]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
boolean/auto-boolean commands, make "o" ambiguous
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
711
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
714
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
717 bfd *dbfd;
718
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
723
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
728 htab_t cus;
729
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
732 htab_t tus;
733 };
734
735 /* These sections are what may appear in a DWP file. */
736
737 struct dwp_sections
738 {
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
760 };
761
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
764
765 struct virtual_v1_dwo_sections
766 {
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
776 };
777
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
782
783 struct virtual_v2_dwo_sections
784 {
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
787
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
790
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
793
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
796
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
799
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
802
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
807 };
808
809 /* Contents of DWP hash tables. */
810
811 struct dwp_hash_table
812 {
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
816 union
817 {
818 struct
819 {
820 const gdb_byte *indices;
821 } v1;
822 struct
823 {
824 /* This is indexed by column number and gives the id of the section
825 in that column. */
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
836 } v2;
837 } section_pool;
838 };
839
840 /* Data for one DWP file. */
841
842 struct dwp_file
843 {
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
845 : name (name_),
846 dbfd (std::move (abfd))
847 {
848 }
849
850 /* Name of the file. */
851 const char *name;
852
853 /* File format version. */
854 int version = 0;
855
856 /* The bfd. */
857 gdb_bfd_ref_ptr dbfd;
858
859 /* Section info for this file. */
860 struct dwp_sections sections {};
861
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
864
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
867
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
871
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
876 };
877
878 /* This represents a '.dwz' file. */
879
880 struct dwz_file
881 {
882 dwz_file (gdb_bfd_ref_ptr &&bfd)
883 : dwz_bfd (std::move (bfd))
884 {
885 }
886
887 /* A dwz file can only contain a few sections. */
888 struct dwarf2_section_info abbrev {};
889 struct dwarf2_section_info info {};
890 struct dwarf2_section_info str {};
891 struct dwarf2_section_info line {};
892 struct dwarf2_section_info macro {};
893 struct dwarf2_section_info gdb_index {};
894 struct dwarf2_section_info debug_names {};
895
896 /* The dwz's BFD. */
897 gdb_bfd_ref_ptr dwz_bfd;
898
899 /* If we loaded the index from an external file, this contains the
900 resources associated to the open file, memory mapping, etc. */
901 std::unique_ptr<index_cache_resource> index_cache_res;
902 };
903
904 /* Struct used to pass misc. parameters to read_die_and_children, et
905 al. which are used for both .debug_info and .debug_types dies.
906 All parameters here are unchanging for the life of the call. This
907 struct exists to abstract away the constant parameters of die reading. */
908
909 struct die_reader_specs
910 {
911 /* The bfd of die_section. */
912 bfd* abfd;
913
914 /* The CU of the DIE we are parsing. */
915 struct dwarf2_cu *cu;
916
917 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
918 struct dwo_file *dwo_file;
919
920 /* The section the die comes from.
921 This is either .debug_info or .debug_types, or the .dwo variants. */
922 struct dwarf2_section_info *die_section;
923
924 /* die_section->buffer. */
925 const gdb_byte *buffer;
926
927 /* The end of the buffer. */
928 const gdb_byte *buffer_end;
929
930 /* The value of the DW_AT_comp_dir attribute. */
931 const char *comp_dir;
932
933 /* The abbreviation table to use when reading the DIEs. */
934 struct abbrev_table *abbrev_table;
935 };
936
937 /* Type of function passed to init_cutu_and_read_dies, et.al. */
938 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
939 const gdb_byte *info_ptr,
940 struct die_info *comp_unit_die,
941 int has_children,
942 void *data);
943
944 /* A 1-based directory index. This is a strong typedef to prevent
945 accidentally using a directory index as a 0-based index into an
946 array/vector. */
947 enum class dir_index : unsigned int {};
948
949 /* Likewise, a 1-based file name index. */
950 enum class file_name_index : unsigned int {};
951
952 struct file_entry
953 {
954 file_entry () = default;
955
956 file_entry (const char *name_, dir_index d_index_,
957 unsigned int mod_time_, unsigned int length_)
958 : name (name_),
959 d_index (d_index_),
960 mod_time (mod_time_),
961 length (length_)
962 {}
963
964 /* Return the include directory at D_INDEX stored in LH. Returns
965 NULL if D_INDEX is out of bounds. */
966 const char *include_dir (const line_header *lh) const;
967
968 /* The file name. Note this is an observing pointer. The memory is
969 owned by debug_line_buffer. */
970 const char *name {};
971
972 /* The directory index (1-based). */
973 dir_index d_index {};
974
975 unsigned int mod_time {};
976
977 unsigned int length {};
978
979 /* True if referenced by the Line Number Program. */
980 bool included_p {};
981
982 /* The associated symbol table, if any. */
983 struct symtab *symtab {};
984 };
985
986 /* The line number information for a compilation unit (found in the
987 .debug_line section) begins with a "statement program header",
988 which contains the following information. */
989 struct line_header
990 {
991 line_header ()
992 : offset_in_dwz {}
993 {}
994
995 /* Add an entry to the include directory table. */
996 void add_include_dir (const char *include_dir);
997
998 /* Add an entry to the file name table. */
999 void add_file_name (const char *name, dir_index d_index,
1000 unsigned int mod_time, unsigned int length);
1001
1002 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1003 is out of bounds. */
1004 const char *include_dir_at (dir_index index) const
1005 {
1006 /* Convert directory index number (1-based) to vector index
1007 (0-based). */
1008 size_t vec_index = to_underlying (index) - 1;
1009
1010 if (vec_index >= include_dirs.size ())
1011 return NULL;
1012 return include_dirs[vec_index];
1013 }
1014
1015 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1016 is out of bounds. */
1017 file_entry *file_name_at (file_name_index index)
1018 {
1019 /* Convert file name index number (1-based) to vector index
1020 (0-based). */
1021 size_t vec_index = to_underlying (index) - 1;
1022
1023 if (vec_index >= file_names.size ())
1024 return NULL;
1025 return &file_names[vec_index];
1026 }
1027
1028 /* Offset of line number information in .debug_line section. */
1029 sect_offset sect_off {};
1030
1031 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1032 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1033
1034 unsigned int total_length {};
1035 unsigned short version {};
1036 unsigned int header_length {};
1037 unsigned char minimum_instruction_length {};
1038 unsigned char maximum_ops_per_instruction {};
1039 unsigned char default_is_stmt {};
1040 int line_base {};
1041 unsigned char line_range {};
1042 unsigned char opcode_base {};
1043
1044 /* standard_opcode_lengths[i] is the number of operands for the
1045 standard opcode whose value is i. This means that
1046 standard_opcode_lengths[0] is unused, and the last meaningful
1047 element is standard_opcode_lengths[opcode_base - 1]. */
1048 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1049
1050 /* The include_directories table. Note these are observing
1051 pointers. The memory is owned by debug_line_buffer. */
1052 std::vector<const char *> include_dirs;
1053
1054 /* The file_names table. */
1055 std::vector<file_entry> file_names;
1056
1057 /* The start and end of the statement program following this
1058 header. These point into dwarf2_per_objfile->line_buffer. */
1059 const gdb_byte *statement_program_start {}, *statement_program_end {};
1060 };
1061
1062 typedef std::unique_ptr<line_header> line_header_up;
1063
1064 const char *
1065 file_entry::include_dir (const line_header *lh) const
1066 {
1067 return lh->include_dir_at (d_index);
1068 }
1069
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info : public allocate_on_obstack
1073 {
1074 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1075
1076 /* Disable assign but still keep copy ctor, which is needed
1077 load_partial_dies. */
1078 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1079
1080 /* Adjust the partial die before generating a symbol for it. This
1081 function may set the is_external flag or change the DIE's
1082 name. */
1083 void fixup (struct dwarf2_cu *cu);
1084
1085 /* Read a minimal amount of information into the minimal die
1086 structure. */
1087 const gdb_byte *read (const struct die_reader_specs *reader,
1088 const struct abbrev_info &abbrev,
1089 const gdb_byte *info_ptr);
1090
1091 /* Offset of this DIE. */
1092 const sect_offset sect_off;
1093
1094 /* DWARF-2 tag for this DIE. */
1095 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1096
1097 /* Assorted flags describing the data found in this DIE. */
1098 const unsigned int has_children : 1;
1099
1100 unsigned int is_external : 1;
1101 unsigned int is_declaration : 1;
1102 unsigned int has_type : 1;
1103 unsigned int has_specification : 1;
1104 unsigned int has_pc_info : 1;
1105 unsigned int may_be_inlined : 1;
1106
1107 /* This DIE has been marked DW_AT_main_subprogram. */
1108 unsigned int main_subprogram : 1;
1109
1110 /* Flag set if the SCOPE field of this structure has been
1111 computed. */
1112 unsigned int scope_set : 1;
1113
1114 /* Flag set if the DIE has a byte_size attribute. */
1115 unsigned int has_byte_size : 1;
1116
1117 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1118 unsigned int has_const_value : 1;
1119
1120 /* Flag set if any of the DIE's children are template arguments. */
1121 unsigned int has_template_arguments : 1;
1122
1123 /* Flag set if fixup has been called on this die. */
1124 unsigned int fixup_called : 1;
1125
1126 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1127 unsigned int is_dwz : 1;
1128
1129 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1130 unsigned int spec_is_dwz : 1;
1131
1132 /* The name of this DIE. Normally the value of DW_AT_name, but
1133 sometimes a default name for unnamed DIEs. */
1134 const char *name = nullptr;
1135
1136 /* The linkage name, if present. */
1137 const char *linkage_name = nullptr;
1138
1139 /* The scope to prepend to our children. This is generally
1140 allocated on the comp_unit_obstack, so will disappear
1141 when this compilation unit leaves the cache. */
1142 const char *scope = nullptr;
1143
1144 /* Some data associated with the partial DIE. The tag determines
1145 which field is live. */
1146 union
1147 {
1148 /* The location description associated with this DIE, if any. */
1149 struct dwarf_block *locdesc;
1150 /* The offset of an import, for DW_TAG_imported_unit. */
1151 sect_offset sect_off;
1152 } d {};
1153
1154 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1155 CORE_ADDR lowpc = 0;
1156 CORE_ADDR highpc = 0;
1157
1158 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1159 DW_AT_sibling, if any. */
1160 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1161 could return DW_AT_sibling values to its caller load_partial_dies. */
1162 const gdb_byte *sibling = nullptr;
1163
1164 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1165 DW_AT_specification (or DW_AT_abstract_origin or
1166 DW_AT_extension). */
1167 sect_offset spec_offset {};
1168
1169 /* Pointers to this DIE's parent, first child, and next sibling,
1170 if any. */
1171 struct partial_die_info *die_parent = nullptr;
1172 struct partial_die_info *die_child = nullptr;
1173 struct partial_die_info *die_sibling = nullptr;
1174
1175 friend struct partial_die_info *
1176 dwarf2_cu::find_partial_die (sect_offset sect_off);
1177
1178 private:
1179 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1180 partial_die_info (sect_offset sect_off)
1181 : partial_die_info (sect_off, DW_TAG_padding, 0)
1182 {
1183 }
1184
1185 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1186 int has_children_)
1187 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1188 {
1189 is_external = 0;
1190 is_declaration = 0;
1191 has_type = 0;
1192 has_specification = 0;
1193 has_pc_info = 0;
1194 may_be_inlined = 0;
1195 main_subprogram = 0;
1196 scope_set = 0;
1197 has_byte_size = 0;
1198 has_const_value = 0;
1199 has_template_arguments = 0;
1200 fixup_called = 0;
1201 is_dwz = 0;
1202 spec_is_dwz = 0;
1203 }
1204 };
1205
1206 /* This data structure holds the information of an abbrev. */
1207 struct abbrev_info
1208 {
1209 unsigned int number; /* number identifying abbrev */
1210 enum dwarf_tag tag; /* dwarf tag */
1211 unsigned short has_children; /* boolean */
1212 unsigned short num_attrs; /* number of attributes */
1213 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1214 struct abbrev_info *next; /* next in chain */
1215 };
1216
1217 struct attr_abbrev
1218 {
1219 ENUM_BITFIELD(dwarf_attribute) name : 16;
1220 ENUM_BITFIELD(dwarf_form) form : 16;
1221
1222 /* It is valid only if FORM is DW_FORM_implicit_const. */
1223 LONGEST implicit_const;
1224 };
1225
1226 /* Size of abbrev_table.abbrev_hash_table. */
1227 #define ABBREV_HASH_SIZE 121
1228
1229 /* Top level data structure to contain an abbreviation table. */
1230
1231 struct abbrev_table
1232 {
1233 explicit abbrev_table (sect_offset off)
1234 : sect_off (off)
1235 {
1236 m_abbrevs =
1237 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1238 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1239 }
1240
1241 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1242
1243 /* Allocate space for a struct abbrev_info object in
1244 ABBREV_TABLE. */
1245 struct abbrev_info *alloc_abbrev ();
1246
1247 /* Add an abbreviation to the table. */
1248 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1249
1250 /* Look up an abbrev in the table.
1251 Returns NULL if the abbrev is not found. */
1252
1253 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1254
1255
1256 /* Where the abbrev table came from.
1257 This is used as a sanity check when the table is used. */
1258 const sect_offset sect_off;
1259
1260 /* Storage for the abbrev table. */
1261 auto_obstack abbrev_obstack;
1262
1263 private:
1264
1265 /* Hash table of abbrevs.
1266 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1267 It could be statically allocated, but the previous code didn't so we
1268 don't either. */
1269 struct abbrev_info **m_abbrevs;
1270 };
1271
1272 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1273
1274 /* Attributes have a name and a value. */
1275 struct attribute
1276 {
1277 ENUM_BITFIELD(dwarf_attribute) name : 16;
1278 ENUM_BITFIELD(dwarf_form) form : 15;
1279
1280 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1281 field should be in u.str (existing only for DW_STRING) but it is kept
1282 here for better struct attribute alignment. */
1283 unsigned int string_is_canonical : 1;
1284
1285 union
1286 {
1287 const char *str;
1288 struct dwarf_block *blk;
1289 ULONGEST unsnd;
1290 LONGEST snd;
1291 CORE_ADDR addr;
1292 ULONGEST signature;
1293 }
1294 u;
1295 };
1296
1297 /* This data structure holds a complete die structure. */
1298 struct die_info
1299 {
1300 /* DWARF-2 tag for this DIE. */
1301 ENUM_BITFIELD(dwarf_tag) tag : 16;
1302
1303 /* Number of attributes */
1304 unsigned char num_attrs;
1305
1306 /* True if we're presently building the full type name for the
1307 type derived from this DIE. */
1308 unsigned char building_fullname : 1;
1309
1310 /* True if this die is in process. PR 16581. */
1311 unsigned char in_process : 1;
1312
1313 /* Abbrev number */
1314 unsigned int abbrev;
1315
1316 /* Offset in .debug_info or .debug_types section. */
1317 sect_offset sect_off;
1318
1319 /* The dies in a compilation unit form an n-ary tree. PARENT
1320 points to this die's parent; CHILD points to the first child of
1321 this node; and all the children of a given node are chained
1322 together via their SIBLING fields. */
1323 struct die_info *child; /* Its first child, if any. */
1324 struct die_info *sibling; /* Its next sibling, if any. */
1325 struct die_info *parent; /* Its parent, if any. */
1326
1327 /* An array of attributes, with NUM_ATTRS elements. There may be
1328 zero, but it's not common and zero-sized arrays are not
1329 sufficiently portable C. */
1330 struct attribute attrs[1];
1331 };
1332
1333 /* Get at parts of an attribute structure. */
1334
1335 #define DW_STRING(attr) ((attr)->u.str)
1336 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1337 #define DW_UNSND(attr) ((attr)->u.unsnd)
1338 #define DW_BLOCK(attr) ((attr)->u.blk)
1339 #define DW_SND(attr) ((attr)->u.snd)
1340 #define DW_ADDR(attr) ((attr)->u.addr)
1341 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1342
1343 /* Blocks are a bunch of untyped bytes. */
1344 struct dwarf_block
1345 {
1346 size_t size;
1347
1348 /* Valid only if SIZE is not zero. */
1349 const gdb_byte *data;
1350 };
1351
1352 #ifndef ATTR_ALLOC_CHUNK
1353 #define ATTR_ALLOC_CHUNK 4
1354 #endif
1355
1356 /* Allocate fields for structs, unions and enums in this size. */
1357 #ifndef DW_FIELD_ALLOC_CHUNK
1358 #define DW_FIELD_ALLOC_CHUNK 4
1359 #endif
1360
1361 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1362 but this would require a corresponding change in unpack_field_as_long
1363 and friends. */
1364 static int bits_per_byte = 8;
1365
1366 /* When reading a variant or variant part, we track a bit more
1367 information about the field, and store it in an object of this
1368 type. */
1369
1370 struct variant_field
1371 {
1372 /* If we see a DW_TAG_variant, then this will be the discriminant
1373 value. */
1374 ULONGEST discriminant_value;
1375 /* If we see a DW_TAG_variant, then this will be set if this is the
1376 default branch. */
1377 bool default_branch;
1378 /* While reading a DW_TAG_variant_part, this will be set if this
1379 field is the discriminant. */
1380 bool is_discriminant;
1381 };
1382
1383 struct nextfield
1384 {
1385 int accessibility = 0;
1386 int virtuality = 0;
1387 /* Extra information to describe a variant or variant part. */
1388 struct variant_field variant {};
1389 struct field field {};
1390 };
1391
1392 struct fnfieldlist
1393 {
1394 const char *name = nullptr;
1395 std::vector<struct fn_field> fnfields;
1396 };
1397
1398 /* The routines that read and process dies for a C struct or C++ class
1399 pass lists of data member fields and lists of member function fields
1400 in an instance of a field_info structure, as defined below. */
1401 struct field_info
1402 {
1403 /* List of data member and baseclasses fields. */
1404 std::vector<struct nextfield> fields;
1405 std::vector<struct nextfield> baseclasses;
1406
1407 /* Number of fields (including baseclasses). */
1408 int nfields = 0;
1409
1410 /* Set if the accesibility of one of the fields is not public. */
1411 int non_public_fields = 0;
1412
1413 /* Member function fieldlist array, contains name of possibly overloaded
1414 member function, number of overloaded member functions and a pointer
1415 to the head of the member function field chain. */
1416 std::vector<struct fnfieldlist> fnfieldlists;
1417
1418 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1419 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1420 std::vector<struct decl_field> typedef_field_list;
1421
1422 /* Nested types defined by this class and the number of elements in this
1423 list. */
1424 std::vector<struct decl_field> nested_types_list;
1425 };
1426
1427 /* One item on the queue of compilation units to read in full symbols
1428 for. */
1429 struct dwarf2_queue_item
1430 {
1431 struct dwarf2_per_cu_data *per_cu;
1432 enum language pretend_language;
1433 struct dwarf2_queue_item *next;
1434 };
1435
1436 /* The current queue. */
1437 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1438
1439 /* Loaded secondary compilation units are kept in memory until they
1440 have not been referenced for the processing of this many
1441 compilation units. Set this to zero to disable caching. Cache
1442 sizes of up to at least twenty will improve startup time for
1443 typical inter-CU-reference binaries, at an obvious memory cost. */
1444 static int dwarf_max_cache_age = 5;
1445 static void
1446 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c, const char *value)
1448 {
1449 fprintf_filtered (file, _("The upper bound on the age of cached "
1450 "DWARF compilation units is %s.\n"),
1451 value);
1452 }
1453 \f
1454 /* local function prototypes */
1455
1456 static const char *get_section_name (const struct dwarf2_section_info *);
1457
1458 static const char *get_section_file_name (const struct dwarf2_section_info *);
1459
1460 static void dwarf2_find_base_address (struct die_info *die,
1461 struct dwarf2_cu *cu);
1462
1463 static struct partial_symtab *create_partial_symtab
1464 (struct dwarf2_per_cu_data *per_cu, const char *name);
1465
1466 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1467 const gdb_byte *info_ptr,
1468 struct die_info *type_unit_die,
1469 int has_children, void *data);
1470
1471 static void dwarf2_build_psymtabs_hard
1472 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1473
1474 static void scan_partial_symbols (struct partial_die_info *,
1475 CORE_ADDR *, CORE_ADDR *,
1476 int, struct dwarf2_cu *);
1477
1478 static void add_partial_symbol (struct partial_die_info *,
1479 struct dwarf2_cu *);
1480
1481 static void add_partial_namespace (struct partial_die_info *pdi,
1482 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1483 int set_addrmap, struct dwarf2_cu *cu);
1484
1485 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1486 CORE_ADDR *highpc, int set_addrmap,
1487 struct dwarf2_cu *cu);
1488
1489 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1490 struct dwarf2_cu *cu);
1491
1492 static void add_partial_subprogram (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int need_pc, struct dwarf2_cu *cu);
1495
1496 static void dwarf2_read_symtab (struct partial_symtab *,
1497 struct objfile *);
1498
1499 static void psymtab_to_symtab_1 (struct partial_symtab *);
1500
1501 static abbrev_table_up abbrev_table_read_table
1502 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1503 sect_offset);
1504
1505 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1506
1507 static struct partial_die_info *load_partial_dies
1508 (const struct die_reader_specs *, const gdb_byte *, int);
1509
1510 /* A pair of partial_die_info and compilation unit. */
1511 struct cu_partial_die_info
1512 {
1513 /* The compilation unit of the partial_die_info. */
1514 struct dwarf2_cu *cu;
1515 /* A partial_die_info. */
1516 struct partial_die_info *pdi;
1517
1518 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1519 : cu (cu),
1520 pdi (pdi)
1521 { /* Nothhing. */ }
1522
1523 private:
1524 cu_partial_die_info () = delete;
1525 };
1526
1527 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1528 struct dwarf2_cu *);
1529
1530 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1531 struct attribute *, struct attr_abbrev *,
1532 const gdb_byte *);
1533
1534 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1535
1536 static int read_1_signed_byte (bfd *, const gdb_byte *);
1537
1538 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1539
1540 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1541 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1542
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1548 unsigned int *);
1549
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1555
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1558 unsigned int *);
1559
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1565
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1573
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1577
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1581
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1588 const gdb_byte *,
1589 unsigned int *);
1590
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1593
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1598
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1600 unsigned int);
1601
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1604
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1607
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1612
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1615
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1619
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1621 const char *);
1622
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1625
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1628
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1630 struct type *type,
1631 const char *name,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1636
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638
1639 static int need_gnat_info (struct dwarf2_cu *);
1640
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1649
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1652
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1662
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1677
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1680 enum pc_bounds_kind
1681 {
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1684
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1687 PC_BOUNDS_INVALID,
1688
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1690 PC_BOUNDS_RANGES,
1691
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1693 PC_BOUNDS_HIGH_LOW,
1694 };
1695
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1698 struct dwarf2_cu *,
1699 struct partial_symtab *);
1700
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1713
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1717
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct type *,
1720 struct dwarf2_cu *);
1721
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1741
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1748
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1751 struct die_info *);
1752
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1757
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1760 int *, int);
1761
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1764 int *);
1765
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1767
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1769 struct obstack *);
1770
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1776
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1779
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1782
1783 static const char *dwarf_tag_name (unsigned int);
1784
1785 static const char *dwarf_attr_name (unsigned int);
1786
1787 static const char *dwarf_form_name (unsigned int);
1788
1789 static const char *dwarf_bool_name (unsigned int);
1790
1791 static const char *dwarf_type_encoding_name (unsigned int);
1792
1793 static struct die_info *sibling_die (struct die_info *);
1794
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796
1797 static void dump_die_for_error (struct die_info *);
1798
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1800 struct die_info *);
1801
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1803
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1806
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1814
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1818
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1822
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1825
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1829
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831
1832 static void read_signatured_type (struct signatured_type *);
1833
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1837
1838 /* memory allocation interface */
1839
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845
1846 static int attr_form_is_block (const struct attribute *);
1847
1848 static int attr_form_is_section_offset (const struct attribute *);
1849
1850 static int attr_form_is_constant (const struct attribute *);
1851
1852 static int attr_form_is_ref (const struct attribute *);
1853
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1857
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct symbol *sym,
1860 struct dwarf2_cu *cu,
1861 int is_block);
1862
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1866
1867 static hashval_t partial_die_hash (const void *item);
1868
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1878
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1885
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1891 enum language);
1892
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1894 enum language);
1895
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1897 enum language);
1898
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1901
1902 static void dwarf2_mark (struct dwarf2_cu *);
1903
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1908
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1913
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1920
1921 class dwarf2_queue_guard
1922 {
1923 public:
1924 dwarf2_queue_guard () = default;
1925
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1929 {
1930 struct dwarf2_queue_item *item, *last;
1931
1932 item = dwarf2_queue;
1933 while (item)
1934 {
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1938 {
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1942 }
1943
1944 last = item;
1945 item = item->next;
1946 xfree (last);
1947 }
1948
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1950 }
1951 };
1952
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1955
1956 struct file_and_directory
1957 {
1958 /* The filename. This is never NULL. */
1959 const char *name;
1960
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1966
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1970 };
1971
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1974
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1977
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1980
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1987
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1992
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1996
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2005
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2014
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016
2017 static void free_dwo_file (struct dwo_file *);
2018
2019 /* A unique_ptr helper to free a dwo_file. */
2020
2021 struct dwo_file_deleter
2022 {
2023 void operator() (struct dwo_file *df) const
2024 {
2025 free_dwo_file (df);
2026 }
2027 };
2028
2029 /* A unique pointer to a dwo_file. */
2030
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034
2035 static void check_producer (struct dwarf2_cu *cu);
2036
2037 static void free_line_header_voidp (void *arg);
2038 \f
2039 /* Various complaints about symbol reading that don't abort the process. */
2040
2041 static void
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 {
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_file_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2058 }
2059
2060 static void
2061 dwarf2_complex_location_expr_complaint (void)
2062 {
2063 complaint (_("location expression too complex"));
2064 }
2065
2066 static void
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2068 int arg3)
2069 {
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2071 arg1, arg2, arg3);
2072 }
2073
2074 static void
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 {
2077 complaint (_("debug info runs off end of %s section"
2078 " [in module %s]"),
2079 get_section_name (section),
2080 get_section_file_name (section));
2081 }
2082
2083 static void
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 {
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2088 arg1);
2089 }
2090
2091 static void
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 {
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2095 arg1, arg2);
2096 }
2097
2098 /* Hash function for line_header_hash. */
2099
2100 static hashval_t
2101 line_header_hash (const struct line_header *ofs)
2102 {
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2104 }
2105
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2107
2108 static hashval_t
2109 line_header_hash_voidp (const void *item)
2110 {
2111 const struct line_header *ofs = (const struct line_header *) item;
2112
2113 return line_header_hash (ofs);
2114 }
2115
2116 /* Equality function for line_header_hash. */
2117
2118 static int
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 {
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2126 }
2127
2128 \f
2129
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2132
2133 static CORE_ADDR
2134 attr_value_as_address (struct attribute *attr)
2135 {
2136 CORE_ADDR addr;
2137
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2139 && attr->form != DW_FORM_GNU_addr_index)
2140 {
2141 /* Aside from a few clearly defined exceptions, attributes that
2142 contain an address must always be in DW_FORM_addr form.
2143 Unfortunately, some compilers happen to be violating this
2144 requirement by encoding addresses using other forms, such
2145 as DW_FORM_data4 for example. For those broken compilers,
2146 we try to do our best, without any guarantee of success,
2147 to interpret the address correctly. It would also be nice
2148 to generate a complaint, but that would require us to maintain
2149 a list of legitimate cases where a non-address form is allowed,
2150 as well as update callers to pass in at least the CU's DWARF
2151 version. This is more overhead than what we're willing to
2152 expand for a pretty rare case. */
2153 addr = DW_UNSND (attr);
2154 }
2155 else
2156 addr = DW_ADDR (attr);
2157
2158 return addr;
2159 }
2160
2161 /* See declaration. */
2162
2163 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2164 const dwarf2_debug_sections *names)
2165 : objfile (objfile_)
2166 {
2167 if (names == NULL)
2168 names = &dwarf2_elf_names;
2169
2170 bfd *obfd = objfile->obfd;
2171
2172 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2173 locate_sections (obfd, sec, *names);
2174 }
2175
2176 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177
2178 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 {
2180 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2181 free_cached_comp_units ();
2182
2183 if (quick_file_names_table)
2184 htab_delete (quick_file_names_table);
2185
2186 if (line_header_hash)
2187 htab_delete (line_header_hash);
2188
2189 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2190 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191
2192 for (signatured_type *sig_type : all_type_units)
2193 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194
2195 VEC_free (dwarf2_section_info_def, types);
2196
2197 if (dwo_files != NULL)
2198 free_dwo_files (dwo_files, objfile);
2199
2200 /* Everything else should be on the objfile obstack. */
2201 }
2202
2203 /* See declaration. */
2204
2205 void
2206 dwarf2_per_objfile::free_cached_comp_units ()
2207 {
2208 dwarf2_per_cu_data *per_cu = read_in_chain;
2209 dwarf2_per_cu_data **last_chain = &read_in_chain;
2210 while (per_cu != NULL)
2211 {
2212 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2213
2214 delete per_cu->cu;
2215 *last_chain = next_cu;
2216 per_cu = next_cu;
2217 }
2218 }
2219
2220 /* A helper class that calls free_cached_comp_units on
2221 destruction. */
2222
2223 class free_cached_comp_units
2224 {
2225 public:
2226
2227 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2228 : m_per_objfile (per_objfile)
2229 {
2230 }
2231
2232 ~free_cached_comp_units ()
2233 {
2234 m_per_objfile->free_cached_comp_units ();
2235 }
2236
2237 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2238
2239 private:
2240
2241 dwarf2_per_objfile *m_per_objfile;
2242 };
2243
2244 /* Try to locate the sections we need for DWARF 2 debugging
2245 information and return true if we have enough to do something.
2246 NAMES points to the dwarf2 section names, or is NULL if the standard
2247 ELF names are used. */
2248
2249 int
2250 dwarf2_has_info (struct objfile *objfile,
2251 const struct dwarf2_debug_sections *names)
2252 {
2253 if (objfile->flags & OBJF_READNEVER)
2254 return 0;
2255
2256 struct dwarf2_per_objfile *dwarf2_per_objfile
2257 = get_dwarf2_per_objfile (objfile);
2258
2259 if (dwarf2_per_objfile == NULL)
2260 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2261 names);
2262
2263 return (!dwarf2_per_objfile->info.is_virtual
2264 && dwarf2_per_objfile->info.s.section != NULL
2265 && !dwarf2_per_objfile->abbrev.is_virtual
2266 && dwarf2_per_objfile->abbrev.s.section != NULL);
2267 }
2268
2269 /* Return the containing section of virtual section SECTION. */
2270
2271 static struct dwarf2_section_info *
2272 get_containing_section (const struct dwarf2_section_info *section)
2273 {
2274 gdb_assert (section->is_virtual);
2275 return section->s.containing_section;
2276 }
2277
2278 /* Return the bfd owner of SECTION. */
2279
2280 static struct bfd *
2281 get_section_bfd_owner (const struct dwarf2_section_info *section)
2282 {
2283 if (section->is_virtual)
2284 {
2285 section = get_containing_section (section);
2286 gdb_assert (!section->is_virtual);
2287 }
2288 return section->s.section->owner;
2289 }
2290
2291 /* Return the bfd section of SECTION.
2292 Returns NULL if the section is not present. */
2293
2294 static asection *
2295 get_section_bfd_section (const struct dwarf2_section_info *section)
2296 {
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
2302 return section->s.section;
2303 }
2304
2305 /* Return the name of SECTION. */
2306
2307 static const char *
2308 get_section_name (const struct dwarf2_section_info *section)
2309 {
2310 asection *sectp = get_section_bfd_section (section);
2311
2312 gdb_assert (sectp != NULL);
2313 return bfd_section_name (get_section_bfd_owner (section), sectp);
2314 }
2315
2316 /* Return the name of the file SECTION is in. */
2317
2318 static const char *
2319 get_section_file_name (const struct dwarf2_section_info *section)
2320 {
2321 bfd *abfd = get_section_bfd_owner (section);
2322
2323 return bfd_get_filename (abfd);
2324 }
2325
2326 /* Return the id of SECTION.
2327 Returns 0 if SECTION doesn't exist. */
2328
2329 static int
2330 get_section_id (const struct dwarf2_section_info *section)
2331 {
2332 asection *sectp = get_section_bfd_section (section);
2333
2334 if (sectp == NULL)
2335 return 0;
2336 return sectp->id;
2337 }
2338
2339 /* Return the flags of SECTION.
2340 SECTION (or containing section if this is a virtual section) must exist. */
2341
2342 static int
2343 get_section_flags (const struct dwarf2_section_info *section)
2344 {
2345 asection *sectp = get_section_bfd_section (section);
2346
2347 gdb_assert (sectp != NULL);
2348 return bfd_get_section_flags (sectp->owner, sectp);
2349 }
2350
2351 /* When loading sections, we look either for uncompressed section or for
2352 compressed section names. */
2353
2354 static int
2355 section_is_p (const char *section_name,
2356 const struct dwarf2_section_names *names)
2357 {
2358 if (names->normal != NULL
2359 && strcmp (section_name, names->normal) == 0)
2360 return 1;
2361 if (names->compressed != NULL
2362 && strcmp (section_name, names->compressed) == 0)
2363 return 1;
2364 return 0;
2365 }
2366
2367 /* See declaration. */
2368
2369 void
2370 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2371 const dwarf2_debug_sections &names)
2372 {
2373 flagword aflag = bfd_get_section_flags (abfd, sectp);
2374
2375 if ((aflag & SEC_HAS_CONTENTS) == 0)
2376 {
2377 }
2378 else if (section_is_p (sectp->name, &names.info))
2379 {
2380 this->info.s.section = sectp;
2381 this->info.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.abbrev))
2384 {
2385 this->abbrev.s.section = sectp;
2386 this->abbrev.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line))
2389 {
2390 this->line.s.section = sectp;
2391 this->line.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.loc))
2394 {
2395 this->loc.s.section = sectp;
2396 this->loc.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.loclists))
2399 {
2400 this->loclists.s.section = sectp;
2401 this->loclists.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.macinfo))
2404 {
2405 this->macinfo.s.section = sectp;
2406 this->macinfo.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.macro))
2409 {
2410 this->macro.s.section = sectp;
2411 this->macro.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.str))
2414 {
2415 this->str.s.section = sectp;
2416 this->str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.line_str))
2419 {
2420 this->line_str.s.section = sectp;
2421 this->line_str.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.addr))
2424 {
2425 this->addr.s.section = sectp;
2426 this->addr.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.frame))
2429 {
2430 this->frame.s.section = sectp;
2431 this->frame.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.eh_frame))
2434 {
2435 this->eh_frame.s.section = sectp;
2436 this->eh_frame.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.ranges))
2439 {
2440 this->ranges.s.section = sectp;
2441 this->ranges.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.rnglists))
2444 {
2445 this->rnglists.s.section = sectp;
2446 this->rnglists.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.types))
2449 {
2450 struct dwarf2_section_info type_section;
2451
2452 memset (&type_section, 0, sizeof (type_section));
2453 type_section.s.section = sectp;
2454 type_section.size = bfd_get_section_size (sectp);
2455
2456 VEC_safe_push (dwarf2_section_info_def, this->types,
2457 &type_section);
2458 }
2459 else if (section_is_p (sectp->name, &names.gdb_index))
2460 {
2461 this->gdb_index.s.section = sectp;
2462 this->gdb_index.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.debug_names))
2465 {
2466 this->debug_names.s.section = sectp;
2467 this->debug_names.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.debug_aranges))
2470 {
2471 this->debug_aranges.s.section = sectp;
2472 this->debug_aranges.size = bfd_get_section_size (sectp);
2473 }
2474
2475 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2476 && bfd_section_vma (abfd, sectp) == 0)
2477 this->has_section_at_zero = true;
2478 }
2479
2480 /* A helper function that decides whether a section is empty,
2481 or not present. */
2482
2483 static int
2484 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2485 {
2486 if (section->is_virtual)
2487 return section->size == 0;
2488 return section->s.section == NULL || section->size == 0;
2489 }
2490
2491 /* See dwarf2read.h. */
2492
2493 void
2494 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2495 {
2496 asection *sectp;
2497 bfd *abfd;
2498 gdb_byte *buf, *retbuf;
2499
2500 if (info->readin)
2501 return;
2502 info->buffer = NULL;
2503 info->readin = 1;
2504
2505 if (dwarf2_section_empty_p (info))
2506 return;
2507
2508 sectp = get_section_bfd_section (info);
2509
2510 /* If this is a virtual section we need to read in the real one first. */
2511 if (info->is_virtual)
2512 {
2513 struct dwarf2_section_info *containing_section =
2514 get_containing_section (info);
2515
2516 gdb_assert (sectp != NULL);
2517 if ((sectp->flags & SEC_RELOC) != 0)
2518 {
2519 error (_("Dwarf Error: DWP format V2 with relocations is not"
2520 " supported in section %s [in module %s]"),
2521 get_section_name (info), get_section_file_name (info));
2522 }
2523 dwarf2_read_section (objfile, containing_section);
2524 /* Other code should have already caught virtual sections that don't
2525 fit. */
2526 gdb_assert (info->virtual_offset + info->size
2527 <= containing_section->size);
2528 /* If the real section is empty or there was a problem reading the
2529 section we shouldn't get here. */
2530 gdb_assert (containing_section->buffer != NULL);
2531 info->buffer = containing_section->buffer + info->virtual_offset;
2532 return;
2533 }
2534
2535 /* If the section has relocations, we must read it ourselves.
2536 Otherwise we attach it to the BFD. */
2537 if ((sectp->flags & SEC_RELOC) == 0)
2538 {
2539 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2540 return;
2541 }
2542
2543 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2544 info->buffer = buf;
2545
2546 /* When debugging .o files, we may need to apply relocations; see
2547 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2548 We never compress sections in .o files, so we only need to
2549 try this when the section is not compressed. */
2550 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2551 if (retbuf != NULL)
2552 {
2553 info->buffer = retbuf;
2554 return;
2555 }
2556
2557 abfd = get_section_bfd_owner (info);
2558 gdb_assert (abfd != NULL);
2559
2560 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2561 || bfd_bread (buf, info->size, abfd) != info->size)
2562 {
2563 error (_("Dwarf Error: Can't read DWARF data"
2564 " in section %s [in module %s]"),
2565 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2566 }
2567 }
2568
2569 /* A helper function that returns the size of a section in a safe way.
2570 If you are positive that the section has been read before using the
2571 size, then it is safe to refer to the dwarf2_section_info object's
2572 "size" field directly. In other cases, you must call this
2573 function, because for compressed sections the size field is not set
2574 correctly until the section has been read. */
2575
2576 static bfd_size_type
2577 dwarf2_section_size (struct objfile *objfile,
2578 struct dwarf2_section_info *info)
2579 {
2580 if (!info->readin)
2581 dwarf2_read_section (objfile, info);
2582 return info->size;
2583 }
2584
2585 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2586 SECTION_NAME. */
2587
2588 void
2589 dwarf2_get_section_info (struct objfile *objfile,
2590 enum dwarf2_section_enum sect,
2591 asection **sectp, const gdb_byte **bufp,
2592 bfd_size_type *sizep)
2593 {
2594 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2595 struct dwarf2_section_info *info;
2596
2597 /* We may see an objfile without any DWARF, in which case we just
2598 return nothing. */
2599 if (data == NULL)
2600 {
2601 *sectp = NULL;
2602 *bufp = NULL;
2603 *sizep = 0;
2604 return;
2605 }
2606 switch (sect)
2607 {
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2610 break;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2613 break;
2614 default:
2615 gdb_assert_not_reached ("unexpected section");
2616 }
2617
2618 dwarf2_read_section (objfile, info);
2619
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2623 }
2624
2625 /* A helper function to find the sections for a .dwz file. */
2626
2627 static void
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2629 {
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2631
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2635 {
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2640 {
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2645 {
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2650 {
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2655 {
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2660 {
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2665 {
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2668 }
2669 }
2670
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2674
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2677 {
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2680 size_t buildid_len;
2681 bfd_byte *buildid;
2682
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2685
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2690 if (data == NULL)
2691 {
2692 if (bfd_get_error () == bfd_error_no_error)
2693 return NULL;
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2696 }
2697
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2699
2700 buildid_len = (size_t) buildid_len_arg;
2701
2702 filename = data.get ();
2703
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2706 {
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2709
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2712 }
2713
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2718 {
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2721 }
2722
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2725
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2729
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2732
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2734 result.get ());
2735
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2740 }
2741 \f
2742 /* DWARF quick_symbols_functions support. */
2743
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2750 {
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2753
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2756
2757 /* The file names from the line table, after being run through
2758 file_full_name. */
2759 const char **file_names;
2760
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2764 };
2765
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2770 {
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2775
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2779
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2783
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2787 };
2788
2789 /* Utility hash function for a stmt_list_hash. */
2790
2791 static hashval_t
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2793 {
2794 hashval_t v = 0;
2795
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2799 return v;
2800 }
2801
2802 /* Utility equality function for a stmt_list_hash. */
2803
2804 static int
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2807 {
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2809 return 0;
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2812 return 0;
2813
2814 return lhs->line_sect_off == rhs->line_sect_off;
2815 }
2816
2817 /* Hash function for a quick_file_names. */
2818
2819 static hashval_t
2820 hash_file_name_entry (const void *e)
2821 {
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2824
2825 return hash_stmt_list_entry (&file_data->hash);
2826 }
2827
2828 /* Equality function for a quick_file_names. */
2829
2830 static int
2831 eq_file_name_entry (const void *a, const void *b)
2832 {
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2835
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2837 }
2838
2839 /* Delete function for a quick_file_names. */
2840
2841 static void
2842 delete_file_name_entry (void *e)
2843 {
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2845 int i;
2846
2847 for (i = 0; i < file_data->num_file_names; ++i)
2848 {
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2852 }
2853
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2856 }
2857
2858 /* Create a quick_file_names hash table. */
2859
2860 static htab_t
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2862 {
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2866 }
2867
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2871
2872 static void
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2874 {
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2877 else
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2879
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2882
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2884 }
2885
2886 /* Read in the symbols for PER_CU. */
2887
2888 static void
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2890 {
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2892
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2896 return;
2897
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2902
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2906 {
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2909
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2921 }
2922
2923 process_queue (dwarf2_per_objfile);
2924
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2928 }
2929
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2932 table. */
2933
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2936 {
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2938
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2941 {
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2946 }
2947
2948 return per_cu->v.quick->compunit_symtab;
2949 }
2950
2951 /* See declaration. */
2952
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2955 {
2956 if (index >= this->all_comp_units.size ())
2957 {
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2961 }
2962
2963 return this->all_comp_units[index];
2964 }
2965
2966 /* See declaration. */
2967
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2970 {
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2972
2973 return this->all_comp_units[index];
2974 }
2975
2976 /* See declaration. */
2977
2978 signatured_type *
2979 dwarf2_per_objfile::get_tu (int index)
2980 {
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2982
2983 return this->all_type_units[index];
2984 }
2985
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2988 values. */
2989
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2993 int is_dwz,
2994 sect_offset sect_off, ULONGEST length)
2995 {
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3007 return the_cu;
3008 }
3009
3010 /* A helper for create_cus_from_index that handles a given list of
3011 CUs. */
3012
3013 static void
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3017 int is_dwz)
3018 {
3019 for (offset_type i = 0; i < n_elements; i += 2)
3020 {
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3022
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3026 cu_list += 2 * 8;
3027
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3030 sect_off, length);
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3032 }
3033 }
3034
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3037
3038 static void
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3042 {
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3046
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3049
3050 if (dwz_elements == 0)
3051 return;
3052
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3055 &dwz->info, 1);
3056 }
3057
3058 /* Create the signatured type hash table from the index. */
3059
3060 static void
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3068
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3071
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3073
3074 for (offset_type i = 0; i < elements; i += 3)
3075 {
3076 struct signatured_type *sig_type;
3077 ULONGEST signature;
3078 void **slot;
3079 cu_offset type_offset_in_tu;
3080
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3084 type_offset_in_tu
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3086 BFD_ENDIAN_LITTLE);
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3088 bytes += 3 * 8;
3089
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3101
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3103 *slot = sig_type;
3104
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3106 }
3107
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3109 }
3110
3111 /* Create the signatured type hash table from .debug_names. */
3112
3113 static void
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3119 {
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3121
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3124
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3127
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3129
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3131 {
3132 struct signatured_type *sig_type;
3133 void **slot;
3134
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3138 map.offset_size,
3139 map.dwarf5_byte_order));
3140
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3143 abbrev_section,
3144 section->buffer + to_underlying (sect_off),
3145 rcuh_kind::TYPE);
3146
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3158
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3160 *slot = sig_type;
3161
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3163 }
3164
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3166 }
3167
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3170
3171 static void
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3174 {
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3179 CORE_ADDR baseaddr;
3180
3181 auto_obstack temp_obstack;
3182
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3184
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3187
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3189
3190 while (iter < end)
3191 {
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3194 iter += 8;
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3196 iter += 8;
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3198 iter += 4;
3199
3200 if (lo > hi)
3201 {
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3204 continue;
3205 }
3206
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3208 {
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3211 continue;
3212 }
3213
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3218 }
3219
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3222 }
3223
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3226
3227 static void
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3230 {
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3236
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3239
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3245 {
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3249 {
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3253 return;
3254 }
3255 }
3256
3257 dwarf2_read_section (objfile, section);
3258
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3260
3261 const gdb_byte *addr = section->buffer;
3262
3263 while (addr < section->buffer + section->size)
3264 {
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3267
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3269 &bytes_read);
3270 addr += bytes_read;
3271
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3283 return;
3284 }
3285
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3288 addr += 2;
3289 if (version != 2)
3290 {
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3294 version);
3295 return;
3296 }
3297
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3310 return;
3311 }
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3313
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3316 {
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3320 address_size);
3321 return;
3322 }
3323
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3326 {
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3332 return;
3333 }
3334
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3337 use it. */
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3341 if (*addr++ != 0)
3342 {
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3346 return;
3347 }
3348
3349 for (;;)
3350 {
3351 if (addr + 2 * address_size > entry_end)
3352 {
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3357 return;
3358 }
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3360 dwarf5_byte_order);
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3363 dwarf5_byte_order);
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3366 break;
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3368 {
3369 /* Symbol was eliminated due to a COMDAT group. */
3370 continue;
3371 }
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3374 - baseaddr);
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3376 - baseaddr);
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3378 }
3379 }
3380
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3383 }
3384
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3388 false. */
3389
3390 static bool
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3393 {
3394 offset_type hash;
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3397
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3402 {
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3404 not contain any. */
3405
3406 if (strchr (name, '(') != NULL)
3407 {
3408 without_params = cp_remove_params (name);
3409
3410 if (without_params != NULL)
3411 name = without_params.get ();
3412 }
3413 }
3414
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3421 name);
3422
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3426
3427 for (;;)
3428 {
3429 const char *str;
3430
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3433 return false;
3434
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3437 {
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3440 return true;
3441 }
3442
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3444 }
3445 }
3446
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3451
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3455
3456 Returns true if all went well, false otherwise. */
3457
3458 static bool
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3461 bool deprecated_ok,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3468 {
3469 const gdb_byte *addr = &buffer[0];
3470
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3476 indices. */
3477 if (version < 4)
3478 {
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3481 {
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Index version 4 uses a different hash function than index version
3489 5 and later.
3490
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3497 {
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3500 {
3501 warning (_("\
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3505 filename);
3506 warning_printed = 1;
3507 }
3508 return 0;
3509 }
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3517
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3520 if (version > 8)
3521 return 0;
3522
3523 map->version = version;
3524
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3526
3527 int i = 0;
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3530 / 8);
3531 ++i;
3532
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3536 / 8);
3537 ++i;
3538
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3541 map->address_table
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3543 ++i;
3544
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 map->symbol_table
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3551
3552 ++i;
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3554
3555 return 1;
3556 }
3557
3558 /* Callback types for dwarf2_read_gdb_index. */
3559
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3566
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3569
3570 static int
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3575 {
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3580
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3583
3584 if (main_index_contents.empty ())
3585 return 0;
3586
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3593 return 0;
3594
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3597 return 0;
3598
3599 /* If there is a .dwz file, read it so we can get its CU list as
3600 well. */
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3602 if (dwz != NULL)
3603 {
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3607
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3610
3611 if (dwz_index_content.empty ())
3612 return 0;
3613
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3618 &dwz_types_ignore,
3619 &dwz_types_elements_ignore))
3620 {
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3623 return 0;
3624 }
3625 }
3626
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3629
3630 if (types_list_elements)
3631 {
3632 struct dwarf2_section_info *section;
3633
3634 /* We can only handle a single .debug_types when we have an
3635 index. */
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3637 return 0;
3638
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3641
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3644 }
3645
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3647
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3652
3653 return 1;
3654 }
3655
3656 /* die_reader_func for dw2_get_file_names. */
3657
3658 static void
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3662 int has_children,
3663 void *data)
3664 {
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3672 int i;
3673 void **slot;
3674 struct quick_file_names *qfn;
3675
3676 gdb_assert (! this_cu->is_debug_types);
3677
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3681 {
3682 this_cu->v.quick->no_file_data = 1;
3683 return;
3684 }
3685
3686 lh_cu = this_cu;
3687 slot = NULL;
3688
3689 line_header_up lh;
3690 sect_offset line_offset {};
3691
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3693 if (attr)
3694 {
3695 struct quick_file_names find_entry;
3696
3697 line_offset = (sect_offset) DW_UNSND (attr);
3698
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3705 if (*slot != NULL)
3706 {
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3708 return;
3709 }
3710
3711 lh = dwarf_decode_line_header (line_offset, cu);
3712 }
3713 if (lh == NULL)
3714 {
3715 lh_cu->v.quick->no_file_data = 1;
3716 return;
3717 }
3718
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3723 *slot = qfn;
3724
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3726
3727 qfn->num_file_names = lh->file_names.size ();
3728 qfn->file_names =
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3733
3734 lh_cu->v.quick->file_names = qfn;
3735 }
3736
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3739
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3742 {
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3747
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3752 return NULL;
3753
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3755
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758 return this_cu->v.quick->file_names;
3759 }
3760
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3763
3764 static const char *
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3767 {
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3771
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3774
3775 return qfn->real_names[index];
3776 }
3777
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3780 {
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3785
3786 if (cust == NULL)
3787 return NULL;
3788
3789 return compunit_primary_filetab (cust);
3790 }
3791
3792 /* Traversal function for dw2_forget_cached_source_info. */
3793
3794 static int
3795 dw2_free_cached_file_names (void **slot, void *info)
3796 {
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3798
3799 if (file_data->real_names)
3800 {
3801 int i;
3802
3803 for (i = 0; i < file_data->num_file_names; ++i)
3804 {
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3807 }
3808 }
3809
3810 return 1;
3811 }
3812
3813 static void
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3815 {
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3818
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3821 }
3822
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3825
3826 static int
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3831 {
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3833
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 return 0;
3837
3838 /* This may expand more than one symtab, and we want to iterate over
3839 all of them. */
3840 dw2_instantiate_symtab (per_cu, false);
3841
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3844 }
3845
3846 /* Implementation of the map_symtabs_matching_filename method. */
3847
3848 static bool
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3852 {
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3856
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3861 {
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3864 continue;
3865
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3868 continue;
3869
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3871 {
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3874
3875 if (compare_filenames_for_search (this_name, name))
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3887 continue;
3888
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3891 {
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3893 callback))
3894 return true;
3895 continue;
3896 }
3897
3898 if (real_path != NULL)
3899 {
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3904 {
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3906 callback))
3907 return true;
3908 continue;
3909 }
3910 }
3911 }
3912 }
3913
3914 return false;
3915 }
3916
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3918
3919 struct dw2_symtab_iterator
3920 {
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3927 int block_index;
3928 /* The kind of symbol we're looking for. */
3929 domain_enum domain;
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3932 offset_type *vec;
3933 /* The next element in VEC to look at. */
3934 int next;
3935 /* The number of elements in VEC, or zero if there is no match. */
3936 int length;
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3940 indices. */
3941 int global_seen;
3942 };
3943
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3947
3948 static void
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3952 int block_index,
3953 domain_enum domain,
3954 const char *name)
3955 {
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3960 iter->next = 0;
3961 iter->global_seen = 0;
3962
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3964
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3968 else
3969 {
3970 iter->vec = NULL;
3971 iter->length = 0;
3972 }
3973 }
3974
3975 /* Return the next matching CU or NULL if there are no more. */
3976
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3979 {
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3981
3982 for ( ; iter->next < iter->length; ++iter->next)
3983 {
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3996 int attrs_valid =
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3999
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4003 {
4004 complaint (_(".gdb_index entry has bad CU index"
4005 " [in module %s]"),
4006 objfile_name (dwarf2_per_objfile->objfile));
4007 continue;
4008 }
4009
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4011
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4014 continue;
4015
4016 /* Check static vs global. */
4017 if (attrs_valid)
4018 {
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4021 continue;
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4024 continue;
4025 if (!is_static)
4026 iter->global_seen = 1;
4027 }
4028
4029 /* Only check the symbol's kind if it has one. */
4030 if (attrs_valid)
4031 {
4032 switch (iter->domain)
4033 {
4034 case VAR_DOMAIN:
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case STRUCT_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4043 continue;
4044 break;
4045 case LABEL_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4064 {
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102 }
4103
4104 static void
4105 dw2_print_stats (struct objfile *objfile)
4106 {
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122 }
4123
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129 static void
4130 dw2_dump (struct objfile *objfile)
4131 {
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145 }
4146
4147 static void
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150 {
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4159 func_name);
4160
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4163
4164 }
4165
4166 static void
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4168 {
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4173
4174 for (int i = 0; i < total_units; ++i)
4175 {
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4177
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4184 }
4185 }
4186
4187 static void
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4190 {
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4193
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4198
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4200 {
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4203 continue;
4204
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4207 continue;
4208
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4210 {
4211 const char *this_fullname = file_data->file_names[j];
4212
4213 if (filename_cmp (this_fullname, fullname) == 0)
4214 {
4215 dw2_instantiate_symtab (per_cu, false);
4216 break;
4217 }
4218 }
4219 }
4220 }
4221
4222 static void
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4225 int global,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4230 {
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4234 }
4235
4236 /* Symbol name matcher for .gdb_index names.
4237
4238 Symbol names in .gdb_index have a few particularities:
4239
4240 - There's no indication of which is the language of each symbol.
4241
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4249
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4253
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4258 name would match].
4259 */
4260 class gdb_index_symbol_name_matcher
4261 {
4262 public:
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4265
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4269
4270 private:
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4273
4274 /* A vector holding all the different symbol name matchers, for all
4275 languages. */
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4277 };
4278
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4282 {
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4289
4290 matchers.push_back (default_symbol_name_matcher);
4291
4292 for (int i = 0; i < nr_languages; i++)
4293 {
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4297
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4305 this object. */
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4310 }
4311 }
4312
4313 bool
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4315 {
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4318 return true;
4319
4320 return false;
4321 }
4322
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4327
4328 static std::string
4329 make_sort_after_prefix_name (const char *search_name)
4330 {
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4348 string.
4349
4350 Some examples of this operation:
4351
4352 SEARCH_NAME => "+1" RESULT
4353
4354 "abc" => "abd"
4355 "ab\xff" => "ac"
4356 "\xff" "a" "\xff" => "\xff" "b"
4357 "\xff" => ""
4358 "\xff\xff" => ""
4359 "" => ""
4360
4361 Then, with these symbols for example:
4362
4363 func
4364 func1
4365 fund
4366
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4370
4371 And with:
4372
4373 funcÿ (Latin1 'ÿ' [0xff])
4374 funcÿ1
4375 fund
4376
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4379
4380 And with:
4381
4382 ÿÿ (Latin1 'ÿ' [0xff])
4383 ÿÿ1
4384
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4387 */
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4390 after.pop_back ();
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4393 return after;
4394 }
4395
4396 /* See declaration. */
4397
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4402 {
4403 auto *name_cmp
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4405
4406 const char *cplus
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4408
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4412 const char *name)
4413 {
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4417 };
4418
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4423 {
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4427 };
4428
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4431
4432 /* Find the lower bound. */
4433 auto lower = [&] ()
4434 {
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4436 return begin;
4437 else
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4439 } ();
4440
4441 /* Find the upper bound. */
4442 auto upper = [&] ()
4443 {
4444 if (lookup_name_without_params.completion_mode ())
4445 {
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4449
4450 function << lower bound
4451 function1
4452 other_function << upper bound
4453
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4456 i.e. "fund". */
4457 std::string after = make_sort_after_prefix_name (cplus);
4458 if (after.empty ())
4459 return end;
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4462 }
4463 else
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4465 } ();
4466
4467 return {lower, upper};
4468 }
4469
4470 /* See declaration. */
4471
4472 void
4473 mapped_index_base::build_name_components ()
4474 {
4475 if (!this->name_components.empty ())
4476 return;
4477
4478 this->name_components_casing = case_sensitivity;
4479 auto *name_cmp
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4481
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4491 {
4492 if (this->symbol_name_slot_invalid (idx))
4493 continue;
4494
4495 const char *name = this->symbol_name_at (idx);
4496
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4502 {
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4506 current_len += 2;
4507 previous_len = current_len;
4508 }
4509 this->name_components.push_back ({previous_len, idx});
4510 }
4511
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4515 {
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4518
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4521
4522 return name_cmp (left_name, right_name) < 0;
4523 };
4524
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4527 name_comp_compare);
4528 }
4529
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4536
4537 static void
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4544 {
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4549
4550 /* Build the symbol name component sorted vector, if we haven't
4551 yet. */
4552 index.build_name_components ();
4553
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4555
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4558
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4565 duplicates. */
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4568
4569 for (; bounds.first != bounds.second; ++bounds.first)
4570 {
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4572
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4575 continue;
4576
4577 matches.push_back (bounds.first->idx);
4578 }
4579
4580 std::sort (matches.begin (), matches.end ());
4581
4582 /* Finally call the callback, once per match. */
4583 ULONGEST prev = -1;
4584 for (offset_type idx : matches)
4585 {
4586 if (prev != idx)
4587 {
4588 match_callback (idx);
4589 prev = idx;
4590 }
4591 }
4592
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4596 }
4597
4598 #if GDB_SELF_TEST
4599
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4601
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4607 {
4608 public:
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4611 {}
4612
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4614
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4617 {
4618 return m_symbol_table.size ();
4619 }
4620
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4623 {
4624 return m_symbol_table[idx];
4625 }
4626
4627 private:
4628 gdb::array_view<const char *> m_symbol_table;
4629 };
4630
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4633
4634 static const char *
4635 string_or_null (const char *str)
4636 {
4637 return str != NULL ? str : "<null>";
4638 }
4639
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4646
4647 static bool
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4653 {
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4655
4656 bool matched = true;
4657
4658 auto mismatch = [&] (const char *expected_str,
4659 const char *got)
4660 {
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4663 file, line,
4664 (match_type == symbol_name_match_type::FULL
4665 ? "FULL" : "WILD"),
4666 name, string_or_null (expected_str), string_or_null (got));
4667 matched = false;
4668 };
4669
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4672
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4674 NULL, ALL_DOMAIN,
4675 [&] (offset_type idx)
4676 {
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4680
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4683 });
4684
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4689
4690 return matched;
4691 }
4692
4693 /* The symbols added to the mock mapped_index for testing (in
4694 canonical form). */
4695 static const char *test_symbols[] = {
4696 "function",
4697 "std::bar",
4698 "std::zfunction",
4699 "std::zfunction2",
4700 "w1::w2",
4701 "ns::foo<char*>",
4702 "ns::foo<int>",
4703 "ns::foo<long>",
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4706
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4710 "t1_func",
4711 "t1_func1",
4712 "t1_fund",
4713 "t1_fund1",
4714
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4718 u8"u8função",
4719
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4721 "yfunc\377",
4722
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4724 "\377",
4725 "\377\377123",
4726
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4733
4734 Z_SYM_NAME
4735 };
4736
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4740
4741 static bool
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4745 {
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4748
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4750
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4753 return false;
4754
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4756 {
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4760 return false;
4761 }
4762
4763 return true;
4764 }
4765
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4767 method. */
4768
4769 static void
4770 test_mapped_index_find_name_component_bounds ()
4771 {
4772 mock_mapped_index mock_index (test_symbols);
4773
4774 mock_index.build_name_components ();
4775
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4778 {
4779 static const char *expected_syms[] = {
4780 "t1_func",
4781 "t1_func1",
4782 };
4783
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4786 }
4787
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4790 {
4791 static const char *expected_syms1[] = {
4792 "\377",
4793 "\377\377123",
4794 };
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4797
4798 static const char *expected_syms2[] = {
4799 "\377\377123",
4800 };
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4803 }
4804 }
4805
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4807
4808 static void
4809 test_dw2_expand_symtabs_matching_symbol ()
4810 {
4811 mock_mapped_index mock_index (test_symbols);
4812
4813 /* We let all tests run until the end even if some fails, for debug
4814 convenience. */
4815 bool any_mismatch = false;
4816
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4821
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4826 mock_index, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4828 EXPECTED_LIST)
4829
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4832 {
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4835 EXPECT (sym));
4836
4837 /* Should be able to match all existing symbols with
4838 parameters. */
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4841 EXPECT (sym));
4842
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4847 EXPECT (sym));
4848
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4853 {});
4854 }
4855
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4858 {
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4862 }
4863
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4866 {
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4870 }
4871
4872 /* Check that completion mode works at each prefix of the expected
4873 symbol name. */
4874 {
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4877 std::string lookup;
4878
4879 for (size_t i = 1; i < len; i++)
4880 {
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4884 }
4885 }
4886
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4889 {
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4891 EXPECT ("w1::w2"));
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4893 EXPECT ("w1::w2"));
4894 }
4895
4896 /* Same, with a "complicated" symbol. */
4897 {
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4900 std::string lookup;
4901
4902 for (size_t i = 1; i < len; i++)
4903 {
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4907 }
4908 }
4909
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4911 {
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4913 {});
4914 }
4915
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4918 {
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 }
4926
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4929 {
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4932 EXPECT (expected));
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4934 EXPECT (expected));
4935 }
4936
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4939 {
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4944 {
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4949
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954 }
4955 }
4956
4957 {
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4968 }
4969
4970 /* Test lookup names that don't match anything. */
4971 {
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4973 {});
4974
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4976 {});
4977 }
4978
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4981 {
4982 static const char *syms[] = {
4983 "A::B::C",
4984 "B::C",
4985 "C",
4986 "A :: B :: C ( int )",
4987 "B :: C ( int )",
4988 "C ( int )",
4989 };
4990
4991 for (const char *s : syms)
4992 {
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4995 }
4996 }
4997
4998 {
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5001 EXPECT (expected));
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5003 EXPECT (expected));
5004 }
5005
5006 SELF_CHECK (!any_mismatch);
5007
5008 #undef EXPECT
5009 #undef CHECK_MATCH
5010 }
5011
5012 static void
5013 run_test ()
5014 {
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5017 }
5018
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5020
5021 #endif /* GDB_SELF_TEST */
5022
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5027
5028 static void
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5033 {
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5035 {
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5038
5039 dw2_instantiate_symtab (per_cu, false);
5040
5041 if (expansion_notify != NULL
5042 && symtab_was_null
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5045 }
5046 }
5047
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5051
5052 static void
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5057 search_domain kind)
5058 {
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5062
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5067 {
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5078 int attrs_valid =
5079 (index.version >= 7
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5081
5082 /* Work around gold/15646. */
5083 if (attrs_valid)
5084 {
5085 if (!is_static && global_seen)
5086 continue;
5087 if (!is_static)
5088 global_seen = true;
5089 }
5090
5091 /* Only check the symbol's kind if it has one. */
5092 if (attrs_valid)
5093 {
5094 switch (kind)
5095 {
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5098 continue;
5099 break;
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5102 continue;
5103 break;
5104 case TYPES_DOMAIN:
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5106 continue;
5107 break;
5108 default:
5109 break;
5110 }
5111 }
5112
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5116 {
5117 complaint (_(".gdb_index entry has bad CU index"
5118 " [in module %s]"),
5119 objfile_name (dwarf2_per_objfile->objfile));
5120 continue;
5121 }
5122
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5125 expansion_notify);
5126 }
5127 }
5128
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5132
5133 static void
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5137 {
5138 if (file_matcher == NULL)
5139 return;
5140
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5142
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5144 htab_eq_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5147 htab_eq_pointer,
5148 NULL, xcalloc, xfree));
5149
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5152
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5154 {
5155 QUIT;
5156
5157 per_cu->v.quick->mark = 0;
5158
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5161 continue;
5162
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5165 continue;
5166
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5168 continue;
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5170 {
5171 per_cu->v.quick->mark = 1;
5172 continue;
5173 }
5174
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5176 {
5177 const char *this_real_name;
5178
5179 if (file_matcher (file_data->file_names[j], false))
5180 {
5181 per_cu->v.quick->mark = 1;
5182 break;
5183 }
5184
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5189 true))
5190 continue;
5191
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5194 {
5195 per_cu->v.quick->mark = 1;
5196 break;
5197 }
5198 }
5199
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5203 file_data, INSERT);
5204 *slot = file_data;
5205 }
5206 }
5207
5208 static void
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5216 {
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5219
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5222 return;
5223
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5225
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5227
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5229 symbol_matcher,
5230 kind, [&] (offset_type idx)
5231 {
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5234 });
5235 }
5236
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5238 symtab. */
5239
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5242 CORE_ADDR pc)
5243 {
5244 int i;
5245
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5248 return cust;
5249
5250 if (cust->includes == NULL)
5251 return NULL;
5252
5253 for (i = 0; cust->includes[i]; ++i)
5254 {
5255 struct compunit_symtab *s = cust->includes[i];
5256
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5258 if (s != NULL)
5259 return s;
5260 }
5261
5262 return NULL;
5263 }
5264
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5268 CORE_ADDR pc,
5269 struct obj_section *section,
5270 int warn_if_readin)
5271 {
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5274
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5276 return NULL;
5277
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5282 if (!data)
5283 return NULL;
5284
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5288
5289 result
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5291 false),
5292 pc);
5293 gdb_assert (result != NULL);
5294 return result;
5295 }
5296
5297 static void
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5300 {
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5303
5304 if (!dwarf2_per_objfile->filenames_cache)
5305 {
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5307
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5311
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5315
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5317 {
5318 if (per_cu->v.quick->compunit_symtab)
5319 {
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5322 INSERT);
5323
5324 *slot = per_cu->v.quick->file_names;
5325 }
5326 }
5327
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5329 {
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5332 continue;
5333
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5336 continue;
5337
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5339 if (*slot)
5340 {
5341 /* Already visited. */
5342 continue;
5343 }
5344 *slot = file_data;
5345
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5347 {
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5350 }
5351 }
5352 }
5353
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5355 {
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5357
5358 if (need_fullname)
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5361 });
5362 }
5363
5364 static int
5365 dw2_has_symbols (struct objfile *objfile)
5366 {
5367 return 1;
5368 }
5369
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5371 {
5372 dw2_has_symbols,
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5376 dw2_lookup_symbol,
5377 dw2_print_stats,
5378 dw2_dump,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5385 NULL,
5386 dw2_map_symbol_filenames
5387 };
5388
5389 /* DWARF-5 debug_names reader. */
5390
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5393
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5397
5398 Returns true if all went well, false otherwise. */
5399
5400 static bool
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5405 {
5406 if (dwarf2_section_empty_p (section))
5407 return false;
5408
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5412 return false;
5413
5414 dwarf2_read_section (objfile, section);
5415
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5417
5418 const gdb_byte *addr = section->buffer;
5419
5420 bfd *const abfd = get_section_bfd_owner (section);
5421
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5424 addr += bytes_read;
5425
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5429 {
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5435 return false;
5436 }
5437
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5440 addr += 2;
5441 if (version != 5)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5445 filename, version);
5446 return false;
5447 }
5448
5449 /* Padding. */
5450 uint16_t padding = read_2_bytes (abfd, addr);
5451 addr += 2;
5452 if (padding != 0)
5453 {
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5456 filename, padding);
5457 return false;
5458 }
5459
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5462 addr += 4;
5463
5464 /* local_type_unit_count - The number of TUs in the local TU
5465 list. */
5466 map.tu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5470 list. */
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473 if (foreign_tu_count != 0)
5474 {
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5478 return false;
5479 }
5480
5481 /* bucket_count - The number of hash buckets in the hash lookup
5482 table. */
5483 map.bucket_count = read_4_bytes (abfd, addr);
5484 addr += 4;
5485
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5488 addr += 4;
5489
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5491 table. */
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5505
5506 /* List of CUs */
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5509
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5513
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5519
5520 /* Name Table */
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5525
5526 const gdb_byte *abbrev_table_start = addr;
5527 for (;;)
5528 {
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5530 addr += bytes_read;
5531 if (index_num == 0)
5532 break;
5533
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5537 {
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5541 return false;
5542 }
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5545 addr += bytes_read;
5546
5547 for (;;)
5548 {
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5551 addr += bytes_read;
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5553 addr += bytes_read;
5554 if (attr.form == DW_FORM_implicit_const)
5555 {
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5557 &bytes_read);
5558 addr += bytes_read;
5559 }
5560 if (attr.dw_idx == 0 && attr.form == 0)
5561 break;
5562 indexval.attr_vec.push_back (std::move (attr));
5563 }
5564 }
5565 if (addr != abbrev_table_start + abbrev_table_size)
5566 {
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5570 return false;
5571 }
5572 map.entry_pool = addr;
5573
5574 return true;
5575 }
5576
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5578 list. */
5579
5580 static void
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info &section,
5584 bool is_dwz)
5585 {
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5588 {
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5591 {
5592 sect_off_next
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5595 map.offset_size,
5596 map.dwarf5_byte_order));
5597 }
5598 else
5599 sect_off_next = (sect_offset) section.size;
5600 if (i >= 1)
5601 {
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5607 }
5608 sect_off_prev = sect_off_next;
5609 }
5610 }
5611
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5614
5615 static void
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5619 {
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5622
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5626
5627 if (dwz_map.cu_count == 0)
5628 return;
5629
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5632 true /* is_dwz */);
5633 }
5634
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5637
5638 static bool
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5640 {
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5645
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5648 *map))
5649 return false;
5650
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5653 return false;
5654
5655 /* If there is a .dwz file, read it so we can get its CU list as
5656 well. */
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5658 if (dwz != NULL)
5659 {
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5663 {
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5666 return false;
5667 }
5668 }
5669
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5671
5672 if (map->tu_count != 0)
5673 {
5674 /* We can only handle a single .debug_types when we have an
5675 index. */
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5677 return false;
5678
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5681
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5684 }
5685
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5688
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5693
5694 return true;
5695 }
5696
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5698 .debug_names. */
5699
5700 class dw2_debug_names_iterator
5701 {
5702 public:
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5708 const char *name)
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5712 {}
5713
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5716 : m_map (map),
5717 m_search (search),
5718 m_addr (find_vec_in_debug_names (map, namei))
5719 {}
5720
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5723
5724 private:
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5726 const char *name);
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5728 uint32_t namei);
5729
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5732
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5735
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5738 value. */
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5740
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5744
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5746 not found. */
5747 const gdb_byte *m_addr;
5748 };
5749
5750 const char *
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5752 {
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5756 offset_size,
5757 dwarf5_byte_order);
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5760 }
5761
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5764 return NULL. */
5765
5766 const gdb_byte *
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5769 {
5770 int (*cmp) (const char *, const char *);
5771
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5775 {
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5778
5779 if (strchr (name, '(') != NULL)
5780 {
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5783
5784 if (without_params != NULL)
5785 {
5786 name = without_params.get();
5787 }
5788 }
5789 }
5790
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5792
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5794 uint32_t namei
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5799 if (namei == 0)
5800 return NULL;
5801 --namei;
5802 if (namei >= map.name_count)
5803 {
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5805 "[in module %s]"),
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5808 return NULL;
5809 }
5810
5811 for (;;)
5812 {
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5818 return NULL;
5819
5820 if (full_hash == namei_full_hash)
5821 {
5822 const char *const namei_string = map.namei_to_name (namei);
5823
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5826 {
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5828 "[in module %s]"),
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5830 return NULL;
5831 }
5832 #endif
5833
5834 if (cmp (namei_string, name) == 0)
5835 {
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842 }
5843
5844 ++namei;
5845 if (namei >= map.name_count)
5846 return NULL;
5847 }
5848 }
5849
5850 const gdb_byte *
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5853 {
5854 if (namei >= map.name_count)
5855 {
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5857 "[in module %s]"),
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5860 return NULL;
5861 }
5862
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5868 }
5869
5870 /* See dw2_debug_names_iterator. */
5871
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5874 {
5875 if (m_addr == NULL)
5876 return NULL;
5877
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5881
5882 again:
5883
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 if (abbrev == 0)
5888 return NULL;
5889
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5892 {
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5894 "[in module %s]"),
5895 pulongest (abbrev), objfile_name (objfile));
5896 return NULL;
5897 }
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5900 bool is_static;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5903 {
5904 ULONGEST ull;
5905 switch (attr.form)
5906 {
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5909 break;
5910 case DW_FORM_flag_present:
5911 ull = 1;
5912 break;
5913 case DW_FORM_udata:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5916 break;
5917 default:
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5921 return NULL;
5922 }
5923 switch (attr.dw_idx)
5924 {
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5928 {
5929 complaint (_(".debug_names entry has bad CU index %s"
5930 " [in module %s]"),
5931 pulongest (ull),
5932 objfile_name (dwarf2_per_objfile->objfile));
5933 continue;
5934 }
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5936 break;
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5940 {
5941 complaint (_(".debug_names entry has bad TU index %s"
5942 " [in module %s]"),
5943 pulongest (ull),
5944 objfile_name (dwarf2_per_objfile->objfile));
5945 continue;
5946 }
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5948 break;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5951 break;
5952 have_is_static = true;
5953 is_static = true;
5954 break;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5957 break;
5958 have_is_static = true;
5959 is_static = false;
5960 break;
5961 }
5962 }
5963
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5966 goto again;
5967
5968 /* Check static vs global. */
5969 if (have_is_static)
5970 {
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5973 goto again;
5974 }
5975
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5978 switch (m_domain)
5979 {
5980 case VAR_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case STRUCT_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case LABEL_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case 0:
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6019 switch (m_search)
6020 {
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_variable:
6025 break;
6026 default:
6027 goto again;
6028 }
6029 break;
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6032 {
6033 case DW_TAG_subprogram:
6034 break;
6035 default:
6036 goto again;
6037 }
6038 break;
6039 case TYPES_DOMAIN:
6040 switch (indexval.dwarf_tag)
6041 {
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6044 break;
6045 default:
6046 goto again;
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052
6053 return per_cu;
6054 }
6055
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6059 {
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6065 if (!mapp)
6066 {
6067 /* index is NULL if OBJF_READNOW. */
6068 return NULL;
6069 }
6070 const auto &map = *mapp;
6071
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6074
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6078 {
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6083
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6086 &with_opaque);
6087
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6091
6092 if (sym != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6094 return stab;
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6097 stab_best = stab;
6098
6099 /* Keep looking through other CUs. */
6100 }
6101
6102 return stab_best;
6103 }
6104
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6108
6109 static void
6110 dw2_debug_names_dump (struct objfile *objfile)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6119 else
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6133 {
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6135
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6139
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6143 }
6144 }
6145
6146 static void
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6154 {
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6157
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6160 return;
6161
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6163
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6165
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6167 symbol_matcher,
6168 kind, [&] (offset_type namei)
6169 {
6170 /* The name was matched, now expand corresponding CUs that were
6171 marked. */
6172 dw2_debug_names_iterator iter (map, kind, namei);
6173
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6177 expansion_notify);
6178 });
6179 }
6180
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6182 {
6183 dw2_has_symbols,
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6188 dw2_print_stats,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6196 NULL,
6197 dw2_map_symbol_filenames
6198 };
6199
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6202
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6206 {
6207 dwarf2_section_info *section = &section_owner->gdb_index;
6208
6209 if (dwarf2_section_empty_p (section))
6210 return {};
6211
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6215 return {};
6216
6217 dwarf2_read_section (obj, section);
6218
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6226 }
6227
6228 /* Lookup the index cache for the contents of the index associated to
6229 DWARF2_OBJ. */
6230
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6233 {
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6236 return {};
6237
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6240 }
6241
6242 /* Same as the above, but for DWZ. */
6243
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6246 {
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6249 return {};
6250
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6252 }
6253
6254 /* See symfile.h. */
6255
6256 bool
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6258 {
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6261
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6265 expanded anyway. */
6266 if ((objfile->flags & OBJF_READNOW))
6267 {
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6274
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6277 {
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6279
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6282 }
6283
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6286 all symtabs. */
6287 *index_kind = dw_index_kind::GDB_INDEX;
6288 return true;
6289 }
6290
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6292 {
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6294 return true;
6295 }
6296
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6300 {
6301 *index_kind = dw_index_kind::GDB_INDEX;
6302 return true;
6303 }
6304
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6309 {
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6312 return true;
6313 }
6314
6315 global_index_cache.miss ();
6316 return false;
6317 }
6318
6319 \f
6320
6321 /* Build a partial symbol table. */
6322
6323 void
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6325 {
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6328
6329 init_psymbol_list (objfile, 1024);
6330
6331 try
6332 {
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6338 psymtabs.keep ();
6339
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6342 }
6343 catch (const gdb_exception_error &except)
6344 {
6345 exception_print (gdb_stderr, except);
6346 }
6347 }
6348
6349 /* Return the total length of the CU described by HEADER. */
6350
6351 static unsigned int
6352 get_cu_length (const struct comp_unit_head *header)
6353 {
6354 return header->initial_length_size + header->length;
6355 }
6356
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6358
6359 static inline bool
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6361 {
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6364
6365 return sect_off >= bottom && sect_off < top;
6366 }
6367
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6373
6374 static void
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6376 {
6377 struct attribute *attr;
6378
6379 cu->base_known = 0;
6380 cu->base_address = 0;
6381
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6383 if (attr)
6384 {
6385 cu->base_address = attr_value_as_address (attr);
6386 cu->base_known = 1;
6387 }
6388 else
6389 {
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6391 if (attr)
6392 {
6393 cu->base_address = attr_value_as_address (attr);
6394 cu->base_known = 1;
6395 }
6396 }
6397 }
6398
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6402 by the caller. */
6403
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6409 {
6410 int signed_addr;
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6414
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6424 info_ptr += 2;
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6427 {
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6430 break;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6433 break;
6434 default:
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6437 }
6438 else
6439 {
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6442 info_ptr += 1;
6443 switch (cu_header->unit_type)
6444 {
6445 case DW_UT_compile:
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6449 filename);
6450 break;
6451 case DW_UT_type:
6452 section_kind = rcuh_kind::TYPE;
6453 break;
6454 default:
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6458 }
6459
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6461 info_ptr += 1;
6462 }
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6464 cu_header,
6465 &bytes_read);
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6468 {
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6470 info_ptr += 1;
6471 }
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6477
6478 if (section_kind == rcuh_kind::TYPE)
6479 {
6480 LONGEST type_offset;
6481
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6483 info_ptr += 8;
6484
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6491 filename);
6492 }
6493
6494 return info_ptr;
6495 }
6496
6497 /* Helper function that returns the proper abbrev section for
6498 THIS_CU. */
6499
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6502 {
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6505
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6508 else
6509 abbrev = &dwarf2_per_objfile->abbrev;
6510
6511 return abbrev;
6512 }
6513
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6517
6518 static void
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6523 {
6524 const char *filename = get_section_file_name (section);
6525
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6532 filename);
6533
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6537 > section->size)
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6541 filename);
6542 }
6543
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6547
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6555 {
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6557
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6559
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6561
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6563
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6565 abbrev_section);
6566
6567 return info_ptr;
6568 }
6569
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6571
6572 static sect_offset
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6576 {
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6580 uint16_t version;
6581
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6587
6588 version = read_2_bytes (abfd, info_ptr);
6589 info_ptr += 2;
6590 if (version >= 5)
6591 {
6592 /* Skip unit type and address size. */
6593 info_ptr += 2;
6594 }
6595
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6597 }
6598
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6601
6602 static void
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6605 {
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6607
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6609 {
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6612 }
6613
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6617
6618 subpst->read_symtab = pst->read_symtab;
6619
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6624 }
6625
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6629
6630 static void
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6634 {
6635 line_header_up lh;
6636 struct attribute *attr;
6637
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6639 if (attr)
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6641 if (lh == NULL)
6642 return; /* No linetable, so no includes. */
6643
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6650 }
6651
6652 static hashval_t
6653 hash_signatured_type (const void *item)
6654 {
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6657
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6660 }
6661
6662 static int
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6664 {
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6667
6668 return lhs->signature == rhs->signature;
6669 }
6670
6671 /* Allocate a hash table for signatured types. */
6672
6673 static htab_t
6674 allocate_signatured_type_table (struct objfile *objfile)
6675 {
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6678 eq_signatured_type,
6679 NULL,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6683 }
6684
6685 /* A helper function to add a signatured type CU to a table. */
6686
6687 static int
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6689 {
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6693
6694 all_type_units->push_back (sigt);
6695
6696 return 1;
6697 }
6698
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6702
6703 static void
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6708 {
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6711 bfd *abfd;
6712 const gdb_byte *info_ptr, *end_ptr;
6713
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6717
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6722
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6725
6726 if (info_ptr == NULL)
6727 return;
6728
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6732
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6735 header. */
6736
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6739 {
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6742 void **slot;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6746
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6748
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6752
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6755
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6758
6759 length = get_cu_length (&header);
6760
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6765 {
6766 info_ptr += length;
6767 continue;
6768 }
6769
6770 if (types_htab == NULL)
6771 {
6772 if (dwo_file)
6773 types_htab = allocate_dwo_unit_table (objfile);
6774 else
6775 types_htab = allocate_signatured_type_table (objfile);
6776 }
6777
6778 if (dwo_file)
6779 {
6780 sig_type = NULL;
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6782 struct dwo_unit);
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6789 }
6790 else
6791 {
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6794 dwo_tu = NULL;
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6804 }
6805
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6808 INSERT);
6809 gdb_assert (slot != NULL);
6810 if (*slot != NULL)
6811 {
6812 sect_offset dup_sect_off;
6813
6814 if (dwo_file)
6815 {
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6818
6819 dup_sect_off = dup_tu->sect_off;
6820 }
6821 else
6822 {
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6825
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6827 }
6828
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6833 }
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6835
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6840
6841 info_ptr += length;
6842 }
6843 }
6844
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6849
6850 The result is a pointer to the hash table or NULL if there are no types.
6851
6852 Note: This function processes DWO files only, not DWP files. */
6853
6854 static void
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6858 htab_t &types_htab)
6859 {
6860 int ix;
6861 struct dwarf2_section_info *section;
6862
6863 if (VEC_empty (dwarf2_section_info_def, types))
6864 return;
6865
6866 for (ix = 0;
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6868 ++ix)
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6871 }
6872
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6877
6878 static int
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6880 {
6881 htab_t types_htab = NULL;
6882
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6889 {
6890 dwarf2_per_objfile->signatured_types = NULL;
6891 return 0;
6892 }
6893
6894 dwarf2_per_objfile->signatured_types = types_htab;
6895
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6898
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6901
6902 return 1;
6903 }
6904
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6908
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6911 void **slot)
6912 {
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6914
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6918
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6921
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6926 {
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6930 }
6931
6932 if (slot == NULL)
6933 {
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6935 sig_type, INSERT);
6936 }
6937 gdb_assert (*slot == NULL);
6938 *slot = sig_type;
6939 /* The rest of sig_type must be filled in by the caller. */
6940 return sig_type;
6941 }
6942
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6945
6946 static void
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6950 {
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6955 {
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6958 }
6959 else
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6965
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6973 }
6974
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6986
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6996 void **slot;
6997
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6999
7000 /* If TU skeletons have been removed then we may not have read in any
7001 TUs yet. */
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7003 {
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7006 }
7007
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7013
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7018
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7024
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7029 return sig_entry;
7030
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7034
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7037 return NULL;
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7041 return NULL;
7042
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7046
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7049 return sig_entry;
7050 }
7051
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7056
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 {
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7066 void **slot;
7067
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7070
7071 /* If TU skeletons have been removed then we may not have read in any
7072 TUs yet. */
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7074 {
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7077 }
7078
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7083
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7088 return sig_entry;
7089
7090 if (dwp_file->tus == NULL)
7091 return NULL;
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7095 return NULL;
7096
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7099
7100 return sig_entry;
7101 }
7102
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7106
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 {
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7112
7113 if (cu->dwo_unit
7114 && dwarf2_per_objfile->using_index)
7115 {
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7120 else
7121 return lookup_dwp_signatured_type (cu, sig);
7122 }
7123 else
7124 {
7125 struct signatured_type find_entry, *entry;
7126
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7128 return NULL;
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7132 return entry;
7133 }
7134 }
7135 \f
7136 /* Low level DIE reading support. */
7137
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7139
7140 static void
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7146 {
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7149 reader->cu = cu;
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7156 }
7157
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7161 already.
