]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Remove usages of find_thread when calling need_step_over_p
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84 #include "selftest.h"
85
86 /* When == 1, print basic high level tracing messages.
87 When > 1, be more verbose.
88 This is in contrast to the low level DIE reading of dwarf_die_debug. */
89 static unsigned int dwarf_read_debug = 0;
90
91 /* When non-zero, dump DIEs after they are read in. */
92 static unsigned int dwarf_die_debug = 0;
93
94 /* When non-zero, dump line number entries as they are read in. */
95 static unsigned int dwarf_line_debug = 0;
96
97 /* When non-zero, cross-check physname against demangler. */
98 static int check_physname = 0;
99
100 /* When non-zero, do not reject deprecated .gdb_index sections. */
101 static int use_deprecated_index_sections = 0;
102
103 static const struct objfile_data *dwarf2_objfile_data_key;
104
105 /* The "aclass" indices for various kinds of computed DWARF symbols. */
106
107 static int dwarf2_locexpr_index;
108 static int dwarf2_loclist_index;
109 static int dwarf2_locexpr_block_index;
110 static int dwarf2_loclist_block_index;
111
112 /* A descriptor for dwarf sections.
113
114 S.ASECTION, SIZE are typically initialized when the objfile is first
115 scanned. BUFFER, READIN are filled in later when the section is read.
116 If the section contained compressed data then SIZE is updated to record
117 the uncompressed size of the section.
118
119 DWP file format V2 introduces a wrinkle that is easiest to handle by
120 creating the concept of virtual sections contained within a real section.
121 In DWP V2 the sections of the input DWO files are concatenated together
122 into one section, but section offsets are kept relative to the original
123 input section.
124 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
125 the real section this "virtual" section is contained in, and BUFFER,SIZE
126 describe the virtual section. */
127
128 struct dwarf2_section_info
129 {
130 union
131 {
132 /* If this is a real section, the bfd section. */
133 asection *section;
134 /* If this is a virtual section, pointer to the containing ("real")
135 section. */
136 struct dwarf2_section_info *containing_section;
137 } s;
138 /* Pointer to section data, only valid if readin. */
139 const gdb_byte *buffer;
140 /* The size of the section, real or virtual. */
141 bfd_size_type size;
142 /* If this is a virtual section, the offset in the real section.
143 Only valid if is_virtual. */
144 bfd_size_type virtual_offset;
145 /* True if we have tried to read this section. */
146 char readin;
147 /* True if this is a virtual section, False otherwise.
148 This specifies which of s.section and s.containing_section to use. */
149 char is_virtual;
150 };
151
152 typedef struct dwarf2_section_info dwarf2_section_info_def;
153 DEF_VEC_O (dwarf2_section_info_def);
154
155 /* All offsets in the index are of this type. It must be
156 architecture-independent. */
157 typedef uint32_t offset_type;
158
159 DEF_VEC_I (offset_type);
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((unsigned int) (value) <= 1); \
165 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
166 } while (0)
167
168 /* Ensure only legit values are used. */
169 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
170 do { \
171 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
172 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
173 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
177 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
178 do { \
179 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
180 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
181 } while (0)
182
183 #if WORDS_BIGENDIAN
184
185 /* Convert VALUE between big- and little-endian. */
186
187 static offset_type
188 byte_swap (offset_type value)
189 {
190 offset_type result;
191
192 result = (value & 0xff) << 24;
193 result |= (value & 0xff00) << 8;
194 result |= (value & 0xff0000) >> 8;
195 result |= (value & 0xff000000) >> 24;
196 return result;
197 }
198
199 #define MAYBE_SWAP(V) byte_swap (V)
200
201 #else
202 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
203 #endif /* WORDS_BIGENDIAN */
204
205 /* An index into a (C++) symbol name component in a symbol name as
206 recorded in the mapped_index's symbol table. For each C++ symbol
207 in the symbol table, we record one entry for the start of each
208 component in the symbol in a table of name components, and then
209 sort the table, in order to be able to binary search symbol names,
210 ignoring leading namespaces, both completion and regular look up.
211 For example, for symbol "A::B::C", we'll have an entry that points
212 to "A::B::C", another that points to "B::C", and another for "C".
213 Note that function symbols in GDB index have no parameter
214 information, just the function/method names. You can convert a
215 name_component to a "const char *" using the
216 'mapped_index::symbol_name_at(offset_type)' method. */
217
218 struct name_component
219 {
220 /* Offset in the symbol name where the component starts. Stored as
221 a (32-bit) offset instead of a pointer to save memory and improve
222 locality on 64-bit architectures. */
223 offset_type name_offset;
224
225 /* The symbol's index in the symbol and constant pool tables of a
226 mapped_index. */
227 offset_type idx;
228 };
229
230 /* A description of the mapped index. The file format is described in
231 a comment by the code that writes the index. */
232 struct mapped_index
233 {
234 /* Index data format version. */
235 int version;
236
237 /* The total length of the buffer. */
238 off_t total_size;
239
240 /* A pointer to the address table data. */
241 const gdb_byte *address_table;
242
243 /* Size of the address table data in bytes. */
244 offset_type address_table_size;
245
246 /* The symbol table, implemented as a hash table. */
247 const offset_type *symbol_table;
248
249 /* Size in slots, each slot is 2 offset_types. */
250 offset_type symbol_table_slots;
251
252 /* A pointer to the constant pool. */
253 const char *constant_pool;
254
255 /* The name_component table (a sorted vector). See name_component's
256 description above. */
257 std::vector<name_component> name_components;
258
259 /* Convenience method to get at the name of the symbol at IDX in the
260 symbol table. */
261 const char *symbol_name_at (offset_type idx) const
262 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx]); }
263 };
264
265 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
266 DEF_VEC_P (dwarf2_per_cu_ptr);
267
268 struct tu_stats
269 {
270 int nr_uniq_abbrev_tables;
271 int nr_symtabs;
272 int nr_symtab_sharers;
273 int nr_stmt_less_type_units;
274 int nr_all_type_units_reallocs;
275 };
276
277 /* Collection of data recorded per objfile.
278 This hangs off of dwarf2_objfile_data_key. */
279
280 struct dwarf2_per_objfile
281 {
282 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
283 dwarf2 section names, or is NULL if the standard ELF names are
284 used. */
285 dwarf2_per_objfile (struct objfile *objfile,
286 const dwarf2_debug_sections *names);
287
288 ~dwarf2_per_objfile ();
289
290 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
291
292 /* Free all cached compilation units. */
293 void free_cached_comp_units ();
294 private:
295 /* This function is mapped across the sections and remembers the
296 offset and size of each of the debugging sections we are
297 interested in. */
298 void locate_sections (bfd *abfd, asection *sectp,
299 const dwarf2_debug_sections &names);
300
301 public:
302 dwarf2_section_info info {};
303 dwarf2_section_info abbrev {};
304 dwarf2_section_info line {};
305 dwarf2_section_info loc {};
306 dwarf2_section_info loclists {};
307 dwarf2_section_info macinfo {};
308 dwarf2_section_info macro {};
309 dwarf2_section_info str {};
310 dwarf2_section_info line_str {};
311 dwarf2_section_info ranges {};
312 dwarf2_section_info rnglists {};
313 dwarf2_section_info addr {};
314 dwarf2_section_info frame {};
315 dwarf2_section_info eh_frame {};
316 dwarf2_section_info gdb_index {};
317
318 VEC (dwarf2_section_info_def) *types = NULL;
319
320 /* Back link. */
321 struct objfile *objfile = NULL;
322
323 /* Table of all the compilation units. This is used to locate
324 the target compilation unit of a particular reference. */
325 struct dwarf2_per_cu_data **all_comp_units = NULL;
326
327 /* The number of compilation units in ALL_COMP_UNITS. */
328 int n_comp_units = 0;
329
330 /* The number of .debug_types-related CUs. */
331 int n_type_units = 0;
332
333 /* The number of elements allocated in all_type_units.
334 If there are skeleton-less TUs, we add them to all_type_units lazily. */
335 int n_allocated_type_units = 0;
336
337 /* The .debug_types-related CUs (TUs).
338 This is stored in malloc space because we may realloc it. */
339 struct signatured_type **all_type_units = NULL;
340
341 /* Table of struct type_unit_group objects.
342 The hash key is the DW_AT_stmt_list value. */
343 htab_t type_unit_groups {};
344
345 /* A table mapping .debug_types signatures to its signatured_type entry.
346 This is NULL if the .debug_types section hasn't been read in yet. */
347 htab_t signatured_types {};
348
349 /* Type unit statistics, to see how well the scaling improvements
350 are doing. */
351 struct tu_stats tu_stats {};
352
353 /* A chain of compilation units that are currently read in, so that
354 they can be freed later. */
355 dwarf2_per_cu_data *read_in_chain = NULL;
356
357 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
358 This is NULL if the table hasn't been allocated yet. */
359 htab_t dwo_files {};
360
361 /* True if we've checked for whether there is a DWP file. */
362 bool dwp_checked = false;
363
364 /* The DWP file if there is one, or NULL. */
365 struct dwp_file *dwp_file = NULL;
366
367 /* The shared '.dwz' file, if one exists. This is used when the
368 original data was compressed using 'dwz -m'. */
369 struct dwz_file *dwz_file = NULL;
370
371 /* A flag indicating whether this objfile has a section loaded at a
372 VMA of 0. */
373 bool has_section_at_zero = false;
374
375 /* True if we are using the mapped index,
376 or we are faking it for OBJF_READNOW's sake. */
377 bool using_index = false;
378
379 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
380 mapped_index *index_table = NULL;
381
382 /* When using index_table, this keeps track of all quick_file_names entries.
383 TUs typically share line table entries with a CU, so we maintain a
384 separate table of all line table entries to support the sharing.
385 Note that while there can be way more TUs than CUs, we've already
386 sorted all the TUs into "type unit groups", grouped by their
387 DW_AT_stmt_list value. Therefore the only sharing done here is with a
388 CU and its associated TU group if there is one. */
389 htab_t quick_file_names_table {};
390
391 /* Set during partial symbol reading, to prevent queueing of full
392 symbols. */
393 bool reading_partial_symbols = false;
394
395 /* Table mapping type DIEs to their struct type *.
396 This is NULL if not allocated yet.
397 The mapping is done via (CU/TU + DIE offset) -> type. */
398 htab_t die_type_hash {};
399
400 /* The CUs we recently read. */
401 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
402
403 /* Table containing line_header indexed by offset and offset_in_dwz. */
404 htab_t line_header_hash {};
405
406 /* Table containing all filenames. This is an optional because the
407 table is lazily constructed on first access. */
408 gdb::optional<filename_seen_cache> filenames_cache;
409 };
410
411 static struct dwarf2_per_objfile *dwarf2_per_objfile;
412
413 /* Default names of the debugging sections. */
414
415 /* Note that if the debugging section has been compressed, it might
416 have a name like .zdebug_info. */
417
418 static const struct dwarf2_debug_sections dwarf2_elf_names =
419 {
420 { ".debug_info", ".zdebug_info" },
421 { ".debug_abbrev", ".zdebug_abbrev" },
422 { ".debug_line", ".zdebug_line" },
423 { ".debug_loc", ".zdebug_loc" },
424 { ".debug_loclists", ".zdebug_loclists" },
425 { ".debug_macinfo", ".zdebug_macinfo" },
426 { ".debug_macro", ".zdebug_macro" },
427 { ".debug_str", ".zdebug_str" },
428 { ".debug_line_str", ".zdebug_line_str" },
429 { ".debug_ranges", ".zdebug_ranges" },
430 { ".debug_rnglists", ".zdebug_rnglists" },
431 { ".debug_types", ".zdebug_types" },
432 { ".debug_addr", ".zdebug_addr" },
433 { ".debug_frame", ".zdebug_frame" },
434 { ".eh_frame", NULL },
435 { ".gdb_index", ".zgdb_index" },
436 23
437 };
438
439 /* List of DWO/DWP sections. */
440
441 static const struct dwop_section_names
442 {
443 struct dwarf2_section_names abbrev_dwo;
444 struct dwarf2_section_names info_dwo;
445 struct dwarf2_section_names line_dwo;
446 struct dwarf2_section_names loc_dwo;
447 struct dwarf2_section_names loclists_dwo;
448 struct dwarf2_section_names macinfo_dwo;
449 struct dwarf2_section_names macro_dwo;
450 struct dwarf2_section_names str_dwo;
451 struct dwarf2_section_names str_offsets_dwo;
452 struct dwarf2_section_names types_dwo;
453 struct dwarf2_section_names cu_index;
454 struct dwarf2_section_names tu_index;
455 }
456 dwop_section_names =
457 {
458 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
459 { ".debug_info.dwo", ".zdebug_info.dwo" },
460 { ".debug_line.dwo", ".zdebug_line.dwo" },
461 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
462 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
463 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
464 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
465 { ".debug_str.dwo", ".zdebug_str.dwo" },
466 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
467 { ".debug_types.dwo", ".zdebug_types.dwo" },
468 { ".debug_cu_index", ".zdebug_cu_index" },
469 { ".debug_tu_index", ".zdebug_tu_index" },
470 };
471
472 /* local data types */
473
474 /* The data in a compilation unit header, after target2host
475 translation, looks like this. */
476 struct comp_unit_head
477 {
478 unsigned int length;
479 short version;
480 unsigned char addr_size;
481 unsigned char signed_addr_p;
482 sect_offset abbrev_sect_off;
483
484 /* Size of file offsets; either 4 or 8. */
485 unsigned int offset_size;
486
487 /* Size of the length field; either 4 or 12. */
488 unsigned int initial_length_size;
489
490 enum dwarf_unit_type unit_type;
491
492 /* Offset to the first byte of this compilation unit header in the
493 .debug_info section, for resolving relative reference dies. */
494 sect_offset sect_off;
495
496 /* Offset to first die in this cu from the start of the cu.
497 This will be the first byte following the compilation unit header. */
498 cu_offset first_die_cu_offset;
499
500 /* 64-bit signature of this type unit - it is valid only for
501 UNIT_TYPE DW_UT_type. */
502 ULONGEST signature;
503
504 /* For types, offset in the type's DIE of the type defined by this TU. */
505 cu_offset type_cu_offset_in_tu;
506 };
507
508 /* Type used for delaying computation of method physnames.
509 See comments for compute_delayed_physnames. */
510 struct delayed_method_info
511 {
512 /* The type to which the method is attached, i.e., its parent class. */
513 struct type *type;
514
515 /* The index of the method in the type's function fieldlists. */
516 int fnfield_index;
517
518 /* The index of the method in the fieldlist. */
519 int index;
520
521 /* The name of the DIE. */
522 const char *name;
523
524 /* The DIE associated with this method. */
525 struct die_info *die;
526 };
527
528 typedef struct delayed_method_info delayed_method_info;
529 DEF_VEC_O (delayed_method_info);
530
531 /* Internal state when decoding a particular compilation unit. */
532 struct dwarf2_cu
533 {
534 /* The objfile containing this compilation unit. */
535 struct objfile *objfile;
536
537 /* The header of the compilation unit. */
538 struct comp_unit_head header;
539
540 /* Base address of this compilation unit. */
541 CORE_ADDR base_address;
542
543 /* Non-zero if base_address has been set. */
544 int base_known;
545
546 /* The language we are debugging. */
547 enum language language;
548 const struct language_defn *language_defn;
549
550 const char *producer;
551
552 /* The generic symbol table building routines have separate lists for
553 file scope symbols and all all other scopes (local scopes). So
554 we need to select the right one to pass to add_symbol_to_list().
555 We do it by keeping a pointer to the correct list in list_in_scope.
556
557 FIXME: The original dwarf code just treated the file scope as the
558 first local scope, and all other local scopes as nested local
559 scopes, and worked fine. Check to see if we really need to
560 distinguish these in buildsym.c. */
561 struct pending **list_in_scope;
562
563 /* The abbrev table for this CU.
564 Normally this points to the abbrev table in the objfile.
565 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
566 struct abbrev_table *abbrev_table;
567
568 /* Hash table holding all the loaded partial DIEs
569 with partial_die->offset.SECT_OFF as hash. */
570 htab_t partial_dies;
571
572 /* Storage for things with the same lifetime as this read-in compilation
573 unit, including partial DIEs. */
574 struct obstack comp_unit_obstack;
575
576 /* When multiple dwarf2_cu structures are living in memory, this field
577 chains them all together, so that they can be released efficiently.
578 We will probably also want a generation counter so that most-recently-used
579 compilation units are cached... */
580 struct dwarf2_per_cu_data *read_in_chain;
581
582 /* Backlink to our per_cu entry. */
583 struct dwarf2_per_cu_data *per_cu;
584
585 /* How many compilation units ago was this CU last referenced? */
586 int last_used;
587
588 /* A hash table of DIE cu_offset for following references with
589 die_info->offset.sect_off as hash. */
590 htab_t die_hash;
591
592 /* Full DIEs if read in. */
593 struct die_info *dies;
594
595 /* A set of pointers to dwarf2_per_cu_data objects for compilation
596 units referenced by this one. Only set during full symbol processing;
597 partial symbol tables do not have dependencies. */
598 htab_t dependencies;
599
600 /* Header data from the line table, during full symbol processing. */
601 struct line_header *line_header;
602 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
603 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
604 this is the DW_TAG_compile_unit die for this CU. We'll hold on
605 to the line header as long as this DIE is being processed. See
606 process_die_scope. */
607 die_info *line_header_die_owner;
608
609 /* A list of methods which need to have physnames computed
610 after all type information has been read. */
611 VEC (delayed_method_info) *method_list;
612
613 /* To be copied to symtab->call_site_htab. */
614 htab_t call_site_htab;
615
616 /* Non-NULL if this CU came from a DWO file.
617 There is an invariant here that is important to remember:
618 Except for attributes copied from the top level DIE in the "main"
619 (or "stub") file in preparation for reading the DWO file
620 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
621 Either there isn't a DWO file (in which case this is NULL and the point
622 is moot), or there is and either we're not going to read it (in which
623 case this is NULL) or there is and we are reading it (in which case this
624 is non-NULL). */
625 struct dwo_unit *dwo_unit;
626
627 /* The DW_AT_addr_base attribute if present, zero otherwise
628 (zero is a valid value though).
629 Note this value comes from the Fission stub CU/TU's DIE. */
630 ULONGEST addr_base;
631
632 /* The DW_AT_ranges_base attribute if present, zero otherwise
633 (zero is a valid value though).
634 Note this value comes from the Fission stub CU/TU's DIE.
635 Also note that the value is zero in the non-DWO case so this value can
636 be used without needing to know whether DWO files are in use or not.
637 N.B. This does not apply to DW_AT_ranges appearing in
638 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
639 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
640 DW_AT_ranges_base *would* have to be applied, and we'd have to care
641 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
642 ULONGEST ranges_base;
643
644 /* Mark used when releasing cached dies. */
645 unsigned int mark : 1;
646
647 /* This CU references .debug_loc. See the symtab->locations_valid field.
648 This test is imperfect as there may exist optimized debug code not using
649 any location list and still facing inlining issues if handled as
650 unoptimized code. For a future better test see GCC PR other/32998. */
651 unsigned int has_loclist : 1;
652
653 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
654 if all the producer_is_* fields are valid. This information is cached
655 because profiling CU expansion showed excessive time spent in
656 producer_is_gxx_lt_4_6. */
657 unsigned int checked_producer : 1;
658 unsigned int producer_is_gxx_lt_4_6 : 1;
659 unsigned int producer_is_gcc_lt_4_3 : 1;
660 unsigned int producer_is_icc_lt_14 : 1;
661
662 /* When set, the file that we're processing is known to have
663 debugging info for C++ namespaces. GCC 3.3.x did not produce
664 this information, but later versions do. */
665
666 unsigned int processing_has_namespace_info : 1;
667 };
668
669 /* Persistent data held for a compilation unit, even when not
670 processing it. We put a pointer to this structure in the
671 read_symtab_private field of the psymtab. */
672
673 struct dwarf2_per_cu_data
674 {
675 /* The start offset and length of this compilation unit.
676 NOTE: Unlike comp_unit_head.length, this length includes
677 initial_length_size.
678 If the DIE refers to a DWO file, this is always of the original die,
679 not the DWO file. */
680 sect_offset sect_off;
681 unsigned int length;
682
683 /* DWARF standard version this data has been read from (such as 4 or 5). */
684 short dwarf_version;
685
686 /* Flag indicating this compilation unit will be read in before
687 any of the current compilation units are processed. */
688 unsigned int queued : 1;
689
690 /* This flag will be set when reading partial DIEs if we need to load
691 absolutely all DIEs for this compilation unit, instead of just the ones
692 we think are interesting. It gets set if we look for a DIE in the
693 hash table and don't find it. */
694 unsigned int load_all_dies : 1;
695
696 /* Non-zero if this CU is from .debug_types.
697 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
698 this is non-zero. */
699 unsigned int is_debug_types : 1;
700
701 /* Non-zero if this CU is from the .dwz file. */
702 unsigned int is_dwz : 1;
703
704 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
705 This flag is only valid if is_debug_types is true.
706 We can't read a CU directly from a DWO file: There are required
707 attributes in the stub. */
708 unsigned int reading_dwo_directly : 1;
709
710 /* Non-zero if the TU has been read.
711 This is used to assist the "Stay in DWO Optimization" for Fission:
712 When reading a DWO, it's faster to read TUs from the DWO instead of
713 fetching them from random other DWOs (due to comdat folding).
714 If the TU has already been read, the optimization is unnecessary
715 (and unwise - we don't want to change where gdb thinks the TU lives
716 "midflight").
717 This flag is only valid if is_debug_types is true. */
718 unsigned int tu_read : 1;
719
720 /* The section this CU/TU lives in.
721 If the DIE refers to a DWO file, this is always the original die,
722 not the DWO file. */
723 struct dwarf2_section_info *section;
724
725 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
726 of the CU cache it gets reset to NULL again. This is left as NULL for
727 dummy CUs (a CU header, but nothing else). */
728 struct dwarf2_cu *cu;
729
730 /* The corresponding objfile.
731 Normally we can get the objfile from dwarf2_per_objfile.
732 However we can enter this file with just a "per_cu" handle. */
733 struct objfile *objfile;
734
735 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
736 is active. Otherwise, the 'psymtab' field is active. */
737 union
738 {
739 /* The partial symbol table associated with this compilation unit,
740 or NULL for unread partial units. */
741 struct partial_symtab *psymtab;
742
743 /* Data needed by the "quick" functions. */
744 struct dwarf2_per_cu_quick_data *quick;
745 } v;
746
747 /* The CUs we import using DW_TAG_imported_unit. This is filled in
748 while reading psymtabs, used to compute the psymtab dependencies,
749 and then cleared. Then it is filled in again while reading full
750 symbols, and only deleted when the objfile is destroyed.
751
752 This is also used to work around a difference between the way gold
753 generates .gdb_index version <=7 and the way gdb does. Arguably this
754 is a gold bug. For symbols coming from TUs, gold records in the index
755 the CU that includes the TU instead of the TU itself. This breaks
756 dw2_lookup_symbol: It assumes that if the index says symbol X lives
757 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
758 will find X. Alas TUs live in their own symtab, so after expanding CU Y
759 we need to look in TU Z to find X. Fortunately, this is akin to
760 DW_TAG_imported_unit, so we just use the same mechanism: For
761 .gdb_index version <=7 this also records the TUs that the CU referred
762 to. Concurrently with this change gdb was modified to emit version 8
763 indices so we only pay a price for gold generated indices.
764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
765 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
766 };
767
768 /* Entry in the signatured_types hash table. */
769
770 struct signatured_type
771 {
772 /* The "per_cu" object of this type.
773 This struct is used iff per_cu.is_debug_types.
774 N.B.: This is the first member so that it's easy to convert pointers
775 between them. */
776 struct dwarf2_per_cu_data per_cu;
777
778 /* The type's signature. */
779 ULONGEST signature;
780
781 /* Offset in the TU of the type's DIE, as read from the TU header.
782 If this TU is a DWO stub and the definition lives in a DWO file
783 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
784 cu_offset type_offset_in_tu;
785
786 /* Offset in the section of the type's DIE.
787 If the definition lives in a DWO file, this is the offset in the
788 .debug_types.dwo section.
789 The value is zero until the actual value is known.
790 Zero is otherwise not a valid section offset. */
791 sect_offset type_offset_in_section;
792
793 /* Type units are grouped by their DW_AT_stmt_list entry so that they
794 can share them. This points to the containing symtab. */
795 struct type_unit_group *type_unit_group;
796
797 /* The type.
798 The first time we encounter this type we fully read it in and install it
799 in the symbol tables. Subsequent times we only need the type. */
800 struct type *type;
801
802 /* Containing DWO unit.
803 This field is valid iff per_cu.reading_dwo_directly. */
804 struct dwo_unit *dwo_unit;
805 };
806
807 typedef struct signatured_type *sig_type_ptr;
808 DEF_VEC_P (sig_type_ptr);
809
810 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
811 This includes type_unit_group and quick_file_names. */
812
813 struct stmt_list_hash
814 {
815 /* The DWO unit this table is from or NULL if there is none. */
816 struct dwo_unit *dwo_unit;
817
818 /* Offset in .debug_line or .debug_line.dwo. */
819 sect_offset line_sect_off;
820 };
821
822 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
823 an object of this type. */
824
825 struct type_unit_group
826 {
827 /* dwarf2read.c's main "handle" on a TU symtab.
828 To simplify things we create an artificial CU that "includes" all the
829 type units using this stmt_list so that the rest of the code still has
830 a "per_cu" handle on the symtab.
831 This PER_CU is recognized by having no section. */
832 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
833 struct dwarf2_per_cu_data per_cu;
834
835 /* The TUs that share this DW_AT_stmt_list entry.
836 This is added to while parsing type units to build partial symtabs,
837 and is deleted afterwards and not used again. */
838 VEC (sig_type_ptr) *tus;
839
840 /* The compunit symtab.
841 Type units in a group needn't all be defined in the same source file,
842 so we create an essentially anonymous symtab as the compunit symtab. */
843 struct compunit_symtab *compunit_symtab;
844
845 /* The data used to construct the hash key. */
846 struct stmt_list_hash hash;
847
848 /* The number of symtabs from the line header.
849 The value here must match line_header.num_file_names. */
850 unsigned int num_symtabs;
851
852 /* The symbol tables for this TU (obtained from the files listed in
853 DW_AT_stmt_list).
854 WARNING: The order of entries here must match the order of entries
855 in the line header. After the first TU using this type_unit_group, the
856 line header for the subsequent TUs is recreated from this. This is done
857 because we need to use the same symtabs for each TU using the same
858 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
859 there's no guarantee the line header doesn't have duplicate entries. */
860 struct symtab **symtabs;
861 };
862
863 /* These sections are what may appear in a (real or virtual) DWO file. */
864
865 struct dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info loclists;
871 struct dwarf2_section_info macinfo;
872 struct dwarf2_section_info macro;
873 struct dwarf2_section_info str;
874 struct dwarf2_section_info str_offsets;
875 /* In the case of a virtual DWO file, these two are unused. */
876 struct dwarf2_section_info info;
877 VEC (dwarf2_section_info_def) *types;
878 };
879
880 /* CUs/TUs in DWP/DWO files. */
881
882 struct dwo_unit
883 {
884 /* Backlink to the containing struct dwo_file. */
885 struct dwo_file *dwo_file;
886
887 /* The "id" that distinguishes this CU/TU.
888 .debug_info calls this "dwo_id", .debug_types calls this "signature".
889 Since signatures came first, we stick with it for consistency. */
890 ULONGEST signature;
891
892 /* The section this CU/TU lives in, in the DWO file. */
893 struct dwarf2_section_info *section;
894
895 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
896 sect_offset sect_off;
897 unsigned int length;
898
899 /* For types, offset in the type's DIE of the type defined by this TU. */
900 cu_offset type_offset_in_tu;
901 };
902
903 /* include/dwarf2.h defines the DWP section codes.
904 It defines a max value but it doesn't define a min value, which we
905 use for error checking, so provide one. */
906
907 enum dwp_v2_section_ids
908 {
909 DW_SECT_MIN = 1
910 };
911
912 /* Data for one DWO file.
913
914 This includes virtual DWO files (a virtual DWO file is a DWO file as it
915 appears in a DWP file). DWP files don't really have DWO files per se -
916 comdat folding of types "loses" the DWO file they came from, and from
917 a high level view DWP files appear to contain a mass of random types.
918 However, to maintain consistency with the non-DWP case we pretend DWP
919 files contain virtual DWO files, and we assign each TU with one virtual
920 DWO file (generally based on the line and abbrev section offsets -
921 a heuristic that seems to work in practice). */
922
923 struct dwo_file
924 {
925 /* The DW_AT_GNU_dwo_name attribute.
926 For virtual DWO files the name is constructed from the section offsets
927 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
928 from related CU+TUs. */
929 const char *dwo_name;
930
931 /* The DW_AT_comp_dir attribute. */
932 const char *comp_dir;
933
934 /* The bfd, when the file is open. Otherwise this is NULL.
935 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
936 bfd *dbfd;
937
938 /* The sections that make up this DWO file.
939 Remember that for virtual DWO files in DWP V2, these are virtual
940 sections (for lack of a better name). */
941 struct dwo_sections sections;
942
943 /* The CUs in the file.
944 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
945 an extension to handle LLVM's Link Time Optimization output (where
946 multiple source files may be compiled into a single object/dwo pair). */
947 htab_t cus;
948
949 /* Table of TUs in the file.
950 Each element is a struct dwo_unit. */
951 htab_t tus;
952 };
953
954 /* These sections are what may appear in a DWP file. */
955
956 struct dwp_sections
957 {
958 /* These are used by both DWP version 1 and 2. */
959 struct dwarf2_section_info str;
960 struct dwarf2_section_info cu_index;
961 struct dwarf2_section_info tu_index;
962
963 /* These are only used by DWP version 2 files.
964 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
965 sections are referenced by section number, and are not recorded here.
966 In DWP version 2 there is at most one copy of all these sections, each
967 section being (effectively) comprised of the concatenation of all of the
968 individual sections that exist in the version 1 format.
969 To keep the code simple we treat each of these concatenated pieces as a
970 section itself (a virtual section?). */
971 struct dwarf2_section_info abbrev;
972 struct dwarf2_section_info info;
973 struct dwarf2_section_info line;
974 struct dwarf2_section_info loc;
975 struct dwarf2_section_info macinfo;
976 struct dwarf2_section_info macro;
977 struct dwarf2_section_info str_offsets;
978 struct dwarf2_section_info types;
979 };
980
981 /* These sections are what may appear in a virtual DWO file in DWP version 1.
982 A virtual DWO file is a DWO file as it appears in a DWP file. */
983
984 struct virtual_v1_dwo_sections
985 {
986 struct dwarf2_section_info abbrev;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info loc;
989 struct dwarf2_section_info macinfo;
990 struct dwarf2_section_info macro;
991 struct dwarf2_section_info str_offsets;
992 /* Each DWP hash table entry records one CU or one TU.
993 That is recorded here, and copied to dwo_unit.section. */
994 struct dwarf2_section_info info_or_types;
995 };
996
997 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
998 In version 2, the sections of the DWO files are concatenated together
999 and stored in one section of that name. Thus each ELF section contains
1000 several "virtual" sections. */
1001
1002 struct virtual_v2_dwo_sections
1003 {
1004 bfd_size_type abbrev_offset;
1005 bfd_size_type abbrev_size;
1006
1007 bfd_size_type line_offset;
1008 bfd_size_type line_size;
1009
1010 bfd_size_type loc_offset;
1011 bfd_size_type loc_size;
1012
1013 bfd_size_type macinfo_offset;
1014 bfd_size_type macinfo_size;
1015
1016 bfd_size_type macro_offset;
1017 bfd_size_type macro_size;
1018
1019 bfd_size_type str_offsets_offset;
1020 bfd_size_type str_offsets_size;
1021
1022 /* Each DWP hash table entry records one CU or one TU.
1023 That is recorded here, and copied to dwo_unit.section. */
1024 bfd_size_type info_or_types_offset;
1025 bfd_size_type info_or_types_size;
1026 };
1027
1028 /* Contents of DWP hash tables. */
1029
1030 struct dwp_hash_table
1031 {
1032 uint32_t version, nr_columns;
1033 uint32_t nr_units, nr_slots;
1034 const gdb_byte *hash_table, *unit_table;
1035 union
1036 {
1037 struct
1038 {
1039 const gdb_byte *indices;
1040 } v1;
1041 struct
1042 {
1043 /* This is indexed by column number and gives the id of the section
1044 in that column. */
1045 #define MAX_NR_V2_DWO_SECTIONS \
1046 (1 /* .debug_info or .debug_types */ \
1047 + 1 /* .debug_abbrev */ \
1048 + 1 /* .debug_line */ \
1049 + 1 /* .debug_loc */ \
1050 + 1 /* .debug_str_offsets */ \
1051 + 1 /* .debug_macro or .debug_macinfo */)
1052 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1053 const gdb_byte *offsets;
1054 const gdb_byte *sizes;
1055 } v2;
1056 } section_pool;
1057 };
1058
1059 /* Data for one DWP file. */
1060
1061 struct dwp_file
1062 {
1063 /* Name of the file. */
1064 const char *name;
1065
1066 /* File format version. */
1067 int version;
1068
1069 /* The bfd. */
1070 bfd *dbfd;
1071
1072 /* Section info for this file. */
1073 struct dwp_sections sections;
1074
1075 /* Table of CUs in the file. */
1076 const struct dwp_hash_table *cus;
1077
1078 /* Table of TUs in the file. */
1079 const struct dwp_hash_table *tus;
1080
1081 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1082 htab_t loaded_cus;
1083 htab_t loaded_tus;
1084
1085 /* Table to map ELF section numbers to their sections.
1086 This is only needed for the DWP V1 file format. */
1087 unsigned int num_sections;
1088 asection **elf_sections;
1089 };
1090
1091 /* This represents a '.dwz' file. */
1092
1093 struct dwz_file
1094 {
1095 /* A dwz file can only contain a few sections. */
1096 struct dwarf2_section_info abbrev;
1097 struct dwarf2_section_info info;
1098 struct dwarf2_section_info str;
1099 struct dwarf2_section_info line;
1100 struct dwarf2_section_info macro;
1101 struct dwarf2_section_info gdb_index;
1102
1103 /* The dwz's BFD. */
1104 bfd *dwz_bfd;
1105 };
1106
1107 /* Struct used to pass misc. parameters to read_die_and_children, et
1108 al. which are used for both .debug_info and .debug_types dies.
1109 All parameters here are unchanging for the life of the call. This
1110 struct exists to abstract away the constant parameters of die reading. */
1111
1112 struct die_reader_specs
1113 {
1114 /* The bfd of die_section. */
1115 bfd* abfd;
1116
1117 /* The CU of the DIE we are parsing. */
1118 struct dwarf2_cu *cu;
1119
1120 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1121 struct dwo_file *dwo_file;
1122
1123 /* The section the die comes from.
1124 This is either .debug_info or .debug_types, or the .dwo variants. */
1125 struct dwarf2_section_info *die_section;
1126
1127 /* die_section->buffer. */
1128 const gdb_byte *buffer;
1129
1130 /* The end of the buffer. */
1131 const gdb_byte *buffer_end;
1132
1133 /* The value of the DW_AT_comp_dir attribute. */
1134 const char *comp_dir;
1135 };
1136
1137 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1138 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1139 const gdb_byte *info_ptr,
1140 struct die_info *comp_unit_die,
1141 int has_children,
1142 void *data);
1143
1144 /* A 1-based directory index. This is a strong typedef to prevent
1145 accidentally using a directory index as a 0-based index into an
1146 array/vector. */
1147 enum class dir_index : unsigned int {};
1148
1149 /* Likewise, a 1-based file name index. */
1150 enum class file_name_index : unsigned int {};
1151
1152 struct file_entry
1153 {
1154 file_entry () = default;
1155
1156 file_entry (const char *name_, dir_index d_index_,
1157 unsigned int mod_time_, unsigned int length_)
1158 : name (name_),
1159 d_index (d_index_),
1160 mod_time (mod_time_),
1161 length (length_)
1162 {}
1163
1164 /* Return the include directory at D_INDEX stored in LH. Returns
1165 NULL if D_INDEX is out of bounds. */
1166 const char *include_dir (const line_header *lh) const;
1167
1168 /* The file name. Note this is an observing pointer. The memory is
1169 owned by debug_line_buffer. */
1170 const char *name {};
1171
1172 /* The directory index (1-based). */
1173 dir_index d_index {};
1174
1175 unsigned int mod_time {};
1176
1177 unsigned int length {};
1178
1179 /* True if referenced by the Line Number Program. */
1180 bool included_p {};
1181
1182 /* The associated symbol table, if any. */
1183 struct symtab *symtab {};
1184 };
1185
1186 /* The line number information for a compilation unit (found in the
1187 .debug_line section) begins with a "statement program header",
1188 which contains the following information. */
1189 struct line_header
1190 {
1191 line_header ()
1192 : offset_in_dwz {}
1193 {}
1194
1195 /* Add an entry to the include directory table. */
1196 void add_include_dir (const char *include_dir);
1197
1198 /* Add an entry to the file name table. */
1199 void add_file_name (const char *name, dir_index d_index,
1200 unsigned int mod_time, unsigned int length);
1201
1202 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1203 is out of bounds. */
1204 const char *include_dir_at (dir_index index) const
1205 {
1206 /* Convert directory index number (1-based) to vector index
1207 (0-based). */
1208 size_t vec_index = to_underlying (index) - 1;
1209
1210 if (vec_index >= include_dirs.size ())
1211 return NULL;
1212 return include_dirs[vec_index];
1213 }
1214
1215 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1216 is out of bounds. */
1217 file_entry *file_name_at (file_name_index index)
1218 {
1219 /* Convert file name index number (1-based) to vector index
1220 (0-based). */
1221 size_t vec_index = to_underlying (index) - 1;
1222
1223 if (vec_index >= file_names.size ())
1224 return NULL;
1225 return &file_names[vec_index];
1226 }
1227
1228 /* Const version of the above. */
1229 const file_entry *file_name_at (unsigned int index) const
1230 {
1231 if (index >= file_names.size ())
1232 return NULL;
1233 return &file_names[index];
1234 }
1235
1236 /* Offset of line number information in .debug_line section. */
1237 sect_offset sect_off {};
1238
1239 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1240 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1241
1242 unsigned int total_length {};
1243 unsigned short version {};
1244 unsigned int header_length {};
1245 unsigned char minimum_instruction_length {};
1246 unsigned char maximum_ops_per_instruction {};
1247 unsigned char default_is_stmt {};
1248 int line_base {};
1249 unsigned char line_range {};
1250 unsigned char opcode_base {};
1251
1252 /* standard_opcode_lengths[i] is the number of operands for the
1253 standard opcode whose value is i. This means that
1254 standard_opcode_lengths[0] is unused, and the last meaningful
1255 element is standard_opcode_lengths[opcode_base - 1]. */
1256 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1257
1258 /* The include_directories table. Note these are observing
1259 pointers. The memory is owned by debug_line_buffer. */
1260 std::vector<const char *> include_dirs;
1261
1262 /* The file_names table. */
1263 std::vector<file_entry> file_names;
1264
1265 /* The start and end of the statement program following this
1266 header. These point into dwarf2_per_objfile->line_buffer. */
1267 const gdb_byte *statement_program_start {}, *statement_program_end {};
1268 };
1269
1270 typedef std::unique_ptr<line_header> line_header_up;
1271
1272 const char *
1273 file_entry::include_dir (const line_header *lh) const
1274 {
1275 return lh->include_dir_at (d_index);
1276 }
1277
1278 /* When we construct a partial symbol table entry we only
1279 need this much information. */
1280 struct partial_die_info
1281 {
1282 /* Offset of this DIE. */
1283 sect_offset sect_off;
1284
1285 /* DWARF-2 tag for this DIE. */
1286 ENUM_BITFIELD(dwarf_tag) tag : 16;
1287
1288 /* Assorted flags describing the data found in this DIE. */
1289 unsigned int has_children : 1;
1290 unsigned int is_external : 1;
1291 unsigned int is_declaration : 1;
1292 unsigned int has_type : 1;
1293 unsigned int has_specification : 1;
1294 unsigned int has_pc_info : 1;
1295 unsigned int may_be_inlined : 1;
1296
1297 /* This DIE has been marked DW_AT_main_subprogram. */
1298 unsigned int main_subprogram : 1;
1299
1300 /* Flag set if the SCOPE field of this structure has been
1301 computed. */
1302 unsigned int scope_set : 1;
1303
1304 /* Flag set if the DIE has a byte_size attribute. */
1305 unsigned int has_byte_size : 1;
1306
1307 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1308 unsigned int has_const_value : 1;
1309
1310 /* Flag set if any of the DIE's children are template arguments. */
1311 unsigned int has_template_arguments : 1;
1312
1313 /* Flag set if fixup_partial_die has been called on this die. */
1314 unsigned int fixup_called : 1;
1315
1316 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1317 unsigned int is_dwz : 1;
1318
1319 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1320 unsigned int spec_is_dwz : 1;
1321
1322 /* The name of this DIE. Normally the value of DW_AT_name, but
1323 sometimes a default name for unnamed DIEs. */
1324 const char *name;
1325
1326 /* The linkage name, if present. */
1327 const char *linkage_name;
1328
1329 /* The scope to prepend to our children. This is generally
1330 allocated on the comp_unit_obstack, so will disappear
1331 when this compilation unit leaves the cache. */
1332 const char *scope;
1333
1334 /* Some data associated with the partial DIE. The tag determines
1335 which field is live. */
1336 union
1337 {
1338 /* The location description associated with this DIE, if any. */
1339 struct dwarf_block *locdesc;
1340 /* The offset of an import, for DW_TAG_imported_unit. */
1341 sect_offset sect_off;
1342 } d;
1343
1344 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1345 CORE_ADDR lowpc;
1346 CORE_ADDR highpc;
1347
1348 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1349 DW_AT_sibling, if any. */
1350 /* NOTE: This member isn't strictly necessary, read_partial_die could
1351 return DW_AT_sibling values to its caller load_partial_dies. */
1352 const gdb_byte *sibling;
1353
1354 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1355 DW_AT_specification (or DW_AT_abstract_origin or
1356 DW_AT_extension). */
1357 sect_offset spec_offset;
1358
1359 /* Pointers to this DIE's parent, first child, and next sibling,
1360 if any. */
1361 struct partial_die_info *die_parent, *die_child, *die_sibling;
1362 };
1363
1364 /* This data structure holds the information of an abbrev. */
1365 struct abbrev_info
1366 {
1367 unsigned int number; /* number identifying abbrev */
1368 enum dwarf_tag tag; /* dwarf tag */
1369 unsigned short has_children; /* boolean */
1370 unsigned short num_attrs; /* number of attributes */
1371 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1372 struct abbrev_info *next; /* next in chain */
1373 };
1374
1375 struct attr_abbrev
1376 {
1377 ENUM_BITFIELD(dwarf_attribute) name : 16;
1378 ENUM_BITFIELD(dwarf_form) form : 16;
1379
1380 /* It is valid only if FORM is DW_FORM_implicit_const. */
1381 LONGEST implicit_const;
1382 };
1383
1384 /* Size of abbrev_table.abbrev_hash_table. */
1385 #define ABBREV_HASH_SIZE 121
1386
1387 /* Top level data structure to contain an abbreviation table. */
1388
1389 struct abbrev_table
1390 {
1391 /* Where the abbrev table came from.
1392 This is used as a sanity check when the table is used. */
1393 sect_offset sect_off;
1394
1395 /* Storage for the abbrev table. */
1396 struct obstack abbrev_obstack;
1397
1398 /* Hash table of abbrevs.
1399 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1400 It could be statically allocated, but the previous code didn't so we
1401 don't either. */
1402 struct abbrev_info **abbrevs;
1403 };
1404
1405 /* Attributes have a name and a value. */
1406 struct attribute
1407 {
1408 ENUM_BITFIELD(dwarf_attribute) name : 16;
1409 ENUM_BITFIELD(dwarf_form) form : 15;
1410
1411 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1412 field should be in u.str (existing only for DW_STRING) but it is kept
1413 here for better struct attribute alignment. */
1414 unsigned int string_is_canonical : 1;
1415
1416 union
1417 {
1418 const char *str;
1419 struct dwarf_block *blk;
1420 ULONGEST unsnd;
1421 LONGEST snd;
1422 CORE_ADDR addr;
1423 ULONGEST signature;
1424 }
1425 u;
1426 };
1427
1428 /* This data structure holds a complete die structure. */
1429 struct die_info
1430 {
1431 /* DWARF-2 tag for this DIE. */
1432 ENUM_BITFIELD(dwarf_tag) tag : 16;
1433
1434 /* Number of attributes */
1435 unsigned char num_attrs;
1436
1437 /* True if we're presently building the full type name for the
1438 type derived from this DIE. */
1439 unsigned char building_fullname : 1;
1440
1441 /* True if this die is in process. PR 16581. */
1442 unsigned char in_process : 1;
1443
1444 /* Abbrev number */
1445 unsigned int abbrev;
1446
1447 /* Offset in .debug_info or .debug_types section. */
1448 sect_offset sect_off;
1449
1450 /* The dies in a compilation unit form an n-ary tree. PARENT
1451 points to this die's parent; CHILD points to the first child of
1452 this node; and all the children of a given node are chained
1453 together via their SIBLING fields. */
1454 struct die_info *child; /* Its first child, if any. */
1455 struct die_info *sibling; /* Its next sibling, if any. */
1456 struct die_info *parent; /* Its parent, if any. */
1457
1458 /* An array of attributes, with NUM_ATTRS elements. There may be
1459 zero, but it's not common and zero-sized arrays are not
1460 sufficiently portable C. */
1461 struct attribute attrs[1];
1462 };
1463
1464 /* Get at parts of an attribute structure. */
1465
1466 #define DW_STRING(attr) ((attr)->u.str)
1467 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1468 #define DW_UNSND(attr) ((attr)->u.unsnd)
1469 #define DW_BLOCK(attr) ((attr)->u.blk)
1470 #define DW_SND(attr) ((attr)->u.snd)
1471 #define DW_ADDR(attr) ((attr)->u.addr)
1472 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1473
1474 /* Blocks are a bunch of untyped bytes. */
1475 struct dwarf_block
1476 {
1477 size_t size;
1478
1479 /* Valid only if SIZE is not zero. */
1480 const gdb_byte *data;
1481 };
1482
1483 #ifndef ATTR_ALLOC_CHUNK
1484 #define ATTR_ALLOC_CHUNK 4
1485 #endif
1486
1487 /* Allocate fields for structs, unions and enums in this size. */
1488 #ifndef DW_FIELD_ALLOC_CHUNK
1489 #define DW_FIELD_ALLOC_CHUNK 4
1490 #endif
1491
1492 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1493 but this would require a corresponding change in unpack_field_as_long
1494 and friends. */
1495 static int bits_per_byte = 8;
1496
1497 struct nextfield
1498 {
1499 struct nextfield *next;
1500 int accessibility;
1501 int virtuality;
1502 struct field field;
1503 };
1504
1505 struct nextfnfield
1506 {
1507 struct nextfnfield *next;
1508 struct fn_field fnfield;
1509 };
1510
1511 struct fnfieldlist
1512 {
1513 const char *name;
1514 int length;
1515 struct nextfnfield *head;
1516 };
1517
1518 struct typedef_field_list
1519 {
1520 struct typedef_field field;
1521 struct typedef_field_list *next;
1522 };
1523
1524 /* The routines that read and process dies for a C struct or C++ class
1525 pass lists of data member fields and lists of member function fields
1526 in an instance of a field_info structure, as defined below. */
1527 struct field_info
1528 {
1529 /* List of data member and baseclasses fields. */
1530 struct nextfield *fields, *baseclasses;
1531
1532 /* Number of fields (including baseclasses). */
1533 int nfields;
1534
1535 /* Number of baseclasses. */
1536 int nbaseclasses;
1537
1538 /* Set if the accesibility of one of the fields is not public. */
1539 int non_public_fields;
1540
1541 /* Member function fieldlist array, contains name of possibly overloaded
1542 member function, number of overloaded member functions and a pointer
1543 to the head of the member function field chain. */
1544 struct fnfieldlist *fnfieldlists;
1545
1546 /* Number of entries in the fnfieldlists array. */
1547 int nfnfields;
1548
1549 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1550 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1551 struct typedef_field_list *typedef_field_list;
1552 unsigned typedef_field_list_count;
1553 };
1554
1555 /* One item on the queue of compilation units to read in full symbols
1556 for. */
1557 struct dwarf2_queue_item
1558 {
1559 struct dwarf2_per_cu_data *per_cu;
1560 enum language pretend_language;
1561 struct dwarf2_queue_item *next;
1562 };
1563
1564 /* The current queue. */
1565 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1566
1567 /* Loaded secondary compilation units are kept in memory until they
1568 have not been referenced for the processing of this many
1569 compilation units. Set this to zero to disable caching. Cache
1570 sizes of up to at least twenty will improve startup time for
1571 typical inter-CU-reference binaries, at an obvious memory cost. */
1572 static int dwarf_max_cache_age = 5;
1573 static void
1574 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c, const char *value)
1576 {
1577 fprintf_filtered (file, _("The upper bound on the age of cached "
1578 "DWARF compilation units is %s.\n"),
1579 value);
1580 }
1581 \f
1582 /* local function prototypes */
1583
1584 static const char *get_section_name (const struct dwarf2_section_info *);
1585
1586 static const char *get_section_file_name (const struct dwarf2_section_info *);
1587
1588 static void dwarf2_find_base_address (struct die_info *die,
1589 struct dwarf2_cu *cu);
1590
1591 static struct partial_symtab *create_partial_symtab
1592 (struct dwarf2_per_cu_data *per_cu, const char *name);
1593
1594 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1595 const gdb_byte *info_ptr,
1596 struct die_info *type_unit_die,
1597 int has_children, void *data);
1598
1599 static void dwarf2_build_psymtabs_hard (struct objfile *);
1600
1601 static void scan_partial_symbols (struct partial_die_info *,
1602 CORE_ADDR *, CORE_ADDR *,
1603 int, struct dwarf2_cu *);
1604
1605 static void add_partial_symbol (struct partial_die_info *,
1606 struct dwarf2_cu *);
1607
1608 static void add_partial_namespace (struct partial_die_info *pdi,
1609 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1610 int set_addrmap, struct dwarf2_cu *cu);
1611
1612 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1613 CORE_ADDR *highpc, int set_addrmap,
1614 struct dwarf2_cu *cu);
1615
1616 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1617 struct dwarf2_cu *cu);
1618
1619 static void add_partial_subprogram (struct partial_die_info *pdi,
1620 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1621 int need_pc, struct dwarf2_cu *cu);
1622
1623 static void dwarf2_read_symtab (struct partial_symtab *,
1624 struct objfile *);
1625
1626 static void psymtab_to_symtab_1 (struct partial_symtab *);
1627
1628 static struct abbrev_info *abbrev_table_lookup_abbrev
1629 (const struct abbrev_table *, unsigned int);
1630
1631 static struct abbrev_table *abbrev_table_read_table
1632 (struct dwarf2_section_info *, sect_offset);
1633
1634 static void abbrev_table_free (struct abbrev_table *);
1635
1636 static void abbrev_table_free_cleanup (void *);
1637
1638 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1639 struct dwarf2_section_info *);
1640
1641 static void dwarf2_free_abbrev_table (void *);
1642
1643 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1644
1645 static struct partial_die_info *load_partial_dies
1646 (const struct die_reader_specs *, const gdb_byte *, int);
1647
1648 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1649 struct partial_die_info *,
1650 struct abbrev_info *,
1651 unsigned int,
1652 const gdb_byte *);
1653
1654 static struct partial_die_info *find_partial_die (sect_offset, int,
1655 struct dwarf2_cu *);
1656
1657 static void fixup_partial_die (struct partial_die_info *,
1658 struct dwarf2_cu *);
1659
1660 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1661 struct attribute *, struct attr_abbrev *,
1662 const gdb_byte *);
1663
1664 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1665
1666 static int read_1_signed_byte (bfd *, const gdb_byte *);
1667
1668 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1669
1670 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1671
1672 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1673
1674 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1675 unsigned int *);
1676
1677 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1678
1679 static LONGEST read_checked_initial_length_and_offset
1680 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1681 unsigned int *, unsigned int *);
1682
1683 static LONGEST read_offset (bfd *, const gdb_byte *,
1684 const struct comp_unit_head *,
1685 unsigned int *);
1686
1687 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1688
1689 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1690 sect_offset);
1691
1692 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1693
1694 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1695
1696 static const char *read_indirect_string (bfd *, const gdb_byte *,
1697 const struct comp_unit_head *,
1698 unsigned int *);
1699
1700 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1701 const struct comp_unit_head *,
1702 unsigned int *);
1703
1704 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1705
1706 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1707
1708 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1709 const gdb_byte *,
1710 unsigned int *);
1711
1712 static const char *read_str_index (const struct die_reader_specs *reader,
1713 ULONGEST str_index);
1714
1715 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1716
1717 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1718 struct dwarf2_cu *);
1719
1720 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1721 unsigned int);
1722
1723 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1724 struct dwarf2_cu *cu);
1725
1726 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1727 struct dwarf2_cu *cu);
1728
1729 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1730
1731 static struct die_info *die_specification (struct die_info *die,
1732 struct dwarf2_cu **);
1733
1734 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1735 struct dwarf2_cu *cu);
1736
1737 static void dwarf_decode_lines (struct line_header *, const char *,
1738 struct dwarf2_cu *, struct partial_symtab *,
1739 CORE_ADDR, int decode_mapping);
1740
1741 static void dwarf2_start_subfile (const char *, const char *);
1742
1743 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1744 const char *, const char *,
1745 CORE_ADDR);
1746
1747 static struct symbol *new_symbol (struct die_info *, struct type *,
1748 struct dwarf2_cu *);
1749
1750 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1751 struct dwarf2_cu *, struct symbol *);
1752
1753 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1754 struct dwarf2_cu *);
1755
1756 static void dwarf2_const_value_attr (const struct attribute *attr,
1757 struct type *type,
1758 const char *name,
1759 struct obstack *obstack,
1760 struct dwarf2_cu *cu, LONGEST *value,
1761 const gdb_byte **bytes,
1762 struct dwarf2_locexpr_baton **baton);
1763
1764 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1765
1766 static int need_gnat_info (struct dwarf2_cu *);
1767
1768 static struct type *die_descriptive_type (struct die_info *,
1769 struct dwarf2_cu *);
1770
1771 static void set_descriptive_type (struct type *, struct die_info *,
1772 struct dwarf2_cu *);
1773
1774 static struct type *die_containing_type (struct die_info *,
1775 struct dwarf2_cu *);
1776
1777 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1778 struct dwarf2_cu *);
1779
1780 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1781
1782 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1783
1784 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1785
1786 static char *typename_concat (struct obstack *obs, const char *prefix,
1787 const char *suffix, int physname,
1788 struct dwarf2_cu *cu);
1789
1790 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1791
1792 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1793
1794 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1795
1796 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1797
1798 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1799
1800 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1801
1802 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1803 struct dwarf2_cu *, struct partial_symtab *);
1804
1805 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1806 values. Keep the items ordered with increasing constraints compliance. */
1807 enum pc_bounds_kind
1808 {
1809 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1810 PC_BOUNDS_NOT_PRESENT,
1811
1812 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1813 were present but they do not form a valid range of PC addresses. */
1814 PC_BOUNDS_INVALID,
1815
1816 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1817 PC_BOUNDS_RANGES,
1818
1819 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1820 PC_BOUNDS_HIGH_LOW,
1821 };
1822
1823 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1824 CORE_ADDR *, CORE_ADDR *,
1825 struct dwarf2_cu *,
1826 struct partial_symtab *);
1827
1828 static void get_scope_pc_bounds (struct die_info *,
1829 CORE_ADDR *, CORE_ADDR *,
1830 struct dwarf2_cu *);
1831
1832 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1833 CORE_ADDR, struct dwarf2_cu *);
1834
1835 static void dwarf2_add_field (struct field_info *, struct die_info *,
1836 struct dwarf2_cu *);
1837
1838 static void dwarf2_attach_fields_to_type (struct field_info *,
1839 struct type *, struct dwarf2_cu *);
1840
1841 static void dwarf2_add_member_fn (struct field_info *,
1842 struct die_info *, struct type *,
1843 struct dwarf2_cu *);
1844
1845 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1846 struct type *,
1847 struct dwarf2_cu *);
1848
1849 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1850
1851 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1852
1853 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1854
1855 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1856
1857 static struct using_direct **using_directives (enum language);
1858
1859 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1860
1861 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1862
1863 static struct type *read_module_type (struct die_info *die,
1864 struct dwarf2_cu *cu);
1865
1866 static const char *namespace_name (struct die_info *die,
1867 int *is_anonymous, struct dwarf2_cu *);
1868
1869 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1870
1871 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1872
1873 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1874 struct dwarf2_cu *);
1875
1876 static struct die_info *read_die_and_siblings_1
1877 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1878 struct die_info *);
1879
1880 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1881 const gdb_byte *info_ptr,
1882 const gdb_byte **new_info_ptr,
1883 struct die_info *parent);
1884
1885 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1886 struct die_info **, const gdb_byte *,
1887 int *, int);
1888
1889 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1890 struct die_info **, const gdb_byte *,
1891 int *);
1892
1893 static void process_die (struct die_info *, struct dwarf2_cu *);
1894
1895 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1896 struct obstack *);
1897
1898 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1899
1900 static const char *dwarf2_full_name (const char *name,
1901 struct die_info *die,
1902 struct dwarf2_cu *cu);
1903
1904 static const char *dwarf2_physname (const char *name, struct die_info *die,
1905 struct dwarf2_cu *cu);
1906
1907 static struct die_info *dwarf2_extension (struct die_info *die,
1908 struct dwarf2_cu **);
1909
1910 static const char *dwarf_tag_name (unsigned int);
1911
1912 static const char *dwarf_attr_name (unsigned int);
1913
1914 static const char *dwarf_form_name (unsigned int);
1915
1916 static const char *dwarf_bool_name (unsigned int);
1917
1918 static const char *dwarf_type_encoding_name (unsigned int);
1919
1920 static struct die_info *sibling_die (struct die_info *);
1921
1922 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1923
1924 static void dump_die_for_error (struct die_info *);
1925
1926 static void dump_die_1 (struct ui_file *, int level, int max_level,
1927 struct die_info *);
1928
1929 /*static*/ void dump_die (struct die_info *, int max_level);
1930
1931 static void store_in_ref_table (struct die_info *,
1932 struct dwarf2_cu *);
1933
1934 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1935
1936 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1937
1938 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1939 const struct attribute *,
1940 struct dwarf2_cu **);
1941
1942 static struct die_info *follow_die_ref (struct die_info *,
1943 const struct attribute *,
1944 struct dwarf2_cu **);
1945
1946 static struct die_info *follow_die_sig (struct die_info *,
1947 const struct attribute *,
1948 struct dwarf2_cu **);
1949
1950 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1951 struct dwarf2_cu *);
1952
1953 static struct type *get_DW_AT_signature_type (struct die_info *,
1954 const struct attribute *,
1955 struct dwarf2_cu *);
1956
1957 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1958
1959 static void read_signatured_type (struct signatured_type *);
1960
1961 static int attr_to_dynamic_prop (const struct attribute *attr,
1962 struct die_info *die, struct dwarf2_cu *cu,
1963 struct dynamic_prop *prop);
1964
1965 /* memory allocation interface */
1966
1967 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1968
1969 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1970
1971 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1972
1973 static int attr_form_is_block (const struct attribute *);
1974
1975 static int attr_form_is_section_offset (const struct attribute *);
1976
1977 static int attr_form_is_constant (const struct attribute *);
1978
1979 static int attr_form_is_ref (const struct attribute *);
1980
1981 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1982 struct dwarf2_loclist_baton *baton,
1983 const struct attribute *attr);
1984
1985 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1986 struct symbol *sym,
1987 struct dwarf2_cu *cu,
1988 int is_block);
1989
1990 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1991 const gdb_byte *info_ptr,
1992 struct abbrev_info *abbrev);
1993
1994 static void free_stack_comp_unit (void *);
1995
1996 static hashval_t partial_die_hash (const void *item);
1997
1998 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1999
2000 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2001 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2002
2003 static void init_one_comp_unit (struct dwarf2_cu *cu,
2004 struct dwarf2_per_cu_data *per_cu);
2005
2006 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2007 struct die_info *comp_unit_die,
2008 enum language pretend_language);
2009
2010 static void free_heap_comp_unit (void *);
2011
2012 static void free_cached_comp_units (void *);
2013
2014 static void age_cached_comp_units (void);
2015
2016 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2017
2018 static struct type *set_die_type (struct die_info *, struct type *,
2019 struct dwarf2_cu *);
2020
2021 static void create_all_comp_units (struct objfile *);
2022
2023 static int create_all_type_units (struct objfile *);
2024
2025 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2026 enum language);
2027
2028 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2029 enum language);
2030
2031 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2032 enum language);
2033
2034 static void dwarf2_add_dependence (struct dwarf2_cu *,
2035 struct dwarf2_per_cu_data *);
2036
2037 static void dwarf2_mark (struct dwarf2_cu *);
2038
2039 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2040
2041 static struct type *get_die_type_at_offset (sect_offset,
2042 struct dwarf2_per_cu_data *);
2043
2044 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2045
2046 static void dwarf2_release_queue (void *dummy);
2047
2048 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2049 enum language pretend_language);
2050
2051 static void process_queue (void);
2052
2053 /* The return type of find_file_and_directory. Note, the enclosed
2054 string pointers are only valid while this object is valid. */
2055
2056 struct file_and_directory
2057 {
2058 /* The filename. This is never NULL. */
2059 const char *name;
2060
2061 /* The compilation directory. NULL if not known. If we needed to
2062 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2063 points directly to the DW_AT_comp_dir string attribute owned by
2064 the obstack that owns the DIE. */
2065 const char *comp_dir;
2066
2067 /* If we needed to build a new string for comp_dir, this is what
2068 owns the storage. */
2069 std::string comp_dir_storage;
2070 };
2071
2072 static file_and_directory find_file_and_directory (struct die_info *die,
2073 struct dwarf2_cu *cu);
2074
2075 static char *file_full_name (int file, struct line_header *lh,
2076 const char *comp_dir);
2077
2078 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2079 enum class rcuh_kind { COMPILE, TYPE };
2080
2081 static const gdb_byte *read_and_check_comp_unit_head
2082 (struct comp_unit_head *header,
2083 struct dwarf2_section_info *section,
2084 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2085 rcuh_kind section_kind);
2086
2087 static void init_cutu_and_read_dies
2088 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2089 int use_existing_cu, int keep,
2090 die_reader_func_ftype *die_reader_func, void *data);
2091
2092 static void init_cutu_and_read_dies_simple
2093 (struct dwarf2_per_cu_data *this_cu,
2094 die_reader_func_ftype *die_reader_func, void *data);
2095
2096 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2097
2098 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2099
2100 static struct dwo_unit *lookup_dwo_unit_in_dwp
2101 (struct dwp_file *dwp_file, const char *comp_dir,
2102 ULONGEST signature, int is_debug_types);
2103
2104 static struct dwp_file *get_dwp_file (void);
2105
2106 static struct dwo_unit *lookup_dwo_comp_unit
2107 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2108
2109 static struct dwo_unit *lookup_dwo_type_unit
2110 (struct signatured_type *, const char *, const char *);
2111
2112 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2113
2114 static void free_dwo_file_cleanup (void *);
2115
2116 static void process_cu_includes (void);
2117
2118 static void check_producer (struct dwarf2_cu *cu);
2119
2120 static void free_line_header_voidp (void *arg);
2121 \f
2122 /* Various complaints about symbol reading that don't abort the process. */
2123
2124 static void
2125 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2126 {
2127 complaint (&symfile_complaints,
2128 _("statement list doesn't fit in .debug_line section"));
2129 }
2130
2131 static void
2132 dwarf2_debug_line_missing_file_complaint (void)
2133 {
2134 complaint (&symfile_complaints,
2135 _(".debug_line section has line data without a file"));
2136 }
2137
2138 static void
2139 dwarf2_debug_line_missing_end_sequence_complaint (void)
2140 {
2141 complaint (&symfile_complaints,
2142 _(".debug_line section has line "
2143 "program sequence without an end"));
2144 }
2145
2146 static void
2147 dwarf2_complex_location_expr_complaint (void)
2148 {
2149 complaint (&symfile_complaints, _("location expression too complex"));
2150 }
2151
2152 static void
2153 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2154 int arg3)
2155 {
2156 complaint (&symfile_complaints,
2157 _("const value length mismatch for '%s', got %d, expected %d"),
2158 arg1, arg2, arg3);
2159 }
2160
2161 static void
2162 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2163 {
2164 complaint (&symfile_complaints,
2165 _("debug info runs off end of %s section"
2166 " [in module %s]"),
2167 get_section_name (section),
2168 get_section_file_name (section));
2169 }
2170
2171 static void
2172 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2173 {
2174 complaint (&symfile_complaints,
2175 _("macro debug info contains a "
2176 "malformed macro definition:\n`%s'"),
2177 arg1);
2178 }
2179
2180 static void
2181 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2182 {
2183 complaint (&symfile_complaints,
2184 _("invalid attribute class or form for '%s' in '%s'"),
2185 arg1, arg2);
2186 }
2187
2188 /* Hash function for line_header_hash. */
2189
2190 static hashval_t
2191 line_header_hash (const struct line_header *ofs)
2192 {
2193 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2194 }
2195
2196 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2197
2198 static hashval_t
2199 line_header_hash_voidp (const void *item)
2200 {
2201 const struct line_header *ofs = (const struct line_header *) item;
2202
2203 return line_header_hash (ofs);
2204 }
2205
2206 /* Equality function for line_header_hash. */
2207
2208 static int
2209 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2210 {
2211 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2212 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2213
2214 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2215 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2216 }
2217
2218 \f
2219
2220 /* Read the given attribute value as an address, taking the attribute's
2221 form into account. */
2222
2223 static CORE_ADDR
2224 attr_value_as_address (struct attribute *attr)
2225 {
2226 CORE_ADDR addr;
2227
2228 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2229 {
2230 /* Aside from a few clearly defined exceptions, attributes that
2231 contain an address must always be in DW_FORM_addr form.
2232 Unfortunately, some compilers happen to be violating this
2233 requirement by encoding addresses using other forms, such
2234 as DW_FORM_data4 for example. For those broken compilers,
2235 we try to do our best, without any guarantee of success,
2236 to interpret the address correctly. It would also be nice
2237 to generate a complaint, but that would require us to maintain
2238 a list of legitimate cases where a non-address form is allowed,
2239 as well as update callers to pass in at least the CU's DWARF
2240 version. This is more overhead than what we're willing to
2241 expand for a pretty rare case. */
2242 addr = DW_UNSND (attr);
2243 }
2244 else
2245 addr = DW_ADDR (attr);
2246
2247 return addr;
2248 }
2249
2250 /* The suffix for an index file. */
2251 #define INDEX_SUFFIX ".gdb-index"
2252
2253 /* See declaration. */
2254
2255 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2256 const dwarf2_debug_sections *names)
2257 : objfile (objfile_)
2258 {
2259 if (names == NULL)
2260 names = &dwarf2_elf_names;
2261
2262 bfd *obfd = objfile->obfd;
2263
2264 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2265 locate_sections (obfd, sec, *names);
2266 }
2267
2268 dwarf2_per_objfile::~dwarf2_per_objfile ()
2269 {
2270 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2271 free_cached_comp_units ();
2272
2273 if (quick_file_names_table)
2274 htab_delete (quick_file_names_table);
2275
2276 if (line_header_hash)
2277 htab_delete (line_header_hash);
2278
2279 /* Everything else should be on the objfile obstack. */
2280 }
2281
2282 /* See declaration. */
2283
2284 void
2285 dwarf2_per_objfile::free_cached_comp_units ()
2286 {
2287 dwarf2_per_cu_data *per_cu = read_in_chain;
2288 dwarf2_per_cu_data **last_chain = &read_in_chain;
2289 while (per_cu != NULL)
2290 {
2291 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2292
2293 free_heap_comp_unit (per_cu->cu);
2294 *last_chain = next_cu;
2295 per_cu = next_cu;
2296 }
2297 }
2298
2299 /* Try to locate the sections we need for DWARF 2 debugging
2300 information and return true if we have enough to do something.
2301 NAMES points to the dwarf2 section names, or is NULL if the standard
2302 ELF names are used. */
2303
2304 int
2305 dwarf2_has_info (struct objfile *objfile,
2306 const struct dwarf2_debug_sections *names)
2307 {
2308 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2309 objfile_data (objfile, dwarf2_objfile_data_key));
2310 if (!dwarf2_per_objfile)
2311 {
2312 /* Initialize per-objfile state. */
2313 struct dwarf2_per_objfile *data
2314 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2315
2316 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2317 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2318 }
2319 return (!dwarf2_per_objfile->info.is_virtual
2320 && dwarf2_per_objfile->info.s.section != NULL
2321 && !dwarf2_per_objfile->abbrev.is_virtual
2322 && dwarf2_per_objfile->abbrev.s.section != NULL);
2323 }
2324
2325 /* Return the containing section of virtual section SECTION. */
2326
2327 static struct dwarf2_section_info *
2328 get_containing_section (const struct dwarf2_section_info *section)
2329 {
2330 gdb_assert (section->is_virtual);
2331 return section->s.containing_section;
2332 }
2333
2334 /* Return the bfd owner of SECTION. */
2335
2336 static struct bfd *
2337 get_section_bfd_owner (const struct dwarf2_section_info *section)
2338 {
2339 if (section->is_virtual)
2340 {
2341 section = get_containing_section (section);
2342 gdb_assert (!section->is_virtual);
2343 }
2344 return section->s.section->owner;
2345 }
2346
2347 /* Return the bfd section of SECTION.
2348 Returns NULL if the section is not present. */
2349
2350 static asection *
2351 get_section_bfd_section (const struct dwarf2_section_info *section)
2352 {
2353 if (section->is_virtual)
2354 {
2355 section = get_containing_section (section);
2356 gdb_assert (!section->is_virtual);
2357 }
2358 return section->s.section;
2359 }
2360
2361 /* Return the name of SECTION. */
2362
2363 static const char *
2364 get_section_name (const struct dwarf2_section_info *section)
2365 {
2366 asection *sectp = get_section_bfd_section (section);
2367
2368 gdb_assert (sectp != NULL);
2369 return bfd_section_name (get_section_bfd_owner (section), sectp);
2370 }
2371
2372 /* Return the name of the file SECTION is in. */
2373
2374 static const char *
2375 get_section_file_name (const struct dwarf2_section_info *section)
2376 {
2377 bfd *abfd = get_section_bfd_owner (section);
2378
2379 return bfd_get_filename (abfd);
2380 }
2381
2382 /* Return the id of SECTION.
2383 Returns 0 if SECTION doesn't exist. */
2384
2385 static int
2386 get_section_id (const struct dwarf2_section_info *section)
2387 {
2388 asection *sectp = get_section_bfd_section (section);
2389
2390 if (sectp == NULL)
2391 return 0;
2392 return sectp->id;
2393 }
2394
2395 /* Return the flags of SECTION.
2396 SECTION (or containing section if this is a virtual section) must exist. */
2397
2398 static int
2399 get_section_flags (const struct dwarf2_section_info *section)
2400 {
2401 asection *sectp = get_section_bfd_section (section);
2402
2403 gdb_assert (sectp != NULL);
2404 return bfd_get_section_flags (sectp->owner, sectp);
2405 }
2406
2407 /* When loading sections, we look either for uncompressed section or for
2408 compressed section names. */
2409
2410 static int
2411 section_is_p (const char *section_name,
2412 const struct dwarf2_section_names *names)
2413 {
2414 if (names->normal != NULL
2415 && strcmp (section_name, names->normal) == 0)
2416 return 1;
2417 if (names->compressed != NULL
2418 && strcmp (section_name, names->compressed) == 0)
2419 return 1;
2420 return 0;
2421 }
2422
2423 /* See declaration. */
2424
2425 void
2426 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2427 const dwarf2_debug_sections &names)
2428 {
2429 flagword aflag = bfd_get_section_flags (abfd, sectp);
2430
2431 if ((aflag & SEC_HAS_CONTENTS) == 0)
2432 {
2433 }
2434 else if (section_is_p (sectp->name, &names.info))
2435 {
2436 this->info.s.section = sectp;
2437 this->info.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &names.abbrev))
2440 {
2441 this->abbrev.s.section = sectp;
2442 this->abbrev.size = bfd_get_section_size (sectp);
2443 }
2444 else if (section_is_p (sectp->name, &names.line))
2445 {
2446 this->line.s.section = sectp;
2447 this->line.size = bfd_get_section_size (sectp);
2448 }
2449 else if (section_is_p (sectp->name, &names.loc))
2450 {
2451 this->loc.s.section = sectp;
2452 this->loc.size = bfd_get_section_size (sectp);
2453 }
2454 else if (section_is_p (sectp->name, &names.loclists))
2455 {
2456 this->loclists.s.section = sectp;
2457 this->loclists.size = bfd_get_section_size (sectp);
2458 }
2459 else if (section_is_p (sectp->name, &names.macinfo))
2460 {
2461 this->macinfo.s.section = sectp;
2462 this->macinfo.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.macro))
2465 {
2466 this->macro.s.section = sectp;
2467 this->macro.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.str))
2470 {
2471 this->str.s.section = sectp;
2472 this->str.size = bfd_get_section_size (sectp);
2473 }
2474 else if (section_is_p (sectp->name, &names.line_str))
2475 {
2476 this->line_str.s.section = sectp;
2477 this->line_str.size = bfd_get_section_size (sectp);
2478 }
2479 else if (section_is_p (sectp->name, &names.addr))
2480 {
2481 this->addr.s.section = sectp;
2482 this->addr.size = bfd_get_section_size (sectp);
2483 }
2484 else if (section_is_p (sectp->name, &names.frame))
2485 {
2486 this->frame.s.section = sectp;
2487 this->frame.size = bfd_get_section_size (sectp);
2488 }
2489 else if (section_is_p (sectp->name, &names.eh_frame))
2490 {
2491 this->eh_frame.s.section = sectp;
2492 this->eh_frame.size = bfd_get_section_size (sectp);
2493 }
2494 else if (section_is_p (sectp->name, &names.ranges))
2495 {
2496 this->ranges.s.section = sectp;
2497 this->ranges.size = bfd_get_section_size (sectp);
2498 }
2499 else if (section_is_p (sectp->name, &names.rnglists))
2500 {
2501 this->rnglists.s.section = sectp;
2502 this->rnglists.size = bfd_get_section_size (sectp);
2503 }
2504 else if (section_is_p (sectp->name, &names.types))
2505 {
2506 struct dwarf2_section_info type_section;
2507
2508 memset (&type_section, 0, sizeof (type_section));
2509 type_section.s.section = sectp;
2510 type_section.size = bfd_get_section_size (sectp);
2511
2512 VEC_safe_push (dwarf2_section_info_def, this->types,
2513 &type_section);
2514 }
2515 else if (section_is_p (sectp->name, &names.gdb_index))
2516 {
2517 this->gdb_index.s.section = sectp;
2518 this->gdb_index.size = bfd_get_section_size (sectp);
2519 }
2520
2521 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2522 && bfd_section_vma (abfd, sectp) == 0)
2523 this->has_section_at_zero = true;
2524 }
2525
2526 /* A helper function that decides whether a section is empty,
2527 or not present. */
2528
2529 static int
2530 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2531 {
2532 if (section->is_virtual)
2533 return section->size == 0;
2534 return section->s.section == NULL || section->size == 0;
2535 }
2536
2537 /* Read the contents of the section INFO.
2538 OBJFILE is the main object file, but not necessarily the file where
2539 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2540 of the DWO file.
2541 If the section is compressed, uncompress it before returning. */
2542
2543 static void
2544 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2545 {
2546 asection *sectp;
2547 bfd *abfd;
2548 gdb_byte *buf, *retbuf;
2549
2550 if (info->readin)
2551 return;
2552 info->buffer = NULL;
2553 info->readin = 1;
2554
2555 if (dwarf2_section_empty_p (info))
2556 return;
2557
2558 sectp = get_section_bfd_section (info);
2559
2560 /* If this is a virtual section we need to read in the real one first. */
2561 if (info->is_virtual)
2562 {
2563 struct dwarf2_section_info *containing_section =
2564 get_containing_section (info);
2565
2566 gdb_assert (sectp != NULL);
2567 if ((sectp->flags & SEC_RELOC) != 0)
2568 {
2569 error (_("Dwarf Error: DWP format V2 with relocations is not"
2570 " supported in section %s [in module %s]"),
2571 get_section_name (info), get_section_file_name (info));
2572 }
2573 dwarf2_read_section (objfile, containing_section);
2574 /* Other code should have already caught virtual sections that don't
2575 fit. */
2576 gdb_assert (info->virtual_offset + info->size
2577 <= containing_section->size);
2578 /* If the real section is empty or there was a problem reading the
2579 section we shouldn't get here. */
2580 gdb_assert (containing_section->buffer != NULL);
2581 info->buffer = containing_section->buffer + info->virtual_offset;
2582 return;
2583 }
2584
2585 /* If the section has relocations, we must read it ourselves.
2586 Otherwise we attach it to the BFD. */
2587 if ((sectp->flags & SEC_RELOC) == 0)
2588 {
2589 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2590 return;
2591 }
2592
2593 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2594 info->buffer = buf;
2595
2596 /* When debugging .o files, we may need to apply relocations; see
2597 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2598 We never compress sections in .o files, so we only need to
2599 try this when the section is not compressed. */
2600 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2601 if (retbuf != NULL)
2602 {
2603 info->buffer = retbuf;
2604 return;
2605 }
2606
2607 abfd = get_section_bfd_owner (info);
2608 gdb_assert (abfd != NULL);
2609
2610 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2611 || bfd_bread (buf, info->size, abfd) != info->size)
2612 {
2613 error (_("Dwarf Error: Can't read DWARF data"
2614 " in section %s [in module %s]"),
2615 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2616 }
2617 }
2618
2619 /* A helper function that returns the size of a section in a safe way.
2620 If you are positive that the section has been read before using the
2621 size, then it is safe to refer to the dwarf2_section_info object's
2622 "size" field directly. In other cases, you must call this
2623 function, because for compressed sections the size field is not set
2624 correctly until the section has been read. */
2625
2626 static bfd_size_type
2627 dwarf2_section_size (struct objfile *objfile,
2628 struct dwarf2_section_info *info)
2629 {
2630 if (!info->readin)
2631 dwarf2_read_section (objfile, info);
2632 return info->size;
2633 }
2634
2635 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2636 SECTION_NAME. */
2637
2638 void
2639 dwarf2_get_section_info (struct objfile *objfile,
2640 enum dwarf2_section_enum sect,
2641 asection **sectp, const gdb_byte **bufp,
2642 bfd_size_type *sizep)
2643 {
2644 struct dwarf2_per_objfile *data
2645 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2646 dwarf2_objfile_data_key);
2647 struct dwarf2_section_info *info;
2648
2649 /* We may see an objfile without any DWARF, in which case we just
2650 return nothing. */
2651 if (data == NULL)
2652 {
2653 *sectp = NULL;
2654 *bufp = NULL;
2655 *sizep = 0;
2656 return;
2657 }
2658 switch (sect)
2659 {
2660 case DWARF2_DEBUG_FRAME:
2661 info = &data->frame;
2662 break;
2663 case DWARF2_EH_FRAME:
2664 info = &data->eh_frame;
2665 break;
2666 default:
2667 gdb_assert_not_reached ("unexpected section");
2668 }
2669
2670 dwarf2_read_section (objfile, info);
2671
2672 *sectp = get_section_bfd_section (info);
2673 *bufp = info->buffer;
2674 *sizep = info->size;
2675 }
2676
2677 /* A helper function to find the sections for a .dwz file. */
2678
2679 static void
2680 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2681 {
2682 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2683
2684 /* Note that we only support the standard ELF names, because .dwz
2685 is ELF-only (at the time of writing). */
2686 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2687 {
2688 dwz_file->abbrev.s.section = sectp;
2689 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2690 }
2691 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2692 {
2693 dwz_file->info.s.section = sectp;
2694 dwz_file->info.size = bfd_get_section_size (sectp);
2695 }
2696 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2697 {
2698 dwz_file->str.s.section = sectp;
2699 dwz_file->str.size = bfd_get_section_size (sectp);
2700 }
2701 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2702 {
2703 dwz_file->line.s.section = sectp;
2704 dwz_file->line.size = bfd_get_section_size (sectp);
2705 }
2706 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2707 {
2708 dwz_file->macro.s.section = sectp;
2709 dwz_file->macro.size = bfd_get_section_size (sectp);
2710 }
2711 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2712 {
2713 dwz_file->gdb_index.s.section = sectp;
2714 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2715 }
2716 }
2717
2718 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2719 there is no .gnu_debugaltlink section in the file. Error if there
2720 is such a section but the file cannot be found. */
2721
2722 static struct dwz_file *
2723 dwarf2_get_dwz_file (void)
2724 {
2725 const char *filename;
2726 struct dwz_file *result;
2727 bfd_size_type buildid_len_arg;
2728 size_t buildid_len;
2729 bfd_byte *buildid;
2730
2731 if (dwarf2_per_objfile->dwz_file != NULL)
2732 return dwarf2_per_objfile->dwz_file;
2733
2734 bfd_set_error (bfd_error_no_error);
2735 gdb::unique_xmalloc_ptr<char> data
2736 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2737 &buildid_len_arg, &buildid));
2738 if (data == NULL)
2739 {
2740 if (bfd_get_error () == bfd_error_no_error)
2741 return NULL;
2742 error (_("could not read '.gnu_debugaltlink' section: %s"),
2743 bfd_errmsg (bfd_get_error ()));
2744 }
2745
2746 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2747
2748 buildid_len = (size_t) buildid_len_arg;
2749
2750 filename = data.get ();
2751
2752 std::string abs_storage;
2753 if (!IS_ABSOLUTE_PATH (filename))
2754 {
2755 gdb::unique_xmalloc_ptr<char> abs
2756 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2757
2758 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2759 filename = abs_storage.c_str ();
2760 }
2761
2762 /* First try the file name given in the section. If that doesn't
2763 work, try to use the build-id instead. */
2764 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2765 if (dwz_bfd != NULL)
2766 {
2767 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2768 dwz_bfd.release ();
2769 }
2770
2771 if (dwz_bfd == NULL)
2772 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2773
2774 if (dwz_bfd == NULL)
2775 error (_("could not find '.gnu_debugaltlink' file for %s"),
2776 objfile_name (dwarf2_per_objfile->objfile));
2777
2778 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2779 struct dwz_file);
2780 result->dwz_bfd = dwz_bfd.release ();
2781
2782 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2783
2784 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2785 dwarf2_per_objfile->dwz_file = result;
2786 return result;
2787 }
2788 \f
2789 /* DWARF quick_symbols_functions support. */
2790
2791 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2792 unique line tables, so we maintain a separate table of all .debug_line
2793 derived entries to support the sharing.
2794 All the quick functions need is the list of file names. We discard the
2795 line_header when we're done and don't need to record it here. */
2796 struct quick_file_names
2797 {
2798 /* The data used to construct the hash key. */
2799 struct stmt_list_hash hash;
2800
2801 /* The number of entries in file_names, real_names. */
2802 unsigned int num_file_names;
2803
2804 /* The file names from the line table, after being run through
2805 file_full_name. */
2806 const char **file_names;
2807
2808 /* The file names from the line table after being run through
2809 gdb_realpath. These are computed lazily. */
2810 const char **real_names;
2811 };
2812
2813 /* When using the index (and thus not using psymtabs), each CU has an
2814 object of this type. This is used to hold information needed by
2815 the various "quick" methods. */
2816 struct dwarf2_per_cu_quick_data
2817 {
2818 /* The file table. This can be NULL if there was no file table
2819 or it's currently not read in.
2820 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2821 struct quick_file_names *file_names;
2822
2823 /* The corresponding symbol table. This is NULL if symbols for this
2824 CU have not yet been read. */
2825 struct compunit_symtab *compunit_symtab;
2826
2827 /* A temporary mark bit used when iterating over all CUs in
2828 expand_symtabs_matching. */
2829 unsigned int mark : 1;
2830
2831 /* True if we've tried to read the file table and found there isn't one.
2832 There will be no point in trying to read it again next time. */
2833 unsigned int no_file_data : 1;
2834 };
2835
2836 /* Utility hash function for a stmt_list_hash. */
2837
2838 static hashval_t
2839 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2840 {
2841 hashval_t v = 0;
2842
2843 if (stmt_list_hash->dwo_unit != NULL)
2844 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2845 v += to_underlying (stmt_list_hash->line_sect_off);
2846 return v;
2847 }
2848
2849 /* Utility equality function for a stmt_list_hash. */
2850
2851 static int
2852 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2853 const struct stmt_list_hash *rhs)
2854 {
2855 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2856 return 0;
2857 if (lhs->dwo_unit != NULL
2858 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2859 return 0;
2860
2861 return lhs->line_sect_off == rhs->line_sect_off;
2862 }
2863
2864 /* Hash function for a quick_file_names. */
2865
2866 static hashval_t
2867 hash_file_name_entry (const void *e)
2868 {
2869 const struct quick_file_names *file_data
2870 = (const struct quick_file_names *) e;
2871
2872 return hash_stmt_list_entry (&file_data->hash);
2873 }
2874
2875 /* Equality function for a quick_file_names. */
2876
2877 static int
2878 eq_file_name_entry (const void *a, const void *b)
2879 {
2880 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2881 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2882
2883 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2884 }
2885
2886 /* Delete function for a quick_file_names. */
2887
2888 static void
2889 delete_file_name_entry (void *e)
2890 {
2891 struct quick_file_names *file_data = (struct quick_file_names *) e;
2892 int i;
2893
2894 for (i = 0; i < file_data->num_file_names; ++i)
2895 {
2896 xfree ((void*) file_data->file_names[i]);
2897 if (file_data->real_names)
2898 xfree ((void*) file_data->real_names[i]);
2899 }
2900
2901 /* The space for the struct itself lives on objfile_obstack,
2902 so we don't free it here. */
2903 }
2904
2905 /* Create a quick_file_names hash table. */
2906
2907 static htab_t
2908 create_quick_file_names_table (unsigned int nr_initial_entries)
2909 {
2910 return htab_create_alloc (nr_initial_entries,
2911 hash_file_name_entry, eq_file_name_entry,
2912 delete_file_name_entry, xcalloc, xfree);
2913 }
2914
2915 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2916 have to be created afterwards. You should call age_cached_comp_units after
2917 processing PER_CU->CU. dw2_setup must have been already called. */
2918
2919 static void
2920 load_cu (struct dwarf2_per_cu_data *per_cu)
2921 {
2922 if (per_cu->is_debug_types)
2923 load_full_type_unit (per_cu);
2924 else
2925 load_full_comp_unit (per_cu, language_minimal);
2926
2927 if (per_cu->cu == NULL)
2928 return; /* Dummy CU. */
2929
2930 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2931 }
2932
2933 /* Read in the symbols for PER_CU. */
2934
2935 static void
2936 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2937 {
2938 struct cleanup *back_to;
2939
2940 /* Skip type_unit_groups, reading the type units they contain
2941 is handled elsewhere. */
2942 if (IS_TYPE_UNIT_GROUP (per_cu))
2943 return;
2944
2945 back_to = make_cleanup (dwarf2_release_queue, NULL);
2946
2947 if (dwarf2_per_objfile->using_index
2948 ? per_cu->v.quick->compunit_symtab == NULL
2949 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2950 {
2951 queue_comp_unit (per_cu, language_minimal);
2952 load_cu (per_cu);
2953
2954 /* If we just loaded a CU from a DWO, and we're working with an index
2955 that may badly handle TUs, load all the TUs in that DWO as well.
2956 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2957 if (!per_cu->is_debug_types
2958 && per_cu->cu != NULL
2959 && per_cu->cu->dwo_unit != NULL
2960 && dwarf2_per_objfile->index_table != NULL
2961 && dwarf2_per_objfile->index_table->version <= 7
2962 /* DWP files aren't supported yet. */
2963 && get_dwp_file () == NULL)
2964 queue_and_load_all_dwo_tus (per_cu);
2965 }
2966
2967 process_queue ();
2968
2969 /* Age the cache, releasing compilation units that have not
2970 been used recently. */
2971 age_cached_comp_units ();
2972
2973 do_cleanups (back_to);
2974 }
2975
2976 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2977 the objfile from which this CU came. Returns the resulting symbol
2978 table. */
2979
2980 static struct compunit_symtab *
2981 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2982 {
2983 gdb_assert (dwarf2_per_objfile->using_index);
2984 if (!per_cu->v.quick->compunit_symtab)
2985 {
2986 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2987 scoped_restore decrementer = increment_reading_symtab ();
2988 dw2_do_instantiate_symtab (per_cu);
2989 process_cu_includes ();
2990 do_cleanups (back_to);
2991 }
2992
2993 return per_cu->v.quick->compunit_symtab;
2994 }
2995
2996 /* Return the CU/TU given its index.
2997
2998 This is intended for loops like:
2999
3000 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3001 + dwarf2_per_objfile->n_type_units); ++i)
3002 {
3003 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3004
3005 ...;
3006 }
3007 */
3008
3009 static struct dwarf2_per_cu_data *
3010 dw2_get_cutu (int index)
3011 {
3012 if (index >= dwarf2_per_objfile->n_comp_units)
3013 {
3014 index -= dwarf2_per_objfile->n_comp_units;
3015 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3016 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3017 }
3018
3019 return dwarf2_per_objfile->all_comp_units[index];
3020 }
3021
3022 /* Return the CU given its index.
3023 This differs from dw2_get_cutu in that it's for when you know INDEX
3024 refers to a CU. */
3025
3026 static struct dwarf2_per_cu_data *
3027 dw2_get_cu (int index)
3028 {
3029 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3030
3031 return dwarf2_per_objfile->all_comp_units[index];
3032 }
3033
3034 /* A helper for create_cus_from_index that handles a given list of
3035 CUs. */
3036
3037 static void
3038 create_cus_from_index_list (struct objfile *objfile,
3039 const gdb_byte *cu_list, offset_type n_elements,
3040 struct dwarf2_section_info *section,
3041 int is_dwz,
3042 int base_offset)
3043 {
3044 offset_type i;
3045
3046 for (i = 0; i < n_elements; i += 2)
3047 {
3048 gdb_static_assert (sizeof (ULONGEST) >= 8);
3049
3050 sect_offset sect_off
3051 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3052 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3053 cu_list += 2 * 8;
3054
3055 dwarf2_per_cu_data *the_cu
3056 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct dwarf2_per_cu_data);
3058 the_cu->sect_off = sect_off;
3059 the_cu->length = length;
3060 the_cu->objfile = objfile;
3061 the_cu->section = section;
3062 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct dwarf2_per_cu_quick_data);
3064 the_cu->is_dwz = is_dwz;
3065 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3066 }
3067 }
3068
3069 /* Read the CU list from the mapped index, and use it to create all
3070 the CU objects for this objfile. */
3071
3072 static void
3073 create_cus_from_index (struct objfile *objfile,
3074 const gdb_byte *cu_list, offset_type cu_list_elements,
3075 const gdb_byte *dwz_list, offset_type dwz_elements)
3076 {
3077 struct dwz_file *dwz;
3078
3079 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3080 dwarf2_per_objfile->all_comp_units =
3081 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3082 dwarf2_per_objfile->n_comp_units);
3083
3084 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3085 &dwarf2_per_objfile->info, 0, 0);
3086
3087 if (dwz_elements == 0)
3088 return;
3089
3090 dwz = dwarf2_get_dwz_file ();
3091 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3092 cu_list_elements / 2);
3093 }
3094
3095 /* Create the signatured type hash table from the index. */
3096
3097 static void
3098 create_signatured_type_table_from_index (struct objfile *objfile,
3099 struct dwarf2_section_info *section,
3100 const gdb_byte *bytes,
3101 offset_type elements)
3102 {
3103 offset_type i;
3104 htab_t sig_types_hash;
3105
3106 dwarf2_per_objfile->n_type_units
3107 = dwarf2_per_objfile->n_allocated_type_units
3108 = elements / 3;
3109 dwarf2_per_objfile->all_type_units =
3110 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3111
3112 sig_types_hash = allocate_signatured_type_table (objfile);
3113
3114 for (i = 0; i < elements; i += 3)
3115 {
3116 struct signatured_type *sig_type;
3117 ULONGEST signature;
3118 void **slot;
3119 cu_offset type_offset_in_tu;
3120
3121 gdb_static_assert (sizeof (ULONGEST) >= 8);
3122 sect_offset sect_off
3123 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3124 type_offset_in_tu
3125 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3126 BFD_ENDIAN_LITTLE);
3127 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3128 bytes += 3 * 8;
3129
3130 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3131 struct signatured_type);
3132 sig_type->signature = signature;
3133 sig_type->type_offset_in_tu = type_offset_in_tu;
3134 sig_type->per_cu.is_debug_types = 1;
3135 sig_type->per_cu.section = section;
3136 sig_type->per_cu.sect_off = sect_off;
3137 sig_type->per_cu.objfile = objfile;
3138 sig_type->per_cu.v.quick
3139 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3140 struct dwarf2_per_cu_quick_data);
3141
3142 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3143 *slot = sig_type;
3144
3145 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3146 }
3147
3148 dwarf2_per_objfile->signatured_types = sig_types_hash;
3149 }
3150
3151 /* Read the address map data from the mapped index, and use it to
3152 populate the objfile's psymtabs_addrmap. */
3153
3154 static void
3155 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3156 {
3157 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3158 const gdb_byte *iter, *end;
3159 struct addrmap *mutable_map;
3160 CORE_ADDR baseaddr;
3161
3162 auto_obstack temp_obstack;
3163
3164 mutable_map = addrmap_create_mutable (&temp_obstack);
3165
3166 iter = index->address_table;
3167 end = iter + index->address_table_size;
3168
3169 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3170
3171 while (iter < end)
3172 {
3173 ULONGEST hi, lo, cu_index;
3174 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3175 iter += 8;
3176 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3177 iter += 8;
3178 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3179 iter += 4;
3180
3181 if (lo > hi)
3182 {
3183 complaint (&symfile_complaints,
3184 _(".gdb_index address table has invalid range (%s - %s)"),
3185 hex_string (lo), hex_string (hi));
3186 continue;
3187 }
3188
3189 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3190 {
3191 complaint (&symfile_complaints,
3192 _(".gdb_index address table has invalid CU number %u"),
3193 (unsigned) cu_index);
3194 continue;
3195 }
3196
3197 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3198 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3199 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3200 }
3201
3202 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3203 &objfile->objfile_obstack);
3204 }
3205
3206 /* The hash function for strings in the mapped index. This is the same as
3207 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3208 implementation. This is necessary because the hash function is tied to the
3209 format of the mapped index file. The hash values do not have to match with
3210 SYMBOL_HASH_NEXT.
3211
3212 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3213
3214 static hashval_t
3215 mapped_index_string_hash (int index_version, const void *p)
3216 {
3217 const unsigned char *str = (const unsigned char *) p;
3218 hashval_t r = 0;
3219 unsigned char c;
3220
3221 while ((c = *str++) != 0)
3222 {
3223 if (index_version >= 5)
3224 c = tolower (c);
3225 r = r * 67 + c - 113;
3226 }
3227
3228 return r;
3229 }
3230
3231 /* Find a slot in the mapped index INDEX for the object named NAME.
