaint (section);
21491 return;
21492 }
21493
21494 /* We don't increment mac_ptr here, so this is just
21495 a look-ahead. */
21496 next_type
21497 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21498 mac_ptr);
21499 if (next_type != 0)
21500 complaint (&symfile_complaints,
21501 _("no terminating 0-type entry for "
21502 "macros in `.debug_macinfo' section"));
21503
21504 return;
21505 }
21506 }
21507 break;
21508
21509 case DW_MACRO_GNU_transparent_include:
21510 case DW_MACRO_GNU_transparent_include_alt:
21511 {
21512 LONGEST offset;
21513 void **slot;
21514 bfd *include_bfd = abfd;
21515 struct dwarf2_section_info *include_section = section;
21516 struct dwarf2_section_info alt_section;
21517 const gdb_byte *include_mac_end = mac_end;
21518 int is_dwz = section_is_dwz;
21519 const gdb_byte *new_mac_ptr;
21520
21521 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21522 mac_ptr += offset_size;
21523
21524 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21525 {
21526 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21527
21528 dwarf2_read_section (objfile, &dwz->macro);
21529
21530 include_section = &dwz->macro;
21531 include_bfd = get_section_bfd_owner (include_section);
21532 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21533 is_dwz = 1;
21534 }
21535
21536 new_mac_ptr = include_section->buffer + offset;
21537 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21538
21539 if (*slot != NULL)
21540 {
21541 /* This has actually happened; see
21542 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21543 complaint (&symfile_complaints,
21544 _("recursive DW_MACRO_GNU_transparent_include in "
21545 ".debug_macro section"));
21546 }
21547 else
21548 {
21549 *slot = (void *) new_mac_ptr;
21550
21551 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21552 include_mac_end, current_file, lh,
21553 section, section_is_gnu, is_dwz,
21554 offset_size, include_hash);
21555
21556 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21557 }
21558 }
21559 break;
21560
21561 case DW_MACINFO_vendor_ext:
21562 if (!section_is_gnu)
21563 {
21564 unsigned int bytes_read;
21565 int constant;
21566
21567 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21568 mac_ptr += bytes_read;
21569 read_direct_string (abfd, mac_ptr, &bytes_read);
21570 mac_ptr += bytes_read;
21571
21572 /* We don't recognize any vendor extensions. */
21573 break;
21574 }
21575 /* FALLTHROUGH */
21576
21577 default:
21578 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21579 mac_ptr, mac_end, abfd, offset_size,
21580 section);
21581 if (mac_ptr == NULL)
21582 return;
21583 break;
21584 }
21585 } while (macinfo_type != 0);
21586 }
21587
21588 static void
21589 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21590 int section_is_gnu)
21591 {
21592 struct objfile *objfile = dwarf2_per_objfile->objfile;
21593 struct line_header *lh = cu->line_header;
21594 bfd *abfd;
21595 const gdb_byte *mac_ptr, *mac_end;
21596 struct macro_source_file *current_file = 0;
21597 enum dwarf_macro_record_type macinfo_type;
21598 unsigned int offset_size = cu->header.offset_size;
21599 const gdb_byte *opcode_definitions[256];
21600 struct cleanup *cleanup;
21601 htab_t include_hash;
21602 void **slot;
21603 struct dwarf2_section_info *section;
21604 const char *section_name;
21605
21606 if (cu->dwo_unit != NULL)
21607 {
21608 if (section_is_gnu)
21609 {
21610 section = &cu->dwo_unit->dwo_file->sections.macro;
21611 section_name = ".debug_macro.dwo";
21612 }
21613 else
21614 {
21615 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21616 section_name = ".debug_macinfo.dwo";
21617 }
21618 }
21619 else
21620 {
21621 if (section_is_gnu)
21622 {
21623 section = &dwarf2_per_objfile->macro;
21624 section_name = ".debug_macro";
21625 }
21626 else
21627 {
21628 section = &dwarf2_per_objfile->macinfo;
21629 section_name = ".debug_macinfo";
21630 }
21631 }
21632
21633 dwarf2_read_section (objfile, section);
21634 if (section->buffer == NULL)
21635 {
21636 complaint (&symfile_complaints, _("missing %s section"), section_name);
21637 return;
21638 }
21639 abfd = get_section_bfd_owner (section);
21640
21641 /* First pass: Find the name of the base filename.
21642 This filename is needed in order to process all macros whose definition
21643 (or undefinition) comes from the command line. These macros are defined
21644 before the first DW_MACINFO_start_file entry, and yet still need to be
21645 associated to the base file.
21646
21647 To determine the base file name, we scan the macro definitions until we
21648 reach the first DW_MACINFO_start_file entry. We then initialize
21649 CURRENT_FILE accordingly so that any macro definition found before the
21650 first DW_MACINFO_start_file can still be associated to the base file. */
21651
21652 mac_ptr = section->buffer + offset;
21653 mac_end = section->buffer + section->size;
21654
21655 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21656 &offset_size, section_is_gnu);
21657 if (mac_ptr == NULL)
21658 {
21659 /* We already issued a complaint. */
21660 return;
21661 }
21662
21663 do
21664 {
21665 /* Do we at least have room for a macinfo type byte? */
21666 if (mac_ptr >= mac_end)
21667 {
21668 /* Complaint is printed during the second pass as GDB will probably
21669 stop the first pass earlier upon finding
21670 DW_MACINFO_start_file. */
21671 break;
21672 }
21673
21674 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21675 mac_ptr++;
21676
21677 /* Note that we rely on the fact that the corresponding GNU and
21678 DWARF constants are the same. */
21679 switch (macinfo_type)
21680 {
21681 /* A zero macinfo type indicates the end of the macro
21682 information. */
21683 case 0:
21684 break;
21685
21686 case DW_MACRO_GNU_define:
21687 case DW_MACRO_GNU_undef:
21688 /* Only skip the data by MAC_PTR. */
21689 {
21690 unsigned int bytes_read;
21691
21692 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21693 mac_ptr += bytes_read;
21694 read_direct_string (abfd, mac_ptr, &bytes_read);
21695 mac_ptr += bytes_read;
21696 }
21697 break;
21698
21699 case DW_MACRO_GNU_start_file:
21700 {
21701 unsigned int bytes_read;
21702 int line, file;
21703
21704 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21705 mac_ptr += bytes_read;
21706 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21707 mac_ptr += bytes_read;
21708
21709 current_file = macro_start_file (file, line, current_file, lh);
21710 }
21711 break;
21712
21713 case DW_MACRO_GNU_end_file:
21714 /* No data to skip by MAC_PTR. */
21715 break;
21716
21717 case DW_MACRO_GNU_define_indirect:
21718 case DW_MACRO_GNU_undef_indirect:
21719 case DW_MACRO_GNU_define_indirect_alt:
21720 case DW_MACRO_GNU_undef_indirect_alt:
21721 {
21722 unsigned int bytes_read;
21723
21724 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21725 mac_ptr += bytes_read;
21726 mac_ptr += offset_size;
21727 }
21728 break;
21729
21730 case DW_MACRO_GNU_transparent_include:
21731 case DW_MACRO_GNU_transparent_include_alt:
21732 /* Note that, according to the spec, a transparent include
21733 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21734 skip this opcode. */
21735 mac_ptr += offset_size;
21736 break;
21737
21738 case DW_MACINFO_vendor_ext:
21739 /* Only skip the data by MAC_PTR. */
21740 if (!section_is_gnu)
21741 {
21742 unsigned int bytes_read;
21743
21744 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21745 mac_ptr += bytes_read;
21746 read_direct_string (abfd, mac_ptr, &bytes_read);
21747 mac_ptr += bytes_read;
21748 }
21749 /* FALLTHROUGH */
21750
21751 default:
21752 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21753 mac_ptr, mac_end, abfd, offset_size,
21754 section);
21755 if (mac_ptr == NULL)
21756 return;
21757 break;
21758 }
21759 } while (macinfo_type != 0 && current_file == NULL);
21760
21761 /* Second pass: Process all entries.