7162
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7174
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7176
7177 static int
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7187 {
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7191 bfd *abfd;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7198
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7201
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7208 DWO CU/TU die. */
7209
7210 stmt_list = NULL;
7211 low_pc = NULL;
7212 high_pc = NULL;
7213 ranges = NULL;
7214 comp_dir = NULL;
7215
7216 if (stub_comp_unit_die != NULL)
7217 {
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7219 DWO file. */
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7226
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7230 cu->addr_base = 0;
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7232 if (attr)
7233 cu->addr_base = DW_UNSND (attr);
7234
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7239 if (attr)
7240 cu->ranges_base = DW_UNSND (attr);
7241 }
7242 else if (stub_comp_dir != NULL)
7243 {
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7250 }
7251
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7260
7261 if (this_cu->is_debug_types)
7262 {
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7264
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7267 dwo_abbrev_section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7271 {
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7278 }
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7284
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7289 }
7290 else
7291 {
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7294 dwo_abbrev_section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7298 until now. */
7299 dwo_unit->length = get_cu_length (&cu->header);
7300 }
7301
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7307
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7313 + (low_pc != NULL)
7314 + (high_pc != NULL)
7315 + (ranges != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7319
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7325 if (low_pc != NULL)
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7329 if (ranges != NULL)
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7334
7335 if (dwarf_die_debug)
7336 {
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7343 }
7344
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 return 0;
7356
7357 *result_info_ptr = info_ptr;
7358 return 1;
7359 }
7360
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7364
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7368 {
7369 struct dwarf2_cu *cu = this_cu->cu;
7370 ULONGEST signature;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7373
7374 gdb_assert (cu != NULL);
7375
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7379
7380 if (this_cu->is_debug_types)
7381 {
7382 struct signatured_type *sig_type;
7383
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7389 }
7390 else
7391 {
7392 struct attribute *attr;
7393
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7395 if (! attr)
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7397 " [in module %s]"),
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7401 signature);
7402 }
7403
7404 return dwo_unit;
7405 }
7406
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7410
7411 static void
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7415 void *data)
7416 {
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7422 int has_children;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7424
7425 /* Verify we can do the following downcast, and that we have the
7426 data we need. */
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7430
7431 if (use_existing_cu && this_cu->cu != NULL)
7432 {
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7436 }
7437 else
7438 {
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7442 }
7443
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7447
7448 /* The abbreviation table used by READER, this must live at least as long as
7449 READER. */
7450 abbrev_table_up dwo_abbrev_table;
7451
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7455 &reader, &info_ptr,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7458 {
7459 /* Dummy die. */
7460 return;
7461 }
7462
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7465
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7471 {
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7476 new_cu.release ();
7477 }
7478 }
7479
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7482
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7486
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7489
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7492
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7495
7496 static void
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7500 bool skip_partial,
7501 die_reader_func_ftype *die_reader_func,
7502 void *data)
7503 {
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7512 int has_children;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7520
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7525
7526 if (use_existing_cu)
7527 gdb_assert (keep);
7528
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7532 {
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7538 return;
7539 }
7540
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7543
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7545
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7547
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7550 {
7551 cu = this_cu->cu;
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7557 optimization. */
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7560 }
7561 else
7562 {
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7566 cu = new_cu.get ();
7567 }
7568
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7571 {
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7574 }
7575 else
7576 {
7577 if (this_cu->is_debug_types)
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7582 rcuh_kind::TYPE);
7583
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7591
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7595
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7599
7600 this_cu->dwarf_version = cu->header.version;
7601 }
7602 else
7603 {
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7606 abbrev_section,
7607 info_ptr,
7608 rcuh_kind::COMPILE);
7609
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7613 }
7614 }
7615
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7619 return;
7620
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7627 else
7628 {
7629 abbrev_table_holder
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7633 }
7634
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7638
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7640 return;
7641
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7646 with READER.
7647
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7652 if (attr)
7653 {
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7656
7657 if (has_children)
7658 {
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7663 }
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7666 {
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7669 &reader, &info_ptr,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7672 {
7673 /* Dummy die. */
7674 return;
7675 }
7676 comp_unit_die = dwo_comp_unit_die;
7677 }
7678 else
7679 {
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7684 debug info. */
7685 }
7686 }
7687
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7690
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7693 {
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7698 new_cu.release ();
7699 }
7700 }
7701
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7705
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7708
7709 We fill in THIS_CU->length.
7710
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7713
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7717
7718 static void
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7722 void *data)
7723 {
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7732 int has_children;
7733
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7738
7739 gdb_assert (this_cu->cu == NULL);
7740
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7744
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7747
7748 struct dwarf2_cu cu (this_cu);
7749
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7755 ? rcuh_kind::TYPE
7756 : rcuh_kind::COMPILE));
7757
7758 this_cu->length = get_cu_length (&cu.header);
7759
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7763 return;
7764
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7768
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7771
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7773 }
7774
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7778
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7783
7784 static void
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7787 void *data)
7788 {
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7790 }
7791 \f
7792 /* Type Unit Groups.
7793
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7799
7800 static hashval_t
7801 hash_type_unit_group (const void *item)
7802 {
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7805
7806 return hash_stmt_list_entry (&tu_group->hash);
7807 }
7808
7809 static int
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7811 {
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7814
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7816 }
7817
7818 /* Allocate a hash table for type unit groups. */
7819
7820 static htab_t
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7822 {
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7825 eq_type_unit_group,
7826 NULL,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7830 }
7831
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7837
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7840
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7843 {
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7849
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7854
7855 if (dwarf2_per_objfile->using_index)
7856 {
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7859 }
7860 else
7861 {
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7864 std::string name;
7865
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7870 else
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7872
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7874 pst->anonymous = 1;
7875 }
7876
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7879
7880 return tu_group;
7881 }
7882
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7885
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7888 {
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7893 void **slot;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7896
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7898 {
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7901 }
7902
7903 /* Do we need to create a new group, or can we use an existing one? */
7904
7905 if (stmt_list)
7906 {
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7909 }
7910 else
7911 {
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7921 }
7922
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7927 if (*slot != NULL)
7928 {
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7931 }
7932 else
7933 {
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7936 *slot = tu_group;
7937 ++tu_stats->nr_symtabs;
7938 }
7939
7940 return tu_group;
7941 }
7942 \f
7943 /* Partial symbol tables. */
7944
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7946
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7949
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7952 {
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7955
7956 pst = start_psymtab_common (objfile, name, 0);
7957
7958 pst->psymtabs_addrmap_supported = 1;
7959
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7964
7965 return pst;
7966 }
7967
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7969 type. */
7970
7971 struct process_psymtab_comp_unit_data
7972 {
7973 /* True if we are reading a DW_TAG_partial_unit. */
7974
7975 int want_partial_unit;
7976
7977 /* The "pretend" language that is used if the CU doesn't declare a
7978 language. */
7979
7980 enum language pretend_language;
7981 };
7982
7983 /* die_reader_func for process_psymtab_comp_unit. */
7984
7985 static void
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7989 int has_children,
7990 void *data)
7991 {
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7996 CORE_ADDR baseaddr;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8003
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8005 return;
8006
8007 gdb_assert (! per_cu->is_debug_types);
8008
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8010
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8014 filename = "";
8015
8016 pst = create_partial_symtab (per_cu, filename);
8017
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8020
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8022
8023 dwarf2_find_base_address (comp_unit_die, cu);
8024
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8026 `DW_AT_ranges'. */
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8030 {
8031 CORE_ADDR low
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8033 - baseaddr);
8034 CORE_ADDR high
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8036 - baseaddr - 1);
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8040 low, high, pst);
8041 }
8042
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8046 if (has_children)
8047 {
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8050
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8053
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8055
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8058
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8062 lowpc = highpc;
8063
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8067 {
8068 best_lowpc = lowpc;
8069 best_highpc = highpc;
8070 }
8071 }
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8074 - baseaddr);
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8077 - baseaddr);
8078
8079 end_psymtab_common (objfile, pst);
8080
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8082 {
8083 int i;
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8086
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8088 post-pass. */
8089 pst->number_of_dependencies = len;
8090 pst->dependencies
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8092 for (i = 0;
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8094 i, iter);
8095 ++i)
8096 pst->dependencies[i] = iter->v.psymtab;
8097
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8099 }
8100
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8104
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8114 }
8115
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8118
8119 static void
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8123 {
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8131
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8135 else
8136 {
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8142 }
8143
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8146 }
8147
8148 /* Reader function for build_type_psymtabs. */
8149
8150 static void
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8154 int has_children,
8155 void *data)
8156 {
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8168
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8172
8173 if (! has_children)
8174 return;
8175
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8178
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8180
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8183 pst->anonymous = 1;
8184
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8186
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8190
8191 end_psymtab_common (objfile, pst);
8192 }
8193
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8195
8196 struct tu_abbrev_offset
8197 {
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8200 {}
8201
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8204 };
8205
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8207
8208 static bool
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8211 {
8212 return a.abbrev_offset < b.abbrev_offset;
8213 }
8214
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8217
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8221
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8228
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8232
8233 static void
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8235 {
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8239
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8242
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8244 return;
8245
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8251
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8255
8256 The basic algorithm here is:
8257
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8263 call FUNC */
8264
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8267
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8272
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8278
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8281
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8283
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8285 {
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8289 {
8290 abbrev_offset = tu.abbrev_offset;
8291 abbrev_table =
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8294 abbrev_offset);
8295 ++tu_stats->nr_uniq_abbrev_tables;
8296 }
8297
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8300 }
8301 }
8302
8303 /* Print collected type unit statistics. */
8304
8305 static void
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8307 {
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8309
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8323 }
8324
8325 /* Traversal function for build_type_psymtabs. */
8326
8327 static int
8328 build_type_psymtab_dependencies (void **slot, void *info)
8329 {
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8338 int i;
8339
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8342
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8345 for (i = 0;
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8347 ++i)
8348 {
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8352 }
8353
8354 VEC_free (sig_type_ptr, tu_group->tus);
8355
8356 return 1;
8357 }
8358
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8361
8362 static void
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364 {
8365 if (! create_all_type_units (dwarf2_per_objfile))
8366 return;
8367
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8369 }
8370
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8373
8374 static int
8375 process_skeletonless_type_unit (void **slot, void *info)
8376 {
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8381
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8383
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8385 {
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8388 }
8389
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8392 INSERT);
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8395 if (*slot != NULL)
8396 return 1;
8397
8398 /* This does the job that create_all_type_units would have done for
8399 this TU. */
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8402 *slot = entry;
8403
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8407
8408 return 1;
8409 }
8410
8411 /* Traversal function for process_skeletonless_type_units. */
8412
8413 static int
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8415 {
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8417
8418 if (dwo_file->tus != NULL)
8419 {
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8422 }
8423
8424 return 1;
8425 }
8426
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8430
8431 static void
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8433 {
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8437 {
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8441 }
8442 }
8443
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8445
8446 static void
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8448 {
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8450 {
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8452
8453 if (pst == NULL)
8454 continue;
8455
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8457 {
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8461 }
8462 }
8463 }
8464
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8467
8468 static void
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8470 {
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8472
8473 if (dwarf_read_debug)
8474 {
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8477 }
8478
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8480
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8482
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8486
8487 build_type_psymtabs (dwarf2_per_objfile);
8488
8489 create_all_comp_units (dwarf2_per_objfile);
8490
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8494
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8498
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8501
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8504
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8507 {
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8510 }
8511
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8514
8515 set_partial_user (dwarf2_per_objfile);
8516
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8522
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8526 }
8527
8528 /* die_reader_func for load_partial_comp_unit. */
8529
8530 static void
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8534 int has_children,
8535 void *data)
8536 {
8537 struct dwarf2_cu *cu = reader->cu;
8538
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8540
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8544 if (has_children)
8545 load_partial_dies (reader, info_ptr, 0);
8546 }
8547
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8550
8551 static void
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8553 {
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8556 }
8557
8558 static void
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8563 {
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8566
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8571
8572 dwarf2_read_section (objfile, section);
8573
8574 info_ptr = section->buffer;
8575
8576 while (info_ptr < section->buffer + section->size)
8577 {
8578 struct dwarf2_per_cu_data *this_cu;
8579
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8581
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8586
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8589 {
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8593 }
8594 else
8595 {
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8602 }
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8609
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8611
8612 info_ptr = info_ptr + this_cu->length;
8613 }
8614 }
8615
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8618
8619 static void
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8621 {
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8625
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8627 if (dwz != NULL)
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8629 1);
8630 }
8631
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8637
8638 static void
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8642 {
8643 struct partial_die_info *pdi;
8644
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8648
8649 pdi = first_die;
8650
8651 while (pdi != NULL)
8652 {
8653 pdi->fixup (cu);
8654
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8657 enums. */
8658
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8663 {
8664 switch (pdi->tag)
8665 {
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8669 break;
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8675 {
8676 add_partial_symbol (pdi, cu);
8677 }
8678 break;
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8683 {
8684 add_partial_symbol (pdi, cu);
8685 }
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8689 set_addrmap, cu);
8690 break;
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8694 break;
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8698 symbol table. */
8699 add_partial_symbol (pdi, cu);
8700 break;
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8703 break;
8704 case DW_TAG_module:
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8706 break;
8707 case DW_TAG_imported_unit:
8708 {
8709 struct dwarf2_per_cu_data *per_cu;
8710
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8713 {
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8717 }
8718
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8722
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8726
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8729 }
8730 break;
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8733 break;
8734 default:
8735 break;
8736 }
8737 }
8738
8739 /* If the die has a sibling, skip to the sibling. */
8740
8741 pdi = pdi->die_sibling;
8742 }
8743 }
8744
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8746
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8752
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8762 have a parent. */
8763
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8768 static const char *
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8771 {
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8774
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8777
8778 real_pdi = pdi;
8779 while (real_pdi->has_specification)
8780 {
8781 auto res = find_partial_die (real_pdi->spec_offset,
8782 real_pdi->spec_is_dwz, cu);
8783 real_pdi = res.pdi;
8784 cu = res.cu;
8785 }
8786
8787 parent = real_pdi->die_parent;
8788 if (parent == NULL)
8789 return NULL;
8790
8791 if (parent->scope_set)
8792 return parent->scope;
8793
8794 parent->fixup (cu);
8795
8796 grandparent_scope = partial_die_parent_scope (parent, cu);
8797
8798 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8799 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8800 Work around this problem here. */
8801 if (cu->language == language_cplus
8802 && parent->tag == DW_TAG_namespace
8803 && strcmp (parent->name, "::") == 0
8804 && grandparent_scope == NULL)
8805 {
8806 parent->scope = NULL;
8807 parent->scope_set = 1;
8808 return NULL;
8809 }
8810
8811 if (pdi->tag == DW_TAG_enumerator)
8812 /* Enumerators should not get the name of the enumeration as a prefix. */
8813 parent->scope = grandparent_scope;
8814 else if (parent->tag == DW_TAG_namespace
8815 || parent->tag == DW_TAG_module
8816 || parent->tag == DW_TAG_structure_type
8817 || parent->tag == DW_TAG_class_type
8818 || parent->tag == DW_TAG_interface_type
8819 || parent->tag == DW_TAG_union_type
8820 || parent->tag == DW_TAG_enumeration_type)
8821 {
8822 if (grandparent_scope == NULL)
8823 parent->scope = parent->name;
8824 else
8825 parent->scope = typename_concat (&cu->comp_unit_obstack,
8826 grandparent_scope,
8827 parent->name, 0, cu);
8828 }
8829 else
8830 {
8831 /* FIXME drow/2004-04-01: What should we be doing with
8832 function-local names? For partial symbols, we should probably be
8833 ignoring them. */
8834 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8835 dwarf_tag_name (parent->tag),
8836 sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8838 }
8839
8840 parent->scope_set = 1;
8841 return parent->scope;
8842 }
8843
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8846
8847 static char *
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8850 {
8851 const char *parent_scope;
8852
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8858 {
8859 pdi->fixup (cu);
8860
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8862 {
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8866
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8872
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8874 }
8875 }
8876
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8879 return NULL;
8880 else
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8882 }
8883
8884 static void
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8886 {
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8891 CORE_ADDR addr = 0;
8892 const char *actual_name = NULL;
8893 CORE_ADDR baseaddr;
8894 char *built_actual_name;
8895
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8897
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8901
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8904
8905 switch (pdi->tag)
8906 {
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8910 - baseaddr);
8911 if (pdi->is_external || cu->language == language_ada)
8912 {
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8922 addr,
8923 cu->language, objfile);
8924 }
8925 else
8926 {
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8933 }
8934
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8937 break;
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_variable:
8947 if (pdi->d.locdesc)
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8949
8950 if (pdi->d.locdesc
8951 && addr == 0
8952 && !dwarf2_per_objfile->has_section_at_zero)
8953 {
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8958 }
8959 else if (pdi->is_external)
8960 {
8961 /* Global Variable.
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8969 is referenced.
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8972 table building. */
8973
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8981 }
8982 else
8983 {
8984 int has_loc = pdi->d.locdesc != NULL;
8985
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8989 {
8990 xfree (built_actual_name);
8991 return;
8992 }
8993
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 has_loc ? addr : 0,
9000 cu->language, objfile);
9001 }
9002 break;
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9019 break;
9020 case DW_TAG_module:
9021 /* With Fortran 77 there might be a "BLOCK DATA" module
9022 available without any name. If so, we skip the module as it
9023 doesn't bring any value. */
9024 if (actual_name != nullptr)
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9028 psymbol_placement::GLOBAL,
9029 0, cu->language, objfile);
9030 break;
9031 case DW_TAG_class_type:
9032 case DW_TAG_interface_type:
9033 case DW_TAG_structure_type:
9034 case DW_TAG_union_type:
9035 case DW_TAG_enumeration_type:
9036 /* Skip external references. The DWARF standard says in the section
9037 about "Structure, Union, and Class Type Entries": "An incomplete
9038 structure, union or class type is represented by a structure,
9039 union or class entry that does not have a byte size attribute
9040 and that has a DW_AT_declaration attribute." */
9041 if (!pdi->has_byte_size && pdi->is_declaration)
9042 {
9043 xfree (built_actual_name);
9044 return;
9045 }
9046
9047 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9048 static vs. global. */
9049 add_psymbol_to_list (actual_name, strlen (actual_name),
9050 built_actual_name != NULL,
9051 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9052 cu->language == language_cplus
9053 ? psymbol_placement::GLOBAL
9054 : psymbol_placement::STATIC,
9055 0, cu->language, objfile);
9056
9057 break;
9058 case DW_TAG_enumerator:
9059 add_psymbol_to_list (actual_name, strlen (actual_name),
9060 built_actual_name != NULL,
9061 VAR_DOMAIN, LOC_CONST, -1,
9062 cu->language == language_cplus
9063 ? psymbol_placement::GLOBAL
9064 : psymbol_placement::STATIC,
9065 0, cu->language, objfile);
9066 break;
9067 default:
9068 break;
9069 }
9070
9071 xfree (built_actual_name);
9072 }
9073
9074 /* Read a partial die corresponding to a namespace; also, add a symbol
9075 corresponding to that namespace to the symbol table. NAMESPACE is
9076 the name of the enclosing namespace. */
9077
9078 static void
9079 add_partial_namespace (struct partial_die_info *pdi,
9080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9081 int set_addrmap, struct dwarf2_cu *cu)
9082 {
9083 /* Add a symbol for the namespace. */
9084
9085 add_partial_symbol (pdi, cu);
9086
9087 /* Now scan partial symbols in that namespace. */
9088
9089 if (pdi->has_children)
9090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9091 }
9092
9093 /* Read a partial die corresponding to a Fortran module. */
9094
9095 static void
9096 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9097 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9098 {
9099 /* Add a symbol for the namespace. */
9100
9101 add_partial_symbol (pdi, cu);
9102
9103 /* Now scan partial symbols in that module. */
9104
9105 if (pdi->has_children)
9106 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9107 }
9108
9109 /* Read a partial die corresponding to a subprogram or an inlined
9110 subprogram and create a partial symbol for that subprogram.
9111 When the CU language allows it, this routine also defines a partial
9112 symbol for each nested subprogram that this subprogram contains.
9113 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9114 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9115
9116 PDI may also be a lexical block, in which case we simply search
9117 recursively for subprograms defined inside that lexical block.
9118 Again, this is only performed when the CU language allows this
9119 type of definitions. */
9120
9121 static void
9122 add_partial_subprogram (struct partial_die_info *pdi,
9123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9124 int set_addrmap, struct dwarf2_cu *cu)
9125 {
9126 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9127 {
9128 if (pdi->has_pc_info)
9129 {
9130 if (pdi->lowpc < *lowpc)
9131 *lowpc = pdi->lowpc;
9132 if (pdi->highpc > *highpc)
9133 *highpc = pdi->highpc;
9134 if (set_addrmap)
9135 {
9136 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9138 CORE_ADDR baseaddr;
9139 CORE_ADDR this_highpc;
9140 CORE_ADDR this_lowpc;
9141
9142 baseaddr = ANOFFSET (objfile->section_offsets,
9143 SECT_OFF_TEXT (objfile));
9144 this_lowpc
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->lowpc + baseaddr)
9147 - baseaddr);
9148 this_highpc
9149 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9150 pdi->highpc + baseaddr)
9151 - baseaddr);
9152 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9153 this_lowpc, this_highpc - 1,
9154 cu->per_cu->v.psymtab);
9155 }
9156 }
9157
9158 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9159 {
9160 if (!pdi->is_declaration)
9161 /* Ignore subprogram DIEs that do not have a name, they are
9162 illegal. Do not emit a complaint at this point, we will
9163 do so when we convert this psymtab into a symtab. */
9164 if (pdi->name)
9165 add_partial_symbol (pdi, cu);
9166 }
9167 }
9168
9169 if (! pdi->has_children)
9170 return;
9171
9172 if (cu->language == language_ada)
9173 {
9174 pdi = pdi->die_child;
9175 while (pdi != NULL)
9176 {
9177 pdi->fixup (cu);
9178 if (pdi->tag == DW_TAG_subprogram
9179 || pdi->tag == DW_TAG_inlined_subroutine
9180 || pdi->tag == DW_TAG_lexical_block)
9181 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9182 pdi = pdi->die_sibling;
9183 }
9184 }
9185 }
9186
9187 /* Read a partial die corresponding to an enumeration type. */
9188
9189 static void
9190 add_partial_enumeration (struct partial_die_info *enum_pdi,
9191 struct dwarf2_cu *cu)
9192 {
9193 struct partial_die_info *pdi;
9194
9195 if (enum_pdi->name != NULL)
9196 add_partial_symbol (enum_pdi, cu);
9197
9198 pdi = enum_pdi->die_child;
9199 while (pdi)
9200 {
9201 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9202 complaint (_("malformed enumerator DIE ignored"));
9203 else
9204 add_partial_symbol (pdi, cu);
9205 pdi = pdi->die_sibling;
9206 }
9207 }
9208
9209 /* Return the initial uleb128 in the die at INFO_PTR. */
9210
9211 static unsigned int
9212 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9213 {
9214 unsigned int bytes_read;
9215
9216 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9217 }
9218
9219 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9220 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9221
9222 Return the corresponding abbrev, or NULL if the number is zero (indicating
9223 an empty DIE). In either case *BYTES_READ will be set to the length of
9224 the initial number. */
9225
9226 static struct abbrev_info *
9227 peek_die_abbrev (const die_reader_specs &reader,
9228 const gdb_byte *info_ptr, unsigned int *bytes_read)
9229 {
9230 dwarf2_cu *cu = reader.cu;
9231 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9232 unsigned int abbrev_number
9233 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9234
9235 if (abbrev_number == 0)
9236 return NULL;
9237
9238 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9239 if (!abbrev)
9240 {
9241 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9242 " at offset %s [in module %s]"),
9243 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9244 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9245 }
9246
9247 return abbrev;
9248 }
9249
9250 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9251 Returns a pointer to the end of a series of DIEs, terminated by an empty
9252 DIE. Any children of the skipped DIEs will also be skipped. */
9253
9254 static const gdb_byte *
9255 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9256 {
9257 while (1)
9258 {
9259 unsigned int bytes_read;
9260 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9261
9262 if (abbrev == NULL)
9263 return info_ptr + bytes_read;
9264 else
9265 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9266 }
9267 }
9268
9269 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9270 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9271 abbrev corresponding to that skipped uleb128 should be passed in
9272 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9273 children. */
9274
9275 static const gdb_byte *
9276 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9277 struct abbrev_info *abbrev)
9278 {
9279 unsigned int bytes_read;
9280 struct attribute attr;
9281 bfd *abfd = reader->abfd;
9282 struct dwarf2_cu *cu = reader->cu;
9283 const gdb_byte *buffer = reader->buffer;
9284 const gdb_byte *buffer_end = reader->buffer_end;
9285 unsigned int form, i;
9286
9287 for (i = 0; i < abbrev->num_attrs; i++)
9288 {
9289 /* The only abbrev we care about is DW_AT_sibling. */
9290 if (abbrev->attrs[i].name == DW_AT_sibling)
9291 {
9292 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9293 if (attr.form == DW_FORM_ref_addr)
9294 complaint (_("ignoring absolute DW_AT_sibling"));
9295 else
9296 {
9297 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9298 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9299
9300 if (sibling_ptr < info_ptr)
9301 complaint (_("DW_AT_sibling points backwards"));
9302 else if (sibling_ptr > reader->buffer_end)
9303 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9304 else
9305 return sibling_ptr;
9306 }
9307 }
9308
9309 /* If it isn't DW_AT_sibling, skip this attribute. */
9310 form = abbrev->attrs[i].form;
9311 skip_attribute:
9312 switch (form)
9313 {
9314 case DW_FORM_ref_addr:
9315 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9316 and later it is offset sized. */
9317 if (cu->header.version == 2)
9318 info_ptr += cu->header.addr_size;
9319 else
9320 info_ptr += cu->header.offset_size;
9321 break;
9322 case DW_FORM_GNU_ref_alt:
9323 info_ptr += cu->header.offset_size;
9324 break;
9325 case DW_FORM_addr:
9326 info_ptr += cu->header.addr_size;
9327 break;
9328 case DW_FORM_data1:
9329 case DW_FORM_ref1:
9330 case DW_FORM_flag:
9331 info_ptr += 1;
9332 break;
9333 case DW_FORM_flag_present:
9334 case DW_FORM_implicit_const:
9335 break;
9336 case DW_FORM_data2:
9337 case DW_FORM_ref2:
9338 info_ptr += 2;
9339 break;
9340 case DW_FORM_data4:
9341 case DW_FORM_ref4:
9342 info_ptr += 4;
9343 break;
9344 case DW_FORM_data8:
9345 case DW_FORM_ref8:
9346 case DW_FORM_ref_sig8:
9347 info_ptr += 8;
9348 break;
9349 case DW_FORM_data16:
9350 info_ptr += 16;
9351 break;
9352 case DW_FORM_string:
9353 read_direct_string (abfd, info_ptr, &bytes_read);
9354 info_ptr += bytes_read;
9355 break;
9356 case DW_FORM_sec_offset:
9357 case DW_FORM_strp:
9358 case DW_FORM_GNU_strp_alt:
9359 info_ptr += cu->header.offset_size;
9360 break;
9361 case DW_FORM_exprloc:
9362 case DW_FORM_block:
9363 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9364 info_ptr += bytes_read;
9365 break;
9366 case DW_FORM_block1:
9367 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9368 break;
9369 case DW_FORM_block2:
9370 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9371 break;
9372 case DW_FORM_block4:
9373 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9374 break;
9375 case DW_FORM_addrx:
9376 case DW_FORM_strx:
9377 case DW_FORM_sdata:
9378 case DW_FORM_udata:
9379 case DW_FORM_ref_udata:
9380 case DW_FORM_GNU_addr_index:
9381 case DW_FORM_GNU_str_index:
9382 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9383 break;
9384 case DW_FORM_indirect:
9385 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9386 info_ptr += bytes_read;
9387 /* We need to continue parsing from here, so just go back to
9388 the top. */
9389 goto skip_attribute;
9390
9391 default:
9392 error (_("Dwarf Error: Cannot handle %s "
9393 "in DWARF reader [in module %s]"),
9394 dwarf_form_name (form),
9395 bfd_get_filename (abfd));
9396 }
9397 }
9398
9399 if (abbrev->has_children)
9400 return skip_children (reader, info_ptr);
9401 else
9402 return info_ptr;
9403 }
9404
9405 /* Locate ORIG_PDI's sibling.
9406 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9407
9408 static const gdb_byte *
9409 locate_pdi_sibling (const struct die_reader_specs *reader,
9410 struct partial_die_info *orig_pdi,
9411 const gdb_byte *info_ptr)
9412 {
9413 /* Do we know the sibling already? */
9414
9415 if (orig_pdi->sibling)
9416 return orig_pdi->sibling;
9417
9418 /* Are there any children to deal with? */
9419
9420 if (!orig_pdi->has_children)
9421 return info_ptr;
9422
9423 /* Skip the children the long way. */
9424
9425 return skip_children (reader, info_ptr);
9426 }
9427
9428 /* Expand this partial symbol table into a full symbol table. SELF is
9429 not NULL. */
9430
9431 static void
9432 dwarf2_read_symtab (struct partial_symtab *self,
9433 struct objfile *objfile)
9434 {
9435 struct dwarf2_per_objfile *dwarf2_per_objfile
9436 = get_dwarf2_per_objfile (objfile);
9437
9438 if (self->readin)
9439 {
9440 warning (_("bug: psymtab for %s is already read in."),
9441 self->filename);
9442 }
9443 else
9444 {
9445 if (info_verbose)
9446 {
9447 printf_filtered (_("Reading in symbols for %s..."),
9448 self->filename);
9449 gdb_flush (gdb_stdout);
9450 }
9451
9452 /* If this psymtab is constructed from a debug-only objfile, the
9453 has_section_at_zero flag will not necessarily be correct. We
9454 can get the correct value for this flag by looking at the data
9455 associated with the (presumably stripped) associated objfile. */
9456 if (objfile->separate_debug_objfile_backlink)
9457 {
9458 struct dwarf2_per_objfile *dpo_backlink
9459 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9460
9461 dwarf2_per_objfile->has_section_at_zero
9462 = dpo_backlink->has_section_at_zero;
9463 }
9464
9465 dwarf2_per_objfile->reading_partial_symbols = 0;
9466
9467 psymtab_to_symtab_1 (self);
9468
9469 /* Finish up the debug error message. */
9470 if (info_verbose)
9471 printf_filtered (_("done.\n"));
9472 }
9473
9474 process_cu_includes (dwarf2_per_objfile);
9475 }
9476 \f
9477 /* Reading in full CUs. */
9478
9479 /* Add PER_CU to the queue. */
9480
9481 static void
9482 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9483 enum language pretend_language)
9484 {
9485 struct dwarf2_queue_item *item;
9486
9487 per_cu->queued = 1;
9488 item = XNEW (struct dwarf2_queue_item);
9489 item->per_cu = per_cu;
9490 item->pretend_language = pretend_language;
9491 item->next = NULL;
9492
9493 if (dwarf2_queue == NULL)
9494 dwarf2_queue = item;
9495 else
9496 dwarf2_queue_tail->next = item;
9497
9498 dwarf2_queue_tail = item;
9499 }
9500
9501 /* If PER_CU is not yet queued, add it to the queue.
9502 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9503 dependency.
9504 The result is non-zero if PER_CU was queued, otherwise the result is zero
9505 meaning either PER_CU is already queued or it is already loaded.
9506
9507 N.B. There is an invariant here that if a CU is queued then it is loaded.
9508 The caller is required to load PER_CU if we return non-zero. */
9509
9510 static int
9511 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9512 struct dwarf2_per_cu_data *per_cu,
9513 enum language pretend_language)
9514 {
9515 /* We may arrive here during partial symbol reading, if we need full
9516 DIEs to process an unusual case (e.g. template arguments). Do
9517 not queue PER_CU, just tell our caller to load its DIEs. */
9518 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9519 {
9520 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9521 return 1;
9522 return 0;
9523 }
9524
9525 /* Mark the dependence relation so that we don't flush PER_CU
9526 too early. */
9527 if (dependent_cu != NULL)
9528 dwarf2_add_dependence (dependent_cu, per_cu);
9529
9530 /* If it's already on the queue, we have nothing to do. */
9531 if (per_cu->queued)
9532 return 0;
9533
9534 /* If the compilation unit is already loaded, just mark it as
9535 used. */
9536 if (per_cu->cu != NULL)
9537 {
9538 per_cu->cu->last_used = 0;
9539 return 0;
9540 }
9541
9542 /* Add it to the queue. */
9543 queue_comp_unit (per_cu, pretend_language);
9544
9545 return 1;
9546 }
9547
9548 /* Process the queue. */
9549
9550 static void
9551 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9552 {
9553 struct dwarf2_queue_item *item, *next_item;
9554
9555 if (dwarf_read_debug)
9556 {
9557 fprintf_unfiltered (gdb_stdlog,
9558 "Expanding one or more symtabs of objfile %s ...\n",
9559 objfile_name (dwarf2_per_objfile->objfile));
9560 }
9561
9562 /* The queue starts out with one item, but following a DIE reference
9563 may load a new CU, adding it to the end of the queue. */
9564 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9565 {
9566 if ((dwarf2_per_objfile->using_index
9567 ? !item->per_cu->v.quick->compunit_symtab
9568 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9569 /* Skip dummy CUs. */
9570 && item->per_cu->cu != NULL)
9571 {
9572 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9573 unsigned int debug_print_threshold;
9574 char buf[100];
9575
9576 if (per_cu->is_debug_types)
9577 {
9578 struct signatured_type *sig_type =
9579 (struct signatured_type *) per_cu;
9580
9581 sprintf (buf, "TU %s at offset %s",
9582 hex_string (sig_type->signature),
9583 sect_offset_str (per_cu->sect_off));
9584 /* There can be 100s of TUs.
9585 Only print them in verbose mode. */
9586 debug_print_threshold = 2;
9587 }
9588 else
9589 {
9590 sprintf (buf, "CU at offset %s",
9591 sect_offset_str (per_cu->sect_off));
9592 debug_print_threshold = 1;
9593 }
9594
9595 if (dwarf_read_debug >= debug_print_threshold)
9596 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9597
9598 if (per_cu->is_debug_types)
9599 process_full_type_unit (per_cu, item->pretend_language);
9600 else
9601 process_full_comp_unit (per_cu, item->pretend_language);
9602
9603 if (dwarf_read_debug >= debug_print_threshold)
9604 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9605 }
9606
9607 item->per_cu->queued = 0;
9608 next_item = item->next;
9609 xfree (item);
9610 }
9611
9612 dwarf2_queue_tail = NULL;
9613
9614 if (dwarf_read_debug)
9615 {
9616 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9617 objfile_name (dwarf2_per_objfile->objfile));
9618 }
9619 }
9620
9621 /* Read in full symbols for PST, and anything it depends on. */
9622
9623 static void
9624 psymtab_to_symtab_1 (struct partial_symtab *pst)
9625 {
9626 struct dwarf2_per_cu_data *per_cu;
9627 int i;
9628
9629 if (pst->readin)
9630 return;
9631
9632 for (i = 0; i < pst->number_of_dependencies; i++)
9633 if (!pst->dependencies[i]->readin
9634 && pst->dependencies[i]->user == NULL)
9635 {
9636 /* Inform about additional files that need to be read in. */
9637 if (info_verbose)
9638 {
9639 /* FIXME: i18n: Need to make this a single string. */
9640 fputs_filtered (" ", gdb_stdout);
9641 wrap_here ("");
9642 fputs_filtered ("and ", gdb_stdout);
9643 wrap_here ("");
9644 printf_filtered ("%s...", pst->dependencies[i]->filename);
9645 wrap_here (""); /* Flush output. */
9646 gdb_flush (gdb_stdout);
9647 }
9648 psymtab_to_symtab_1 (pst->dependencies[i]);
9649 }
9650
9651 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9652
9653 if (per_cu == NULL)
9654 {
9655 /* It's an include file, no symbols to read for it.
9656 Everything is in the parent symtab. */
9657 pst->readin = 1;
9658 return;
9659 }
9660
9661 dw2_do_instantiate_symtab (per_cu, false);
9662 }
9663
9664 /* Trivial hash function for die_info: the hash value of a DIE
9665 is its offset in .debug_info for this objfile. */
9666
9667 static hashval_t
9668 die_hash (const void *item)
9669 {
9670 const struct die_info *die = (const struct die_info *) item;
9671
9672 return to_underlying (die->sect_off);
9673 }
9674
9675 /* Trivial comparison function for die_info structures: two DIEs
9676 are equal if they have the same offset. */
9677
9678 static int
9679 die_eq (const void *item_lhs, const void *item_rhs)
9680 {
9681 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9682 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9683
9684 return die_lhs->sect_off == die_rhs->sect_off;
9685 }
9686
9687 /* die_reader_func for load_full_comp_unit.
9688 This is identical to read_signatured_type_reader,
9689 but is kept separate for now. */
9690
9691 static void
9692 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9693 const gdb_byte *info_ptr,
9694 struct die_info *comp_unit_die,
9695 int has_children,
9696 void *data)
9697 {
9698 struct dwarf2_cu *cu = reader->cu;
9699 enum language *language_ptr = (enum language *) data;
9700
9701 gdb_assert (cu->die_hash == NULL);
9702 cu->die_hash =
9703 htab_create_alloc_ex (cu->header.length / 12,
9704 die_hash,
9705 die_eq,
9706 NULL,
9707 &cu->comp_unit_obstack,
9708 hashtab_obstack_allocate,
9709 dummy_obstack_deallocate);
9710
9711 if (has_children)
9712 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9713 &info_ptr, comp_unit_die);
9714 cu->dies = comp_unit_die;
9715 /* comp_unit_die is not stored in die_hash, no need. */
9716
9717 /* We try not to read any attributes in this function, because not
9718 all CUs needed for references have been loaded yet, and symbol
9719 table processing isn't initialized. But we have to set the CU language,
9720 or we won't be able to build types correctly.
9721 Similarly, if we do not read the producer, we can not apply
9722 producer-specific interpretation. */
9723 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9724 }
9725
9726 /* Load the DIEs associated with PER_CU into memory. */
9727
9728 static void
9729 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9730 bool skip_partial,
9731 enum language pretend_language)
9732 {
9733 gdb_assert (! this_cu->is_debug_types);
9734
9735 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9736 load_full_comp_unit_reader, &pretend_language);
9737 }
9738
9739 /* Add a DIE to the delayed physname list. */
9740
9741 static void
9742 add_to_method_list (struct type *type, int fnfield_index, int index,
9743 const char *name, struct die_info *die,
9744 struct dwarf2_cu *cu)
9745 {
9746 struct delayed_method_info mi;
9747 mi.type = type;
9748 mi.fnfield_index = fnfield_index;
9749 mi.index = index;
9750 mi.name = name;
9751 mi.die = die;
9752 cu->method_list.push_back (mi);
9753 }
9754
9755 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9756 "const" / "volatile". If so, decrements LEN by the length of the
9757 modifier and return true. Otherwise return false. */
9758
9759 template<size_t N>
9760 static bool
9761 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9762 {
9763 size_t mod_len = sizeof (mod) - 1;
9764 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9765 {
9766 len -= mod_len;
9767 return true;
9768 }
9769 return false;
9770 }
9771
9772 /* Compute the physnames of any methods on the CU's method list.
9773
9774 The computation of method physnames is delayed in order to avoid the
9775 (bad) condition that one of the method's formal parameters is of an as yet
9776 incomplete type. */
9777
9778 static void
9779 compute_delayed_physnames (struct dwarf2_cu *cu)
9780 {
9781 /* Only C++ delays computing physnames. */
9782 if (cu->method_list.empty ())
9783 return;
9784 gdb_assert (cu->language == language_cplus);
9785
9786 for (const delayed_method_info &mi : cu->method_list)
9787 {
9788 const char *physname;
9789 struct fn_fieldlist *fn_flp
9790 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9791 physname = dwarf2_physname (mi.name, mi.die, cu);
9792 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9793 = physname ? physname : "";
9794
9795 /* Since there's no tag to indicate whether a method is a
9796 const/volatile overload, extract that information out of the
9797 demangled name. */
9798 if (physname != NULL)
9799 {
9800 size_t len = strlen (physname);
9801
9802 while (1)
9803 {
9804 if (physname[len] == ')') /* shortcut */
9805 break;
9806 else if (check_modifier (physname, len, " const"))
9807 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9808 else if (check_modifier (physname, len, " volatile"))
9809 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9810 else
9811 break;
9812 }
9813 }
9814 }
9815
9816 /* The list is no longer needed. */
9817 cu->method_list.clear ();
9818 }
9819
9820 /* Go objects should be embedded in a DW_TAG_module DIE,
9821 and it's not clear if/how imported objects will appear.
9822 To keep Go support simple until that's worked out,
9823 go back through what we've read and create something usable.
9824 We could do this while processing each DIE, and feels kinda cleaner,
9825 but that way is more invasive.
9826 This is to, for example, allow the user to type "p var" or "b main"
9827 without having to specify the package name, and allow lookups
9828 of module.object to work in contexts that use the expression
9829 parser. */
9830
9831 static void
9832 fixup_go_packaging (struct dwarf2_cu *cu)
9833 {
9834 char *package_name = NULL;
9835 struct pending *list;
9836 int i;
9837
9838 for (list = *cu->get_builder ()->get_global_symbols ();
9839 list != NULL;
9840 list = list->next)
9841 {
9842 for (i = 0; i < list->nsyms; ++i)
9843 {
9844 struct symbol *sym = list->symbol[i];
9845
9846 if (SYMBOL_LANGUAGE (sym) == language_go
9847 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9848 {
9849 char *this_package_name = go_symbol_package_name (sym);
9850
9851 if (this_package_name == NULL)
9852 continue;
9853 if (package_name == NULL)
9854 package_name = this_package_name;
9855 else
9856 {
9857 struct objfile *objfile
9858 = cu->per_cu->dwarf2_per_objfile->objfile;
9859 if (strcmp (package_name, this_package_name) != 0)
9860 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9861 (symbol_symtab (sym) != NULL
9862 ? symtab_to_filename_for_display
9863 (symbol_symtab (sym))
9864 : objfile_name (objfile)),
9865 this_package_name, package_name);
9866 xfree (this_package_name);
9867 }
9868 }
9869 }
9870 }
9871
9872 if (package_name != NULL)
9873 {
9874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9875 const char *saved_package_name
9876 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9877 package_name,
9878 strlen (package_name));
9879 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9880 saved_package_name);
9881 struct symbol *sym;
9882
9883 sym = allocate_symbol (objfile);
9884 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9885 SYMBOL_SET_NAMES (sym, saved_package_name,
9886 strlen (saved_package_name), 0, objfile);
9887 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9888 e.g., "main" finds the "main" module and not C's main(). */
9889 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9890 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9891 SYMBOL_TYPE (sym) = type;
9892
9893 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9894
9895 xfree (package_name);
9896 }
9897 }
9898
9899 /* Allocate a fully-qualified name consisting of the two parts on the
9900 obstack. */
9901
9902 static const char *
9903 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9904 {
9905 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9906 }
9907
9908 /* A helper that allocates a struct discriminant_info to attach to a
9909 union type. */
9910
9911 static struct discriminant_info *
9912 alloc_discriminant_info (struct type *type, int discriminant_index,
9913 int default_index)
9914 {
9915 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9916 gdb_assert (discriminant_index == -1
9917 || (discriminant_index >= 0
9918 && discriminant_index < TYPE_NFIELDS (type)));
9919 gdb_assert (default_index == -1
9920 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9921
9922 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9923
9924 struct discriminant_info *disc
9925 = ((struct discriminant_info *)
9926 TYPE_ZALLOC (type,
9927 offsetof (struct discriminant_info, discriminants)
9928 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9929 disc->default_index = default_index;
9930 disc->discriminant_index = discriminant_index;
9931
9932 struct dynamic_prop prop;
9933 prop.kind = PROP_UNDEFINED;
9934 prop.data.baton = disc;
9935
9936 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9937
9938 return disc;
9939 }
9940
9941 /* Some versions of rustc emitted enums in an unusual way.
9942
9943 Ordinary enums were emitted as unions. The first element of each
9944 structure in the union was named "RUST$ENUM$DISR". This element
9945 held the discriminant.
9946
9947 These versions of Rust also implemented the "non-zero"
9948 optimization. When the enum had two values, and one is empty and
9949 the other holds a pointer that cannot be zero, the pointer is used
9950 as the discriminant, with a zero value meaning the empty variant.
9951 Here, the union's first member is of the form
9952 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9953 where the fieldnos are the indices of the fields that should be
9954 traversed in order to find the field (which may be several fields deep)
9955 and the variantname is the name of the variant of the case when the
9956 field is zero.
9957
9958 This function recognizes whether TYPE is of one of these forms,
9959 and, if so, smashes it to be a variant type. */
9960
9961 static void
9962 quirk_rust_enum (struct type *type, struct objfile *objfile)
9963 {
9964 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9965
9966 /* We don't need to deal with empty enums. */
9967 if (TYPE_NFIELDS (type) == 0)
9968 return;
9969
9970 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9971 if (TYPE_NFIELDS (type) == 1
9972 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9973 {
9974 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9975
9976 /* Decode the field name to find the offset of the
9977 discriminant. */
9978 ULONGEST bit_offset = 0;
9979 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9980 while (name[0] >= '0' && name[0] <= '9')
9981 {
9982 char *tail;
9983 unsigned long index = strtoul (name, &tail, 10);
9984 name = tail;
9985 if (*name != '$'
9986 || index >= TYPE_NFIELDS (field_type)
9987 || (TYPE_FIELD_LOC_KIND (field_type, index)
9988 != FIELD_LOC_KIND_BITPOS))
9989 {
9990 complaint (_("Could not parse Rust enum encoding string \"%s\""
9991 "[in module %s]"),
9992 TYPE_FIELD_NAME (type, 0),
9993 objfile_name (objfile));
9994 return;
9995 }
9996 ++name;
9997
9998 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9999 field_type = TYPE_FIELD_TYPE (field_type, index);
10000 }
10001
10002 /* Make a union to hold the variants. */
10003 struct type *union_type = alloc_type (objfile);
10004 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10005 TYPE_NFIELDS (union_type) = 3;
10006 TYPE_FIELDS (union_type)
10007 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10008 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10009 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10010
10011 /* Put the discriminant must at index 0. */
10012 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10013 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10014 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10015 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10016
10017 /* The order of fields doesn't really matter, so put the real
10018 field at index 1 and the data-less field at index 2. */
10019 struct discriminant_info *disc
10020 = alloc_discriminant_info (union_type, 0, 1);
10021 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10022 TYPE_FIELD_NAME (union_type, 1)
10023 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10024 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10025 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10026 TYPE_FIELD_NAME (union_type, 1));
10027
10028 const char *dataless_name
10029 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10030 name);
10031 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10032 dataless_name);
10033 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10034 /* NAME points into the original discriminant name, which
10035 already has the correct lifetime. */
10036 TYPE_FIELD_NAME (union_type, 2) = name;
10037 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10038 disc->discriminants[2] = 0;
10039
10040 /* Smash this type to be a structure type. We have to do this
10041 because the type has already been recorded. */
10042 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10043 TYPE_NFIELDS (type) = 1;
10044 TYPE_FIELDS (type)
10045 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10046
10047 /* Install the variant part. */
10048 TYPE_FIELD_TYPE (type, 0) = union_type;
10049 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10050 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10051 }
10052 else if (TYPE_NFIELDS (type) == 1)
10053 {
10054 /* We assume that a union with a single field is a univariant
10055 enum. */
10056 /* Smash this type to be a structure type. We have to do this
10057 because the type has already been recorded. */
10058 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10059
10060 /* Make a union to hold the variants. */
10061 struct type *union_type = alloc_type (objfile);
10062 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10063 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10064 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10065 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10066 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10067
10068 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10069 const char *variant_name
10070 = rust_last_path_segment (TYPE_NAME (field_type));
10071 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10072 TYPE_NAME (field_type)
10073 = rust_fully_qualify (&objfile->objfile_obstack,
10074 TYPE_NAME (type), variant_name);
10075
10076 /* Install the union in the outer struct type. */
10077 TYPE_NFIELDS (type) = 1;
10078 TYPE_FIELDS (type)
10079 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10080 TYPE_FIELD_TYPE (type, 0) = union_type;
10081 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10082 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10083
10084 alloc_discriminant_info (union_type, -1, 0);
10085 }
10086 else
10087 {
10088 struct type *disr_type = nullptr;
10089 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10090 {
10091 disr_type = TYPE_FIELD_TYPE (type, i);
10092
10093 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10094 {
10095 /* All fields of a true enum will be structs. */
10096 return;
10097 }
10098 else if (TYPE_NFIELDS (disr_type) == 0)
10099 {
10100 /* Could be data-less variant, so keep going. */
10101 disr_type = nullptr;
10102 }
10103 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10104 "RUST$ENUM$DISR") != 0)
10105 {
10106 /* Not a Rust enum. */
10107 return;
10108 }
10109 else
10110 {
10111 /* Found one. */
10112 break;
10113 }
10114 }
10115
10116 /* If we got here without a discriminant, then it's probably
10117 just a union. */
10118 if (disr_type == nullptr)
10119 return;
10120
10121 /* Smash this type to be a structure type. We have to do this
10122 because the type has already been recorded. */
10123 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10124
10125 /* Make a union to hold the variants. */
10126 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10127 struct type *union_type = alloc_type (objfile);
10128 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10129 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10130 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10131 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10132 TYPE_FIELDS (union_type)
10133 = (struct field *) TYPE_ZALLOC (union_type,
10134 (TYPE_NFIELDS (union_type)
10135 * sizeof (struct field)));
10136
10137 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10138 TYPE_NFIELDS (type) * sizeof (struct field));
10139
10140 /* Install the discriminant at index 0 in the union. */
10141 TYPE_FIELD (union_type, 0) = *disr_field;
10142 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10143 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10144
10145 /* Install the union in the outer struct type. */
10146 TYPE_FIELD_TYPE (type, 0) = union_type;
10147 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10148 TYPE_NFIELDS (type) = 1;
10149
10150 /* Set the size and offset of the union type. */
10151 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10152
10153 /* We need a way to find the correct discriminant given a
10154 variant name. For convenience we build a map here. */
10155 struct type *enum_type = FIELD_TYPE (*disr_field);
10156 std::unordered_map<std::string, ULONGEST> discriminant_map;
10157 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10158 {
10159 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10160 {
10161 const char *name
10162 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10163 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10164 }
10165 }
10166
10167 int n_fields = TYPE_NFIELDS (union_type);
10168 struct discriminant_info *disc
10169 = alloc_discriminant_info (union_type, 0, -1);
10170 /* Skip the discriminant here. */
10171 for (int i = 1; i < n_fields; ++i)
10172 {
10173 /* Find the final word in the name of this variant's type.
10174 That name can be used to look up the correct
10175 discriminant. */
10176 const char *variant_name
10177 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10178 i)));
10179
10180 auto iter = discriminant_map.find (variant_name);
10181 if (iter != discriminant_map.end ())
10182 disc->discriminants[i] = iter->second;
10183
10184 /* Remove the discriminant field, if it exists. */
10185 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10186 if (TYPE_NFIELDS (sub_type) > 0)
10187 {
10188 --TYPE_NFIELDS (sub_type);
10189 ++TYPE_FIELDS (sub_type);
10190 }
10191 TYPE_FIELD_NAME (union_type, i) = variant_name;
10192 TYPE_NAME (sub_type)
10193 = rust_fully_qualify (&objfile->objfile_obstack,
10194 TYPE_NAME (type), variant_name);
10195 }
10196 }
10197 }
10198
10199 /* Rewrite some Rust unions to be structures with variants parts. */
10200
10201 static void
10202 rust_union_quirks (struct dwarf2_cu *cu)
10203 {
10204 gdb_assert (cu->language == language_rust);
10205 for (type *type_ : cu->rust_unions)
10206 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10207 /* We don't need this any more. */
10208 cu->rust_unions.clear ();
10209 }
10210
10211 /* Return the symtab for PER_CU. This works properly regardless of
10212 whether we're using the index or psymtabs. */
10213
10214 static struct compunit_symtab *
10215 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10216 {
10217 return (per_cu->dwarf2_per_objfile->using_index
10218 ? per_cu->v.quick->compunit_symtab
10219 : per_cu->v.psymtab->compunit_symtab);
10220 }
10221
10222 /* A helper function for computing the list of all symbol tables
10223 included by PER_CU. */
10224
10225 static void
10226 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10227 htab_t all_children, htab_t all_type_symtabs,
10228 struct dwarf2_per_cu_data *per_cu,
10229 struct compunit_symtab *immediate_parent)
10230 {
10231 void **slot;
10232 int ix;
10233 struct compunit_symtab *cust;
10234 struct dwarf2_per_cu_data *iter;
10235
10236 slot = htab_find_slot (all_children, per_cu, INSERT);
10237 if (*slot != NULL)
10238 {
10239 /* This inclusion and its children have been processed. */
10240 return;
10241 }
10242
10243 *slot = per_cu;
10244 /* Only add a CU if it has a symbol table. */
10245 cust = get_compunit_symtab (per_cu);
10246 if (cust != NULL)
10247 {
10248 /* If this is a type unit only add its symbol table if we haven't
10249 seen it yet (type unit per_cu's can share symtabs). */
10250 if (per_cu->is_debug_types)
10251 {
10252 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10253 if (*slot == NULL)
10254 {
10255 *slot = cust;
10256 result->push_back (cust);
10257 if (cust->user == NULL)
10258 cust->user = immediate_parent;
10259 }
10260 }
10261 else
10262 {
10263 result->push_back (cust);
10264 if (cust->user == NULL)
10265 cust->user = immediate_parent;
10266 }
10267 }
10268
10269 for (ix = 0;
10270 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10271 ++ix)
10272 {
10273 recursively_compute_inclusions (result, all_children,
10274 all_type_symtabs, iter, cust);
10275 }
10276 }
10277
10278 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10279 PER_CU. */
10280
10281 static void
10282 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10283 {
10284 gdb_assert (! per_cu->is_debug_types);
10285
10286 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10287 {
10288 int ix, len;
10289 struct dwarf2_per_cu_data *per_cu_iter;
10290 std::vector<compunit_symtab *> result_symtabs;
10291 htab_t all_children, all_type_symtabs;
10292 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10293
10294 /* If we don't have a symtab, we can just skip this case. */
10295 if (cust == NULL)
10296 return;
10297
10298 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10299 NULL, xcalloc, xfree);
10300 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10301 NULL, xcalloc, xfree);
10302
10303 for (ix = 0;
10304 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10305 ix, per_cu_iter);
10306 ++ix)
10307 {
10308 recursively_compute_inclusions (&result_symtabs, all_children,
10309 all_type_symtabs, per_cu_iter,
10310 cust);
10311 }
10312
10313 /* Now we have a transitive closure of all the included symtabs. */
10314 len = result_symtabs.size ();
10315 cust->includes
10316 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10317 struct compunit_symtab *, len + 1);
10318 memcpy (cust->includes, result_symtabs.data (),
10319 len * sizeof (compunit_symtab *));
10320 cust->includes[len] = NULL;
10321
10322 htab_delete (all_children);
10323 htab_delete (all_type_symtabs);
10324 }
10325 }
10326
10327 /* Compute the 'includes' field for the symtabs of all the CUs we just
10328 read. */
10329
10330 static void
10331 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10332 {
10333 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10334 {
10335 if (! iter->is_debug_types)
10336 compute_compunit_symtab_includes (iter);
10337 }
10338
10339 dwarf2_per_objfile->just_read_cus.clear ();
10340 }
10341
10342 /* Generate full symbol information for PER_CU, whose DIEs have
10343 already been loaded into memory. */
10344
10345 static void
10346 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10347 enum language pretend_language)
10348 {
10349 struct dwarf2_cu *cu = per_cu->cu;
10350 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10351 struct objfile *objfile = dwarf2_per_objfile->objfile;
10352 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10353 CORE_ADDR lowpc, highpc;
10354 struct compunit_symtab *cust;
10355 CORE_ADDR baseaddr;
10356 struct block *static_block;
10357 CORE_ADDR addr;
10358
10359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10360
10361 /* Clear the list here in case something was left over. */
10362 cu->method_list.clear ();
10363
10364 cu->language = pretend_language;
10365 cu->language_defn = language_def (cu->language);
10366
10367 /* Do line number decoding in read_file_scope () */
10368 process_die (cu->dies, cu);
10369
10370 /* For now fudge the Go package. */
10371 if (cu->language == language_go)
10372 fixup_go_packaging (cu);
10373
10374 /* Now that we have processed all the DIEs in the CU, all the types
10375 should be complete, and it should now be safe to compute all of the
10376 physnames. */
10377 compute_delayed_physnames (cu);
10378
10379 if (cu->language == language_rust)
10380 rust_union_quirks (cu);
10381
10382 /* Some compilers don't define a DW_AT_high_pc attribute for the
10383 compilation unit. If the DW_AT_high_pc is missing, synthesize
10384 it, by scanning the DIE's below the compilation unit. */
10385 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10386
10387 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10388 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10389
10390 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10391 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10392 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10393 addrmap to help ensure it has an accurate map of pc values belonging to
10394 this comp unit. */
10395 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10396
10397 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10398 SECT_OFF_TEXT (objfile),
10399 0);
10400
10401 if (cust != NULL)
10402 {
10403 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10404
10405 /* Set symtab language to language from DW_AT_language. If the
10406 compilation is from a C file generated by language preprocessors, do
10407 not set the language if it was already deduced by start_subfile. */
10408 if (!(cu->language == language_c
10409 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10410 COMPUNIT_FILETABS (cust)->language = cu->language;
10411
10412 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10413 produce DW_AT_location with location lists but it can be possibly
10414 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10415 there were bugs in prologue debug info, fixed later in GCC-4.5
10416 by "unwind info for epilogues" patch (which is not directly related).
10417
10418 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10419 needed, it would be wrong due to missing DW_AT_producer there.
10420
10421 Still one can confuse GDB by using non-standard GCC compilation
10422 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10423 */
10424 if (cu->has_loclist && gcc_4_minor >= 5)
10425 cust->locations_valid = 1;
10426
10427 if (gcc_4_minor >= 5)
10428 cust->epilogue_unwind_valid = 1;
10429
10430 cust->call_site_htab = cu->call_site_htab;
10431 }
10432
10433 if (dwarf2_per_objfile->using_index)
10434 per_cu->v.quick->compunit_symtab = cust;
10435 else
10436 {
10437 struct partial_symtab *pst = per_cu->v.psymtab;
10438 pst->compunit_symtab = cust;
10439 pst->readin = 1;
10440 }
10441
10442 /* Push it for inclusion processing later. */
10443 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10444
10445 /* Not needed any more. */
10446 cu->reset_builder ();
10447 }
10448
10449 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10450 already been loaded into memory. */
10451
10452 static void
10453 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10454 enum language pretend_language)
10455 {
10456 struct dwarf2_cu *cu = per_cu->cu;
10457 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10458 struct objfile *objfile = dwarf2_per_objfile->objfile;
10459 struct compunit_symtab *cust;
10460 struct signatured_type *sig_type;
10461
10462 gdb_assert (per_cu->is_debug_types);
10463 sig_type = (struct signatured_type *) per_cu;
10464
10465 /* Clear the list here in case something was left over. */
10466 cu->method_list.clear ();
10467
10468 cu->language = pretend_language;
10469 cu->language_defn = language_def (cu->language);
10470
10471 /* The symbol tables are set up in read_type_unit_scope. */
10472 process_die (cu->dies, cu);
10473
10474 /* For now fudge the Go package. */
10475 if (cu->language == language_go)
10476 fixup_go_packaging (cu);
10477
10478 /* Now that we have processed all the DIEs in the CU, all the types
10479 should be complete, and it should now be safe to compute all of the
10480 physnames. */
10481 compute_delayed_physnames (cu);
10482
10483 if (cu->language == language_rust)
10484 rust_union_quirks (cu);
10485
10486 /* TUs share symbol tables.
10487 If this is the first TU to use this symtab, complete the construction
10488 of it with end_expandable_symtab. Otherwise, complete the addition of
10489 this TU's symbols to the existing symtab. */
10490 if (sig_type->type_unit_group->compunit_symtab == NULL)
10491 {
10492 buildsym_compunit *builder = cu->get_builder ();
10493 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10494 sig_type->type_unit_group->compunit_symtab = cust;
10495
10496 if (cust != NULL)
10497 {
10498 /* Set symtab language to language from DW_AT_language. If the
10499 compilation is from a C file generated by language preprocessors,
10500 do not set the language if it was already deduced by
10501 start_subfile. */
10502 if (!(cu->language == language_c
10503 && COMPUNIT_FILETABS (cust)->language != language_c))
10504 COMPUNIT_FILETABS (cust)->language = cu->language;
10505 }
10506 }
10507 else
10508 {
10509 cu->get_builder ()->augment_type_symtab ();
10510 cust = sig_type->type_unit_group->compunit_symtab;
10511 }
10512
10513 if (dwarf2_per_objfile->using_index)
10514 per_cu->v.quick->compunit_symtab = cust;
10515 else
10516 {
10517 struct partial_symtab *pst = per_cu->v.psymtab;
10518 pst->compunit_symtab = cust;
10519 pst->readin = 1;
10520 }
10521
10522 /* Not needed any more. */
10523 cu->reset_builder ();
10524 }
10525
10526 /* Process an imported unit DIE. */
10527
10528 static void
10529 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10530 {
10531 struct attribute *attr;
10532
10533 /* For now we don't handle imported units in type units. */
10534 if (cu->per_cu->is_debug_types)
10535 {
10536 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10537 " supported in type units [in module %s]"),
10538 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10539 }
10540
10541 attr = dwarf2_attr (die, DW_AT_import, cu);
10542 if (attr != NULL)
10543 {
10544 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10545 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10546 dwarf2_per_cu_data *per_cu
10547 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10548 cu->per_cu->dwarf2_per_objfile);
10549
10550 /* If necessary, add it to the queue and load its DIEs. */
10551 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10552 load_full_comp_unit (per_cu, false, cu->language);
10553
10554 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10555 per_cu);
10556 }
10557 }
10558
10559 /* RAII object that represents a process_die scope: i.e.,
10560 starts/finishes processing a DIE. */
10561 class process_die_scope
10562 {
10563 public:
10564 process_die_scope (die_info *die, dwarf2_cu *cu)
10565 : m_die (die), m_cu (cu)
10566 {
10567 /* We should only be processing DIEs not already in process. */
10568 gdb_assert (!m_die->in_process);
10569 m_die->in_process = true;
10570 }
10571
10572 ~process_die_scope ()
10573 {
10574 m_die->in_process = false;
10575
10576 /* If we're done processing the DIE for the CU that owns the line
10577 header, we don't need the line header anymore. */
10578 if (m_cu->line_header_die_owner == m_die)
10579 {
10580 delete m_cu->line_header;
10581 m_cu->line_header = NULL;
10582 m_cu->line_header_die_owner = NULL;
10583 }
10584 }
10585
10586 private:
10587 die_info *m_die;
10588 dwarf2_cu *m_cu;
10589 };
10590
10591 /* Process a die and its children. */
10592
10593 static void
10594 process_die (struct die_info *die, struct dwarf2_cu *cu)
10595 {
10596 process_die_scope scope (die, cu);
10597
10598 switch (die->tag)
10599 {
10600 case DW_TAG_padding:
10601 break;
10602 case DW_TAG_compile_unit:
10603 case DW_TAG_partial_unit:
10604 read_file_scope (die, cu);
10605 break;
10606 case DW_TAG_type_unit:
10607 read_type_unit_scope (die, cu);
10608 break;
10609 case DW_TAG_subprogram:
10610 case DW_TAG_inlined_subroutine:
10611 read_func_scope (die, cu);
10612 break;
10613 case DW_TAG_lexical_block:
10614 case DW_TAG_try_block:
10615 case DW_TAG_catch_block:
10616 read_lexical_block_scope (die, cu);
10617 break;
10618 case DW_TAG_call_site:
10619 case DW_TAG_GNU_call_site:
10620 read_call_site_scope (die, cu);
10621 break;
10622 case DW_TAG_class_type:
10623 case DW_TAG_interface_type:
10624 case DW_TAG_structure_type:
10625 case DW_TAG_union_type:
10626 process_structure_scope (die, cu);
10627 break;
10628 case DW_TAG_enumeration_type:
10629 process_enumeration_scope (die, cu);
10630 break;
10631
10632 /* These dies have a type, but processing them does not create
10633 a symbol or recurse to process the children. Therefore we can
10634 read them on-demand through read_type_die. */
10635 case DW_TAG_subroutine_type:
10636 case DW_TAG_set_type:
10637 case DW_TAG_array_type:
10638 case DW_TAG_pointer_type:
10639 case DW_TAG_ptr_to_member_type:
10640 case DW_TAG_reference_type:
10641 case DW_TAG_rvalue_reference_type:
10642 case DW_TAG_string_type:
10643 break;
10644
10645 case DW_TAG_base_type:
10646 case DW_TAG_subrange_type:
10647 case DW_TAG_typedef:
10648 /* Add a typedef symbol for the type definition, if it has a
10649 DW_AT_name. */
10650 new_symbol (die, read_type_die (die, cu), cu);
10651 break;
10652 case DW_TAG_common_block:
10653 read_common_block (die, cu);
10654 break;
10655 case DW_TAG_common_inclusion:
10656 break;
10657 case DW_TAG_namespace:
10658 cu->processing_has_namespace_info = true;
10659 read_namespace (die, cu);
10660 break;
10661 case DW_TAG_module:
10662 cu->processing_has_namespace_info = true;
10663 read_module (die, cu);
10664 break;
10665 case DW_TAG_imported_declaration:
10666 cu->processing_has_namespace_info = true;
10667 if (read_namespace_alias (die, cu))
10668 break;
10669 /* The declaration is not a global namespace alias. */
10670 /* Fall through. */
10671 case DW_TAG_imported_module:
10672 cu->processing_has_namespace_info = true;
10673 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10674 || cu->language != language_fortran))
10675 complaint (_("Tag '%s' has unexpected children"),
10676 dwarf_tag_name (die->tag));
10677 read_import_statement (die, cu);
10678 break;
10679
10680 case DW_TAG_imported_unit:
10681 process_imported_unit_die (die, cu);
10682 break;
10683
10684 case DW_TAG_variable:
10685 read_variable (die, cu);
10686 break;
10687
10688 default:
10689 new_symbol (die, NULL, cu);
10690 break;
10691 }
10692 }
10693 \f
10694 /* DWARF name computation. */
10695
10696 /* A helper function for dwarf2_compute_name which determines whether DIE
10697 needs to have the name of the scope prepended to the name listed in the
10698 die. */
10699
10700 static int
10701 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10702 {
10703 struct attribute *attr;
10704
10705 switch (die->tag)
10706 {
10707 case DW_TAG_namespace:
10708 case DW_TAG_typedef:
10709 case DW_TAG_class_type:
10710 case DW_TAG_interface_type:
10711 case DW_TAG_structure_type:
10712 case DW_TAG_union_type:
10713 case DW_TAG_enumeration_type:
10714 case DW_TAG_enumerator:
10715 case DW_TAG_subprogram:
10716 case DW_TAG_inlined_subroutine:
10717 case DW_TAG_member:
10718 case DW_TAG_imported_declaration:
10719 return 1;
10720
10721 case DW_TAG_variable:
10722 case DW_TAG_constant:
10723 /* We only need to prefix "globally" visible variables. These include
10724 any variable marked with DW_AT_external or any variable that
10725 lives in a namespace. [Variables in anonymous namespaces
10726 require prefixing, but they are not DW_AT_external.] */
10727
10728 if (dwarf2_attr (die, DW_AT_specification, cu))
10729 {
10730 struct dwarf2_cu *spec_cu = cu;
10731
10732 return die_needs_namespace (die_specification (die, &spec_cu),
10733 spec_cu);
10734 }
10735
10736 attr = dwarf2_attr (die, DW_AT_external, cu);
10737 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10738 && die->parent->tag != DW_TAG_module)
10739 return 0;
10740 /* A variable in a lexical block of some kind does not need a
10741 namespace, even though in C++ such variables may be external
10742 and have a mangled name. */
10743 if (die->parent->tag == DW_TAG_lexical_block
10744 || die->parent->tag == DW_TAG_try_block
10745 || die->parent->tag == DW_TAG_catch_block
10746 || die->parent->tag == DW_TAG_subprogram)
10747 return 0;
10748 return 1;
10749
10750 default:
10751 return 0;
10752 }
10753 }
10754
10755 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10756 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10757 defined for the given DIE. */
10758
10759 static struct attribute *
10760 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10761 {
10762 struct attribute *attr;
10763
10764 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10765 if (attr == NULL)
10766 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10767
10768 return attr;
10769 }
10770
10771 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10772 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10773 defined for the given DIE. */
10774
10775 static const char *
10776 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10777 {
10778 const char *linkage_name;
10779
10780 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10781 if (linkage_name == NULL)
10782 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10783
10784 return linkage_name;
10785 }
10786
10787 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10788 compute the physname for the object, which include a method's:
10789 - formal parameters (C++),
10790 - receiver type (Go),
10791
10792 The term "physname" is a bit confusing.
10793 For C++, for example, it is the demangled name.
10794 For Go, for example, it's the mangled name.
10795
10796 For Ada, return the DIE's linkage name rather than the fully qualified
10797 name. PHYSNAME is ignored..