3232 If NAME is found, set *VEC_OUT to point to the CU vector in the
3233 constant pool and return true. If NAME cannot be found, return
3234 false. */
3235
3236 static bool
3237 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3238 offset_type **vec_out)
3239 {
3240 offset_type hash;
3241 offset_type slot, step;
3242 int (*cmp) (const char *, const char *);
3243
3244 gdb::unique_xmalloc_ptr<char> without_params;
3245 if (current_language->la_language == language_cplus
3246 || current_language->la_language == language_fortran
3247 || current_language->la_language == language_d)
3248 {
3249 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3250 not contain any. */
3251
3252 if (strchr (name, '(') != NULL)
3253 {
3254 without_params = cp_remove_params (name);
3255
3256 if (without_params != NULL)
3257 name = without_params.get ();
3258 }
3259 }
3260
3261 /* Index version 4 did not support case insensitive searches. But the
3262 indices for case insensitive languages are built in lowercase, therefore
3263 simulate our NAME being searched is also lowercased. */
3264 hash = mapped_index_string_hash ((index->version == 4
3265 && case_sensitivity == case_sensitive_off
3266 ? 5 : index->version),
3267 name);
3268
3269 slot = hash & (index->symbol_table_slots - 1);
3270 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3271 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3272
3273 for (;;)
3274 {
3275 /* Convert a slot number to an offset into the table. */
3276 offset_type i = 2 * slot;
3277 const char *str;
3278 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3279 return false;
3280
3281 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3282 if (!cmp (name, str))
3283 {
3284 *vec_out = (offset_type *) (index->constant_pool
3285 + MAYBE_SWAP (index->symbol_table[i + 1]));
3286 return true;
3287 }
3288
3289 slot = (slot + step) & (index->symbol_table_slots - 1);
3290 }
3291 }
3292
3293 /* A helper function that reads the .gdb_index from SECTION and fills
3294 in MAP. FILENAME is the name of the file containing the section;
3295 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3296 ok to use deprecated sections.
3297
3298 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3299 out parameters that are filled in with information about the CU and
3300 TU lists in the section.
3301
3302 Returns 1 if all went well, 0 otherwise. */
3303
3304 static int
3305 read_index_from_section (struct objfile *objfile,
3306 const char *filename,
3307 int deprecated_ok,
3308 struct dwarf2_section_info *section,
3309 struct mapped_index *map,
3310 const gdb_byte **cu_list,
3311 offset_type *cu_list_elements,
3312 const gdb_byte **types_list,
3313 offset_type *types_list_elements)
3314 {
3315 const gdb_byte *addr;
3316 offset_type version;
3317 offset_type *metadata;
3318 int i;
3319
3320 if (dwarf2_section_empty_p (section))
3321 return 0;
3322
3323 /* Older elfutils strip versions could keep the section in the main
3324 executable while splitting it for the separate debug info file. */
3325 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3326 return 0;
3327
3328 dwarf2_read_section (objfile, section);
3329
3330 addr = section->buffer;
3331 /* Version check. */
3332 version = MAYBE_SWAP (*(offset_type *) addr);
3333 /* Versions earlier than 3 emitted every copy of a psymbol. This
3334 causes the index to behave very poorly for certain requests. Version 3
3335 contained incomplete addrmap. So, it seems better to just ignore such
3336 indices. */
3337 if (version < 4)
3338 {
3339 static int warning_printed = 0;
3340 if (!warning_printed)
3341 {
3342 warning (_("Skipping obsolete .gdb_index section in %s."),
3343 filename);
3344 warning_printed = 1;
3345 }
3346 return 0;
3347 }
3348 /* Index version 4 uses a different hash function than index version
3349 5 and later.
3350
3351 Versions earlier than 6 did not emit psymbols for inlined
3352 functions. Using these files will cause GDB not to be able to
3353 set breakpoints on inlined functions by name, so we ignore these
3354 indices unless the user has done
3355 "set use-deprecated-index-sections on". */
3356 if (version < 6 && !deprecated_ok)
3357 {
3358 static int warning_printed = 0;
3359 if (!warning_printed)
3360 {
3361 warning (_("\
3362 Skipping deprecated .gdb_index section in %s.\n\
3363 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3364 to use the section anyway."),
3365 filename);
3366 warning_printed = 1;
3367 }
3368 return 0;
3369 }
3370 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3371 of the TU (for symbols coming from TUs),
3372 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3373 Plus gold-generated indices can have duplicate entries for global symbols,
3374 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3375 These are just performance bugs, and we can't distinguish gdb-generated
3376 indices from gold-generated ones, so issue no warning here. */
3377
3378 /* Indexes with higher version than the one supported by GDB may be no
3379 longer backward compatible. */
3380 if (version > 8)
3381 return 0;
3382
3383 map->version = version;
3384 map->total_size = section->size;
3385
3386 metadata = (offset_type *) (addr + sizeof (offset_type));
3387
3388 i = 0;
3389 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3390 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3391 / 8);
3392 ++i;
3393
3394 *types_list = addr + MAYBE_SWAP (metadata[i]);
3395 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3396 - MAYBE_SWAP (metadata[i]))
3397 / 8);
3398 ++i;
3399
3400 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3401 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3402 - MAYBE_SWAP (metadata[i]));
3403 ++i;
3404
3405 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3406 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3407 - MAYBE_SWAP (metadata[i]))
3408 / (2 * sizeof (offset_type)));
3409 ++i;
3410
3411 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3412
3413 return 1;
3414 }
3415
3416
3417 /* Read the index file. If everything went ok, initialize the "quick"
3418 elements of all the CUs and return 1. Otherwise, return 0. */
3419
3420 static int
3421 dwarf2_read_index (struct objfile *objfile)
3422 {
3423 struct mapped_index local_map, *map;
3424 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3425 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3426 struct dwz_file *dwz;
3427
3428 if (!read_index_from_section (objfile, objfile_name (objfile),
3429 use_deprecated_index_sections,
3430 &dwarf2_per_objfile->gdb_index, &local_map,
3431 &cu_list, &cu_list_elements,
3432 &types_list, &types_list_elements))
3433 return 0;
3434
3435 /* Don't use the index if it's empty. */
3436 if (local_map.symbol_table_slots == 0)
3437 return 0;
3438
3439 /* If there is a .dwz file, read it so we can get its CU list as
3440 well. */
3441 dwz = dwarf2_get_dwz_file ();
3442 if (dwz != NULL)
3443 {
3444 struct mapped_index dwz_map;
3445 const gdb_byte *dwz_types_ignore;
3446 offset_type dwz_types_elements_ignore;
3447
3448 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3449 1,
3450 &dwz->gdb_index, &dwz_map,
3451 &dwz_list, &dwz_list_elements,
3452 &dwz_types_ignore,
3453 &dwz_types_elements_ignore))
3454 {
3455 warning (_("could not read '.gdb_index' section from %s; skipping"),
3456 bfd_get_filename (dwz->dwz_bfd));
3457 return 0;
3458 }
3459 }
3460
3461 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3462 dwz_list_elements);
3463
3464 if (types_list_elements)
3465 {
3466 struct dwarf2_section_info *section;
3467
3468 /* We can only handle a single .debug_types when we have an
3469 index. */
3470 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3471 return 0;
3472
3473 section = VEC_index (dwarf2_section_info_def,
3474 dwarf2_per_objfile->types, 0);
3475
3476 create_signatured_type_table_from_index (objfile, section, types_list,
3477 types_list_elements);
3478 }
3479
3480 create_addrmap_from_index (objfile, &local_map);
3481
3482 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3483 map = new (map) mapped_index ();
3484 *map = local_map;
3485
3486 dwarf2_per_objfile->index_table = map;
3487 dwarf2_per_objfile->using_index = 1;
3488 dwarf2_per_objfile->quick_file_names_table =
3489 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3490
3491 return 1;
3492 }
3493
3494 /* A helper for the "quick" functions which sets the global
3495 dwarf2_per_objfile according to OBJFILE. */
3496
3497 static void
3498 dw2_setup (struct objfile *objfile)
3499 {
3500 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3501 objfile_data (objfile, dwarf2_objfile_data_key));
3502 gdb_assert (dwarf2_per_objfile);
3503 }
3504
3505 /* die_reader_func for dw2_get_file_names. */
3506
3507 static void
3508 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3509 const gdb_byte *info_ptr,
3510 struct die_info *comp_unit_die,
3511 int has_children,
3512 void *data)
3513 {
3514 struct dwarf2_cu *cu = reader->cu;
3515 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3516 struct objfile *objfile = dwarf2_per_objfile->objfile;
3517 struct dwarf2_per_cu_data *lh_cu;
3518 struct attribute *attr;
3519 int i;
3520 void **slot;
3521 struct quick_file_names *qfn;
3522
3523 gdb_assert (! this_cu->is_debug_types);
3524
3525 /* Our callers never want to match partial units -- instead they
3526 will match the enclosing full CU. */
3527 if (comp_unit_die->tag == DW_TAG_partial_unit)
3528 {
3529 this_cu->v.quick->no_file_data = 1;
3530 return;
3531 }
3532
3533 lh_cu = this_cu;
3534 slot = NULL;
3535
3536 line_header_up lh;
3537 sect_offset line_offset {};
3538
3539 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3540 if (attr)
3541 {
3542 struct quick_file_names find_entry;
3543
3544 line_offset = (sect_offset) DW_UNSND (attr);
3545
3546 /* We may have already read in this line header (TU line header sharing).
3547 If we have we're done. */
3548 find_entry.hash.dwo_unit = cu->dwo_unit;
3549 find_entry.hash.line_sect_off = line_offset;
3550 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3551 &find_entry, INSERT);
3552 if (*slot != NULL)
3553 {
3554 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3555 return;
3556 }
3557
3558 lh = dwarf_decode_line_header (line_offset, cu);
3559 }
3560 if (lh == NULL)
3561 {
3562 lh_cu->v.quick->no_file_data = 1;
3563 return;
3564 }
3565
3566 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3567 qfn->hash.dwo_unit = cu->dwo_unit;
3568 qfn->hash.line_sect_off = line_offset;
3569 gdb_assert (slot != NULL);
3570 *slot = qfn;
3571
3572 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3573
3574 qfn->num_file_names = lh->file_names.size ();
3575 qfn->file_names =
3576 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3577 for (i = 0; i < lh->file_names.size (); ++i)
3578 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3579 qfn->real_names = NULL;
3580
3581 lh_cu->v.quick->file_names = qfn;
3582 }
3583
3584 /* A helper for the "quick" functions which attempts to read the line
3585 table for THIS_CU. */
3586
3587 static struct quick_file_names *
3588 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3589 {
3590 /* This should never be called for TUs. */
3591 gdb_assert (! this_cu->is_debug_types);
3592 /* Nor type unit groups. */
3593 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3594
3595 if (this_cu->v.quick->file_names != NULL)
3596 return this_cu->v.quick->file_names;
3597 /* If we know there is no line data, no point in looking again. */
3598 if (this_cu->v.quick->no_file_data)
3599 return NULL;
3600
3601 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3602
3603 if (this_cu->v.quick->no_file_data)
3604 return NULL;
3605 return this_cu->v.quick->file_names;
3606 }
3607
3608 /* A helper for the "quick" functions which computes and caches the
3609 real path for a given file name from the line table. */
3610
3611 static const char *
3612 dw2_get_real_path (struct objfile *objfile,
3613 struct quick_file_names *qfn, int index)
3614 {
3615 if (qfn->real_names == NULL)
3616 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3617 qfn->num_file_names, const char *);
3618
3619 if (qfn->real_names[index] == NULL)
3620 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3621
3622 return qfn->real_names[index];
3623 }
3624
3625 static struct symtab *
3626 dw2_find_last_source_symtab (struct objfile *objfile)
3627 {
3628 struct compunit_symtab *cust;
3629 int index;
3630
3631 dw2_setup (objfile);
3632 index = dwarf2_per_objfile->n_comp_units - 1;
3633 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3634 if (cust == NULL)
3635 return NULL;
3636 return compunit_primary_filetab (cust);
3637 }
3638
3639 /* Traversal function for dw2_forget_cached_source_info. */
3640
3641 static int
3642 dw2_free_cached_file_names (void **slot, void *info)
3643 {
3644 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3645
3646 if (file_data->real_names)
3647 {
3648 int i;
3649
3650 for (i = 0; i < file_data->num_file_names; ++i)
3651 {
3652 xfree ((void*) file_data->real_names[i]);
3653 file_data->real_names[i] = NULL;
3654 }
3655 }
3656
3657 return 1;
3658 }
3659
3660 static void
3661 dw2_forget_cached_source_info (struct objfile *objfile)
3662 {
3663 dw2_setup (objfile);
3664
3665 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3666 dw2_free_cached_file_names, NULL);
3667 }
3668
3669 /* Helper function for dw2_map_symtabs_matching_filename that expands
3670 the symtabs and calls the iterator. */
3671
3672 static int
3673 dw2_map_expand_apply (struct objfile *objfile,
3674 struct dwarf2_per_cu_data *per_cu,
3675 const char *name, const char *real_path,
3676 gdb::function_view<bool (symtab *)> callback)
3677 {
3678 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3679
3680 /* Don't visit already-expanded CUs. */
3681 if (per_cu->v.quick->compunit_symtab)
3682 return 0;
3683
3684 /* This may expand more than one symtab, and we want to iterate over
3685 all of them. */
3686 dw2_instantiate_symtab (per_cu);
3687
3688 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3689 last_made, callback);
3690 }
3691
3692 /* Implementation of the map_symtabs_matching_filename method. */
3693
3694 static bool
3695 dw2_map_symtabs_matching_filename
3696 (struct objfile *objfile, const char *name, const char *real_path,
3697 gdb::function_view<bool (symtab *)> callback)
3698 {
3699 int i;
3700 const char *name_basename = lbasename (name);
3701
3702 dw2_setup (objfile);
3703
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here. */
3706
3707 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3708 {
3709 int j;
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3711 struct quick_file_names *file_data;
3712
3713 /* We only need to look at symtabs not already expanded. */
3714 if (per_cu->v.quick->compunit_symtab)
3715 continue;
3716
3717 file_data = dw2_get_file_names (per_cu);
3718 if (file_data == NULL)
3719 continue;
3720
3721 for (j = 0; j < file_data->num_file_names; ++j)
3722 {
3723 const char *this_name = file_data->file_names[j];
3724 const char *this_real_name;
3725
3726 if (compare_filenames_for_search (this_name, name))
3727 {
3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3729 callback))
3730 return true;
3731 continue;
3732 }
3733
3734 /* Before we invoke realpath, which can get expensive when many
3735 files are involved, do a quick comparison of the basenames. */
3736 if (! basenames_may_differ
3737 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3738 continue;
3739
3740 this_real_name = dw2_get_real_path (objfile, file_data, j);
3741 if (compare_filenames_for_search (this_real_name, name))
3742 {
3743 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3744 callback))
3745 return true;
3746 continue;
3747 }
3748
3749 if (real_path != NULL)
3750 {
3751 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3752 gdb_assert (IS_ABSOLUTE_PATH (name));
3753 if (this_real_name != NULL
3754 && FILENAME_CMP (real_path, this_real_name) == 0)
3755 {
3756 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3757 callback))
3758 return true;
3759 continue;
3760 }
3761 }
3762 }
3763 }
3764
3765 return false;
3766 }
3767
3768 /* Struct used to manage iterating over all CUs looking for a symbol. */
3769
3770 struct dw2_symtab_iterator
3771 {
3772 /* The internalized form of .gdb_index. */
3773 struct mapped_index *index;
3774 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3775 int want_specific_block;
3776 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3777 Unused if !WANT_SPECIFIC_BLOCK. */
3778 int block_index;
3779 /* The kind of symbol we're looking for. */
3780 domain_enum domain;
3781 /* The list of CUs from the index entry of the symbol,
3782 or NULL if not found. */
3783 offset_type *vec;
3784 /* The next element in VEC to look at. */
3785 int next;
3786 /* The number of elements in VEC, or zero if there is no match. */
3787 int length;
3788 /* Have we seen a global version of the symbol?
3789 If so we can ignore all further global instances.
3790 This is to work around gold/15646, inefficient gold-generated
3791 indices. */
3792 int global_seen;
3793 };
3794
3795 /* Initialize the index symtab iterator ITER.
3796 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3797 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3798
3799 static void
3800 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3801 struct mapped_index *index,
3802 int want_specific_block,
3803 int block_index,
3804 domain_enum domain,
3805 const char *name)
3806 {
3807 iter->index = index;
3808 iter->want_specific_block = want_specific_block;
3809 iter->block_index = block_index;
3810 iter->domain = domain;
3811 iter->next = 0;
3812 iter->global_seen = 0;
3813
3814 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3815 iter->length = MAYBE_SWAP (*iter->vec);
3816 else
3817 {
3818 iter->vec = NULL;
3819 iter->length = 0;
3820 }
3821 }
3822
3823 /* Return the next matching CU or NULL if there are no more. */
3824
3825 static struct dwarf2_per_cu_data *
3826 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3827 {
3828 for ( ; iter->next < iter->length; ++iter->next)
3829 {
3830 offset_type cu_index_and_attrs =
3831 MAYBE_SWAP (iter->vec[iter->next + 1]);
3832 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3833 struct dwarf2_per_cu_data *per_cu;
3834 int want_static = iter->block_index != GLOBAL_BLOCK;
3835 /* This value is only valid for index versions >= 7. */
3836 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3837 gdb_index_symbol_kind symbol_kind =
3838 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3839 /* Only check the symbol attributes if they're present.
3840 Indices prior to version 7 don't record them,
3841 and indices >= 7 may elide them for certain symbols
3842 (gold does this). */
3843 int attrs_valid =
3844 (iter->index->version >= 7
3845 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3846
3847 /* Don't crash on bad data. */
3848 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3849 + dwarf2_per_objfile->n_type_units))
3850 {
3851 complaint (&symfile_complaints,
3852 _(".gdb_index entry has bad CU index"
3853 " [in module %s]"),
3854 objfile_name (dwarf2_per_objfile->objfile));
3855 continue;
3856 }
3857
3858 per_cu = dw2_get_cutu (cu_index);
3859
3860 /* Skip if already read in. */
3861 if (per_cu->v.quick->compunit_symtab)
3862 continue;
3863
3864 /* Check static vs global. */
3865 if (attrs_valid)
3866 {
3867 if (iter->want_specific_block
3868 && want_static != is_static)
3869 continue;
3870 /* Work around gold/15646. */
3871 if (!is_static && iter->global_seen)
3872 continue;
3873 if (!is_static)
3874 iter->global_seen = 1;
3875 }
3876
3877 /* Only check the symbol's kind if it has one. */
3878 if (attrs_valid)
3879 {
3880 switch (iter->domain)
3881 {
3882 case VAR_DOMAIN:
3883 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3884 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3885 /* Some types are also in VAR_DOMAIN. */
3886 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3887 continue;
3888 break;
3889 case STRUCT_DOMAIN:
3890 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3891 continue;
3892 break;
3893 case LABEL_DOMAIN:
3894 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3895 continue;
3896 break;
3897 default:
3898 break;
3899 }
3900 }
3901
3902 ++iter->next;
3903 return per_cu;
3904 }
3905
3906 return NULL;
3907 }
3908
3909 static struct compunit_symtab *
3910 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3911 const char *name, domain_enum domain)
3912 {
3913 struct compunit_symtab *stab_best = NULL;
3914 struct mapped_index *index;
3915
3916 dw2_setup (objfile);
3917
3918 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3919
3920 index = dwarf2_per_objfile->index_table;
3921
3922 /* index is NULL if OBJF_READNOW. */
3923 if (index)
3924 {
3925 struct dw2_symtab_iterator iter;
3926 struct dwarf2_per_cu_data *per_cu;
3927
3928 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3929
3930 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3931 {
3932 struct symbol *sym, *with_opaque = NULL;
3933 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3934 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3935 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3936
3937 sym = block_find_symbol (block, name, domain,
3938 block_find_non_opaque_type_preferred,
3939 &with_opaque);
3940
3941 /* Some caution must be observed with overloaded functions
3942 and methods, since the index will not contain any overload
3943 information (but NAME might contain it). */
3944
3945 if (sym != NULL
3946 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3947 return stab;
3948 if (with_opaque != NULL
3949 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3950 stab_best = stab;
3951
3952 /* Keep looking through other CUs. */
3953 }
3954 }
3955
3956 return stab_best;
3957 }
3958
3959 static void
3960 dw2_print_stats (struct objfile *objfile)
3961 {
3962 int i, total, count;
3963
3964 dw2_setup (objfile);
3965 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3966 count = 0;
3967 for (i = 0; i < total; ++i)
3968 {
3969 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3970
3971 if (!per_cu->v.quick->compunit_symtab)
3972 ++count;
3973 }
3974 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3975 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3976 }
3977
3978 /* This dumps minimal information about the index.
3979 It is called via "mt print objfiles".
3980 One use is to verify .gdb_index has been loaded by the
3981 gdb.dwarf2/gdb-index.exp testcase. */
3982
3983 static void
3984 dw2_dump (struct objfile *objfile)
3985 {
3986 dw2_setup (objfile);
3987 gdb_assert (dwarf2_per_objfile->using_index);
3988 printf_filtered (".gdb_index:");
3989 if (dwarf2_per_objfile->index_table != NULL)
3990 {
3991 printf_filtered (" version %d\n",
3992 dwarf2_per_objfile->index_table->version);
3993 }
3994 else
3995 printf_filtered (" faked for \"readnow\"\n");
3996 printf_filtered ("\n");
3997 }
3998
3999 static void
4000 dw2_relocate (struct objfile *objfile,
4001 const struct section_offsets *new_offsets,
4002 const struct section_offsets *delta)
4003 {
4004 /* There's nothing to relocate here. */
4005 }
4006
4007 static void
4008 dw2_expand_symtabs_for_function (struct objfile *objfile,
4009 const char *func_name)
4010 {
4011 struct mapped_index *index;
4012
4013 dw2_setup (objfile);
4014
4015 index = dwarf2_per_objfile->index_table;
4016
4017 /* index is NULL if OBJF_READNOW. */
4018 if (index)
4019 {
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 /* Note: It doesn't matter what we pass for block_index here. */
4024 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4025 func_name);
4026
4027 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4028 dw2_instantiate_symtab (per_cu);
4029 }
4030 }
4031
4032 static void
4033 dw2_expand_all_symtabs (struct objfile *objfile)
4034 {
4035 int i;
4036
4037 dw2_setup (objfile);
4038
4039 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4040 + dwarf2_per_objfile->n_type_units); ++i)
4041 {
4042 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4043
4044 dw2_instantiate_symtab (per_cu);
4045 }
4046 }
4047
4048 static void
4049 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4050 const char *fullname)
4051 {
4052 int i;
4053
4054 dw2_setup (objfile);
4055
4056 /* We don't need to consider type units here.
4057 This is only called for examining code, e.g. expand_line_sal.
4058 There can be an order of magnitude (or more) more type units
4059 than comp units, and we avoid them if we can. */
4060
4061 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4062 {
4063 int j;
4064 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4065 struct quick_file_names *file_data;
4066
4067 /* We only need to look at symtabs not already expanded. */
4068 if (per_cu->v.quick->compunit_symtab)
4069 continue;
4070
4071 file_data = dw2_get_file_names (per_cu);
4072 if (file_data == NULL)
4073 continue;
4074
4075 for (j = 0; j < file_data->num_file_names; ++j)
4076 {
4077 const char *this_fullname = file_data->file_names[j];
4078
4079 if (filename_cmp (this_fullname, fullname) == 0)
4080 {
4081 dw2_instantiate_symtab (per_cu);
4082 break;
4083 }
4084 }
4085 }
4086 }
4087
4088 static void
4089 dw2_map_matching_symbols (struct objfile *objfile,
4090 const char * name, domain_enum domain,
4091 int global,
4092 int (*callback) (struct block *,
4093 struct symbol *, void *),
4094 void *data, symbol_name_match_type match,
4095 symbol_compare_ftype *ordered_compare)
4096 {
4097 /* Currently unimplemented; used for Ada. The function can be called if the
4098 current language is Ada for a non-Ada objfile using GNU index. As Ada
4099 does not look for non-Ada symbols this function should just return. */
4100 }
4101
4102 /* Symbol name matcher for .gdb_index names.
4103
4104 Symbol names in .gdb_index have a few particularities:
4105
4106 - There's no indication of which is the language of each symbol.
4107
4108 Since each language has its own symbol name matching algorithm,
4109 and we don't know which language is the right one, we must match
4110 each symbol against all languages. This would be a potential
4111 performance problem if it were not mitigated by the
4112 mapped_index::name_components lookup table, which significantly
4113 reduces the number of times we need to call into this matcher,
4114 making it a non-issue.
4115
4116 - Symbol names in the index have no overload (parameter)
4117 information. I.e., in C++, "foo(int)" and "foo(long)" both
4118 appear as "foo" in the index, for example.
4119
4120 This means that the lookup names passed to the symbol name
4121 matcher functions must have no parameter information either
4122 because (e.g.) symbol search name "foo" does not match
4123 lookup-name "foo(int)" [while swapping search name for lookup
4124 name would match].
4125 */
4126 class gdb_index_symbol_name_matcher
4127 {
4128 public:
4129 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4130 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4131
4132 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4133 Returns true if any matcher matches. */
4134 bool matches (const char *symbol_name);
4135
4136 private:
4137 /* A reference to the lookup name we're matching against. */
4138 const lookup_name_info &m_lookup_name;
4139
4140 /* A vector holding all the different symbol name matchers, for all
4141 languages. */
4142 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4143 };
4144
4145 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4146 (const lookup_name_info &lookup_name)
4147 : m_lookup_name (lookup_name)
4148 {
4149 /* Prepare the vector of comparison functions upfront, to avoid
4150 doing the same work for each symbol. Care is taken to avoid
4151 matching with the same matcher more than once if/when multiple
4152 languages use the same matcher function. */
4153 auto &matchers = m_symbol_name_matcher_funcs;
4154 matchers.reserve (nr_languages);
4155
4156 matchers.push_back (default_symbol_name_matcher);
4157
4158 for (int i = 0; i < nr_languages; i++)
4159 {
4160 const language_defn *lang = language_def ((enum language) i);
4161 if (lang->la_get_symbol_name_matcher != NULL)
4162 {
4163 symbol_name_matcher_ftype *name_matcher
4164 = lang->la_get_symbol_name_matcher (m_lookup_name);
4165
4166 /* Don't insert the same comparison routine more than once.
4167 Note that we do this linear walk instead of a cheaper
4168 sorted insert, or use a std::set or something like that,
4169 because relative order of function addresses is not
4170 stable. This is not a problem in practice because the
4171 number of supported languages is low, and the cost here
4172 is tiny compared to the number of searches we'll do
4173 afterwards using this object. */
4174 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4175 == matchers.end ())
4176 matchers.push_back (name_matcher);
4177 }
4178 }
4179 }
4180
4181 bool
4182 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4183 {
4184 for (auto matches_name : m_symbol_name_matcher_funcs)
4185 if (matches_name (symbol_name, m_lookup_name, NULL))
4186 return true;
4187
4188 return false;
4189 }
4190
4191 /* Helper for dw2_expand_symtabs_matching that works with a
4192 mapped_index instead of the containing objfile. This is split to a
4193 separate function in order to be able to unit test the
4194 name_components matching using a mock mapped_index. For each
4195 symbol name that matches, calls MATCH_CALLBACK, passing it the
4196 symbol's index in the mapped_index symbol table. */
4197
4198 static void
4199 dw2_expand_symtabs_matching_symbol
4200 (mapped_index &index,
4201 const lookup_name_info &lookup_name_in,
4202 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4203 enum search_domain kind,
4204 gdb::function_view<void (offset_type)> match_callback)
4205 {
4206 lookup_name_info lookup_name_without_params
4207 = lookup_name_in.make_ignore_params ();
4208 gdb_index_symbol_name_matcher lookup_name_matcher
4209 (lookup_name_without_params);
4210
4211 auto *name_cmp = case_sensitivity == case_sensitive_on ? strcmp : strcasecmp;
4212
4213 /* Build the symbol name component sorted vector, if we haven't yet.
4214 The code below only knows how to break apart components of C++
4215 symbol names (and other languages that use '::' as
4216 namespace/module separator). If we add support for wild matching
4217 to some language that uses some other operator (E.g., Ada, Go and
4218 D use '.'), then we'll need to try splitting the symbol name
4219 according to that language too. Note that Ada does support wild
4220 matching, but doesn't currently support .gdb_index. */
4221 if (index.name_components.empty ())
4222 {
4223 for (size_t iter = 0; iter < index.symbol_table_slots; ++iter)
4224 {
4225 offset_type idx = 2 * iter;
4226
4227 if (index.symbol_table[idx] == 0
4228 && index.symbol_table[idx + 1] == 0)
4229 continue;
4230
4231 const char *name = index.symbol_name_at (idx);
4232
4233 /* Add each name component to the name component table. */
4234 unsigned int previous_len = 0;
4235 for (unsigned int current_len = cp_find_first_component (name);
4236 name[current_len] != '\0';
4237 current_len += cp_find_first_component (name + current_len))
4238 {
4239 gdb_assert (name[current_len] == ':');
4240 index.name_components.push_back ({previous_len, idx});
4241 /* Skip the '::'. */
4242 current_len += 2;
4243 previous_len = current_len;
4244 }
4245 index.name_components.push_back ({previous_len, idx});
4246 }
4247
4248 /* Sort name_components elements by name. */
4249 auto name_comp_compare = [&] (const name_component &left,
4250 const name_component &right)
4251 {
4252 const char *left_qualified = index.symbol_name_at (left.idx);
4253 const char *right_qualified = index.symbol_name_at (right.idx);
4254
4255 const char *left_name = left_qualified + left.name_offset;
4256 const char *right_name = right_qualified + right.name_offset;
4257
4258 return name_cmp (left_name, right_name) < 0;
4259 };
4260
4261 std::sort (index.name_components.begin (),
4262 index.name_components.end (),
4263 name_comp_compare);
4264 }
4265
4266 const char *cplus
4267 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4268
4269 /* Comparison function object for lower_bound that matches against a
4270 given symbol name. */
4271 auto lookup_compare_lower = [&] (const name_component &elem,
4272 const char *name)
4273 {
4274 const char *elem_qualified = index.symbol_name_at (elem.idx);
4275 const char *elem_name = elem_qualified + elem.name_offset;
4276 return name_cmp (elem_name, name) < 0;
4277 };
4278
4279 /* Comparison function object for upper_bound that matches against a
4280 given symbol name. */
4281 auto lookup_compare_upper = [&] (const char *name,
4282 const name_component &elem)
4283 {
4284 const char *elem_qualified = index.symbol_name_at (elem.idx);
4285 const char *elem_name = elem_qualified + elem.name_offset;
4286 return name_cmp (name, elem_name) < 0;
4287 };
4288
4289 auto begin = index.name_components.begin ();
4290 auto end = index.name_components.end ();
4291
4292 /* Find the lower bound. */
4293 auto lower = [&] ()
4294 {
4295 if (lookup_name_in.completion_mode () && cplus[0] == '\0')
4296 return begin;
4297 else
4298 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4299 } ();
4300
4301 /* Find the upper bound. */
4302 auto upper = [&] ()
4303 {
4304 if (lookup_name_in.completion_mode ())
4305 {
4306 /* The string frobbing below won't work if the string is
4307 empty. We don't need it then, anyway -- if we're
4308 completing an empty string, then we want to iterate over
4309 the whole range. */
4310 if (cplus[0] == '\0')
4311 return end;
4312
4313 /* In completion mode, increment the last character because
4314 we want UPPER to point past all symbols names that have
4315 the same prefix. */
4316 std::string after = cplus;
4317
4318 gdb_assert (after.back () != 0xff);
4319 after.back ()++;
4320
4321 return std::upper_bound (lower, end, after.c_str (),
4322 lookup_compare_upper);
4323 }
4324 else
4325 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4326 } ();
4327
4328 /* Now for each symbol name in range, check to see if we have a name
4329 match, and if so, call the MATCH_CALLBACK callback. */
4330
4331 /* The same symbol may appear more than once in the range though.
4332 E.g., if we're looking for symbols that complete "w", and we have
4333 a symbol named "w1::w2", we'll find the two name components for
4334 that same symbol in the range. To be sure we only call the
4335 callback once per symbol, we first collect the symbol name
4336 indexes that matched in a temporary vector and ignore
4337 duplicates. */
4338 std::vector<offset_type> matches;
4339 matches.reserve (std::distance (lower, upper));
4340
4341 for (;lower != upper; ++lower)
4342 {
4343 const char *qualified = index.symbol_name_at (lower->idx);
4344
4345 if (!lookup_name_matcher.matches (qualified)
4346 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4347 continue;
4348
4349 matches.push_back (lower->idx);
4350 }
4351
4352 std::sort (matches.begin (), matches.end ());
4353
4354 /* Finally call the callback, once per match. */
4355 ULONGEST prev = -1;
4356 for (offset_type idx : matches)
4357 {
4358 if (prev != idx)
4359 {
4360 match_callback (idx);
4361 prev = idx;
4362 }
4363 }
4364
4365 /* Above we use a type wider than idx's for 'prev', since 0 and
4366 (offset_type)-1 are both possible values. */
4367 static_assert (sizeof (prev) > sizeof (offset_type), "");
4368 }
4369
4370 #if GDB_SELF_TEST
4371
4372 namespace selftests { namespace dw2_expand_symtabs_matching {
4373
4374 /* A wrapper around mapped_index that builds a mock mapped_index, from
4375 the symbol list passed as parameter to the constructor. */
4376 class mock_mapped_index
4377 {
4378 public:
4379 template<size_t N>
4380 mock_mapped_index (const char *(&symbols)[N])
4381 : mock_mapped_index (symbols, N)
4382 {}
4383
4384 /* Access the built index. */
4385 mapped_index &index ()
4386 { return m_index; }
4387
4388 /* Disable copy. */
4389 mock_mapped_index(const mock_mapped_index &) = delete;
4390 void operator= (const mock_mapped_index &) = delete;
4391
4392 private:
4393 mock_mapped_index (const char **symbols, size_t symbols_size)
4394 {
4395 /* No string can live at offset zero. Add a dummy entry. */
4396 obstack_grow_str0 (&m_constant_pool, "");
4397
4398 for (size_t i = 0; i < symbols_size; i++)
4399 {
4400 const char *sym = symbols[i];
4401 size_t offset = obstack_object_size (&m_constant_pool);
4402 obstack_grow_str0 (&m_constant_pool, sym);
4403 m_symbol_table.push_back (offset);
4404 m_symbol_table.push_back (0);
4405 };
4406
4407 m_index.constant_pool = (const char *) obstack_base (&m_constant_pool);
4408 m_index.symbol_table = m_symbol_table.data ();
4409 m_index.symbol_table_slots = m_symbol_table.size () / 2;
4410 }
4411
4412 public:
4413 /* The built mapped_index. */
4414 mapped_index m_index{};
4415
4416 /* The storage that the built mapped_index uses for symbol and
4417 constant pool tables. */
4418 std::vector<offset_type> m_symbol_table;
4419 auto_obstack m_constant_pool;
4420 };
4421
4422 /* Convenience function that converts a NULL pointer to a "<null>"
4423 string, to pass to print routines. */
4424
4425 static const char *
4426 string_or_null (const char *str)
4427 {
4428 return str != NULL ? str : "<null>";
4429 }
4430
4431 /* Check if a lookup_name_info built from
4432 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4433 index. EXPECTED_LIST is the list of expected matches, in expected
4434 matching order. If no match expected, then an empty list is
4435 specified. Returns true on success. On failure prints a warning
4436 indicating the file:line that failed, and returns false. */
4437
4438 static bool
4439 check_match (const char *file, int line,
4440 mock_mapped_index &mock_index,
4441 const char *name, symbol_name_match_type match_type,
4442 bool completion_mode,
4443 std::initializer_list<const char *> expected_list)
4444 {
4445 lookup_name_info lookup_name (name, match_type, completion_mode);
4446
4447 bool matched = true;
4448
4449 auto mismatch = [&] (const char *expected_str,
4450 const char *got)
4451 {
4452 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4453 "expected=\"%s\", got=\"%s\"\n"),
4454 file, line,
4455 (match_type == symbol_name_match_type::FULL
4456 ? "FULL" : "WILD"),
4457 name, string_or_null (expected_str), string_or_null (got));
4458 matched = false;
4459 };
4460
4461 auto expected_it = expected_list.begin ();
4462 auto expected_end = expected_list.end ();
4463
4464 dw2_expand_symtabs_matching_symbol (mock_index.index (), lookup_name,
4465 NULL, ALL_DOMAIN,
4466 [&] (offset_type idx)
4467 {
4468 const char *matched_name = mock_index.index ().symbol_name_at (idx);
4469 const char *expected_str
4470 = expected_it == expected_end ? NULL : *expected_it++;
4471
4472 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4473 mismatch (expected_str, matched_name);
4474 });
4475
4476 const char *expected_str
4477 = expected_it == expected_end ? NULL : *expected_it++;
4478 if (expected_str != NULL)
4479 mismatch (expected_str, NULL);
4480
4481 return matched;
4482 }
4483
4484 /* The symbols added to the mock mapped_index for testing (in
4485 canonical form). */
4486 static const char *test_symbols[] = {
4487 "function",
4488 "std::bar",
4489 "std::zfunction",
4490 "std::zfunction2",
4491 "w1::w2",
4492 "ns::foo<char*>",
4493 "ns::foo<int>",
4494 "ns::foo<long>",
4495
4496 /* A name with all sorts of complications. Starts with "z" to make
4497 it easier for the completion tests below. */
4498 #define Z_SYM_NAME \
4499 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4500 "::tuple<(anonymous namespace)::ui*, " \
4501 "std::default_delete<(anonymous namespace)::ui>, void>"
4502
4503 Z_SYM_NAME
4504 };
4505
4506 static void
4507 run_test ()
4508 {
4509 mock_mapped_index mock_index (test_symbols);
4510
4511 /* We let all tests run until the end even if some fails, for debug
4512 convenience. */
4513 bool any_mismatch = false;
4514
4515 /* Create the expected symbols list (an initializer_list). Needed
4516 because lists have commas, and we need to pass them to CHECK,
4517 which is a macro. */
4518 #define EXPECT(...) { __VA_ARGS__ }
4519
4520 /* Wrapper for check_match that passes down the current
4521 __FILE__/__LINE__. */
4522 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4523 any_mismatch |= !check_match (__FILE__, __LINE__, \
4524 mock_index, \
4525 NAME, MATCH_TYPE, COMPLETION_MODE, \
4526 EXPECTED_LIST)
4527
4528 /* Identity checks. */
4529 for (const char *sym : test_symbols)
4530 {
4531 /* Should be able to match all existing symbols. */
4532 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4533 EXPECT (sym));
4534
4535 /* Should be able to match all existing symbols with
4536 parameters. */
4537 std::string with_params = std::string (sym) + "(int)";
4538 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4539 EXPECT (sym));
4540
4541 /* Should be able to match all existing symbols with
4542 parameters and qualifiers. */
4543 with_params = std::string (sym) + " ( int ) const";
4544 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4545 EXPECT (sym));
4546
4547 /* This should really find sym, but cp-name-parser.y doesn't
4548 know about lvalue/rvalue qualifiers yet. */
4549 with_params = std::string (sym) + " ( int ) &&";
4550 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4551 {});
4552 }
4553
4554 /* Check that completion mode works at each prefix of the expected
4555 symbol name. */
4556 {
4557 static const char str[] = "function(int)";
4558 size_t len = strlen (str);
4559 std::string lookup;
4560
4561 for (size_t i = 1; i < len; i++)
4562 {
4563 lookup.assign (str, i);
4564 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4565 EXPECT ("function"));
4566 }
4567 }
4568
4569 /* While "w" is a prefix of both components, the match function
4570 should still only be called once. */
4571 {
4572 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4573 EXPECT ("w1::w2"));
4574 }
4575
4576 /* Same, with a "complicated" symbol. */
4577 {
4578 static const char str[] = Z_SYM_NAME;
4579 size_t len = strlen (str);
4580 std::string lookup;
4581
4582 for (size_t i = 1; i < len; i++)
4583 {
4584 lookup.assign (str, i);
4585 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4586 EXPECT (Z_SYM_NAME));
4587 }
4588 }
4589
4590 /* In FULL mode, an incomplete symbol doesn't match. */
4591 {
4592 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4593 {});
4594 }
4595
4596 /* A complete symbol with parameters matches any overload, since the
4597 index has no overload info. */
4598 {
4599 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4600 EXPECT ("std::zfunction", "std::zfunction2"));
4601 }
4602
4603 /* Check that whitespace is ignored appropriately. A symbol with a
4604 template argument list. */
4605 {
4606 static const char expected[] = "ns::foo<int>";
4607 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4608 EXPECT (expected));
4609 }
4610
4611 /* Check that whitespace is ignored appropriately. A symbol with a
4612 template argument list that includes a pointer. */
4613 {
4614 static const char expected[] = "ns::foo<char*>";
4615 /* Try both completion and non-completion modes. */
4616 static const bool completion_mode[2] = {false, true};
4617 for (size_t i = 0; i < 2; i++)
4618 {
4619 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4620 completion_mode[i], EXPECT (expected));
4621
4622 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4623 completion_mode[i], EXPECT (expected));
4624 }
4625 }
4626
4627 {
4628 /* Check method qualifiers are ignored. */
4629 static const char expected[] = "ns::foo<char*>";
4630 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4631 symbol_name_match_type::FULL, true, EXPECT (expected));
4632 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4633 symbol_name_match_type::FULL, true, EXPECT (expected));
4634 }
4635
4636 /* Test lookup names that don't match anything. */
4637 {
4638 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4639 {});
4640 }
4641
4642 SELF_CHECK (!any_mismatch);
4643
4644 #undef EXPECT
4645 #undef CHECK_MATCH
4646 }
4647
4648 }} // namespace selftests::dw2_expand_symtabs_matching
4649
4650 #endif /* GDB_SELF_TEST */
4651
4652 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4653 matched, to expand corresponding CUs that were marked. IDX is the
4654 index of the symbol name that matched. */
4655
4656 static void
4657 dw2_expand_marked_cus
4658 (mapped_index &index, offset_type idx,
4659 struct objfile *objfile,
4660 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4661 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4662 search_domain kind)
4663 {
4664 const char *name;
4665 offset_type *vec, vec_len, vec_idx;
4666 bool global_seen = false;
4667
4668 vec = (offset_type *) (index.constant_pool
4669 + MAYBE_SWAP (index.symbol_table[idx + 1]));
4670 vec_len = MAYBE_SWAP (vec[0]);
4671 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4672 {
4673 struct dwarf2_per_cu_data *per_cu;
4674 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4675 /* This value is only valid for index versions >= 7. */
4676 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4677 gdb_index_symbol_kind symbol_kind =
4678 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4679 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4680 /* Only check the symbol attributes if they're present.
4681 Indices prior to version 7 don't record them,
4682 and indices >= 7 may elide them for certain symbols
4683 (gold does this). */
4684 int attrs_valid =
4685 (index.version >= 7
4686 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4687
4688 /* Work around gold/15646. */
4689 if (attrs_valid)
4690 {
4691 if (!is_static && global_seen)
4692 continue;
4693 if (!is_static)
4694 global_seen = true;
4695 }
4696
4697 /* Only check the symbol's kind if it has one. */
4698 if (attrs_valid)
4699 {
4700 switch (kind)
4701 {
4702 case VARIABLES_DOMAIN:
4703 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4704 continue;
4705 break;
4706 case FUNCTIONS_DOMAIN:
4707 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4708 continue;
4709 break;
4710 case TYPES_DOMAIN:
4711 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4712 continue;
4713 break;
4714 default:
4715 break;
4716 }
4717 }
4718
4719 /* Don't crash on bad data. */
4720 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4721 + dwarf2_per_objfile->n_type_units))
4722 {
4723 complaint (&symfile_complaints,
4724 _(".gdb_index entry has bad CU index"
4725 " [in module %s]"), objfile_name (objfile));
4726 continue;
4727 }
4728
4729 per_cu = dw2_get_cutu (cu_index);
4730 if (file_matcher == NULL || per_cu->v.quick->mark)
4731 {
4732 int symtab_was_null =
4733 (per_cu->v.quick->compunit_symtab == NULL);
4734
4735 dw2_instantiate_symtab (per_cu);
4736
4737 if (expansion_notify != NULL
4738 && symtab_was_null
4739 && per_cu->v.quick->compunit_symtab != NULL)
4740 expansion_notify (per_cu->v.quick->compunit_symtab);
4741 }
4742 }
4743 }
4744
4745 static void
4746 dw2_expand_symtabs_matching
4747 (struct objfile *objfile,
4748 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4749 const lookup_name_info &lookup_name,
4750 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4751 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4752 enum search_domain kind)
4753 {
4754 int i;
4755 offset_type iter;
4756
4757 dw2_setup (objfile);
4758
4759 /* index_table is NULL if OBJF_READNOW. */
4760 if (!dwarf2_per_objfile->index_table)
4761 return;
4762
4763 if (file_matcher != NULL)
4764 {
4765 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4766 htab_eq_pointer,
4767 NULL, xcalloc, xfree));
4768 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4769 htab_eq_pointer,
4770 NULL, xcalloc, xfree));
4771
4772 /* The rule is CUs specify all the files, including those used by
4773 any TU, so there's no need to scan TUs here. */
4774
4775 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4776 {
4777 int j;
4778 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4779 struct quick_file_names *file_data;
4780 void **slot;
4781
4782 QUIT;
4783
4784 per_cu->v.quick->mark = 0;
4785
4786 /* We only need to look at symtabs not already expanded. */
4787 if (per_cu->v.quick->compunit_symtab)
4788 continue;
4789
4790 file_data = dw2_get_file_names (per_cu);
4791 if (file_data == NULL)
4792 continue;
4793
4794 if (htab_find (visited_not_found.get (), file_data) != NULL)
4795 continue;
4796 else if (htab_find (visited_found.get (), file_data) != NULL)
4797 {
4798 per_cu->v.quick->mark = 1;
4799 continue;
4800 }
4801
4802 for (j = 0; j < file_data->num_file_names; ++j)
4803 {
4804 const char *this_real_name;
4805
4806 if (file_matcher (file_data->file_names[j], false))
4807 {
4808 per_cu->v.quick->mark = 1;
4809 break;
4810 }
4811
4812 /* Before we invoke realpath, which can get expensive when many
4813 files are involved, do a quick comparison of the basenames. */
4814 if (!basenames_may_differ
4815 && !file_matcher (lbasename (file_data->file_names[j]),
4816 true))
4817 continue;
4818
4819 this_real_name = dw2_get_real_path (objfile, file_data, j);
4820 if (file_matcher (this_real_name, false))
4821 {
4822 per_cu->v.quick->mark = 1;
4823 break;
4824 }
4825 }
4826
4827 slot = htab_find_slot (per_cu->v.quick->mark
4828 ? visited_found.get ()
4829 : visited_not_found.get (),
4830 file_data, INSERT);
4831 *slot = file_data;
4832 }
4833 }
4834
4835 mapped_index &index = *dwarf2_per_objfile->index_table;
4836
4837 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4838 symbol_matcher,
4839 kind, [&] (offset_type idx)
4840 {
4841 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
4842 expansion_notify, kind);
4843 });
4844 }
4845
4846 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4847 symtab. */
4848
4849 static struct compunit_symtab *
4850 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4851 CORE_ADDR pc)
4852 {
4853 int i;
4854
4855 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4856 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4857 return cust;
4858
4859 if (cust->includes == NULL)
4860 return NULL;
4861
4862 for (i = 0; cust->includes[i]; ++i)
4863 {
4864 struct compunit_symtab *s = cust->includes[i];
4865
4866 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4867 if (s != NULL)
4868 return s;
4869 }
4870
4871 return NULL;
4872 }
4873
4874 static struct compunit_symtab *
4875 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4876 struct bound_minimal_symbol msymbol,
4877 CORE_ADDR pc,
4878 struct obj_section *section,
4879 int warn_if_readin)
4880 {
4881 struct dwarf2_per_cu_data *data;
4882 struct compunit_symtab *result;
4883
4884 dw2_setup (objfile);
4885
4886 if (!objfile->psymtabs_addrmap)
4887 return NULL;
4888
4889 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4890 pc);
4891 if (!data)
4892 return NULL;
4893
4894 if (warn_if_readin && data->v.quick->compunit_symtab)
4895 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4896 paddress (get_objfile_arch (objfile), pc));
4897
4898 result
4899 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4900 pc);
4901 gdb_assert (result != NULL);
4902 return result;
4903 }
4904
4905 static void
4906 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4907 void *data, int need_fullname)
4908 {
4909 dw2_setup (objfile);
4910
4911 if (!dwarf2_per_objfile->filenames_cache)
4912 {
4913 dwarf2_per_objfile->filenames_cache.emplace ();
4914
4915 htab_up visited (htab_create_alloc (10,
4916 htab_hash_pointer, htab_eq_pointer,
4917 NULL, xcalloc, xfree));
4918
4919 /* The rule is CUs specify all the files, including those used
4920 by any TU, so there's no need to scan TUs here. We can
4921 ignore file names coming from already-expanded CUs. */
4922
4923 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4924 {
4925 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4926
4927 if (per_cu->v.quick->compunit_symtab)
4928 {
4929 void **slot = htab_find_slot (visited.get (),
4930 per_cu->v.quick->file_names,
4931 INSERT);
4932
4933 *slot = per_cu->v.quick->file_names;
4934 }
4935 }
4936
4937 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4938 {
4939 int j;
4940 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4941 struct quick_file_names *file_data;
4942 void **slot;
4943
4944 /* We only need to look at symtabs not already expanded. */
4945 if (per_cu->v.quick->compunit_symtab)
4946 continue;
4947
4948 file_data = dw2_get_file_names (per_cu);
4949 if (file_data == NULL)
4950 continue;
4951
4952 slot = htab_find_slot (visited.get (), file_data, INSERT);
4953 if (*slot)
4954 {
4955 /* Already visited. */
4956 continue;
4957 }
4958 *slot = file_data;
4959
4960 for (int j = 0; j < file_data->num_file_names; ++j)
4961 {
4962 const char *filename = file_data->file_names[j];
4963 dwarf2_per_objfile->filenames_cache->seen (filename);
4964 }
4965 }
4966 }
4967
4968 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4969 {
4970 gdb::unique_xmalloc_ptr<char> this_real_name;
4971
4972 if (need_fullname)
4973 this_real_name = gdb_realpath (filename);
4974 (*fun) (filename, this_real_name.get (), data);
4975 });
4976 }
4977
4978 static int
4979 dw2_has_symbols (struct objfile *objfile)
4980 {
4981 return 1;
4982 }
4983
4984 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4985 {
4986 dw2_has_symbols,
4987 dw2_find_last_source_symtab,
4988 dw2_forget_cached_source_info,
4989 dw2_map_symtabs_matching_filename,
4990 dw2_lookup_symbol,
4991 dw2_print_stats,
4992 dw2_dump,
4993 dw2_relocate,
4994 dw2_expand_symtabs_for_function,
4995 dw2_expand_all_symtabs,
4996 dw2_expand_symtabs_with_fullname,
4997 dw2_map_matching_symbols,
4998 dw2_expand_symtabs_matching,
4999 dw2_find_pc_sect_compunit_symtab,
5000 NULL,
5001 dw2_map_symbol_filenames
5002 };
5003
5004 /* Initialize for reading DWARF for this objfile. Return 0 if this
5005 file will use psymtabs, or 1 if using the GNU index. */
5006
5007 int
5008 dwarf2_initialize_objfile (struct objfile *objfile)
5009 {
5010 /* If we're about to read full symbols, don't bother with the
5011 indices. In this case we also don't care if some other debug
5012 format is making psymtabs, because they are all about to be
5013 expanded anyway. */
5014 if ((objfile->flags & OBJF_READNOW))
5015 {
5016 int i;
5017
5018 dwarf2_per_objfile->using_index = 1;
5019 create_all_comp_units (objfile);
5020 create_all_type_units (objfile);
5021 dwarf2_per_objfile->quick_file_names_table =
5022 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5023
5024 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
5025 + dwarf2_per_objfile->n_type_units); ++i)
5026 {
5027 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5028
5029 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5030 struct dwarf2_per_cu_quick_data);
5031 }
5032
5033 /* Return 1 so that gdb sees the "quick" functions. However,
5034 these functions will be no-ops because we will have expanded
5035 all symtabs. */
5036 return 1;
5037 }
5038
5039 if (dwarf2_read_index (objfile))
5040 return 1;
5041
5042 return 0;
5043 }
5044
5045 \f
5046
5047 /* Build a partial symbol table. */
5048
5049 void
5050 dwarf2_build_psymtabs (struct objfile *objfile)
5051 {
5052
5053 if (objfile->global_psymbols.capacity () == 0
5054 && objfile->static_psymbols.capacity () == 0)
5055 init_psymbol_list (objfile, 1024);
5056
5057 TRY
5058 {
5059 /* This isn't really ideal: all the data we allocate on the
5060 objfile's obstack is still uselessly kept around. However,
5061 freeing it seems unsafe. */
5062 psymtab_discarder psymtabs (objfile);
5063 dwarf2_build_psymtabs_hard (objfile);
5064 psymtabs.keep ();
5065 }
5066 CATCH (except, RETURN_MASK_ERROR)
5067 {
5068 exception_print (gdb_stderr, except);
5069 }
5070 END_CATCH
5071 }
5072
5073 /* Return the total length of the CU described by HEADER. */
5074
5075 static unsigned int
5076 get_cu_length (const struct comp_unit_head *header)
5077 {
5078 return header->initial_length_size + header->length;
5079 }
5080
5081 /* Return TRUE if SECT_OFF is within CU_HEADER. */
5082
5083 static inline bool
5084 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
5085 {
5086 sect_offset bottom = cu_header->sect_off;
5087 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
5088
5089 return sect_off >= bottom && sect_off < top;
5090 }
5091
5092 /* Find the base address of the compilation unit for range lists and
5093 location lists. It will normally be specified by DW_AT_low_pc.
5094 In DWARF-3 draft 4, the base address could be overridden by
5095 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5096 compilation units with discontinuous ranges. */
5097
5098 static void
5099 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5100 {
5101 struct attribute *attr;
5102
5103 cu->base_known = 0;
5104 cu->base_address = 0;
5105
5106 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5107 if (attr)
5108 {
5109 cu->base_address = attr_value_as_address (attr);
5110 cu->base_known = 1;
5111 }
5112 else
5113 {
5114 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5115 if (attr)
5116 {
5117 cu->base_address = attr_value_as_address (attr);
5118 cu->base_known = 1;
5119 }
5120 }
5121 }
5122
5123 /* Read in the comp unit header information from the debug_info at info_ptr.
5124 Use rcuh_kind::COMPILE as the default type if not known by the caller.
5125 NOTE: This leaves members offset, first_die_offset to be filled in
5126 by the caller. */
5127
5128 static const gdb_byte *
5129 read_comp_unit_head (struct comp_unit_head *cu_header,
5130 const gdb_byte *info_ptr,
5131 struct dwarf2_section_info *section,
5132 rcuh_kind section_kind)
5133 {
5134 int signed_addr;
5135 unsigned int bytes_read;
5136 const char *filename = get_section_file_name (section);
5137 bfd *abfd = get_section_bfd_owner (section);
5138
5139 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
5140 cu_header->initial_length_size = bytes_read;
5141 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
5142 info_ptr += bytes_read;
5143 cu_header->version = read_2_bytes (abfd, info_ptr);
5144 info_ptr += 2;
5145 if (cu_header->version < 5)
5146 switch (section_kind)
5147 {
5148 case rcuh_kind::COMPILE:
5149 cu_header->unit_type = DW_UT_compile;
5150 break;
5151 case rcuh_kind::TYPE:
5152 cu_header->unit_type = DW_UT_type;
5153 break;
5154 default:
5155 internal_error (__FILE__, __LINE__,
5156 _("read_comp_unit_head: invalid section_kind"));
5157 }
5158 else
5159 {
5160 cu_header->unit_type = static_cast<enum dwarf_unit_type>
5161 (read_1_byte (abfd, info_ptr));
5162 info_ptr += 1;
5163 switch (cu_header->unit_type)
5164 {
5165 case DW_UT_compile:
5166 if (section_kind != rcuh_kind::COMPILE)
5167 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5168 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
5169 filename);
5170 break;
5171 case DW_UT_type:
5172 section_kind = rcuh_kind::TYPE;
5173 break;
5174 default:
5175 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5176 "(is %d, should be %d or %d) [in module %s]"),
5177 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
5178 }
5179
5180 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5181 info_ptr += 1;
5182 }
5183 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
5184 cu_header,
5185 &bytes_read);
5186 info_ptr += bytes_read;
5187 if (cu_header->version < 5)
5188 {
5189 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5190 info_ptr += 1;
5191 }
5192 signed_addr = bfd_get_sign_extend_vma (abfd);
5193 if (signed_addr < 0)
5194 internal_error (__FILE__, __LINE__,
5195 _("read_comp_unit_head: dwarf from non elf file"));
5196 cu_header->signed_addr_p = signed_addr;
5197
5198 if (section_kind == rcuh_kind::TYPE)
5199 {
5200 LONGEST type_offset;
5201
5202 cu_header->signature = read_8_bytes (abfd, info_ptr);
5203 info_ptr += 8;
5204
5205 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
5206 info_ptr += bytes_read;
5207 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
5208 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
5209 error (_("Dwarf Error: Too big type_offset in compilation unit "
5210 "header (is %s) [in module %s]"), plongest (type_offset),
5211 filename);
5212 }
5213
5214 return info_ptr;
5215 }
5216
5217 /* Helper function that returns the proper abbrev section for
5218 THIS_CU. */
5219
5220 static struct dwarf2_section_info *
5221 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5222 {
5223 struct dwarf2_section_info *abbrev;
5224
5225 if (this_cu->is_dwz)
5226 abbrev = &dwarf2_get_dwz_file ()->abbrev;
5227 else
5228 abbrev = &dwarf2_per_objfile->abbrev;
5229
5230 return abbrev;
5231 }
5232
5233 /* Subroutine of read_and_check_comp_unit_head and
5234 read_and_check_type_unit_head to simplify them.
5235 Perform various error checking on the header. */
5236
5237 static void
5238 error_check_comp_unit_head (struct comp_unit_head *header,
5239 struct dwarf2_section_info *section,
5240 struct dwarf2_section_info *abbrev_section)
5241 {
5242 const char *filename = get_section_file_name (section);
5243
5244 if (header->version < 2 || header->version > 5)
5245 error (_("Dwarf Error: wrong version in compilation unit header "
5246 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
5247 filename);
5248
5249 if (to_underlying (header->abbrev_sect_off)
5250 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
5251 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
5252 "(offset 0x%x + 6) [in module %s]"),
5253 to_underlying (header->abbrev_sect_off),
5254 to_underlying (header->sect_off),
5255 filename);
5256
5257 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
5258 avoid potential 32-bit overflow. */
5259 if (((ULONGEST) header->sect_off + get_cu_length (header))
5260 > section->size)
5261 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
5262 "(offset 0x%x + 0) [in module %s]"),
5263 header->length, to_underlying (header->sect_off),
5264 filename);
5265 }
5266
5267 /* Read in a CU/TU header and perform some basic error checking.
5268 The contents of the header are stored in HEADER.
5269 The result is a pointer to the start of the first DIE. */
5270
5271 static const gdb_byte *
5272 read_and_check_comp_unit_head (struct comp_unit_head *header,
5273 struct dwarf2_section_info *section,
5274 struct dwarf2_section_info *abbrev_section,
5275 const gdb_byte *info_ptr,
5276 rcuh_kind section_kind)
5277 {
5278 const gdb_byte *beg_of_comp_unit = info_ptr;
5279 bfd *abfd = get_section_bfd_owner (section);
5280
5281 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
5282
5283 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
5284
5285 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
5286
5287 error_check_comp_unit_head (header, section, abbrev_section);
5288
5289 return info_ptr;
5290 }
5291
5292 /* Fetch the abbreviation table offset from a comp or type unit header. */
5293
5294 static sect_offset
5295 read_abbrev_offset (struct dwarf2_section_info *section,
5296 sect_offset sect_off)
5297 {
5298 bfd *abfd = get_section_bfd_owner (section);
5299 const gdb_byte *info_ptr;
5300 unsigned int initial_length_size, offset_size;
5301 uint16_t version;
5302
5303 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
5304 info_ptr = section->buffer + to_underlying (sect_off);
5305 read_initial_length (abfd, info_ptr, &initial_length_size);
5306 offset_size = initial_length_size == 4 ? 4 : 8;
5307 info_ptr += initial_length_size;
5308
5309 version = read_2_bytes (abfd, info_ptr);
5310 info_ptr += 2;
5311 if (version >= 5)
5312 {
5313 /* Skip unit type and address size. */
5314 info_ptr += 2;
5315 }
5316
5317 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
5318 }
5319
5320 /* Allocate a new partial symtab for file named NAME and mark this new
5321 partial symtab as being an include of PST. */
5322
5323 static void
5324 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
5325 struct objfile *objfile)
5326 {
5327 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
5328
5329 if (!IS_ABSOLUTE_PATH (subpst->filename))
5330 {
5331 /* It shares objfile->objfile_obstack. */
5332 subpst->dirname = pst->dirname;
5333 }
5334
5335 subpst->textlow = 0;
5336 subpst->texthigh = 0;
5337
5338 subpst->dependencies
5339 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
5340 subpst->dependencies[0] = pst;
5341 subpst->number_of_dependencies = 1;
5342
5343 subpst->globals_offset = 0;
5344 subpst->n_global_syms = 0;
5345 subpst->statics_offset = 0;
5346 subpst->n_static_syms = 0;
5347 subpst->compunit_symtab = NULL;
5348 subpst->read_symtab = pst->read_symtab;
5349 subpst->readin = 0;
5350
5351 /* No private part is necessary for include psymtabs. This property
5352 can be used to differentiate between such include psymtabs and
5353 the regular ones. */
5354 subpst->read_symtab_private = NULL;
5355 }
5356
5357 /* Read the Line Number Program data and extract the list of files
5358 included by the source file represented by PST. Build an include
5359 partial symtab for each of these included files. */
5360
5361 static void
5362 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5363 struct die_info *die,
5364 struct partial_symtab *pst)
5365 {
5366 line_header_up lh;
5367 struct attribute *attr;
5368
5369 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5370 if (attr)
5371 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5372 if (lh == NULL)
5373 return; /* No linetable, so no includes. */
5374
5375 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
5376 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
5377 }
5378
5379 static hashval_t
5380 hash_signatured_type (const void *item)
5381 {
5382 const struct signatured_type *sig_type
5383 = (const struct signatured_type *) item;
5384
5385 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5386 return sig_type->signature;
5387 }
5388
5389 static int
5390 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5391 {
5392 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5393 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5394
5395 return lhs->signature == rhs->signature;
5396 }
5397
5398 /* Allocate a hash table for signatured types. */
5399
5400 static htab_t
5401 allocate_signatured_type_table (struct objfile *objfile)
5402 {
5403 return htab_create_alloc_ex (41,
5404 hash_signatured_type,
5405 eq_signatured_type,
5406 NULL,
5407 &objfile->objfile_obstack,
5408 hashtab_obstack_allocate,
5409 dummy_obstack_deallocate);
5410 }
5411
5412 /* A helper function to add a signatured type CU to a table. */
5413
5414 static int
5415 add_signatured_type_cu_to_table (void **slot, void *datum)
5416 {
5417 struct signatured_type *sigt = (struct signatured_type *) *slot;
5418 struct signatured_type ***datap = (struct signatured_type ***) datum;
5419
5420 **datap = sigt;
5421 ++*datap;
5422
5423 return 1;
5424 }
5425
5426 /* A helper for create_debug_types_hash_table. Read types from SECTION
5427 and fill them into TYPES_HTAB. It will process only type units,
5428 therefore DW_UT_type. */
5429
5430 static void
5431 create_debug_type_hash_table (struct dwo_file *dwo_file,
5432 dwarf2_section_info *section, htab_t &types_htab,
5433 rcuh_kind section_kind)
5434 {
5435 struct objfile *objfile = dwarf2_per_objfile->objfile;
5436 struct dwarf2_section_info *abbrev_section;
5437 bfd *abfd;
5438 const gdb_byte *info_ptr, *end_ptr;
5439
5440 abbrev_section = (dwo_file != NULL
5441 ? &dwo_file->sections.abbrev
5442 : &dwarf2_per_objfile->abbrev);
5443
5444 if (dwarf_read_debug)
5445 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
5446 get_section_name (section),
5447 get_section_file_name (abbrev_section));
5448
5449 dwarf2_read_section (objfile, section);
5450 info_ptr = section->buffer;
5451
5452 if (info_ptr == NULL)
5453 return;
5454
5455 /* We can't set abfd until now because the section may be empty or
5456 not present, in which case the bfd is unknown. */
5457 abfd = get_section_bfd_owner (section);
5458
5459 /* We don't use init_cutu_and_read_dies_simple, or some such, here
5460 because we don't need to read any dies: the signature is in the
5461 header. */
5462
5463 end_ptr = info_ptr + section->size;
5464 while (info_ptr < end_ptr)
5465 {
5466 struct signatured_type *sig_type;
5467 struct dwo_unit *dwo_tu;
5468 void **slot;
5469 const gdb_byte *ptr = info_ptr;
5470 struct comp_unit_head header;
5471 unsigned int length;
5472
5473 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5474
5475 /* Initialize it due to a false compiler warning. */
5476 header.signature = -1;
5477 header.type_cu_offset_in_tu = (cu_offset) -1;
5478
5479 /* We need to read the type's signature in order to build the hash
5480 table, but we don't need anything else just yet. */
5481
5482 ptr = read_and_check_comp_unit_head (&header, section,
5483 abbrev_section, ptr, section_kind);
5484
5485 length = get_cu_length (&header);
5486
5487 /* Skip dummy type units. */
5488 if (ptr >= info_ptr + length
5489 || peek_abbrev_code (abfd, ptr) == 0
5490 || header.unit_type != DW_UT_type)
5491 {
5492 info_ptr += length;
5493 continue;
5494 }
5495
5496 if (types_htab == NULL)
5497 {
5498 if (dwo_file)
5499 types_htab = allocate_dwo_unit_table (objfile);
5500 else
5501 types_htab = allocate_signatured_type_table (objfile);
5502 }
5503
5504 if (dwo_file)
5505 {
5506 sig_type = NULL;
5507 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5508 struct dwo_unit);
5509 dwo_tu->dwo_file = dwo_file;
5510 dwo_tu->signature = header.signature;
5511 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5512 dwo_tu->section = section;
5513 dwo_tu->sect_off = sect_off;
5514 dwo_tu->length = length;
5515 }
5516 else
5517 {
5518 /* N.B.: type_offset is not usable if this type uses a DWO file.
5519 The real type_offset is in the DWO file. */
5520 dwo_tu = NULL;
5521 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5522 struct signatured_type);
5523 sig_type->signature = header.signature;
5524 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
5525 sig_type->per_cu.objfile = objfile;
5526 sig_type->per_cu.is_debug_types = 1;
5527 sig_type->per_cu.section = section;
5528 sig_type->per_cu.sect_off = sect_off;
5529 sig_type->per_cu.length = length;
5530 }
5531
5532 slot = htab_find_slot (types_htab,
5533 dwo_file ? (void*) dwo_tu : (void *) sig_type,
5534 INSERT);
5535 gdb_assert (slot != NULL);
5536 if (*slot != NULL)
5537 {
5538 sect_offset dup_sect_off;
5539
5540 if (dwo_file)
5541 {
5542 const struct dwo_unit *dup_tu
5543 = (const struct dwo_unit *) *slot;
5544
5545 dup_sect_off = dup_tu->sect_off;
5546 }
5547 else
5548 {
5549 const struct signatured_type *dup_tu
5550 = (const struct signatured_type *) *slot;
5551
5552 dup_sect_off = dup_tu->per_cu.sect_off;
5553 }
5554
5555 complaint (&symfile_complaints,
5556 _("debug type entry at offset 0x%x is duplicate to"
5557 " the entry at offset 0x%x, signature %s"),
5558 to_underlying (sect_off), to_underlying (dup_sect_off),
5559 hex_string (header.signature));
5560 }
5561 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
5562
5563 if (dwarf_read_debug > 1)
5564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
5565 to_underlying (sect_off),
5566 hex_string (header.signature));
5567
5568 info_ptr += length;
5569 }
5570 }
5571
5572 /* Create the hash table of all entries in the .debug_types
5573 (or .debug_types.dwo) section(s).
5574 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
5575 otherwise it is NULL.
5576
5577 The result is a pointer to the hash table or NULL if there are no types.
5578
5579 Note: This function processes DWO files only, not DWP files. */
5580
5581 static void
5582 create_debug_types_hash_table (struct dwo_file *dwo_file,
5583 VEC (dwarf2_section_info_def) *types,
5584 htab_t &types_htab)
5585 {
5586 int ix;
5587 struct dwarf2_section_info *section;
5588
5589 if (VEC_empty (dwarf2_section_info_def, types))
5590 return;
5591
5592 for (ix = 0;
5593 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5594 ++ix)
5595 create_debug_type_hash_table (dwo_file, section, types_htab,
5596 rcuh_kind::TYPE);
5597 }
5598
5599 /* Create the hash table of all entries in the .debug_types section,
5600 and initialize all_type_units.
5601 The result is zero if there is an error (e.g. missing .debug_types section),
5602 otherwise non-zero. */
5603
5604 static int
5605 create_all_type_units (struct objfile *objfile)
5606 {
5607 htab_t types_htab = NULL;
5608 struct signatured_type **iter;
5609
5610 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5611 rcuh_kind::COMPILE);
5612 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5613 if (types_htab == NULL)
5614 {
5615 dwarf2_per_objfile->signatured_types = NULL;
5616 return 0;
5617 }
5618
5619 dwarf2_per_objfile->signatured_types = types_htab;
5620
5621 dwarf2_per_objfile->n_type_units
5622 = dwarf2_per_objfile->n_allocated_type_units
5623 = htab_elements (types_htab);
5624 dwarf2_per_objfile->all_type_units =
5625 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5626 iter = &dwarf2_per_objfile->all_type_units[0];
5627 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5628 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5629 == dwarf2_per_objfile->n_type_units);
5630
5631 return 1;
5632 }
5633
5634 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5635 If SLOT is non-NULL, it is the entry to use in the hash table.
5636 Otherwise we find one. */
5637
5638 static struct signatured_type *
5639 add_type_unit (ULONGEST sig, void **slot)
5640 {
5641 struct objfile *objfile = dwarf2_per_objfile->objfile;
5642 int n_type_units = dwarf2_per_objfile->n_type_units;
5643 struct signatured_type *sig_type;
5644
5645 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5646 ++n_type_units;
5647 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5648 {
5649 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5650 dwarf2_per_objfile->n_allocated_type_units = 1;
5651 dwarf2_per_objfile->n_allocated_type_units *= 2;
5652 dwarf2_per_objfile->all_type_units
5653 = XRESIZEVEC (struct signatured_type *,
5654 dwarf2_per_objfile->all_type_units,
5655 dwarf2_per_objfile->n_allocated_type_units);
5656 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5657 }
5658 dwarf2_per_objfile->n_type_units = n_type_units;
5659
5660 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5661 struct signatured_type);
5662 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5663 sig_type->signature = sig;
5664 sig_type->per_cu.is_debug_types = 1;
5665 if (dwarf2_per_objfile->using_index)
5666 {
5667 sig_type->per_cu.v.quick =
5668 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5669 struct dwarf2_per_cu_quick_data);
5670 }
5671
5672 if (slot == NULL)
5673 {
5674 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5675 sig_type, INSERT);
5676 }
5677 gdb_assert (*slot == NULL);
5678 *slot = sig_type;
5679 /* The rest of sig_type must be filled in by the caller. */
5680 return sig_type;
5681 }
5682
5683 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5684 Fill in SIG_ENTRY with DWO_ENTRY. */
5685
5686 static void
5687 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5688 struct signatured_type *sig_entry,
5689 struct dwo_unit *dwo_entry)
5690 {
5691 /* Make sure we're not clobbering something we don't expect to. */
5692 gdb_assert (! sig_entry->per_cu.queued);
5693 gdb_assert (sig_entry->per_cu.cu == NULL);
5694 if (dwarf2_per_objfile->using_index)
5695 {
5696 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5697 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5698 }
5699 else
5700 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5701 gdb_assert (sig_entry->signature == dwo_entry->signature);
5702 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5703 gdb_assert (sig_entry->type_unit_group == NULL);
5704 gdb_assert (sig_entry->dwo_unit == NULL);
5705
5706 sig_entry->per_cu.section = dwo_entry->section;
5707 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5708 sig_entry->per_cu.length = dwo_entry->length;
5709 sig_entry->per_cu.reading_dwo_directly = 1;
5710 sig_entry->per_cu.objfile = objfile;
5711 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5712 sig_entry->dwo_unit = dwo_entry;
5713 }
5714
5715 /* Subroutine of lookup_signatured_type.
5716 If we haven't read the TU yet, create the signatured_type data structure
5717 for a TU to be read in directly from a DWO file, bypassing the stub.
5718 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5719 using .gdb_index, then when reading a CU we want to stay in the DWO file
5720 containing that CU. Otherwise we could end up reading several other DWO
5721 files (due to comdat folding) to process the transitive closure of all the
5722 mentioned TUs, and that can be slow. The current DWO file will have every
5723 type signature that it needs.
5724 We only do this for .gdb_index because in the psymtab case we already have
5725 to read all the DWOs to build the type unit groups. */
5726
5727 static struct signatured_type *
5728 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5729 {
5730 struct objfile *objfile = dwarf2_per_objfile->objfile;
5731 struct dwo_file *dwo_file;
5732 struct dwo_unit find_dwo_entry, *dwo_entry;
5733 struct signatured_type find_sig_entry, *sig_entry;
5734 void **slot;
5735
5736 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5737
5738 /* If TU skeletons have been removed then we may not have read in any
5739 TUs yet. */
5740 if (dwarf2_per_objfile->signatured_types == NULL)
5741 {
5742 dwarf2_per_objfile->signatured_types
5743 = allocate_signatured_type_table (objfile);
5744 }
5745
5746 /* We only ever need to read in one copy of a signatured type.
5747 Use the global signatured_types array to do our own comdat-folding
5748 of types. If this is the first time we're reading this TU, and
5749 the TU has an entry in .gdb_index, replace the recorded data from
5750 .gdb_index with this TU. */
5751
5752 find_sig_entry.signature = sig;
5753 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5754 &find_sig_entry, INSERT);
5755 sig_entry = (struct signatured_type *) *slot;
5756
5757 /* We can get here with the TU already read, *or* in the process of being
5758 read. Don't reassign the global entry to point to this DWO if that's
5759 the case. Also note that if the TU is already being read, it may not
5760 have come from a DWO, the program may be a mix of Fission-compiled
5761 code and non-Fission-compiled code. */
5762
5763 /* Have we already tried to read this TU?
5764 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5765 needn't exist in the global table yet). */
5766 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5767 return sig_entry;
5768
5769 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5770 dwo_unit of the TU itself. */
5771 dwo_file = cu->dwo_unit->dwo_file;
5772
5773 /* Ok, this is the first time we're reading this TU. */
5774 if (dwo_file->tus == NULL)
5775 return NULL;
5776 find_dwo_entry.signature = sig;
5777 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5778 if (dwo_entry == NULL)
5779 return NULL;
5780
5781 /* If the global table doesn't have an entry for this TU, add one. */
5782 if (sig_entry == NULL)
5783 sig_entry = add_type_unit (sig, slot);
5784
5785 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5786 sig_entry->per_cu.tu_read = 1;
5787 return sig_entry;
5788 }
5789
5790 /* Subroutine of lookup_signatured_type.
5791 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5792 then try the DWP file. If the TU stub (skeleton) has been removed then
5793 it won't be in .gdb_index. */
5794
5795 static struct signatured_type *
5796 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5797 {
5798 struct objfile *objfile = dwarf2_per_objfile->objfile;
5799 struct dwp_file *dwp_file = get_dwp_file ();
5800 struct dwo_unit *dwo_entry;
5801 struct signatured_type find_sig_entry, *sig_entry;
5802 void **slot;
5803
5804 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5805 gdb_assert (dwp_file != NULL);
5806
5807 /* If TU skeletons have been removed then we may not have read in any
5808 TUs yet. */
5809 if (dwarf2_per_objfile->signatured_types == NULL)
5810 {
5811 dwarf2_per_objfile->signatured_types
5812 = allocate_signatured_type_table (objfile);
5813 }
5814
5815 find_sig_entry.signature = sig;
5816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5817 &find_sig_entry, INSERT);
5818 sig_entry = (struct signatured_type *) *slot;
5819
5820 /* Have we already tried to read this TU?
5821 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5822 needn't exist in the global table yet). */
5823 if (sig_entry != NULL)
5824 return sig_entry;
5825
5826 if (dwp_file->tus == NULL)
5827 return NULL;
5828 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5829 sig, 1 /* is_debug_types */);
5830 if (dwo_entry == NULL)
5831 return NULL;
5832
5833 sig_entry = add_type_unit (sig, slot);
5834 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5835
5836 return sig_entry;
5837 }
5838
5839 /* Lookup a signature based type for DW_FORM_ref_sig8.
5840 Returns NULL if signature SIG is not present in the table.
5841 It is up to the caller to complain about this. */
5842
5843 static struct signatured_type *
5844 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5845 {
5846 if (cu->dwo_unit
5847 && dwarf2_per_objfile->using_index)
5848 {
5849 /* We're in a DWO/DWP file, and we're using .gdb_index.
5850 These cases require special processing. */
5851 if (get_dwp_file () == NULL)
5852 return lookup_dwo_signatured_type (cu, sig);
5853 else
5854 return lookup_dwp_signatured_type (cu, sig);
5855 }
5856 else
5857 {
5858 struct signatured_type find_entry, *entry;
5859
5860 if (dwarf2_per_objfile->signatured_types == NULL)
5861 return NULL;
5862 find_entry.signature = sig;
5863 entry = ((struct signatured_type *)
5864 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5865 return entry;
5866 }
5867 }
5868 \f
5869 /* Low level DIE reading support. */
5870
5871 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5872
5873 static void
5874 init_cu_die_reader (struct die_reader_specs *reader,
5875 struct dwarf2_cu *cu,
5876 struct dwarf2_section_info *section,
5877 struct dwo_file *dwo_file)
5878 {
5879 gdb_assert (section->readin && section->buffer != NULL);
5880 reader->abfd = get_section_bfd_owner (section);
5881 reader->cu = cu;
5882 reader->dwo_file = dwo_file;
5883 reader->die_section = section;
5884 reader->buffer = section->buffer;
5885 reader->buffer_end = section->buffer + section->size;
5886 reader->comp_dir = NULL;
5887 }
5888
5889 /* Subroutine of init_cutu_and_read_dies to simplify it.
5890 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5891 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5892 already.
5893
5894 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5895 from it to the DIE in the DWO. If NULL we are skipping the stub.
5896 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5897 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5898 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5899 STUB_COMP_DIR may be non-NULL.
5900 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5901 are filled in with the info of the DIE from the DWO file.
5902 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5903 provided an abbrev table to use.
5904 The result is non-zero if a valid (non-dummy) DIE was found. */
5905
5906 static int
5907 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5908 struct dwo_unit *dwo_unit,
5909 int abbrev_table_provided,
5910 struct die_info *stub_comp_unit_die,
5911 const char *stub_comp_dir,
5912 struct die_reader_specs *result_reader,
5913 const gdb_byte **result_info_ptr,
5914 struct die_info **result_comp_unit_die,
5915 int *result_has_children)
5916 {
5917 struct objfile *objfile = dwarf2_per_objfile->objfile;
5918 struct dwarf2_cu *cu = this_cu->cu;
5919 struct dwarf2_section_info *section;
5920 bfd *abfd;
5921 const gdb_byte *begin_info_ptr, *info_ptr;
5922 ULONGEST signature; /* Or dwo_id. */
5923 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5924 int i,num_extra_attrs;
5925 struct dwarf2_section_info *dwo_abbrev_section;
5926 struct attribute *attr;
5927 struct die_info *comp_unit_die;
5928
5929 /* At most one of these may be provided. */
5930 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5931
5932 /* These attributes aren't processed until later:
5933 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5934 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5935 referenced later. However, these attributes are found in the stub
5936 which we won't have later. In order to not impose this complication
5937 on the rest of the code, we read them here and copy them to the
5938 DWO CU/TU die. */
5939
5940 stmt_list = NULL;
5941 low_pc = NULL;
5942 high_pc = NULL;
5943 ranges = NULL;
5944 comp_dir = NULL;
5945
5946 if (stub_comp_unit_die != NULL)
5947 {
5948 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5949 DWO file. */
5950 if (! this_cu->is_debug_types)
5951 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5952 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5953 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5954 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5955 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5956
5957 /* There should be a DW_AT_addr_base attribute here (if needed).
5958 We need the value before we can process DW_FORM_GNU_addr_index. */
5959 cu->addr_base = 0;
5960 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5961 if (attr)
5962 cu->addr_base = DW_UNSND (attr);
5963
5964 /* There should be a DW_AT_ranges_base attribute here (if needed).
5965 We need the value before we can process DW_AT_ranges. */
5966 cu->ranges_base = 0;
5967 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5968 if (attr)
5969 cu->ranges_base = DW_UNSND (attr);
5970 }
5971 else if (stub_comp_dir != NULL)
5972 {
5973 /* Reconstruct the comp_dir attribute to simplify the code below. */
5974 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5975 comp_dir->name = DW_AT_comp_dir;
5976 comp_dir->form = DW_FORM_string;
5977 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5978 DW_STRING (comp_dir) = stub_comp_dir;
5979 }
5980
5981 /* Set up for reading the DWO CU/TU. */
5982 cu->dwo_unit = dwo_unit;
5983 section = dwo_unit->section;
5984 dwarf2_read_section (objfile, section);
5985 abfd = get_section_bfd_owner (section);
5986 begin_info_ptr = info_ptr = (section->buffer
5987 + to_underlying (dwo_unit->sect_off));
5988 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5989 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5990
5991 if (this_cu->is_debug_types)
5992 {
5993 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5994
5995 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5996 dwo_abbrev_section,
5997 info_ptr, rcuh_kind::TYPE);
5998 /* This is not an assert because it can be caused by bad debug info. */
5999 if (sig_type->signature != cu->header.signature)
6000 {
6001 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6002 " TU at offset 0x%x [in module %s]"),
6003 hex_string (sig_type->signature),
6004 hex_string (cu->header.signature),
6005 to_underlying (dwo_unit->sect_off),
6006 bfd_get_filename (abfd));
6007 }
6008 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6009 /* For DWOs coming from DWP files, we don't know the CU length
6010 nor the type's offset in the TU until now. */
6011 dwo_unit->length = get_cu_length (&cu->header);
6012 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6013
6014 /* Establish the type offset that can be used to lookup the type.
6015 For DWO files, we don't know it until now. */
6016 sig_type->type_offset_in_section
6017 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6018 }
6019 else
6020 {
6021 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6022 dwo_abbrev_section,
6023 info_ptr, rcuh_kind::COMPILE);
6024 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6025 /* For DWOs coming from DWP files, we don't know the CU length
6026 until now. */
6027 dwo_unit->length = get_cu_length (&cu->header);
6028 }
6029
6030 /* Replace the CU's original abbrev table with the DWO's.
6031 Reminder: We can't read the abbrev table until we've read the header. */
6032 if (abbrev_table_provided)
6033 {
6034 /* Don't free the provided abbrev table, the caller of
6035 init_cutu_and_read_dies owns it. */
6036 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6037 /* Ensure the DWO abbrev table gets freed. */
6038 make_cleanup (dwarf2_free_abbrev_table, cu);
6039 }
6040 else
6041 {
6042 dwarf2_free_abbrev_table (cu);
6043 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6044 /* Leave any existing abbrev table cleanup as is. */
6045 }
6046
6047 /* Read in the die, but leave space to copy over the attributes
6048 from the stub. This has the benefit of simplifying the rest of
6049 the code - all the work to maintain the illusion of a single
6050 DW_TAG_{compile,type}_unit DIE is done here. */
6051 num_extra_attrs = ((stmt_list != NULL)
6052 + (low_pc != NULL)
6053 + (high_pc != NULL)
6054 + (ranges != NULL)
6055 + (comp_dir != NULL));
6056 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6057 result_has_children, num_extra_attrs);
6058
6059 /* Copy over the attributes from the stub to the DIE we just read in. */
6060 comp_unit_die = *result_comp_unit_die;
6061 i = comp_unit_die->num_attrs;
6062 if (stmt_list != NULL)
6063 comp_unit_die->attrs[i++] = *stmt_list;
6064 if (low_pc != NULL)
6065 comp_unit_die->attrs[i++] = *low_pc;
6066 if (high_pc != NULL)
6067 comp_unit_die->attrs[i++] = *high_pc;
6068 if (ranges != NULL)
6069 comp_unit_die->attrs[i++] = *ranges;
6070 if (comp_dir != NULL)
6071 comp_unit_die->attrs[i++] = *comp_dir;
6072 comp_unit_die->num_attrs += num_extra_attrs;
6073
6074 if (dwarf_die_debug)
6075 {
6076 fprintf_unfiltered (gdb_stdlog,
6077 "Read die from %s@0x%x of %s:\n",
6078 get_section_name (section),
6079 (unsigned) (begin_info_ptr - section->buffer),
6080 bfd_get_filename (abfd));
6081 dump_die (comp_unit_die, dwarf_die_debug);
6082 }
6083
6084 /* Save the comp_dir attribute. If there is no DWP file then we'll read
6085 TUs by skipping the stub and going directly to the entry in the DWO file.
6086 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
6087 to get it via circuitous means. Blech. */
6088 if (comp_dir != NULL)
6089 result_reader->comp_dir = DW_STRING (comp_dir);
6090
6091 /* Skip dummy compilation units. */
6092 if (info_ptr >= begin_info_ptr + dwo_unit->length
6093 || peek_abbrev_code (abfd, info_ptr) == 0)
6094 return 0;
6095
6096 *result_info_ptr = info_ptr;
6097 return 1;
6098 }
6099
6100 /* Subroutine of init_cutu_and_read_dies to simplify it.
6101 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6102 Returns NULL if the specified DWO unit cannot be found. */
6103
6104 static struct dwo_unit *
6105 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6106 struct die_info *comp_unit_die)
6107 {
6108 struct dwarf2_cu *cu = this_cu->cu;
6109 struct attribute *attr;
6110 ULONGEST signature;
6111 struct dwo_unit *dwo_unit;
6112 const char *comp_dir, *dwo_name;
6113
6114 gdb_assert (cu != NULL);
6115
6116 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6117 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6118 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6119
6120 if (this_cu->is_debug_types)
6121 {
6122 struct signatured_type *sig_type;
6123
6124 /* Since this_cu is the first member of struct signatured_type,
6125 we can go from a pointer to one to a pointer to the other. */
6126 sig_type = (struct signatured_type *) this_cu;
6127 signature = sig_type->signature;
6128 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6129 }
6130 else
6131 {
6132 struct attribute *attr;
6133
6134 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6135 if (! attr)
6136 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6137 " [in module %s]"),
6138 dwo_name, objfile_name (this_cu->objfile));
6139 signature = DW_UNSND (attr);
6140 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6141 signature);
6142 }
6143
6144 return dwo_unit;
6145 }
6146
6147 /* Subroutine of init_cutu_and_read_dies to simplify it.
6148 See it for a description of the parameters.
6149 Read a TU directly from a DWO file, bypassing the stub.
6150
6151 Note: This function could be a little bit simpler if we shared cleanups
6152 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
6153 to do, so we keep this function self-contained. Or we could move this
6154 into our caller, but it's complex enough already. */
6155
6156 static void
6157 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6158 int use_existing_cu, int keep,
6159 die_reader_func_ftype *die_reader_func,
6160 void *data)
6161 {
6162 struct dwarf2_cu *cu;
6163 struct signatured_type *sig_type;
6164 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6165 struct die_reader_specs reader;
6166 const gdb_byte *info_ptr;
6167 struct die_info *comp_unit_die;
6168 int has_children;
6169
6170 /* Verify we can do the following downcast, and that we have the
6171 data we need. */
6172 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6173 sig_type = (struct signatured_type *) this_cu;
6174 gdb_assert (sig_type->dwo_unit != NULL);
6175
6176 cleanups = make_cleanup (null_cleanup, NULL);
6177
6178 if (use_existing_cu && this_cu->cu != NULL)
6179 {
6180 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6181 cu = this_cu->cu;
6182 /* There's no need to do the rereading_dwo_cu handling that
6183 init_cutu_and_read_dies does since we don't read the stub. */
6184 }
6185 else
6186 {
6187 /* If !use_existing_cu, this_cu->cu must be NULL. */
6188 gdb_assert (this_cu->cu == NULL);
6189 cu = XNEW (struct dwarf2_cu);
6190 init_one_comp_unit (cu, this_cu);
6191 /* If an error occurs while loading, release our storage. */
6192 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6193 }
6194
6195 /* A future optimization, if needed, would be to use an existing
6196 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6197 could share abbrev tables. */
6198
6199 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6200 0 /* abbrev_table_provided */,
6201 NULL /* stub_comp_unit_die */,
6202 sig_type->dwo_unit->dwo_file->comp_dir,
6203 &reader, &info_ptr,
6204 &comp_unit_die, &has_children) == 0)
6205 {
6206 /* Dummy die. */
6207 do_cleanups (cleanups);
6208 return;
6209 }
6210
6211 /* All the "real" work is done here. */
6212 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6213
6214 /* This duplicates the code in init_cutu_and_read_dies,
6215 but the alternative is making the latter more complex.
6216 This function is only for the special case of using DWO files directly:
6217 no point in overly complicating the general case just to handle this. */
6218 if (free_cu_cleanup != NULL)
6219 {
6220 if (keep)
6221 {
6222 /* We've successfully allocated this compilation unit. Let our
6223 caller clean it up when finished with it. */
6224 discard_cleanups (free_cu_cleanup);
6225
6226 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6227 So we have to manually free the abbrev table. */
6228 dwarf2_free_abbrev_table (cu);
6229
6230 /* Link this CU into read_in_chain. */
6231 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6232 dwarf2_per_objfile->read_in_chain = this_cu;
6233 }
6234 else
6235 do_cleanups (free_cu_cleanup);
6236 }
6237
6238 do_cleanups (cleanups);
6239 }
6240
6241 /* Initialize a CU (or TU) and read its DIEs.
6242 If the CU defers to a DWO file, read the DWO file as well.
6243
6244 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6245 Otherwise the table specified in the comp unit header is read in and used.
6246 This is an optimization for when we already have the abbrev table.
6247
6248 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6249 Otherwise, a new CU is allocated with xmalloc.