21762
21763 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21764 command-line macro definitions/undefinitions. This flag is unset when we
21765 reach the first DW_MACINFO_start_file entry. */
21766
21767 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21768 NULL, xcalloc, xfree);
21769 cleanup = make_cleanup_htab_delete (include_hash);
21770 mac_ptr = section->buffer + offset;
21771 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21772 *slot = (void *) mac_ptr;
21773 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21774 current_file, lh, section,
21775 section_is_gnu, 0, offset_size, include_hash);
21776 do_cleanups (cleanup);
21777 }
21778
21779 /* Check if the attribute's form is a DW_FORM_block*
21780 if so return true else false. */
21781
21782 static int
21783 attr_form_is_block (const struct attribute *attr)
21784 {
21785 return (attr == NULL ? 0 :
21786 attr->form == DW_FORM_block1
21787 || attr->form == DW_FORM_block2
21788 || attr->form == DW_FORM_block4
21789 || attr->form == DW_FORM_block
21790 || attr->form == DW_FORM_exprloc);
21791 }
21792
21793 /* Return non-zero if ATTR's value is a section offset --- classes
21794 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21795 You may use DW_UNSND (attr) to retrieve such offsets.
21796
21797 Section 7.5.4, "Attribute Encodings", explains that no attribute
21798 may have a value that belongs to more than one of these classes; it
21799 would be ambiguous if we did, because we use the same forms for all
21800 of them. */
21801
21802 static int
21803 attr_form_is_section_offset (const struct attribute *attr)
21804 {
21805 return (attr->form == DW_FORM_data4
21806 || attr->form == DW_FORM_data8
21807 || attr->form == DW_FORM_sec_offset);
21808 }
21809
21810 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21811 zero otherwise. When this function returns true, you can apply
21812 dwarf2_get_attr_constant_value to it.
21813
21814 However, note that for some attributes you must check
21815 attr_form_is_section_offset before using this test. DW_FORM_data4
21816 and DW_FORM_data8 are members of both the constant class, and of
21817 the classes that contain offsets into other debug sections
21818 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21819 that, if an attribute's can be either a constant or one of the
21820 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21821 taken as section offsets, not constants. */
21822
21823 static int
21824 attr_form_is_constant (const struct attribute *attr)
21825 {
21826 switch (attr->form)
21827 {
21828 case DW_FORM_sdata:
21829 case DW_FORM_udata:
21830 case DW_FORM_data1:
21831 case DW_FORM_data2:
21832 case DW_FORM_data4:
21833 case DW_FORM_data8:
21834 return 1;
21835 default:
21836 return 0;
21837 }
21838 }
21839
21840
21841 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21842 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21843
21844 static int
21845 attr_form_is_ref (const struct attribute *attr)
21846 {
21847 switch (attr->form)
21848 {
21849 case DW_FORM_ref_addr:
21850 case DW_FORM_ref1:
21851 case DW_FORM_ref2:
21852 case DW_FORM_ref4:
21853 case DW_FORM_ref8:
21854 case DW_FORM_ref_udata:
21855 case DW_FORM_GNU_ref_alt:
21856 return 1;
21857 default:
21858 return 0;
21859 }
21860 }
21861
21862 /* Return the .debug_loc section to use for CU.
21863 For DWO files use .debug_loc.dwo. */
21864
21865 static struct dwarf2_section_info *
21866 cu_debug_loc_section (struct dwarf2_cu *cu)
21867 {
21868 if (cu->dwo_unit)
21869 return &cu->dwo_unit->dwo_file->sections.loc;
21870 return &dwarf2_per_objfile->loc;
21871 }
21872
21873 /* A helper function that fills in a dwarf2_loclist_baton. */
21874
21875 static void
21876 fill_in_loclist_baton (struct dwarf2_cu *cu,
21877 struct dwarf2_loclist_baton *baton,
21878 const struct attribute *attr)
21879 {
21880 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21881
21882 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21883
21884 baton->per_cu = cu->per_cu;
21885 gdb_assert (baton->per_cu);
21886 /* We don't know how long the location list is, but make sure we
21887 don't run off the edge of the section. */
21888 baton->size = section->size - DW_UNSND (attr);
21889 baton->data = section->buffer + DW_UNSND (attr);
21890 baton->base_address = cu->base_address;
21891 baton->from_dwo = cu->dwo_unit != NULL;
21892 }
21893
21894 static void
21895 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21896 struct dwarf2_cu *cu, int is_block)
21897 {
21898 struct objfile *objfile = dwarf2_per_objfile->objfile;
21899 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21900
21901 if (attr_form_is_section_offset (attr)
21902 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21903 the section. If so, fall through to the complaint in the
21904 other branch. */
21905 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21906 {
21907 struct dwarf2_loclist_baton *baton;
21908
21909 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21910
21911 fill_in_loclist_baton (cu, baton, attr);
21912
21913 if (cu->base_known == 0)
21914 complaint (&symfile_complaints,
21915 _("Location list used without "
21916 "specifying the CU base address."));
21917
21918 SYMBOL_ACLASS_INDEX (sym) = (is_block
21919 ? dwarf2_loclist_block_index
21920 : dwarf2_loclist_index);
21921 SYMBOL_LOCATION_BATON (sym) = baton;
21922 }
21923 else
21924 {
21925 struct dwarf2_locexpr_baton *baton;
21926
21927 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21928 baton->per_cu = cu->per_cu;
21929 gdb_assert (baton->per_cu);
21930
21931 if (attr_form_is_block (attr))
21932 {
21933 /* Note that we're just copying the block's data pointer
21934 here, not the actual data. We're still pointing into the
21935 info_buffer for SYM's objfile; right now we never release
21936 that buffer, but when we do clean up properly this may
21937 need to change. */
21938 baton->size = DW_BLOCK (attr)->size;
21939 baton->data = DW_BLOCK (attr)->data;
21940 }
21941 else
21942 {
21943 dwarf2_invalid_attrib_class_complaint ("location description",
21944 SYMBOL_NATURAL_NAME (sym));
21945 baton->size = 0;
21946 }
21947
21948 SYMBOL_ACLASS_INDEX (sym) = (is_block
21949 ? dwarf2_locexpr_block_index
21950 : dwarf2_locexpr_index);
21951 SYMBOL_LOCATION_BATON (sym) = baton;
21952 }
21953 }
21954
21955 /* Return the OBJFILE associated with the compilation unit CU. If CU
21956 came from a separate debuginfo file, then the master objfile is
21957 returned. */
21958
21959 struct objfile *
21960 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21961 {
21962 struct objfile *objfile = per_cu->objfile;
21963
21964 /* Return the master objfile, so that we can report and look up the
21965 correct file containing this variable. */
21966 if (objfile->separate_debug_objfile_backlink)
21967 objfile = objfile->separate_debug_objfile_backlink;
21968
21969 return objfile;
21970 }
21971
21972 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21973 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21974 CU_HEADERP first. */
21975
21976 static const struct comp_unit_head *
21977 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21978 struct dwarf2_per_cu_data *per_cu)
21979 {
21980 const gdb_byte *info_ptr;
21981
21982 if (per_cu->cu)
21983 return &per_cu->cu->header;
21984
21985 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21986
21987 memset (cu_headerp, 0, sizeof (*cu_headerp));
21988 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21989
21990 return cu_headerp;
21991 }
21992
21993 /* Return the address size given in the compilation unit header for CU. */
21994
21995 int
21996 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21997 {
21998 struct comp_unit_head cu_header_local;
21999 const struct comp_unit_head *cu_headerp;
22000
22001 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22002
22003 return cu_headerp->addr_size;
22004 }
22005
22006 /* Return the offset size given in the compilation unit header for CU. */
22007
22008 int
22009 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22010 {
22011 struct comp_unit_head cu_header_local;
22012 const struct comp_unit_head *cu_headerp;
22013
22014 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22015
22016 return cu_headerp->offset_size;
22017 }
22018
22019 /* See its dwarf2loc.h declaration. */
22020
22021 int
22022 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22023 {
22024 struct comp_unit_head cu_header_local;
22025 const struct comp_unit_head *cu_headerp;
22026
22027 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22028
22029 if (cu_headerp->version == 2)
22030 return cu_headerp->addr_size;
22031 else
22032 return cu_headerp->offset_size;
22033 }
22034
22035 /* Return the text offset of the CU. The returned offset comes from
22036 this CU's objfile. If this objfile came from a separate debuginfo
22037 file, then the offset may be different from the corresponding
22038 offset in the parent objfile. */
22039
22040 CORE_ADDR
22041 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22042 {