10798
10799 The result is allocated on the objfile_obstack and canonicalized. */
10800
10801 static const char *
10802 dwarf2_compute_name (const char *name,
10803 struct die_info *die, struct dwarf2_cu *cu,
10804 int physname)
10805 {
10806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10807
10808 if (name == NULL)
10809 name = dwarf2_name (die, cu);
10810
10811 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10812 but otherwise compute it by typename_concat inside GDB.
10813 FIXME: Actually this is not really true, or at least not always true.
10814 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10815 Fortran names because there is no mangling standard. So new_symbol
10816 will set the demangled name to the result of dwarf2_full_name, and it is
10817 the demangled name that GDB uses if it exists. */
10818 if (cu->language == language_ada
10819 || (cu->language == language_fortran && physname))
10820 {
10821 /* For Ada unit, we prefer the linkage name over the name, as
10822 the former contains the exported name, which the user expects
10823 to be able to reference. Ideally, we want the user to be able
10824 to reference this entity using either natural or linkage name,
10825 but we haven't started looking at this enhancement yet. */
10826 const char *linkage_name = dw2_linkage_name (die, cu);
10827
10828 if (linkage_name != NULL)
10829 return linkage_name;
10830 }
10831
10832 /* These are the only languages we know how to qualify names in. */
10833 if (name != NULL
10834 && (cu->language == language_cplus
10835 || cu->language == language_fortran || cu->language == language_d
10836 || cu->language == language_rust))
10837 {
10838 if (die_needs_namespace (die, cu))
10839 {
10840 const char *prefix;
10841 const char *canonical_name = NULL;
10842
10843 string_file buf;
10844
10845 prefix = determine_prefix (die, cu);
10846 if (*prefix != '\0')
10847 {
10848 char *prefixed_name = typename_concat (NULL, prefix, name,
10849 physname, cu);
10850
10851 buf.puts (prefixed_name);
10852 xfree (prefixed_name);
10853 }
10854 else
10855 buf.puts (name);
10856
10857 /* Template parameters may be specified in the DIE's DW_AT_name, or
10858 as children with DW_TAG_template_type_param or
10859 DW_TAG_value_type_param. If the latter, add them to the name
10860 here. If the name already has template parameters, then
10861 skip this step; some versions of GCC emit both, and
10862 it is more efficient to use the pre-computed name.
10863
10864 Something to keep in mind about this process: it is very
10865 unlikely, or in some cases downright impossible, to produce
10866 something that will match the mangled name of a function.
10867 If the definition of the function has the same debug info,
10868 we should be able to match up with it anyway. But fallbacks
10869 using the minimal symbol, for instance to find a method
10870 implemented in a stripped copy of libstdc++, will not work.
10871 If we do not have debug info for the definition, we will have to
10872 match them up some other way.
10873
10874 When we do name matching there is a related problem with function
10875 templates; two instantiated function templates are allowed to
10876 differ only by their return types, which we do not add here. */
10877
10878 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10879 {
10880 struct attribute *attr;
10881 struct die_info *child;
10882 int first = 1;
10883
10884 die->building_fullname = 1;
10885
10886 for (child = die->child; child != NULL; child = child->sibling)
10887 {
10888 struct type *type;
10889 LONGEST value;
10890 const gdb_byte *bytes;
10891 struct dwarf2_locexpr_baton *baton;
10892 struct value *v;
10893
10894 if (child->tag != DW_TAG_template_type_param
10895 && child->tag != DW_TAG_template_value_param)
10896 continue;
10897
10898 if (first)
10899 {
10900 buf.puts ("<");
10901 first = 0;
10902 }
10903 else
10904 buf.puts (", ");
10905
10906 attr = dwarf2_attr (child, DW_AT_type, cu);
10907 if (attr == NULL)
10908 {
10909 complaint (_("template parameter missing DW_AT_type"));
10910 buf.puts ("UNKNOWN_TYPE");
10911 continue;
10912 }
10913 type = die_type (child, cu);
10914
10915 if (child->tag == DW_TAG_template_type_param)
10916 {
10917 c_print_type (type, "", &buf, -1, 0, cu->language,
10918 &type_print_raw_options);
10919 continue;
10920 }
10921
10922 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10923 if (attr == NULL)
10924 {
10925 complaint (_("template parameter missing "
10926 "DW_AT_const_value"));
10927 buf.puts ("UNKNOWN_VALUE");
10928 continue;
10929 }
10930
10931 dwarf2_const_value_attr (attr, type, name,
10932 &cu->comp_unit_obstack, cu,
10933 &value, &bytes, &baton);
10934
10935 if (TYPE_NOSIGN (type))
10936 /* GDB prints characters as NUMBER 'CHAR'. If that's
10937 changed, this can use value_print instead. */
10938 c_printchar (value, type, &buf);
10939 else
10940 {
10941 struct value_print_options opts;
10942
10943 if (baton != NULL)
10944 v = dwarf2_evaluate_loc_desc (type, NULL,
10945 baton->data,
10946 baton->size,
10947 baton->per_cu);
10948 else if (bytes != NULL)
10949 {
10950 v = allocate_value (type);
10951 memcpy (value_contents_writeable (v), bytes,
10952 TYPE_LENGTH (type));
10953 }
10954 else
10955 v = value_from_longest (type, value);
10956
10957 /* Specify decimal so that we do not depend on
10958 the radix. */
10959 get_formatted_print_options (&opts, 'd');
10960 opts.raw = 1;
10961 value_print (v, &buf, &opts);
10962 release_value (v);
10963 }
10964 }
10965
10966 die->building_fullname = 0;
10967
10968 if (!first)
10969 {
10970 /* Close the argument list, with a space if necessary
10971 (nested templates). */
10972 if (!buf.empty () && buf.string ().back () == '>')
10973 buf.puts (" >");
10974 else
10975 buf.puts (">");
10976 }
10977 }
10978
10979 /* For C++ methods, append formal parameter type
10980 information, if PHYSNAME. */
10981
10982 if (physname && die->tag == DW_TAG_subprogram
10983 && cu->language == language_cplus)
10984 {
10985 struct type *type = read_type_die (die, cu);
10986
10987 c_type_print_args (type, &buf, 1, cu->language,
10988 &type_print_raw_options);
10989
10990 if (cu->language == language_cplus)
10991 {
10992 /* Assume that an artificial first parameter is
10993 "this", but do not crash if it is not. RealView
10994 marks unnamed (and thus unused) parameters as
10995 artificial; there is no way to differentiate
10996 the two cases. */
10997 if (TYPE_NFIELDS (type) > 0
10998 && TYPE_FIELD_ARTIFICIAL (type, 0)
10999 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11000 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11001 0))))
11002 buf.puts (" const");
11003 }
11004 }
11005
11006 const std::string &intermediate_name = buf.string ();
11007
11008 if (cu->language == language_cplus)
11009 canonical_name
11010 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11011 &objfile->per_bfd->storage_obstack);
11012
11013 /* If we only computed INTERMEDIATE_NAME, or if
11014 INTERMEDIATE_NAME is already canonical, then we need to
11015 copy it to the appropriate obstack. */
11016 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11017 name = ((const char *)
11018 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11019 intermediate_name.c_str (),
11020 intermediate_name.length ()));
11021 else
11022 name = canonical_name;
11023 }
11024 }
11025
11026 return name;
11027 }
11028
11029 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11030 If scope qualifiers are appropriate they will be added. The result
11031 will be allocated on the storage_obstack, or NULL if the DIE does
11032 not have a name. NAME may either be from a previous call to
11033 dwarf2_name or NULL.
11034
11035 The output string will be canonicalized (if C++). */
11036
11037 static const char *
11038 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11039 {
11040 return dwarf2_compute_name (name, die, cu, 0);
11041 }
11042
11043 /* Construct a physname for the given DIE in CU. NAME may either be
11044 from a previous call to dwarf2_name or NULL. The result will be
11045 allocated on the objfile_objstack or NULL if the DIE does not have a
11046 name.
11047
11048 The output string will be canonicalized (if C++). */
11049
11050 static const char *
11051 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11052 {
11053 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11054 const char *retval, *mangled = NULL, *canon = NULL;
11055 int need_copy = 1;
11056
11057 /* In this case dwarf2_compute_name is just a shortcut not building anything
11058 on its own. */
11059 if (!die_needs_namespace (die, cu))
11060 return dwarf2_compute_name (name, die, cu, 1);
11061
11062 mangled = dw2_linkage_name (die, cu);
11063
11064 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11065 See https://github.com/rust-lang/rust/issues/32925. */
11066 if (cu->language == language_rust && mangled != NULL
11067 && strchr (mangled, '{') != NULL)
11068 mangled = NULL;
11069
11070 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11071 has computed. */
11072 gdb::unique_xmalloc_ptr<char> demangled;
11073 if (mangled != NULL)
11074 {
11075
11076 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11077 {
11078 /* Do nothing (do not demangle the symbol name). */
11079 }
11080 else if (cu->language == language_go)
11081 {
11082 /* This is a lie, but we already lie to the caller new_symbol.
11083 new_symbol assumes we return the mangled name.
11084 This just undoes that lie until things are cleaned up. */
11085 }
11086 else
11087 {
11088 /* Use DMGL_RET_DROP for C++ template functions to suppress
11089 their return type. It is easier for GDB users to search
11090 for such functions as `name(params)' than `long name(params)'.
11091 In such case the minimal symbol names do not match the full
11092 symbol names but for template functions there is never a need
11093 to look up their definition from their declaration so
11094 the only disadvantage remains the minimal symbol variant
11095 `long name(params)' does not have the proper inferior type. */
11096 demangled.reset (gdb_demangle (mangled,
11097 (DMGL_PARAMS | DMGL_ANSI
11098 | DMGL_RET_DROP)));
11099 }
11100 if (demangled)
11101 canon = demangled.get ();
11102 else
11103 {
11104 canon = mangled;
11105 need_copy = 0;
11106 }
11107 }
11108
11109 if (canon == NULL || check_physname)
11110 {
11111 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11112
11113 if (canon != NULL && strcmp (physname, canon) != 0)
11114 {
11115 /* It may not mean a bug in GDB. The compiler could also
11116 compute DW_AT_linkage_name incorrectly. But in such case
11117 GDB would need to be bug-to-bug compatible. */
11118
11119 complaint (_("Computed physname <%s> does not match demangled <%s> "
11120 "(from linkage <%s>) - DIE at %s [in module %s]"),
11121 physname, canon, mangled, sect_offset_str (die->sect_off),
11122 objfile_name (objfile));
11123
11124 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11125 is available here - over computed PHYSNAME. It is safer
11126 against both buggy GDB and buggy compilers. */
11127
11128 retval = canon;
11129 }
11130 else
11131 {
11132 retval = physname;
11133 need_copy = 0;
11134 }
11135 }
11136 else
11137 retval = canon;
11138
11139 if (need_copy)
11140 retval = ((const char *)
11141 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11142 retval, strlen (retval)));
11143
11144 return retval;
11145 }
11146
11147 /* Inspect DIE in CU for a namespace alias. If one exists, record
11148 a new symbol for it.
11149
11150 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11151
11152 static int
11153 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11154 {
11155 struct attribute *attr;
11156
11157 /* If the die does not have a name, this is not a namespace
11158 alias. */
11159 attr = dwarf2_attr (die, DW_AT_name, cu);
11160 if (attr != NULL)
11161 {
11162 int num;
11163 struct die_info *d = die;
11164 struct dwarf2_cu *imported_cu = cu;
11165
11166 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11167 keep inspecting DIEs until we hit the underlying import. */
11168 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11169 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11170 {
11171 attr = dwarf2_attr (d, DW_AT_import, cu);
11172 if (attr == NULL)
11173 break;
11174
11175 d = follow_die_ref (d, attr, &imported_cu);
11176 if (d->tag != DW_TAG_imported_declaration)
11177 break;
11178 }
11179
11180 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11181 {
11182 complaint (_("DIE at %s has too many recursively imported "
11183 "declarations"), sect_offset_str (d->sect_off));
11184 return 0;
11185 }
11186
11187 if (attr != NULL)
11188 {
11189 struct type *type;
11190 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11191
11192 type = get_die_type_at_offset (sect_off, cu->per_cu);
11193 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11194 {
11195 /* This declaration is a global namespace alias. Add
11196 a symbol for it whose type is the aliased namespace. */
11197 new_symbol (die, type, cu);
11198 return 1;
11199 }
11200 }
11201 }
11202
11203 return 0;
11204 }
11205
11206 /* Return the using directives repository (global or local?) to use in the
11207 current context for CU.
11208
11209 For Ada, imported declarations can materialize renamings, which *may* be
11210 global. However it is impossible (for now?) in DWARF to distinguish
11211 "external" imported declarations and "static" ones. As all imported
11212 declarations seem to be static in all other languages, make them all CU-wide
11213 global only in Ada. */
11214
11215 static struct using_direct **
11216 using_directives (struct dwarf2_cu *cu)
11217 {
11218 if (cu->language == language_ada
11219 && cu->get_builder ()->outermost_context_p ())
11220 return cu->get_builder ()->get_global_using_directives ();
11221 else
11222 return cu->get_builder ()->get_local_using_directives ();
11223 }
11224
11225 /* Read the import statement specified by the given die and record it. */
11226
11227 static void
11228 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11229 {
11230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11231 struct attribute *import_attr;
11232 struct die_info *imported_die, *child_die;
11233 struct dwarf2_cu *imported_cu;
11234 const char *imported_name;
11235 const char *imported_name_prefix;
11236 const char *canonical_name;
11237 const char *import_alias;
11238 const char *imported_declaration = NULL;
11239 const char *import_prefix;
11240 std::vector<const char *> excludes;
11241
11242 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11243 if (import_attr == NULL)
11244 {
11245 complaint (_("Tag '%s' has no DW_AT_import"),
11246 dwarf_tag_name (die->tag));
11247 return;
11248 }
11249
11250 imported_cu = cu;
11251 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11252 imported_name = dwarf2_name (imported_die, imported_cu);
11253 if (imported_name == NULL)
11254 {
11255 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11256
11257 The import in the following code:
11258 namespace A
11259 {
11260 typedef int B;
11261 }
11262
11263 int main ()
11264 {
11265 using A::B;
11266 B b;
11267 return b;
11268 }
11269
11270 ...
11271 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11272 <52> DW_AT_decl_file : 1
11273 <53> DW_AT_decl_line : 6
11274 <54> DW_AT_import : <0x75>
11275 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11276 <59> DW_AT_name : B
11277 <5b> DW_AT_decl_file : 1
11278 <5c> DW_AT_decl_line : 2
11279 <5d> DW_AT_type : <0x6e>
11280 ...
11281 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11282 <76> DW_AT_byte_size : 4
11283 <77> DW_AT_encoding : 5 (signed)
11284
11285 imports the wrong die ( 0x75 instead of 0x58 ).
11286 This case will be ignored until the gcc bug is fixed. */
11287 return;
11288 }
11289
11290 /* Figure out the local name after import. */
11291 import_alias = dwarf2_name (die, cu);
11292
11293 /* Figure out where the statement is being imported to. */
11294 import_prefix = determine_prefix (die, cu);
11295
11296 /* Figure out what the scope of the imported die is and prepend it
11297 to the name of the imported die. */
11298 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11299
11300 if (imported_die->tag != DW_TAG_namespace
11301 && imported_die->tag != DW_TAG_module)
11302 {
11303 imported_declaration = imported_name;
11304 canonical_name = imported_name_prefix;
11305 }
11306 else if (strlen (imported_name_prefix) > 0)
11307 canonical_name = obconcat (&objfile->objfile_obstack,
11308 imported_name_prefix,
11309 (cu->language == language_d ? "." : "::"),
11310 imported_name, (char *) NULL);
11311 else
11312 canonical_name = imported_name;
11313
11314 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11315 for (child_die = die->child; child_die && child_die->tag;
11316 child_die = sibling_die (child_die))
11317 {
11318 /* DWARF-4: A Fortran use statement with a “rename list” may be
11319 represented by an imported module entry with an import attribute
11320 referring to the module and owned entries corresponding to those
11321 entities that are renamed as part of being imported. */
11322
11323 if (child_die->tag != DW_TAG_imported_declaration)
11324 {
11325 complaint (_("child DW_TAG_imported_declaration expected "
11326 "- DIE at %s [in module %s]"),
11327 sect_offset_str (child_die->sect_off),
11328 objfile_name (objfile));
11329 continue;
11330 }
11331
11332 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11333 if (import_attr == NULL)
11334 {
11335 complaint (_("Tag '%s' has no DW_AT_import"),
11336 dwarf_tag_name (child_die->tag));
11337 continue;
11338 }
11339
11340 imported_cu = cu;
11341 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11342 &imported_cu);
11343 imported_name = dwarf2_name (imported_die, imported_cu);
11344 if (imported_name == NULL)
11345 {
11346 complaint (_("child DW_TAG_imported_declaration has unknown "
11347 "imported name - DIE at %s [in module %s]"),
11348 sect_offset_str (child_die->sect_off),
11349 objfile_name (objfile));
11350 continue;
11351 }
11352
11353 excludes.push_back (imported_name);
11354
11355 process_die (child_die, cu);
11356 }
11357
11358 add_using_directive (using_directives (cu),
11359 import_prefix,
11360 canonical_name,
11361 import_alias,
11362 imported_declaration,
11363 excludes,
11364 0,
11365 &objfile->objfile_obstack);
11366 }
11367
11368 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11369 types, but gives them a size of zero. Starting with version 14,
11370 ICC is compatible with GCC. */
11371
11372 static bool
11373 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11374 {
11375 if (!cu->checked_producer)
11376 check_producer (cu);
11377
11378 return cu->producer_is_icc_lt_14;
11379 }
11380
11381 /* ICC generates a DW_AT_type for C void functions. This was observed on
11382 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11383 which says that void functions should not have a DW_AT_type. */
11384
11385 static bool
11386 producer_is_icc (struct dwarf2_cu *cu)
11387 {
11388 if (!cu->checked_producer)
11389 check_producer (cu);
11390
11391 return cu->producer_is_icc;
11392 }
11393
11394 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11395 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11396 this, it was first present in GCC release 4.3.0. */
11397
11398 static bool
11399 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11400 {
11401 if (!cu->checked_producer)
11402 check_producer (cu);
11403
11404 return cu->producer_is_gcc_lt_4_3;
11405 }
11406
11407 static file_and_directory
11408 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11409 {
11410 file_and_directory res;
11411
11412 /* Find the filename. Do not use dwarf2_name here, since the filename
11413 is not a source language identifier. */
11414 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11415 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11416
11417 if (res.comp_dir == NULL
11418 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11419 && IS_ABSOLUTE_PATH (res.name))
11420 {
11421 res.comp_dir_storage = ldirname (res.name);
11422 if (!res.comp_dir_storage.empty ())
11423 res.comp_dir = res.comp_dir_storage.c_str ();
11424 }
11425 if (res.comp_dir != NULL)
11426 {
11427 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11428 directory, get rid of it. */
11429 const char *cp = strchr (res.comp_dir, ':');
11430
11431 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11432 res.comp_dir = cp + 1;
11433 }
11434
11435 if (res.name == NULL)
11436 res.name = "<unknown>";
11437
11438 return res;
11439 }
11440
11441 /* Handle DW_AT_stmt_list for a compilation unit.
11442 DIE is the DW_TAG_compile_unit die for CU.
11443 COMP_DIR is the compilation directory. LOWPC is passed to
11444 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11445
11446 static void
11447 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11448 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11449 {
11450 struct dwarf2_per_objfile *dwarf2_per_objfile
11451 = cu->per_cu->dwarf2_per_objfile;
11452 struct objfile *objfile = dwarf2_per_objfile->objfile;
11453 struct attribute *attr;
11454 struct line_header line_header_local;
11455 hashval_t line_header_local_hash;
11456 void **slot;
11457 int decode_mapping;
11458
11459 gdb_assert (! cu->per_cu->is_debug_types);
11460
11461 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11462 if (attr == NULL)
11463 return;
11464
11465 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11466
11467 /* The line header hash table is only created if needed (it exists to
11468 prevent redundant reading of the line table for partial_units).
11469 If we're given a partial_unit, we'll need it. If we're given a
11470 compile_unit, then use the line header hash table if it's already
11471 created, but don't create one just yet. */
11472
11473 if (dwarf2_per_objfile->line_header_hash == NULL
11474 && die->tag == DW_TAG_partial_unit)
11475 {
11476 dwarf2_per_objfile->line_header_hash
11477 = htab_create_alloc_ex (127, line_header_hash_voidp,
11478 line_header_eq_voidp,
11479 free_line_header_voidp,
11480 &objfile->objfile_obstack,
11481 hashtab_obstack_allocate,
11482 dummy_obstack_deallocate);
11483 }
11484
11485 line_header_local.sect_off = line_offset;
11486 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11487 line_header_local_hash = line_header_hash (&line_header_local);
11488 if (dwarf2_per_objfile->line_header_hash != NULL)
11489 {
11490 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11491 &line_header_local,
11492 line_header_local_hash, NO_INSERT);
11493
11494 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11495 is not present in *SLOT (since if there is something in *SLOT then
11496 it will be for a partial_unit). */
11497 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11498 {
11499 gdb_assert (*slot != NULL);
11500 cu->line_header = (struct line_header *) *slot;
11501 return;
11502 }
11503 }
11504
11505 /* dwarf_decode_line_header does not yet provide sufficient information.
11506 We always have to call also dwarf_decode_lines for it. */
11507 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11508 if (lh == NULL)
11509 return;
11510
11511 cu->line_header = lh.release ();
11512 cu->line_header_die_owner = die;
11513
11514 if (dwarf2_per_objfile->line_header_hash == NULL)
11515 slot = NULL;
11516 else
11517 {
11518 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11519 &line_header_local,
11520 line_header_local_hash, INSERT);
11521 gdb_assert (slot != NULL);
11522 }
11523 if (slot != NULL && *slot == NULL)
11524 {
11525 /* This newly decoded line number information unit will be owned
11526 by line_header_hash hash table. */
11527 *slot = cu->line_header;
11528 cu->line_header_die_owner = NULL;
11529 }
11530 else
11531 {
11532 /* We cannot free any current entry in (*slot) as that struct line_header
11533 may be already used by multiple CUs. Create only temporary decoded
11534 line_header for this CU - it may happen at most once for each line
11535 number information unit. And if we're not using line_header_hash
11536 then this is what we want as well. */
11537 gdb_assert (die->tag != DW_TAG_partial_unit);
11538 }
11539 decode_mapping = (die->tag != DW_TAG_partial_unit);
11540 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11541 decode_mapping);
11542
11543 }
11544
11545 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11546
11547 static void
11548 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11549 {
11550 struct dwarf2_per_objfile *dwarf2_per_objfile
11551 = cu->per_cu->dwarf2_per_objfile;
11552 struct objfile *objfile = dwarf2_per_objfile->objfile;
11553 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11554 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11555 CORE_ADDR highpc = ((CORE_ADDR) 0);
11556 struct attribute *attr;
11557 struct die_info *child_die;
11558 CORE_ADDR baseaddr;
11559
11560 prepare_one_comp_unit (cu, die, cu->language);
11561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11562
11563 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11564
11565 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11566 from finish_block. */
11567 if (lowpc == ((CORE_ADDR) -1))
11568 lowpc = highpc;
11569 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11570
11571 file_and_directory fnd = find_file_and_directory (die, cu);
11572
11573 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11574 standardised yet. As a workaround for the language detection we fall
11575 back to the DW_AT_producer string. */
11576 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11577 cu->language = language_opencl;
11578
11579 /* Similar hack for Go. */
11580 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11581 set_cu_language (DW_LANG_Go, cu);
11582
11583 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11584
11585 /* Decode line number information if present. We do this before
11586 processing child DIEs, so that the line header table is available
11587 for DW_AT_decl_file. */
11588 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11589
11590 /* Process all dies in compilation unit. */
11591 if (die->child != NULL)
11592 {
11593 child_die = die->child;
11594 while (child_die && child_die->tag)
11595 {
11596 process_die (child_die, cu);
11597 child_die = sibling_die (child_die);
11598 }
11599 }
11600
11601 /* Decode macro information, if present. Dwarf 2 macro information
11602 refers to information in the line number info statement program
11603 header, so we can only read it if we've read the header
11604 successfully. */
11605 attr = dwarf2_attr (die, DW_AT_macros, cu);
11606 if (attr == NULL)
11607 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11608 if (attr && cu->line_header)
11609 {
11610 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11611 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11612
11613 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11614 }
11615 else
11616 {
11617 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11618 if (attr && cu->line_header)
11619 {
11620 unsigned int macro_offset = DW_UNSND (attr);
11621
11622 dwarf_decode_macros (cu, macro_offset, 0);
11623 }
11624 }
11625 }
11626
11627 void
11628 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11629 {
11630 struct type_unit_group *tu_group;
11631 int first_time;
11632 struct attribute *attr;
11633 unsigned int i;
11634 struct signatured_type *sig_type;
11635
11636 gdb_assert (per_cu->is_debug_types);
11637 sig_type = (struct signatured_type *) per_cu;
11638
11639 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11640
11641 /* If we're using .gdb_index (includes -readnow) then
11642 per_cu->type_unit_group may not have been set up yet. */
11643 if (sig_type->type_unit_group == NULL)
11644 sig_type->type_unit_group = get_type_unit_group (this, attr);
11645 tu_group = sig_type->type_unit_group;
11646
11647 /* If we've already processed this stmt_list there's no real need to
11648 do it again, we could fake it and just recreate the part we need
11649 (file name,index -> symtab mapping). If data shows this optimization
11650 is useful we can do it then. */
11651 first_time = tu_group->compunit_symtab == NULL;
11652
11653 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11654 debug info. */
11655 line_header_up lh;
11656 if (attr != NULL)
11657 {
11658 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11659 lh = dwarf_decode_line_header (line_offset, this);
11660 }
11661 if (lh == NULL)
11662 {
11663 if (first_time)
11664 start_symtab ("", NULL, 0);
11665 else
11666 {
11667 gdb_assert (tu_group->symtabs == NULL);
11668 gdb_assert (m_builder == nullptr);
11669 struct compunit_symtab *cust = tu_group->compunit_symtab;
11670 m_builder.reset (new struct buildsym_compunit
11671 (COMPUNIT_OBJFILE (cust), "",
11672 COMPUNIT_DIRNAME (cust),
11673 compunit_language (cust),
11674 0, cust));
11675 }
11676 return;
11677 }
11678
11679 line_header = lh.release ();
11680 line_header_die_owner = die;
11681
11682 if (first_time)
11683 {
11684 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11685
11686 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11687 still initializing it, and our caller (a few levels up)
11688 process_full_type_unit still needs to know if this is the first
11689 time. */
11690
11691 tu_group->num_symtabs = line_header->file_names.size ();
11692 tu_group->symtabs = XNEWVEC (struct symtab *,
11693 line_header->file_names.size ());
11694
11695 for (i = 0; i < line_header->file_names.size (); ++i)
11696 {
11697 file_entry &fe = line_header->file_names[i];
11698
11699 dwarf2_start_subfile (this, fe.name,
11700 fe.include_dir (line_header));
11701 buildsym_compunit *b = get_builder ();
11702 if (b->get_current_subfile ()->symtab == NULL)
11703 {
11704 /* NOTE: start_subfile will recognize when it's been
11705 passed a file it has already seen. So we can't
11706 assume there's a simple mapping from
11707 cu->line_header->file_names to subfiles, plus
11708 cu->line_header->file_names may contain dups. */
11709 b->get_current_subfile ()->symtab
11710 = allocate_symtab (cust, b->get_current_subfile ()->name);
11711 }
11712
11713 fe.symtab = b->get_current_subfile ()->symtab;
11714 tu_group->symtabs[i] = fe.symtab;
11715 }
11716 }
11717 else
11718 {
11719 gdb_assert (m_builder == nullptr);
11720 struct compunit_symtab *cust = tu_group->compunit_symtab;
11721 m_builder.reset (new struct buildsym_compunit
11722 (COMPUNIT_OBJFILE (cust), "",
11723 COMPUNIT_DIRNAME (cust),
11724 compunit_language (cust),
11725 0, cust));
11726
11727 for (i = 0; i < line_header->file_names.size (); ++i)
11728 {
11729 file_entry &fe = line_header->file_names[i];
11730
11731 fe.symtab = tu_group->symtabs[i];
11732 }
11733 }
11734
11735 /* The main symtab is allocated last. Type units don't have DW_AT_name
11736 so they don't have a "real" (so to speak) symtab anyway.
11737 There is later code that will assign the main symtab to all symbols
11738 that don't have one. We need to handle the case of a symbol with a
11739 missing symtab (DW_AT_decl_file) anyway. */
11740 }
11741
11742 /* Process DW_TAG_type_unit.
11743 For TUs we want to skip the first top level sibling if it's not the
11744 actual type being defined by this TU. In this case the first top
11745 level sibling is there to provide context only. */
11746
11747 static void
11748 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11749 {
11750 struct die_info *child_die;
11751
11752 prepare_one_comp_unit (cu, die, language_minimal);
11753
11754 /* Initialize (or reinitialize) the machinery for building symtabs.
11755 We do this before processing child DIEs, so that the line header table
11756 is available for DW_AT_decl_file. */
11757 cu->setup_type_unit_groups (die);
11758
11759 if (die->child != NULL)
11760 {
11761 child_die = die->child;
11762 while (child_die && child_die->tag)
11763 {
11764 process_die (child_die, cu);
11765 child_die = sibling_die (child_die);
11766 }
11767 }
11768 }
11769 \f
11770 /* DWO/DWP files.
11771
11772 http://gcc.gnu.org/wiki/DebugFission
11773 http://gcc.gnu.org/wiki/DebugFissionDWP
11774
11775 To simplify handling of both DWO files ("object" files with the DWARF info)
11776 and DWP files (a file with the DWOs packaged up into one file), we treat
11777 DWP files as having a collection of virtual DWO files. */
11778
11779 static hashval_t
11780 hash_dwo_file (const void *item)
11781 {
11782 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11783 hashval_t hash;
11784
11785 hash = htab_hash_string (dwo_file->dwo_name);
11786 if (dwo_file->comp_dir != NULL)
11787 hash += htab_hash_string (dwo_file->comp_dir);
11788 return hash;
11789 }
11790
11791 static int
11792 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11793 {
11794 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11795 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11796
11797 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11798 return 0;
11799 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11800 return lhs->comp_dir == rhs->comp_dir;
11801 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11802 }
11803
11804 /* Allocate a hash table for DWO files. */
11805
11806 static htab_t
11807 allocate_dwo_file_hash_table (struct objfile *objfile)
11808 {
11809 return htab_create_alloc_ex (41,
11810 hash_dwo_file,
11811 eq_dwo_file,
11812 NULL,
11813 &objfile->objfile_obstack,
11814 hashtab_obstack_allocate,
11815 dummy_obstack_deallocate);
11816 }
11817
11818 /* Lookup DWO file DWO_NAME. */
11819
11820 static void **
11821 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11822 const char *dwo_name,
11823 const char *comp_dir)
11824 {
11825 struct dwo_file find_entry;
11826 void **slot;
11827
11828 if (dwarf2_per_objfile->dwo_files == NULL)
11829 dwarf2_per_objfile->dwo_files
11830 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11831
11832 memset (&find_entry, 0, sizeof (find_entry));
11833 find_entry.dwo_name = dwo_name;
11834 find_entry.comp_dir = comp_dir;
11835 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11836
11837 return slot;
11838 }
11839
11840 static hashval_t
11841 hash_dwo_unit (const void *item)
11842 {
11843 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11844
11845 /* This drops the top 32 bits of the id, but is ok for a hash. */
11846 return dwo_unit->signature;
11847 }
11848
11849 static int
11850 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11851 {
11852 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11853 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11854
11855 /* The signature is assumed to be unique within the DWO file.
11856 So while object file CU dwo_id's always have the value zero,
11857 that's OK, assuming each object file DWO file has only one CU,
11858 and that's the rule for now. */
11859 return lhs->signature == rhs->signature;
11860 }
11861
11862 /* Allocate a hash table for DWO CUs,TUs.
11863 There is one of these tables for each of CUs,TUs for each DWO file. */
11864
11865 static htab_t
11866 allocate_dwo_unit_table (struct objfile *objfile)
11867 {
11868 /* Start out with a pretty small number.
11869 Generally DWO files contain only one CU and maybe some TUs. */
11870 return htab_create_alloc_ex (3,
11871 hash_dwo_unit,
11872 eq_dwo_unit,
11873 NULL,
11874 &objfile->objfile_obstack,
11875 hashtab_obstack_allocate,
11876 dummy_obstack_deallocate);
11877 }
11878
11879 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11880
11881 struct create_dwo_cu_data
11882 {
11883 struct dwo_file *dwo_file;
11884 struct dwo_unit dwo_unit;
11885 };
11886
11887 /* die_reader_func for create_dwo_cu. */
11888
11889 static void
11890 create_dwo_cu_reader (const struct die_reader_specs *reader,
11891 const gdb_byte *info_ptr,
11892 struct die_info *comp_unit_die,
11893 int has_children,
11894 void *datap)
11895 {
11896 struct dwarf2_cu *cu = reader->cu;
11897 sect_offset sect_off = cu->per_cu->sect_off;
11898 struct dwarf2_section_info *section = cu->per_cu->section;
11899 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11900 struct dwo_file *dwo_file = data->dwo_file;
11901 struct dwo_unit *dwo_unit = &data->dwo_unit;
11902 struct attribute *attr;
11903
11904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11905 if (attr == NULL)
11906 {
11907 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11908 " its dwo_id [in module %s]"),
11909 sect_offset_str (sect_off), dwo_file->dwo_name);
11910 return;
11911 }
11912
11913 dwo_unit->dwo_file = dwo_file;
11914 dwo_unit->signature = DW_UNSND (attr);
11915 dwo_unit->section = section;
11916 dwo_unit->sect_off = sect_off;
11917 dwo_unit->length = cu->per_cu->length;
11918
11919 if (dwarf_read_debug)
11920 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11921 sect_offset_str (sect_off),
11922 hex_string (dwo_unit->signature));
11923 }
11924
11925 /* Create the dwo_units for the CUs in a DWO_FILE.
11926 Note: This function processes DWO files only, not DWP files. */
11927
11928 static void
11929 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11930 struct dwo_file &dwo_file, dwarf2_section_info &section,
11931 htab_t &cus_htab)
11932 {
11933 struct objfile *objfile = dwarf2_per_objfile->objfile;
11934 const gdb_byte *info_ptr, *end_ptr;
11935
11936 dwarf2_read_section (objfile, &section);
11937 info_ptr = section.buffer;
11938
11939 if (info_ptr == NULL)
11940 return;
11941
11942 if (dwarf_read_debug)
11943 {
11944 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11945 get_section_name (&section),
11946 get_section_file_name (&section));
11947 }
11948
11949 end_ptr = info_ptr + section.size;
11950 while (info_ptr < end_ptr)
11951 {
11952 struct dwarf2_per_cu_data per_cu;
11953 struct create_dwo_cu_data create_dwo_cu_data;
11954 struct dwo_unit *dwo_unit;
11955 void **slot;
11956 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11957
11958 memset (&create_dwo_cu_data.dwo_unit, 0,
11959 sizeof (create_dwo_cu_data.dwo_unit));
11960 memset (&per_cu, 0, sizeof (per_cu));
11961 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11962 per_cu.is_debug_types = 0;
11963 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11964 per_cu.section = &section;
11965 create_dwo_cu_data.dwo_file = &dwo_file;
11966
11967 init_cutu_and_read_dies_no_follow (
11968 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11969 info_ptr += per_cu.length;
11970
11971 // If the unit could not be parsed, skip it.
11972 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11973 continue;
11974
11975 if (cus_htab == NULL)
11976 cus_htab = allocate_dwo_unit_table (objfile);
11977
11978 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11979 *dwo_unit = create_dwo_cu_data.dwo_unit;
11980 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11981 gdb_assert (slot != NULL);
11982 if (*slot != NULL)
11983 {
11984 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11985 sect_offset dup_sect_off = dup_cu->sect_off;
11986
11987 complaint (_("debug cu entry at offset %s is duplicate to"
11988 " the entry at offset %s, signature %s"),
11989 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11990 hex_string (dwo_unit->signature));
11991 }
11992 *slot = (void *)dwo_unit;
11993 }
11994 }
11995
11996 /* DWP file .debug_{cu,tu}_index section format:
11997 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11998
11999 DWP Version 1:
12000
12001 Both index sections have the same format, and serve to map a 64-bit
12002 signature to a set of section numbers. Each section begins with a header,
12003 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12004 indexes, and a pool of 32-bit section numbers. The index sections will be
12005 aligned at 8-byte boundaries in the file.
12006
12007 The index section header consists of:
12008
12009 V, 32 bit version number
12010 -, 32 bits unused
12011 N, 32 bit number of compilation units or type units in the index
12012 M, 32 bit number of slots in the hash table
12013
12014 Numbers are recorded using the byte order of the application binary.
12015
12016 The hash table begins at offset 16 in the section, and consists of an array
12017 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12018 order of the application binary). Unused slots in the hash table are 0.
12019 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12020
12021 The parallel table begins immediately after the hash table
12022 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12023 array of 32-bit indexes (using the byte order of the application binary),
12024 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12025 table contains a 32-bit index into the pool of section numbers. For unused
12026 hash table slots, the corresponding entry in the parallel table will be 0.
12027
12028 The pool of section numbers begins immediately following the hash table
12029 (at offset 16 + 12 * M from the beginning of the section). The pool of
12030 section numbers consists of an array of 32-bit words (using the byte order
12031 of the application binary). Each item in the array is indexed starting
12032 from 0. The hash table entry provides the index of the first section
12033 number in the set. Additional section numbers in the set follow, and the
12034 set is terminated by a 0 entry (section number 0 is not used in ELF).
12035
12036 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12037 section must be the first entry in the set, and the .debug_abbrev.dwo must
12038 be the second entry. Other members of the set may follow in any order.
12039
12040 ---
12041
12042 DWP Version 2:
12043
12044 DWP Version 2 combines all the .debug_info, etc. sections into one,
12045 and the entries in the index tables are now offsets into these sections.
12046 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12047 section.
12048
12049 Index Section Contents:
12050 Header
12051 Hash Table of Signatures dwp_hash_table.hash_table
12052 Parallel Table of Indices dwp_hash_table.unit_table
12053 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12054 Table of Section Sizes dwp_hash_table.v2.sizes
12055
12056 The index section header consists of:
12057
12058 V, 32 bit version number
12059 L, 32 bit number of columns in the table of section offsets
12060 N, 32 bit number of compilation units or type units in the index
12061 M, 32 bit number of slots in the hash table
12062
12063 Numbers are recorded using the byte order of the application binary.
12064
12065 The hash table has the same format as version 1.
12066 The parallel table of indices has the same format as version 1,
12067 except that the entries are origin-1 indices into the table of sections
12068 offsets and the table of section sizes.
12069
12070 The table of offsets begins immediately following the parallel table
12071 (at offset 16 + 12 * M from the beginning of the section). The table is
12072 a two-dimensional array of 32-bit words (using the byte order of the
12073 application binary), with L columns and N+1 rows, in row-major order.
12074 Each row in the array is indexed starting from 0. The first row provides
12075 a key to the remaining rows: each column in this row provides an identifier
12076 for a debug section, and the offsets in the same column of subsequent rows
12077 refer to that section. The section identifiers are:
12078
12079 DW_SECT_INFO 1 .debug_info.dwo
12080 DW_SECT_TYPES 2 .debug_types.dwo
12081 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12082 DW_SECT_LINE 4 .debug_line.dwo
12083 DW_SECT_LOC 5 .debug_loc.dwo
12084 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12085 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12086 DW_SECT_MACRO 8 .debug_macro.dwo
12087
12088 The offsets provided by the CU and TU index sections are the base offsets
12089 for the contributions made by each CU or TU to the corresponding section
12090 in the package file. Each CU and TU header contains an abbrev_offset
12091 field, used to find the abbreviations table for that CU or TU within the
12092 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12093 be interpreted as relative to the base offset given in the index section.
12094 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12095 should be interpreted as relative to the base offset for .debug_line.dwo,
12096 and offsets into other debug sections obtained from DWARF attributes should
12097 also be interpreted as relative to the corresponding base offset.
12098
12099 The table of sizes begins immediately following the table of offsets.
12100 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12101 with L columns and N rows, in row-major order. Each row in the array is
12102 indexed starting from 1 (row 0 is shared by the two tables).
12103
12104 ---
12105
12106 Hash table lookup is handled the same in version 1 and 2:
12107
12108 We assume that N and M will not exceed 2^32 - 1.
12109 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12110
12111 Given a 64-bit compilation unit signature or a type signature S, an entry
12112 in the hash table is located as follows:
12113
12114 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12115 the low-order k bits all set to 1.
12116
12117 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12118
12119 3) If the hash table entry at index H matches the signature, use that
12120 entry. If the hash table entry at index H is unused (all zeroes),
12121 terminate the search: the signature is not present in the table.
12122
12123 4) Let H = (H + H') modulo M. Repeat at Step 3.
12124
12125 Because M > N and H' and M are relatively prime, the search is guaranteed
12126 to stop at an unused slot or find the match. */
12127
12128 /* Create a hash table to map DWO IDs to their CU/TU entry in
12129 .debug_{info,types}.dwo in DWP_FILE.
12130 Returns NULL if there isn't one.
12131 Note: This function processes DWP files only, not DWO files. */
12132
12133 static struct dwp_hash_table *
12134 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12135 struct dwp_file *dwp_file, int is_debug_types)
12136 {
12137 struct objfile *objfile = dwarf2_per_objfile->objfile;
12138 bfd *dbfd = dwp_file->dbfd.get ();
12139 const gdb_byte *index_ptr, *index_end;
12140 struct dwarf2_section_info *index;
12141 uint32_t version, nr_columns, nr_units, nr_slots;
12142 struct dwp_hash_table *htab;
12143
12144 if (is_debug_types)
12145 index = &dwp_file->sections.tu_index;
12146 else
12147 index = &dwp_file->sections.cu_index;
12148
12149 if (dwarf2_section_empty_p (index))
12150 return NULL;
12151 dwarf2_read_section (objfile, index);
12152
12153 index_ptr = index->buffer;
12154 index_end = index_ptr + index->size;
12155
12156 version = read_4_bytes (dbfd, index_ptr);
12157 index_ptr += 4;
12158 if (version == 2)
12159 nr_columns = read_4_bytes (dbfd, index_ptr);
12160 else
12161 nr_columns = 0;
12162 index_ptr += 4;
12163 nr_units = read_4_bytes (dbfd, index_ptr);
12164 index_ptr += 4;
12165 nr_slots = read_4_bytes (dbfd, index_ptr);
12166 index_ptr += 4;
12167
12168 if (version != 1 && version != 2)
12169 {
12170 error (_("Dwarf Error: unsupported DWP file version (%s)"
12171 " [in module %s]"),
12172 pulongest (version), dwp_file->name);
12173 }
12174 if (nr_slots != (nr_slots & -nr_slots))
12175 {
12176 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12177 " is not power of 2 [in module %s]"),
12178 pulongest (nr_slots), dwp_file->name);
12179 }
12180
12181 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12182 htab->version = version;
12183 htab->nr_columns = nr_columns;
12184 htab->nr_units = nr_units;
12185 htab->nr_slots = nr_slots;
12186 htab->hash_table = index_ptr;
12187 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12188
12189 /* Exit early if the table is empty. */
12190 if (nr_slots == 0 || nr_units == 0
12191 || (version == 2 && nr_columns == 0))
12192 {
12193 /* All must be zero. */
12194 if (nr_slots != 0 || nr_units != 0
12195 || (version == 2 && nr_columns != 0))
12196 {
12197 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12198 " all zero [in modules %s]"),
12199 dwp_file->name);
12200 }
12201 return htab;
12202 }
12203
12204 if (version == 1)
12205 {
12206 htab->section_pool.v1.indices =
12207 htab->unit_table + sizeof (uint32_t) * nr_slots;
12208 /* It's harder to decide whether the section is too small in v1.
12209 V1 is deprecated anyway so we punt. */
12210 }
12211 else
12212 {
12213 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12214 int *ids = htab->section_pool.v2.section_ids;
12215 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12216 /* Reverse map for error checking. */
12217 int ids_seen[DW_SECT_MAX + 1];
12218 int i;
12219
12220 if (nr_columns < 2)
12221 {
12222 error (_("Dwarf Error: bad DWP hash table, too few columns"
12223 " in section table [in module %s]"),
12224 dwp_file->name);
12225 }
12226 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12227 {
12228 error (_("Dwarf Error: bad DWP hash table, too many columns"
12229 " in section table [in module %s]"),
12230 dwp_file->name);
12231 }
12232 memset (ids, 255, sizeof_ids);
12233 memset (ids_seen, 255, sizeof (ids_seen));
12234 for (i = 0; i < nr_columns; ++i)
12235 {
12236 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12237
12238 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12239 {
12240 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12241 " in section table [in module %s]"),
12242 id, dwp_file->name);
12243 }
12244 if (ids_seen[id] != -1)
12245 {
12246 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12247 " id %d in section table [in module %s]"),
12248 id, dwp_file->name);
12249 }
12250 ids_seen[id] = i;
12251 ids[i] = id;
12252 }
12253 /* Must have exactly one info or types section. */
12254 if (((ids_seen[DW_SECT_INFO] != -1)
12255 + (ids_seen[DW_SECT_TYPES] != -1))
12256 != 1)
12257 {
12258 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12259 " DWO info/types section [in module %s]"),
12260 dwp_file->name);
12261 }
12262 /* Must have an abbrev section. */
12263 if (ids_seen[DW_SECT_ABBREV] == -1)
12264 {
12265 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12266 " section [in module %s]"),
12267 dwp_file->name);
12268 }
12269 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12270 htab->section_pool.v2.sizes =
12271 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12272 * nr_units * nr_columns);
12273 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12274 * nr_units * nr_columns))
12275 > index_end)
12276 {
12277 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12278 " [in module %s]"),
12279 dwp_file->name);
12280 }
12281 }
12282
12283 return htab;
12284 }
12285
12286 /* Update SECTIONS with the data from SECTP.
12287
12288 This function is like the other "locate" section routines that are
12289 passed to bfd_map_over_sections, but in this context the sections to
12290 read comes from the DWP V1 hash table, not the full ELF section table.
12291
12292 The result is non-zero for success, or zero if an error was found. */
12293
12294 static int
12295 locate_v1_virtual_dwo_sections (asection *sectp,
12296 struct virtual_v1_dwo_sections *sections)
12297 {
12298 const struct dwop_section_names *names = &dwop_section_names;
12299
12300 if (section_is_p (sectp->name, &names->abbrev_dwo))
12301 {
12302 /* There can be only one. */
12303 if (sections->abbrev.s.section != NULL)
12304 return 0;
12305 sections->abbrev.s.section = sectp;
12306 sections->abbrev.size = bfd_get_section_size (sectp);
12307 }
12308 else if (section_is_p (sectp->name, &names->info_dwo)
12309 || section_is_p (sectp->name, &names->types_dwo))
12310 {
12311 /* There can be only one. */
12312 if (sections->info_or_types.s.section != NULL)
12313 return 0;
12314 sections->info_or_types.s.section = sectp;
12315 sections->info_or_types.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->line_dwo))
12318 {
12319 /* There can be only one. */
12320 if (sections->line.s.section != NULL)
12321 return 0;
12322 sections->line.s.section = sectp;
12323 sections->line.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->loc_dwo))
12326 {
12327 /* There can be only one. */
12328 if (sections->loc.s.section != NULL)
12329 return 0;
12330 sections->loc.s.section = sectp;
12331 sections->loc.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12334 {
12335 /* There can be only one. */
12336 if (sections->macinfo.s.section != NULL)
12337 return 0;
12338 sections->macinfo.s.section = sectp;
12339 sections->macinfo.size = bfd_get_section_size (sectp);
12340 }
12341 else if (section_is_p (sectp->name, &names->macro_dwo))
12342 {
12343 /* There can be only one. */
12344 if (sections->macro.s.section != NULL)
12345 return 0;
12346 sections->macro.s.section = sectp;
12347 sections->macro.size = bfd_get_section_size (sectp);
12348 }
12349 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12350 {
12351 /* There can be only one. */
12352 if (sections->str_offsets.s.section != NULL)
12353 return 0;
12354 sections->str_offsets.s.section = sectp;
12355 sections->str_offsets.size = bfd_get_section_size (sectp);
12356 }
12357 else
12358 {
12359 /* No other kind of section is valid. */
12360 return 0;
12361 }
12362
12363 return 1;
12364 }
12365
12366 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12367 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12368 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12369 This is for DWP version 1 files. */
12370
12371 static struct dwo_unit *
12372 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12373 struct dwp_file *dwp_file,
12374 uint32_t unit_index,
12375 const char *comp_dir,
12376 ULONGEST signature, int is_debug_types)
12377 {
12378 struct objfile *objfile = dwarf2_per_objfile->objfile;
12379 const struct dwp_hash_table *dwp_htab =
12380 is_debug_types ? dwp_file->tus : dwp_file->cus;
12381 bfd *dbfd = dwp_file->dbfd.get ();
12382 const char *kind = is_debug_types ? "TU" : "CU";
12383 struct dwo_file *dwo_file;
12384 struct dwo_unit *dwo_unit;
12385 struct virtual_v1_dwo_sections sections;
12386 void **dwo_file_slot;
12387 int i;
12388
12389 gdb_assert (dwp_file->version == 1);
12390
12391 if (dwarf_read_debug)
12392 {
12393 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12394 kind,
12395 pulongest (unit_index), hex_string (signature),
12396 dwp_file->name);
12397 }
12398
12399 /* Fetch the sections of this DWO unit.
12400 Put a limit on the number of sections we look for so that bad data
12401 doesn't cause us to loop forever. */
12402
12403 #define MAX_NR_V1_DWO_SECTIONS \
12404 (1 /* .debug_info or .debug_types */ \
12405 + 1 /* .debug_abbrev */ \
12406 + 1 /* .debug_line */ \
12407 + 1 /* .debug_loc */ \
12408 + 1 /* .debug_str_offsets */ \
12409 + 1 /* .debug_macro or .debug_macinfo */ \
12410 + 1 /* trailing zero */)
12411
12412 memset (&sections, 0, sizeof (sections));
12413
12414 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12415 {
12416 asection *sectp;
12417 uint32_t section_nr =
12418 read_4_bytes (dbfd,
12419 dwp_htab->section_pool.v1.indices
12420 + (unit_index + i) * sizeof (uint32_t));
12421
12422 if (section_nr == 0)
12423 break;
12424 if (section_nr >= dwp_file->num_sections)
12425 {
12426 error (_("Dwarf Error: bad DWP hash table, section number too large"
12427 " [in module %s]"),
12428 dwp_file->name);
12429 }
12430
12431 sectp = dwp_file->elf_sections[section_nr];
12432 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438 }
12439
12440 if (i < 2
12441 || dwarf2_section_empty_p (&sections.info_or_types)
12442 || dwarf2_section_empty_p (&sections.abbrev))
12443 {
12444 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12445 " [in module %s]"),
12446 dwp_file->name);
12447 }
12448 if (i == MAX_NR_V1_DWO_SECTIONS)
12449 {
12450 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12451 " [in module %s]"),
12452 dwp_file->name);
12453 }
12454
12455 /* It's easier for the rest of the code if we fake a struct dwo_file and
12456 have dwo_unit "live" in that. At least for now.
12457
12458 The DWP file can be made up of a random collection of CUs and TUs.
12459 However, for each CU + set of TUs that came from the same original DWO
12460 file, we can combine them back into a virtual DWO file to save space
12461 (fewer struct dwo_file objects to allocate). Remember that for really
12462 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12463
12464 std::string virtual_dwo_name =
12465 string_printf ("virtual-dwo/%d-%d-%d-%d",
12466 get_section_id (&sections.abbrev),
12467 get_section_id (&sections.line),
12468 get_section_id (&sections.loc),
12469 get_section_id (&sections.str_offsets));
12470 /* Can we use an existing virtual DWO file? */
12471 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12472 virtual_dwo_name.c_str (),
12473 comp_dir);
12474 /* Create one if necessary. */
12475 if (*dwo_file_slot == NULL)
12476 {
12477 if (dwarf_read_debug)
12478 {
12479 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12480 virtual_dwo_name.c_str ());
12481 }
12482 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12483 dwo_file->dwo_name
12484 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12485 virtual_dwo_name.c_str (),
12486 virtual_dwo_name.size ());
12487 dwo_file->comp_dir = comp_dir;
12488 dwo_file->sections.abbrev = sections.abbrev;
12489 dwo_file->sections.line = sections.line;
12490 dwo_file->sections.loc = sections.loc;
12491 dwo_file->sections.macinfo = sections.macinfo;
12492 dwo_file->sections.macro = sections.macro;
12493 dwo_file->sections.str_offsets = sections.str_offsets;
12494 /* The "str" section is global to the entire DWP file. */
12495 dwo_file->sections.str = dwp_file->sections.str;
12496 /* The info or types section is assigned below to dwo_unit,
12497 there's no need to record it in dwo_file.
12498 Also, we can't simply record type sections in dwo_file because
12499 we record a pointer into the vector in dwo_unit. As we collect more
12500 types we'll grow the vector and eventually have to reallocate space
12501 for it, invalidating all copies of pointers into the previous
12502 contents. */
12503 *dwo_file_slot = dwo_file;
12504 }
12505 else
12506 {
12507 if (dwarf_read_debug)
12508 {
12509 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12510 virtual_dwo_name.c_str ());
12511 }
12512 dwo_file = (struct dwo_file *) *dwo_file_slot;
12513 }
12514
12515 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12516 dwo_unit->dwo_file = dwo_file;
12517 dwo_unit->signature = signature;
12518 dwo_unit->section =
12519 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12520 *dwo_unit->section = sections.info_or_types;
12521 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12522
12523 return dwo_unit;
12524 }
12525
12526 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12527 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12528 piece within that section used by a TU/CU, return a virtual section
12529 of just that piece. */
12530
12531 static struct dwarf2_section_info
12532 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12533 struct dwarf2_section_info *section,
12534 bfd_size_type offset, bfd_size_type size)
12535 {
12536 struct dwarf2_section_info result;
12537 asection *sectp;
12538
12539 gdb_assert (section != NULL);
12540 gdb_assert (!section->is_virtual);
12541
12542 memset (&result, 0, sizeof (result));
12543 result.s.containing_section = section;
12544 result.is_virtual = 1;
12545
12546 if (size == 0)
12547 return result;
12548
12549 sectp = get_section_bfd_section (section);
12550
12551 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12552 bounds of the real section. This is a pretty-rare event, so just
12553 flag an error (easier) instead of a warning and trying to cope. */
12554 if (sectp == NULL
12555 || offset + size > bfd_get_section_size (sectp))
12556 {
12557 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12558 " in section %s [in module %s]"),
12559 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12560 objfile_name (dwarf2_per_objfile->objfile));
12561 }
12562
12563 result.virtual_offset = offset;
12564 result.size = size;
12565 return result;
12566 }
12567
12568 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12569 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12570 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12571 This is for DWP version 2 files. */
12572
12573 static struct dwo_unit *
12574 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12575 struct dwp_file *dwp_file,
12576 uint32_t unit_index,
12577 const char *comp_dir,
12578 ULONGEST signature, int is_debug_types)
12579 {
12580 struct objfile *objfile = dwarf2_per_objfile->objfile;
12581 const struct dwp_hash_table *dwp_htab =
12582 is_debug_types ? dwp_file->tus : dwp_file->cus;
12583 bfd *dbfd = dwp_file->dbfd.get ();
12584 const char *kind = is_debug_types ? "TU" : "CU";
12585 struct dwo_file *dwo_file;
12586 struct dwo_unit *dwo_unit;
12587 struct virtual_v2_dwo_sections sections;
12588 void **dwo_file_slot;
12589 int i;
12590
12591 gdb_assert (dwp_file->version == 2);
12592
12593 if (dwarf_read_debug)
12594 {
12595 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12596 kind,
12597 pulongest (unit_index), hex_string (signature),
12598 dwp_file->name);
12599 }
12600
12601 /* Fetch the section offsets of this DWO unit. */
12602
12603 memset (&sections, 0, sizeof (sections));
12604
12605 for (i = 0; i < dwp_htab->nr_columns; ++i)
12606 {
12607 uint32_t offset = read_4_bytes (dbfd,
12608 dwp_htab->section_pool.v2.offsets
12609 + (((unit_index - 1) * dwp_htab->nr_columns
12610 + i)
12611 * sizeof (uint32_t)));
12612 uint32_t size = read_4_bytes (dbfd,
12613 dwp_htab->section_pool.v2.sizes
12614 + (((unit_index - 1) * dwp_htab->nr_columns
12615 + i)
12616 * sizeof (uint32_t)));
12617
12618 switch (dwp_htab->section_pool.v2.section_ids[i])
12619 {
12620 case DW_SECT_INFO:
12621 case DW_SECT_TYPES:
12622 sections.info_or_types_offset = offset;
12623 sections.info_or_types_size = size;
12624 break;
12625 case DW_SECT_ABBREV:
12626 sections.abbrev_offset = offset;
12627 sections.abbrev_size = size;
12628 break;
12629 case DW_SECT_LINE:
12630 sections.line_offset = offset;
12631 sections.line_size = size;
12632 break;
12633 case DW_SECT_LOC:
12634 sections.loc_offset = offset;
12635 sections.loc_size = size;
12636 break;
12637 case DW_SECT_STR_OFFSETS:
12638 sections.str_offsets_offset = offset;
12639 sections.str_offsets_size = size;
12640 break;
12641 case DW_SECT_MACINFO:
12642 sections.macinfo_offset = offset;
12643 sections.macinfo_size = size;
12644 break;
12645 case DW_SECT_MACRO:
12646 sections.macro_offset = offset;
12647 sections.macro_size = size;
12648 break;
12649 }
12650 }
12651
12652 /* It's easier for the rest of the code if we fake a struct dwo_file and
12653 have dwo_unit "live" in that. At least for now.
12654
12655 The DWP file can be made up of a random collection of CUs and TUs.
12656 However, for each CU + set of TUs that came from the same original DWO
12657 file, we can combine them back into a virtual DWO file to save space
12658 (fewer struct dwo_file objects to allocate). Remember that for really
12659 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12660
12661 std::string virtual_dwo_name =
12662 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12663 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12664 (long) (sections.line_size ? sections.line_offset : 0),
12665 (long) (sections.loc_size ? sections.loc_offset : 0),
12666 (long) (sections.str_offsets_size
12667 ? sections.str_offsets_offset : 0));
12668 /* Can we use an existing virtual DWO file? */
12669 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12670 virtual_dwo_name.c_str (),
12671 comp_dir);
12672 /* Create one if necessary. */
12673 if (*dwo_file_slot == NULL)
12674 {
12675 if (dwarf_read_debug)
12676 {
12677 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12678 virtual_dwo_name.c_str ());
12679 }
12680 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12681 dwo_file->dwo_name
12682 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12683 virtual_dwo_name.c_str (),
12684 virtual_dwo_name.size ());
12685 dwo_file->comp_dir = comp_dir;
12686 dwo_file->sections.abbrev =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12688 sections.abbrev_offset, sections.abbrev_size);
12689 dwo_file->sections.line =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12691 sections.line_offset, sections.line_size);
12692 dwo_file->sections.loc =
12693 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12694 sections.loc_offset, sections.loc_size);
12695 dwo_file->sections.macinfo =
12696 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12697 sections.macinfo_offset, sections.macinfo_size);
12698 dwo_file->sections.macro =
12699 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12700 sections.macro_offset, sections.macro_size);
12701 dwo_file->sections.str_offsets =
12702 create_dwp_v2_section (dwarf2_per_objfile,
12703 &dwp_file->sections.str_offsets,
12704 sections.str_offsets_offset,
12705 sections.str_offsets_size);
12706 /* The "str" section is global to the entire DWP file. */
12707 dwo_file->sections.str = dwp_file->sections.str;
12708 /* The info or types section is assigned below to dwo_unit,
12709 there's no need to record it in dwo_file.
12710 Also, we can't simply record type sections in dwo_file because
12711 we record a pointer into the vector in dwo_unit. As we collect more
12712 types we'll grow the vector and eventually have to reallocate space
12713 for it, invalidating all copies of pointers into the previous
12714 contents. */
12715 *dwo_file_slot = dwo_file;
12716 }
12717 else
12718 {
12719 if (dwarf_read_debug)
12720 {
12721 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12722 virtual_dwo_name.c_str ());
12723 }
12724 dwo_file = (struct dwo_file *) *dwo_file_slot;
12725 }
12726
12727 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12728 dwo_unit->dwo_file = dwo_file;
12729 dwo_unit->signature = signature;
12730 dwo_unit->section =
12731 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12732 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12733 is_debug_types
12734 ? &dwp_file->sections.types
12735 : &dwp_file->sections.info,
12736 sections.info_or_types_offset,
12737 sections.info_or_types_size);
12738 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12739
12740 return dwo_unit;
12741 }
12742
12743 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12744 Returns NULL if the signature isn't found. */
12745
12746 static struct dwo_unit *
12747 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12748 struct dwp_file *dwp_file, const char *comp_dir,
12749 ULONGEST signature, int is_debug_types)
12750 {
12751 const struct dwp_hash_table *dwp_htab =
12752 is_debug_types ? dwp_file->tus : dwp_file->cus;
12753 bfd *dbfd = dwp_file->dbfd.get ();
12754 uint32_t mask = dwp_htab->nr_slots - 1;
12755 uint32_t hash = signature & mask;
12756 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12757 unsigned int i;
12758 void **slot;
12759 struct dwo_unit find_dwo_cu;
12760
12761 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12762 find_dwo_cu.signature = signature;
12763 slot = htab_find_slot (is_debug_types
12764 ? dwp_file->loaded_tus
12765 : dwp_file->loaded_cus,
12766 &find_dwo_cu, INSERT);
12767
12768 if (*slot != NULL)
12769 return (struct dwo_unit *) *slot;
12770
12771 /* Use a for loop so that we don't loop forever on bad debug info. */
12772 for (i = 0; i < dwp_htab->nr_slots; ++i)
12773 {
12774 ULONGEST signature_in_table;
12775
12776 signature_in_table =
12777 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12778 if (signature_in_table == signature)
12779 {
12780 uint32_t unit_index =
12781 read_4_bytes (dbfd,
12782 dwp_htab->unit_table + hash * sizeof (uint32_t));
12783
12784 if (dwp_file->version == 1)
12785 {
12786 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12787 dwp_file, unit_index,
12788 comp_dir, signature,
12789 is_debug_types);
12790 }
12791 else
12792 {
12793 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12794 dwp_file, unit_index,
12795 comp_dir, signature,
12796 is_debug_types);
12797 }
12798 return (struct dwo_unit *) *slot;
12799 }
12800 if (signature_in_table == 0)
12801 return NULL;
12802 hash = (hash + hash2) & mask;
12803 }
12804
12805 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12806 " [in module %s]"),
12807 dwp_file->name);
12808 }
12809
12810 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12811 Open the file specified by FILE_NAME and hand it off to BFD for
12812 preliminary analysis. Return a newly initialized bfd *, which
12813 includes a canonicalized copy of FILE_NAME.
12814 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12815 SEARCH_CWD is true if the current directory is to be searched.
12816 It will be searched before debug-file-directory.
12817 If successful, the file is added to the bfd include table of the
12818 objfile's bfd (see gdb_bfd_record_inclusion).
12819 If unable to find/open the file, return NULL.
12820 NOTE: This function is derived from symfile_bfd_open. */
12821
12822 static gdb_bfd_ref_ptr
12823 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12824 const char *file_name, int is_dwp, int search_cwd)
12825 {
12826 int desc;
12827 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12828 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12829 to debug_file_directory. */
12830 const char *search_path;
12831 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12832
12833 gdb::unique_xmalloc_ptr<char> search_path_holder;
12834 if (search_cwd)
12835 {
12836 if (*debug_file_directory != '\0')
12837 {
12838 search_path_holder.reset (concat (".", dirname_separator_string,
12839 debug_file_directory,
12840 (char *) NULL));
12841 search_path = search_path_holder.get ();
12842 }
12843 else
12844 search_path = ".";
12845 }
12846 else
12847 search_path = debug_file_directory;
12848
12849 openp_flags flags = OPF_RETURN_REALPATH;
12850 if (is_dwp)
12851 flags |= OPF_SEARCH_IN_PATH;
12852
12853 gdb::unique_xmalloc_ptr<char> absolute_name;
12854 desc = openp (search_path, flags, file_name,
12855 O_RDONLY | O_BINARY, &absolute_name);
12856 if (desc < 0)
12857 return NULL;
12858
12859 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12860 gnutarget, desc));
12861 if (sym_bfd == NULL)
12862 return NULL;
12863 bfd_set_cacheable (sym_bfd.get (), 1);
12864
12865 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12866 return NULL;
12867
12868 /* Success. Record the bfd as having been included by the objfile's bfd.
12869 This is important because things like demangled_names_hash lives in the
12870 objfile's per_bfd space and may have references to things like symbol
12871 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12872 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12873
12874 return sym_bfd;
12875 }
12876
12877 /* Try to open DWO file FILE_NAME.
12878 COMP_DIR is the DW_AT_comp_dir attribute.
12879 The result is the bfd handle of the file.
12880 If there is a problem finding or opening the file, return NULL.
12881 Upon success, the canonicalized path of the file is stored in the bfd,
12882 same as symfile_bfd_open. */
12883
12884 static gdb_bfd_ref_ptr
12885 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12886 const char *file_name, const char *comp_dir)
12887 {
12888 if (IS_ABSOLUTE_PATH (file_name))
12889 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12890 0 /*is_dwp*/, 0 /*search_cwd*/);
12891
12892 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12893
12894 if (comp_dir != NULL)
12895 {
12896 char *path_to_try = concat (comp_dir, SLASH_STRING,
12897 file_name, (char *) NULL);
12898
12899 /* NOTE: If comp_dir is a relative path, this will also try the
12900 search path, which seems useful. */
12901 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12902 path_to_try,
12903 0 /*is_dwp*/,
12904 1 /*search_cwd*/));
12905 xfree (path_to_try);
12906 if (abfd != NULL)
12907 return abfd;
12908 }
12909
12910 /* That didn't work, try debug-file-directory, which, despite its name,
12911 is a list of paths. */
12912
12913 if (*debug_file_directory == '\0')
12914 return NULL;
12915
12916 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12917 0 /*is_dwp*/, 1 /*search_cwd*/);
12918 }
12919
12920 /* This function is mapped across the sections and remembers the offset and
12921 size of each of the DWO debugging sections we are interested in. */
12922
12923 static void
12924 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12925 {
12926 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12927 const struct dwop_section_names *names = &dwop_section_names;
12928
12929 if (section_is_p (sectp->name, &names->abbrev_dwo))
12930 {
12931 dwo_sections->abbrev.s.section = sectp;
12932 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12933 }
12934 else if (section_is_p (sectp->name, &names->info_dwo))
12935 {
12936 dwo_sections->info.s.section = sectp;
12937 dwo_sections->info.size = bfd_get_section_size (sectp);
12938 }
12939 else if (section_is_p (sectp->name, &names->line_dwo))
12940 {
12941 dwo_sections->line.s.section = sectp;
12942 dwo_sections->line.size = bfd_get_section_size (sectp);
12943 }
12944 else if (section_is_p (sectp->name, &names->loc_dwo))
12945 {
12946 dwo_sections->loc.s.section = sectp;
12947 dwo_sections->loc.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12950 {
12951 dwo_sections->macinfo.s.section = sectp;
12952 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12953 }
12954 else if (section_is_p (sectp->name, &names->macro_dwo))
12955 {
12956 dwo_sections->macro.s.section = sectp;
12957 dwo_sections->macro.size = bfd_get_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->str_dwo))
12960 {
12961 dwo_sections->str.s.section = sectp;
12962 dwo_sections->str.size = bfd_get_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12965 {
12966 dwo_sections->str_offsets.s.section = sectp;
12967 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12968 }
12969 else if (section_is_p (sectp->name, &names->types_dwo))
12970 {
12971 struct dwarf2_section_info type_section;
12972
12973 memset (&type_section, 0, sizeof (type_section));
12974 type_section.s.section = sectp;
12975 type_section.size = bfd_get_section_size (sectp);
12976 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12977 &type_section);
12978 }
12979 }
12980
12981 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12982 by PER_CU. This is for the non-DWP case.
12983 The result is NULL if DWO_NAME can't be found. */
12984
12985 static struct dwo_file *
12986 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12987 const char *dwo_name, const char *comp_dir)
12988 {
12989 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12990 struct objfile *objfile = dwarf2_per_objfile->objfile;
12991
12992 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12993 if (dbfd == NULL)
12994 {
12995 if (dwarf_read_debug)
12996 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12997 return NULL;
12998 }
12999
13000 /* We use a unique pointer here, despite the obstack allocation,
13001 because a dwo_file needs some cleanup if it is abandoned. */
13002 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
13003 struct dwo_file));
13004 dwo_file->dwo_name = dwo_name;
13005 dwo_file->comp_dir = comp_dir;
13006 dwo_file->dbfd = dbfd.release ();
13007
13008 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13009 &dwo_file->sections);
13010
13011 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13012 dwo_file->cus);
13013
13014 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13015 dwo_file->sections.types, dwo_file->tus);
13016
13017 if (dwarf_read_debug)
13018 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13019
13020 return dwo_file.release ();
13021 }
13022
13023 /* This function is mapped across the sections and remembers the offset and
13024 size of each of the DWP debugging sections common to version 1 and 2 that
13025 we are interested in. */
13026
13027 static void
13028 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13029 void *dwp_file_ptr)
13030 {
13031 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13032 const struct dwop_section_names *names = &dwop_section_names;
13033 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13034
13035 /* Record the ELF section number for later lookup: this is what the
13036 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13037 gdb_assert (elf_section_nr < dwp_file->num_sections);
13038 dwp_file->elf_sections[elf_section_nr] = sectp;
13039
13040 /* Look for specific sections that we need. */
13041 if (section_is_p (sectp->name, &names->str_dwo))
13042 {
13043 dwp_file->sections.str.s.section = sectp;
13044 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13045 }
13046 else if (section_is_p (sectp->name, &names->cu_index))
13047 {
13048 dwp_file->sections.cu_index.s.section = sectp;
13049 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13050 }
13051 else if (section_is_p (sectp->name, &names->tu_index))
13052 {
13053 dwp_file->sections.tu_index.s.section = sectp;
13054 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13055 }
13056 }
13057
13058 /* This function is mapped across the sections and remembers the offset and
13059 size of each of the DWP version 2 debugging sections that we are interested
13060 in. This is split into a separate function because we don't know if we
13061 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13062
13063 static void
13064 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13065 {
13066 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13067 const struct dwop_section_names *names = &dwop_section_names;
13068 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13069
13070 /* Record the ELF section number for later lookup: this is what the
13071 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13072 gdb_assert (elf_section_nr < dwp_file->num_sections);
13073 dwp_file->elf_sections[elf_section_nr] = sectp;
13074
13075 /* Look for specific sections that we need. */
13076 if (section_is_p (sectp->name, &names->abbrev_dwo))
13077 {
13078 dwp_file->sections.abbrev.s.section = sectp;
13079 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13080 }
13081 else if (section_is_p (sectp->name, &names->info_dwo))
13082 {
13083 dwp_file->sections.info.s.section = sectp;
13084 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13085 }
13086 else if (section_is_p (sectp->name, &names->line_dwo))
13087 {
13088 dwp_file->sections.line.s.section = sectp;
13089 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13090 }
13091 else if (section_is_p (sectp->name, &names->loc_dwo))
13092 {
13093 dwp_file->sections.loc.s.section = sectp;
13094 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13095 }
13096 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13097 {
13098 dwp_file->sections.macinfo.s.section = sectp;
13099 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13100 }
13101 else if (section_is_p (sectp->name, &names->macro_dwo))
13102 {
13103 dwp_file->sections.macro.s.section = sectp;
13104 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13105 }
13106 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13107 {
13108 dwp_file->sections.str_offsets.s.section = sectp;
13109 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13110 }
13111 else if (section_is_p (sectp->name, &names->types_dwo))
13112 {
13113 dwp_file->sections.types.s.section = sectp;
13114 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13115 }
13116 }
13117
13118 /* Hash function for dwp_file loaded CUs/TUs. */
13119
13120 static hashval_t
13121 hash_dwp_loaded_cutus (const void *item)
13122 {
13123 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13124
13125 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13126 return dwo_unit->signature;
13127 }
13128
13129 /* Equality function for dwp_file loaded CUs/TUs. */
13130
13131 static int
13132 eq_dwp_loaded_cutus (const void *a, const void *b)
13133 {
13134 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13135 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13136
13137 return dua->signature == dub->signature;
13138 }
13139
13140 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13141
13142 static htab_t
13143 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13144 {
13145 return htab_create_alloc_ex (3,
13146 hash_dwp_loaded_cutus,
13147 eq_dwp_loaded_cutus,
13148 NULL,
13149 &objfile->objfile_obstack,
13150 hashtab_obstack_allocate,
13151 dummy_obstack_deallocate);
13152 }
13153
13154 /* Try to open DWP file FILE_NAME.