6250
6251 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
6252 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
6253
6254 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6255 linker) then DIE_READER_FUNC will not get called. */
6256
6257 static void
6258 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
6259 struct abbrev_table *abbrev_table,
6260 int use_existing_cu, int keep,
6261 die_reader_func_ftype *die_reader_func,
6262 void *data)
6263 {
6264 struct objfile *objfile = dwarf2_per_objfile->objfile;
6265 struct dwarf2_section_info *section = this_cu->section;
6266 bfd *abfd = get_section_bfd_owner (section);
6267 struct dwarf2_cu *cu;
6268 const gdb_byte *begin_info_ptr, *info_ptr;
6269 struct die_reader_specs reader;
6270 struct die_info *comp_unit_die;
6271 int has_children;
6272 struct attribute *attr;
6273 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6274 struct signatured_type *sig_type = NULL;
6275 struct dwarf2_section_info *abbrev_section;
6276 /* Non-zero if CU currently points to a DWO file and we need to
6277 reread it. When this happens we need to reread the skeleton die
6278 before we can reread the DWO file (this only applies to CUs, not TUs). */
6279 int rereading_dwo_cu = 0;
6280
6281 if (dwarf_die_debug)
6282 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6283 this_cu->is_debug_types ? "type" : "comp",
6284 to_underlying (this_cu->sect_off));
6285
6286 if (use_existing_cu)
6287 gdb_assert (keep);
6288
6289 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6290 file (instead of going through the stub), short-circuit all of this. */
6291 if (this_cu->reading_dwo_directly)
6292 {
6293 /* Narrow down the scope of possibilities to have to understand. */
6294 gdb_assert (this_cu->is_debug_types);
6295 gdb_assert (abbrev_table == NULL);
6296 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
6297 die_reader_func, data);
6298 return;
6299 }
6300
6301 cleanups = make_cleanup (null_cleanup, NULL);
6302
6303 /* This is cheap if the section is already read in. */
6304 dwarf2_read_section (objfile, section);
6305
6306 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6307
6308 abbrev_section = get_abbrev_section_for_cu (this_cu);
6309
6310 if (use_existing_cu && this_cu->cu != NULL)
6311 {
6312 cu = this_cu->cu;
6313 /* If this CU is from a DWO file we need to start over, we need to
6314 refetch the attributes from the skeleton CU.
6315 This could be optimized by retrieving those attributes from when we
6316 were here the first time: the previous comp_unit_die was stored in
6317 comp_unit_obstack. But there's no data yet that we need this
6318 optimization. */
6319 if (cu->dwo_unit != NULL)
6320 rereading_dwo_cu = 1;
6321 }
6322 else
6323 {
6324 /* If !use_existing_cu, this_cu->cu must be NULL. */
6325 gdb_assert (this_cu->cu == NULL);
6326 cu = XNEW (struct dwarf2_cu);
6327 init_one_comp_unit (cu, this_cu);
6328 /* If an error occurs while loading, release our storage. */
6329 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6330 }
6331
6332 /* Get the header. */
6333 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6334 {
6335 /* We already have the header, there's no need to read it in again. */
6336 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6337 }
6338 else
6339 {
6340 if (this_cu->is_debug_types)
6341 {
6342 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6343 abbrev_section, info_ptr,
6344 rcuh_kind::TYPE);
6345
6346 /* Since per_cu is the first member of struct signatured_type,
6347 we can go from a pointer to one to a pointer to the other. */
6348 sig_type = (struct signatured_type *) this_cu;
6349 gdb_assert (sig_type->signature == cu->header.signature);
6350 gdb_assert (sig_type->type_offset_in_tu
6351 == cu->header.type_cu_offset_in_tu);
6352 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6353
6354 /* LENGTH has not been set yet for type units if we're
6355 using .gdb_index. */
6356 this_cu->length = get_cu_length (&cu->header);
6357
6358 /* Establish the type offset that can be used to lookup the type. */
6359 sig_type->type_offset_in_section =
6360 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6361
6362 this_cu->dwarf_version = cu->header.version;
6363 }
6364 else
6365 {
6366 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6367 abbrev_section,
6368 info_ptr,
6369 rcuh_kind::COMPILE);
6370
6371 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6372 gdb_assert (this_cu->length == get_cu_length (&cu->header));
6373 this_cu->dwarf_version = cu->header.version;
6374 }
6375 }
6376
6377 /* Skip dummy compilation units. */
6378 if (info_ptr >= begin_info_ptr + this_cu->length
6379 || peek_abbrev_code (abfd, info_ptr) == 0)
6380 {
6381 do_cleanups (cleanups);
6382 return;
6383 }
6384
6385 /* If we don't have them yet, read the abbrevs for this compilation unit.
6386 And if we need to read them now, make sure they're freed when we're
6387 done. Note that it's important that if the CU had an abbrev table
6388 on entry we don't free it when we're done: Somewhere up the call stack
6389 it may be in use. */
6390 if (abbrev_table != NULL)
6391 {
6392 gdb_assert (cu->abbrev_table == NULL);
6393 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6394 cu->abbrev_table = abbrev_table;
6395 }
6396 else if (cu->abbrev_table == NULL)
6397 {
6398 dwarf2_read_abbrevs (cu, abbrev_section);
6399 make_cleanup (dwarf2_free_abbrev_table, cu);
6400 }
6401 else if (rereading_dwo_cu)
6402 {
6403 dwarf2_free_abbrev_table (cu);
6404 dwarf2_read_abbrevs (cu, abbrev_section);
6405 }
6406
6407 /* Read the top level CU/TU die. */
6408 init_cu_die_reader (&reader, cu, section, NULL);
6409 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6410
6411 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6412 from the DWO file.
6413 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6414 DWO CU, that this test will fail (the attribute will not be present). */
6415 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6416 if (attr)
6417 {
6418 struct dwo_unit *dwo_unit;
6419 struct die_info *dwo_comp_unit_die;
6420
6421 if (has_children)
6422 {
6423 complaint (&symfile_complaints,
6424 _("compilation unit with DW_AT_GNU_dwo_name"
6425 " has children (offset 0x%x) [in module %s]"),
6426 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6427 }
6428 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6429 if (dwo_unit != NULL)
6430 {
6431 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6432 abbrev_table != NULL,
6433 comp_unit_die, NULL,
6434 &reader, &info_ptr,
6435 &dwo_comp_unit_die, &has_children) == 0)
6436 {
6437 /* Dummy die. */
6438 do_cleanups (cleanups);
6439 return;
6440 }
6441 comp_unit_die = dwo_comp_unit_die;
6442 }
6443 else
6444 {
6445 /* Yikes, we couldn't find the rest of the DIE, we only have
6446 the stub. A complaint has already been logged. There's
6447 not much more we can do except pass on the stub DIE to
6448 die_reader_func. We don't want to throw an error on bad
6449 debug info. */
6450 }
6451 }
6452
6453 /* All of the above is setup for this call. Yikes. */
6454 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6455
6456 /* Done, clean up. */
6457 if (free_cu_cleanup != NULL)
6458 {
6459 if (keep)
6460 {
6461 /* We've successfully allocated this compilation unit. Let our
6462 caller clean it up when finished with it. */
6463 discard_cleanups (free_cu_cleanup);
6464
6465 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6466 So we have to manually free the abbrev table. */
6467 dwarf2_free_abbrev_table (cu);
6468
6469 /* Link this CU into read_in_chain. */
6470 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6471 dwarf2_per_objfile->read_in_chain = this_cu;
6472 }
6473 else
6474 do_cleanups (free_cu_cleanup);
6475 }
6476
6477 do_cleanups (cleanups);
6478 }
6479
6480 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
6481 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
6482 to have already done the lookup to find the DWO file).
6483
6484 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6485 THIS_CU->is_debug_types, but nothing else.
6486
6487 We fill in THIS_CU->length.
6488
6489 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6490 linker) then DIE_READER_FUNC will not get called.
6491
6492 THIS_CU->cu is always freed when done.
6493 This is done in order to not leave THIS_CU->cu in a state where we have
6494 to care whether it refers to the "main" CU or the DWO CU. */
6495
6496 static void
6497 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
6498 struct dwo_file *dwo_file,
6499 die_reader_func_ftype *die_reader_func,
6500 void *data)
6501 {
6502 struct objfile *objfile = dwarf2_per_objfile->objfile;
6503 struct dwarf2_section_info *section = this_cu->section;
6504 bfd *abfd = get_section_bfd_owner (section);
6505 struct dwarf2_section_info *abbrev_section;
6506 struct dwarf2_cu cu;
6507 const gdb_byte *begin_info_ptr, *info_ptr;
6508 struct die_reader_specs reader;
6509 struct cleanup *cleanups;
6510 struct die_info *comp_unit_die;
6511 int has_children;
6512
6513 if (dwarf_die_debug)
6514 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6515 this_cu->is_debug_types ? "type" : "comp",
6516 to_underlying (this_cu->sect_off));
6517
6518 gdb_assert (this_cu->cu == NULL);
6519
6520 abbrev_section = (dwo_file != NULL
6521 ? &dwo_file->sections.abbrev
6522 : get_abbrev_section_for_cu (this_cu));
6523
6524 /* This is cheap if the section is already read in. */
6525 dwarf2_read_section (objfile, section);
6526
6527 init_one_comp_unit (&cu, this_cu);
6528
6529 cleanups = make_cleanup (free_stack_comp_unit, &cu);
6530
6531 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6532 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
6533 abbrev_section, info_ptr,
6534 (this_cu->is_debug_types
6535 ? rcuh_kind::TYPE
6536 : rcuh_kind::COMPILE));
6537
6538 this_cu->length = get_cu_length (&cu.header);
6539
6540 /* Skip dummy compilation units. */
6541 if (info_ptr >= begin_info_ptr + this_cu->length
6542 || peek_abbrev_code (abfd, info_ptr) == 0)
6543 {
6544 do_cleanups (cleanups);
6545 return;
6546 }
6547
6548 dwarf2_read_abbrevs (&cu, abbrev_section);
6549 make_cleanup (dwarf2_free_abbrev_table, &cu);
6550
6551 init_cu_die_reader (&reader, &cu, section, dwo_file);
6552 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6553
6554 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6555
6556 do_cleanups (cleanups);
6557 }
6558
6559 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
6560 does not lookup the specified DWO file.
6561 This cannot be used to read DWO files.
6562
6563 THIS_CU->cu is always freed when done.
6564 This is done in order to not leave THIS_CU->cu in a state where we have
6565 to care whether it refers to the "main" CU or the DWO CU.
6566 We can revisit this if the data shows there's a performance issue. */
6567
6568 static void
6569 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
6570 die_reader_func_ftype *die_reader_func,
6571 void *data)
6572 {
6573 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
6574 }
6575 \f
6576 /* Type Unit Groups.
6577
6578 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6579 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6580 so that all types coming from the same compilation (.o file) are grouped
6581 together. A future step could be to put the types in the same symtab as
6582 the CU the types ultimately came from. */
6583
6584 static hashval_t
6585 hash_type_unit_group (const void *item)
6586 {
6587 const struct type_unit_group *tu_group
6588 = (const struct type_unit_group *) item;
6589
6590 return hash_stmt_list_entry (&tu_group->hash);
6591 }
6592
6593 static int
6594 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6595 {
6596 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6597 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6598
6599 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6600 }
6601
6602 /* Allocate a hash table for type unit groups. */
6603
6604 static htab_t
6605 allocate_type_unit_groups_table (void)
6606 {
6607 return htab_create_alloc_ex (3,
6608 hash_type_unit_group,
6609 eq_type_unit_group,
6610 NULL,
6611 &dwarf2_per_objfile->objfile->objfile_obstack,
6612 hashtab_obstack_allocate,
6613 dummy_obstack_deallocate);
6614 }
6615
6616 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6617 partial symtabs. We combine several TUs per psymtab to not let the size
6618 of any one psymtab grow too big. */
6619 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6620 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6621
6622 /* Helper routine for get_type_unit_group.
6623 Create the type_unit_group object used to hold one or more TUs. */
6624
6625 static struct type_unit_group *
6626 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6627 {
6628 struct objfile *objfile = dwarf2_per_objfile->objfile;
6629 struct dwarf2_per_cu_data *per_cu;
6630 struct type_unit_group *tu_group;
6631
6632 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6633 struct type_unit_group);
6634 per_cu = &tu_group->per_cu;
6635 per_cu->objfile = objfile;
6636
6637 if (dwarf2_per_objfile->using_index)
6638 {
6639 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6640 struct dwarf2_per_cu_quick_data);
6641 }
6642 else
6643 {
6644 unsigned int line_offset = to_underlying (line_offset_struct);
6645 struct partial_symtab *pst;
6646 char *name;
6647
6648 /* Give the symtab a useful name for debug purposes. */
6649 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6650 name = xstrprintf ("<type_units_%d>",
6651 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6652 else
6653 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6654
6655 pst = create_partial_symtab (per_cu, name);
6656 pst->anonymous = 1;
6657
6658 xfree (name);
6659 }
6660
6661 tu_group->hash.dwo_unit = cu->dwo_unit;
6662 tu_group->hash.line_sect_off = line_offset_struct;
6663
6664 return tu_group;
6665 }
6666
6667 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6668 STMT_LIST is a DW_AT_stmt_list attribute. */
6669
6670 static struct type_unit_group *
6671 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6672 {
6673 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6674 struct type_unit_group *tu_group;
6675 void **slot;
6676 unsigned int line_offset;
6677 struct type_unit_group type_unit_group_for_lookup;
6678
6679 if (dwarf2_per_objfile->type_unit_groups == NULL)
6680 {
6681 dwarf2_per_objfile->type_unit_groups =
6682 allocate_type_unit_groups_table ();
6683 }
6684
6685 /* Do we need to create a new group, or can we use an existing one? */
6686
6687 if (stmt_list)
6688 {
6689 line_offset = DW_UNSND (stmt_list);
6690 ++tu_stats->nr_symtab_sharers;
6691 }
6692 else
6693 {
6694 /* Ugh, no stmt_list. Rare, but we have to handle it.
6695 We can do various things here like create one group per TU or
6696 spread them over multiple groups to split up the expansion work.
6697 To avoid worst case scenarios (too many groups or too large groups)
6698 we, umm, group them in bunches. */
6699 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6700 | (tu_stats->nr_stmt_less_type_units
6701 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6702 ++tu_stats->nr_stmt_less_type_units;
6703 }
6704
6705 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6706 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6707 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6708 &type_unit_group_for_lookup, INSERT);
6709 if (*slot != NULL)
6710 {
6711 tu_group = (struct type_unit_group *) *slot;
6712 gdb_assert (tu_group != NULL);
6713 }
6714 else
6715 {
6716 sect_offset line_offset_struct = (sect_offset) line_offset;
6717 tu_group = create_type_unit_group (cu, line_offset_struct);
6718 *slot = tu_group;
6719 ++tu_stats->nr_symtabs;
6720 }
6721
6722 return tu_group;
6723 }
6724 \f
6725 /* Partial symbol tables. */
6726
6727 /* Create a psymtab named NAME and assign it to PER_CU.
6728
6729 The caller must fill in the following details:
6730 dirname, textlow, texthigh. */
6731
6732 static struct partial_symtab *
6733 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6734 {
6735 struct objfile *objfile = per_cu->objfile;
6736 struct partial_symtab *pst;
6737
6738 pst = start_psymtab_common (objfile, name, 0,
6739 objfile->global_psymbols,
6740 objfile->static_psymbols);
6741
6742 pst->psymtabs_addrmap_supported = 1;
6743
6744 /* This is the glue that links PST into GDB's symbol API. */
6745 pst->read_symtab_private = per_cu;
6746 pst->read_symtab = dwarf2_read_symtab;
6747 per_cu->v.psymtab = pst;
6748
6749 return pst;
6750 }
6751
6752 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6753 type. */
6754
6755 struct process_psymtab_comp_unit_data
6756 {
6757 /* True if we are reading a DW_TAG_partial_unit. */
6758
6759 int want_partial_unit;
6760
6761 /* The "pretend" language that is used if the CU doesn't declare a
6762 language. */
6763
6764 enum language pretend_language;
6765 };
6766
6767 /* die_reader_func for process_psymtab_comp_unit. */
6768
6769 static void
6770 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6771 const gdb_byte *info_ptr,
6772 struct die_info *comp_unit_die,
6773 int has_children,
6774 void *data)
6775 {
6776 struct dwarf2_cu *cu = reader->cu;
6777 struct objfile *objfile = cu->objfile;
6778 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6779 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6780 CORE_ADDR baseaddr;
6781 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6782 struct partial_symtab *pst;
6783 enum pc_bounds_kind cu_bounds_kind;
6784 const char *filename;
6785 struct process_psymtab_comp_unit_data *info
6786 = (struct process_psymtab_comp_unit_data *) data;
6787
6788 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6789 return;
6790
6791 gdb_assert (! per_cu->is_debug_types);
6792
6793 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6794
6795 cu->list_in_scope = &file_symbols;
6796
6797 /* Allocate a new partial symbol table structure. */
6798 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6799 if (filename == NULL)
6800 filename = "";
6801
6802 pst = create_partial_symtab (per_cu, filename);
6803
6804 /* This must be done before calling dwarf2_build_include_psymtabs. */
6805 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6806
6807 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6808
6809 dwarf2_find_base_address (comp_unit_die, cu);
6810
6811 /* Possibly set the default values of LOWPC and HIGHPC from
6812 `DW_AT_ranges'. */
6813 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6814 &best_highpc, cu, pst);
6815 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6816 /* Store the contiguous range if it is not empty; it can be empty for
6817 CUs with no code. */
6818 addrmap_set_empty (objfile->psymtabs_addrmap,
6819 gdbarch_adjust_dwarf2_addr (gdbarch,
6820 best_lowpc + baseaddr),
6821 gdbarch_adjust_dwarf2_addr (gdbarch,
6822 best_highpc + baseaddr) - 1,
6823 pst);
6824
6825 /* Check if comp unit has_children.
6826 If so, read the rest of the partial symbols from this comp unit.
6827 If not, there's no more debug_info for this comp unit. */
6828 if (has_children)
6829 {
6830 struct partial_die_info *first_die;
6831 CORE_ADDR lowpc, highpc;
6832
6833 lowpc = ((CORE_ADDR) -1);
6834 highpc = ((CORE_ADDR) 0);
6835
6836 first_die = load_partial_dies (reader, info_ptr, 1);
6837
6838 scan_partial_symbols (first_die, &lowpc, &highpc,
6839 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6840
6841 /* If we didn't find a lowpc, set it to highpc to avoid
6842 complaints from `maint check'. */
6843 if (lowpc == ((CORE_ADDR) -1))
6844 lowpc = highpc;
6845
6846 /* If the compilation unit didn't have an explicit address range,
6847 then use the information extracted from its child dies. */
6848 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6849 {
6850 best_lowpc = lowpc;
6851 best_highpc = highpc;
6852 }
6853 }
6854 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6855 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6856
6857 end_psymtab_common (objfile, pst);
6858
6859 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6860 {
6861 int i;
6862 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6863 struct dwarf2_per_cu_data *iter;
6864
6865 /* Fill in 'dependencies' here; we fill in 'users' in a
6866 post-pass. */
6867 pst->number_of_dependencies = len;
6868 pst->dependencies =
6869 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6870 for (i = 0;
6871 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6872 i, iter);
6873 ++i)
6874 pst->dependencies[i] = iter->v.psymtab;
6875
6876 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6877 }
6878
6879 /* Get the list of files included in the current compilation unit,
6880 and build a psymtab for each of them. */
6881 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6882
6883 if (dwarf_read_debug)
6884 {
6885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6886
6887 fprintf_unfiltered (gdb_stdlog,
6888 "Psymtab for %s unit @0x%x: %s - %s"
6889 ", %d global, %d static syms\n",
6890 per_cu->is_debug_types ? "type" : "comp",
6891 to_underlying (per_cu->sect_off),
6892 paddress (gdbarch, pst->textlow),
6893 paddress (gdbarch, pst->texthigh),
6894 pst->n_global_syms, pst->n_static_syms);
6895 }
6896 }
6897
6898 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6899 Process compilation unit THIS_CU for a psymtab. */
6900
6901 static void
6902 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6903 int want_partial_unit,
6904 enum language pretend_language)
6905 {
6906 /* If this compilation unit was already read in, free the
6907 cached copy in order to read it in again. This is
6908 necessary because we skipped some symbols when we first
6909 read in the compilation unit (see load_partial_dies).
6910 This problem could be avoided, but the benefit is unclear. */
6911 if (this_cu->cu != NULL)
6912 free_one_cached_comp_unit (this_cu);
6913
6914 if (this_cu->is_debug_types)
6915 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6916 NULL);
6917 else
6918 {
6919 process_psymtab_comp_unit_data info;
6920 info.want_partial_unit = want_partial_unit;
6921 info.pretend_language = pretend_language;
6922 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6923 process_psymtab_comp_unit_reader, &info);
6924 }
6925
6926 /* Age out any secondary CUs. */
6927 age_cached_comp_units ();
6928 }
6929
6930 /* Reader function for build_type_psymtabs. */
6931
6932 static void
6933 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6934 const gdb_byte *info_ptr,
6935 struct die_info *type_unit_die,
6936 int has_children,
6937 void *data)
6938 {
6939 struct objfile *objfile = dwarf2_per_objfile->objfile;
6940 struct dwarf2_cu *cu = reader->cu;
6941 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6942 struct signatured_type *sig_type;
6943 struct type_unit_group *tu_group;
6944 struct attribute *attr;
6945 struct partial_die_info *first_die;
6946 CORE_ADDR lowpc, highpc;
6947 struct partial_symtab *pst;
6948
6949 gdb_assert (data == NULL);
6950 gdb_assert (per_cu->is_debug_types);
6951 sig_type = (struct signatured_type *) per_cu;
6952
6953 if (! has_children)
6954 return;
6955
6956 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6957 tu_group = get_type_unit_group (cu, attr);
6958
6959 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6960
6961 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6962 cu->list_in_scope = &file_symbols;
6963 pst = create_partial_symtab (per_cu, "");
6964 pst->anonymous = 1;
6965
6966 first_die = load_partial_dies (reader, info_ptr, 1);
6967
6968 lowpc = (CORE_ADDR) -1;
6969 highpc = (CORE_ADDR) 0;
6970 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6971
6972 end_psymtab_common (objfile, pst);
6973 }
6974
6975 /* Struct used to sort TUs by their abbreviation table offset. */
6976
6977 struct tu_abbrev_offset
6978 {
6979 struct signatured_type *sig_type;
6980 sect_offset abbrev_offset;
6981 };
6982
6983 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6984
6985 static int
6986 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6987 {
6988 const struct tu_abbrev_offset * const *a
6989 = (const struct tu_abbrev_offset * const*) ap;
6990 const struct tu_abbrev_offset * const *b
6991 = (const struct tu_abbrev_offset * const*) bp;
6992 sect_offset aoff = (*a)->abbrev_offset;
6993 sect_offset boff = (*b)->abbrev_offset;
6994
6995 return (aoff > boff) - (aoff < boff);
6996 }
6997
6998 /* Efficiently read all the type units.
6999 This does the bulk of the work for build_type_psymtabs.
7000
7001 The efficiency is because we sort TUs by the abbrev table they use and
7002 only read each abbrev table once. In one program there are 200K TUs
7003 sharing 8K abbrev tables.
7004
7005 The main purpose of this function is to support building the
7006 dwarf2_per_objfile->type_unit_groups table.
7007 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7008 can collapse the search space by grouping them by stmt_list.
7009 The savings can be significant, in the same program from above the 200K TUs
7010 share 8K stmt_list tables.
7011
7012 FUNC is expected to call get_type_unit_group, which will create the
7013 struct type_unit_group if necessary and add it to
7014 dwarf2_per_objfile->type_unit_groups. */
7015
7016 static void
7017 build_type_psymtabs_1 (void)
7018 {
7019 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7020 struct cleanup *cleanups;
7021 struct abbrev_table *abbrev_table;
7022 sect_offset abbrev_offset;
7023 struct tu_abbrev_offset *sorted_by_abbrev;
7024 int i;
7025
7026 /* It's up to the caller to not call us multiple times. */
7027 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7028
7029 if (dwarf2_per_objfile->n_type_units == 0)
7030 return;
7031
7032 /* TUs typically share abbrev tables, and there can be way more TUs than
7033 abbrev tables. Sort by abbrev table to reduce the number of times we
7034 read each abbrev table in.
7035 Alternatives are to punt or to maintain a cache of abbrev tables.
7036 This is simpler and efficient enough for now.
7037
7038 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7039 symtab to use). Typically TUs with the same abbrev offset have the same
7040 stmt_list value too so in practice this should work well.
7041
7042 The basic algorithm here is:
7043
7044 sort TUs by abbrev table
7045 for each TU with same abbrev table:
7046 read abbrev table if first user
7047 read TU top level DIE
7048 [IWBN if DWO skeletons had DW_AT_stmt_list]
7049 call FUNC */
7050
7051 if (dwarf_read_debug)
7052 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7053
7054 /* Sort in a separate table to maintain the order of all_type_units
7055 for .gdb_index: TU indices directly index all_type_units. */
7056 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
7057 dwarf2_per_objfile->n_type_units);
7058 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7059 {
7060 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
7061
7062 sorted_by_abbrev[i].sig_type = sig_type;
7063 sorted_by_abbrev[i].abbrev_offset =
7064 read_abbrev_offset (sig_type->per_cu.section,
7065 sig_type->per_cu.sect_off);
7066 }
7067 cleanups = make_cleanup (xfree, sorted_by_abbrev);
7068 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
7069 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
7070
7071 abbrev_offset = (sect_offset) ~(unsigned) 0;
7072 abbrev_table = NULL;
7073 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
7074
7075 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7076 {
7077 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
7078
7079 /* Switch to the next abbrev table if necessary. */
7080 if (abbrev_table == NULL
7081 || tu->abbrev_offset != abbrev_offset)
7082 {
7083 if (abbrev_table != NULL)
7084 {
7085 abbrev_table_free (abbrev_table);
7086 /* Reset to NULL in case abbrev_table_read_table throws
7087 an error: abbrev_table_free_cleanup will get called. */
7088 abbrev_table = NULL;
7089 }
7090 abbrev_offset = tu->abbrev_offset;
7091 abbrev_table =
7092 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
7093 abbrev_offset);
7094 ++tu_stats->nr_uniq_abbrev_tables;
7095 }
7096
7097 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
7098 build_type_psymtabs_reader, NULL);
7099 }
7100
7101 do_cleanups (cleanups);
7102 }
7103
7104 /* Print collected type unit statistics. */
7105
7106 static void
7107 print_tu_stats (void)
7108 {
7109 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7110
7111 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7112 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
7113 dwarf2_per_objfile->n_type_units);
7114 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7115 tu_stats->nr_uniq_abbrev_tables);
7116 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7117 tu_stats->nr_symtabs);
7118 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7119 tu_stats->nr_symtab_sharers);
7120 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7121 tu_stats->nr_stmt_less_type_units);
7122 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7123 tu_stats->nr_all_type_units_reallocs);
7124 }
7125
7126 /* Traversal function for build_type_psymtabs. */
7127
7128 static int
7129 build_type_psymtab_dependencies (void **slot, void *info)
7130 {
7131 struct objfile *objfile = dwarf2_per_objfile->objfile;
7132 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7133 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7134 struct partial_symtab *pst = per_cu->v.psymtab;
7135 int len = VEC_length (sig_type_ptr, tu_group->tus);
7136 struct signatured_type *iter;
7137 int i;
7138
7139 gdb_assert (len > 0);
7140 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
7141
7142 pst->number_of_dependencies = len;
7143 pst->dependencies =
7144 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7145 for (i = 0;
7146 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
7147 ++i)
7148 {
7149 gdb_assert (iter->per_cu.is_debug_types);
7150 pst->dependencies[i] = iter->per_cu.v.psymtab;
7151 iter->type_unit_group = tu_group;
7152 }
7153
7154 VEC_free (sig_type_ptr, tu_group->tus);
7155
7156 return 1;
7157 }
7158
7159 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7160 Build partial symbol tables for the .debug_types comp-units. */
7161
7162 static void
7163 build_type_psymtabs (struct objfile *objfile)
7164 {
7165 if (! create_all_type_units (objfile))
7166 return;
7167
7168 build_type_psymtabs_1 ();
7169 }
7170
7171 /* Traversal function for process_skeletonless_type_unit.
7172 Read a TU in a DWO file and build partial symbols for it. */
7173
7174 static int
7175 process_skeletonless_type_unit (void **slot, void *info)
7176 {
7177 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7178 struct objfile *objfile = (struct objfile *) info;
7179 struct signatured_type find_entry, *entry;
7180
7181 /* If this TU doesn't exist in the global table, add it and read it in. */
7182
7183 if (dwarf2_per_objfile->signatured_types == NULL)
7184 {
7185 dwarf2_per_objfile->signatured_types
7186 = allocate_signatured_type_table (objfile);
7187 }
7188
7189 find_entry.signature = dwo_unit->signature;
7190 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
7191 INSERT);
7192 /* If we've already seen this type there's nothing to do. What's happening
7193 is we're doing our own version of comdat-folding here. */
7194 if (*slot != NULL)
7195 return 1;
7196
7197 /* This does the job that create_all_type_units would have done for
7198 this TU. */
7199 entry = add_type_unit (dwo_unit->signature, slot);
7200 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
7201 *slot = entry;
7202
7203 /* This does the job that build_type_psymtabs_1 would have done. */
7204 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
7205 build_type_psymtabs_reader, NULL);
7206
7207 return 1;
7208 }
7209
7210 /* Traversal function for process_skeletonless_type_units. */
7211
7212 static int
7213 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7214 {
7215 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7216
7217 if (dwo_file->tus != NULL)
7218 {
7219 htab_traverse_noresize (dwo_file->tus,
7220 process_skeletonless_type_unit, info);
7221 }
7222
7223 return 1;
7224 }
7225
7226 /* Scan all TUs of DWO files, verifying we've processed them.
7227 This is needed in case a TU was emitted without its skeleton.
7228 Note: This can't be done until we know what all the DWO files are. */
7229
7230 static void
7231 process_skeletonless_type_units (struct objfile *objfile)
7232 {
7233 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7234 if (get_dwp_file () == NULL
7235 && dwarf2_per_objfile->dwo_files != NULL)
7236 {
7237 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
7238 process_dwo_file_for_skeletonless_type_units,
7239 objfile);
7240 }
7241 }
7242
7243 /* Compute the 'user' field for each psymtab in OBJFILE. */
7244
7245 static void
7246 set_partial_user (struct objfile *objfile)
7247 {
7248 int i;
7249
7250 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7251 {
7252 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7253 struct partial_symtab *pst = per_cu->v.psymtab;
7254 int j;
7255
7256 if (pst == NULL)
7257 continue;
7258
7259 for (j = 0; j < pst->number_of_dependencies; ++j)
7260 {
7261 /* Set the 'user' field only if it is not already set. */
7262 if (pst->dependencies[j]->user == NULL)
7263 pst->dependencies[j]->user = pst;
7264 }
7265 }
7266 }
7267
7268 /* Build the partial symbol table by doing a quick pass through the
7269 .debug_info and .debug_abbrev sections. */
7270
7271 static void
7272 dwarf2_build_psymtabs_hard (struct objfile *objfile)
7273 {
7274 struct cleanup *back_to;
7275 int i;
7276
7277 if (dwarf_read_debug)
7278 {
7279 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7280 objfile_name (objfile));
7281 }
7282
7283 dwarf2_per_objfile->reading_partial_symbols = 1;
7284
7285 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
7286
7287 /* Any cached compilation units will be linked by the per-objfile
7288 read_in_chain. Make sure to free them when we're done. */
7289 back_to = make_cleanup (free_cached_comp_units, NULL);
7290
7291 build_type_psymtabs (objfile);
7292
7293 create_all_comp_units (objfile);
7294
7295 /* Create a temporary address map on a temporary obstack. We later
7296 copy this to the final obstack. */
7297 auto_obstack temp_obstack;
7298
7299 scoped_restore save_psymtabs_addrmap
7300 = make_scoped_restore (&objfile->psymtabs_addrmap,
7301 addrmap_create_mutable (&temp_obstack));
7302
7303 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7304 {
7305 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7306
7307 process_psymtab_comp_unit (per_cu, 0, language_minimal);
7308 }
7309
7310 /* This has to wait until we read the CUs, we need the list of DWOs. */
7311 process_skeletonless_type_units (objfile);
7312
7313 /* Now that all TUs have been processed we can fill in the dependencies. */
7314 if (dwarf2_per_objfile->type_unit_groups != NULL)
7315 {
7316 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
7317 build_type_psymtab_dependencies, NULL);
7318 }
7319
7320 if (dwarf_read_debug)
7321 print_tu_stats ();
7322
7323 set_partial_user (objfile);
7324
7325 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
7326 &objfile->objfile_obstack);
7327 /* At this point we want to keep the address map. */
7328 save_psymtabs_addrmap.release ();
7329
7330 do_cleanups (back_to);
7331
7332 if (dwarf_read_debug)
7333 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7334 objfile_name (objfile));
7335 }
7336
7337 /* die_reader_func for load_partial_comp_unit. */
7338
7339 static void
7340 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
7341 const gdb_byte *info_ptr,
7342 struct die_info *comp_unit_die,
7343 int has_children,
7344 void *data)
7345 {
7346 struct dwarf2_cu *cu = reader->cu;
7347
7348 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
7349
7350 /* Check if comp unit has_children.
7351 If so, read the rest of the partial symbols from this comp unit.
7352 If not, there's no more debug_info for this comp unit. */
7353 if (has_children)
7354 load_partial_dies (reader, info_ptr, 0);
7355 }
7356
7357 /* Load the partial DIEs for a secondary CU into memory.
7358 This is also used when rereading a primary CU with load_all_dies. */
7359
7360 static void
7361 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7362 {
7363 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7364 load_partial_comp_unit_reader, NULL);
7365 }
7366
7367 static void
7368 read_comp_units_from_section (struct objfile *objfile,
7369 struct dwarf2_section_info *section,
7370 struct dwarf2_section_info *abbrev_section,
7371 unsigned int is_dwz,
7372 int *n_allocated,
7373 int *n_comp_units,
7374 struct dwarf2_per_cu_data ***all_comp_units)
7375 {
7376 const gdb_byte *info_ptr;
7377 bfd *abfd = get_section_bfd_owner (section);
7378
7379 if (dwarf_read_debug)
7380 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7381 get_section_name (section),
7382 get_section_file_name (section));
7383
7384 dwarf2_read_section (objfile, section);
7385
7386 info_ptr = section->buffer;
7387
7388 while (info_ptr < section->buffer + section->size)
7389 {
7390 struct dwarf2_per_cu_data *this_cu;
7391
7392 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7393
7394 comp_unit_head cu_header;
7395 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
7396 info_ptr, rcuh_kind::COMPILE);
7397
7398 /* Save the compilation unit for later lookup. */
7399 if (cu_header.unit_type != DW_UT_type)
7400 {
7401 this_cu = XOBNEW (&objfile->objfile_obstack,
7402 struct dwarf2_per_cu_data);
7403 memset (this_cu, 0, sizeof (*this_cu));
7404 }
7405 else
7406 {
7407 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7408 struct signatured_type);
7409 memset (sig_type, 0, sizeof (*sig_type));
7410 sig_type->signature = cu_header.signature;
7411 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7412 this_cu = &sig_type->per_cu;
7413 }
7414 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7415 this_cu->sect_off = sect_off;
7416 this_cu->length = cu_header.length + cu_header.initial_length_size;
7417 this_cu->is_dwz = is_dwz;
7418 this_cu->objfile = objfile;
7419 this_cu->section = section;
7420
7421 if (*n_comp_units == *n_allocated)
7422 {
7423 *n_allocated *= 2;
7424 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
7425 *all_comp_units, *n_allocated);
7426 }
7427 (*all_comp_units)[*n_comp_units] = this_cu;
7428 ++*n_comp_units;
7429
7430 info_ptr = info_ptr + this_cu->length;
7431 }
7432 }
7433
7434 /* Create a list of all compilation units in OBJFILE.
7435 This is only done for -readnow and building partial symtabs. */
7436
7437 static void
7438 create_all_comp_units (struct objfile *objfile)
7439 {
7440 int n_allocated;
7441 int n_comp_units;
7442 struct dwarf2_per_cu_data **all_comp_units;
7443 struct dwz_file *dwz;
7444
7445 n_comp_units = 0;
7446 n_allocated = 10;
7447 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
7448
7449 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
7450 &dwarf2_per_objfile->abbrev, 0,
7451 &n_allocated, &n_comp_units, &all_comp_units);
7452
7453 dwz = dwarf2_get_dwz_file ();
7454 if (dwz != NULL)
7455 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
7456 &n_allocated, &n_comp_units,
7457 &all_comp_units);
7458
7459 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
7460 struct dwarf2_per_cu_data *,
7461 n_comp_units);
7462 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
7463 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
7464 xfree (all_comp_units);
7465 dwarf2_per_objfile->n_comp_units = n_comp_units;
7466 }
7467
7468 /* Process all loaded DIEs for compilation unit CU, starting at
7469 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7470 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7471 DW_AT_ranges). See the comments of add_partial_subprogram on how
7472 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7473
7474 static void
7475 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7476 CORE_ADDR *highpc, int set_addrmap,
7477 struct dwarf2_cu *cu)
7478 {
7479 struct partial_die_info *pdi;
7480
7481 /* Now, march along the PDI's, descending into ones which have
7482 interesting children but skipping the children of the other ones,
7483 until we reach the end of the compilation unit. */
7484
7485 pdi = first_die;
7486
7487 while (pdi != NULL)
7488 {
7489 fixup_partial_die (pdi, cu);
7490
7491 /* Anonymous namespaces or modules have no name but have interesting
7492 children, so we need to look at them. Ditto for anonymous
7493 enums. */
7494
7495 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7496 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7497 || pdi->tag == DW_TAG_imported_unit)
7498 {
7499 switch (pdi->tag)
7500 {
7501 case DW_TAG_subprogram:
7502 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7503 break;
7504 case DW_TAG_constant:
7505 case DW_TAG_variable:
7506 case DW_TAG_typedef:
7507 case DW_TAG_union_type:
7508 if (!pdi->is_declaration)
7509 {
7510 add_partial_symbol (pdi, cu);
7511 }
7512 break;
7513 case DW_TAG_class_type:
7514 case DW_TAG_interface_type:
7515 case DW_TAG_structure_type:
7516 if (!pdi->is_declaration)
7517 {
7518 add_partial_symbol (pdi, cu);
7519 }
7520 if (cu->language == language_rust && pdi->has_children)
7521 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7522 set_addrmap, cu);
7523 break;
7524 case DW_TAG_enumeration_type:
7525 if (!pdi->is_declaration)
7526 add_partial_enumeration (pdi, cu);
7527 break;
7528 case DW_TAG_base_type:
7529 case DW_TAG_subrange_type:
7530 /* File scope base type definitions are added to the partial
7531 symbol table. */
7532 add_partial_symbol (pdi, cu);
7533 break;
7534 case DW_TAG_namespace:
7535 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7536 break;
7537 case DW_TAG_module:
7538 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7539 break;
7540 case DW_TAG_imported_unit:
7541 {
7542 struct dwarf2_per_cu_data *per_cu;
7543
7544 /* For now we don't handle imported units in type units. */
7545 if (cu->per_cu->is_debug_types)
7546 {
7547 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7548 " supported in type units [in module %s]"),
7549 objfile_name (cu->objfile));
7550 }
7551
7552 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
7553 pdi->is_dwz,
7554 cu->objfile);
7555
7556 /* Go read the partial unit, if needed. */
7557 if (per_cu->v.psymtab == NULL)
7558 process_psymtab_comp_unit (per_cu, 1, cu->language);
7559
7560 VEC_safe_push (dwarf2_per_cu_ptr,
7561 cu->per_cu->imported_symtabs, per_cu);
7562 }
7563 break;
7564 case DW_TAG_imported_declaration:
7565 add_partial_symbol (pdi, cu);
7566 break;
7567 default:
7568 break;
7569 }
7570 }
7571
7572 /* If the die has a sibling, skip to the sibling. */
7573
7574 pdi = pdi->die_sibling;
7575 }
7576 }
7577
7578 /* Functions used to compute the fully scoped name of a partial DIE.
7579
7580 Normally, this is simple. For C++, the parent DIE's fully scoped
7581 name is concatenated with "::" and the partial DIE's name.
7582 Enumerators are an exception; they use the scope of their parent
7583 enumeration type, i.e. the name of the enumeration type is not
7584 prepended to the enumerator.
7585
7586 There are two complexities. One is DW_AT_specification; in this
7587 case "parent" means the parent of the target of the specification,
7588 instead of the direct parent of the DIE. The other is compilers
7589 which do not emit DW_TAG_namespace; in this case we try to guess
7590 the fully qualified name of structure types from their members'
7591 linkage names. This must be done using the DIE's children rather
7592 than the children of any DW_AT_specification target. We only need
7593 to do this for structures at the top level, i.e. if the target of
7594 any DW_AT_specification (if any; otherwise the DIE itself) does not
7595 have a parent. */
7596
7597 /* Compute the scope prefix associated with PDI's parent, in
7598 compilation unit CU. The result will be allocated on CU's
7599 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7600 field. NULL is returned if no prefix is necessary. */
7601 static const char *
7602 partial_die_parent_scope (struct partial_die_info *pdi,
7603 struct dwarf2_cu *cu)
7604 {
7605 const char *grandparent_scope;
7606 struct partial_die_info *parent, *real_pdi;
7607
7608 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7609 then this means the parent of the specification DIE. */
7610
7611 real_pdi = pdi;
7612 while (real_pdi->has_specification)
7613 real_pdi = find_partial_die (real_pdi->spec_offset,
7614 real_pdi->spec_is_dwz, cu);
7615
7616 parent = real_pdi->die_parent;
7617 if (parent == NULL)
7618 return NULL;
7619
7620 if (parent->scope_set)
7621 return parent->scope;
7622
7623 fixup_partial_die (parent, cu);
7624
7625 grandparent_scope = partial_die_parent_scope (parent, cu);
7626
7627 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7628 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7629 Work around this problem here. */
7630 if (cu->language == language_cplus
7631 && parent->tag == DW_TAG_namespace
7632 && strcmp (parent->name, "::") == 0
7633 && grandparent_scope == NULL)
7634 {
7635 parent->scope = NULL;
7636 parent->scope_set = 1;
7637 return NULL;
7638 }
7639
7640 if (pdi->tag == DW_TAG_enumerator)
7641 /* Enumerators should not get the name of the enumeration as a prefix. */
7642 parent->scope = grandparent_scope;
7643 else if (parent->tag == DW_TAG_namespace
7644 || parent->tag == DW_TAG_module
7645 || parent->tag == DW_TAG_structure_type
7646 || parent->tag == DW_TAG_class_type
7647 || parent->tag == DW_TAG_interface_type
7648 || parent->tag == DW_TAG_union_type
7649 || parent->tag == DW_TAG_enumeration_type)
7650 {
7651 if (grandparent_scope == NULL)
7652 parent->scope = parent->name;
7653 else
7654 parent->scope = typename_concat (&cu->comp_unit_obstack,
7655 grandparent_scope,
7656 parent->name, 0, cu);
7657 }
7658 else
7659 {
7660 /* FIXME drow/2004-04-01: What should we be doing with
7661 function-local names? For partial symbols, we should probably be
7662 ignoring them. */
7663 complaint (&symfile_complaints,
7664 _("unhandled containing DIE tag %d for DIE at %d"),
7665 parent->tag, to_underlying (pdi->sect_off));
7666 parent->scope = grandparent_scope;
7667 }
7668
7669 parent->scope_set = 1;
7670 return parent->scope;
7671 }
7672
7673 /* Return the fully scoped name associated with PDI, from compilation unit
7674 CU. The result will be allocated with malloc. */
7675
7676 static char *
7677 partial_die_full_name (struct partial_die_info *pdi,
7678 struct dwarf2_cu *cu)
7679 {
7680 const char *parent_scope;
7681
7682 /* If this is a template instantiation, we can not work out the
7683 template arguments from partial DIEs. So, unfortunately, we have
7684 to go through the full DIEs. At least any work we do building
7685 types here will be reused if full symbols are loaded later. */
7686 if (pdi->has_template_arguments)
7687 {
7688 fixup_partial_die (pdi, cu);
7689
7690 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7691 {
7692 struct die_info *die;
7693 struct attribute attr;
7694 struct dwarf2_cu *ref_cu = cu;
7695
7696 /* DW_FORM_ref_addr is using section offset. */
7697 attr.name = (enum dwarf_attribute) 0;
7698 attr.form = DW_FORM_ref_addr;
7699 attr.u.unsnd = to_underlying (pdi->sect_off);
7700 die = follow_die_ref (NULL, &attr, &ref_cu);
7701
7702 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7703 }
7704 }
7705
7706 parent_scope = partial_die_parent_scope (pdi, cu);
7707 if (parent_scope == NULL)
7708 return NULL;
7709 else
7710 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7711 }
7712
7713 static void
7714 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7715 {
7716 struct objfile *objfile = cu->objfile;
7717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7718 CORE_ADDR addr = 0;
7719 const char *actual_name = NULL;
7720 CORE_ADDR baseaddr;
7721 char *built_actual_name;
7722
7723 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7724
7725 built_actual_name = partial_die_full_name (pdi, cu);
7726 if (built_actual_name != NULL)
7727 actual_name = built_actual_name;
7728
7729 if (actual_name == NULL)
7730 actual_name = pdi->name;
7731
7732 switch (pdi->tag)
7733 {
7734 case DW_TAG_subprogram:
7735 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7736 if (pdi->is_external || cu->language == language_ada)
7737 {
7738 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7739 of the global scope. But in Ada, we want to be able to access
7740 nested procedures globally. So all Ada subprograms are stored
7741 in the global scope. */
7742 add_psymbol_to_list (actual_name, strlen (actual_name),
7743 built_actual_name != NULL,
7744 VAR_DOMAIN, LOC_BLOCK,
7745 &objfile->global_psymbols,
7746 addr, cu->language, objfile);
7747 }
7748 else
7749 {
7750 add_psymbol_to_list (actual_name, strlen (actual_name),
7751 built_actual_name != NULL,
7752 VAR_DOMAIN, LOC_BLOCK,
7753 &objfile->static_psymbols,
7754 addr, cu->language, objfile);
7755 }
7756
7757 if (pdi->main_subprogram && actual_name != NULL)
7758 set_objfile_main_name (objfile, actual_name, cu->language);
7759 break;
7760 case DW_TAG_constant:
7761 {
7762 std::vector<partial_symbol *> *list;
7763
7764 if (pdi->is_external)
7765 list = &objfile->global_psymbols;
7766 else
7767 list = &objfile->static_psymbols;
7768 add_psymbol_to_list (actual_name, strlen (actual_name),
7769 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7770 list, 0, cu->language, objfile);
7771 }
7772 break;
7773 case DW_TAG_variable:
7774 if (pdi->d.locdesc)
7775 addr = decode_locdesc (pdi->d.locdesc, cu);
7776
7777 if (pdi->d.locdesc
7778 && addr == 0
7779 && !dwarf2_per_objfile->has_section_at_zero)
7780 {
7781 /* A global or static variable may also have been stripped
7782 out by the linker if unused, in which case its address
7783 will be nullified; do not add such variables into partial
7784 symbol table then. */
7785 }
7786 else if (pdi->is_external)
7787 {
7788 /* Global Variable.
7789 Don't enter into the minimal symbol tables as there is
7790 a minimal symbol table entry from the ELF symbols already.
7791 Enter into partial symbol table if it has a location
7792 descriptor or a type.
7793 If the location descriptor is missing, new_symbol will create
7794 a LOC_UNRESOLVED symbol, the address of the variable will then
7795 be determined from the minimal symbol table whenever the variable
7796 is referenced.
7797 The address for the partial symbol table entry is not
7798 used by GDB, but it comes in handy for debugging partial symbol
7799 table building. */
7800
7801 if (pdi->d.locdesc || pdi->has_type)
7802 add_psymbol_to_list (actual_name, strlen (actual_name),
7803 built_actual_name != NULL,
7804 VAR_DOMAIN, LOC_STATIC,
7805 &objfile->global_psymbols,
7806 addr + baseaddr,
7807 cu->language, objfile);
7808 }
7809 else
7810 {
7811 int has_loc = pdi->d.locdesc != NULL;
7812
7813 /* Static Variable. Skip symbols whose value we cannot know (those
7814 without location descriptors or constant values). */
7815 if (!has_loc && !pdi->has_const_value)
7816 {
7817 xfree (built_actual_name);
7818 return;
7819 }
7820
7821 add_psymbol_to_list (actual_name, strlen (actual_name),
7822 built_actual_name != NULL,
7823 VAR_DOMAIN, LOC_STATIC,
7824 &objfile->static_psymbols,
7825 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7826 cu->language, objfile);
7827 }
7828 break;
7829 case DW_TAG_typedef:
7830 case DW_TAG_base_type:
7831 case DW_TAG_subrange_type:
7832 add_psymbol_to_list (actual_name, strlen (actual_name),
7833 built_actual_name != NULL,
7834 VAR_DOMAIN, LOC_TYPEDEF,
7835 &objfile->static_psymbols,
7836 0, cu->language, objfile);
7837 break;
7838 case DW_TAG_imported_declaration:
7839 case DW_TAG_namespace:
7840 add_psymbol_to_list (actual_name, strlen (actual_name),
7841 built_actual_name != NULL,
7842 VAR_DOMAIN, LOC_TYPEDEF,
7843 &objfile->global_psymbols,
7844 0, cu->language, objfile);
7845 break;
7846 case DW_TAG_module:
7847 add_psymbol_to_list (actual_name, strlen (actual_name),
7848 built_actual_name != NULL,
7849 MODULE_DOMAIN, LOC_TYPEDEF,
7850 &objfile->global_psymbols,
7851 0, cu->language, objfile);
7852 break;
7853 case DW_TAG_class_type:
7854 case DW_TAG_interface_type:
7855 case DW_TAG_structure_type:
7856 case DW_TAG_union_type:
7857 case DW_TAG_enumeration_type:
7858 /* Skip external references. The DWARF standard says in the section
7859 about "Structure, Union, and Class Type Entries": "An incomplete
7860 structure, union or class type is represented by a structure,
7861 union or class entry that does not have a byte size attribute
7862 and that has a DW_AT_declaration attribute." */
7863 if (!pdi->has_byte_size && pdi->is_declaration)
7864 {
7865 xfree (built_actual_name);
7866 return;
7867 }
7868
7869 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7870 static vs. global. */
7871 add_psymbol_to_list (actual_name, strlen (actual_name),
7872 built_actual_name != NULL,
7873 STRUCT_DOMAIN, LOC_TYPEDEF,
7874 cu->language == language_cplus
7875 ? &objfile->global_psymbols
7876 : &objfile->static_psymbols,
7877 0, cu->language, objfile);
7878
7879 break;
7880 case DW_TAG_enumerator:
7881 add_psymbol_to_list (actual_name, strlen (actual_name),
7882 built_actual_name != NULL,
7883 VAR_DOMAIN, LOC_CONST,
7884 cu->language == language_cplus
7885 ? &objfile->global_psymbols
7886 : &objfile->static_psymbols,
7887 0, cu->language, objfile);
7888 break;
7889 default:
7890 break;
7891 }
7892
7893 xfree (built_actual_name);
7894 }
7895
7896 /* Read a partial die corresponding to a namespace; also, add a symbol
7897 corresponding to that namespace to the symbol table. NAMESPACE is
7898 the name of the enclosing namespace. */
7899
7900 static void
7901 add_partial_namespace (struct partial_die_info *pdi,
7902 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7903 int set_addrmap, struct dwarf2_cu *cu)
7904 {
7905 /* Add a symbol for the namespace. */
7906
7907 add_partial_symbol (pdi, cu);
7908
7909 /* Now scan partial symbols in that namespace. */
7910
7911 if (pdi->has_children)
7912 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7913 }
7914
7915 /* Read a partial die corresponding to a Fortran module. */
7916
7917 static void
7918 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7919 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7920 {
7921 /* Add a symbol for the namespace. */
7922
7923 add_partial_symbol (pdi, cu);
7924
7925 /* Now scan partial symbols in that module. */
7926
7927 if (pdi->has_children)
7928 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7929 }
7930
7931 /* Read a partial die corresponding to a subprogram and create a partial
7932 symbol for that subprogram. When the CU language allows it, this
7933 routine also defines a partial symbol for each nested subprogram
7934 that this subprogram contains. If SET_ADDRMAP is true, record the
7935 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7936 and highest PC values found in PDI.
7937
7938 PDI may also be a lexical block, in which case we simply search
7939 recursively for subprograms defined inside that lexical block.
7940 Again, this is only performed when the CU language allows this
7941 type of definitions. */
7942
7943 static void
7944 add_partial_subprogram (struct partial_die_info *pdi,
7945 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7946 int set_addrmap, struct dwarf2_cu *cu)
7947 {
7948 if (pdi->tag == DW_TAG_subprogram)
7949 {
7950 if (pdi->has_pc_info)
7951 {
7952 if (pdi->lowpc < *lowpc)
7953 *lowpc = pdi->lowpc;
7954 if (pdi->highpc > *highpc)
7955 *highpc = pdi->highpc;
7956 if (set_addrmap)
7957 {
7958 struct objfile *objfile = cu->objfile;
7959 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7960 CORE_ADDR baseaddr;
7961 CORE_ADDR highpc;
7962 CORE_ADDR lowpc;
7963
7964 baseaddr = ANOFFSET (objfile->section_offsets,
7965 SECT_OFF_TEXT (objfile));
7966 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7967 pdi->lowpc + baseaddr);
7968 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7969 pdi->highpc + baseaddr);
7970 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7971 cu->per_cu->v.psymtab);
7972 }
7973 }
7974
7975 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7976 {
7977 if (!pdi->is_declaration)
7978 /* Ignore subprogram DIEs that do not have a name, they are
7979 illegal. Do not emit a complaint at this point, we will
7980 do so when we convert this psymtab into a symtab. */
7981 if (pdi->name)
7982 add_partial_symbol (pdi, cu);
7983 }
7984 }
7985
7986 if (! pdi->has_children)
7987 return;
7988
7989 if (cu->language == language_ada)
7990 {
7991 pdi = pdi->die_child;
7992 while (pdi != NULL)
7993 {
7994 fixup_partial_die (pdi, cu);
7995 if (pdi->tag == DW_TAG_subprogram
7996 || pdi->tag == DW_TAG_lexical_block)
7997 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7998 pdi = pdi->die_sibling;
7999 }
8000 }
8001 }
8002
8003 /* Read a partial die corresponding to an enumeration type. */
8004
8005 static void
8006 add_partial_enumeration (struct partial_die_info *enum_pdi,
8007 struct dwarf2_cu *cu)
8008 {
8009 struct partial_die_info *pdi;
8010
8011 if (enum_pdi->name != NULL)
8012 add_partial_symbol (enum_pdi, cu);
8013
8014 pdi = enum_pdi->die_child;
8015 while (pdi)
8016 {
8017 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8018 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8019 else
8020 add_partial_symbol (pdi, cu);
8021 pdi = pdi->die_sibling;
8022 }
8023 }
8024
8025 /* Return the initial uleb128 in the die at INFO_PTR. */
8026
8027 static unsigned int
8028 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8029 {
8030 unsigned int bytes_read;
8031
8032 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8033 }
8034
8035 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
8036 Return the corresponding abbrev, or NULL if the number is zero (indicating
8037 an empty DIE). In either case *BYTES_READ will be set to the length of
8038 the initial number. */
8039
8040 static struct abbrev_info *
8041 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
8042 struct dwarf2_cu *cu)
8043 {
8044 bfd *abfd = cu->objfile->obfd;
8045 unsigned int abbrev_number;
8046 struct abbrev_info *abbrev;
8047
8048 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8049
8050 if (abbrev_number == 0)
8051 return NULL;
8052
8053 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
8054 if (!abbrev)
8055 {
8056 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8057 " at offset 0x%x [in module %s]"),
8058 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8059 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
8060 }
8061
8062 return abbrev;
8063 }
8064
8065 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8066 Returns a pointer to the end of a series of DIEs, terminated by an empty
8067 DIE. Any children of the skipped DIEs will also be skipped. */
8068
8069 static const gdb_byte *
8070 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8071 {
8072 struct dwarf2_cu *cu = reader->cu;
8073 struct abbrev_info *abbrev;
8074 unsigned int bytes_read;
8075
8076 while (1)
8077 {
8078 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8079 if (abbrev == NULL)
8080 return info_ptr + bytes_read;
8081 else
8082 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8083 }
8084 }
8085
8086 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8087 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8088 abbrev corresponding to that skipped uleb128 should be passed in
8089 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8090 children. */
8091
8092 static const gdb_byte *
8093 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8094 struct abbrev_info *abbrev)
8095 {
8096 unsigned int bytes_read;
8097 struct attribute attr;
8098 bfd *abfd = reader->abfd;
8099 struct dwarf2_cu *cu = reader->cu;
8100 const gdb_byte *buffer = reader->buffer;
8101 const gdb_byte *buffer_end = reader->buffer_end;
8102 unsigned int form, i;
8103
8104 for (i = 0; i < abbrev->num_attrs; i++)
8105 {
8106 /* The only abbrev we care about is DW_AT_sibling. */
8107 if (abbrev->attrs[i].name == DW_AT_sibling)
8108 {
8109 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8110 if (attr.form == DW_FORM_ref_addr)
8111 complaint (&symfile_complaints,
8112 _("ignoring absolute DW_AT_sibling"));
8113 else
8114 {
8115 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8116 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8117
8118 if (sibling_ptr < info_ptr)
8119 complaint (&symfile_complaints,
8120 _("DW_AT_sibling points backwards"));
8121 else if (sibling_ptr > reader->buffer_end)
8122 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8123 else
8124 return sibling_ptr;
8125 }
8126 }
8127
8128 /* If it isn't DW_AT_sibling, skip this attribute. */
8129 form = abbrev->attrs[i].form;
8130 skip_attribute:
8131 switch (form)
8132 {
8133 case DW_FORM_ref_addr:
8134 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8135 and later it is offset sized. */
8136 if (cu->header.version == 2)
8137 info_ptr += cu->header.addr_size;
8138 else
8139 info_ptr += cu->header.offset_size;
8140 break;
8141 case DW_FORM_GNU_ref_alt:
8142 info_ptr += cu->header.offset_size;
8143 break;
8144 case DW_FORM_addr:
8145 info_ptr += cu->header.addr_size;
8146 break;
8147 case DW_FORM_data1:
8148 case DW_FORM_ref1:
8149 case DW_FORM_flag:
8150 info_ptr += 1;
8151 break;
8152 case DW_FORM_flag_present:
8153 case DW_FORM_implicit_const:
8154 break;
8155 case DW_FORM_data2:
8156 case DW_FORM_ref2:
8157 info_ptr += 2;
8158 break;
8159 case DW_FORM_data4:
8160 case DW_FORM_ref4:
8161 info_ptr += 4;
8162 break;
8163 case DW_FORM_data8:
8164 case DW_FORM_ref8:
8165 case DW_FORM_ref_sig8:
8166 info_ptr += 8;
8167 break;
8168 case DW_FORM_data16:
8169 info_ptr += 16;
8170 break;
8171 case DW_FORM_string:
8172 read_direct_string (abfd, info_ptr, &bytes_read);
8173 info_ptr += bytes_read;
8174 break;
8175 case DW_FORM_sec_offset:
8176 case DW_FORM_strp:
8177 case DW_FORM_GNU_strp_alt:
8178 info_ptr += cu->header.offset_size;
8179 break;
8180 case DW_FORM_exprloc:
8181 case DW_FORM_block:
8182 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8183 info_ptr += bytes_read;
8184 break;
8185 case DW_FORM_block1:
8186 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8187 break;
8188 case DW_FORM_block2:
8189 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8190 break;
8191 case DW_FORM_block4:
8192 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8193 break;
8194 case DW_FORM_sdata:
8195 case DW_FORM_udata:
8196 case DW_FORM_ref_udata:
8197 case DW_FORM_GNU_addr_index:
8198 case DW_FORM_GNU_str_index:
8199 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8200 break;
8201 case DW_FORM_indirect:
8202 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8203 info_ptr += bytes_read;
8204 /* We need to continue parsing from here, so just go back to
8205 the top. */
8206 goto skip_attribute;
8207
8208 default:
8209 error (_("Dwarf Error: Cannot handle %s "
8210 "in DWARF reader [in module %s]"),
8211 dwarf_form_name (form),
8212 bfd_get_filename (abfd));
8213 }
8214 }
8215
8216 if (abbrev->has_children)
8217 return skip_children (reader, info_ptr);
8218 else
8219 return info_ptr;
8220 }
8221
8222 /* Locate ORIG_PDI's sibling.
8223 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8224
8225 static const gdb_byte *
8226 locate_pdi_sibling (const struct die_reader_specs *reader,
8227 struct partial_die_info *orig_pdi,
8228 const gdb_byte *info_ptr)
8229 {
8230 /* Do we know the sibling already? */
8231
8232 if (orig_pdi->sibling)
8233 return orig_pdi->sibling;
8234
8235 /* Are there any children to deal with? */
8236
8237 if (!orig_pdi->has_children)
8238 return info_ptr;
8239
8240 /* Skip the children the long way. */
8241
8242 return skip_children (reader, info_ptr);
8243 }
8244
8245 /* Expand this partial symbol table into a full symbol table. SELF is
8246 not NULL. */
8247
8248 static void
8249 dwarf2_read_symtab (struct partial_symtab *self,
8250 struct objfile *objfile)
8251 {
8252 if (self->readin)
8253 {
8254 warning (_("bug: psymtab for %s is already read in."),
8255 self->filename);
8256 }
8257 else
8258 {
8259 if (info_verbose)
8260 {
8261 printf_filtered (_("Reading in symbols for %s..."),
8262 self->filename);
8263 gdb_flush (gdb_stdout);
8264 }
8265
8266 /* Restore our global data. */
8267 dwarf2_per_objfile
8268 = (struct dwarf2_per_objfile *) objfile_data (objfile,
8269 dwarf2_objfile_data_key);
8270
8271 /* If this psymtab is constructed from a debug-only objfile, the
8272 has_section_at_zero flag will not necessarily be correct. We
8273 can get the correct value for this flag by looking at the data
8274 associated with the (presumably stripped) associated objfile. */
8275 if (objfile->separate_debug_objfile_backlink)
8276 {
8277 struct dwarf2_per_objfile *dpo_backlink
8278 = ((struct dwarf2_per_objfile *)
8279 objfile_data (objfile->separate_debug_objfile_backlink,
8280 dwarf2_objfile_data_key));
8281
8282 dwarf2_per_objfile->has_section_at_zero
8283 = dpo_backlink->has_section_at_zero;
8284 }
8285
8286 dwarf2_per_objfile->reading_partial_symbols = 0;
8287
8288 psymtab_to_symtab_1 (self);
8289
8290 /* Finish up the debug error message. */
8291 if (info_verbose)
8292 printf_filtered (_("done.\n"));
8293 }
8294
8295 process_cu_includes ();
8296 }
8297 \f
8298 /* Reading in full CUs. */
8299
8300 /* Add PER_CU to the queue. */
8301
8302 static void
8303 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8304 enum language pretend_language)
8305 {
8306 struct dwarf2_queue_item *item;
8307
8308 per_cu->queued = 1;
8309 item = XNEW (struct dwarf2_queue_item);
8310 item->per_cu = per_cu;
8311 item->pretend_language = pretend_language;
8312 item->next = NULL;
8313
8314 if (dwarf2_queue == NULL)
8315 dwarf2_queue = item;
8316 else
8317 dwarf2_queue_tail->next = item;
8318
8319 dwarf2_queue_tail = item;
8320 }
8321
8322 /* If PER_CU is not yet queued, add it to the queue.
8323 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8324 dependency.
8325 The result is non-zero if PER_CU was queued, otherwise the result is zero
8326 meaning either PER_CU is already queued or it is already loaded.
8327
8328 N.B. There is an invariant here that if a CU is queued then it is loaded.
8329 The caller is required to load PER_CU if we return non-zero. */
8330
8331 static int
8332 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8333 struct dwarf2_per_cu_data *per_cu,
8334 enum language pretend_language)
8335 {
8336 /* We may arrive here during partial symbol reading, if we need full
8337 DIEs to process an unusual case (e.g. template arguments). Do
8338 not queue PER_CU, just tell our caller to load its DIEs. */
8339 if (dwarf2_per_objfile->reading_partial_symbols)
8340 {
8341 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8342 return 1;
8343 return 0;
8344 }
8345
8346 /* Mark the dependence relation so that we don't flush PER_CU
8347 too early. */
8348 if (dependent_cu != NULL)
8349 dwarf2_add_dependence (dependent_cu, per_cu);
8350
8351 /* If it's already on the queue, we have nothing to do. */
8352 if (per_cu->queued)
8353 return 0;
8354
8355 /* If the compilation unit is already loaded, just mark it as
8356 used. */
8357 if (per_cu->cu != NULL)
8358 {
8359 per_cu->cu->last_used = 0;
8360 return 0;
8361 }
8362
8363 /* Add it to the queue. */
8364 queue_comp_unit (per_cu, pretend_language);
8365
8366 return 1;
8367 }
8368
8369 /* Process the queue. */
8370
8371 static void
8372 process_queue (void)
8373 {
8374 struct dwarf2_queue_item *item, *next_item;
8375
8376 if (dwarf_read_debug)
8377 {
8378 fprintf_unfiltered (gdb_stdlog,
8379 "Expanding one or more symtabs of objfile %s ...\n",
8380 objfile_name (dwarf2_per_objfile->objfile));
8381 }
8382
8383 /* The queue starts out with one item, but following a DIE reference
8384 may load a new CU, adding it to the end of the queue. */
8385 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
8386 {
8387 if ((dwarf2_per_objfile->using_index
8388 ? !item->per_cu->v.quick->compunit_symtab
8389 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
8390 /* Skip dummy CUs. */
8391 && item->per_cu->cu != NULL)
8392 {
8393 struct dwarf2_per_cu_data *per_cu = item->per_cu;
8394 unsigned int debug_print_threshold;
8395 char buf[100];
8396
8397 if (per_cu->is_debug_types)
8398 {
8399 struct signatured_type *sig_type =
8400 (struct signatured_type *) per_cu;
8401
8402 sprintf (buf, "TU %s at offset 0x%x",
8403 hex_string (sig_type->signature),
8404 to_underlying (per_cu->sect_off));
8405 /* There can be 100s of TUs.
8406 Only print them in verbose mode. */
8407 debug_print_threshold = 2;
8408 }
8409 else
8410 {
8411 sprintf (buf, "CU at offset 0x%x",
8412 to_underlying (per_cu->sect_off));
8413 debug_print_threshold = 1;
8414 }
8415
8416 if (dwarf_read_debug >= debug_print_threshold)
8417 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8418
8419 if (per_cu->is_debug_types)
8420 process_full_type_unit (per_cu, item->pretend_language);
8421 else
8422 process_full_comp_unit (per_cu, item->pretend_language);
8423
8424 if (dwarf_read_debug >= debug_print_threshold)
8425 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8426 }
8427
8428 item->per_cu->queued = 0;
8429 next_item = item->next;
8430 xfree (item);
8431 }
8432
8433 dwarf2_queue_tail = NULL;
8434
8435 if (dwarf_read_debug)
8436 {
8437 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8438 objfile_name (dwarf2_per_objfile->objfile));
8439 }
8440 }
8441
8442 /* Free all allocated queue entries. This function only releases anything if
8443 an error was thrown; if the queue was processed then it would have been
8444 freed as we went along. */
8445
8446 static void
8447 dwarf2_release_queue (void *dummy)
8448 {
8449 struct dwarf2_queue_item *item, *last;
8450
8451 item = dwarf2_queue;
8452 while (item)
8453 {
8454 /* Anything still marked queued is likely to be in an
8455 inconsistent state, so discard it. */
8456 if (item->per_cu->queued)
8457 {
8458 if (item->per_cu->cu != NULL)
8459 free_one_cached_comp_unit (item->per_cu);
8460 item->per_cu->queued = 0;
8461 }
8462
8463 last = item;
8464 item = item->next;
8465 xfree (last);
8466 }
8467
8468 dwarf2_queue = dwarf2_queue_tail = NULL;
8469 }
8470
8471 /* Read in full symbols for PST, and anything it depends on. */
8472
8473 static void
8474 psymtab_to_symtab_1 (struct partial_symtab *pst)
8475 {
8476 struct dwarf2_per_cu_data *per_cu;
8477 int i;
8478
8479 if (pst->readin)
8480 return;
8481
8482 for (i = 0; i < pst->number_of_dependencies; i++)
8483 if (!pst->dependencies[i]->readin
8484 && pst->dependencies[i]->user == NULL)
8485 {
8486 /* Inform about additional files that need to be read in. */
8487 if (info_verbose)
8488 {
8489 /* FIXME: i18n: Need to make this a single string. */
8490 fputs_filtered (" ", gdb_stdout);
8491 wrap_here ("");
8492 fputs_filtered ("and ", gdb_stdout);
8493 wrap_here ("");
8494 printf_filtered ("%s...", pst->dependencies[i]->filename);
8495 wrap_here (""); /* Flush output. */
8496 gdb_flush (gdb_stdout);
8497 }
8498 psymtab_to_symtab_1 (pst->dependencies[i]);
8499 }
8500
8501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
8502
8503 if (per_cu == NULL)
8504 {
8505 /* It's an include file, no symbols to read for it.
8506 Everything is in the parent symtab. */
8507 pst->readin = 1;
8508 return;
8509 }
8510
8511 dw2_do_instantiate_symtab (per_cu);
8512 }
8513
8514 /* Trivial hash function for die_info: the hash value of a DIE
8515 is its offset in .debug_info for this objfile. */
8516
8517 static hashval_t
8518 die_hash (const void *item)
8519 {
8520 const struct die_info *die = (const struct die_info *) item;
8521
8522 return to_underlying (die->sect_off);
8523 }
8524
8525 /* Trivial comparison function for die_info structures: two DIEs
8526 are equal if they have the same offset. */
8527
8528 static int
8529 die_eq (const void *item_lhs, const void *item_rhs)
8530 {
8531 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8532 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8533
8534 return die_lhs->sect_off == die_rhs->sect_off;
8535 }
8536
8537 /* die_reader_func for load_full_comp_unit.
8538 This is identical to read_signatured_type_reader,
8539 but is kept separate for now. */
8540
8541 static void
8542 load_full_comp_unit_reader (const struct die_reader_specs *reader,
8543 const gdb_byte *info_ptr,
8544 struct die_info *comp_unit_die,
8545 int has_children,
8546 void *data)
8547 {
8548 struct dwarf2_cu *cu = reader->cu;
8549 enum language *language_ptr = (enum language *) data;
8550
8551 gdb_assert (cu->die_hash == NULL);
8552 cu->die_hash =
8553 htab_create_alloc_ex (cu->header.length / 12,
8554 die_hash,
8555 die_eq,
8556 NULL,
8557 &cu->comp_unit_obstack,
8558 hashtab_obstack_allocate,
8559 dummy_obstack_deallocate);
8560
8561 if (has_children)
8562 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
8563 &info_ptr, comp_unit_die);
8564 cu->dies = comp_unit_die;
8565 /* comp_unit_die is not stored in die_hash, no need. */
8566
8567 /* We try not to read any attributes in this function, because not
8568 all CUs needed for references have been loaded yet, and symbol
8569 table processing isn't initialized. But we have to set the CU language,
8570 or we won't be able to build types correctly.
8571 Similarly, if we do not read the producer, we can not apply
8572 producer-specific interpretation. */
8573 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8574 }
8575
8576 /* Load the DIEs associated with PER_CU into memory. */
8577
8578 static void
8579 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8580 enum language pretend_language)
8581 {
8582 gdb_assert (! this_cu->is_debug_types);
8583
8584 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8585 load_full_comp_unit_reader, &pretend_language);
8586 }
8587
8588 /* Add a DIE to the delayed physname list. */
8589
8590 static void
8591 add_to_method_list (struct type *type, int fnfield_index, int index,
8592 const char *name, struct die_info *die,
8593 struct dwarf2_cu *cu)
8594 {
8595 struct delayed_method_info mi;
8596 mi.type = type;
8597 mi.fnfield_index = fnfield_index;
8598 mi.index = index;
8599 mi.name = name;
8600 mi.die = die;
8601 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8602 }
8603
8604 /* A cleanup for freeing the delayed method list. */
8605
8606 static void
8607 free_delayed_list (void *ptr)
8608 {
8609 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8610 if (cu->method_list != NULL)
8611 {
8612 VEC_free (delayed_method_info, cu->method_list);
8613 cu->method_list = NULL;
8614 }
8615 }
8616
8617 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8618 "const" / "volatile". If so, decrements LEN by the length of the
8619 modifier and return true. Otherwise return false. */
8620
8621 template<size_t N>
8622 static bool
8623 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8624 {
8625 size_t mod_len = sizeof (mod) - 1;
8626 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8627 {
8628 len -= mod_len;
8629 return true;
8630 }
8631 return false;
8632 }
8633
8634 /* Compute the physnames of any methods on the CU's method list.
8635
8636 The computation of method physnames is delayed in order to avoid the
8637 (bad) condition that one of the method's formal parameters is of an as yet
8638 incomplete type. */
8639
8640 static void
8641 compute_delayed_physnames (struct dwarf2_cu *cu)
8642 {
8643 int i;
8644 struct delayed_method_info *mi;
8645
8646 /* Only C++ delays computing physnames. */
8647 if (VEC_empty (delayed_method_info, cu->method_list))
8648 return;
8649 gdb_assert (cu->language == language_cplus);
8650
8651 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8652 {
8653 const char *physname;
8654 struct fn_fieldlist *fn_flp
8655 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8656 physname = dwarf2_physname (mi->name, mi->die, cu);
8657 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8658 = physname ? physname : "";
8659
8660 /* Since there's no tag to indicate whether a method is a
8661 const/volatile overload, extract that information out of the
8662 demangled name. */
8663 if (physname != NULL)
8664 {
8665 size_t len = strlen (physname);
8666
8667 while (1)
8668 {
8669 if (physname[len] == ')') /* shortcut */
8670 break;
8671 else if (check_modifier (physname, len, " const"))
8672 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8673 else if (check_modifier (physname, len, " volatile"))
8674 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8675 else
8676 break;
8677 }
8678 }
8679 }
8680 }
8681
8682 /* Go objects should be embedded in a DW_TAG_module DIE,
8683 and it's not clear if/how imported objects will appear.
8684 To keep Go support simple until that's worked out,
8685 go back through what we've read and create something usable.
8686 We could do this while processing each DIE, and feels kinda cleaner,
8687 but that way is more invasive.
8688 This is to, for example, allow the user to type "p var" or "b main"
8689 without having to specify the package name, and allow lookups
8690 of module.object to work in contexts that use the expression
8691 parser. */
8692
8693 static void
8694 fixup_go_packaging (struct dwarf2_cu *cu)
8695 {
8696 char *package_name = NULL;
8697 struct pending *list;
8698 int i;
8699
8700 for (list = global_symbols; list != NULL; list = list->next)
8701 {
8702 for (i = 0; i < list->nsyms; ++i)
8703 {
8704 struct symbol *sym = list->symbol[i];
8705
8706 if (SYMBOL_LANGUAGE (sym) == language_go
8707 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8708 {
8709 char *this_package_name = go_symbol_package_name (sym);
8710
8711 if (this_package_name == NULL)
8712 continue;
8713 if (package_name == NULL)
8714 package_name = this_package_name;
8715 else
8716 {
8717 if (strcmp (package_name, this_package_name) != 0)
8718 complaint (&symfile_complaints,
8719 _("Symtab %s has objects from two different Go packages: %s and %s"),
8720 (symbol_symtab (sym) != NULL
8721 ? symtab_to_filename_for_display
8722 (symbol_symtab (sym))
8723 : objfile_name (cu->objfile)),
8724 this_package_name, package_name);
8725 xfree (this_package_name);
8726 }
8727 }
8728 }
8729 }
8730
8731 if (package_name != NULL)
8732 {
8733 struct objfile *objfile = cu->objfile;
8734 const char *saved_package_name
8735 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8736 package_name,
8737 strlen (package_name));
8738 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8739 saved_package_name);
8740 struct symbol *sym;
8741
8742 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8743
8744 sym = allocate_symbol (objfile);
8745 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8746 SYMBOL_SET_NAMES (sym, saved_package_name,
8747 strlen (saved_package_name), 0, objfile);
8748 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8749 e.g., "main" finds the "main" module and not C's main(). */
8750 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8751 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8752 SYMBOL_TYPE (sym) = type;
8753
8754 add_symbol_to_list (sym, &global_symbols);
8755
8756 xfree (package_name);
8757 }
8758 }
8759
8760 /* Return the symtab for PER_CU. This works properly regardless of
8761 whether we're using the index or psymtabs. */
8762
8763 static struct compunit_symtab *
8764 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8765 {
8766 return (dwarf2_per_objfile->using_index
8767 ? per_cu->v.quick->compunit_symtab
8768 : per_cu->v.psymtab->compunit_symtab);
8769 }
8770
8771 /* A helper function for computing the list of all symbol tables
8772 included by PER_CU. */
8773
8774 static void
8775 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8776 htab_t all_children, htab_t all_type_symtabs,
8777 struct dwarf2_per_cu_data *per_cu,
8778 struct compunit_symtab *immediate_parent)
8779 {
8780 void **slot;
8781 int ix;
8782 struct compunit_symtab *cust;
8783 struct dwarf2_per_cu_data *iter;
8784
8785 slot = htab_find_slot (all_children, per_cu, INSERT);
8786 if (*slot != NULL)
8787 {
8788 /* This inclusion and its children have been processed. */
8789 return;
8790 }
8791
8792 *slot = per_cu;
8793 /* Only add a CU if it has a symbol table. */
8794 cust = get_compunit_symtab (per_cu);
8795 if (cust != NULL)
8796 {
8797 /* If this is a type unit only add its symbol table if we haven't
8798 seen it yet (type unit per_cu's can share symtabs). */
8799 if (per_cu->is_debug_types)
8800 {
8801 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8802 if (*slot == NULL)
8803 {
8804 *slot = cust;
8805 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8806 if (cust->user == NULL)
8807 cust->user = immediate_parent;
8808 }
8809 }
8810 else
8811 {
8812 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8813 if (cust->user == NULL)
8814 cust->user = immediate_parent;
8815 }
8816 }
8817
8818 for (ix = 0;
8819 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8820 ++ix)
8821 {
8822 recursively_compute_inclusions (result, all_children,
8823 all_type_symtabs, iter, cust);
8824 }
8825 }
8826
8827 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8828 PER_CU. */
8829
8830 static void
8831 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8832 {
8833 gdb_assert (! per_cu->is_debug_types);
8834
8835 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8836 {
8837 int ix, len;
8838 struct dwarf2_per_cu_data *per_cu_iter;
8839 struct compunit_symtab *compunit_symtab_iter;
8840 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8841 htab_t all_children, all_type_symtabs;
8842 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8843
8844 /* If we don't have a symtab, we can just skip this case. */
8845 if (cust == NULL)
8846 return;
8847
8848 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8849 NULL, xcalloc, xfree);
8850 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8851 NULL, xcalloc, xfree);
8852
8853 for (ix = 0;
8854 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8855 ix, per_cu_iter);
8856 ++ix)
8857 {
8858 recursively_compute_inclusions (&result_symtabs, all_children,
8859 all_type_symtabs, per_cu_iter,
8860 cust);
8861 }
8862
8863 /* Now we have a transitive closure of all the included symtabs. */
8864 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8865 cust->includes
8866 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8867 struct compunit_symtab *, len + 1);
8868 for (ix = 0;
8869 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8870 compunit_symtab_iter);
8871 ++ix)
8872 cust->includes[ix] = compunit_symtab_iter;
8873 cust->includes[len] = NULL;
8874
8875 VEC_free (compunit_symtab_ptr, result_symtabs);
8876 htab_delete (all_children);
8877 htab_delete (all_type_symtabs);
8878 }
8879 }
8880
8881 /* Compute the 'includes' field for the symtabs of all the CUs we just
8882 read. */
8883
8884 static void
8885 process_cu_includes (void)
8886 {
8887 int ix;
8888 struct dwarf2_per_cu_data *iter;
8889
8890 for (ix = 0;
8891 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8892 ix, iter);
8893 ++ix)
8894 {
8895 if (! iter->is_debug_types)
8896 compute_compunit_symtab_includes (iter);
8897 }
8898
8899 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8900 }
8901
8902 /* Generate full symbol information for PER_CU, whose DIEs have
8903 already been loaded into memory. */
8904
8905 static void
8906 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8907 enum language pretend_language)
8908 {
8909 struct dwarf2_cu *cu = per_cu->cu;
8910 struct objfile *objfile = per_cu->objfile;
8911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8912 CORE_ADDR lowpc, highpc;
8913 struct compunit_symtab *cust;
8914 struct cleanup *delayed_list_cleanup;
8915 CORE_ADDR baseaddr;
8916 struct block *static_block;
8917 CORE_ADDR addr;
8918
8919 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8920
8921 buildsym_init ();
8922 scoped_free_pendings free_pending;
8923 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8924
8925 cu->list_in_scope = &file_symbols;
8926
8927 cu->language = pretend_language;
8928 cu->language_defn = language_def (cu->language);
8929
8930 /* Do line number decoding in read_file_scope () */
8931 process_die (cu->dies, cu);
8932
8933 /* For now fudge the Go package. */
8934 if (cu->language == language_go)
8935 fixup_go_packaging (cu);
8936
8937 /* Now that we have processed all the DIEs in the CU, all the types
8938 should be complete, and it should now be safe to compute all of the
8939 physnames. */
8940 compute_delayed_physnames (cu);
8941 do_cleanups (delayed_list_cleanup);
8942
8943 /* Some compilers don't define a DW_AT_high_pc attribute for the
8944 compilation unit. If the DW_AT_high_pc is missing, synthesize
8945 it, by scanning the DIE's below the compilation unit. */
8946 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8947
8948 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8949 static_block = end_symtab_get_static_block (addr, 0, 1);
8950
8951 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8952 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8953 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8954 addrmap to help ensure it has an accurate map of pc values belonging to
8955 this comp unit. */
8956 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8957
8958 cust = end_symtab_from_static_block (static_block,
8959 SECT_OFF_TEXT (objfile), 0);
8960
8961 if (cust != NULL)
8962 {
8963 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8964
8965 /* Set symtab language to language from DW_AT_language. If the
8966 compilation is from a C file generated by language preprocessors, do
8967 not set the language if it was already deduced by start_subfile. */
8968 if (!(cu->language == language_c
8969 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8970 COMPUNIT_FILETABS (cust)->language = cu->language;
8971
8972 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8973 produce DW_AT_location with location lists but it can be possibly
8974 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8975 there were bugs in prologue debug info, fixed later in GCC-4.5
8976 by "unwind info for epilogues" patch (which is not directly related).
8977
8978 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8979 needed, it would be wrong due to missing DW_AT_producer there.
8980
8981 Still one can confuse GDB by using non-standard GCC compilation
8982 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8983 */
8984 if (cu->has_loclist && gcc_4_minor >= 5)
8985 cust->locations_valid = 1;
8986
8987 if (gcc_4_minor >= 5)
8988 cust->epilogue_unwind_valid = 1;
8989
8990 cust->call_site_htab = cu->call_site_htab;
8991 }
8992
8993 if (dwarf2_per_objfile->using_index)
8994 per_cu->v.quick->compunit_symtab = cust;
8995 else
8996 {
8997 struct partial_symtab *pst = per_cu->v.psymtab;
8998 pst->compunit_symtab = cust;
8999 pst->readin = 1;
9000 }
9001
9002 /* Push it for inclusion processing later. */
9003 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
9004 }
9005
9006 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9007 already been loaded into memory. */
9008
9009 static void
9010 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9011 enum language pretend_language)
9012 {
9013 struct dwarf2_cu *cu = per_cu->cu;
9014 struct objfile *objfile = per_cu->objfile;
9015 struct compunit_symtab *cust;
9016 struct cleanup *delayed_list_cleanup;
9017 struct signatured_type *sig_type;
9018
9019 gdb_assert (per_cu->is_debug_types);
9020 sig_type = (struct signatured_type *) per_cu;
9021
9022 buildsym_init ();
9023 scoped_free_pendings free_pending;
9024 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
9025
9026 cu->list_in_scope = &file_symbols;
9027
9028 cu->language = pretend_language;
9029 cu->language_defn = language_def (cu->language);
9030
9031 /* The symbol tables are set up in read_type_unit_scope. */
9032 process_die (cu->dies, cu);
9033
9034 /* For now fudge the Go package. */
9035 if (cu->language == language_go)
9036 fixup_go_packaging (cu);
9037
9038 /* Now that we have processed all the DIEs in the CU, all the types
9039 should be complete, and it should now be safe to compute all of the
9040 physnames. */
9041 compute_delayed_physnames (cu);
9042 do_cleanups (delayed_list_cleanup);
9043
9044 /* TUs share symbol tables.
9045 If this is the first TU to use this symtab, complete the construction
9046 of it with end_expandable_symtab. Otherwise, complete the addition of
9047 this TU's symbols to the existing symtab. */
9048 if (sig_type->type_unit_group->compunit_symtab == NULL)
9049 {
9050 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9051 sig_type->type_unit_group->compunit_symtab = cust;
9052
9053 if (cust != NULL)
9054 {
9055 /* Set symtab language to language from DW_AT_language. If the
9056 compilation is from a C file generated by language preprocessors,
9057 do not set the language if it was already deduced by
9058 start_subfile. */
9059 if (!(cu->language == language_c
9060 && COMPUNIT_FILETABS (cust)->language != language_c))
9061 COMPUNIT_FILETABS (cust)->language = cu->language;
9062 }
9063 }
9064 else
9065 {
9066 augment_type_symtab ();
9067 cust = sig_type->type_unit_group->compunit_symtab;
9068 }
9069
9070 if (dwarf2_per_objfile->using_index)
9071 per_cu->v.quick->compunit_symtab = cust;
9072 else
9073 {
9074 struct partial_symtab *pst = per_cu->v.psymtab;
9075 pst->compunit_symtab = cust;
9076 pst->readin = 1;
9077 }
9078 }
9079
9080 /* Process an imported unit DIE. */
9081
9082 static void
9083 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9084 {
9085 struct attribute *attr;
9086
9087 /* For now we don't handle imported units in type units. */
9088 if (cu->per_cu->is_debug_types)
9089 {
9090 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9091 " supported in type units [in module %s]"),
9092 objfile_name (cu->objfile));
9093 }
9094
9095 attr = dwarf2_attr (die, DW_AT_import, cu);
9096 if (attr != NULL)
9097 {
9098 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9099 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9100 dwarf2_per_cu_data *per_cu
9101 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
9102
9103 /* If necessary, add it to the queue and load its DIEs. */
9104 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9105 load_full_comp_unit (per_cu, cu->language);
9106
9107 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
9108 per_cu);
9109 }
9110 }
9111
9112 /* RAII object that represents a process_die scope: i.e.,
9113 starts/finishes processing a DIE. */
9114 class process_die_scope
9115 {
9116 public:
9117 process_die_scope (die_info *die, dwarf2_cu *cu)
9118 : m_die (die), m_cu (cu)
9119 {
9120 /* We should only be processing DIEs not already in process. */
9121 gdb_assert (!m_die->in_process);
9122 m_die->in_process = true;
9123 }
9124
9125 ~process_die_scope ()
9126 {
9127 m_die->in_process = false;
9128
9129 /* If we're done processing the DIE for the CU that owns the line
9130 header, we don't need the line header anymore. */
9131 if (m_cu->line_header_die_owner == m_die)
9132 {
9133 delete m_cu->line_header;
9134 m_cu->line_header = NULL;
9135 m_cu->line_header_die_owner = NULL;
9136 }
9137 }
9138
9139 private:
9140 die_info *m_die;
9141 dwarf2_cu *m_cu;
9142 };
9143
9144 /* Process a die and its children. */
9145
9146 static void
9147 process_die (struct die_info *die, struct dwarf2_cu *cu)
9148 {
9149 process_die_scope scope (die, cu);
9150
9151 switch (die->tag)
9152 {
9153 case DW_TAG_padding:
9154 break;
9155 case DW_TAG_compile_unit:
9156 case DW_TAG_partial_unit:
9157 read_file_scope (die, cu);
9158 break;
9159 case DW_TAG_type_unit:
9160 read_type_unit_scope (die, cu);
9161 break;
9162 case DW_TAG_subprogram:
9163 case DW_TAG_inlined_subroutine:
9164 read_func_scope (die, cu);
9165 break;
9166 case DW_TAG_lexical_block:
9167 case DW_TAG_try_block:
9168 case DW_TAG_catch_block:
9169 read_lexical_block_scope (die, cu);
9170 break;
9171 case DW_TAG_call_site:
9172 case DW_TAG_GNU_call_site:
9173 read_call_site_scope (die, cu);
9174 break;
9175 case DW_TAG_class_type:
9176 case DW_TAG_interface_type:
9177 case DW_TAG_structure_type:
9178 case DW_TAG_union_type:
9179 process_structure_scope (die, cu);
9180 break;
9181 case DW_TAG_enumeration_type:
9182 process_enumeration_scope (die, cu);
9183 break;
9184
9185 /* These dies have a type, but processing them does not create
9186 a symbol or recurse to process the children. Therefore we can
9187 read them on-demand through read_type_die. */
9188 case DW_TAG_subroutine_type:
9189 case DW_TAG_set_type:
9190 case DW_TAG_array_type:
9191 case DW_TAG_pointer_type:
9192 case DW_TAG_ptr_to_member_type:
9193 case DW_TAG_reference_type:
9194 case DW_TAG_rvalue_reference_type:
9195 case DW_TAG_string_type:
9196 break;
9197
9198 case DW_TAG_base_type:
9199 case DW_TAG_subrange_type:
9200 case DW_TAG_typedef:
9201 /* Add a typedef symbol for the type definition, if it has a
9202 DW_AT_name. */
9203 new_symbol (die, read_type_die (die, cu), cu);
9204 break;
9205 case DW_TAG_common_block:
9206 read_common_block (die, cu);
9207 break;
9208 case DW_TAG_common_inclusion:
9209 break;
9210 case DW_TAG_namespace:
9211 cu->processing_has_namespace_info = 1;
9212 read_namespace (die, cu);
9213 break;
9214 case DW_TAG_module:
9215 cu->processing_has_namespace_info = 1;
9216 read_module (die, cu);
9217 break;
9218 case DW_TAG_imported_declaration:
9219 cu->processing_has_namespace_info = 1;
9220 if (read_namespace_alias (die, cu))
9221 break;
9222 /* The declaration is not a global namespace alias: fall through. */
9223 case DW_TAG_imported_module:
9224 cu->processing_has_namespace_info = 1;
9225 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9226 || cu->language != language_fortran))
9227 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
9228 dwarf_tag_name (die->tag));
9229 read_import_statement (die, cu);
9230 break;
9231
9232 case DW_TAG_imported_unit:
9233 process_imported_unit_die (die, cu);
9234 break;
9235
9236 case DW_TAG_variable:
9237 read_variable (die, cu);
9238 break;
9239
9240 default:
9241 new_symbol (die, NULL, cu);
9242 break;
9243 }
9244 }
9245 \f
9246 /* DWARF name computation. */
9247
9248 /* A helper function for dwarf2_compute_name which determines whether DIE
9249 needs to have the name of the scope prepended to the name listed in the
9250 die. */
9251
9252 static int
9253 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9254 {
9255 struct attribute *attr;
9256
9257 switch (die->tag)
9258 {
9259 case DW_TAG_namespace:
9260 case DW_TAG_typedef:
9261 case DW_TAG_class_type:
9262 case DW_TAG_interface_type:
9263 case DW_TAG_structure_type:
9264 case DW_TAG_union_type:
9265 case DW_TAG_enumeration_type:
9266 case DW_TAG_enumerator:
9267 case DW_TAG_subprogram:
9268 case DW_TAG_inlined_subroutine:
9269 case DW_TAG_member:
9270 case DW_TAG_imported_declaration:
9271 return 1;
9272
9273 case DW_TAG_variable:
9274 case DW_TAG_constant:
9275 /* We only need to prefix "globally" visible variables. These include
9276 any variable marked with DW_AT_external or any variable that
9277 lives in a namespace. [Variables in anonymous namespaces
9278 require prefixing, but they are not DW_AT_external.] */
9279
9280 if (dwarf2_attr (die, DW_AT_specification, cu))
9281 {
9282 struct dwarf2_cu *spec_cu = cu;
9283
9284 return die_needs_namespace (die_specification (die, &spec_cu),
9285 spec_cu);
9286 }
9287
9288 attr = dwarf2_attr (die, DW_AT_external, cu);
9289 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9290 && die->parent->tag != DW_TAG_module)
9291 return 0;
9292 /* A variable in a lexical block of some kind does not need a
9293 namespace, even though in C++ such variables may be external
9294 and have a mangled name. */
9295 if (die->parent->tag == DW_TAG_lexical_block
9296 || die->parent->tag == DW_TAG_try_block
9297 || die->parent->tag == DW_TAG_catch_block
9298 || die->parent->tag == DW_TAG_subprogram)
9299 return 0;
9300 return 1;
9301
9302 default:
9303 return 0;
9304 }
9305 }
9306
9307 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9308 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9309 defined for the given DIE. */
9310
9311 static struct attribute *
9312 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9313 {
9314 struct attribute *attr;
9315
9316 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9317 if (attr == NULL)
9318 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9319
9320 return attr;
9321 }
9322
9323 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9324 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9325 defined for the given DIE. */
9326
9327 static const char *
9328 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9329 {
9330 const char *linkage_name;
9331
9332 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9333 if (linkage_name == NULL)
9334 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9335
9336 return linkage_name;
9337 }
9338
9339 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9340 compute the physname for the object, which include a method's:
9341 - formal parameters (C++),
9342 - receiver type (Go),
9343
9344 The term "physname" is a bit confusing.
9345 For C++, for example, it is the demangled name.
9346 For Go, for example, it's the mangled name.
9347
9348 For Ada, return the DIE's linkage name rather than the fully qualified
9349 name. PHYSNAME is ignored..