22043 struct objfile *objfile = per_cu->objfile;
22044
22045 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22046 }
22047
22048 /* Locate the .debug_info compilation unit from CU's objfile which contains
22049 the DIE at OFFSET. Raises an error on failure. */
22050
22051 static struct dwarf2_per_cu_data *
22052 dwarf2_find_containing_comp_unit (sect_offset offset,
22053 unsigned int offset_in_dwz,
22054 struct objfile *objfile)
22055 {
22056 struct dwarf2_per_cu_data *this_cu;
22057 int low, high;
22058 const sect_offset *cu_off;
22059
22060 low = 0;
22061 high = dwarf2_per_objfile->n_comp_units - 1;
22062 while (high > low)
22063 {
22064 struct dwarf2_per_cu_data *mid_cu;
22065 int mid = low + (high - low) / 2;
22066
22067 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22068 cu_off = &mid_cu->offset;
22069 if (mid_cu->is_dwz > offset_in_dwz
22070 || (mid_cu->is_dwz == offset_in_dwz
22071 && cu_off->sect_off >= offset.sect_off))
22072 high = mid;
22073 else
22074 low = mid + 1;
22075 }
22076 gdb_assert (low == high);
22077 this_cu = dwarf2_per_objfile->all_comp_units[low];
22078 cu_off = &this_cu->offset;
22079 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22080 {
22081 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22082 error (_("Dwarf Error: could not find partial DIE containing "
22083 "offset 0x%lx [in module %s]"),
22084 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22085
22086 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22087 <= offset.sect_off);
22088 return dwarf2_per_objfile->all_comp_units[low-1];
22089 }
22090 else
22091 {
22092 this_cu = dwarf2_per_objfile->all_comp_units[low];
22093 if (low == dwarf2_per_objfile->n_comp_units - 1
22094 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22095 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22096 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22097 return this_cu;
22098 }
22099 }
22100
22101 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22102
22103 static void
22104 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22105 {
22106 memset (cu, 0, sizeof (*cu));
22107 per_cu->cu = cu;
22108 cu->per_cu = per_cu;
22109 cu->objfile = per_cu->objfile;
22110 obstack_init (&cu->comp_unit_obstack);
22111 }
22112
22113 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22114
22115 static void
22116 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22117 enum language pretend_language)
22118 {
22119 struct attribute *attr;
22120
22121 /* Set the language we're debugging. */
22122 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22123 if (attr)
22124 set_cu_language (DW_UNSND (attr), cu);
22125 else
22126 {
22127 cu->language = pretend_language;
22128 cu->language_defn = language_def (cu->language);
22129 }
22130
22131 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22132 }
22133
22134 /* Release one cached compilation unit, CU. We unlink it from the tree
22135 of compilation units, but we don't remove it from the read_in_chain;
22136 the caller is responsible for that.
22137 NOTE: DATA is a void * because this function is also used as a
22138 cleanup routine. */
22139
22140 static void
22141 free_heap_comp_unit (void *data)
22142 {
22143 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22144
22145 gdb_assert (cu->per_cu != NULL);
22146 cu->per_cu->cu = NULL;
22147 cu->per_cu = NULL;
22148
22149 obstack_free (&cu->comp_unit_obstack, NULL);
22150
22151 xfree (cu);
22152 }
22153
22154 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22155 when we're finished with it. We can't free the pointer itself, but be
22156 sure to unlink it from the cache. Also release any associated storage. */
22157
22158 static void
22159 free_stack_comp_unit (void *data)
22160 {
22161 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22162
22163 gdb_assert (cu->per_cu != NULL);
22164 cu->per_cu->cu = NULL;
22165 cu->per_cu = NULL;
22166
22167 obstack_free (&cu->comp_unit_obstack, NULL);
22168 cu->partial_dies = NULL;
22169 }
22170
22171 /* Free all cached compilation units. */
22172
22173 static void
22174 free_cached_comp_units (void *data)
22175 {
22176 struct dwarf2_per_cu_data *per_cu, **last_chain;
22177
22178 per_cu = dwarf2_per_objfile->read_in_chain;
22179 last_chain = &dwarf2_per_objfile->read_in_chain;
22180 while (per_cu != NULL)
22181 {
22182 struct dwarf2_per_cu_data *next_cu;
22183
22184 next_cu = per_cu->cu->read_in_chain;
22185
22186 free_heap_comp_unit (per_cu->cu);
22187 *last_chain = next_cu;
22188
22189 per_cu = next_cu;
22190 }
22191 }
22192
22193 /* Increase the age counter on each cached compilation unit, and free
22194 any that are too old. */
22195
22196 static void
22197 age_cached_comp_units (void)
22198 {
22199 struct dwarf2_per_cu_data *per_cu, **last_chain;
22200
22201 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22202 per_cu = dwarf2_per_objfile->read_in_chain;
22203 while (per_cu != NULL)
22204 {
22205 per_cu->cu->last_used ++;
22206 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22207 dwarf2_mark (per_cu->cu);
22208 per_cu = per_cu->cu->read_in_chain;
22209 }
22210
22211 per_cu = dwarf2_per_objfile->read_in_chain;
22212 last_chain = &dwarf2_per_objfile->read_in_chain;
22213 while (per_cu != NULL)
22214 {
22215 struct dwarf2_per_cu_data *next_cu;
22216
22217 next_cu = per_cu->cu->read_in_chain;
22218
22219 if (!per_cu->cu->mark)
22220 {
22221 free_heap_comp_unit (per_cu->cu);
22222 *last_chain = next_cu;
22223 }
22224 else
22225 last_chain = &per_cu->cu->read_in_chain;
22226
22227 per_cu = next_cu;
22228 }
22229 }
22230
22231 /* Remove a single compilation unit from the cache. */
22232
22233 static void
22234 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22235 {
22236 struct dwarf2_per_cu_data *per_cu, **last_chain;
22237
22238 per_cu = dwarf2_per_objfile->read_in_chain;
22239 last_chain = &dwarf2_per_objfile->read_in_chain;
22240 while (per_cu != NULL)
22241 {
22242 struct dwarf2_per_cu_data *next_cu;
22243
22244 next_cu = per_cu->cu->read_in_chain;
22245
22246 if (per_cu == target_per_cu)
22247 {
22248 free_heap_comp_unit (per_cu->cu);
22249 per_cu->cu = NULL;
22250 *last_chain = next_cu;
22251 break;
22252 }
22253 else
22254 last_chain = &per_cu->cu->read_in_chain;
22255
22256 per_cu = next_cu;
22257 }
22258 }
22259
22260 /* Release all extra memory associated with OBJFILE. */
22261
22262 void
22263 dwarf2_free_objfile (struct objfile *objfile)
22264 {
22265 dwarf2_per_objfile
22266 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22267 dwarf2_objfile_data_key);
22268
22269 if (dwarf2_per_objfile == NULL)
22270 return;
22271
22272 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22273 free_cached_comp_units (NULL);
22274
22275 if (dwarf2_per_objfile->quick_file_names_table)
22276 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22277
22278 if (dwarf2_per_objfile->line_header_hash)
22279 htab_delete (dwarf2_per_objfile->line_header_hash);
22280
22281 /* Everything else should be on the objfile obstack. */
22282 }
22283
22284 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22285 We store these in a hash table separate from the DIEs, and preserve them
22286 when the DIEs are flushed out of cache.
22287
22288 The CU "per_cu" pointer is needed because offset alone is not enough to
22289 uniquely identify the type. A file may have multiple .debug_types sections,
22290 or the type may come from a DWO file. Furthermore, while it's more logical
22291 to use per_cu->section+offset, with Fission the section with the data is in
22292 the DWO file but we don't know that section at the point we need it.
22293 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22294 because we can enter the lookup routine, get_die_type_at_offset, from
22295 outside this file, and thus won't necessarily have PER_CU->cu.
22296 Fortunately, PER_CU is stable for the life of the objfile. */
22297
22298 struct dwarf2_per_cu_offset_and_type
22299 {
22300 const struct dwarf2_per_cu_data *per_cu;
22301 sect_offset offset;
22302 struct type *type;
22303 };
22304
22305 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22306
22307 static hashval_t
22308 per_cu_offset_and_type_hash (const void *item)
22309 {
22310 const struct dwarf2_per_cu_offset_and_type *ofs
22311 = (const struct dwarf2_per_cu_offset_and_type *) item;
22312
22313 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22314 }
22315
22316 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22317
22318 static int
22319 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22320 {
22321 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22322 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22323 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22324 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22325
22326 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22327 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22328 }
22329
22330 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22331 table if necessary. For convenience, return TYPE.