13155 The result is the bfd handle of the file.
13156 If there is a problem finding or opening the file, return NULL.
13157 Upon success, the canonicalized path of the file is stored in the bfd,
13158 same as symfile_bfd_open. */
13159
13160 static gdb_bfd_ref_ptr
13161 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13162 const char *file_name)
13163 {
13164 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13165 1 /*is_dwp*/,
13166 1 /*search_cwd*/));
13167 if (abfd != NULL)
13168 return abfd;
13169
13170 /* Work around upstream bug 15652.
13171 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13172 [Whether that's a "bug" is debatable, but it is getting in our way.]
13173 We have no real idea where the dwp file is, because gdb's realpath-ing
13174 of the executable's path may have discarded the needed info.
13175 [IWBN if the dwp file name was recorded in the executable, akin to
13176 .gnu_debuglink, but that doesn't exist yet.]
13177 Strip the directory from FILE_NAME and search again. */
13178 if (*debug_file_directory != '\0')
13179 {
13180 /* Don't implicitly search the current directory here.
13181 If the user wants to search "." to handle this case,
13182 it must be added to debug-file-directory. */
13183 return try_open_dwop_file (dwarf2_per_objfile,
13184 lbasename (file_name), 1 /*is_dwp*/,
13185 0 /*search_cwd*/);
13186 }
13187
13188 return NULL;
13189 }
13190
13191 /* Initialize the use of the DWP file for the current objfile.
13192 By convention the name of the DWP file is ${objfile}.dwp.
13193 The result is NULL if it can't be found. */
13194
13195 static std::unique_ptr<struct dwp_file>
13196 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13197 {
13198 struct objfile *objfile = dwarf2_per_objfile->objfile;
13199
13200 /* Try to find first .dwp for the binary file before any symbolic links
13201 resolving. */
13202
13203 /* If the objfile is a debug file, find the name of the real binary
13204 file and get the name of dwp file from there. */
13205 std::string dwp_name;
13206 if (objfile->separate_debug_objfile_backlink != NULL)
13207 {
13208 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13209 const char *backlink_basename = lbasename (backlink->original_name);
13210
13211 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13212 }
13213 else
13214 dwp_name = objfile->original_name;
13215
13216 dwp_name += ".dwp";
13217
13218 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13219 if (dbfd == NULL
13220 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13221 {
13222 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13223 dwp_name = objfile_name (objfile);
13224 dwp_name += ".dwp";
13225 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13226 }
13227
13228 if (dbfd == NULL)
13229 {
13230 if (dwarf_read_debug)
13231 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13232 return std::unique_ptr<dwp_file> ();
13233 }
13234
13235 const char *name = bfd_get_filename (dbfd.get ());
13236 std::unique_ptr<struct dwp_file> dwp_file
13237 (new struct dwp_file (name, std::move (dbfd)));
13238
13239 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13240 dwp_file->elf_sections =
13241 OBSTACK_CALLOC (&objfile->objfile_obstack,
13242 dwp_file->num_sections, asection *);
13243
13244 bfd_map_over_sections (dwp_file->dbfd.get (),
13245 dwarf2_locate_common_dwp_sections,
13246 dwp_file.get ());
13247
13248 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13249 0);
13250
13251 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13252 1);
13253
13254 /* The DWP file version is stored in the hash table. Oh well. */
13255 if (dwp_file->cus && dwp_file->tus
13256 && dwp_file->cus->version != dwp_file->tus->version)
13257 {
13258 /* Technically speaking, we should try to limp along, but this is
13259 pretty bizarre. We use pulongest here because that's the established
13260 portability solution (e.g, we cannot use %u for uint32_t). */
13261 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13262 " TU version %s [in DWP file %s]"),
13263 pulongest (dwp_file->cus->version),
13264 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13265 }
13266
13267 if (dwp_file->cus)
13268 dwp_file->version = dwp_file->cus->version;
13269 else if (dwp_file->tus)
13270 dwp_file->version = dwp_file->tus->version;
13271 else
13272 dwp_file->version = 2;
13273
13274 if (dwp_file->version == 2)
13275 bfd_map_over_sections (dwp_file->dbfd.get (),
13276 dwarf2_locate_v2_dwp_sections,
13277 dwp_file.get ());
13278
13279 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13280 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13281
13282 if (dwarf_read_debug)
13283 {
13284 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13285 fprintf_unfiltered (gdb_stdlog,
13286 " %s CUs, %s TUs\n",
13287 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13288 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13289 }
13290
13291 return dwp_file;
13292 }
13293
13294 /* Wrapper around open_and_init_dwp_file, only open it once. */
13295
13296 static struct dwp_file *
13297 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13298 {
13299 if (! dwarf2_per_objfile->dwp_checked)
13300 {
13301 dwarf2_per_objfile->dwp_file
13302 = open_and_init_dwp_file (dwarf2_per_objfile);
13303 dwarf2_per_objfile->dwp_checked = 1;
13304 }
13305 return dwarf2_per_objfile->dwp_file.get ();
13306 }
13307
13308 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13309 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13310 or in the DWP file for the objfile, referenced by THIS_UNIT.
13311 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13312 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13313
13314 This is called, for example, when wanting to read a variable with a
13315 complex location. Therefore we don't want to do file i/o for every call.
13316 Therefore we don't want to look for a DWO file on every call.
13317 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13318 then we check if we've already seen DWO_NAME, and only THEN do we check
13319 for a DWO file.
13320
13321 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13322 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13323
13324 static struct dwo_unit *
13325 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13326 const char *dwo_name, const char *comp_dir,
13327 ULONGEST signature, int is_debug_types)
13328 {
13329 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13330 struct objfile *objfile = dwarf2_per_objfile->objfile;
13331 const char *kind = is_debug_types ? "TU" : "CU";
13332 void **dwo_file_slot;
13333 struct dwo_file *dwo_file;
13334 struct dwp_file *dwp_file;
13335
13336 /* First see if there's a DWP file.
13337 If we have a DWP file but didn't find the DWO inside it, don't
13338 look for the original DWO file. It makes gdb behave differently
13339 depending on whether one is debugging in the build tree. */
13340
13341 dwp_file = get_dwp_file (dwarf2_per_objfile);
13342 if (dwp_file != NULL)
13343 {
13344 const struct dwp_hash_table *dwp_htab =
13345 is_debug_types ? dwp_file->tus : dwp_file->cus;
13346
13347 if (dwp_htab != NULL)
13348 {
13349 struct dwo_unit *dwo_cutu =
13350 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13351 signature, is_debug_types);
13352
13353 if (dwo_cutu != NULL)
13354 {
13355 if (dwarf_read_debug)
13356 {
13357 fprintf_unfiltered (gdb_stdlog,
13358 "Virtual DWO %s %s found: @%s\n",
13359 kind, hex_string (signature),
13360 host_address_to_string (dwo_cutu));
13361 }
13362 return dwo_cutu;
13363 }
13364 }
13365 }
13366 else
13367 {
13368 /* No DWP file, look for the DWO file. */
13369
13370 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13371 dwo_name, comp_dir);
13372 if (*dwo_file_slot == NULL)
13373 {
13374 /* Read in the file and build a table of the CUs/TUs it contains. */
13375 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13376 }
13377 /* NOTE: This will be NULL if unable to open the file. */
13378 dwo_file = (struct dwo_file *) *dwo_file_slot;
13379
13380 if (dwo_file != NULL)
13381 {
13382 struct dwo_unit *dwo_cutu = NULL;
13383
13384 if (is_debug_types && dwo_file->tus)
13385 {
13386 struct dwo_unit find_dwo_cutu;
13387
13388 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13389 find_dwo_cutu.signature = signature;
13390 dwo_cutu
13391 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13392 }
13393 else if (!is_debug_types && dwo_file->cus)
13394 {
13395 struct dwo_unit find_dwo_cutu;
13396
13397 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13398 find_dwo_cutu.signature = signature;
13399 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13400 &find_dwo_cutu);
13401 }
13402
13403 if (dwo_cutu != NULL)
13404 {
13405 if (dwarf_read_debug)
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13408 kind, dwo_name, hex_string (signature),
13409 host_address_to_string (dwo_cutu));
13410 }
13411 return dwo_cutu;
13412 }
13413 }
13414 }
13415
13416 /* We didn't find it. This could mean a dwo_id mismatch, or
13417 someone deleted the DWO/DWP file, or the search path isn't set up
13418 correctly to find the file. */
13419
13420 if (dwarf_read_debug)
13421 {
13422 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13423 kind, dwo_name, hex_string (signature));
13424 }
13425
13426 /* This is a warning and not a complaint because it can be caused by
13427 pilot error (e.g., user accidentally deleting the DWO). */
13428 {
13429 /* Print the name of the DWP file if we looked there, helps the user
13430 better diagnose the problem. */
13431 std::string dwp_text;
13432
13433 if (dwp_file != NULL)
13434 dwp_text = string_printf (" [in DWP file %s]",
13435 lbasename (dwp_file->name));
13436
13437 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13438 " [in module %s]"),
13439 kind, dwo_name, hex_string (signature),
13440 dwp_text.c_str (),
13441 this_unit->is_debug_types ? "TU" : "CU",
13442 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13443 }
13444 return NULL;
13445 }
13446
13447 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13448 See lookup_dwo_cutu_unit for details. */
13449
13450 static struct dwo_unit *
13451 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13452 const char *dwo_name, const char *comp_dir,
13453 ULONGEST signature)
13454 {
13455 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13456 }
13457
13458 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13459 See lookup_dwo_cutu_unit for details. */
13460
13461 static struct dwo_unit *
13462 lookup_dwo_type_unit (struct signatured_type *this_tu,
13463 const char *dwo_name, const char *comp_dir)
13464 {
13465 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13466 }
13467
13468 /* Traversal function for queue_and_load_all_dwo_tus. */
13469
13470 static int
13471 queue_and_load_dwo_tu (void **slot, void *info)
13472 {
13473 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13474 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13475 ULONGEST signature = dwo_unit->signature;
13476 struct signatured_type *sig_type =
13477 lookup_dwo_signatured_type (per_cu->cu, signature);
13478
13479 if (sig_type != NULL)
13480 {
13481 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13482
13483 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13484 a real dependency of PER_CU on SIG_TYPE. That is detected later
13485 while processing PER_CU. */
13486 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13487 load_full_type_unit (sig_cu);
13488 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13489 }
13490
13491 return 1;
13492 }
13493
13494 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13495 The DWO may have the only definition of the type, though it may not be
13496 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13497 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13498
13499 static void
13500 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13501 {
13502 struct dwo_unit *dwo_unit;
13503 struct dwo_file *dwo_file;
13504
13505 gdb_assert (!per_cu->is_debug_types);
13506 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13507 gdb_assert (per_cu->cu != NULL);
13508
13509 dwo_unit = per_cu->cu->dwo_unit;
13510 gdb_assert (dwo_unit != NULL);
13511
13512 dwo_file = dwo_unit->dwo_file;
13513 if (dwo_file->tus != NULL)
13514 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13515 }
13516
13517 /* Free all resources associated with DWO_FILE.
13518 Close the DWO file and munmap the sections. */
13519
13520 static void
13521 free_dwo_file (struct dwo_file *dwo_file)
13522 {
13523 /* Note: dbfd is NULL for virtual DWO files. */
13524 gdb_bfd_unref (dwo_file->dbfd);
13525
13526 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13527 }
13528
13529 /* Traversal function for free_dwo_files. */
13530
13531 static int
13532 free_dwo_file_from_slot (void **slot, void *info)
13533 {
13534 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13535
13536 free_dwo_file (dwo_file);
13537
13538 return 1;
13539 }
13540
13541 /* Free all resources associated with DWO_FILES. */
13542
13543 static void
13544 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13545 {
13546 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13547 }
13548 \f
13549 /* Read in various DIEs. */
13550
13551 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13552 Inherit only the children of the DW_AT_abstract_origin DIE not being
13553 already referenced by DW_AT_abstract_origin from the children of the
13554 current DIE. */
13555
13556 static void
13557 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13558 {
13559 struct die_info *child_die;
13560 sect_offset *offsetp;
13561 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13562 struct die_info *origin_die;
13563 /* Iterator of the ORIGIN_DIE children. */
13564 struct die_info *origin_child_die;
13565 struct attribute *attr;
13566 struct dwarf2_cu *origin_cu;
13567 struct pending **origin_previous_list_in_scope;
13568
13569 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13570 if (!attr)
13571 return;
13572
13573 /* Note that following die references may follow to a die in a
13574 different cu. */
13575
13576 origin_cu = cu;
13577 origin_die = follow_die_ref (die, attr, &origin_cu);
13578
13579 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13580 symbols in. */
13581 origin_previous_list_in_scope = origin_cu->list_in_scope;
13582 origin_cu->list_in_scope = cu->list_in_scope;
13583
13584 if (die->tag != origin_die->tag
13585 && !(die->tag == DW_TAG_inlined_subroutine
13586 && origin_die->tag == DW_TAG_subprogram))
13587 complaint (_("DIE %s and its abstract origin %s have different tags"),
13588 sect_offset_str (die->sect_off),
13589 sect_offset_str (origin_die->sect_off));
13590
13591 std::vector<sect_offset> offsets;
13592
13593 for (child_die = die->child;
13594 child_die && child_die->tag;
13595 child_die = sibling_die (child_die))
13596 {
13597 struct die_info *child_origin_die;
13598 struct dwarf2_cu *child_origin_cu;
13599
13600 /* We are trying to process concrete instance entries:
13601 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13602 it's not relevant to our analysis here. i.e. detecting DIEs that are
13603 present in the abstract instance but not referenced in the concrete
13604 one. */
13605 if (child_die->tag == DW_TAG_call_site
13606 || child_die->tag == DW_TAG_GNU_call_site)
13607 continue;
13608
13609 /* For each CHILD_DIE, find the corresponding child of
13610 ORIGIN_DIE. If there is more than one layer of
13611 DW_AT_abstract_origin, follow them all; there shouldn't be,
13612 but GCC versions at least through 4.4 generate this (GCC PR
13613 40573). */
13614 child_origin_die = child_die;
13615 child_origin_cu = cu;
13616 while (1)
13617 {
13618 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13619 child_origin_cu);
13620 if (attr == NULL)
13621 break;
13622 child_origin_die = follow_die_ref (child_origin_die, attr,
13623 &child_origin_cu);
13624 }
13625
13626 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13627 counterpart may exist. */
13628 if (child_origin_die != child_die)
13629 {
13630 if (child_die->tag != child_origin_die->tag
13631 && !(child_die->tag == DW_TAG_inlined_subroutine
13632 && child_origin_die->tag == DW_TAG_subprogram))
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different tags"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 if (child_origin_die->parent != origin_die)
13638 complaint (_("Child DIE %s and its abstract origin %s have "
13639 "different parents"),
13640 sect_offset_str (child_die->sect_off),
13641 sect_offset_str (child_origin_die->sect_off));
13642 else
13643 offsets.push_back (child_origin_die->sect_off);
13644 }
13645 }
13646 std::sort (offsets.begin (), offsets.end ());
13647 sect_offset *offsets_end = offsets.data () + offsets.size ();
13648 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13649 if (offsetp[-1] == *offsetp)
13650 complaint (_("Multiple children of DIE %s refer "
13651 "to DIE %s as their abstract origin"),
13652 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13653
13654 offsetp = offsets.data ();
13655 origin_child_die = origin_die->child;
13656 while (origin_child_die && origin_child_die->tag)
13657 {
13658 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13659 while (offsetp < offsets_end
13660 && *offsetp < origin_child_die->sect_off)
13661 offsetp++;
13662 if (offsetp >= offsets_end
13663 || *offsetp > origin_child_die->sect_off)
13664 {
13665 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13666 Check whether we're already processing ORIGIN_CHILD_DIE.
13667 This can happen with mutually referenced abstract_origins.
13668 PR 16581. */
13669 if (!origin_child_die->in_process)
13670 process_die (origin_child_die, origin_cu);
13671 }
13672 origin_child_die = sibling_die (origin_child_die);
13673 }
13674 origin_cu->list_in_scope = origin_previous_list_in_scope;
13675 }
13676
13677 static void
13678 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13679 {
13680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13682 struct context_stack *newobj;
13683 CORE_ADDR lowpc;
13684 CORE_ADDR highpc;
13685 struct die_info *child_die;
13686 struct attribute *attr, *call_line, *call_file;
13687 const char *name;
13688 CORE_ADDR baseaddr;
13689 struct block *block;
13690 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13691 std::vector<struct symbol *> template_args;
13692 struct template_symbol *templ_func = NULL;
13693
13694 if (inlined_func)
13695 {
13696 /* If we do not have call site information, we can't show the
13697 caller of this inlined function. That's too confusing, so
13698 only use the scope for local variables. */
13699 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13700 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13701 if (call_line == NULL || call_file == NULL)
13702 {
13703 read_lexical_block_scope (die, cu);
13704 return;
13705 }
13706 }
13707
13708 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13709
13710 name = dwarf2_name (die, cu);
13711
13712 /* Ignore functions with missing or empty names. These are actually
13713 illegal according to the DWARF standard. */
13714 if (name == NULL)
13715 {
13716 complaint (_("missing name for subprogram DIE at %s"),
13717 sect_offset_str (die->sect_off));
13718 return;
13719 }
13720
13721 /* Ignore functions with missing or invalid low and high pc attributes. */
13722 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13723 <= PC_BOUNDS_INVALID)
13724 {
13725 attr = dwarf2_attr (die, DW_AT_external, cu);
13726 if (!attr || !DW_UNSND (attr))
13727 complaint (_("cannot get low and high bounds "
13728 "for subprogram DIE at %s"),
13729 sect_offset_str (die->sect_off));
13730 return;
13731 }
13732
13733 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13734 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13735
13736 /* If we have any template arguments, then we must allocate a
13737 different sort of symbol. */
13738 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13739 {
13740 if (child_die->tag == DW_TAG_template_type_param
13741 || child_die->tag == DW_TAG_template_value_param)
13742 {
13743 templ_func = allocate_template_symbol (objfile);
13744 templ_func->subclass = SYMBOL_TEMPLATE;
13745 break;
13746 }
13747 }
13748
13749 newobj = cu->get_builder ()->push_context (0, lowpc);
13750 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13751 (struct symbol *) templ_func);
13752
13753 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13754 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13755 cu->language);
13756
13757 /* If there is a location expression for DW_AT_frame_base, record
13758 it. */
13759 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13760 if (attr)
13761 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13762
13763 /* If there is a location for the static link, record it. */
13764 newobj->static_link = NULL;
13765 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13766 if (attr)
13767 {
13768 newobj->static_link
13769 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13770 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13771 }
13772
13773 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13774
13775 if (die->child != NULL)
13776 {
13777 child_die = die->child;
13778 while (child_die && child_die->tag)
13779 {
13780 if (child_die->tag == DW_TAG_template_type_param
13781 || child_die->tag == DW_TAG_template_value_param)
13782 {
13783 struct symbol *arg = new_symbol (child_die, NULL, cu);
13784
13785 if (arg != NULL)
13786 template_args.push_back (arg);
13787 }
13788 else
13789 process_die (child_die, cu);
13790 child_die = sibling_die (child_die);
13791 }
13792 }
13793
13794 inherit_abstract_dies (die, cu);
13795
13796 /* If we have a DW_AT_specification, we might need to import using
13797 directives from the context of the specification DIE. See the
13798 comment in determine_prefix. */
13799 if (cu->language == language_cplus
13800 && dwarf2_attr (die, DW_AT_specification, cu))
13801 {
13802 struct dwarf2_cu *spec_cu = cu;
13803 struct die_info *spec_die = die_specification (die, &spec_cu);
13804
13805 while (spec_die)
13806 {
13807 child_die = spec_die->child;
13808 while (child_die && child_die->tag)
13809 {
13810 if (child_die->tag == DW_TAG_imported_module)
13811 process_die (child_die, spec_cu);
13812 child_die = sibling_die (child_die);
13813 }
13814
13815 /* In some cases, GCC generates specification DIEs that
13816 themselves contain DW_AT_specification attributes. */
13817 spec_die = die_specification (spec_die, &spec_cu);
13818 }
13819 }
13820
13821 struct context_stack cstk = cu->get_builder ()->pop_context ();
13822 /* Make a block for the local symbols within. */
13823 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13824 cstk.static_link, lowpc, highpc);
13825
13826 /* For C++, set the block's scope. */
13827 if ((cu->language == language_cplus
13828 || cu->language == language_fortran
13829 || cu->language == language_d
13830 || cu->language == language_rust)
13831 && cu->processing_has_namespace_info)
13832 block_set_scope (block, determine_prefix (die, cu),
13833 &objfile->objfile_obstack);
13834
13835 /* If we have address ranges, record them. */
13836 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13837
13838 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13839
13840 /* Attach template arguments to function. */
13841 if (!template_args.empty ())
13842 {
13843 gdb_assert (templ_func != NULL);
13844
13845 templ_func->n_template_arguments = template_args.size ();
13846 templ_func->template_arguments
13847 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13848 templ_func->n_template_arguments);
13849 memcpy (templ_func->template_arguments,
13850 template_args.data (),
13851 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13852
13853 /* Make sure that the symtab is set on the new symbols. Even
13854 though they don't appear in this symtab directly, other parts
13855 of gdb assume that symbols do, and this is reasonably
13856 true. */
13857 for (symbol *sym : template_args)
13858 symbol_set_symtab (sym, symbol_symtab (templ_func));
13859 }
13860
13861 /* In C++, we can have functions nested inside functions (e.g., when
13862 a function declares a class that has methods). This means that
13863 when we finish processing a function scope, we may need to go
13864 back to building a containing block's symbol lists. */
13865 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13866 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13867
13868 /* If we've finished processing a top-level function, subsequent
13869 symbols go in the file symbol list. */
13870 if (cu->get_builder ()->outermost_context_p ())
13871 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13872 }
13873
13874 /* Process all the DIES contained within a lexical block scope. Start
13875 a new scope, process the dies, and then close the scope. */
13876
13877 static void
13878 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13879 {
13880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13882 CORE_ADDR lowpc, highpc;
13883 struct die_info *child_die;
13884 CORE_ADDR baseaddr;
13885
13886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13887
13888 /* Ignore blocks with missing or invalid low and high pc attributes. */
13889 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13890 as multiple lexical blocks? Handling children in a sane way would
13891 be nasty. Might be easier to properly extend generic blocks to
13892 describe ranges. */
13893 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13894 {
13895 case PC_BOUNDS_NOT_PRESENT:
13896 /* DW_TAG_lexical_block has no attributes, process its children as if
13897 there was no wrapping by that DW_TAG_lexical_block.
13898 GCC does no longer produces such DWARF since GCC r224161. */
13899 for (child_die = die->child;
13900 child_die != NULL && child_die->tag;
13901 child_die = sibling_die (child_die))
13902 process_die (child_die, cu);
13903 return;
13904 case PC_BOUNDS_INVALID:
13905 return;
13906 }
13907 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13908 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13909
13910 cu->get_builder ()->push_context (0, lowpc);
13911 if (die->child != NULL)
13912 {
13913 child_die = die->child;
13914 while (child_die && child_die->tag)
13915 {
13916 process_die (child_die, cu);
13917 child_die = sibling_die (child_die);
13918 }
13919 }
13920 inherit_abstract_dies (die, cu);
13921 struct context_stack cstk = cu->get_builder ()->pop_context ();
13922
13923 if (*cu->get_builder ()->get_local_symbols () != NULL
13924 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13925 {
13926 struct block *block
13927 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13928 cstk.start_addr, highpc);
13929
13930 /* Note that recording ranges after traversing children, as we
13931 do here, means that recording a parent's ranges entails
13932 walking across all its children's ranges as they appear in
13933 the address map, which is quadratic behavior.
13934
13935 It would be nicer to record the parent's ranges before
13936 traversing its children, simply overriding whatever you find
13937 there. But since we don't even decide whether to create a
13938 block until after we've traversed its children, that's hard
13939 to do. */
13940 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13941 }
13942 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13943 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13944 }
13945
13946 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13947
13948 static void
13949 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13950 {
13951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13953 CORE_ADDR pc, baseaddr;
13954 struct attribute *attr;
13955 struct call_site *call_site, call_site_local;
13956 void **slot;
13957 int nparams;
13958 struct die_info *child_die;
13959
13960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13961
13962 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13963 if (attr == NULL)
13964 {
13965 /* This was a pre-DWARF-5 GNU extension alias
13966 for DW_AT_call_return_pc. */
13967 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13968 }
13969 if (!attr)
13970 {
13971 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13972 "DIE %s [in module %s]"),
13973 sect_offset_str (die->sect_off), objfile_name (objfile));
13974 return;
13975 }
13976 pc = attr_value_as_address (attr) + baseaddr;
13977 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13978
13979 if (cu->call_site_htab == NULL)
13980 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13981 NULL, &objfile->objfile_obstack,
13982 hashtab_obstack_allocate, NULL);
13983 call_site_local.pc = pc;
13984 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13985 if (*slot != NULL)
13986 {
13987 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13988 "DIE %s [in module %s]"),
13989 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13990 objfile_name (objfile));
13991 return;
13992 }
13993
13994 /* Count parameters at the caller. */
13995
13996 nparams = 0;
13997 for (child_die = die->child; child_die && child_die->tag;
13998 child_die = sibling_die (child_die))
13999 {
14000 if (child_die->tag != DW_TAG_call_site_parameter
14001 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14002 {
14003 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14004 "DW_TAG_call_site child DIE %s [in module %s]"),
14005 child_die->tag, sect_offset_str (child_die->sect_off),
14006 objfile_name (objfile));
14007 continue;
14008 }
14009
14010 nparams++;
14011 }
14012
14013 call_site
14014 = ((struct call_site *)
14015 obstack_alloc (&objfile->objfile_obstack,
14016 sizeof (*call_site)
14017 + (sizeof (*call_site->parameter) * (nparams - 1))));
14018 *slot = call_site;
14019 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14020 call_site->pc = pc;
14021
14022 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14023 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14024 {
14025 struct die_info *func_die;
14026
14027 /* Skip also over DW_TAG_inlined_subroutine. */
14028 for (func_die = die->parent;
14029 func_die && func_die->tag != DW_TAG_subprogram
14030 && func_die->tag != DW_TAG_subroutine_type;
14031 func_die = func_die->parent);
14032
14033 /* DW_AT_call_all_calls is a superset
14034 of DW_AT_call_all_tail_calls. */
14035 if (func_die
14036 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14037 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14038 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14039 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14040 {
14041 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14042 not complete. But keep CALL_SITE for look ups via call_site_htab,
14043 both the initial caller containing the real return address PC and
14044 the final callee containing the current PC of a chain of tail
14045 calls do not need to have the tail call list complete. But any
14046 function candidate for a virtual tail call frame searched via
14047 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14048 determined unambiguously. */
14049 }
14050 else
14051 {
14052 struct type *func_type = NULL;
14053
14054 if (func_die)
14055 func_type = get_die_type (func_die, cu);
14056 if (func_type != NULL)
14057 {
14058 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14059
14060 /* Enlist this call site to the function. */
14061 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14062 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14063 }
14064 else
14065 complaint (_("Cannot find function owning DW_TAG_call_site "
14066 "DIE %s [in module %s]"),
14067 sect_offset_str (die->sect_off), objfile_name (objfile));
14068 }
14069 }
14070
14071 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14072 if (attr == NULL)
14073 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14074 if (attr == NULL)
14075 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14076 if (attr == NULL)
14077 {
14078 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14079 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14080 }
14081 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14082 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14083 /* Keep NULL DWARF_BLOCK. */;
14084 else if (attr_form_is_block (attr))
14085 {
14086 struct dwarf2_locexpr_baton *dlbaton;
14087
14088 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14089 dlbaton->data = DW_BLOCK (attr)->data;
14090 dlbaton->size = DW_BLOCK (attr)->size;
14091 dlbaton->per_cu = cu->per_cu;
14092
14093 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14094 }
14095 else if (attr_form_is_ref (attr))
14096 {
14097 struct dwarf2_cu *target_cu = cu;
14098 struct die_info *target_die;
14099
14100 target_die = follow_die_ref (die, attr, &target_cu);
14101 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14102 if (die_is_declaration (target_die, target_cu))
14103 {
14104 const char *target_physname;
14105
14106 /* Prefer the mangled name; otherwise compute the demangled one. */
14107 target_physname = dw2_linkage_name (target_die, target_cu);
14108 if (target_physname == NULL)
14109 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14110 if (target_physname == NULL)
14111 complaint (_("DW_AT_call_target target DIE has invalid "
14112 "physname, for referencing DIE %s [in module %s]"),
14113 sect_offset_str (die->sect_off), objfile_name (objfile));
14114 else
14115 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14116 }
14117 else
14118 {
14119 CORE_ADDR lowpc;
14120
14121 /* DW_AT_entry_pc should be preferred. */
14122 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14123 <= PC_BOUNDS_INVALID)
14124 complaint (_("DW_AT_call_target target DIE has invalid "
14125 "low pc, for referencing DIE %s [in module %s]"),
14126 sect_offset_str (die->sect_off), objfile_name (objfile));
14127 else
14128 {
14129 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14130 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14131 }
14132 }
14133 }
14134 else
14135 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14136 "block nor reference, for DIE %s [in module %s]"),
14137 sect_offset_str (die->sect_off), objfile_name (objfile));
14138
14139 call_site->per_cu = cu->per_cu;
14140
14141 for (child_die = die->child;
14142 child_die && child_die->tag;
14143 child_die = sibling_die (child_die))
14144 {
14145 struct call_site_parameter *parameter;
14146 struct attribute *loc, *origin;
14147
14148 if (child_die->tag != DW_TAG_call_site_parameter
14149 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14150 {
14151 /* Already printed the complaint above. */
14152 continue;
14153 }
14154
14155 gdb_assert (call_site->parameter_count < nparams);
14156 parameter = &call_site->parameter[call_site->parameter_count];
14157
14158 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14159 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14160 register is contained in DW_AT_call_value. */
14161
14162 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14163 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14164 if (origin == NULL)
14165 {
14166 /* This was a pre-DWARF-5 GNU extension alias
14167 for DW_AT_call_parameter. */
14168 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14169 }
14170 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14171 {
14172 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14173
14174 sect_offset sect_off
14175 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14176 if (!offset_in_cu_p (&cu->header, sect_off))
14177 {
14178 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14179 binding can be done only inside one CU. Such referenced DIE
14180 therefore cannot be even moved to DW_TAG_partial_unit. */
14181 complaint (_("DW_AT_call_parameter offset is not in CU for "
14182 "DW_TAG_call_site child DIE %s [in module %s]"),
14183 sect_offset_str (child_die->sect_off),
14184 objfile_name (objfile));
14185 continue;
14186 }
14187 parameter->u.param_cu_off
14188 = (cu_offset) (sect_off - cu->header.sect_off);
14189 }
14190 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14191 {
14192 complaint (_("No DW_FORM_block* DW_AT_location for "
14193 "DW_TAG_call_site child DIE %s [in module %s]"),
14194 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14195 continue;
14196 }
14197 else
14198 {
14199 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14200 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14201 if (parameter->u.dwarf_reg != -1)
14202 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14203 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14204 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14205 &parameter->u.fb_offset))
14206 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14207 else
14208 {
14209 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14210 "for DW_FORM_block* DW_AT_location is supported for "
14211 "DW_TAG_call_site child DIE %s "
14212 "[in module %s]"),
14213 sect_offset_str (child_die->sect_off),
14214 objfile_name (objfile));
14215 continue;
14216 }
14217 }
14218
14219 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14222 if (!attr_form_is_block (attr))
14223 {
14224 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14225 "DW_TAG_call_site child DIE %s [in module %s]"),
14226 sect_offset_str (child_die->sect_off),
14227 objfile_name (objfile));
14228 continue;
14229 }
14230 parameter->value = DW_BLOCK (attr)->data;
14231 parameter->value_size = DW_BLOCK (attr)->size;
14232
14233 /* Parameters are not pre-cleared by memset above. */
14234 parameter->data_value = NULL;
14235 parameter->data_value_size = 0;
14236 call_site->parameter_count++;
14237
14238 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14239 if (attr == NULL)
14240 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14241 if (attr)
14242 {
14243 if (!attr_form_is_block (attr))
14244 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14245 "DW_TAG_call_site child DIE %s [in module %s]"),
14246 sect_offset_str (child_die->sect_off),
14247 objfile_name (objfile));
14248 else
14249 {
14250 parameter->data_value = DW_BLOCK (attr)->data;
14251 parameter->data_value_size = DW_BLOCK (attr)->size;
14252 }
14253 }
14254 }
14255 }
14256
14257 /* Helper function for read_variable. If DIE represents a virtual
14258 table, then return the type of the concrete object that is
14259 associated with the virtual table. Otherwise, return NULL. */
14260
14261 static struct type *
14262 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14263 {
14264 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14265 if (attr == NULL)
14266 return NULL;
14267
14268 /* Find the type DIE. */
14269 struct die_info *type_die = NULL;
14270 struct dwarf2_cu *type_cu = cu;
14271
14272 if (attr_form_is_ref (attr))
14273 type_die = follow_die_ref (die, attr, &type_cu);
14274 if (type_die == NULL)
14275 return NULL;
14276
14277 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14278 return NULL;
14279 return die_containing_type (type_die, type_cu);
14280 }
14281
14282 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14283
14284 static void
14285 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14286 {
14287 struct rust_vtable_symbol *storage = NULL;
14288
14289 if (cu->language == language_rust)
14290 {
14291 struct type *containing_type = rust_containing_type (die, cu);
14292
14293 if (containing_type != NULL)
14294 {
14295 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14296
14297 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14298 struct rust_vtable_symbol);
14299 initialize_objfile_symbol (storage);
14300 storage->concrete_type = containing_type;
14301 storage->subclass = SYMBOL_RUST_VTABLE;
14302 }
14303 }
14304
14305 struct symbol *res = new_symbol (die, NULL, cu, storage);
14306 struct attribute *abstract_origin
14307 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14308 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14309 if (res == NULL && loc && abstract_origin)
14310 {
14311 /* We have a variable without a name, but with a location and an abstract
14312 origin. This may be a concrete instance of an abstract variable
14313 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14314 later. */
14315 struct dwarf2_cu *origin_cu = cu;
14316 struct die_info *origin_die
14317 = follow_die_ref (die, abstract_origin, &origin_cu);
14318 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14319 dpo->abstract_to_concrete[origin_die].push_back (die);
14320 }
14321 }
14322
14323 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14324 reading .debug_rnglists.
14325 Callback's type should be:
14326 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14327 Return true if the attributes are present and valid, otherwise,
14328 return false. */
14329
14330 template <typename Callback>
14331 static bool
14332 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14333 Callback &&callback)
14334 {
14335 struct dwarf2_per_objfile *dwarf2_per_objfile
14336 = cu->per_cu->dwarf2_per_objfile;
14337 struct objfile *objfile = dwarf2_per_objfile->objfile;
14338 bfd *obfd = objfile->obfd;
14339 /* Base address selection entry. */
14340 CORE_ADDR base;
14341 int found_base;
14342 const gdb_byte *buffer;
14343 CORE_ADDR baseaddr;
14344 bool overflow = false;
14345
14346 found_base = cu->base_known;
14347 base = cu->base_address;
14348
14349 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14350 if (offset >= dwarf2_per_objfile->rnglists.size)
14351 {
14352 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14353 offset);
14354 return false;
14355 }
14356 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14357
14358 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14359
14360 while (1)
14361 {
14362 /* Initialize it due to a false compiler warning. */
14363 CORE_ADDR range_beginning = 0, range_end = 0;
14364 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14365 + dwarf2_per_objfile->rnglists.size);
14366 unsigned int bytes_read;
14367
14368 if (buffer == buf_end)
14369 {
14370 overflow = true;
14371 break;
14372 }
14373 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14374 switch (rlet)
14375 {
14376 case DW_RLE_end_of_list:
14377 break;
14378 case DW_RLE_base_address:
14379 if (buffer + cu->header.addr_size > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 base = read_address (obfd, buffer, cu, &bytes_read);
14385 found_base = 1;
14386 buffer += bytes_read;
14387 break;
14388 case DW_RLE_start_length:
14389 if (buffer + cu->header.addr_size > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14395 buffer += bytes_read;
14396 range_end = (range_beginning
14397 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 break;
14405 case DW_RLE_offset_pair:
14406 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14407 buffer += bytes_read;
14408 if (buffer > buf_end)
14409 {
14410 overflow = true;
14411 break;
14412 }
14413 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14414 buffer += bytes_read;
14415 if (buffer > buf_end)
14416 {
14417 overflow = true;
14418 break;
14419 }
14420 break;
14421 case DW_RLE_start_end:
14422 if (buffer + 2 * cu->header.addr_size > buf_end)
14423 {
14424 overflow = true;
14425 break;
14426 }
14427 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14428 buffer += bytes_read;
14429 range_end = read_address (obfd, buffer, cu, &bytes_read);
14430 buffer += bytes_read;
14431 break;
14432 default:
14433 complaint (_("Invalid .debug_rnglists data (no base address)"));
14434 return false;
14435 }
14436 if (rlet == DW_RLE_end_of_list || overflow)
14437 break;
14438 if (rlet == DW_RLE_base_address)
14439 continue;
14440
14441 if (!found_base)
14442 {
14443 /* We have no valid base address for the ranges
14444 data. */
14445 complaint (_("Invalid .debug_rnglists data (no base address)"));
14446 return false;
14447 }
14448
14449 if (range_beginning > range_end)
14450 {
14451 /* Inverted range entries are invalid. */
14452 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14453 return false;
14454 }
14455
14456 /* Empty range entries have no effect. */
14457 if (range_beginning == range_end)
14458 continue;
14459
14460 range_beginning += base;
14461 range_end += base;
14462
14463 /* A not-uncommon case of bad debug info.
14464 Don't pollute the addrmap with bad data. */
14465 if (range_beginning + baseaddr == 0
14466 && !dwarf2_per_objfile->has_section_at_zero)
14467 {
14468 complaint (_(".debug_rnglists entry has start address of zero"
14469 " [in module %s]"), objfile_name (objfile));
14470 continue;
14471 }
14472
14473 callback (range_beginning, range_end);
14474 }
14475
14476 if (overflow)
14477 {
14478 complaint (_("Offset %d is not terminated "
14479 "for DW_AT_ranges attribute"),
14480 offset);
14481 return false;
14482 }
14483
14484 return true;
14485 }
14486
14487 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14488 Callback's type should be:
14489 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14490 Return 1 if the attributes are present and valid, otherwise, return 0. */
14491
14492 template <typename Callback>
14493 static int
14494 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14495 Callback &&callback)
14496 {
14497 struct dwarf2_per_objfile *dwarf2_per_objfile
14498 = cu->per_cu->dwarf2_per_objfile;
14499 struct objfile *objfile = dwarf2_per_objfile->objfile;
14500 struct comp_unit_head *cu_header = &cu->header;
14501 bfd *obfd = objfile->obfd;
14502 unsigned int addr_size = cu_header->addr_size;
14503 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14504 /* Base address selection entry. */
14505 CORE_ADDR base;
14506 int found_base;
14507 unsigned int dummy;
14508 const gdb_byte *buffer;
14509 CORE_ADDR baseaddr;
14510
14511 if (cu_header->version >= 5)
14512 return dwarf2_rnglists_process (offset, cu, callback);
14513
14514 found_base = cu->base_known;
14515 base = cu->base_address;
14516
14517 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14518 if (offset >= dwarf2_per_objfile->ranges.size)
14519 {
14520 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14521 offset);
14522 return 0;
14523 }
14524 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14525
14526 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14527
14528 while (1)
14529 {
14530 CORE_ADDR range_beginning, range_end;
14531
14532 range_beginning = read_address (obfd, buffer, cu, &dummy);
14533 buffer += addr_size;
14534 range_end = read_address (obfd, buffer, cu, &dummy);
14535 buffer += addr_size;
14536 offset += 2 * addr_size;
14537
14538 /* An end of list marker is a pair of zero addresses. */
14539 if (range_beginning == 0 && range_end == 0)
14540 /* Found the end of list entry. */
14541 break;
14542
14543 /* Each base address selection entry is a pair of 2 values.
14544 The first is the largest possible address, the second is
14545 the base address. Check for a base address here. */
14546 if ((range_beginning & mask) == mask)
14547 {
14548 /* If we found the largest possible address, then we already
14549 have the base address in range_end. */
14550 base = range_end;
14551 found_base = 1;
14552 continue;
14553 }
14554
14555 if (!found_base)
14556 {
14557 /* We have no valid base address for the ranges
14558 data. */
14559 complaint (_("Invalid .debug_ranges data (no base address)"));
14560 return 0;
14561 }
14562
14563 if (range_beginning > range_end)
14564 {
14565 /* Inverted range entries are invalid. */
14566 complaint (_("Invalid .debug_ranges data (inverted range)"));
14567 return 0;
14568 }
14569
14570 /* Empty range entries have no effect. */
14571 if (range_beginning == range_end)
14572 continue;
14573
14574 range_beginning += base;
14575 range_end += base;
14576
14577 /* A not-uncommon case of bad debug info.
14578 Don't pollute the addrmap with bad data. */
14579 if (range_beginning + baseaddr == 0
14580 && !dwarf2_per_objfile->has_section_at_zero)
14581 {
14582 complaint (_(".debug_ranges entry has start address of zero"
14583 " [in module %s]"), objfile_name (objfile));
14584 continue;
14585 }
14586
14587 callback (range_beginning, range_end);
14588 }
14589
14590 return 1;
14591 }
14592
14593 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14594 Return 1 if the attributes are present and valid, otherwise, return 0.
14595 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14596
14597 static int
14598 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14599 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14600 struct partial_symtab *ranges_pst)
14601 {
14602 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14604 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14605 SECT_OFF_TEXT (objfile));
14606 int low_set = 0;
14607 CORE_ADDR low = 0;
14608 CORE_ADDR high = 0;
14609 int retval;
14610
14611 retval = dwarf2_ranges_process (offset, cu,
14612 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14613 {
14614 if (ranges_pst != NULL)
14615 {
14616 CORE_ADDR lowpc;
14617 CORE_ADDR highpc;
14618
14619 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14620 range_beginning + baseaddr)
14621 - baseaddr);
14622 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14623 range_end + baseaddr)
14624 - baseaddr);
14625 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14626 lowpc, highpc - 1, ranges_pst);
14627 }
14628
14629 /* FIXME: This is recording everything as a low-high
14630 segment of consecutive addresses. We should have a
14631 data structure for discontiguous block ranges
14632 instead. */
14633 if (! low_set)
14634 {
14635 low = range_beginning;
14636 high = range_end;
14637 low_set = 1;
14638 }
14639 else
14640 {
14641 if (range_beginning < low)
14642 low = range_beginning;
14643 if (range_end > high)
14644 high = range_end;
14645 }
14646 });
14647 if (!retval)
14648 return 0;
14649
14650 if (! low_set)
14651 /* If the first entry is an end-of-list marker, the range
14652 describes an empty scope, i.e. no instructions. */
14653 return 0;
14654
14655 if (low_return)
14656 *low_return = low;
14657 if (high_return)
14658 *high_return = high;
14659 return 1;
14660 }
14661
14662 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14663 definition for the return value. *LOWPC and *HIGHPC are set iff
14664 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14665
14666 static enum pc_bounds_kind
14667 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14668 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14669 struct partial_symtab *pst)
14670 {
14671 struct dwarf2_per_objfile *dwarf2_per_objfile
14672 = cu->per_cu->dwarf2_per_objfile;
14673 struct attribute *attr;
14674 struct attribute *attr_high;
14675 CORE_ADDR low = 0;
14676 CORE_ADDR high = 0;
14677 enum pc_bounds_kind ret;
14678
14679 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14680 if (attr_high)
14681 {
14682 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14683 if (attr)
14684 {
14685 low = attr_value_as_address (attr);
14686 high = attr_value_as_address (attr_high);
14687 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14688 high += low;
14689 }
14690 else
14691 /* Found high w/o low attribute. */
14692 return PC_BOUNDS_INVALID;
14693
14694 /* Found consecutive range of addresses. */
14695 ret = PC_BOUNDS_HIGH_LOW;
14696 }
14697 else
14698 {
14699 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14700 if (attr != NULL)
14701 {
14702 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14703 We take advantage of the fact that DW_AT_ranges does not appear
14704 in DW_TAG_compile_unit of DWO files. */
14705 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14706 unsigned int ranges_offset = (DW_UNSND (attr)
14707 + (need_ranges_base
14708 ? cu->ranges_base
14709 : 0));
14710
14711 /* Value of the DW_AT_ranges attribute is the offset in the
14712 .debug_ranges section. */
14713 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14714 return PC_BOUNDS_INVALID;
14715 /* Found discontinuous range of addresses. */
14716 ret = PC_BOUNDS_RANGES;
14717 }
14718 else
14719 return PC_BOUNDS_NOT_PRESENT;
14720 }
14721
14722 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14723 if (high <= low)
14724 return PC_BOUNDS_INVALID;
14725
14726 /* When using the GNU linker, .gnu.linkonce. sections are used to
14727 eliminate duplicate copies of functions and vtables and such.
14728 The linker will arbitrarily choose one and discard the others.
14729 The AT_*_pc values for such functions refer to local labels in
14730 these sections. If the section from that file was discarded, the
14731 labels are not in the output, so the relocs get a value of 0.
14732 If this is a discarded function, mark the pc bounds as invalid,
14733 so that GDB will ignore it. */
14734 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14735 return PC_BOUNDS_INVALID;
14736
14737 *lowpc = low;
14738 if (highpc)
14739 *highpc = high;
14740 return ret;
14741 }
14742
14743 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14744 its low and high PC addresses. Do nothing if these addresses could not
14745 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14746 and HIGHPC to the high address if greater than HIGHPC. */
14747
14748 static void
14749 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14750 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14751 struct dwarf2_cu *cu)
14752 {
14753 CORE_ADDR low, high;
14754 struct die_info *child = die->child;
14755
14756 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14757 {
14758 *lowpc = std::min (*lowpc, low);
14759 *highpc = std::max (*highpc, high);
14760 }
14761
14762 /* If the language does not allow nested subprograms (either inside
14763 subprograms or lexical blocks), we're done. */
14764 if (cu->language != language_ada)
14765 return;
14766
14767 /* Check all the children of the given DIE. If it contains nested
14768 subprograms, then check their pc bounds. Likewise, we need to
14769 check lexical blocks as well, as they may also contain subprogram
14770 definitions. */
14771 while (child && child->tag)
14772 {
14773 if (child->tag == DW_TAG_subprogram
14774 || child->tag == DW_TAG_lexical_block)
14775 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14776 child = sibling_die (child);
14777 }
14778 }
14779
14780 /* Get the low and high pc's represented by the scope DIE, and store
14781 them in *LOWPC and *HIGHPC. If the correct values can't be
14782 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14783
14784 static void
14785 get_scope_pc_bounds (struct die_info *die,
14786 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14787 struct dwarf2_cu *cu)
14788 {
14789 CORE_ADDR best_low = (CORE_ADDR) -1;
14790 CORE_ADDR best_high = (CORE_ADDR) 0;
14791 CORE_ADDR current_low, current_high;
14792
14793 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14794 >= PC_BOUNDS_RANGES)
14795 {
14796 best_low = current_low;
14797 best_high = current_high;
14798 }
14799 else
14800 {
14801 struct die_info *child = die->child;
14802
14803 while (child && child->tag)
14804 {
14805 switch (child->tag) {
14806 case DW_TAG_subprogram:
14807 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14808 break;
14809 case DW_TAG_namespace:
14810 case DW_TAG_module:
14811 /* FIXME: carlton/2004-01-16: Should we do this for
14812 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14813 that current GCC's always emit the DIEs corresponding
14814 to definitions of methods of classes as children of a
14815 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14816 the DIEs giving the declarations, which could be
14817 anywhere). But I don't see any reason why the
14818 standards says that they have to be there. */
14819 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14820
14821 if (current_low != ((CORE_ADDR) -1))
14822 {
14823 best_low = std::min (best_low, current_low);
14824 best_high = std::max (best_high, current_high);
14825 }
14826 break;
14827 default:
14828 /* Ignore. */
14829 break;
14830 }
14831
14832 child = sibling_die (child);
14833 }
14834 }
14835
14836 *lowpc = best_low;
14837 *highpc = best_high;
14838 }
14839
14840 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14841 in DIE. */
14842
14843 static void
14844 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14845 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14846 {
14847 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14848 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14849 struct attribute *attr;
14850 struct attribute *attr_high;
14851
14852 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14853 if (attr_high)
14854 {
14855 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14856 if (attr)
14857 {
14858 CORE_ADDR low = attr_value_as_address (attr);
14859 CORE_ADDR high = attr_value_as_address (attr_high);
14860
14861 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14862 high += low;
14863
14864 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14865 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14866 cu->get_builder ()->record_block_range (block, low, high - 1);
14867 }
14868 }
14869
14870 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14871 if (attr)
14872 {
14873 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14874 We take advantage of the fact that DW_AT_ranges does not appear
14875 in DW_TAG_compile_unit of DWO files. */
14876 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14877
14878 /* The value of the DW_AT_ranges attribute is the offset of the
14879 address range list in the .debug_ranges section. */
14880 unsigned long offset = (DW_UNSND (attr)
14881 + (need_ranges_base ? cu->ranges_base : 0));
14882
14883 std::vector<blockrange> blockvec;
14884 dwarf2_ranges_process (offset, cu,
14885 [&] (CORE_ADDR start, CORE_ADDR end)
14886 {
14887 start += baseaddr;
14888 end += baseaddr;
14889 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14890 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14891 cu->get_builder ()->record_block_range (block, start, end - 1);
14892 blockvec.emplace_back (start, end);
14893 });
14894
14895 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14896 }
14897 }
14898
14899 /* Check whether the producer field indicates either of GCC < 4.6, or the
14900 Intel C/C++ compiler, and cache the result in CU. */
14901
14902 static void
14903 check_producer (struct dwarf2_cu *cu)
14904 {
14905 int major, minor;
14906
14907 if (cu->producer == NULL)
14908 {
14909 /* For unknown compilers expect their behavior is DWARF version
14910 compliant.
14911
14912 GCC started to support .debug_types sections by -gdwarf-4 since
14913 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14914 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14915 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14916 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14917 }
14918 else if (producer_is_gcc (cu->producer, &major, &minor))
14919 {
14920 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14921 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14922 }
14923 else if (producer_is_icc (cu->producer, &major, &minor))
14924 {
14925 cu->producer_is_icc = true;
14926 cu->producer_is_icc_lt_14 = major < 14;
14927 }
14928 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14929 cu->producer_is_codewarrior = true;
14930 else
14931 {
14932 /* For other non-GCC compilers, expect their behavior is DWARF version
14933 compliant. */
14934 }
14935
14936 cu->checked_producer = true;
14937 }
14938
14939 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14940 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14941 during 4.6.0 experimental. */
14942
14943 static bool
14944 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14945 {
14946 if (!cu->checked_producer)
14947 check_producer (cu);
14948
14949 return cu->producer_is_gxx_lt_4_6;
14950 }
14951
14952
14953 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14954 with incorrect is_stmt attributes. */
14955
14956 static bool
14957 producer_is_codewarrior (struct dwarf2_cu *cu)
14958 {
14959 if (!cu->checked_producer)
14960 check_producer (cu);
14961
14962 return cu->producer_is_codewarrior;
14963 }
14964
14965 /* Return the default accessibility type if it is not overriden by
14966 DW_AT_accessibility. */
14967
14968 static enum dwarf_access_attribute
14969 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14970 {
14971 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14972 {
14973 /* The default DWARF 2 accessibility for members is public, the default
14974 accessibility for inheritance is private. */
14975
14976 if (die->tag != DW_TAG_inheritance)
14977 return DW_ACCESS_public;
14978 else
14979 return DW_ACCESS_private;
14980 }
14981 else
14982 {
14983 /* DWARF 3+ defines the default accessibility a different way. The same
14984 rules apply now for DW_TAG_inheritance as for the members and it only
14985 depends on the container kind. */
14986
14987 if (die->parent->tag == DW_TAG_class_type)
14988 return DW_ACCESS_private;
14989 else
14990 return DW_ACCESS_public;
14991 }
14992 }
14993
14994 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14995 offset. If the attribute was not found return 0, otherwise return
14996 1. If it was found but could not properly be handled, set *OFFSET
14997 to 0. */
14998
14999 static int
15000 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15001 LONGEST *offset)
15002 {
15003 struct attribute *attr;
15004
15005 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15006 if (attr != NULL)
15007 {
15008 *offset = 0;
15009
15010 /* Note that we do not check for a section offset first here.
15011 This is because DW_AT_data_member_location is new in DWARF 4,
15012 so if we see it, we can assume that a constant form is really
15013 a constant and not a section offset. */
15014 if (attr_form_is_constant (attr))
15015 *offset = dwarf2_get_attr_constant_value (attr, 0);
15016 else if (attr_form_is_section_offset (attr))
15017 dwarf2_complex_location_expr_complaint ();
15018 else if (attr_form_is_block (attr))
15019 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15020 else
15021 dwarf2_complex_location_expr_complaint ();
15022
15023 return 1;
15024 }
15025
15026 return 0;
15027 }
15028
15029 /* Add an aggregate field to the field list. */
15030
15031 static void
15032 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15033 struct dwarf2_cu *cu)
15034 {
15035 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15037 struct nextfield *new_field;
15038 struct attribute *attr;
15039 struct field *fp;
15040 const char *fieldname = "";
15041
15042 if (die->tag == DW_TAG_inheritance)
15043 {
15044 fip->baseclasses.emplace_back ();
15045 new_field = &fip->baseclasses.back ();
15046 }
15047 else
15048 {
15049 fip->fields.emplace_back ();
15050 new_field = &fip->fields.back ();
15051 }
15052
15053 fip->nfields++;
15054
15055 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15056 if (attr)
15057 new_field->accessibility = DW_UNSND (attr);
15058 else
15059 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15060 if (new_field->accessibility != DW_ACCESS_public)
15061 fip->non_public_fields = 1;
15062
15063 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15064 if (attr)
15065 new_field->virtuality = DW_UNSND (attr);
15066 else
15067 new_field->virtuality = DW_VIRTUALITY_none;
15068
15069 fp = &new_field->field;
15070
15071 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15072 {
15073 LONGEST offset;
15074
15075 /* Data member other than a C++ static data member. */
15076
15077 /* Get type of field. */
15078 fp->type = die_type (die, cu);
15079
15080 SET_FIELD_BITPOS (*fp, 0);
15081
15082 /* Get bit size of field (zero if none). */
15083 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15084 if (attr)
15085 {
15086 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15087 }
15088 else
15089 {
15090 FIELD_BITSIZE (*fp) = 0;
15091 }
15092
15093 /* Get bit offset of field. */
15094 if (handle_data_member_location (die, cu, &offset))
15095 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15096 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15097 if (attr)
15098 {
15099 if (gdbarch_bits_big_endian (gdbarch))
15100 {
15101 /* For big endian bits, the DW_AT_bit_offset gives the
15102 additional bit offset from the MSB of the containing
15103 anonymous object to the MSB of the field. We don't
15104 have to do anything special since we don't need to
15105 know the size of the anonymous object. */
15106 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15107 }
15108 else
15109 {
15110 /* For little endian bits, compute the bit offset to the
15111 MSB of the anonymous object, subtract off the number of
15112 bits from the MSB of the field to the MSB of the
15113 object, and then subtract off the number of bits of
15114 the field itself. The result is the bit offset of
15115 the LSB of the field. */
15116 int anonymous_size;
15117 int bit_offset = DW_UNSND (attr);
15118
15119 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15120 if (attr)
15121 {
15122 /* The size of the anonymous object containing
15123 the bit field is explicit, so use the
15124 indicated size (in bytes). */
15125 anonymous_size = DW_UNSND (attr);
15126 }
15127 else
15128 {
15129 /* The size of the anonymous object containing
15130 the bit field must be inferred from the type
15131 attribute of the data member containing the
15132 bit field. */
15133 anonymous_size = TYPE_LENGTH (fp->type);
15134 }
15135 SET_FIELD_BITPOS (*fp,
15136 (FIELD_BITPOS (*fp)
15137 + anonymous_size * bits_per_byte
15138 - bit_offset - FIELD_BITSIZE (*fp)));
15139 }
15140 }
15141 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15142 if (attr != NULL)
15143 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15144 + dwarf2_get_attr_constant_value (attr, 0)));
15145
15146 /* Get name of field. */
15147 fieldname = dwarf2_name (die, cu);
15148 if (fieldname == NULL)
15149 fieldname = "";
15150
15151 /* The name is already allocated along with this objfile, so we don't
15152 need to duplicate it for the type. */
15153 fp->name = fieldname;
15154
15155 /* Change accessibility for artificial fields (e.g. virtual table
15156 pointer or virtual base class pointer) to private. */
15157 if (dwarf2_attr (die, DW_AT_artificial, cu))
15158 {
15159 FIELD_ARTIFICIAL (*fp) = 1;
15160 new_field->accessibility = DW_ACCESS_private;
15161 fip->non_public_fields = 1;
15162 }
15163 }
15164 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15165 {
15166 /* C++ static member. */
15167
15168 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15169 is a declaration, but all versions of G++ as of this writing
15170 (so through at least 3.2.1) incorrectly generate
15171 DW_TAG_variable tags. */
15172
15173 const char *physname;
15174
15175 /* Get name of field. */
15176 fieldname = dwarf2_name (die, cu);
15177 if (fieldname == NULL)
15178 return;
15179
15180 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15181 if (attr
15182 /* Only create a symbol if this is an external value.
15183 new_symbol checks this and puts the value in the global symbol
15184 table, which we want. If it is not external, new_symbol
15185 will try to put the value in cu->list_in_scope which is wrong. */
15186 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15187 {
15188 /* A static const member, not much different than an enum as far as
15189 we're concerned, except that we can support more types. */
15190 new_symbol (die, NULL, cu);
15191 }
15192
15193 /* Get physical name. */
15194 physname = dwarf2_physname (fieldname, die, cu);
15195
15196 /* The name is already allocated along with this objfile, so we don't
15197 need to duplicate it for the type. */
15198 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15199 FIELD_TYPE (*fp) = die_type (die, cu);
15200 FIELD_NAME (*fp) = fieldname;
15201 }
15202 else if (die->tag == DW_TAG_inheritance)
15203 {
15204 LONGEST offset;
15205
15206 /* C++ base class field. */
15207 if (handle_data_member_location (die, cu, &offset))
15208 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15209 FIELD_BITSIZE (*fp) = 0;
15210 FIELD_TYPE (*fp) = die_type (die, cu);
15211 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15212 }
15213 else if (die->tag == DW_TAG_variant_part)
15214 {
15215 /* process_structure_scope will treat this DIE as a union. */
15216 process_structure_scope (die, cu);
15217
15218 /* The variant part is relative to the start of the enclosing
15219 structure. */
15220 SET_FIELD_BITPOS (*fp, 0);
15221 fp->type = get_die_type (die, cu);
15222 fp->artificial = 1;
15223 fp->name = "<<variant>>";
15224
15225 /* Normally a DW_TAG_variant_part won't have a size, but our
15226 representation requires one, so set it to the maximum of the
15227 child sizes. */
15228 if (TYPE_LENGTH (fp->type) == 0)
15229 {
15230 unsigned max = 0;
15231 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15232 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15233 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15234 TYPE_LENGTH (fp->type) = max;
15235 }
15236 }
15237 else
15238 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15239 }
15240
15241 /* Can the type given by DIE define another type? */
15242
15243 static bool
15244 type_can_define_types (const struct die_info *die)
15245 {
15246 switch (die->tag)
15247 {
15248 case DW_TAG_typedef:
15249 case DW_TAG_class_type:
15250 case DW_TAG_structure_type:
15251 case DW_TAG_union_type:
15252 case DW_TAG_enumeration_type:
15253 return true;
15254
15255 default:
15256 return false;
15257 }
15258 }
15259
15260 /* Add a type definition defined in the scope of the FIP's class. */
15261
15262 static void
15263 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15264 struct dwarf2_cu *cu)
15265 {
15266 struct decl_field fp;
15267 memset (&fp, 0, sizeof (fp));
15268
15269 gdb_assert (type_can_define_types (die));
15270
15271 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15272 fp.name = dwarf2_name (die, cu);
15273 fp.type = read_type_die (die, cu);
15274
15275 /* Save accessibility. */
15276 enum dwarf_access_attribute accessibility;
15277 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15278 if (attr != NULL)
15279 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15280 else
15281 accessibility = dwarf2_default_access_attribute (die, cu);
15282 switch (accessibility)
15283 {
15284 case DW_ACCESS_public:
15285 /* The assumed value if neither private nor protected. */
15286 break;
15287 case DW_ACCESS_private:
15288 fp.is_private = 1;
15289 break;
15290 case DW_ACCESS_protected:
15291 fp.is_protected = 1;
15292 break;
15293 default:
15294 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15295 }
15296
15297 if (die->tag == DW_TAG_typedef)
15298 fip->typedef_field_list.push_back (fp);
15299 else
15300 fip->nested_types_list.push_back (fp);
15301 }
15302
15303 /* Create the vector of fields, and attach it to the type. */
15304
15305 static void
15306 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15307 struct dwarf2_cu *cu)
15308 {
15309 int nfields = fip->nfields;
15310
15311 /* Record the field count, allocate space for the array of fields,
15312 and create blank accessibility bitfields if necessary. */
15313 TYPE_NFIELDS (type) = nfields;
15314 TYPE_FIELDS (type) = (struct field *)
15315 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15316
15317 if (fip->non_public_fields && cu->language != language_ada)
15318 {
15319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15320
15321 TYPE_FIELD_PRIVATE_BITS (type) =
15322 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15323 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15324
15325 TYPE_FIELD_PROTECTED_BITS (type) =
15326 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15327 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15328
15329 TYPE_FIELD_IGNORE_BITS (type) =
15330 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15331 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15332 }
15333
15334 /* If the type has baseclasses, allocate and clear a bit vector for
15335 TYPE_FIELD_VIRTUAL_BITS. */
15336 if (!fip->baseclasses.empty () && cu->language != language_ada)
15337 {
15338 int num_bytes = B_BYTES (fip->baseclasses.size ());
15339 unsigned char *pointer;
15340
15341 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15342 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15343 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15344 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15345 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15346 }
15347
15348 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15349 {
15350 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15351
15352 for (int index = 0; index < nfields; ++index)
15353 {
15354 struct nextfield &field = fip->fields[index];
15355
15356 if (field.variant.is_discriminant)
15357 di->discriminant_index = index;
15358 else if (field.variant.default_branch)
15359 di->default_index = index;
15360 else
15361 di->discriminants[index] = field.variant.discriminant_value;
15362 }
15363 }
15364
15365 /* Copy the saved-up fields into the field vector. */
15366 for (int i = 0; i < nfields; ++i)
15367 {
15368 struct nextfield &field
15369 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15370 : fip->fields[i - fip->baseclasses.size ()]);
15371
15372 TYPE_FIELD (type, i) = field.field;
15373 switch (field.accessibility)
15374 {
15375 case DW_ACCESS_private:
15376 if (cu->language != language_ada)
15377 SET_TYPE_FIELD_PRIVATE (type, i);
15378 break;
15379
15380 case DW_ACCESS_protected:
15381 if (cu->language != language_ada)
15382 SET_TYPE_FIELD_PROTECTED (type, i);
15383 break;
15384
15385 case DW_ACCESS_public:
15386 break;
15387
15388 default:
15389 /* Unknown accessibility. Complain and treat it as public. */
15390 {
15391 complaint (_("unsupported accessibility %d"),
15392 field.accessibility);
15393 }
15394 break;
15395 }
15396 if (i < fip->baseclasses.size ())
15397 {
15398 switch (field.virtuality)
15399 {
15400 case DW_VIRTUALITY_virtual:
15401 case DW_VIRTUALITY_pure_virtual:
15402 if (cu->language == language_ada)
15403 error (_("unexpected virtuality in component of Ada type"));
15404 SET_TYPE_FIELD_VIRTUAL (type, i);
15405 break;
15406 }
15407 }
15408 }
15409 }
15410
15411 /* Return true if this member function is a constructor, false
15412 otherwise. */
15413
15414 static int
15415 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15416 {
15417 const char *fieldname;
15418 const char *type_name;
15419 int len;
15420
15421 if (die->parent == NULL)
15422 return 0;
15423
15424 if (die->parent->tag != DW_TAG_structure_type
15425 && die->parent->tag != DW_TAG_union_type
15426 && die->parent->tag != DW_TAG_class_type)
15427 return 0;
15428
15429 fieldname = dwarf2_name (die, cu);
15430 type_name = dwarf2_name (die->parent, cu);
15431 if (fieldname == NULL || type_name == NULL)
15432 return 0;
15433
15434 len = strlen (fieldname);
15435 return (strncmp (fieldname, type_name, len) == 0
15436 && (type_name[len] == '\0' || type_name[len] == '<'));
15437 }
15438
15439 /* Add a member function to the proper fieldlist. */
15440
15441 static void
15442 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15443 struct type *type, struct dwarf2_cu *cu)
15444 {
15445 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15446 struct attribute *attr;
15447 int i;
15448 struct fnfieldlist *flp = nullptr;
15449 struct fn_field *fnp;
15450 const char *fieldname;
15451 struct type *this_type;
15452 enum dwarf_access_attribute accessibility;
15453
15454 if (cu->language == language_ada)
15455 error (_("unexpected member function in Ada type"));
15456
15457 /* Get name of member function. */
15458 fieldname = dwarf2_name (die, cu);
15459 if (fieldname == NULL)
15460 return;
15461
15462 /* Look up member function name in fieldlist. */
15463 for (i = 0; i < fip->fnfieldlists.size (); i++)
15464 {
15465 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15466 {
15467 flp = &fip->fnfieldlists[i];
15468 break;
15469 }
15470 }
15471
15472 /* Create a new fnfieldlist if necessary. */
15473 if (flp == nullptr)
15474 {
15475 fip->fnfieldlists.emplace_back ();
15476 flp = &fip->fnfieldlists.back ();
15477 flp->name = fieldname;
15478 i = fip->fnfieldlists.size () - 1;
15479 }
15480
15481 /* Create a new member function field and add it to the vector of
15482 fnfieldlists. */
15483 flp->fnfields.emplace_back ();
15484 fnp = &flp->fnfields.back ();
15485
15486 /* Delay processing of the physname until later. */
15487 if (cu->language == language_cplus)
15488 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15489 die, cu);
15490 else
15491 {
15492 const char *physname = dwarf2_physname (fieldname, die, cu);
15493 fnp->physname = physname ? physname : "";
15494 }
15495
15496 fnp->type = alloc_type (objfile);
15497 this_type = read_type_die (die, cu);
15498 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15499 {
15500 int nparams = TYPE_NFIELDS (this_type);
15501
15502 /* TYPE is the domain of this method, and THIS_TYPE is the type
15503 of the method itself (TYPE_CODE_METHOD). */
15504 smash_to_method_type (fnp->type, type,
15505 TYPE_TARGET_TYPE (this_type),
15506 TYPE_FIELDS (this_type),
15507 TYPE_NFIELDS (this_type),
15508 TYPE_VARARGS (this_type));
15509
15510 /* Handle static member functions.
15511 Dwarf2 has no clean way to discern C++ static and non-static
15512 member functions. G++ helps GDB by marking the first
15513 parameter for non-static member functions (which is the this
15514 pointer) as artificial. We obtain this information from
15515 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15516 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15517 fnp->voffset = VOFFSET_STATIC;
15518 }
15519 else
15520 complaint (_("member function type missing for '%s'"),
15521 dwarf2_full_name (fieldname, die, cu));
15522
15523 /* Get fcontext from DW_AT_containing_type if present. */
15524 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15525 fnp->fcontext = die_containing_type (die, cu);
15526
15527 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15528 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15529
15530 /* Get accessibility. */
15531 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15532 if (attr)
15533 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15534 else
15535 accessibility = dwarf2_default_access_attribute (die, cu);
15536 switch (accessibility)
15537 {
15538 case DW_ACCESS_private:
15539 fnp->is_private = 1;
15540 break;
15541 case DW_ACCESS_protected:
15542 fnp->is_protected = 1;
15543 break;
15544 }
15545
15546 /* Check for artificial methods. */
15547 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15548 if (attr && DW_UNSND (attr) != 0)
15549 fnp->is_artificial = 1;
15550
15551 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15552
15553 /* Get index in virtual function table if it is a virtual member
15554 function. For older versions of GCC, this is an offset in the
15555 appropriate virtual table, as specified by DW_AT_containing_type.
15556 For everyone else, it is an expression to be evaluated relative
15557 to the object address. */
15558
15559 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15560 if (attr)
15561 {
15562 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15563 {
15564 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15565 {
15566 /* Old-style GCC. */
15567 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15568 }
15569 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15570 || (DW_BLOCK (attr)->size > 1
15571 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15572 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15573 {
15574 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15575 if ((fnp->voffset % cu->header.addr_size) != 0)
15576 dwarf2_complex_location_expr_complaint ();
15577 else
15578 fnp->voffset /= cu->header.addr_size;
15579 fnp->voffset += 2;
15580 }
15581 else
15582 dwarf2_complex_location_expr_complaint ();
15583
15584 if (!fnp->fcontext)
15585 {
15586 /* If there is no `this' field and no DW_AT_containing_type,
15587 we cannot actually find a base class context for the
15588 vtable! */
15589 if (TYPE_NFIELDS (this_type) == 0
15590 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15591 {
15592 complaint (_("cannot determine context for virtual member "
15593 "function \"%s\" (offset %s)"),
15594 fieldname, sect_offset_str (die->sect_off));
15595 }
15596 else
15597 {
15598 fnp->fcontext
15599 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15600 }
15601 }
15602 }
15603 else if (attr_form_is_section_offset (attr))
15604 {
15605 dwarf2_complex_location_expr_complaint ();
15606 }
15607 else
15608 {
15609 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15610 fieldname);
15611 }
15612 }
15613 else
15614 {
15615 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15616 if (attr && DW_UNSND (attr))
15617 {
15618 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15619 complaint (_("Member function \"%s\" (offset %s) is virtual "
15620 "but the vtable offset is not specified"),
15621 fieldname, sect_offset_str (die->sect_off));
15622 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15623 TYPE_CPLUS_DYNAMIC (type) = 1;
15624 }
15625 }
15626 }
15627
15628 /* Create the vector of member function fields, and attach it to the type. */
15629
15630 static void
15631 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15632 struct dwarf2_cu *cu)
15633 {
15634 if (cu->language == language_ada)
15635 error (_("unexpected member functions in Ada type"));
15636
15637 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15638 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15639 TYPE_ALLOC (type,
15640 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15641
15642 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15643 {
15644 struct fnfieldlist &nf = fip->fnfieldlists[i];
15645 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15646
15647 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15648 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15649 fn_flp->fn_fields = (struct fn_field *)
15650 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15651
15652 for (int k = 0; k < nf.fnfields.size (); ++k)
15653 fn_flp->fn_fields[k] = nf.fnfields[k];
15654 }
15655
15656 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15657 }
15658
15659 /* Returns non-zero if NAME is the name of a vtable member in CU's
15660 language, zero otherwise. */
15661 static int
15662 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15663 {
15664 static const char vptr[] = "_vptr";
15665
15666 /* Look for the C++ form of the vtable. */
15667 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15668 return 1;
15669
15670 return 0;
15671 }
15672
15673 /* GCC outputs unnamed structures that are really pointers to member
15674 functions, with the ABI-specified layout. If TYPE describes
15675 such a structure, smash it into a member function type.
15676
15677 GCC shouldn't do this; it should just output pointer to member DIEs.
15678 This is GCC PR debug/28767. */
15679
15680 static void
15681 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15682 {
15683 struct type *pfn_type, *self_type, *new_type;
15684
15685 /* Check for a structure with no name and two children. */
15686 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15687 return;
15688
15689 /* Check for __pfn and __delta members. */
15690 if (TYPE_FIELD_NAME (type, 0) == NULL
15691 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15692 || TYPE_FIELD_NAME (type, 1) == NULL
15693 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15694 return;
15695
15696 /* Find the type of the method. */
15697 pfn_type = TYPE_FIELD_TYPE (type, 0);
15698 if (pfn_type == NULL
15699 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15700 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15701 return;
15702
15703 /* Look for the "this" argument. */
15704 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15705 if (TYPE_NFIELDS (pfn_type) == 0
15706 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15707 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15708 return;
15709
15710 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15711 new_type = alloc_type (objfile);
15712 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15713 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15714 TYPE_VARARGS (pfn_type));
15715 smash_to_methodptr_type (type, new_type);
15716 }
15717
15718 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15719 appropriate error checking and issuing complaints if there is a
15720 problem. */
15721
15722 static ULONGEST
15723 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15724 {
15725 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15726
15727 if (attr == nullptr)
15728 return 0;
15729
15730 if (!attr_form_is_constant (attr))
15731 {
15732 complaint (_("DW_AT_alignment must have constant form"
15733 " - DIE at %s [in module %s]"),
15734 sect_offset_str (die->sect_off),
15735 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15736 return 0;
15737 }
15738
15739 ULONGEST align;
15740 if (attr->form == DW_FORM_sdata)
15741 {
15742 LONGEST val = DW_SND (attr);
15743 if (val < 0)
15744 {
15745 complaint (_("DW_AT_alignment value must not be negative"
15746 " - DIE at %s [in module %s]"),
15747 sect_offset_str (die->sect_off),
15748 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15749 return 0;
15750 }
15751 align = val;
15752 }
15753 else
15754 align = DW_UNSND (attr);
15755
15756 if (align == 0)
15757 {
15758 complaint (_("DW_AT_alignment value must not be zero"
15759 " - DIE at %s [in module %s]"),
15760 sect_offset_str (die->sect_off),
15761 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15762 return 0;
15763 }
15764 if ((align & (align - 1)) != 0)
15765 {
15766 complaint (_("DW_AT_alignment value must be a power of 2"
15767 " - DIE at %s [in module %s]"),
15768 sect_offset_str (die->sect_off),
15769 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15770 return 0;
15771 }
15772
15773 return align;
15774 }
15775
15776 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15777 the alignment for TYPE. */
15778
15779 static void
15780 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15781 struct type *type)
15782 {
15783 if (!set_type_align (type, get_alignment (cu, die)))
15784 complaint (_("DW_AT_alignment value too large"
15785 " - DIE at %s [in module %s]"),
15786 sect_offset_str (die->sect_off),
15787 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15788 }
15789
15790 /* Called when we find the DIE that starts a structure or union scope
15791 (definition) to create a type for the structure or union. Fill in
15792 the type's name and general properties; the members will not be
15793 processed until process_structure_scope. A symbol table entry for
15794 the type will also not be done until process_structure_scope (assuming
15795 the type has a name).