9350
9351 The result is allocated on the objfile_obstack and canonicalized. */
9352
9353 static const char *
9354 dwarf2_compute_name (const char *name,
9355 struct die_info *die, struct dwarf2_cu *cu,
9356 int physname)
9357 {
9358 struct objfile *objfile = cu->objfile;
9359
9360 if (name == NULL)
9361 name = dwarf2_name (die, cu);
9362
9363 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9364 but otherwise compute it by typename_concat inside GDB.
9365 FIXME: Actually this is not really true, or at least not always true.
9366 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
9367 Fortran names because there is no mangling standard. So new_symbol_full
9368 will set the demangled name to the result of dwarf2_full_name, and it is
9369 the demangled name that GDB uses if it exists. */
9370 if (cu->language == language_ada
9371 || (cu->language == language_fortran && physname))
9372 {
9373 /* For Ada unit, we prefer the linkage name over the name, as
9374 the former contains the exported name, which the user expects
9375 to be able to reference. Ideally, we want the user to be able
9376 to reference this entity using either natural or linkage name,
9377 but we haven't started looking at this enhancement yet. */
9378 const char *linkage_name = dw2_linkage_name (die, cu);
9379
9380 if (linkage_name != NULL)
9381 return linkage_name;
9382 }
9383
9384 /* These are the only languages we know how to qualify names in. */
9385 if (name != NULL
9386 && (cu->language == language_cplus
9387 || cu->language == language_fortran || cu->language == language_d
9388 || cu->language == language_rust))
9389 {
9390 if (die_needs_namespace (die, cu))
9391 {
9392 long length;
9393 const char *prefix;
9394 const char *canonical_name = NULL;
9395
9396 string_file buf;
9397
9398 prefix = determine_prefix (die, cu);
9399 if (*prefix != '\0')
9400 {
9401 char *prefixed_name = typename_concat (NULL, prefix, name,
9402 physname, cu);
9403
9404 buf.puts (prefixed_name);
9405 xfree (prefixed_name);
9406 }
9407 else
9408 buf.puts (name);
9409
9410 /* Template parameters may be specified in the DIE's DW_AT_name, or
9411 as children with DW_TAG_template_type_param or
9412 DW_TAG_value_type_param. If the latter, add them to the name
9413 here. If the name already has template parameters, then
9414 skip this step; some versions of GCC emit both, and
9415 it is more efficient to use the pre-computed name.
9416
9417 Something to keep in mind about this process: it is very
9418 unlikely, or in some cases downright impossible, to produce
9419 something that will match the mangled name of a function.
9420 If the definition of the function has the same debug info,
9421 we should be able to match up with it anyway. But fallbacks
9422 using the minimal symbol, for instance to find a method
9423 implemented in a stripped copy of libstdc++, will not work.
9424 If we do not have debug info for the definition, we will have to
9425 match them up some other way.
9426
9427 When we do name matching there is a related problem with function
9428 templates; two instantiated function templates are allowed to
9429 differ only by their return types, which we do not add here. */
9430
9431 if (cu->language == language_cplus && strchr (name, '<') == NULL)
9432 {
9433 struct attribute *attr;
9434 struct die_info *child;
9435 int first = 1;
9436
9437 die->building_fullname = 1;
9438
9439 for (child = die->child; child != NULL; child = child->sibling)
9440 {
9441 struct type *type;
9442 LONGEST value;
9443 const gdb_byte *bytes;
9444 struct dwarf2_locexpr_baton *baton;
9445 struct value *v;
9446
9447 if (child->tag != DW_TAG_template_type_param
9448 && child->tag != DW_TAG_template_value_param)
9449 continue;
9450
9451 if (first)
9452 {
9453 buf.puts ("<");
9454 first = 0;
9455 }
9456 else
9457 buf.puts (", ");
9458
9459 attr = dwarf2_attr (child, DW_AT_type, cu);
9460 if (attr == NULL)
9461 {
9462 complaint (&symfile_complaints,
9463 _("template parameter missing DW_AT_type"));
9464 buf.puts ("UNKNOWN_TYPE");
9465 continue;
9466 }
9467 type = die_type (child, cu);
9468
9469 if (child->tag == DW_TAG_template_type_param)
9470 {
9471 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
9472 continue;
9473 }
9474
9475 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9476 if (attr == NULL)
9477 {
9478 complaint (&symfile_complaints,
9479 _("template parameter missing "
9480 "DW_AT_const_value"));
9481 buf.puts ("UNKNOWN_VALUE");
9482 continue;
9483 }
9484
9485 dwarf2_const_value_attr (attr, type, name,
9486 &cu->comp_unit_obstack, cu,
9487 &value, &bytes, &baton);
9488
9489 if (TYPE_NOSIGN (type))
9490 /* GDB prints characters as NUMBER 'CHAR'. If that's
9491 changed, this can use value_print instead. */
9492 c_printchar (value, type, &buf);
9493 else
9494 {
9495 struct value_print_options opts;
9496
9497 if (baton != NULL)
9498 v = dwarf2_evaluate_loc_desc (type, NULL,
9499 baton->data,
9500 baton->size,
9501 baton->per_cu);
9502 else if (bytes != NULL)
9503 {
9504 v = allocate_value (type);
9505 memcpy (value_contents_writeable (v), bytes,
9506 TYPE_LENGTH (type));
9507 }
9508 else
9509 v = value_from_longest (type, value);
9510
9511 /* Specify decimal so that we do not depend on
9512 the radix. */
9513 get_formatted_print_options (&opts, 'd');
9514 opts.raw = 1;
9515 value_print (v, &buf, &opts);
9516 release_value (v);
9517 value_free (v);
9518 }
9519 }
9520
9521 die->building_fullname = 0;
9522
9523 if (!first)
9524 {
9525 /* Close the argument list, with a space if necessary
9526 (nested templates). */
9527 if (!buf.empty () && buf.string ().back () == '>')
9528 buf.puts (" >");
9529 else
9530 buf.puts (">");
9531 }
9532 }
9533
9534 /* For C++ methods, append formal parameter type
9535 information, if PHYSNAME. */
9536
9537 if (physname && die->tag == DW_TAG_subprogram
9538 && cu->language == language_cplus)
9539 {
9540 struct type *type = read_type_die (die, cu);
9541
9542 c_type_print_args (type, &buf, 1, cu->language,
9543 &type_print_raw_options);
9544
9545 if (cu->language == language_cplus)
9546 {
9547 /* Assume that an artificial first parameter is
9548 "this", but do not crash if it is not. RealView
9549 marks unnamed (and thus unused) parameters as
9550 artificial; there is no way to differentiate
9551 the two cases. */
9552 if (TYPE_NFIELDS (type) > 0
9553 && TYPE_FIELD_ARTIFICIAL (type, 0)
9554 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
9555 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
9556 0))))
9557 buf.puts (" const");
9558 }
9559 }
9560
9561 const std::string &intermediate_name = buf.string ();
9562
9563 if (cu->language == language_cplus)
9564 canonical_name
9565 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9566 &objfile->per_bfd->storage_obstack);
9567
9568 /* If we only computed INTERMEDIATE_NAME, or if
9569 INTERMEDIATE_NAME is already canonical, then we need to
9570 copy it to the appropriate obstack. */
9571 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9572 name = ((const char *)
9573 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9574 intermediate_name.c_str (),
9575 intermediate_name.length ()));
9576 else
9577 name = canonical_name;
9578 }
9579 }
9580
9581 return name;
9582 }
9583
9584 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9585 If scope qualifiers are appropriate they will be added. The result
9586 will be allocated on the storage_obstack, or NULL if the DIE does
9587 not have a name. NAME may either be from a previous call to
9588 dwarf2_name or NULL.
9589
9590 The output string will be canonicalized (if C++). */
9591
9592 static const char *
9593 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9594 {
9595 return dwarf2_compute_name (name, die, cu, 0);
9596 }
9597
9598 /* Construct a physname for the given DIE in CU. NAME may either be
9599 from a previous call to dwarf2_name or NULL. The result will be
9600 allocated on the objfile_objstack or NULL if the DIE does not have a
9601 name.
9602
9603 The output string will be canonicalized (if C++). */
9604
9605 static const char *
9606 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9607 {
9608 struct objfile *objfile = cu->objfile;
9609 const char *retval, *mangled = NULL, *canon = NULL;
9610 int need_copy = 1;
9611
9612 /* In this case dwarf2_compute_name is just a shortcut not building anything
9613 on its own. */
9614 if (!die_needs_namespace (die, cu))
9615 return dwarf2_compute_name (name, die, cu, 1);
9616
9617 mangled = dw2_linkage_name (die, cu);
9618
9619 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9620 See https://github.com/rust-lang/rust/issues/32925. */
9621 if (cu->language == language_rust && mangled != NULL
9622 && strchr (mangled, '{') != NULL)
9623 mangled = NULL;
9624
9625 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9626 has computed. */
9627 gdb::unique_xmalloc_ptr<char> demangled;
9628 if (mangled != NULL)
9629 {
9630 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9631 type. It is easier for GDB users to search for such functions as
9632 `name(params)' than `long name(params)'. In such case the minimal
9633 symbol names do not match the full symbol names but for template
9634 functions there is never a need to look up their definition from their
9635 declaration so the only disadvantage remains the minimal symbol
9636 variant `long name(params)' does not have the proper inferior type.
9637 */
9638
9639 if (cu->language == language_go)
9640 {
9641 /* This is a lie, but we already lie to the caller new_symbol_full.
9642 new_symbol_full assumes we return the mangled name.
9643 This just undoes that lie until things are cleaned up. */
9644 }
9645 else
9646 {
9647 demangled.reset (gdb_demangle (mangled,
9648 (DMGL_PARAMS | DMGL_ANSI
9649 | DMGL_RET_DROP)));
9650 }
9651 if (demangled)
9652 canon = demangled.get ();
9653 else
9654 {
9655 canon = mangled;
9656 need_copy = 0;
9657 }
9658 }
9659
9660 if (canon == NULL || check_physname)
9661 {
9662 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9663
9664 if (canon != NULL && strcmp (physname, canon) != 0)
9665 {
9666 /* It may not mean a bug in GDB. The compiler could also
9667 compute DW_AT_linkage_name incorrectly. But in such case
9668 GDB would need to be bug-to-bug compatible. */
9669
9670 complaint (&symfile_complaints,
9671 _("Computed physname <%s> does not match demangled <%s> "
9672 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9673 physname, canon, mangled, to_underlying (die->sect_off),
9674 objfile_name (objfile));
9675
9676 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9677 is available here - over computed PHYSNAME. It is safer
9678 against both buggy GDB and buggy compilers. */
9679
9680 retval = canon;
9681 }
9682 else
9683 {
9684 retval = physname;
9685 need_copy = 0;
9686 }
9687 }
9688 else
9689 retval = canon;
9690
9691 if (need_copy)
9692 retval = ((const char *)
9693 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9694 retval, strlen (retval)));
9695
9696 return retval;
9697 }
9698
9699 /* Inspect DIE in CU for a namespace alias. If one exists, record
9700 a new symbol for it.
9701
9702 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9703
9704 static int
9705 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9706 {
9707 struct attribute *attr;
9708
9709 /* If the die does not have a name, this is not a namespace
9710 alias. */
9711 attr = dwarf2_attr (die, DW_AT_name, cu);
9712 if (attr != NULL)
9713 {
9714 int num;
9715 struct die_info *d = die;
9716 struct dwarf2_cu *imported_cu = cu;
9717
9718 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9719 keep inspecting DIEs until we hit the underlying import. */
9720 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9721 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9722 {
9723 attr = dwarf2_attr (d, DW_AT_import, cu);
9724 if (attr == NULL)
9725 break;
9726
9727 d = follow_die_ref (d, attr, &imported_cu);
9728 if (d->tag != DW_TAG_imported_declaration)
9729 break;
9730 }
9731
9732 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9733 {
9734 complaint (&symfile_complaints,
9735 _("DIE at 0x%x has too many recursively imported "
9736 "declarations"), to_underlying (d->sect_off));
9737 return 0;
9738 }
9739
9740 if (attr != NULL)
9741 {
9742 struct type *type;
9743 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9744
9745 type = get_die_type_at_offset (sect_off, cu->per_cu);
9746 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9747 {
9748 /* This declaration is a global namespace alias. Add
9749 a symbol for it whose type is the aliased namespace. */
9750 new_symbol (die, type, cu);
9751 return 1;
9752 }
9753 }
9754 }
9755
9756 return 0;
9757 }
9758
9759 /* Return the using directives repository (global or local?) to use in the
9760 current context for LANGUAGE.
9761
9762 For Ada, imported declarations can materialize renamings, which *may* be
9763 global. However it is impossible (for now?) in DWARF to distinguish
9764 "external" imported declarations and "static" ones. As all imported
9765 declarations seem to be static in all other languages, make them all CU-wide
9766 global only in Ada. */
9767
9768 static struct using_direct **
9769 using_directives (enum language language)
9770 {
9771 if (language == language_ada && context_stack_depth == 0)
9772 return &global_using_directives;
9773 else
9774 return &local_using_directives;
9775 }
9776
9777 /* Read the import statement specified by the given die and record it. */
9778
9779 static void
9780 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9781 {
9782 struct objfile *objfile = cu->objfile;
9783 struct attribute *import_attr;
9784 struct die_info *imported_die, *child_die;
9785 struct dwarf2_cu *imported_cu;
9786 const char *imported_name;
9787 const char *imported_name_prefix;
9788 const char *canonical_name;
9789 const char *import_alias;
9790 const char *imported_declaration = NULL;
9791 const char *import_prefix;
9792 std::vector<const char *> excludes;
9793
9794 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9795 if (import_attr == NULL)
9796 {
9797 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9798 dwarf_tag_name (die->tag));
9799 return;
9800 }
9801
9802 imported_cu = cu;
9803 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9804 imported_name = dwarf2_name (imported_die, imported_cu);
9805 if (imported_name == NULL)
9806 {
9807 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9808
9809 The import in the following code:
9810 namespace A
9811 {
9812 typedef int B;
9813 }
9814
9815 int main ()
9816 {
9817 using A::B;
9818 B b;
9819 return b;
9820 }
9821
9822 ...
9823 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9824 <52> DW_AT_decl_file : 1
9825 <53> DW_AT_decl_line : 6
9826 <54> DW_AT_import : <0x75>
9827 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9828 <59> DW_AT_name : B
9829 <5b> DW_AT_decl_file : 1
9830 <5c> DW_AT_decl_line : 2
9831 <5d> DW_AT_type : <0x6e>
9832 ...
9833 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9834 <76> DW_AT_byte_size : 4
9835 <77> DW_AT_encoding : 5 (signed)
9836
9837 imports the wrong die ( 0x75 instead of 0x58 ).
9838 This case will be ignored until the gcc bug is fixed. */
9839 return;
9840 }
9841
9842 /* Figure out the local name after import. */
9843 import_alias = dwarf2_name (die, cu);
9844
9845 /* Figure out where the statement is being imported to. */
9846 import_prefix = determine_prefix (die, cu);
9847
9848 /* Figure out what the scope of the imported die is and prepend it
9849 to the name of the imported die. */
9850 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9851
9852 if (imported_die->tag != DW_TAG_namespace
9853 && imported_die->tag != DW_TAG_module)
9854 {
9855 imported_declaration = imported_name;
9856 canonical_name = imported_name_prefix;
9857 }
9858 else if (strlen (imported_name_prefix) > 0)
9859 canonical_name = obconcat (&objfile->objfile_obstack,
9860 imported_name_prefix,
9861 (cu->language == language_d ? "." : "::"),
9862 imported_name, (char *) NULL);
9863 else
9864 canonical_name = imported_name;
9865
9866 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9867 for (child_die = die->child; child_die && child_die->tag;
9868 child_die = sibling_die (child_die))
9869 {
9870 /* DWARF-4: A Fortran use statement with a “rename list” may be
9871 represented by an imported module entry with an import attribute
9872 referring to the module and owned entries corresponding to those
9873 entities that are renamed as part of being imported. */
9874
9875 if (child_die->tag != DW_TAG_imported_declaration)
9876 {
9877 complaint (&symfile_complaints,
9878 _("child DW_TAG_imported_declaration expected "
9879 "- DIE at 0x%x [in module %s]"),
9880 to_underlying (child_die->sect_off), objfile_name (objfile));
9881 continue;
9882 }
9883
9884 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9885 if (import_attr == NULL)
9886 {
9887 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9888 dwarf_tag_name (child_die->tag));
9889 continue;
9890 }
9891
9892 imported_cu = cu;
9893 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9894 &imported_cu);
9895 imported_name = dwarf2_name (imported_die, imported_cu);
9896 if (imported_name == NULL)
9897 {
9898 complaint (&symfile_complaints,
9899 _("child DW_TAG_imported_declaration has unknown "
9900 "imported name - DIE at 0x%x [in module %s]"),
9901 to_underlying (child_die->sect_off), objfile_name (objfile));
9902 continue;
9903 }
9904
9905 excludes.push_back (imported_name);
9906
9907 process_die (child_die, cu);
9908 }
9909
9910 add_using_directive (using_directives (cu->language),
9911 import_prefix,
9912 canonical_name,
9913 import_alias,
9914 imported_declaration,
9915 excludes,
9916 0,
9917 &objfile->objfile_obstack);
9918 }
9919
9920 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9921 types, but gives them a size of zero. Starting with version 14,
9922 ICC is compatible with GCC. */
9923
9924 static int
9925 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9926 {
9927 if (!cu->checked_producer)
9928 check_producer (cu);
9929
9930 return cu->producer_is_icc_lt_14;
9931 }
9932
9933 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9934 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9935 this, it was first present in GCC release 4.3.0. */
9936
9937 static int
9938 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9939 {
9940 if (!cu->checked_producer)
9941 check_producer (cu);
9942
9943 return cu->producer_is_gcc_lt_4_3;
9944 }
9945
9946 static file_and_directory
9947 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9948 {
9949 file_and_directory res;
9950
9951 /* Find the filename. Do not use dwarf2_name here, since the filename
9952 is not a source language identifier. */
9953 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9954 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9955
9956 if (res.comp_dir == NULL
9957 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9958 && IS_ABSOLUTE_PATH (res.name))
9959 {
9960 res.comp_dir_storage = ldirname (res.name);
9961 if (!res.comp_dir_storage.empty ())
9962 res.comp_dir = res.comp_dir_storage.c_str ();
9963 }
9964 if (res.comp_dir != NULL)
9965 {
9966 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9967 directory, get rid of it. */
9968 const char *cp = strchr (res.comp_dir, ':');
9969
9970 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9971 res.comp_dir = cp + 1;
9972 }
9973
9974 if (res.name == NULL)
9975 res.name = "<unknown>";
9976
9977 return res;
9978 }
9979
9980 /* Handle DW_AT_stmt_list for a compilation unit.
9981 DIE is the DW_TAG_compile_unit die for CU.
9982 COMP_DIR is the compilation directory. LOWPC is passed to
9983 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9984
9985 static void
9986 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9987 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9988 {
9989 struct objfile *objfile = dwarf2_per_objfile->objfile;
9990 struct attribute *attr;
9991 struct line_header line_header_local;
9992 hashval_t line_header_local_hash;
9993 unsigned u;
9994 void **slot;
9995 int decode_mapping;
9996
9997 gdb_assert (! cu->per_cu->is_debug_types);
9998
9999 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10000 if (attr == NULL)
10001 return;
10002
10003 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10004
10005 /* The line header hash table is only created if needed (it exists to
10006 prevent redundant reading of the line table for partial_units).
10007 If we're given a partial_unit, we'll need it. If we're given a
10008 compile_unit, then use the line header hash table if it's already
10009 created, but don't create one just yet. */
10010
10011 if (dwarf2_per_objfile->line_header_hash == NULL
10012 && die->tag == DW_TAG_partial_unit)
10013 {
10014 dwarf2_per_objfile->line_header_hash
10015 = htab_create_alloc_ex (127, line_header_hash_voidp,
10016 line_header_eq_voidp,
10017 free_line_header_voidp,
10018 &objfile->objfile_obstack,
10019 hashtab_obstack_allocate,
10020 dummy_obstack_deallocate);
10021 }
10022
10023 line_header_local.sect_off = line_offset;
10024 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10025 line_header_local_hash = line_header_hash (&line_header_local);
10026 if (dwarf2_per_objfile->line_header_hash != NULL)
10027 {
10028 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10029 &line_header_local,
10030 line_header_local_hash, NO_INSERT);
10031
10032 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10033 is not present in *SLOT (since if there is something in *SLOT then
10034 it will be for a partial_unit). */
10035 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10036 {
10037 gdb_assert (*slot != NULL);
10038 cu->line_header = (struct line_header *) *slot;
10039 return;
10040 }
10041 }
10042
10043 /* dwarf_decode_line_header does not yet provide sufficient information.
10044 We always have to call also dwarf_decode_lines for it. */
10045 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10046 if (lh == NULL)
10047 return;
10048
10049 cu->line_header = lh.release ();
10050 cu->line_header_die_owner = die;
10051
10052 if (dwarf2_per_objfile->line_header_hash == NULL)
10053 slot = NULL;
10054 else
10055 {
10056 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10057 &line_header_local,
10058 line_header_local_hash, INSERT);
10059 gdb_assert (slot != NULL);
10060 }
10061 if (slot != NULL && *slot == NULL)
10062 {
10063 /* This newly decoded line number information unit will be owned
10064 by line_header_hash hash table. */
10065 *slot = cu->line_header;
10066 cu->line_header_die_owner = NULL;
10067 }
10068 else
10069 {
10070 /* We cannot free any current entry in (*slot) as that struct line_header
10071 may be already used by multiple CUs. Create only temporary decoded
10072 line_header for this CU - it may happen at most once for each line
10073 number information unit. And if we're not using line_header_hash
10074 then this is what we want as well. */
10075 gdb_assert (die->tag != DW_TAG_partial_unit);
10076 }
10077 decode_mapping = (die->tag != DW_TAG_partial_unit);
10078 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10079 decode_mapping);
10080
10081 }
10082
10083 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10084
10085 static void
10086 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10087 {
10088 struct objfile *objfile = dwarf2_per_objfile->objfile;
10089 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10090 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10091 CORE_ADDR highpc = ((CORE_ADDR) 0);
10092 struct attribute *attr;
10093 struct die_info *child_die;
10094 CORE_ADDR baseaddr;
10095
10096 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10097
10098 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10099
10100 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10101 from finish_block. */
10102 if (lowpc == ((CORE_ADDR) -1))
10103 lowpc = highpc;
10104 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10105
10106 file_and_directory fnd = find_file_and_directory (die, cu);
10107
10108 prepare_one_comp_unit (cu, die, cu->language);
10109
10110 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10111 standardised yet. As a workaround for the language detection we fall
10112 back to the DW_AT_producer string. */
10113 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10114 cu->language = language_opencl;
10115
10116 /* Similar hack for Go. */
10117 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10118 set_cu_language (DW_LANG_Go, cu);
10119
10120 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
10121
10122 /* Decode line number information if present. We do this before
10123 processing child DIEs, so that the line header table is available
10124 for DW_AT_decl_file. */
10125 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10126
10127 /* Process all dies in compilation unit. */
10128 if (die->child != NULL)
10129 {
10130 child_die = die->child;
10131 while (child_die && child_die->tag)
10132 {
10133 process_die (child_die, cu);
10134 child_die = sibling_die (child_die);
10135 }
10136 }
10137
10138 /* Decode macro information, if present. Dwarf 2 macro information
10139 refers to information in the line number info statement program
10140 header, so we can only read it if we've read the header
10141 successfully. */
10142 attr = dwarf2_attr (die, DW_AT_macros, cu);
10143 if (attr == NULL)
10144 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10145 if (attr && cu->line_header)
10146 {
10147 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10148 complaint (&symfile_complaints,
10149 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10150
10151 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10152 }
10153 else
10154 {
10155 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10156 if (attr && cu->line_header)
10157 {
10158 unsigned int macro_offset = DW_UNSND (attr);
10159
10160 dwarf_decode_macros (cu, macro_offset, 0);
10161 }
10162 }
10163 }
10164
10165 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
10166 Create the set of symtabs used by this TU, or if this TU is sharing
10167 symtabs with another TU and the symtabs have already been created
10168 then restore those symtabs in the line header.
10169 We don't need the pc/line-number mapping for type units. */
10170
10171 static void
10172 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
10173 {
10174 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
10175 struct type_unit_group *tu_group;
10176 int first_time;
10177 struct attribute *attr;
10178 unsigned int i;
10179 struct signatured_type *sig_type;
10180
10181 gdb_assert (per_cu->is_debug_types);
10182 sig_type = (struct signatured_type *) per_cu;
10183
10184 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10185
10186 /* If we're using .gdb_index (includes -readnow) then
10187 per_cu->type_unit_group may not have been set up yet. */
10188 if (sig_type->type_unit_group == NULL)
10189 sig_type->type_unit_group = get_type_unit_group (cu, attr);
10190 tu_group = sig_type->type_unit_group;
10191
10192 /* If we've already processed this stmt_list there's no real need to
10193 do it again, we could fake it and just recreate the part we need
10194 (file name,index -> symtab mapping). If data shows this optimization
10195 is useful we can do it then. */
10196 first_time = tu_group->compunit_symtab == NULL;
10197
10198 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10199 debug info. */
10200 line_header_up lh;
10201 if (attr != NULL)
10202 {
10203 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10204 lh = dwarf_decode_line_header (line_offset, cu);
10205 }
10206 if (lh == NULL)
10207 {
10208 if (first_time)
10209 dwarf2_start_symtab (cu, "", NULL, 0);
10210 else
10211 {
10212 gdb_assert (tu_group->symtabs == NULL);
10213 restart_symtab (tu_group->compunit_symtab, "", 0);
10214 }
10215 return;
10216 }
10217
10218 cu->line_header = lh.release ();
10219 cu->line_header_die_owner = die;
10220
10221 if (first_time)
10222 {
10223 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
10224
10225 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10226 still initializing it, and our caller (a few levels up)
10227 process_full_type_unit still needs to know if this is the first
10228 time. */
10229
10230 tu_group->num_symtabs = cu->line_header->file_names.size ();
10231 tu_group->symtabs = XNEWVEC (struct symtab *,
10232 cu->line_header->file_names.size ());
10233
10234 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10235 {
10236 file_entry &fe = cu->line_header->file_names[i];
10237
10238 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
10239
10240 if (current_subfile->symtab == NULL)
10241 {
10242 /* NOTE: start_subfile will recognize when it's been
10243 passed a file it has already seen. So we can't
10244 assume there's a simple mapping from
10245 cu->line_header->file_names to subfiles, plus
10246 cu->line_header->file_names may contain dups. */
10247 current_subfile->symtab
10248 = allocate_symtab (cust, current_subfile->name);
10249 }
10250
10251 fe.symtab = current_subfile->symtab;
10252 tu_group->symtabs[i] = fe.symtab;
10253 }
10254 }
10255 else
10256 {
10257 restart_symtab (tu_group->compunit_symtab, "", 0);
10258
10259 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10260 {
10261 file_entry &fe = cu->line_header->file_names[i];
10262
10263 fe.symtab = tu_group->symtabs[i];
10264 }
10265 }
10266
10267 /* The main symtab is allocated last. Type units don't have DW_AT_name
10268 so they don't have a "real" (so to speak) symtab anyway.
10269 There is later code that will assign the main symtab to all symbols
10270 that don't have one. We need to handle the case of a symbol with a
10271 missing symtab (DW_AT_decl_file) anyway. */
10272 }
10273
10274 /* Process DW_TAG_type_unit.
10275 For TUs we want to skip the first top level sibling if it's not the
10276 actual type being defined by this TU. In this case the first top
10277 level sibling is there to provide context only. */
10278
10279 static void
10280 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10281 {
10282 struct die_info *child_die;
10283
10284 prepare_one_comp_unit (cu, die, language_minimal);
10285
10286 /* Initialize (or reinitialize) the machinery for building symtabs.
10287 We do this before processing child DIEs, so that the line header table
10288 is available for DW_AT_decl_file. */
10289 setup_type_unit_groups (die, cu);
10290
10291 if (die->child != NULL)
10292 {
10293 child_die = die->child;
10294 while (child_die && child_die->tag)
10295 {
10296 process_die (child_die, cu);
10297 child_die = sibling_die (child_die);
10298 }
10299 }
10300 }
10301 \f
10302 /* DWO/DWP files.
10303
10304 http://gcc.gnu.org/wiki/DebugFission
10305 http://gcc.gnu.org/wiki/DebugFissionDWP
10306
10307 To simplify handling of both DWO files ("object" files with the DWARF info)
10308 and DWP files (a file with the DWOs packaged up into one file), we treat
10309 DWP files as having a collection of virtual DWO files. */
10310
10311 static hashval_t
10312 hash_dwo_file (const void *item)
10313 {
10314 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10315 hashval_t hash;
10316
10317 hash = htab_hash_string (dwo_file->dwo_name);
10318 if (dwo_file->comp_dir != NULL)
10319 hash += htab_hash_string (dwo_file->comp_dir);
10320 return hash;
10321 }
10322
10323 static int
10324 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10325 {
10326 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10327 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10328
10329 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10330 return 0;
10331 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10332 return lhs->comp_dir == rhs->comp_dir;
10333 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10334 }
10335
10336 /* Allocate a hash table for DWO files. */
10337
10338 static htab_t
10339 allocate_dwo_file_hash_table (void)
10340 {
10341 struct objfile *objfile = dwarf2_per_objfile->objfile;
10342
10343 return htab_create_alloc_ex (41,
10344 hash_dwo_file,
10345 eq_dwo_file,
10346 NULL,
10347 &objfile->objfile_obstack,
10348 hashtab_obstack_allocate,
10349 dummy_obstack_deallocate);
10350 }
10351
10352 /* Lookup DWO file DWO_NAME. */
10353
10354 static void **
10355 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
10356 {
10357 struct dwo_file find_entry;
10358 void **slot;
10359
10360 if (dwarf2_per_objfile->dwo_files == NULL)
10361 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
10362
10363 memset (&find_entry, 0, sizeof (find_entry));
10364 find_entry.dwo_name = dwo_name;
10365 find_entry.comp_dir = comp_dir;
10366 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
10367
10368 return slot;
10369 }
10370
10371 static hashval_t
10372 hash_dwo_unit (const void *item)
10373 {
10374 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10375
10376 /* This drops the top 32 bits of the id, but is ok for a hash. */
10377 return dwo_unit->signature;
10378 }
10379
10380 static int
10381 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10382 {
10383 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10384 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10385
10386 /* The signature is assumed to be unique within the DWO file.
10387 So while object file CU dwo_id's always have the value zero,
10388 that's OK, assuming each object file DWO file has only one CU,
10389 and that's the rule for now. */
10390 return lhs->signature == rhs->signature;
10391 }
10392
10393 /* Allocate a hash table for DWO CUs,TUs.
10394 There is one of these tables for each of CUs,TUs for each DWO file. */
10395
10396 static htab_t
10397 allocate_dwo_unit_table (struct objfile *objfile)
10398 {
10399 /* Start out with a pretty small number.
10400 Generally DWO files contain only one CU and maybe some TUs. */
10401 return htab_create_alloc_ex (3,
10402 hash_dwo_unit,
10403 eq_dwo_unit,
10404 NULL,
10405 &objfile->objfile_obstack,
10406 hashtab_obstack_allocate,
10407 dummy_obstack_deallocate);
10408 }
10409
10410 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
10411
10412 struct create_dwo_cu_data
10413 {
10414 struct dwo_file *dwo_file;
10415 struct dwo_unit dwo_unit;
10416 };
10417
10418 /* die_reader_func for create_dwo_cu. */
10419
10420 static void
10421 create_dwo_cu_reader (const struct die_reader_specs *reader,
10422 const gdb_byte *info_ptr,
10423 struct die_info *comp_unit_die,
10424 int has_children,
10425 void *datap)
10426 {
10427 struct dwarf2_cu *cu = reader->cu;
10428 sect_offset sect_off = cu->per_cu->sect_off;
10429 struct dwarf2_section_info *section = cu->per_cu->section;
10430 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
10431 struct dwo_file *dwo_file = data->dwo_file;
10432 struct dwo_unit *dwo_unit = &data->dwo_unit;
10433 struct attribute *attr;
10434
10435 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
10436 if (attr == NULL)
10437 {
10438 complaint (&symfile_complaints,
10439 _("Dwarf Error: debug entry at offset 0x%x is missing"
10440 " its dwo_id [in module %s]"),
10441 to_underlying (sect_off), dwo_file->dwo_name);
10442 return;
10443 }
10444
10445 dwo_unit->dwo_file = dwo_file;
10446 dwo_unit->signature = DW_UNSND (attr);
10447 dwo_unit->section = section;
10448 dwo_unit->sect_off = sect_off;
10449 dwo_unit->length = cu->per_cu->length;
10450
10451 if (dwarf_read_debug)
10452 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
10453 to_underlying (sect_off),
10454 hex_string (dwo_unit->signature));
10455 }
10456
10457 /* Create the dwo_units for the CUs in a DWO_FILE.
10458 Note: This function processes DWO files only, not DWP files. */
10459
10460 static void
10461 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
10462 htab_t &cus_htab)
10463 {
10464 struct objfile *objfile = dwarf2_per_objfile->objfile;
10465 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
10466 const gdb_byte *info_ptr, *end_ptr;
10467
10468 dwarf2_read_section (objfile, &section);
10469 info_ptr = section.buffer;
10470
10471 if (info_ptr == NULL)
10472 return;
10473
10474 if (dwarf_read_debug)
10475 {
10476 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
10477 get_section_name (&section),
10478 get_section_file_name (&section));
10479 }
10480
10481 end_ptr = info_ptr + section.size;
10482 while (info_ptr < end_ptr)
10483 {
10484 struct dwarf2_per_cu_data per_cu;
10485 struct create_dwo_cu_data create_dwo_cu_data;
10486 struct dwo_unit *dwo_unit;
10487 void **slot;
10488 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10489
10490 memset (&create_dwo_cu_data.dwo_unit, 0,
10491 sizeof (create_dwo_cu_data.dwo_unit));
10492 memset (&per_cu, 0, sizeof (per_cu));
10493 per_cu.objfile = objfile;
10494 per_cu.is_debug_types = 0;
10495 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10496 per_cu.section = &section;
10497 create_dwo_cu_data.dwo_file = &dwo_file;
10498
10499 init_cutu_and_read_dies_no_follow (
10500 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
10501 info_ptr += per_cu.length;
10502
10503 // If the unit could not be parsed, skip it.
10504 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
10505 continue;
10506
10507 if (cus_htab == NULL)
10508 cus_htab = allocate_dwo_unit_table (objfile);
10509
10510 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10511 *dwo_unit = create_dwo_cu_data.dwo_unit;
10512 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
10513 gdb_assert (slot != NULL);
10514 if (*slot != NULL)
10515 {
10516 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10517 sect_offset dup_sect_off = dup_cu->sect_off;
10518
10519 complaint (&symfile_complaints,
10520 _("debug cu entry at offset 0x%x is duplicate to"
10521 " the entry at offset 0x%x, signature %s"),
10522 to_underlying (sect_off), to_underlying (dup_sect_off),
10523 hex_string (dwo_unit->signature));
10524 }
10525 *slot = (void *)dwo_unit;
10526 }
10527 }
10528
10529 /* DWP file .debug_{cu,tu}_index section format:
10530 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10531
10532 DWP Version 1:
10533
10534 Both index sections have the same format, and serve to map a 64-bit
10535 signature to a set of section numbers. Each section begins with a header,
10536 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10537 indexes, and a pool of 32-bit section numbers. The index sections will be
10538 aligned at 8-byte boundaries in the file.
10539
10540 The index section header consists of:
10541
10542 V, 32 bit version number
10543 -, 32 bits unused
10544 N, 32 bit number of compilation units or type units in the index
10545 M, 32 bit number of slots in the hash table
10546
10547 Numbers are recorded using the byte order of the application binary.
10548
10549 The hash table begins at offset 16 in the section, and consists of an array
10550 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10551 order of the application binary). Unused slots in the hash table are 0.
10552 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10553
10554 The parallel table begins immediately after the hash table
10555 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10556 array of 32-bit indexes (using the byte order of the application binary),
10557 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10558 table contains a 32-bit index into the pool of section numbers. For unused
10559 hash table slots, the corresponding entry in the parallel table will be 0.
10560
10561 The pool of section numbers begins immediately following the hash table
10562 (at offset 16 + 12 * M from the beginning of the section). The pool of
10563 section numbers consists of an array of 32-bit words (using the byte order
10564 of the application binary). Each item in the array is indexed starting
10565 from 0. The hash table entry provides the index of the first section
10566 number in the set. Additional section numbers in the set follow, and the
10567 set is terminated by a 0 entry (section number 0 is not used in ELF).
10568
10569 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10570 section must be the first entry in the set, and the .debug_abbrev.dwo must
10571 be the second entry. Other members of the set may follow in any order.
10572
10573 ---
10574
10575 DWP Version 2:
10576
10577 DWP Version 2 combines all the .debug_info, etc. sections into one,
10578 and the entries in the index tables are now offsets into these sections.
10579 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10580 section.
10581
10582 Index Section Contents:
10583 Header
10584 Hash Table of Signatures dwp_hash_table.hash_table
10585 Parallel Table of Indices dwp_hash_table.unit_table
10586 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10587 Table of Section Sizes dwp_hash_table.v2.sizes
10588
10589 The index section header consists of:
10590
10591 V, 32 bit version number
10592 L, 32 bit number of columns in the table of section offsets
10593 N, 32 bit number of compilation units or type units in the index
10594 M, 32 bit number of slots in the hash table
10595
10596 Numbers are recorded using the byte order of the application binary.
10597
10598 The hash table has the same format as version 1.
10599 The parallel table of indices has the same format as version 1,
10600 except that the entries are origin-1 indices into the table of sections
10601 offsets and the table of section sizes.
10602
10603 The table of offsets begins immediately following the parallel table
10604 (at offset 16 + 12 * M from the beginning of the section). The table is
10605 a two-dimensional array of 32-bit words (using the byte order of the
10606 application binary), with L columns and N+1 rows, in row-major order.
10607 Each row in the array is indexed starting from 0. The first row provides
10608 a key to the remaining rows: each column in this row provides an identifier
10609 for a debug section, and the offsets in the same column of subsequent rows
10610 refer to that section. The section identifiers are:
10611
10612 DW_SECT_INFO 1 .debug_info.dwo
10613 DW_SECT_TYPES 2 .debug_types.dwo
10614 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10615 DW_SECT_LINE 4 .debug_line.dwo
10616 DW_SECT_LOC 5 .debug_loc.dwo
10617 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10618 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10619 DW_SECT_MACRO 8 .debug_macro.dwo
10620
10621 The offsets provided by the CU and TU index sections are the base offsets
10622 for the contributions made by each CU or TU to the corresponding section
10623 in the package file. Each CU and TU header contains an abbrev_offset
10624 field, used to find the abbreviations table for that CU or TU within the
10625 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10626 be interpreted as relative to the base offset given in the index section.
10627 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10628 should be interpreted as relative to the base offset for .debug_line.dwo,
10629 and offsets into other debug sections obtained from DWARF attributes should
10630 also be interpreted as relative to the corresponding base offset.
10631
10632 The table of sizes begins immediately following the table of offsets.
10633 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10634 with L columns and N rows, in row-major order. Each row in the array is
10635 indexed starting from 1 (row 0 is shared by the two tables).
10636
10637 ---
10638
10639 Hash table lookup is handled the same in version 1 and 2:
10640
10641 We assume that N and M will not exceed 2^32 - 1.
10642 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10643
10644 Given a 64-bit compilation unit signature or a type signature S, an entry
10645 in the hash table is located as follows:
10646
10647 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10648 the low-order k bits all set to 1.
10649
10650 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10651
10652 3) If the hash table entry at index H matches the signature, use that
10653 entry. If the hash table entry at index H is unused (all zeroes),
10654 terminate the search: the signature is not present in the table.
10655
10656 4) Let H = (H + H') modulo M. Repeat at Step 3.
10657
10658 Because M > N and H' and M are relatively prime, the search is guaranteed
10659 to stop at an unused slot or find the match. */
10660
10661 /* Create a hash table to map DWO IDs to their CU/TU entry in
10662 .debug_{info,types}.dwo in DWP_FILE.
10663 Returns NULL if there isn't one.
10664 Note: This function processes DWP files only, not DWO files. */
10665
10666 static struct dwp_hash_table *
10667 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10668 {
10669 struct objfile *objfile = dwarf2_per_objfile->objfile;
10670 bfd *dbfd = dwp_file->dbfd;
10671 const gdb_byte *index_ptr, *index_end;
10672 struct dwarf2_section_info *index;
10673 uint32_t version, nr_columns, nr_units, nr_slots;
10674 struct dwp_hash_table *htab;
10675
10676 if (is_debug_types)
10677 index = &dwp_file->sections.tu_index;
10678 else
10679 index = &dwp_file->sections.cu_index;
10680
10681 if (dwarf2_section_empty_p (index))
10682 return NULL;
10683 dwarf2_read_section (objfile, index);
10684
10685 index_ptr = index->buffer;
10686 index_end = index_ptr + index->size;
10687
10688 version = read_4_bytes (dbfd, index_ptr);
10689 index_ptr += 4;
10690 if (version == 2)
10691 nr_columns = read_4_bytes (dbfd, index_ptr);
10692 else
10693 nr_columns = 0;
10694 index_ptr += 4;
10695 nr_units = read_4_bytes (dbfd, index_ptr);
10696 index_ptr += 4;
10697 nr_slots = read_4_bytes (dbfd, index_ptr);
10698 index_ptr += 4;
10699
10700 if (version != 1 && version != 2)
10701 {
10702 error (_("Dwarf Error: unsupported DWP file version (%s)"
10703 " [in module %s]"),
10704 pulongest (version), dwp_file->name);
10705 }
10706 if (nr_slots != (nr_slots & -nr_slots))
10707 {
10708 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10709 " is not power of 2 [in module %s]"),
10710 pulongest (nr_slots), dwp_file->name);
10711 }
10712
10713 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10714 htab->version = version;
10715 htab->nr_columns = nr_columns;
10716 htab->nr_units = nr_units;
10717 htab->nr_slots = nr_slots;
10718 htab->hash_table = index_ptr;
10719 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10720
10721 /* Exit early if the table is empty. */
10722 if (nr_slots == 0 || nr_units == 0
10723 || (version == 2 && nr_columns == 0))
10724 {
10725 /* All must be zero. */
10726 if (nr_slots != 0 || nr_units != 0
10727 || (version == 2 && nr_columns != 0))
10728 {
10729 complaint (&symfile_complaints,
10730 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10731 " all zero [in modules %s]"),
10732 dwp_file->name);
10733 }
10734 return htab;
10735 }
10736
10737 if (version == 1)
10738 {
10739 htab->section_pool.v1.indices =
10740 htab->unit_table + sizeof (uint32_t) * nr_slots;
10741 /* It's harder to decide whether the section is too small in v1.
10742 V1 is deprecated anyway so we punt. */
10743 }
10744 else
10745 {
10746 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10747 int *ids = htab->section_pool.v2.section_ids;
10748 /* Reverse map for error checking. */
10749 int ids_seen[DW_SECT_MAX + 1];
10750 int i;
10751
10752 if (nr_columns < 2)
10753 {
10754 error (_("Dwarf Error: bad DWP hash table, too few columns"
10755 " in section table [in module %s]"),
10756 dwp_file->name);
10757 }
10758 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10759 {
10760 error (_("Dwarf Error: bad DWP hash table, too many columns"
10761 " in section table [in module %s]"),
10762 dwp_file->name);
10763 }
10764 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10765 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10766 for (i = 0; i < nr_columns; ++i)
10767 {
10768 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10769
10770 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10771 {
10772 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10773 " in section table [in module %s]"),
10774 id, dwp_file->name);
10775 }
10776 if (ids_seen[id] != -1)
10777 {
10778 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10779 " id %d in section table [in module %s]"),
10780 id, dwp_file->name);
10781 }
10782 ids_seen[id] = i;
10783 ids[i] = id;
10784 }
10785 /* Must have exactly one info or types section. */
10786 if (((ids_seen[DW_SECT_INFO] != -1)
10787 + (ids_seen[DW_SECT_TYPES] != -1))
10788 != 1)
10789 {
10790 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10791 " DWO info/types section [in module %s]"),
10792 dwp_file->name);
10793 }
10794 /* Must have an abbrev section. */
10795 if (ids_seen[DW_SECT_ABBREV] == -1)
10796 {
10797 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10798 " section [in module %s]"),
10799 dwp_file->name);
10800 }
10801 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10802 htab->section_pool.v2.sizes =
10803 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10804 * nr_units * nr_columns);
10805 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10806 * nr_units * nr_columns))
10807 > index_end)
10808 {
10809 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10810 " [in module %s]"),
10811 dwp_file->name);
10812 }
10813 }
10814
10815 return htab;
10816 }
10817
10818 /* Update SECTIONS with the data from SECTP.
10819
10820 This function is like the other "locate" section routines that are
10821 passed to bfd_map_over_sections, but in this context the sections to
10822 read comes from the DWP V1 hash table, not the full ELF section table.
10823
10824 The result is non-zero for success, or zero if an error was found. */
10825
10826 static int
10827 locate_v1_virtual_dwo_sections (asection *sectp,
10828 struct virtual_v1_dwo_sections *sections)
10829 {
10830 const struct dwop_section_names *names = &dwop_section_names;
10831
10832 if (section_is_p (sectp->name, &names->abbrev_dwo))
10833 {
10834 /* There can be only one. */
10835 if (sections->abbrev.s.section != NULL)
10836 return 0;
10837 sections->abbrev.s.section = sectp;
10838 sections->abbrev.size = bfd_get_section_size (sectp);
10839 }
10840 else if (section_is_p (sectp->name, &names->info_dwo)
10841 || section_is_p (sectp->name, &names->types_dwo))
10842 {
10843 /* There can be only one. */
10844 if (sections->info_or_types.s.section != NULL)
10845 return 0;
10846 sections->info_or_types.s.section = sectp;
10847 sections->info_or_types.size = bfd_get_section_size (sectp);
10848 }
10849 else if (section_is_p (sectp->name, &names->line_dwo))
10850 {
10851 /* There can be only one. */
10852 if (sections->line.s.section != NULL)
10853 return 0;
10854 sections->line.s.section = sectp;
10855 sections->line.size = bfd_get_section_size (sectp);
10856 }
10857 else if (section_is_p (sectp->name, &names->loc_dwo))
10858 {
10859 /* There can be only one. */
10860 if (sections->loc.s.section != NULL)
10861 return 0;
10862 sections->loc.s.section = sectp;
10863 sections->loc.size = bfd_get_section_size (sectp);
10864 }
10865 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10866 {
10867 /* There can be only one. */
10868 if (sections->macinfo.s.section != NULL)
10869 return 0;
10870 sections->macinfo.s.section = sectp;
10871 sections->macinfo.size = bfd_get_section_size (sectp);
10872 }
10873 else if (section_is_p (sectp->name, &names->macro_dwo))
10874 {
10875 /* There can be only one. */
10876 if (sections->macro.s.section != NULL)
10877 return 0;
10878 sections->macro.s.section = sectp;
10879 sections->macro.size = bfd_get_section_size (sectp);
10880 }
10881 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10882 {
10883 /* There can be only one. */
10884 if (sections->str_offsets.s.section != NULL)
10885 return 0;
10886 sections->str_offsets.s.section = sectp;
10887 sections->str_offsets.size = bfd_get_section_size (sectp);
10888 }
10889 else
10890 {
10891 /* No other kind of section is valid. */
10892 return 0;
10893 }
10894
10895 return 1;
10896 }
10897
10898 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10899 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10900 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10901 This is for DWP version 1 files. */
10902
10903 static struct dwo_unit *
10904 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10905 uint32_t unit_index,
10906 const char *comp_dir,
10907 ULONGEST signature, int is_debug_types)
10908 {
10909 struct objfile *objfile = dwarf2_per_objfile->objfile;
10910 const struct dwp_hash_table *dwp_htab =
10911 is_debug_types ? dwp_file->tus : dwp_file->cus;
10912 bfd *dbfd = dwp_file->dbfd;
10913 const char *kind = is_debug_types ? "TU" : "CU";
10914 struct dwo_file *dwo_file;
10915 struct dwo_unit *dwo_unit;
10916 struct virtual_v1_dwo_sections sections;
10917 void **dwo_file_slot;
10918 int i;
10919
10920 gdb_assert (dwp_file->version == 1);
10921
10922 if (dwarf_read_debug)
10923 {
10924 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10925 kind,
10926 pulongest (unit_index), hex_string (signature),
10927 dwp_file->name);
10928 }
10929
10930 /* Fetch the sections of this DWO unit.
10931 Put a limit on the number of sections we look for so that bad data
10932 doesn't cause us to loop forever. */
10933
10934 #define MAX_NR_V1_DWO_SECTIONS \
10935 (1 /* .debug_info or .debug_types */ \
10936 + 1 /* .debug_abbrev */ \
10937 + 1 /* .debug_line */ \
10938 + 1 /* .debug_loc */ \
10939 + 1 /* .debug_str_offsets */ \
10940 + 1 /* .debug_macro or .debug_macinfo */ \
10941 + 1 /* trailing zero */)
10942
10943 memset (&sections, 0, sizeof (sections));
10944
10945 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10946 {
10947 asection *sectp;
10948 uint32_t section_nr =
10949 read_4_bytes (dbfd,
10950 dwp_htab->section_pool.v1.indices
10951 + (unit_index + i) * sizeof (uint32_t));
10952
10953 if (section_nr == 0)
10954 break;
10955 if (section_nr >= dwp_file->num_sections)
10956 {
10957 error (_("Dwarf Error: bad DWP hash table, section number too large"
10958 " [in module %s]"),
10959 dwp_file->name);
10960 }
10961
10962 sectp = dwp_file->elf_sections[section_nr];
10963 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10964 {
10965 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10966 " [in module %s]"),
10967 dwp_file->name);
10968 }
10969 }
10970
10971 if (i < 2
10972 || dwarf2_section_empty_p (&sections.info_or_types)
10973 || dwarf2_section_empty_p (&sections.abbrev))
10974 {
10975 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10976 " [in module %s]"),
10977 dwp_file->name);
10978 }
10979 if (i == MAX_NR_V1_DWO_SECTIONS)
10980 {
10981 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10982 " [in module %s]"),
10983 dwp_file->name);
10984 }
10985
10986 /* It's easier for the rest of the code if we fake a struct dwo_file and
10987 have dwo_unit "live" in that. At least for now.
10988
10989 The DWP file can be made up of a random collection of CUs and TUs.
10990 However, for each CU + set of TUs that came from the same original DWO
10991 file, we can combine them back into a virtual DWO file to save space
10992 (fewer struct dwo_file objects to allocate). Remember that for really
10993 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10994
10995 std::string virtual_dwo_name =
10996 string_printf ("virtual-dwo/%d-%d-%d-%d",
10997 get_section_id (&sections.abbrev),
10998 get_section_id (&sections.line),
10999 get_section_id (&sections.loc),
11000 get_section_id (&sections.str_offsets));
11001 /* Can we use an existing virtual DWO file? */
11002 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11003 /* Create one if necessary. */
11004 if (*dwo_file_slot == NULL)
11005 {
11006 if (dwarf_read_debug)
11007 {
11008 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11009 virtual_dwo_name.c_str ());
11010 }
11011 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11012 dwo_file->dwo_name
11013 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11014 virtual_dwo_name.c_str (),
11015 virtual_dwo_name.size ());
11016 dwo_file->comp_dir = comp_dir;
11017 dwo_file->sections.abbrev = sections.abbrev;
11018 dwo_file->sections.line = sections.line;
11019 dwo_file->sections.loc = sections.loc;
11020 dwo_file->sections.macinfo = sections.macinfo;
11021 dwo_file->sections.macro = sections.macro;
11022 dwo_file->sections.str_offsets = sections.str_offsets;
11023 /* The "str" section is global to the entire DWP file. */
11024 dwo_file->sections.str = dwp_file->sections.str;
11025 /* The info or types section is assigned below to dwo_unit,
11026 there's no need to record it in dwo_file.
11027 Also, we can't simply record type sections in dwo_file because
11028 we record a pointer into the vector in dwo_unit. As we collect more
11029 types we'll grow the vector and eventually have to reallocate space
11030 for it, invalidating all copies of pointers into the previous
11031 contents. */
11032 *dwo_file_slot = dwo_file;
11033 }
11034 else
11035 {
11036 if (dwarf_read_debug)
11037 {
11038 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11039 virtual_dwo_name.c_str ());
11040 }
11041 dwo_file = (struct dwo_file *) *dwo_file_slot;
11042 }
11043
11044 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11045 dwo_unit->dwo_file = dwo_file;
11046 dwo_unit->signature = signature;
11047 dwo_unit->section =
11048 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11049 *dwo_unit->section = sections.info_or_types;
11050 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11051
11052 return dwo_unit;
11053 }
11054
11055 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11056 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11057 piece within that section used by a TU/CU, return a virtual section
11058 of just that piece. */
11059
11060 static struct dwarf2_section_info
11061 create_dwp_v2_section (struct dwarf2_section_info *section,
11062 bfd_size_type offset, bfd_size_type size)
11063 {
11064 struct dwarf2_section_info result;
11065 asection *sectp;
11066
11067 gdb_assert (section != NULL);
11068 gdb_assert (!section->is_virtual);
11069
11070 memset (&result, 0, sizeof (result));
11071 result.s.containing_section = section;
11072 result.is_virtual = 1;
11073
11074 if (size == 0)
11075 return result;
11076
11077 sectp = get_section_bfd_section (section);
11078
11079 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11080 bounds of the real section. This is a pretty-rare event, so just
11081 flag an error (easier) instead of a warning and trying to cope. */
11082 if (sectp == NULL
11083 || offset + size > bfd_get_section_size (sectp))
11084 {
11085 bfd *abfd = sectp->owner;
11086
11087 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11088 " in section %s [in module %s]"),
11089 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
11090 objfile_name (dwarf2_per_objfile->objfile));
11091 }
11092
11093 result.virtual_offset = offset;
11094 result.size = size;
11095 return result;
11096 }
11097
11098 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11099 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11100 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11101 This is for DWP version 2 files. */
11102
11103 static struct dwo_unit *
11104 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
11105 uint32_t unit_index,
11106 const char *comp_dir,
11107 ULONGEST signature, int is_debug_types)
11108 {
11109 struct objfile *objfile = dwarf2_per_objfile->objfile;
11110 const struct dwp_hash_table *dwp_htab =
11111 is_debug_types ? dwp_file->tus : dwp_file->cus;
11112 bfd *dbfd = dwp_file->dbfd;
11113 const char *kind = is_debug_types ? "TU" : "CU";
11114 struct dwo_file *dwo_file;
11115 struct dwo_unit *dwo_unit;
11116 struct virtual_v2_dwo_sections sections;
11117 void **dwo_file_slot;
11118 int i;
11119
11120 gdb_assert (dwp_file->version == 2);
11121
11122 if (dwarf_read_debug)
11123 {
11124 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11125 kind,
11126 pulongest (unit_index), hex_string (signature),
11127 dwp_file->name);
11128 }
11129
11130 /* Fetch the section offsets of this DWO unit. */
11131
11132 memset (&sections, 0, sizeof (sections));
11133
11134 for (i = 0; i < dwp_htab->nr_columns; ++i)
11135 {
11136 uint32_t offset = read_4_bytes (dbfd,
11137 dwp_htab->section_pool.v2.offsets
11138 + (((unit_index - 1) * dwp_htab->nr_columns
11139 + i)
11140 * sizeof (uint32_t)));
11141 uint32_t size = read_4_bytes (dbfd,
11142 dwp_htab->section_pool.v2.sizes
11143 + (((unit_index - 1) * dwp_htab->nr_columns
11144 + i)
11145 * sizeof (uint32_t)));
11146
11147 switch (dwp_htab->section_pool.v2.section_ids[i])
11148 {
11149 case DW_SECT_INFO:
11150 case DW_SECT_TYPES:
11151 sections.info_or_types_offset = offset;
11152 sections.info_or_types_size = size;
11153 break;
11154 case DW_SECT_ABBREV:
11155 sections.abbrev_offset = offset;
11156 sections.abbrev_size = size;
11157 break;
11158 case DW_SECT_LINE:
11159 sections.line_offset = offset;
11160 sections.line_size = size;
11161 break;
11162 case DW_SECT_LOC:
11163 sections.loc_offset = offset;
11164 sections.loc_size = size;
11165 break;
11166 case DW_SECT_STR_OFFSETS:
11167 sections.str_offsets_offset = offset;
11168 sections.str_offsets_size = size;
11169 break;
11170 case DW_SECT_MACINFO:
11171 sections.macinfo_offset = offset;
11172 sections.macinfo_size = size;
11173 break;
11174 case DW_SECT_MACRO:
11175 sections.macro_offset = offset;
11176 sections.macro_size = size;
11177 break;
11178 }
11179 }
11180
11181 /* It's easier for the rest of the code if we fake a struct dwo_file and
11182 have dwo_unit "live" in that. At least for now.
11183
11184 The DWP file can be made up of a random collection of CUs and TUs.
11185 However, for each CU + set of TUs that came from the same original DWO
11186 file, we can combine them back into a virtual DWO file to save space
11187 (fewer struct dwo_file objects to allocate). Remember that for really
11188 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11189
11190 std::string virtual_dwo_name =
11191 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11192 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11193 (long) (sections.line_size ? sections.line_offset : 0),
11194 (long) (sections.loc_size ? sections.loc_offset : 0),
11195 (long) (sections.str_offsets_size
11196 ? sections.str_offsets_offset : 0));
11197 /* Can we use an existing virtual DWO file? */
11198 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11199 /* Create one if necessary. */
11200 if (*dwo_file_slot == NULL)
11201 {
11202 if (dwarf_read_debug)
11203 {
11204 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11205 virtual_dwo_name.c_str ());
11206 }
11207 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11208 dwo_file->dwo_name
11209 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11210 virtual_dwo_name.c_str (),
11211 virtual_dwo_name.size ());
11212 dwo_file->comp_dir = comp_dir;
11213 dwo_file->sections.abbrev =
11214 create_dwp_v2_section (&dwp_file->sections.abbrev,
11215 sections.abbrev_offset, sections.abbrev_size);
11216 dwo_file->sections.line =
11217 create_dwp_v2_section (&dwp_file->sections.line,
11218 sections.line_offset, sections.line_size);
11219 dwo_file->sections.loc =
11220 create_dwp_v2_section (&dwp_file->sections.loc,
11221 sections.loc_offset, sections.loc_size);
11222 dwo_file->sections.macinfo =
11223 create_dwp_v2_section (&dwp_file->sections.macinfo,
11224 sections.macinfo_offset, sections.macinfo_size);
11225 dwo_file->sections.macro =
11226 create_dwp_v2_section (&dwp_file->sections.macro,
11227 sections.macro_offset, sections.macro_size);
11228 dwo_file->sections.str_offsets =
11229 create_dwp_v2_section (&dwp_file->sections.str_offsets,
11230 sections.str_offsets_offset,
11231 sections.str_offsets_size);
11232 /* The "str" section is global to the entire DWP file. */
11233 dwo_file->sections.str = dwp_file->sections.str;
11234 /* The info or types section is assigned below to dwo_unit,
11235 there's no need to record it in dwo_file.
11236 Also, we can't simply record type sections in dwo_file because
11237 we record a pointer into the vector in dwo_unit. As we collect more
11238 types we'll grow the vector and eventually have to reallocate space
11239 for it, invalidating all copies of pointers into the previous
11240 contents. */
11241 *dwo_file_slot = dwo_file;
11242 }
11243 else
11244 {
11245 if (dwarf_read_debug)
11246 {
11247 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11248 virtual_dwo_name.c_str ());
11249 }
11250 dwo_file = (struct dwo_file *) *dwo_file_slot;
11251 }
11252
11253 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11254 dwo_unit->dwo_file = dwo_file;
11255 dwo_unit->signature = signature;
11256 dwo_unit->section =
11257 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11258 *dwo_unit->section = create_dwp_v2_section (is_debug_types
11259 ? &dwp_file->sections.types
11260 : &dwp_file->sections.info,
11261 sections.info_or_types_offset,
11262 sections.info_or_types_size);
11263 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11264
11265 return dwo_unit;
11266 }
11267
11268 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11269 Returns NULL if the signature isn't found. */
11270
11271 static struct dwo_unit *
11272 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
11273 ULONGEST signature, int is_debug_types)
11274 {
11275 const struct dwp_hash_table *dwp_htab =
11276 is_debug_types ? dwp_file->tus : dwp_file->cus;
11277 bfd *dbfd = dwp_file->dbfd;
11278 uint32_t mask = dwp_htab->nr_slots - 1;
11279 uint32_t hash = signature & mask;
11280 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11281 unsigned int i;
11282 void **slot;
11283 struct dwo_unit find_dwo_cu;
11284
11285 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11286 find_dwo_cu.signature = signature;
11287 slot = htab_find_slot (is_debug_types
11288 ? dwp_file->loaded_tus
11289 : dwp_file->loaded_cus,
11290 &find_dwo_cu, INSERT);
11291
11292 if (*slot != NULL)
11293 return (struct dwo_unit *) *slot;
11294
11295 /* Use a for loop so that we don't loop forever on bad debug info. */
11296 for (i = 0; i < dwp_htab->nr_slots; ++i)
11297 {
11298 ULONGEST signature_in_table;
11299
11300 signature_in_table =
11301 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11302 if (signature_in_table == signature)
11303 {
11304 uint32_t unit_index =
11305 read_4_bytes (dbfd,
11306 dwp_htab->unit_table + hash * sizeof (uint32_t));
11307
11308 if (dwp_file->version == 1)
11309 {
11310 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
11311 comp_dir, signature,
11312 is_debug_types);
11313 }
11314 else
11315 {
11316 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
11317 comp_dir, signature,
11318 is_debug_types);
11319 }
11320 return (struct dwo_unit *) *slot;
11321 }
11322 if (signature_in_table == 0)
11323 return NULL;
11324 hash = (hash + hash2) & mask;
11325 }
11326
11327 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11328 " [in module %s]"),
11329 dwp_file->name);
11330 }
11331
11332 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11333 Open the file specified by FILE_NAME and hand it off to BFD for
11334 preliminary analysis. Return a newly initialized bfd *, which
11335 includes a canonicalized copy of FILE_NAME.
11336 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11337 SEARCH_CWD is true if the current directory is to be searched.
11338 It will be searched before debug-file-directory.
11339 If successful, the file is added to the bfd include table of the
11340 objfile's bfd (see gdb_bfd_record_inclusion).
11341 If unable to find/open the file, return NULL.
11342 NOTE: This function is derived from symfile_bfd_open. */
11343
11344 static gdb_bfd_ref_ptr
11345 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
11346 {
11347 int desc, flags;
11348 char *absolute_name;
11349 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11350 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11351 to debug_file_directory. */
11352 char *search_path;
11353 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11354
11355 if (search_cwd)
11356 {
11357 if (*debug_file_directory != '\0')
11358 search_path = concat (".", dirname_separator_string,
11359 debug_file_directory, (char *) NULL);
11360 else
11361 search_path = xstrdup (".");
11362 }
11363 else
11364 search_path = xstrdup (debug_file_directory);
11365
11366 flags = OPF_RETURN_REALPATH;
11367 if (is_dwp)
11368 flags |= OPF_SEARCH_IN_PATH;
11369 desc = openp (search_path, flags, file_name,
11370 O_RDONLY | O_BINARY, &absolute_name);
11371 xfree (search_path);
11372 if (desc < 0)
11373 return NULL;
11374
11375 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
11376 xfree (absolute_name);
11377 if (sym_bfd == NULL)
11378 return NULL;
11379 bfd_set_cacheable (sym_bfd.get (), 1);
11380
11381 if (!bfd_check_format (sym_bfd.get (), bfd_object))
11382 return NULL;
11383
11384 /* Success. Record the bfd as having been included by the objfile's bfd.
11385 This is important because things like demangled_names_hash lives in the
11386 objfile's per_bfd space and may have references to things like symbol
11387 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
11388 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
11389
11390 return sym_bfd;
11391 }
11392
11393 /* Try to open DWO file FILE_NAME.
11394 COMP_DIR is the DW_AT_comp_dir attribute.
11395 The result is the bfd handle of the file.
11396 If there is a problem finding or opening the file, return NULL.
11397 Upon success, the canonicalized path of the file is stored in the bfd,
11398 same as symfile_bfd_open. */
11399
11400 static gdb_bfd_ref_ptr
11401 open_dwo_file (const char *file_name, const char *comp_dir)
11402 {
11403 if (IS_ABSOLUTE_PATH (file_name))
11404 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
11405
11406 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
11407
11408 if (comp_dir != NULL)
11409 {
11410 char *path_to_try = concat (comp_dir, SLASH_STRING,
11411 file_name, (char *) NULL);
11412
11413 /* NOTE: If comp_dir is a relative path, this will also try the
11414 search path, which seems useful. */
11415 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
11416 1 /*search_cwd*/));
11417 xfree (path_to_try);
11418 if (abfd != NULL)
11419 return abfd;
11420 }
11421
11422 /* That didn't work, try debug-file-directory, which, despite its name,
11423 is a list of paths. */
11424
11425 if (*debug_file_directory == '\0')
11426 return NULL;
11427
11428 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
11429 }
11430
11431 /* This function is mapped across the sections and remembers the offset and
11432 size of each of the DWO debugging sections we are interested in. */
11433
11434 static void
11435 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
11436 {
11437 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
11438 const struct dwop_section_names *names = &dwop_section_names;
11439
11440 if (section_is_p (sectp->name, &names->abbrev_dwo))
11441 {
11442 dwo_sections->abbrev.s.section = sectp;
11443 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
11444 }
11445 else if (section_is_p (sectp->name, &names->info_dwo))
11446 {
11447 dwo_sections->info.s.section = sectp;
11448 dwo_sections->info.size = bfd_get_section_size (sectp);
11449 }
11450 else if (section_is_p (sectp->name, &names->line_dwo))
11451 {
11452 dwo_sections->line.s.section = sectp;
11453 dwo_sections->line.size = bfd_get_section_size (sectp);
11454 }
11455 else if (section_is_p (sectp->name, &names->loc_dwo))
11456 {
11457 dwo_sections->loc.s.section = sectp;
11458 dwo_sections->loc.size = bfd_get_section_size (sectp);
11459 }
11460 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11461 {
11462 dwo_sections->macinfo.s.section = sectp;
11463 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
11464 }
11465 else if (section_is_p (sectp->name, &names->macro_dwo))
11466 {
11467 dwo_sections->macro.s.section = sectp;
11468 dwo_sections->macro.size = bfd_get_section_size (sectp);
11469 }
11470 else if (section_is_p (sectp->name, &names->str_dwo))
11471 {
11472 dwo_sections->str.s.section = sectp;
11473 dwo_sections->str.size = bfd_get_section_size (sectp);
11474 }
11475 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11476 {
11477 dwo_sections->str_offsets.s.section = sectp;
11478 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
11479 }
11480 else if (section_is_p (sectp->name, &names->types_dwo))
11481 {
11482 struct dwarf2_section_info type_section;
11483
11484 memset (&type_section, 0, sizeof (type_section));
11485 type_section.s.section = sectp;
11486 type_section.size = bfd_get_section_size (sectp);
11487 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
11488 &type_section);
11489 }
11490 }
11491
11492 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
11493 by PER_CU. This is for the non-DWP case.
11494 The result is NULL if DWO_NAME can't be found. */
11495
11496 static struct dwo_file *
11497 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
11498 const char *dwo_name, const char *comp_dir)
11499 {
11500 struct objfile *objfile = dwarf2_per_objfile->objfile;
11501 struct dwo_file *dwo_file;
11502 struct cleanup *cleanups;
11503
11504 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
11505 if (dbfd == NULL)
11506 {
11507 if (dwarf_read_debug)
11508 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
11509 return NULL;
11510 }
11511 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11512 dwo_file->dwo_name = dwo_name;
11513 dwo_file->comp_dir = comp_dir;
11514 dwo_file->dbfd = dbfd.release ();
11515
11516 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
11517
11518 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
11519 &dwo_file->sections);
11520
11521 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
11522
11523 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
11524 dwo_file->tus);
11525
11526 discard_cleanups (cleanups);
11527
11528 if (dwarf_read_debug)
11529 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
11530
11531 return dwo_file;
11532 }
11533
11534 /* This function is mapped across the sections and remembers the offset and
11535 size of each of the DWP debugging sections common to version 1 and 2 that
11536 we are interested in. */
11537
11538 static void
11539 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
11540 void *dwp_file_ptr)
11541 {
11542 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11543 const struct dwop_section_names *names = &dwop_section_names;
11544 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11545
11546 /* Record the ELF section number for later lookup: this is what the
11547 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11548 gdb_assert (elf_section_nr < dwp_file->num_sections);
11549 dwp_file->elf_sections[elf_section_nr] = sectp;
11550
11551 /* Look for specific sections that we need. */
11552 if (section_is_p (sectp->name, &names->str_dwo))
11553 {
11554 dwp_file->sections.str.s.section = sectp;
11555 dwp_file->sections.str.size = bfd_get_section_size (sectp);
11556 }
11557 else if (section_is_p (sectp->name, &names->cu_index))
11558 {
11559 dwp_file->sections.cu_index.s.section = sectp;
11560 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11561 }
11562 else if (section_is_p (sectp->name, &names->tu_index))
11563 {
11564 dwp_file->sections.tu_index.s.section = sectp;
11565 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11566 }
11567 }
11568
11569 /* This function is mapped across the sections and remembers the offset and
11570 size of each of the DWP version 2 debugging sections that we are interested
11571 in. This is split into a separate function because we don't know if we
11572 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11573
11574 static void
11575 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11576 {
11577 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11578 const struct dwop_section_names *names = &dwop_section_names;
11579 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11580
11581 /* Record the ELF section number for later lookup: this is what the
11582 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11583 gdb_assert (elf_section_nr < dwp_file->num_sections);
11584 dwp_file->elf_sections[elf_section_nr] = sectp;
11585
11586 /* Look for specific sections that we need. */
11587 if (section_is_p (sectp->name, &names->abbrev_dwo))
11588 {
11589 dwp_file->sections.abbrev.s.section = sectp;
11590 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11591 }
11592 else if (section_is_p (sectp->name, &names->info_dwo))
11593 {
11594 dwp_file->sections.info.s.section = sectp;
11595 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11596 }
11597 else if (section_is_p (sectp->name, &names->line_dwo))
11598 {
11599 dwp_file->sections.line.s.section = sectp;
11600 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11601 }
11602 else if (section_is_p (sectp->name, &names->loc_dwo))
11603 {
11604 dwp_file->sections.loc.s.section = sectp;
11605 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11606 }
11607 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11608 {
11609 dwp_file->sections.macinfo.s.section = sectp;
11610 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11611 }
11612 else if (section_is_p (sectp->name, &names->macro_dwo))
11613 {
11614 dwp_file->sections.macro.s.section = sectp;
11615 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11616 }
11617 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11618 {
11619 dwp_file->sections.str_offsets.s.section = sectp;
11620 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11621 }
11622 else if (section_is_p (sectp->name, &names->types_dwo))
11623 {
11624 dwp_file->sections.types.s.section = sectp;
11625 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11626 }
11627 }
11628
11629 /* Hash function for dwp_file loaded CUs/TUs. */
11630
11631 static hashval_t
11632 hash_dwp_loaded_cutus (const void *item)
11633 {
11634 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11635
11636 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11637 return dwo_unit->signature;
11638 }
11639
11640 /* Equality function for dwp_file loaded CUs/TUs. */
11641
11642 static int
11643 eq_dwp_loaded_cutus (const void *a, const void *b)
11644 {
11645 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11646 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11647
11648 return dua->signature == dub->signature;
11649 }
11650
11651 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11652
11653 static htab_t
11654 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11655 {
11656 return htab_create_alloc_ex (3,
11657 hash_dwp_loaded_cutus,
11658 eq_dwp_loaded_cutus,
11659 NULL,
11660 &objfile->objfile_obstack,
11661 hashtab_obstack_allocate,
11662 dummy_obstack_deallocate);
11663 }
11664
11665 /* Try to open DWP file FILE_NAME.
11666 The result is the bfd handle of the file.
11667 If there is a problem finding or opening the file, return NULL.
11668 Upon success, the canonicalized path of the file is stored in the bfd,
11669 same as symfile_bfd_open. */
11670
11671 static gdb_bfd_ref_ptr
11672 open_dwp_file (const char *file_name)
11673 {
11674 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11675 1 /*search_cwd*/));
11676 if (abfd != NULL)
11677 return abfd;
11678
11679 /* Work around upstream bug 15652.
11680 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11681 [Whether that's a "bug" is debatable, but it is getting in our way.]
11682 We have no real idea where the dwp file is, because gdb's realpath-ing
11683 of the executable's path may have discarded the needed info.
11684 [IWBN if the dwp file name was recorded in the executable, akin to
11685 .gnu_debuglink, but that doesn't exist yet.]
11686 Strip the directory from FILE_NAME and search again. */
11687 if (*debug_file_directory != '\0')
11688 {
11689 /* Don't implicitly search the current directory here.
11690 If the user wants to search "." to handle this case,
11691 it must be added to debug-file-directory. */
11692 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11693 0 /*search_cwd*/);
11694 }
11695
11696 return NULL;
11697 }
11698
11699 /* Initialize the use of the DWP file for the current objfile.
11700 By convention the name of the DWP file is ${objfile}.dwp.
11701 The result is NULL if it can't be found. */
11702
11703 static struct dwp_file *
11704 open_and_init_dwp_file (void)
11705 {
11706 struct objfile *objfile = dwarf2_per_objfile->objfile;
11707 struct dwp_file *dwp_file;
11708
11709 /* Try to find first .dwp for the binary file before any symbolic links
11710 resolving. */
11711
11712 /* If the objfile is a debug file, find the name of the real binary
11713 file and get the name of dwp file from there. */
11714 std::string dwp_name;
11715 if (objfile->separate_debug_objfile_backlink != NULL)
11716 {
11717 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11718 const char *backlink_basename = lbasename (backlink->original_name);
11719
11720 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11721 }
11722 else
11723 dwp_name = objfile->original_name;
11724
11725 dwp_name += ".dwp";
11726
11727 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11728 if (dbfd == NULL
11729 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11730 {
11731 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11732 dwp_name = objfile_name (objfile);
11733 dwp_name += ".dwp";
11734 dbfd = open_dwp_file (dwp_name.c_str ());
11735 }
11736
11737 if (dbfd == NULL)
11738 {
11739 if (dwarf_read_debug)
11740 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11741 return NULL;
11742 }
11743 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11744 dwp_file->name = bfd_get_filename (dbfd.get ());
11745 dwp_file->dbfd = dbfd.release ();
11746
11747 /* +1: section 0 is unused */
11748 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11749 dwp_file->elf_sections =
11750 OBSTACK_CALLOC (&objfile->objfile_obstack,
11751 dwp_file->num_sections, asection *);
11752
11753 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11754 dwp_file);
11755
11756 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11757
11758 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11759
11760 /* The DWP file version is stored in the hash table. Oh well. */
11761 if (dwp_file->cus && dwp_file->tus
11762 && dwp_file->cus->version != dwp_file->tus->version)
11763 {
11764 /* Technically speaking, we should try to limp along, but this is
11765 pretty bizarre. We use pulongest here because that's the established
11766 portability solution (e.g, we cannot use %u for uint32_t). */
11767 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11768 " TU version %s [in DWP file %s]"),
11769 pulongest (dwp_file->cus->version),
11770 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11771 }
11772
11773 if (dwp_file->cus)
11774 dwp_file->version = dwp_file->cus->version;
11775 else if (dwp_file->tus)
11776 dwp_file->version = dwp_file->tus->version;
11777 else
11778 dwp_file->version = 2;
11779
11780 if (dwp_file->version == 2)
11781 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11782 dwp_file);
11783
11784 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11785 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11786
11787 if (dwarf_read_debug)
11788 {
11789 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11790 fprintf_unfiltered (gdb_stdlog,
11791 " %s CUs, %s TUs\n",
11792 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11793 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11794 }
11795
11796 return dwp_file;
11797 }
11798
11799 /* Wrapper around open_and_init_dwp_file, only open it once. */
11800
11801 static struct dwp_file *
11802 get_dwp_file (void)
11803 {
11804 if (! dwarf2_per_objfile->dwp_checked)
11805 {
11806 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11807 dwarf2_per_objfile->dwp_checked = 1;
11808 }
11809 return dwarf2_per_objfile->dwp_file;
11810 }
11811
11812 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11813 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11814 or in the DWP file for the objfile, referenced by THIS_UNIT.
11815 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11816 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11817
11818 This is called, for example, when wanting to read a variable with a
11819 complex location. Therefore we don't want to do file i/o for every call.
11820 Therefore we don't want to look for a DWO file on every call.
11821 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11822 then we check if we've already seen DWO_NAME, and only THEN do we check
11823 for a DWO file.
11824
11825 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11826 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11827
11828 static struct dwo_unit *
11829 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11830 const char *dwo_name, const char *comp_dir,
11831 ULONGEST signature, int is_debug_types)
11832 {
11833 struct objfile *objfile = dwarf2_per_objfile->objfile;
11834 const char *kind = is_debug_types ? "TU" : "CU";
11835 void **dwo_file_slot;
11836 struct dwo_file *dwo_file;
11837 struct dwp_file *dwp_file;
11838
11839 /* First see if there's a DWP file.
11840 If we have a DWP file but didn't find the DWO inside it, don't
11841 look for the original DWO file. It makes gdb behave differently
11842 depending on whether one is debugging in the build tree. */
11843
11844 dwp_file = get_dwp_file ();
11845 if (dwp_file != NULL)
11846 {
11847 const struct dwp_hash_table *dwp_htab =
11848 is_debug_types ? dwp_file->tus : dwp_file->cus;
11849
11850 if (dwp_htab != NULL)
11851 {
11852 struct dwo_unit *dwo_cutu =
11853 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11854 signature, is_debug_types);
11855
11856 if (dwo_cutu != NULL)
11857 {
11858 if (dwarf_read_debug)
11859 {
11860 fprintf_unfiltered (gdb_stdlog,
11861 "Virtual DWO %s %s found: @%s\n",
11862 kind, hex_string (signature),
11863 host_address_to_string (dwo_cutu));
11864 }
11865 return dwo_cutu;
11866 }
11867 }
11868 }
11869 else
11870 {
11871 /* No DWP file, look for the DWO file. */
11872
11873 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11874 if (*dwo_file_slot == NULL)
11875 {
11876 /* Read in the file and build a table of the CUs/TUs it contains. */
11877 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11878 }
11879 /* NOTE: This will be NULL if unable to open the file. */
11880 dwo_file = (struct dwo_file *) *dwo_file_slot;
11881
11882 if (dwo_file != NULL)
11883 {
11884 struct dwo_unit *dwo_cutu = NULL;
11885
11886 if (is_debug_types && dwo_file->tus)
11887 {
11888 struct dwo_unit find_dwo_cutu;
11889
11890 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11891 find_dwo_cutu.signature = signature;
11892 dwo_cutu
11893 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11894 }
11895 else if (!is_debug_types && dwo_file->cus)
11896 {
11897 struct dwo_unit find_dwo_cutu;
11898
11899 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11900 find_dwo_cutu.signature = signature;
11901 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11902 &find_dwo_cutu);
11903 }
11904
11905 if (dwo_cutu != NULL)
11906 {
11907 if (dwarf_read_debug)
11908 {
11909 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11910 kind, dwo_name, hex_string (signature),
11911 host_address_to_string (dwo_cutu));
11912 }
11913 return dwo_cutu;
11914 }
11915 }
11916 }
11917
11918 /* We didn't find it. This could mean a dwo_id mismatch, or
11919 someone deleted the DWO/DWP file, or the search path isn't set up
11920 correctly to find the file. */
11921
11922 if (dwarf_read_debug)
11923 {
11924 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11925 kind, dwo_name, hex_string (signature));
11926 }
11927
11928 /* This is a warning and not a complaint because it can be caused by
11929 pilot error (e.g., user accidentally deleting the DWO). */
11930 {
11931 /* Print the name of the DWP file if we looked there, helps the user
11932 better diagnose the problem. */
11933 std::string dwp_text;
11934
11935 if (dwp_file != NULL)
11936 dwp_text = string_printf (" [in DWP file %s]",
11937 lbasename (dwp_file->name));
11938
11939 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11940 " [in module %s]"),
11941 kind, dwo_name, hex_string (signature),
11942 dwp_text.c_str (),
11943 this_unit->is_debug_types ? "TU" : "CU",
11944 to_underlying (this_unit->sect_off), objfile_name (objfile));
11945 }
11946 return NULL;
11947 }
11948
11949 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11950 See lookup_dwo_cutu_unit for details. */
11951
11952 static struct dwo_unit *
11953 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11954 const char *dwo_name, const char *comp_dir,
11955 ULONGEST signature)
11956 {
11957 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11958 }
11959
11960 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11961 See lookup_dwo_cutu_unit for details. */
11962
11963 static struct dwo_unit *
11964 lookup_dwo_type_unit (struct signatured_type *this_tu,
11965 const char *dwo_name, const char *comp_dir)
11966 {
11967 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11968 }
11969
11970 /* Traversal function for queue_and_load_all_dwo_tus. */
11971
11972 static int
11973 queue_and_load_dwo_tu (void **slot, void *info)
11974 {
11975 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11976 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11977 ULONGEST signature = dwo_unit->signature;
11978 struct signatured_type *sig_type =
11979 lookup_dwo_signatured_type (per_cu->cu, signature);
11980
11981 if (sig_type != NULL)
11982 {
11983 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11984
11985 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11986 a real dependency of PER_CU on SIG_TYPE. That is detected later
11987 while processing PER_CU. */
11988 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11989 load_full_type_unit (sig_cu);
11990 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11991 }
11992
11993 return 1;
11994 }
11995
11996 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11997 The DWO may have the only definition of the type, though it may not be
11998 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11999 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12000
12001 static void
12002 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12003 {
12004 struct dwo_unit *dwo_unit;
12005 struct dwo_file *dwo_file;
12006
12007 gdb_assert (!per_cu->is_debug_types);
12008 gdb_assert (get_dwp_file () == NULL);
12009 gdb_assert (per_cu->cu != NULL);
12010
12011 dwo_unit = per_cu->cu->dwo_unit;
12012 gdb_assert (dwo_unit != NULL);
12013
12014 dwo_file = dwo_unit->dwo_file;
12015 if (dwo_file->tus != NULL)
12016 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
12017 }
12018
12019 /* Free all resources associated with DWO_FILE.
12020 Close the DWO file and munmap the sections.
12021 All memory should be on the objfile obstack. */
12022
12023 static void
12024 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
12025 {
12026
12027 /* Note: dbfd is NULL for virtual DWO files. */
12028 gdb_bfd_unref (dwo_file->dbfd);
12029
12030 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
12031 }
12032
12033 /* Wrapper for free_dwo_file for use in cleanups. */
12034
12035 static void
12036 free_dwo_file_cleanup (void *arg)
12037 {
12038 struct dwo_file *dwo_file = (struct dwo_file *) arg;
12039 struct objfile *objfile = dwarf2_per_objfile->objfile;
12040
12041 free_dwo_file (dwo_file, objfile);
12042 }
12043
12044 /* Traversal function for free_dwo_files. */
12045
12046 static int
12047 free_dwo_file_from_slot (void **slot, void *info)
12048 {
12049 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
12050 struct objfile *objfile = (struct objfile *) info;
12051
12052 free_dwo_file (dwo_file, objfile);
12053
12054 return 1;
12055 }
12056
12057 /* Free all resources associated with DWO_FILES. */
12058
12059 static void
12060 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
12061 {
12062 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
12063 }
12064 \f
12065 /* Read in various DIEs. */
12066
12067 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12068 Inherit only the children of the DW_AT_abstract_origin DIE not being
12069 already referenced by DW_AT_abstract_origin from the children of the
12070 current DIE. */
12071
12072 static void
12073 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12074 {
12075 struct die_info *child_die;
12076 sect_offset *offsetp;
12077 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12078 struct die_info *origin_die;
12079 /* Iterator of the ORIGIN_DIE children. */
12080 struct die_info *origin_child_die;
12081 struct attribute *attr;
12082 struct dwarf2_cu *origin_cu;
12083 struct pending **origin_previous_list_in_scope;
12084
12085 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12086 if (!attr)
12087 return;
12088
12089 /* Note that following die references may follow to a die in a
12090 different cu. */
12091
12092 origin_cu = cu;
12093 origin_die = follow_die_ref (die, attr, &origin_cu);
12094
12095 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12096 symbols in. */
12097 origin_previous_list_in_scope = origin_cu->list_in_scope;
12098 origin_cu->list_in_scope = cu->list_in_scope;
12099
12100 if (die->tag != origin_die->tag
12101 && !(die->tag == DW_TAG_inlined_subroutine
12102 && origin_die->tag == DW_TAG_subprogram))
12103 complaint (&symfile_complaints,
12104 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
12105 to_underlying (die->sect_off),
12106 to_underlying (origin_die->sect_off));
12107
12108 std::vector<sect_offset> offsets;
12109
12110 for (child_die = die->child;
12111 child_die && child_die->tag;
12112 child_die = sibling_die (child_die))
12113 {
12114 struct die_info *child_origin_die;
12115 struct dwarf2_cu *child_origin_cu;
12116
12117 /* We are trying to process concrete instance entries:
12118 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12119 it's not relevant to our analysis here. i.e. detecting DIEs that are
12120 present in the abstract instance but not referenced in the concrete
12121 one. */
12122 if (child_die->tag == DW_TAG_call_site
12123 || child_die->tag == DW_TAG_GNU_call_site)
12124 continue;
12125
12126 /* For each CHILD_DIE, find the corresponding child of
12127 ORIGIN_DIE. If there is more than one layer of
12128 DW_AT_abstract_origin, follow them all; there shouldn't be,
12129 but GCC versions at least through 4.4 generate this (GCC PR
12130 40573). */
12131 child_origin_die = child_die;
12132 child_origin_cu = cu;
12133 while (1)
12134 {
12135 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12136 child_origin_cu);
12137 if (attr == NULL)
12138 break;
12139 child_origin_die = follow_die_ref (child_origin_die, attr,
12140 &child_origin_cu);
12141 }
12142
12143 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12144 counterpart may exist. */
12145 if (child_origin_die != child_die)
12146 {
12147 if (child_die->tag != child_origin_die->tag
12148 && !(child_die->tag == DW_TAG_inlined_subroutine
12149 && child_origin_die->tag == DW_TAG_subprogram))
12150 complaint (&symfile_complaints,
12151 _("Child DIE 0x%x and its abstract origin 0x%x have "
12152 "different tags"),
12153 to_underlying (child_die->sect_off),
12154 to_underlying (child_origin_die->sect_off));
12155 if (child_origin_die->parent != origin_die)
12156 complaint (&symfile_complaints,
12157 _("Child DIE 0x%x and its abstract origin 0x%x have "
12158 "different parents"),
12159 to_underlying (child_die->sect_off),
12160 to_underlying (child_origin_die->sect_off));
12161 else
12162 offsets.push_back (child_origin_die->sect_off);
12163 }
12164 }
12165 std::sort (offsets.begin (), offsets.end ());
12166 sect_offset *offsets_end = offsets.data () + offsets.size ();
12167 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12168 if (offsetp[-1] == *offsetp)
12169 complaint (&symfile_complaints,
12170 _("Multiple children of DIE 0x%x refer "
12171 "to DIE 0x%x as their abstract origin"),
12172 to_underlying (die->sect_off), to_underlying (*offsetp));
12173
12174 offsetp = offsets.data ();
12175 origin_child_die = origin_die->child;
12176 while (origin_child_die && origin_child_die->tag)
12177 {
12178 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12179 while (offsetp < offsets_end
12180 && *offsetp < origin_child_die->sect_off)
12181 offsetp++;
12182 if (offsetp >= offsets_end
12183 || *offsetp > origin_child_die->sect_off)
12184 {
12185 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12186 Check whether we're already processing ORIGIN_CHILD_DIE.
12187 This can happen with mutually referenced abstract_origins.
12188 PR 16581. */
12189 if (!origin_child_die->in_process)
12190 process_die (origin_child_die, origin_cu);
12191 }
12192 origin_child_die = sibling_die (origin_child_die);
12193 }
12194 origin_cu->list_in_scope = origin_previous_list_in_scope;
12195 }
12196
12197 static void
12198 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12199 {
12200 struct objfile *objfile = cu->objfile;
12201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12202 struct context_stack *newobj;
12203 CORE_ADDR lowpc;
12204 CORE_ADDR highpc;
12205 struct die_info *child_die;
12206 struct attribute *attr, *call_line, *call_file;
12207 const char *name;
12208 CORE_ADDR baseaddr;
12209 struct block *block;
12210 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12211 std::vector<struct symbol *> template_args;
12212 struct template_symbol *templ_func = NULL;
12213
12214 if (inlined_func)
12215 {
12216 /* If we do not have call site information, we can't show the
12217 caller of this inlined function. That's too confusing, so
12218 only use the scope for local variables. */
12219 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12220 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12221 if (call_line == NULL || call_file == NULL)
12222 {
12223 read_lexical_block_scope (die, cu);
12224 return;
12225 }
12226 }
12227
12228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12229
12230 name = dwarf2_name (die, cu);
12231
12232 /* Ignore functions with missing or empty names. These are actually
12233 illegal according to the DWARF standard. */
12234 if (name == NULL)
12235 {
12236 complaint (&symfile_complaints,
12237 _("missing name for subprogram DIE at %d"),
12238 to_underlying (die->sect_off));
12239 return;
12240 }
12241
12242 /* Ignore functions with missing or invalid low and high pc attributes. */
12243 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12244 <= PC_BOUNDS_INVALID)
12245 {
12246 attr = dwarf2_attr (die, DW_AT_external, cu);
12247 if (!attr || !DW_UNSND (attr))
12248 complaint (&symfile_complaints,
12249 _("cannot get low and high bounds "
12250 "for subprogram DIE at %d"),
12251 to_underlying (die->sect_off));
12252 return;
12253 }
12254
12255 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12256 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12257
12258 /* If we have any template arguments, then we must allocate a
12259 different sort of symbol. */
12260 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12261 {
12262 if (child_die->tag == DW_TAG_template_type_param
12263 || child_die->tag == DW_TAG_template_value_param)
12264 {
12265 templ_func = allocate_template_symbol (objfile);
12266 templ_func->subclass = SYMBOL_TEMPLATE;
12267 break;
12268 }
12269 }
12270
12271 newobj = push_context (0, lowpc);
12272 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
12273 (struct symbol *) templ_func);
12274
12275 /* If there is a location expression for DW_AT_frame_base, record
12276 it. */
12277 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12278 if (attr)
12279 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12280
12281 /* If there is a location for the static link, record it. */
12282 newobj->static_link = NULL;
12283 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12284 if (attr)
12285 {
12286 newobj->static_link
12287 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12288 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
12289 }
12290
12291 cu->list_in_scope = &local_symbols;
12292
12293 if (die->child != NULL)
12294 {
12295 child_die = die->child;
12296 while (child_die && child_die->tag)
12297 {
12298 if (child_die->tag == DW_TAG_template_type_param
12299 || child_die->tag == DW_TAG_template_value_param)
12300 {
12301 struct symbol *arg = new_symbol (child_die, NULL, cu);
12302
12303 if (arg != NULL)
12304 template_args.push_back (arg);
12305 }
12306 else
12307 process_die (child_die, cu);
12308 child_die = sibling_die (child_die);
12309 }
12310 }
12311
12312 inherit_abstract_dies (die, cu);
12313
12314 /* If we have a DW_AT_specification, we might need to import using
12315 directives from the context of the specification DIE. See the
12316 comment in determine_prefix. */
12317 if (cu->language == language_cplus
12318 && dwarf2_attr (die, DW_AT_specification, cu))
12319 {
12320 struct dwarf2_cu *spec_cu = cu;
12321 struct die_info *spec_die = die_specification (die, &spec_cu);
12322
12323 while (spec_die)
12324 {
12325 child_die = spec_die->child;
12326 while (child_die && child_die->tag)
12327 {
12328 if (child_die->tag == DW_TAG_imported_module)
12329 process_die (child_die, spec_cu);
12330 child_die = sibling_die (child_die);
12331 }
12332
12333 /* In some cases, GCC generates specification DIEs that
12334 themselves contain DW_AT_specification attributes. */
12335 spec_die = die_specification (spec_die, &spec_cu);
12336 }
12337 }
12338
12339 newobj = pop_context ();
12340 /* Make a block for the local symbols within. */
12341 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
12342 newobj->static_link, lowpc, highpc);
12343
12344 /* For C++, set the block's scope. */
12345 if ((cu->language == language_cplus
12346 || cu->language == language_fortran
12347 || cu->language == language_d
12348 || cu->language == language_rust)
12349 && cu->processing_has_namespace_info)
12350 block_set_scope (block, determine_prefix (die, cu),
12351 &objfile->objfile_obstack);
12352
12353 /* If we have address ranges, record them. */
12354 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12355
12356 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
12357
12358 /* Attach template arguments to function. */
12359 if (!template_args.empty ())
12360 {
12361 gdb_assert (templ_func != NULL);
12362
12363 templ_func->n_template_arguments = template_args.size ();
12364 templ_func->template_arguments
12365 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12366 templ_func->n_template_arguments);
12367 memcpy (templ_func->template_arguments,
12368 template_args.data (),
12369 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12370 }
12371
12372 /* In C++, we can have functions nested inside functions (e.g., when
12373 a function declares a class that has methods). This means that
12374 when we finish processing a function scope, we may need to go
12375 back to building a containing block's symbol lists. */
12376 local_symbols = newobj->locals;
12377 local_using_directives = newobj->local_using_directives;
12378
12379 /* If we've finished processing a top-level function, subsequent
12380 symbols go in the file symbol list. */
12381 if (outermost_context_p ())
12382 cu->list_in_scope = &file_symbols;
12383 }
12384
12385 /* Process all the DIES contained within a lexical block scope. Start
12386 a new scope, process the dies, and then close the scope. */
12387
12388 static void
12389 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12390 {
12391 struct objfile *objfile = cu->objfile;
12392 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12393 struct context_stack *newobj;
12394 CORE_ADDR lowpc, highpc;
12395 struct die_info *child_die;
12396 CORE_ADDR baseaddr;
12397
12398 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12399
12400 /* Ignore blocks with missing or invalid low and high pc attributes. */
12401 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
12402 as multiple lexical blocks? Handling children in a sane way would
12403 be nasty. Might be easier to properly extend generic blocks to
12404 describe ranges. */
12405 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
12406 {
12407 case PC_BOUNDS_NOT_PRESENT:
12408 /* DW_TAG_lexical_block has no attributes, process its children as if
12409 there was no wrapping by that DW_TAG_lexical_block.