22332
22333 The DIEs reading must have careful ordering to:
22334 * Not cause infite loops trying to read in DIEs as a prerequisite for
22335 reading current DIE.
22336 * Not trying to dereference contents of still incompletely read in types
22337 while reading in other DIEs.
22338 * Enable referencing still incompletely read in types just by a pointer to
22339 the type without accessing its fields.
22340
22341 Therefore caller should follow these rules:
22342 * Try to fetch any prerequisite types we may need to build this DIE type
22343 before building the type and calling set_die_type.
22344 * After building type call set_die_type for current DIE as soon as
22345 possible before fetching more types to complete the current type.
22346 * Make the type as complete as possible before fetching more types. */
22347
22348 static struct type *
22349 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22350 {
22351 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22352 struct objfile *objfile = cu->objfile;
22353 struct attribute *attr;
22354 struct dynamic_prop prop;
22355
22356 /* For Ada types, make sure that the gnat-specific data is always
22357 initialized (if not already set). There are a few types where
22358 we should not be doing so, because the type-specific area is
22359 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22360 where the type-specific area is used to store the floatformat).
22361 But this is not a problem, because the gnat-specific information
22362 is actually not needed for these types. */
22363 if (need_gnat_info (cu)
22364 && TYPE_CODE (type) != TYPE_CODE_FUNC
22365 && TYPE_CODE (type) != TYPE_CODE_FLT
22366 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22367 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22368 && TYPE_CODE (type) != TYPE_CODE_METHOD
22369 && !HAVE_GNAT_AUX_INFO (type))
22370 INIT_GNAT_SPECIFIC (type);
22371
22372 /* Read DW_AT_allocated and set in type. */
22373 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22374 if (attr_form_is_block (attr))
22375 {
22376 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22377 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22378 }
22379 else if (attr != NULL)
22380 {
22381 complaint (&symfile_complaints,
22382 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22383 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22384 die->offset.sect_off);
22385 }
22386
22387 /* Read DW_AT_associated and set in type. */
22388 attr = dwarf2_attr (die, DW_AT_associated, cu);
22389 if (attr_form_is_block (attr))
22390 {
22391 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22392 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22393 }
22394 else if (attr != NULL)
22395 {
22396 complaint (&symfile_complaints,
22397 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22398 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22399 die->offset.sect_off);
22400 }
22401
22402 /* Read DW_AT_data_location and set in type. */
22403 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22404 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22405 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22406
22407 if (dwarf2_per_objfile->die_type_hash == NULL)
22408 {
22409 dwarf2_per_objfile->die_type_hash =
22410 htab_create_alloc_ex (127,
22411 per_cu_offset_and_type_hash,
22412 per_cu_offset_and_type_eq,
22413 NULL,
22414 &objfile->objfile_obstack,
22415 hashtab_obstack_allocate,
22416 dummy_obstack_deallocate);
22417 }
22418
22419 ofs.per_cu = cu->per_cu;
22420 ofs.offset = die->offset;
22421 ofs.type = type;
22422 slot = (struct dwarf2_per_cu_offset_and_type **)
22423 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22424 if (*slot)
22425 complaint (&symfile_complaints,
22426 _("A problem internal to GDB: DIE 0x%x has type already set"),
22427 die->offset.sect_off);
22428 *slot = XOBNEW (&objfile->objfile_obstack,
22429 struct dwarf2_per_cu_offset_and_type);
22430 **slot = ofs;
22431 return type;
22432 }
22433
22434 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22435 or return NULL if the die does not have a saved type. */
22436
22437 static struct type *
22438 get_die_type_at_offset (sect_offset offset,
22439 struct dwarf2_per_cu_data *per_cu)
22440 {
22441 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22442
22443 if (dwarf2_per_objfile->die_type_hash == NULL)
22444 return NULL;
22445
22446 ofs.per_cu = per_cu;
22447 ofs.offset = offset;
22448 slot = ((struct dwarf2_per_cu_offset_and_type *)
22449 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22450 if (slot)
22451 return slot->type;
22452 else
22453 return NULL;
22454 }
22455
22456 /* Look up the type for DIE in CU in die_type_hash,
22457 or return NULL if DIE does not have a saved type. */
22458
22459 static struct type *
22460 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22461 {
22462 return get_die_type_at_offset (die->offset, cu->per_cu);
22463 }
22464
22465 /* Add a dependence relationship from CU to REF_PER_CU. */
22466
22467 static void
22468 dwarf2_add_dependence (struct dwarf2_cu *cu,
22469 struct dwarf2_per_cu_data *ref_per_cu)
22470 {
22471 void **slot;
22472
22473 if (cu->dependencies == NULL)
22474 cu->dependencies
22475 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22476 NULL, &cu->comp_unit_obstack,
22477 hashtab_obstack_allocate,
22478 dummy_obstack_deallocate);
22479
22480 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22481 if (*slot == NULL)
22482 *slot = ref_per_cu;
22483 }
22484
22485 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22486 Set the mark field in every compilation unit in the
22487 cache that we must keep because we are keeping CU. */
22488
22489 static int
22490 dwarf2_mark_helper (void **slot, void *data)
22491 {
22492 struct dwarf2_per_cu_data *per_cu;
22493
22494 per_cu = (struct dwarf2_per_cu_data *) *slot;
22495
22496 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22497 reading of the chain. As such dependencies remain valid it is not much
22498 useful to track and undo them during QUIT cleanups. */
22499 if (per_cu->cu == NULL)
22500 return 1;
22501
22502 if (per_cu->cu->mark)
22503 return 1;
22504 per_cu->cu->mark = 1;
22505
22506 if (per_cu->cu->dependencies != NULL)
22507 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22508
22509 return 1;
22510 }
22511
22512 /* Set the mark field in CU and in every other compilation unit in the
22513 cache that we must keep because we are keeping CU. */
22514
22515 static void
22516 dwarf2_mark (struct dwarf2_cu *cu)
22517 {
22518 if (cu->mark)
22519 return;
22520 cu->mark = 1;
22521 if (cu->dependencies != NULL)
22522 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22523 }
22524
22525 static void
22526 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22527 {
22528 while (per_cu)
22529 {
22530 per_cu->cu->mark = 0;
22531 per_cu = per_cu->cu->read_in_chain;
22532 }
22533 }
22534
22535 /* Trivial hash function for partial_die_info: the hash value of a DIE
22536 is its offset in .debug_info for this objfile. */
22537
22538 static hashval_t
22539 partial_die_hash (const void *item)
22540 {
22541 const struct partial_die_info *part_die
22542 = (const struct partial_die_info *) item;
22543
22544 return part_die->offset.sect_off;
22545 }
22546
22547 /* Trivial comparison function for partial_die_info structures: two DIEs
22548 are equal if they have the same offset. */
22549
22550 static int
22551 partial_die_eq (const void *item_lhs, const void *item_rhs)
22552 {
22553 const struct partial_die_info *part_die_lhs
22554 = (const struct partial_die_info *) item_lhs;
22555 const struct partial_die_info *part_die_rhs
22556 = (const struct partial_die_info *) item_rhs;
22557
22558 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22559 }
22560
22561 static struct cmd_list_element *set_dwarf_cmdlist;
22562 static struct cmd_list_element *show_dwarf_cmdlist;
22563
22564 static void
22565 set_dwarf_cmd (char *args, int from_tty)
22566 {
22567 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22568 gdb_stdout);
22569 }
22570
22571 static void
22572 show_dwarf_cmd (char *args, int from_tty)
22573 {
22574 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22575 }
22576
22577 /* Free data associated with OBJFILE, if necessary. */
22578
22579 static void
22580 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22581 {
22582 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22583 int ix;
22584
22585 /* Make sure we don't accidentally use dwarf2_per_objfile while
22586 cleaning up. */
22587 dwarf2_per_objfile = NULL;
22588
22589 for (ix = 0; ix < data->n_comp_units; ++ix)
22590 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22591
22592 for (ix = 0; ix < data->n_type_units; ++ix)
22593 VEC_free (dwarf2_per_cu_ptr,
22594 data->all_type_units[ix]->per_cu.imported_symtabs);
22595 xfree (data->all_type_units);
22596
22597 VEC_free (dwarf2_section_info_def, data->types);
22598
22599 if (data->dwo_files)
22600 free_dwo_files (data->dwo_files, objfile);
22601 if (data->dwp_file)
22602 gdb_bfd_unref (data->dwp_file->dbfd);
22603
22604 if (data->dwz_file && data->dwz_file->dwz_bfd)
22605 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22606 }
22607
22608 \f
22609 /* The "save gdb-index" command. */
22610
22611 /* The contents of the hash table we create when building the string
22612 table. */
22613 struct strtab_entry
22614 {
22615 offset_type offset;
22616 const char *str;
22617 };
22618
22619 /* Hash function for a strtab_entry.