15796
15797 NOTE: we need to call these functions regardless of whether or not the
15798 DIE has a DW_AT_name attribute, since it might be an anonymous
15799 structure or union. This gets the type entered into our set of
15800 user defined types. */
15801
15802 static struct type *
15803 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15804 {
15805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15806 struct type *type;
15807 struct attribute *attr;
15808 const char *name;
15809
15810 /* If the definition of this type lives in .debug_types, read that type.
15811 Don't follow DW_AT_specification though, that will take us back up
15812 the chain and we want to go down. */
15813 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15814 if (attr)
15815 {
15816 type = get_DW_AT_signature_type (die, attr, cu);
15817
15818 /* The type's CU may not be the same as CU.
15819 Ensure TYPE is recorded with CU in die_type_hash. */
15820 return set_die_type (die, type, cu);
15821 }
15822
15823 type = alloc_type (objfile);
15824 INIT_CPLUS_SPECIFIC (type);
15825
15826 name = dwarf2_name (die, cu);
15827 if (name != NULL)
15828 {
15829 if (cu->language == language_cplus
15830 || cu->language == language_d
15831 || cu->language == language_rust)
15832 {
15833 const char *full_name = dwarf2_full_name (name, die, cu);
15834
15835 /* dwarf2_full_name might have already finished building the DIE's
15836 type. If so, there is no need to continue. */
15837 if (get_die_type (die, cu) != NULL)
15838 return get_die_type (die, cu);
15839
15840 TYPE_NAME (type) = full_name;
15841 }
15842 else
15843 {
15844 /* The name is already allocated along with this objfile, so
15845 we don't need to duplicate it for the type. */
15846 TYPE_NAME (type) = name;
15847 }
15848 }
15849
15850 if (die->tag == DW_TAG_structure_type)
15851 {
15852 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15853 }
15854 else if (die->tag == DW_TAG_union_type)
15855 {
15856 TYPE_CODE (type) = TYPE_CODE_UNION;
15857 }
15858 else if (die->tag == DW_TAG_variant_part)
15859 {
15860 TYPE_CODE (type) = TYPE_CODE_UNION;
15861 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15862 }
15863 else
15864 {
15865 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15866 }
15867
15868 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15869 TYPE_DECLARED_CLASS (type) = 1;
15870
15871 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15872 if (attr)
15873 {
15874 if (attr_form_is_constant (attr))
15875 TYPE_LENGTH (type) = DW_UNSND (attr);
15876 else
15877 {
15878 /* For the moment, dynamic type sizes are not supported
15879 by GDB's struct type. The actual size is determined
15880 on-demand when resolving the type of a given object,
15881 so set the type's length to zero for now. Otherwise,
15882 we record an expression as the length, and that expression
15883 could lead to a very large value, which could eventually
15884 lead to us trying to allocate that much memory when creating
15885 a value of that type. */
15886 TYPE_LENGTH (type) = 0;
15887 }
15888 }
15889 else
15890 {
15891 TYPE_LENGTH (type) = 0;
15892 }
15893
15894 maybe_set_alignment (cu, die, type);
15895
15896 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15897 {
15898 /* ICC<14 does not output the required DW_AT_declaration on
15899 incomplete types, but gives them a size of zero. */
15900 TYPE_STUB (type) = 1;
15901 }
15902 else
15903 TYPE_STUB_SUPPORTED (type) = 1;
15904
15905 if (die_is_declaration (die, cu))
15906 TYPE_STUB (type) = 1;
15907 else if (attr == NULL && die->child == NULL
15908 && producer_is_realview (cu->producer))
15909 /* RealView does not output the required DW_AT_declaration
15910 on incomplete types. */
15911 TYPE_STUB (type) = 1;
15912
15913 /* We need to add the type field to the die immediately so we don't
15914 infinitely recurse when dealing with pointers to the structure
15915 type within the structure itself. */
15916 set_die_type (die, type, cu);
15917
15918 /* set_die_type should be already done. */
15919 set_descriptive_type (type, die, cu);
15920
15921 return type;
15922 }
15923
15924 /* A helper for process_structure_scope that handles a single member
15925 DIE. */
15926
15927 static void
15928 handle_struct_member_die (struct die_info *child_die, struct type *type,
15929 struct field_info *fi,
15930 std::vector<struct symbol *> *template_args,
15931 struct dwarf2_cu *cu)
15932 {
15933 if (child_die->tag == DW_TAG_member
15934 || child_die->tag == DW_TAG_variable
15935 || child_die->tag == DW_TAG_variant_part)
15936 {
15937 /* NOTE: carlton/2002-11-05: A C++ static data member
15938 should be a DW_TAG_member that is a declaration, but
15939 all versions of G++ as of this writing (so through at
15940 least 3.2.1) incorrectly generate DW_TAG_variable
15941 tags for them instead. */
15942 dwarf2_add_field (fi, child_die, cu);
15943 }
15944 else if (child_die->tag == DW_TAG_subprogram)
15945 {
15946 /* Rust doesn't have member functions in the C++ sense.
15947 However, it does emit ordinary functions as children
15948 of a struct DIE. */
15949 if (cu->language == language_rust)
15950 read_func_scope (child_die, cu);
15951 else
15952 {
15953 /* C++ member function. */
15954 dwarf2_add_member_fn (fi, child_die, type, cu);
15955 }
15956 }
15957 else if (child_die->tag == DW_TAG_inheritance)
15958 {
15959 /* C++ base class field. */
15960 dwarf2_add_field (fi, child_die, cu);
15961 }
15962 else if (type_can_define_types (child_die))
15963 dwarf2_add_type_defn (fi, child_die, cu);
15964 else if (child_die->tag == DW_TAG_template_type_param
15965 || child_die->tag == DW_TAG_template_value_param)
15966 {
15967 struct symbol *arg = new_symbol (child_die, NULL, cu);
15968
15969 if (arg != NULL)
15970 template_args->push_back (arg);
15971 }
15972 else if (child_die->tag == DW_TAG_variant)
15973 {
15974 /* In a variant we want to get the discriminant and also add a
15975 field for our sole member child. */
15976 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15977
15978 for (die_info *variant_child = child_die->child;
15979 variant_child != NULL;
15980 variant_child = sibling_die (variant_child))
15981 {
15982 if (variant_child->tag == DW_TAG_member)
15983 {
15984 handle_struct_member_die (variant_child, type, fi,
15985 template_args, cu);
15986 /* Only handle the one. */
15987 break;
15988 }
15989 }
15990
15991 /* We don't handle this but we might as well report it if we see
15992 it. */
15993 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15994 complaint (_("DW_AT_discr_list is not supported yet"
15995 " - DIE at %s [in module %s]"),
15996 sect_offset_str (child_die->sect_off),
15997 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15998
15999 /* The first field was just added, so we can stash the
16000 discriminant there. */
16001 gdb_assert (!fi->fields.empty ());
16002 if (discr == NULL)
16003 fi->fields.back ().variant.default_branch = true;
16004 else
16005 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16006 }
16007 }
16008
16009 /* Finish creating a structure or union type, including filling in
16010 its members and creating a symbol for it. */
16011
16012 static void
16013 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16014 {
16015 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16016 struct die_info *child_die;
16017 struct type *type;
16018
16019 type = get_die_type (die, cu);
16020 if (type == NULL)
16021 type = read_structure_type (die, cu);
16022
16023 /* When reading a DW_TAG_variant_part, we need to notice when we
16024 read the discriminant member, so we can record it later in the
16025 discriminant_info. */
16026 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16027 sect_offset discr_offset;
16028 bool has_template_parameters = false;
16029
16030 if (is_variant_part)
16031 {
16032 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16033 if (discr == NULL)
16034 {
16035 /* Maybe it's a univariant form, an extension we support.
16036 In this case arrange not to check the offset. */
16037 is_variant_part = false;
16038 }
16039 else if (attr_form_is_ref (discr))
16040 {
16041 struct dwarf2_cu *target_cu = cu;
16042 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16043
16044 discr_offset = target_die->sect_off;
16045 }
16046 else
16047 {
16048 complaint (_("DW_AT_discr does not have DIE reference form"
16049 " - DIE at %s [in module %s]"),
16050 sect_offset_str (die->sect_off),
16051 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16052 is_variant_part = false;
16053 }
16054 }
16055
16056 if (die->child != NULL && ! die_is_declaration (die, cu))
16057 {
16058 struct field_info fi;
16059 std::vector<struct symbol *> template_args;
16060
16061 child_die = die->child;
16062
16063 while (child_die && child_die->tag)
16064 {
16065 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16066
16067 if (is_variant_part && discr_offset == child_die->sect_off)
16068 fi.fields.back ().variant.is_discriminant = true;
16069
16070 child_die = sibling_die (child_die);
16071 }
16072
16073 /* Attach template arguments to type. */
16074 if (!template_args.empty ())
16075 {
16076 has_template_parameters = true;
16077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16078 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16079 TYPE_TEMPLATE_ARGUMENTS (type)
16080 = XOBNEWVEC (&objfile->objfile_obstack,
16081 struct symbol *,
16082 TYPE_N_TEMPLATE_ARGUMENTS (type));
16083 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16084 template_args.data (),
16085 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16086 * sizeof (struct symbol *)));
16087 }
16088
16089 /* Attach fields and member functions to the type. */
16090 if (fi.nfields)
16091 dwarf2_attach_fields_to_type (&fi, type, cu);
16092 if (!fi.fnfieldlists.empty ())
16093 {
16094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16095
16096 /* Get the type which refers to the base class (possibly this
16097 class itself) which contains the vtable pointer for the current
16098 class from the DW_AT_containing_type attribute. This use of
16099 DW_AT_containing_type is a GNU extension. */
16100
16101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16102 {
16103 struct type *t = die_containing_type (die, cu);
16104
16105 set_type_vptr_basetype (type, t);
16106 if (type == t)
16107 {
16108 int i;
16109
16110 /* Our own class provides vtbl ptr. */
16111 for (i = TYPE_NFIELDS (t) - 1;
16112 i >= TYPE_N_BASECLASSES (t);
16113 --i)
16114 {
16115 const char *fieldname = TYPE_FIELD_NAME (t, i);
16116
16117 if (is_vtable_name (fieldname, cu))
16118 {
16119 set_type_vptr_fieldno (type, i);
16120 break;
16121 }
16122 }
16123
16124 /* Complain if virtual function table field not found. */
16125 if (i < TYPE_N_BASECLASSES (t))
16126 complaint (_("virtual function table pointer "
16127 "not found when defining class '%s'"),
16128 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16129 }
16130 else
16131 {
16132 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16133 }
16134 }
16135 else if (cu->producer
16136 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16137 {
16138 /* The IBM XLC compiler does not provide direct indication
16139 of the containing type, but the vtable pointer is
16140 always named __vfp. */
16141
16142 int i;
16143
16144 for (i = TYPE_NFIELDS (type) - 1;
16145 i >= TYPE_N_BASECLASSES (type);
16146 --i)
16147 {
16148 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16149 {
16150 set_type_vptr_fieldno (type, i);
16151 set_type_vptr_basetype (type, type);
16152 break;
16153 }
16154 }
16155 }
16156 }
16157
16158 /* Copy fi.typedef_field_list linked list elements content into the
16159 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16160 if (!fi.typedef_field_list.empty ())
16161 {
16162 int count = fi.typedef_field_list.size ();
16163
16164 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16165 TYPE_TYPEDEF_FIELD_ARRAY (type)
16166 = ((struct decl_field *)
16167 TYPE_ALLOC (type,
16168 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16169 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16170
16171 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16172 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16173 }
16174
16175 /* Copy fi.nested_types_list linked list elements content into the
16176 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16177 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16178 {
16179 int count = fi.nested_types_list.size ();
16180
16181 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16182 TYPE_NESTED_TYPES_ARRAY (type)
16183 = ((struct decl_field *)
16184 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16185 TYPE_NESTED_TYPES_COUNT (type) = count;
16186
16187 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16188 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16189 }
16190 }
16191
16192 quirk_gcc_member_function_pointer (type, objfile);
16193 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16194 cu->rust_unions.push_back (type);
16195
16196 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16197 snapshots) has been known to create a die giving a declaration
16198 for a class that has, as a child, a die giving a definition for a
16199 nested class. So we have to process our children even if the
16200 current die is a declaration. Normally, of course, a declaration
16201 won't have any children at all. */
16202
16203 child_die = die->child;
16204
16205 while (child_die != NULL && child_die->tag)
16206 {
16207 if (child_die->tag == DW_TAG_member
16208 || child_die->tag == DW_TAG_variable
16209 || child_die->tag == DW_TAG_inheritance
16210 || child_die->tag == DW_TAG_template_value_param
16211 || child_die->tag == DW_TAG_template_type_param)
16212 {
16213 /* Do nothing. */
16214 }
16215 else
16216 process_die (child_die, cu);
16217
16218 child_die = sibling_die (child_die);
16219 }
16220
16221 /* Do not consider external references. According to the DWARF standard,
16222 these DIEs are identified by the fact that they have no byte_size
16223 attribute, and a declaration attribute. */
16224 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16225 || !die_is_declaration (die, cu))
16226 {
16227 struct symbol *sym = new_symbol (die, type, cu);
16228
16229 if (has_template_parameters)
16230 {
16231 struct symtab *symtab;
16232 if (sym != nullptr)
16233 symtab = symbol_symtab (sym);
16234 else if (cu->line_header != nullptr)
16235 {
16236 /* Any related symtab will do. */
16237 symtab
16238 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16239 }
16240 else
16241 {
16242 symtab = nullptr;
16243 complaint (_("could not find suitable "
16244 "symtab for template parameter"
16245 " - DIE at %s [in module %s]"),
16246 sect_offset_str (die->sect_off),
16247 objfile_name (objfile));
16248 }
16249
16250 if (symtab != nullptr)
16251 {
16252 /* Make sure that the symtab is set on the new symbols.
16253 Even though they don't appear in this symtab directly,
16254 other parts of gdb assume that symbols do, and this is
16255 reasonably true. */
16256 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16257 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16258 }
16259 }
16260 }
16261 }
16262
16263 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16264 update TYPE using some information only available in DIE's children. */
16265
16266 static void
16267 update_enumeration_type_from_children (struct die_info *die,
16268 struct type *type,
16269 struct dwarf2_cu *cu)
16270 {
16271 struct die_info *child_die;
16272 int unsigned_enum = 1;
16273 int flag_enum = 1;
16274 ULONGEST mask = 0;
16275
16276 auto_obstack obstack;
16277
16278 for (child_die = die->child;
16279 child_die != NULL && child_die->tag;
16280 child_die = sibling_die (child_die))
16281 {
16282 struct attribute *attr;
16283 LONGEST value;
16284 const gdb_byte *bytes;
16285 struct dwarf2_locexpr_baton *baton;
16286 const char *name;
16287
16288 if (child_die->tag != DW_TAG_enumerator)
16289 continue;
16290
16291 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16292 if (attr == NULL)
16293 continue;
16294
16295 name = dwarf2_name (child_die, cu);
16296 if (name == NULL)
16297 name = "<anonymous enumerator>";
16298
16299 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16300 &value, &bytes, &baton);
16301 if (value < 0)
16302 {
16303 unsigned_enum = 0;
16304 flag_enum = 0;
16305 }
16306 else if ((mask & value) != 0)
16307 flag_enum = 0;
16308 else
16309 mask |= value;
16310
16311 /* If we already know that the enum type is neither unsigned, nor
16312 a flag type, no need to look at the rest of the enumerates. */
16313 if (!unsigned_enum && !flag_enum)
16314 break;
16315 }
16316
16317 if (unsigned_enum)
16318 TYPE_UNSIGNED (type) = 1;
16319 if (flag_enum)
16320 TYPE_FLAG_ENUM (type) = 1;
16321 }
16322
16323 /* Given a DW_AT_enumeration_type die, set its type. We do not
16324 complete the type's fields yet, or create any symbols. */
16325
16326 static struct type *
16327 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16328 {
16329 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16330 struct type *type;
16331 struct attribute *attr;
16332 const char *name;
16333
16334 /* If the definition of this type lives in .debug_types, read that type.
16335 Don't follow DW_AT_specification though, that will take us back up
16336 the chain and we want to go down. */
16337 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16338 if (attr)
16339 {
16340 type = get_DW_AT_signature_type (die, attr, cu);
16341
16342 /* The type's CU may not be the same as CU.
16343 Ensure TYPE is recorded with CU in die_type_hash. */
16344 return set_die_type (die, type, cu);
16345 }
16346
16347 type = alloc_type (objfile);
16348
16349 TYPE_CODE (type) = TYPE_CODE_ENUM;
16350 name = dwarf2_full_name (NULL, die, cu);
16351 if (name != NULL)
16352 TYPE_NAME (type) = name;
16353
16354 attr = dwarf2_attr (die, DW_AT_type, cu);
16355 if (attr != NULL)
16356 {
16357 struct type *underlying_type = die_type (die, cu);
16358
16359 TYPE_TARGET_TYPE (type) = underlying_type;
16360 }
16361
16362 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16363 if (attr)
16364 {
16365 TYPE_LENGTH (type) = DW_UNSND (attr);
16366 }
16367 else
16368 {
16369 TYPE_LENGTH (type) = 0;
16370 }
16371
16372 maybe_set_alignment (cu, die, type);
16373
16374 /* The enumeration DIE can be incomplete. In Ada, any type can be
16375 declared as private in the package spec, and then defined only
16376 inside the package body. Such types are known as Taft Amendment
16377 Types. When another package uses such a type, an incomplete DIE
16378 may be generated by the compiler. */
16379 if (die_is_declaration (die, cu))
16380 TYPE_STUB (type) = 1;
16381
16382 /* Finish the creation of this type by using the enum's children.
16383 We must call this even when the underlying type has been provided
16384 so that we can determine if we're looking at a "flag" enum. */
16385 update_enumeration_type_from_children (die, type, cu);
16386
16387 /* If this type has an underlying type that is not a stub, then we
16388 may use its attributes. We always use the "unsigned" attribute
16389 in this situation, because ordinarily we guess whether the type
16390 is unsigned -- but the guess can be wrong and the underlying type
16391 can tell us the reality. However, we defer to a local size
16392 attribute if one exists, because this lets the compiler override
16393 the underlying type if needed. */
16394 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16395 {
16396 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16397 if (TYPE_LENGTH (type) == 0)
16398 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16399 if (TYPE_RAW_ALIGN (type) == 0
16400 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16401 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16402 }
16403
16404 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16405
16406 return set_die_type (die, type, cu);
16407 }
16408
16409 /* Given a pointer to a die which begins an enumeration, process all
16410 the dies that define the members of the enumeration, and create the
16411 symbol for the enumeration type.
16412
16413 NOTE: We reverse the order of the element list. */
16414
16415 static void
16416 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16417 {
16418 struct type *this_type;
16419
16420 this_type = get_die_type (die, cu);
16421 if (this_type == NULL)
16422 this_type = read_enumeration_type (die, cu);
16423
16424 if (die->child != NULL)
16425 {
16426 struct die_info *child_die;
16427 struct symbol *sym;
16428 struct field *fields = NULL;
16429 int num_fields = 0;
16430 const char *name;
16431
16432 child_die = die->child;
16433 while (child_die && child_die->tag)
16434 {
16435 if (child_die->tag != DW_TAG_enumerator)
16436 {
16437 process_die (child_die, cu);
16438 }
16439 else
16440 {
16441 name = dwarf2_name (child_die, cu);
16442 if (name)
16443 {
16444 sym = new_symbol (child_die, this_type, cu);
16445
16446 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16447 {
16448 fields = (struct field *)
16449 xrealloc (fields,
16450 (num_fields + DW_FIELD_ALLOC_CHUNK)
16451 * sizeof (struct field));
16452 }
16453
16454 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16455 FIELD_TYPE (fields[num_fields]) = NULL;
16456 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16457 FIELD_BITSIZE (fields[num_fields]) = 0;
16458
16459 num_fields++;
16460 }
16461 }
16462
16463 child_die = sibling_die (child_die);
16464 }
16465
16466 if (num_fields)
16467 {
16468 TYPE_NFIELDS (this_type) = num_fields;
16469 TYPE_FIELDS (this_type) = (struct field *)
16470 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16471 memcpy (TYPE_FIELDS (this_type), fields,
16472 sizeof (struct field) * num_fields);
16473 xfree (fields);
16474 }
16475 }
16476
16477 /* If we are reading an enum from a .debug_types unit, and the enum
16478 is a declaration, and the enum is not the signatured type in the
16479 unit, then we do not want to add a symbol for it. Adding a
16480 symbol would in some cases obscure the true definition of the
16481 enum, giving users an incomplete type when the definition is
16482 actually available. Note that we do not want to do this for all
16483 enums which are just declarations, because C++0x allows forward
16484 enum declarations. */
16485 if (cu->per_cu->is_debug_types
16486 && die_is_declaration (die, cu))
16487 {
16488 struct signatured_type *sig_type;
16489
16490 sig_type = (struct signatured_type *) cu->per_cu;
16491 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16492 if (sig_type->type_offset_in_section != die->sect_off)
16493 return;
16494 }
16495
16496 new_symbol (die, this_type, cu);
16497 }
16498
16499 /* Extract all information from a DW_TAG_array_type DIE and put it in
16500 the DIE's type field. For now, this only handles one dimensional
16501 arrays. */
16502
16503 static struct type *
16504 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16505 {
16506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16507 struct die_info *child_die;
16508 struct type *type;
16509 struct type *element_type, *range_type, *index_type;
16510 struct attribute *attr;
16511 const char *name;
16512 struct dynamic_prop *byte_stride_prop = NULL;
16513 unsigned int bit_stride = 0;
16514
16515 element_type = die_type (die, cu);
16516
16517 /* The die_type call above may have already set the type for this DIE. */
16518 type = get_die_type (die, cu);
16519 if (type)
16520 return type;
16521
16522 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16523 if (attr != NULL)
16524 {
16525 int stride_ok;
16526
16527 byte_stride_prop
16528 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16529 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16530 if (!stride_ok)
16531 {
16532 complaint (_("unable to read array DW_AT_byte_stride "
16533 " - DIE at %s [in module %s]"),
16534 sect_offset_str (die->sect_off),
16535 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16536 /* Ignore this attribute. We will likely not be able to print
16537 arrays of this type correctly, but there is little we can do
16538 to help if we cannot read the attribute's value. */
16539 byte_stride_prop = NULL;
16540 }
16541 }
16542
16543 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16544 if (attr != NULL)
16545 bit_stride = DW_UNSND (attr);
16546
16547 /* Irix 6.2 native cc creates array types without children for
16548 arrays with unspecified length. */
16549 if (die->child == NULL)
16550 {
16551 index_type = objfile_type (objfile)->builtin_int;
16552 range_type = create_static_range_type (NULL, index_type, 0, -1);
16553 type = create_array_type_with_stride (NULL, element_type, range_type,
16554 byte_stride_prop, bit_stride);
16555 return set_die_type (die, type, cu);
16556 }
16557
16558 std::vector<struct type *> range_types;
16559 child_die = die->child;
16560 while (child_die && child_die->tag)
16561 {
16562 if (child_die->tag == DW_TAG_subrange_type)
16563 {
16564 struct type *child_type = read_type_die (child_die, cu);
16565
16566 if (child_type != NULL)
16567 {
16568 /* The range type was succesfully read. Save it for the
16569 array type creation. */
16570 range_types.push_back (child_type);
16571 }
16572 }
16573 child_die = sibling_die (child_die);
16574 }
16575
16576 /* Dwarf2 dimensions are output from left to right, create the
16577 necessary array types in backwards order. */
16578
16579 type = element_type;
16580
16581 if (read_array_order (die, cu) == DW_ORD_col_major)
16582 {
16583 int i = 0;
16584
16585 while (i < range_types.size ())
16586 type = create_array_type_with_stride (NULL, type, range_types[i++],
16587 byte_stride_prop, bit_stride);
16588 }
16589 else
16590 {
16591 size_t ndim = range_types.size ();
16592 while (ndim-- > 0)
16593 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16594 byte_stride_prop, bit_stride);
16595 }
16596
16597 /* Understand Dwarf2 support for vector types (like they occur on
16598 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16599 array type. This is not part of the Dwarf2/3 standard yet, but a
16600 custom vendor extension. The main difference between a regular
16601 array and the vector variant is that vectors are passed by value
16602 to functions. */
16603 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16604 if (attr)
16605 make_vector_type (type);
16606
16607 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16608 implementation may choose to implement triple vectors using this
16609 attribute. */
16610 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16611 if (attr)
16612 {
16613 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16614 TYPE_LENGTH (type) = DW_UNSND (attr);
16615 else
16616 complaint (_("DW_AT_byte_size for array type smaller "
16617 "than the total size of elements"));
16618 }
16619
16620 name = dwarf2_name (die, cu);
16621 if (name)
16622 TYPE_NAME (type) = name;
16623
16624 maybe_set_alignment (cu, die, type);
16625
16626 /* Install the type in the die. */
16627 set_die_type (die, type, cu);
16628
16629 /* set_die_type should be already done. */
16630 set_descriptive_type (type, die, cu);
16631
16632 return type;
16633 }
16634
16635 static enum dwarf_array_dim_ordering
16636 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16637 {
16638 struct attribute *attr;
16639
16640 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16641
16642 if (attr)
16643 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16644
16645 /* GNU F77 is a special case, as at 08/2004 array type info is the
16646 opposite order to the dwarf2 specification, but data is still
16647 laid out as per normal fortran.
16648
16649 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16650 version checking. */
16651
16652 if (cu->language == language_fortran
16653 && cu->producer && strstr (cu->producer, "GNU F77"))
16654 {
16655 return DW_ORD_row_major;
16656 }
16657
16658 switch (cu->language_defn->la_array_ordering)
16659 {
16660 case array_column_major:
16661 return DW_ORD_col_major;
16662 case array_row_major:
16663 default:
16664 return DW_ORD_row_major;
16665 };
16666 }
16667
16668 /* Extract all information from a DW_TAG_set_type DIE and put it in
16669 the DIE's type field. */
16670
16671 static struct type *
16672 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16673 {
16674 struct type *domain_type, *set_type;
16675 struct attribute *attr;
16676
16677 domain_type = die_type (die, cu);
16678
16679 /* The die_type call above may have already set the type for this DIE. */
16680 set_type = get_die_type (die, cu);
16681 if (set_type)
16682 return set_type;
16683
16684 set_type = create_set_type (NULL, domain_type);
16685
16686 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16687 if (attr)
16688 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16689
16690 maybe_set_alignment (cu, die, set_type);
16691
16692 return set_die_type (die, set_type, cu);
16693 }
16694
16695 /* A helper for read_common_block that creates a locexpr baton.
16696 SYM is the symbol which we are marking as computed.
16697 COMMON_DIE is the DIE for the common block.
16698 COMMON_LOC is the location expression attribute for the common
16699 block itself.
16700 MEMBER_LOC is the location expression attribute for the particular
16701 member of the common block that we are processing.
16702 CU is the CU from which the above come. */
16703
16704 static void
16705 mark_common_block_symbol_computed (struct symbol *sym,
16706 struct die_info *common_die,
16707 struct attribute *common_loc,
16708 struct attribute *member_loc,
16709 struct dwarf2_cu *cu)
16710 {
16711 struct dwarf2_per_objfile *dwarf2_per_objfile
16712 = cu->per_cu->dwarf2_per_objfile;
16713 struct objfile *objfile = dwarf2_per_objfile->objfile;
16714 struct dwarf2_locexpr_baton *baton;
16715 gdb_byte *ptr;
16716 unsigned int cu_off;
16717 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16718 LONGEST offset = 0;
16719
16720 gdb_assert (common_loc && member_loc);
16721 gdb_assert (attr_form_is_block (common_loc));
16722 gdb_assert (attr_form_is_block (member_loc)
16723 || attr_form_is_constant (member_loc));
16724
16725 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16726 baton->per_cu = cu->per_cu;
16727 gdb_assert (baton->per_cu);
16728
16729 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16730
16731 if (attr_form_is_constant (member_loc))
16732 {
16733 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16734 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16735 }
16736 else
16737 baton->size += DW_BLOCK (member_loc)->size;
16738
16739 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16740 baton->data = ptr;
16741
16742 *ptr++ = DW_OP_call4;
16743 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16744 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16745 ptr += 4;
16746
16747 if (attr_form_is_constant (member_loc))
16748 {
16749 *ptr++ = DW_OP_addr;
16750 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16751 ptr += cu->header.addr_size;
16752 }
16753 else
16754 {
16755 /* We have to copy the data here, because DW_OP_call4 will only
16756 use a DW_AT_location attribute. */
16757 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16758 ptr += DW_BLOCK (member_loc)->size;
16759 }
16760
16761 *ptr++ = DW_OP_plus;
16762 gdb_assert (ptr - baton->data == baton->size);
16763
16764 SYMBOL_LOCATION_BATON (sym) = baton;
16765 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16766 }
16767
16768 /* Create appropriate locally-scoped variables for all the
16769 DW_TAG_common_block entries. Also create a struct common_block
16770 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16771 is used to sepate the common blocks name namespace from regular
16772 variable names. */
16773
16774 static void
16775 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16776 {
16777 struct attribute *attr;
16778
16779 attr = dwarf2_attr (die, DW_AT_location, cu);
16780 if (attr)
16781 {
16782 /* Support the .debug_loc offsets. */
16783 if (attr_form_is_block (attr))
16784 {
16785 /* Ok. */
16786 }
16787 else if (attr_form_is_section_offset (attr))
16788 {
16789 dwarf2_complex_location_expr_complaint ();
16790 attr = NULL;
16791 }
16792 else
16793 {
16794 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16795 "common block member");
16796 attr = NULL;
16797 }
16798 }
16799
16800 if (die->child != NULL)
16801 {
16802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16803 struct die_info *child_die;
16804 size_t n_entries = 0, size;
16805 struct common_block *common_block;
16806 struct symbol *sym;
16807
16808 for (child_die = die->child;
16809 child_die && child_die->tag;
16810 child_die = sibling_die (child_die))
16811 ++n_entries;
16812
16813 size = (sizeof (struct common_block)
16814 + (n_entries - 1) * sizeof (struct symbol *));
16815 common_block
16816 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16817 size);
16818 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16819 common_block->n_entries = 0;
16820
16821 for (child_die = die->child;
16822 child_die && child_die->tag;
16823 child_die = sibling_die (child_die))
16824 {
16825 /* Create the symbol in the DW_TAG_common_block block in the current
16826 symbol scope. */
16827 sym = new_symbol (child_die, NULL, cu);
16828 if (sym != NULL)
16829 {
16830 struct attribute *member_loc;
16831
16832 common_block->contents[common_block->n_entries++] = sym;
16833
16834 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16835 cu);
16836 if (member_loc)
16837 {
16838 /* GDB has handled this for a long time, but it is
16839 not specified by DWARF. It seems to have been
16840 emitted by gfortran at least as recently as:
16841 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16842 complaint (_("Variable in common block has "
16843 "DW_AT_data_member_location "
16844 "- DIE at %s [in module %s]"),
16845 sect_offset_str (child_die->sect_off),
16846 objfile_name (objfile));
16847
16848 if (attr_form_is_section_offset (member_loc))
16849 dwarf2_complex_location_expr_complaint ();
16850 else if (attr_form_is_constant (member_loc)
16851 || attr_form_is_block (member_loc))
16852 {
16853 if (attr)
16854 mark_common_block_symbol_computed (sym, die, attr,
16855 member_loc, cu);
16856 }
16857 else
16858 dwarf2_complex_location_expr_complaint ();
16859 }
16860 }
16861 }
16862
16863 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16864 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16865 }
16866 }
16867
16868 /* Create a type for a C++ namespace. */
16869
16870 static struct type *
16871 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16872 {
16873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16874 const char *previous_prefix, *name;
16875 int is_anonymous;
16876 struct type *type;
16877
16878 /* For extensions, reuse the type of the original namespace. */
16879 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16880 {
16881 struct die_info *ext_die;
16882 struct dwarf2_cu *ext_cu = cu;
16883
16884 ext_die = dwarf2_extension (die, &ext_cu);
16885 type = read_type_die (ext_die, ext_cu);
16886
16887 /* EXT_CU may not be the same as CU.
16888 Ensure TYPE is recorded with CU in die_type_hash. */
16889 return set_die_type (die, type, cu);
16890 }
16891
16892 name = namespace_name (die, &is_anonymous, cu);
16893
16894 /* Now build the name of the current namespace. */
16895
16896 previous_prefix = determine_prefix (die, cu);
16897 if (previous_prefix[0] != '\0')
16898 name = typename_concat (&objfile->objfile_obstack,
16899 previous_prefix, name, 0, cu);
16900
16901 /* Create the type. */
16902 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16903
16904 return set_die_type (die, type, cu);
16905 }
16906
16907 /* Read a namespace scope. */
16908
16909 static void
16910 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16911 {
16912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16913 int is_anonymous;
16914
16915 /* Add a symbol associated to this if we haven't seen the namespace
16916 before. Also, add a using directive if it's an anonymous
16917 namespace. */
16918
16919 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16920 {
16921 struct type *type;
16922
16923 type = read_type_die (die, cu);
16924 new_symbol (die, type, cu);
16925
16926 namespace_name (die, &is_anonymous, cu);
16927 if (is_anonymous)
16928 {
16929 const char *previous_prefix = determine_prefix (die, cu);
16930
16931 std::vector<const char *> excludes;
16932 add_using_directive (using_directives (cu),
16933 previous_prefix, TYPE_NAME (type), NULL,
16934 NULL, excludes, 0, &objfile->objfile_obstack);
16935 }
16936 }
16937
16938 if (die->child != NULL)
16939 {
16940 struct die_info *child_die = die->child;
16941
16942 while (child_die && child_die->tag)
16943 {
16944 process_die (child_die, cu);
16945 child_die = sibling_die (child_die);
16946 }
16947 }
16948 }
16949
16950 /* Read a Fortran module as type. This DIE can be only a declaration used for
16951 imported module. Still we need that type as local Fortran "use ... only"
16952 declaration imports depend on the created type in determine_prefix. */
16953
16954 static struct type *
16955 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16956 {
16957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16958 const char *module_name;
16959 struct type *type;
16960
16961 module_name = dwarf2_name (die, cu);
16962 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16963
16964 return set_die_type (die, type, cu);
16965 }
16966
16967 /* Read a Fortran module. */
16968
16969 static void
16970 read_module (struct die_info *die, struct dwarf2_cu *cu)
16971 {
16972 struct die_info *child_die = die->child;
16973 struct type *type;
16974
16975 type = read_type_die (die, cu);
16976 new_symbol (die, type, cu);
16977
16978 while (child_die && child_die->tag)
16979 {
16980 process_die (child_die, cu);
16981 child_die = sibling_die (child_die);
16982 }
16983 }
16984
16985 /* Return the name of the namespace represented by DIE. Set
16986 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16987 namespace. */
16988
16989 static const char *
16990 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16991 {
16992 struct die_info *current_die;
16993 const char *name = NULL;
16994
16995 /* Loop through the extensions until we find a name. */
16996
16997 for (current_die = die;
16998 current_die != NULL;
16999 current_die = dwarf2_extension (die, &cu))
17000 {
17001 /* We don't use dwarf2_name here so that we can detect the absence
17002 of a name -> anonymous namespace. */
17003 name = dwarf2_string_attr (die, DW_AT_name, cu);
17004
17005 if (name != NULL)
17006 break;
17007 }
17008
17009 /* Is it an anonymous namespace? */
17010
17011 *is_anonymous = (name == NULL);
17012 if (*is_anonymous)
17013 name = CP_ANONYMOUS_NAMESPACE_STR;
17014
17015 return name;
17016 }
17017
17018 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17019 the user defined type vector. */
17020
17021 static struct type *
17022 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17023 {
17024 struct gdbarch *gdbarch
17025 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17026 struct comp_unit_head *cu_header = &cu->header;
17027 struct type *type;
17028 struct attribute *attr_byte_size;
17029 struct attribute *attr_address_class;
17030 int byte_size, addr_class;
17031 struct type *target_type;
17032
17033 target_type = die_type (die, cu);
17034
17035 /* The die_type call above may have already set the type for this DIE. */
17036 type = get_die_type (die, cu);
17037 if (type)
17038 return type;
17039
17040 type = lookup_pointer_type (target_type);
17041
17042 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17043 if (attr_byte_size)
17044 byte_size = DW_UNSND (attr_byte_size);
17045 else
17046 byte_size = cu_header->addr_size;
17047
17048 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17049 if (attr_address_class)
17050 addr_class = DW_UNSND (attr_address_class);
17051 else
17052 addr_class = DW_ADDR_none;
17053
17054 ULONGEST alignment = get_alignment (cu, die);
17055
17056 /* If the pointer size, alignment, or address class is different
17057 than the default, create a type variant marked as such and set
17058 the length accordingly. */
17059 if (TYPE_LENGTH (type) != byte_size
17060 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17061 && alignment != TYPE_RAW_ALIGN (type))
17062 || addr_class != DW_ADDR_none)
17063 {
17064 if (gdbarch_address_class_type_flags_p (gdbarch))
17065 {
17066 int type_flags;
17067
17068 type_flags = gdbarch_address_class_type_flags
17069 (gdbarch, byte_size, addr_class);
17070 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17071 == 0);
17072 type = make_type_with_address_space (type, type_flags);
17073 }
17074 else if (TYPE_LENGTH (type) != byte_size)
17075 {
17076 complaint (_("invalid pointer size %d"), byte_size);
17077 }
17078 else if (TYPE_RAW_ALIGN (type) != alignment)
17079 {
17080 complaint (_("Invalid DW_AT_alignment"
17081 " - DIE at %s [in module %s]"),
17082 sect_offset_str (die->sect_off),
17083 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17084 }
17085 else
17086 {
17087 /* Should we also complain about unhandled address classes? */
17088 }
17089 }
17090
17091 TYPE_LENGTH (type) = byte_size;
17092 set_type_align (type, alignment);
17093 return set_die_type (die, type, cu);
17094 }
17095
17096 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17097 the user defined type vector. */
17098
17099 static struct type *
17100 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17101 {
17102 struct type *type;
17103 struct type *to_type;
17104 struct type *domain;
17105
17106 to_type = die_type (die, cu);
17107 domain = die_containing_type (die, cu);
17108
17109 /* The calls above may have already set the type for this DIE. */
17110 type = get_die_type (die, cu);
17111 if (type)
17112 return type;
17113
17114 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17115 type = lookup_methodptr_type (to_type);
17116 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17117 {
17118 struct type *new_type
17119 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17120
17121 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17122 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17123 TYPE_VARARGS (to_type));
17124 type = lookup_methodptr_type (new_type);
17125 }
17126 else
17127 type = lookup_memberptr_type (to_type, domain);
17128
17129 return set_die_type (die, type, cu);
17130 }
17131
17132 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17133 the user defined type vector. */
17134
17135 static struct type *
17136 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17137 enum type_code refcode)
17138 {
17139 struct comp_unit_head *cu_header = &cu->header;
17140 struct type *type, *target_type;
17141 struct attribute *attr;
17142
17143 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17144
17145 target_type = die_type (die, cu);
17146
17147 /* The die_type call above may have already set the type for this DIE. */
17148 type = get_die_type (die, cu);
17149 if (type)
17150 return type;
17151
17152 type = lookup_reference_type (target_type, refcode);
17153 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17154 if (attr)
17155 {
17156 TYPE_LENGTH (type) = DW_UNSND (attr);
17157 }
17158 else
17159 {
17160 TYPE_LENGTH (type) = cu_header->addr_size;
17161 }
17162 maybe_set_alignment (cu, die, type);
17163 return set_die_type (die, type, cu);
17164 }
17165
17166 /* Add the given cv-qualifiers to the element type of the array. GCC
17167 outputs DWARF type qualifiers that apply to an array, not the
17168 element type. But GDB relies on the array element type to carry
17169 the cv-qualifiers. This mimics section 6.7.3 of the C99
17170 specification. */
17171
17172 static struct type *
17173 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17174 struct type *base_type, int cnst, int voltl)
17175 {
17176 struct type *el_type, *inner_array;
17177
17178 base_type = copy_type (base_type);
17179 inner_array = base_type;
17180
17181 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17182 {
17183 TYPE_TARGET_TYPE (inner_array) =
17184 copy_type (TYPE_TARGET_TYPE (inner_array));
17185 inner_array = TYPE_TARGET_TYPE (inner_array);
17186 }
17187
17188 el_type = TYPE_TARGET_TYPE (inner_array);
17189 cnst |= TYPE_CONST (el_type);
17190 voltl |= TYPE_VOLATILE (el_type);
17191 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17192
17193 return set_die_type (die, base_type, cu);
17194 }
17195
17196 static struct type *
17197 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17198 {
17199 struct type *base_type, *cv_type;
17200
17201 base_type = die_type (die, cu);
17202
17203 /* The die_type call above may have already set the type for this DIE. */
17204 cv_type = get_die_type (die, cu);
17205 if (cv_type)
17206 return cv_type;
17207
17208 /* In case the const qualifier is applied to an array type, the element type
17209 is so qualified, not the array type (section 6.7.3 of C99). */
17210 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17211 return add_array_cv_type (die, cu, base_type, 1, 0);
17212
17213 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17214 return set_die_type (die, cv_type, cu);
17215 }
17216
17217 static struct type *
17218 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17219 {
17220 struct type *base_type, *cv_type;
17221
17222 base_type = die_type (die, cu);
17223
17224 /* The die_type call above may have already set the type for this DIE. */
17225 cv_type = get_die_type (die, cu);
17226 if (cv_type)
17227 return cv_type;
17228
17229 /* In case the volatile qualifier is applied to an array type, the
17230 element type is so qualified, not the array type (section 6.7.3
17231 of C99). */
17232 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17233 return add_array_cv_type (die, cu, base_type, 0, 1);
17234
17235 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17236 return set_die_type (die, cv_type, cu);
17237 }
17238
17239 /* Handle DW_TAG_restrict_type. */
17240
17241 static struct type *
17242 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17243 {
17244 struct type *base_type, *cv_type;
17245
17246 base_type = die_type (die, cu);
17247
17248 /* The die_type call above may have already set the type for this DIE. */
17249 cv_type = get_die_type (die, cu);
17250 if (cv_type)
17251 return cv_type;
17252
17253 cv_type = make_restrict_type (base_type);
17254 return set_die_type (die, cv_type, cu);
17255 }
17256
17257 /* Handle DW_TAG_atomic_type. */
17258
17259 static struct type *
17260 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17261 {
17262 struct type *base_type, *cv_type;
17263
17264 base_type = die_type (die, cu);
17265
17266 /* The die_type call above may have already set the type for this DIE. */
17267 cv_type = get_die_type (die, cu);
17268 if (cv_type)
17269 return cv_type;
17270
17271 cv_type = make_atomic_type (base_type);
17272 return set_die_type (die, cv_type, cu);
17273 }
17274
17275 /* Extract all information from a DW_TAG_string_type DIE and add to
17276 the user defined type vector. It isn't really a user defined type,
17277 but it behaves like one, with other DIE's using an AT_user_def_type
17278 attribute to reference it. */
17279
17280 static struct type *
17281 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17282 {
17283 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17284 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17285 struct type *type, *range_type, *index_type, *char_type;
17286 struct attribute *attr;
17287 unsigned int length;
17288
17289 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17290 if (attr)
17291 {
17292 length = DW_UNSND (attr);
17293 }
17294 else
17295 {
17296 /* Check for the DW_AT_byte_size attribute. */
17297 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17298 if (attr)
17299 {
17300 length = DW_UNSND (attr);
17301 }
17302 else
17303 {
17304 length = 1;
17305 }
17306 }
17307
17308 index_type = objfile_type (objfile)->builtin_int;
17309 range_type = create_static_range_type (NULL, index_type, 1, length);
17310 char_type = language_string_char_type (cu->language_defn, gdbarch);
17311 type = create_string_type (NULL, char_type, range_type);
17312
17313 return set_die_type (die, type, cu);
17314 }
17315
17316 /* Assuming that DIE corresponds to a function, returns nonzero
17317 if the function is prototyped. */
17318
17319 static int
17320 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17321 {
17322 struct attribute *attr;
17323
17324 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17325 if (attr && (DW_UNSND (attr) != 0))
17326 return 1;
17327
17328 /* The DWARF standard implies that the DW_AT_prototyped attribute
17329 is only meaninful for C, but the concept also extends to other
17330 languages that allow unprototyped functions (Eg: Objective C).
17331 For all other languages, assume that functions are always
17332 prototyped. */
17333 if (cu->language != language_c
17334 && cu->language != language_objc
17335 && cu->language != language_opencl)
17336 return 1;
17337
17338 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17339 prototyped and unprototyped functions; default to prototyped,
17340 since that is more common in modern code (and RealView warns
17341 about unprototyped functions). */
17342 if (producer_is_realview (cu->producer))
17343 return 1;
17344
17345 return 0;
17346 }
17347
17348 /* Handle DIES due to C code like:
17349
17350 struct foo
17351 {
17352 int (*funcp)(int a, long l);
17353 int b;
17354 };
17355
17356 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17357
17358 static struct type *
17359 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17360 {
17361 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17362 struct type *type; /* Type that this function returns. */
17363 struct type *ftype; /* Function that returns above type. */
17364 struct attribute *attr;
17365
17366 type = die_type (die, cu);
17367
17368 /* The die_type call above may have already set the type for this DIE. */
17369 ftype = get_die_type (die, cu);
17370 if (ftype)
17371 return ftype;
17372
17373 ftype = lookup_function_type (type);
17374
17375 if (prototyped_function_p (die, cu))
17376 TYPE_PROTOTYPED (ftype) = 1;
17377
17378 /* Store the calling convention in the type if it's available in
17379 the subroutine die. Otherwise set the calling convention to
17380 the default value DW_CC_normal. */
17381 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17382 if (attr)
17383 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17384 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17385 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17386 else
17387 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17388
17389 /* Record whether the function returns normally to its caller or not
17390 if the DWARF producer set that information. */
17391 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17392 if (attr && (DW_UNSND (attr) != 0))
17393 TYPE_NO_RETURN (ftype) = 1;
17394
17395 /* We need to add the subroutine type to the die immediately so
17396 we don't infinitely recurse when dealing with parameters
17397 declared as the same subroutine type. */
17398 set_die_type (die, ftype, cu);
17399
17400 if (die->child != NULL)
17401 {
17402 struct type *void_type = objfile_type (objfile)->builtin_void;
17403 struct die_info *child_die;
17404 int nparams, iparams;
17405
17406 /* Count the number of parameters.
17407 FIXME: GDB currently ignores vararg functions, but knows about
17408 vararg member functions. */
17409 nparams = 0;
17410 child_die = die->child;
17411 while (child_die && child_die->tag)
17412 {
17413 if (child_die->tag == DW_TAG_formal_parameter)
17414 nparams++;
17415 else if (child_die->tag == DW_TAG_unspecified_parameters)
17416 TYPE_VARARGS (ftype) = 1;
17417 child_die = sibling_die (child_die);
17418 }
17419
17420 /* Allocate storage for parameters and fill them in. */
17421 TYPE_NFIELDS (ftype) = nparams;
17422 TYPE_FIELDS (ftype) = (struct field *)
17423 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17424
17425 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17426 even if we error out during the parameters reading below. */
17427 for (iparams = 0; iparams < nparams; iparams++)
17428 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17429
17430 iparams = 0;
17431 child_die = die->child;
17432 while (child_die && child_die->tag)
17433 {
17434 if (child_die->tag == DW_TAG_formal_parameter)
17435 {
17436 struct type *arg_type;
17437
17438 /* DWARF version 2 has no clean way to discern C++
17439 static and non-static member functions. G++ helps
17440 GDB by marking the first parameter for non-static
17441 member functions (which is the this pointer) as
17442 artificial. We pass this information to
17443 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17444
17445 DWARF version 3 added DW_AT_object_pointer, which GCC
17446 4.5 does not yet generate. */
17447 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17448 if (attr)
17449 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17450 else
17451 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17452 arg_type = die_type (child_die, cu);
17453
17454 /* RealView does not mark THIS as const, which the testsuite
17455 expects. GCC marks THIS as const in method definitions,
17456 but not in the class specifications (GCC PR 43053). */
17457 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17458 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17459 {
17460 int is_this = 0;
17461 struct dwarf2_cu *arg_cu = cu;
17462 const char *name = dwarf2_name (child_die, cu);
17463
17464 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17465 if (attr)
17466 {
17467 /* If the compiler emits this, use it. */
17468 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17469 is_this = 1;
17470 }
17471 else if (name && strcmp (name, "this") == 0)
17472 /* Function definitions will have the argument names. */
17473 is_this = 1;
17474 else if (name == NULL && iparams == 0)
17475 /* Declarations may not have the names, so like
17476 elsewhere in GDB, assume an artificial first
17477 argument is "this". */
17478 is_this = 1;
17479
17480 if (is_this)
17481 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17482 arg_type, 0);
17483 }
17484
17485 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17486 iparams++;
17487 }
17488 child_die = sibling_die (child_die);
17489 }
17490 }
17491
17492 return ftype;
17493 }
17494
17495 static struct type *
17496 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17497 {
17498 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17499 const char *name = NULL;
17500 struct type *this_type, *target_type;
17501
17502 name = dwarf2_full_name (NULL, die, cu);
17503 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17504 TYPE_TARGET_STUB (this_type) = 1;
17505 set_die_type (die, this_type, cu);
17506 target_type = die_type (die, cu);
17507 if (target_type != this_type)
17508 TYPE_TARGET_TYPE (this_type) = target_type;
17509 else
17510 {
17511 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17512 spec and cause infinite loops in GDB. */
17513 complaint (_("Self-referential DW_TAG_typedef "
17514 "- DIE at %s [in module %s]"),
17515 sect_offset_str (die->sect_off), objfile_name (objfile));
17516 TYPE_TARGET_TYPE (this_type) = NULL;
17517 }
17518 return this_type;
17519 }
17520
17521 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17522 (which may be different from NAME) to the architecture back-end to allow
17523 it to guess the correct format if necessary. */
17524
17525 static struct type *
17526 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17527 const char *name_hint)
17528 {
17529 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17530 const struct floatformat **format;
17531 struct type *type;
17532
17533 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17534 if (format)
17535 type = init_float_type (objfile, bits, name, format);
17536 else
17537 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17538
17539 return type;
17540 }
17541
17542 /* Allocate an integer type of size BITS and name NAME. */
17543
17544 static struct type *
17545 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17546 int bits, int unsigned_p, const char *name)
17547 {
17548 struct type *type;
17549
17550 /* Versions of Intel's C Compiler generate an integer type called "void"
17551 instead of using DW_TAG_unspecified_type. This has been seen on
17552 at least versions 14, 17, and 18. */
17553 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17554 && strcmp (name, "void") == 0)
17555 type = objfile_type (objfile)->builtin_void;
17556 else
17557 type = init_integer_type (objfile, bits, unsigned_p, name);
17558
17559 return type;
17560 }
17561
17562 /* Initialise and return a floating point type of size BITS suitable for
17563 use as a component of a complex number. The NAME_HINT is passed through
17564 when initialising the floating point type and is the name of the complex
17565 type.
17566
17567 As DWARF doesn't currently provide an explicit name for the components
17568 of a complex number, but it can be helpful to have these components
17569 named, we try to select a suitable name based on the size of the
17570 component. */
17571 static struct type *
17572 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17573 struct objfile *objfile,
17574 int bits, const char *name_hint)
17575 {
17576 gdbarch *gdbarch = get_objfile_arch (objfile);
17577 struct type *tt = nullptr;
17578
17579 /* Try to find a suitable floating point builtin type of size BITS.
17580 We're going to use the name of this type as the name for the complex
17581 target type that we are about to create. */
17582 switch (cu->language)
17583 {
17584 case language_fortran:
17585 switch (bits)
17586 {
17587 case 32:
17588 tt = builtin_f_type (gdbarch)->builtin_real;
17589 break;
17590 case 64:
17591 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17592 break;
17593 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17594 case 128:
17595 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17596 break;
17597 }
17598 break;
17599 default:
17600 switch (bits)
17601 {
17602 case 32:
17603 tt = builtin_type (gdbarch)->builtin_float;
17604 break;
17605 case 64:
17606 tt = builtin_type (gdbarch)->builtin_double;
17607 break;
17608 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17609 case 128:
17610 tt = builtin_type (gdbarch)->builtin_long_double;
17611 break;
17612 }
17613 break;
17614 }
17615
17616 /* If the type we found doesn't match the size we were looking for, then
17617 pretend we didn't find a type at all, the complex target type we
17618 create will then be nameless. */
17619 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17620 tt = nullptr;
17621
17622 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17623 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17624 }
17625
17626 /* Find a representation of a given base type and install
17627 it in the TYPE field of the die. */
17628
17629 static struct type *
17630 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17631 {
17632 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17633 struct type *type;
17634 struct attribute *attr;
17635 int encoding = 0, bits = 0;
17636 const char *name;
17637
17638 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17639 if (attr)
17640 {
17641 encoding = DW_UNSND (attr);
17642 }
17643 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17644 if (attr)
17645 {
17646 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17647 }
17648 name = dwarf2_name (die, cu);
17649 if (!name)
17650 {
17651 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17652 }
17653
17654 switch (encoding)
17655 {
17656 case DW_ATE_address:
17657 /* Turn DW_ATE_address into a void * pointer. */
17658 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17659 type = init_pointer_type (objfile, bits, name, type);
17660 break;
17661 case DW_ATE_boolean:
17662 type = init_boolean_type (objfile, bits, 1, name);
17663 break;
17664 case DW_ATE_complex_float:
17665 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17666 type = init_complex_type (objfile, name, type);
17667 break;
17668 case DW_ATE_decimal_float:
17669 type = init_decfloat_type (objfile, bits, name);
17670 break;
17671 case DW_ATE_float:
17672 type = dwarf2_init_float_type (objfile, bits, name, name);
17673 break;
17674 case DW_ATE_signed:
17675 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17676 break;
17677 case DW_ATE_unsigned:
17678 if (cu->language == language_fortran
17679 && name
17680 && startswith (name, "character("))
17681 type = init_character_type (objfile, bits, 1, name);
17682 else
17683 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17684 break;
17685 case DW_ATE_signed_char:
17686 if (cu->language == language_ada || cu->language == language_m2
17687 || cu->language == language_pascal
17688 || cu->language == language_fortran)
17689 type = init_character_type (objfile, bits, 0, name);
17690 else
17691 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17692 break;
17693 case DW_ATE_unsigned_char:
17694 if (cu->language == language_ada || cu->language == language_m2
17695 || cu->language == language_pascal
17696 || cu->language == language_fortran
17697 || cu->language == language_rust)
17698 type = init_character_type (objfile, bits, 1, name);
17699 else
17700 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17701 break;
17702 case DW_ATE_UTF:
17703 {
17704 gdbarch *arch = get_objfile_arch (objfile);
17705
17706 if (bits == 16)
17707 type = builtin_type (arch)->builtin_char16;
17708 else if (bits == 32)
17709 type = builtin_type (arch)->builtin_char32;
17710 else
17711 {
17712 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17713 bits);
17714 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17715 }
17716 return set_die_type (die, type, cu);
17717 }
17718 break;
17719
17720 default:
17721 complaint (_("unsupported DW_AT_encoding: '%s'"),
17722 dwarf_type_encoding_name (encoding));
17723 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17724 break;
17725 }
17726
17727 if (name && strcmp (name, "char") == 0)
17728 TYPE_NOSIGN (type) = 1;
17729
17730 maybe_set_alignment (cu, die, type);
17731
17732 return set_die_type (die, type, cu);
17733 }
17734
17735 /* Parse dwarf attribute if it's a block, reference or constant and put the
17736 resulting value of the attribute into struct bound_prop.
17737 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17738
17739 static int
17740 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17741 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17742 {
17743 struct dwarf2_property_baton *baton;
17744 struct obstack *obstack
17745 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17746
17747 if (attr == NULL || prop == NULL)
17748 return 0;
17749
17750 if (attr_form_is_block (attr))
17751 {
17752 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17753 baton->referenced_type = NULL;
17754 baton->locexpr.per_cu = cu->per_cu;
17755 baton->locexpr.size = DW_BLOCK (attr)->size;
17756 baton->locexpr.data = DW_BLOCK (attr)->data;
17757 prop->data.baton = baton;
17758 prop->kind = PROP_LOCEXPR;
17759 gdb_assert (prop->data.baton != NULL);
17760 }
17761 else if (attr_form_is_ref (attr))
17762 {
17763 struct dwarf2_cu *target_cu = cu;
17764 struct die_info *target_die;
17765 struct attribute *target_attr;
17766
17767 target_die = follow_die_ref (die, attr, &target_cu);
17768 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17769 if (target_attr == NULL)
17770 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17771 target_cu);
17772 if (target_attr == NULL)
17773 return 0;
17774
17775 switch (target_attr->name)
17776 {
17777 case DW_AT_location:
17778 if (attr_form_is_section_offset (target_attr))
17779 {
17780 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17781 baton->referenced_type = die_type (target_die, target_cu);
17782 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17783 prop->data.baton = baton;
17784 prop->kind = PROP_LOCLIST;
17785 gdb_assert (prop->data.baton != NULL);
17786 }
17787 else if (attr_form_is_block (target_attr))
17788 {
17789 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17790 baton->referenced_type = die_type (target_die, target_cu);
17791 baton->locexpr.per_cu = cu->per_cu;
17792 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17793 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17794 prop->data.baton = baton;
17795 prop->kind = PROP_LOCEXPR;
17796 gdb_assert (prop->data.baton != NULL);
17797 }
17798 else
17799 {
17800 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17801 "dynamic property");
17802 return 0;
17803 }
17804 break;
17805 case DW_AT_data_member_location:
17806 {
17807 LONGEST offset;
17808
17809 if (!handle_data_member_location (target_die, target_cu,
17810 &offset))
17811 return 0;
17812
17813 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17814 baton->referenced_type = read_type_die (target_die->parent,
17815 target_cu);
17816 baton->offset_info.offset = offset;
17817 baton->offset_info.type = die_type (target_die, target_cu);
17818 prop->data.baton = baton;
17819 prop->kind = PROP_ADDR_OFFSET;
17820 break;
17821 }
17822 }
17823 }
17824 else if (attr_form_is_constant (attr))
17825 {
17826 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17827 prop->kind = PROP_CONST;
17828 }
17829 else
17830 {
17831 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17832 dwarf2_name (die, cu));
17833 return 0;
17834 }
17835
17836 return 1;
17837 }
17838
17839 /* Read the given DW_AT_subrange DIE. */
17840
17841 static struct type *
17842 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17843 {
17844 struct type *base_type, *orig_base_type;
17845 struct type *range_type;
17846 struct attribute *attr;
17847 struct dynamic_prop low, high;
17848 int low_default_is_valid;
17849 int high_bound_is_count = 0;
17850 const char *name;
17851 ULONGEST negative_mask;
17852
17853 orig_base_type = die_type (die, cu);
17854 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17855 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17856 creating the range type, but we use the result of check_typedef
17857 when examining properties of the type. */
17858 base_type = check_typedef (orig_base_type);
17859
17860 /* The die_type call above may have already set the type for this DIE. */
17861 range_type = get_die_type (die, cu);
17862 if (range_type)
17863 return range_type;
17864
17865 low.kind = PROP_CONST;
17866 high.kind = PROP_CONST;
17867 high.data.const_val = 0;
17868
17869 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17870 omitting DW_AT_lower_bound. */
17871 switch (cu->language)
17872 {
17873 case language_c:
17874 case language_cplus:
17875 low.data.const_val = 0;
17876 low_default_is_valid = 1;
17877 break;
17878 case language_fortran:
17879 low.data.const_val = 1;
17880 low_default_is_valid = 1;
17881 break;
17882 case language_d:
17883 case language_objc:
17884 case language_rust:
17885 low.data.const_val = 0;
17886 low_default_is_valid = (cu->header.version >= 4);
17887 break;
17888 case language_ada:
17889 case language_m2:
17890 case language_pascal:
17891 low.data.const_val = 1;
17892 low_default_is_valid = (cu->header.version >= 4);
17893 break;
17894 default:
17895 low.data.const_val = 0;
17896 low_default_is_valid = 0;
17897 break;
17898 }
17899
17900 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17901 if (attr)
17902 attr_to_dynamic_prop (attr, die, cu, &low);
17903 else if (!low_default_is_valid)
17904 complaint (_("Missing DW_AT_lower_bound "
17905 "- DIE at %s [in module %s]"),
17906 sect_offset_str (die->sect_off),
17907 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17908
17909 struct attribute *attr_ub, *attr_count;
17910 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17911 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17912 {
17913 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17914 if (attr_to_dynamic_prop (attr, die, cu, &high))
17915 {
17916 /* If bounds are constant do the final calculation here. */
17917 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17918 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17919 else
17920 high_bound_is_count = 1;
17921 }
17922 else
17923 {
17924 if (attr_ub != NULL)
17925 complaint (_("Unresolved DW_AT_upper_bound "
17926 "- DIE at %s [in module %s]"),
17927 sect_offset_str (die->sect_off),
17928 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17929 if (attr_count != NULL)
17930 complaint (_("Unresolved DW_AT_count "
17931 "- DIE at %s [in module %s]"),
17932 sect_offset_str (die->sect_off),
17933 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17934 }
17935
17936 }
17937
17938 /* Dwarf-2 specifications explicitly allows to create subrange types
17939 without specifying a base type.
17940 In that case, the base type must be set to the type of
17941 the lower bound, upper bound or count, in that order, if any of these
17942 three attributes references an object that has a type.
17943 If no base type is found, the Dwarf-2 specifications say that
17944 a signed integer type of size equal to the size of an address should
17945 be used.
17946 For the following C code: `extern char gdb_int [];'
17947 GCC produces an empty range DIE.
17948 FIXME: muller/2010-05-28: Possible references to object for low bound,
17949 high bound or count are not yet handled by this code. */
17950 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17951 {
17952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17954 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17955 struct type *int_type = objfile_type (objfile)->builtin_int;
17956
17957 /* Test "int", "long int", and "long long int" objfile types,
17958 and select the first one having a size above or equal to the
17959 architecture address size. */
17960 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17961 base_type = int_type;
17962 else
17963 {
17964 int_type = objfile_type (objfile)->builtin_long;
17965 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17966 base_type = int_type;
17967 else
17968 {
17969 int_type = objfile_type (objfile)->builtin_long_long;
17970 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17971 base_type = int_type;
17972 }
17973 }
17974 }
17975
17976 /* Normally, the DWARF producers are expected to use a signed
17977 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17978 But this is unfortunately not always the case, as witnessed
17979 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17980 is used instead. To work around that ambiguity, we treat
17981 the bounds as signed, and thus sign-extend their values, when
17982 the base type is signed. */
17983 negative_mask =
17984 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17985 if (low.kind == PROP_CONST
17986 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17987 low.data.const_val |= negative_mask;
17988 if (high.kind == PROP_CONST
17989 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17990 high.data.const_val |= negative_mask;
17991
17992 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17993
17994 if (high_bound_is_count)
17995 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17996
17997 /* Ada expects an empty array on no boundary attributes. */
17998 if (attr == NULL && cu->language != language_ada)
17999 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18000
18001 name = dwarf2_name (die, cu);
18002 if (name)
18003 TYPE_NAME (range_type) = name;
18004
18005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18006 if (attr)
18007 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18008
18009 maybe_set_alignment (cu, die, range_type);
18010
18011 set_die_type (die, range_type, cu);
18012
18013 /* set_die_type should be already done. */
18014 set_descriptive_type (range_type, die, cu);
18015
18016 return range_type;
18017 }
18018
18019 static struct type *
18020 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18021 {
18022 struct type *type;
18023
18024 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18025 NULL);
18026 TYPE_NAME (type) = dwarf2_name (die, cu);
18027
18028 /* In Ada, an unspecified type is typically used when the description
18029 of the type is defered to a different unit. When encountering
18030 such a type, we treat it as a stub, and try to resolve it later on,
18031 when needed. */
18032 if (cu->language == language_ada)
18033 TYPE_STUB (type) = 1;
18034
18035 return set_die_type (die, type, cu);
18036 }
18037
18038 /* Read a single die and all its descendents. Set the die's sibling
18039 field to NULL; set other fields in the die correctly, and set all
18040 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18041 location of the info_ptr after reading all of those dies. PARENT
18042 is the parent of the die in question. */
18043
18044 static struct die_info *
18045 read_die_and_children (const struct die_reader_specs *reader,
18046 const gdb_byte *info_ptr,
18047 const gdb_byte **new_info_ptr,
18048 struct die_info *parent)
18049 {
18050 struct die_info *die;
18051 const gdb_byte *cur_ptr;
18052 int has_children;
18053
18054 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18055 if (die == NULL)
18056 {
18057 *new_info_ptr = cur_ptr;
18058 return NULL;
18059 }
18060 store_in_ref_table (die, reader->cu);
18061
18062 if (has_children)
18063 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18064 else
18065 {
18066 die->child = NULL;
18067 *new_info_ptr = cur_ptr;
18068 }
18069
18070 die->sibling = NULL;
18071 die->parent = parent;
18072 return die;
18073 }
18074
18075 /* Read a die, all of its descendents, and all of its siblings; set
18076 all of the fields of all of the dies correctly. Arguments are as
18077 in read_die_and_children. */
18078
18079 static struct die_info *
18080 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18081 const gdb_byte *info_ptr,
18082 const gdb_byte **new_info_ptr,
18083 struct die_info *parent)
18084 {
18085 struct die_info *first_die, *last_sibling;
18086 const gdb_byte *cur_ptr;
18087
18088 cur_ptr = info_ptr;
18089 first_die = last_sibling = NULL;
18090
18091 while (1)
18092 {
18093 struct die_info *die
18094 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18095
18096 if (die == NULL)
18097 {
18098 *new_info_ptr = cur_ptr;
18099 return first_die;
18100 }
18101
18102 if (!first_die)
18103 first_die = die;
18104 else
18105 last_sibling->sibling = die;
18106
18107 last_sibling = die;
18108 }
18109 }
18110
18111 /* Read a die, all of its descendents, and all of its siblings; set
18112 all of the fields of all of the dies correctly. Arguments are as
18113 in read_die_and_children.
18114 This the main entry point for reading a DIE and all its children. */
18115
18116 static struct die_info *
18117 read_die_and_siblings (const struct die_reader_specs *reader,
18118 const gdb_byte *info_ptr,
18119 const gdb_byte **new_info_ptr,
18120 struct die_info *parent)
18121 {
18122 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18123 new_info_ptr, parent);
18124
18125 if (dwarf_die_debug)
18126 {
18127 fprintf_unfiltered (gdb_stdlog,
18128 "Read die from %s@0x%x of %s:\n",
18129 get_section_name (reader->die_section),
18130 (unsigned) (info_ptr - reader->die_section->buffer),
18131 bfd_get_filename (reader->abfd));
18132 dump_die (die, dwarf_die_debug);
18133 }
18134
18135 return die;
18136 }
18137
18138 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18139 attributes.
18140 The caller is responsible for filling in the extra attributes
18141 and updating (*DIEP)->num_attrs.
18142 Set DIEP to point to a newly allocated die with its information,
18143 except for its child, sibling, and parent fields.
18144 Set HAS_CHILDREN to tell whether the die has children or not. */
18145
18146 static const gdb_byte *
18147 read_full_die_1 (const struct die_reader_specs *reader,
18148 struct die_info **diep, const gdb_byte *info_ptr,
18149 int *has_children, int num_extra_attrs)
18150 {
18151 unsigned int abbrev_number, bytes_read, i;
18152 struct abbrev_info *abbrev;
18153 struct die_info *die;
18154 struct dwarf2_cu *cu = reader->cu;
18155 bfd *abfd = reader->abfd;
18156
18157 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18158 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18159 info_ptr += bytes_read;
18160 if (!abbrev_number)
18161 {
18162 *diep = NULL;
18163 *has_children = 0;
18164 return info_ptr;
18165 }
18166
18167 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18168 if (!abbrev)
18169 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18170 abbrev_number,
18171 bfd_get_filename (abfd));
18172
18173 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18174 die->sect_off = sect_off;
18175 die->tag = abbrev->tag;
18176 die->abbrev = abbrev_number;
18177
18178 /* Make the result usable.
18179 The caller needs to update num_attrs after adding the extra
18180 attributes. */
18181 die->num_attrs = abbrev->num_attrs;
18182
18183 for (i = 0; i < abbrev->num_attrs; ++i)
18184 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18185 info_ptr);
18186
18187 *diep = die;
18188 *has_children = abbrev->has_children;
18189 return info_ptr;
18190 }
18191
18192 /* Read a die and all its attributes.
18193 Set DIEP to point to a newly allocated die with its information,
18194 except for its child, sibling, and parent fields.
18195 Set HAS_CHILDREN to tell whether the die has children or not. */
18196
18197 static const gdb_byte *
18198 read_full_die (const struct die_reader_specs *reader,
18199 struct die_info **diep, const gdb_byte *info_ptr,
18200 int *has_children)
18201 {
18202 const gdb_byte *result;
18203
18204 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18205
18206 if (dwarf_die_debug)
18207 {
18208 fprintf_unfiltered (gdb_stdlog,
18209 "Read die from %s@0x%x of %s:\n",
18210 get_section_name (reader->die_section),
18211 (unsigned) (info_ptr - reader->die_section->buffer),
18212 bfd_get_filename (reader->abfd));
18213 dump_die (*diep, dwarf_die_debug);
18214 }
18215
18216 return result;
18217 }
18218 \f
18219 /* Abbreviation tables.
18220
18221 In DWARF version 2, the description of the debugging information is
18222 stored in a separate .debug_abbrev section. Before we read any
18223 dies from a section we read in all abbreviations and install them
18224 in a hash table. */
18225
18226 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18227
18228 struct abbrev_info *
18229 abbrev_table::alloc_abbrev ()
18230 {
18231 struct abbrev_info *abbrev;
18232
18233 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18234 memset (abbrev, 0, sizeof (struct abbrev_info));
18235
18236 return abbrev;
18237 }
18238
18239 /* Add an abbreviation to the table. */
18240
18241 void
18242 abbrev_table::add_abbrev (unsigned int abbrev_number,
18243 struct abbrev_info *abbrev)
18244 {
18245 unsigned int hash_number;
18246
18247 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18248 abbrev->next = m_abbrevs[hash_number];
18249 m_abbrevs[hash_number] = abbrev;
18250 }
18251
18252 /* Look up an abbrev in the table.
18253 Returns NULL if the abbrev is not found. */
18254
18255 struct abbrev_info *
18256 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18257 {
18258 unsigned int hash_number;
18259 struct abbrev_info *abbrev;
18260
18261 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18262 abbrev = m_abbrevs[hash_number];
18263
18264 while (abbrev)
18265 {
18266 if (abbrev->number == abbrev_number)
18267 return abbrev;
18268 abbrev = abbrev->next;
18269 }
18270 return NULL;
18271 }
18272
18273 /* Read in an abbrev table. */
18274
18275 static abbrev_table_up
18276 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18277 struct dwarf2_section_info *section,
18278 sect_offset sect_off)
18279 {
18280 struct objfile *objfile = dwarf2_per_objfile->objfile;
18281 bfd *abfd = get_section_bfd_owner (section);
18282 const gdb_byte *abbrev_ptr;
18283 struct abbrev_info *cur_abbrev;
18284 unsigned int abbrev_number, bytes_read, abbrev_name;
18285 unsigned int abbrev_form;
18286 struct attr_abbrev *cur_attrs;
18287 unsigned int allocated_attrs;
18288
18289 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18290
18291 dwarf2_read_section (objfile, section);
18292 abbrev_ptr = section->buffer + to_underlying (sect_off);
18293 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18294 abbrev_ptr += bytes_read;
18295
18296 allocated_attrs = ATTR_ALLOC_CHUNK;
18297 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18298
18299 /* Loop until we reach an abbrev number of 0. */
18300 while (abbrev_number)
18301 {
18302 cur_abbrev = abbrev_table->alloc_abbrev ();
18303
18304 /* read in abbrev header */
18305 cur_abbrev->number = abbrev_number;
18306 cur_abbrev->tag
18307 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18308 abbrev_ptr += bytes_read;
18309 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18310 abbrev_ptr += 1;
18311
18312 /* now read in declarations */
18313 for (;;)
18314 {
18315 LONGEST implicit_const;
18316
18317 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18318 abbrev_ptr += bytes_read;
18319 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18320 abbrev_ptr += bytes_read;
18321 if (abbrev_form == DW_FORM_implicit_const)
18322 {
18323 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18324 &bytes_read);
18325 abbrev_ptr += bytes_read;
18326 }
18327 else
18328 {
18329 /* Initialize it due to a false compiler warning. */
18330 implicit_const = -1;
18331 }
18332
18333 if (abbrev_name == 0)
18334 break;
18335
18336 if (cur_abbrev->num_attrs == allocated_attrs)
18337 {
18338 allocated_attrs += ATTR_ALLOC_CHUNK;
18339 cur_attrs
18340 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18341 }
18342
18343 cur_attrs[cur_abbrev->num_attrs].name
18344 = (enum dwarf_attribute) abbrev_name;
18345 cur_attrs[cur_abbrev->num_attrs].form
18346 = (enum dwarf_form) abbrev_form;
18347 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18348 ++cur_abbrev->num_attrs;
18349 }
18350
18351 cur_abbrev->attrs =
18352 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18353 cur_abbrev->num_attrs);
18354 memcpy (cur_abbrev->attrs, cur_attrs,
18355 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18356
18357 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18358
18359 /* Get next abbreviation.
18360 Under Irix6 the abbreviations for a compilation unit are not
18361 always properly terminated with an abbrev number of 0.