12410 GCC does no longer produces such DWARF since GCC r224161. */
12411 for (child_die = die->child;
12412 child_die != NULL && child_die->tag;
12413 child_die = sibling_die (child_die))
12414 process_die (child_die, cu);
12415 return;
12416 case PC_BOUNDS_INVALID:
12417 return;
12418 }
12419 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12420 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12421
12422 push_context (0, lowpc);
12423 if (die->child != NULL)
12424 {
12425 child_die = die->child;
12426 while (child_die && child_die->tag)
12427 {
12428 process_die (child_die, cu);
12429 child_die = sibling_die (child_die);
12430 }
12431 }
12432 inherit_abstract_dies (die, cu);
12433 newobj = pop_context ();
12434
12435 if (local_symbols != NULL || local_using_directives != NULL)
12436 {
12437 struct block *block
12438 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
12439 newobj->start_addr, highpc);
12440
12441 /* Note that recording ranges after traversing children, as we
12442 do here, means that recording a parent's ranges entails
12443 walking across all its children's ranges as they appear in
12444 the address map, which is quadratic behavior.
12445
12446 It would be nicer to record the parent's ranges before
12447 traversing its children, simply overriding whatever you find
12448 there. But since we don't even decide whether to create a
12449 block until after we've traversed its children, that's hard
12450 to do. */
12451 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12452 }
12453 local_symbols = newobj->locals;
12454 local_using_directives = newobj->local_using_directives;
12455 }
12456
12457 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
12458
12459 static void
12460 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
12461 {
12462 struct objfile *objfile = cu->objfile;
12463 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12464 CORE_ADDR pc, baseaddr;
12465 struct attribute *attr;
12466 struct call_site *call_site, call_site_local;
12467 void **slot;
12468 int nparams;
12469 struct die_info *child_die;
12470
12471 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12472
12473 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
12474 if (attr == NULL)
12475 {
12476 /* This was a pre-DWARF-5 GNU extension alias
12477 for DW_AT_call_return_pc. */
12478 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12479 }
12480 if (!attr)
12481 {
12482 complaint (&symfile_complaints,
12483 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
12484 "DIE 0x%x [in module %s]"),
12485 to_underlying (die->sect_off), objfile_name (objfile));
12486 return;
12487 }
12488 pc = attr_value_as_address (attr) + baseaddr;
12489 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
12490
12491 if (cu->call_site_htab == NULL)
12492 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
12493 NULL, &objfile->objfile_obstack,
12494 hashtab_obstack_allocate, NULL);
12495 call_site_local.pc = pc;
12496 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
12497 if (*slot != NULL)
12498 {
12499 complaint (&symfile_complaints,
12500 _("Duplicate PC %s for DW_TAG_call_site "
12501 "DIE 0x%x [in module %s]"),
12502 paddress (gdbarch, pc), to_underlying (die->sect_off),
12503 objfile_name (objfile));
12504 return;
12505 }
12506
12507 /* Count parameters at the caller. */
12508
12509 nparams = 0;
12510 for (child_die = die->child; child_die && child_die->tag;
12511 child_die = sibling_die (child_die))
12512 {
12513 if (child_die->tag != DW_TAG_call_site_parameter
12514 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12515 {
12516 complaint (&symfile_complaints,
12517 _("Tag %d is not DW_TAG_call_site_parameter in "
12518 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12519 child_die->tag, to_underlying (child_die->sect_off),
12520 objfile_name (objfile));
12521 continue;
12522 }
12523
12524 nparams++;
12525 }
12526
12527 call_site
12528 = ((struct call_site *)
12529 obstack_alloc (&objfile->objfile_obstack,
12530 sizeof (*call_site)
12531 + (sizeof (*call_site->parameter) * (nparams - 1))));
12532 *slot = call_site;
12533 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
12534 call_site->pc = pc;
12535
12536 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12537 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12538 {
12539 struct die_info *func_die;
12540
12541 /* Skip also over DW_TAG_inlined_subroutine. */
12542 for (func_die = die->parent;
12543 func_die && func_die->tag != DW_TAG_subprogram
12544 && func_die->tag != DW_TAG_subroutine_type;
12545 func_die = func_die->parent);
12546
12547 /* DW_AT_call_all_calls is a superset
12548 of DW_AT_call_all_tail_calls. */
12549 if (func_die
12550 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12551 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12552 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12553 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12554 {
12555 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12556 not complete. But keep CALL_SITE for look ups via call_site_htab,
12557 both the initial caller containing the real return address PC and
12558 the final callee containing the current PC of a chain of tail
12559 calls do not need to have the tail call list complete. But any
12560 function candidate for a virtual tail call frame searched via
12561 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12562 determined unambiguously. */
12563 }
12564 else
12565 {
12566 struct type *func_type = NULL;
12567
12568 if (func_die)
12569 func_type = get_die_type (func_die, cu);
12570 if (func_type != NULL)
12571 {
12572 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12573
12574 /* Enlist this call site to the function. */
12575 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12576 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12577 }
12578 else
12579 complaint (&symfile_complaints,
12580 _("Cannot find function owning DW_TAG_call_site "
12581 "DIE 0x%x [in module %s]"),
12582 to_underlying (die->sect_off), objfile_name (objfile));
12583 }
12584 }
12585
12586 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12587 if (attr == NULL)
12588 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12589 if (attr == NULL)
12590 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12591 if (attr == NULL)
12592 {
12593 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12594 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12595 }
12596 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12597 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12598 /* Keep NULL DWARF_BLOCK. */;
12599 else if (attr_form_is_block (attr))
12600 {
12601 struct dwarf2_locexpr_baton *dlbaton;
12602
12603 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12604 dlbaton->data = DW_BLOCK (attr)->data;
12605 dlbaton->size = DW_BLOCK (attr)->size;
12606 dlbaton->per_cu = cu->per_cu;
12607
12608 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12609 }
12610 else if (attr_form_is_ref (attr))
12611 {
12612 struct dwarf2_cu *target_cu = cu;
12613 struct die_info *target_die;
12614
12615 target_die = follow_die_ref (die, attr, &target_cu);
12616 gdb_assert (target_cu->objfile == objfile);
12617 if (die_is_declaration (target_die, target_cu))
12618 {
12619 const char *target_physname;
12620
12621 /* Prefer the mangled name; otherwise compute the demangled one. */
12622 target_physname = dw2_linkage_name (target_die, target_cu);
12623 if (target_physname == NULL)
12624 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12625 if (target_physname == NULL)
12626 complaint (&symfile_complaints,
12627 _("DW_AT_call_target target DIE has invalid "
12628 "physname, for referencing DIE 0x%x [in module %s]"),
12629 to_underlying (die->sect_off), objfile_name (objfile));
12630 else
12631 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12632 }
12633 else
12634 {
12635 CORE_ADDR lowpc;
12636
12637 /* DW_AT_entry_pc should be preferred. */
12638 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12639 <= PC_BOUNDS_INVALID)
12640 complaint (&symfile_complaints,
12641 _("DW_AT_call_target target DIE has invalid "
12642 "low pc, for referencing DIE 0x%x [in module %s]"),
12643 to_underlying (die->sect_off), objfile_name (objfile));
12644 else
12645 {
12646 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12647 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12648 }
12649 }
12650 }
12651 else
12652 complaint (&symfile_complaints,
12653 _("DW_TAG_call_site DW_AT_call_target is neither "
12654 "block nor reference, for DIE 0x%x [in module %s]"),
12655 to_underlying (die->sect_off), objfile_name (objfile));
12656
12657 call_site->per_cu = cu->per_cu;
12658
12659 for (child_die = die->child;
12660 child_die && child_die->tag;
12661 child_die = sibling_die (child_die))
12662 {
12663 struct call_site_parameter *parameter;
12664 struct attribute *loc, *origin;
12665
12666 if (child_die->tag != DW_TAG_call_site_parameter
12667 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12668 {
12669 /* Already printed the complaint above. */
12670 continue;
12671 }
12672
12673 gdb_assert (call_site->parameter_count < nparams);
12674 parameter = &call_site->parameter[call_site->parameter_count];
12675
12676 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12677 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12678 register is contained in DW_AT_call_value. */
12679
12680 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12681 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12682 if (origin == NULL)
12683 {
12684 /* This was a pre-DWARF-5 GNU extension alias
12685 for DW_AT_call_parameter. */
12686 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12687 }
12688 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12689 {
12690 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12691
12692 sect_offset sect_off
12693 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12694 if (!offset_in_cu_p (&cu->header, sect_off))
12695 {
12696 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12697 binding can be done only inside one CU. Such referenced DIE
12698 therefore cannot be even moved to DW_TAG_partial_unit. */
12699 complaint (&symfile_complaints,
12700 _("DW_AT_call_parameter offset is not in CU for "
12701 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12702 to_underlying (child_die->sect_off),
12703 objfile_name (objfile));
12704 continue;
12705 }
12706 parameter->u.param_cu_off
12707 = (cu_offset) (sect_off - cu->header.sect_off);
12708 }
12709 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12710 {
12711 complaint (&symfile_complaints,
12712 _("No DW_FORM_block* DW_AT_location for "
12713 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12714 to_underlying (child_die->sect_off), objfile_name (objfile));
12715 continue;
12716 }
12717 else
12718 {
12719 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12720 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12721 if (parameter->u.dwarf_reg != -1)
12722 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12723 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12724 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12725 &parameter->u.fb_offset))
12726 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12727 else
12728 {
12729 complaint (&symfile_complaints,
12730 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12731 "for DW_FORM_block* DW_AT_location is supported for "
12732 "DW_TAG_call_site child DIE 0x%x "
12733 "[in module %s]"),
12734 to_underlying (child_die->sect_off),
12735 objfile_name (objfile));
12736 continue;
12737 }
12738 }
12739
12740 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12741 if (attr == NULL)
12742 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12743 if (!attr_form_is_block (attr))
12744 {
12745 complaint (&symfile_complaints,
12746 _("No DW_FORM_block* DW_AT_call_value for "
12747 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12748 to_underlying (child_die->sect_off),
12749 objfile_name (objfile));
12750 continue;
12751 }
12752 parameter->value = DW_BLOCK (attr)->data;
12753 parameter->value_size = DW_BLOCK (attr)->size;
12754
12755 /* Parameters are not pre-cleared by memset above. */
12756 parameter->data_value = NULL;
12757 parameter->data_value_size = 0;
12758 call_site->parameter_count++;
12759
12760 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12761 if (attr == NULL)
12762 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12763 if (attr)
12764 {
12765 if (!attr_form_is_block (attr))
12766 complaint (&symfile_complaints,
12767 _("No DW_FORM_block* DW_AT_call_data_value for "
12768 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12769 to_underlying (child_die->sect_off),
12770 objfile_name (objfile));
12771 else
12772 {
12773 parameter->data_value = DW_BLOCK (attr)->data;
12774 parameter->data_value_size = DW_BLOCK (attr)->size;
12775 }
12776 }
12777 }
12778 }
12779
12780 /* Helper function for read_variable. If DIE represents a virtual
12781 table, then return the type of the concrete object that is
12782 associated with the virtual table. Otherwise, return NULL. */
12783
12784 static struct type *
12785 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12786 {
12787 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
12788 if (attr == NULL)
12789 return NULL;
12790
12791 /* Find the type DIE. */
12792 struct die_info *type_die = NULL;
12793 struct dwarf2_cu *type_cu = cu;
12794
12795 if (attr_form_is_ref (attr))
12796 type_die = follow_die_ref (die, attr, &type_cu);
12797 if (type_die == NULL)
12798 return NULL;
12799
12800 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
12801 return NULL;
12802 return die_containing_type (type_die, type_cu);
12803 }
12804
12805 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
12806
12807 static void
12808 read_variable (struct die_info *die, struct dwarf2_cu *cu)
12809 {
12810 struct rust_vtable_symbol *storage = NULL;
12811
12812 if (cu->language == language_rust)
12813 {
12814 struct type *containing_type = rust_containing_type (die, cu);
12815
12816 if (containing_type != NULL)
12817 {
12818 struct objfile *objfile = cu->objfile;
12819
12820 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
12821 struct rust_vtable_symbol);
12822 initialize_objfile_symbol (storage);
12823 storage->concrete_type = containing_type;
12824 storage->subclass = SYMBOL_RUST_VTABLE;
12825 }
12826 }
12827
12828 new_symbol_full (die, NULL, cu, storage);
12829 }
12830
12831 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12832 reading .debug_rnglists.
12833 Callback's type should be:
12834 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12835 Return true if the attributes are present and valid, otherwise,
12836 return false. */
12837
12838 template <typename Callback>
12839 static bool
12840 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12841 Callback &&callback)
12842 {
12843 struct objfile *objfile = cu->objfile;
12844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12845 struct comp_unit_head *cu_header = &cu->header;
12846 bfd *obfd = objfile->obfd;
12847 unsigned int addr_size = cu_header->addr_size;
12848 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12849 /* Base address selection entry. */
12850 CORE_ADDR base;
12851 int found_base;
12852 unsigned int dummy;
12853 const gdb_byte *buffer;
12854 CORE_ADDR low = 0;
12855 CORE_ADDR high = 0;
12856 CORE_ADDR baseaddr;
12857 bool overflow = false;
12858
12859 found_base = cu->base_known;
12860 base = cu->base_address;
12861
12862 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12863 if (offset >= dwarf2_per_objfile->rnglists.size)
12864 {
12865 complaint (&symfile_complaints,
12866 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12867 offset);
12868 return false;
12869 }
12870 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12871
12872 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12873
12874 while (1)
12875 {
12876 /* Initialize it due to a false compiler warning. */
12877 CORE_ADDR range_beginning = 0, range_end = 0;
12878 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12879 + dwarf2_per_objfile->rnglists.size);
12880 unsigned int bytes_read;
12881
12882 if (buffer == buf_end)
12883 {
12884 overflow = true;
12885 break;
12886 }
12887 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12888 switch (rlet)
12889 {
12890 case DW_RLE_end_of_list:
12891 break;
12892 case DW_RLE_base_address:
12893 if (buffer + cu->header.addr_size > buf_end)
12894 {
12895 overflow = true;
12896 break;
12897 }
12898 base = read_address (obfd, buffer, cu, &bytes_read);
12899 found_base = 1;
12900 buffer += bytes_read;
12901 break;
12902 case DW_RLE_start_length:
12903 if (buffer + cu->header.addr_size > buf_end)
12904 {
12905 overflow = true;
12906 break;
12907 }
12908 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12909 buffer += bytes_read;
12910 range_end = (range_beginning
12911 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12912 buffer += bytes_read;
12913 if (buffer > buf_end)
12914 {
12915 overflow = true;
12916 break;
12917 }
12918 break;
12919 case DW_RLE_offset_pair:
12920 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12921 buffer += bytes_read;
12922 if (buffer > buf_end)
12923 {
12924 overflow = true;
12925 break;
12926 }
12927 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12928 buffer += bytes_read;
12929 if (buffer > buf_end)
12930 {
12931 overflow = true;
12932 break;
12933 }
12934 break;
12935 case DW_RLE_start_end:
12936 if (buffer + 2 * cu->header.addr_size > buf_end)
12937 {
12938 overflow = true;
12939 break;
12940 }
12941 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12942 buffer += bytes_read;
12943 range_end = read_address (obfd, buffer, cu, &bytes_read);
12944 buffer += bytes_read;
12945 break;
12946 default:
12947 complaint (&symfile_complaints,
12948 _("Invalid .debug_rnglists data (no base address)"));
12949 return false;
12950 }
12951 if (rlet == DW_RLE_end_of_list || overflow)
12952 break;
12953 if (rlet == DW_RLE_base_address)
12954 continue;
12955
12956 if (!found_base)
12957 {
12958 /* We have no valid base address for the ranges
12959 data. */
12960 complaint (&symfile_complaints,
12961 _("Invalid .debug_rnglists data (no base address)"));
12962 return false;
12963 }
12964
12965 if (range_beginning > range_end)
12966 {
12967 /* Inverted range entries are invalid. */
12968 complaint (&symfile_complaints,
12969 _("Invalid .debug_rnglists data (inverted range)"));
12970 return false;
12971 }
12972
12973 /* Empty range entries have no effect. */
12974 if (range_beginning == range_end)
12975 continue;
12976
12977 range_beginning += base;
12978 range_end += base;
12979
12980 /* A not-uncommon case of bad debug info.
12981 Don't pollute the addrmap with bad data. */
12982 if (range_beginning + baseaddr == 0
12983 && !dwarf2_per_objfile->has_section_at_zero)
12984 {
12985 complaint (&symfile_complaints,
12986 _(".debug_rnglists entry has start address of zero"
12987 " [in module %s]"), objfile_name (objfile));
12988 continue;
12989 }
12990
12991 callback (range_beginning, range_end);
12992 }
12993
12994 if (overflow)
12995 {
12996 complaint (&symfile_complaints,
12997 _("Offset %d is not terminated "
12998 "for DW_AT_ranges attribute"),
12999 offset);
13000 return false;
13001 }
13002
13003 return true;
13004 }
13005
13006 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13007 Callback's type should be:
13008 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13009 Return 1 if the attributes are present and valid, otherwise, return 0. */
13010
13011 template <typename Callback>
13012 static int
13013 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13014 Callback &&callback)
13015 {
13016 struct objfile *objfile = cu->objfile;
13017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13018 struct comp_unit_head *cu_header = &cu->header;
13019 bfd *obfd = objfile->obfd;
13020 unsigned int addr_size = cu_header->addr_size;
13021 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13022 /* Base address selection entry. */
13023 CORE_ADDR base;
13024 int found_base;
13025 unsigned int dummy;
13026 const gdb_byte *buffer;
13027 CORE_ADDR baseaddr;
13028
13029 if (cu_header->version >= 5)
13030 return dwarf2_rnglists_process (offset, cu, callback);
13031
13032 found_base = cu->base_known;
13033 base = cu->base_address;
13034
13035 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
13036 if (offset >= dwarf2_per_objfile->ranges.size)
13037 {
13038 complaint (&symfile_complaints,
13039 _("Offset %d out of bounds for DW_AT_ranges attribute"),
13040 offset);
13041 return 0;
13042 }
13043 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13044
13045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13046
13047 while (1)
13048 {
13049 CORE_ADDR range_beginning, range_end;
13050
13051 range_beginning = read_address (obfd, buffer, cu, &dummy);
13052 buffer += addr_size;
13053 range_end = read_address (obfd, buffer, cu, &dummy);
13054 buffer += addr_size;
13055 offset += 2 * addr_size;
13056
13057 /* An end of list marker is a pair of zero addresses. */
13058 if (range_beginning == 0 && range_end == 0)
13059 /* Found the end of list entry. */
13060 break;
13061
13062 /* Each base address selection entry is a pair of 2 values.
13063 The first is the largest possible address, the second is
13064 the base address. Check for a base address here. */
13065 if ((range_beginning & mask) == mask)
13066 {
13067 /* If we found the largest possible address, then we already
13068 have the base address in range_end. */
13069 base = range_end;
13070 found_base = 1;
13071 continue;
13072 }
13073
13074 if (!found_base)
13075 {
13076 /* We have no valid base address for the ranges
13077 data. */
13078 complaint (&symfile_complaints,
13079 _("Invalid .debug_ranges data (no base address)"));
13080 return 0;
13081 }
13082
13083 if (range_beginning > range_end)
13084 {
13085 /* Inverted range entries are invalid. */
13086 complaint (&symfile_complaints,
13087 _("Invalid .debug_ranges data (inverted range)"));
13088 return 0;
13089 }
13090
13091 /* Empty range entries have no effect. */
13092 if (range_beginning == range_end)
13093 continue;
13094
13095 range_beginning += base;
13096 range_end += base;
13097
13098 /* A not-uncommon case of bad debug info.
13099 Don't pollute the addrmap with bad data. */
13100 if (range_beginning + baseaddr == 0
13101 && !dwarf2_per_objfile->has_section_at_zero)
13102 {
13103 complaint (&symfile_complaints,
13104 _(".debug_ranges entry has start address of zero"
13105 " [in module %s]"), objfile_name (objfile));
13106 continue;
13107 }
13108
13109 callback (range_beginning, range_end);
13110 }
13111
13112 return 1;
13113 }
13114
13115 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13116 Return 1 if the attributes are present and valid, otherwise, return 0.
13117 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13118
13119 static int
13120 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13121 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13122 struct partial_symtab *ranges_pst)
13123 {
13124 struct objfile *objfile = cu->objfile;
13125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13126 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
13127 SECT_OFF_TEXT (objfile));
13128 int low_set = 0;
13129 CORE_ADDR low = 0;
13130 CORE_ADDR high = 0;
13131 int retval;
13132
13133 retval = dwarf2_ranges_process (offset, cu,
13134 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13135 {
13136 if (ranges_pst != NULL)
13137 {
13138 CORE_ADDR lowpc;
13139 CORE_ADDR highpc;
13140
13141 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13142 range_beginning + baseaddr);
13143 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13144 range_end + baseaddr);
13145 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
13146 ranges_pst);
13147 }
13148
13149 /* FIXME: This is recording everything as a low-high
13150 segment of consecutive addresses. We should have a
13151 data structure for discontiguous block ranges
13152 instead. */
13153 if (! low_set)
13154 {
13155 low = range_beginning;
13156 high = range_end;
13157 low_set = 1;
13158 }
13159 else
13160 {
13161 if (range_beginning < low)
13162 low = range_beginning;
13163 if (range_end > high)
13164 high = range_end;
13165 }
13166 });
13167 if (!retval)
13168 return 0;
13169
13170 if (! low_set)
13171 /* If the first entry is an end-of-list marker, the range
13172 describes an empty scope, i.e. no instructions. */
13173 return 0;
13174
13175 if (low_return)
13176 *low_return = low;
13177 if (high_return)
13178 *high_return = high;
13179 return 1;
13180 }
13181
13182 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13183 definition for the return value. *LOWPC and *HIGHPC are set iff
13184 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13185
13186 static enum pc_bounds_kind
13187 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13188 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13189 struct partial_symtab *pst)
13190 {
13191 struct attribute *attr;
13192 struct attribute *attr_high;
13193 CORE_ADDR low = 0;
13194 CORE_ADDR high = 0;
13195 enum pc_bounds_kind ret;
13196
13197 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13198 if (attr_high)
13199 {
13200 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13201 if (attr)
13202 {
13203 low = attr_value_as_address (attr);
13204 high = attr_value_as_address (attr_high);
13205 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13206 high += low;
13207 }
13208 else
13209 /* Found high w/o low attribute. */
13210 return PC_BOUNDS_INVALID;
13211
13212 /* Found consecutive range of addresses. */
13213 ret = PC_BOUNDS_HIGH_LOW;
13214 }
13215 else
13216 {
13217 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13218 if (attr != NULL)
13219 {
13220 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13221 We take advantage of the fact that DW_AT_ranges does not appear
13222 in DW_TAG_compile_unit of DWO files. */
13223 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13224 unsigned int ranges_offset = (DW_UNSND (attr)
13225 + (need_ranges_base
13226 ? cu->ranges_base
13227 : 0));
13228
13229 /* Value of the DW_AT_ranges attribute is the offset in the
13230 .debug_ranges section. */
13231 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13232 return PC_BOUNDS_INVALID;
13233 /* Found discontinuous range of addresses. */
13234 ret = PC_BOUNDS_RANGES;
13235 }
13236 else
13237 return PC_BOUNDS_NOT_PRESENT;
13238 }
13239
13240 /* read_partial_die has also the strict LOW < HIGH requirement. */
13241 if (high <= low)
13242 return PC_BOUNDS_INVALID;
13243
13244 /* When using the GNU linker, .gnu.linkonce. sections are used to
13245 eliminate duplicate copies of functions and vtables and such.
13246 The linker will arbitrarily choose one and discard the others.
13247 The AT_*_pc values for such functions refer to local labels in
13248 these sections. If the section from that file was discarded, the
13249 labels are not in the output, so the relocs get a value of 0.
13250 If this is a discarded function, mark the pc bounds as invalid,
13251 so that GDB will ignore it. */
13252 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13253 return PC_BOUNDS_INVALID;
13254
13255 *lowpc = low;
13256 if (highpc)
13257 *highpc = high;
13258 return ret;
13259 }
13260
13261 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13262 its low and high PC addresses. Do nothing if these addresses could not
13263 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13264 and HIGHPC to the high address if greater than HIGHPC. */
13265
13266 static void
13267 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13268 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13269 struct dwarf2_cu *cu)
13270 {
13271 CORE_ADDR low, high;
13272 struct die_info *child = die->child;
13273
13274 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13275 {
13276 *lowpc = std::min (*lowpc, low);
13277 *highpc = std::max (*highpc, high);
13278 }
13279
13280 /* If the language does not allow nested subprograms (either inside
13281 subprograms or lexical blocks), we're done. */
13282 if (cu->language != language_ada)
13283 return;
13284
13285 /* Check all the children of the given DIE. If it contains nested
13286 subprograms, then check their pc bounds. Likewise, we need to
13287 check lexical blocks as well, as they may also contain subprogram
13288 definitions. */
13289 while (child && child->tag)
13290 {
13291 if (child->tag == DW_TAG_subprogram
13292 || child->tag == DW_TAG_lexical_block)
13293 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13294 child = sibling_die (child);
13295 }
13296 }
13297
13298 /* Get the low and high pc's represented by the scope DIE, and store
13299 them in *LOWPC and *HIGHPC. If the correct values can't be
13300 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13301
13302 static void
13303 get_scope_pc_bounds (struct die_info *die,
13304 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13305 struct dwarf2_cu *cu)
13306 {
13307 CORE_ADDR best_low = (CORE_ADDR) -1;
13308 CORE_ADDR best_high = (CORE_ADDR) 0;
13309 CORE_ADDR current_low, current_high;
13310
13311 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13312 >= PC_BOUNDS_RANGES)
13313 {
13314 best_low = current_low;
13315 best_high = current_high;
13316 }
13317 else
13318 {
13319 struct die_info *child = die->child;
13320
13321 while (child && child->tag)
13322 {
13323 switch (child->tag) {
13324 case DW_TAG_subprogram:
13325 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13326 break;
13327 case DW_TAG_namespace:
13328 case DW_TAG_module:
13329 /* FIXME: carlton/2004-01-16: Should we do this for
13330 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13331 that current GCC's always emit the DIEs corresponding
13332 to definitions of methods of classes as children of a
13333 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13334 the DIEs giving the declarations, which could be
13335 anywhere). But I don't see any reason why the
13336 standards says that they have to be there. */
13337 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13338
13339 if (current_low != ((CORE_ADDR) -1))
13340 {
13341 best_low = std::min (best_low, current_low);
13342 best_high = std::max (best_high, current_high);
13343 }
13344 break;
13345 default:
13346 /* Ignore. */
13347 break;
13348 }
13349
13350 child = sibling_die (child);
13351 }
13352 }
13353
13354 *lowpc = best_low;
13355 *highpc = best_high;
13356 }
13357
13358 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13359 in DIE. */
13360
13361 static void
13362 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13363 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13364 {
13365 struct objfile *objfile = cu->objfile;
13366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13367 struct attribute *attr;
13368 struct attribute *attr_high;
13369
13370 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13371 if (attr_high)
13372 {
13373 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13374 if (attr)
13375 {
13376 CORE_ADDR low = attr_value_as_address (attr);
13377 CORE_ADDR high = attr_value_as_address (attr_high);
13378
13379 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13380 high += low;
13381
13382 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13383 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13384 record_block_range (block, low, high - 1);
13385 }
13386 }
13387
13388 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13389 if (attr)
13390 {
13391 bfd *obfd = objfile->obfd;
13392 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13393 We take advantage of the fact that DW_AT_ranges does not appear
13394 in DW_TAG_compile_unit of DWO files. */
13395 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13396
13397 /* The value of the DW_AT_ranges attribute is the offset of the
13398 address range list in the .debug_ranges section. */
13399 unsigned long offset = (DW_UNSND (attr)
13400 + (need_ranges_base ? cu->ranges_base : 0));
13401 const gdb_byte *buffer;
13402
13403 /* For some target architectures, but not others, the
13404 read_address function sign-extends the addresses it returns.
13405 To recognize base address selection entries, we need a
13406 mask. */
13407 unsigned int addr_size = cu->header.addr_size;
13408 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13409
13410 /* The base address, to which the next pair is relative. Note
13411 that this 'base' is a DWARF concept: most entries in a range
13412 list are relative, to reduce the number of relocs against the
13413 debugging information. This is separate from this function's
13414 'baseaddr' argument, which GDB uses to relocate debugging
13415 information from a shared library based on the address at
13416 which the library was loaded. */
13417 CORE_ADDR base = cu->base_address;
13418 int base_known = cu->base_known;
13419
13420 dwarf2_ranges_process (offset, cu,
13421 [&] (CORE_ADDR start, CORE_ADDR end)
13422 {
13423 start += baseaddr;
13424 end += baseaddr;
13425 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
13426 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
13427 record_block_range (block, start, end - 1);
13428 });
13429 }
13430 }
13431
13432 /* Check whether the producer field indicates either of GCC < 4.6, or the
13433 Intel C/C++ compiler, and cache the result in CU. */
13434
13435 static void
13436 check_producer (struct dwarf2_cu *cu)
13437 {
13438 int major, minor;
13439
13440 if (cu->producer == NULL)
13441 {
13442 /* For unknown compilers expect their behavior is DWARF version
13443 compliant.
13444
13445 GCC started to support .debug_types sections by -gdwarf-4 since
13446 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
13447 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
13448 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
13449 interpreted incorrectly by GDB now - GCC PR debug/48229. */
13450 }
13451 else if (producer_is_gcc (cu->producer, &major, &minor))
13452 {
13453 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
13454 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
13455 }
13456 else if (producer_is_icc (cu->producer, &major, &minor))
13457 cu->producer_is_icc_lt_14 = major < 14;
13458 else
13459 {
13460 /* For other non-GCC compilers, expect their behavior is DWARF version
13461 compliant. */
13462 }
13463
13464 cu->checked_producer = 1;
13465 }
13466
13467 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
13468 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
13469 during 4.6.0 experimental. */
13470
13471 static int
13472 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
13473 {
13474 if (!cu->checked_producer)
13475 check_producer (cu);
13476
13477 return cu->producer_is_gxx_lt_4_6;
13478 }
13479
13480 /* Return the default accessibility type if it is not overriden by
13481 DW_AT_accessibility. */
13482
13483 static enum dwarf_access_attribute
13484 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
13485 {
13486 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
13487 {
13488 /* The default DWARF 2 accessibility for members is public, the default
13489 accessibility for inheritance is private. */
13490
13491 if (die->tag != DW_TAG_inheritance)
13492 return DW_ACCESS_public;
13493 else
13494 return DW_ACCESS_private;
13495 }
13496 else
13497 {
13498 /* DWARF 3+ defines the default accessibility a different way. The same
13499 rules apply now for DW_TAG_inheritance as for the members and it only
13500 depends on the container kind. */
13501
13502 if (die->parent->tag == DW_TAG_class_type)
13503 return DW_ACCESS_private;
13504 else
13505 return DW_ACCESS_public;
13506 }
13507 }
13508
13509 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
13510 offset. If the attribute was not found return 0, otherwise return
13511 1. If it was found but could not properly be handled, set *OFFSET
13512 to 0. */
13513
13514 static int
13515 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
13516 LONGEST *offset)
13517 {
13518 struct attribute *attr;
13519
13520 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
13521 if (attr != NULL)
13522 {
13523 *offset = 0;
13524
13525 /* Note that we do not check for a section offset first here.
13526 This is because DW_AT_data_member_location is new in DWARF 4,
13527 so if we see it, we can assume that a constant form is really
13528 a constant and not a section offset. */
13529 if (attr_form_is_constant (attr))
13530 *offset = dwarf2_get_attr_constant_value (attr, 0);
13531 else if (attr_form_is_section_offset (attr))
13532 dwarf2_complex_location_expr_complaint ();
13533 else if (attr_form_is_block (attr))
13534 *offset = decode_locdesc (DW_BLOCK (attr), cu);
13535 else
13536 dwarf2_complex_location_expr_complaint ();
13537
13538 return 1;
13539 }
13540
13541 return 0;
13542 }
13543
13544 /* Add an aggregate field to the field list. */
13545
13546 static void
13547 dwarf2_add_field (struct field_info *fip, struct die_info *die,
13548 struct dwarf2_cu *cu)
13549 {
13550 struct objfile *objfile = cu->objfile;
13551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13552 struct nextfield *new_field;
13553 struct attribute *attr;
13554 struct field *fp;
13555 const char *fieldname = "";
13556
13557 /* Allocate a new field list entry and link it in. */
13558 new_field = XNEW (struct nextfield);
13559 make_cleanup (xfree, new_field);
13560 memset (new_field, 0, sizeof (struct nextfield));
13561
13562 if (die->tag == DW_TAG_inheritance)
13563 {
13564 new_field->next = fip->baseclasses;
13565 fip->baseclasses = new_field;
13566 }
13567 else
13568 {
13569 new_field->next = fip->fields;
13570 fip->fields = new_field;
13571 }
13572 fip->nfields++;
13573
13574 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13575 if (attr)
13576 new_field->accessibility = DW_UNSND (attr);
13577 else
13578 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
13579 if (new_field->accessibility != DW_ACCESS_public)
13580 fip->non_public_fields = 1;
13581
13582 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13583 if (attr)
13584 new_field->virtuality = DW_UNSND (attr);
13585 else
13586 new_field->virtuality = DW_VIRTUALITY_none;
13587
13588 fp = &new_field->field;
13589
13590 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13591 {
13592 LONGEST offset;
13593
13594 /* Data member other than a C++ static data member. */
13595
13596 /* Get type of field. */
13597 fp->type = die_type (die, cu);
13598
13599 SET_FIELD_BITPOS (*fp, 0);
13600
13601 /* Get bit size of field (zero if none). */
13602 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13603 if (attr)
13604 {
13605 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13606 }
13607 else
13608 {
13609 FIELD_BITSIZE (*fp) = 0;
13610 }
13611
13612 /* Get bit offset of field. */
13613 if (handle_data_member_location (die, cu, &offset))
13614 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13615 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13616 if (attr)
13617 {
13618 if (gdbarch_bits_big_endian (gdbarch))
13619 {
13620 /* For big endian bits, the DW_AT_bit_offset gives the
13621 additional bit offset from the MSB of the containing
13622 anonymous object to the MSB of the field. We don't
13623 have to do anything special since we don't need to
13624 know the size of the anonymous object. */
13625 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13626 }
13627 else
13628 {
13629 /* For little endian bits, compute the bit offset to the
13630 MSB of the anonymous object, subtract off the number of
13631 bits from the MSB of the field to the MSB of the
13632 object, and then subtract off the number of bits of
13633 the field itself. The result is the bit offset of
13634 the LSB of the field. */
13635 int anonymous_size;
13636 int bit_offset = DW_UNSND (attr);
13637
13638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13639 if (attr)
13640 {
13641 /* The size of the anonymous object containing
13642 the bit field is explicit, so use the
13643 indicated size (in bytes). */
13644 anonymous_size = DW_UNSND (attr);
13645 }
13646 else
13647 {
13648 /* The size of the anonymous object containing
13649 the bit field must be inferred from the type
13650 attribute of the data member containing the
13651 bit field. */
13652 anonymous_size = TYPE_LENGTH (fp->type);
13653 }
13654 SET_FIELD_BITPOS (*fp,
13655 (FIELD_BITPOS (*fp)
13656 + anonymous_size * bits_per_byte
13657 - bit_offset - FIELD_BITSIZE (*fp)));
13658 }
13659 }
13660 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13661 if (attr != NULL)
13662 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13663 + dwarf2_get_attr_constant_value (attr, 0)));
13664
13665 /* Get name of field. */
13666 fieldname = dwarf2_name (die, cu);
13667 if (fieldname == NULL)
13668 fieldname = "";
13669
13670 /* The name is already allocated along with this objfile, so we don't
13671 need to duplicate it for the type. */
13672 fp->name = fieldname;
13673
13674 /* Change accessibility for artificial fields (e.g. virtual table
13675 pointer or virtual base class pointer) to private. */
13676 if (dwarf2_attr (die, DW_AT_artificial, cu))
13677 {
13678 FIELD_ARTIFICIAL (*fp) = 1;
13679 new_field->accessibility = DW_ACCESS_private;
13680 fip->non_public_fields = 1;
13681 }
13682 }
13683 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13684 {
13685 /* C++ static member. */
13686
13687 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13688 is a declaration, but all versions of G++ as of this writing
13689 (so through at least 3.2.1) incorrectly generate
13690 DW_TAG_variable tags. */
13691
13692 const char *physname;
13693
13694 /* Get name of field. */
13695 fieldname = dwarf2_name (die, cu);
13696 if (fieldname == NULL)
13697 return;
13698
13699 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13700 if (attr
13701 /* Only create a symbol if this is an external value.
13702 new_symbol checks this and puts the value in the global symbol
13703 table, which we want. If it is not external, new_symbol
13704 will try to put the value in cu->list_in_scope which is wrong. */
13705 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13706 {
13707 /* A static const member, not much different than an enum as far as
13708 we're concerned, except that we can support more types. */
13709 new_symbol (die, NULL, cu);
13710 }
13711
13712 /* Get physical name. */
13713 physname = dwarf2_physname (fieldname, die, cu);
13714
13715 /* The name is already allocated along with this objfile, so we don't
13716 need to duplicate it for the type. */
13717 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13718 FIELD_TYPE (*fp) = die_type (die, cu);
13719 FIELD_NAME (*fp) = fieldname;
13720 }
13721 else if (die->tag == DW_TAG_inheritance)
13722 {
13723 LONGEST offset;
13724
13725 /* C++ base class field. */
13726 if (handle_data_member_location (die, cu, &offset))
13727 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13728 FIELD_BITSIZE (*fp) = 0;
13729 FIELD_TYPE (*fp) = die_type (die, cu);
13730 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13731 fip->nbaseclasses++;
13732 }
13733 }
13734
13735 /* Add a typedef defined in the scope of the FIP's class. */
13736
13737 static void
13738 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13739 struct dwarf2_cu *cu)
13740 {
13741 struct typedef_field_list *new_field;
13742 struct typedef_field *fp;
13743
13744 /* Allocate a new field list entry and link it in. */
13745 new_field = XCNEW (struct typedef_field_list);
13746 make_cleanup (xfree, new_field);
13747
13748 gdb_assert (die->tag == DW_TAG_typedef);
13749
13750 fp = &new_field->field;
13751
13752 /* Get name of field. */
13753 fp->name = dwarf2_name (die, cu);
13754 if (fp->name == NULL)
13755 return;
13756
13757 fp->type = read_type_die (die, cu);
13758
13759 /* Save accessibility. */
13760 enum dwarf_access_attribute accessibility;
13761 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13762 if (attr != NULL)
13763 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13764 else
13765 accessibility = dwarf2_default_access_attribute (die, cu);
13766 switch (accessibility)
13767 {
13768 case DW_ACCESS_public:
13769 /* The assumed value if neither private nor protected. */
13770 break;
13771 case DW_ACCESS_private:
13772 fp->is_private = 1;
13773 break;
13774 case DW_ACCESS_protected:
13775 fp->is_protected = 1;
13776 break;
13777 default:
13778 complaint (&symfile_complaints,
13779 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
13780 }
13781
13782 new_field->next = fip->typedef_field_list;
13783 fip->typedef_field_list = new_field;
13784 fip->typedef_field_list_count++;
13785 }
13786
13787 /* Create the vector of fields, and attach it to the type. */
13788
13789 static void
13790 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13791 struct dwarf2_cu *cu)
13792 {
13793 int nfields = fip->nfields;
13794
13795 /* Record the field count, allocate space for the array of fields,
13796 and create blank accessibility bitfields if necessary. */
13797 TYPE_NFIELDS (type) = nfields;
13798 TYPE_FIELDS (type) = (struct field *)
13799 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13800 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13801
13802 if (fip->non_public_fields && cu->language != language_ada)
13803 {
13804 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13805
13806 TYPE_FIELD_PRIVATE_BITS (type) =
13807 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13808 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13809
13810 TYPE_FIELD_PROTECTED_BITS (type) =
13811 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13812 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13813
13814 TYPE_FIELD_IGNORE_BITS (type) =
13815 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13816 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13817 }
13818
13819 /* If the type has baseclasses, allocate and clear a bit vector for
13820 TYPE_FIELD_VIRTUAL_BITS. */
13821 if (fip->nbaseclasses && cu->language != language_ada)
13822 {
13823 int num_bytes = B_BYTES (fip->nbaseclasses);
13824 unsigned char *pointer;
13825
13826 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13827 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13828 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13829 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13830 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13831 }
13832
13833 /* Copy the saved-up fields into the field vector. Start from the head of
13834 the list, adding to the tail of the field array, so that they end up in
13835 the same order in the array in which they were added to the list. */
13836 while (nfields-- > 0)
13837 {
13838 struct nextfield *fieldp;
13839
13840 if (fip->fields)
13841 {
13842 fieldp = fip->fields;
13843 fip->fields = fieldp->next;
13844 }
13845 else
13846 {
13847 fieldp = fip->baseclasses;
13848 fip->baseclasses = fieldp->next;
13849 }
13850
13851 TYPE_FIELD (type, nfields) = fieldp->field;
13852 switch (fieldp->accessibility)
13853 {
13854 case DW_ACCESS_private:
13855 if (cu->language != language_ada)
13856 SET_TYPE_FIELD_PRIVATE (type, nfields);
13857 break;
13858
13859 case DW_ACCESS_protected:
13860 if (cu->language != language_ada)
13861 SET_TYPE_FIELD_PROTECTED (type, nfields);
13862 break;
13863
13864 case DW_ACCESS_public:
13865 break;
13866
13867 default:
13868 /* Unknown accessibility. Complain and treat it as public. */
13869 {
13870 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13871 fieldp->accessibility);
13872 }
13873 break;
13874 }
13875 if (nfields < fip->nbaseclasses)
13876 {
13877 switch (fieldp->virtuality)
13878 {
13879 case DW_VIRTUALITY_virtual:
13880 case DW_VIRTUALITY_pure_virtual:
13881 if (cu->language == language_ada)
13882 error (_("unexpected virtuality in component of Ada type"));
13883 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13884 break;
13885 }
13886 }
13887 }
13888 }
13889
13890 /* Return true if this member function is a constructor, false
13891 otherwise. */
13892
13893 static int
13894 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13895 {
13896 const char *fieldname;
13897 const char *type_name;
13898 int len;
13899
13900 if (die->parent == NULL)
13901 return 0;
13902
13903 if (die->parent->tag != DW_TAG_structure_type
13904 && die->parent->tag != DW_TAG_union_type
13905 && die->parent->tag != DW_TAG_class_type)
13906 return 0;
13907
13908 fieldname = dwarf2_name (die, cu);
13909 type_name = dwarf2_name (die->parent, cu);
13910 if (fieldname == NULL || type_name == NULL)
13911 return 0;
13912
13913 len = strlen (fieldname);
13914 return (strncmp (fieldname, type_name, len) == 0
13915 && (type_name[len] == '\0' || type_name[len] == '<'));
13916 }
13917
13918 /* Add a member function to the proper fieldlist. */
13919
13920 static void
13921 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13922 struct type *type, struct dwarf2_cu *cu)
13923 {
13924 struct objfile *objfile = cu->objfile;
13925 struct attribute *attr;
13926 struct fnfieldlist *flp;
13927 int i;
13928 struct fn_field *fnp;
13929 const char *fieldname;
13930 struct nextfnfield *new_fnfield;
13931 struct type *this_type;
13932 enum dwarf_access_attribute accessibility;
13933
13934 if (cu->language == language_ada)
13935 error (_("unexpected member function in Ada type"));
13936
13937 /* Get name of member function. */
13938 fieldname = dwarf2_name (die, cu);
13939 if (fieldname == NULL)
13940 return;
13941
13942 /* Look up member function name in fieldlist. */
13943 for (i = 0; i < fip->nfnfields; i++)
13944 {
13945 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13946 break;
13947 }
13948
13949 /* Create new list element if necessary. */
13950 if (i < fip->nfnfields)
13951 flp = &fip->fnfieldlists[i];
13952 else
13953 {
13954 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13955 {
13956 fip->fnfieldlists = (struct fnfieldlist *)
13957 xrealloc (fip->fnfieldlists,
13958 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13959 * sizeof (struct fnfieldlist));
13960 if (fip->nfnfields == 0)
13961 make_cleanup (free_current_contents, &fip->fnfieldlists);
13962 }
13963 flp = &fip->fnfieldlists[fip->nfnfields];
13964 flp->name = fieldname;
13965 flp->length = 0;
13966 flp->head = NULL;
13967 i = fip->nfnfields++;
13968 }
13969
13970 /* Create a new member function field and chain it to the field list
13971 entry. */
13972 new_fnfield = XNEW (struct nextfnfield);
13973 make_cleanup (xfree, new_fnfield);
13974 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13975 new_fnfield->next = flp->head;
13976 flp->head = new_fnfield;
13977 flp->length++;
13978
13979 /* Fill in the member function field info. */
13980 fnp = &new_fnfield->fnfield;
13981
13982 /* Delay processing of the physname until later. */
13983 if (cu->language == language_cplus)
13984 {
13985 add_to_method_list (type, i, flp->length - 1, fieldname,
13986 die, cu);
13987 }
13988 else
13989 {
13990 const char *physname = dwarf2_physname (fieldname, die, cu);
13991 fnp->physname = physname ? physname : "";
13992 }
13993
13994 fnp->type = alloc_type (objfile);
13995 this_type = read_type_die (die, cu);
13996 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13997 {
13998 int nparams = TYPE_NFIELDS (this_type);
13999
14000 /* TYPE is the domain of this method, and THIS_TYPE is the type
14001 of the method itself (TYPE_CODE_METHOD). */
14002 smash_to_method_type (fnp->type, type,
14003 TYPE_TARGET_TYPE (this_type),
14004 TYPE_FIELDS (this_type),
14005 TYPE_NFIELDS (this_type),
14006 TYPE_VARARGS (this_type));
14007
14008 /* Handle static member functions.
14009 Dwarf2 has no clean way to discern C++ static and non-static
14010 member functions. G++ helps GDB by marking the first
14011 parameter for non-static member functions (which is the this
14012 pointer) as artificial. We obtain this information from
14013 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14014 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14015 fnp->voffset = VOFFSET_STATIC;
14016 }
14017 else
14018 complaint (&symfile_complaints, _("member function type missing for '%s'"),
14019 dwarf2_full_name (fieldname, die, cu));
14020
14021 /* Get fcontext from DW_AT_containing_type if present. */
14022 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14023 fnp->fcontext = die_containing_type (die, cu);
14024
14025 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14026 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14027
14028 /* Get accessibility. */
14029 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14030 if (attr)
14031 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14032 else
14033 accessibility = dwarf2_default_access_attribute (die, cu);
14034 switch (accessibility)
14035 {
14036 case DW_ACCESS_private:
14037 fnp->is_private = 1;
14038 break;
14039 case DW_ACCESS_protected:
14040 fnp->is_protected = 1;
14041 break;
14042 }
14043
14044 /* Check for artificial methods. */
14045 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14046 if (attr && DW_UNSND (attr) != 0)
14047 fnp->is_artificial = 1;
14048
14049 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14050
14051 /* Get index in virtual function table if it is a virtual member
14052 function. For older versions of GCC, this is an offset in the
14053 appropriate virtual table, as specified by DW_AT_containing_type.
14054 For everyone else, it is an expression to be evaluated relative
14055 to the object address. */
14056
14057 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14058 if (attr)
14059 {
14060 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
14061 {
14062 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14063 {
14064 /* Old-style GCC. */
14065 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14066 }
14067 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14068 || (DW_BLOCK (attr)->size > 1
14069 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14070 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14071 {
14072 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14073 if ((fnp->voffset % cu->header.addr_size) != 0)
14074 dwarf2_complex_location_expr_complaint ();
14075 else
14076 fnp->voffset /= cu->header.addr_size;
14077 fnp->voffset += 2;
14078 }
14079 else
14080 dwarf2_complex_location_expr_complaint ();
14081
14082 if (!fnp->fcontext)
14083 {
14084 /* If there is no `this' field and no DW_AT_containing_type,
14085 we cannot actually find a base class context for the
14086 vtable! */
14087 if (TYPE_NFIELDS (this_type) == 0
14088 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14089 {
14090 complaint (&symfile_complaints,
14091 _("cannot determine context for virtual member "
14092 "function \"%s\" (offset %d)"),
14093 fieldname, to_underlying (die->sect_off));
14094 }
14095 else
14096 {
14097 fnp->fcontext
14098 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14099 }
14100 }
14101 }
14102 else if (attr_form_is_section_offset (attr))
14103 {
14104 dwarf2_complex_location_expr_complaint ();
14105 }
14106 else
14107 {
14108 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14109 fieldname);
14110 }
14111 }
14112 else
14113 {
14114 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14115 if (attr && DW_UNSND (attr))
14116 {
14117 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14118 complaint (&symfile_complaints,
14119 _("Member function \"%s\" (offset %d) is virtual "
14120 "but the vtable offset is not specified"),
14121 fieldname, to_underlying (die->sect_off));
14122 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14123 TYPE_CPLUS_DYNAMIC (type) = 1;
14124 }
14125 }
14126 }
14127
14128 /* Create the vector of member function fields, and attach it to the type. */
14129
14130 static void
14131 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14132 struct dwarf2_cu *cu)
14133 {
14134 struct fnfieldlist *flp;
14135 int i;
14136
14137 if (cu->language == language_ada)
14138 error (_("unexpected member functions in Ada type"));
14139
14140 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14141 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14142 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
14143
14144 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
14145 {
14146 struct nextfnfield *nfp = flp->head;
14147 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14148 int k;
14149
14150 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
14151 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
14152 fn_flp->fn_fields = (struct fn_field *)
14153 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
14154 for (k = flp->length; (k--, nfp); nfp = nfp->next)
14155 fn_flp->fn_fields[k] = nfp->fnfield;
14156 }
14157
14158 TYPE_NFN_FIELDS (type) = fip->nfnfields;
14159 }
14160
14161 /* Returns non-zero if NAME is the name of a vtable member in CU's
14162 language, zero otherwise. */
14163 static int
14164 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14165 {
14166 static const char vptr[] = "_vptr";
14167 static const char vtable[] = "vtable";
14168
14169 /* Look for the C++ form of the vtable. */
14170 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14171 return 1;
14172
14173 return 0;
14174 }
14175
14176 /* GCC outputs unnamed structures that are really pointers to member
14177 functions, with the ABI-specified layout. If TYPE describes
14178 such a structure, smash it into a member function type.
14179
14180 GCC shouldn't do this; it should just output pointer to member DIEs.
14181 This is GCC PR debug/28767. */
14182
14183 static void
14184 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14185 {
14186 struct type *pfn_type, *self_type, *new_type;
14187
14188 /* Check for a structure with no name and two children. */
14189 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14190 return;
14191
14192 /* Check for __pfn and __delta members. */
14193 if (TYPE_FIELD_NAME (type, 0) == NULL
14194 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14195 || TYPE_FIELD_NAME (type, 1) == NULL
14196 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14197 return;
14198
14199 /* Find the type of the method. */
14200 pfn_type = TYPE_FIELD_TYPE (type, 0);
14201 if (pfn_type == NULL
14202 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14203 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14204 return;
14205
14206 /* Look for the "this" argument. */
14207 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14208 if (TYPE_NFIELDS (pfn_type) == 0
14209 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14210 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14211 return;
14212
14213 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14214 new_type = alloc_type (objfile);
14215 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14216 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14217 TYPE_VARARGS (pfn_type));
14218 smash_to_methodptr_type (type, new_type);
14219 }
14220
14221
14222 /* Called when we find the DIE that starts a structure or union scope
14223 (definition) to create a type for the structure or union. Fill in
14224 the type's name and general properties; the members will not be
14225 processed until process_structure_scope. A symbol table entry for
14226 the type will also not be done until process_structure_scope (assuming
14227 the type has a name).
14228
14229 NOTE: we need to call these functions regardless of whether or not the
14230 DIE has a DW_AT_name attribute, since it might be an anonymous
14231 structure or union. This gets the type entered into our set of
14232 user defined types. */
14233
14234 static struct type *
14235 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
14236 {
14237 struct objfile *objfile = cu->objfile;
14238 struct type *type;
14239 struct attribute *attr;
14240 const char *name;
14241
14242 /* If the definition of this type lives in .debug_types, read that type.
14243 Don't follow DW_AT_specification though, that will take us back up
14244 the chain and we want to go down. */
14245 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14246 if (attr)
14247 {
14248 type = get_DW_AT_signature_type (die, attr, cu);
14249
14250 /* The type's CU may not be the same as CU.
14251 Ensure TYPE is recorded with CU in die_type_hash. */
14252 return set_die_type (die, type, cu);
14253 }
14254
14255 type = alloc_type (objfile);
14256 INIT_CPLUS_SPECIFIC (type);
14257
14258 name = dwarf2_name (die, cu);
14259 if (name != NULL)
14260 {
14261 if (cu->language == language_cplus
14262 || cu->language == language_d
14263 || cu->language == language_rust)
14264 {
14265 const char *full_name = dwarf2_full_name (name, die, cu);
14266
14267 /* dwarf2_full_name might have already finished building the DIE's
14268 type. If so, there is no need to continue. */
14269 if (get_die_type (die, cu) != NULL)
14270 return get_die_type (die, cu);
14271
14272 TYPE_TAG_NAME (type) = full_name;
14273 if (die->tag == DW_TAG_structure_type
14274 || die->tag == DW_TAG_class_type)
14275 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14276 }
14277 else
14278 {
14279 /* The name is already allocated along with this objfile, so
14280 we don't need to duplicate it for the type. */
14281 TYPE_TAG_NAME (type) = name;
14282 if (die->tag == DW_TAG_class_type)
14283 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14284 }
14285 }
14286
14287 if (die->tag == DW_TAG_structure_type)
14288 {
14289 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14290 }
14291 else if (die->tag == DW_TAG_union_type)
14292 {
14293 TYPE_CODE (type) = TYPE_CODE_UNION;
14294 }
14295 else
14296 {
14297 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14298 }
14299
14300 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
14301 TYPE_DECLARED_CLASS (type) = 1;
14302
14303 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14304 if (attr)
14305 {
14306 if (attr_form_is_constant (attr))
14307 TYPE_LENGTH (type) = DW_UNSND (attr);
14308 else
14309 {
14310 /* For the moment, dynamic type sizes are not supported
14311 by GDB's struct type. The actual size is determined
14312 on-demand when resolving the type of a given object,
14313 so set the type's length to zero for now. Otherwise,
14314 we record an expression as the length, and that expression
14315 could lead to a very large value, which could eventually
14316 lead to us trying to allocate that much memory when creating
14317 a value of that type. */
14318 TYPE_LENGTH (type) = 0;
14319 }
14320 }
14321 else
14322 {
14323 TYPE_LENGTH (type) = 0;
14324 }
14325
14326 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
14327 {
14328 /* ICC<14 does not output the required DW_AT_declaration on
14329 incomplete types, but gives them a size of zero. */
14330 TYPE_STUB (type) = 1;
14331 }
14332 else
14333 TYPE_STUB_SUPPORTED (type) = 1;
14334
14335 if (die_is_declaration (die, cu))
14336 TYPE_STUB (type) = 1;
14337 else if (attr == NULL && die->child == NULL
14338 && producer_is_realview (cu->producer))
14339 /* RealView does not output the required DW_AT_declaration
14340 on incomplete types. */
14341 TYPE_STUB (type) = 1;
14342
14343 /* We need to add the type field to the die immediately so we don't
14344 infinitely recurse when dealing with pointers to the structure
14345 type within the structure itself. */
14346 set_die_type (die, type, cu);
14347
14348 /* set_die_type should be already done. */
14349 set_descriptive_type (type, die, cu);
14350
14351 return type;
14352 }
14353
14354 /* Finish creating a structure or union type, including filling in
14355 its members and creating a symbol for it. */
14356
14357 static void
14358 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
14359 {
14360 struct objfile *objfile = cu->objfile;
14361 struct die_info *child_die;
14362 struct type *type;
14363
14364 type = get_die_type (die, cu);
14365 if (type == NULL)
14366 type = read_structure_type (die, cu);
14367
14368 if (die->child != NULL && ! die_is_declaration (die, cu))
14369 {
14370 struct field_info fi;
14371 std::vector<struct symbol *> template_args;
14372 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
14373
14374 memset (&fi, 0, sizeof (struct field_info));
14375
14376 child_die = die->child;
14377
14378 while (child_die && child_die->tag)
14379 {
14380 if (child_die->tag == DW_TAG_member
14381 || child_die->tag == DW_TAG_variable)
14382 {
14383 /* NOTE: carlton/2002-11-05: A C++ static data member
14384 should be a DW_TAG_member that is a declaration, but
14385 all versions of G++ as of this writing (so through at
14386 least 3.2.1) incorrectly generate DW_TAG_variable
14387 tags for them instead. */
14388 dwarf2_add_field (&fi, child_die, cu);
14389 }
14390 else if (child_die->tag == DW_TAG_subprogram)
14391 {
14392 /* Rust doesn't have member functions in the C++ sense.
14393 However, it does emit ordinary functions as children
14394 of a struct DIE. */
14395 if (cu->language == language_rust)
14396 read_func_scope (child_die, cu);
14397 else
14398 {
14399 /* C++ member function. */
14400 dwarf2_add_member_fn (&fi, child_die, type, cu);
14401 }
14402 }
14403 else if (child_die->tag == DW_TAG_inheritance)
14404 {
14405 /* C++ base class field. */
14406 dwarf2_add_field (&fi, child_die, cu);
14407 }
14408 else if (child_die->tag == DW_TAG_typedef)
14409 dwarf2_add_typedef (&fi, child_die, cu);
14410 else if (child_die->tag == DW_TAG_template_type_param
14411 || child_die->tag == DW_TAG_template_value_param)
14412 {
14413 struct symbol *arg = new_symbol (child_die, NULL, cu);
14414
14415 if (arg != NULL)
14416 template_args.push_back (arg);
14417 }
14418
14419 child_die = sibling_die (child_die);
14420 }
14421
14422 /* Attach template arguments to type. */
14423 if (!template_args.empty ())
14424 {
14425 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14426 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
14427 TYPE_TEMPLATE_ARGUMENTS (type)
14428 = XOBNEWVEC (&objfile->objfile_obstack,
14429 struct symbol *,
14430 TYPE_N_TEMPLATE_ARGUMENTS (type));
14431 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
14432 template_args.data (),
14433 (TYPE_N_TEMPLATE_ARGUMENTS (type)
14434 * sizeof (struct symbol *)));
14435 }
14436
14437 /* Attach fields and member functions to the type. */
14438 if (fi.nfields)
14439 dwarf2_attach_fields_to_type (&fi, type, cu);
14440 if (fi.nfnfields)
14441 {
14442 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
14443
14444 /* Get the type which refers to the base class (possibly this
14445 class itself) which contains the vtable pointer for the current
14446 class from the DW_AT_containing_type attribute. This use of
14447 DW_AT_containing_type is a GNU extension. */
14448
14449 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14450 {
14451 struct type *t = die_containing_type (die, cu);
14452
14453 set_type_vptr_basetype (type, t);
14454 if (type == t)
14455 {
14456 int i;
14457
14458 /* Our own class provides vtbl ptr. */
14459 for (i = TYPE_NFIELDS (t) - 1;
14460 i >= TYPE_N_BASECLASSES (t);
14461 --i)
14462 {
14463 const char *fieldname = TYPE_FIELD_NAME (t, i);
14464
14465 if (is_vtable_name (fieldname, cu))
14466 {
14467 set_type_vptr_fieldno (type, i);
14468 break;
14469 }
14470 }
14471
14472 /* Complain if virtual function table field not found. */
14473 if (i < TYPE_N_BASECLASSES (t))
14474 complaint (&symfile_complaints,
14475 _("virtual function table pointer "
14476 "not found when defining class '%s'"),
14477 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
14478 "");
14479 }
14480 else
14481 {
14482 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
14483 }
14484 }
14485 else if (cu->producer
14486 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
14487 {
14488 /* The IBM XLC compiler does not provide direct indication
14489 of the containing type, but the vtable pointer is
14490 always named __vfp. */
14491
14492 int i;
14493
14494 for (i = TYPE_NFIELDS (type) - 1;
14495 i >= TYPE_N_BASECLASSES (type);
14496 --i)
14497 {
14498 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
14499 {
14500 set_type_vptr_fieldno (type, i);
14501 set_type_vptr_basetype (type, type);
14502 break;
14503 }
14504 }
14505 }
14506 }
14507
14508 /* Copy fi.typedef_field_list linked list elements content into the
14509 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
14510 if (fi.typedef_field_list)
14511 {
14512 int i = fi.typedef_field_list_count;
14513
14514 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14515 TYPE_TYPEDEF_FIELD_ARRAY (type)
14516 = ((struct typedef_field *)
14517 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
14518 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
14519
14520 /* Reverse the list order to keep the debug info elements order. */
14521 while (--i >= 0)
14522 {
14523 struct typedef_field *dest, *src;
14524
14525 dest = &TYPE_TYPEDEF_FIELD (type, i);
14526 src = &fi.typedef_field_list->field;
14527 fi.typedef_field_list = fi.typedef_field_list->next;
14528 *dest = *src;
14529 }
14530 }
14531
14532 do_cleanups (back_to);
14533 }
14534
14535 quirk_gcc_member_function_pointer (type, objfile);
14536
14537 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
14538 snapshots) has been known to create a die giving a declaration
14539 for a class that has, as a child, a die giving a definition for a
14540 nested class. So we have to process our children even if the
14541 current die is a declaration. Normally, of course, a declaration
14542 won't have any children at all. */
14543
14544 child_die = die->child;
14545
14546 while (child_die != NULL && child_die->tag)
14547 {
14548 if (child_die->tag == DW_TAG_member
14549 || child_die->tag == DW_TAG_variable
14550 || child_die->tag == DW_TAG_inheritance
14551 || child_die->tag == DW_TAG_template_value_param
14552 || child_die->tag == DW_TAG_template_type_param)
14553 {
14554 /* Do nothing. */
14555 }
14556 else
14557 process_die (child_die, cu);
14558
14559 child_die = sibling_die (child_die);
14560 }
14561
14562 /* Do not consider external references. According to the DWARF standard,
14563 these DIEs are identified by the fact that they have no byte_size
14564 attribute, and a declaration attribute. */
14565 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
14566 || !die_is_declaration (die, cu))
14567 new_symbol (die, type, cu);
14568 }
14569
14570 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
14571 update TYPE using some information only available in DIE's children. */
14572
14573 static void
14574 update_enumeration_type_from_children (struct die_info *die,
14575 struct type *type,
14576 struct dwarf2_cu *cu)
14577 {
14578 struct die_info *child_die;
14579 int unsigned_enum = 1;
14580 int flag_enum = 1;
14581 ULONGEST mask = 0;
14582
14583 auto_obstack obstack;
14584
14585 for (child_die = die->child;
14586 child_die != NULL && child_die->tag;
14587 child_die = sibling_die (child_die))
14588 {
14589 struct attribute *attr;
14590 LONGEST value;
14591 const gdb_byte *bytes;
14592 struct dwarf2_locexpr_baton *baton;
14593 const char *name;
14594
14595 if (child_die->tag != DW_TAG_enumerator)
14596 continue;
14597
14598 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
14599 if (attr == NULL)
14600 continue;
14601
14602 name = dwarf2_name (child_die, cu);
14603 if (name == NULL)
14604 name = "<anonymous enumerator>";
14605
14606 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14607 &value, &bytes, &baton);
14608 if (value < 0)
14609 {
14610 unsigned_enum = 0;
14611 flag_enum = 0;
14612 }
14613 else if ((mask & value) != 0)
14614 flag_enum = 0;
14615 else
14616 mask |= value;
14617
14618 /* If we already know that the enum type is neither unsigned, nor
14619 a flag type, no need to look at the rest of the enumerates. */
14620 if (!unsigned_enum && !flag_enum)
14621 break;
14622 }
14623
14624 if (unsigned_enum)
14625 TYPE_UNSIGNED (type) = 1;
14626 if (flag_enum)
14627 TYPE_FLAG_ENUM (type) = 1;
14628 }
14629
14630 /* Given a DW_AT_enumeration_type die, set its type. We do not
14631 complete the type's fields yet, or create any symbols. */
14632
14633 static struct type *
14634 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14635 {
14636 struct objfile *objfile = cu->objfile;
14637 struct type *type;
14638 struct attribute *attr;
14639 const char *name;
14640
14641 /* If the definition of this type lives in .debug_types, read that type.
14642 Don't follow DW_AT_specification though, that will take us back up
14643 the chain and we want to go down. */
14644 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14645 if (attr)
14646 {
14647 type = get_DW_AT_signature_type (die, attr, cu);
14648
14649 /* The type's CU may not be the same as CU.
14650 Ensure TYPE is recorded with CU in die_type_hash. */
14651 return set_die_type (die, type, cu);
14652 }
14653
14654 type = alloc_type (objfile);
14655
14656 TYPE_CODE (type) = TYPE_CODE_ENUM;
14657 name = dwarf2_full_name (NULL, die, cu);
14658 if (name != NULL)
14659 TYPE_TAG_NAME (type) = name;
14660
14661 attr = dwarf2_attr (die, DW_AT_type, cu);
14662 if (attr != NULL)
14663 {
14664 struct type *underlying_type = die_type (die, cu);
14665
14666 TYPE_TARGET_TYPE (type) = underlying_type;
14667 }
14668
14669 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14670 if (attr)
14671 {
14672 TYPE_LENGTH (type) = DW_UNSND (attr);
14673 }
14674 else
14675 {
14676 TYPE_LENGTH (type) = 0;
14677 }
14678
14679 /* The enumeration DIE can be incomplete. In Ada, any type can be
14680 declared as private in the package spec, and then defined only
14681 inside the package body. Such types are known as Taft Amendment
14682 Types. When another package uses such a type, an incomplete DIE
14683 may be generated by the compiler. */
14684 if (die_is_declaration (die, cu))
14685 TYPE_STUB (type) = 1;
14686
14687 /* Finish the creation of this type by using the enum's children.
14688 We must call this even when the underlying type has been provided
14689 so that we can determine if we're looking at a "flag" enum. */
14690 update_enumeration_type_from_children (die, type, cu);
14691
14692 /* If this type has an underlying type that is not a stub, then we
14693 may use its attributes. We always use the "unsigned" attribute
14694 in this situation, because ordinarily we guess whether the type
14695 is unsigned -- but the guess can be wrong and the underlying type
14696 can tell us the reality. However, we defer to a local size
14697 attribute if one exists, because this lets the compiler override
14698 the underlying type if needed. */
14699 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14700 {
14701 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14702 if (TYPE_LENGTH (type) == 0)
14703 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14704 }
14705
14706 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14707
14708 return set_die_type (die, type, cu);
14709 }
14710
14711 /* Given a pointer to a die which begins an enumeration, process all
14712 the dies that define the members of the enumeration, and create the
14713 symbol for the enumeration type.
14714
14715 NOTE: We reverse the order of the element list. */
14716
14717 static void
14718 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14719 {
14720 struct type *this_type;
14721
14722 this_type = get_die_type (die, cu);
14723 if (this_type == NULL)
14724 this_type = read_enumeration_type (die, cu);
14725
14726 if (die->child != NULL)
14727 {
14728 struct die_info *child_die;
14729 struct symbol *sym;
14730 struct field *fields = NULL;
14731 int num_fields = 0;
14732 const char *name;
14733
14734 child_die = die->child;
14735 while (child_die && child_die->tag)
14736 {
14737 if (child_die->tag != DW_TAG_enumerator)
14738 {
14739 process_die (child_die, cu);
14740 }
14741 else
14742 {
14743 name = dwarf2_name (child_die, cu);
14744 if (name)
14745 {
14746 sym = new_symbol (child_die, this_type, cu);
14747
14748 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14749 {
14750 fields = (struct field *)
14751 xrealloc (fields,
14752 (num_fields + DW_FIELD_ALLOC_CHUNK)
14753 * sizeof (struct field));
14754 }
14755
14756 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14757 FIELD_TYPE (fields[num_fields]) = NULL;
14758 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14759 FIELD_BITSIZE (fields[num_fields]) = 0;
14760
14761 num_fields++;
14762 }
14763 }
14764
14765 child_die = sibling_die (child_die);
14766 }
14767
14768 if (num_fields)
14769 {
14770 TYPE_NFIELDS (this_type) = num_fields;
14771 TYPE_FIELDS (this_type) = (struct field *)
14772 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14773 memcpy (TYPE_FIELDS (this_type), fields,
14774 sizeof (struct field) * num_fields);
14775 xfree (fields);
14776 }
14777 }
14778
14779 /* If we are reading an enum from a .debug_types unit, and the enum
14780 is a declaration, and the enum is not the signatured type in the
14781 unit, then we do not want to add a symbol for it. Adding a
14782 symbol would in some cases obscure the true definition of the
14783 enum, giving users an incomplete type when the definition is
14784 actually available. Note that we do not want to do this for all
14785 enums which are just declarations, because C++0x allows forward
14786 enum declarations. */
14787 if (cu->per_cu->is_debug_types
14788 && die_is_declaration (die, cu))
14789 {
14790 struct signatured_type *sig_type;
14791
14792 sig_type = (struct signatured_type *) cu->per_cu;
14793 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14794 if (sig_type->type_offset_in_section != die->sect_off)
14795 return;
14796 }
14797
14798 new_symbol (die, this_type, cu);
14799 }
14800
14801 /* Extract all information from a DW_TAG_array_type DIE and put it in
14802 the DIE's type field. For now, this only handles one dimensional
14803 arrays. */
14804
14805 static struct type *
14806 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14807 {
14808 struct objfile *objfile = cu->objfile;
14809 struct die_info *child_die;
14810 struct type *type;
14811 struct type *element_type, *range_type, *index_type;
14812 struct attribute *attr;
14813 const char *name;
14814 unsigned int bit_stride = 0;
14815
14816 element_type = die_type (die, cu);
14817
14818 /* The die_type call above may have already set the type for this DIE. */
14819 type = get_die_type (die, cu);
14820 if (type)
14821 return type;
14822
14823 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14824 if (attr != NULL)
14825 bit_stride = DW_UNSND (attr) * 8;
14826
14827 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14828 if (attr != NULL)
14829 bit_stride = DW_UNSND (attr);
14830
14831 /* Irix 6.2 native cc creates array types without children for
14832 arrays with unspecified length. */
14833 if (die->child == NULL)
14834 {
14835 index_type = objfile_type (objfile)->builtin_int;
14836 range_type = create_static_range_type (NULL, index_type, 0, -1);
14837 type = create_array_type_with_stride (NULL, element_type, range_type,
14838 bit_stride);
14839 return set_die_type (die, type, cu);
14840 }
14841
14842 std::vector<struct type *> range_types;
14843 child_die = die->child;
14844 while (child_die && child_die->tag)
14845 {
14846 if (child_die->tag == DW_TAG_subrange_type)
14847 {
14848 struct type *child_type = read_type_die (child_die, cu);
14849
14850 if (child_type != NULL)
14851 {
14852 /* The range type was succesfully read. Save it for the
14853 array type creation. */
14854 range_types.push_back (child_type);
14855 }
14856 }
14857 child_die = sibling_die (child_die);
14858 }
14859
14860 /* Dwarf2 dimensions are output from left to right, create the
14861 necessary array types in backwards order. */
14862
14863 type = element_type;
14864
14865 if (read_array_order (die, cu) == DW_ORD_col_major)
14866 {
14867 int i = 0;
14868
14869 while (i < range_types.size ())
14870 type = create_array_type_with_stride (NULL, type, range_types[i++],
14871 bit_stride);
14872 }
14873 else
14874 {
14875 size_t ndim = range_types.size ();
14876 while (ndim-- > 0)
14877 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14878 bit_stride);
14879 }
14880
14881 /* Understand Dwarf2 support for vector types (like they occur on
14882 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14883 array type. This is not part of the Dwarf2/3 standard yet, but a
14884 custom vendor extension. The main difference between a regular
14885 array and the vector variant is that vectors are passed by value
14886 to functions. */
14887 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14888 if (attr)
14889 make_vector_type (type);
14890
14891 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14892 implementation may choose to implement triple vectors using this
14893 attribute. */
14894 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14895 if (attr)
14896 {
14897 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14898 TYPE_LENGTH (type) = DW_UNSND (attr);
14899 else
14900 complaint (&symfile_complaints,
14901 _("DW_AT_byte_size for array type smaller "
14902 "than the total size of elements"));
14903 }
14904
14905 name = dwarf2_name (die, cu);
14906 if (name)
14907 TYPE_NAME (type) = name;
14908
14909 /* Install the type in the die. */
14910 set_die_type (die, type, cu);
14911
14912 /* set_die_type should be already done. */
14913 set_descriptive_type (type, die, cu);
14914
14915 return type;
14916 }
14917
14918 static enum dwarf_array_dim_ordering
14919 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14920 {
14921 struct attribute *attr;
14922
14923 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14924
14925 if (attr)
14926 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14927
14928 /* GNU F77 is a special case, as at 08/2004 array type info is the
14929 opposite order to the dwarf2 specification, but data is still
14930 laid out as per normal fortran.
14931
14932 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14933 version checking. */
14934
14935 if (cu->language == language_fortran
14936 && cu->producer && strstr (cu->producer, "GNU F77"))
14937 {
14938 return DW_ORD_row_major;
14939 }
14940
14941 switch (cu->language_defn->la_array_ordering)
14942 {
14943 case array_column_major:
14944 return DW_ORD_col_major;
14945 case array_row_major:
14946 default:
14947 return DW_ORD_row_major;
14948 };
14949 }
14950
14951 /* Extract all information from a DW_TAG_set_type DIE and put it in
14952 the DIE's type field. */
14953
14954 static struct type *
14955 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14956 {
14957 struct type *domain_type, *set_type;
14958 struct attribute *attr;
14959
14960 domain_type = die_type (die, cu);
14961
14962 /* The die_type call above may have already set the type for this DIE. */
14963 set_type = get_die_type (die, cu);
14964 if (set_type)
14965 return set_type;
14966
14967 set_type = create_set_type (NULL, domain_type);
14968
14969 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14970 if (attr)
14971 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14972
14973 return set_die_type (die, set_type, cu);
14974 }
14975
14976 /* A helper for read_common_block that creates a locexpr baton.
14977 SYM is the symbol which we are marking as computed.
14978 COMMON_DIE is the DIE for the common block.
14979 COMMON_LOC is the location expression attribute for the common
14980 block itself.
14981 MEMBER_LOC is the location expression attribute for the particular
14982 member of the common block that we are processing.
14983 CU is the CU from which the above come. */
14984
14985 static void
14986 mark_common_block_symbol_computed (struct symbol *sym,
14987 struct die_info *common_die,
14988 struct attribute *common_loc,
14989 struct attribute *member_loc,
14990 struct dwarf2_cu *cu)
14991 {
14992 struct objfile *objfile = dwarf2_per_objfile->objfile;
14993 struct dwarf2_locexpr_baton *baton;
14994 gdb_byte *ptr;
14995 unsigned int cu_off;
14996 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14997 LONGEST offset = 0;
14998
14999 gdb_assert (common_loc && member_loc);
15000 gdb_assert (attr_form_is_block (common_loc));
15001 gdb_assert (attr_form_is_block (member_loc)
15002 || attr_form_is_constant (member_loc));
15003
15004 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15005 baton->per_cu = cu->per_cu;
15006 gdb_assert (baton->per_cu);
15007
15008 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15009
15010 if (attr_form_is_constant (member_loc))
15011 {
15012 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15013 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15014 }
15015 else
15016 baton->size += DW_BLOCK (member_loc)->size;
15017
15018 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15019 baton->data = ptr;
15020
15021 *ptr++ = DW_OP_call4;
15022 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15023 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15024 ptr += 4;
15025
15026 if (attr_form_is_constant (member_loc))
15027 {
15028 *ptr++ = DW_OP_addr;
15029 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15030 ptr += cu->header.addr_size;
15031 }
15032 else
15033 {
15034 /* We have to copy the data here, because DW_OP_call4 will only
15035 use a DW_AT_location attribute. */
15036 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15037 ptr += DW_BLOCK (member_loc)->size;
15038 }
15039
15040 *ptr++ = DW_OP_plus;
15041 gdb_assert (ptr - baton->data == baton->size);
15042
15043 SYMBOL_LOCATION_BATON (sym) = baton;
15044 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
15045 }
15046
15047 /* Create appropriate locally-scoped variables for all the
15048 DW_TAG_common_block entries. Also create a struct common_block
15049 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
15050 is used to sepate the common blocks name namespace from regular
15051 variable names. */
15052
15053 static void
15054 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
15055 {
15056 struct attribute *attr;
15057
15058 attr = dwarf2_attr (die, DW_AT_location, cu);
15059 if (attr)
15060 {
15061 /* Support the .debug_loc offsets. */
15062 if (attr_form_is_block (attr))
15063 {
15064 /* Ok. */
15065 }
15066 else if (attr_form_is_section_offset (attr))
15067 {
15068 dwarf2_complex_location_expr_complaint ();
15069 attr = NULL;
15070 }
15071 else
15072 {
15073 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15074 "common block member");
15075 attr = NULL;
15076 }
15077 }
15078
15079 if (die->child != NULL)
15080 {
15081 struct objfile *objfile = cu->objfile;
15082 struct die_info *child_die;
15083 size_t n_entries = 0, size;
15084 struct common_block *common_block;
15085 struct symbol *sym;
15086
15087 for (child_die = die->child;
15088 child_die && child_die->tag;
15089 child_die = sibling_die (child_die))
15090 ++n_entries;
15091
15092 size = (sizeof (struct common_block)
15093 + (n_entries - 1) * sizeof (struct symbol *));
15094 common_block
15095 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
15096 size);
15097 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
15098 common_block->n_entries = 0;
15099
15100 for (child_die = die->child;
15101 child_die && child_die->tag;
15102 child_die = sibling_die (child_die))
15103 {
15104 /* Create the symbol in the DW_TAG_common_block block in the current
15105 symbol scope. */
15106 sym = new_symbol (child_die, NULL, cu);
15107 if (sym != NULL)
15108 {
15109 struct attribute *member_loc;
15110
15111 common_block->contents[common_block->n_entries++] = sym;
15112
15113 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
15114 cu);
15115 if (member_loc)
15116 {
15117 /* GDB has handled this for a long time, but it is
15118 not specified by DWARF. It seems to have been
15119 emitted by gfortran at least as recently as:
15120 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
15121 complaint (&symfile_complaints,
15122 _("Variable in common block has "
15123 "DW_AT_data_member_location "
15124 "- DIE at 0x%x [in module %s]"),
15125 to_underlying (child_die->sect_off),
15126 objfile_name (cu->objfile));
15127
15128 if (attr_form_is_section_offset (member_loc))
15129 dwarf2_complex_location_expr_complaint ();
15130 else if (attr_form_is_constant (member_loc)
15131 || attr_form_is_block (member_loc))
15132 {
15133 if (attr)
15134 mark_common_block_symbol_computed (sym, die, attr,
15135 member_loc, cu);
15136 }
15137 else
15138 dwarf2_complex_location_expr_complaint ();
15139 }
15140 }
15141 }
15142
15143 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
15144 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
15145 }
15146 }
15147
15148 /* Create a type for a C++ namespace. */
15149
15150 static struct type *
15151 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
15152 {
15153 struct objfile *objfile = cu->objfile;
15154 const char *previous_prefix, *name;
15155 int is_anonymous;
15156 struct type *type;
15157
15158 /* For extensions, reuse the type of the original namespace. */
15159 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
15160 {
15161 struct die_info *ext_die;
15162 struct dwarf2_cu *ext_cu = cu;
15163
15164 ext_die = dwarf2_extension (die, &ext_cu);
15165 type = read_type_die (ext_die, ext_cu);
15166
15167 /* EXT_CU may not be the same as CU.
15168 Ensure TYPE is recorded with CU in die_type_hash. */
15169 return set_die_type (die, type, cu);
15170 }
15171
15172 name = namespace_name (die, &is_anonymous, cu);
15173
15174 /* Now build the name of the current namespace. */
15175
15176 previous_prefix = determine_prefix (die, cu);
15177 if (previous_prefix[0] != '\0')
15178 name = typename_concat (&objfile->objfile_obstack,
15179 previous_prefix, name, 0, cu);
15180
15181 /* Create the type. */
15182 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
15183 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15184
15185 return set_die_type (die, type, cu);
15186 }
15187
15188 /* Read a namespace scope. */
15189
15190 static void
15191 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
15192 {
15193 struct objfile *objfile = cu->objfile;
15194 int is_anonymous;
15195
15196 /* Add a symbol associated to this if we haven't seen the namespace
15197 before. Also, add a using directive if it's an anonymous
15198 namespace. */
15199
15200 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
15201 {
15202 struct type *type;
15203
15204 type = read_type_die (die, cu);
15205 new_symbol (die, type, cu);
15206
15207 namespace_name (die, &is_anonymous, cu);
15208 if (is_anonymous)
15209 {
15210 const char *previous_prefix = determine_prefix (die, cu);
15211
15212 std::vector<const char *> excludes;
15213 add_using_directive (using_directives (cu->language),
15214 previous_prefix, TYPE_NAME (type), NULL,
15215 NULL, excludes, 0, &objfile->objfile_obstack);
15216 }
15217 }
15218
15219 if (die->child != NULL)
15220 {
15221 struct die_info *child_die = die->child;
15222
15223 while (child_die && child_die->tag)
15224 {
15225 process_die (child_die, cu);
15226 child_die = sibling_die (child_die);
15227 }
15228 }
15229 }
15230
15231 /* Read a Fortran module as type. This DIE can be only a declaration used for
15232 imported module. Still we need that type as local Fortran "use ... only"
15233 declaration imports depend on the created type in determine_prefix. */
15234
15235 static struct type *
15236 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
15237 {
15238 struct objfile *objfile = cu->objfile;
15239 const char *module_name;
15240 struct type *type;
15241
15242 module_name = dwarf2_name (die, cu);
15243 if (!module_name)
15244 complaint (&symfile_complaints,
15245 _("DW_TAG_module has no name, offset 0x%x"),
15246 to_underlying (die->sect_off));
15247 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
15248
15249 /* determine_prefix uses TYPE_TAG_NAME. */
15250 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15251
15252 return set_die_type (die, type, cu);
15253 }
15254
15255 /* Read a Fortran module. */
15256
15257 static void
15258 read_module (struct die_info *die, struct dwarf2_cu *cu)
15259 {
15260 struct die_info *child_die = die->child;
15261 struct type *type;
15262
15263 type = read_type_die (die, cu);
15264 new_symbol (die, type, cu);
15265
15266 while (child_die && child_die->tag)
15267 {
15268 process_die (child_die, cu);
15269 child_die = sibling_die (child_die);
15270 }
15271 }
15272
15273 /* Return the name of the namespace represented by DIE. Set
15274 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
15275 namespace. */
15276
15277 static const char *
15278 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
15279 {
15280 struct die_info *current_die;
15281 const char *name = NULL;
15282
15283 /* Loop through the extensions until we find a name. */
15284
15285 for (current_die = die;
15286 current_die != NULL;
15287 current_die = dwarf2_extension (die, &cu))
15288 {
15289 /* We don't use dwarf2_name here so that we can detect the absence
15290 of a name -> anonymous namespace. */
15291 name = dwarf2_string_attr (die, DW_AT_name, cu);
15292
15293 if (name != NULL)
15294 break;
15295 }
15296
15297 /* Is it an anonymous namespace? */
15298
15299 *is_anonymous = (name == NULL);
15300 if (*is_anonymous)
15301 name = CP_ANONYMOUS_NAMESPACE_STR;
15302
15303 return name;
15304 }
15305
15306 /* Extract all information from a DW_TAG_pointer_type DIE and add to
15307 the user defined type vector. */
15308
15309 static struct type *
15310 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
15311 {
15312 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
15313 struct comp_unit_head *cu_header = &cu->header;
15314 struct type *type;
15315 struct attribute *attr_byte_size;
15316 struct attribute *attr_address_class;
15317 int byte_size, addr_class;
15318 struct type *target_type;
15319
15320 target_type = die_type (die, cu);
15321
15322 /* The die_type call above may have already set the type for this DIE. */
15323 type = get_die_type (die, cu);
15324 if (type)
15325 return type;
15326
15327 type = lookup_pointer_type (target_type);
15328
15329 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
15330 if (attr_byte_size)
15331 byte_size = DW_UNSND (attr_byte_size);
15332 else
15333 byte_size = cu_header->addr_size;
15334
15335 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
15336 if (attr_address_class)
15337 addr_class = DW_UNSND (attr_address_class);
15338 else
15339 addr_class = DW_ADDR_none;
15340
15341 /* If the pointer size or address class is different than the
15342 default, create a type variant marked as such and set the
15343 length accordingly. */
15344 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
15345 {
15346 if (gdbarch_address_class_type_flags_p (gdbarch))
15347 {
15348 int type_flags;
15349
15350 type_flags = gdbarch_address_class_type_flags
15351 (gdbarch, byte_size, addr_class);
15352 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
15353 == 0);
15354 type = make_type_with_address_space (type, type_flags);
15355 }
15356 else if (TYPE_LENGTH (type) != byte_size)
15357 {
15358 complaint (&symfile_complaints,
15359 _("invalid pointer size %d"), byte_size);
15360 }
15361 else
15362 {
15363 /* Should we also complain about unhandled address classes? */
15364 }
15365 }
15366
15367 TYPE_LENGTH (type) = byte_size;
15368 return set_die_type (die, type, cu);
15369 }
15370
15371 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
15372 the user defined type vector. */
15373
15374 static struct type *
15375 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
15376 {
15377 struct type *type;
15378 struct type *to_type;
15379 struct type *domain;
15380
15381 to_type = die_type (die, cu);
15382 domain = die_containing_type (die, cu);
15383
15384 /* The calls above may have already set the type for this DIE. */
15385 type = get_die_type (die, cu);
15386 if (type)
15387 return type;
15388
15389 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
15390 type = lookup_methodptr_type (to_type);
15391 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
15392 {
15393 struct type *new_type = alloc_type (cu->objfile);
15394
15395 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
15396 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
15397 TYPE_VARARGS (to_type));
15398 type = lookup_methodptr_type (new_type);
15399 }
15400 else
15401 type = lookup_memberptr_type (to_type, domain);
15402
15403 return set_die_type (die, type, cu);
15404 }
15405
15406 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
15407 the user defined type vector. */
15408
15409 static struct type *
15410 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
15411 enum type_code refcode)
15412 {
15413 struct comp_unit_head *cu_header = &cu->header;
15414 struct type *type, *target_type;
15415 struct attribute *attr;
15416
15417 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
15418
15419 target_type = die_type (die, cu);
15420
15421 /* The die_type call above may have already set the type for this DIE. */
15422 type = get_die_type (die, cu);
15423 if (type)
15424 return type;
15425
15426 type = lookup_reference_type (target_type, refcode);
15427 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15428 if (attr)
15429 {
15430 TYPE_LENGTH (type) = DW_UNSND (attr);
15431 }
15432 else
15433 {
15434 TYPE_LENGTH (type) = cu_header->addr_size;
15435 }
15436 return set_die_type (die, type, cu);
15437 }
15438
15439 /* Add the given cv-qualifiers to the element type of the array. GCC
15440 outputs DWARF type qualifiers that apply to an array, not the
15441 element type. But GDB relies on the array element type to carry
15442 the cv-qualifiers. This mimics section 6.7.3 of the C99
15443 specification. */
15444
15445 static struct type *
15446 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
15447 struct type *base_type, int cnst, int voltl)
15448 {
15449 struct type *el_type, *inner_array;
15450
15451 base_type = copy_type (base_type);
15452 inner_array = base_type;
15453
15454 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
15455 {
15456 TYPE_TARGET_TYPE (inner_array) =
15457 copy_type (TYPE_TARGET_TYPE (inner_array));
15458 inner_array = TYPE_TARGET_TYPE (inner_array);
15459 }
15460
15461 el_type = TYPE_TARGET_TYPE (inner_array);
15462 cnst |= TYPE_CONST (el_type);
15463 voltl |= TYPE_VOLATILE (el_type);
15464 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
15465
15466 return set_die_type (die, base_type, cu);
15467 }
15468
15469 static struct type *
15470 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
15471 {
15472 struct type *base_type, *cv_type;
15473
15474 base_type = die_type (die, cu);
15475
15476 /* The die_type call above may have already set the type for this DIE. */
15477 cv_type = get_die_type (die, cu);
15478 if (cv_type)
15479 return cv_type;
15480
15481 /* In case the const qualifier is applied to an array type, the element type
15482 is so qualified, not the array type (section 6.7.3 of C99). */
15483 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15484 return add_array_cv_type (die, cu, base_type, 1, 0);
15485
15486 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
15487 return set_die_type (die, cv_type, cu);
15488 }
15489
15490 static struct type *
15491 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
15492 {
15493 struct type *base_type, *cv_type;
15494
15495 base_type = die_type (die, cu);
15496
15497 /* The die_type call above may have already set the type for this DIE. */
15498 cv_type = get_die_type (die, cu);
15499 if (cv_type)
15500 return cv_type;
15501
15502 /* In case the volatile qualifier is applied to an array type, the
15503 element type is so qualified, not the array type (section 6.7.3
15504 of C99). */
15505 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15506 return add_array_cv_type (die, cu, base_type, 0, 1);
15507
15508 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
15509 return set_die_type (die, cv_type, cu);
15510 }
15511
15512 /* Handle DW_TAG_restrict_type. */
15513
15514 static struct type *
15515 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
15516 {
15517 struct type *base_type, *cv_type;
15518
15519 base_type = die_type (die, cu);
15520
15521 /* The die_type call above may have already set the type for this DIE. */
15522 cv_type = get_die_type (die, cu);
15523 if (cv_type)
15524 return cv_type;
15525
15526 cv_type = make_restrict_type (base_type);
15527 return set_die_type (die, cv_type, cu);
15528 }
15529
15530 /* Handle DW_TAG_atomic_type. */
15531
15532 static struct type *
15533 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
15534 {
15535 struct type *base_type, *cv_type;
15536
15537 base_type = die_type (die, cu);
15538
15539 /* The die_type call above may have already set the type for this DIE. */
15540 cv_type = get_die_type (die, cu);
15541 if (cv_type)
15542 return cv_type;
15543
15544 cv_type = make_atomic_type (base_type);
15545 return set_die_type (die, cv_type, cu);
15546 }
15547
15548 /* Extract all information from a DW_TAG_string_type DIE and add to
15549 the user defined type vector. It isn't really a user defined type,
15550 but it behaves like one, with other DIE's using an AT_user_def_type
15551 attribute to reference it. */
15552
15553 static struct type *
15554 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
15555 {
15556 struct objfile *objfile = cu->objfile;
15557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15558 struct type *type, *range_type, *index_type, *char_type;
15559 struct attribute *attr;
15560 unsigned int length;
15561
15562 attr = dwarf2_attr (die, DW_AT_string_length, cu);
15563 if (attr)
15564 {
15565 length = DW_UNSND (attr);
15566 }
15567 else
15568 {
15569 /* Check for the DW_AT_byte_size attribute. */
15570 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15571 if (attr)
15572 {
15573 length = DW_UNSND (attr);
15574 }
15575 else
15576 {
15577 length = 1;
15578 }
15579 }
15580
15581 index_type = objfile_type (objfile)->builtin_int;
15582 range_type = create_static_range_type (NULL, index_type, 1, length);
15583 char_type = language_string_char_type (cu->language_defn, gdbarch);
15584 type = create_string_type (NULL, char_type, range_type);
15585
15586 return set_die_type (die, type, cu);
15587 }
15588
15589 /* Assuming that DIE corresponds to a function, returns nonzero
15590 if the function is prototyped. */
15591
15592 static int
15593 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15594 {
15595 struct attribute *attr;
15596
15597 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15598 if (attr && (DW_UNSND (attr) != 0))
15599 return 1;
15600
15601 /* The DWARF standard implies that the DW_AT_prototyped attribute
15602 is only meaninful for C, but the concept also extends to other
15603 languages that allow unprototyped functions (Eg: Objective C).