22620
22621 Function is used only during write_hash_table so no index format backward
22622 compatibility is needed. */
22623
22624 static hashval_t
22625 hash_strtab_entry (const void *e)
22626 {
22627 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22628 return mapped_index_string_hash (INT_MAX, entry->str);
22629 }
22630
22631 /* Equality function for a strtab_entry. */
22632
22633 static int
22634 eq_strtab_entry (const void *a, const void *b)
22635 {
22636 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22637 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22638 return !strcmp (ea->str, eb->str);
22639 }
22640
22641 /* Create a strtab_entry hash table. */
22642
22643 static htab_t
22644 create_strtab (void)
22645 {
22646 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22647 xfree, xcalloc, xfree);
22648 }
22649
22650 /* Add a string to the constant pool. Return the string's offset in
22651 host order. */
22652
22653 static offset_type
22654 add_string (htab_t table, struct obstack *cpool, const char *str)
22655 {
22656 void **slot;
22657 struct strtab_entry entry;
22658 struct strtab_entry *result;
22659
22660 entry.str = str;
22661 slot = htab_find_slot (table, &entry, INSERT);
22662 if (*slot)
22663 result = (struct strtab_entry *) *slot;
22664 else
22665 {
22666 result = XNEW (struct strtab_entry);
22667 result->offset = obstack_object_size (cpool);
22668 result->str = str;
22669 obstack_grow_str0 (cpool, str);
22670 *slot = result;
22671 }
22672 return result->offset;
22673 }
22674
22675 /* An entry in the symbol table. */
22676 struct symtab_index_entry
22677 {
22678 /* The name of the symbol. */
22679 const char *name;
22680 /* The offset of the name in the constant pool. */
22681 offset_type index_offset;
22682 /* A sorted vector of the indices of all the CUs that hold an object
22683 of this name. */
22684 VEC (offset_type) *cu_indices;
22685 };
22686
22687 /* The symbol table. This is a power-of-2-sized hash table. */
22688 struct mapped_symtab
22689 {
22690 offset_type n_elements;
22691 offset_type size;
22692 struct symtab_index_entry **data;
22693 };
22694
22695 /* Hash function for a symtab_index_entry. */
22696
22697 static hashval_t
22698 hash_symtab_entry (const void *e)
22699 {
22700 const struct symtab_index_entry *entry
22701 = (const struct symtab_index_entry *) e;
22702 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22703 sizeof (offset_type) * VEC_length (offset_type,
22704 entry->cu_indices),
22705 0);
22706 }
22707
22708 /* Equality function for a symtab_index_entry. */
22709
22710 static int
22711 eq_symtab_entry (const void *a, const void *b)
22712 {
22713 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22714 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22715 int len = VEC_length (offset_type, ea->cu_indices);
22716 if (len != VEC_length (offset_type, eb->cu_indices))
22717 return 0;
22718 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22719 VEC_address (offset_type, eb->cu_indices),
22720 sizeof (offset_type) * len);
22721 }
22722
22723 /* Destroy a symtab_index_entry. */
22724
22725 static void
22726 delete_symtab_entry (void *p)
22727 {
22728 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22729 VEC_free (offset_type, entry->cu_indices);
22730 xfree (entry);
22731 }
22732
22733 /* Create a hash table holding symtab_index_entry objects. */
22734
22735 static htab_t
22736 create_symbol_hash_table (void)
22737 {
22738 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22739 delete_symtab_entry, xcalloc, xfree);
22740 }
22741
22742 /* Create a new mapped symtab object. */
22743
22744 static struct mapped_symtab *
22745 create_mapped_symtab (void)
22746 {
22747 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22748 symtab->n_elements = 0;
22749 symtab->size = 1024;
22750 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22751 return symtab;
22752 }
22753
22754 /* Destroy a mapped_symtab. */
22755
22756 static void
22757 cleanup_mapped_symtab (void *p)
22758 {
22759 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22760 /* The contents of the array are freed when the other hash table is
22761 destroyed. */
22762 xfree (symtab->data);
22763 xfree (symtab);
22764 }
22765
22766 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22767 the slot.
22768
22769 Function is used only during write_hash_table so no index format backward
22770 compatibility is needed. */
22771
22772 static struct symtab_index_entry **
22773 find_slot (struct mapped_symtab *symtab, const char *name)
22774 {
22775 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22776
22777 index = hash & (symtab->size - 1);
22778 step = ((hash * 17) & (symtab->size - 1)) | 1;
22779
22780 for (;;)
22781 {
22782 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22783 return &symtab->data[index];
22784 index = (index + step) & (symtab->size - 1);
22785 }
22786 }
22787
22788 /* Expand SYMTAB's hash table. */
22789
22790 static void
22791 hash_expand (struct mapped_symtab *symtab)
22792 {
22793 offset_type old_size = symtab->size;
22794 offset_type i;
22795 struct symtab_index_entry **old_entries = symtab->data;
22796
22797 symtab->size *= 2;
22798 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22799
22800 for (i = 0; i < old_size; ++i)
22801 {
22802 if (old_entries[i])
22803 {
22804 struct symtab_index_entry **slot = find_slot (symtab,
22805 old_entries[i]->name);
22806 *slot = old_entries[i];
22807 }
22808 }
22809
22810 xfree (old_entries);
22811 }
22812
22813 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22814 CU_INDEX is the index of the CU in which the symbol appears.
22815 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22816
22817 static void
22818 add_index_entry (struct mapped_symtab *symtab, const char *name,
22819 int is_static, gdb_index_symbol_kind kind,
22820 offset_type cu_index)
22821 {
22822 struct symtab_index_entry **slot;
22823 offset_type cu_index_and_attrs;
22824
22825 ++symtab->n_elements;
22826 if (4 * symtab->n_elements / 3 >= symtab->size)
22827 hash_expand (symtab);
22828
22829 slot = find_slot (symtab, name);
22830 if (!*slot)
22831 {
22832 *slot = XNEW (struct symtab_index_entry);
22833 (*slot)->name = name;
22834 /* index_offset is set later. */
22835 (*slot)->cu_indices = NULL;
22836 }
22837
22838 cu_index_and_attrs = 0;
22839 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22840 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22841 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22842
22843 /* We don't want to record an index value twice as we want to avoid the
22844 duplication.
22845 We process all global symbols and then all static symbols
22846 (which would allow us to avoid the duplication by only having to check
22847 the last entry pushed), but a symbol could have multiple kinds in one CU.