18362 Exit loop if we encounter an abbreviation which we have
18363 already read (which means we are about to read the abbreviations
18364 for the next compile unit) or if the end of the abbreviation
18365 table is reached. */
18366 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18367 break;
18368 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18369 abbrev_ptr += bytes_read;
18370 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18371 break;
18372 }
18373
18374 xfree (cur_attrs);
18375 return abbrev_table;
18376 }
18377
18378 /* Returns nonzero if TAG represents a type that we might generate a partial
18379 symbol for. */
18380
18381 static int
18382 is_type_tag_for_partial (int tag)
18383 {
18384 switch (tag)
18385 {
18386 #if 0
18387 /* Some types that would be reasonable to generate partial symbols for,
18388 that we don't at present. */
18389 case DW_TAG_array_type:
18390 case DW_TAG_file_type:
18391 case DW_TAG_ptr_to_member_type:
18392 case DW_TAG_set_type:
18393 case DW_TAG_string_type:
18394 case DW_TAG_subroutine_type:
18395 #endif
18396 case DW_TAG_base_type:
18397 case DW_TAG_class_type:
18398 case DW_TAG_interface_type:
18399 case DW_TAG_enumeration_type:
18400 case DW_TAG_structure_type:
18401 case DW_TAG_subrange_type:
18402 case DW_TAG_typedef:
18403 case DW_TAG_union_type:
18404 return 1;
18405 default:
18406 return 0;
18407 }
18408 }
18409
18410 /* Load all DIEs that are interesting for partial symbols into memory. */
18411
18412 static struct partial_die_info *
18413 load_partial_dies (const struct die_reader_specs *reader,
18414 const gdb_byte *info_ptr, int building_psymtab)
18415 {
18416 struct dwarf2_cu *cu = reader->cu;
18417 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18418 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18419 unsigned int bytes_read;
18420 unsigned int load_all = 0;
18421 int nesting_level = 1;
18422
18423 parent_die = NULL;
18424 last_die = NULL;
18425
18426 gdb_assert (cu->per_cu != NULL);
18427 if (cu->per_cu->load_all_dies)
18428 load_all = 1;
18429
18430 cu->partial_dies
18431 = htab_create_alloc_ex (cu->header.length / 12,
18432 partial_die_hash,
18433 partial_die_eq,
18434 NULL,
18435 &cu->comp_unit_obstack,
18436 hashtab_obstack_allocate,
18437 dummy_obstack_deallocate);
18438
18439 while (1)
18440 {
18441 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18442
18443 /* A NULL abbrev means the end of a series of children. */
18444 if (abbrev == NULL)
18445 {
18446 if (--nesting_level == 0)
18447 return first_die;
18448
18449 info_ptr += bytes_read;
18450 last_die = parent_die;
18451 parent_die = parent_die->die_parent;
18452 continue;
18453 }
18454
18455 /* Check for template arguments. We never save these; if
18456 they're seen, we just mark the parent, and go on our way. */
18457 if (parent_die != NULL
18458 && cu->language == language_cplus
18459 && (abbrev->tag == DW_TAG_template_type_param
18460 || abbrev->tag == DW_TAG_template_value_param))
18461 {
18462 parent_die->has_template_arguments = 1;
18463
18464 if (!load_all)
18465 {
18466 /* We don't need a partial DIE for the template argument. */
18467 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18468 continue;
18469 }
18470 }
18471
18472 /* We only recurse into c++ subprograms looking for template arguments.
18473 Skip their other children. */
18474 if (!load_all
18475 && cu->language == language_cplus
18476 && parent_die != NULL
18477 && parent_die->tag == DW_TAG_subprogram)
18478 {
18479 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18480 continue;
18481 }
18482
18483 /* Check whether this DIE is interesting enough to save. Normally
18484 we would not be interested in members here, but there may be
18485 later variables referencing them via DW_AT_specification (for
18486 static members). */
18487 if (!load_all
18488 && !is_type_tag_for_partial (abbrev->tag)
18489 && abbrev->tag != DW_TAG_constant
18490 && abbrev->tag != DW_TAG_enumerator
18491 && abbrev->tag != DW_TAG_subprogram
18492 && abbrev->tag != DW_TAG_inlined_subroutine
18493 && abbrev->tag != DW_TAG_lexical_block
18494 && abbrev->tag != DW_TAG_variable
18495 && abbrev->tag != DW_TAG_namespace
18496 && abbrev->tag != DW_TAG_module
18497 && abbrev->tag != DW_TAG_member
18498 && abbrev->tag != DW_TAG_imported_unit
18499 && abbrev->tag != DW_TAG_imported_declaration)
18500 {
18501 /* Otherwise we skip to the next sibling, if any. */
18502 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18503 continue;
18504 }
18505
18506 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18507 abbrev);
18508
18509 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18510
18511 /* This two-pass algorithm for processing partial symbols has a
18512 high cost in cache pressure. Thus, handle some simple cases
18513 here which cover the majority of C partial symbols. DIEs
18514 which neither have specification tags in them, nor could have
18515 specification tags elsewhere pointing at them, can simply be
18516 processed and discarded.
18517
18518 This segment is also optional; scan_partial_symbols and
18519 add_partial_symbol will handle these DIEs if we chain
18520 them in normally. When compilers which do not emit large
18521 quantities of duplicate debug information are more common,
18522 this code can probably be removed. */
18523
18524 /* Any complete simple types at the top level (pretty much all
18525 of them, for a language without namespaces), can be processed
18526 directly. */
18527 if (parent_die == NULL
18528 && pdi.has_specification == 0
18529 && pdi.is_declaration == 0
18530 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18531 || pdi.tag == DW_TAG_base_type
18532 || pdi.tag == DW_TAG_subrange_type))
18533 {
18534 if (building_psymtab && pdi.name != NULL)
18535 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18536 VAR_DOMAIN, LOC_TYPEDEF, -1,
18537 psymbol_placement::STATIC,
18538 0, cu->language, objfile);
18539 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18540 continue;
18541 }
18542
18543 /* The exception for DW_TAG_typedef with has_children above is
18544 a workaround of GCC PR debug/47510. In the case of this complaint
18545 type_name_or_error will error on such types later.
18546
18547 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18548 it could not find the child DIEs referenced later, this is checked
18549 above. In correct DWARF DW_TAG_typedef should have no children. */
18550
18551 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18552 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18553 "- DIE at %s [in module %s]"),
18554 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18555
18556 /* If we're at the second level, and we're an enumerator, and
18557 our parent has no specification (meaning possibly lives in a
18558 namespace elsewhere), then we can add the partial symbol now
18559 instead of queueing it. */
18560 if (pdi.tag == DW_TAG_enumerator
18561 && parent_die != NULL
18562 && parent_die->die_parent == NULL
18563 && parent_die->tag == DW_TAG_enumeration_type
18564 && parent_die->has_specification == 0)
18565 {
18566 if (pdi.name == NULL)
18567 complaint (_("malformed enumerator DIE ignored"));
18568 else if (building_psymtab)
18569 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18570 VAR_DOMAIN, LOC_CONST, -1,
18571 cu->language == language_cplus
18572 ? psymbol_placement::GLOBAL
18573 : psymbol_placement::STATIC,
18574 0, cu->language, objfile);
18575
18576 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18577 continue;
18578 }
18579
18580 struct partial_die_info *part_die
18581 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18582
18583 /* We'll save this DIE so link it in. */
18584 part_die->die_parent = parent_die;
18585 part_die->die_sibling = NULL;
18586 part_die->die_child = NULL;
18587
18588 if (last_die && last_die == parent_die)
18589 last_die->die_child = part_die;
18590 else if (last_die)
18591 last_die->die_sibling = part_die;
18592
18593 last_die = part_die;
18594
18595 if (first_die == NULL)
18596 first_die = part_die;
18597
18598 /* Maybe add the DIE to the hash table. Not all DIEs that we
18599 find interesting need to be in the hash table, because we
18600 also have the parent/sibling/child chains; only those that we
18601 might refer to by offset later during partial symbol reading.
18602
18603 For now this means things that might have be the target of a
18604 DW_AT_specification, DW_AT_abstract_origin, or
18605 DW_AT_extension. DW_AT_extension will refer only to
18606 namespaces; DW_AT_abstract_origin refers to functions (and
18607 many things under the function DIE, but we do not recurse
18608 into function DIEs during partial symbol reading) and
18609 possibly variables as well; DW_AT_specification refers to
18610 declarations. Declarations ought to have the DW_AT_declaration
18611 flag. It happens that GCC forgets to put it in sometimes, but
18612 only for functions, not for types.
18613
18614 Adding more things than necessary to the hash table is harmless
18615 except for the performance cost. Adding too few will result in
18616 wasted time in find_partial_die, when we reread the compilation
18617 unit with load_all_dies set. */
18618
18619 if (load_all
18620 || abbrev->tag == DW_TAG_constant
18621 || abbrev->tag == DW_TAG_subprogram
18622 || abbrev->tag == DW_TAG_variable
18623 || abbrev->tag == DW_TAG_namespace
18624 || part_die->is_declaration)
18625 {
18626 void **slot;
18627
18628 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18629 to_underlying (part_die->sect_off),
18630 INSERT);
18631 *slot = part_die;
18632 }
18633
18634 /* For some DIEs we want to follow their children (if any). For C
18635 we have no reason to follow the children of structures; for other
18636 languages we have to, so that we can get at method physnames
18637 to infer fully qualified class names, for DW_AT_specification,
18638 and for C++ template arguments. For C++, we also look one level
18639 inside functions to find template arguments (if the name of the
18640 function does not already contain the template arguments).
18641
18642 For Ada, we need to scan the children of subprograms and lexical
18643 blocks as well because Ada allows the definition of nested
18644 entities that could be interesting for the debugger, such as
18645 nested subprograms for instance. */
18646 if (last_die->has_children
18647 && (load_all
18648 || last_die->tag == DW_TAG_namespace
18649 || last_die->tag == DW_TAG_module
18650 || last_die->tag == DW_TAG_enumeration_type
18651 || (cu->language == language_cplus
18652 && last_die->tag == DW_TAG_subprogram
18653 && (last_die->name == NULL
18654 || strchr (last_die->name, '<') == NULL))
18655 || (cu->language != language_c
18656 && (last_die->tag == DW_TAG_class_type
18657 || last_die->tag == DW_TAG_interface_type
18658 || last_die->tag == DW_TAG_structure_type
18659 || last_die->tag == DW_TAG_union_type))
18660 || (cu->language == language_ada
18661 && (last_die->tag == DW_TAG_subprogram
18662 || last_die->tag == DW_TAG_lexical_block))))
18663 {
18664 nesting_level++;
18665 parent_die = last_die;
18666 continue;
18667 }
18668
18669 /* Otherwise we skip to the next sibling, if any. */
18670 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18671
18672 /* Back to the top, do it again. */
18673 }
18674 }
18675
18676 partial_die_info::partial_die_info (sect_offset sect_off_,
18677 struct abbrev_info *abbrev)
18678 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18679 {
18680 }
18681
18682 /* Read a minimal amount of information into the minimal die structure.
18683 INFO_PTR should point just after the initial uleb128 of a DIE. */
18684
18685 const gdb_byte *
18686 partial_die_info::read (const struct die_reader_specs *reader,
18687 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18688 {
18689 struct dwarf2_cu *cu = reader->cu;
18690 struct dwarf2_per_objfile *dwarf2_per_objfile
18691 = cu->per_cu->dwarf2_per_objfile;
18692 unsigned int i;
18693 int has_low_pc_attr = 0;
18694 int has_high_pc_attr = 0;
18695 int high_pc_relative = 0;
18696
18697 for (i = 0; i < abbrev.num_attrs; ++i)
18698 {
18699 struct attribute attr;
18700
18701 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18702
18703 /* Store the data if it is of an attribute we want to keep in a
18704 partial symbol table. */
18705 switch (attr.name)
18706 {
18707 case DW_AT_name:
18708 switch (tag)
18709 {
18710 case DW_TAG_compile_unit:
18711 case DW_TAG_partial_unit:
18712 case DW_TAG_type_unit:
18713 /* Compilation units have a DW_AT_name that is a filename, not
18714 a source language identifier. */
18715 case DW_TAG_enumeration_type:
18716 case DW_TAG_enumerator:
18717 /* These tags always have simple identifiers already; no need
18718 to canonicalize them. */
18719 name = DW_STRING (&attr);
18720 break;
18721 default:
18722 {
18723 struct objfile *objfile = dwarf2_per_objfile->objfile;
18724
18725 name
18726 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18727 &objfile->per_bfd->storage_obstack);
18728 }
18729 break;
18730 }
18731 break;
18732 case DW_AT_linkage_name:
18733 case DW_AT_MIPS_linkage_name:
18734 /* Note that both forms of linkage name might appear. We
18735 assume they will be the same, and we only store the last
18736 one we see. */
18737 if (cu->language == language_ada)
18738 name = DW_STRING (&attr);
18739 linkage_name = DW_STRING (&attr);
18740 break;
18741 case DW_AT_low_pc:
18742 has_low_pc_attr = 1;
18743 lowpc = attr_value_as_address (&attr);
18744 break;
18745 case DW_AT_high_pc:
18746 has_high_pc_attr = 1;
18747 highpc = attr_value_as_address (&attr);
18748 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18749 high_pc_relative = 1;
18750 break;
18751 case DW_AT_location:
18752 /* Support the .debug_loc offsets. */
18753 if (attr_form_is_block (&attr))
18754 {
18755 d.locdesc = DW_BLOCK (&attr);
18756 }
18757 else if (attr_form_is_section_offset (&attr))
18758 {
18759 dwarf2_complex_location_expr_complaint ();
18760 }
18761 else
18762 {
18763 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18764 "partial symbol information");
18765 }
18766 break;
18767 case DW_AT_external:
18768 is_external = DW_UNSND (&attr);
18769 break;
18770 case DW_AT_declaration:
18771 is_declaration = DW_UNSND (&attr);
18772 break;
18773 case DW_AT_type:
18774 has_type = 1;
18775 break;
18776 case DW_AT_abstract_origin:
18777 case DW_AT_specification:
18778 case DW_AT_extension:
18779 has_specification = 1;
18780 spec_offset = dwarf2_get_ref_die_offset (&attr);
18781 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18782 || cu->per_cu->is_dwz);
18783 break;
18784 case DW_AT_sibling:
18785 /* Ignore absolute siblings, they might point outside of
18786 the current compile unit. */
18787 if (attr.form == DW_FORM_ref_addr)
18788 complaint (_("ignoring absolute DW_AT_sibling"));
18789 else
18790 {
18791 const gdb_byte *buffer = reader->buffer;
18792 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18793 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18794
18795 if (sibling_ptr < info_ptr)
18796 complaint (_("DW_AT_sibling points backwards"));
18797 else if (sibling_ptr > reader->buffer_end)
18798 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18799 else
18800 sibling = sibling_ptr;
18801 }
18802 break;
18803 case DW_AT_byte_size:
18804 has_byte_size = 1;
18805 break;
18806 case DW_AT_const_value:
18807 has_const_value = 1;
18808 break;
18809 case DW_AT_calling_convention:
18810 /* DWARF doesn't provide a way to identify a program's source-level
18811 entry point. DW_AT_calling_convention attributes are only meant
18812 to describe functions' calling conventions.
18813
18814 However, because it's a necessary piece of information in
18815 Fortran, and before DWARF 4 DW_CC_program was the only
18816 piece of debugging information whose definition refers to
18817 a 'main program' at all, several compilers marked Fortran
18818 main programs with DW_CC_program --- even when those
18819 functions use the standard calling conventions.
18820
18821 Although DWARF now specifies a way to provide this
18822 information, we support this practice for backward
18823 compatibility. */
18824 if (DW_UNSND (&attr) == DW_CC_program
18825 && cu->language == language_fortran)
18826 main_subprogram = 1;
18827 break;
18828 case DW_AT_inline:
18829 if (DW_UNSND (&attr) == DW_INL_inlined
18830 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18831 may_be_inlined = 1;
18832 break;
18833
18834 case DW_AT_import:
18835 if (tag == DW_TAG_imported_unit)
18836 {
18837 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18838 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18839 || cu->per_cu->is_dwz);
18840 }
18841 break;
18842
18843 case DW_AT_main_subprogram:
18844 main_subprogram = DW_UNSND (&attr);
18845 break;
18846
18847 case DW_AT_ranges:
18848 {
18849 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18850 but that requires a full DIE, so instead we just
18851 reimplement it. */
18852 int need_ranges_base = tag != DW_TAG_compile_unit;
18853 unsigned int ranges_offset = (DW_UNSND (&attr)
18854 + (need_ranges_base
18855 ? cu->ranges_base
18856 : 0));
18857
18858 /* Value of the DW_AT_ranges attribute is the offset in the
18859 .debug_ranges section. */
18860 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18861 nullptr))
18862 has_pc_info = 1;
18863 }
18864 break;
18865
18866 default:
18867 break;
18868 }
18869 }
18870
18871 if (high_pc_relative)
18872 highpc += lowpc;
18873
18874 if (has_low_pc_attr && has_high_pc_attr)
18875 {
18876 /* When using the GNU linker, .gnu.linkonce. sections are used to
18877 eliminate duplicate copies of functions and vtables and such.
18878 The linker will arbitrarily choose one and discard the others.
18879 The AT_*_pc values for such functions refer to local labels in
18880 these sections. If the section from that file was discarded, the
18881 labels are not in the output, so the relocs get a value of 0.
18882 If this is a discarded function, mark the pc bounds as invalid,
18883 so that GDB will ignore it. */
18884 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18885 {
18886 struct objfile *objfile = dwarf2_per_objfile->objfile;
18887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18888
18889 complaint (_("DW_AT_low_pc %s is zero "
18890 "for DIE at %s [in module %s]"),
18891 paddress (gdbarch, lowpc),
18892 sect_offset_str (sect_off),
18893 objfile_name (objfile));
18894 }
18895 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18896 else if (lowpc >= highpc)
18897 {
18898 struct objfile *objfile = dwarf2_per_objfile->objfile;
18899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18900
18901 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18902 "for DIE at %s [in module %s]"),
18903 paddress (gdbarch, lowpc),
18904 paddress (gdbarch, highpc),
18905 sect_offset_str (sect_off),
18906 objfile_name (objfile));
18907 }
18908 else
18909 has_pc_info = 1;
18910 }
18911
18912 return info_ptr;
18913 }
18914
18915 /* Find a cached partial DIE at OFFSET in CU. */
18916
18917 struct partial_die_info *
18918 dwarf2_cu::find_partial_die (sect_offset sect_off)
18919 {
18920 struct partial_die_info *lookup_die = NULL;
18921 struct partial_die_info part_die (sect_off);
18922
18923 lookup_die = ((struct partial_die_info *)
18924 htab_find_with_hash (partial_dies, &part_die,
18925 to_underlying (sect_off)));
18926
18927 return lookup_die;
18928 }
18929
18930 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18931 except in the case of .debug_types DIEs which do not reference
18932 outside their CU (they do however referencing other types via
18933 DW_FORM_ref_sig8). */
18934
18935 static const struct cu_partial_die_info
18936 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18937 {
18938 struct dwarf2_per_objfile *dwarf2_per_objfile
18939 = cu->per_cu->dwarf2_per_objfile;
18940 struct objfile *objfile = dwarf2_per_objfile->objfile;
18941 struct dwarf2_per_cu_data *per_cu = NULL;
18942 struct partial_die_info *pd = NULL;
18943
18944 if (offset_in_dwz == cu->per_cu->is_dwz
18945 && offset_in_cu_p (&cu->header, sect_off))
18946 {
18947 pd = cu->find_partial_die (sect_off);
18948 if (pd != NULL)
18949 return { cu, pd };
18950 /* We missed recording what we needed.
18951 Load all dies and try again. */
18952 per_cu = cu->per_cu;
18953 }
18954 else
18955 {
18956 /* TUs don't reference other CUs/TUs (except via type signatures). */
18957 if (cu->per_cu->is_debug_types)
18958 {
18959 error (_("Dwarf Error: Type Unit at offset %s contains"
18960 " external reference to offset %s [in module %s].\n"),
18961 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18962 bfd_get_filename (objfile->obfd));
18963 }
18964 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18965 dwarf2_per_objfile);
18966
18967 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18968 load_partial_comp_unit (per_cu);
18969
18970 per_cu->cu->last_used = 0;
18971 pd = per_cu->cu->find_partial_die (sect_off);
18972 }
18973
18974 /* If we didn't find it, and not all dies have been loaded,
18975 load them all and try again. */
18976
18977 if (pd == NULL && per_cu->load_all_dies == 0)
18978 {
18979 per_cu->load_all_dies = 1;
18980
18981 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18982 THIS_CU->cu may already be in use. So we can't just free it and
18983 replace its DIEs with the ones we read in. Instead, we leave those
18984 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18985 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18986 set. */
18987 load_partial_comp_unit (per_cu);
18988
18989 pd = per_cu->cu->find_partial_die (sect_off);
18990 }
18991
18992 if (pd == NULL)
18993 internal_error (__FILE__, __LINE__,
18994 _("could not find partial DIE %s "
18995 "in cache [from module %s]\n"),
18996 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18997 return { per_cu->cu, pd };
18998 }
18999
19000 /* See if we can figure out if the class lives in a namespace. We do
19001 this by looking for a member function; its demangled name will
19002 contain namespace info, if there is any. */
19003
19004 static void
19005 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19006 struct dwarf2_cu *cu)
19007 {
19008 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19009 what template types look like, because the demangler
19010 frequently doesn't give the same name as the debug info. We
19011 could fix this by only using the demangled name to get the
19012 prefix (but see comment in read_structure_type). */
19013
19014 struct partial_die_info *real_pdi;
19015 struct partial_die_info *child_pdi;
19016
19017 /* If this DIE (this DIE's specification, if any) has a parent, then
19018 we should not do this. We'll prepend the parent's fully qualified
19019 name when we create the partial symbol. */
19020
19021 real_pdi = struct_pdi;
19022 while (real_pdi->has_specification)
19023 {
19024 auto res = find_partial_die (real_pdi->spec_offset,
19025 real_pdi->spec_is_dwz, cu);
19026 real_pdi = res.pdi;
19027 cu = res.cu;
19028 }
19029
19030 if (real_pdi->die_parent != NULL)
19031 return;
19032
19033 for (child_pdi = struct_pdi->die_child;
19034 child_pdi != NULL;
19035 child_pdi = child_pdi->die_sibling)
19036 {
19037 if (child_pdi->tag == DW_TAG_subprogram
19038 && child_pdi->linkage_name != NULL)
19039 {
19040 char *actual_class_name
19041 = language_class_name_from_physname (cu->language_defn,
19042 child_pdi->linkage_name);
19043 if (actual_class_name != NULL)
19044 {
19045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19046 struct_pdi->name
19047 = ((const char *)
19048 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19049 actual_class_name,
19050 strlen (actual_class_name)));
19051 xfree (actual_class_name);
19052 }
19053 break;
19054 }
19055 }
19056 }
19057
19058 void
19059 partial_die_info::fixup (struct dwarf2_cu *cu)
19060 {
19061 /* Once we've fixed up a die, there's no point in doing so again.
19062 This also avoids a memory leak if we were to call
19063 guess_partial_die_structure_name multiple times. */
19064 if (fixup_called)
19065 return;
19066
19067 /* If we found a reference attribute and the DIE has no name, try
19068 to find a name in the referred to DIE. */
19069
19070 if (name == NULL && has_specification)
19071 {
19072 struct partial_die_info *spec_die;
19073
19074 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19075 spec_die = res.pdi;
19076 cu = res.cu;
19077
19078 spec_die->fixup (cu);
19079
19080 if (spec_die->name)
19081 {
19082 name = spec_die->name;
19083
19084 /* Copy DW_AT_external attribute if it is set. */
19085 if (spec_die->is_external)
19086 is_external = spec_die->is_external;
19087 }
19088 }
19089
19090 /* Set default names for some unnamed DIEs. */
19091
19092 if (name == NULL && tag == DW_TAG_namespace)
19093 name = CP_ANONYMOUS_NAMESPACE_STR;
19094
19095 /* If there is no parent die to provide a namespace, and there are
19096 children, see if we can determine the namespace from their linkage
19097 name. */
19098 if (cu->language == language_cplus
19099 && !VEC_empty (dwarf2_section_info_def,
19100 cu->per_cu->dwarf2_per_objfile->types)
19101 && die_parent == NULL
19102 && has_children
19103 && (tag == DW_TAG_class_type
19104 || tag == DW_TAG_structure_type
19105 || tag == DW_TAG_union_type))
19106 guess_partial_die_structure_name (this, cu);
19107
19108 /* GCC might emit a nameless struct or union that has a linkage
19109 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19110 if (name == NULL
19111 && (tag == DW_TAG_class_type
19112 || tag == DW_TAG_interface_type
19113 || tag == DW_TAG_structure_type
19114 || tag == DW_TAG_union_type)
19115 && linkage_name != NULL)
19116 {
19117 char *demangled;
19118
19119 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19120 if (demangled)
19121 {
19122 const char *base;
19123
19124 /* Strip any leading namespaces/classes, keep only the base name.
19125 DW_AT_name for named DIEs does not contain the prefixes. */
19126 base = strrchr (demangled, ':');
19127 if (base && base > demangled && base[-1] == ':')
19128 base++;
19129 else
19130 base = demangled;
19131
19132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19133 name
19134 = ((const char *)
19135 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19136 base, strlen (base)));
19137 xfree (demangled);
19138 }
19139 }
19140
19141 fixup_called = 1;
19142 }
19143
19144 /* Read an attribute value described by an attribute form. */
19145
19146 static const gdb_byte *
19147 read_attribute_value (const struct die_reader_specs *reader,
19148 struct attribute *attr, unsigned form,
19149 LONGEST implicit_const, const gdb_byte *info_ptr)
19150 {
19151 struct dwarf2_cu *cu = reader->cu;
19152 struct dwarf2_per_objfile *dwarf2_per_objfile
19153 = cu->per_cu->dwarf2_per_objfile;
19154 struct objfile *objfile = dwarf2_per_objfile->objfile;
19155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19156 bfd *abfd = reader->abfd;
19157 struct comp_unit_head *cu_header = &cu->header;
19158 unsigned int bytes_read;
19159 struct dwarf_block *blk;
19160
19161 attr->form = (enum dwarf_form) form;
19162 switch (form)
19163 {
19164 case DW_FORM_ref_addr:
19165 if (cu->header.version == 2)
19166 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19167 else
19168 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19169 &cu->header, &bytes_read);
19170 info_ptr += bytes_read;
19171 break;
19172 case DW_FORM_GNU_ref_alt:
19173 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19174 info_ptr += bytes_read;
19175 break;
19176 case DW_FORM_addr:
19177 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19178 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19179 info_ptr += bytes_read;
19180 break;
19181 case DW_FORM_block2:
19182 blk = dwarf_alloc_block (cu);
19183 blk->size = read_2_bytes (abfd, info_ptr);
19184 info_ptr += 2;
19185 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19186 info_ptr += blk->size;
19187 DW_BLOCK (attr) = blk;
19188 break;
19189 case DW_FORM_block4:
19190 blk = dwarf_alloc_block (cu);
19191 blk->size = read_4_bytes (abfd, info_ptr);
19192 info_ptr += 4;
19193 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19194 info_ptr += blk->size;
19195 DW_BLOCK (attr) = blk;
19196 break;
19197 case DW_FORM_data2:
19198 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19199 info_ptr += 2;
19200 break;
19201 case DW_FORM_data4:
19202 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19203 info_ptr += 4;
19204 break;
19205 case DW_FORM_data8:
19206 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19207 info_ptr += 8;
19208 break;
19209 case DW_FORM_data16:
19210 blk = dwarf_alloc_block (cu);
19211 blk->size = 16;
19212 blk->data = read_n_bytes (abfd, info_ptr, 16);
19213 info_ptr += 16;
19214 DW_BLOCK (attr) = blk;
19215 break;
19216 case DW_FORM_sec_offset:
19217 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19218 info_ptr += bytes_read;
19219 break;
19220 case DW_FORM_string:
19221 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19222 DW_STRING_IS_CANONICAL (attr) = 0;
19223 info_ptr += bytes_read;
19224 break;
19225 case DW_FORM_strp:
19226 if (!cu->per_cu->is_dwz)
19227 {
19228 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19229 abfd, info_ptr, cu_header,
19230 &bytes_read);
19231 DW_STRING_IS_CANONICAL (attr) = 0;
19232 info_ptr += bytes_read;
19233 break;
19234 }
19235 /* FALLTHROUGH */
19236 case DW_FORM_line_strp:
19237 if (!cu->per_cu->is_dwz)
19238 {
19239 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19240 abfd, info_ptr,
19241 cu_header, &bytes_read);
19242 DW_STRING_IS_CANONICAL (attr) = 0;
19243 info_ptr += bytes_read;
19244 break;
19245 }
19246 /* FALLTHROUGH */
19247 case DW_FORM_GNU_strp_alt:
19248 {
19249 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19250 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19251 &bytes_read);
19252
19253 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19254 dwz, str_offset);
19255 DW_STRING_IS_CANONICAL (attr) = 0;
19256 info_ptr += bytes_read;
19257 }
19258 break;
19259 case DW_FORM_exprloc:
19260 case DW_FORM_block:
19261 blk = dwarf_alloc_block (cu);
19262 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19263 info_ptr += bytes_read;
19264 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19265 info_ptr += blk->size;
19266 DW_BLOCK (attr) = blk;
19267 break;
19268 case DW_FORM_block1:
19269 blk = dwarf_alloc_block (cu);
19270 blk->size = read_1_byte (abfd, info_ptr);
19271 info_ptr += 1;
19272 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19273 info_ptr += blk->size;
19274 DW_BLOCK (attr) = blk;
19275 break;
19276 case DW_FORM_data1:
19277 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19278 info_ptr += 1;
19279 break;
19280 case DW_FORM_flag:
19281 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19282 info_ptr += 1;
19283 break;
19284 case DW_FORM_flag_present:
19285 DW_UNSND (attr) = 1;
19286 break;
19287 case DW_FORM_sdata:
19288 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19289 info_ptr += bytes_read;
19290 break;
19291 case DW_FORM_udata:
19292 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19293 info_ptr += bytes_read;
19294 break;
19295 case DW_FORM_ref1:
19296 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19297 + read_1_byte (abfd, info_ptr));
19298 info_ptr += 1;
19299 break;
19300 case DW_FORM_ref2:
19301 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19302 + read_2_bytes (abfd, info_ptr));
19303 info_ptr += 2;
19304 break;
19305 case DW_FORM_ref4:
19306 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19307 + read_4_bytes (abfd, info_ptr));
19308 info_ptr += 4;
19309 break;
19310 case DW_FORM_ref8:
19311 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19312 + read_8_bytes (abfd, info_ptr));
19313 info_ptr += 8;
19314 break;
19315 case DW_FORM_ref_sig8:
19316 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19317 info_ptr += 8;
19318 break;
19319 case DW_FORM_ref_udata:
19320 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19321 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19322 info_ptr += bytes_read;
19323 break;
19324 case DW_FORM_indirect:
19325 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19326 info_ptr += bytes_read;
19327 if (form == DW_FORM_implicit_const)
19328 {
19329 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19330 info_ptr += bytes_read;
19331 }
19332 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19333 info_ptr);
19334 break;
19335 case DW_FORM_implicit_const:
19336 DW_SND (attr) = implicit_const;
19337 break;
19338 case DW_FORM_addrx:
19339 case DW_FORM_GNU_addr_index:
19340 if (reader->dwo_file == NULL)
19341 {
19342 /* For now flag a hard error.
19343 Later we can turn this into a complaint. */
19344 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19345 dwarf_form_name (form),
19346 bfd_get_filename (abfd));
19347 }
19348 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19349 info_ptr += bytes_read;
19350 break;
19351 case DW_FORM_strx:
19352 case DW_FORM_strx1:
19353 case DW_FORM_strx2:
19354 case DW_FORM_strx3:
19355 case DW_FORM_strx4:
19356 case DW_FORM_GNU_str_index:
19357 if (reader->dwo_file == NULL)
19358 {
19359 /* For now flag a hard error.
19360 Later we can turn this into a complaint if warranted. */
19361 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19362 dwarf_form_name (form),
19363 bfd_get_filename (abfd));
19364 }
19365 {
19366 ULONGEST str_index;
19367 if (form == DW_FORM_strx1)
19368 {
19369 str_index = read_1_byte (abfd, info_ptr);
19370 info_ptr += 1;
19371 }
19372 else if (form == DW_FORM_strx2)
19373 {
19374 str_index = read_2_bytes (abfd, info_ptr);
19375 info_ptr += 2;
19376 }
19377 else if (form == DW_FORM_strx3)
19378 {
19379 str_index = read_3_bytes (abfd, info_ptr);
19380 info_ptr += 3;
19381 }
19382 else if (form == DW_FORM_strx4)
19383 {
19384 str_index = read_4_bytes (abfd, info_ptr);
19385 info_ptr += 4;
19386 }
19387 else
19388 {
19389 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19390 info_ptr += bytes_read;
19391 }
19392 DW_STRING (attr) = read_str_index (reader, str_index);
19393 DW_STRING_IS_CANONICAL (attr) = 0;
19394 }
19395 break;
19396 default:
19397 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19398 dwarf_form_name (form),
19399 bfd_get_filename (abfd));
19400 }
19401
19402 /* Super hack. */
19403 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19404 attr->form = DW_FORM_GNU_ref_alt;
19405
19406 /* We have seen instances where the compiler tried to emit a byte
19407 size attribute of -1 which ended up being encoded as an unsigned
19408 0xffffffff. Although 0xffffffff is technically a valid size value,
19409 an object of this size seems pretty unlikely so we can relatively
19410 safely treat these cases as if the size attribute was invalid and
19411 treat them as zero by default. */
19412 if (attr->name == DW_AT_byte_size
19413 && form == DW_FORM_data4
19414 && DW_UNSND (attr) >= 0xffffffff)
19415 {
19416 complaint
19417 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19418 hex_string (DW_UNSND (attr)));
19419 DW_UNSND (attr) = 0;
19420 }
19421
19422 return info_ptr;
19423 }
19424
19425 /* Read an attribute described by an abbreviated attribute. */
19426
19427 static const gdb_byte *
19428 read_attribute (const struct die_reader_specs *reader,
19429 struct attribute *attr, struct attr_abbrev *abbrev,
19430 const gdb_byte *info_ptr)
19431 {
19432 attr->name = abbrev->name;
19433 return read_attribute_value (reader, attr, abbrev->form,
19434 abbrev->implicit_const, info_ptr);
19435 }
19436
19437 /* Read dwarf information from a buffer. */
19438
19439 static unsigned int
19440 read_1_byte (bfd *abfd, const gdb_byte *buf)
19441 {
19442 return bfd_get_8 (abfd, buf);
19443 }
19444
19445 static int
19446 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19447 {
19448 return bfd_get_signed_8 (abfd, buf);
19449 }
19450
19451 static unsigned int
19452 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19453 {
19454 return bfd_get_16 (abfd, buf);
19455 }
19456
19457 static int
19458 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19459 {
19460 return bfd_get_signed_16 (abfd, buf);
19461 }
19462
19463 static unsigned int
19464 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19465 {
19466 unsigned int result = 0;
19467 for (int i = 0; i < 3; ++i)
19468 {
19469 unsigned char byte = bfd_get_8 (abfd, buf);
19470 buf++;
19471 result |= ((unsigned int) byte << (i * 8));
19472 }
19473 return result;
19474 }
19475
19476 static unsigned int
19477 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19478 {
19479 return bfd_get_32 (abfd, buf);
19480 }
19481
19482 static int
19483 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19484 {
19485 return bfd_get_signed_32 (abfd, buf);
19486 }
19487
19488 static ULONGEST
19489 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19490 {
19491 return bfd_get_64 (abfd, buf);
19492 }
19493
19494 static CORE_ADDR
19495 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19496 unsigned int *bytes_read)
19497 {
19498 struct comp_unit_head *cu_header = &cu->header;
19499 CORE_ADDR retval = 0;
19500
19501 if (cu_header->signed_addr_p)
19502 {
19503 switch (cu_header->addr_size)
19504 {
19505 case 2:
19506 retval = bfd_get_signed_16 (abfd, buf);
19507 break;
19508 case 4:
19509 retval = bfd_get_signed_32 (abfd, buf);
19510 break;
19511 case 8:
19512 retval = bfd_get_signed_64 (abfd, buf);
19513 break;
19514 default:
19515 internal_error (__FILE__, __LINE__,
19516 _("read_address: bad switch, signed [in module %s]"),
19517 bfd_get_filename (abfd));
19518 }
19519 }
19520 else
19521 {
19522 switch (cu_header->addr_size)
19523 {
19524 case 2:
19525 retval = bfd_get_16 (abfd, buf);
19526 break;
19527 case 4:
19528 retval = bfd_get_32 (abfd, buf);
19529 break;
19530 case 8:
19531 retval = bfd_get_64 (abfd, buf);
19532 break;
19533 default:
19534 internal_error (__FILE__, __LINE__,
19535 _("read_address: bad switch, "
19536 "unsigned [in module %s]"),
19537 bfd_get_filename (abfd));
19538 }
19539 }
19540
19541 *bytes_read = cu_header->addr_size;
19542 return retval;
19543 }
19544
19545 /* Read the initial length from a section. The (draft) DWARF 3
19546 specification allows the initial length to take up either 4 bytes
19547 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19548 bytes describe the length and all offsets will be 8 bytes in length
19549 instead of 4.
19550
19551 An older, non-standard 64-bit format is also handled by this
19552 function. The older format in question stores the initial length
19553 as an 8-byte quantity without an escape value. Lengths greater
19554 than 2^32 aren't very common which means that the initial 4 bytes
19555 is almost always zero. Since a length value of zero doesn't make
19556 sense for the 32-bit format, this initial zero can be considered to
19557 be an escape value which indicates the presence of the older 64-bit
19558 format. As written, the code can't detect (old format) lengths
19559 greater than 4GB. If it becomes necessary to handle lengths
19560 somewhat larger than 4GB, we could allow other small values (such
19561 as the non-sensical values of 1, 2, and 3) to also be used as
19562 escape values indicating the presence of the old format.
19563
19564 The value returned via bytes_read should be used to increment the
19565 relevant pointer after calling read_initial_length().
19566
19567 [ Note: read_initial_length() and read_offset() are based on the
19568 document entitled "DWARF Debugging Information Format", revision
19569 3, draft 8, dated November 19, 2001. This document was obtained
19570 from:
19571
19572 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19573
19574 This document is only a draft and is subject to change. (So beware.)
19575
19576 Details regarding the older, non-standard 64-bit format were
19577 determined empirically by examining 64-bit ELF files produced by
19578 the SGI toolchain on an IRIX 6.5 machine.
19579
19580 - Kevin, July 16, 2002
19581 ] */
19582
19583 static LONGEST
19584 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19585 {
19586 LONGEST length = bfd_get_32 (abfd, buf);
19587
19588 if (length == 0xffffffff)
19589 {
19590 length = bfd_get_64 (abfd, buf + 4);
19591 *bytes_read = 12;
19592 }
19593 else if (length == 0)
19594 {
19595 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19596 length = bfd_get_64 (abfd, buf);
19597 *bytes_read = 8;
19598 }
19599 else
19600 {
19601 *bytes_read = 4;
19602 }
19603
19604 return length;
19605 }
19606
19607 /* Cover function for read_initial_length.
19608 Returns the length of the object at BUF, and stores the size of the
19609 initial length in *BYTES_READ and stores the size that offsets will be in
19610 *OFFSET_SIZE.
19611 If the initial length size is not equivalent to that specified in
19612 CU_HEADER then issue a complaint.
19613 This is useful when reading non-comp-unit headers. */
19614
19615 static LONGEST
19616 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19617 const struct comp_unit_head *cu_header,
19618 unsigned int *bytes_read,
19619 unsigned int *offset_size)
19620 {
19621 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19622
19623 gdb_assert (cu_header->initial_length_size == 4
19624 || cu_header->initial_length_size == 8
19625 || cu_header->initial_length_size == 12);
19626
19627 if (cu_header->initial_length_size != *bytes_read)
19628 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19629
19630 *offset_size = (*bytes_read == 4) ? 4 : 8;
19631 return length;
19632 }
19633
19634 /* Read an offset from the data stream. The size of the offset is
19635 given by cu_header->offset_size. */
19636
19637 static LONGEST
19638 read_offset (bfd *abfd, const gdb_byte *buf,
19639 const struct comp_unit_head *cu_header,
19640 unsigned int *bytes_read)
19641 {
19642 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19643
19644 *bytes_read = cu_header->offset_size;
19645 return offset;
19646 }
19647
19648 /* Read an offset from the data stream. */
19649
19650 static LONGEST
19651 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19652 {
19653 LONGEST retval = 0;
19654
19655 switch (offset_size)
19656 {
19657 case 4:
19658 retval = bfd_get_32 (abfd, buf);
19659 break;
19660 case 8:
19661 retval = bfd_get_64 (abfd, buf);
19662 break;
19663 default:
19664 internal_error (__FILE__, __LINE__,
19665 _("read_offset_1: bad switch [in module %s]"),
19666 bfd_get_filename (abfd));
19667 }
19668
19669 return retval;
19670 }
19671
19672 static const gdb_byte *
19673 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19674 {
19675 /* If the size of a host char is 8 bits, we can return a pointer
19676 to the buffer, otherwise we have to copy the data to a buffer
19677 allocated on the temporary obstack. */
19678 gdb_assert (HOST_CHAR_BIT == 8);
19679 return buf;
19680 }
19681
19682 static const char *
19683 read_direct_string (bfd *abfd, const gdb_byte *buf,
19684 unsigned int *bytes_read_ptr)
19685 {
19686 /* If the size of a host char is 8 bits, we can return a pointer
19687 to the string, otherwise we have to copy the string to a buffer
19688 allocated on the temporary obstack. */
19689 gdb_assert (HOST_CHAR_BIT == 8);
19690 if (*buf == '\0')
19691 {
19692 *bytes_read_ptr = 1;
19693 return NULL;
19694 }
19695 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19696 return (const char *) buf;
19697 }
19698
19699 /* Return pointer to string at section SECT offset STR_OFFSET with error
19700 reporting strings FORM_NAME and SECT_NAME. */
19701
19702 static const char *
19703 read_indirect_string_at_offset_from (struct objfile *objfile,
19704 bfd *abfd, LONGEST str_offset,
19705 struct dwarf2_section_info *sect,
19706 const char *form_name,
19707 const char *sect_name)
19708 {
19709 dwarf2_read_section (objfile, sect);
19710 if (sect->buffer == NULL)
19711 error (_("%s used without %s section [in module %s]"),
19712 form_name, sect_name, bfd_get_filename (abfd));
19713 if (str_offset >= sect->size)
19714 error (_("%s pointing outside of %s section [in module %s]"),
19715 form_name, sect_name, bfd_get_filename (abfd));
19716 gdb_assert (HOST_CHAR_BIT == 8);
19717 if (sect->buffer[str_offset] == '\0')
19718 return NULL;
19719 return (const char *) (sect->buffer + str_offset);
19720 }
19721
19722 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19723
19724 static const char *
19725 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19726 bfd *abfd, LONGEST str_offset)
19727 {
19728 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19729 abfd, str_offset,
19730 &dwarf2_per_objfile->str,
19731 "DW_FORM_strp", ".debug_str");
19732 }
19733
19734 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19735
19736 static const char *
19737 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19738 bfd *abfd, LONGEST str_offset)
19739 {
19740 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19741 abfd, str_offset,
19742 &dwarf2_per_objfile->line_str,
19743 "DW_FORM_line_strp",
19744 ".debug_line_str");
19745 }
19746
19747 /* Read a string at offset STR_OFFSET in the .debug_str section from
19748 the .dwz file DWZ. Throw an error if the offset is too large. If
19749 the string consists of a single NUL byte, return NULL; otherwise
19750 return a pointer to the string. */
19751
19752 static const char *
19753 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19754 LONGEST str_offset)
19755 {
19756 dwarf2_read_section (objfile, &dwz->str);
19757
19758 if (dwz->str.buffer == NULL)
19759 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19760 "section [in module %s]"),
19761 bfd_get_filename (dwz->dwz_bfd));
19762 if (str_offset >= dwz->str.size)
19763 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19764 ".debug_str section [in module %s]"),
19765 bfd_get_filename (dwz->dwz_bfd));
19766 gdb_assert (HOST_CHAR_BIT == 8);
19767 if (dwz->str.buffer[str_offset] == '\0')
19768 return NULL;
19769 return (const char *) (dwz->str.buffer + str_offset);
19770 }
19771
19772 /* Return pointer to string at .debug_str offset as read from BUF.
19773 BUF is assumed to be in a compilation unit described by CU_HEADER.
19774 Return *BYTES_READ_PTR count of bytes read from BUF. */
19775
19776 static const char *
19777 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19778 const gdb_byte *buf,
19779 const struct comp_unit_head *cu_header,
19780 unsigned int *bytes_read_ptr)
19781 {
19782 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19783
19784 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19785 }
19786
19787 /* Return pointer to string at .debug_line_str offset as read from BUF.
19788 BUF is assumed to be in a compilation unit described by CU_HEADER.
19789 Return *BYTES_READ_PTR count of bytes read from BUF. */
19790
19791 static const char *
19792 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19793 bfd *abfd, const gdb_byte *buf,
19794 const struct comp_unit_head *cu_header,
19795 unsigned int *bytes_read_ptr)
19796 {
19797 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19798
19799 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19800 str_offset);
19801 }
19802
19803 ULONGEST
19804 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19805 unsigned int *bytes_read_ptr)
19806 {
19807 ULONGEST result;
19808 unsigned int num_read;
19809 int shift;
19810 unsigned char byte;
19811
19812 result = 0;
19813 shift = 0;
19814 num_read = 0;
19815 while (1)
19816 {
19817 byte = bfd_get_8 (abfd, buf);
19818 buf++;
19819 num_read++;
19820 result |= ((ULONGEST) (byte & 127) << shift);
19821 if ((byte & 128) == 0)
19822 {
19823 break;
19824 }
19825 shift += 7;
19826 }
19827 *bytes_read_ptr = num_read;
19828 return result;
19829 }
19830
19831 static LONGEST
19832 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19833 unsigned int *bytes_read_ptr)
19834 {
19835 ULONGEST result;
19836 int shift, num_read;
19837 unsigned char byte;
19838
19839 result = 0;
19840 shift = 0;
19841 num_read = 0;
19842 while (1)
19843 {
19844 byte = bfd_get_8 (abfd, buf);
19845 buf++;
19846 num_read++;
19847 result |= ((ULONGEST) (byte & 127) << shift);
19848 shift += 7;
19849 if ((byte & 128) == 0)
19850 {
19851 break;
19852 }
19853 }
19854 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19855 result |= -(((ULONGEST) 1) << shift);
19856 *bytes_read_ptr = num_read;
19857 return result;
19858 }
19859
19860 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19861 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19862 ADDR_SIZE is the size of addresses from the CU header. */
19863
19864 static CORE_ADDR
19865 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19866 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19867 {
19868 struct objfile *objfile = dwarf2_per_objfile->objfile;
19869 bfd *abfd = objfile->obfd;
19870 const gdb_byte *info_ptr;
19871
19872 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19873 if (dwarf2_per_objfile->addr.buffer == NULL)
19874 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19875 objfile_name (objfile));
19876 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19877 error (_("DW_FORM_addr_index pointing outside of "
19878 ".debug_addr section [in module %s]"),
19879 objfile_name (objfile));
19880 info_ptr = (dwarf2_per_objfile->addr.buffer
19881 + addr_base + addr_index * addr_size);
19882 if (addr_size == 4)
19883 return bfd_get_32 (abfd, info_ptr);
19884 else
19885 return bfd_get_64 (abfd, info_ptr);
19886 }
19887
19888 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19889
19890 static CORE_ADDR
19891 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19892 {
19893 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19894 cu->addr_base, cu->header.addr_size);
19895 }
19896
19897 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19898
19899 static CORE_ADDR
19900 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19901 unsigned int *bytes_read)
19902 {
19903 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19904 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19905
19906 return read_addr_index (cu, addr_index);
19907 }
19908
19909 /* Data structure to pass results from dwarf2_read_addr_index_reader
19910 back to dwarf2_read_addr_index. */
19911
19912 struct dwarf2_read_addr_index_data
19913 {
19914 ULONGEST addr_base;
19915 int addr_size;
19916 };
19917
19918 /* die_reader_func for dwarf2_read_addr_index. */
19919
19920 static void
19921 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19922 const gdb_byte *info_ptr,
19923 struct die_info *comp_unit_die,
19924 int has_children,
19925 void *data)
19926 {
19927 struct dwarf2_cu *cu = reader->cu;
19928 struct dwarf2_read_addr_index_data *aidata =
19929 (struct dwarf2_read_addr_index_data *) data;
19930
19931 aidata->addr_base = cu->addr_base;
19932 aidata->addr_size = cu->header.addr_size;
19933 }
19934
19935 /* Given an index in .debug_addr, fetch the value.
19936 NOTE: This can be called during dwarf expression evaluation,
19937 long after the debug information has been read, and thus per_cu->cu
19938 may no longer exist. */
19939
19940 CORE_ADDR
19941 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19942 unsigned int addr_index)
19943 {
19944 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19945 struct dwarf2_cu *cu = per_cu->cu;
19946 ULONGEST addr_base;
19947 int addr_size;
19948
19949 /* We need addr_base and addr_size.
19950 If we don't have PER_CU->cu, we have to get it.
19951 Nasty, but the alternative is storing the needed info in PER_CU,
19952 which at this point doesn't seem justified: it's not clear how frequently
19953 it would get used and it would increase the size of every PER_CU.
19954 Entry points like dwarf2_per_cu_addr_size do a similar thing
19955 so we're not in uncharted territory here.
19956 Alas we need to be a bit more complicated as addr_base is contained
19957 in the DIE.
19958
19959 We don't need to read the entire CU(/TU).
19960 We just need the header and top level die.
19961
19962 IWBN to use the aging mechanism to let us lazily later discard the CU.
19963 For now we skip this optimization. */
19964
19965 if (cu != NULL)
19966 {
19967 addr_base = cu->addr_base;
19968 addr_size = cu->header.addr_size;
19969 }
19970 else
19971 {
19972 struct dwarf2_read_addr_index_data aidata;
19973
19974 /* Note: We can't use init_cutu_and_read_dies_simple here,
19975 we need addr_base. */
19976 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19977 dwarf2_read_addr_index_reader, &aidata);
19978 addr_base = aidata.addr_base;
19979 addr_size = aidata.addr_size;
19980 }
19981
19982 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19983 addr_size);
19984 }
19985
19986 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19987 This is only used by the Fission support. */
19988
19989 static const char *
19990 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19991 {
19992 struct dwarf2_cu *cu = reader->cu;
19993 struct dwarf2_per_objfile *dwarf2_per_objfile
19994 = cu->per_cu->dwarf2_per_objfile;
19995 struct objfile *objfile = dwarf2_per_objfile->objfile;
19996 const char *objf_name = objfile_name (objfile);
19997 bfd *abfd = objfile->obfd;
19998 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19999 struct dwarf2_section_info *str_offsets_section =
20000 &reader->dwo_file->sections.str_offsets;
20001 const gdb_byte *info_ptr;
20002 ULONGEST str_offset;
20003 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20004
20005 dwarf2_read_section (objfile, str_section);
20006 dwarf2_read_section (objfile, str_offsets_section);
20007 if (str_section->buffer == NULL)
20008 error (_("%s used without .debug_str.dwo section"
20009 " in CU at offset %s [in module %s]"),
20010 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20011 if (str_offsets_section->buffer == NULL)
20012 error (_("%s used without .debug_str_offsets.dwo section"
20013 " in CU at offset %s [in module %s]"),
20014 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20015 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20016 error (_("%s pointing outside of .debug_str_offsets.dwo"
20017 " section in CU at offset %s [in module %s]"),
20018 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20019 info_ptr = (str_offsets_section->buffer
20020 + str_index * cu->header.offset_size);
20021 if (cu->header.offset_size == 4)
20022 str_offset = bfd_get_32 (abfd, info_ptr);
20023 else
20024 str_offset = bfd_get_64 (abfd, info_ptr);
20025 if (str_offset >= str_section->size)
20026 error (_("Offset from %s pointing outside of"
20027 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20028 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20029 return (const char *) (str_section->buffer + str_offset);
20030 }
20031
20032 /* Return the length of an LEB128 number in BUF. */
20033
20034 static int
20035 leb128_size (const gdb_byte *buf)
20036 {
20037 const gdb_byte *begin = buf;
20038 gdb_byte byte;
20039
20040 while (1)
20041 {
20042 byte = *buf++;
20043 if ((byte & 128) == 0)
20044 return buf - begin;
20045 }
20046 }
20047
20048 static void
20049 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20050 {
20051 switch (lang)
20052 {
20053 case DW_LANG_C89:
20054 case DW_LANG_C99:
20055 case DW_LANG_C11:
20056 case DW_LANG_C:
20057 case DW_LANG_UPC:
20058 cu->language = language_c;
20059 break;
20060 case DW_LANG_Java:
20061 case DW_LANG_C_plus_plus:
20062 case DW_LANG_C_plus_plus_11:
20063 case DW_LANG_C_plus_plus_14:
20064 cu->language = language_cplus;
20065 break;
20066 case DW_LANG_D:
20067 cu->language = language_d;
20068 break;
20069 case DW_LANG_Fortran77:
20070 case DW_LANG_Fortran90:
20071 case DW_LANG_Fortran95:
20072 case DW_LANG_Fortran03:
20073 case DW_LANG_Fortran08:
20074 cu->language = language_fortran;
20075 break;
20076 case DW_LANG_Go:
20077 cu->language = language_go;
20078 break;
20079 case DW_LANG_Mips_Assembler:
20080 cu->language = language_asm;
20081 break;
20082 case DW_LANG_Ada83:
20083 case DW_LANG_Ada95:
20084 cu->language = language_ada;
20085 break;
20086 case DW_LANG_Modula2:
20087 cu->language = language_m2;
20088 break;
20089 case DW_LANG_Pascal83:
20090 cu->language = language_pascal;
20091 break;
20092 case DW_LANG_ObjC:
20093 cu->language = language_objc;
20094 break;
20095 case DW_LANG_Rust:
20096 case DW_LANG_Rust_old:
20097 cu->language = language_rust;
20098 break;
20099 case DW_LANG_Cobol74:
20100 case DW_LANG_Cobol85:
20101 default:
20102 cu->language = language_minimal;
20103 break;
20104 }
20105 cu->language_defn = language_def (cu->language);
20106 }
20107
20108 /* Return the named attribute or NULL if not there. */
20109
20110 static struct attribute *
20111 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20112 {
20113 for (;;)
20114 {
20115 unsigned int i;
20116 struct attribute *spec = NULL;
20117
20118 for (i = 0; i < die->num_attrs; ++i)
20119 {
20120 if (die->attrs[i].name == name)
20121 return &die->attrs[i];
20122 if (die->attrs[i].name == DW_AT_specification
20123 || die->attrs[i].name == DW_AT_abstract_origin)
20124 spec = &die->attrs[i];
20125 }
20126
20127 if (!spec)
20128 break;
20129
20130 die = follow_die_ref (die, spec, &cu);
20131 }
20132
20133 return NULL;
20134 }
20135
20136 /* Return the named attribute or NULL if not there,
20137 but do not follow DW_AT_specification, etc.
20138 This is for use in contexts where we're reading .debug_types dies.
20139 Following DW_AT_specification, DW_AT_abstract_origin will take us
20140 back up the chain, and we want to go down. */
20141
20142 static struct attribute *
20143 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20144 {
20145 unsigned int i;
20146
20147 for (i = 0; i < die->num_attrs; ++i)
20148 if (die->attrs[i].name == name)
20149 return &die->attrs[i];
20150
20151 return NULL;
20152 }
20153
20154 /* Return the string associated with a string-typed attribute, or NULL if it
20155 is either not found or is of an incorrect type. */
20156
20157 static const char *
20158 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20159 {
20160 struct attribute *attr;
20161 const char *str = NULL;
20162
20163 attr = dwarf2_attr (die, name, cu);
20164
20165 if (attr != NULL)
20166 {
20167 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20168 || attr->form == DW_FORM_string
20169 || attr->form == DW_FORM_strx
20170 || attr->form == DW_FORM_GNU_str_index
20171 || attr->form == DW_FORM_GNU_strp_alt)
20172 str = DW_STRING (attr);
20173 else
20174 complaint (_("string type expected for attribute %s for "
20175 "DIE at %s in module %s"),
20176 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20177 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20178 }
20179
20180 return str;
20181 }
20182
20183 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20184 and holds a non-zero value. This function should only be used for
20185 DW_FORM_flag or DW_FORM_flag_present attributes. */
20186
20187 static int
20188 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20189 {
20190 struct attribute *attr = dwarf2_attr (die, name, cu);
20191
20192 return (attr && DW_UNSND (attr));
20193 }
20194
20195 static int
20196 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20197 {
20198 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20199 which value is non-zero. However, we have to be careful with
20200 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20201 (via dwarf2_flag_true_p) follows this attribute. So we may
20202 end up accidently finding a declaration attribute that belongs
20203 to a different DIE referenced by the specification attribute,
20204 even though the given DIE does not have a declaration attribute. */
20205 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20206 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20207 }
20208
20209 /* Return the die giving the specification for DIE, if there is
20210 one. *SPEC_CU is the CU containing DIE on input, and the CU
20211 containing the return value on output. If there is no
20212 specification, but there is an abstract origin, that is
20213 returned. */
20214
20215 static struct die_info *
20216 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20217 {
20218 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20219 *spec_cu);
20220
20221 if (spec_attr == NULL)
20222 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20223
20224 if (spec_attr == NULL)
20225 return NULL;
20226 else
20227 return follow_die_ref (die, spec_attr, spec_cu);
20228 }
20229
20230 /* Stub for free_line_header to match void * callback types. */
20231
20232 static void
20233 free_line_header_voidp (void *arg)
20234 {
20235 struct line_header *lh = (struct line_header *) arg;
20236
20237 delete lh;
20238 }
20239
20240 void
20241 line_header::add_include_dir (const char *include_dir)
20242 {
20243 if (dwarf_line_debug >= 2)
20244 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20245 include_dirs.size () + 1, include_dir);
20246
20247 include_dirs.push_back (include_dir);
20248 }
20249
20250 void
20251 line_header::add_file_name (const char *name,
20252 dir_index d_index,
20253 unsigned int mod_time,
20254 unsigned int length)
20255 {
20256 if (dwarf_line_debug >= 2)
20257 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20258 (unsigned) file_names.size () + 1, name);
20259
20260 file_names.emplace_back (name, d_index, mod_time, length);
20261 }
20262
20263 /* A convenience function to find the proper .debug_line section for a CU. */
20264
20265 static struct dwarf2_section_info *
20266 get_debug_line_section (struct dwarf2_cu *cu)
20267 {
20268 struct dwarf2_section_info *section;
20269 struct dwarf2_per_objfile *dwarf2_per_objfile
20270 = cu->per_cu->dwarf2_per_objfile;
20271
20272 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20273 DWO file. */
20274 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20275 section = &cu->dwo_unit->dwo_file->sections.line;
20276 else if (cu->per_cu->is_dwz)
20277 {
20278 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20279
20280 section = &dwz->line;
20281 }
20282 else
20283 section = &dwarf2_per_objfile->line;
20284
20285 return section;
20286 }
20287
20288 /* Read directory or file name entry format, starting with byte of
20289 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20290 entries count and the entries themselves in the described entry
20291 format. */
20292
20293 static void
20294 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20295 bfd *abfd, const gdb_byte **bufp,
20296 struct line_header *lh,
20297 const struct comp_unit_head *cu_header,
20298 void (*callback) (struct line_header *lh,
20299 const char *name,
20300 dir_index d_index,
20301 unsigned int mod_time,
20302 unsigned int length))
20303 {
20304 gdb_byte format_count, formati;
20305 ULONGEST data_count, datai;
20306 const gdb_byte *buf = *bufp;
20307 const gdb_byte *format_header_data;
20308 unsigned int bytes_read;
20309
20310 format_count = read_1_byte (abfd, buf);
20311 buf += 1;
20312 format_header_data = buf;
20313 for (formati = 0; formati < format_count; formati++)
20314 {
20315 read_unsigned_leb128 (abfd, buf, &bytes_read);
20316 buf += bytes_read;
20317 read_unsigned_leb128 (abfd, buf, &bytes_read);
20318 buf += bytes_read;
20319 }
20320
20321 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20322 buf += bytes_read;
20323 for (datai = 0; datai < data_count; datai++)
20324 {
20325 const gdb_byte *format = format_header_data;
20326 struct file_entry fe;
20327
20328 for (formati = 0; formati < format_count; formati++)
20329 {
20330 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20331 format += bytes_read;
20332
20333 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20334 format += bytes_read;
20335
20336 gdb::optional<const char *> string;
20337 gdb::optional<unsigned int> uint;
20338
20339 switch (form)
20340 {
20341 case DW_FORM_string:
20342 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20343 buf += bytes_read;
20344 break;
20345
20346 case DW_FORM_line_strp:
20347 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20348 abfd, buf,
20349 cu_header,
20350 &bytes_read));
20351 buf += bytes_read;
20352 break;
20353
20354 case DW_FORM_data1:
20355 uint.emplace (read_1_byte (abfd, buf));
20356 buf += 1;
20357 break;
20358
20359 case DW_FORM_data2:
20360 uint.emplace (read_2_bytes (abfd, buf));
20361 buf += 2;
20362 break;
20363
20364 case DW_FORM_data4:
20365 uint.emplace (read_4_bytes (abfd, buf));
20366 buf += 4;
20367 break;
20368
20369 case DW_FORM_data8:
20370 uint.emplace (read_8_bytes (abfd, buf));
20371 buf += 8;
20372 break;
20373
20374 case DW_FORM_udata:
20375 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20376 buf += bytes_read;
20377 break;
20378
20379 case DW_FORM_block:
20380 /* It is valid only for DW_LNCT_timestamp which is ignored by
20381 current GDB. */
20382 break;
20383 }
20384
20385 switch (content_type)
20386 {
20387 case DW_LNCT_path:
20388 if (string.has_value ())
20389 fe.name = *string;
20390 break;
20391 case DW_LNCT_directory_index:
20392 if (uint.has_value ())
20393 fe.d_index = (dir_index) *uint;
20394 break;
20395 case DW_LNCT_timestamp:
20396 if (uint.has_value ())
20397 fe.mod_time = *uint;
20398 break;
20399 case DW_LNCT_size:
20400 if (uint.has_value ())
20401 fe.length = *uint;
20402 break;
20403 case DW_LNCT_MD5:
20404 break;
20405 default:
20406 complaint (_("Unknown format content type %s"),
20407 pulongest (content_type));
20408 }
20409 }
20410
20411 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20412 }
20413
20414 *bufp = buf;
20415 }
20416
20417 /* Read the statement program header starting at OFFSET in
20418 .debug_line, or .debug_line.dwo. Return a pointer
20419 to a struct line_header, allocated using xmalloc.
20420 Returns NULL if there is a problem reading the header, e.g., if it
20421 has a version we don't understand.
20422
20423 NOTE: the strings in the include directory and file name tables of
20424 the returned object point into the dwarf line section buffer,
20425 and must not be freed. */
20426
20427 static line_header_up
20428 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20429 {
20430 const gdb_byte *line_ptr;
20431 unsigned int bytes_read, offset_size;
20432 int i;
20433 const char *cur_dir, *cur_file;
20434 struct dwarf2_section_info *section;
20435 bfd *abfd;
20436 struct dwarf2_per_objfile *dwarf2_per_objfile
20437 = cu->per_cu->dwarf2_per_objfile;
20438
20439 section = get_debug_line_section (cu);
20440 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20441 if (section->buffer == NULL)
20442 {
20443 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20444 complaint (_("missing .debug_line.dwo section"));
20445 else
20446 complaint (_("missing .debug_line section"));
20447 return 0;
20448 }
20449
20450 /* We can't do this until we know the section is non-empty.
20451 Only then do we know we have such a section. */
20452 abfd = get_section_bfd_owner (section);
20453
20454 /* Make sure that at least there's room for the total_length field.
20455 That could be 12 bytes long, but we're just going to fudge that. */
20456 if (to_underlying (sect_off) + 4 >= section->size)
20457 {
20458 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20459 return 0;
20460 }
20461
20462 line_header_up lh (new line_header ());
20463
20464 lh->sect_off = sect_off;
20465 lh->offset_in_dwz = cu->per_cu->is_dwz;
20466
20467 line_ptr = section->buffer + to_underlying (sect_off);
20468
20469 /* Read in the header. */
20470 lh->total_length =
20471 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20472 &bytes_read, &offset_size);
20473 line_ptr += bytes_read;
20474 if (line_ptr + lh->total_length > (section->buffer + section->size))
20475 {
20476 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20477 return 0;
20478 }
20479 lh->statement_program_end = line_ptr + lh->total_length;
20480 lh->version = read_2_bytes (abfd, line_ptr);
20481 line_ptr += 2;
20482 if (lh->version > 5)
20483 {
20484 /* This is a version we don't understand. The format could have
20485 changed in ways we don't handle properly so just punt. */
20486 complaint (_("unsupported version in .debug_line section"));
20487 return NULL;
20488 }
20489 if (lh->version >= 5)
20490 {
20491 gdb_byte segment_selector_size;
20492
20493 /* Skip address size. */
20494 read_1_byte (abfd, line_ptr);
20495 line_ptr += 1;
20496
20497 segment_selector_size = read_1_byte (abfd, line_ptr);
20498 line_ptr += 1;
20499 if (segment_selector_size != 0)
20500 {
20501 complaint (_("unsupported segment selector size %u "
20502 "in .debug_line section"),
20503 segment_selector_size);
20504 return NULL;
20505 }
20506 }
20507 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20508 line_ptr += offset_size;
20509 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20510 line_ptr += 1;
20511 if (lh->version >= 4)
20512 {
20513 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20514 line_ptr += 1;
20515 }
20516 else
20517 lh->maximum_ops_per_instruction = 1;
20518
20519 if (lh->maximum_ops_per_instruction == 0)
20520 {
20521 lh->maximum_ops_per_instruction = 1;
20522 complaint (_("invalid maximum_ops_per_instruction "
20523 "in `.debug_line' section"));
20524 }
20525
20526 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20527 line_ptr += 1;
20528 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20529 line_ptr += 1;
20530 lh->line_range = read_1_byte (abfd, line_ptr);
20531 line_ptr += 1;
20532 lh->opcode_base = read_1_byte (abfd, line_ptr);
20533 line_ptr += 1;
20534 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20535
20536 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20537 for (i = 1; i < lh->opcode_base; ++i)
20538 {
20539 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20540 line_ptr += 1;
20541 }
20542
20543 if (lh->version >= 5)
20544 {
20545 /* Read directory table. */
20546 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20547 &cu->header,
20548 [] (struct line_header *header, const char *name,
20549 dir_index d_index, unsigned int mod_time,
20550 unsigned int length)
20551 {
20552 header->add_include_dir (name);
20553 });
20554
20555 /* Read file name table. */
20556 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20557 &cu->header,
20558 [] (struct line_header *header, const char *name,
20559 dir_index d_index, unsigned int mod_time,
20560 unsigned int length)
20561 {
20562 header->add_file_name (name, d_index, mod_time, length);
20563 });
20564 }
20565 else
20566 {
20567 /* Read directory table. */
20568 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20569 {
20570 line_ptr += bytes_read;
20571 lh->add_include_dir (cur_dir);
20572 }
20573 line_ptr += bytes_read;
20574
20575 /* Read file name table. */
20576 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20577 {
20578 unsigned int mod_time, length;
20579 dir_index d_index;
20580
20581 line_ptr += bytes_read;
20582 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20583 line_ptr += bytes_read;
20584 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20585 line_ptr += bytes_read;
20586 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20587 line_ptr += bytes_read;
20588
20589 lh->add_file_name (cur_file, d_index, mod_time, length);
20590 }
20591 line_ptr += bytes_read;
20592 }
20593 lh->statement_program_start = line_ptr;
20594
20595 if (line_ptr > (section->buffer + section->size))
20596 complaint (_("line number info header doesn't "
20597 "fit in `.debug_line' section"));
20598
20599 return lh;
20600 }
20601
20602 /* Subroutine of dwarf_decode_lines to simplify it.
20603 Return the file name of the psymtab for included file FILE_INDEX
20604 in line header LH of PST.
20605 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20606 If space for the result is malloc'd, *NAME_HOLDER will be set.
20607 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20608
20609 static const char *
20610 psymtab_include_file_name (const struct line_header *lh, int file_index,
20611 const struct partial_symtab *pst,
20612 const char *comp_dir,
20613 gdb::unique_xmalloc_ptr<char> *name_holder)
20614 {
20615 const file_entry &fe = lh->file_names[file_index];
20616 const char *include_name = fe.name;
20617 const char *include_name_to_compare = include_name;
20618 const char *pst_filename;
20619 int file_is_pst;
20620
20621 const char *dir_name = fe.include_dir (lh);
20622
20623 gdb::unique_xmalloc_ptr<char> hold_compare;
20624 if (!IS_ABSOLUTE_PATH (include_name)
20625 && (dir_name != NULL || comp_dir != NULL))
20626 {
20627 /* Avoid creating a duplicate psymtab for PST.
20628 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20629 Before we do the comparison, however, we need to account
20630 for DIR_NAME and COMP_DIR.
20631 First prepend dir_name (if non-NULL). If we still don't
20632 have an absolute path prepend comp_dir (if non-NULL).
20633 However, the directory we record in the include-file's
20634 psymtab does not contain COMP_DIR (to match the
20635 corresponding symtab(s)).
20636
20637 Example:
20638
20639 bash$ cd /tmp
20640 bash$ gcc -g ./hello.c
20641 include_name = "hello.c"
20642 dir_name = "."
20643 DW_AT_comp_dir = comp_dir = "/tmp"
20644 DW_AT_name = "./hello.c"
20645
20646 */
20647
20648 if (dir_name != NULL)
20649 {
20650 name_holder->reset (concat (dir_name, SLASH_STRING,
20651 include_name, (char *) NULL));
20652 include_name = name_holder->get ();
20653 include_name_to_compare = include_name;
20654 }
20655 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20656 {
20657 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20658 include_name, (char *) NULL));
20659 include_name_to_compare = hold_compare.get ();
20660 }
20661 }
20662
20663 pst_filename = pst->filename;
20664 gdb::unique_xmalloc_ptr<char> copied_name;
20665 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20666 {
20667 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20668 pst_filename, (char *) NULL));
20669 pst_filename = copied_name.get ();
20670 }
20671
20672 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20673
20674 if (file_is_pst)
20675 return NULL;
20676 return include_name;
20677 }
20678
20679 /* State machine to track the state of the line number program. */
20680
20681 class lnp_state_machine
20682 {
20683 public:
20684 /* Initialize a machine state for the start of a line number
20685 program. */
20686 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20687 bool record_lines_p);
20688
20689 file_entry *current_file ()
20690 {
20691 /* lh->file_names is 0-based, but the file name numbers in the
20692 statement program are 1-based. */
20693 return m_line_header->file_name_at (m_file);
20694 }
20695
20696 /* Record the line in the state machine. END_SEQUENCE is true if
20697 we're processing the end of a sequence. */
20698 void record_line (bool end_sequence);
20699
20700 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20701 nop-out rest of the lines in this sequence. */
20702 void check_line_address (struct dwarf2_cu *cu,
20703 const gdb_byte *line_ptr,
20704 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20705
20706 void handle_set_discriminator (unsigned int discriminator)
20707 {
20708 m_discriminator = discriminator;
20709 m_line_has_non_zero_discriminator |= discriminator != 0;
20710 }
20711
20712 /* Handle DW_LNE_set_address. */
20713 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20714 {
20715 m_op_index = 0;
20716 address += baseaddr;
20717 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20718 }
20719
20720 /* Handle DW_LNS_advance_pc. */
20721 void handle_advance_pc (CORE_ADDR adjust);
20722
20723 /* Handle a special opcode. */
20724 void handle_special_opcode (unsigned char op_code);
20725
20726 /* Handle DW_LNS_advance_line. */
20727 void handle_advance_line (int line_delta)
20728 {
20729 advance_line (line_delta);
20730 }
20731
20732 /* Handle DW_LNS_set_file. */
20733 void handle_set_file (file_name_index file);
20734
20735 /* Handle DW_LNS_negate_stmt. */
20736 void handle_negate_stmt ()
20737 {
20738 m_is_stmt = !m_is_stmt;
20739 }
20740
20741 /* Handle DW_LNS_const_add_pc. */
20742 void handle_const_add_pc ();
20743
20744 /* Handle DW_LNS_fixed_advance_pc. */
20745 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20746 {
20747 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20748 m_op_index = 0;
20749 }
20750
20751 /* Handle DW_LNS_copy. */
20752 void handle_copy ()
20753 {
20754 record_line (false);
20755 m_discriminator = 0;
20756 }
20757
20758 /* Handle DW_LNE_end_sequence. */
20759 void handle_end_sequence ()
20760 {
20761 m_currently_recording_lines = true;
20762 }
20763
20764 private:
20765 /* Advance the line by LINE_DELTA. */
20766 void advance_line (int line_delta)
20767 {
20768 m_line += line_delta;
20769
20770 if (line_delta != 0)
20771 m_line_has_non_zero_discriminator = m_discriminator != 0;
20772 }
20773
20774 struct dwarf2_cu *m_cu;
20775
20776 gdbarch *m_gdbarch;
20777
20778 /* True if we're recording lines.
20779 Otherwise we're building partial symtabs and are just interested in
20780 finding include files mentioned by the line number program. */
20781 bool m_record_lines_p;
20782
20783 /* The line number header. */
20784 line_header *m_line_header;
20785
20786 /* These are part of the standard DWARF line number state machine,
20787 and initialized according to the DWARF spec. */
20788
20789 unsigned char m_op_index = 0;
20790 /* The line table index (1-based) of the current file. */
20791 file_name_index m_file = (file_name_index) 1;
20792 unsigned int m_line = 1;
20793
20794 /* These are initialized in the constructor. */
20795
20796 CORE_ADDR m_address;
20797 bool m_is_stmt;
20798 unsigned int m_discriminator;
20799
20800 /* Additional bits of state we need to track. */
20801
20802 /* The last file that we called dwarf2_start_subfile for.
20803 This is only used for TLLs. */
20804 unsigned int m_last_file = 0;
20805 /* The last file a line number was recorded for. */
20806 struct subfile *m_last_subfile = NULL;
20807
20808 /* When true, record the lines we decode. */
20809 bool m_currently_recording_lines = false;
20810
20811 /* The last line number that was recorded, used to coalesce
20812 consecutive entries for the same line. This can happen, for
20813 example, when discriminators are present. PR 17276. */
20814 unsigned int m_last_line = 0;
20815 bool m_line_has_non_zero_discriminator = false;
20816 };
20817
20818 void
20819 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20820 {
20821 CORE_ADDR addr_adj = (((m_op_index + adjust)
20822 / m_line_header->maximum_ops_per_instruction)
20823 * m_line_header->minimum_instruction_length);
20824 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20825 m_op_index = ((m_op_index + adjust)
20826 % m_line_header->maximum_ops_per_instruction);
20827 }
20828
20829 void
20830 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20831 {
20832 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20833 CORE_ADDR addr_adj = (((m_op_index
20834 + (adj_opcode / m_line_header->line_range))
20835 / m_line_header->maximum_ops_per_instruction)
20836 * m_line_header->minimum_instruction_length);
20837 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20838 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20839 % m_line_header->maximum_ops_per_instruction);
20840
20841 int line_delta = (m_line_header->line_base
20842 + (adj_opcode % m_line_header->line_range));
20843 advance_line (line_delta);
20844 record_line (false);
20845 m_discriminator = 0;
20846 }
20847
20848 void
20849 lnp_state_machine::handle_set_file (file_name_index file)
20850 {
20851 m_file = file;
20852
20853 const file_entry *fe = current_file ();
20854 if (fe == NULL)
20855 dwarf2_debug_line_missing_file_complaint ();
20856 else if (m_record_lines_p)
20857 {
20858 const char *dir = fe->include_dir (m_line_header);
20859
20860 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20861 m_line_has_non_zero_discriminator = m_discriminator != 0;
20862 dwarf2_start_subfile (m_cu, fe->name, dir);
20863 }
20864 }
20865
20866 void
20867 lnp_state_machine::handle_const_add_pc ()
20868 {
20869 CORE_ADDR adjust
20870 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20871
20872 CORE_ADDR addr_adj
20873 = (((m_op_index + adjust)
20874 / m_line_header->maximum_ops_per_instruction)
20875 * m_line_header->minimum_instruction_length);
20876
20877 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20878 m_op_index = ((m_op_index + adjust)
20879 % m_line_header->maximum_ops_per_instruction);
20880 }
20881
20882 /* Return non-zero if we should add LINE to the line number table.