15604 For all other languages, assume that functions are always
15605 prototyped. */
15606 if (cu->language != language_c
15607 && cu->language != language_objc
15608 && cu->language != language_opencl)
15609 return 1;
15610
15611 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15612 prototyped and unprototyped functions; default to prototyped,
15613 since that is more common in modern code (and RealView warns
15614 about unprototyped functions). */
15615 if (producer_is_realview (cu->producer))
15616 return 1;
15617
15618 return 0;
15619 }
15620
15621 /* Handle DIES due to C code like:
15622
15623 struct foo
15624 {
15625 int (*funcp)(int a, long l);
15626 int b;
15627 };
15628
15629 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15630
15631 static struct type *
15632 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15633 {
15634 struct objfile *objfile = cu->objfile;
15635 struct type *type; /* Type that this function returns. */
15636 struct type *ftype; /* Function that returns above type. */
15637 struct attribute *attr;
15638
15639 type = die_type (die, cu);
15640
15641 /* The die_type call above may have already set the type for this DIE. */
15642 ftype = get_die_type (die, cu);
15643 if (ftype)
15644 return ftype;
15645
15646 ftype = lookup_function_type (type);
15647
15648 if (prototyped_function_p (die, cu))
15649 TYPE_PROTOTYPED (ftype) = 1;
15650
15651 /* Store the calling convention in the type if it's available in
15652 the subroutine die. Otherwise set the calling convention to
15653 the default value DW_CC_normal. */
15654 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15655 if (attr)
15656 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15657 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15658 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15659 else
15660 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15661
15662 /* Record whether the function returns normally to its caller or not
15663 if the DWARF producer set that information. */
15664 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15665 if (attr && (DW_UNSND (attr) != 0))
15666 TYPE_NO_RETURN (ftype) = 1;
15667
15668 /* We need to add the subroutine type to the die immediately so
15669 we don't infinitely recurse when dealing with parameters
15670 declared as the same subroutine type. */
15671 set_die_type (die, ftype, cu);
15672
15673 if (die->child != NULL)
15674 {
15675 struct type *void_type = objfile_type (objfile)->builtin_void;
15676 struct die_info *child_die;
15677 int nparams, iparams;
15678
15679 /* Count the number of parameters.
15680 FIXME: GDB currently ignores vararg functions, but knows about
15681 vararg member functions. */
15682 nparams = 0;
15683 child_die = die->child;
15684 while (child_die && child_die->tag)
15685 {
15686 if (child_die->tag == DW_TAG_formal_parameter)
15687 nparams++;
15688 else if (child_die->tag == DW_TAG_unspecified_parameters)
15689 TYPE_VARARGS (ftype) = 1;
15690 child_die = sibling_die (child_die);
15691 }
15692
15693 /* Allocate storage for parameters and fill them in. */
15694 TYPE_NFIELDS (ftype) = nparams;
15695 TYPE_FIELDS (ftype) = (struct field *)
15696 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15697
15698 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15699 even if we error out during the parameters reading below. */
15700 for (iparams = 0; iparams < nparams; iparams++)
15701 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15702
15703 iparams = 0;
15704 child_die = die->child;
15705 while (child_die && child_die->tag)
15706 {
15707 if (child_die->tag == DW_TAG_formal_parameter)
15708 {
15709 struct type *arg_type;
15710
15711 /* DWARF version 2 has no clean way to discern C++
15712 static and non-static member functions. G++ helps
15713 GDB by marking the first parameter for non-static
15714 member functions (which is the this pointer) as
15715 artificial. We pass this information to
15716 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15717
15718 DWARF version 3 added DW_AT_object_pointer, which GCC
15719 4.5 does not yet generate. */
15720 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15721 if (attr)
15722 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15723 else
15724 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15725 arg_type = die_type (child_die, cu);
15726
15727 /* RealView does not mark THIS as const, which the testsuite
15728 expects. GCC marks THIS as const in method definitions,
15729 but not in the class specifications (GCC PR 43053). */
15730 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15731 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15732 {
15733 int is_this = 0;
15734 struct dwarf2_cu *arg_cu = cu;
15735 const char *name = dwarf2_name (child_die, cu);
15736
15737 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15738 if (attr)
15739 {
15740 /* If the compiler emits this, use it. */
15741 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15742 is_this = 1;
15743 }
15744 else if (name && strcmp (name, "this") == 0)
15745 /* Function definitions will have the argument names. */
15746 is_this = 1;
15747 else if (name == NULL && iparams == 0)
15748 /* Declarations may not have the names, so like
15749 elsewhere in GDB, assume an artificial first
15750 argument is "this". */
15751 is_this = 1;
15752
15753 if (is_this)
15754 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15755 arg_type, 0);
15756 }
15757
15758 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15759 iparams++;
15760 }
15761 child_die = sibling_die (child_die);
15762 }
15763 }
15764
15765 return ftype;
15766 }
15767
15768 static struct type *
15769 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15770 {
15771 struct objfile *objfile = cu->objfile;
15772 const char *name = NULL;
15773 struct type *this_type, *target_type;
15774
15775 name = dwarf2_full_name (NULL, die, cu);
15776 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15777 TYPE_TARGET_STUB (this_type) = 1;
15778 set_die_type (die, this_type, cu);
15779 target_type = die_type (die, cu);
15780 if (target_type != this_type)
15781 TYPE_TARGET_TYPE (this_type) = target_type;
15782 else
15783 {
15784 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15785 spec and cause infinite loops in GDB. */
15786 complaint (&symfile_complaints,
15787 _("Self-referential DW_TAG_typedef "
15788 "- DIE at 0x%x [in module %s]"),
15789 to_underlying (die->sect_off), objfile_name (objfile));
15790 TYPE_TARGET_TYPE (this_type) = NULL;
15791 }
15792 return this_type;
15793 }
15794
15795 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15796 (which may be different from NAME) to the architecture back-end to allow
15797 it to guess the correct format if necessary. */
15798
15799 static struct type *
15800 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15801 const char *name_hint)
15802 {
15803 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15804 const struct floatformat **format;
15805 struct type *type;
15806
15807 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15808 if (format)
15809 type = init_float_type (objfile, bits, name, format);
15810 else
15811 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15812
15813 return type;
15814 }
15815
15816 /* Find a representation of a given base type and install
15817 it in the TYPE field of the die. */
15818
15819 static struct type *
15820 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15821 {
15822 struct objfile *objfile = cu->objfile;
15823 struct type *type;
15824 struct attribute *attr;
15825 int encoding = 0, bits = 0;
15826 const char *name;
15827
15828 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15829 if (attr)
15830 {
15831 encoding = DW_UNSND (attr);
15832 }
15833 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15834 if (attr)
15835 {
15836 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15837 }
15838 name = dwarf2_name (die, cu);
15839 if (!name)
15840 {
15841 complaint (&symfile_complaints,
15842 _("DW_AT_name missing from DW_TAG_base_type"));
15843 }
15844
15845 switch (encoding)
15846 {
15847 case DW_ATE_address:
15848 /* Turn DW_ATE_address into a void * pointer. */
15849 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15850 type = init_pointer_type (objfile, bits, name, type);
15851 break;
15852 case DW_ATE_boolean:
15853 type = init_boolean_type (objfile, bits, 1, name);
15854 break;
15855 case DW_ATE_complex_float:
15856 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15857 type = init_complex_type (objfile, name, type);
15858 break;
15859 case DW_ATE_decimal_float:
15860 type = init_decfloat_type (objfile, bits, name);
15861 break;
15862 case DW_ATE_float:
15863 type = dwarf2_init_float_type (objfile, bits, name, name);
15864 break;
15865 case DW_ATE_signed:
15866 type = init_integer_type (objfile, bits, 0, name);
15867 break;
15868 case DW_ATE_unsigned:
15869 if (cu->language == language_fortran
15870 && name
15871 && startswith (name, "character("))
15872 type = init_character_type (objfile, bits, 1, name);
15873 else
15874 type = init_integer_type (objfile, bits, 1, name);
15875 break;
15876 case DW_ATE_signed_char:
15877 if (cu->language == language_ada || cu->language == language_m2
15878 || cu->language == language_pascal
15879 || cu->language == language_fortran)
15880 type = init_character_type (objfile, bits, 0, name);
15881 else
15882 type = init_integer_type (objfile, bits, 0, name);
15883 break;
15884 case DW_ATE_unsigned_char:
15885 if (cu->language == language_ada || cu->language == language_m2
15886 || cu->language == language_pascal
15887 || cu->language == language_fortran
15888 || cu->language == language_rust)
15889 type = init_character_type (objfile, bits, 1, name);
15890 else
15891 type = init_integer_type (objfile, bits, 1, name);
15892 break;
15893 case DW_ATE_UTF:
15894 {
15895 gdbarch *arch = get_objfile_arch (objfile);
15896
15897 if (bits == 16)
15898 type = builtin_type (arch)->builtin_char16;
15899 else if (bits == 32)
15900 type = builtin_type (arch)->builtin_char32;
15901 else
15902 {
15903 complaint (&symfile_complaints,
15904 _("unsupported DW_ATE_UTF bit size: '%d'"),
15905 bits);
15906 type = init_integer_type (objfile, bits, 1, name);
15907 }
15908 return set_die_type (die, type, cu);
15909 }
15910 break;
15911
15912 default:
15913 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15914 dwarf_type_encoding_name (encoding));
15915 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15916 break;
15917 }
15918
15919 if (name && strcmp (name, "char") == 0)
15920 TYPE_NOSIGN (type) = 1;
15921
15922 return set_die_type (die, type, cu);
15923 }
15924
15925 /* Parse dwarf attribute if it's a block, reference or constant and put the
15926 resulting value of the attribute into struct bound_prop.
15927 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15928
15929 static int
15930 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15931 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15932 {
15933 struct dwarf2_property_baton *baton;
15934 struct obstack *obstack = &cu->objfile->objfile_obstack;
15935
15936 if (attr == NULL || prop == NULL)
15937 return 0;
15938
15939 if (attr_form_is_block (attr))
15940 {
15941 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15942 baton->referenced_type = NULL;
15943 baton->locexpr.per_cu = cu->per_cu;
15944 baton->locexpr.size = DW_BLOCK (attr)->size;
15945 baton->locexpr.data = DW_BLOCK (attr)->data;
15946 prop->data.baton = baton;
15947 prop->kind = PROP_LOCEXPR;
15948 gdb_assert (prop->data.baton != NULL);
15949 }
15950 else if (attr_form_is_ref (attr))
15951 {
15952 struct dwarf2_cu *target_cu = cu;
15953 struct die_info *target_die;
15954 struct attribute *target_attr;
15955
15956 target_die = follow_die_ref (die, attr, &target_cu);
15957 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15958 if (target_attr == NULL)
15959 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15960 target_cu);
15961 if (target_attr == NULL)
15962 return 0;
15963
15964 switch (target_attr->name)
15965 {
15966 case DW_AT_location:
15967 if (attr_form_is_section_offset (target_attr))
15968 {
15969 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15970 baton->referenced_type = die_type (target_die, target_cu);
15971 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15972 prop->data.baton = baton;
15973 prop->kind = PROP_LOCLIST;
15974 gdb_assert (prop->data.baton != NULL);
15975 }
15976 else if (attr_form_is_block (target_attr))
15977 {
15978 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15979 baton->referenced_type = die_type (target_die, target_cu);
15980 baton->locexpr.per_cu = cu->per_cu;
15981 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15982 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15983 prop->data.baton = baton;
15984 prop->kind = PROP_LOCEXPR;
15985 gdb_assert (prop->data.baton != NULL);
15986 }
15987 else
15988 {
15989 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15990 "dynamic property");
15991 return 0;
15992 }
15993 break;
15994 case DW_AT_data_member_location:
15995 {
15996 LONGEST offset;
15997
15998 if (!handle_data_member_location (target_die, target_cu,
15999 &offset))
16000 return 0;
16001
16002 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16003 baton->referenced_type = read_type_die (target_die->parent,
16004 target_cu);
16005 baton->offset_info.offset = offset;
16006 baton->offset_info.type = die_type (target_die, target_cu);
16007 prop->data.baton = baton;
16008 prop->kind = PROP_ADDR_OFFSET;
16009 break;
16010 }
16011 }
16012 }
16013 else if (attr_form_is_constant (attr))
16014 {
16015 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
16016 prop->kind = PROP_CONST;
16017 }
16018 else
16019 {
16020 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
16021 dwarf2_name (die, cu));
16022 return 0;
16023 }
16024
16025 return 1;
16026 }
16027
16028 /* Read the given DW_AT_subrange DIE. */
16029
16030 static struct type *
16031 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
16032 {
16033 struct type *base_type, *orig_base_type;
16034 struct type *range_type;
16035 struct attribute *attr;
16036 struct dynamic_prop low, high;
16037 int low_default_is_valid;
16038 int high_bound_is_count = 0;
16039 const char *name;
16040 LONGEST negative_mask;
16041
16042 orig_base_type = die_type (die, cu);
16043 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
16044 whereas the real type might be. So, we use ORIG_BASE_TYPE when
16045 creating the range type, but we use the result of check_typedef
16046 when examining properties of the type. */
16047 base_type = check_typedef (orig_base_type);
16048
16049 /* The die_type call above may have already set the type for this DIE. */
16050 range_type = get_die_type (die, cu);
16051 if (range_type)
16052 return range_type;
16053
16054 low.kind = PROP_CONST;
16055 high.kind = PROP_CONST;
16056 high.data.const_val = 0;
16057
16058 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
16059 omitting DW_AT_lower_bound. */
16060 switch (cu->language)
16061 {
16062 case language_c:
16063 case language_cplus:
16064 low.data.const_val = 0;
16065 low_default_is_valid = 1;
16066 break;
16067 case language_fortran:
16068 low.data.const_val = 1;
16069 low_default_is_valid = 1;
16070 break;
16071 case language_d:
16072 case language_objc:
16073 case language_rust:
16074 low.data.const_val = 0;
16075 low_default_is_valid = (cu->header.version >= 4);
16076 break;
16077 case language_ada:
16078 case language_m2:
16079 case language_pascal:
16080 low.data.const_val = 1;
16081 low_default_is_valid = (cu->header.version >= 4);
16082 break;
16083 default:
16084 low.data.const_val = 0;
16085 low_default_is_valid = 0;
16086 break;
16087 }
16088
16089 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
16090 if (attr)
16091 attr_to_dynamic_prop (attr, die, cu, &low);
16092 else if (!low_default_is_valid)
16093 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
16094 "- DIE at 0x%x [in module %s]"),
16095 to_underlying (die->sect_off), objfile_name (cu->objfile));
16096
16097 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
16098 if (!attr_to_dynamic_prop (attr, die, cu, &high))
16099 {
16100 attr = dwarf2_attr (die, DW_AT_count, cu);
16101 if (attr_to_dynamic_prop (attr, die, cu, &high))
16102 {
16103 /* If bounds are constant do the final calculation here. */
16104 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
16105 high.data.const_val = low.data.const_val + high.data.const_val - 1;
16106 else
16107 high_bound_is_count = 1;
16108 }
16109 }
16110
16111 /* Dwarf-2 specifications explicitly allows to create subrange types
16112 without specifying a base type.
16113 In that case, the base type must be set to the type of
16114 the lower bound, upper bound or count, in that order, if any of these
16115 three attributes references an object that has a type.
16116 If no base type is found, the Dwarf-2 specifications say that
16117 a signed integer type of size equal to the size of an address should
16118 be used.
16119 For the following C code: `extern char gdb_int [];'
16120 GCC produces an empty range DIE.
16121 FIXME: muller/2010-05-28: Possible references to object for low bound,
16122 high bound or count are not yet handled by this code. */
16123 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
16124 {
16125 struct objfile *objfile = cu->objfile;
16126 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16127 int addr_size = gdbarch_addr_bit (gdbarch) /8;
16128 struct type *int_type = objfile_type (objfile)->builtin_int;
16129
16130 /* Test "int", "long int", and "long long int" objfile types,
16131 and select the first one having a size above or equal to the
16132 architecture address size. */
16133 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16134 base_type = int_type;
16135 else
16136 {
16137 int_type = objfile_type (objfile)->builtin_long;
16138 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16139 base_type = int_type;
16140 else
16141 {
16142 int_type = objfile_type (objfile)->builtin_long_long;
16143 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16144 base_type = int_type;
16145 }
16146 }
16147 }
16148
16149 /* Normally, the DWARF producers are expected to use a signed
16150 constant form (Eg. DW_FORM_sdata) to express negative bounds.
16151 But this is unfortunately not always the case, as witnessed
16152 with GCC, for instance, where the ambiguous DW_FORM_dataN form
16153 is used instead. To work around that ambiguity, we treat
16154 the bounds as signed, and thus sign-extend their values, when
16155 the base type is signed. */
16156 negative_mask =
16157 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
16158 if (low.kind == PROP_CONST
16159 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
16160 low.data.const_val |= negative_mask;
16161 if (high.kind == PROP_CONST
16162 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
16163 high.data.const_val |= negative_mask;
16164
16165 range_type = create_range_type (NULL, orig_base_type, &low, &high);
16166
16167 if (high_bound_is_count)
16168 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
16169
16170 /* Ada expects an empty array on no boundary attributes. */
16171 if (attr == NULL && cu->language != language_ada)
16172 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
16173
16174 name = dwarf2_name (die, cu);
16175 if (name)
16176 TYPE_NAME (range_type) = name;
16177
16178 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16179 if (attr)
16180 TYPE_LENGTH (range_type) = DW_UNSND (attr);
16181
16182 set_die_type (die, range_type, cu);
16183
16184 /* set_die_type should be already done. */
16185 set_descriptive_type (range_type, die, cu);
16186
16187 return range_type;
16188 }
16189
16190 static struct type *
16191 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
16192 {
16193 struct type *type;
16194
16195 /* For now, we only support the C meaning of an unspecified type: void. */
16196
16197 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
16198 TYPE_NAME (type) = dwarf2_name (die, cu);
16199
16200 return set_die_type (die, type, cu);
16201 }
16202
16203 /* Read a single die and all its descendents. Set the die's sibling
16204 field to NULL; set other fields in the die correctly, and set all
16205 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
16206 location of the info_ptr after reading all of those dies. PARENT
16207 is the parent of the die in question. */
16208
16209 static struct die_info *
16210 read_die_and_children (const struct die_reader_specs *reader,
16211 const gdb_byte *info_ptr,
16212 const gdb_byte **new_info_ptr,
16213 struct die_info *parent)
16214 {
16215 struct die_info *die;
16216 const gdb_byte *cur_ptr;
16217 int has_children;
16218
16219 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
16220 if (die == NULL)
16221 {
16222 *new_info_ptr = cur_ptr;
16223 return NULL;
16224 }
16225 store_in_ref_table (die, reader->cu);
16226
16227 if (has_children)
16228 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
16229 else
16230 {
16231 die->child = NULL;
16232 *new_info_ptr = cur_ptr;
16233 }
16234
16235 die->sibling = NULL;
16236 die->parent = parent;
16237 return die;
16238 }
16239
16240 /* Read a die, all of its descendents, and all of its siblings; set
16241 all of the fields of all of the dies correctly. Arguments are as
16242 in read_die_and_children. */
16243
16244 static struct die_info *
16245 read_die_and_siblings_1 (const struct die_reader_specs *reader,
16246 const gdb_byte *info_ptr,
16247 const gdb_byte **new_info_ptr,
16248 struct die_info *parent)
16249 {
16250 struct die_info *first_die, *last_sibling;
16251 const gdb_byte *cur_ptr;
16252
16253 cur_ptr = info_ptr;
16254 first_die = last_sibling = NULL;
16255
16256 while (1)
16257 {
16258 struct die_info *die
16259 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
16260
16261 if (die == NULL)
16262 {
16263 *new_info_ptr = cur_ptr;
16264 return first_die;
16265 }
16266
16267 if (!first_die)
16268 first_die = die;
16269 else
16270 last_sibling->sibling = die;
16271
16272 last_sibling = die;
16273 }
16274 }
16275
16276 /* Read a die, all of its descendents, and all of its siblings; set
16277 all of the fields of all of the dies correctly. Arguments are as
16278 in read_die_and_children.
16279 This the main entry point for reading a DIE and all its children. */
16280
16281 static struct die_info *
16282 read_die_and_siblings (const struct die_reader_specs *reader,
16283 const gdb_byte *info_ptr,
16284 const gdb_byte **new_info_ptr,
16285 struct die_info *parent)
16286 {
16287 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
16288 new_info_ptr, parent);
16289
16290 if (dwarf_die_debug)
16291 {
16292 fprintf_unfiltered (gdb_stdlog,
16293 "Read die from %s@0x%x of %s:\n",
16294 get_section_name (reader->die_section),
16295 (unsigned) (info_ptr - reader->die_section->buffer),
16296 bfd_get_filename (reader->abfd));
16297 dump_die (die, dwarf_die_debug);
16298 }
16299
16300 return die;
16301 }
16302
16303 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
16304 attributes.
16305 The caller is responsible for filling in the extra attributes
16306 and updating (*DIEP)->num_attrs.
16307 Set DIEP to point to a newly allocated die with its information,
16308 except for its child, sibling, and parent fields.
16309 Set HAS_CHILDREN to tell whether the die has children or not. */
16310
16311 static const gdb_byte *
16312 read_full_die_1 (const struct die_reader_specs *reader,
16313 struct die_info **diep, const gdb_byte *info_ptr,
16314 int *has_children, int num_extra_attrs)
16315 {
16316 unsigned int abbrev_number, bytes_read, i;
16317 struct abbrev_info *abbrev;
16318 struct die_info *die;
16319 struct dwarf2_cu *cu = reader->cu;
16320 bfd *abfd = reader->abfd;
16321
16322 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
16323 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16324 info_ptr += bytes_read;
16325 if (!abbrev_number)
16326 {
16327 *diep = NULL;
16328 *has_children = 0;
16329 return info_ptr;
16330 }
16331
16332 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
16333 if (!abbrev)
16334 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
16335 abbrev_number,
16336 bfd_get_filename (abfd));
16337
16338 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
16339 die->sect_off = sect_off;
16340 die->tag = abbrev->tag;
16341 die->abbrev = abbrev_number;
16342
16343 /* Make the result usable.
16344 The caller needs to update num_attrs after adding the extra
16345 attributes. */
16346 die->num_attrs = abbrev->num_attrs;
16347
16348 for (i = 0; i < abbrev->num_attrs; ++i)
16349 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
16350 info_ptr);
16351
16352 *diep = die;
16353 *has_children = abbrev->has_children;
16354 return info_ptr;
16355 }
16356
16357 /* Read a die and all its attributes.
16358 Set DIEP to point to a newly allocated die with its information,
16359 except for its child, sibling, and parent fields.
16360 Set HAS_CHILDREN to tell whether the die has children or not. */
16361
16362 static const gdb_byte *
16363 read_full_die (const struct die_reader_specs *reader,
16364 struct die_info **diep, const gdb_byte *info_ptr,
16365 int *has_children)
16366 {
16367 const gdb_byte *result;
16368
16369 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
16370
16371 if (dwarf_die_debug)
16372 {
16373 fprintf_unfiltered (gdb_stdlog,
16374 "Read die from %s@0x%x of %s:\n",
16375 get_section_name (reader->die_section),
16376 (unsigned) (info_ptr - reader->die_section->buffer),
16377 bfd_get_filename (reader->abfd));
16378 dump_die (*diep, dwarf_die_debug);
16379 }
16380
16381 return result;
16382 }
16383 \f
16384 /* Abbreviation tables.
16385
16386 In DWARF version 2, the description of the debugging information is
16387 stored in a separate .debug_abbrev section. Before we read any
16388 dies from a section we read in all abbreviations and install them
16389 in a hash table. */
16390
16391 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
16392
16393 static struct abbrev_info *
16394 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
16395 {
16396 struct abbrev_info *abbrev;
16397
16398 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
16399 memset (abbrev, 0, sizeof (struct abbrev_info));
16400
16401 return abbrev;
16402 }
16403
16404 /* Add an abbreviation to the table. */
16405
16406 static void
16407 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
16408 unsigned int abbrev_number,
16409 struct abbrev_info *abbrev)
16410 {
16411 unsigned int hash_number;
16412
16413 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16414 abbrev->next = abbrev_table->abbrevs[hash_number];
16415 abbrev_table->abbrevs[hash_number] = abbrev;
16416 }
16417
16418 /* Look up an abbrev in the table.
16419 Returns NULL if the abbrev is not found. */
16420
16421 static struct abbrev_info *
16422 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
16423 unsigned int abbrev_number)
16424 {
16425 unsigned int hash_number;
16426 struct abbrev_info *abbrev;
16427
16428 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16429 abbrev = abbrev_table->abbrevs[hash_number];
16430
16431 while (abbrev)
16432 {
16433 if (abbrev->number == abbrev_number)
16434 return abbrev;
16435 abbrev = abbrev->next;
16436 }
16437 return NULL;
16438 }
16439
16440 /* Read in an abbrev table. */
16441
16442 static struct abbrev_table *
16443 abbrev_table_read_table (struct dwarf2_section_info *section,
16444 sect_offset sect_off)
16445 {
16446 struct objfile *objfile = dwarf2_per_objfile->objfile;
16447 bfd *abfd = get_section_bfd_owner (section);
16448 struct abbrev_table *abbrev_table;
16449 const gdb_byte *abbrev_ptr;
16450 struct abbrev_info *cur_abbrev;
16451 unsigned int abbrev_number, bytes_read, abbrev_name;
16452 unsigned int abbrev_form;
16453 struct attr_abbrev *cur_attrs;
16454 unsigned int allocated_attrs;
16455
16456 abbrev_table = XNEW (struct abbrev_table);
16457 abbrev_table->sect_off = sect_off;
16458 obstack_init (&abbrev_table->abbrev_obstack);
16459 abbrev_table->abbrevs =
16460 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
16461 ABBREV_HASH_SIZE);
16462 memset (abbrev_table->abbrevs, 0,
16463 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
16464
16465 dwarf2_read_section (objfile, section);
16466 abbrev_ptr = section->buffer + to_underlying (sect_off);
16467 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16468 abbrev_ptr += bytes_read;
16469
16470 allocated_attrs = ATTR_ALLOC_CHUNK;
16471 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
16472
16473 /* Loop until we reach an abbrev number of 0. */
16474 while (abbrev_number)
16475 {
16476 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
16477
16478 /* read in abbrev header */
16479 cur_abbrev->number = abbrev_number;
16480 cur_abbrev->tag
16481 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16482 abbrev_ptr += bytes_read;
16483 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
16484 abbrev_ptr += 1;
16485
16486 /* now read in declarations */
16487 for (;;)
16488 {
16489 LONGEST implicit_const;
16490
16491 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16492 abbrev_ptr += bytes_read;
16493 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16494 abbrev_ptr += bytes_read;
16495 if (abbrev_form == DW_FORM_implicit_const)
16496 {
16497 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
16498 &bytes_read);
16499 abbrev_ptr += bytes_read;
16500 }
16501 else
16502 {
16503 /* Initialize it due to a false compiler warning. */
16504 implicit_const = -1;
16505 }
16506
16507 if (abbrev_name == 0)
16508 break;
16509
16510 if (cur_abbrev->num_attrs == allocated_attrs)
16511 {
16512 allocated_attrs += ATTR_ALLOC_CHUNK;
16513 cur_attrs
16514 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
16515 }
16516
16517 cur_attrs[cur_abbrev->num_attrs].name
16518 = (enum dwarf_attribute) abbrev_name;
16519 cur_attrs[cur_abbrev->num_attrs].form
16520 = (enum dwarf_form) abbrev_form;
16521 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
16522 ++cur_abbrev->num_attrs;
16523 }
16524
16525 cur_abbrev->attrs =
16526 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
16527 cur_abbrev->num_attrs);
16528 memcpy (cur_abbrev->attrs, cur_attrs,
16529 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
16530
16531 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
16532
16533 /* Get next abbreviation.
16534 Under Irix6 the abbreviations for a compilation unit are not
16535 always properly terminated with an abbrev number of 0.
16536 Exit loop if we encounter an abbreviation which we have
16537 already read (which means we are about to read the abbreviations
16538 for the next compile unit) or if the end of the abbreviation
16539 table is reached. */
16540 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
16541 break;
16542 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16543 abbrev_ptr += bytes_read;
16544 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
16545 break;
16546 }
16547
16548 xfree (cur_attrs);
16549 return abbrev_table;
16550 }
16551
16552 /* Free the resources held by ABBREV_TABLE. */
16553
16554 static void
16555 abbrev_table_free (struct abbrev_table *abbrev_table)
16556 {
16557 obstack_free (&abbrev_table->abbrev_obstack, NULL);
16558 xfree (abbrev_table);
16559 }
16560
16561 /* Same as abbrev_table_free but as a cleanup.
16562 We pass in a pointer to the pointer to the table so that we can
16563 set the pointer to NULL when we're done. It also simplifies
16564 build_type_psymtabs_1. */
16565
16566 static void
16567 abbrev_table_free_cleanup (void *table_ptr)
16568 {
16569 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
16570
16571 if (*abbrev_table_ptr != NULL)
16572 abbrev_table_free (*abbrev_table_ptr);
16573 *abbrev_table_ptr = NULL;
16574 }
16575
16576 /* Read the abbrev table for CU from ABBREV_SECTION. */
16577
16578 static void
16579 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
16580 struct dwarf2_section_info *abbrev_section)
16581 {
16582 cu->abbrev_table =
16583 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
16584 }
16585
16586 /* Release the memory used by the abbrev table for a compilation unit. */
16587
16588 static void
16589 dwarf2_free_abbrev_table (void *ptr_to_cu)
16590 {
16591 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16592
16593 if (cu->abbrev_table != NULL)
16594 abbrev_table_free (cu->abbrev_table);
16595 /* Set this to NULL so that we SEGV if we try to read it later,
16596 and also because free_comp_unit verifies this is NULL. */
16597 cu->abbrev_table = NULL;
16598 }
16599 \f
16600 /* Returns nonzero if TAG represents a type that we might generate a partial
16601 symbol for. */
16602
16603 static int
16604 is_type_tag_for_partial (int tag)
16605 {
16606 switch (tag)
16607 {
16608 #if 0
16609 /* Some types that would be reasonable to generate partial symbols for,
16610 that we don't at present. */
16611 case DW_TAG_array_type:
16612 case DW_TAG_file_type:
16613 case DW_TAG_ptr_to_member_type:
16614 case DW_TAG_set_type:
16615 case DW_TAG_string_type:
16616 case DW_TAG_subroutine_type:
16617 #endif
16618 case DW_TAG_base_type:
16619 case DW_TAG_class_type:
16620 case DW_TAG_interface_type:
16621 case DW_TAG_enumeration_type:
16622 case DW_TAG_structure_type:
16623 case DW_TAG_subrange_type:
16624 case DW_TAG_typedef:
16625 case DW_TAG_union_type:
16626 return 1;
16627 default:
16628 return 0;
16629 }
16630 }
16631
16632 /* Load all DIEs that are interesting for partial symbols into memory. */
16633
16634 static struct partial_die_info *
16635 load_partial_dies (const struct die_reader_specs *reader,
16636 const gdb_byte *info_ptr, int building_psymtab)
16637 {
16638 struct dwarf2_cu *cu = reader->cu;
16639 struct objfile *objfile = cu->objfile;
16640 struct partial_die_info *part_die;
16641 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16642 struct abbrev_info *abbrev;
16643 unsigned int bytes_read;
16644 unsigned int load_all = 0;
16645 int nesting_level = 1;
16646
16647 parent_die = NULL;
16648 last_die = NULL;
16649
16650 gdb_assert (cu->per_cu != NULL);
16651 if (cu->per_cu->load_all_dies)
16652 load_all = 1;
16653
16654 cu->partial_dies
16655 = htab_create_alloc_ex (cu->header.length / 12,
16656 partial_die_hash,
16657 partial_die_eq,
16658 NULL,
16659 &cu->comp_unit_obstack,
16660 hashtab_obstack_allocate,
16661 dummy_obstack_deallocate);
16662
16663 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16664
16665 while (1)
16666 {
16667 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16668
16669 /* A NULL abbrev means the end of a series of children. */
16670 if (abbrev == NULL)
16671 {
16672 if (--nesting_level == 0)
16673 {
16674 /* PART_DIE was probably the last thing allocated on the
16675 comp_unit_obstack, so we could call obstack_free
16676 here. We don't do that because the waste is small,
16677 and will be cleaned up when we're done with this
16678 compilation unit. This way, we're also more robust
16679 against other users of the comp_unit_obstack. */
16680 return first_die;
16681 }
16682 info_ptr += bytes_read;
16683 last_die = parent_die;
16684 parent_die = parent_die->die_parent;
16685 continue;
16686 }
16687
16688 /* Check for template arguments. We never save these; if
16689 they're seen, we just mark the parent, and go on our way. */
16690 if (parent_die != NULL
16691 && cu->language == language_cplus
16692 && (abbrev->tag == DW_TAG_template_type_param
16693 || abbrev->tag == DW_TAG_template_value_param))
16694 {
16695 parent_die->has_template_arguments = 1;
16696
16697 if (!load_all)
16698 {
16699 /* We don't need a partial DIE for the template argument. */
16700 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16701 continue;
16702 }
16703 }
16704
16705 /* We only recurse into c++ subprograms looking for template arguments.
16706 Skip their other children. */
16707 if (!load_all
16708 && cu->language == language_cplus
16709 && parent_die != NULL
16710 && parent_die->tag == DW_TAG_subprogram)
16711 {
16712 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16713 continue;
16714 }
16715
16716 /* Check whether this DIE is interesting enough to save. Normally
16717 we would not be interested in members here, but there may be
16718 later variables referencing them via DW_AT_specification (for
16719 static members). */
16720 if (!load_all
16721 && !is_type_tag_for_partial (abbrev->tag)
16722 && abbrev->tag != DW_TAG_constant
16723 && abbrev->tag != DW_TAG_enumerator
16724 && abbrev->tag != DW_TAG_subprogram
16725 && abbrev->tag != DW_TAG_lexical_block
16726 && abbrev->tag != DW_TAG_variable
16727 && abbrev->tag != DW_TAG_namespace
16728 && abbrev->tag != DW_TAG_module
16729 && abbrev->tag != DW_TAG_member
16730 && abbrev->tag != DW_TAG_imported_unit
16731 && abbrev->tag != DW_TAG_imported_declaration)
16732 {
16733 /* Otherwise we skip to the next sibling, if any. */
16734 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16735 continue;
16736 }
16737
16738 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16739 info_ptr);
16740
16741 /* This two-pass algorithm for processing partial symbols has a
16742 high cost in cache pressure. Thus, handle some simple cases
16743 here which cover the majority of C partial symbols. DIEs
16744 which neither have specification tags in them, nor could have
16745 specification tags elsewhere pointing at them, can simply be
16746 processed and discarded.
16747
16748 This segment is also optional; scan_partial_symbols and
16749 add_partial_symbol will handle these DIEs if we chain
16750 them in normally. When compilers which do not emit large
16751 quantities of duplicate debug information are more common,
16752 this code can probably be removed. */
16753
16754 /* Any complete simple types at the top level (pretty much all
16755 of them, for a language without namespaces), can be processed
16756 directly. */
16757 if (parent_die == NULL
16758 && part_die->has_specification == 0
16759 && part_die->is_declaration == 0
16760 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16761 || part_die->tag == DW_TAG_base_type
16762 || part_die->tag == DW_TAG_subrange_type))
16763 {
16764 if (building_psymtab && part_die->name != NULL)
16765 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16766 VAR_DOMAIN, LOC_TYPEDEF,
16767 &objfile->static_psymbols,
16768 0, cu->language, objfile);
16769 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16770 continue;
16771 }
16772
16773 /* The exception for DW_TAG_typedef with has_children above is
16774 a workaround of GCC PR debug/47510. In the case of this complaint
16775 type_name_no_tag_or_error will error on such types later.
16776
16777 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16778 it could not find the child DIEs referenced later, this is checked
16779 above. In correct DWARF DW_TAG_typedef should have no children. */
16780
16781 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16782 complaint (&symfile_complaints,
16783 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16784 "- DIE at 0x%x [in module %s]"),
16785 to_underlying (part_die->sect_off), objfile_name (objfile));
16786
16787 /* If we're at the second level, and we're an enumerator, and
16788 our parent has no specification (meaning possibly lives in a
16789 namespace elsewhere), then we can add the partial symbol now
16790 instead of queueing it. */
16791 if (part_die->tag == DW_TAG_enumerator
16792 && parent_die != NULL
16793 && parent_die->die_parent == NULL
16794 && parent_die->tag == DW_TAG_enumeration_type
16795 && parent_die->has_specification == 0)
16796 {
16797 if (part_die->name == NULL)
16798 complaint (&symfile_complaints,
16799 _("malformed enumerator DIE ignored"));
16800 else if (building_psymtab)
16801 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16802 VAR_DOMAIN, LOC_CONST,
16803 cu->language == language_cplus
16804 ? &objfile->global_psymbols
16805 : &objfile->static_psymbols,
16806 0, cu->language, objfile);
16807
16808 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16809 continue;
16810 }
16811
16812 /* We'll save this DIE so link it in. */
16813 part_die->die_parent = parent_die;
16814 part_die->die_sibling = NULL;
16815 part_die->die_child = NULL;
16816
16817 if (last_die && last_die == parent_die)
16818 last_die->die_child = part_die;
16819 else if (last_die)
16820 last_die->die_sibling = part_die;
16821
16822 last_die = part_die;
16823
16824 if (first_die == NULL)
16825 first_die = part_die;
16826
16827 /* Maybe add the DIE to the hash table. Not all DIEs that we
16828 find interesting need to be in the hash table, because we
16829 also have the parent/sibling/child chains; only those that we
16830 might refer to by offset later during partial symbol reading.
16831
16832 For now this means things that might have be the target of a
16833 DW_AT_specification, DW_AT_abstract_origin, or
16834 DW_AT_extension. DW_AT_extension will refer only to
16835 namespaces; DW_AT_abstract_origin refers to functions (and
16836 many things under the function DIE, but we do not recurse
16837 into function DIEs during partial symbol reading) and
16838 possibly variables as well; DW_AT_specification refers to
16839 declarations. Declarations ought to have the DW_AT_declaration
16840 flag. It happens that GCC forgets to put it in sometimes, but
16841 only for functions, not for types.
16842
16843 Adding more things than necessary to the hash table is harmless
16844 except for the performance cost. Adding too few will result in
16845 wasted time in find_partial_die, when we reread the compilation
16846 unit with load_all_dies set. */
16847
16848 if (load_all
16849 || abbrev->tag == DW_TAG_constant
16850 || abbrev->tag == DW_TAG_subprogram
16851 || abbrev->tag == DW_TAG_variable
16852 || abbrev->tag == DW_TAG_namespace
16853 || part_die->is_declaration)
16854 {
16855 void **slot;
16856
16857 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16858 to_underlying (part_die->sect_off),
16859 INSERT);
16860 *slot = part_die;
16861 }
16862
16863 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16864
16865 /* For some DIEs we want to follow their children (if any). For C
16866 we have no reason to follow the children of structures; for other
16867 languages we have to, so that we can get at method physnames
16868 to infer fully qualified class names, for DW_AT_specification,
16869 and for C++ template arguments. For C++, we also look one level
16870 inside functions to find template arguments (if the name of the
16871 function does not already contain the template arguments).
16872
16873 For Ada, we need to scan the children of subprograms and lexical
16874 blocks as well because Ada allows the definition of nested
16875 entities that could be interesting for the debugger, such as
16876 nested subprograms for instance. */
16877 if (last_die->has_children
16878 && (load_all
16879 || last_die->tag == DW_TAG_namespace
16880 || last_die->tag == DW_TAG_module
16881 || last_die->tag == DW_TAG_enumeration_type
16882 || (cu->language == language_cplus
16883 && last_die->tag == DW_TAG_subprogram
16884 && (last_die->name == NULL
16885 || strchr (last_die->name, '<') == NULL))
16886 || (cu->language != language_c
16887 && (last_die->tag == DW_TAG_class_type
16888 || last_die->tag == DW_TAG_interface_type
16889 || last_die->tag == DW_TAG_structure_type
16890 || last_die->tag == DW_TAG_union_type))
16891 || (cu->language == language_ada
16892 && (last_die->tag == DW_TAG_subprogram
16893 || last_die->tag == DW_TAG_lexical_block))))
16894 {
16895 nesting_level++;
16896 parent_die = last_die;
16897 continue;
16898 }
16899
16900 /* Otherwise we skip to the next sibling, if any. */
16901 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16902
16903 /* Back to the top, do it again. */
16904 }
16905 }
16906
16907 /* Read a minimal amount of information into the minimal die structure. */
16908
16909 static const gdb_byte *
16910 read_partial_die (const struct die_reader_specs *reader,
16911 struct partial_die_info *part_die,
16912 struct abbrev_info *abbrev, unsigned int abbrev_len,
16913 const gdb_byte *info_ptr)
16914 {
16915 struct dwarf2_cu *cu = reader->cu;
16916 struct objfile *objfile = cu->objfile;
16917 const gdb_byte *buffer = reader->buffer;
16918 unsigned int i;
16919 struct attribute attr;
16920 int has_low_pc_attr = 0;
16921 int has_high_pc_attr = 0;
16922 int high_pc_relative = 0;
16923
16924 memset (part_die, 0, sizeof (struct partial_die_info));
16925
16926 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16927
16928 info_ptr += abbrev_len;
16929
16930 if (abbrev == NULL)
16931 return info_ptr;
16932
16933 part_die->tag = abbrev->tag;
16934 part_die->has_children = abbrev->has_children;
16935
16936 for (i = 0; i < abbrev->num_attrs; ++i)
16937 {
16938 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16939
16940 /* Store the data if it is of an attribute we want to keep in a
16941 partial symbol table. */
16942 switch (attr.name)
16943 {
16944 case DW_AT_name:
16945 switch (part_die->tag)
16946 {
16947 case DW_TAG_compile_unit:
16948 case DW_TAG_partial_unit:
16949 case DW_TAG_type_unit:
16950 /* Compilation units have a DW_AT_name that is a filename, not
16951 a source language identifier. */
16952 case DW_TAG_enumeration_type:
16953 case DW_TAG_enumerator:
16954 /* These tags always have simple identifiers already; no need
16955 to canonicalize them. */
16956 part_die->name = DW_STRING (&attr);
16957 break;
16958 default:
16959 part_die->name
16960 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16961 &objfile->per_bfd->storage_obstack);
16962 break;
16963 }
16964 break;
16965 case DW_AT_linkage_name:
16966 case DW_AT_MIPS_linkage_name:
16967 /* Note that both forms of linkage name might appear. We
16968 assume they will be the same, and we only store the last
16969 one we see. */
16970 if (cu->language == language_ada)
16971 part_die->name = DW_STRING (&attr);
16972 part_die->linkage_name = DW_STRING (&attr);
16973 break;
16974 case DW_AT_low_pc:
16975 has_low_pc_attr = 1;
16976 part_die->lowpc = attr_value_as_address (&attr);
16977 break;
16978 case DW_AT_high_pc:
16979 has_high_pc_attr = 1;
16980 part_die->highpc = attr_value_as_address (&attr);
16981 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16982 high_pc_relative = 1;
16983 break;
16984 case DW_AT_location:
16985 /* Support the .debug_loc offsets. */
16986 if (attr_form_is_block (&attr))
16987 {
16988 part_die->d.locdesc = DW_BLOCK (&attr);
16989 }
16990 else if (attr_form_is_section_offset (&attr))
16991 {
16992 dwarf2_complex_location_expr_complaint ();
16993 }
16994 else
16995 {
16996 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16997 "partial symbol information");
16998 }
16999 break;
17000 case DW_AT_external:
17001 part_die->is_external = DW_UNSND (&attr);
17002 break;
17003 case DW_AT_declaration:
17004 part_die->is_declaration = DW_UNSND (&attr);
17005 break;
17006 case DW_AT_type:
17007 part_die->has_type = 1;
17008 break;
17009 case DW_AT_abstract_origin:
17010 case DW_AT_specification:
17011 case DW_AT_extension:
17012 part_die->has_specification = 1;
17013 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
17014 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17015 || cu->per_cu->is_dwz);
17016 break;
17017 case DW_AT_sibling:
17018 /* Ignore absolute siblings, they might point outside of
17019 the current compile unit. */
17020 if (attr.form == DW_FORM_ref_addr)
17021 complaint (&symfile_complaints,
17022 _("ignoring absolute DW_AT_sibling"));
17023 else
17024 {
17025 sect_offset off = dwarf2_get_ref_die_offset (&attr);
17026 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
17027
17028 if (sibling_ptr < info_ptr)
17029 complaint (&symfile_complaints,
17030 _("DW_AT_sibling points backwards"));
17031 else if (sibling_ptr > reader->buffer_end)
17032 dwarf2_section_buffer_overflow_complaint (reader->die_section);
17033 else
17034 part_die->sibling = sibling_ptr;
17035 }
17036 break;
17037 case DW_AT_byte_size:
17038 part_die->has_byte_size = 1;
17039 break;
17040 case DW_AT_const_value:
17041 part_die->has_const_value = 1;
17042 break;
17043 case DW_AT_calling_convention:
17044 /* DWARF doesn't provide a way to identify a program's source-level
17045 entry point. DW_AT_calling_convention attributes are only meant
17046 to describe functions' calling conventions.
17047
17048 However, because it's a necessary piece of information in
17049 Fortran, and before DWARF 4 DW_CC_program was the only
17050 piece of debugging information whose definition refers to
17051 a 'main program' at all, several compilers marked Fortran
17052 main programs with DW_CC_program --- even when those
17053 functions use the standard calling conventions.
17054
17055 Although DWARF now specifies a way to provide this
17056 information, we support this practice for backward
17057 compatibility. */
17058 if (DW_UNSND (&attr) == DW_CC_program
17059 && cu->language == language_fortran)
17060 part_die->main_subprogram = 1;
17061 break;
17062 case DW_AT_inline:
17063 if (DW_UNSND (&attr) == DW_INL_inlined
17064 || DW_UNSND (&attr) == DW_INL_declared_inlined)
17065 part_die->may_be_inlined = 1;
17066 break;
17067
17068 case DW_AT_import:
17069 if (part_die->tag == DW_TAG_imported_unit)
17070 {
17071 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
17072 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17073 || cu->per_cu->is_dwz);
17074 }
17075 break;
17076
17077 case DW_AT_main_subprogram:
17078 part_die->main_subprogram = DW_UNSND (&attr);
17079 break;
17080
17081 default:
17082 break;
17083 }
17084 }
17085
17086 if (high_pc_relative)
17087 part_die->highpc += part_die->lowpc;
17088
17089 if (has_low_pc_attr && has_high_pc_attr)
17090 {
17091 /* When using the GNU linker, .gnu.linkonce. sections are used to
17092 eliminate duplicate copies of functions and vtables and such.
17093 The linker will arbitrarily choose one and discard the others.
17094 The AT_*_pc values for such functions refer to local labels in
17095 these sections. If the section from that file was discarded, the
17096 labels are not in the output, so the relocs get a value of 0.
17097 If this is a discarded function, mark the pc bounds as invalid,
17098 so that GDB will ignore it. */
17099 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
17100 {
17101 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17102
17103 complaint (&symfile_complaints,
17104 _("DW_AT_low_pc %s is zero "
17105 "for DIE at 0x%x [in module %s]"),
17106 paddress (gdbarch, part_die->lowpc),
17107 to_underlying (part_die->sect_off), objfile_name (objfile));
17108 }
17109 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
17110 else if (part_die->lowpc >= part_die->highpc)
17111 {
17112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17113
17114 complaint (&symfile_complaints,
17115 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
17116 "for DIE at 0x%x [in module %s]"),
17117 paddress (gdbarch, part_die->lowpc),
17118 paddress (gdbarch, part_die->highpc),
17119 to_underlying (part_die->sect_off),
17120 objfile_name (objfile));
17121 }
17122 else
17123 part_die->has_pc_info = 1;
17124 }
17125
17126 return info_ptr;
17127 }
17128
17129 /* Find a cached partial DIE at OFFSET in CU. */
17130
17131 static struct partial_die_info *
17132 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
17133 {
17134 struct partial_die_info *lookup_die = NULL;
17135 struct partial_die_info part_die;
17136
17137 part_die.sect_off = sect_off;
17138 lookup_die = ((struct partial_die_info *)
17139 htab_find_with_hash (cu->partial_dies, &part_die,
17140 to_underlying (sect_off)));
17141
17142 return lookup_die;
17143 }
17144
17145 /* Find a partial DIE at OFFSET, which may or may not be in CU,
17146 except in the case of .debug_types DIEs which do not reference
17147 outside their CU (they do however referencing other types via
17148 DW_FORM_ref_sig8). */
17149
17150 static struct partial_die_info *
17151 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
17152 {
17153 struct objfile *objfile = cu->objfile;
17154 struct dwarf2_per_cu_data *per_cu = NULL;
17155 struct partial_die_info *pd = NULL;
17156
17157 if (offset_in_dwz == cu->per_cu->is_dwz
17158 && offset_in_cu_p (&cu->header, sect_off))
17159 {
17160 pd = find_partial_die_in_comp_unit (sect_off, cu);
17161 if (pd != NULL)
17162 return pd;
17163 /* We missed recording what we needed.
17164 Load all dies and try again. */
17165 per_cu = cu->per_cu;
17166 }
17167 else
17168 {
17169 /* TUs don't reference other CUs/TUs (except via type signatures). */
17170 if (cu->per_cu->is_debug_types)
17171 {
17172 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
17173 " external reference to offset 0x%x [in module %s].\n"),
17174 to_underlying (cu->header.sect_off), to_underlying (sect_off),
17175 bfd_get_filename (objfile->obfd));
17176 }
17177 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
17178 objfile);
17179
17180 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
17181 load_partial_comp_unit (per_cu);
17182
17183 per_cu->cu->last_used = 0;
17184 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17185 }
17186
17187 /* If we didn't find it, and not all dies have been loaded,
17188 load them all and try again. */
17189
17190 if (pd == NULL && per_cu->load_all_dies == 0)
17191 {
17192 per_cu->load_all_dies = 1;
17193
17194 /* This is nasty. When we reread the DIEs, somewhere up the call chain
17195 THIS_CU->cu may already be in use. So we can't just free it and
17196 replace its DIEs with the ones we read in. Instead, we leave those
17197 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
17198 and clobber THIS_CU->cu->partial_dies with the hash table for the new
17199 set. */
17200 load_partial_comp_unit (per_cu);
17201
17202 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17203 }
17204
17205 if (pd == NULL)
17206 internal_error (__FILE__, __LINE__,
17207 _("could not find partial DIE 0x%x "
17208 "in cache [from module %s]\n"),
17209 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
17210 return pd;
17211 }
17212
17213 /* See if we can figure out if the class lives in a namespace. We do
17214 this by looking for a member function; its demangled name will
17215 contain namespace info, if there is any. */
17216
17217 static void
17218 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
17219 struct dwarf2_cu *cu)
17220 {
17221 /* NOTE: carlton/2003-10-07: Getting the info this way changes
17222 what template types look like, because the demangler
17223 frequently doesn't give the same name as the debug info. We
17224 could fix this by only using the demangled name to get the
17225 prefix (but see comment in read_structure_type). */
17226
17227 struct partial_die_info *real_pdi;
17228 struct partial_die_info *child_pdi;
17229
17230 /* If this DIE (this DIE's specification, if any) has a parent, then
17231 we should not do this. We'll prepend the parent's fully qualified
17232 name when we create the partial symbol. */
17233
17234 real_pdi = struct_pdi;
17235 while (real_pdi->has_specification)
17236 real_pdi = find_partial_die (real_pdi->spec_offset,
17237 real_pdi->spec_is_dwz, cu);
17238
17239 if (real_pdi->die_parent != NULL)
17240 return;
17241
17242 for (child_pdi = struct_pdi->die_child;
17243 child_pdi != NULL;
17244 child_pdi = child_pdi->die_sibling)
17245 {
17246 if (child_pdi->tag == DW_TAG_subprogram
17247 && child_pdi->linkage_name != NULL)
17248 {
17249 char *actual_class_name
17250 = language_class_name_from_physname (cu->language_defn,
17251 child_pdi->linkage_name);
17252 if (actual_class_name != NULL)
17253 {
17254 struct_pdi->name
17255 = ((const char *)
17256 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17257 actual_class_name,
17258 strlen (actual_class_name)));
17259 xfree (actual_class_name);
17260 }
17261 break;
17262 }
17263 }
17264 }
17265
17266 /* Adjust PART_DIE before generating a symbol for it. This function
17267 may set the is_external flag or change the DIE's name. */
17268
17269 static void
17270 fixup_partial_die (struct partial_die_info *part_die,
17271 struct dwarf2_cu *cu)
17272 {
17273 /* Once we've fixed up a die, there's no point in doing so again.
17274 This also avoids a memory leak if we were to call
17275 guess_partial_die_structure_name multiple times. */
17276 if (part_die->fixup_called)
17277 return;
17278
17279 /* If we found a reference attribute and the DIE has no name, try
17280 to find a name in the referred to DIE. */
17281
17282 if (part_die->name == NULL && part_die->has_specification)
17283 {
17284 struct partial_die_info *spec_die;
17285
17286 spec_die = find_partial_die (part_die->spec_offset,
17287 part_die->spec_is_dwz, cu);
17288
17289 fixup_partial_die (spec_die, cu);
17290
17291 if (spec_die->name)
17292 {
17293 part_die->name = spec_die->name;
17294
17295 /* Copy DW_AT_external attribute if it is set. */
17296 if (spec_die->is_external)
17297 part_die->is_external = spec_die->is_external;
17298 }
17299 }
17300
17301 /* Set default names for some unnamed DIEs. */
17302
17303 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
17304 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
17305
17306 /* If there is no parent die to provide a namespace, and there are
17307 children, see if we can determine the namespace from their linkage
17308 name. */
17309 if (cu->language == language_cplus
17310 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17311 && part_die->die_parent == NULL
17312 && part_die->has_children
17313 && (part_die->tag == DW_TAG_class_type
17314 || part_die->tag == DW_TAG_structure_type
17315 || part_die->tag == DW_TAG_union_type))
17316 guess_partial_die_structure_name (part_die, cu);
17317
17318 /* GCC might emit a nameless struct or union that has a linkage
17319 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17320 if (part_die->name == NULL
17321 && (part_die->tag == DW_TAG_class_type
17322 || part_die->tag == DW_TAG_interface_type
17323 || part_die->tag == DW_TAG_structure_type
17324 || part_die->tag == DW_TAG_union_type)
17325 && part_die->linkage_name != NULL)
17326 {
17327 char *demangled;
17328
17329 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
17330 if (demangled)
17331 {
17332 const char *base;
17333
17334 /* Strip any leading namespaces/classes, keep only the base name.
17335 DW_AT_name for named DIEs does not contain the prefixes. */
17336 base = strrchr (demangled, ':');
17337 if (base && base > demangled && base[-1] == ':')
17338 base++;
17339 else
17340 base = demangled;
17341
17342 part_die->name
17343 = ((const char *)
17344 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17345 base, strlen (base)));
17346 xfree (demangled);
17347 }
17348 }
17349
17350 part_die->fixup_called = 1;
17351 }
17352
17353 /* Read an attribute value described by an attribute form. */
17354
17355 static const gdb_byte *
17356 read_attribute_value (const struct die_reader_specs *reader,
17357 struct attribute *attr, unsigned form,
17358 LONGEST implicit_const, const gdb_byte *info_ptr)
17359 {
17360 struct dwarf2_cu *cu = reader->cu;
17361 struct objfile *objfile = cu->objfile;
17362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17363 bfd *abfd = reader->abfd;
17364 struct comp_unit_head *cu_header = &cu->header;
17365 unsigned int bytes_read;
17366 struct dwarf_block *blk;
17367
17368 attr->form = (enum dwarf_form) form;
17369 switch (form)
17370 {
17371 case DW_FORM_ref_addr:
17372 if (cu->header.version == 2)
17373 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17374 else
17375 DW_UNSND (attr) = read_offset (abfd, info_ptr,
17376 &cu->header, &bytes_read);
17377 info_ptr += bytes_read;
17378 break;
17379 case DW_FORM_GNU_ref_alt:
17380 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17381 info_ptr += bytes_read;
17382 break;
17383 case DW_FORM_addr:
17384 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17385 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
17386 info_ptr += bytes_read;
17387 break;
17388 case DW_FORM_block2:
17389 blk = dwarf_alloc_block (cu);
17390 blk->size = read_2_bytes (abfd, info_ptr);
17391 info_ptr += 2;
17392 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17393 info_ptr += blk->size;
17394 DW_BLOCK (attr) = blk;
17395 break;
17396 case DW_FORM_block4:
17397 blk = dwarf_alloc_block (cu);
17398 blk->size = read_4_bytes (abfd, info_ptr);
17399 info_ptr += 4;
17400 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17401 info_ptr += blk->size;
17402 DW_BLOCK (attr) = blk;
17403 break;
17404 case DW_FORM_data2:
17405 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
17406 info_ptr += 2;
17407 break;
17408 case DW_FORM_data4:
17409 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
17410 info_ptr += 4;
17411 break;
17412 case DW_FORM_data8:
17413 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
17414 info_ptr += 8;
17415 break;
17416 case DW_FORM_data16:
17417 blk = dwarf_alloc_block (cu);
17418 blk->size = 16;
17419 blk->data = read_n_bytes (abfd, info_ptr, 16);
17420 info_ptr += 16;
17421 DW_BLOCK (attr) = blk;
17422 break;
17423 case DW_FORM_sec_offset:
17424 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17425 info_ptr += bytes_read;
17426 break;
17427 case DW_FORM_string:
17428 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
17429 DW_STRING_IS_CANONICAL (attr) = 0;
17430 info_ptr += bytes_read;
17431 break;
17432 case DW_FORM_strp:
17433 if (!cu->per_cu->is_dwz)
17434 {
17435 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
17436 &bytes_read);
17437 DW_STRING_IS_CANONICAL (attr) = 0;
17438 info_ptr += bytes_read;
17439 break;
17440 }
17441 /* FALLTHROUGH */
17442 case DW_FORM_line_strp:
17443 if (!cu->per_cu->is_dwz)
17444 {
17445 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
17446 cu_header, &bytes_read);
17447 DW_STRING_IS_CANONICAL (attr) = 0;
17448 info_ptr += bytes_read;
17449 break;
17450 }
17451 /* FALLTHROUGH */
17452 case DW_FORM_GNU_strp_alt:
17453 {
17454 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17455 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
17456 &bytes_read);
17457
17458 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
17459 DW_STRING_IS_CANONICAL (attr) = 0;
17460 info_ptr += bytes_read;
17461 }
17462 break;
17463 case DW_FORM_exprloc:
17464 case DW_FORM_block:
17465 blk = dwarf_alloc_block (cu);
17466 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17467 info_ptr += bytes_read;
17468 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17469 info_ptr += blk->size;
17470 DW_BLOCK (attr) = blk;
17471 break;
17472 case DW_FORM_block1:
17473 blk = dwarf_alloc_block (cu);
17474 blk->size = read_1_byte (abfd, info_ptr);
17475 info_ptr += 1;
17476 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17477 info_ptr += blk->size;
17478 DW_BLOCK (attr) = blk;
17479 break;
17480 case DW_FORM_data1:
17481 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17482 info_ptr += 1;
17483 break;
17484 case DW_FORM_flag:
17485 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17486 info_ptr += 1;
17487 break;
17488 case DW_FORM_flag_present:
17489 DW_UNSND (attr) = 1;
17490 break;
17491 case DW_FORM_sdata:
17492 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17493 info_ptr += bytes_read;
17494 break;
17495 case DW_FORM_udata:
17496 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17497 info_ptr += bytes_read;
17498 break;
17499 case DW_FORM_ref1:
17500 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17501 + read_1_byte (abfd, info_ptr));
17502 info_ptr += 1;
17503 break;
17504 case DW_FORM_ref2:
17505 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17506 + read_2_bytes (abfd, info_ptr));
17507 info_ptr += 2;
17508 break;
17509 case DW_FORM_ref4:
17510 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17511 + read_4_bytes (abfd, info_ptr));
17512 info_ptr += 4;
17513 break;
17514 case DW_FORM_ref8:
17515 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17516 + read_8_bytes (abfd, info_ptr));
17517 info_ptr += 8;
17518 break;
17519 case DW_FORM_ref_sig8:
17520 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
17521 info_ptr += 8;
17522 break;
17523 case DW_FORM_ref_udata:
17524 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17525 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
17526 info_ptr += bytes_read;
17527 break;
17528 case DW_FORM_indirect:
17529 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17530 info_ptr += bytes_read;
17531 if (form == DW_FORM_implicit_const)
17532 {
17533 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17534 info_ptr += bytes_read;
17535 }
17536 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
17537 info_ptr);
17538 break;
17539 case DW_FORM_implicit_const:
17540 DW_SND (attr) = implicit_const;
17541 break;
17542 case DW_FORM_GNU_addr_index:
17543 if (reader->dwo_file == NULL)
17544 {
17545 /* For now flag a hard error.
17546 Later we can turn this into a complaint. */
17547 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17548 dwarf_form_name (form),
17549 bfd_get_filename (abfd));
17550 }
17551 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
17552 info_ptr += bytes_read;
17553 break;
17554 case DW_FORM_GNU_str_index:
17555 if (reader->dwo_file == NULL)
17556 {
17557 /* For now flag a hard error.
17558 Later we can turn this into a complaint if warranted. */
17559 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17560 dwarf_form_name (form),
17561 bfd_get_filename (abfd));
17562 }
17563 {
17564 ULONGEST str_index =
17565 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17566
17567 DW_STRING (attr) = read_str_index (reader, str_index);
17568 DW_STRING_IS_CANONICAL (attr) = 0;
17569 info_ptr += bytes_read;
17570 }
17571 break;
17572 default:
17573 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
17574 dwarf_form_name (form),
17575 bfd_get_filename (abfd));
17576 }
17577
17578 /* Super hack. */
17579 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
17580 attr->form = DW_FORM_GNU_ref_alt;
17581
17582 /* We have seen instances where the compiler tried to emit a byte
17583 size attribute of -1 which ended up being encoded as an unsigned
17584 0xffffffff. Although 0xffffffff is technically a valid size value,
17585 an object of this size seems pretty unlikely so we can relatively
17586 safely treat these cases as if the size attribute was invalid and
17587 treat them as zero by default. */
17588 if (attr->name == DW_AT_byte_size
17589 && form == DW_FORM_data4
17590 && DW_UNSND (attr) >= 0xffffffff)
17591 {
17592 complaint
17593 (&symfile_complaints,
17594 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17595 hex_string (DW_UNSND (attr)));
17596 DW_UNSND (attr) = 0;
17597 }
17598
17599 return info_ptr;
17600 }
17601
17602 /* Read an attribute described by an abbreviated attribute. */
17603
17604 static const gdb_byte *
17605 read_attribute (const struct die_reader_specs *reader,
17606 struct attribute *attr, struct attr_abbrev *abbrev,
17607 const gdb_byte *info_ptr)
17608 {
17609 attr->name = abbrev->name;
17610 return read_attribute_value (reader, attr, abbrev->form,
17611 abbrev->implicit_const, info_ptr);
17612 }
17613
17614 /* Read dwarf information from a buffer. */
17615
17616 static unsigned int
17617 read_1_byte (bfd *abfd, const gdb_byte *buf)
17618 {
17619 return bfd_get_8 (abfd, buf);
17620 }
17621
17622 static int
17623 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17624 {
17625 return bfd_get_signed_8 (abfd, buf);
17626 }
17627
17628 static unsigned int
17629 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17630 {
17631 return bfd_get_16 (abfd, buf);
17632 }
17633
17634 static int
17635 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17636 {
17637 return bfd_get_signed_16 (abfd, buf);
17638 }
17639
17640 static unsigned int
17641 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17642 {
17643 return bfd_get_32 (abfd, buf);
17644 }
17645
17646 static int
17647 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17648 {
17649 return bfd_get_signed_32 (abfd, buf);
17650 }
17651
17652 static ULONGEST
17653 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17654 {
17655 return bfd_get_64 (abfd, buf);
17656 }
17657
17658 static CORE_ADDR
17659 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17660 unsigned int *bytes_read)
17661 {
17662 struct comp_unit_head *cu_header = &cu->header;
17663 CORE_ADDR retval = 0;
17664
17665 if (cu_header->signed_addr_p)
17666 {
17667 switch (cu_header->addr_size)
17668 {
17669 case 2:
17670 retval = bfd_get_signed_16 (abfd, buf);
17671 break;
17672 case 4:
17673 retval = bfd_get_signed_32 (abfd, buf);
17674 break;
17675 case 8:
17676 retval = bfd_get_signed_64 (abfd, buf);
17677 break;
17678 default:
17679 internal_error (__FILE__, __LINE__,
17680 _("read_address: bad switch, signed [in module %s]"),
17681 bfd_get_filename (abfd));
17682 }
17683 }
17684 else
17685 {
17686 switch (cu_header->addr_size)
17687 {
17688 case 2:
17689 retval = bfd_get_16 (abfd, buf);
17690 break;
17691 case 4:
17692 retval = bfd_get_32 (abfd, buf);
17693 break;
17694 case 8:
17695 retval = bfd_get_64 (abfd, buf);
17696 break;
17697 default:
17698 internal_error (__FILE__, __LINE__,
17699 _("read_address: bad switch, "
17700 "unsigned [in module %s]"),
17701 bfd_get_filename (abfd));
17702 }
17703 }
17704
17705 *bytes_read = cu_header->addr_size;
17706 return retval;
17707 }
17708
17709 /* Read the initial length from a section. The (draft) DWARF 3
17710 specification allows the initial length to take up either 4 bytes
17711 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17712 bytes describe the length and all offsets will be 8 bytes in length
17713 instead of 4.
17714
17715 An older, non-standard 64-bit format is also handled by this
17716 function. The older format in question stores the initial length
17717 as an 8-byte quantity without an escape value. Lengths greater
17718 than 2^32 aren't very common which means that the initial 4 bytes
17719 is almost always zero. Since a length value of zero doesn't make
17720 sense for the 32-bit format, this initial zero can be considered to
17721 be an escape value which indicates the presence of the older 64-bit
17722 format. As written, the code can't detect (old format) lengths
17723 greater than 4GB. If it becomes necessary to handle lengths
17724 somewhat larger than 4GB, we could allow other small values (such
17725 as the non-sensical values of 1, 2, and 3) to also be used as
17726 escape values indicating the presence of the old format.
17727
17728 The value returned via bytes_read should be used to increment the
17729 relevant pointer after calling read_initial_length().
17730
17731 [ Note: read_initial_length() and read_offset() are based on the
17732 document entitled "DWARF Debugging Information Format", revision
17733 3, draft 8, dated November 19, 2001. This document was obtained
17734 from:
17735
17736 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17737
17738 This document is only a draft and is subject to change. (So beware.)
17739
17740 Details regarding the older, non-standard 64-bit format were
17741 determined empirically by examining 64-bit ELF files produced by
17742 the SGI toolchain on an IRIX 6.5 machine.
17743
17744 - Kevin, July 16, 2002
17745 ] */
17746
17747 static LONGEST
17748 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17749 {
17750 LONGEST length = bfd_get_32 (abfd, buf);
17751
17752 if (length == 0xffffffff)
17753 {
17754 length = bfd_get_64 (abfd, buf + 4);
17755 *bytes_read = 12;
17756 }
17757 else if (length == 0)
17758 {
17759 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17760 length = bfd_get_64 (abfd, buf);
17761 *bytes_read = 8;
17762 }
17763 else
17764 {
17765 *bytes_read = 4;
17766 }
17767
17768 return length;
17769 }
17770
17771 /* Cover function for read_initial_length.
17772 Returns the length of the object at BUF, and stores the size of the
17773 initial length in *BYTES_READ and stores the size that offsets will be in
17774 *OFFSET_SIZE.
17775 If the initial length size is not equivalent to that specified in
17776 CU_HEADER then issue a complaint.
17777 This is useful when reading non-comp-unit headers. */
17778
17779 static LONGEST
17780 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17781 const struct comp_unit_head *cu_header,
17782 unsigned int *bytes_read,
17783 unsigned int *offset_size)
17784 {
17785 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17786
17787 gdb_assert (cu_header->initial_length_size == 4
17788 || cu_header->initial_length_size == 8
17789 || cu_header->initial_length_size == 12);
17790
17791 if (cu_header->initial_length_size != *bytes_read)
17792 complaint (&symfile_complaints,
17793 _("intermixed 32-bit and 64-bit DWARF sections"));
17794
17795 *offset_size = (*bytes_read == 4) ? 4 : 8;
17796 return length;
17797 }
17798
17799 /* Read an offset from the data stream. The size of the offset is
17800 given by cu_header->offset_size. */
17801
17802 static LONGEST
17803 read_offset (bfd *abfd, const gdb_byte *buf,
17804 const struct comp_unit_head *cu_header,
17805 unsigned int *bytes_read)
17806 {
17807 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17808
17809 *bytes_read = cu_header->offset_size;
17810 return offset;
17811 }
17812
17813 /* Read an offset from the data stream. */
17814
17815 static LONGEST
17816 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17817 {
17818 LONGEST retval = 0;
17819
17820 switch (offset_size)
17821 {
17822 case 4:
17823 retval = bfd_get_32 (abfd, buf);
17824 break;
17825 case 8:
17826 retval = bfd_get_64 (abfd, buf);
17827 break;
17828 default:
17829 internal_error (__FILE__, __LINE__,
17830 _("read_offset_1: bad switch [in module %s]"),
17831 bfd_get_filename (abfd));
17832 }
17833
17834 return retval;
17835 }
17836
17837 static const gdb_byte *
17838 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17839 {
17840 /* If the size of a host char is 8 bits, we can return a pointer
17841 to the buffer, otherwise we have to copy the data to a buffer
17842 allocated on the temporary obstack. */
17843 gdb_assert (HOST_CHAR_BIT == 8);
17844 return buf;
17845 }
17846
17847 static const char *
17848 read_direct_string (bfd *abfd, const gdb_byte *buf,
17849 unsigned int *bytes_read_ptr)
17850 {
17851 /* If the size of a host char is 8 bits, we can return a pointer
17852 to the string, otherwise we have to copy the string to a buffer
17853 allocated on the temporary obstack. */
17854 gdb_assert (HOST_CHAR_BIT == 8);
17855 if (*buf == '\0')
17856 {
17857 *bytes_read_ptr = 1;
17858 return NULL;
17859 }
17860 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17861 return (const char *) buf;
17862 }
17863
17864 /* Return pointer to string at section SECT offset STR_OFFSET with error
17865 reporting strings FORM_NAME and SECT_NAME. */
17866
17867 static const char *
17868 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17869 struct dwarf2_section_info *sect,
17870 const char *form_name,
17871 const char *sect_name)
17872 {
17873 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17874 if (sect->buffer == NULL)
17875 error (_("%s used without %s section [in module %s]"),
17876 form_name, sect_name, bfd_get_filename (abfd));
17877 if (str_offset >= sect->size)
17878 error (_("%s pointing outside of %s section [in module %s]"),
17879 form_name, sect_name, bfd_get_filename (abfd));
17880 gdb_assert (HOST_CHAR_BIT == 8);
17881 if (sect->buffer[str_offset] == '\0')
17882 return NULL;
17883 return (const char *) (sect->buffer + str_offset);
17884 }
17885
17886 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17887
17888 static const char *
17889 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17890 {
17891 return read_indirect_string_at_offset_from (abfd, str_offset,
17892 &dwarf2_per_objfile->str,
17893 "DW_FORM_strp", ".debug_str");
17894 }
17895
17896 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17897
17898 static const char *
17899 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17900 {
17901 return read_indirect_string_at_offset_from (abfd, str_offset,
17902 &dwarf2_per_objfile->line_str,
17903 "DW_FORM_line_strp",
17904 ".debug_line_str");
17905 }
17906
17907 /* Read a string at offset STR_OFFSET in the .debug_str section from
17908 the .dwz file DWZ. Throw an error if the offset is too large. If
17909 the string consists of a single NUL byte, return NULL; otherwise
17910 return a pointer to the string. */
17911
17912 static const char *
17913 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17914 {
17915 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17916
17917 if (dwz->str.buffer == NULL)
17918 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17919 "section [in module %s]"),
17920 bfd_get_filename (dwz->dwz_bfd));
17921 if (str_offset >= dwz->str.size)
17922 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17923 ".debug_str section [in module %s]"),
17924 bfd_get_filename (dwz->dwz_bfd));
17925 gdb_assert (HOST_CHAR_BIT == 8);
17926 if (dwz->str.buffer[str_offset] == '\0')
17927 return NULL;
17928 return (const char *) (dwz->str.buffer + str_offset);
17929 }
17930
17931 /* Return pointer to string at .debug_str offset as read from BUF.
17932 BUF is assumed to be in a compilation unit described by CU_HEADER.
17933 Return *BYTES_READ_PTR count of bytes read from BUF. */
17934
17935 static const char *
17936 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17937 const struct comp_unit_head *cu_header,
17938 unsigned int *bytes_read_ptr)
17939 {
17940 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17941
17942 return read_indirect_string_at_offset (abfd, str_offset);
17943 }
17944
17945 /* Return pointer to string at .debug_line_str offset as read from BUF.
17946 BUF is assumed to be in a compilation unit described by CU_HEADER.
17947 Return *BYTES_READ_PTR count of bytes read from BUF. */
17948
17949 static const char *
17950 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17951 const struct comp_unit_head *cu_header,
17952 unsigned int *bytes_read_ptr)
17953 {
17954 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17955
17956 return read_indirect_line_string_at_offset (abfd, str_offset);
17957 }
17958
17959 ULONGEST
17960 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17961 unsigned int *bytes_read_ptr)
17962 {
17963 ULONGEST result;
17964 unsigned int num_read;
17965 int shift;
17966 unsigned char byte;
17967
17968 result = 0;
17969 shift = 0;
17970 num_read = 0;
17971 while (1)
17972 {
17973 byte = bfd_get_8 (abfd, buf);
17974 buf++;
17975 num_read++;
17976 result |= ((ULONGEST) (byte & 127) << shift);
17977 if ((byte & 128) == 0)
17978 {
17979 break;
17980 }
17981 shift += 7;
17982 }
17983 *bytes_read_ptr = num_read;
17984 return result;
17985 }
17986
17987 static LONGEST
17988 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17989 unsigned int *bytes_read_ptr)
17990 {
17991 LONGEST result;
17992 int shift, num_read;
17993 unsigned char byte;
17994
17995 result = 0;
17996 shift = 0;
17997 num_read = 0;
17998 while (1)
17999 {
18000 byte = bfd_get_8 (abfd, buf);
18001 buf++;
18002 num_read++;
18003 result |= ((LONGEST) (byte & 127) << shift);
18004 shift += 7;
18005 if ((byte & 128) == 0)
18006 {
18007 break;
18008 }
18009 }
18010 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
18011 result |= -(((LONGEST) 1) << shift);
18012 *bytes_read_ptr = num_read;
18013 return result;
18014 }
18015
18016 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18017 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
18018 ADDR_SIZE is the size of addresses from the CU header. */
18019
18020 static CORE_ADDR
18021 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
18022 {
18023 struct objfile *objfile = dwarf2_per_objfile->objfile;
18024 bfd *abfd = objfile->obfd;
18025 const gdb_byte *info_ptr;
18026
18027 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
18028 if (dwarf2_per_objfile->addr.buffer == NULL)
18029 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18030 objfile_name (objfile));
18031 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
18032 error (_("DW_FORM_addr_index pointing outside of "
18033 ".debug_addr section [in module %s]"),
18034 objfile_name (objfile));
18035 info_ptr = (dwarf2_per_objfile->addr.buffer
18036 + addr_base + addr_index * addr_size);
18037 if (addr_size == 4)
18038 return bfd_get_32 (abfd, info_ptr);
18039 else
18040 return bfd_get_64 (abfd, info_ptr);
18041 }
18042
18043 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18044
18045 static CORE_ADDR
18046 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18047 {
18048 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
18049 }
18050
18051 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18052
18053 static CORE_ADDR
18054 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18055 unsigned int *bytes_read)
18056 {
18057 bfd *abfd = cu->objfile->obfd;
18058 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18059
18060 return read_addr_index (cu, addr_index);
18061 }
18062
18063 /* Data structure to pass results from dwarf2_read_addr_index_reader
18064 back to dwarf2_read_addr_index. */
18065
18066 struct dwarf2_read_addr_index_data
18067 {
18068 ULONGEST addr_base;
18069 int addr_size;
18070 };
18071
18072 /* die_reader_func for dwarf2_read_addr_index. */
18073
18074 static void
18075 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
18076 const gdb_byte *info_ptr,
18077 struct die_info *comp_unit_die,
18078 int has_children,
18079 void *data)
18080 {
18081 struct dwarf2_cu *cu = reader->cu;
18082 struct dwarf2_read_addr_index_data *aidata =
18083 (struct dwarf2_read_addr_index_data *) data;
18084
18085 aidata->addr_base = cu->addr_base;
18086 aidata->addr_size = cu->header.addr_size;
18087 }
18088
18089 /* Given an index in .debug_addr, fetch the value.
18090 NOTE: This can be called during dwarf expression evaluation,
18091 long after the debug information has been read, and thus per_cu->cu
18092 may no longer exist. */
18093
18094 CORE_ADDR
18095 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
18096 unsigned int addr_index)
18097 {
18098 struct objfile *objfile = per_cu->objfile;
18099 struct dwarf2_cu *cu = per_cu->cu;
18100 ULONGEST addr_base;
18101 int addr_size;
18102
18103 /* This is intended to be called from outside this file. */
18104 dw2_setup (objfile);
18105
18106 /* We need addr_base and addr_size.
18107 If we don't have PER_CU->cu, we have to get it.
18108 Nasty, but the alternative is storing the needed info in PER_CU,
18109 which at this point doesn't seem justified: it's not clear how frequently
18110 it would get used and it would increase the size of every PER_CU.
18111 Entry points like dwarf2_per_cu_addr_size do a similar thing
18112 so we're not in uncharted territory here.
18113 Alas we need to be a bit more complicated as addr_base is contained
18114 in the DIE.
18115
18116 We don't need to read the entire CU(/TU).
18117 We just need the header and top level die.
18118
18119 IWBN to use the aging mechanism to let us lazily later discard the CU.
18120 For now we skip this optimization. */
18121
18122 if (cu != NULL)
18123 {
18124 addr_base = cu->addr_base;
18125 addr_size = cu->header.addr_size;
18126 }
18127 else
18128 {
18129 struct dwarf2_read_addr_index_data aidata;
18130
18131 /* Note: We can't use init_cutu_and_read_dies_simple here,
18132 we need addr_base. */
18133 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
18134 dwarf2_read_addr_index_reader, &aidata);
18135 addr_base = aidata.addr_base;
18136 addr_size = aidata.addr_size;
18137 }
18138
18139 return read_addr_index_1 (addr_index, addr_base, addr_size);
18140 }
18141
18142 /* Given a DW_FORM_GNU_str_index, fetch the string.
18143 This is only used by the Fission support. */
18144
18145 static const char *
18146 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18147 {
18148 struct objfile *objfile = dwarf2_per_objfile->objfile;
18149 const char *objf_name = objfile_name (objfile);
18150 bfd *abfd = objfile->obfd;
18151 struct dwarf2_cu *cu = reader->cu;
18152 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
18153 struct dwarf2_section_info *str_offsets_section =
18154 &reader->dwo_file->sections.str_offsets;
18155 const gdb_byte *info_ptr;
18156 ULONGEST str_offset;
18157 static const char form_name[] = "DW_FORM_GNU_str_index";
18158
18159 dwarf2_read_section (objfile, str_section);
18160 dwarf2_read_section (objfile, str_offsets_section);
18161 if (str_section->buffer == NULL)
18162 error (_("%s used without .debug_str.dwo section"
18163 " in CU at offset 0x%x [in module %s]"),
18164 form_name, to_underlying (cu->header.sect_off), objf_name);
18165 if (str_offsets_section->buffer == NULL)
18166 error (_("%s used without .debug_str_offsets.dwo section"
18167 " in CU at offset 0x%x [in module %s]"),
18168 form_name, to_underlying (cu->header.sect_off), objf_name);
18169 if (str_index * cu->header.offset_size >= str_offsets_section->size)
18170 error (_("%s pointing outside of .debug_str_offsets.dwo"
18171 " section in CU at offset 0x%x [in module %s]"),
18172 form_name, to_underlying (cu->header.sect_off), objf_name);
18173 info_ptr = (str_offsets_section->buffer
18174 + str_index * cu->header.offset_size);
18175 if (cu->header.offset_size == 4)
18176 str_offset = bfd_get_32 (abfd, info_ptr);
18177 else
18178 str_offset = bfd_get_64 (abfd, info_ptr);
18179 if (str_offset >= str_section->size)
18180 error (_("Offset from %s pointing outside of"
18181 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
18182 form_name, to_underlying (cu->header.sect_off), objf_name);
18183 return (const char *) (str_section->buffer + str_offset);
18184 }
18185
18186 /* Return the length of an LEB128 number in BUF. */
18187
18188 static int
18189 leb128_size (const gdb_byte *buf)
18190 {
18191 const gdb_byte *begin = buf;
18192 gdb_byte byte;
18193
18194 while (1)
18195 {
18196 byte = *buf++;
18197 if ((byte & 128) == 0)
18198 return buf - begin;
18199 }
18200 }
18201
18202 static void
18203 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
18204 {
18205 switch (lang)
18206 {
18207 case DW_LANG_C89:
18208 case DW_LANG_C99:
18209 case DW_LANG_C11:
18210 case DW_LANG_C:
18211 case DW_LANG_UPC:
18212 cu->language = language_c;
18213 break;
18214 case DW_LANG_Java:
18215 case DW_LANG_C_plus_plus:
18216 case DW_LANG_C_plus_plus_11:
18217 case DW_LANG_C_plus_plus_14:
18218 cu->language = language_cplus;
18219 break;
18220 case DW_LANG_D:
18221 cu->language = language_d;
18222 break;
18223 case DW_LANG_Fortran77:
18224 case DW_LANG_Fortran90:
18225 case DW_LANG_Fortran95:
18226 case DW_LANG_Fortran03:
18227 case DW_LANG_Fortran08:
18228 cu->language = language_fortran;
18229 break;
18230 case DW_LANG_Go:
18231 cu->language = language_go;
18232 break;
18233 case DW_LANG_Mips_Assembler:
18234 cu->language = language_asm;
18235 break;
18236 case DW_LANG_Ada83:
18237 case DW_LANG_Ada95:
18238 cu->language = language_ada;
18239 break;
18240 case DW_LANG_Modula2:
18241 cu->language = language_m2;
18242 break;
18243 case DW_LANG_Pascal83:
18244 cu->language = language_pascal;
18245 break;
18246 case DW_LANG_ObjC:
18247 cu->language = language_objc;
18248 break;
18249 case DW_LANG_Rust:
18250 case DW_LANG_Rust_old:
18251 cu->language = language_rust;
18252 break;
18253 case DW_LANG_Cobol74:
18254 case DW_LANG_Cobol85:
18255 default:
18256 cu->language = language_minimal;
18257 break;
18258 }
18259 cu->language_defn = language_def (cu->language);
18260 }
18261
18262 /* Return the named attribute or NULL if not there. */
18263
18264 static struct attribute *
18265 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18266 {
18267 for (;;)
18268 {
18269 unsigned int i;
18270 struct attribute *spec = NULL;
18271
18272 for (i = 0; i < die->num_attrs; ++i)
18273 {
18274 if (die->attrs[i].name == name)
18275 return &die->attrs[i];
18276 if (die->attrs[i].name == DW_AT_specification
18277 || die->attrs[i].name == DW_AT_abstract_origin)
18278 spec = &die->attrs[i];
18279 }
18280
18281 if (!spec)
18282 break;
18283
18284 die = follow_die_ref (die, spec, &cu);
18285 }
18286
18287 return NULL;
18288 }
18289
18290 /* Return the named attribute or NULL if not there,
18291 but do not follow DW_AT_specification, etc.
18292 This is for use in contexts where we're reading .debug_types dies.
18293 Following DW_AT_specification, DW_AT_abstract_origin will take us
18294 back up the chain, and we want to go down. */
18295
18296 static struct attribute *
18297 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
18298 {
18299 unsigned int i;
18300
18301 for (i = 0; i < die->num_attrs; ++i)
18302 if (die->attrs[i].name == name)
18303 return &die->attrs[i];
18304
18305 return NULL;
18306 }
18307
18308 /* Return the string associated with a string-typed attribute, or NULL if it
18309 is either not found or is of an incorrect type. */
18310
18311 static const char *
18312 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18313 {
18314 struct attribute *attr;
18315 const char *str = NULL;
18316
18317 attr = dwarf2_attr (die, name, cu);
18318
18319 if (attr != NULL)
18320 {
18321 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
18322 || attr->form == DW_FORM_string
18323 || attr->form == DW_FORM_GNU_str_index
18324 || attr->form == DW_FORM_GNU_strp_alt)
18325 str = DW_STRING (attr);
18326 else
18327 complaint (&symfile_complaints,
18328 _("string type expected for attribute %s for "
18329 "DIE at 0x%x in module %s"),
18330 dwarf_attr_name (name), to_underlying (die->sect_off),
18331 objfile_name (cu->objfile));
18332 }
18333
18334 return str;
18335 }
18336
18337 /* Return non-zero iff the attribute NAME is defined for the given DIE,
18338 and holds a non-zero value. This function should only be used for
18339 DW_FORM_flag or DW_FORM_flag_present attributes. */
18340
18341 static int
18342 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
18343 {
18344 struct attribute *attr = dwarf2_attr (die, name, cu);
18345
18346 return (attr && DW_UNSND (attr));
18347 }
18348
18349 static int
18350 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
18351 {
18352 /* A DIE is a declaration if it has a DW_AT_declaration attribute
18353 which value is non-zero. However, we have to be careful with
18354 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
18355 (via dwarf2_flag_true_p) follows this attribute. So we may
18356 end up accidently finding a declaration attribute that belongs
18357 to a different DIE referenced by the specification attribute,
18358 even though the given DIE does not have a declaration attribute. */
18359 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
18360 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
18361 }
18362
18363 /* Return the die giving the specification for DIE, if there is
18364 one. *SPEC_CU is the CU containing DIE on input, and the CU
18365 containing the return value on output. If there is no
18366 specification, but there is an abstract origin, that is
18367 returned. */
18368
18369 static struct die_info *
18370 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
18371 {
18372 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
18373 *spec_cu);
18374
18375 if (spec_attr == NULL)
18376 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
18377
18378 if (spec_attr == NULL)
18379 return NULL;
18380 else
18381 return follow_die_ref (die, spec_attr, spec_cu);
18382 }
18383
18384 /* Stub for free_line_header to match void * callback types. */
18385
18386 static void
18387 free_line_header_voidp (void *arg)
18388 {
18389 struct line_header *lh = (struct line_header *) arg;
18390
18391 delete lh;
18392 }
18393
18394 void
18395 line_header::add_include_dir (const char *include_dir)
18396 {
18397 if (dwarf_line_debug >= 2)
18398 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
18399 include_dirs.size () + 1, include_dir);
18400
18401 include_dirs.push_back (include_dir);
18402 }
18403
18404 void
18405 line_header::add_file_name (const char *name,
18406 dir_index d_index,
18407 unsigned int mod_time,
18408 unsigned int length)
18409 {
18410 if (dwarf_line_debug >= 2)
18411 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
18412 (unsigned) file_names.size () + 1, name);
18413
18414 file_names.emplace_back (name, d_index, mod_time, length);
18415 }
18416
18417 /* A convenience function to find the proper .debug_line section for a CU. */
18418
18419 static struct dwarf2_section_info *
18420 get_debug_line_section (struct dwarf2_cu *cu)
18421 {
18422 struct dwarf2_section_info *section;
18423
18424 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
18425 DWO file. */
18426 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18427 section = &cu->dwo_unit->dwo_file->sections.line;
18428 else if (cu->per_cu->is_dwz)
18429 {
18430 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18431
18432 section = &dwz->line;
18433 }
18434 else
18435 section = &dwarf2_per_objfile->line;
18436
18437 return section;
18438 }
18439
18440 /* Read directory or file name entry format, starting with byte of
18441 format count entries, ULEB128 pairs of entry formats, ULEB128 of
18442 entries count and the entries themselves in the described entry
18443 format. */
18444
18445 static void
18446 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
18447 struct line_header *lh,
18448 const struct comp_unit_head *cu_header,
18449 void (*callback) (struct line_header *lh,
18450 const char *name,
18451 dir_index d_index,
18452 unsigned int mod_time,
18453 unsigned int length))
18454 {
18455 gdb_byte format_count, formati;
18456 ULONGEST data_count, datai;
18457 const gdb_byte *buf = *bufp;
18458 const gdb_byte *format_header_data;
18459 int i;
18460 unsigned int bytes_read;
18461
18462 format_count = read_1_byte (abfd, buf);
18463 buf += 1;
18464 format_header_data = buf;
18465 for (formati = 0; formati < format_count; formati++)
18466 {
18467 read_unsigned_leb128 (abfd, buf, &bytes_read);
18468 buf += bytes_read;
18469 read_unsigned_leb128 (abfd, buf, &bytes_read);
18470 buf += bytes_read;
18471 }
18472
18473 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
18474 buf += bytes_read;
18475 for (datai = 0; datai < data_count; datai++)
18476 {
18477 const gdb_byte *format = format_header_data;
18478 struct file_entry fe;
18479
18480 for (formati = 0; formati < format_count; formati++)
18481 {
18482 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
18483 format += bytes_read;
18484
18485 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
18486 format += bytes_read;
18487
18488 gdb::optional<const char *> string;
18489 gdb::optional<unsigned int> uint;
18490
18491 switch (form)
18492 {
18493 case DW_FORM_string:
18494 string.emplace (read_direct_string (abfd, buf, &bytes_read));
18495 buf += bytes_read;
18496 break;
18497
18498 case DW_FORM_line_strp:
18499 string.emplace (read_indirect_line_string (abfd, buf,
18500 cu_header,
18501 &bytes_read));
18502 buf += bytes_read;
18503 break;
18504
18505 case DW_FORM_data1:
18506 uint.emplace (read_1_byte (abfd, buf));
18507 buf += 1;
18508 break;
18509
18510 case DW_FORM_data2:
18511 uint.emplace (read_2_bytes (abfd, buf));
18512 buf += 2;
18513 break;
18514
18515 case DW_FORM_data4:
18516 uint.emplace (read_4_bytes (abfd, buf));
18517 buf += 4;
18518 break;
18519
18520 case DW_FORM_data8:
18521 uint.emplace (read_8_bytes (abfd, buf));
18522 buf += 8;
18523 break;
18524
18525 case DW_FORM_udata:
18526 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
18527 buf += bytes_read;
18528 break;
18529
18530 case DW_FORM_block:
18531 /* It is valid only for DW_LNCT_timestamp which is ignored by
18532 current GDB. */
18533 break;
18534 }
18535
18536 switch (content_type)
18537 {
18538 case DW_LNCT_path:
18539 if (string.has_value ())
18540 fe.name = *string;
18541 break;
18542 case DW_LNCT_directory_index:
18543 if (uint.has_value ())
18544 fe.d_index = (dir_index) *uint;
18545 break;
18546 case DW_LNCT_timestamp:
18547 if (uint.has_value ())
18548 fe.mod_time = *uint;
18549 break;
18550 case DW_LNCT_size:
18551 if (uint.has_value ())
18552 fe.length = *uint;
18553 break;
18554 case DW_LNCT_MD5:
18555 break;
18556 default:
18557 complaint (&symfile_complaints,
18558 _("Unknown format content type %s"),
18559 pulongest (content_type));
18560 }
18561 }
18562
18563 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
18564 }
18565
18566 *bufp = buf;
18567 }
18568
18569 /* Read the statement program header starting at OFFSET in
18570 .debug_line, or .debug_line.dwo. Return a pointer
18571 to a struct line_header, allocated using xmalloc.