22848 To keep things simple we don't worry about the duplication here and
22849 sort and uniqufy the list after we've processed all symbols. */
22850 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22851 }
22852
22853 /* qsort helper routine for uniquify_cu_indices. */
22854
22855 static int
22856 offset_type_compare (const void *ap, const void *bp)
22857 {
22858 offset_type a = *(offset_type *) ap;
22859 offset_type b = *(offset_type *) bp;
22860
22861 return (a > b) - (b > a);
22862 }
22863
22864 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22865
22866 static void
22867 uniquify_cu_indices (struct mapped_symtab *symtab)
22868 {
22869 int i;
22870
22871 for (i = 0; i < symtab->size; ++i)
22872 {
22873 struct symtab_index_entry *entry = symtab->data[i];
22874
22875 if (entry
22876 && entry->cu_indices != NULL)
22877 {
22878 unsigned int next_to_insert, next_to_check;
22879 offset_type last_value;
22880
22881 qsort (VEC_address (offset_type, entry->cu_indices),
22882 VEC_length (offset_type, entry->cu_indices),
22883 sizeof (offset_type), offset_type_compare);
22884
22885 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22886 next_to_insert = 1;
22887 for (next_to_check = 1;
22888 next_to_check < VEC_length (offset_type, entry->cu_indices);
22889 ++next_to_check)
22890 {
22891 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22892 != last_value)
22893 {
22894 last_value = VEC_index (offset_type, entry->cu_indices,
22895 next_to_check);
22896 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22897 last_value);
22898 ++next_to_insert;
22899 }
22900 }
22901 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22902 }
22903 }
22904 }
22905
22906 /* Add a vector of indices to the constant pool. */
22907
22908 static offset_type
22909 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22910 struct symtab_index_entry *entry)
22911 {
22912 void **slot;
22913
22914 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22915 if (!*slot)
22916 {
22917 offset_type len = VEC_length (offset_type, entry->cu_indices);
22918 offset_type val = MAYBE_SWAP (len);
22919 offset_type iter;
22920 int i;
22921
22922 *slot = entry;
22923 entry->index_offset = obstack_object_size (cpool);
22924
22925 obstack_grow (cpool, &val, sizeof (val));
22926 for (i = 0;
22927 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22928 ++i)
22929 {
22930 val = MAYBE_SWAP (iter);
22931 obstack_grow (cpool, &val, sizeof (val));
22932 }
22933 }
22934 else
22935 {
22936 struct symtab_index_entry *old_entry
22937 = (struct symtab_index_entry *) *slot;
22938 entry->index_offset = old_entry->index_offset;
22939 entry = old_entry;
22940 }
22941 return entry->index_offset;
22942 }
22943
22944 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22945 constant pool entries going into the obstack CPOOL. */
22946
22947 static void
22948 write_hash_table (struct mapped_symtab *symtab,
22949 struct obstack *output, struct obstack *cpool)
22950 {
22951 offset_type i;
22952 htab_t symbol_hash_table;
22953 htab_t str_table;
22954
22955 symbol_hash_table = create_symbol_hash_table ();
22956 str_table = create_strtab ();
22957
22958 /* We add all the index vectors to the constant pool first, to
22959 ensure alignment is ok. */
22960 for (i = 0; i < symtab->size; ++i)
22961 {
22962 if (symtab->data[i])
22963 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22964 }
22965
22966 /* Now write out the hash table. */
22967 for (i = 0; i < symtab->size; ++i)
22968 {
22969 offset_type str_off, vec_off;
22970
22971 if (symtab->data[i])
22972 {
22973 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22974 vec_off = symtab->data[i]->index_offset;
22975 }
22976 else
22977 {
22978 /* While 0 is a valid constant pool index, it is not valid
22979 to have 0 for both offsets. */
22980 str_off = 0;
22981 vec_off = 0;
22982 }
22983
22984 str_off = MAYBE_SWAP (str_off);
22985 vec_off = MAYBE_SWAP (vec_off);
22986
22987 obstack_grow (output, &str_off, sizeof (str_off));
22988 obstack_grow (output, &vec_off, sizeof (vec_off));
22989 }
22990
22991 htab_delete (str_table);
22992 htab_delete (symbol_hash_table);
22993 }
22994
22995 /* Struct to map psymtab to CU index in the index file. */
22996 struct psymtab_cu_index_map
22997 {
22998 struct partial_symtab *psymtab;
22999 unsigned int cu_index;
23000 };
23001
23002 static hashval_t
23003 hash_psymtab_cu_index (const void *item)
23004 {
23005 const struct psymtab_cu_index_map *map
23006 = (const struct psymtab_cu_index_map *) item;
23007
23008 return htab_hash_pointer (map->psymtab);
23009 }
23010
23011 static int
23012 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23013 {
23014 const struct psymtab_cu_index_map *lhs
23015 = (const struct psymtab_cu_index_map *) item_lhs;
23016 const struct psymtab_cu_index_map *rhs
23017 = (const struct psymtab_cu_index_map *) item_rhs;
23018
23019 return lhs->psymtab == rhs->psymtab;
23020 }
23021
23022 /* Helper struct for building the address table. */
23023 struct addrmap_index_data
23024 {
23025 struct objfile *objfile;
23026 struct obstack *addr_obstack;
23027 htab_t cu_index_htab;
23028
23029 /* Non-zero if the previous_* fields are valid.
23030 We can't write an entry until we see the next entry (since it is only then
23031 that we know the end of the entry). */
23032 int previous_valid;
23033 /* Index of the CU in the table of all CUs in the index file. */
23034 unsigned int previous_cu_index;
23035 /* Start address of the CU. */
23036 CORE_ADDR previous_cu_start;
23037 };
23038
23039 /* Write an address entry to OBSTACK. */
23040
23041 static void
23042 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23043 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23044 {
23045 offset_type cu_index_to_write;
23046 gdb_byte addr[8];
23047 CORE_ADDR baseaddr;
23048
23049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23050
23051 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23052 obstack_grow (obstack, addr, 8);
23053 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23054 obstack_grow (obstack, addr, 8);
23055 cu_index_to_write = MAYBE_SWAP (cu_index);
23056 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23057 }
23058
23059 /* Worker function for traversing an addrmap to build the address table. */
23060
23061 static int
23062 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23063 {
23064 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23065 struct partial_symtab *pst = (struct partial_symtab *) obj;
23066
23067 if (data->previous_valid)
23068 add_address_entry (data->objfile, data->addr_obstack,
23069 data->previous_cu_start, start_addr,
23070 data->previous_cu_index);
23071
23072 data->previous_cu_start = start_addr;
23073 if (pst != NULL)
23074 {
23075 struct psymtab_cu_index_map find_map, *map;
23076 find_map.psymtab = pst;
23077 map = ((struct psymtab_cu_index_map *)
23078 htab_find (data->cu_index_htab, &find_map));
23079 gdb_assert (map != NULL);
23080 data->previous_cu_index = map->cu_index;
23081 data->previous_valid = 1;
23082 }
23083 else
23084 data->previous_valid = 0;
23085
23086 return 0;
23087 }
23088
23089 /* Write OBJFILE's address map to OBSTACK.
23090 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23091 in the index file. */
23092
23093 static void
23094 write_address_map (struct objfile *objfile, struct obstack *obstack,
23095 htab_t cu_index_htab)
23096 {
23097 struct addrmap_index_data addrmap_index_data;
23098
23099 /* When writing the address table, we have to cope with the fact that
23100 the addrmap iterator only provides the start of a region; we have to
23101 wait until the next invocation to get the start of the next region. */
23102
23103 addrmap_index_data.objfile = objfile;
23104 addrmap_index_data.addr_obstack = obstack;
23105 addrmap_index_data.cu_index_htab = cu_index_htab;
23106 addrmap_index_data.previous_valid = 0;
23107
23108 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23109 &addrmap_index_data);
23110
23111 /* It's highly unlikely the last entry (end address = 0xff...ff)
23112 is valid, but we should still handle it.