20883 LINE is the line to add, LAST_LINE is the last line that was added,
20884 LAST_SUBFILE is the subfile for LAST_LINE.
20885 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20886 had a non-zero discriminator.
20887
20888 We have to be careful in the presence of discriminators.
20889 E.g., for this line:
20890
20891 for (i = 0; i < 100000; i++);
20892
20893 clang can emit four line number entries for that one line,
20894 each with a different discriminator.
20895 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20896
20897 However, we want gdb to coalesce all four entries into one.
20898 Otherwise the user could stepi into the middle of the line and
20899 gdb would get confused about whether the pc really was in the
20900 middle of the line.
20901
20902 Things are further complicated by the fact that two consecutive
20903 line number entries for the same line is a heuristic used by gcc
20904 to denote the end of the prologue. So we can't just discard duplicate
20905 entries, we have to be selective about it. The heuristic we use is
20906 that we only collapse consecutive entries for the same line if at least
20907 one of those entries has a non-zero discriminator. PR 17276.
20908
20909 Note: Addresses in the line number state machine can never go backwards
20910 within one sequence, thus this coalescing is ok. */
20911
20912 static int
20913 dwarf_record_line_p (struct dwarf2_cu *cu,
20914 unsigned int line, unsigned int last_line,
20915 int line_has_non_zero_discriminator,
20916 struct subfile *last_subfile)
20917 {
20918 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20919 return 1;
20920 if (line != last_line)
20921 return 1;
20922 /* Same line for the same file that we've seen already.
20923 As a last check, for pr 17276, only record the line if the line
20924 has never had a non-zero discriminator. */
20925 if (!line_has_non_zero_discriminator)
20926 return 1;
20927 return 0;
20928 }
20929
20930 /* Use the CU's builder to record line number LINE beginning at
20931 address ADDRESS in the line table of subfile SUBFILE. */
20932
20933 static void
20934 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20935 unsigned int line, CORE_ADDR address,
20936 struct dwarf2_cu *cu)
20937 {
20938 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20939
20940 if (dwarf_line_debug)
20941 {
20942 fprintf_unfiltered (gdb_stdlog,
20943 "Recording line %u, file %s, address %s\n",
20944 line, lbasename (subfile->name),
20945 paddress (gdbarch, address));
20946 }
20947
20948 if (cu != nullptr)
20949 cu->get_builder ()->record_line (subfile, line, addr);
20950 }
20951
20952 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20953 Mark the end of a set of line number records.
20954 The arguments are the same as for dwarf_record_line_1.
20955 If SUBFILE is NULL the request is ignored. */
20956
20957 static void
20958 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20959 CORE_ADDR address, struct dwarf2_cu *cu)
20960 {
20961 if (subfile == NULL)
20962 return;
20963
20964 if (dwarf_line_debug)
20965 {
20966 fprintf_unfiltered (gdb_stdlog,
20967 "Finishing current line, file %s, address %s\n",
20968 lbasename (subfile->name),
20969 paddress (gdbarch, address));
20970 }
20971
20972 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20973 }
20974
20975 void
20976 lnp_state_machine::record_line (bool end_sequence)
20977 {
20978 if (dwarf_line_debug)
20979 {
20980 fprintf_unfiltered (gdb_stdlog,
20981 "Processing actual line %u: file %u,"
20982 " address %s, is_stmt %u, discrim %u\n",
20983 m_line, to_underlying (m_file),
20984 paddress (m_gdbarch, m_address),
20985 m_is_stmt, m_discriminator);
20986 }
20987
20988 file_entry *fe = current_file ();
20989
20990 if (fe == NULL)
20991 dwarf2_debug_line_missing_file_complaint ();
20992 /* For now we ignore lines not starting on an instruction boundary.
20993 But not when processing end_sequence for compatibility with the
20994 previous version of the code. */
20995 else if (m_op_index == 0 || end_sequence)
20996 {
20997 fe->included_p = 1;
20998 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20999 {
21000 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21001 || end_sequence)
21002 {
21003 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21004 m_currently_recording_lines ? m_cu : nullptr);
21005 }
21006
21007 if (!end_sequence)
21008 {
21009 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21010 m_line_has_non_zero_discriminator,
21011 m_last_subfile))
21012 {
21013 buildsym_compunit *builder = m_cu->get_builder ();
21014 dwarf_record_line_1 (m_gdbarch,
21015 builder->get_current_subfile (),
21016 m_line, m_address,
21017 m_currently_recording_lines ? m_cu : nullptr);
21018 }
21019 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21020 m_last_line = m_line;
21021 }
21022 }
21023 }
21024 }
21025
21026 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21027 line_header *lh, bool record_lines_p)
21028 {
21029 m_cu = cu;
21030 m_gdbarch = arch;
21031 m_record_lines_p = record_lines_p;
21032 m_line_header = lh;
21033
21034 m_currently_recording_lines = true;
21035
21036 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21037 was a line entry for it so that the backend has a chance to adjust it
21038 and also record it in case it needs it. This is currently used by MIPS
21039 code, cf. `mips_adjust_dwarf2_line'. */
21040 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21041 m_is_stmt = lh->default_is_stmt;
21042 m_discriminator = 0;
21043 }
21044
21045 void
21046 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21047 const gdb_byte *line_ptr,
21048 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21049 {
21050 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21051 the pc range of the CU. However, we restrict the test to only ADDRESS
21052 values of zero to preserve GDB's previous behaviour which is to handle
21053 the specific case of a function being GC'd by the linker. */
21054
21055 if (address == 0 && address < unrelocated_lowpc)
21056 {
21057 /* This line table is for a function which has been
21058 GCd by the linker. Ignore it. PR gdb/12528 */
21059
21060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21061 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21062
21063 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21064 line_offset, objfile_name (objfile));
21065 m_currently_recording_lines = false;
21066 /* Note: m_currently_recording_lines is left as false until we see
21067 DW_LNE_end_sequence. */
21068 }
21069 }
21070
21071 /* Subroutine of dwarf_decode_lines to simplify it.
21072 Process the line number information in LH.
21073 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21074 program in order to set included_p for every referenced header. */
21075
21076 static void
21077 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21078 const int decode_for_pst_p, CORE_ADDR lowpc)
21079 {
21080 const gdb_byte *line_ptr, *extended_end;
21081 const gdb_byte *line_end;
21082 unsigned int bytes_read, extended_len;
21083 unsigned char op_code, extended_op;
21084 CORE_ADDR baseaddr;
21085 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21086 bfd *abfd = objfile->obfd;
21087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21088 /* True if we're recording line info (as opposed to building partial
21089 symtabs and just interested in finding include files mentioned by
21090 the line number program). */
21091 bool record_lines_p = !decode_for_pst_p;
21092
21093 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21094
21095 line_ptr = lh->statement_program_start;
21096 line_end = lh->statement_program_end;
21097
21098 /* Read the statement sequences until there's nothing left. */
21099 while (line_ptr < line_end)
21100 {
21101 /* The DWARF line number program state machine. Reset the state
21102 machine at the start of each sequence. */
21103 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21104 bool end_sequence = false;
21105
21106 if (record_lines_p)
21107 {
21108 /* Start a subfile for the current file of the state
21109 machine. */
21110 const file_entry *fe = state_machine.current_file ();
21111
21112 if (fe != NULL)
21113 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21114 }
21115
21116 /* Decode the table. */
21117 while (line_ptr < line_end && !end_sequence)
21118 {
21119 op_code = read_1_byte (abfd, line_ptr);
21120 line_ptr += 1;
21121
21122 if (op_code >= lh->opcode_base)
21123 {
21124 /* Special opcode. */
21125 state_machine.handle_special_opcode (op_code);
21126 }
21127 else switch (op_code)
21128 {
21129 case DW_LNS_extended_op:
21130 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21131 &bytes_read);
21132 line_ptr += bytes_read;
21133 extended_end = line_ptr + extended_len;
21134 extended_op = read_1_byte (abfd, line_ptr);
21135 line_ptr += 1;
21136 switch (extended_op)
21137 {
21138 case DW_LNE_end_sequence:
21139 state_machine.handle_end_sequence ();
21140 end_sequence = true;
21141 break;
21142 case DW_LNE_set_address:
21143 {
21144 CORE_ADDR address
21145 = read_address (abfd, line_ptr, cu, &bytes_read);
21146 line_ptr += bytes_read;
21147
21148 state_machine.check_line_address (cu, line_ptr,
21149 lowpc - baseaddr, address);
21150 state_machine.handle_set_address (baseaddr, address);
21151 }
21152 break;
21153 case DW_LNE_define_file:
21154 {
21155 const char *cur_file;
21156 unsigned int mod_time, length;
21157 dir_index dindex;
21158
21159 cur_file = read_direct_string (abfd, line_ptr,
21160 &bytes_read);
21161 line_ptr += bytes_read;
21162 dindex = (dir_index)
21163 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21164 line_ptr += bytes_read;
21165 mod_time =
21166 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21167 line_ptr += bytes_read;
21168 length =
21169 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21170 line_ptr += bytes_read;
21171 lh->add_file_name (cur_file, dindex, mod_time, length);
21172 }
21173 break;
21174 case DW_LNE_set_discriminator:
21175 {
21176 /* The discriminator is not interesting to the
21177 debugger; just ignore it. We still need to
21178 check its value though:
21179 if there are consecutive entries for the same
21180 (non-prologue) line we want to coalesce them.
21181 PR 17276. */
21182 unsigned int discr
21183 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21184 line_ptr += bytes_read;
21185
21186 state_machine.handle_set_discriminator (discr);
21187 }
21188 break;
21189 default:
21190 complaint (_("mangled .debug_line section"));
21191 return;
21192 }
21193 /* Make sure that we parsed the extended op correctly. If e.g.
21194 we expected a different address size than the producer used,
21195 we may have read the wrong number of bytes. */
21196 if (line_ptr != extended_end)
21197 {
21198 complaint (_("mangled .debug_line section"));
21199 return;
21200 }
21201 break;
21202 case DW_LNS_copy:
21203 state_machine.handle_copy ();
21204 break;
21205 case DW_LNS_advance_pc:
21206 {
21207 CORE_ADDR adjust
21208 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21209 line_ptr += bytes_read;
21210
21211 state_machine.handle_advance_pc (adjust);
21212 }
21213 break;
21214 case DW_LNS_advance_line:
21215 {
21216 int line_delta
21217 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21218 line_ptr += bytes_read;
21219
21220 state_machine.handle_advance_line (line_delta);
21221 }
21222 break;
21223 case DW_LNS_set_file:
21224 {
21225 file_name_index file
21226 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21227 &bytes_read);
21228 line_ptr += bytes_read;
21229
21230 state_machine.handle_set_file (file);
21231 }
21232 break;
21233 case DW_LNS_set_column:
21234 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21235 line_ptr += bytes_read;
21236 break;
21237 case DW_LNS_negate_stmt:
21238 state_machine.handle_negate_stmt ();
21239 break;
21240 case DW_LNS_set_basic_block:
21241 break;
21242 /* Add to the address register of the state machine the
21243 address increment value corresponding to special opcode
21244 255. I.e., this value is scaled by the minimum
21245 instruction length since special opcode 255 would have
21246 scaled the increment. */
21247 case DW_LNS_const_add_pc:
21248 state_machine.handle_const_add_pc ();
21249 break;
21250 case DW_LNS_fixed_advance_pc:
21251 {
21252 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21253 line_ptr += 2;
21254
21255 state_machine.handle_fixed_advance_pc (addr_adj);
21256 }
21257 break;
21258 default:
21259 {
21260 /* Unknown standard opcode, ignore it. */
21261 int i;
21262
21263 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21264 {
21265 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21266 line_ptr += bytes_read;
21267 }
21268 }
21269 }
21270 }
21271
21272 if (!end_sequence)
21273 dwarf2_debug_line_missing_end_sequence_complaint ();
21274
21275 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21276 in which case we still finish recording the last line). */
21277 state_machine.record_line (true);
21278 }
21279 }
21280
21281 /* Decode the Line Number Program (LNP) for the given line_header
21282 structure and CU. The actual information extracted and the type
21283 of structures created from the LNP depends on the value of PST.
21284
21285 1. If PST is NULL, then this procedure uses the data from the program
21286 to create all necessary symbol tables, and their linetables.
21287
21288 2. If PST is not NULL, this procedure reads the program to determine
21289 the list of files included by the unit represented by PST, and
21290 builds all the associated partial symbol tables.
21291
21292 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21293 It is used for relative paths in the line table.
21294 NOTE: When processing partial symtabs (pst != NULL),
21295 comp_dir == pst->dirname.
21296
21297 NOTE: It is important that psymtabs have the same file name (via strcmp)
21298 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21299 symtab we don't use it in the name of the psymtabs we create.
21300 E.g. expand_line_sal requires this when finding psymtabs to expand.
21301 A good testcase for this is mb-inline.exp.
21302
21303 LOWPC is the lowest address in CU (or 0 if not known).
21304
21305 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21306 for its PC<->lines mapping information. Otherwise only the filename
21307 table is read in. */
21308
21309 static void
21310 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21311 struct dwarf2_cu *cu, struct partial_symtab *pst,
21312 CORE_ADDR lowpc, int decode_mapping)
21313 {
21314 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21315 const int decode_for_pst_p = (pst != NULL);
21316
21317 if (decode_mapping)
21318 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21319
21320 if (decode_for_pst_p)
21321 {
21322 int file_index;
21323
21324 /* Now that we're done scanning the Line Header Program, we can
21325 create the psymtab of each included file. */
21326 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21327 if (lh->file_names[file_index].included_p == 1)
21328 {
21329 gdb::unique_xmalloc_ptr<char> name_holder;
21330 const char *include_name =
21331 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21332 &name_holder);
21333 if (include_name != NULL)
21334 dwarf2_create_include_psymtab (include_name, pst, objfile);
21335 }
21336 }
21337 else
21338 {
21339 /* Make sure a symtab is created for every file, even files
21340 which contain only variables (i.e. no code with associated
21341 line numbers). */
21342 buildsym_compunit *builder = cu->get_builder ();
21343 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21344 int i;
21345
21346 for (i = 0; i < lh->file_names.size (); i++)
21347 {
21348 file_entry &fe = lh->file_names[i];
21349
21350 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21351
21352 if (builder->get_current_subfile ()->symtab == NULL)
21353 {
21354 builder->get_current_subfile ()->symtab
21355 = allocate_symtab (cust,
21356 builder->get_current_subfile ()->name);
21357 }
21358 fe.symtab = builder->get_current_subfile ()->symtab;
21359 }
21360 }
21361 }
21362
21363 /* Start a subfile for DWARF. FILENAME is the name of the file and
21364 DIRNAME the name of the source directory which contains FILENAME
21365 or NULL if not known.
21366 This routine tries to keep line numbers from identical absolute and
21367 relative file names in a common subfile.
21368
21369 Using the `list' example from the GDB testsuite, which resides in
21370 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21371 of /srcdir/list0.c yields the following debugging information for list0.c:
21372
21373 DW_AT_name: /srcdir/list0.c
21374 DW_AT_comp_dir: /compdir
21375 files.files[0].name: list0.h
21376 files.files[0].dir: /srcdir
21377 files.files[1].name: list0.c
21378 files.files[1].dir: /srcdir
21379
21380 The line number information for list0.c has to end up in a single
21381 subfile, so that `break /srcdir/list0.c:1' works as expected.
21382 start_subfile will ensure that this happens provided that we pass the
21383 concatenation of files.files[1].dir and files.files[1].name as the
21384 subfile's name. */
21385
21386 static void
21387 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21388 const char *dirname)
21389 {
21390 char *copy = NULL;
21391
21392 /* In order not to lose the line information directory,
21393 we concatenate it to the filename when it makes sense.
21394 Note that the Dwarf3 standard says (speaking of filenames in line
21395 information): ``The directory index is ignored for file names
21396 that represent full path names''. Thus ignoring dirname in the
21397 `else' branch below isn't an issue. */
21398
21399 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21400 {
21401 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21402 filename = copy;
21403 }
21404
21405 cu->get_builder ()->start_subfile (filename);
21406
21407 if (copy != NULL)
21408 xfree (copy);
21409 }
21410
21411 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21412 buildsym_compunit constructor. */
21413
21414 struct compunit_symtab *
21415 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21416 CORE_ADDR low_pc)
21417 {
21418 gdb_assert (m_builder == nullptr);
21419
21420 m_builder.reset (new struct buildsym_compunit
21421 (per_cu->dwarf2_per_objfile->objfile,
21422 name, comp_dir, language, low_pc));
21423
21424 list_in_scope = get_builder ()->get_file_symbols ();
21425
21426 get_builder ()->record_debugformat ("DWARF 2");
21427 get_builder ()->record_producer (producer);
21428
21429 processing_has_namespace_info = false;
21430
21431 return get_builder ()->get_compunit_symtab ();
21432 }
21433
21434 static void
21435 var_decode_location (struct attribute *attr, struct symbol *sym,
21436 struct dwarf2_cu *cu)
21437 {
21438 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21439 struct comp_unit_head *cu_header = &cu->header;
21440
21441 /* NOTE drow/2003-01-30: There used to be a comment and some special
21442 code here to turn a symbol with DW_AT_external and a
21443 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21444 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21445 with some versions of binutils) where shared libraries could have
21446 relocations against symbols in their debug information - the
21447 minimal symbol would have the right address, but the debug info
21448 would not. It's no longer necessary, because we will explicitly
21449 apply relocations when we read in the debug information now. */
21450
21451 /* A DW_AT_location attribute with no contents indicates that a
21452 variable has been optimized away. */
21453 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21454 {
21455 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21456 return;
21457 }
21458
21459 /* Handle one degenerate form of location expression specially, to
21460 preserve GDB's previous behavior when section offsets are
21461 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21462 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21463
21464 if (attr_form_is_block (attr)
21465 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21466 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21467 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21468 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21469 && (DW_BLOCK (attr)->size
21470 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21471 {
21472 unsigned int dummy;
21473
21474 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21475 SYMBOL_VALUE_ADDRESS (sym) =
21476 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21477 else
21478 SYMBOL_VALUE_ADDRESS (sym) =
21479 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21480 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21481 fixup_symbol_section (sym, objfile);
21482 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21483 SYMBOL_SECTION (sym));
21484 return;
21485 }
21486
21487 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21488 expression evaluator, and use LOC_COMPUTED only when necessary
21489 (i.e. when the value of a register or memory location is
21490 referenced, or a thread-local block, etc.). Then again, it might
21491 not be worthwhile. I'm assuming that it isn't unless performance
21492 or memory numbers show me otherwise. */
21493
21494 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21495
21496 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21497 cu->has_loclist = true;
21498 }
21499
21500 /* Given a pointer to a DWARF information entry, figure out if we need
21501 to make a symbol table entry for it, and if so, create a new entry
21502 and return a pointer to it.
21503 If TYPE is NULL, determine symbol type from the die, otherwise
21504 used the passed type.
21505 If SPACE is not NULL, use it to hold the new symbol. If it is
21506 NULL, allocate a new symbol on the objfile's obstack. */
21507
21508 static struct symbol *
21509 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21510 struct symbol *space)
21511 {
21512 struct dwarf2_per_objfile *dwarf2_per_objfile
21513 = cu->per_cu->dwarf2_per_objfile;
21514 struct objfile *objfile = dwarf2_per_objfile->objfile;
21515 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21516 struct symbol *sym = NULL;
21517 const char *name;
21518 struct attribute *attr = NULL;
21519 struct attribute *attr2 = NULL;
21520 CORE_ADDR baseaddr;
21521 struct pending **list_to_add = NULL;
21522
21523 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21524
21525 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21526
21527 name = dwarf2_name (die, cu);
21528 if (name)
21529 {
21530 const char *linkagename;
21531 int suppress_add = 0;
21532
21533 if (space)
21534 sym = space;
21535 else
21536 sym = allocate_symbol (objfile);
21537 OBJSTAT (objfile, n_syms++);
21538
21539 /* Cache this symbol's name and the name's demangled form (if any). */
21540 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21541 linkagename = dwarf2_physname (name, die, cu);
21542 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21543
21544 /* Fortran does not have mangling standard and the mangling does differ
21545 between gfortran, iFort etc. */
21546 if (cu->language == language_fortran
21547 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21548 symbol_set_demangled_name (&(sym->ginfo),
21549 dwarf2_full_name (name, die, cu),
21550 NULL);
21551
21552 /* Default assumptions.
21553 Use the passed type or decode it from the die. */
21554 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21555 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21556 if (type != NULL)
21557 SYMBOL_TYPE (sym) = type;
21558 else
21559 SYMBOL_TYPE (sym) = die_type (die, cu);
21560 attr = dwarf2_attr (die,
21561 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21562 cu);
21563 if (attr)
21564 {
21565 SYMBOL_LINE (sym) = DW_UNSND (attr);
21566 }
21567
21568 attr = dwarf2_attr (die,
21569 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21570 cu);
21571 if (attr)
21572 {
21573 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21574 struct file_entry *fe;
21575
21576 if (cu->line_header != NULL)
21577 fe = cu->line_header->file_name_at (file_index);
21578 else
21579 fe = NULL;
21580
21581 if (fe == NULL)
21582 complaint (_("file index out of range"));
21583 else
21584 symbol_set_symtab (sym, fe->symtab);
21585 }
21586
21587 switch (die->tag)
21588 {
21589 case DW_TAG_label:
21590 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21591 if (attr)
21592 {
21593 CORE_ADDR addr;
21594
21595 addr = attr_value_as_address (attr);
21596 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21597 SYMBOL_VALUE_ADDRESS (sym) = addr;
21598 }
21599 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21600 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21601 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21602 add_symbol_to_list (sym, cu->list_in_scope);
21603 break;
21604 case DW_TAG_subprogram:
21605 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21606 finish_block. */
21607 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21608 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21609 if ((attr2 && (DW_UNSND (attr2) != 0))
21610 || cu->language == language_ada)
21611 {
21612 /* Subprograms marked external are stored as a global symbol.
21613 Ada subprograms, whether marked external or not, are always
21614 stored as a global symbol, because we want to be able to
21615 access them globally. For instance, we want to be able
21616 to break on a nested subprogram without having to
21617 specify the context. */
21618 list_to_add = cu->get_builder ()->get_global_symbols ();
21619 }
21620 else
21621 {
21622 list_to_add = cu->list_in_scope;
21623 }
21624 break;
21625 case DW_TAG_inlined_subroutine:
21626 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21627 finish_block. */
21628 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21629 SYMBOL_INLINED (sym) = 1;
21630 list_to_add = cu->list_in_scope;
21631 break;
21632 case DW_TAG_template_value_param:
21633 suppress_add = 1;
21634 /* Fall through. */
21635 case DW_TAG_constant:
21636 case DW_TAG_variable:
21637 case DW_TAG_member:
21638 /* Compilation with minimal debug info may result in
21639 variables with missing type entries. Change the
21640 misleading `void' type to something sensible. */
21641 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21642 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21643
21644 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21645 /* In the case of DW_TAG_member, we should only be called for
21646 static const members. */
21647 if (die->tag == DW_TAG_member)
21648 {
21649 /* dwarf2_add_field uses die_is_declaration,
21650 so we do the same. */
21651 gdb_assert (die_is_declaration (die, cu));
21652 gdb_assert (attr);
21653 }
21654 if (attr)
21655 {
21656 dwarf2_const_value (attr, sym, cu);
21657 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21658 if (!suppress_add)
21659 {
21660 if (attr2 && (DW_UNSND (attr2) != 0))
21661 list_to_add = cu->get_builder ()->get_global_symbols ();
21662 else
21663 list_to_add = cu->list_in_scope;
21664 }
21665 break;
21666 }
21667 attr = dwarf2_attr (die, DW_AT_location, cu);
21668 if (attr)
21669 {
21670 var_decode_location (attr, sym, cu);
21671 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21672
21673 /* Fortran explicitly imports any global symbols to the local
21674 scope by DW_TAG_common_block. */
21675 if (cu->language == language_fortran && die->parent
21676 && die->parent->tag == DW_TAG_common_block)
21677 attr2 = NULL;
21678
21679 if (SYMBOL_CLASS (sym) == LOC_STATIC
21680 && SYMBOL_VALUE_ADDRESS (sym) == 0
21681 && !dwarf2_per_objfile->has_section_at_zero)
21682 {
21683 /* When a static variable is eliminated by the linker,
21684 the corresponding debug information is not stripped
21685 out, but the variable address is set to null;
21686 do not add such variables into symbol table. */
21687 }
21688 else if (attr2 && (DW_UNSND (attr2) != 0))
21689 {
21690 /* Workaround gfortran PR debug/40040 - it uses
21691 DW_AT_location for variables in -fPIC libraries which may
21692 get overriden by other libraries/executable and get
21693 a different address. Resolve it by the minimal symbol
21694 which may come from inferior's executable using copy
21695 relocation. Make this workaround only for gfortran as for
21696 other compilers GDB cannot guess the minimal symbol
21697 Fortran mangling kind. */
21698 if (cu->language == language_fortran && die->parent
21699 && die->parent->tag == DW_TAG_module
21700 && cu->producer
21701 && startswith (cu->producer, "GNU Fortran"))
21702 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21703
21704 /* A variable with DW_AT_external is never static,
21705 but it may be block-scoped. */
21706 list_to_add
21707 = ((cu->list_in_scope
21708 == cu->get_builder ()->get_file_symbols ())
21709 ? cu->get_builder ()->get_global_symbols ()
21710 : cu->list_in_scope);
21711 }
21712 else
21713 list_to_add = cu->list_in_scope;
21714 }
21715 else
21716 {
21717 /* We do not know the address of this symbol.
21718 If it is an external symbol and we have type information
21719 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21720 The address of the variable will then be determined from
21721 the minimal symbol table whenever the variable is
21722 referenced. */
21723 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21724
21725 /* Fortran explicitly imports any global symbols to the local
21726 scope by DW_TAG_common_block. */
21727 if (cu->language == language_fortran && die->parent
21728 && die->parent->tag == DW_TAG_common_block)
21729 {
21730 /* SYMBOL_CLASS doesn't matter here because
21731 read_common_block is going to reset it. */
21732 if (!suppress_add)
21733 list_to_add = cu->list_in_scope;
21734 }
21735 else if (attr2 && (DW_UNSND (attr2) != 0)
21736 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21737 {
21738 /* A variable with DW_AT_external is never static, but it
21739 may be block-scoped. */
21740 list_to_add
21741 = ((cu->list_in_scope
21742 == cu->get_builder ()->get_file_symbols ())
21743 ? cu->get_builder ()->get_global_symbols ()
21744 : cu->list_in_scope);
21745
21746 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21747 }
21748 else if (!die_is_declaration (die, cu))
21749 {
21750 /* Use the default LOC_OPTIMIZED_OUT class. */
21751 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21752 if (!suppress_add)
21753 list_to_add = cu->list_in_scope;
21754 }
21755 }
21756 break;
21757 case DW_TAG_formal_parameter:
21758 {
21759 /* If we are inside a function, mark this as an argument. If
21760 not, we might be looking at an argument to an inlined function
21761 when we do not have enough information to show inlined frames;
21762 pretend it's a local variable in that case so that the user can
21763 still see it. */
21764 struct context_stack *curr
21765 = cu->get_builder ()->get_current_context_stack ();
21766 if (curr != nullptr && curr->name != nullptr)
21767 SYMBOL_IS_ARGUMENT (sym) = 1;
21768 attr = dwarf2_attr (die, DW_AT_location, cu);
21769 if (attr)
21770 {
21771 var_decode_location (attr, sym, cu);
21772 }
21773 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21774 if (attr)
21775 {
21776 dwarf2_const_value (attr, sym, cu);
21777 }
21778
21779 list_to_add = cu->list_in_scope;
21780 }
21781 break;
21782 case DW_TAG_unspecified_parameters:
21783 /* From varargs functions; gdb doesn't seem to have any
21784 interest in this information, so just ignore it for now.
21785 (FIXME?) */
21786 break;
21787 case DW_TAG_template_type_param:
21788 suppress_add = 1;
21789 /* Fall through. */
21790 case DW_TAG_class_type:
21791 case DW_TAG_interface_type:
21792 case DW_TAG_structure_type:
21793 case DW_TAG_union_type:
21794 case DW_TAG_set_type:
21795 case DW_TAG_enumeration_type:
21796 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21797 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21798
21799 {
21800 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21801 really ever be static objects: otherwise, if you try
21802 to, say, break of a class's method and you're in a file
21803 which doesn't mention that class, it won't work unless
21804 the check for all static symbols in lookup_symbol_aux
21805 saves you. See the OtherFileClass tests in
21806 gdb.c++/namespace.exp. */
21807
21808 if (!suppress_add)
21809 {
21810 buildsym_compunit *builder = cu->get_builder ();
21811 list_to_add
21812 = (cu->list_in_scope == builder->get_file_symbols ()
21813 && cu->language == language_cplus
21814 ? builder->get_global_symbols ()
21815 : cu->list_in_scope);
21816
21817 /* The semantics of C++ state that "struct foo {
21818 ... }" also defines a typedef for "foo". */
21819 if (cu->language == language_cplus
21820 || cu->language == language_ada
21821 || cu->language == language_d
21822 || cu->language == language_rust)
21823 {
21824 /* The symbol's name is already allocated along
21825 with this objfile, so we don't need to
21826 duplicate it for the type. */
21827 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21828 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21829 }
21830 }
21831 }
21832 break;
21833 case DW_TAG_typedef:
21834 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21836 list_to_add = cu->list_in_scope;
21837 break;
21838 case DW_TAG_base_type:
21839 case DW_TAG_subrange_type:
21840 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21842 list_to_add = cu->list_in_scope;
21843 break;
21844 case DW_TAG_enumerator:
21845 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21846 if (attr)
21847 {
21848 dwarf2_const_value (attr, sym, cu);
21849 }
21850 {
21851 /* NOTE: carlton/2003-11-10: See comment above in the
21852 DW_TAG_class_type, etc. block. */
21853
21854 list_to_add
21855 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21856 && cu->language == language_cplus
21857 ? cu->get_builder ()->get_global_symbols ()
21858 : cu->list_in_scope);
21859 }
21860 break;
21861 case DW_TAG_imported_declaration:
21862 case DW_TAG_namespace:
21863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21864 list_to_add = cu->get_builder ()->get_global_symbols ();
21865 break;
21866 case DW_TAG_module:
21867 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21868 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21869 list_to_add = cu->get_builder ()->get_global_symbols ();
21870 break;
21871 case DW_TAG_common_block:
21872 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21873 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21874 add_symbol_to_list (sym, cu->list_in_scope);
21875 break;
21876 default:
21877 /* Not a tag we recognize. Hopefully we aren't processing
21878 trash data, but since we must specifically ignore things
21879 we don't recognize, there is nothing else we should do at
21880 this point. */
21881 complaint (_("unsupported tag: '%s'"),
21882 dwarf_tag_name (die->tag));
21883 break;
21884 }
21885
21886 if (suppress_add)
21887 {
21888 sym->hash_next = objfile->template_symbols;
21889 objfile->template_symbols = sym;
21890 list_to_add = NULL;
21891 }
21892
21893 if (list_to_add != NULL)
21894 add_symbol_to_list (sym, list_to_add);
21895
21896 /* For the benefit of old versions of GCC, check for anonymous
21897 namespaces based on the demangled name. */
21898 if (!cu->processing_has_namespace_info
21899 && cu->language == language_cplus)
21900 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21901 }
21902 return (sym);
21903 }
21904
21905 /* Given an attr with a DW_FORM_dataN value in host byte order,
21906 zero-extend it as appropriate for the symbol's type. The DWARF
21907 standard (v4) is not entirely clear about the meaning of using
21908 DW_FORM_dataN for a constant with a signed type, where the type is
21909 wider than the data. The conclusion of a discussion on the DWARF
21910 list was that this is unspecified. We choose to always zero-extend
21911 because that is the interpretation long in use by GCC. */
21912
21913 static gdb_byte *
21914 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21915 struct dwarf2_cu *cu, LONGEST *value, int bits)
21916 {
21917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21918 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21919 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21920 LONGEST l = DW_UNSND (attr);
21921
21922 if (bits < sizeof (*value) * 8)
21923 {
21924 l &= ((LONGEST) 1 << bits) - 1;
21925 *value = l;
21926 }
21927 else if (bits == sizeof (*value) * 8)
21928 *value = l;
21929 else
21930 {
21931 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21932 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21933 return bytes;
21934 }
21935
21936 return NULL;
21937 }
21938
21939 /* Read a constant value from an attribute. Either set *VALUE, or if
21940 the value does not fit in *VALUE, set *BYTES - either already
21941 allocated on the objfile obstack, or newly allocated on OBSTACK,
21942 or, set *BATON, if we translated the constant to a location
21943 expression. */
21944
21945 static void
21946 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21947 const char *name, struct obstack *obstack,
21948 struct dwarf2_cu *cu,
21949 LONGEST *value, const gdb_byte **bytes,
21950 struct dwarf2_locexpr_baton **baton)
21951 {
21952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21953 struct comp_unit_head *cu_header = &cu->header;
21954 struct dwarf_block *blk;
21955 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21956 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21957
21958 *value = 0;
21959 *bytes = NULL;
21960 *baton = NULL;
21961
21962 switch (attr->form)
21963 {
21964 case DW_FORM_addr:
21965 case DW_FORM_addrx:
21966 case DW_FORM_GNU_addr_index:
21967 {
21968 gdb_byte *data;
21969
21970 if (TYPE_LENGTH (type) != cu_header->addr_size)
21971 dwarf2_const_value_length_mismatch_complaint (name,
21972 cu_header->addr_size,
21973 TYPE_LENGTH (type));
21974 /* Symbols of this form are reasonably rare, so we just
21975 piggyback on the existing location code rather than writing
21976 a new implementation of symbol_computed_ops. */
21977 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21978 (*baton)->per_cu = cu->per_cu;
21979 gdb_assert ((*baton)->per_cu);
21980
21981 (*baton)->size = 2 + cu_header->addr_size;
21982 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21983 (*baton)->data = data;
21984
21985 data[0] = DW_OP_addr;
21986 store_unsigned_integer (&data[1], cu_header->addr_size,
21987 byte_order, DW_ADDR (attr));
21988 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21989 }
21990 break;
21991 case DW_FORM_string:
21992 case DW_FORM_strp:
21993 case DW_FORM_strx:
21994 case DW_FORM_GNU_str_index:
21995 case DW_FORM_GNU_strp_alt:
21996 /* DW_STRING is already allocated on the objfile obstack, point
21997 directly to it. */
21998 *bytes = (const gdb_byte *) DW_STRING (attr);
21999 break;
22000 case DW_FORM_block1:
22001 case DW_FORM_block2:
22002 case DW_FORM_block4:
22003 case DW_FORM_block:
22004 case DW_FORM_exprloc:
22005 case DW_FORM_data16:
22006 blk = DW_BLOCK (attr);
22007 if (TYPE_LENGTH (type) != blk->size)
22008 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22009 TYPE_LENGTH (type));
22010 *bytes = blk->data;
22011 break;
22012
22013 /* The DW_AT_const_value attributes are supposed to carry the
22014 symbol's value "represented as it would be on the target
22015 architecture." By the time we get here, it's already been
22016 converted to host endianness, so we just need to sign- or
22017 zero-extend it as appropriate. */
22018 case DW_FORM_data1:
22019 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22020 break;
22021 case DW_FORM_data2:
22022 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22023 break;
22024 case DW_FORM_data4:
22025 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22026 break;
22027 case DW_FORM_data8:
22028 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22029 break;
22030
22031 case DW_FORM_sdata:
22032 case DW_FORM_implicit_const:
22033 *value = DW_SND (attr);
22034 break;
22035
22036 case DW_FORM_udata:
22037 *value = DW_UNSND (attr);
22038 break;
22039
22040 default:
22041 complaint (_("unsupported const value attribute form: '%s'"),
22042 dwarf_form_name (attr->form));
22043 *value = 0;
22044 break;
22045 }
22046 }
22047
22048
22049 /* Copy constant value from an attribute to a symbol. */
22050
22051 static void
22052 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22053 struct dwarf2_cu *cu)
22054 {
22055 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22056 LONGEST value;
22057 const gdb_byte *bytes;
22058 struct dwarf2_locexpr_baton *baton;
22059
22060 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22061 SYMBOL_PRINT_NAME (sym),
22062 &objfile->objfile_obstack, cu,
22063 &value, &bytes, &baton);
22064
22065 if (baton != NULL)
22066 {
22067 SYMBOL_LOCATION_BATON (sym) = baton;
22068 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22069 }
22070 else if (bytes != NULL)
22071 {
22072 SYMBOL_VALUE_BYTES (sym) = bytes;
22073 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22074 }
22075 else
22076 {
22077 SYMBOL_VALUE (sym) = value;
22078 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22079 }
22080 }
22081
22082 /* Return the type of the die in question using its DW_AT_type attribute. */
22083
22084 static struct type *
22085 die_type (struct die_info *die, struct dwarf2_cu *cu)
22086 {
22087 struct attribute *type_attr;
22088
22089 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22090 if (!type_attr)
22091 {
22092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22093 /* A missing DW_AT_type represents a void type. */
22094 return objfile_type (objfile)->builtin_void;
22095 }
22096
22097 return lookup_die_type (die, type_attr, cu);
22098 }
22099
22100 /* True iff CU's producer generates GNAT Ada auxiliary information
22101 that allows to find parallel types through that information instead
22102 of having to do expensive parallel lookups by type name. */
22103
22104 static int
22105 need_gnat_info (struct dwarf2_cu *cu)
22106 {
22107 /* Assume that the Ada compiler was GNAT, which always produces
22108 the auxiliary information. */
22109 return (cu->language == language_ada);
22110 }
22111
22112 /* Return the auxiliary type of the die in question using its
22113 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22114 attribute is not present. */
22115
22116 static struct type *
22117 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22118 {
22119 struct attribute *type_attr;
22120
22121 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22122 if (!type_attr)
22123 return NULL;
22124
22125 return lookup_die_type (die, type_attr, cu);
22126 }
22127
22128 /* If DIE has a descriptive_type attribute, then set the TYPE's
22129 descriptive type accordingly. */
22130
22131 static void
22132 set_descriptive_type (struct type *type, struct die_info *die,
22133 struct dwarf2_cu *cu)
22134 {
22135 struct type *descriptive_type = die_descriptive_type (die, cu);
22136
22137 if (descriptive_type)
22138 {
22139 ALLOCATE_GNAT_AUX_TYPE (type);
22140 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22141 }
22142 }
22143
22144 /* Return the containing type of the die in question using its
22145 DW_AT_containing_type attribute. */
22146
22147 static struct type *
22148 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22149 {
22150 struct attribute *type_attr;
22151 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22152
22153 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22154 if (!type_attr)
22155 error (_("Dwarf Error: Problem turning containing type into gdb type "
22156 "[in module %s]"), objfile_name (objfile));
22157
22158 return lookup_die_type (die, type_attr, cu);
22159 }
22160
22161 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22162
22163 static struct type *
22164 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22165 {
22166 struct dwarf2_per_objfile *dwarf2_per_objfile
22167 = cu->per_cu->dwarf2_per_objfile;
22168 struct objfile *objfile = dwarf2_per_objfile->objfile;
22169 char *saved;
22170
22171 std::string message
22172 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22173 objfile_name (objfile),
22174 sect_offset_str (cu->header.sect_off),
22175 sect_offset_str (die->sect_off));
22176 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22177 message.c_str (), message.length ());
22178
22179 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22180 }
22181
22182 /* Look up the type of DIE in CU using its type attribute ATTR.
22183 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22184 DW_AT_containing_type.
22185 If there is no type substitute an error marker. */
22186
22187 static struct type *
22188 lookup_die_type (struct die_info *die, const struct attribute *attr,
22189 struct dwarf2_cu *cu)
22190 {
22191 struct dwarf2_per_objfile *dwarf2_per_objfile
22192 = cu->per_cu->dwarf2_per_objfile;
22193 struct objfile *objfile = dwarf2_per_objfile->objfile;
22194 struct type *this_type;
22195
22196 gdb_assert (attr->name == DW_AT_type
22197 || attr->name == DW_AT_GNAT_descriptive_type
22198 || attr->name == DW_AT_containing_type);
22199
22200 /* First see if we have it cached. */
22201
22202 if (attr->form == DW_FORM_GNU_ref_alt)
22203 {
22204 struct dwarf2_per_cu_data *per_cu;
22205 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22206
22207 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22208 dwarf2_per_objfile);
22209 this_type = get_die_type_at_offset (sect_off, per_cu);
22210 }
22211 else if (attr_form_is_ref (attr))
22212 {
22213 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22214
22215 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22216 }
22217 else if (attr->form == DW_FORM_ref_sig8)
22218 {
22219 ULONGEST signature = DW_SIGNATURE (attr);
22220
22221 return get_signatured_type (die, signature, cu);
22222 }
22223 else
22224 {
22225 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22226 " at %s [in module %s]"),
22227 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22228 objfile_name (objfile));
22229 return build_error_marker_type (cu, die);
22230 }
22231
22232 /* If not cached we need to read it in. */
22233
22234 if (this_type == NULL)
22235 {
22236 struct die_info *type_die = NULL;
22237 struct dwarf2_cu *type_cu = cu;
22238
22239 if (attr_form_is_ref (attr))
22240 type_die = follow_die_ref (die, attr, &type_cu);
22241 if (type_die == NULL)
22242 return build_error_marker_type (cu, die);
22243 /* If we find the type now, it's probably because the type came
22244 from an inter-CU reference and the type's CU got expanded before
22245 ours. */
22246 this_type = read_type_die (type_die, type_cu);
22247 }
22248
22249 /* If we still don't have a type use an error marker. */
22250
22251 if (this_type == NULL)
22252 return build_error_marker_type (cu, die);
22253
22254 return this_type;
22255 }
22256
22257 /* Return the type in DIE, CU.
22258 Returns NULL for invalid types.
22259
22260 This first does a lookup in die_type_hash,
22261 and only reads the die in if necessary.
22262
22263 NOTE: This can be called when reading in partial or full symbols. */
22264
22265 static struct type *
22266 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22267 {
22268 struct type *this_type;
22269
22270 this_type = get_die_type (die, cu);
22271 if (this_type)
22272 return this_type;
22273
22274 return read_type_die_1 (die, cu);
22275 }
22276
22277 /* Read the type in DIE, CU.
22278 Returns NULL for invalid types. */
22279
22280 static struct type *
22281 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22282 {
22283 struct type *this_type = NULL;
22284
22285 switch (die->tag)
22286 {
22287 case DW_TAG_class_type:
22288 case DW_TAG_interface_type:
22289 case DW_TAG_structure_type:
22290 case DW_TAG_union_type:
22291 this_type = read_structure_type (die, cu);
22292 break;
22293 case DW_TAG_enumeration_type:
22294 this_type = read_enumeration_type (die, cu);
22295 break;
22296 case DW_TAG_subprogram:
22297 case DW_TAG_subroutine_type:
22298 case DW_TAG_inlined_subroutine:
22299 this_type = read_subroutine_type (die, cu);
22300 break;
22301 case DW_TAG_array_type:
22302 this_type = read_array_type (die, cu);
22303 break;
22304 case DW_TAG_set_type:
22305 this_type = read_set_type (die, cu);
22306 break;
22307 case DW_TAG_pointer_type:
22308 this_type = read_tag_pointer_type (die, cu);
22309 break;
22310 case DW_TAG_ptr_to_member_type:
22311 this_type = read_tag_ptr_to_member_type (die, cu);
22312 break;
22313 case DW_TAG_reference_type:
22314 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22315 break;
22316 case DW_TAG_rvalue_reference_type:
22317 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22318 break;
22319 case DW_TAG_const_type:
22320 this_type = read_tag_const_type (die, cu);
22321 break;
22322 case DW_TAG_volatile_type:
22323 this_type = read_tag_volatile_type (die, cu);
22324 break;
22325 case DW_TAG_restrict_type:
22326 this_type = read_tag_restrict_type (die, cu);
22327 break;
22328 case DW_TAG_string_type:
22329 this_type = read_tag_string_type (die, cu);
22330 break;
22331 case DW_TAG_typedef:
22332 this_type = read_typedef (die, cu);
22333 break;
22334 case DW_TAG_subrange_type:
22335 this_type = read_subrange_type (die, cu);
22336 break;
22337 case DW_TAG_base_type:
22338 this_type = read_base_type (die, cu);
22339 break;
22340 case DW_TAG_unspecified_type:
22341 this_type = read_unspecified_type (die, cu);
22342 break;
22343 case DW_TAG_namespace:
22344 this_type = read_namespace_type (die, cu);
22345 break;
22346 case DW_TAG_module:
22347 this_type = read_module_type (die, cu);
22348 break;
22349 case DW_TAG_atomic_type:
22350 this_type = read_tag_atomic_type (die, cu);
22351 break;
22352 default:
22353 complaint (_("unexpected tag in read_type_die: '%s'"),
22354 dwarf_tag_name (die->tag));
22355 break;
22356 }
22357
22358 return this_type;
22359 }
22360
22361 /* See if we can figure out if the class lives in a namespace. We do
22362 this by looking for a member function; its demangled name will
22363 contain namespace info, if there is any.
22364 Return the computed name or NULL.
22365 Space for the result is allocated on the objfile's obstack.
22366 This is the full-die version of guess_partial_die_structure_name.
22367 In this case we know DIE has no useful parent. */
22368
22369 static char *
22370 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22371 {
22372 struct die_info *spec_die;
22373 struct dwarf2_cu *spec_cu;
22374 struct die_info *child;
22375 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22376
22377 spec_cu = cu;
22378 spec_die = die_specification (die, &spec_cu);
22379 if (spec_die != NULL)
22380 {
22381 die = spec_die;
22382 cu = spec_cu;
22383 }
22384
22385 for (child = die->child;
22386 child != NULL;
22387 child = child->sibling)
22388 {
22389 if (child->tag == DW_TAG_subprogram)
22390 {
22391 const char *linkage_name = dw2_linkage_name (child, cu);
22392
22393 if (linkage_name != NULL)
22394 {
22395 char *actual_name
22396 = language_class_name_from_physname (cu->language_defn,
22397 linkage_name);
22398 char *name = NULL;
22399
22400 if (actual_name != NULL)
22401 {
22402 const char *die_name = dwarf2_name (die, cu);
22403
22404 if (die_name != NULL
22405 && strcmp (die_name, actual_name) != 0)
22406 {
22407 /* Strip off the class name from the full name.
22408 We want the prefix. */
22409 int die_name_len = strlen (die_name);
22410 int actual_name_len = strlen (actual_name);
22411
22412 /* Test for '::' as a sanity check. */
22413 if (actual_name_len > die_name_len + 2
22414 && actual_name[actual_name_len
22415 - die_name_len - 1] == ':')
22416 name = (char *) obstack_copy0 (
22417 &objfile->per_bfd->storage_obstack,
22418 actual_name, actual_name_len - die_name_len - 2);
22419 }
22420 }
22421 xfree (actual_name);
22422 return name;
22423 }
22424 }
22425 }
22426
22427 return NULL;
22428 }
22429
22430 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22431 prefix part in such case. See
22432 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22433
22434 static const char *
22435 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22436 {
22437 struct attribute *attr;
22438 const char *base;
22439
22440 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22441 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22442 return NULL;
22443
22444 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22445 return NULL;
22446
22447 attr = dw2_linkage_name_attr (die, cu);
22448 if (attr == NULL || DW_STRING (attr) == NULL)
22449 return NULL;
22450
22451 /* dwarf2_name had to be already called. */
22452 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22453
22454 /* Strip the base name, keep any leading namespaces/classes. */
22455 base = strrchr (DW_STRING (attr), ':');
22456 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22457 return "";
22458
22459 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22460 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22461 DW_STRING (attr),
22462 &base[-1] - DW_STRING (attr));
22463 }
22464
22465 /* Return the name of the namespace/class that DIE is defined within,
22466 or "" if we can't tell. The caller should not xfree the result.
22467
22468 For example, if we're within the method foo() in the following
22469 code:
22470
22471 namespace N {
22472 class C {
22473 void foo () {
22474 }
22475 };
22476 }
22477
22478 then determine_prefix on foo's die will return "N::C". */
22479
22480 static const char *
22481 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22482 {
22483 struct dwarf2_per_objfile *dwarf2_per_objfile
22484 = cu->per_cu->dwarf2_per_objfile;
22485 struct die_info *parent, *spec_die;
22486 struct dwarf2_cu *spec_cu;
22487 struct type *parent_type;
22488 const char *retval;
22489
22490 if (cu->language != language_cplus
22491 && cu->language != language_fortran && cu->language != language_d
22492 && cu->language != language_rust)
22493 return "";
22494
22495 retval = anonymous_struct_prefix (die, cu);
22496 if (retval)
22497 return retval;
22498
22499 /* We have to be careful in the presence of DW_AT_specification.
22500 For example, with GCC 3.4, given the code
22501
22502 namespace N {
22503 void foo() {
22504 // Definition of N::foo.
22505 }
22506 }
22507
22508 then we'll have a tree of DIEs like this:
22509
22510 1: DW_TAG_compile_unit
22511 2: DW_TAG_namespace // N
22512 3: DW_TAG_subprogram // declaration of N::foo
22513 4: DW_TAG_subprogram // definition of N::foo
22514 DW_AT_specification // refers to die #3
22515
22516 Thus, when processing die #4, we have to pretend that we're in
22517 the context of its DW_AT_specification, namely the contex of die
22518 #3. */
22519 spec_cu = cu;
22520 spec_die = die_specification (die, &spec_cu);
22521 if (spec_die == NULL)
22522 parent = die->parent;
22523 else
22524 {
22525 parent = spec_die->parent;
22526 cu = spec_cu;
22527 }
22528
22529 if (parent == NULL)
22530 return "";
22531 else if (parent->building_fullname)
22532 {
22533 const char *name;
22534 const char *parent_name;
22535
22536 /* It has been seen on RealView 2.2 built binaries,
22537 DW_TAG_template_type_param types actually _defined_ as
22538 children of the parent class:
22539
22540 enum E {};
22541 template class <class Enum> Class{};
22542 Class<enum E> class_e;
22543
22544 1: DW_TAG_class_type (Class)
22545 2: DW_TAG_enumeration_type (E)
22546 3: DW_TAG_enumerator (enum1:0)
22547 3: DW_TAG_enumerator (enum2:1)
22548 ...
22549 2: DW_TAG_template_type_param
22550 DW_AT_type DW_FORM_ref_udata (E)
22551
22552 Besides being broken debug info, it can put GDB into an
22553 infinite loop. Consider:
22554
22555 When we're building the full name for Class<E>, we'll start
22556 at Class, and go look over its template type parameters,
22557 finding E. We'll then try to build the full name of E, and
22558 reach here. We're now trying to build the full name of E,
22559 and look over the parent DIE for containing scope. In the
22560 broken case, if we followed the parent DIE of E, we'd again
22561 find Class, and once again go look at its template type
22562 arguments, etc., etc. Simply don't consider such parent die
22563 as source-level parent of this die (it can't be, the language
22564 doesn't allow it), and break the loop here. */
22565 name = dwarf2_name (die, cu);
22566 parent_name = dwarf2_name (parent, cu);
22567 complaint (_("template param type '%s' defined within parent '%s'"),
22568 name ? name : "<unknown>",
22569 parent_name ? parent_name : "<unknown>");
22570 return "";
22571 }
22572 else
22573 switch (parent->tag)
22574 {
22575 case DW_TAG_namespace:
22576 parent_type = read_type_die (parent, cu);
22577 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22578 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22579 Work around this problem here. */
22580 if (cu->language == language_cplus
22581 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22582 return "";
22583 /* We give a name to even anonymous namespaces. */
22584 return TYPE_NAME (parent_type);
22585 case DW_TAG_class_type:
22586 case DW_TAG_interface_type:
22587 case DW_TAG_structure_type:
22588 case DW_TAG_union_type:
22589 case DW_TAG_module:
22590 parent_type = read_type_die (parent, cu);
22591 if (TYPE_NAME (parent_type) != NULL)
22592 return TYPE_NAME (parent_type);
22593 else
22594 /* An anonymous structure is only allowed non-static data
22595 members; no typedefs, no member functions, et cetera.
22596 So it does not need a prefix. */
22597 return "";
22598 case DW_TAG_compile_unit:
22599 case DW_TAG_partial_unit:
22600 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22601 if (cu->language == language_cplus
22602 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22603 && die->child != NULL
22604 && (die->tag == DW_TAG_class_type
22605 || die->tag == DW_TAG_structure_type
22606 || die->tag == DW_TAG_union_type))
22607 {
22608 char *name = guess_full_die_structure_name (die, cu);
22609 if (name != NULL)
22610 return name;
22611 }
22612 return "";
22613 case DW_TAG_enumeration_type:
22614 parent_type = read_type_die (parent, cu);
22615 if (TYPE_DECLARED_CLASS (parent_type))
22616 {
22617 if (TYPE_NAME (parent_type) != NULL)
22618 return TYPE_NAME (parent_type);
22619 return "";
22620 }
22621 /* Fall through. */
22622 default:
22623 return determine_prefix (parent, cu);
22624 }
22625 }
22626
22627 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22628 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22629 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22630 an obconcat, otherwise allocate storage for the result. The CU argument is
22631 used to determine the language and hence, the appropriate separator. */
22632
22633 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22634
22635 static char *
22636 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22637 int physname, struct dwarf2_cu *cu)
22638 {
22639 const char *lead = "";
22640 const char *sep;
22641
22642 if (suffix == NULL || suffix[0] == '\0'
22643 || prefix == NULL || prefix[0] == '\0')
22644 sep = "";
22645 else if (cu->language == language_d)
22646 {
22647 /* For D, the 'main' function could be defined in any module, but it
22648 should never be prefixed. */
22649 if (strcmp (suffix, "D main") == 0)
22650 {
22651 prefix = "";
22652 sep = "";
22653 }
22654 else
22655 sep = ".";
22656 }
22657 else if (cu->language == language_fortran && physname)
22658 {
22659 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22660 DW_AT_MIPS_linkage_name is preferred and used instead. */
22661
22662 lead = "__";
22663 sep = "_MOD_";
22664 }
22665 else
22666 sep = "::";
22667
22668 if (prefix == NULL)
22669 prefix = "";
22670 if (suffix == NULL)
22671 suffix = "";
22672
22673 if (obs == NULL)
22674 {
22675 char *retval
22676 = ((char *)
22677 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22678
22679 strcpy (retval, lead);
22680 strcat (retval, prefix);
22681 strcat (retval, sep);
22682 strcat (retval, suffix);
22683 return retval;
22684 }
22685 else
22686 {
22687 /* We have an obstack. */
22688 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22689 }
22690 }
22691
22692 /* Return sibling of die, NULL if no sibling. */
22693
22694 static struct die_info *
22695 sibling_die (struct die_info *die)
22696 {
22697 return die->sibling;
22698 }
22699
22700 /* Get name of a die, return NULL if not found. */
22701
22702 static const char *
22703 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22704 struct obstack *obstack)
22705 {
22706 if (name && cu->language == language_cplus)
22707 {
22708 std::string canon_name = cp_canonicalize_string (name);
22709
22710 if (!canon_name.empty ())
22711 {
22712 if (canon_name != name)
22713 name = (const char *) obstack_copy0 (obstack,
22714 canon_name.c_str (),
22715 canon_name.length ());
22716 }
22717 }
22718
22719 return name;
22720 }
22721
22722 /* Get name of a die, return NULL if not found.
22723 Anonymous namespaces are converted to their magic string. */
22724
22725 static const char *
22726 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22727 {
22728 struct attribute *attr;
22729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22730
22731 attr = dwarf2_attr (die, DW_AT_name, cu);
22732 if ((!attr || !DW_STRING (attr))
22733 && die->tag != DW_TAG_namespace
22734 && die->tag != DW_TAG_class_type
22735 && die->tag != DW_TAG_interface_type
22736 && die->tag != DW_TAG_structure_type
22737 && die->tag != DW_TAG_union_type)
22738 return NULL;
22739
22740 switch (die->tag)
22741 {
22742 case DW_TAG_compile_unit:
22743 case DW_TAG_partial_unit:
22744 /* Compilation units have a DW_AT_name that is a filename, not
22745 a source language identifier. */
22746 case DW_TAG_enumeration_type:
22747 case DW_TAG_enumerator:
22748 /* These tags always have simple identifiers already; no need
22749 to canonicalize them. */
22750 return DW_STRING (attr);
22751
22752 case DW_TAG_namespace:
22753 if (attr != NULL && DW_STRING (attr) != NULL)
22754 return DW_STRING (attr);
22755 return CP_ANONYMOUS_NAMESPACE_STR;
22756
22757 case DW_TAG_class_type:
22758 case DW_TAG_interface_type:
22759 case DW_TAG_structure_type:
22760 case DW_TAG_union_type:
22761 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22762 structures or unions. These were of the form "._%d" in GCC 4.1,
22763 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22764 and GCC 4.4. We work around this problem by ignoring these. */
22765 if (attr && DW_STRING (attr)
22766 && (startswith (DW_STRING (attr), "._")
22767 || startswith (DW_STRING (attr), "<anonymous")))
22768 return NULL;
22769
22770 /* GCC might emit a nameless typedef that has a linkage name. See
22771 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22772 if (!attr || DW_STRING (attr) == NULL)
22773 {
22774 char *demangled = NULL;
22775
22776 attr = dw2_linkage_name_attr (die, cu);
22777 if (attr == NULL || DW_STRING (attr) == NULL)
22778 return NULL;
22779
22780 /* Avoid demangling DW_STRING (attr) the second time on a second
22781 call for the same DIE. */
22782 if (!DW_STRING_IS_CANONICAL (attr))
22783 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22784
22785 if (demangled)
22786 {
22787 const char *base;
22788
22789 /* FIXME: we already did this for the partial symbol... */
22790 DW_STRING (attr)
22791 = ((const char *)
22792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22793 demangled, strlen (demangled)));
22794 DW_STRING_IS_CANONICAL (attr) = 1;
22795 xfree (demangled);
22796
22797 /* Strip any leading namespaces/classes, keep only the base name.
22798 DW_AT_name for named DIEs does not contain the prefixes. */
22799 base = strrchr (DW_STRING (attr), ':');
22800 if (base && base > DW_STRING (attr) && base[-1] == ':')
22801 return &base[1];
22802 else
22803 return DW_STRING (attr);
22804 }
22805 }
22806 break;
22807
22808 default:
22809 break;
22810 }
22811
22812 if (!DW_STRING_IS_CANONICAL (attr))
22813 {
22814 DW_STRING (attr)
22815 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22816 &objfile->per_bfd->storage_obstack);
22817 DW_STRING_IS_CANONICAL (attr) = 1;
22818 }
22819 return DW_STRING (attr);
22820 }
22821
22822 /* Return the die that this die in an extension of, or NULL if there
22823 is none. *EXT_CU is the CU containing DIE on input, and the CU
22824 containing the return value on output. */
22825
22826 static struct die_info *
22827 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22828 {
22829 struct attribute *attr;
22830
22831 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22832 if (attr == NULL)
22833 return NULL;
22834
22835 return follow_die_ref (die, attr, ext_cu);
22836 }
22837
22838 /* A convenience function that returns an "unknown" DWARF name,
22839 including the value of V. STR is the name of the entity being
22840 printed, e.g., "TAG". */
22841
22842 static const char *
22843 dwarf_unknown (const char *str, unsigned v)
22844 {
22845 char *cell = get_print_cell ();
22846 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22847 return cell;
22848 }
22849
22850 /* Convert a DIE tag into its string name. */
22851
22852 static const char *
22853 dwarf_tag_name (unsigned tag)
22854 {
22855 const char *name = get_DW_TAG_name (tag);
22856
22857 if (name == NULL)
22858 return dwarf_unknown ("TAG", tag);
22859
22860 return name;
22861 }
22862
22863 /* Convert a DWARF attribute code into its string name. */
22864
22865 static const char *
22866 dwarf_attr_name (unsigned attr)
22867 {
22868 const char *name;
22869
22870 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22871 if (attr == DW_AT_MIPS_fde)
22872 return "DW_AT_MIPS_fde";
22873 #else
22874 if (attr == DW_AT_HP_block_index)
22875 return "DW_AT_HP_block_index";
22876 #endif
22877
22878 name = get_DW_AT_name (attr);
22879
22880 if (name == NULL)
22881 return dwarf_unknown ("AT", attr);
22882
22883 return name;
22884 }
22885
22886 /* Convert a DWARF value form code into its string name. */
22887
22888 static const char *
22889 dwarf_form_name (unsigned form)
22890 {
22891 const char *name = get_DW_FORM_name (form);
22892
22893 if (name == NULL)
22894 return dwarf_unknown ("FORM", form);
22895
22896 return name;
22897 }
22898
22899 static const char *
22900 dwarf_bool_name (unsigned mybool)
22901 {
22902 if (mybool)
22903 return "TRUE";
22904 else
22905 return "FALSE";
22906 }
22907
22908 /* Convert a DWARF type code into its string name. */
22909
22910 static const char *
22911 dwarf_type_encoding_name (unsigned enc)
22912 {
22913 const char *name = get_DW_ATE_name (enc);
22914
22915 if (name == NULL)
22916 return dwarf_unknown ("ATE", enc);
22917
22918 return name;
22919 }
22920
22921 static void
22922 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22923 {
22924 unsigned int i;
22925
22926 print_spaces (indent, f);
22927 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22928 dwarf_tag_name (die->tag), die->abbrev,
22929 sect_offset_str (die->sect_off));
22930
22931 if (die->parent != NULL)
22932 {
22933 print_spaces (indent, f);
22934 fprintf_unfiltered (f, " parent at offset: %s\n",
22935 sect_offset_str (die->parent->sect_off));
22936 }
22937
22938 print_spaces (indent, f);
22939 fprintf_unfiltered (f, " has children: %s\n",
22940 dwarf_bool_name (die->child != NULL));
22941
22942 print_spaces (indent, f);
22943 fprintf_unfiltered (f, " attributes:\n");
22944
22945 for (i = 0; i < die->num_attrs; ++i)
22946 {
22947 print_spaces (indent, f);
22948 fprintf_unfiltered (f, " %s (%s) ",
22949 dwarf_attr_name (die->attrs[i].name),
22950 dwarf_form_name (die->attrs[i].form));
22951
22952 switch (die->attrs[i].form)
22953 {
22954 case DW_FORM_addr:
22955 case DW_FORM_addrx:
22956 case DW_FORM_GNU_addr_index:
22957 fprintf_unfiltered (f, "address: ");
22958 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22959 break;
22960 case DW_FORM_block2:
22961 case DW_FORM_block4:
22962 case DW_FORM_block:
22963 case DW_FORM_block1:
22964 fprintf_unfiltered (f, "block: size %s",
22965 pulongest (DW_BLOCK (&die->attrs[i])->size));
22966 break;
22967 case DW_FORM_exprloc:
22968 fprintf_unfiltered (f, "expression: size %s",
22969 pulongest (DW_BLOCK (&die->attrs[i])->size));
22970 break;
22971 case DW_FORM_data16:
22972 fprintf_unfiltered (f, "constant of 16 bytes");
22973 break;
22974 case DW_FORM_ref_addr:
22975 fprintf_unfiltered (f, "ref address: ");
22976 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22977 break;
22978 case DW_FORM_GNU_ref_alt:
22979 fprintf_unfiltered (f, "alt ref address: ");
22980 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22981 break;
22982 case DW_FORM_ref1:
22983 case DW_FORM_ref2:
22984 case DW_FORM_ref4:
22985 case DW_FORM_ref8:
22986 case DW_FORM_ref_udata:
22987 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22988 (long) (DW_UNSND (&die->attrs[i])));
22989 break;
22990 case DW_FORM_data1:
22991 case DW_FORM_data2:
22992 case DW_FORM_data4:
22993 case DW_FORM_data8:
22994 case DW_FORM_udata:
22995 case DW_FORM_sdata:
22996 fprintf_unfiltered (f, "constant: %s",
22997 pulongest (DW_UNSND (&die->attrs[i])));
22998 break;
22999 case DW_FORM_sec_offset:
23000 fprintf_unfiltered (f, "section offset: %s",
23001 pulongest (DW_UNSND (&die->attrs[i])));
23002 break;
23003 case DW_FORM_ref_sig8:
23004 fprintf_unfiltered (f, "signature: %s",
23005 hex_string (DW_SIGNATURE (&die->attrs[i])));
23006 break;
23007 case DW_FORM_string:
23008 case DW_FORM_strp:
23009 case DW_FORM_line_strp:
23010 case DW_FORM_strx:
23011 case DW_FORM_GNU_str_index:
23012 case DW_FORM_GNU_strp_alt:
23013 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23014 DW_STRING (&die->attrs[i])
23015 ? DW_STRING (&die->attrs[i]) : "",
23016 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23017 break;
23018 case DW_FORM_flag:
23019 if (DW_UNSND (&die->attrs[i]))
23020 fprintf_unfiltered (f, "flag: TRUE");
23021 else
23022 fprintf_unfiltered (f, "flag: FALSE");
23023 break;
23024 case DW_FORM_flag_present:
23025 fprintf_unfiltered (f, "flag: TRUE");
23026 break;
23027 case DW_FORM_indirect:
23028 /* The reader will have reduced the indirect form to
23029 the "base form" so this form should not occur. */
23030 fprintf_unfiltered (f,
23031 "unexpected attribute form: DW_FORM_indirect");
23032 break;
23033 case DW_FORM_implicit_const:
23034 fprintf_unfiltered (f, "constant: %s",
23035 plongest (DW_SND (&die->attrs[i])));
23036 break;
23037 default:
23038 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23039 die->attrs[i].form);
23040 break;
23041 }
23042 fprintf_unfiltered (f, "\n");
23043 }
23044 }
23045
23046 static void
23047 dump_die_for_error (struct die_info *die)
23048 {
23049 dump_die_shallow (gdb_stderr, 0, die);
23050 }
23051
23052 static void
23053 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23054 {
23055 int indent = level * 4;
23056
23057 gdb_assert (die != NULL);
23058
23059 if (level >= max_level)
23060 return;
23061
23062 dump_die_shallow (f, indent, die);
23063
23064 if (die->child != NULL)
23065 {
23066 print_spaces (indent, f);
23067 fprintf_unfiltered (f, " Children:");
23068 if (level + 1 < max_level)
23069 {
23070 fprintf_unfiltered (f, "\n");
23071 dump_die_1 (f, level + 1, max_level, die->child);
23072 }
23073 else
23074 {
23075 fprintf_unfiltered (f,
23076 " [not printed, max nesting level reached]\n");
23077 }
23078 }
23079
23080 if (die->sibling != NULL && level > 0)
23081 {
23082 dump_die_1 (f, level, max_level, die->sibling);
23083 }
23084 }
23085
23086 /* This is called from the pdie macro in gdbinit.in.
23087 It's not static so gcc will keep a copy callable from gdb. */
23088
23089 void
23090 dump_die (struct die_info *die, int max_level)
23091 {
23092 dump_die_1 (gdb_stdlog, 0, max_level, die);
23093 }
23094
23095 static void
23096 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23097 {
23098 void **slot;
23099
23100 slot = htab_find_slot_with_hash (cu->die_hash, die,
23101 to_underlying (die->sect_off),
23102 INSERT);
23103
23104 *slot = die;
23105 }
23106
23107 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23108 required kind. */
23109
23110 static sect_offset
23111 dwarf2_get_ref_die_offset (const struct attribute *attr)
23112 {
23113 if (attr_form_is_ref (attr))
23114 return (sect_offset) DW_UNSND (attr);
23115
23116 complaint (_("unsupported die ref attribute form: '%s'"),
23117 dwarf_form_name (attr->form));
23118 return {};
23119 }
23120
23121 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23122 * the value held by the attribute is not constant. */
23123
23124 static LONGEST
23125 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23126 {
23127 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23128 return DW_SND (attr);
23129 else if (attr->form == DW_FORM_udata
23130 || attr->form == DW_FORM_data1
23131 || attr->form == DW_FORM_data2
23132 || attr->form == DW_FORM_data4
23133 || attr->form == DW_FORM_data8)
23134 return DW_UNSND (attr);
23135 else
23136 {
23137 /* For DW_FORM_data16 see attr_form_is_constant. */
23138 complaint (_("Attribute value is not a constant (%s)"),
23139 dwarf_form_name (attr->form));
23140 return default_value;
23141 }
23142 }
23143
23144 /* Follow reference or signature attribute ATTR of SRC_DIE.
23145 On entry *REF_CU is the CU of SRC_DIE.
23146 On exit *REF_CU is the CU of the result. */
23147
23148 static struct die_info *
23149 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23150 struct dwarf2_cu **ref_cu)
23151 {
23152 struct die_info *die;
23153
23154 if (attr_form_is_ref (attr))
23155 die = follow_die_ref (src_die, attr, ref_cu);
23156 else if (attr->form == DW_FORM_ref_sig8)
23157 die = follow_die_sig (src_die, attr, ref_cu);
23158 else
23159 {
23160 dump_die_for_error (src_die);
23161 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23162 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23163 }
23164
23165 return die;
23166 }
23167
23168 /* Follow reference OFFSET.
23169 On entry *REF_CU is the CU of the source die referencing OFFSET.
23170 On exit *REF_CU is the CU of the result.
23171 Returns NULL if OFFSET is invalid. */
23172
23173 static struct die_info *
23174 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23175 struct dwarf2_cu **ref_cu)
23176 {
23177 struct die_info temp_die;
23178 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23179 struct dwarf2_per_objfile *dwarf2_per_objfile
23180 = cu->per_cu->dwarf2_per_objfile;
23181
23182 gdb_assert (cu->per_cu != NULL);
23183
23184 target_cu = cu;
23185
23186 if (cu->per_cu->is_debug_types)
23187 {
23188 /* .debug_types CUs cannot reference anything outside their CU.
23189 If they need to, they have to reference a signatured type via
23190 DW_FORM_ref_sig8. */
23191 if (!offset_in_cu_p (&cu->header, sect_off))
23192 return NULL;
23193 }
23194 else if (offset_in_dwz != cu->per_cu->is_dwz
23195 || !offset_in_cu_p (&cu->header, sect_off))
23196 {
23197 struct dwarf2_per_cu_data *per_cu;
23198
23199 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23200 dwarf2_per_objfile);
23201
23202 /* If necessary, add it to the queue and load its DIEs. */
23203 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23204 load_full_comp_unit (per_cu, false, cu->language);
23205
23206 target_cu = per_cu->cu;
23207 }
23208 else if (cu->dies == NULL)
23209 {
23210 /* We're loading full DIEs during partial symbol reading. */
23211 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23212 load_full_comp_unit (cu->per_cu, false, language_minimal);
23213 }
23214
23215 *ref_cu = target_cu;
23216 temp_die.sect_off = sect_off;
23217
23218 if (target_cu != cu)
23219 target_cu->ancestor = cu;
23220
23221 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23222 &temp_die,
23223 to_underlying (sect_off));
23224 }
23225
23226 /* Follow reference attribute ATTR of SRC_DIE.
23227 On entry *REF_CU is the CU of SRC_DIE.
23228 On exit *REF_CU is the CU of the result. */
23229
23230 static struct die_info *
23231 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23232 struct dwarf2_cu **ref_cu)
23233 {
23234 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23235 struct dwarf2_cu *cu = *ref_cu;
23236 struct die_info *die;
23237
23238 die = follow_die_offset (sect_off,
23239 (attr->form == DW_FORM_GNU_ref_alt
23240 || cu->per_cu->is_dwz),
23241 ref_cu);
23242 if (!die)
23243 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23244 "at %s [in module %s]"),
23245 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23246 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23247
23248 return die;
23249 }
23250
23251 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23252 Returned value is intended for DW_OP_call*. Returned
23253 dwarf2_locexpr_baton->data has lifetime of
23254 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23255
23256 struct dwarf2_locexpr_baton
23257 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23258 struct dwarf2_per_cu_data *per_cu,
23259 CORE_ADDR (*get_frame_pc) (void *baton),
23260 void *baton, bool resolve_abstract_p)
23261 {
23262 struct dwarf2_cu *cu;
23263 struct die_info *die;
23264 struct attribute *attr;
23265 struct dwarf2_locexpr_baton retval;
23266 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23267 struct objfile *objfile = dwarf2_per_objfile->objfile;
23268
23269 if (per_cu->cu == NULL)
23270 load_cu (per_cu, false);
23271 cu = per_cu->cu;
23272 if (cu == NULL)
23273 {
23274 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23275 Instead just throw an error, not much else we can do. */
23276 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23277 sect_offset_str (sect_off), objfile_name (objfile));
23278 }
23279
23280 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23281 if (!die)
23282 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23283 sect_offset_str (sect_off), objfile_name (objfile));
23284
23285 attr = dwarf2_attr (die, DW_AT_location, cu);
23286 if (!attr && resolve_abstract_p
23287 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23288 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23289 {
23290 CORE_ADDR pc = (*get_frame_pc) (baton);
23291
23292 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23293 {
23294 if (!cand->parent
23295 || cand->parent->tag != DW_TAG_subprogram)
23296 continue;
23297
23298 CORE_ADDR pc_low, pc_high;
23299 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23300 if (pc_low == ((CORE_ADDR) -1)
23301 || !(pc_low <= pc && pc < pc_high))
23302 continue;
23303
23304 die = cand;
23305 attr = dwarf2_attr (die, DW_AT_location, cu);
23306 break;
23307 }
23308 }
23309
23310 if (!attr)
23311 {
23312 /* DWARF: "If there is no such attribute, then there is no effect.".