18572 Returns NULL if there is a problem reading the header, e.g., if it
18573 has a version we don't understand.
18574
18575 NOTE: the strings in the include directory and file name tables of
18576 the returned object point into the dwarf line section buffer,
18577 and must not be freed. */
18578
18579 static line_header_up
18580 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
18581 {
18582 const gdb_byte *line_ptr;
18583 unsigned int bytes_read, offset_size;
18584 int i;
18585 const char *cur_dir, *cur_file;
18586 struct dwarf2_section_info *section;
18587 bfd *abfd;
18588
18589 section = get_debug_line_section (cu);
18590 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18591 if (section->buffer == NULL)
18592 {
18593 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18594 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18595 else
18596 complaint (&symfile_complaints, _("missing .debug_line section"));
18597 return 0;
18598 }
18599
18600 /* We can't do this until we know the section is non-empty.
18601 Only then do we know we have such a section. */
18602 abfd = get_section_bfd_owner (section);
18603
18604 /* Make sure that at least there's room for the total_length field.
18605 That could be 12 bytes long, but we're just going to fudge that. */
18606 if (to_underlying (sect_off) + 4 >= section->size)
18607 {
18608 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18609 return 0;
18610 }
18611
18612 line_header_up lh (new line_header ());
18613
18614 lh->sect_off = sect_off;
18615 lh->offset_in_dwz = cu->per_cu->is_dwz;
18616
18617 line_ptr = section->buffer + to_underlying (sect_off);
18618
18619 /* Read in the header. */
18620 lh->total_length =
18621 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18622 &bytes_read, &offset_size);
18623 line_ptr += bytes_read;
18624 if (line_ptr + lh->total_length > (section->buffer + section->size))
18625 {
18626 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18627 return 0;
18628 }
18629 lh->statement_program_end = line_ptr + lh->total_length;
18630 lh->version = read_2_bytes (abfd, line_ptr);
18631 line_ptr += 2;
18632 if (lh->version > 5)
18633 {
18634 /* This is a version we don't understand. The format could have
18635 changed in ways we don't handle properly so just punt. */
18636 complaint (&symfile_complaints,
18637 _("unsupported version in .debug_line section"));
18638 return NULL;
18639 }
18640 if (lh->version >= 5)
18641 {
18642 gdb_byte segment_selector_size;
18643
18644 /* Skip address size. */
18645 read_1_byte (abfd, line_ptr);
18646 line_ptr += 1;
18647
18648 segment_selector_size = read_1_byte (abfd, line_ptr);
18649 line_ptr += 1;
18650 if (segment_selector_size != 0)
18651 {
18652 complaint (&symfile_complaints,
18653 _("unsupported segment selector size %u "
18654 "in .debug_line section"),
18655 segment_selector_size);
18656 return NULL;
18657 }
18658 }
18659 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18660 line_ptr += offset_size;
18661 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18662 line_ptr += 1;
18663 if (lh->version >= 4)
18664 {
18665 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18666 line_ptr += 1;
18667 }
18668 else
18669 lh->maximum_ops_per_instruction = 1;
18670
18671 if (lh->maximum_ops_per_instruction == 0)
18672 {
18673 lh->maximum_ops_per_instruction = 1;
18674 complaint (&symfile_complaints,
18675 _("invalid maximum_ops_per_instruction "
18676 "in `.debug_line' section"));
18677 }
18678
18679 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18680 line_ptr += 1;
18681 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18682 line_ptr += 1;
18683 lh->line_range = read_1_byte (abfd, line_ptr);
18684 line_ptr += 1;
18685 lh->opcode_base = read_1_byte (abfd, line_ptr);
18686 line_ptr += 1;
18687 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18688
18689 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18690 for (i = 1; i < lh->opcode_base; ++i)
18691 {
18692 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18693 line_ptr += 1;
18694 }
18695
18696 if (lh->version >= 5)
18697 {
18698 /* Read directory table. */
18699 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18700 [] (struct line_header *lh, const char *name,
18701 dir_index d_index, unsigned int mod_time,
18702 unsigned int length)
18703 {
18704 lh->add_include_dir (name);
18705 });
18706
18707 /* Read file name table. */
18708 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18709 [] (struct line_header *lh, const char *name,
18710 dir_index d_index, unsigned int mod_time,
18711 unsigned int length)
18712 {
18713 lh->add_file_name (name, d_index, mod_time, length);
18714 });
18715 }
18716 else
18717 {
18718 /* Read directory table. */
18719 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18720 {
18721 line_ptr += bytes_read;
18722 lh->add_include_dir (cur_dir);
18723 }
18724 line_ptr += bytes_read;
18725
18726 /* Read file name table. */
18727 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18728 {
18729 unsigned int mod_time, length;
18730 dir_index d_index;
18731
18732 line_ptr += bytes_read;
18733 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18734 line_ptr += bytes_read;
18735 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18736 line_ptr += bytes_read;
18737 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18738 line_ptr += bytes_read;
18739
18740 lh->add_file_name (cur_file, d_index, mod_time, length);
18741 }
18742 line_ptr += bytes_read;
18743 }
18744 lh->statement_program_start = line_ptr;
18745
18746 if (line_ptr > (section->buffer + section->size))
18747 complaint (&symfile_complaints,
18748 _("line number info header doesn't "
18749 "fit in `.debug_line' section"));
18750
18751 return lh;
18752 }
18753
18754 /* Subroutine of dwarf_decode_lines to simplify it.
18755 Return the file name of the psymtab for included file FILE_INDEX
18756 in line header LH of PST.
18757 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18758 If space for the result is malloc'd, it will be freed by a cleanup.
18759 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18760
18761 The function creates dangling cleanup registration. */
18762
18763 static const char *
18764 psymtab_include_file_name (const struct line_header *lh, int file_index,
18765 const struct partial_symtab *pst,
18766 const char *comp_dir)
18767 {
18768 const file_entry &fe = lh->file_names[file_index];
18769 const char *include_name = fe.name;
18770 const char *include_name_to_compare = include_name;
18771 const char *pst_filename;
18772 char *copied_name = NULL;
18773 int file_is_pst;
18774
18775 const char *dir_name = fe.include_dir (lh);
18776
18777 if (!IS_ABSOLUTE_PATH (include_name)
18778 && (dir_name != NULL || comp_dir != NULL))
18779 {
18780 /* Avoid creating a duplicate psymtab for PST.
18781 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18782 Before we do the comparison, however, we need to account
18783 for DIR_NAME and COMP_DIR.
18784 First prepend dir_name (if non-NULL). If we still don't
18785 have an absolute path prepend comp_dir (if non-NULL).
18786 However, the directory we record in the include-file's
18787 psymtab does not contain COMP_DIR (to match the
18788 corresponding symtab(s)).
18789
18790 Example:
18791
18792 bash$ cd /tmp
18793 bash$ gcc -g ./hello.c
18794 include_name = "hello.c"
18795 dir_name = "."
18796 DW_AT_comp_dir = comp_dir = "/tmp"
18797 DW_AT_name = "./hello.c"
18798
18799 */
18800
18801 if (dir_name != NULL)
18802 {
18803 char *tem = concat (dir_name, SLASH_STRING,
18804 include_name, (char *)NULL);
18805
18806 make_cleanup (xfree, tem);
18807 include_name = tem;
18808 include_name_to_compare = include_name;
18809 }
18810 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18811 {
18812 char *tem = concat (comp_dir, SLASH_STRING,
18813 include_name, (char *)NULL);
18814
18815 make_cleanup (xfree, tem);
18816 include_name_to_compare = tem;
18817 }
18818 }
18819
18820 pst_filename = pst->filename;
18821 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18822 {
18823 copied_name = concat (pst->dirname, SLASH_STRING,
18824 pst_filename, (char *)NULL);
18825 pst_filename = copied_name;
18826 }
18827
18828 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18829
18830 if (copied_name != NULL)
18831 xfree (copied_name);
18832
18833 if (file_is_pst)
18834 return NULL;
18835 return include_name;
18836 }
18837
18838 /* State machine to track the state of the line number program. */
18839
18840 class lnp_state_machine
18841 {
18842 public:
18843 /* Initialize a machine state for the start of a line number
18844 program. */
18845 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18846
18847 file_entry *current_file ()
18848 {
18849 /* lh->file_names is 0-based, but the file name numbers in the
18850 statement program are 1-based. */
18851 return m_line_header->file_name_at (m_file);
18852 }
18853
18854 /* Record the line in the state machine. END_SEQUENCE is true if
18855 we're processing the end of a sequence. */
18856 void record_line (bool end_sequence);
18857
18858 /* Check address and if invalid nop-out the rest of the lines in this
18859 sequence. */
18860 void check_line_address (struct dwarf2_cu *cu,
18861 const gdb_byte *line_ptr,
18862 CORE_ADDR lowpc, CORE_ADDR address);
18863
18864 void handle_set_discriminator (unsigned int discriminator)
18865 {
18866 m_discriminator = discriminator;
18867 m_line_has_non_zero_discriminator |= discriminator != 0;
18868 }
18869
18870 /* Handle DW_LNE_set_address. */
18871 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18872 {
18873 m_op_index = 0;
18874 address += baseaddr;
18875 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18876 }
18877
18878 /* Handle DW_LNS_advance_pc. */
18879 void handle_advance_pc (CORE_ADDR adjust);
18880
18881 /* Handle a special opcode. */
18882 void handle_special_opcode (unsigned char op_code);
18883
18884 /* Handle DW_LNS_advance_line. */
18885 void handle_advance_line (int line_delta)
18886 {
18887 advance_line (line_delta);
18888 }
18889
18890 /* Handle DW_LNS_set_file. */
18891 void handle_set_file (file_name_index file);
18892
18893 /* Handle DW_LNS_negate_stmt. */
18894 void handle_negate_stmt ()
18895 {
18896 m_is_stmt = !m_is_stmt;
18897 }
18898
18899 /* Handle DW_LNS_const_add_pc. */
18900 void handle_const_add_pc ();
18901
18902 /* Handle DW_LNS_fixed_advance_pc. */
18903 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18904 {
18905 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18906 m_op_index = 0;
18907 }
18908
18909 /* Handle DW_LNS_copy. */
18910 void handle_copy ()
18911 {
18912 record_line (false);
18913 m_discriminator = 0;
18914 }
18915
18916 /* Handle DW_LNE_end_sequence. */
18917 void handle_end_sequence ()
18918 {
18919 m_record_line_callback = ::record_line;
18920 }
18921
18922 private:
18923 /* Advance the line by LINE_DELTA. */
18924 void advance_line (int line_delta)
18925 {
18926 m_line += line_delta;
18927
18928 if (line_delta != 0)
18929 m_line_has_non_zero_discriminator = m_discriminator != 0;
18930 }
18931
18932 gdbarch *m_gdbarch;
18933
18934 /* True if we're recording lines.
18935 Otherwise we're building partial symtabs and are just interested in
18936 finding include files mentioned by the line number program. */
18937 bool m_record_lines_p;
18938
18939 /* The line number header. */
18940 line_header *m_line_header;
18941
18942 /* These are part of the standard DWARF line number state machine,
18943 and initialized according to the DWARF spec. */
18944
18945 unsigned char m_op_index = 0;
18946 /* The line table index (1-based) of the current file. */
18947 file_name_index m_file = (file_name_index) 1;
18948 unsigned int m_line = 1;
18949
18950 /* These are initialized in the constructor. */
18951
18952 CORE_ADDR m_address;
18953 bool m_is_stmt;
18954 unsigned int m_discriminator;
18955
18956 /* Additional bits of state we need to track. */
18957
18958 /* The last file that we called dwarf2_start_subfile for.
18959 This is only used for TLLs. */
18960 unsigned int m_last_file = 0;
18961 /* The last file a line number was recorded for. */
18962 struct subfile *m_last_subfile = NULL;
18963
18964 /* The function to call to record a line. */
18965 record_line_ftype *m_record_line_callback = NULL;
18966
18967 /* The last line number that was recorded, used to coalesce
18968 consecutive entries for the same line. This can happen, for
18969 example, when discriminators are present. PR 17276. */
18970 unsigned int m_last_line = 0;
18971 bool m_line_has_non_zero_discriminator = false;
18972 };
18973
18974 void
18975 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18976 {
18977 CORE_ADDR addr_adj = (((m_op_index + adjust)
18978 / m_line_header->maximum_ops_per_instruction)
18979 * m_line_header->minimum_instruction_length);
18980 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18981 m_op_index = ((m_op_index + adjust)
18982 % m_line_header->maximum_ops_per_instruction);
18983 }
18984
18985 void
18986 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18987 {
18988 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18989 CORE_ADDR addr_adj = (((m_op_index
18990 + (adj_opcode / m_line_header->line_range))
18991 / m_line_header->maximum_ops_per_instruction)
18992 * m_line_header->minimum_instruction_length);
18993 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18994 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18995 % m_line_header->maximum_ops_per_instruction);
18996
18997 int line_delta = (m_line_header->line_base
18998 + (adj_opcode % m_line_header->line_range));
18999 advance_line (line_delta);
19000 record_line (false);
19001 m_discriminator = 0;
19002 }
19003
19004 void
19005 lnp_state_machine::handle_set_file (file_name_index file)
19006 {
19007 m_file = file;
19008
19009 const file_entry *fe = current_file ();
19010 if (fe == NULL)
19011 dwarf2_debug_line_missing_file_complaint ();
19012 else if (m_record_lines_p)
19013 {
19014 const char *dir = fe->include_dir (m_line_header);
19015
19016 m_last_subfile = current_subfile;
19017 m_line_has_non_zero_discriminator = m_discriminator != 0;
19018 dwarf2_start_subfile (fe->name, dir);
19019 }
19020 }
19021
19022 void
19023 lnp_state_machine::handle_const_add_pc ()
19024 {
19025 CORE_ADDR adjust
19026 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19027
19028 CORE_ADDR addr_adj
19029 = (((m_op_index + adjust)
19030 / m_line_header->maximum_ops_per_instruction)
19031 * m_line_header->minimum_instruction_length);
19032
19033 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19034 m_op_index = ((m_op_index + adjust)
19035 % m_line_header->maximum_ops_per_instruction);
19036 }
19037
19038 /* Ignore this record_line request. */
19039
19040 static void
19041 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
19042 {
19043 return;
19044 }
19045
19046 /* Return non-zero if we should add LINE to the line number table.
19047 LINE is the line to add, LAST_LINE is the last line that was added,
19048 LAST_SUBFILE is the subfile for LAST_LINE.
19049 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19050 had a non-zero discriminator.
19051
19052 We have to be careful in the presence of discriminators.
19053 E.g., for this line:
19054
19055 for (i = 0; i < 100000; i++);
19056
19057 clang can emit four line number entries for that one line,
19058 each with a different discriminator.
19059 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19060
19061 However, we want gdb to coalesce all four entries into one.
19062 Otherwise the user could stepi into the middle of the line and
19063 gdb would get confused about whether the pc really was in the
19064 middle of the line.
19065
19066 Things are further complicated by the fact that two consecutive
19067 line number entries for the same line is a heuristic used by gcc
19068 to denote the end of the prologue. So we can't just discard duplicate
19069 entries, we have to be selective about it. The heuristic we use is
19070 that we only collapse consecutive entries for the same line if at least
19071 one of those entries has a non-zero discriminator. PR 17276.
19072
19073 Note: Addresses in the line number state machine can never go backwards
19074 within one sequence, thus this coalescing is ok. */
19075
19076 static int
19077 dwarf_record_line_p (unsigned int line, unsigned int last_line,
19078 int line_has_non_zero_discriminator,
19079 struct subfile *last_subfile)
19080 {
19081 if (current_subfile != last_subfile)
19082 return 1;
19083 if (line != last_line)
19084 return 1;
19085 /* Same line for the same file that we've seen already.
19086 As a last check, for pr 17276, only record the line if the line
19087 has never had a non-zero discriminator. */
19088 if (!line_has_non_zero_discriminator)
19089 return 1;
19090 return 0;
19091 }
19092
19093 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
19094 in the line table of subfile SUBFILE. */
19095
19096 static void
19097 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19098 unsigned int line, CORE_ADDR address,
19099 record_line_ftype p_record_line)
19100 {
19101 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19102
19103 if (dwarf_line_debug)
19104 {
19105 fprintf_unfiltered (gdb_stdlog,
19106 "Recording line %u, file %s, address %s\n",
19107 line, lbasename (subfile->name),
19108 paddress (gdbarch, address));
19109 }
19110
19111 (*p_record_line) (subfile, line, addr);
19112 }
19113
19114 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19115 Mark the end of a set of line number records.
19116 The arguments are the same as for dwarf_record_line_1.
19117 If SUBFILE is NULL the request is ignored. */
19118
19119 static void
19120 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19121 CORE_ADDR address, record_line_ftype p_record_line)
19122 {
19123 if (subfile == NULL)
19124 return;
19125
19126 if (dwarf_line_debug)
19127 {
19128 fprintf_unfiltered (gdb_stdlog,
19129 "Finishing current line, file %s, address %s\n",
19130 lbasename (subfile->name),
19131 paddress (gdbarch, address));
19132 }
19133
19134 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
19135 }
19136
19137 void
19138 lnp_state_machine::record_line (bool end_sequence)
19139 {
19140 if (dwarf_line_debug)
19141 {
19142 fprintf_unfiltered (gdb_stdlog,
19143 "Processing actual line %u: file %u,"
19144 " address %s, is_stmt %u, discrim %u\n",
19145 m_line, to_underlying (m_file),
19146 paddress (m_gdbarch, m_address),
19147 m_is_stmt, m_discriminator);
19148 }
19149
19150 file_entry *fe = current_file ();
19151
19152 if (fe == NULL)
19153 dwarf2_debug_line_missing_file_complaint ();
19154 /* For now we ignore lines not starting on an instruction boundary.
19155 But not when processing end_sequence for compatibility with the
19156 previous version of the code. */
19157 else if (m_op_index == 0 || end_sequence)
19158 {
19159 fe->included_p = 1;
19160 if (m_record_lines_p && m_is_stmt)
19161 {
19162 if (m_last_subfile != current_subfile || end_sequence)
19163 {
19164 dwarf_finish_line (m_gdbarch, m_last_subfile,
19165 m_address, m_record_line_callback);
19166 }
19167
19168 if (!end_sequence)
19169 {
19170 if (dwarf_record_line_p (m_line, m_last_line,
19171 m_line_has_non_zero_discriminator,
19172 m_last_subfile))
19173 {
19174 dwarf_record_line_1 (m_gdbarch, current_subfile,
19175 m_line, m_address,
19176 m_record_line_callback);
19177 }
19178 m_last_subfile = current_subfile;
19179 m_last_line = m_line;
19180 }
19181 }
19182 }
19183 }
19184
19185 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
19186 bool record_lines_p)
19187 {
19188 m_gdbarch = arch;
19189 m_record_lines_p = record_lines_p;
19190 m_line_header = lh;
19191
19192 m_record_line_callback = ::record_line;
19193
19194 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
19195 was a line entry for it so that the backend has a chance to adjust it
19196 and also record it in case it needs it. This is currently used by MIPS
19197 code, cf. `mips_adjust_dwarf2_line'. */
19198 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
19199 m_is_stmt = lh->default_is_stmt;
19200 m_discriminator = 0;
19201 }
19202
19203 void
19204 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
19205 const gdb_byte *line_ptr,
19206 CORE_ADDR lowpc, CORE_ADDR address)
19207 {
19208 /* If address < lowpc then it's not a usable value, it's outside the
19209 pc range of the CU. However, we restrict the test to only address
19210 values of zero to preserve GDB's previous behaviour which is to
19211 handle the specific case of a function being GC'd by the linker. */
19212
19213 if (address == 0 && address < lowpc)
19214 {
19215 /* This line table is for a function which has been
19216 GCd by the linker. Ignore it. PR gdb/12528 */
19217
19218 struct objfile *objfile = cu->objfile;
19219 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
19220
19221 complaint (&symfile_complaints,
19222 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
19223 line_offset, objfile_name (objfile));
19224 m_record_line_callback = noop_record_line;
19225 /* Note: record_line_callback is left as noop_record_line until
19226 we see DW_LNE_end_sequence. */
19227 }
19228 }
19229
19230 /* Subroutine of dwarf_decode_lines to simplify it.
19231 Process the line number information in LH.
19232 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
19233 program in order to set included_p for every referenced header. */
19234
19235 static void
19236 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
19237 const int decode_for_pst_p, CORE_ADDR lowpc)
19238 {
19239 const gdb_byte *line_ptr, *extended_end;
19240 const gdb_byte *line_end;
19241 unsigned int bytes_read, extended_len;
19242 unsigned char op_code, extended_op;
19243 CORE_ADDR baseaddr;
19244 struct objfile *objfile = cu->objfile;
19245 bfd *abfd = objfile->obfd;
19246 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19247 /* True if we're recording line info (as opposed to building partial
19248 symtabs and just interested in finding include files mentioned by
19249 the line number program). */
19250 bool record_lines_p = !decode_for_pst_p;
19251
19252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19253
19254 line_ptr = lh->statement_program_start;
19255 line_end = lh->statement_program_end;
19256
19257 /* Read the statement sequences until there's nothing left. */
19258 while (line_ptr < line_end)
19259 {
19260 /* The DWARF line number program state machine. Reset the state
19261 machine at the start of each sequence. */
19262 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
19263 bool end_sequence = false;
19264
19265 if (record_lines_p)
19266 {
19267 /* Start a subfile for the current file of the state
19268 machine. */
19269 const file_entry *fe = state_machine.current_file ();
19270
19271 if (fe != NULL)
19272 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
19273 }
19274
19275 /* Decode the table. */
19276 while (line_ptr < line_end && !end_sequence)
19277 {
19278 op_code = read_1_byte (abfd, line_ptr);
19279 line_ptr += 1;
19280
19281 if (op_code >= lh->opcode_base)
19282 {
19283 /* Special opcode. */
19284 state_machine.handle_special_opcode (op_code);
19285 }
19286 else switch (op_code)
19287 {
19288 case DW_LNS_extended_op:
19289 extended_len = read_unsigned_leb128 (abfd, line_ptr,
19290 &bytes_read);
19291 line_ptr += bytes_read;
19292 extended_end = line_ptr + extended_len;
19293 extended_op = read_1_byte (abfd, line_ptr);
19294 line_ptr += 1;
19295 switch (extended_op)
19296 {
19297 case DW_LNE_end_sequence:
19298 state_machine.handle_end_sequence ();
19299 end_sequence = true;
19300 break;
19301 case DW_LNE_set_address:
19302 {
19303 CORE_ADDR address
19304 = read_address (abfd, line_ptr, cu, &bytes_read);
19305 line_ptr += bytes_read;
19306
19307 state_machine.check_line_address (cu, line_ptr,
19308 lowpc, address);
19309 state_machine.handle_set_address (baseaddr, address);
19310 }
19311 break;
19312 case DW_LNE_define_file:
19313 {
19314 const char *cur_file;
19315 unsigned int mod_time, length;
19316 dir_index dindex;
19317
19318 cur_file = read_direct_string (abfd, line_ptr,
19319 &bytes_read);
19320 line_ptr += bytes_read;
19321 dindex = (dir_index)
19322 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19323 line_ptr += bytes_read;
19324 mod_time =
19325 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19326 line_ptr += bytes_read;
19327 length =
19328 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19329 line_ptr += bytes_read;
19330 lh->add_file_name (cur_file, dindex, mod_time, length);
19331 }
19332 break;
19333 case DW_LNE_set_discriminator:
19334 {
19335 /* The discriminator is not interesting to the
19336 debugger; just ignore it. We still need to
19337 check its value though:
19338 if there are consecutive entries for the same
19339 (non-prologue) line we want to coalesce them.
19340 PR 17276. */
19341 unsigned int discr
19342 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19343 line_ptr += bytes_read;
19344
19345 state_machine.handle_set_discriminator (discr);
19346 }
19347 break;
19348 default:
19349 complaint (&symfile_complaints,
19350 _("mangled .debug_line section"));
19351 return;
19352 }
19353 /* Make sure that we parsed the extended op correctly. If e.g.
19354 we expected a different address size than the producer used,
19355 we may have read the wrong number of bytes. */
19356 if (line_ptr != extended_end)
19357 {
19358 complaint (&symfile_complaints,
19359 _("mangled .debug_line section"));
19360 return;
19361 }
19362 break;
19363 case DW_LNS_copy:
19364 state_machine.handle_copy ();
19365 break;
19366 case DW_LNS_advance_pc:
19367 {
19368 CORE_ADDR adjust
19369 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19370 line_ptr += bytes_read;
19371
19372 state_machine.handle_advance_pc (adjust);
19373 }
19374 break;
19375 case DW_LNS_advance_line:
19376 {
19377 int line_delta
19378 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19379 line_ptr += bytes_read;
19380
19381 state_machine.handle_advance_line (line_delta);
19382 }
19383 break;
19384 case DW_LNS_set_file:
19385 {
19386 file_name_index file
19387 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19388 &bytes_read);
19389 line_ptr += bytes_read;
19390
19391 state_machine.handle_set_file (file);
19392 }
19393 break;
19394 case DW_LNS_set_column:
19395 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19396 line_ptr += bytes_read;
19397 break;
19398 case DW_LNS_negate_stmt:
19399 state_machine.handle_negate_stmt ();
19400 break;
19401 case DW_LNS_set_basic_block:
19402 break;
19403 /* Add to the address register of the state machine the
19404 address increment value corresponding to special opcode
19405 255. I.e., this value is scaled by the minimum
19406 instruction length since special opcode 255 would have
19407 scaled the increment. */
19408 case DW_LNS_const_add_pc:
19409 state_machine.handle_const_add_pc ();
19410 break;
19411 case DW_LNS_fixed_advance_pc:
19412 {
19413 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
19414 line_ptr += 2;
19415
19416 state_machine.handle_fixed_advance_pc (addr_adj);
19417 }
19418 break;
19419 default:
19420 {
19421 /* Unknown standard opcode, ignore it. */
19422 int i;
19423
19424 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
19425 {
19426 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19427 line_ptr += bytes_read;
19428 }
19429 }
19430 }
19431 }
19432
19433 if (!end_sequence)
19434 dwarf2_debug_line_missing_end_sequence_complaint ();
19435
19436 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
19437 in which case we still finish recording the last line). */
19438 state_machine.record_line (true);
19439 }
19440 }
19441
19442 /* Decode the Line Number Program (LNP) for the given line_header
19443 structure and CU. The actual information extracted and the type
19444 of structures created from the LNP depends on the value of PST.
19445
19446 1. If PST is NULL, then this procedure uses the data from the program
19447 to create all necessary symbol tables, and their linetables.
19448
19449 2. If PST is not NULL, this procedure reads the program to determine
19450 the list of files included by the unit represented by PST, and
19451 builds all the associated partial symbol tables.
19452
19453 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19454 It is used for relative paths in the line table.
19455 NOTE: When processing partial symtabs (pst != NULL),
19456 comp_dir == pst->dirname.
19457
19458 NOTE: It is important that psymtabs have the same file name (via strcmp)
19459 as the corresponding symtab. Since COMP_DIR is not used in the name of the
19460 symtab we don't use it in the name of the psymtabs we create.
19461 E.g. expand_line_sal requires this when finding psymtabs to expand.
19462 A good testcase for this is mb-inline.exp.
19463
19464 LOWPC is the lowest address in CU (or 0 if not known).
19465
19466 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
19467 for its PC<->lines mapping information. Otherwise only the filename
19468 table is read in. */
19469
19470 static void
19471 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
19472 struct dwarf2_cu *cu, struct partial_symtab *pst,
19473 CORE_ADDR lowpc, int decode_mapping)
19474 {
19475 struct objfile *objfile = cu->objfile;
19476 const int decode_for_pst_p = (pst != NULL);
19477
19478 if (decode_mapping)
19479 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
19480
19481 if (decode_for_pst_p)
19482 {
19483 int file_index;
19484
19485 /* Now that we're done scanning the Line Header Program, we can
19486 create the psymtab of each included file. */
19487 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
19488 if (lh->file_names[file_index].included_p == 1)
19489 {
19490 const char *include_name =
19491 psymtab_include_file_name (lh, file_index, pst, comp_dir);
19492 if (include_name != NULL)
19493 dwarf2_create_include_psymtab (include_name, pst, objfile);
19494 }
19495 }
19496 else
19497 {
19498 /* Make sure a symtab is created for every file, even files
19499 which contain only variables (i.e. no code with associated
19500 line numbers). */
19501 struct compunit_symtab *cust = buildsym_compunit_symtab ();
19502 int i;
19503
19504 for (i = 0; i < lh->file_names.size (); i++)
19505 {
19506 file_entry &fe = lh->file_names[i];
19507
19508 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
19509
19510 if (current_subfile->symtab == NULL)
19511 {
19512 current_subfile->symtab
19513 = allocate_symtab (cust, current_subfile->name);
19514 }
19515 fe.symtab = current_subfile->symtab;
19516 }
19517 }
19518 }
19519
19520 /* Start a subfile for DWARF. FILENAME is the name of the file and
19521 DIRNAME the name of the source directory which contains FILENAME
19522 or NULL if not known.
19523 This routine tries to keep line numbers from identical absolute and
19524 relative file names in a common subfile.
19525
19526 Using the `list' example from the GDB testsuite, which resides in
19527 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
19528 of /srcdir/list0.c yields the following debugging information for list0.c:
19529
19530 DW_AT_name: /srcdir/list0.c
19531 DW_AT_comp_dir: /compdir
19532 files.files[0].name: list0.h
19533 files.files[0].dir: /srcdir
19534 files.files[1].name: list0.c
19535 files.files[1].dir: /srcdir
19536
19537 The line number information for list0.c has to end up in a single
19538 subfile, so that `break /srcdir/list0.c:1' works as expected.
19539 start_subfile will ensure that this happens provided that we pass the
19540 concatenation of files.files[1].dir and files.files[1].name as the
19541 subfile's name. */
19542
19543 static void
19544 dwarf2_start_subfile (const char *filename, const char *dirname)
19545 {
19546 char *copy = NULL;
19547
19548 /* In order not to lose the line information directory,
19549 we concatenate it to the filename when it makes sense.
19550 Note that the Dwarf3 standard says (speaking of filenames in line
19551 information): ``The directory index is ignored for file names
19552 that represent full path names''. Thus ignoring dirname in the
19553 `else' branch below isn't an issue. */
19554
19555 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
19556 {
19557 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
19558 filename = copy;
19559 }
19560
19561 start_subfile (filename);
19562
19563 if (copy != NULL)
19564 xfree (copy);
19565 }
19566
19567 /* Start a symtab for DWARF.
19568 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
19569
19570 static struct compunit_symtab *
19571 dwarf2_start_symtab (struct dwarf2_cu *cu,
19572 const char *name, const char *comp_dir, CORE_ADDR low_pc)
19573 {
19574 struct compunit_symtab *cust
19575 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
19576
19577 record_debugformat ("DWARF 2");
19578 record_producer (cu->producer);
19579
19580 /* We assume that we're processing GCC output. */
19581 processing_gcc_compilation = 2;
19582
19583 cu->processing_has_namespace_info = 0;
19584
19585 return cust;
19586 }
19587
19588 static void
19589 var_decode_location (struct attribute *attr, struct symbol *sym,
19590 struct dwarf2_cu *cu)
19591 {
19592 struct objfile *objfile = cu->objfile;
19593 struct comp_unit_head *cu_header = &cu->header;
19594
19595 /* NOTE drow/2003-01-30: There used to be a comment and some special
19596 code here to turn a symbol with DW_AT_external and a
19597 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19598 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19599 with some versions of binutils) where shared libraries could have
19600 relocations against symbols in their debug information - the
19601 minimal symbol would have the right address, but the debug info
19602 would not. It's no longer necessary, because we will explicitly
19603 apply relocations when we read in the debug information now. */
19604
19605 /* A DW_AT_location attribute with no contents indicates that a
19606 variable has been optimized away. */
19607 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19608 {
19609 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19610 return;
19611 }
19612
19613 /* Handle one degenerate form of location expression specially, to
19614 preserve GDB's previous behavior when section offsets are
19615 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19616 then mark this symbol as LOC_STATIC. */
19617
19618 if (attr_form_is_block (attr)
19619 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19620 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19621 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19622 && (DW_BLOCK (attr)->size
19623 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19624 {
19625 unsigned int dummy;
19626
19627 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19628 SYMBOL_VALUE_ADDRESS (sym) =
19629 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19630 else
19631 SYMBOL_VALUE_ADDRESS (sym) =
19632 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19633 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19634 fixup_symbol_section (sym, objfile);
19635 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19636 SYMBOL_SECTION (sym));
19637 return;
19638 }
19639
19640 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19641 expression evaluator, and use LOC_COMPUTED only when necessary
19642 (i.e. when the value of a register or memory location is
19643 referenced, or a thread-local block, etc.). Then again, it might
19644 not be worthwhile. I'm assuming that it isn't unless performance
19645 or memory numbers show me otherwise. */
19646
19647 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19648
19649 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19650 cu->has_loclist = 1;
19651 }
19652
19653 /* Given a pointer to a DWARF information entry, figure out if we need
19654 to make a symbol table entry for it, and if so, create a new entry
19655 and return a pointer to it.
19656 If TYPE is NULL, determine symbol type from the die, otherwise
19657 used the passed type.
19658 If SPACE is not NULL, use it to hold the new symbol. If it is
19659 NULL, allocate a new symbol on the objfile's obstack. */
19660
19661 static struct symbol *
19662 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19663 struct symbol *space)
19664 {
19665 struct objfile *objfile = cu->objfile;
19666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19667 struct symbol *sym = NULL;
19668 const char *name;
19669 struct attribute *attr = NULL;
19670 struct attribute *attr2 = NULL;
19671 CORE_ADDR baseaddr;
19672 struct pending **list_to_add = NULL;
19673
19674 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19675
19676 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19677
19678 name = dwarf2_name (die, cu);
19679 if (name)
19680 {
19681 const char *linkagename;
19682 int suppress_add = 0;
19683
19684 if (space)
19685 sym = space;
19686 else
19687 sym = allocate_symbol (objfile);
19688 OBJSTAT (objfile, n_syms++);
19689
19690 /* Cache this symbol's name and the name's demangled form (if any). */
19691 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19692 linkagename = dwarf2_physname (name, die, cu);
19693 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19694
19695 /* Fortran does not have mangling standard and the mangling does differ
19696 between gfortran, iFort etc. */
19697 if (cu->language == language_fortran
19698 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19699 symbol_set_demangled_name (&(sym->ginfo),
19700 dwarf2_full_name (name, die, cu),
19701 NULL);
19702
19703 /* Default assumptions.
19704 Use the passed type or decode it from the die. */
19705 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19706 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19707 if (type != NULL)
19708 SYMBOL_TYPE (sym) = type;
19709 else
19710 SYMBOL_TYPE (sym) = die_type (die, cu);
19711 attr = dwarf2_attr (die,
19712 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19713 cu);
19714 if (attr)
19715 {
19716 SYMBOL_LINE (sym) = DW_UNSND (attr);
19717 }
19718
19719 attr = dwarf2_attr (die,
19720 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19721 cu);
19722 if (attr)
19723 {
19724 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19725 struct file_entry *fe;
19726
19727 if (cu->line_header != NULL)
19728 fe = cu->line_header->file_name_at (file_index);
19729 else
19730 fe = NULL;
19731
19732 if (fe == NULL)
19733 complaint (&symfile_complaints,
19734 _("file index out of range"));
19735 else
19736 symbol_set_symtab (sym, fe->symtab);
19737 }
19738
19739 switch (die->tag)
19740 {
19741 case DW_TAG_label:
19742 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19743 if (attr)
19744 {
19745 CORE_ADDR addr;
19746
19747 addr = attr_value_as_address (attr);
19748 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19749 SYMBOL_VALUE_ADDRESS (sym) = addr;
19750 }
19751 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19752 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19753 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19754 add_symbol_to_list (sym, cu->list_in_scope);
19755 break;
19756 case DW_TAG_subprogram:
19757 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19758 finish_block. */
19759 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19760 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19761 if ((attr2 && (DW_UNSND (attr2) != 0))
19762 || cu->language == language_ada)
19763 {
19764 /* Subprograms marked external are stored as a global symbol.
19765 Ada subprograms, whether marked external or not, are always
19766 stored as a global symbol, because we want to be able to
19767 access them globally. For instance, we want to be able
19768 to break on a nested subprogram without having to
19769 specify the context. */
19770 list_to_add = &global_symbols;
19771 }
19772 else
19773 {
19774 list_to_add = cu->list_in_scope;
19775 }
19776 break;
19777 case DW_TAG_inlined_subroutine:
19778 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19779 finish_block. */
19780 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19781 SYMBOL_INLINED (sym) = 1;
19782 list_to_add = cu->list_in_scope;
19783 break;
19784 case DW_TAG_template_value_param:
19785 suppress_add = 1;
19786 /* Fall through. */
19787 case DW_TAG_constant:
19788 case DW_TAG_variable:
19789 case DW_TAG_member:
19790 /* Compilation with minimal debug info may result in
19791 variables with missing type entries. Change the
19792 misleading `void' type to something sensible. */
19793 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19794 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19795
19796 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19797 /* In the case of DW_TAG_member, we should only be called for
19798 static const members. */
19799 if (die->tag == DW_TAG_member)
19800 {
19801 /* dwarf2_add_field uses die_is_declaration,
19802 so we do the same. */
19803 gdb_assert (die_is_declaration (die, cu));
19804 gdb_assert (attr);
19805 }
19806 if (attr)
19807 {
19808 dwarf2_const_value (attr, sym, cu);
19809 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19810 if (!suppress_add)
19811 {
19812 if (attr2 && (DW_UNSND (attr2) != 0))
19813 list_to_add = &global_symbols;
19814 else
19815 list_to_add = cu->list_in_scope;
19816 }
19817 break;
19818 }
19819 attr = dwarf2_attr (die, DW_AT_location, cu);
19820 if (attr)
19821 {
19822 var_decode_location (attr, sym, cu);
19823 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19824
19825 /* Fortran explicitly imports any global symbols to the local
19826 scope by DW_TAG_common_block. */
19827 if (cu->language == language_fortran && die->parent
19828 && die->parent->tag == DW_TAG_common_block)
19829 attr2 = NULL;
19830
19831 if (SYMBOL_CLASS (sym) == LOC_STATIC
19832 && SYMBOL_VALUE_ADDRESS (sym) == 0
19833 && !dwarf2_per_objfile->has_section_at_zero)
19834 {
19835 /* When a static variable is eliminated by the linker,
19836 the corresponding debug information is not stripped
19837 out, but the variable address is set to null;
19838 do not add such variables into symbol table. */
19839 }
19840 else if (attr2 && (DW_UNSND (attr2) != 0))
19841 {
19842 /* Workaround gfortran PR debug/40040 - it uses
19843 DW_AT_location for variables in -fPIC libraries which may
19844 get overriden by other libraries/executable and get
19845 a different address. Resolve it by the minimal symbol
19846 which may come from inferior's executable using copy
19847 relocation. Make this workaround only for gfortran as for
19848 other compilers GDB cannot guess the minimal symbol
19849 Fortran mangling kind. */
19850 if (cu->language == language_fortran && die->parent
19851 && die->parent->tag == DW_TAG_module
19852 && cu->producer
19853 && startswith (cu->producer, "GNU Fortran"))
19854 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19855
19856 /* A variable with DW_AT_external is never static,
19857 but it may be block-scoped. */
19858 list_to_add = (cu->list_in_scope == &file_symbols
19859 ? &global_symbols : cu->list_in_scope);
19860 }
19861 else
19862 list_to_add = cu->list_in_scope;
19863 }
19864 else
19865 {
19866 /* We do not know the address of this symbol.
19867 If it is an external symbol and we have type information
19868 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19869 The address of the variable will then be determined from
19870 the minimal symbol table whenever the variable is
19871 referenced. */
19872 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19873
19874 /* Fortran explicitly imports any global symbols to the local
19875 scope by DW_TAG_common_block. */
19876 if (cu->language == language_fortran && die->parent
19877 && die->parent->tag == DW_TAG_common_block)
19878 {
19879 /* SYMBOL_CLASS doesn't matter here because
19880 read_common_block is going to reset it. */
19881 if (!suppress_add)
19882 list_to_add = cu->list_in_scope;
19883 }
19884 else if (attr2 && (DW_UNSND (attr2) != 0)
19885 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19886 {
19887 /* A variable with DW_AT_external is never static, but it
19888 may be block-scoped. */
19889 list_to_add = (cu->list_in_scope == &file_symbols
19890 ? &global_symbols : cu->list_in_scope);
19891
19892 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19893 }
19894 else if (!die_is_declaration (die, cu))
19895 {
19896 /* Use the default LOC_OPTIMIZED_OUT class. */
19897 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19898 if (!suppress_add)
19899 list_to_add = cu->list_in_scope;
19900 }
19901 }
19902 break;
19903 case DW_TAG_formal_parameter:
19904 /* If we are inside a function, mark this as an argument. If
19905 not, we might be looking at an argument to an inlined function
19906 when we do not have enough information to show inlined frames;
19907 pretend it's a local variable in that case so that the user can
19908 still see it. */
19909 if (context_stack_depth > 0
19910 && context_stack[context_stack_depth - 1].name != NULL)
19911 SYMBOL_IS_ARGUMENT (sym) = 1;
19912 attr = dwarf2_attr (die, DW_AT_location, cu);
19913 if (attr)
19914 {
19915 var_decode_location (attr, sym, cu);
19916 }
19917 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19918 if (attr)
19919 {
19920 dwarf2_const_value (attr, sym, cu);
19921 }
19922
19923 list_to_add = cu->list_in_scope;
19924 break;
19925 case DW_TAG_unspecified_parameters:
19926 /* From varargs functions; gdb doesn't seem to have any
19927 interest in this information, so just ignore it for now.
19928 (FIXME?) */
19929 break;
19930 case DW_TAG_template_type_param:
19931 suppress_add = 1;
19932 /* Fall through. */
19933 case DW_TAG_class_type:
19934 case DW_TAG_interface_type:
19935 case DW_TAG_structure_type:
19936 case DW_TAG_union_type:
19937 case DW_TAG_set_type:
19938 case DW_TAG_enumeration_type:
19939 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19940 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19941
19942 {
19943 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19944 really ever be static objects: otherwise, if you try
19945 to, say, break of a class's method and you're in a file
19946 which doesn't mention that class, it won't work unless
19947 the check for all static symbols in lookup_symbol_aux
19948 saves you. See the OtherFileClass tests in
19949 gdb.c++/namespace.exp. */
19950
19951 if (!suppress_add)
19952 {
19953 list_to_add = (cu->list_in_scope == &file_symbols
19954 && cu->language == language_cplus
19955 ? &global_symbols : cu->list_in_scope);
19956
19957 /* The semantics of C++ state that "struct foo {
19958 ... }" also defines a typedef for "foo". */
19959 if (cu->language == language_cplus
19960 || cu->language == language_ada
19961 || cu->language == language_d
19962 || cu->language == language_rust)
19963 {
19964 /* The symbol's name is already allocated along
19965 with this objfile, so we don't need to
19966 duplicate it for the type. */
19967 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19968 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19969 }
19970 }
19971 }
19972 break;
19973 case DW_TAG_typedef:
19974 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19975 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19976 list_to_add = cu->list_in_scope;
19977 break;
19978 case DW_TAG_base_type:
19979 case DW_TAG_subrange_type:
19980 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19981 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19982 list_to_add = cu->list_in_scope;
19983 break;
19984 case DW_TAG_enumerator:
19985 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19986 if (attr)
19987 {
19988 dwarf2_const_value (attr, sym, cu);
19989 }
19990 {
19991 /* NOTE: carlton/2003-11-10: See comment above in the
19992 DW_TAG_class_type, etc. block. */
19993
19994 list_to_add = (cu->list_in_scope == &file_symbols
19995 && cu->language == language_cplus
19996 ? &global_symbols : cu->list_in_scope);
19997 }
19998 break;
19999 case DW_TAG_imported_declaration:
20000 case DW_TAG_namespace:
20001 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20002 list_to_add = &global_symbols;
20003 break;
20004 case DW_TAG_module:
20005 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20006 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20007 list_to_add = &global_symbols;
20008 break;
20009 case DW_TAG_common_block:
20010 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20011 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20012 add_symbol_to_list (sym, cu->list_in_scope);
20013 break;
20014 default:
20015 /* Not a tag we recognize. Hopefully we aren't processing
20016 trash data, but since we must specifically ignore things
20017 we don't recognize, there is nothing else we should do at
20018 this point. */
20019 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
20020 dwarf_tag_name (die->tag));
20021 break;
20022 }
20023
20024 if (suppress_add)
20025 {
20026 sym->hash_next = objfile->template_symbols;
20027 objfile->template_symbols = sym;
20028 list_to_add = NULL;
20029 }
20030
20031 if (list_to_add != NULL)
20032 add_symbol_to_list (sym, list_to_add);
20033
20034 /* For the benefit of old versions of GCC, check for anonymous
20035 namespaces based on the demangled name. */
20036 if (!cu->processing_has_namespace_info
20037 && cu->language == language_cplus)
20038 cp_scan_for_anonymous_namespaces (sym, objfile);
20039 }
20040 return (sym);
20041 }
20042
20043 /* A wrapper for new_symbol_full that always allocates a new symbol. */
20044
20045 static struct symbol *
20046 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20047 {
20048 return new_symbol_full (die, type, cu, NULL);
20049 }
20050
20051 /* Given an attr with a DW_FORM_dataN value in host byte order,
20052 zero-extend it as appropriate for the symbol's type. The DWARF
20053 standard (v4) is not entirely clear about the meaning of using
20054 DW_FORM_dataN for a constant with a signed type, where the type is
20055 wider than the data. The conclusion of a discussion on the DWARF
20056 list was that this is unspecified. We choose to always zero-extend
20057 because that is the interpretation long in use by GCC. */
20058
20059 static gdb_byte *
20060 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20061 struct dwarf2_cu *cu, LONGEST *value, int bits)
20062 {
20063 struct objfile *objfile = cu->objfile;
20064 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20065 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20066 LONGEST l = DW_UNSND (attr);
20067
20068 if (bits < sizeof (*value) * 8)
20069 {
20070 l &= ((LONGEST) 1 << bits) - 1;
20071 *value = l;
20072 }
20073 else if (bits == sizeof (*value) * 8)
20074 *value = l;
20075 else
20076 {
20077 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20078 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20079 return bytes;
20080 }
20081
20082 return NULL;
20083 }
20084
20085 /* Read a constant value from an attribute. Either set *VALUE, or if
20086 the value does not fit in *VALUE, set *BYTES - either already
20087 allocated on the objfile obstack, or newly allocated on OBSTACK,
20088 or, set *BATON, if we translated the constant to a location
20089 expression. */
20090
20091 static void
20092 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20093 const char *name, struct obstack *obstack,
20094 struct dwarf2_cu *cu,
20095 LONGEST *value, const gdb_byte **bytes,
20096 struct dwarf2_locexpr_baton **baton)
20097 {
20098 struct objfile *objfile = cu->objfile;
20099 struct comp_unit_head *cu_header = &cu->header;
20100 struct dwarf_block *blk;
20101 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20102 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20103
20104 *value = 0;
20105 *bytes = NULL;
20106 *baton = NULL;
20107
20108 switch (attr->form)
20109 {
20110 case DW_FORM_addr:
20111 case DW_FORM_GNU_addr_index:
20112 {
20113 gdb_byte *data;
20114
20115 if (TYPE_LENGTH (type) != cu_header->addr_size)
20116 dwarf2_const_value_length_mismatch_complaint (name,
20117 cu_header->addr_size,
20118 TYPE_LENGTH (type));
20119 /* Symbols of this form are reasonably rare, so we just
20120 piggyback on the existing location code rather than writing
20121 a new implementation of symbol_computed_ops. */
20122 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20123 (*baton)->per_cu = cu->per_cu;
20124 gdb_assert ((*baton)->per_cu);
20125
20126 (*baton)->size = 2 + cu_header->addr_size;
20127 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20128 (*baton)->data = data;
20129
20130 data[0] = DW_OP_addr;
20131 store_unsigned_integer (&data[1], cu_header->addr_size,
20132 byte_order, DW_ADDR (attr));
20133 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20134 }
20135 break;
20136 case DW_FORM_string:
20137 case DW_FORM_strp:
20138 case DW_FORM_GNU_str_index:
20139 case DW_FORM_GNU_strp_alt:
20140 /* DW_STRING is already allocated on the objfile obstack, point
20141 directly to it. */
20142 *bytes = (const gdb_byte *) DW_STRING (attr);
20143 break;
20144 case DW_FORM_block1:
20145 case DW_FORM_block2:
20146 case DW_FORM_block4:
20147 case DW_FORM_block:
20148 case DW_FORM_exprloc:
20149 case DW_FORM_data16:
20150 blk = DW_BLOCK (attr);
20151 if (TYPE_LENGTH (type) != blk->size)
20152 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20153 TYPE_LENGTH (type));
20154 *bytes = blk->data;
20155 break;
20156
20157 /* The DW_AT_const_value attributes are supposed to carry the
20158 symbol's value "represented as it would be on the target
20159 architecture." By the time we get here, it's already been
20160 converted to host endianness, so we just need to sign- or
20161 zero-extend it as appropriate. */
20162 case DW_FORM_data1:
20163 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20164 break;
20165 case DW_FORM_data2:
20166 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20167 break;
20168 case DW_FORM_data4:
20169 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20170 break;
20171 case DW_FORM_data8:
20172 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20173 break;
20174
20175 case DW_FORM_sdata:
20176 case DW_FORM_implicit_const:
20177 *value = DW_SND (attr);
20178 break;
20179
20180 case DW_FORM_udata:
20181 *value = DW_UNSND (attr);
20182 break;
20183
20184 default:
20185 complaint (&symfile_complaints,
20186 _("unsupported const value attribute form: '%s'"),
20187 dwarf_form_name (attr->form));
20188 *value = 0;
20189 break;
20190 }
20191 }
20192
20193
20194 /* Copy constant value from an attribute to a symbol. */
20195
20196 static void
20197 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
20198 struct dwarf2_cu *cu)
20199 {
20200 struct objfile *objfile = cu->objfile;
20201 LONGEST value;
20202 const gdb_byte *bytes;
20203 struct dwarf2_locexpr_baton *baton;
20204
20205 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
20206 SYMBOL_PRINT_NAME (sym),
20207 &objfile->objfile_obstack, cu,
20208 &value, &bytes, &baton);
20209
20210 if (baton != NULL)
20211 {
20212 SYMBOL_LOCATION_BATON (sym) = baton;
20213 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
20214 }
20215 else if (bytes != NULL)
20216 {
20217 SYMBOL_VALUE_BYTES (sym) = bytes;
20218 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
20219 }
20220 else
20221 {
20222 SYMBOL_VALUE (sym) = value;
20223 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
20224 }
20225 }
20226
20227 /* Return the type of the die in question using its DW_AT_type attribute. */
20228
20229 static struct type *
20230 die_type (struct die_info *die, struct dwarf2_cu *cu)
20231 {
20232 struct attribute *type_attr;
20233
20234 type_attr = dwarf2_attr (die, DW_AT_type, cu);
20235 if (!type_attr)
20236 {
20237 /* A missing DW_AT_type represents a void type. */
20238 return objfile_type (cu->objfile)->builtin_void;
20239 }
20240
20241 return lookup_die_type (die, type_attr, cu);
20242 }
20243
20244 /* True iff CU's producer generates GNAT Ada auxiliary information
20245 that allows to find parallel types through that information instead
20246 of having to do expensive parallel lookups by type name. */
20247
20248 static int
20249 need_gnat_info (struct dwarf2_cu *cu)
20250 {
20251 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
20252 of GNAT produces this auxiliary information, without any indication
20253 that it is produced. Part of enhancing the FSF version of GNAT
20254 to produce that information will be to put in place an indicator
20255 that we can use in order to determine whether the descriptive type
20256 info is available or not. One suggestion that has been made is
20257 to use a new attribute, attached to the CU die. For now, assume
20258 that the descriptive type info is not available. */
20259 return 0;
20260 }
20261
20262 /* Return the auxiliary type of the die in question using its
20263 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
20264 attribute is not present. */
20265
20266 static struct type *
20267 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
20268 {
20269 struct attribute *type_attr;
20270
20271 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
20272 if (!type_attr)
20273 return NULL;
20274
20275 return lookup_die_type (die, type_attr, cu);
20276 }
20277
20278 /* If DIE has a descriptive_type attribute, then set the TYPE's
20279 descriptive type accordingly. */
20280
20281 static void
20282 set_descriptive_type (struct type *type, struct die_info *die,
20283 struct dwarf2_cu *cu)
20284 {
20285 struct type *descriptive_type = die_descriptive_type (die, cu);
20286
20287 if (descriptive_type)
20288 {
20289 ALLOCATE_GNAT_AUX_TYPE (type);
20290 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
20291 }
20292 }
20293
20294 /* Return the containing type of the die in question using its
20295 DW_AT_containing_type attribute. */
20296
20297 static struct type *
20298 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
20299 {
20300 struct attribute *type_attr;
20301
20302 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
20303 if (!type_attr)
20304 error (_("Dwarf Error: Problem turning containing type into gdb type "
20305 "[in module %s]"), objfile_name (cu->objfile));
20306
20307 return lookup_die_type (die, type_attr, cu);
20308 }
20309
20310 /* Return an error marker type to use for the ill formed type in DIE/CU. */
20311
20312 static struct type *
20313 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
20314 {
20315 struct objfile *objfile = dwarf2_per_objfile->objfile;
20316 char *message, *saved;
20317
20318 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
20319 objfile_name (objfile),
20320 to_underlying (cu->header.sect_off),
20321 to_underlying (die->sect_off));
20322 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
20323 message, strlen (message));
20324 xfree (message);
20325
20326 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20327 }
20328
20329 /* Look up the type of DIE in CU using its type attribute ATTR.
20330 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20331 DW_AT_containing_type.
20332 If there is no type substitute an error marker. */
20333
20334 static struct type *
20335 lookup_die_type (struct die_info *die, const struct attribute *attr,
20336 struct dwarf2_cu *cu)
20337 {
20338 struct objfile *objfile = cu->objfile;
20339 struct type *this_type;
20340
20341 gdb_assert (attr->name == DW_AT_type
20342 || attr->name == DW_AT_GNAT_descriptive_type
20343 || attr->name == DW_AT_containing_type);
20344
20345 /* First see if we have it cached. */
20346
20347 if (attr->form == DW_FORM_GNU_ref_alt)
20348 {
20349 struct dwarf2_per_cu_data *per_cu;
20350 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20351
20352 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
20353 this_type = get_die_type_at_offset (sect_off, per_cu);
20354 }
20355 else if (attr_form_is_ref (attr))
20356 {
20357 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20358
20359 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20360 }
20361 else if (attr->form == DW_FORM_ref_sig8)
20362 {
20363 ULONGEST signature = DW_SIGNATURE (attr);
20364
20365 return get_signatured_type (die, signature, cu);
20366 }
20367 else
20368 {
20369 complaint (&symfile_complaints,
20370 _("Dwarf Error: Bad type attribute %s in DIE"
20371 " at 0x%x [in module %s]"),
20372 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
20373 objfile_name (objfile));
20374 return build_error_marker_type (cu, die);
20375 }
20376
20377 /* If not cached we need to read it in. */
20378
20379 if (this_type == NULL)
20380 {
20381 struct die_info *type_die = NULL;
20382 struct dwarf2_cu *type_cu = cu;
20383
20384 if (attr_form_is_ref (attr))
20385 type_die = follow_die_ref (die, attr, &type_cu);
20386 if (type_die == NULL)
20387 return build_error_marker_type (cu, die);
20388 /* If we find the type now, it's probably because the type came
20389 from an inter-CU reference and the type's CU got expanded before
20390 ours. */
20391 this_type = read_type_die (type_die, type_cu);
20392 }
20393
20394 /* If we still don't have a type use an error marker. */
20395
20396 if (this_type == NULL)
20397 return build_error_marker_type (cu, die);
20398
20399 return this_type;
20400 }
20401
20402 /* Return the type in DIE, CU.
20403 Returns NULL for invalid types.
20404
20405 This first does a lookup in die_type_hash,
20406 and only reads the die in if necessary.
20407
20408 NOTE: This can be called when reading in partial or full symbols. */
20409
20410 static struct type *
20411 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
20412 {
20413 struct type *this_type;
20414
20415 this_type = get_die_type (die, cu);
20416 if (this_type)
20417 return this_type;
20418
20419 return read_type_die_1 (die, cu);
20420 }
20421
20422 /* Read the type in DIE, CU.
20423 Returns NULL for invalid types. */
20424
20425 static struct type *
20426 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
20427 {
20428 struct type *this_type = NULL;
20429
20430 switch (die->tag)
20431 {
20432 case DW_TAG_class_type:
20433 case DW_TAG_interface_type:
20434 case DW_TAG_structure_type:
20435 case DW_TAG_union_type:
20436 this_type = read_structure_type (die, cu);
20437 break;
20438 case DW_TAG_enumeration_type:
20439 this_type = read_enumeration_type (die, cu);
20440 break;
20441 case DW_TAG_subprogram:
20442 case DW_TAG_subroutine_type:
20443 case DW_TAG_inlined_subroutine:
20444 this_type = read_subroutine_type (die, cu);
20445 break;
20446 case DW_TAG_array_type:
20447 this_type = read_array_type (die, cu);
20448 break;
20449 case DW_TAG_set_type:
20450 this_type = read_set_type (die, cu);
20451 break;
20452 case DW_TAG_pointer_type:
20453 this_type = read_tag_pointer_type (die, cu);
20454 break;
20455 case DW_TAG_ptr_to_member_type:
20456 this_type = read_tag_ptr_to_member_type (die, cu);
20457 break;
20458 case DW_TAG_reference_type:
20459 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
20460 break;
20461 case DW_TAG_rvalue_reference_type:
20462 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
20463 break;
20464 case DW_TAG_const_type:
20465 this_type = read_tag_const_type (die, cu);
20466 break;
20467 case DW_TAG_volatile_type:
20468 this_type = read_tag_volatile_type (die, cu);
20469 break;
20470 case DW_TAG_restrict_type:
20471 this_type = read_tag_restrict_type (die, cu);
20472 break;
20473 case DW_TAG_string_type:
20474 this_type = read_tag_string_type (die, cu);
20475 break;
20476 case DW_TAG_typedef:
20477 this_type = read_typedef (die, cu);
20478 break;
20479 case DW_TAG_subrange_type:
20480 this_type = read_subrange_type (die, cu);
20481 break;
20482 case DW_TAG_base_type:
20483 this_type = read_base_type (die, cu);
20484 break;
20485 case DW_TAG_unspecified_type:
20486 this_type = read_unspecified_type (die, cu);
20487 break;
20488 case DW_TAG_namespace:
20489 this_type = read_namespace_type (die, cu);
20490 break;
20491 case DW_TAG_module:
20492 this_type = read_module_type (die, cu);
20493 break;
20494 case DW_TAG_atomic_type:
20495 this_type = read_tag_atomic_type (die, cu);
20496 break;
20497 default:
20498 complaint (&symfile_complaints,
20499 _("unexpected tag in read_type_die: '%s'"),
20500 dwarf_tag_name (die->tag));
20501 break;
20502 }
20503
20504 return this_type;
20505 }
20506
20507 /* See if we can figure out if the class lives in a namespace. We do
20508 this by looking for a member function; its demangled name will
20509 contain namespace info, if there is any.
20510 Return the computed name or NULL.
20511 Space for the result is allocated on the objfile's obstack.
20512 This is the full-die version of guess_partial_die_structure_name.
20513 In this case we know DIE has no useful parent. */
20514
20515 static char *
20516 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
20517 {
20518 struct die_info *spec_die;
20519 struct dwarf2_cu *spec_cu;
20520 struct die_info *child;
20521
20522 spec_cu = cu;
20523 spec_die = die_specification (die, &spec_cu);
20524 if (spec_die != NULL)
20525 {
20526 die = spec_die;
20527 cu = spec_cu;
20528 }
20529
20530 for (child = die->child;
20531 child != NULL;
20532 child = child->sibling)
20533 {
20534 if (child->tag == DW_TAG_subprogram)
20535 {
20536 const char *linkage_name = dw2_linkage_name (child, cu);
20537
20538 if (linkage_name != NULL)
20539 {
20540 char *actual_name
20541 = language_class_name_from_physname (cu->language_defn,
20542 linkage_name);
20543 char *name = NULL;
20544
20545 if (actual_name != NULL)
20546 {
20547 const char *die_name = dwarf2_name (die, cu);
20548
20549 if (die_name != NULL
20550 && strcmp (die_name, actual_name) != 0)
20551 {
20552 /* Strip off the class name from the full name.
20553 We want the prefix. */
20554 int die_name_len = strlen (die_name);
20555 int actual_name_len = strlen (actual_name);
20556
20557 /* Test for '::' as a sanity check. */
20558 if (actual_name_len > die_name_len + 2
20559 && actual_name[actual_name_len
20560 - die_name_len - 1] == ':')
20561 name = (char *) obstack_copy0 (
20562 &cu->objfile->per_bfd->storage_obstack,
20563 actual_name, actual_name_len - die_name_len - 2);
20564 }
20565 }
20566 xfree (actual_name);
20567 return name;
20568 }
20569 }
20570 }
20571
20572 return NULL;
20573 }
20574
20575 /* GCC might emit a nameless typedef that has a linkage name. Determine the
20576 prefix part in such case. See
20577 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20578
20579 static const char *
20580 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
20581 {
20582 struct attribute *attr;
20583 const char *base;
20584
20585 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
20586 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
20587 return NULL;
20588
20589 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
20590 return NULL;
20591
20592 attr = dw2_linkage_name_attr (die, cu);
20593 if (attr == NULL || DW_STRING (attr) == NULL)
20594 return NULL;
20595
20596 /* dwarf2_name had to be already called. */
20597 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20598
20599 /* Strip the base name, keep any leading namespaces/classes. */
20600 base = strrchr (DW_STRING (attr), ':');
20601 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20602 return "";
20603
20604 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20605 DW_STRING (attr),
20606 &base[-1] - DW_STRING (attr));
20607 }
20608
20609 /* Return the name of the namespace/class that DIE is defined within,
20610 or "" if we can't tell. The caller should not xfree the result.
20611
20612 For example, if we're within the method foo() in the following
20613 code:
20614
20615 namespace N {
20616 class C {
20617 void foo () {
20618 }
20619 };
20620 }
20621
20622 then determine_prefix on foo's die will return "N::C". */
20623
20624 static const char *
20625 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20626 {
20627 struct die_info *parent, *spec_die;
20628 struct dwarf2_cu *spec_cu;
20629 struct type *parent_type;
20630 const char *retval;
20631
20632 if (cu->language != language_cplus
20633 && cu->language != language_fortran && cu->language != language_d
20634 && cu->language != language_rust)
20635 return "";
20636
20637 retval = anonymous_struct_prefix (die, cu);
20638 if (retval)
20639 return retval;
20640
20641 /* We have to be careful in the presence of DW_AT_specification.
20642 For example, with GCC 3.4, given the code
20643
20644 namespace N {
20645 void foo() {
20646 // Definition of N::foo.
20647 }
20648 }
20649
20650 then we'll have a tree of DIEs like this:
20651
20652 1: DW_TAG_compile_unit
20653 2: DW_TAG_namespace // N
20654 3: DW_TAG_subprogram // declaration of N::foo
20655 4: DW_TAG_subprogram // definition of N::foo
20656 DW_AT_specification // refers to die #3
20657
20658 Thus, when processing die #4, we have to pretend that we're in
20659 the context of its DW_AT_specification, namely the contex of die
20660 #3. */
20661 spec_cu = cu;
20662 spec_die = die_specification (die, &spec_cu);
20663 if (spec_die == NULL)
20664 parent = die->parent;
20665 else
20666 {
20667 parent = spec_die->parent;
20668 cu = spec_cu;
20669 }
20670
20671 if (parent == NULL)
20672 return "";
20673 else if (parent->building_fullname)
20674 {
20675 const char *name;
20676 const char *parent_name;
20677
20678 /* It has been seen on RealView 2.2 built binaries,
20679 DW_TAG_template_type_param types actually _defined_ as
20680 children of the parent class:
20681
20682 enum E {};
20683 template class <class Enum> Class{};
20684 Class<enum E> class_e;
20685
20686 1: DW_TAG_class_type (Class)
20687 2: DW_TAG_enumeration_type (E)
20688 3: DW_TAG_enumerator (enum1:0)
20689 3: DW_TAG_enumerator (enum2:1)
20690 ...
20691 2: DW_TAG_template_type_param
20692 DW_AT_type DW_FORM_ref_udata (E)
20693
20694 Besides being broken debug info, it can put GDB into an
20695 infinite loop. Consider:
20696
20697 When we're building the full name for Class<E>, we'll start
20698 at Class, and go look over its template type parameters,
20699 finding E. We'll then try to build the full name of E, and
20700 reach here. We're now trying to build the full name of E,
20701 and look over the parent DIE for containing scope. In the
20702 broken case, if we followed the parent DIE of E, we'd again
20703 find Class, and once again go look at its template type
20704 arguments, etc., etc. Simply don't consider such parent die
20705 as source-level parent of this die (it can't be, the language
20706 doesn't allow it), and break the loop here. */
20707 name = dwarf2_name (die, cu);
20708 parent_name = dwarf2_name (parent, cu);
20709 complaint (&symfile_complaints,
20710 _("template param type '%s' defined within parent '%s'"),
20711 name ? name : "<unknown>",
20712 parent_name ? parent_name : "<unknown>");
20713 return "";
20714 }
20715 else
20716 switch (parent->tag)
20717 {
20718 case DW_TAG_namespace:
20719 parent_type = read_type_die (parent, cu);
20720 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20721 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20722 Work around this problem here. */
20723 if (cu->language == language_cplus
20724 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20725 return "";
20726 /* We give a name to even anonymous namespaces. */
20727 return TYPE_TAG_NAME (parent_type);
20728 case DW_TAG_class_type:
20729 case DW_TAG_interface_type:
20730 case DW_TAG_structure_type:
20731 case DW_TAG_union_type:
20732 case DW_TAG_module:
20733 parent_type = read_type_die (parent, cu);
20734 if (TYPE_TAG_NAME (parent_type) != NULL)
20735 return TYPE_TAG_NAME (parent_type);
20736 else
20737 /* An anonymous structure is only allowed non-static data
20738 members; no typedefs, no member functions, et cetera.
20739 So it does not need a prefix. */
20740 return "";
20741 case DW_TAG_compile_unit:
20742 case DW_TAG_partial_unit:
20743 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20744 if (cu->language == language_cplus
20745 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20746 && die->child != NULL
20747 && (die->tag == DW_TAG_class_type
20748 || die->tag == DW_TAG_structure_type
20749 || die->tag == DW_TAG_union_type))
20750 {
20751 char *name = guess_full_die_structure_name (die, cu);
20752 if (name != NULL)
20753 return name;
20754 }
20755 return "";
20756 case DW_TAG_enumeration_type:
20757 parent_type = read_type_die (parent, cu);
20758 if (TYPE_DECLARED_CLASS (parent_type))
20759 {
20760 if (TYPE_TAG_NAME (parent_type) != NULL)
20761 return TYPE_TAG_NAME (parent_type);
20762 return "";
20763 }
20764 /* Fall through. */
20765 default:
20766 return determine_prefix (parent, cu);
20767 }
20768 }
20769
20770 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20771 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20772 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20773 an obconcat, otherwise allocate storage for the result. The CU argument is
20774 used to determine the language and hence, the appropriate separator. */
20775
20776 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20777
20778 static char *
20779 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20780 int physname, struct dwarf2_cu *cu)
20781 {
20782 const char *lead = "";
20783 const char *sep;
20784
20785 if (suffix == NULL || suffix[0] == '\0'
20786 || prefix == NULL || prefix[0] == '\0')
20787 sep = "";
20788 else if (cu->language == language_d)
20789 {
20790 /* For D, the 'main' function could be defined in any module, but it
20791 should never be prefixed. */
20792 if (strcmp (suffix, "D main") == 0)
20793 {
20794 prefix = "";
20795 sep = "";
20796 }
20797 else
20798 sep = ".";
20799 }
20800 else if (cu->language == language_fortran && physname)
20801 {
20802 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20803 DW_AT_MIPS_linkage_name is preferred and used instead. */
20804
20805 lead = "__";
20806 sep = "_MOD_";
20807 }
20808 else
20809 sep = "::";
20810
20811 if (prefix == NULL)
20812 prefix = "";
20813 if (suffix == NULL)
20814 suffix = "";
20815
20816 if (obs == NULL)
20817 {
20818 char *retval
20819 = ((char *)
20820 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20821
20822 strcpy (retval, lead);
20823 strcat (retval, prefix);
20824 strcat (retval, sep);
20825 strcat (retval, suffix);
20826 return retval;
20827 }
20828 else
20829 {
20830 /* We have an obstack. */
20831 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20832 }
20833 }
20834
20835 /* Return sibling of die, NULL if no sibling. */
20836
20837 static struct die_info *
20838 sibling_die (struct die_info *die)
20839 {
20840 return die->sibling;
20841 }
20842
20843 /* Get name of a die, return NULL if not found. */
20844
20845 static const char *
20846 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20847 struct obstack *obstack)
20848 {
20849 if (name && cu->language == language_cplus)
20850 {
20851 std::string canon_name = cp_canonicalize_string (name);
20852
20853 if (!canon_name.empty ())
20854 {
20855 if (canon_name != name)
20856 name = (const char *) obstack_copy0 (obstack,
20857 canon_name.c_str (),
20858 canon_name.length ());
20859 }
20860 }
20861
20862 return name;
20863 }
20864
20865 /* Get name of a die, return NULL if not found.
20866 Anonymous namespaces are converted to their magic string. */
20867
20868 static const char *
20869 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20870 {
20871 struct attribute *attr;
20872
20873 attr = dwarf2_attr (die, DW_AT_name, cu);
20874 if ((!attr || !DW_STRING (attr))
20875 && die->tag != DW_TAG_namespace
20876 && die->tag != DW_TAG_class_type
20877 && die->tag != DW_TAG_interface_type
20878 && die->tag != DW_TAG_structure_type
20879 && die->tag != DW_TAG_union_type)
20880 return NULL;
20881
20882 switch (die->tag)
20883 {
20884 case DW_TAG_compile_unit:
20885 case DW_TAG_partial_unit:
20886 /* Compilation units have a DW_AT_name that is a filename, not
20887 a source language identifier. */
20888 case DW_TAG_enumeration_type:
20889 case DW_TAG_enumerator:
20890 /* These tags always have simple identifiers already; no need
20891 to canonicalize them. */
20892 return DW_STRING (attr);
20893
20894 case DW_TAG_namespace:
20895 if (attr != NULL && DW_STRING (attr) != NULL)
20896 return DW_STRING (attr);
20897 return CP_ANONYMOUS_NAMESPACE_STR;
20898
20899 case DW_TAG_class_type:
20900 case DW_TAG_interface_type:
20901 case DW_TAG_structure_type:
20902 case DW_TAG_union_type:
20903 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20904 structures or unions. These were of the form "._%d" in GCC 4.1,
20905 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20906 and GCC 4.4. We work around this problem by ignoring these. */
20907 if (attr && DW_STRING (attr)
20908 && (startswith (DW_STRING (attr), "._")
20909 || startswith (DW_STRING (attr), "<anonymous")))
20910 return NULL;
20911
20912 /* GCC might emit a nameless typedef that has a linkage name. See
20913 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20914 if (!attr || DW_STRING (attr) == NULL)
20915 {
20916 char *demangled = NULL;
20917
20918 attr = dw2_linkage_name_attr (die, cu);
20919 if (attr == NULL || DW_STRING (attr) == NULL)
20920 return NULL;
20921
20922 /* Avoid demangling DW_STRING (attr) the second time on a second
20923 call for the same DIE. */
20924 if (!DW_STRING_IS_CANONICAL (attr))
20925 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20926
20927 if (demangled)
20928 {
20929 const char *base;
20930
20931 /* FIXME: we already did this for the partial symbol... */
20932 DW_STRING (attr)
20933 = ((const char *)
20934 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20935 demangled, strlen (demangled)));
20936 DW_STRING_IS_CANONICAL (attr) = 1;
20937 xfree (demangled);
20938
20939 /* Strip any leading namespaces/classes, keep only the base name.
20940 DW_AT_name for named DIEs does not contain the prefixes. */
20941 base = strrchr (DW_STRING (attr), ':');
20942 if (base && base > DW_STRING (attr) && base[-1] == ':')
20943 return &base[1];
20944 else
20945 return DW_STRING (attr);
20946 }
20947 }
20948 break;
20949
20950 default:
20951 break;
20952 }
20953
20954 if (!DW_STRING_IS_CANONICAL (attr))
20955 {
20956 DW_STRING (attr)
20957 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20958 &cu->objfile->per_bfd->storage_obstack);
20959 DW_STRING_IS_CANONICAL (attr) = 1;
20960 }
20961 return DW_STRING (attr);
20962 }
20963
20964 /* Return the die that this die in an extension of, or NULL if there
20965 is none. *EXT_CU is the CU containing DIE on input, and the CU
20966 containing the return value on output. */
20967
20968 static struct die_info *
20969 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20970 {
20971 struct attribute *attr;
20972
20973 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20974 if (attr == NULL)
20975 return NULL;
20976
20977 return follow_die_ref (die, attr, ext_cu);
20978 }
20979
20980 /* Convert a DIE tag into its string name. */
20981
20982 static const char *
20983 dwarf_tag_name (unsigned tag)
20984 {
20985 const char *name = get_DW_TAG_name (tag);
20986
20987 if (name == NULL)
20988 return "DW_TAG_<unknown>";
20989
20990 return name;
20991 }
20992
20993 /* Convert a DWARF attribute code into its string name. */
20994
20995 static const char *
20996 dwarf_attr_name (unsigned attr)
20997 {
20998 const char *name;
20999
21000 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21001 if (attr == DW_AT_MIPS_fde)
21002 return "DW_AT_MIPS_fde";
21003 #else
21004 if (attr == DW_AT_HP_block_index)
21005 return "DW_AT_HP_block_index";
21006 #endif
21007
21008 name = get_DW_AT_name (attr);
21009
21010 if (name == NULL)
21011 return "DW_AT_<unknown>";
21012
21013 return name;
21014 }
21015
21016 /* Convert a DWARF value form code into its string name. */
21017
21018 static const char *
21019 dwarf_form_name (unsigned form)
21020 {
21021 const char *name = get_DW_FORM_name (form);
21022
21023 if (name == NULL)
21024 return "DW_FORM_<unknown>";
21025
21026 return name;
21027 }
21028
21029 static const char *
21030 dwarf_bool_name (unsigned mybool)
21031 {
21032 if (mybool)
21033 return "TRUE";
21034 else
21035 return "FALSE";
21036 }
21037
21038 /* Convert a DWARF type code into its string name. */
21039
21040 static const char *
21041 dwarf_type_encoding_name (unsigned enc)
21042 {
21043 const char *name = get_DW_ATE_name (enc);
21044
21045 if (name == NULL)
21046 return "DW_ATE_<unknown>";
21047
21048 return name;
21049 }
21050
21051 static void
21052 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21053 {
21054 unsigned int i;
21055
21056 print_spaces (indent, f);
21057 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
21058 dwarf_tag_name (die->tag), die->abbrev,
21059 to_underlying (die->sect_off));
21060
21061 if (die->parent != NULL)
21062 {
21063 print_spaces (indent, f);
21064 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
21065 to_underlying (die->parent->sect_off));
21066 }
21067
21068 print_spaces (indent, f);
21069 fprintf_unfiltered (f, " has children: %s\n",
21070 dwarf_bool_name (die->child != NULL));
21071
21072 print_spaces (indent, f);
21073 fprintf_unfiltered (f, " attributes:\n");
21074
21075 for (i = 0; i < die->num_attrs; ++i)
21076 {
21077 print_spaces (indent, f);
21078 fprintf_unfiltered (f, " %s (%s) ",
21079 dwarf_attr_name (die->attrs[i].name),
21080 dwarf_form_name (die->attrs[i].form));
21081
21082 switch (die->attrs[i].form)
21083 {
21084 case DW_FORM_addr:
21085 case DW_FORM_GNU_addr_index:
21086 fprintf_unfiltered (f, "address: ");
21087 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21088 break;
21089 case DW_FORM_block2:
21090 case DW_FORM_block4:
21091 case DW_FORM_block:
21092 case DW_FORM_block1:
21093 fprintf_unfiltered (f, "block: size %s",
21094 pulongest (DW_BLOCK (&die->attrs[i])->size));
21095 break;
21096 case DW_FORM_exprloc:
21097 fprintf_unfiltered (f, "expression: size %s",
21098 pulongest (DW_BLOCK (&die->attrs[i])->size));
21099 break;
21100 case DW_FORM_data16:
21101 fprintf_unfiltered (f, "constant of 16 bytes");
21102 break;
21103 case DW_FORM_ref_addr:
21104 fprintf_unfiltered (f, "ref address: ");
21105 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21106 break;
21107 case DW_FORM_GNU_ref_alt:
21108 fprintf_unfiltered (f, "alt ref address: ");
21109 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21110 break;
21111 case DW_FORM_ref1:
21112 case DW_FORM_ref2:
21113 case DW_FORM_ref4:
21114 case DW_FORM_ref8:
21115 case DW_FORM_ref_udata:
21116 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21117 (long) (DW_UNSND (&die->attrs[i])));
21118 break;
21119 case DW_FORM_data1:
21120 case DW_FORM_data2:
21121 case DW_FORM_data4:
21122 case DW_FORM_data8:
21123 case DW_FORM_udata:
21124 case DW_FORM_sdata:
21125 fprintf_unfiltered (f, "constant: %s",
21126 pulongest (DW_UNSND (&die->attrs[i])));
21127 break;
21128 case DW_FORM_sec_offset:
21129 fprintf_unfiltered (f, "section offset: %s",
21130 pulongest (DW_UNSND (&die->attrs[i])));
21131 break;
21132 case DW_FORM_ref_sig8:
21133 fprintf_unfiltered (f, "signature: %s",
21134 hex_string (DW_SIGNATURE (&die->attrs[i])));
21135 break;
21136 case DW_FORM_string:
21137 case DW_FORM_strp:
21138 case DW_FORM_line_strp:
21139 case DW_FORM_GNU_str_index:
21140 case DW_FORM_GNU_strp_alt:
21141 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21142 DW_STRING (&die->attrs[i])
21143 ? DW_STRING (&die->attrs[i]) : "",
21144 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21145 break;
21146 case DW_FORM_flag:
21147 if (DW_UNSND (&die->attrs[i]))
21148 fprintf_unfiltered (f, "flag: TRUE");
21149 else
21150 fprintf_unfiltered (f, "flag: FALSE");
21151 break;
21152 case DW_FORM_flag_present:
21153 fprintf_unfiltered (f, "flag: TRUE");
21154 break;
21155 case DW_FORM_indirect:
21156 /* The reader will have reduced the indirect form to
21157 the "base form" so this form should not occur. */
21158 fprintf_unfiltered (f,
21159 "unexpected attribute form: DW_FORM_indirect");
21160 break;
21161 case DW_FORM_implicit_const:
21162 fprintf_unfiltered (f, "constant: %s",
21163 plongest (DW_SND (&die->attrs[i])));
21164 break;
21165 default:
21166 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21167 die->attrs[i].form);
21168 break;
21169 }
21170 fprintf_unfiltered (f, "\n");
21171 }
21172 }
21173
21174 static void
21175 dump_die_for_error (struct die_info *die)
21176 {
21177 dump_die_shallow (gdb_stderr, 0, die);
21178 }
21179
21180 static void
21181 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21182 {
21183 int indent = level * 4;
21184
21185 gdb_assert (die != NULL);
21186
21187 if (level >= max_level)
21188 return;
21189
21190 dump_die_shallow (f, indent, die);
21191
21192 if (die->child != NULL)
21193 {
21194 print_spaces (indent, f);
21195 fprintf_unfiltered (f, " Children:");
21196 if (level + 1 < max_level)
21197 {
21198 fprintf_unfiltered (f, "\n");
21199 dump_die_1 (f, level + 1, max_level, die->child);
21200 }
21201 else
21202 {
21203 fprintf_unfiltered (f,
21204 " [not printed, max nesting level reached]\n");
21205 }
21206 }
21207
21208 if (die->sibling != NULL && level > 0)
21209 {
21210 dump_die_1 (f, level, max_level, die->sibling);
21211 }
21212 }
21213
21214 /* This is called from the pdie macro in gdbinit.in.
21215 It's not static so gcc will keep a copy callable from gdb. */
21216
21217 void
21218 dump_die (struct die_info *die, int max_level)
21219 {
21220 dump_die_1 (gdb_stdlog, 0, max_level, die);
21221 }
21222
21223 static void
21224 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
21225 {
21226 void **slot;
21227
21228 slot = htab_find_slot_with_hash (cu->die_hash, die,
21229 to_underlying (die->sect_off),
21230 INSERT);
21231
21232 *slot = die;
21233 }
21234
21235 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
21236 required kind. */
21237
21238 static sect_offset
21239 dwarf2_get_ref_die_offset (const struct attribute *attr)
21240 {
21241 if (attr_form_is_ref (attr))
21242 return (sect_offset) DW_UNSND (attr);
21243
21244 complaint (&symfile_complaints,
21245 _("unsupported die ref attribute form: '%s'"),
21246 dwarf_form_name (attr->form));
21247 return {};
21248 }
21249
21250 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
21251 * the value held by the attribute is not constant. */
21252
21253 static LONGEST
21254 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
21255 {
21256 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
21257 return DW_SND (attr);
21258 else if (attr->form == DW_FORM_udata
21259 || attr->form == DW_FORM_data1
21260 || attr->form == DW_FORM_data2
21261 || attr->form == DW_FORM_data4
21262 || attr->form == DW_FORM_data8)
21263 return DW_UNSND (attr);
21264 else
21265 {
21266 /* For DW_FORM_data16 see attr_form_is_constant. */
21267 complaint (&symfile_complaints,
21268 _("Attribute value is not a constant (%s)"),
21269 dwarf_form_name (attr->form));
21270 return default_value;
21271 }
21272 }
21273
21274 /* Follow reference or signature attribute ATTR of SRC_DIE.
21275 On entry *REF_CU is the CU of SRC_DIE.
21276 On exit *REF_CU is the CU of the result. */
21277
21278 static struct die_info *
21279 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
21280 struct dwarf2_cu **ref_cu)
21281 {
21282 struct die_info *die;
21283
21284 if (attr_form_is_ref (attr))
21285 die = follow_die_ref (src_die, attr, ref_cu);
21286 else if (attr->form == DW_FORM_ref_sig8)
21287 die = follow_die_sig (src_die, attr, ref_cu);
21288 else
21289 {
21290 dump_die_for_error (src_die);
21291 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
21292 objfile_name ((*ref_cu)->objfile));
21293 }
21294
21295 return die;
21296 }
21297
21298 /* Follow reference OFFSET.
21299 On entry *REF_CU is the CU of the source die referencing OFFSET.
21300 On exit *REF_CU is the CU of the result.
21301 Returns NULL if OFFSET is invalid. */
21302
21303 static struct die_info *
21304 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
21305 struct dwarf2_cu **ref_cu)
21306 {
21307 struct die_info temp_die;
21308 struct dwarf2_cu *target_cu, *cu = *ref_cu;
21309
21310 gdb_assert (cu->per_cu != NULL);
21311
21312 target_cu = cu;
21313
21314 if (cu->per_cu->is_debug_types)
21315 {
21316 /* .debug_types CUs cannot reference anything outside their CU.
21317 If they need to, they have to reference a signatured type via
21318 DW_FORM_ref_sig8. */
21319 if (!offset_in_cu_p (&cu->header, sect_off))
21320 return NULL;
21321 }
21322 else if (offset_in_dwz != cu->per_cu->is_dwz
21323 || !offset_in_cu_p (&cu->header, sect_off))
21324 {
21325 struct dwarf2_per_cu_data *per_cu;
21326
21327 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21328 cu->objfile);
21329
21330 /* If necessary, add it to the queue and load its DIEs. */
21331 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21332 load_full_comp_unit (per_cu, cu->language);
21333
21334 target_cu = per_cu->cu;
21335 }
21336 else if (cu->dies == NULL)
21337 {
21338 /* We're loading full DIEs during partial symbol reading. */
21339 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21340 load_full_comp_unit (cu->per_cu, language_minimal);
21341 }
21342
21343 *ref_cu = target_cu;
21344 temp_die.sect_off = sect_off;
21345 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21346 &temp_die,
21347 to_underlying (sect_off));
21348 }
21349
21350 /* Follow reference attribute ATTR of SRC_DIE.
21351 On entry *REF_CU is the CU of SRC_DIE.
21352 On exit *REF_CU is the CU of the result. */
21353
21354 static struct die_info *
21355 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21356 struct dwarf2_cu **ref_cu)
21357 {
21358 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21359 struct dwarf2_cu *cu = *ref_cu;
21360 struct die_info *die;
21361
21362 die = follow_die_offset (sect_off,
21363 (attr->form == DW_FORM_GNU_ref_alt
21364 || cu->per_cu->is_dwz),
21365 ref_cu);
21366 if (!die)
21367 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
21368 "at 0x%x [in module %s]"),
21369 to_underlying (sect_off), to_underlying (src_die->sect_off),
21370 objfile_name (cu->objfile));
21371
21372 return die;
21373 }
21374
21375 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
21376 Returned value is intended for DW_OP_call*. Returned
21377 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
21378
21379 struct dwarf2_locexpr_baton
21380 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21381 struct dwarf2_per_cu_data *per_cu,
21382 CORE_ADDR (*get_frame_pc) (void *baton),
21383 void *baton)
21384 {
21385 struct dwarf2_cu *cu;
21386 struct die_info *die;
21387 struct attribute *attr;
21388 struct dwarf2_locexpr_baton retval;
21389
21390 dw2_setup (per_cu->objfile);
21391
21392 if (per_cu->cu == NULL)
21393 load_cu (per_cu);
21394 cu = per_cu->cu;
21395 if (cu == NULL)
21396 {
21397 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21398 Instead just throw an error, not much else we can do. */
21399 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21400 to_underlying (sect_off), objfile_name (per_cu->objfile));
21401 }
21402
21403 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21404 if (!die)
21405 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21406 to_underlying (sect_off), objfile_name (per_cu->objfile));
21407
21408 attr = dwarf2_attr (die, DW_AT_location, cu);
21409 if (!attr)
21410 {
21411 /* DWARF: "If there is no such attribute, then there is no effect.".
21412 DATA is ignored if SIZE is 0. */
21413
21414 retval.data = NULL;
21415 retval.size = 0;
21416 }
21417 else if (attr_form_is_section_offset (attr))
21418 {
21419 struct dwarf2_loclist_baton loclist_baton;
21420 CORE_ADDR pc = (*get_frame_pc) (baton);
21421 size_t size;
21422
21423 fill_in_loclist_baton (cu, &loclist_baton, attr);
21424
21425 retval.data = dwarf2_find_location_expression (&loclist_baton,
21426 &size, pc);
21427 retval.size = size;
21428 }
21429 else
21430 {
21431 if (!attr_form_is_block (attr))
21432 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
21433 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21434 to_underlying (sect_off), objfile_name (per_cu->objfile));
21435
21436 retval.data = DW_BLOCK (attr)->data;
21437 retval.size = DW_BLOCK (attr)->size;
21438 }
21439 retval.per_cu = cu->per_cu;
21440
21441 age_cached_comp_units ();
21442
21443 return retval;
21444 }
21445
21446 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
21447 offset. */
21448
21449 struct dwarf2_locexpr_baton
21450 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21451 struct dwarf2_per_cu_data *per_cu,
21452 CORE_ADDR (*get_frame_pc) (void *baton),
21453 void *baton)
21454 {
21455 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21456
21457 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21458 }
21459
21460 /* Write a constant of a given type as target-ordered bytes into
21461 OBSTACK. */
21462
21463 static const gdb_byte *
21464 write_constant_as_bytes (struct obstack *obstack,
21465 enum bfd_endian byte_order,
21466 struct type *type,
21467 ULONGEST value,
21468 LONGEST *len)
21469 {
21470 gdb_byte *result;
21471
21472 *len = TYPE_LENGTH (type);
21473 result = (gdb_byte *) obstack_alloc (obstack, *len);
21474 store_unsigned_integer (result, *len, byte_order, value);
21475
21476 return result;
21477 }
21478
21479 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
21480 pointer to the constant bytes and set LEN to the length of the
21481 data. If memory is needed, allocate it on OBSTACK. If the DIE
21482 does not have a DW_AT_const_value, return NULL. */
21483
21484 const gdb_byte *
21485 dwarf2_fetch_constant_bytes (sect_offset sect_off,
21486 struct dwarf2_per_cu_data *per_cu,
21487 struct obstack *obstack,
21488 LONGEST *len)
21489 {
21490 struct dwarf2_cu *cu;
21491 struct die_info *die;
21492 struct attribute *attr;
21493 const gdb_byte *result = NULL;
21494 struct type *type;
21495 LONGEST value;
21496 enum bfd_endian byte_order;
21497
21498 dw2_setup (per_cu->objfile);
21499
21500 if (per_cu->cu == NULL)
21501 load_cu (per_cu);
21502 cu = per_cu->cu;
21503 if (cu == NULL)
21504 {
21505 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21506 Instead just throw an error, not much else we can do. */
21507 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21508 to_underlying (sect_off), objfile_name (per_cu->objfile));
21509 }
21510
21511 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21512 if (!die)
21513 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21514 to_underlying (sect_off), objfile_name (per_cu->objfile));
21515
21516
21517 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21518 if (attr == NULL)
21519 return NULL;
21520
21521 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
21522 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21523
21524 switch (attr->form)
21525 {
21526 case DW_FORM_addr:
21527 case DW_FORM_GNU_addr_index:
21528 {
21529 gdb_byte *tem;
21530
21531 *len = cu->header.addr_size;
21532 tem = (gdb_byte *) obstack_alloc (obstack, *len);
21533 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
21534 result = tem;
21535 }
21536 break;
21537 case DW_FORM_string:
21538 case DW_FORM_strp:
21539 case DW_FORM_GNU_str_index:
21540 case DW_FORM_GNU_strp_alt:
21541 /* DW_STRING is already allocated on the objfile obstack, point
21542 directly to it. */
21543 result = (const gdb_byte *) DW_STRING (attr);
21544 *len = strlen (DW_STRING (attr));
21545 break;
21546 case DW_FORM_block1:
21547 case DW_FORM_block2:
21548 case DW_FORM_block4:
21549 case DW_FORM_block:
21550 case DW_FORM_exprloc:
21551 case DW_FORM_data16:
21552 result = DW_BLOCK (attr)->data;
21553 *len = DW_BLOCK (attr)->size;
21554 break;
21555
21556 /* The DW_AT_const_value attributes are supposed to carry the
21557 symbol's value "represented as it would be on the target
21558 architecture." By the time we get here, it's already been
21559 converted to host endianness, so we just need to sign- or
21560 zero-extend it as appropriate. */
21561 case DW_FORM_data1:
21562 type = die_type (die, cu);
21563 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
21564 if (result == NULL)
21565 result = write_constant_as_bytes (obstack, byte_order,
21566 type, value, len);
21567 break;
21568 case DW_FORM_data2:
21569 type = die_type (die, cu);
21570 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
21571 if (result == NULL)
21572 result = write_constant_as_bytes (obstack, byte_order,
21573 type, value, len);
21574 break;
21575 case DW_FORM_data4:
21576 type = die_type (die, cu);
21577 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
21578 if (result == NULL)
21579 result = write_constant_as_bytes (obstack, byte_order,
21580 type, value, len);
21581 break;
21582 case DW_FORM_data8:
21583 type = die_type (die, cu);
21584 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
21585 if (result == NULL)
21586 result = write_constant_as_bytes (obstack, byte_order,
21587 type, value, len);
21588 break;
21589
21590 case DW_FORM_sdata:
21591 case DW_FORM_implicit_const:
21592 type = die_type (die, cu);
21593 result = write_constant_as_bytes (obstack, byte_order,
21594 type, DW_SND (attr), len);
21595 break;
21596
21597 case DW_FORM_udata:
21598 type = die_type (die, cu);
21599 result = write_constant_as_bytes (obstack, byte_order,
21600 type, DW_UNSND (attr), len);
21601 break;
21602
21603 default:
21604 complaint (&symfile_complaints,
21605 _("unsupported const value attribute form: '%s'"),
21606 dwarf_form_name (attr->form));
21607 break;
21608 }
21609
21610 return result;
21611 }
21612
21613 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21614 valid type for this die is found. */
21615
21616 struct type *
21617 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21618 struct dwarf2_per_cu_data *per_cu)
21619 {
21620 struct dwarf2_cu *cu;
21621 struct die_info *die;
21622
21623 dw2_setup (per_cu->objfile);
21624
21625 if (per_cu->cu == NULL)
21626 load_cu (per_cu);
21627 cu = per_cu->cu;
21628 if (!cu)
21629 return NULL;
21630
21631 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21632 if (!die)
21633 return NULL;
21634
21635 return die_type (die, cu);
21636 }
21637
21638 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21639 PER_CU. */
21640
21641 struct type *
21642 dwarf2_get_die_type (cu_offset die_offset,
21643 struct dwarf2_per_cu_data *per_cu)
21644 {
21645 dw2_setup (per_cu->objfile);
21646
21647 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21648 return get_die_type_at_offset (die_offset_sect, per_cu);
21649 }
21650
21651 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21652 On entry *REF_CU is the CU of SRC_DIE.