23113 The end address is recorded as the start of the next region, but that
23114 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23115 anyway. */
23116 if (addrmap_index_data.previous_valid)
23117 add_address_entry (objfile, obstack,
23118 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23119 addrmap_index_data.previous_cu_index);
23120 }
23121
23122 /* Return the symbol kind of PSYM. */
23123
23124 static gdb_index_symbol_kind
23125 symbol_kind (struct partial_symbol *psym)
23126 {
23127 domain_enum domain = PSYMBOL_DOMAIN (psym);
23128 enum address_class aclass = PSYMBOL_CLASS (psym);
23129
23130 switch (domain)
23131 {
23132 case VAR_DOMAIN:
23133 switch (aclass)
23134 {
23135 case LOC_BLOCK:
23136 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23137 case LOC_TYPEDEF:
23138 return GDB_INDEX_SYMBOL_KIND_TYPE;
23139 case LOC_COMPUTED:
23140 case LOC_CONST_BYTES:
23141 case LOC_OPTIMIZED_OUT:
23142 case LOC_STATIC:
23143 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23144 case LOC_CONST:
23145 /* Note: It's currently impossible to recognize psyms as enum values
23146 short of reading the type info. For now punt. */
23147 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23148 default:
23149 /* There are other LOC_FOO values that one might want to classify
23150 as variables, but dwarf2read.c doesn't currently use them. */
23151 return GDB_INDEX_SYMBOL_KIND_OTHER;
23152 }
23153 case STRUCT_DOMAIN:
23154 return GDB_INDEX_SYMBOL_KIND_TYPE;
23155 default:
23156 return GDB_INDEX_SYMBOL_KIND_OTHER;
23157 }
23158 }
23159
23160 /* Add a list of partial symbols to SYMTAB. */
23161
23162 static void
23163 write_psymbols (struct mapped_symtab *symtab,
23164 htab_t psyms_seen,
23165 struct partial_symbol **psymp,
23166 int count,
23167 offset_type cu_index,
23168 int is_static)
23169 {
23170 for (; count-- > 0; ++psymp)
23171 {
23172 struct partial_symbol *psym = *psymp;
23173 void **slot;
23174
23175 if (SYMBOL_LANGUAGE (psym) == language_ada)
23176 error (_("Ada is not currently supported by the index"));
23177
23178 /* Only add a given psymbol once. */
23179 slot = htab_find_slot (psyms_seen, psym, INSERT);
23180 if (!*slot)
23181 {
23182 gdb_index_symbol_kind kind = symbol_kind (psym);
23183
23184 *slot = psym;
23185 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23186 is_static, kind, cu_index);
23187 }
23188 }
23189 }
23190
23191 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23192 exception if there is an error. */
23193
23194 static void
23195 write_obstack (FILE *file, struct obstack *obstack)
23196 {
23197 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23198 file)
23199 != obstack_object_size (obstack))
23200 error (_("couldn't data write to file"));
23201 }
23202
23203 /* Unlink a file if the argument is not NULL. */
23204
23205 static void
23206 unlink_if_set (void *p)
23207 {
23208 char **filename = (char **) p;
23209 if (*filename)
23210 unlink (*filename);
23211 }
23212
23213 /* A helper struct used when iterating over debug_types. */
23214 struct signatured_type_index_data
23215 {
23216 struct objfile *objfile;
23217 struct mapped_symtab *symtab;
23218 struct obstack *types_list;
23219 htab_t psyms_seen;
23220 int cu_index;
23221 };
23222
23223 /* A helper function that writes a single signatured_type to an
23224 obstack. */
23225
23226 static int
23227 write_one_signatured_type (void **slot, void *d)
23228 {
23229 struct signatured_type_index_data *info
23230 = (struct signatured_type_index_data *) d;
23231 struct signatured_type *entry = (struct signatured_type *) *slot;
23232 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23233 gdb_byte val[8];
23234
23235 write_psymbols (info->symtab,
23236 info->psyms_seen,
23237 info->objfile->global_psymbols.list
23238 + psymtab->globals_offset,
23239 psymtab->n_global_syms, info->cu_index,
23240 0);
23241 write_psymbols (info->symtab,
23242 info->psyms_seen,
23243 info->objfile->static_psymbols.list
23244 + psymtab->statics_offset,
23245 psymtab->n_static_syms, info->cu_index,
23246 1);
23247
23248 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23249 entry->per_cu.offset.sect_off);
23250 obstack_grow (info->types_list, val, 8);
23251 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23252 entry->type_offset_in_tu.cu_off);
23253 obstack_grow (info->types_list, val, 8);
23254 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23255 obstack_grow (info->types_list, val, 8);
23256
23257 ++info->cu_index;
23258
23259 return 1;
23260 }
23261
23262 /* Recurse into all "included" dependencies and write their symbols as
23263 if they appeared in this psymtab. */
23264
23265 static void
23266 recursively_write_psymbols (struct objfile *objfile,
23267 struct partial_symtab *psymtab,
23268 struct mapped_symtab *symtab,
23269 htab_t psyms_seen,
23270 offset_type cu_index)
23271 {
23272 int i;
23273
23274 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23275 if (psymtab->dependencies[i]->user != NULL)
23276 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23277 symtab, psyms_seen, cu_index);
23278
23279 write_psymbols (symtab,
23280 psyms_seen,
23281 objfile->global_psymbols.list + psymtab->globals_offset,
23282 psymtab->n_global_syms, cu_index,
23283 0);
23284 write_psymbols (symtab,
23285 psyms_seen,
23286 objfile->static_psymbols.list + psymtab->statics_offset,
23287 psymtab->n_static_syms, cu_index,
23288 1);
23289 }
23290
23291 /* Create an index file for OBJFILE in the directory DIR. */
23292
23293 static void
23294 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23295 {
23296 struct cleanup *cleanup;
23297 char *filename, *cleanup_filename;
23298 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23299 struct obstack cu_list, types_cu_list;
23300 int i;
23301 FILE *out_file;
23302 struct mapped_symtab *symtab;
23303 offset_type val, size_of_contents, total_len;
23304 struct stat st;
23305 htab_t psyms_seen;
23306 htab_t cu_index_htab;
23307 struct psymtab_cu_index_map *psymtab_cu_index_map;
23308
23309 if (dwarf2_per_objfile->using_index)
23310 error (_("Cannot use an index to create the index"));
23311
23312 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23313 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23314
23315 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23316 return;
23317
23318 if (stat (objfile_name (objfile), &st) < 0)
23319 perror_with_name (objfile_name (objfile));
23320
23321 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23322 INDEX_SUFFIX, (char *) NULL);
23323 cleanup = make_cleanup (xfree, filename);
23324
23325 out_file = gdb_fopen_cloexec (filename, "wb");
23326 if (!out_file)
23327 error (_("Can't open `%s' for writing"), filename);
23328
23329 cleanup_filename = filename;
23330 make_cleanup (unlink_if_set, &cleanup_filename);
23331
23332 symtab = create_mapped_symtab ();
23333 make_cleanup (cleanup_mapped_symtab, symtab);
23334
23335 obstack_init (&addr_obstack);
23336 make_cleanup_obstack_free (&addr_obstack);
23337
23338 obstack_init (&cu_list);
23339 make_cleanup_obstack_free (&cu_list);
23340
23341 obstack_init (&types_cu_list);
23342 make_cleanup_obstack_free (&types_cu_list);
23343
23344 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23345 NULL, xcalloc, xfree);
23346 make_cleanup_htab_delete (psyms_seen);
23347
23348 /* While we're scanning CU's create a table that maps a psymtab pointer
23349 (which is what addrmap records) to its index (which is what is recorded
23350 in the index file). This will later be needed to write the address
23351 table. */
23352 cu_index_htab = htab_create_alloc (100,
23353 hash_psymtab_cu_index,
23354 eq_psymtab_cu_index,
23355 NULL, xcalloc, xfree);
23356 make_cleanup_htab_delete (cu_index_htab);
23357 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23358 dwarf2_per_objfile->n_comp_units);
23359 make_cleanup (xfree, psymtab_cu_index_map);
23360
23361 /* The CU list is already sorted, so we don't need to do additional
23362 work here. Also, the debug_types entries do not appear in
23363 all_comp_units, but only in their own hash table. */
23364 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23365 {
23366 struct dwarf2_per_cu_data *per_cu
23367 = dwarf2_per_objfile->all_comp_units[i];
23368 struct partial_symtab *psymtab = per_cu->v.psymtab;
23369 gdb_byte val[8];
23370 struct psymtab_cu_index_map *map;
23371 void **slot;
23372
23373 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23374 It may be referenced from a local scope but in such case it does not
23375 need to be present in .gdb_index. */
23376 if (psymtab == NULL)
23377 continue;
23378
23379 if (psymtab->user == NULL)
23380 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23381
23382 map = &psymtab_cu_index_map[i];
23383 map->psymtab = psymtab;
23384 map->cu_index = i;
23385 slot = htab_find_slot (cu_index_htab, map, INSERT);
23386 gdb_assert (slot != NULL);
23387 gdb_assert (*slot == NULL);
23388 *slot = map;
23389
23390 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23391 per_cu->offset.sect_off);
23392 obstack_grow (&cu_list, val, 8);
23393 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23394 obstack_grow (&cu_list, val, 8);
23395 }
23396
23397 /* Dump the address map. */
23398 write_address_map (objfile, &addr_obstack, cu_index_htab);
23399
23400 /* Write out the .debug_type entries, if any. */
23401 if (dwarf2_per_objfile->signatured_types)
23402 {
23403 struct signatured_type_index_data sig_data;
23404
23405 sig_data.objfile = objfile;
23406 sig_data.symtab = symtab;
23407 sig_data.types_list = &types_cu_list;
23408 sig_data.psyms_seen = psyms_seen;
23409 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23410 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23411 write_one_signatured_type, &sig_data);
23412 }
23413
23414 /* Now that we've processed all symbols we can shrink their cu_indices
23415 lists. */
23416 uniquify_cu_indices (symtab);
23417
23418 obstack_init (&constant_pool);
23419 make_cleanup_obstack_free (&constant_pool);
23420 obstack_init (&symtab_obstack);
23421 make_cleanup_obstack_free (&symtab_obstack);
23422 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23423
23424 obstack_init (&contents);
23425 make_cleanup_obstack_free (&contents);
23426 size_of_contents = 6 * sizeof (offset_type);
23427 total_len = size_of_contents;
23428
23429 /* The version number. */
23430 val = MAYBE_SWAP (8);
23431 obstack_grow (&contents, &val, sizeof (val));
23432
23433 /* The offset of the CU list from the start of the file. */
23434 val = MAYBE_SWAP (total_len);
23435 obstack_grow (&contents, &val, sizeof (val));
23436 total_len += obstack_object_size (&cu_list);
23437
23438 /* The offset of the types CU list from the start of the file. */
23439 val = MAYBE_SWAP (total_len);
23440 obstack_grow (&contents, &val, sizeof (val));
23441 total_len += obstack_object_size (&types_cu_list);
23442
23443 /* The offset of the address table from the start of the file. */
23444 val = MAYBE_SWAP (total_len);
23445 obstack_grow (&contents, &val, sizeof (val));
23446 total_len += obstack_object_size (&addr_obstack);
23447
23448 /* The offset of the symbol table from the start of the file. */
23449 val = MAYBE_SWAP (total_len);
23450 obstack_grow (&contents, &val, sizeof (val));
23451 total_len += obstack_object_size (&symtab_obstack);
23452
23453 /* The offset of the constant pool from the start of the file. */
23454 val = MAYBE_SWAP (total_len);
23455 obstack_grow (&contents, &val, sizeof (val));
23456 total_len += obstack_object_size (&constant_pool);
23457
23458 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23459
23460 write_obstack (out_file, &contents);
23461 write_obstack (out_file, &cu_list);
23462 write_obstack (out_file, &types_cu_list);
23463 write_obstack (out_file, &addr_obstack);
23464 write_obstack (out_file, &symtab_obstack);
23465 write_obstack (out_file, &constant_pool);
23466
23467 fclose (out_file);
23468
23469 /* We want to keep the file, so we set cleanup_filename to NULL
23470 here. See unlink_if_set. */
23471 cleanup_filename = NULL;
23472
23473 do_cleanups (cleanup);
23474 }
23475
23476 /* Implementation of the `save gdb-index' command.