23313 DATA is ignored if SIZE is 0. */
23314
23315 retval.data = NULL;
23316 retval.size = 0;
23317 }
23318 else if (attr_form_is_section_offset (attr))
23319 {
23320 struct dwarf2_loclist_baton loclist_baton;
23321 CORE_ADDR pc = (*get_frame_pc) (baton);
23322 size_t size;
23323
23324 fill_in_loclist_baton (cu, &loclist_baton, attr);
23325
23326 retval.data = dwarf2_find_location_expression (&loclist_baton,
23327 &size, pc);
23328 retval.size = size;
23329 }
23330 else
23331 {
23332 if (!attr_form_is_block (attr))
23333 error (_("Dwarf Error: DIE at %s referenced in module %s "
23334 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23335 sect_offset_str (sect_off), objfile_name (objfile));
23336
23337 retval.data = DW_BLOCK (attr)->data;
23338 retval.size = DW_BLOCK (attr)->size;
23339 }
23340 retval.per_cu = cu->per_cu;
23341
23342 age_cached_comp_units (dwarf2_per_objfile);
23343
23344 return retval;
23345 }
23346
23347 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23348 offset. */
23349
23350 struct dwarf2_locexpr_baton
23351 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23352 struct dwarf2_per_cu_data *per_cu,
23353 CORE_ADDR (*get_frame_pc) (void *baton),
23354 void *baton)
23355 {
23356 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23357
23358 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23359 }
23360
23361 /* Write a constant of a given type as target-ordered bytes into
23362 OBSTACK. */
23363
23364 static const gdb_byte *
23365 write_constant_as_bytes (struct obstack *obstack,
23366 enum bfd_endian byte_order,
23367 struct type *type,
23368 ULONGEST value,
23369 LONGEST *len)
23370 {
23371 gdb_byte *result;
23372
23373 *len = TYPE_LENGTH (type);
23374 result = (gdb_byte *) obstack_alloc (obstack, *len);
23375 store_unsigned_integer (result, *len, byte_order, value);
23376
23377 return result;
23378 }
23379
23380 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23381 pointer to the constant bytes and set LEN to the length of the
23382 data. If memory is needed, allocate it on OBSTACK. If the DIE
23383 does not have a DW_AT_const_value, return NULL. */
23384
23385 const gdb_byte *
23386 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23387 struct dwarf2_per_cu_data *per_cu,
23388 struct obstack *obstack,
23389 LONGEST *len)
23390 {
23391 struct dwarf2_cu *cu;
23392 struct die_info *die;
23393 struct attribute *attr;
23394 const gdb_byte *result = NULL;
23395 struct type *type;
23396 LONGEST value;
23397 enum bfd_endian byte_order;
23398 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23399
23400 if (per_cu->cu == NULL)
23401 load_cu (per_cu, false);
23402 cu = per_cu->cu;
23403 if (cu == NULL)
23404 {
23405 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23406 Instead just throw an error, not much else we can do. */
23407 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23408 sect_offset_str (sect_off), objfile_name (objfile));
23409 }
23410
23411 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23412 if (!die)
23413 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23414 sect_offset_str (sect_off), objfile_name (objfile));
23415
23416 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23417 if (attr == NULL)
23418 return NULL;
23419
23420 byte_order = (bfd_big_endian (objfile->obfd)
23421 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23422
23423 switch (attr->form)
23424 {
23425 case DW_FORM_addr:
23426 case DW_FORM_addrx:
23427 case DW_FORM_GNU_addr_index:
23428 {
23429 gdb_byte *tem;
23430
23431 *len = cu->header.addr_size;
23432 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23433 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23434 result = tem;
23435 }
23436 break;
23437 case DW_FORM_string:
23438 case DW_FORM_strp:
23439 case DW_FORM_strx:
23440 case DW_FORM_GNU_str_index:
23441 case DW_FORM_GNU_strp_alt:
23442 /* DW_STRING is already allocated on the objfile obstack, point
23443 directly to it. */
23444 result = (const gdb_byte *) DW_STRING (attr);
23445 *len = strlen (DW_STRING (attr));
23446 break;
23447 case DW_FORM_block1:
23448 case DW_FORM_block2:
23449 case DW_FORM_block4:
23450 case DW_FORM_block:
23451 case DW_FORM_exprloc:
23452 case DW_FORM_data16:
23453 result = DW_BLOCK (attr)->data;
23454 *len = DW_BLOCK (attr)->size;
23455 break;
23456
23457 /* The DW_AT_const_value attributes are supposed to carry the
23458 symbol's value "represented as it would be on the target
23459 architecture." By the time we get here, it's already been
23460 converted to host endianness, so we just need to sign- or
23461 zero-extend it as appropriate. */
23462 case DW_FORM_data1:
23463 type = die_type (die, cu);
23464 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23465 if (result == NULL)
23466 result = write_constant_as_bytes (obstack, byte_order,
23467 type, value, len);
23468 break;
23469 case DW_FORM_data2:
23470 type = die_type (die, cu);
23471 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23472 if (result == NULL)
23473 result = write_constant_as_bytes (obstack, byte_order,
23474 type, value, len);
23475 break;
23476 case DW_FORM_data4:
23477 type = die_type (die, cu);
23478 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23479 if (result == NULL)
23480 result = write_constant_as_bytes (obstack, byte_order,
23481 type, value, len);
23482 break;
23483 case DW_FORM_data8:
23484 type = die_type (die, cu);
23485 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23486 if (result == NULL)
23487 result = write_constant_as_bytes (obstack, byte_order,
23488 type, value, len);
23489 break;
23490
23491 case DW_FORM_sdata:
23492 case DW_FORM_implicit_const:
23493 type = die_type (die, cu);
23494 result = write_constant_as_bytes (obstack, byte_order,
23495 type, DW_SND (attr), len);
23496 break;
23497
23498 case DW_FORM_udata:
23499 type = die_type (die, cu);
23500 result = write_constant_as_bytes (obstack, byte_order,
23501 type, DW_UNSND (attr), len);
23502 break;
23503
23504 default:
23505 complaint (_("unsupported const value attribute form: '%s'"),
23506 dwarf_form_name (attr->form));
23507 break;
23508 }
23509
23510 return result;
23511 }
23512
23513 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23514 valid type for this die is found. */
23515
23516 struct type *
23517 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23518 struct dwarf2_per_cu_data *per_cu)
23519 {
23520 struct dwarf2_cu *cu;
23521 struct die_info *die;
23522
23523 if (per_cu->cu == NULL)
23524 load_cu (per_cu, false);
23525 cu = per_cu->cu;
23526 if (!cu)
23527 return NULL;
23528
23529 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23530 if (!die)
23531 return NULL;
23532
23533 return die_type (die, cu);
23534 }
23535
23536 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23537 PER_CU. */
23538
23539 struct type *
23540 dwarf2_get_die_type (cu_offset die_offset,
23541 struct dwarf2_per_cu_data *per_cu)
23542 {
23543 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23544 return get_die_type_at_offset (die_offset_sect, per_cu);
23545 }
23546
23547 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23548 On entry *REF_CU is the CU of SRC_DIE.
23549 On exit *REF_CU is the CU of the result.
23550 Returns NULL if the referenced DIE isn't found. */
23551
23552 static struct die_info *
23553 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23554 struct dwarf2_cu **ref_cu)
23555 {
23556 struct die_info temp_die;
23557 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23558 struct die_info *die;
23559
23560 /* While it might be nice to assert sig_type->type == NULL here,
23561 we can get here for DW_AT_imported_declaration where we need
23562 the DIE not the type. */
23563
23564 /* If necessary, add it to the queue and load its DIEs. */
23565
23566 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23567 read_signatured_type (sig_type);
23568
23569 sig_cu = sig_type->per_cu.cu;
23570 gdb_assert (sig_cu != NULL);
23571 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23572 temp_die.sect_off = sig_type->type_offset_in_section;
23573 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23574 to_underlying (temp_die.sect_off));
23575 if (die)
23576 {
23577 struct dwarf2_per_objfile *dwarf2_per_objfile
23578 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23579
23580 /* For .gdb_index version 7 keep track of included TUs.
23581 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23582 if (dwarf2_per_objfile->index_table != NULL
23583 && dwarf2_per_objfile->index_table->version <= 7)
23584 {
23585 VEC_safe_push (dwarf2_per_cu_ptr,
23586 (*ref_cu)->per_cu->imported_symtabs,
23587 sig_cu->per_cu);
23588 }
23589
23590 *ref_cu = sig_cu;
23591 if (sig_cu != cu)
23592 sig_cu->ancestor = cu;
23593
23594 return die;
23595 }
23596
23597 return NULL;
23598 }
23599
23600 /* Follow signatured type referenced by ATTR in SRC_DIE.
23601 On entry *REF_CU is the CU of SRC_DIE.
23602 On exit *REF_CU is the CU of the result.
23603 The result is the DIE of the type.
23604 If the referenced type cannot be found an error is thrown. */
23605
23606 static struct die_info *
23607 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23608 struct dwarf2_cu **ref_cu)
23609 {
23610 ULONGEST signature = DW_SIGNATURE (attr);
23611 struct signatured_type *sig_type;
23612 struct die_info *die;
23613
23614 gdb_assert (attr->form == DW_FORM_ref_sig8);
23615
23616 sig_type = lookup_signatured_type (*ref_cu, signature);
23617 /* sig_type will be NULL if the signatured type is missing from
23618 the debug info. */
23619 if (sig_type == NULL)
23620 {
23621 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23622 " from DIE at %s [in module %s]"),
23623 hex_string (signature), sect_offset_str (src_die->sect_off),
23624 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23625 }
23626
23627 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23628 if (die == NULL)
23629 {
23630 dump_die_for_error (src_die);
23631 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23632 " from DIE at %s [in module %s]"),
23633 hex_string (signature), sect_offset_str (src_die->sect_off),
23634 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23635 }
23636
23637 return die;
23638 }
23639
23640 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23641 reading in and processing the type unit if necessary. */
23642
23643 static struct type *
23644 get_signatured_type (struct die_info *die, ULONGEST signature,
23645 struct dwarf2_cu *cu)
23646 {
23647 struct dwarf2_per_objfile *dwarf2_per_objfile
23648 = cu->per_cu->dwarf2_per_objfile;
23649 struct signatured_type *sig_type;
23650 struct dwarf2_cu *type_cu;
23651 struct die_info *type_die;
23652 struct type *type;
23653
23654 sig_type = lookup_signatured_type (cu, signature);
23655 /* sig_type will be NULL if the signatured type is missing from
23656 the debug info. */
23657 if (sig_type == NULL)
23658 {
23659 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23660 " from DIE at %s [in module %s]"),
23661 hex_string (signature), sect_offset_str (die->sect_off),
23662 objfile_name (dwarf2_per_objfile->objfile));
23663 return build_error_marker_type (cu, die);
23664 }
23665
23666 /* If we already know the type we're done. */
23667 if (sig_type->type != NULL)
23668 return sig_type->type;
23669
23670 type_cu = cu;
23671 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23672 if (type_die != NULL)
23673 {
23674 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23675 is created. This is important, for example, because for c++ classes
23676 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23677 type = read_type_die (type_die, type_cu);
23678 if (type == NULL)
23679 {
23680 complaint (_("Dwarf Error: Cannot build signatured type %s"
23681 " referenced from DIE at %s [in module %s]"),
23682 hex_string (signature), sect_offset_str (die->sect_off),
23683 objfile_name (dwarf2_per_objfile->objfile));
23684 type = build_error_marker_type (cu, die);
23685 }
23686 }
23687 else
23688 {
23689 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23690 " from DIE at %s [in module %s]"),
23691 hex_string (signature), sect_offset_str (die->sect_off),
23692 objfile_name (dwarf2_per_objfile->objfile));
23693 type = build_error_marker_type (cu, die);
23694 }
23695 sig_type->type = type;
23696
23697 return type;
23698 }
23699
23700 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23701 reading in and processing the type unit if necessary. */
23702
23703 static struct type *
23704 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23705 struct dwarf2_cu *cu) /* ARI: editCase function */
23706 {
23707 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23708 if (attr_form_is_ref (attr))
23709 {
23710 struct dwarf2_cu *type_cu = cu;
23711 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23712
23713 return read_type_die (type_die, type_cu);
23714 }
23715 else if (attr->form == DW_FORM_ref_sig8)
23716 {
23717 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23718 }
23719 else
23720 {
23721 struct dwarf2_per_objfile *dwarf2_per_objfile
23722 = cu->per_cu->dwarf2_per_objfile;
23723
23724 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23725 " at %s [in module %s]"),
23726 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23727 objfile_name (dwarf2_per_objfile->objfile));
23728 return build_error_marker_type (cu, die);
23729 }
23730 }
23731
23732 /* Load the DIEs associated with type unit PER_CU into memory. */
23733
23734 static void
23735 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23736 {
23737 struct signatured_type *sig_type;
23738
23739 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23740 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23741
23742 /* We have the per_cu, but we need the signatured_type.
23743 Fortunately this is an easy translation. */
23744 gdb_assert (per_cu->is_debug_types);
23745 sig_type = (struct signatured_type *) per_cu;
23746
23747 gdb_assert (per_cu->cu == NULL);
23748
23749 read_signatured_type (sig_type);
23750
23751 gdb_assert (per_cu->cu != NULL);
23752 }
23753
23754 /* die_reader_func for read_signatured_type.
23755 This is identical to load_full_comp_unit_reader,
23756 but is kept separate for now. */
23757
23758 static void
23759 read_signatured_type_reader (const struct die_reader_specs *reader,
23760 const gdb_byte *info_ptr,
23761 struct die_info *comp_unit_die,
23762 int has_children,
23763 void *data)
23764 {
23765 struct dwarf2_cu *cu = reader->cu;
23766
23767 gdb_assert (cu->die_hash == NULL);
23768 cu->die_hash =
23769 htab_create_alloc_ex (cu->header.length / 12,
23770 die_hash,
23771 die_eq,
23772 NULL,
23773 &cu->comp_unit_obstack,
23774 hashtab_obstack_allocate,
23775 dummy_obstack_deallocate);
23776
23777 if (has_children)
23778 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23779 &info_ptr, comp_unit_die);
23780 cu->dies = comp_unit_die;
23781 /* comp_unit_die is not stored in die_hash, no need. */
23782
23783 /* We try not to read any attributes in this function, because not
23784 all CUs needed for references have been loaded yet, and symbol
23785 table processing isn't initialized. But we have to set the CU language,
23786 or we won't be able to build types correctly.
23787 Similarly, if we do not read the producer, we can not apply
23788 producer-specific interpretation. */
23789 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23790 }
23791
23792 /* Read in a signatured type and build its CU and DIEs.
23793 If the type is a stub for the real type in a DWO file,
23794 read in the real type from the DWO file as well. */
23795
23796 static void
23797 read_signatured_type (struct signatured_type *sig_type)
23798 {
23799 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23800
23801 gdb_assert (per_cu->is_debug_types);
23802 gdb_assert (per_cu->cu == NULL);
23803
23804 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23805 read_signatured_type_reader, NULL);
23806 sig_type->per_cu.tu_read = 1;
23807 }
23808
23809 /* Decode simple location descriptions.
23810 Given a pointer to a dwarf block that defines a location, compute
23811 the location and return the value.
23812
23813 NOTE drow/2003-11-18: This function is called in two situations
23814 now: for the address of static or global variables (partial symbols
23815 only) and for offsets into structures which are expected to be
23816 (more or less) constant. The partial symbol case should go away,
23817 and only the constant case should remain. That will let this
23818 function complain more accurately. A few special modes are allowed
23819 without complaint for global variables (for instance, global
23820 register values and thread-local values).
23821
23822 A location description containing no operations indicates that the
23823 object is optimized out. The return value is 0 for that case.
23824 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23825 callers will only want a very basic result and this can become a
23826 complaint.
23827
23828 Note that stack[0] is unused except as a default error return. */
23829
23830 static CORE_ADDR
23831 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23832 {
23833 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23834 size_t i;
23835 size_t size = blk->size;
23836 const gdb_byte *data = blk->data;
23837 CORE_ADDR stack[64];
23838 int stacki;
23839 unsigned int bytes_read, unsnd;
23840 gdb_byte op;
23841
23842 i = 0;
23843 stacki = 0;
23844 stack[stacki] = 0;
23845 stack[++stacki] = 0;
23846
23847 while (i < size)
23848 {
23849 op = data[i++];
23850 switch (op)
23851 {
23852 case DW_OP_lit0:
23853 case DW_OP_lit1:
23854 case DW_OP_lit2:
23855 case DW_OP_lit3:
23856 case DW_OP_lit4:
23857 case DW_OP_lit5:
23858 case DW_OP_lit6:
23859 case DW_OP_lit7:
23860 case DW_OP_lit8:
23861 case DW_OP_lit9:
23862 case DW_OP_lit10:
23863 case DW_OP_lit11:
23864 case DW_OP_lit12:
23865 case DW_OP_lit13:
23866 case DW_OP_lit14:
23867 case DW_OP_lit15:
23868 case DW_OP_lit16:
23869 case DW_OP_lit17:
23870 case DW_OP_lit18:
23871 case DW_OP_lit19:
23872 case DW_OP_lit20:
23873 case DW_OP_lit21:
23874 case DW_OP_lit22:
23875 case DW_OP_lit23:
23876 case DW_OP_lit24:
23877 case DW_OP_lit25:
23878 case DW_OP_lit26:
23879 case DW_OP_lit27:
23880 case DW_OP_lit28:
23881 case DW_OP_lit29:
23882 case DW_OP_lit30:
23883 case DW_OP_lit31:
23884 stack[++stacki] = op - DW_OP_lit0;
23885 break;
23886
23887 case DW_OP_reg0:
23888 case DW_OP_reg1:
23889 case DW_OP_reg2:
23890 case DW_OP_reg3:
23891 case DW_OP_reg4:
23892 case DW_OP_reg5:
23893 case DW_OP_reg6:
23894 case DW_OP_reg7:
23895 case DW_OP_reg8:
23896 case DW_OP_reg9:
23897 case DW_OP_reg10:
23898 case DW_OP_reg11:
23899 case DW_OP_reg12:
23900 case DW_OP_reg13:
23901 case DW_OP_reg14:
23902 case DW_OP_reg15:
23903 case DW_OP_reg16:
23904 case DW_OP_reg17:
23905 case DW_OP_reg18:
23906 case DW_OP_reg19:
23907 case DW_OP_reg20:
23908 case DW_OP_reg21:
23909 case DW_OP_reg22:
23910 case DW_OP_reg23:
23911 case DW_OP_reg24:
23912 case DW_OP_reg25:
23913 case DW_OP_reg26:
23914 case DW_OP_reg27:
23915 case DW_OP_reg28:
23916 case DW_OP_reg29:
23917 case DW_OP_reg30:
23918 case DW_OP_reg31:
23919 stack[++stacki] = op - DW_OP_reg0;
23920 if (i < size)
23921 dwarf2_complex_location_expr_complaint ();
23922 break;
23923
23924 case DW_OP_regx:
23925 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23926 i += bytes_read;
23927 stack[++stacki] = unsnd;
23928 if (i < size)
23929 dwarf2_complex_location_expr_complaint ();
23930 break;
23931
23932 case DW_OP_addr:
23933 stack[++stacki] = read_address (objfile->obfd, &data[i],
23934 cu, &bytes_read);
23935 i += bytes_read;
23936 break;
23937
23938 case DW_OP_const1u:
23939 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23940 i += 1;
23941 break;
23942
23943 case DW_OP_const1s:
23944 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23945 i += 1;
23946 break;
23947
23948 case DW_OP_const2u:
23949 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23950 i += 2;
23951 break;
23952
23953 case DW_OP_const2s:
23954 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23955 i += 2;
23956 break;
23957
23958 case DW_OP_const4u:
23959 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23960 i += 4;
23961 break;
23962
23963 case DW_OP_const4s:
23964 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23965 i += 4;
23966 break;
23967
23968 case DW_OP_const8u:
23969 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23970 i += 8;
23971 break;
23972
23973 case DW_OP_constu:
23974 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23975 &bytes_read);
23976 i += bytes_read;
23977 break;
23978
23979 case DW_OP_consts:
23980 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23981 i += bytes_read;
23982 break;
23983
23984 case DW_OP_dup:
23985 stack[stacki + 1] = stack[stacki];
23986 stacki++;
23987 break;
23988
23989 case DW_OP_plus:
23990 stack[stacki - 1] += stack[stacki];
23991 stacki--;
23992 break;
23993
23994 case DW_OP_plus_uconst:
23995 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23996 &bytes_read);
23997 i += bytes_read;
23998 break;
23999
24000 case DW_OP_minus:
24001 stack[stacki - 1] -= stack[stacki];
24002 stacki--;
24003 break;
24004
24005 case DW_OP_deref:
24006 /* If we're not the last op, then we definitely can't encode
24007 this using GDB's address_class enum. This is valid for partial
24008 global symbols, although the variable's address will be bogus
24009 in the psymtab. */
24010 if (i < size)
24011 dwarf2_complex_location_expr_complaint ();
24012 break;
24013
24014 case DW_OP_GNU_push_tls_address:
24015 case DW_OP_form_tls_address:
24016 /* The top of the stack has the offset from the beginning
24017 of the thread control block at which the variable is located. */
24018 /* Nothing should follow this operator, so the top of stack would
24019 be returned. */
24020 /* This is valid for partial global symbols, but the variable's
24021 address will be bogus in the psymtab. Make it always at least
24022 non-zero to not look as a variable garbage collected by linker
24023 which have DW_OP_addr 0. */
24024 if (i < size)
24025 dwarf2_complex_location_expr_complaint ();
24026 stack[stacki]++;
24027 break;
24028
24029 case DW_OP_GNU_uninit:
24030 break;
24031
24032 case DW_OP_addrx:
24033 case DW_OP_GNU_addr_index:
24034 case DW_OP_GNU_const_index:
24035 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24036 &bytes_read);
24037 i += bytes_read;
24038 break;
24039
24040 default:
24041 {
24042 const char *name = get_DW_OP_name (op);
24043
24044 if (name)
24045 complaint (_("unsupported stack op: '%s'"),
24046 name);
24047 else
24048 complaint (_("unsupported stack op: '%02x'"),
24049 op);
24050 }
24051
24052 return (stack[stacki]);
24053 }
24054
24055 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24056 outside of the allocated space. Also enforce minimum>0. */
24057 if (stacki >= ARRAY_SIZE (stack) - 1)
24058 {
24059 complaint (_("location description stack overflow"));
24060 return 0;
24061 }
24062
24063 if (stacki <= 0)
24064 {
24065 complaint (_("location description stack underflow"));
24066 return 0;
24067 }
24068 }
24069 return (stack[stacki]);
24070 }
24071
24072 /* memory allocation interface */
24073
24074 static struct dwarf_block *
24075 dwarf_alloc_block (struct dwarf2_cu *cu)
24076 {
24077 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24078 }
24079
24080 static struct die_info *
24081 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24082 {
24083 struct die_info *die;
24084 size_t size = sizeof (struct die_info);
24085
24086 if (num_attrs > 1)
24087 size += (num_attrs - 1) * sizeof (struct attribute);
24088
24089 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24090 memset (die, 0, sizeof (struct die_info));
24091 return (die);
24092 }
24093
24094 \f
24095 /* Macro support. */
24096
24097 /* Return file name relative to the compilation directory of file number I in
24098 *LH's file name table. The result is allocated using xmalloc; the caller is
24099 responsible for freeing it. */
24100
24101 static char *
24102 file_file_name (int file, struct line_header *lh)
24103 {
24104 /* Is the file number a valid index into the line header's file name
24105 table? Remember that file numbers start with one, not zero. */
24106 if (1 <= file && file <= lh->file_names.size ())
24107 {
24108 const file_entry &fe = lh->file_names[file - 1];
24109
24110 if (!IS_ABSOLUTE_PATH (fe.name))
24111 {
24112 const char *dir = fe.include_dir (lh);
24113 if (dir != NULL)
24114 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24115 }
24116 return xstrdup (fe.name);
24117 }
24118 else
24119 {
24120 /* The compiler produced a bogus file number. We can at least
24121 record the macro definitions made in the file, even if we
24122 won't be able to find the file by name. */
24123 char fake_name[80];
24124
24125 xsnprintf (fake_name, sizeof (fake_name),
24126 "<bad macro file number %d>", file);
24127
24128 complaint (_("bad file number in macro information (%d)"),
24129 file);
24130
24131 return xstrdup (fake_name);
24132 }
24133 }
24134
24135 /* Return the full name of file number I in *LH's file name table.
24136 Use COMP_DIR as the name of the current directory of the
24137 compilation. The result is allocated using xmalloc; the caller is
24138 responsible for freeing it. */
24139 static char *
24140 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24141 {
24142 /* Is the file number a valid index into the line header's file name
24143 table? Remember that file numbers start with one, not zero. */
24144 if (1 <= file && file <= lh->file_names.size ())
24145 {
24146 char *relative = file_file_name (file, lh);
24147
24148 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24149 return relative;
24150 return reconcat (relative, comp_dir, SLASH_STRING,
24151 relative, (char *) NULL);
24152 }
24153 else
24154 return file_file_name (file, lh);
24155 }
24156
24157
24158 static struct macro_source_file *
24159 macro_start_file (struct dwarf2_cu *cu,
24160 int file, int line,
24161 struct macro_source_file *current_file,
24162 struct line_header *lh)
24163 {
24164 /* File name relative to the compilation directory of this source file. */
24165 char *file_name = file_file_name (file, lh);
24166
24167 if (! current_file)
24168 {
24169 /* Note: We don't create a macro table for this compilation unit
24170 at all until we actually get a filename. */
24171 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24172
24173 /* If we have no current file, then this must be the start_file
24174 directive for the compilation unit's main source file. */
24175 current_file = macro_set_main (macro_table, file_name);
24176 macro_define_special (macro_table);
24177 }
24178 else
24179 current_file = macro_include (current_file, line, file_name);
24180
24181 xfree (file_name);
24182
24183 return current_file;
24184 }
24185
24186 static const char *
24187 consume_improper_spaces (const char *p, const char *body)
24188 {
24189 if (*p == ' ')
24190 {
24191 complaint (_("macro definition contains spaces "
24192 "in formal argument list:\n`%s'"),
24193 body);
24194
24195 while (*p == ' ')
24196 p++;
24197 }
24198
24199 return p;
24200 }
24201
24202
24203 static void
24204 parse_macro_definition (struct macro_source_file *file, int line,
24205 const char *body)
24206 {
24207 const char *p;
24208
24209 /* The body string takes one of two forms. For object-like macro
24210 definitions, it should be:
24211
24212 <macro name> " " <definition>
24213
24214 For function-like macro definitions, it should be:
24215
24216 <macro name> "() " <definition>
24217 or
24218 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24219
24220 Spaces may appear only where explicitly indicated, and in the
24221 <definition>.
24222
24223 The Dwarf 2 spec says that an object-like macro's name is always
24224 followed by a space, but versions of GCC around March 2002 omit
24225 the space when the macro's definition is the empty string.
24226
24227 The Dwarf 2 spec says that there should be no spaces between the
24228 formal arguments in a function-like macro's formal argument list,
24229 but versions of GCC around March 2002 include spaces after the
24230 commas. */
24231
24232
24233 /* Find the extent of the macro name. The macro name is terminated
24234 by either a space or null character (for an object-like macro) or
24235 an opening paren (for a function-like macro). */
24236 for (p = body; *p; p++)
24237 if (*p == ' ' || *p == '(')
24238 break;
24239
24240 if (*p == ' ' || *p == '\0')
24241 {
24242 /* It's an object-like macro. */
24243 int name_len = p - body;
24244 char *name = savestring (body, name_len);
24245 const char *replacement;
24246
24247 if (*p == ' ')
24248 replacement = body + name_len + 1;
24249 else
24250 {
24251 dwarf2_macro_malformed_definition_complaint (body);
24252 replacement = body + name_len;
24253 }
24254
24255 macro_define_object (file, line, name, replacement);
24256
24257 xfree (name);
24258 }
24259 else if (*p == '(')
24260 {
24261 /* It's a function-like macro. */
24262 char *name = savestring (body, p - body);
24263 int argc = 0;
24264 int argv_size = 1;
24265 char **argv = XNEWVEC (char *, argv_size);
24266
24267 p++;
24268
24269 p = consume_improper_spaces (p, body);
24270
24271 /* Parse the formal argument list. */
24272 while (*p && *p != ')')
24273 {
24274 /* Find the extent of the current argument name. */
24275 const char *arg_start = p;
24276
24277 while (*p && *p != ',' && *p != ')' && *p != ' ')
24278 p++;
24279
24280 if (! *p || p == arg_start)
24281 dwarf2_macro_malformed_definition_complaint (body);
24282 else
24283 {
24284 /* Make sure argv has room for the new argument. */
24285 if (argc >= argv_size)
24286 {
24287 argv_size *= 2;
24288 argv = XRESIZEVEC (char *, argv, argv_size);
24289 }
24290
24291 argv[argc++] = savestring (arg_start, p - arg_start);
24292 }
24293
24294 p = consume_improper_spaces (p, body);
24295
24296 /* Consume the comma, if present. */
24297 if (*p == ',')
24298 {
24299 p++;
24300
24301 p = consume_improper_spaces (p, body);
24302 }
24303 }
24304
24305 if (*p == ')')
24306 {
24307 p++;
24308
24309 if (*p == ' ')
24310 /* Perfectly formed definition, no complaints. */
24311 macro_define_function (file, line, name,
24312 argc, (const char **) argv,
24313 p + 1);
24314 else if (*p == '\0')
24315 {
24316 /* Complain, but do define it. */
24317 dwarf2_macro_malformed_definition_complaint (body);
24318 macro_define_function (file, line, name,
24319 argc, (const char **) argv,
24320 p);
24321 }
24322 else
24323 /* Just complain. */
24324 dwarf2_macro_malformed_definition_complaint (body);
24325 }
24326 else
24327 /* Just complain. */
24328 dwarf2_macro_malformed_definition_complaint (body);
24329
24330 xfree (name);
24331 {
24332 int i;
24333
24334 for (i = 0; i < argc; i++)
24335 xfree (argv[i]);
24336 }
24337 xfree (argv);
24338 }
24339 else
24340 dwarf2_macro_malformed_definition_complaint (body);
24341 }
24342
24343 /* Skip some bytes from BYTES according to the form given in FORM.
24344 Returns the new pointer. */
24345
24346 static const gdb_byte *
24347 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24348 enum dwarf_form form,
24349 unsigned int offset_size,
24350 struct dwarf2_section_info *section)
24351 {
24352 unsigned int bytes_read;
24353
24354 switch (form)
24355 {
24356 case DW_FORM_data1:
24357 case DW_FORM_flag:
24358 ++bytes;
24359 break;
24360
24361 case DW_FORM_data2:
24362 bytes += 2;
24363 break;
24364
24365 case DW_FORM_data4:
24366 bytes += 4;
24367 break;
24368
24369 case DW_FORM_data8:
24370 bytes += 8;
24371 break;
24372
24373 case DW_FORM_data16:
24374 bytes += 16;
24375 break;
24376
24377 case DW_FORM_string:
24378 read_direct_string (abfd, bytes, &bytes_read);
24379 bytes += bytes_read;
24380 break;
24381
24382 case DW_FORM_sec_offset:
24383 case DW_FORM_strp:
24384 case DW_FORM_GNU_strp_alt:
24385 bytes += offset_size;
24386 break;
24387
24388 case DW_FORM_block:
24389 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24390 bytes += bytes_read;
24391 break;
24392
24393 case DW_FORM_block1:
24394 bytes += 1 + read_1_byte (abfd, bytes);
24395 break;
24396 case DW_FORM_block2:
24397 bytes += 2 + read_2_bytes (abfd, bytes);
24398 break;
24399 case DW_FORM_block4:
24400 bytes += 4 + read_4_bytes (abfd, bytes);
24401 break;
24402
24403 case DW_FORM_addrx:
24404 case DW_FORM_sdata:
24405 case DW_FORM_strx:
24406 case DW_FORM_udata:
24407 case DW_FORM_GNU_addr_index:
24408 case DW_FORM_GNU_str_index:
24409 bytes = gdb_skip_leb128 (bytes, buffer_end);
24410 if (bytes == NULL)
24411 {
24412 dwarf2_section_buffer_overflow_complaint (section);
24413 return NULL;
24414 }
24415 break;
24416
24417 case DW_FORM_implicit_const:
24418 break;
24419
24420 default:
24421 {
24422 complaint (_("invalid form 0x%x in `%s'"),
24423 form, get_section_name (section));
24424 return NULL;
24425 }
24426 }
24427
24428 return bytes;
24429 }
24430
24431 /* A helper for dwarf_decode_macros that handles skipping an unknown
24432 opcode. Returns an updated pointer to the macro data buffer; or,
24433 on error, issues a complaint and returns NULL. */
24434
24435 static const gdb_byte *
24436 skip_unknown_opcode (unsigned int opcode,
24437 const gdb_byte **opcode_definitions,
24438 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24439 bfd *abfd,
24440 unsigned int offset_size,
24441 struct dwarf2_section_info *section)
24442 {
24443 unsigned int bytes_read, i;
24444 unsigned long arg;
24445 const gdb_byte *defn;
24446
24447 if (opcode_definitions[opcode] == NULL)
24448 {
24449 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24450 opcode);
24451 return NULL;
24452 }
24453
24454 defn = opcode_definitions[opcode];
24455 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24456 defn += bytes_read;
24457
24458 for (i = 0; i < arg; ++i)
24459 {
24460 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24461 (enum dwarf_form) defn[i], offset_size,
24462 section);
24463 if (mac_ptr == NULL)
24464 {
24465 /* skip_form_bytes already issued the complaint. */
24466 return NULL;
24467 }
24468 }
24469
24470 return mac_ptr;
24471 }
24472
24473 /* A helper function which parses the header of a macro section.
24474 If the macro section is the extended (for now called "GNU") type,
24475 then this updates *OFFSET_SIZE. Returns a pointer to just after
24476 the header, or issues a complaint and returns NULL on error. */
24477
24478 static const gdb_byte *
24479 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24480 bfd *abfd,
24481 const gdb_byte *mac_ptr,
24482 unsigned int *offset_size,
24483 int section_is_gnu)
24484 {
24485 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24486
24487 if (section_is_gnu)
24488 {
24489 unsigned int version, flags;
24490
24491 version = read_2_bytes (abfd, mac_ptr);
24492 if (version != 4 && version != 5)
24493 {
24494 complaint (_("unrecognized version `%d' in .debug_macro section"),
24495 version);
24496 return NULL;
24497 }
24498 mac_ptr += 2;
24499
24500 flags = read_1_byte (abfd, mac_ptr);
24501 ++mac_ptr;
24502 *offset_size = (flags & 1) ? 8 : 4;
24503
24504 if ((flags & 2) != 0)
24505 /* We don't need the line table offset. */
24506 mac_ptr += *offset_size;
24507
24508 /* Vendor opcode descriptions. */
24509 if ((flags & 4) != 0)
24510 {
24511 unsigned int i, count;
24512
24513 count = read_1_byte (abfd, mac_ptr);
24514 ++mac_ptr;
24515 for (i = 0; i < count; ++i)
24516 {
24517 unsigned int opcode, bytes_read;
24518 unsigned long arg;
24519
24520 opcode = read_1_byte (abfd, mac_ptr);
24521 ++mac_ptr;
24522 opcode_definitions[opcode] = mac_ptr;
24523 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24524 mac_ptr += bytes_read;
24525 mac_ptr += arg;
24526 }
24527 }
24528 }
24529
24530 return mac_ptr;
24531 }
24532
24533 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24534 including DW_MACRO_import. */
24535
24536 static void
24537 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24538 bfd *abfd,
24539 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24540 struct macro_source_file *current_file,
24541 struct line_header *lh,
24542 struct dwarf2_section_info *section,
24543 int section_is_gnu, int section_is_dwz,
24544 unsigned int offset_size,
24545 htab_t include_hash)
24546 {
24547 struct dwarf2_per_objfile *dwarf2_per_objfile
24548 = cu->per_cu->dwarf2_per_objfile;
24549 struct objfile *objfile = dwarf2_per_objfile->objfile;
24550 enum dwarf_macro_record_type macinfo_type;
24551 int at_commandline;
24552 const gdb_byte *opcode_definitions[256];
24553
24554 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24555 &offset_size, section_is_gnu);
24556 if (mac_ptr == NULL)
24557 {
24558 /* We already issued a complaint. */
24559 return;
24560 }
24561
24562 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24563 GDB is still reading the definitions from command line. First
24564 DW_MACINFO_start_file will need to be ignored as it was already executed
24565 to create CURRENT_FILE for the main source holding also the command line
24566 definitions. On first met DW_MACINFO_start_file this flag is reset to
24567 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24568
24569 at_commandline = 1;
24570
24571 do
24572 {
24573 /* Do we at least have room for a macinfo type byte? */
24574 if (mac_ptr >= mac_end)
24575 {
24576 dwarf2_section_buffer_overflow_complaint (section);
24577 break;
24578 }
24579
24580 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24581 mac_ptr++;
24582
24583 /* Note that we rely on the fact that the corresponding GNU and
24584 DWARF constants are the same. */
24585 DIAGNOSTIC_PUSH
24586 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24587 switch (macinfo_type)
24588 {
24589 /* A zero macinfo type indicates the end of the macro
24590 information. */
24591 case 0:
24592 break;
24593
24594 case DW_MACRO_define:
24595 case DW_MACRO_undef:
24596 case DW_MACRO_define_strp:
24597 case DW_MACRO_undef_strp:
24598 case DW_MACRO_define_sup:
24599 case DW_MACRO_undef_sup:
24600 {
24601 unsigned int bytes_read;
24602 int line;
24603 const char *body;
24604 int is_define;
24605
24606 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24607 mac_ptr += bytes_read;
24608
24609 if (macinfo_type == DW_MACRO_define
24610 || macinfo_type == DW_MACRO_undef)
24611 {
24612 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24614 }
24615 else
24616 {
24617 LONGEST str_offset;
24618
24619 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24620 mac_ptr += offset_size;
24621
24622 if (macinfo_type == DW_MACRO_define_sup
24623 || macinfo_type == DW_MACRO_undef_sup
24624 || section_is_dwz)
24625 {
24626 struct dwz_file *dwz
24627 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24628
24629 body = read_indirect_string_from_dwz (objfile,
24630 dwz, str_offset);
24631 }
24632 else
24633 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24634 abfd, str_offset);
24635 }
24636
24637 is_define = (macinfo_type == DW_MACRO_define
24638 || macinfo_type == DW_MACRO_define_strp
24639 || macinfo_type == DW_MACRO_define_sup);
24640 if (! current_file)
24641 {
24642 /* DWARF violation as no main source is present. */
24643 complaint (_("debug info with no main source gives macro %s "
24644 "on line %d: %s"),
24645 is_define ? _("definition") : _("undefinition"),
24646 line, body);
24647 break;
24648 }
24649 if ((line == 0 && !at_commandline)
24650 || (line != 0 && at_commandline))
24651 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24652 at_commandline ? _("command-line") : _("in-file"),
24653 is_define ? _("definition") : _("undefinition"),
24654 line == 0 ? _("zero") : _("non-zero"), line, body);
24655
24656 if (body == NULL)
24657 {
24658 /* Fedora's rpm-build's "debugedit" binary
24659 corrupted .debug_macro sections.
24660
24661 For more info, see
24662 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24663 complaint (_("debug info gives %s invalid macro %s "
24664 "without body (corrupted?) at line %d "
24665 "on file %s"),
24666 at_commandline ? _("command-line") : _("in-file"),
24667 is_define ? _("definition") : _("undefinition"),
24668 line, current_file->filename);
24669 }
24670 else if (is_define)
24671 parse_macro_definition (current_file, line, body);
24672 else
24673 {
24674 gdb_assert (macinfo_type == DW_MACRO_undef
24675 || macinfo_type == DW_MACRO_undef_strp
24676 || macinfo_type == DW_MACRO_undef_sup);
24677 macro_undef (current_file, line, body);
24678 }
24679 }
24680 break;
24681
24682 case DW_MACRO_start_file:
24683 {
24684 unsigned int bytes_read;
24685 int line, file;
24686
24687 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24688 mac_ptr += bytes_read;
24689 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24690 mac_ptr += bytes_read;
24691
24692 if ((line == 0 && !at_commandline)
24693 || (line != 0 && at_commandline))
24694 complaint (_("debug info gives source %d included "
24695 "from %s at %s line %d"),
24696 file, at_commandline ? _("command-line") : _("file"),
24697 line == 0 ? _("zero") : _("non-zero"), line);
24698
24699 if (at_commandline)
24700 {
24701 /* This DW_MACRO_start_file was executed in the
24702 pass one. */
24703 at_commandline = 0;
24704 }
24705 else
24706 current_file = macro_start_file (cu, file, line, current_file,
24707 lh);
24708 }
24709 break;
24710
24711 case DW_MACRO_end_file:
24712 if (! current_file)
24713 complaint (_("macro debug info has an unmatched "
24714 "`close_file' directive"));
24715 else
24716 {
24717 current_file = current_file->included_by;
24718 if (! current_file)
24719 {
24720 enum dwarf_macro_record_type next_type;
24721
24722 /* GCC circa March 2002 doesn't produce the zero
24723 type byte marking the end of the compilation
24724 unit. Complain if it's not there, but exit no
24725 matter what. */
24726
24727 /* Do we at least have room for a macinfo type byte? */
24728 if (mac_ptr >= mac_end)
24729 {
24730 dwarf2_section_buffer_overflow_complaint (section);
24731 return;
24732 }
24733
24734 /* We don't increment mac_ptr here, so this is just
24735 a look-ahead. */
24736 next_type
24737 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24738 mac_ptr);
24739 if (next_type != 0)
24740 complaint (_("no terminating 0-type entry for "
24741 "macros in `.debug_macinfo' section"));
24742
24743 return;
24744 }
24745 }
24746 break;
24747
24748 case DW_MACRO_import:
24749 case DW_MACRO_import_sup:
24750 {
24751 LONGEST offset;
24752 void **slot;
24753 bfd *include_bfd = abfd;
24754 struct dwarf2_section_info *include_section = section;
24755 const gdb_byte *include_mac_end = mac_end;
24756 int is_dwz = section_is_dwz;
24757 const gdb_byte *new_mac_ptr;
24758
24759 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24760 mac_ptr += offset_size;
24761
24762 if (macinfo_type == DW_MACRO_import_sup)
24763 {
24764 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24765
24766 dwarf2_read_section (objfile, &dwz->macro);
24767
24768 include_section = &dwz->macro;
24769 include_bfd = get_section_bfd_owner (include_section);
24770 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24771 is_dwz = 1;
24772 }
24773
24774 new_mac_ptr = include_section->buffer + offset;
24775 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24776
24777 if (*slot != NULL)
24778 {
24779 /* This has actually happened; see
24780 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24781 complaint (_("recursive DW_MACRO_import in "
24782 ".debug_macro section"));
24783 }
24784 else
24785 {
24786 *slot = (void *) new_mac_ptr;
24787
24788 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24789 include_mac_end, current_file, lh,
24790 section, section_is_gnu, is_dwz,
24791 offset_size, include_hash);
24792
24793 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24794 }
24795 }
24796 break;
24797
24798 case DW_MACINFO_vendor_ext:
24799 if (!section_is_gnu)
24800 {
24801 unsigned int bytes_read;
24802
24803 /* This reads the constant, but since we don't recognize
24804 any vendor extensions, we ignore it. */
24805 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24806 mac_ptr += bytes_read;
24807 read_direct_string (abfd, mac_ptr, &bytes_read);
24808 mac_ptr += bytes_read;
24809
24810 /* We don't recognize any vendor extensions. */
24811 break;
24812 }
24813 /* FALLTHROUGH */
24814
24815 default:
24816 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24817 mac_ptr, mac_end, abfd, offset_size,
24818 section);
24819 if (mac_ptr == NULL)
24820 return;
24821 break;
24822 }
24823 DIAGNOSTIC_POP
24824 } while (macinfo_type != 0);
24825 }
24826
24827 static void
24828 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24829 int section_is_gnu)
24830 {
24831 struct dwarf2_per_objfile *dwarf2_per_objfile
24832 = cu->per_cu->dwarf2_per_objfile;
24833 struct objfile *objfile = dwarf2_per_objfile->objfile;
24834 struct line_header *lh = cu->line_header;
24835 bfd *abfd;
24836 const gdb_byte *mac_ptr, *mac_end;
24837 struct macro_source_file *current_file = 0;
24838 enum dwarf_macro_record_type macinfo_type;
24839 unsigned int offset_size = cu->header.offset_size;
24840 const gdb_byte *opcode_definitions[256];
24841 void **slot;
24842 struct dwarf2_section_info *section;
24843 const char *section_name;
24844
24845 if (cu->dwo_unit != NULL)
24846 {
24847 if (section_is_gnu)
24848 {
24849 section = &cu->dwo_unit->dwo_file->sections.macro;
24850 section_name = ".debug_macro.dwo";
24851 }
24852 else
24853 {
24854 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24855 section_name = ".debug_macinfo.dwo";
24856 }
24857 }
24858 else
24859 {
24860 if (section_is_gnu)
24861 {
24862 section = &dwarf2_per_objfile->macro;
24863 section_name = ".debug_macro";
24864 }
24865 else
24866 {
24867 section = &dwarf2_per_objfile->macinfo;
24868 section_name = ".debug_macinfo";
24869 }
24870 }
24871
24872 dwarf2_read_section (objfile, section);
24873 if (section->buffer == NULL)
24874 {
24875 complaint (_("missing %s section"), section_name);
24876 return;
24877 }
24878 abfd = get_section_bfd_owner (section);
24879
24880 /* First pass: Find the name of the base filename.
24881 This filename is needed in order to process all macros whose definition
24882 (or undefinition) comes from the command line. These macros are defined
24883 before the first DW_MACINFO_start_file entry, and yet still need to be
24884 associated to the base file.
24885
24886 To determine the base file name, we scan the macro definitions until we
24887 reach the first DW_MACINFO_start_file entry. We then initialize
24888 CURRENT_FILE accordingly so that any macro definition found before the
24889 first DW_MACINFO_start_file can still be associated to the base file. */
24890
24891 mac_ptr = section->buffer + offset;
24892 mac_end = section->buffer + section->size;
24893
24894 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24895 &offset_size, section_is_gnu);
24896 if (mac_ptr == NULL)
24897 {
24898 /* We already issued a complaint. */
24899 return;
24900 }
24901
24902 do
24903 {
24904 /* Do we at least have room for a macinfo type byte? */
24905 if (mac_ptr >= mac_end)
24906 {
24907 /* Complaint is printed during the second pass as GDB will probably
24908 stop the first pass earlier upon finding
24909 DW_MACINFO_start_file. */
24910 break;
24911 }
24912
24913 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24914 mac_ptr++;
24915
24916 /* Note that we rely on the fact that the corresponding GNU and
24917 DWARF constants are the same. */
24918 DIAGNOSTIC_PUSH
24919 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24920 switch (macinfo_type)
24921 {
24922 /* A zero macinfo type indicates the end of the macro
24923 information. */
24924 case 0:
24925 break;
24926
24927 case DW_MACRO_define:
24928 case DW_MACRO_undef:
24929 /* Only skip the data by MAC_PTR. */
24930 {
24931 unsigned int bytes_read;
24932
24933 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24934 mac_ptr += bytes_read;
24935 read_direct_string (abfd, mac_ptr, &bytes_read);
24936 mac_ptr += bytes_read;
24937 }
24938 break;
24939
24940 case DW_MACRO_start_file:
24941 {
24942 unsigned int bytes_read;
24943 int line, file;
24944
24945 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24946 mac_ptr += bytes_read;
24947 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24948 mac_ptr += bytes_read;
24949
24950 current_file = macro_start_file (cu, file, line, current_file, lh);
24951 }
24952 break;
24953
24954 case DW_MACRO_end_file:
24955 /* No data to skip by MAC_PTR. */
24956 break;
24957
24958 case DW_MACRO_define_strp:
24959 case DW_MACRO_undef_strp:
24960 case DW_MACRO_define_sup:
24961 case DW_MACRO_undef_sup:
24962 {
24963 unsigned int bytes_read;
24964
24965 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24966 mac_ptr += bytes_read;
24967 mac_ptr += offset_size;
24968 }
24969 break;
24970
24971 case DW_MACRO_import:
24972 case DW_MACRO_import_sup:
24973 /* Note that, according to the spec, a transparent include
24974 chain cannot call DW_MACRO_start_file. So, we can just
24975 skip this opcode. */
24976 mac_ptr += offset_size;
24977 break;
24978
24979 case DW_MACINFO_vendor_ext:
24980 /* Only skip the data by MAC_PTR. */
24981 if (!section_is_gnu)
24982 {
24983 unsigned int bytes_read;
24984
24985 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24986 mac_ptr += bytes_read;
24987 read_direct_string (abfd, mac_ptr, &bytes_read);
24988 mac_ptr += bytes_read;
24989 }
24990 /* FALLTHROUGH */
24991
24992 default:
24993 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24994 mac_ptr, mac_end, abfd, offset_size,
24995 section);
24996 if (mac_ptr == NULL)
24997 return;
24998 break;
24999 }
25000 DIAGNOSTIC_POP
25001 } while (macinfo_type != 0 && current_file == NULL);
25002
25003 /* Second pass: Process all entries.
25004
25005 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25006 command-line macro definitions/undefinitions. This flag is unset when we
25007 reach the first DW_MACINFO_start_file entry. */
25008
25009 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25010 htab_eq_pointer,
25011 NULL, xcalloc, xfree));
25012 mac_ptr = section->buffer + offset;
25013 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25014 *slot = (void *) mac_ptr;
25015 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25016 current_file, lh, section,
25017 section_is_gnu, 0, offset_size,
25018 include_hash.get ());
25019 }
25020
25021 /* Check if the attribute's form is a DW_FORM_block*
25022 if so return true else false. */
25023
25024 static int
25025 attr_form_is_block (const struct attribute *attr)
25026 {
25027 return (attr == NULL ? 0 :
25028 attr->form == DW_FORM_block1
25029 || attr->form == DW_FORM_block2
25030 || attr->form == DW_FORM_block4
25031 || attr->form == DW_FORM_block
25032 || attr->form == DW_FORM_exprloc);
25033 }
25034
25035 /* Return non-zero if ATTR's value is a section offset --- classes
25036 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25037 You may use DW_UNSND (attr) to retrieve such offsets.
25038
25039 Section 7.5.4, "Attribute Encodings", explains that no attribute
25040 may have a value that belongs to more than one of these classes; it
25041 would be ambiguous if we did, because we use the same forms for all
25042 of them. */
25043
25044 static int
25045 attr_form_is_section_offset (const struct attribute *attr)
25046 {
25047 return (attr->form == DW_FORM_data4
25048 || attr->form == DW_FORM_data8
25049 || attr->form == DW_FORM_sec_offset);
25050 }
25051
25052 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25053 zero otherwise. When this function returns true, you can apply
25054 dwarf2_get_attr_constant_value to it.
25055
25056 However, note that for some attributes you must check
25057 attr_form_is_section_offset before using this test. DW_FORM_data4
25058 and DW_FORM_data8 are members of both the constant class, and of
25059 the classes that contain offsets into other debug sections
25060 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25061 that, if an attribute's can be either a constant or one of the
25062 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25063 taken as section offsets, not constants.
25064
25065 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25066 cannot handle that. */
25067
25068 static int
25069 attr_form_is_constant (const struct attribute *attr)
25070 {
25071 switch (attr->form)
25072 {
25073 case DW_FORM_sdata:
25074 case DW_FORM_udata:
25075 case DW_FORM_data1:
25076 case DW_FORM_data2:
25077 case DW_FORM_data4:
25078 case DW_FORM_data8:
25079 case DW_FORM_implicit_const:
25080 return 1;
25081 default:
25082 return 0;
25083 }
25084 }
25085
25086
25087 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25088 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25089
25090 static int
25091 attr_form_is_ref (const struct attribute *attr)
25092 {
25093 switch (attr->form)
25094 {
25095 case DW_FORM_ref_addr:
25096 case DW_FORM_ref1:
25097 case DW_FORM_ref2:
25098 case DW_FORM_ref4:
25099 case DW_FORM_ref8:
25100 case DW_FORM_ref_udata:
25101 case DW_FORM_GNU_ref_alt:
25102 return 1;
25103 default:
25104 return 0;
25105 }
25106 }
25107
25108 /* Return the .debug_loc section to use for CU.
25109 For DWO files use .debug_loc.dwo. */
25110
25111 static struct dwarf2_section_info *
25112 cu_debug_loc_section (struct dwarf2_cu *cu)
25113 {
25114 struct dwarf2_per_objfile *dwarf2_per_objfile
25115 = cu->per_cu->dwarf2_per_objfile;
25116
25117 if (cu->dwo_unit)
25118 {
25119 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25120
25121 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25122 }
25123 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25124 : &dwarf2_per_objfile->loc);
25125 }
25126
25127 /* A helper function that fills in a dwarf2_loclist_baton. */
25128
25129 static void
25130 fill_in_loclist_baton (struct dwarf2_cu *cu,
25131 struct dwarf2_loclist_baton *baton,
25132 const struct attribute *attr)
25133 {
25134 struct dwarf2_per_objfile *dwarf2_per_objfile
25135 = cu->per_cu->dwarf2_per_objfile;
25136 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25137
25138 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25139
25140 baton->per_cu = cu->per_cu;
25141 gdb_assert (baton->per_cu);
25142 /* We don't know how long the location list is, but make sure we
25143 don't run off the edge of the section. */
25144 baton->size = section->size - DW_UNSND (attr);
25145 baton->data = section->buffer + DW_UNSND (attr);
25146 baton->base_address = cu->base_address;
25147 baton->from_dwo = cu->dwo_unit != NULL;
25148 }
25149
25150 static void
25151 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25152 struct dwarf2_cu *cu, int is_block)
25153 {
25154 struct dwarf2_per_objfile *dwarf2_per_objfile
25155 = cu->per_cu->dwarf2_per_objfile;
25156 struct objfile *objfile = dwarf2_per_objfile->objfile;
25157 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25158
25159 if (attr_form_is_section_offset (attr)
25160 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25161 the section. If so, fall through to the complaint in the
25162 other branch. */
25163 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25164 {
25165 struct dwarf2_loclist_baton *baton;
25166
25167 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25168
25169 fill_in_loclist_baton (cu, baton, attr);
25170
25171 if (cu->base_known == 0)
25172 complaint (_("Location list used without "
25173 "specifying the CU base address."));
25174
25175 SYMBOL_ACLASS_INDEX (sym) = (is_block
25176 ? dwarf2_loclist_block_index
25177 : dwarf2_loclist_index);
25178 SYMBOL_LOCATION_BATON (sym) = baton;
25179 }
25180 else
25181 {
25182 struct dwarf2_locexpr_baton *baton;
25183
25184 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25185 baton->per_cu = cu->per_cu;
25186 gdb_assert (baton->per_cu);
25187
25188 if (attr_form_is_block (attr))
25189 {
25190 /* Note that we're just copying the block's data pointer
25191 here, not the actual data. We're still pointing into the
25192 info_buffer for SYM's objfile; right now we never release
25193 that buffer, but when we do clean up properly this may
25194 need to change. */
25195 baton->size = DW_BLOCK (attr)->size;
25196 baton->data = DW_BLOCK (attr)->data;
25197 }
25198 else
25199 {
25200 dwarf2_invalid_attrib_class_complaint ("location description",
25201 SYMBOL_NATURAL_NAME (sym));
25202 baton->size = 0;
25203 }
25204
25205 SYMBOL_ACLASS_INDEX (sym) = (is_block
25206 ? dwarf2_locexpr_block_index
25207 : dwarf2_locexpr_index);
25208 SYMBOL_LOCATION_BATON (sym) = baton;
25209 }
25210 }
25211
25212 /* Return the OBJFILE associated with the compilation unit CU. If CU
25213 came from a separate debuginfo file, then the master objfile is
25214 returned. */
25215
25216 struct objfile *
25217 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25218 {
25219 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25220
25221 /* Return the master objfile, so that we can report and look up the
25222 correct file containing this variable. */
25223 if (objfile->separate_debug_objfile_backlink)
25224 objfile = objfile->separate_debug_objfile_backlink;
25225
25226 return objfile;
25227 }
25228
25229 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25230 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25231 CU_HEADERP first. */
25232
25233 static const struct comp_unit_head *
25234 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25235 struct dwarf2_per_cu_data *per_cu)
25236 {
25237 const gdb_byte *info_ptr;
25238
25239 if (per_cu->cu)
25240 return &per_cu->cu->header;
25241
25242 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25243
25244 memset (cu_headerp, 0, sizeof (*cu_headerp));
25245 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25246 rcuh_kind::COMPILE);
25247
25248 return cu_headerp;
25249 }
25250
25251 /* Return the address size given in the compilation unit header for CU. */
25252
25253 int
25254 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25255 {
25256 struct comp_unit_head cu_header_local;
25257 const struct comp_unit_head *cu_headerp;
25258
25259 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25260
25261 return cu_headerp->addr_size;
25262 }
25263
25264 /* Return the offset size given in the compilation unit header for CU. */
25265
25266 int
25267 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25268 {
25269 struct comp_unit_head cu_header_local;
25270 const struct comp_unit_head *cu_headerp;
25271
25272 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25273
25274 return cu_headerp->offset_size;
25275 }
25276
25277 /* See its dwarf2loc.h declaration. */
25278
25279 int
25280 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25281 {
25282 struct comp_unit_head cu_header_local;
25283 const struct comp_unit_head *cu_headerp;
25284
25285 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25286
25287 if (cu_headerp->version == 2)
25288 return cu_headerp->addr_size;
25289 else
25290 return cu_headerp->offset_size;
25291 }
25292
25293 /* Return the text offset of the CU. The returned offset comes from
25294 this CU's objfile. If this objfile came from a separate debuginfo
25295 file, then the offset may be different from the corresponding
25296 offset in the parent objfile. */
25297
25298 CORE_ADDR
25299 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25300 {
25301 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25302
25303 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25304 }
25305
25306 /* Return DWARF version number of PER_CU. */
25307
25308 short
25309 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25310 {
25311 return per_cu->dwarf_version;
25312 }
25313
25314 /* Locate the .debug_info compilation unit from CU's objfile which contains
25315 the DIE at OFFSET. Raises an error on failure. */
25316
25317 static struct dwarf2_per_cu_data *
25318 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25319 unsigned int offset_in_dwz,
25320 struct dwarf2_per_objfile *dwarf2_per_objfile)
25321 {
25322 struct dwarf2_per_cu_data *this_cu;
25323 int low, high;
25324
25325 low = 0;
25326 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25327 while (high > low)
25328 {
25329 struct dwarf2_per_cu_data *mid_cu;
25330 int mid = low + (high - low) / 2;
25331
25332 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25333 if (mid_cu->is_dwz > offset_in_dwz
25334 || (mid_cu->is_dwz == offset_in_dwz
25335 && mid_cu->sect_off + mid_cu->length >= sect_off))
25336 high = mid;
25337 else
25338 low = mid + 1;
25339 }
25340 gdb_assert (low == high);
25341 this_cu = dwarf2_per_objfile->all_comp_units[low];
25342 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25343 {
25344 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25345 error (_("Dwarf Error: could not find partial DIE containing "
25346 "offset %s [in module %s]"),
25347 sect_offset_str (sect_off),
25348 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25349
25350 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25351 <= sect_off);
25352 return dwarf2_per_objfile->all_comp_units[low-1];
25353 }
25354 else
25355 {
25356 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25357 && sect_off >= this_cu->sect_off + this_cu->length)
25358 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25359 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25360 return this_cu;
25361 }
25362 }
25363
25364 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25365
25366 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25367 : per_cu (per_cu_),
25368 mark (false),
25369 has_loclist (false),
25370 checked_producer (false),
25371 producer_is_gxx_lt_4_6 (false),
25372 producer_is_gcc_lt_4_3 (false),
25373 producer_is_icc (false),
25374 producer_is_icc_lt_14 (false),
25375 producer_is_codewarrior (false),
25376 processing_has_namespace_info (false)
25377 {
25378 per_cu->cu = this;
25379 }
25380
25381 /* Destroy a dwarf2_cu. */
25382
25383 dwarf2_cu::~dwarf2_cu ()
25384 {
25385 per_cu->cu = NULL;
25386 }
25387
25388 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25389
25390 static void
25391 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25392 enum language pretend_language)
25393 {
25394 struct attribute *attr;
25395
25396 /* Set the language we're debugging. */
25397 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25398 if (attr)
25399 set_cu_language (DW_UNSND (attr), cu);
25400 else
25401 {
25402 cu->language = pretend_language;
25403 cu->language_defn = language_def (cu->language);
25404 }
25405
25406 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25407 }
25408
25409 /* Increase the age counter on each cached compilation unit, and free
25410 any that are too old. */
25411
25412 static void
25413 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25414 {
25415 struct dwarf2_per_cu_data *per_cu, **last_chain;
25416
25417 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25418 per_cu = dwarf2_per_objfile->read_in_chain;
25419 while (per_cu != NULL)
25420 {
25421 per_cu->cu->last_used ++;
25422 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25423 dwarf2_mark (per_cu->cu);
25424 per_cu = per_cu->cu->read_in_chain;
25425 }
25426
25427 per_cu = dwarf2_per_objfile->read_in_chain;
25428 last_chain = &dwarf2_per_objfile->read_in_chain;
25429 while (per_cu != NULL)
25430 {
25431 struct dwarf2_per_cu_data *next_cu;
25432
25433 next_cu = per_cu->cu->read_in_chain;
25434
25435 if (!per_cu->cu->mark)
25436 {
25437 delete per_cu->cu;
25438 *last_chain = next_cu;
25439 }
25440 else
25441 last_chain = &per_cu->cu->read_in_chain;
25442
25443 per_cu = next_cu;
25444 }
25445 }
25446
25447 /* Remove a single compilation unit from the cache. */
25448
25449 static void
25450 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25451 {
25452 struct dwarf2_per_cu_data *per_cu, **last_chain;
25453 struct dwarf2_per_objfile *dwarf2_per_objfile
25454 = target_per_cu->dwarf2_per_objfile;
25455
25456 per_cu = dwarf2_per_objfile->read_in_chain;
25457 last_chain = &dwarf2_per_objfile->read_in_chain;
25458 while (per_cu != NULL)
25459 {
25460 struct dwarf2_per_cu_data *next_cu;
25461
25462 next_cu = per_cu->cu->read_in_chain;
25463
25464 if (per_cu == target_per_cu)
25465 {
25466 delete per_cu->cu;
25467 per_cu->cu = NULL;
25468 *last_chain = next_cu;
25469 break;
25470 }
25471 else
25472 last_chain = &per_cu->cu->read_in_chain;
25473
25474 per_cu = next_cu;
25475 }
25476 }
25477
25478 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25479 We store these in a hash table separate from the DIEs, and preserve them
25480 when the DIEs are flushed out of cache.
25481
25482 The CU "per_cu" pointer is needed because offset alone is not enough to
25483 uniquely identify the type. A file may have multiple .debug_types sections,
25484 or the type may come from a DWO file. Furthermore, while it's more logical
25485 to use per_cu->section+offset, with Fission the section with the data is in
25486 the DWO file but we don't know that section at the point we need it.
25487 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25488 because we can enter the lookup routine, get_die_type_at_offset, from
25489 outside this file, and thus won't necessarily have PER_CU->cu.
25490 Fortunately, PER_CU is stable for the life of the objfile. */
25491
25492 struct dwarf2_per_cu_offset_and_type
25493 {
25494 const struct dwarf2_per_cu_data *per_cu;
25495 sect_offset sect_off;
25496 struct type *type;
25497 };
25498
25499 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25500
25501 static hashval_t
25502 per_cu_offset_and_type_hash (const void *item)
25503 {
25504 const struct dwarf2_per_cu_offset_and_type *ofs
25505 = (const struct dwarf2_per_cu_offset_and_type *) item;
25506
25507 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25508 }
25509
25510 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25511
25512 static int
25513 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25514 {
25515 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25516 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25517 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25518 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25519
25520 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25521 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25522 }
25523
25524 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25525 table if necessary. For convenience, return TYPE.
25526
25527 The DIEs reading must have careful ordering to:
25528 * Not cause infite loops trying to read in DIEs as a prerequisite for
25529 reading current DIE.
25530 * Not trying to dereference contents of still incompletely read in types
25531 while reading in other DIEs.
25532 * Enable referencing still incompletely read in types just by a pointer to
25533 the type without accessing its fields.
25534
25535 Therefore caller should follow these rules:
25536 * Try to fetch any prerequisite types we may need to build this DIE type
25537 before building the type and calling set_die_type.
25538 * After building type call set_die_type for current DIE as soon as
25539 possible before fetching more types to complete the current type.
25540 * Make the type as complete as possible before fetching more types. */
25541
25542 static struct type *
25543 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25544 {
25545 struct dwarf2_per_objfile *dwarf2_per_objfile
25546 = cu->per_cu->dwarf2_per_objfile;
25547 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25548 struct objfile *objfile = dwarf2_per_objfile->objfile;
25549 struct attribute *attr;
25550 struct dynamic_prop prop;
25551
25552 /* For Ada types, make sure that the gnat-specific data is always
25553 initialized (if not already set). There are a few types where
25554 we should not be doing so, because the type-specific area is
25555 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25556 where the type-specific area is used to store the floatformat).
25557 But this is not a problem, because the gnat-specific information
25558 is actually not needed for these types. */
25559 if (need_gnat_info (cu)
25560 && TYPE_CODE (type) != TYPE_CODE_FUNC
25561 && TYPE_CODE (type) != TYPE_CODE_FLT
25562 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25563 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25564 && TYPE_CODE (type) != TYPE_CODE_METHOD
25565 && !HAVE_GNAT_AUX_INFO (type))
25566 INIT_GNAT_SPECIFIC (type);
25567
25568 /* Read DW_AT_allocated and set in type. */
25569 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25570 if (attr_form_is_block (attr))
25571 {
25572 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25573 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25574 }
25575 else if (attr != NULL)
25576 {
25577 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25578 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25579 sect_offset_str (die->sect_off));
25580 }
25581
25582 /* Read DW_AT_associated and set in type. */
25583 attr = dwarf2_attr (die, DW_AT_associated, cu);
25584 if (attr_form_is_block (attr))
25585 {
25586 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25587 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25588 }
25589 else if (attr != NULL)
25590 {
25591 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25592 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25593 sect_offset_str (die->sect_off));
25594 }
25595
25596 /* Read DW_AT_data_location and set in type. */
25597 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25598 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25599 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25600
25601 if (dwarf2_per_objfile->die_type_hash == NULL)
25602 {
25603 dwarf2_per_objfile->die_type_hash =
25604 htab_create_alloc_ex (127,
25605 per_cu_offset_and_type_hash,
25606 per_cu_offset_and_type_eq,
25607 NULL,
25608 &objfile->objfile_obstack,
25609 hashtab_obstack_allocate,
25610 dummy_obstack_deallocate);
25611 }
25612
25613 ofs.per_cu = cu->per_cu;
25614 ofs.sect_off = die->sect_off;
25615 ofs.type = type;
25616 slot = (struct dwarf2_per_cu_offset_and_type **)
25617 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25618 if (*slot)
25619 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25620 sect_offset_str (die->sect_off));
25621 *slot = XOBNEW (&objfile->objfile_obstack,
25622 struct dwarf2_per_cu_offset_and_type);
25623 **slot = ofs;
25624 return type;
25625 }
25626
25627 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25628 or return NULL if the die does not have a saved type. */
25629
25630 static struct type *
25631 get_die_type_at_offset (sect_offset sect_off,
25632 struct dwarf2_per_cu_data *per_cu)
25633 {
25634 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25635 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25636
25637 if (dwarf2_per_objfile->die_type_hash == NULL)
25638 return NULL;
25639
25640 ofs.per_cu = per_cu;
25641 ofs.sect_off = sect_off;
25642 slot = ((struct dwarf2_per_cu_offset_and_type *)
25643 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25644 if (slot)
25645 return slot->type;
25646 else
25647 return NULL;
25648 }
25649
25650 /* Look up the type for DIE in CU in die_type_hash,
25651 or return NULL if DIE does not have a saved type. */
25652
25653 static struct type *
25654 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25655 {
25656 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25657 }
25658
25659 /* Add a dependence relationship from CU to REF_PER_CU. */
25660
25661 static void
25662 dwarf2_add_dependence (struct dwarf2_cu *cu,
25663 struct dwarf2_per_cu_data *ref_per_cu)
25664 {
25665 void **slot;
25666
25667 if (cu->dependencies == NULL)
25668 cu->dependencies
25669 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25670 NULL, &cu->comp_unit_obstack,
25671 hashtab_obstack_allocate,
25672 dummy_obstack_deallocate);
25673
25674 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25675 if (*slot == NULL)
25676 *slot = ref_per_cu;
25677 }
25678
25679 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25680 Set the mark field in every compilation unit in the
25681 cache that we must keep because we are keeping CU. */
25682
25683 static int
25684 dwarf2_mark_helper (void **slot, void *data)
25685 {
25686 struct dwarf2_per_cu_data *per_cu;
25687
25688 per_cu = (struct dwarf2_per_cu_data *) *slot;
25689
25690 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25691 reading of the chain. As such dependencies remain valid it is not much
25692 useful to track and undo them during QUIT cleanups. */
25693 if (per_cu->cu == NULL)
25694 return 1;
25695
25696 if (per_cu->cu->mark)
25697 return 1;
25698 per_cu->cu->mark = true;
25699
25700 if (per_cu->cu->dependencies != NULL)
25701 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25702
25703 return 1;
25704 }
25705
25706 /* Set the mark field in CU and in every other compilation unit in the
25707 cache that we must keep because we are keeping CU. */
25708
25709 static void
25710 dwarf2_mark (struct dwarf2_cu *cu)
25711 {
25712 if (cu->mark)
25713 return;
25714 cu->mark = true;
25715 if (cu->dependencies != NULL)
25716 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25717 }
25718
25719 static void
25720 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25721 {
25722 while (per_cu)
25723 {
25724 per_cu->cu->mark = false;
25725 per_cu = per_cu->cu->read_in_chain;
25726 }
25727 }
25728
25729 /* Trivial hash function for partial_die_info: the hash value of a DIE
25730 is its offset in .debug_info for this objfile. */
25731
25732 static hashval_t
25733 partial_die_hash (const void *item)
25734 {
25735 const struct partial_die_info *part_die
25736 = (const struct partial_die_info *) item;
25737
25738 return to_underlying (part_die->sect_off);
25739 }
25740
25741 /* Trivial comparison function for partial_die_info structures: two DIEs
25742 are equal if they have the same offset. */
25743
25744 static int
25745 partial_die_eq (const void *item_lhs, const void *item_rhs)
25746 {
25747 const struct partial_die_info *part_die_lhs
25748 = (const struct partial_die_info *) item_lhs;
25749 const struct partial_die_info *part_die_rhs
25750 = (const struct partial_die_info *) item_rhs;
25751
25752 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25753 }
25754
25755 struct cmd_list_element *set_dwarf_cmdlist;
25756 struct cmd_list_element *show_dwarf_cmdlist;
25757
25758 static void
25759 set_dwarf_cmd (const char *args, int from_tty)
25760 {
25761 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25762 gdb_stdout);
25763 }
25764
25765 static void
25766 show_dwarf_cmd (const char *args, int from_tty)
25767 {
25768 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25769 }
25770
25771 int dwarf_always_disassemble;
25772
25773 static void
25774 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25775 struct cmd_list_element *c, const char *value)
25776 {
25777 fprintf_filtered (file,
25778 _("Whether to always disassemble "
25779 "DWARF expressions is %s.\n"),
25780 value);
25781 }
25782
25783 static void
25784 show_check_physname (struct ui_file *file, int from_tty,
25785 struct cmd_list_element *c, const char *value)
25786 {
25787 fprintf_filtered (file,
25788 _("Whether to check \"physname\" is %s.\n"),
25789 value);
25790 }
25791
25792 void
25793 _initialize_dwarf2_read (void)
25794 {
25795 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25796 Set DWARF specific variables.\n\
25797 Configure DWARF variables such as the cache size"),
25798 &set_dwarf_cmdlist, "maintenance set dwarf ",
25799 0/*allow-unknown*/, &maintenance_set_cmdlist);
25800
25801 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25802 Show DWARF specific variables\n\
25803 Show DWARF variables such as the cache size"),
25804 &show_dwarf_cmdlist, "maintenance show dwarf ",
25805 0/*allow-unknown*/, &maintenance_show_cmdlist);
25806
25807 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25808 &dwarf_max_cache_age, _("\
25809 Set the upper bound on the age of cached DWARF compilation units."), _("\
25810 Show the upper bound on the age of cached DWARF compilation units."), _("\
25811 A higher limit means that cached compilation units will be stored\n\
25812 in memory longer, and more total memory will be used. Zero disables\n\
25813 caching, which can slow down startup."),
25814 NULL,
25815 show_dwarf_max_cache_age,
25816 &set_dwarf_cmdlist,
25817 &show_dwarf_cmdlist);
25818
25819 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25820 &dwarf_always_disassemble, _("\
25821 Set whether `info address' always disassembles DWARF expressions."), _("\
25822 Show whether `info address' always disassembles DWARF expressions."), _("\
25823 When enabled, DWARF expressions are always printed in an assembly-like\n\
25824 syntax. When disabled, expressions will be printed in a more\n\
25825 conversational style, when possible."),
25826 NULL,
25827 show_dwarf_always_disassemble,
25828 &set_dwarf_cmdlist,
25829 &show_dwarf_cmdlist);
25830
25831 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25832 Set debugging of the DWARF reader."), _("\
25833 Show debugging of the DWARF reader."), _("\
25834 When enabled (non-zero), debugging messages are printed during DWARF\n\
25835 reading and symtab expansion. A value of 1 (one) provides basic\n\
25836 information. A value greater than 1 provides more verbose information."),
25837 NULL,
25838 NULL,
25839 &setdebuglist, &showdebuglist);
25840
25841 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25842 Set debugging of the DWARF DIE reader."), _("\
25843 Show debugging of the DWARF DIE reader."), _("\
25844 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25845 The value is the maximum depth to print."),
25846 NULL,
25847 NULL,
25848 &setdebuglist, &showdebuglist);
25849
25850 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25851 Set debugging of the dwarf line reader."), _("\
25852 Show debugging of the dwarf line reader."), _("\
25853 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25854 A value of 1 (one) provides basic information.\n\
25855 A value greater than 1 provides more verbose information."),
25856 NULL,
25857 NULL,
25858 &setdebuglist, &showdebuglist);
25859
25860 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25861 Set cross-checking of \"physname\" code against demangler."), _("\
25862 Show cross-checking of \"physname\" code against demangler."), _("\
25863 When enabled, GDB's internal \"physname\" code is checked against\n\
25864 the demangler."),
25865 NULL, show_check_physname,
25866 &setdebuglist, &showdebuglist);
25867
25868 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25869 no_class, &use_deprecated_index_sections, _("\
25870 Set whether to use deprecated gdb_index sections."), _("\
25871 Show whether to use deprecated gdb_index sections."), _("\
25872 When enabled, deprecated .gdb_index sections are used anyway.\n\
25873 Normally they are ignored either because of a missing feature or\n\
25874 performance issue.\n\
25875 Warning: This option must be enabled before gdb reads the file."),
25876 NULL,
25877 NULL,
25878 &setlist, &showlist);
25879
25880 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25881 &dwarf2_locexpr_funcs);
25882 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25883 &dwarf2_loclist_funcs);
25884
25885 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25886 &dwarf2_block_frame_base_locexpr_funcs);
25887 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25888 &dwarf2_block_frame_base_loclist_funcs);
25889
25890 #if GDB_SELF_TEST
25891 selftests::register_test ("dw2_expand_symtabs_matching",
25892 selftests::dw2_expand_symtabs_matching::run_test);
25893 #endif
25894 }