23477
23478 Note that the file format used by this command is documented in the
23479 GDB manual. Any changes here must be documented there. */
23480
23481 static void
23482 save_gdb_index_command (char *arg, int from_tty)
23483 {
23484 struct objfile *objfile;
23485
23486 if (!arg || !*arg)
23487 error (_("usage: save gdb-index DIRECTORY"));
23488
23489 ALL_OBJFILES (objfile)
23490 {
23491 struct stat st;
23492
23493 /* If the objfile does not correspond to an actual file, skip it. */
23494 if (stat (objfile_name (objfile), &st) < 0)
23495 continue;
23496
23497 dwarf2_per_objfile
23498 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23499 dwarf2_objfile_data_key);
23500 if (dwarf2_per_objfile)
23501 {
23502
23503 TRY
23504 {
23505 write_psymtabs_to_index (objfile, arg);
23506 }
23507 CATCH (except, RETURN_MASK_ERROR)
23508 {
23509 exception_fprintf (gdb_stderr, except,
23510 _("Error while writing index for `%s': "),
23511 objfile_name (objfile));
23512 }
23513 END_CATCH
23514 }
23515 }
23516 }
23517
23518 \f
23519
23520 int dwarf_always_disassemble;
23521
23522 static void
23523 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23524 struct cmd_list_element *c, const char *value)
23525 {
23526 fprintf_filtered (file,
23527 _("Whether to always disassemble "
23528 "DWARF expressions is %s.\n"),
23529 value);
23530 }
23531
23532 static void
23533 show_check_physname (struct ui_file *file, int from_tty,
23534 struct cmd_list_element *c, const char *value)
23535 {
23536 fprintf_filtered (file,
23537 _("Whether to check \"physname\" is %s.\n"),
23538 value);
23539 }
23540
23541 void _initialize_dwarf2_read (void);
23542
23543 void
23544 _initialize_dwarf2_read (void)
23545 {
23546 struct cmd_list_element *c;
23547
23548 dwarf2_objfile_data_key
23549 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23550
23551 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23552 Set DWARF specific variables.\n\
23553 Configure DWARF variables such as the cache size"),
23554 &set_dwarf_cmdlist, "maintenance set dwarf ",
23555 0/*allow-unknown*/, &maintenance_set_cmdlist);
23556
23557 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23558 Show DWARF specific variables\n\
23559 Show DWARF variables such as the cache size"),
23560 &show_dwarf_cmdlist, "maintenance show dwarf ",
23561 0/*allow-unknown*/, &maintenance_show_cmdlist);
23562
23563 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23564 &dwarf_max_cache_age, _("\
23565 Set the upper bound on the age of cached DWARF compilation units."), _("\
23566 Show the upper bound on the age of cached DWARF compilation units."), _("\
23567 A higher limit means that cached compilation units will be stored\n\
23568 in memory longer, and more total memory will be used. Zero disables\n\
23569 caching, which can slow down startup."),
23570 NULL,
23571 show_dwarf_max_cache_age,
23572 &set_dwarf_cmdlist,
23573 &show_dwarf_cmdlist);
23574
23575 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23576 &dwarf_always_disassemble, _("\
23577 Set whether `info address' always disassembles DWARF expressions."), _("\
23578 Show whether `info address' always disassembles DWARF expressions."), _("\
23579 When enabled, DWARF expressions are always printed in an assembly-like\n\
23580 syntax. When disabled, expressions will be printed in a more\n\
23581 conversational style, when possible."),
23582 NULL,
23583 show_dwarf_always_disassemble,
23584 &set_dwarf_cmdlist,
23585 &show_dwarf_cmdlist);
23586
23587 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23588 Set debugging of the DWARF reader."), _("\
23589 Show debugging of the DWARF reader."), _("\
23590 When enabled (non-zero), debugging messages are printed during DWARF\n\
23591 reading and symtab expansion. A value of 1 (one) provides basic\n\
23592 information. A value greater than 1 provides more verbose information."),
23593 NULL,
23594 NULL,
23595 &setdebuglist, &showdebuglist);
23596
23597 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23598 Set debugging of the DWARF DIE reader."), _("\
23599 Show debugging of the DWARF DIE reader."), _("\
23600 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23601 The value is the maximum depth to print."),
23602 NULL,
23603 NULL,
23604 &setdebuglist, &showdebuglist);
23605
23606 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23607 Set debugging of the dwarf line reader."), _("\
23608 Show debugging of the dwarf line reader."), _("\
23609 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23610 A value of 1 (one) provides basic information.\n\
23611 A value greater than 1 provides more verbose information."),
23612 NULL,
23613 NULL,
23614 &setdebuglist, &showdebuglist);
23615
23616 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23617 Set cross-checking of \"physname\" code against demangler."), _("\
23618 Show cross-checking of \"physname\" code against demangler."), _("\
23619 When enabled, GDB's internal \"physname\" code is checked against\n\
23620 the demangler."),
23621 NULL, show_check_physname,
23622 &setdebuglist, &showdebuglist);
23623
23624 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23625 no_class, &use_deprecated_index_sections, _("\
23626 Set whether to use deprecated gdb_index sections."), _("\
23627 Show whether to use deprecated gdb_index sections."), _("\
23628 When enabled, deprecated .gdb_index sections are used anyway.\n\
23629 Normally they are ignored either because of a missing feature or\n\
23630 performance issue.\n\
23631 Warning: This option must be enabled before gdb reads the file."),
23632 NULL,
23633 NULL,
23634 &setlist, &showlist);
23635
23636 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23637 _("\
23638 Save a gdb-index file.\n\
23639 Usage: save gdb-index DIRECTORY"),
23640 &save_cmdlist);
23641 set_cmd_completer (c, filename_completer);
23642
23643 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23644 &dwarf2_locexpr_funcs);
23645 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23646 &dwarf2_loclist_funcs);
23647
23648 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23649 &dwarf2_block_frame_base_locexpr_funcs);
23650 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23651 &dwarf2_block_frame_base_loclist_funcs);
23652 }