21653 On exit *REF_CU is the CU of the result.
21654 Returns NULL if the referenced DIE isn't found. */
21655
21656 static struct die_info *
21657 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21658 struct dwarf2_cu **ref_cu)
21659 {
21660 struct die_info temp_die;
21661 struct dwarf2_cu *sig_cu;
21662 struct die_info *die;
21663
21664 /* While it might be nice to assert sig_type->type == NULL here,
21665 we can get here for DW_AT_imported_declaration where we need
21666 the DIE not the type. */
21667
21668 /* If necessary, add it to the queue and load its DIEs. */
21669
21670 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21671 read_signatured_type (sig_type);
21672
21673 sig_cu = sig_type->per_cu.cu;
21674 gdb_assert (sig_cu != NULL);
21675 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21676 temp_die.sect_off = sig_type->type_offset_in_section;
21677 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21678 to_underlying (temp_die.sect_off));
21679 if (die)
21680 {
21681 /* For .gdb_index version 7 keep track of included TUs.
21682 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21683 if (dwarf2_per_objfile->index_table != NULL
21684 && dwarf2_per_objfile->index_table->version <= 7)
21685 {
21686 VEC_safe_push (dwarf2_per_cu_ptr,
21687 (*ref_cu)->per_cu->imported_symtabs,
21688 sig_cu->per_cu);
21689 }
21690
21691 *ref_cu = sig_cu;
21692 return die;
21693 }
21694
21695 return NULL;
21696 }
21697
21698 /* Follow signatured type referenced by ATTR in SRC_DIE.
21699 On entry *REF_CU is the CU of SRC_DIE.
21700 On exit *REF_CU is the CU of the result.
21701 The result is the DIE of the type.
21702 If the referenced type cannot be found an error is thrown. */
21703
21704 static struct die_info *
21705 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21706 struct dwarf2_cu **ref_cu)
21707 {
21708 ULONGEST signature = DW_SIGNATURE (attr);
21709 struct signatured_type *sig_type;
21710 struct die_info *die;
21711
21712 gdb_assert (attr->form == DW_FORM_ref_sig8);
21713
21714 sig_type = lookup_signatured_type (*ref_cu, signature);
21715 /* sig_type will be NULL if the signatured type is missing from
21716 the debug info. */
21717 if (sig_type == NULL)
21718 {
21719 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21720 " from DIE at 0x%x [in module %s]"),
21721 hex_string (signature), to_underlying (src_die->sect_off),
21722 objfile_name ((*ref_cu)->objfile));
21723 }
21724
21725 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21726 if (die == NULL)
21727 {
21728 dump_die_for_error (src_die);
21729 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21730 " from DIE at 0x%x [in module %s]"),
21731 hex_string (signature), to_underlying (src_die->sect_off),
21732 objfile_name ((*ref_cu)->objfile));
21733 }
21734
21735 return die;
21736 }
21737
21738 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21739 reading in and processing the type unit if necessary. */
21740
21741 static struct type *
21742 get_signatured_type (struct die_info *die, ULONGEST signature,
21743 struct dwarf2_cu *cu)
21744 {
21745 struct signatured_type *sig_type;
21746 struct dwarf2_cu *type_cu;
21747 struct die_info *type_die;
21748 struct type *type;
21749
21750 sig_type = lookup_signatured_type (cu, signature);
21751 /* sig_type will be NULL if the signatured type is missing from
21752 the debug info. */
21753 if (sig_type == NULL)
21754 {
21755 complaint (&symfile_complaints,
21756 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21757 " from DIE at 0x%x [in module %s]"),
21758 hex_string (signature), to_underlying (die->sect_off),
21759 objfile_name (dwarf2_per_objfile->objfile));
21760 return build_error_marker_type (cu, die);
21761 }
21762
21763 /* If we already know the type we're done. */
21764 if (sig_type->type != NULL)
21765 return sig_type->type;
21766
21767 type_cu = cu;
21768 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21769 if (type_die != NULL)
21770 {
21771 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21772 is created. This is important, for example, because for c++ classes
21773 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21774 type = read_type_die (type_die, type_cu);
21775 if (type == NULL)
21776 {
21777 complaint (&symfile_complaints,
21778 _("Dwarf Error: Cannot build signatured type %s"
21779 " referenced from DIE at 0x%x [in module %s]"),
21780 hex_string (signature), to_underlying (die->sect_off),
21781 objfile_name (dwarf2_per_objfile->objfile));
21782 type = build_error_marker_type (cu, die);
21783 }
21784 }
21785 else
21786 {
21787 complaint (&symfile_complaints,
21788 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21789 " from DIE at 0x%x [in module %s]"),
21790 hex_string (signature), to_underlying (die->sect_off),
21791 objfile_name (dwarf2_per_objfile->objfile));
21792 type = build_error_marker_type (cu, die);
21793 }
21794 sig_type->type = type;
21795
21796 return type;
21797 }
21798
21799 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21800 reading in and processing the type unit if necessary. */
21801
21802 static struct type *
21803 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21804 struct dwarf2_cu *cu) /* ARI: editCase function */
21805 {
21806 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21807 if (attr_form_is_ref (attr))
21808 {
21809 struct dwarf2_cu *type_cu = cu;
21810 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21811
21812 return read_type_die (type_die, type_cu);
21813 }
21814 else if (attr->form == DW_FORM_ref_sig8)
21815 {
21816 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21817 }
21818 else
21819 {
21820 complaint (&symfile_complaints,
21821 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21822 " at 0x%x [in module %s]"),
21823 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21824 objfile_name (dwarf2_per_objfile->objfile));
21825 return build_error_marker_type (cu, die);
21826 }
21827 }
21828
21829 /* Load the DIEs associated with type unit PER_CU into memory. */
21830
21831 static void
21832 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21833 {
21834 struct signatured_type *sig_type;
21835
21836 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21837 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21838
21839 /* We have the per_cu, but we need the signatured_type.
21840 Fortunately this is an easy translation. */
21841 gdb_assert (per_cu->is_debug_types);
21842 sig_type = (struct signatured_type *) per_cu;
21843
21844 gdb_assert (per_cu->cu == NULL);
21845
21846 read_signatured_type (sig_type);
21847
21848 gdb_assert (per_cu->cu != NULL);
21849 }
21850
21851 /* die_reader_func for read_signatured_type.
21852 This is identical to load_full_comp_unit_reader,
21853 but is kept separate for now. */
21854
21855 static void
21856 read_signatured_type_reader (const struct die_reader_specs *reader,
21857 const gdb_byte *info_ptr,
21858 struct die_info *comp_unit_die,
21859 int has_children,
21860 void *data)
21861 {
21862 struct dwarf2_cu *cu = reader->cu;
21863
21864 gdb_assert (cu->die_hash == NULL);
21865 cu->die_hash =
21866 htab_create_alloc_ex (cu->header.length / 12,
21867 die_hash,
21868 die_eq,
21869 NULL,
21870 &cu->comp_unit_obstack,
21871 hashtab_obstack_allocate,
21872 dummy_obstack_deallocate);
21873
21874 if (has_children)
21875 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21876 &info_ptr, comp_unit_die);
21877 cu->dies = comp_unit_die;
21878 /* comp_unit_die is not stored in die_hash, no need. */
21879
21880 /* We try not to read any attributes in this function, because not
21881 all CUs needed for references have been loaded yet, and symbol
21882 table processing isn't initialized. But we have to set the CU language,
21883 or we won't be able to build types correctly.
21884 Similarly, if we do not read the producer, we can not apply
21885 producer-specific interpretation. */
21886 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21887 }
21888
21889 /* Read in a signatured type and build its CU and DIEs.
21890 If the type is a stub for the real type in a DWO file,
21891 read in the real type from the DWO file as well. */
21892
21893 static void
21894 read_signatured_type (struct signatured_type *sig_type)
21895 {
21896 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21897
21898 gdb_assert (per_cu->is_debug_types);
21899 gdb_assert (per_cu->cu == NULL);
21900
21901 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21902 read_signatured_type_reader, NULL);
21903 sig_type->per_cu.tu_read = 1;
21904 }
21905
21906 /* Decode simple location descriptions.
21907 Given a pointer to a dwarf block that defines a location, compute
21908 the location and return the value.
21909
21910 NOTE drow/2003-11-18: This function is called in two situations
21911 now: for the address of static or global variables (partial symbols
21912 only) and for offsets into structures which are expected to be
21913 (more or less) constant. The partial symbol case should go away,
21914 and only the constant case should remain. That will let this
21915 function complain more accurately. A few special modes are allowed
21916 without complaint for global variables (for instance, global
21917 register values and thread-local values).
21918
21919 A location description containing no operations indicates that the
21920 object is optimized out. The return value is 0 for that case.
21921 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21922 callers will only want a very basic result and this can become a
21923 complaint.
21924
21925 Note that stack[0] is unused except as a default error return. */
21926
21927 static CORE_ADDR
21928 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21929 {
21930 struct objfile *objfile = cu->objfile;
21931 size_t i;
21932 size_t size = blk->size;
21933 const gdb_byte *data = blk->data;
21934 CORE_ADDR stack[64];
21935 int stacki;
21936 unsigned int bytes_read, unsnd;
21937 gdb_byte op;
21938
21939 i = 0;
21940 stacki = 0;
21941 stack[stacki] = 0;
21942 stack[++stacki] = 0;
21943
21944 while (i < size)
21945 {
21946 op = data[i++];
21947 switch (op)
21948 {
21949 case DW_OP_lit0:
21950 case DW_OP_lit1:
21951 case DW_OP_lit2:
21952 case DW_OP_lit3:
21953 case DW_OP_lit4:
21954 case DW_OP_lit5:
21955 case DW_OP_lit6:
21956 case DW_OP_lit7:
21957 case DW_OP_lit8:
21958 case DW_OP_lit9:
21959 case DW_OP_lit10:
21960 case DW_OP_lit11:
21961 case DW_OP_lit12:
21962 case DW_OP_lit13:
21963 case DW_OP_lit14:
21964 case DW_OP_lit15:
21965 case DW_OP_lit16:
21966 case DW_OP_lit17:
21967 case DW_OP_lit18:
21968 case DW_OP_lit19:
21969 case DW_OP_lit20:
21970 case DW_OP_lit21:
21971 case DW_OP_lit22:
21972 case DW_OP_lit23:
21973 case DW_OP_lit24:
21974 case DW_OP_lit25:
21975 case DW_OP_lit26:
21976 case DW_OP_lit27:
21977 case DW_OP_lit28:
21978 case DW_OP_lit29:
21979 case DW_OP_lit30:
21980 case DW_OP_lit31:
21981 stack[++stacki] = op - DW_OP_lit0;
21982 break;
21983
21984 case DW_OP_reg0:
21985 case DW_OP_reg1:
21986 case DW_OP_reg2:
21987 case DW_OP_reg3:
21988 case DW_OP_reg4:
21989 case DW_OP_reg5:
21990 case DW_OP_reg6:
21991 case DW_OP_reg7:
21992 case DW_OP_reg8:
21993 case DW_OP_reg9:
21994 case DW_OP_reg10:
21995 case DW_OP_reg11:
21996 case DW_OP_reg12:
21997 case DW_OP_reg13:
21998 case DW_OP_reg14:
21999 case DW_OP_reg15:
22000 case DW_OP_reg16:
22001 case DW_OP_reg17:
22002 case DW_OP_reg18:
22003 case DW_OP_reg19:
22004 case DW_OP_reg20:
22005 case DW_OP_reg21:
22006 case DW_OP_reg22:
22007 case DW_OP_reg23:
22008 case DW_OP_reg24:
22009 case DW_OP_reg25:
22010 case DW_OP_reg26:
22011 case DW_OP_reg27:
22012 case DW_OP_reg28:
22013 case DW_OP_reg29:
22014 case DW_OP_reg30:
22015 case DW_OP_reg31:
22016 stack[++stacki] = op - DW_OP_reg0;
22017 if (i < size)
22018 dwarf2_complex_location_expr_complaint ();
22019 break;
22020
22021 case DW_OP_regx:
22022 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22023 i += bytes_read;
22024 stack[++stacki] = unsnd;
22025 if (i < size)
22026 dwarf2_complex_location_expr_complaint ();
22027 break;
22028
22029 case DW_OP_addr:
22030 stack[++stacki] = read_address (objfile->obfd, &data[i],
22031 cu, &bytes_read);
22032 i += bytes_read;
22033 break;
22034
22035 case DW_OP_const1u:
22036 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22037 i += 1;
22038 break;
22039
22040 case DW_OP_const1s:
22041 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22042 i += 1;
22043 break;
22044
22045 case DW_OP_const2u:
22046 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22047 i += 2;
22048 break;
22049
22050 case DW_OP_const2s:
22051 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22052 i += 2;
22053 break;
22054
22055 case DW_OP_const4u:
22056 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22057 i += 4;
22058 break;
22059
22060 case DW_OP_const4s:
22061 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22062 i += 4;
22063 break;
22064
22065 case DW_OP_const8u:
22066 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22067 i += 8;
22068 break;
22069
22070 case DW_OP_constu:
22071 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22072 &bytes_read);
22073 i += bytes_read;
22074 break;
22075
22076 case DW_OP_consts:
22077 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22078 i += bytes_read;
22079 break;
22080
22081 case DW_OP_dup:
22082 stack[stacki + 1] = stack[stacki];
22083 stacki++;
22084 break;
22085
22086 case DW_OP_plus:
22087 stack[stacki - 1] += stack[stacki];
22088 stacki--;
22089 break;
22090
22091 case DW_OP_plus_uconst:
22092 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22093 &bytes_read);
22094 i += bytes_read;
22095 break;
22096
22097 case DW_OP_minus:
22098 stack[stacki - 1] -= stack[stacki];
22099 stacki--;
22100 break;
22101
22102 case DW_OP_deref:
22103 /* If we're not the last op, then we definitely can't encode
22104 this using GDB's address_class enum. This is valid for partial
22105 global symbols, although the variable's address will be bogus
22106 in the psymtab. */
22107 if (i < size)
22108 dwarf2_complex_location_expr_complaint ();
22109 break;
22110
22111 case DW_OP_GNU_push_tls_address:
22112 case DW_OP_form_tls_address:
22113 /* The top of the stack has the offset from the beginning
22114 of the thread control block at which the variable is located. */
22115 /* Nothing should follow this operator, so the top of stack would
22116 be returned. */
22117 /* This is valid for partial global symbols, but the variable's
22118 address will be bogus in the psymtab. Make it always at least
22119 non-zero to not look as a variable garbage collected by linker
22120 which have DW_OP_addr 0. */
22121 if (i < size)
22122 dwarf2_complex_location_expr_complaint ();
22123 stack[stacki]++;
22124 break;
22125
22126 case DW_OP_GNU_uninit:
22127 break;
22128
22129 case DW_OP_GNU_addr_index:
22130 case DW_OP_GNU_const_index:
22131 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22132 &bytes_read);
22133 i += bytes_read;
22134 break;
22135
22136 default:
22137 {
22138 const char *name = get_DW_OP_name (op);
22139
22140 if (name)
22141 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
22142 name);
22143 else
22144 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
22145 op);
22146 }
22147
22148 return (stack[stacki]);
22149 }
22150
22151 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22152 outside of the allocated space. Also enforce minimum>0. */
22153 if (stacki >= ARRAY_SIZE (stack) - 1)
22154 {
22155 complaint (&symfile_complaints,
22156 _("location description stack overflow"));
22157 return 0;
22158 }
22159
22160 if (stacki <= 0)
22161 {
22162 complaint (&symfile_complaints,
22163 _("location description stack underflow"));
22164 return 0;
22165 }
22166 }
22167 return (stack[stacki]);
22168 }
22169
22170 /* memory allocation interface */
22171
22172 static struct dwarf_block *
22173 dwarf_alloc_block (struct dwarf2_cu *cu)
22174 {
22175 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22176 }
22177
22178 static struct die_info *
22179 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22180 {
22181 struct die_info *die;
22182 size_t size = sizeof (struct die_info);
22183
22184 if (num_attrs > 1)
22185 size += (num_attrs - 1) * sizeof (struct attribute);
22186
22187 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
22188 memset (die, 0, sizeof (struct die_info));
22189 return (die);
22190 }
22191
22192 \f
22193 /* Macro support. */
22194
22195 /* Return file name relative to the compilation directory of file number I in
22196 *LH's file name table. The result is allocated using xmalloc; the caller is
22197 responsible for freeing it. */
22198
22199 static char *
22200 file_file_name (int file, struct line_header *lh)
22201 {
22202 /* Is the file number a valid index into the line header's file name
22203 table? Remember that file numbers start with one, not zero. */
22204 if (1 <= file && file <= lh->file_names.size ())
22205 {
22206 const file_entry &fe = lh->file_names[file - 1];
22207
22208 if (!IS_ABSOLUTE_PATH (fe.name))
22209 {
22210 const char *dir = fe.include_dir (lh);
22211 if (dir != NULL)
22212 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
22213 }
22214 return xstrdup (fe.name);
22215 }
22216 else
22217 {
22218 /* The compiler produced a bogus file number. We can at least
22219 record the macro definitions made in the file, even if we
22220 won't be able to find the file by name. */
22221 char fake_name[80];
22222
22223 xsnprintf (fake_name, sizeof (fake_name),
22224 "<bad macro file number %d>", file);
22225
22226 complaint (&symfile_complaints,
22227 _("bad file number in macro information (%d)"),
22228 file);
22229
22230 return xstrdup (fake_name);
22231 }
22232 }
22233
22234 /* Return the full name of file number I in *LH's file name table.
22235 Use COMP_DIR as the name of the current directory of the
22236 compilation. The result is allocated using xmalloc; the caller is
22237 responsible for freeing it. */
22238 static char *
22239 file_full_name (int file, struct line_header *lh, const char *comp_dir)
22240 {
22241 /* Is the file number a valid index into the line header's file name
22242 table? Remember that file numbers start with one, not zero. */
22243 if (1 <= file && file <= lh->file_names.size ())
22244 {
22245 char *relative = file_file_name (file, lh);
22246
22247 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
22248 return relative;
22249 return reconcat (relative, comp_dir, SLASH_STRING,
22250 relative, (char *) NULL);
22251 }
22252 else
22253 return file_file_name (file, lh);
22254 }
22255
22256
22257 static struct macro_source_file *
22258 macro_start_file (int file, int line,
22259 struct macro_source_file *current_file,
22260 struct line_header *lh)
22261 {
22262 /* File name relative to the compilation directory of this source file. */
22263 char *file_name = file_file_name (file, lh);
22264
22265 if (! current_file)
22266 {
22267 /* Note: We don't create a macro table for this compilation unit
22268 at all until we actually get a filename. */
22269 struct macro_table *macro_table = get_macro_table ();
22270
22271 /* If we have no current file, then this must be the start_file
22272 directive for the compilation unit's main source file. */
22273 current_file = macro_set_main (macro_table, file_name);
22274 macro_define_special (macro_table);
22275 }
22276 else
22277 current_file = macro_include (current_file, line, file_name);
22278
22279 xfree (file_name);
22280
22281 return current_file;
22282 }
22283
22284 static const char *
22285 consume_improper_spaces (const char *p, const char *body)
22286 {
22287 if (*p == ' ')
22288 {
22289 complaint (&symfile_complaints,
22290 _("macro definition contains spaces "
22291 "in formal argument list:\n`%s'"),
22292 body);
22293
22294 while (*p == ' ')
22295 p++;
22296 }
22297
22298 return p;
22299 }
22300
22301
22302 static void
22303 parse_macro_definition (struct macro_source_file *file, int line,
22304 const char *body)
22305 {
22306 const char *p;
22307
22308 /* The body string takes one of two forms. For object-like macro
22309 definitions, it should be:
22310
22311 <macro name> " " <definition>
22312
22313 For function-like macro definitions, it should be:
22314
22315 <macro name> "() " <definition>
22316 or
22317 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
22318
22319 Spaces may appear only where explicitly indicated, and in the
22320 <definition>.
22321
22322 The Dwarf 2 spec says that an object-like macro's name is always
22323 followed by a space, but versions of GCC around March 2002 omit
22324 the space when the macro's definition is the empty string.
22325
22326 The Dwarf 2 spec says that there should be no spaces between the
22327 formal arguments in a function-like macro's formal argument list,
22328 but versions of GCC around March 2002 include spaces after the
22329 commas. */
22330
22331
22332 /* Find the extent of the macro name. The macro name is terminated
22333 by either a space or null character (for an object-like macro) or
22334 an opening paren (for a function-like macro). */
22335 for (p = body; *p; p++)
22336 if (*p == ' ' || *p == '(')
22337 break;
22338
22339 if (*p == ' ' || *p == '\0')
22340 {
22341 /* It's an object-like macro. */
22342 int name_len = p - body;
22343 char *name = savestring (body, name_len);
22344 const char *replacement;
22345
22346 if (*p == ' ')
22347 replacement = body + name_len + 1;
22348 else
22349 {
22350 dwarf2_macro_malformed_definition_complaint (body);
22351 replacement = body + name_len;
22352 }
22353
22354 macro_define_object (file, line, name, replacement);
22355
22356 xfree (name);
22357 }
22358 else if (*p == '(')
22359 {
22360 /* It's a function-like macro. */
22361 char *name = savestring (body, p - body);
22362 int argc = 0;
22363 int argv_size = 1;
22364 char **argv = XNEWVEC (char *, argv_size);
22365
22366 p++;
22367
22368 p = consume_improper_spaces (p, body);
22369
22370 /* Parse the formal argument list. */
22371 while (*p && *p != ')')
22372 {
22373 /* Find the extent of the current argument name. */
22374 const char *arg_start = p;
22375
22376 while (*p && *p != ',' && *p != ')' && *p != ' ')
22377 p++;
22378
22379 if (! *p || p == arg_start)
22380 dwarf2_macro_malformed_definition_complaint (body);
22381 else
22382 {
22383 /* Make sure argv has room for the new argument. */
22384 if (argc >= argv_size)
22385 {
22386 argv_size *= 2;
22387 argv = XRESIZEVEC (char *, argv, argv_size);
22388 }
22389
22390 argv[argc++] = savestring (arg_start, p - arg_start);
22391 }
22392
22393 p = consume_improper_spaces (p, body);
22394
22395 /* Consume the comma, if present. */
22396 if (*p == ',')
22397 {
22398 p++;
22399
22400 p = consume_improper_spaces (p, body);
22401 }
22402 }
22403
22404 if (*p == ')')
22405 {
22406 p++;
22407
22408 if (*p == ' ')
22409 /* Perfectly formed definition, no complaints. */
22410 macro_define_function (file, line, name,
22411 argc, (const char **) argv,
22412 p + 1);
22413 else if (*p == '\0')
22414 {
22415 /* Complain, but do define it. */
22416 dwarf2_macro_malformed_definition_complaint (body);
22417 macro_define_function (file, line, name,
22418 argc, (const char **) argv,
22419 p);
22420 }
22421 else
22422 /* Just complain. */
22423 dwarf2_macro_malformed_definition_complaint (body);
22424 }
22425 else
22426 /* Just complain. */
22427 dwarf2_macro_malformed_definition_complaint (body);
22428
22429 xfree (name);
22430 {
22431 int i;
22432
22433 for (i = 0; i < argc; i++)
22434 xfree (argv[i]);
22435 }
22436 xfree (argv);
22437 }
22438 else
22439 dwarf2_macro_malformed_definition_complaint (body);
22440 }
22441
22442 /* Skip some bytes from BYTES according to the form given in FORM.
22443 Returns the new pointer. */
22444
22445 static const gdb_byte *
22446 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
22447 enum dwarf_form form,
22448 unsigned int offset_size,
22449 struct dwarf2_section_info *section)
22450 {
22451 unsigned int bytes_read;
22452
22453 switch (form)
22454 {
22455 case DW_FORM_data1:
22456 case DW_FORM_flag:
22457 ++bytes;
22458 break;
22459
22460 case DW_FORM_data2:
22461 bytes += 2;
22462 break;
22463
22464 case DW_FORM_data4:
22465 bytes += 4;
22466 break;
22467
22468 case DW_FORM_data8:
22469 bytes += 8;
22470 break;
22471
22472 case DW_FORM_data16:
22473 bytes += 16;
22474 break;
22475
22476 case DW_FORM_string:
22477 read_direct_string (abfd, bytes, &bytes_read);
22478 bytes += bytes_read;
22479 break;
22480
22481 case DW_FORM_sec_offset:
22482 case DW_FORM_strp:
22483 case DW_FORM_GNU_strp_alt:
22484 bytes += offset_size;
22485 break;
22486
22487 case DW_FORM_block:
22488 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
22489 bytes += bytes_read;
22490 break;
22491
22492 case DW_FORM_block1:
22493 bytes += 1 + read_1_byte (abfd, bytes);
22494 break;
22495 case DW_FORM_block2:
22496 bytes += 2 + read_2_bytes (abfd, bytes);
22497 break;
22498 case DW_FORM_block4:
22499 bytes += 4 + read_4_bytes (abfd, bytes);
22500 break;
22501
22502 case DW_FORM_sdata:
22503 case DW_FORM_udata:
22504 case DW_FORM_GNU_addr_index:
22505 case DW_FORM_GNU_str_index:
22506 bytes = gdb_skip_leb128 (bytes, buffer_end);
22507 if (bytes == NULL)
22508 {
22509 dwarf2_section_buffer_overflow_complaint (section);
22510 return NULL;
22511 }
22512 break;
22513
22514 case DW_FORM_implicit_const:
22515 break;
22516
22517 default:
22518 {
22519 complain:
22520 complaint (&symfile_complaints,
22521 _("invalid form 0x%x in `%s'"),
22522 form, get_section_name (section));
22523 return NULL;
22524 }
22525 }
22526
22527 return bytes;
22528 }
22529
22530 /* A helper for dwarf_decode_macros that handles skipping an unknown
22531 opcode. Returns an updated pointer to the macro data buffer; or,
22532 on error, issues a complaint and returns NULL. */
22533
22534 static const gdb_byte *
22535 skip_unknown_opcode (unsigned int opcode,
22536 const gdb_byte **opcode_definitions,
22537 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22538 bfd *abfd,
22539 unsigned int offset_size,
22540 struct dwarf2_section_info *section)
22541 {
22542 unsigned int bytes_read, i;
22543 unsigned long arg;
22544 const gdb_byte *defn;
22545
22546 if (opcode_definitions[opcode] == NULL)
22547 {
22548 complaint (&symfile_complaints,
22549 _("unrecognized DW_MACFINO opcode 0x%x"),
22550 opcode);
22551 return NULL;
22552 }
22553
22554 defn = opcode_definitions[opcode];
22555 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
22556 defn += bytes_read;
22557
22558 for (i = 0; i < arg; ++i)
22559 {
22560 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
22561 (enum dwarf_form) defn[i], offset_size,
22562 section);
22563 if (mac_ptr == NULL)
22564 {
22565 /* skip_form_bytes already issued the complaint. */
22566 return NULL;
22567 }
22568 }
22569
22570 return mac_ptr;
22571 }
22572
22573 /* A helper function which parses the header of a macro section.
22574 If the macro section is the extended (for now called "GNU") type,
22575 then this updates *OFFSET_SIZE. Returns a pointer to just after
22576 the header, or issues a complaint and returns NULL on error. */
22577
22578 static const gdb_byte *
22579 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22580 bfd *abfd,
22581 const gdb_byte *mac_ptr,
22582 unsigned int *offset_size,
22583 int section_is_gnu)
22584 {
22585 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22586
22587 if (section_is_gnu)
22588 {
22589 unsigned int version, flags;
22590
22591 version = read_2_bytes (abfd, mac_ptr);
22592 if (version != 4 && version != 5)
22593 {
22594 complaint (&symfile_complaints,
22595 _("unrecognized version `%d' in .debug_macro section"),
22596 version);
22597 return NULL;
22598 }
22599 mac_ptr += 2;
22600
22601 flags = read_1_byte (abfd, mac_ptr);
22602 ++mac_ptr;
22603 *offset_size = (flags & 1) ? 8 : 4;
22604
22605 if ((flags & 2) != 0)
22606 /* We don't need the line table offset. */
22607 mac_ptr += *offset_size;
22608
22609 /* Vendor opcode descriptions. */
22610 if ((flags & 4) != 0)
22611 {
22612 unsigned int i, count;
22613
22614 count = read_1_byte (abfd, mac_ptr);
22615 ++mac_ptr;
22616 for (i = 0; i < count; ++i)
22617 {
22618 unsigned int opcode, bytes_read;
22619 unsigned long arg;
22620
22621 opcode = read_1_byte (abfd, mac_ptr);
22622 ++mac_ptr;
22623 opcode_definitions[opcode] = mac_ptr;
22624 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22625 mac_ptr += bytes_read;
22626 mac_ptr += arg;
22627 }
22628 }
22629 }
22630
22631 return mac_ptr;
22632 }
22633
22634 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22635 including DW_MACRO_import. */
22636
22637 static void
22638 dwarf_decode_macro_bytes (bfd *abfd,
22639 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22640 struct macro_source_file *current_file,
22641 struct line_header *lh,
22642 struct dwarf2_section_info *section,
22643 int section_is_gnu, int section_is_dwz,
22644 unsigned int offset_size,
22645 htab_t include_hash)
22646 {
22647 struct objfile *objfile = dwarf2_per_objfile->objfile;
22648 enum dwarf_macro_record_type macinfo_type;
22649 int at_commandline;
22650 const gdb_byte *opcode_definitions[256];
22651
22652 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22653 &offset_size, section_is_gnu);
22654 if (mac_ptr == NULL)
22655 {
22656 /* We already issued a complaint. */
22657 return;
22658 }
22659
22660 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22661 GDB is still reading the definitions from command line. First
22662 DW_MACINFO_start_file will need to be ignored as it was already executed
22663 to create CURRENT_FILE for the main source holding also the command line
22664 definitions. On first met DW_MACINFO_start_file this flag is reset to
22665 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22666
22667 at_commandline = 1;
22668
22669 do
22670 {
22671 /* Do we at least have room for a macinfo type byte? */
22672 if (mac_ptr >= mac_end)
22673 {
22674 dwarf2_section_buffer_overflow_complaint (section);
22675 break;
22676 }
22677
22678 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22679 mac_ptr++;
22680
22681 /* Note that we rely on the fact that the corresponding GNU and
22682 DWARF constants are the same. */
22683 switch (macinfo_type)
22684 {
22685 /* A zero macinfo type indicates the end of the macro
22686 information. */
22687 case 0:
22688 break;
22689
22690 case DW_MACRO_define:
22691 case DW_MACRO_undef:
22692 case DW_MACRO_define_strp:
22693 case DW_MACRO_undef_strp:
22694 case DW_MACRO_define_sup:
22695 case DW_MACRO_undef_sup:
22696 {
22697 unsigned int bytes_read;
22698 int line;
22699 const char *body;
22700 int is_define;
22701
22702 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22703 mac_ptr += bytes_read;
22704
22705 if (macinfo_type == DW_MACRO_define
22706 || macinfo_type == DW_MACRO_undef)
22707 {
22708 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22709 mac_ptr += bytes_read;
22710 }
22711 else
22712 {
22713 LONGEST str_offset;
22714
22715 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22716 mac_ptr += offset_size;
22717
22718 if (macinfo_type == DW_MACRO_define_sup
22719 || macinfo_type == DW_MACRO_undef_sup
22720 || section_is_dwz)
22721 {
22722 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22723
22724 body = read_indirect_string_from_dwz (dwz, str_offset);
22725 }
22726 else
22727 body = read_indirect_string_at_offset (abfd, str_offset);
22728 }
22729
22730 is_define = (macinfo_type == DW_MACRO_define
22731 || macinfo_type == DW_MACRO_define_strp
22732 || macinfo_type == DW_MACRO_define_sup);
22733 if (! current_file)
22734 {
22735 /* DWARF violation as no main source is present. */
22736 complaint (&symfile_complaints,
22737 _("debug info with no main source gives macro %s "
22738 "on line %d: %s"),
22739 is_define ? _("definition") : _("undefinition"),
22740 line, body);
22741 break;
22742 }
22743 if ((line == 0 && !at_commandline)
22744 || (line != 0 && at_commandline))
22745 complaint (&symfile_complaints,
22746 _("debug info gives %s macro %s with %s line %d: %s"),
22747 at_commandline ? _("command-line") : _("in-file"),
22748 is_define ? _("definition") : _("undefinition"),
22749 line == 0 ? _("zero") : _("non-zero"), line, body);
22750
22751 if (is_define)
22752 parse_macro_definition (current_file, line, body);
22753 else
22754 {
22755 gdb_assert (macinfo_type == DW_MACRO_undef
22756 || macinfo_type == DW_MACRO_undef_strp
22757 || macinfo_type == DW_MACRO_undef_sup);
22758 macro_undef (current_file, line, body);
22759 }
22760 }
22761 break;
22762
22763 case DW_MACRO_start_file:
22764 {
22765 unsigned int bytes_read;
22766 int line, file;
22767
22768 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22769 mac_ptr += bytes_read;
22770 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22771 mac_ptr += bytes_read;
22772
22773 if ((line == 0 && !at_commandline)
22774 || (line != 0 && at_commandline))
22775 complaint (&symfile_complaints,
22776 _("debug info gives source %d included "
22777 "from %s at %s line %d"),
22778 file, at_commandline ? _("command-line") : _("file"),
22779 line == 0 ? _("zero") : _("non-zero"), line);
22780
22781 if (at_commandline)
22782 {
22783 /* This DW_MACRO_start_file was executed in the
22784 pass one. */
22785 at_commandline = 0;
22786 }
22787 else
22788 current_file = macro_start_file (file, line, current_file, lh);
22789 }
22790 break;
22791
22792 case DW_MACRO_end_file:
22793 if (! current_file)
22794 complaint (&symfile_complaints,
22795 _("macro debug info has an unmatched "
22796 "`close_file' directive"));
22797 else
22798 {
22799 current_file = current_file->included_by;
22800 if (! current_file)
22801 {
22802 enum dwarf_macro_record_type next_type;
22803
22804 /* GCC circa March 2002 doesn't produce the zero
22805 type byte marking the end of the compilation
22806 unit. Complain if it's not there, but exit no
22807 matter what. */
22808
22809 /* Do we at least have room for a macinfo type byte? */
22810 if (mac_ptr >= mac_end)
22811 {
22812 dwarf2_section_buffer_overflow_complaint (section);
22813 return;
22814 }
22815
22816 /* We don't increment mac_ptr here, so this is just
22817 a look-ahead. */
22818 next_type
22819 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22820 mac_ptr);
22821 if (next_type != 0)
22822 complaint (&symfile_complaints,
22823 _("no terminating 0-type entry for "
22824 "macros in `.debug_macinfo' section"));
22825
22826 return;
22827 }
22828 }
22829 break;
22830
22831 case DW_MACRO_import:
22832 case DW_MACRO_import_sup:
22833 {
22834 LONGEST offset;
22835 void **slot;
22836 bfd *include_bfd = abfd;
22837 struct dwarf2_section_info *include_section = section;
22838 const gdb_byte *include_mac_end = mac_end;
22839 int is_dwz = section_is_dwz;
22840 const gdb_byte *new_mac_ptr;
22841
22842 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22843 mac_ptr += offset_size;
22844
22845 if (macinfo_type == DW_MACRO_import_sup)
22846 {
22847 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22848
22849 dwarf2_read_section (objfile, &dwz->macro);
22850
22851 include_section = &dwz->macro;
22852 include_bfd = get_section_bfd_owner (include_section);
22853 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22854 is_dwz = 1;
22855 }
22856
22857 new_mac_ptr = include_section->buffer + offset;
22858 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22859
22860 if (*slot != NULL)
22861 {
22862 /* This has actually happened; see
22863 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22864 complaint (&symfile_complaints,
22865 _("recursive DW_MACRO_import in "
22866 ".debug_macro section"));
22867 }
22868 else
22869 {
22870 *slot = (void *) new_mac_ptr;
22871
22872 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22873 include_mac_end, current_file, lh,
22874 section, section_is_gnu, is_dwz,
22875 offset_size, include_hash);
22876
22877 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22878 }
22879 }
22880 break;
22881
22882 case DW_MACINFO_vendor_ext:
22883 if (!section_is_gnu)
22884 {
22885 unsigned int bytes_read;
22886
22887 /* This reads the constant, but since we don't recognize
22888 any vendor extensions, we ignore it. */
22889 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22890 mac_ptr += bytes_read;
22891 read_direct_string (abfd, mac_ptr, &bytes_read);
22892 mac_ptr += bytes_read;
22893
22894 /* We don't recognize any vendor extensions. */
22895 break;
22896 }
22897 /* FALLTHROUGH */
22898
22899 default:
22900 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22901 mac_ptr, mac_end, abfd, offset_size,
22902 section);
22903 if (mac_ptr == NULL)
22904 return;
22905 break;
22906 }
22907 } while (macinfo_type != 0);
22908 }
22909
22910 static void
22911 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22912 int section_is_gnu)
22913 {
22914 struct objfile *objfile = dwarf2_per_objfile->objfile;
22915 struct line_header *lh = cu->line_header;
22916 bfd *abfd;
22917 const gdb_byte *mac_ptr, *mac_end;
22918 struct macro_source_file *current_file = 0;
22919 enum dwarf_macro_record_type macinfo_type;
22920 unsigned int offset_size = cu->header.offset_size;
22921 const gdb_byte *opcode_definitions[256];
22922 void **slot;
22923 struct dwarf2_section_info *section;
22924 const char *section_name;
22925
22926 if (cu->dwo_unit != NULL)
22927 {
22928 if (section_is_gnu)
22929 {
22930 section = &cu->dwo_unit->dwo_file->sections.macro;
22931 section_name = ".debug_macro.dwo";
22932 }
22933 else
22934 {
22935 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22936 section_name = ".debug_macinfo.dwo";
22937 }
22938 }
22939 else
22940 {
22941 if (section_is_gnu)
22942 {
22943 section = &dwarf2_per_objfile->macro;
22944 section_name = ".debug_macro";
22945 }
22946 else
22947 {
22948 section = &dwarf2_per_objfile->macinfo;
22949 section_name = ".debug_macinfo";
22950 }
22951 }
22952
22953 dwarf2_read_section (objfile, section);
22954 if (section->buffer == NULL)
22955 {
22956 complaint (&symfile_complaints, _("missing %s section"), section_name);
22957 return;
22958 }
22959 abfd = get_section_bfd_owner (section);
22960
22961 /* First pass: Find the name of the base filename.
22962 This filename is needed in order to process all macros whose definition
22963 (or undefinition) comes from the command line. These macros are defined
22964 before the first DW_MACINFO_start_file entry, and yet still need to be
22965 associated to the base file.
22966
22967 To determine the base file name, we scan the macro definitions until we
22968 reach the first DW_MACINFO_start_file entry. We then initialize
22969 CURRENT_FILE accordingly so that any macro definition found before the
22970 first DW_MACINFO_start_file can still be associated to the base file. */
22971
22972 mac_ptr = section->buffer + offset;
22973 mac_end = section->buffer + section->size;
22974
22975 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22976 &offset_size, section_is_gnu);
22977 if (mac_ptr == NULL)
22978 {
22979 /* We already issued a complaint. */
22980 return;
22981 }
22982
22983 do
22984 {
22985 /* Do we at least have room for a macinfo type byte? */
22986 if (mac_ptr >= mac_end)
22987 {
22988 /* Complaint is printed during the second pass as GDB will probably
22989 stop the first pass earlier upon finding
22990 DW_MACINFO_start_file. */
22991 break;
22992 }
22993
22994 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22995 mac_ptr++;
22996
22997 /* Note that we rely on the fact that the corresponding GNU and
22998 DWARF constants are the same. */
22999 switch (macinfo_type)
23000 {
23001 /* A zero macinfo type indicates the end of the macro
23002 information. */
23003 case 0:
23004 break;
23005
23006 case DW_MACRO_define:
23007 case DW_MACRO_undef:
23008 /* Only skip the data by MAC_PTR. */
23009 {
23010 unsigned int bytes_read;
23011
23012 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23013 mac_ptr += bytes_read;
23014 read_direct_string (abfd, mac_ptr, &bytes_read);
23015 mac_ptr += bytes_read;
23016 }
23017 break;
23018
23019 case DW_MACRO_start_file:
23020 {
23021 unsigned int bytes_read;
23022 int line, file;
23023
23024 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23025 mac_ptr += bytes_read;
23026 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23027 mac_ptr += bytes_read;
23028
23029 current_file = macro_start_file (file, line, current_file, lh);
23030 }
23031 break;
23032
23033 case DW_MACRO_end_file:
23034 /* No data to skip by MAC_PTR. */
23035 break;
23036
23037 case DW_MACRO_define_strp:
23038 case DW_MACRO_undef_strp:
23039 case DW_MACRO_define_sup:
23040 case DW_MACRO_undef_sup:
23041 {
23042 unsigned int bytes_read;
23043
23044 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23045 mac_ptr += bytes_read;
23046 mac_ptr += offset_size;
23047 }
23048 break;
23049
23050 case DW_MACRO_import:
23051 case DW_MACRO_import_sup:
23052 /* Note that, according to the spec, a transparent include
23053 chain cannot call DW_MACRO_start_file. So, we can just
23054 skip this opcode. */
23055 mac_ptr += offset_size;
23056 break;
23057
23058 case DW_MACINFO_vendor_ext:
23059 /* Only skip the data by MAC_PTR. */
23060 if (!section_is_gnu)
23061 {
23062 unsigned int bytes_read;
23063
23064 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23065 mac_ptr += bytes_read;
23066 read_direct_string (abfd, mac_ptr, &bytes_read);
23067 mac_ptr += bytes_read;
23068 }
23069 /* FALLTHROUGH */
23070
23071 default:
23072 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23073 mac_ptr, mac_end, abfd, offset_size,
23074 section);
23075 if (mac_ptr == NULL)
23076 return;
23077 break;
23078 }
23079 } while (macinfo_type != 0 && current_file == NULL);
23080
23081 /* Second pass: Process all entries.
23082
23083 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23084 command-line macro definitions/undefinitions. This flag is unset when we
23085 reach the first DW_MACINFO_start_file entry. */
23086
23087 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23088 htab_eq_pointer,
23089 NULL, xcalloc, xfree));
23090 mac_ptr = section->buffer + offset;
23091 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23092 *slot = (void *) mac_ptr;
23093 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
23094 current_file, lh, section,
23095 section_is_gnu, 0, offset_size,
23096 include_hash.get ());
23097 }
23098
23099 /* Check if the attribute's form is a DW_FORM_block*
23100 if so return true else false. */
23101
23102 static int
23103 attr_form_is_block (const struct attribute *attr)
23104 {
23105 return (attr == NULL ? 0 :
23106 attr->form == DW_FORM_block1
23107 || attr->form == DW_FORM_block2
23108 || attr->form == DW_FORM_block4
23109 || attr->form == DW_FORM_block
23110 || attr->form == DW_FORM_exprloc);
23111 }
23112
23113 /* Return non-zero if ATTR's value is a section offset --- classes
23114 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
23115 You may use DW_UNSND (attr) to retrieve such offsets.
23116
23117 Section 7.5.4, "Attribute Encodings", explains that no attribute
23118 may have a value that belongs to more than one of these classes; it
23119 would be ambiguous if we did, because we use the same forms for all
23120 of them. */
23121
23122 static int
23123 attr_form_is_section_offset (const struct attribute *attr)
23124 {
23125 return (attr->form == DW_FORM_data4
23126 || attr->form == DW_FORM_data8
23127 || attr->form == DW_FORM_sec_offset);
23128 }
23129
23130 /* Return non-zero if ATTR's value falls in the 'constant' class, or
23131 zero otherwise. When this function returns true, you can apply
23132 dwarf2_get_attr_constant_value to it.
23133
23134 However, note that for some attributes you must check
23135 attr_form_is_section_offset before using this test. DW_FORM_data4
23136 and DW_FORM_data8 are members of both the constant class, and of
23137 the classes that contain offsets into other debug sections
23138 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
23139 that, if an attribute's can be either a constant or one of the
23140 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
23141 taken as section offsets, not constants.
23142
23143 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
23144 cannot handle that. */
23145
23146 static int
23147 attr_form_is_constant (const struct attribute *attr)
23148 {
23149 switch (attr->form)
23150 {
23151 case DW_FORM_sdata:
23152 case DW_FORM_udata:
23153 case DW_FORM_data1:
23154 case DW_FORM_data2:
23155 case DW_FORM_data4:
23156 case DW_FORM_data8:
23157 case DW_FORM_implicit_const:
23158 return 1;
23159 default:
23160 return 0;
23161 }
23162 }
23163
23164
23165 /* DW_ADDR is always stored already as sect_offset; despite for the forms
23166 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
23167
23168 static int
23169 attr_form_is_ref (const struct attribute *attr)
23170 {
23171 switch (attr->form)
23172 {
23173 case DW_FORM_ref_addr:
23174 case DW_FORM_ref1:
23175 case DW_FORM_ref2:
23176 case DW_FORM_ref4:
23177 case DW_FORM_ref8:
23178 case DW_FORM_ref_udata:
23179 case DW_FORM_GNU_ref_alt:
23180 return 1;
23181 default:
23182 return 0;
23183 }
23184 }
23185
23186 /* Return the .debug_loc section to use for CU.
23187 For DWO files use .debug_loc.dwo. */
23188
23189 static struct dwarf2_section_info *
23190 cu_debug_loc_section (struct dwarf2_cu *cu)
23191 {
23192 if (cu->dwo_unit)
23193 {
23194 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23195
23196 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23197 }
23198 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23199 : &dwarf2_per_objfile->loc);
23200 }
23201
23202 /* A helper function that fills in a dwarf2_loclist_baton. */
23203
23204 static void
23205 fill_in_loclist_baton (struct dwarf2_cu *cu,
23206 struct dwarf2_loclist_baton *baton,
23207 const struct attribute *attr)
23208 {
23209 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23210
23211 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
23212
23213 baton->per_cu = cu->per_cu;
23214 gdb_assert (baton->per_cu);
23215 /* We don't know how long the location list is, but make sure we
23216 don't run off the edge of the section. */
23217 baton->size = section->size - DW_UNSND (attr);
23218 baton->data = section->buffer + DW_UNSND (attr);
23219 baton->base_address = cu->base_address;
23220 baton->from_dwo = cu->dwo_unit != NULL;
23221 }
23222
23223 static void
23224 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23225 struct dwarf2_cu *cu, int is_block)
23226 {
23227 struct objfile *objfile = dwarf2_per_objfile->objfile;
23228 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23229
23230 if (attr_form_is_section_offset (attr)
23231 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23232 the section. If so, fall through to the complaint in the
23233 other branch. */
23234 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
23235 {
23236 struct dwarf2_loclist_baton *baton;
23237
23238 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23239
23240 fill_in_loclist_baton (cu, baton, attr);
23241
23242 if (cu->base_known == 0)
23243 complaint (&symfile_complaints,
23244 _("Location list used without "
23245 "specifying the CU base address."));
23246
23247 SYMBOL_ACLASS_INDEX (sym) = (is_block
23248 ? dwarf2_loclist_block_index
23249 : dwarf2_loclist_index);
23250 SYMBOL_LOCATION_BATON (sym) = baton;
23251 }
23252 else
23253 {
23254 struct dwarf2_locexpr_baton *baton;
23255
23256 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23257 baton->per_cu = cu->per_cu;
23258 gdb_assert (baton->per_cu);
23259
23260 if (attr_form_is_block (attr))
23261 {
23262 /* Note that we're just copying the block's data pointer
23263 here, not the actual data. We're still pointing into the
23264 info_buffer for SYM's objfile; right now we never release
23265 that buffer, but when we do clean up properly this may
23266 need to change. */
23267 baton->size = DW_BLOCK (attr)->size;
23268 baton->data = DW_BLOCK (attr)->data;
23269 }
23270 else
23271 {
23272 dwarf2_invalid_attrib_class_complaint ("location description",
23273 SYMBOL_NATURAL_NAME (sym));
23274 baton->size = 0;
23275 }
23276
23277 SYMBOL_ACLASS_INDEX (sym) = (is_block
23278 ? dwarf2_locexpr_block_index
23279 : dwarf2_locexpr_index);
23280 SYMBOL_LOCATION_BATON (sym) = baton;
23281 }
23282 }
23283
23284 /* Return the OBJFILE associated with the compilation unit CU. If CU
23285 came from a separate debuginfo file, then the master objfile is
23286 returned. */
23287
23288 struct objfile *
23289 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
23290 {
23291 struct objfile *objfile = per_cu->objfile;
23292
23293 /* Return the master objfile, so that we can report and look up the
23294 correct file containing this variable. */
23295 if (objfile->separate_debug_objfile_backlink)
23296 objfile = objfile->separate_debug_objfile_backlink;
23297
23298 return objfile;
23299 }
23300
23301 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23302 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23303 CU_HEADERP first. */
23304
23305 static const struct comp_unit_head *
23306 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23307 struct dwarf2_per_cu_data *per_cu)
23308 {
23309 const gdb_byte *info_ptr;
23310
23311 if (per_cu->cu)
23312 return &per_cu->cu->header;
23313
23314 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23315
23316 memset (cu_headerp, 0, sizeof (*cu_headerp));
23317 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23318 rcuh_kind::COMPILE);
23319
23320 return cu_headerp;
23321 }
23322
23323 /* Return the address size given in the compilation unit header for CU. */
23324
23325 int
23326 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
23327 {
23328 struct comp_unit_head cu_header_local;
23329 const struct comp_unit_head *cu_headerp;
23330
23331 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23332
23333 return cu_headerp->addr_size;
23334 }
23335
23336 /* Return the offset size given in the compilation unit header for CU. */
23337
23338 int
23339 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
23340 {
23341 struct comp_unit_head cu_header_local;
23342 const struct comp_unit_head *cu_headerp;
23343
23344 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23345
23346 return cu_headerp->offset_size;
23347 }
23348
23349 /* See its dwarf2loc.h declaration. */
23350
23351 int
23352 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
23353 {
23354 struct comp_unit_head cu_header_local;
23355 const struct comp_unit_head *cu_headerp;
23356
23357 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23358
23359 if (cu_headerp->version == 2)
23360 return cu_headerp->addr_size;
23361 else
23362 return cu_headerp->offset_size;
23363 }
23364
23365 /* Return the text offset of the CU. The returned offset comes from
23366 this CU's objfile. If this objfile came from a separate debuginfo
23367 file, then the offset may be different from the corresponding
23368 offset in the parent objfile. */
23369
23370 CORE_ADDR
23371 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
23372 {
23373 struct objfile *objfile = per_cu->objfile;
23374
23375 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23376 }
23377
23378 /* Return DWARF version number of PER_CU. */
23379
23380 short
23381 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
23382 {
23383 return per_cu->dwarf_version;
23384 }
23385
23386 /* Locate the .debug_info compilation unit from CU's objfile which contains
23387 the DIE at OFFSET. Raises an error on failure. */
23388
23389 static struct dwarf2_per_cu_data *
23390 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23391 unsigned int offset_in_dwz,
23392 struct objfile *objfile)
23393 {
23394 struct dwarf2_per_cu_data *this_cu;
23395 int low, high;
23396 const sect_offset *cu_off;
23397
23398 low = 0;
23399 high = dwarf2_per_objfile->n_comp_units - 1;
23400 while (high > low)
23401 {
23402 struct dwarf2_per_cu_data *mid_cu;
23403 int mid = low + (high - low) / 2;
23404
23405 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
23406 cu_off = &mid_cu->sect_off;
23407 if (mid_cu->is_dwz > offset_in_dwz
23408 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
23409 high = mid;
23410 else
23411 low = mid + 1;
23412 }
23413 gdb_assert (low == high);
23414 this_cu = dwarf2_per_objfile->all_comp_units[low];
23415 cu_off = &this_cu->sect_off;
23416 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
23417 {
23418 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23419 error (_("Dwarf Error: could not find partial DIE containing "
23420 "offset 0x%x [in module %s]"),
23421 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
23422
23423 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23424 <= sect_off);
23425 return dwarf2_per_objfile->all_comp_units[low-1];
23426 }
23427 else
23428 {
23429 this_cu = dwarf2_per_objfile->all_comp_units[low];
23430 if (low == dwarf2_per_objfile->n_comp_units - 1
23431 && sect_off >= this_cu->sect_off + this_cu->length)
23432 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
23433 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23434 return this_cu;
23435 }
23436 }
23437
23438 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23439
23440 static void
23441 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
23442 {
23443 memset (cu, 0, sizeof (*cu));
23444 per_cu->cu = cu;
23445 cu->per_cu = per_cu;
23446 cu->objfile = per_cu->objfile;
23447 obstack_init (&cu->comp_unit_obstack);
23448 }
23449
23450 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23451
23452 static void
23453 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23454 enum language pretend_language)
23455 {
23456 struct attribute *attr;
23457
23458 /* Set the language we're debugging. */
23459 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23460 if (attr)
23461 set_cu_language (DW_UNSND (attr), cu);
23462 else
23463 {
23464 cu->language = pretend_language;
23465 cu->language_defn = language_def (cu->language);
23466 }
23467
23468 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23469 }
23470
23471 /* Release one cached compilation unit, CU. We unlink it from the tree
23472 of compilation units, but we don't remove it from the read_in_chain;
23473 the caller is responsible for that.
23474 NOTE: DATA is a void * because this function is also used as a
23475 cleanup routine. */
23476
23477 static void
23478 free_heap_comp_unit (void *data)
23479 {
23480 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23481
23482 gdb_assert (cu->per_cu != NULL);
23483 cu->per_cu->cu = NULL;
23484 cu->per_cu = NULL;
23485
23486 obstack_free (&cu->comp_unit_obstack, NULL);
23487
23488 xfree (cu);
23489 }
23490
23491 /* This cleanup function is passed the address of a dwarf2_cu on the stack
23492 when we're finished with it. We can't free the pointer itself, but be
23493 sure to unlink it from the cache. Also release any associated storage. */
23494
23495 static void
23496 free_stack_comp_unit (void *data)
23497 {
23498 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23499
23500 gdb_assert (cu->per_cu != NULL);
23501 cu->per_cu->cu = NULL;
23502 cu->per_cu = NULL;
23503
23504 obstack_free (&cu->comp_unit_obstack, NULL);
23505 cu->partial_dies = NULL;
23506 }
23507
23508 /* Free all cached compilation units. */
23509
23510 static void
23511 free_cached_comp_units (void *data)
23512 {
23513 dwarf2_per_objfile->free_cached_comp_units ();
23514 }
23515
23516 /* Increase the age counter on each cached compilation unit, and free
23517 any that are too old. */
23518
23519 static void
23520 age_cached_comp_units (void)
23521 {
23522 struct dwarf2_per_cu_data *per_cu, **last_chain;
23523
23524 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23525 per_cu = dwarf2_per_objfile->read_in_chain;
23526 while (per_cu != NULL)
23527 {
23528 per_cu->cu->last_used ++;
23529 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23530 dwarf2_mark (per_cu->cu);
23531 per_cu = per_cu->cu->read_in_chain;
23532 }
23533
23534 per_cu = dwarf2_per_objfile->read_in_chain;
23535 last_chain = &dwarf2_per_objfile->read_in_chain;
23536 while (per_cu != NULL)
23537 {
23538 struct dwarf2_per_cu_data *next_cu;
23539
23540 next_cu = per_cu->cu->read_in_chain;
23541
23542 if (!per_cu->cu->mark)
23543 {
23544 free_heap_comp_unit (per_cu->cu);
23545 *last_chain = next_cu;
23546 }
23547 else
23548 last_chain = &per_cu->cu->read_in_chain;
23549
23550 per_cu = next_cu;
23551 }
23552 }
23553
23554 /* Remove a single compilation unit from the cache. */
23555
23556 static void
23557 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23558 {
23559 struct dwarf2_per_cu_data *per_cu, **last_chain;
23560
23561 per_cu = dwarf2_per_objfile->read_in_chain;
23562 last_chain = &dwarf2_per_objfile->read_in_chain;
23563 while (per_cu != NULL)
23564 {
23565 struct dwarf2_per_cu_data *next_cu;
23566
23567 next_cu = per_cu->cu->read_in_chain;
23568
23569 if (per_cu == target_per_cu)
23570 {
23571 free_heap_comp_unit (per_cu->cu);
23572 per_cu->cu = NULL;
23573 *last_chain = next_cu;
23574 break;
23575 }
23576 else
23577 last_chain = &per_cu->cu->read_in_chain;
23578
23579 per_cu = next_cu;
23580 }
23581 }
23582
23583 /* Release all extra memory associated with OBJFILE. */
23584
23585 void
23586 dwarf2_free_objfile (struct objfile *objfile)
23587 {
23588 dwarf2_per_objfile
23589 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23590 dwarf2_objfile_data_key);
23591
23592 if (dwarf2_per_objfile == NULL)
23593 return;
23594
23595 dwarf2_per_objfile->~dwarf2_per_objfile ();
23596 }
23597
23598 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23599 We store these in a hash table separate from the DIEs, and preserve them
23600 when the DIEs are flushed out of cache.
23601
23602 The CU "per_cu" pointer is needed because offset alone is not enough to
23603 uniquely identify the type. A file may have multiple .debug_types sections,
23604 or the type may come from a DWO file. Furthermore, while it's more logical
23605 to use per_cu->section+offset, with Fission the section with the data is in
23606 the DWO file but we don't know that section at the point we need it.
23607 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23608 because we can enter the lookup routine, get_die_type_at_offset, from
23609 outside this file, and thus won't necessarily have PER_CU->cu.
23610 Fortunately, PER_CU is stable for the life of the objfile. */
23611
23612 struct dwarf2_per_cu_offset_and_type
23613 {
23614 const struct dwarf2_per_cu_data *per_cu;
23615 sect_offset sect_off;
23616 struct type *type;
23617 };
23618
23619 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23620
23621 static hashval_t
23622 per_cu_offset_and_type_hash (const void *item)
23623 {
23624 const struct dwarf2_per_cu_offset_and_type *ofs
23625 = (const struct dwarf2_per_cu_offset_and_type *) item;
23626
23627 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23628 }
23629
23630 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23631
23632 static int
23633 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23634 {
23635 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23636 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23637 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23638 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23639
23640 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23641 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23642 }
23643
23644 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23645 table if necessary. For convenience, return TYPE.
23646
23647 The DIEs reading must have careful ordering to:
23648 * Not cause infite loops trying to read in DIEs as a prerequisite for
23649 reading current DIE.
23650 * Not trying to dereference contents of still incompletely read in types
23651 while reading in other DIEs.
23652 * Enable referencing still incompletely read in types just by a pointer to
23653 the type without accessing its fields.
23654
23655 Therefore caller should follow these rules:
23656 * Try to fetch any prerequisite types we may need to build this DIE type
23657 before building the type and calling set_die_type.
23658 * After building type call set_die_type for current DIE as soon as
23659 possible before fetching more types to complete the current type.
23660 * Make the type as complete as possible before fetching more types. */
23661
23662 static struct type *
23663 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23664 {
23665 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23666 struct objfile *objfile = cu->objfile;
23667 struct attribute *attr;
23668 struct dynamic_prop prop;
23669
23670 /* For Ada types, make sure that the gnat-specific data is always
23671 initialized (if not already set). There are a few types where
23672 we should not be doing so, because the type-specific area is
23673 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23674 where the type-specific area is used to store the floatformat).
23675 But this is not a problem, because the gnat-specific information
23676 is actually not needed for these types. */
23677 if (need_gnat_info (cu)
23678 && TYPE_CODE (type) != TYPE_CODE_FUNC
23679 && TYPE_CODE (type) != TYPE_CODE_FLT
23680 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23681 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23682 && TYPE_CODE (type) != TYPE_CODE_METHOD
23683 && !HAVE_GNAT_AUX_INFO (type))
23684 INIT_GNAT_SPECIFIC (type);
23685
23686 /* Read DW_AT_allocated and set in type. */
23687 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23688 if (attr_form_is_block (attr))
23689 {
23690 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23691 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23692 }
23693 else if (attr != NULL)
23694 {
23695 complaint (&symfile_complaints,
23696 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23697 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23698 to_underlying (die->sect_off));
23699 }
23700
23701 /* Read DW_AT_associated and set in type. */
23702 attr = dwarf2_attr (die, DW_AT_associated, cu);
23703 if (attr_form_is_block (attr))
23704 {
23705 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23706 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23707 }
23708 else if (attr != NULL)
23709 {
23710 complaint (&symfile_complaints,
23711 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23712 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23713 to_underlying (die->sect_off));
23714 }
23715
23716 /* Read DW_AT_data_location and set in type. */
23717 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23718 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23719 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23720
23721 if (dwarf2_per_objfile->die_type_hash == NULL)
23722 {
23723 dwarf2_per_objfile->die_type_hash =
23724 htab_create_alloc_ex (127,
23725 per_cu_offset_and_type_hash,
23726 per_cu_offset_and_type_eq,
23727 NULL,
23728 &objfile->objfile_obstack,
23729 hashtab_obstack_allocate,
23730 dummy_obstack_deallocate);
23731 }
23732
23733 ofs.per_cu = cu->per_cu;
23734 ofs.sect_off = die->sect_off;
23735 ofs.type = type;
23736 slot = (struct dwarf2_per_cu_offset_and_type **)
23737 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23738 if (*slot)
23739 complaint (&symfile_complaints,
23740 _("A problem internal to GDB: DIE 0x%x has type already set"),
23741 to_underlying (die->sect_off));
23742 *slot = XOBNEW (&objfile->objfile_obstack,
23743 struct dwarf2_per_cu_offset_and_type);
23744 **slot = ofs;
23745 return type;
23746 }
23747
23748 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23749 or return NULL if the die does not have a saved type. */
23750
23751 static struct type *
23752 get_die_type_at_offset (sect_offset sect_off,
23753 struct dwarf2_per_cu_data *per_cu)
23754 {
23755 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23756
23757 if (dwarf2_per_objfile->die_type_hash == NULL)
23758 return NULL;
23759
23760 ofs.per_cu = per_cu;
23761 ofs.sect_off = sect_off;
23762 slot = ((struct dwarf2_per_cu_offset_and_type *)
23763 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23764 if (slot)
23765 return slot->type;
23766 else
23767 return NULL;
23768 }
23769
23770 /* Look up the type for DIE in CU in die_type_hash,
23771 or return NULL if DIE does not have a saved type. */
23772
23773 static struct type *
23774 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23775 {
23776 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23777 }
23778
23779 /* Add a dependence relationship from CU to REF_PER_CU. */
23780
23781 static void
23782 dwarf2_add_dependence (struct dwarf2_cu *cu,
23783 struct dwarf2_per_cu_data *ref_per_cu)
23784 {
23785 void **slot;
23786
23787 if (cu->dependencies == NULL)
23788 cu->dependencies
23789 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23790 NULL, &cu->comp_unit_obstack,
23791 hashtab_obstack_allocate,
23792 dummy_obstack_deallocate);
23793
23794 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23795 if (*slot == NULL)
23796 *slot = ref_per_cu;
23797 }
23798
23799 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23800 Set the mark field in every compilation unit in the
23801 cache that we must keep because we are keeping CU. */
23802
23803 static int
23804 dwarf2_mark_helper (void **slot, void *data)
23805 {
23806 struct dwarf2_per_cu_data *per_cu;
23807
23808 per_cu = (struct dwarf2_per_cu_data *) *slot;
23809
23810 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23811 reading of the chain. As such dependencies remain valid it is not much
23812 useful to track and undo them during QUIT cleanups. */
23813 if (per_cu->cu == NULL)
23814 return 1;
23815
23816 if (per_cu->cu->mark)
23817 return 1;
23818 per_cu->cu->mark = 1;
23819
23820 if (per_cu->cu->dependencies != NULL)
23821 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23822
23823 return 1;
23824 }
23825
23826 /* Set the mark field in CU and in every other compilation unit in the
23827 cache that we must keep because we are keeping CU. */
23828
23829 static void
23830 dwarf2_mark (struct dwarf2_cu *cu)
23831 {
23832 if (cu->mark)
23833 return;
23834 cu->mark = 1;
23835 if (cu->dependencies != NULL)
23836 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23837 }
23838
23839 static void
23840 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23841 {
23842 while (per_cu)
23843 {
23844 per_cu->cu->mark = 0;
23845 per_cu = per_cu->cu->read_in_chain;
23846 }
23847 }
23848
23849 /* Trivial hash function for partial_die_info: the hash value of a DIE
23850 is its offset in .debug_info for this objfile. */
23851
23852 static hashval_t
23853 partial_die_hash (const void *item)
23854 {
23855 const struct partial_die_info *part_die
23856 = (const struct partial_die_info *) item;
23857
23858 return to_underlying (part_die->sect_off);
23859 }
23860
23861 /* Trivial comparison function for partial_die_info structures: two DIEs
23862 are equal if they have the same offset. */
23863
23864 static int
23865 partial_die_eq (const void *item_lhs, const void *item_rhs)
23866 {
23867 const struct partial_die_info *part_die_lhs
23868 = (const struct partial_die_info *) item_lhs;
23869 const struct partial_die_info *part_die_rhs
23870 = (const struct partial_die_info *) item_rhs;
23871
23872 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23873 }
23874
23875 static struct cmd_list_element *set_dwarf_cmdlist;
23876 static struct cmd_list_element *show_dwarf_cmdlist;
23877
23878 static void
23879 set_dwarf_cmd (const char *args, int from_tty)
23880 {
23881 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23882 gdb_stdout);
23883 }
23884
23885 static void
23886 show_dwarf_cmd (const char *args, int from_tty)
23887 {
23888 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23889 }
23890
23891 /* Free data associated with OBJFILE, if necessary. */
23892
23893 static void
23894 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23895 {
23896 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23897 int ix;
23898
23899 /* Make sure we don't accidentally use dwarf2_per_objfile while
23900 cleaning up. */
23901 dwarf2_per_objfile = NULL;
23902
23903 for (ix = 0; ix < data->n_comp_units; ++ix)
23904 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23905
23906 for (ix = 0; ix < data->n_type_units; ++ix)
23907 VEC_free (dwarf2_per_cu_ptr,
23908 data->all_type_units[ix]->per_cu.imported_symtabs);
23909 xfree (data->all_type_units);
23910
23911 VEC_free (dwarf2_section_info_def, data->types);
23912
23913 if (data->dwo_files)
23914 free_dwo_files (data->dwo_files, objfile);
23915 if (data->dwp_file)
23916 gdb_bfd_unref (data->dwp_file->dbfd);
23917
23918 if (data->dwz_file && data->dwz_file->dwz_bfd)
23919 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23920
23921 if (data->index_table != NULL)
23922 data->index_table->~mapped_index ();
23923 }
23924
23925 \f
23926 /* The "save gdb-index" command. */
23927
23928 /* In-memory buffer to prepare data to be written later to a file. */
23929 class data_buf
23930 {
23931 public:
23932 /* Copy DATA to the end of the buffer. */
23933 template<typename T>
23934 void append_data (const T &data)
23935 {
23936 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23937 reinterpret_cast<const gdb_byte *> (&data + 1),
23938 grow (sizeof (data)));
23939 }
23940
23941 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23942 terminating zero is appended too. */
23943 void append_cstr0 (const char *cstr)
23944 {
23945 const size_t size = strlen (cstr) + 1;
23946 std::copy (cstr, cstr + size, grow (size));
23947 }
23948
23949 /* Accept a host-format integer in VAL and append it to the buffer
23950 as a target-format integer which is LEN bytes long. */
23951 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23952 {
23953 ::store_unsigned_integer (grow (len), len, byte_order, val);
23954 }
23955
23956 /* Return the size of the buffer. */
23957 size_t size () const
23958 {
23959 return m_vec.size ();
23960 }
23961
23962 /* Write the buffer to FILE. */
23963 void file_write (FILE *file) const
23964 {
23965 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23966 error (_("couldn't write data to file"));
23967 }
23968
23969 private:
23970 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23971 the start of the new block. */
23972 gdb_byte *grow (size_t size)
23973 {
23974 m_vec.resize (m_vec.size () + size);
23975 return &*m_vec.end () - size;
23976 }
23977
23978 gdb::byte_vector m_vec;
23979 };
23980
23981 /* An entry in the symbol table. */
23982 struct symtab_index_entry
23983 {
23984 /* The name of the symbol. */
23985 const char *name;
23986 /* The offset of the name in the constant pool. */
23987 offset_type index_offset;
23988 /* A sorted vector of the indices of all the CUs that hold an object
23989 of this name. */
23990 std::vector<offset_type> cu_indices;
23991 };
23992
23993 /* The symbol table. This is a power-of-2-sized hash table. */
23994 struct mapped_symtab
23995 {
23996 mapped_symtab ()
23997 {
23998 data.resize (1024);
23999 }
24000
24001 offset_type n_elements = 0;
24002 std::vector<symtab_index_entry> data;
24003 };
24004
24005 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
24006 the slot.
24007
24008 Function is used only during write_hash_table so no index format backward
24009 compatibility is needed. */
24010
24011 static symtab_index_entry &
24012 find_slot (struct mapped_symtab *symtab, const char *name)
24013 {
24014 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
24015
24016 index = hash & (symtab->data.size () - 1);
24017 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
24018
24019 for (;;)
24020 {
24021 if (symtab->data[index].name == NULL
24022 || strcmp (name, symtab->data[index].name) == 0)
24023 return symtab->data[index];
24024 index = (index + step) & (symtab->data.size () - 1);
24025 }
24026 }
24027
24028 /* Expand SYMTAB's hash table. */
24029
24030 static void
24031 hash_expand (struct mapped_symtab *symtab)
24032 {
24033 auto old_entries = std::move (symtab->data);
24034
24035 symtab->data.clear ();
24036 symtab->data.resize (old_entries.size () * 2);
24037
24038 for (auto &it : old_entries)
24039 if (it.name != NULL)
24040 {
24041 auto &ref = find_slot (symtab, it.name);
24042 ref = std::move (it);
24043 }
24044 }
24045
24046 /* Add an entry to SYMTAB. NAME is the name of the symbol.
24047 CU_INDEX is the index of the CU in which the symbol appears.
24048 IS_STATIC is one if the symbol is static, otherwise zero (global). */
24049
24050 static void
24051 add_index_entry (struct mapped_symtab *symtab, const char *name,
24052 int is_static, gdb_index_symbol_kind kind,
24053 offset_type cu_index)
24054 {
24055 offset_type cu_index_and_attrs;
24056
24057 ++symtab->n_elements;
24058 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
24059 hash_expand (symtab);
24060
24061 symtab_index_entry &slot = find_slot (symtab, name);
24062 if (slot.name == NULL)
24063 {
24064 slot.name = name;
24065 /* index_offset is set later. */
24066 }
24067
24068 cu_index_and_attrs = 0;
24069 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
24070 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
24071 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
24072
24073 /* We don't want to record an index value twice as we want to avoid the
24074 duplication.
24075 We process all global symbols and then all static symbols
24076 (which would allow us to avoid the duplication by only having to check
24077 the last entry pushed), but a symbol could have multiple kinds in one CU.
24078 To keep things simple we don't worry about the duplication here and
24079 sort and uniqufy the list after we've processed all symbols. */
24080 slot.cu_indices.push_back (cu_index_and_attrs);
24081 }
24082
24083 /* Sort and remove duplicates of all symbols' cu_indices lists. */
24084
24085 static void
24086 uniquify_cu_indices (struct mapped_symtab *symtab)
24087 {
24088 for (auto &entry : symtab->data)
24089 {
24090 if (entry.name != NULL && !entry.cu_indices.empty ())
24091 {
24092 auto &cu_indices = entry.cu_indices;
24093 std::sort (cu_indices.begin (), cu_indices.end ());
24094 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
24095 cu_indices.erase (from, cu_indices.end ());
24096 }
24097 }
24098 }
24099
24100 /* A form of 'const char *' suitable for container keys. Only the
24101 pointer is stored. The strings themselves are compared, not the
24102 pointers. */
24103 class c_str_view
24104 {
24105 public:
24106 c_str_view (const char *cstr)
24107 : m_cstr (cstr)
24108 {}
24109
24110 bool operator== (const c_str_view &other) const
24111 {
24112 return strcmp (m_cstr, other.m_cstr) == 0;
24113 }
24114
24115 private:
24116 friend class c_str_view_hasher;
24117 const char *const m_cstr;
24118 };
24119
24120 /* A std::unordered_map::hasher for c_str_view that uses the right
24121 hash function for strings in a mapped index. */
24122 class c_str_view_hasher
24123 {
24124 public:
24125 size_t operator () (const c_str_view &x) const
24126 {
24127 return mapped_index_string_hash (INT_MAX, x.m_cstr);
24128 }
24129 };
24130
24131 /* A std::unordered_map::hasher for std::vector<>. */
24132 template<typename T>
24133 class vector_hasher
24134 {
24135 public:
24136 size_t operator () (const std::vector<T> &key) const
24137 {
24138 return iterative_hash (key.data (),
24139 sizeof (key.front ()) * key.size (), 0);
24140 }
24141 };
24142
24143 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
24144 constant pool entries going into the data buffer CPOOL. */
24145
24146 static void
24147 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
24148 {
24149 {
24150 /* Elements are sorted vectors of the indices of all the CUs that
24151 hold an object of this name. */
24152 std::unordered_map<std::vector<offset_type>, offset_type,
24153 vector_hasher<offset_type>>
24154 symbol_hash_table;
24155
24156 /* We add all the index vectors to the constant pool first, to
24157 ensure alignment is ok. */
24158 for (symtab_index_entry &entry : symtab->data)
24159 {
24160 if (entry.name == NULL)
24161 continue;
24162 gdb_assert (entry.index_offset == 0);
24163
24164 /* Finding before inserting is faster than always trying to
24165 insert, because inserting always allocates a node, does the
24166 lookup, and then destroys the new node if another node
24167 already had the same key. C++17 try_emplace will avoid
24168 this. */
24169 const auto found
24170 = symbol_hash_table.find (entry.cu_indices);
24171 if (found != symbol_hash_table.end ())
24172 {
24173 entry.index_offset = found->second;
24174 continue;
24175 }
24176
24177 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
24178 entry.index_offset = cpool.size ();
24179 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
24180 for (const auto index : entry.cu_indices)
24181 cpool.append_data (MAYBE_SWAP (index));
24182 }
24183 }
24184
24185 /* Now write out the hash table. */
24186 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
24187 for (const auto &entry : symtab->data)
24188 {
24189 offset_type str_off, vec_off;
24190
24191 if (entry.name != NULL)
24192 {
24193 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
24194 if (insertpair.second)
24195 cpool.append_cstr0 (entry.name);
24196 str_off = insertpair.first->second;
24197 vec_off = entry.index_offset;
24198 }
24199 else
24200 {
24201 /* While 0 is a valid constant pool index, it is not valid
24202 to have 0 for both offsets. */
24203 str_off = 0;
24204 vec_off = 0;
24205 }
24206
24207 output.append_data (MAYBE_SWAP (str_off));
24208 output.append_data (MAYBE_SWAP (vec_off));
24209 }
24210 }
24211
24212 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
24213
24214 /* Helper struct for building the address table. */
24215 struct addrmap_index_data
24216 {
24217 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
24218 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
24219 {}
24220
24221 struct objfile *objfile;
24222 data_buf &addr_vec;
24223 psym_index_map &cu_index_htab;
24224
24225 /* Non-zero if the previous_* fields are valid.
24226 We can't write an entry until we see the next entry (since it is only then
24227 that we know the end of the entry). */
24228 int previous_valid;
24229 /* Index of the CU in the table of all CUs in the index file. */
24230 unsigned int previous_cu_index;
24231 /* Start address of the CU. */
24232 CORE_ADDR previous_cu_start;
24233 };
24234
24235 /* Write an address entry to ADDR_VEC. */
24236
24237 static void
24238 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
24239 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
24240 {
24241 CORE_ADDR baseaddr;
24242
24243 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24244
24245 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
24246 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
24247 addr_vec.append_data (MAYBE_SWAP (cu_index));
24248 }
24249
24250 /* Worker function for traversing an addrmap to build the address table. */
24251
24252 static int
24253 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
24254 {
24255 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
24256 struct partial_symtab *pst = (struct partial_symtab *) obj;
24257
24258 if (data->previous_valid)
24259 add_address_entry (data->objfile, data->addr_vec,
24260 data->previous_cu_start, start_addr,
24261 data->previous_cu_index);
24262
24263 data->previous_cu_start = start_addr;
24264 if (pst != NULL)
24265 {
24266 const auto it = data->cu_index_htab.find (pst);
24267 gdb_assert (it != data->cu_index_htab.cend ());
24268 data->previous_cu_index = it->second;
24269 data->previous_valid = 1;
24270 }
24271 else
24272 data->previous_valid = 0;
24273
24274 return 0;
24275 }
24276
24277 /* Write OBJFILE's address map to ADDR_VEC.
24278 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
24279 in the index file. */
24280
24281 static void
24282 write_address_map (struct objfile *objfile, data_buf &addr_vec,
24283 psym_index_map &cu_index_htab)
24284 {
24285 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
24286
24287 /* When writing the address table, we have to cope with the fact that
24288 the addrmap iterator only provides the start of a region; we have to
24289 wait until the next invocation to get the start of the next region. */
24290
24291 addrmap_index_data.objfile = objfile;
24292 addrmap_index_data.previous_valid = 0;
24293
24294 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
24295 &addrmap_index_data);
24296
24297 /* It's highly unlikely the last entry (end address = 0xff...ff)
24298 is valid, but we should still handle it.
24299 The end address is recorded as the start of the next region, but that
24300 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
24301 anyway. */
24302 if (addrmap_index_data.previous_valid)
24303 add_address_entry (objfile, addr_vec,
24304 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
24305 addrmap_index_data.previous_cu_index);
24306 }
24307
24308 /* Return the symbol kind of PSYM. */
24309
24310 static gdb_index_symbol_kind
24311 symbol_kind (struct partial_symbol *psym)
24312 {
24313 domain_enum domain = PSYMBOL_DOMAIN (psym);
24314 enum address_class aclass = PSYMBOL_CLASS (psym);
24315
24316 switch (domain)
24317 {
24318 case VAR_DOMAIN:
24319 switch (aclass)
24320 {
24321 case LOC_BLOCK:
24322 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
24323 case LOC_TYPEDEF:
24324 return GDB_INDEX_SYMBOL_KIND_TYPE;
24325 case LOC_COMPUTED:
24326 case LOC_CONST_BYTES:
24327 case LOC_OPTIMIZED_OUT:
24328 case LOC_STATIC:
24329 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24330 case LOC_CONST:
24331 /* Note: It's currently impossible to recognize psyms as enum values
24332 short of reading the type info. For now punt. */
24333 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24334 default:
24335 /* There are other LOC_FOO values that one might want to classify
24336 as variables, but dwarf2read.c doesn't currently use them. */
24337 return GDB_INDEX_SYMBOL_KIND_OTHER;
24338 }
24339 case STRUCT_DOMAIN:
24340 return GDB_INDEX_SYMBOL_KIND_TYPE;
24341 default:
24342 return GDB_INDEX_SYMBOL_KIND_OTHER;
24343 }
24344 }
24345
24346 /* Add a list of partial symbols to SYMTAB. */
24347
24348 static void
24349 write_psymbols (struct mapped_symtab *symtab,
24350 std::unordered_set<partial_symbol *> &psyms_seen,
24351 struct partial_symbol **psymp,
24352 int count,
24353 offset_type cu_index,
24354 int is_static)
24355 {
24356 for (; count-- > 0; ++psymp)
24357 {
24358 struct partial_symbol *psym = *psymp;
24359
24360 if (SYMBOL_LANGUAGE (psym) == language_ada)
24361 error (_("Ada is not currently supported by the index"));
24362
24363 /* Only add a given psymbol once. */
24364 if (psyms_seen.insert (psym).second)
24365 {
24366 gdb_index_symbol_kind kind = symbol_kind (psym);
24367
24368 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
24369 is_static, kind, cu_index);
24370 }
24371 }
24372 }
24373
24374 /* A helper struct used when iterating over debug_types. */
24375 struct signatured_type_index_data
24376 {
24377 signatured_type_index_data (data_buf &types_list_,
24378 std::unordered_set<partial_symbol *> &psyms_seen_)
24379 : types_list (types_list_), psyms_seen (psyms_seen_)
24380 {}
24381
24382 struct objfile *objfile;
24383 struct mapped_symtab *symtab;
24384 data_buf &types_list;
24385 std::unordered_set<partial_symbol *> &psyms_seen;
24386 int cu_index;
24387 };
24388
24389 /* A helper function that writes a single signatured_type to an
24390 obstack. */
24391
24392 static int
24393 write_one_signatured_type (void **slot, void *d)
24394 {
24395 struct signatured_type_index_data *info
24396 = (struct signatured_type_index_data *) d;
24397 struct signatured_type *entry = (struct signatured_type *) *slot;
24398 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
24399
24400 write_psymbols (info->symtab,
24401 info->psyms_seen,
24402 &info->objfile->global_psymbols[psymtab->globals_offset],
24403 psymtab->n_global_syms, info->cu_index,
24404 0);
24405 write_psymbols (info->symtab,
24406 info->psyms_seen,
24407 &info->objfile->static_psymbols[psymtab->statics_offset],
24408 psymtab->n_static_syms, info->cu_index,
24409 1);
24410
24411 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24412 to_underlying (entry->per_cu.sect_off));
24413 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24414 to_underlying (entry->type_offset_in_tu));
24415 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
24416
24417 ++info->cu_index;
24418
24419 return 1;
24420 }
24421
24422 /* Recurse into all "included" dependencies and count their symbols as
24423 if they appeared in this psymtab. */
24424
24425 static void
24426 recursively_count_psymbols (struct partial_symtab *psymtab,
24427 size_t &psyms_seen)
24428 {
24429 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
24430 if (psymtab->dependencies[i]->user != NULL)
24431 recursively_count_psymbols (psymtab->dependencies[i],
24432 psyms_seen);
24433
24434 psyms_seen += psymtab->n_global_syms;
24435 psyms_seen += psymtab->n_static_syms;
24436 }
24437
24438 /* Recurse into all "included" dependencies and write their symbols as
24439 if they appeared in this psymtab. */
24440
24441 static void
24442 recursively_write_psymbols (struct objfile *objfile,
24443 struct partial_symtab *psymtab,
24444 struct mapped_symtab *symtab,
24445 std::unordered_set<partial_symbol *> &psyms_seen,
24446 offset_type cu_index)
24447 {
24448 int i;
24449
24450 for (i = 0; i < psymtab->number_of_dependencies; ++i)
24451 if (psymtab->dependencies[i]->user != NULL)
24452 recursively_write_psymbols (objfile, psymtab->dependencies[i],
24453 symtab, psyms_seen, cu_index);
24454
24455 write_psymbols (symtab,
24456 psyms_seen,
24457 &objfile->global_psymbols[psymtab->globals_offset],
24458 psymtab->n_global_syms, cu_index,
24459 0);
24460 write_psymbols (symtab,
24461 psyms_seen,
24462 &objfile->static_psymbols[psymtab->statics_offset],
24463 psymtab->n_static_syms, cu_index,
24464 1);
24465 }
24466
24467 /* Create an index file for OBJFILE in the directory DIR. */
24468
24469 static void
24470 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
24471 {
24472 if (dwarf2_per_objfile->using_index)
24473 error (_("Cannot use an index to create the index"));
24474
24475 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
24476 error (_("Cannot make an index when the file has multiple .debug_types sections"));
24477
24478 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
24479 return;
24480
24481 struct stat st;
24482 if (stat (objfile_name (objfile), &st) < 0)
24483 perror_with_name (objfile_name (objfile));
24484
24485 std::string filename (std::string (dir) + SLASH_STRING
24486 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
24487
24488 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
24489 if (!out_file)
24490 error (_("Can't open `%s' for writing"), filename.c_str ());
24491
24492 /* Order matters here; we want FILE to be closed before FILENAME is
24493 unlinked, because on MS-Windows one cannot delete a file that is
24494 still open. (Don't call anything here that might throw until
24495 file_closer is created.) */
24496 gdb::unlinker unlink_file (filename.c_str ());
24497 gdb_file_up close_out_file (out_file);
24498
24499 mapped_symtab symtab;
24500 data_buf cu_list;
24501
24502 /* While we're scanning CU's create a table that maps a psymtab pointer
24503 (which is what addrmap records) to its index (which is what is recorded
24504 in the index file). This will later be needed to write the address
24505 table. */
24506 psym_index_map cu_index_htab;
24507 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
24508
24509 /* The CU list is already sorted, so we don't need to do additional
24510 work here. Also, the debug_types entries do not appear in
24511 all_comp_units, but only in their own hash table. */
24512
24513 /* The psyms_seen set is potentially going to be largish (~40k
24514 elements when indexing a -g3 build of GDB itself). Estimate the
24515 number of elements in order to avoid too many rehashes, which
24516 require rebuilding buckets and thus many trips to
24517 malloc/free. */
24518 size_t psyms_count = 0;
24519 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24520 {
24521 struct dwarf2_per_cu_data *per_cu
24522 = dwarf2_per_objfile->all_comp_units[i];
24523 struct partial_symtab *psymtab = per_cu->v.psymtab;
24524
24525 if (psymtab != NULL && psymtab->user == NULL)
24526 recursively_count_psymbols (psymtab, psyms_count);
24527 }
24528 /* Generating an index for gdb itself shows a ratio of
24529 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
24530 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
24531 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24532 {
24533 struct dwarf2_per_cu_data *per_cu
24534 = dwarf2_per_objfile->all_comp_units[i];
24535 struct partial_symtab *psymtab = per_cu->v.psymtab;
24536
24537 /* CU of a shared file from 'dwz -m' may be unused by this main file.
24538 It may be referenced from a local scope but in such case it does not
24539 need to be present in .gdb_index. */
24540 if (psymtab == NULL)
24541 continue;
24542
24543 if (psymtab->user == NULL)
24544 recursively_write_psymbols (objfile, psymtab, &symtab,
24545 psyms_seen, i);
24546
24547 const auto insertpair = cu_index_htab.emplace (psymtab, i);
24548 gdb_assert (insertpair.second);
24549
24550 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
24551 to_underlying (per_cu->sect_off));
24552 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
24553 }
24554
24555 /* Dump the address map. */
24556 data_buf addr_vec;
24557 write_address_map (objfile, addr_vec, cu_index_htab);
24558
24559 /* Write out the .debug_type entries, if any. */
24560 data_buf types_cu_list;
24561 if (dwarf2_per_objfile->signatured_types)
24562 {
24563 signatured_type_index_data sig_data (types_cu_list,
24564 psyms_seen);
24565
24566 sig_data.objfile = objfile;
24567 sig_data.symtab = &symtab;
24568 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
24569 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
24570 write_one_signatured_type, &sig_data);
24571 }
24572
24573 /* Now that we've processed all symbols we can shrink their cu_indices
24574 lists. */
24575 uniquify_cu_indices (&symtab);
24576
24577 data_buf symtab_vec, constant_pool;
24578 write_hash_table (&symtab, symtab_vec, constant_pool);
24579
24580 data_buf contents;
24581 const offset_type size_of_contents = 6 * sizeof (offset_type);
24582 offset_type total_len = size_of_contents;
24583
24584 /* The version number. */
24585 contents.append_data (MAYBE_SWAP (8));
24586
24587 /* The offset of the CU list from the start of the file. */
24588 contents.append_data (MAYBE_SWAP (total_len));
24589 total_len += cu_list.size ();
24590
24591 /* The offset of the types CU list from the start of the file. */
24592 contents.append_data (MAYBE_SWAP (total_len));
24593 total_len += types_cu_list.size ();
24594
24595 /* The offset of the address table from the start of the file. */
24596 contents.append_data (MAYBE_SWAP (total_len));
24597 total_len += addr_vec.size ();
24598
24599 /* The offset of the symbol table from the start of the file. */
24600 contents.append_data (MAYBE_SWAP (total_len));
24601 total_len += symtab_vec.size ();
24602
24603 /* The offset of the constant pool from the start of the file. */
24604 contents.append_data (MAYBE_SWAP (total_len));
24605 total_len += constant_pool.size ();
24606
24607 gdb_assert (contents.size () == size_of_contents);
24608
24609 contents.file_write (out_file);
24610 cu_list.file_write (out_file);
24611 types_cu_list.file_write (out_file);
24612 addr_vec.file_write (out_file);
24613 symtab_vec.file_write (out_file);
24614 constant_pool.file_write (out_file);
24615
24616 /* We want to keep the file. */
24617 unlink_file.keep ();
24618 }
24619
24620 /* Implementation of the `save gdb-index' command.
24621
24622 Note that the file format used by this command is documented in the
24623 GDB manual. Any changes here must be documented there. */
24624
24625 static void
24626 save_gdb_index_command (const char *arg, int from_tty)
24627 {
24628 struct objfile *objfile;
24629
24630 if (!arg || !*arg)
24631 error (_("usage: save gdb-index DIRECTORY"));
24632
24633 ALL_OBJFILES (objfile)
24634 {
24635 struct stat st;
24636
24637 /* If the objfile does not correspond to an actual file, skip it. */
24638 if (stat (objfile_name (objfile), &st) < 0)
24639 continue;
24640
24641 dwarf2_per_objfile
24642 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24643 dwarf2_objfile_data_key);
24644 if (dwarf2_per_objfile)
24645 {
24646
24647 TRY
24648 {
24649 write_psymtabs_to_index (objfile, arg);
24650 }
24651 CATCH (except, RETURN_MASK_ERROR)
24652 {
24653 exception_fprintf (gdb_stderr, except,
24654 _("Error while writing index for `%s': "),
24655 objfile_name (objfile));
24656 }
24657 END_CATCH
24658 }
24659 }
24660 }
24661
24662 \f
24663
24664 int dwarf_always_disassemble;
24665
24666 static void
24667 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24668 struct cmd_list_element *c, const char *value)
24669 {
24670 fprintf_filtered (file,
24671 _("Whether to always disassemble "
24672 "DWARF expressions is %s.\n"),
24673 value);
24674 }
24675
24676 static void
24677 show_check_physname (struct ui_file *file, int from_tty,
24678 struct cmd_list_element *c, const char *value)
24679 {
24680 fprintf_filtered (file,
24681 _("Whether to check \"physname\" is %s.\n"),
24682 value);
24683 }
24684
24685 void
24686 _initialize_dwarf2_read (void)
24687 {
24688 struct cmd_list_element *c;
24689
24690 dwarf2_objfile_data_key
24691 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24692
24693 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24694 Set DWARF specific variables.\n\
24695 Configure DWARF variables such as the cache size"),
24696 &set_dwarf_cmdlist, "maintenance set dwarf ",
24697 0/*allow-unknown*/, &maintenance_set_cmdlist);
24698
24699 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24700 Show DWARF specific variables\n\
24701 Show DWARF variables such as the cache size"),
24702 &show_dwarf_cmdlist, "maintenance show dwarf ",
24703 0/*allow-unknown*/, &maintenance_show_cmdlist);
24704
24705 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24706 &dwarf_max_cache_age, _("\
24707 Set the upper bound on the age of cached DWARF compilation units."), _("\
24708 Show the upper bound on the age of cached DWARF compilation units."), _("\
24709 A higher limit means that cached compilation units will be stored\n\
24710 in memory longer, and more total memory will be used. Zero disables\n\
24711 caching, which can slow down startup."),
24712 NULL,
24713 show_dwarf_max_cache_age,
24714 &set_dwarf_cmdlist,
24715 &show_dwarf_cmdlist);
24716
24717 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24718 &dwarf_always_disassemble, _("\
24719 Set whether `info address' always disassembles DWARF expressions."), _("\
24720 Show whether `info address' always disassembles DWARF expressions."), _("\
24721 When enabled, DWARF expressions are always printed in an assembly-like\n\
24722 syntax. When disabled, expressions will be printed in a more\n\
24723 conversational style, when possible."),
24724 NULL,
24725 show_dwarf_always_disassemble,
24726 &set_dwarf_cmdlist,
24727 &show_dwarf_cmdlist);
24728
24729 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24730 Set debugging of the DWARF reader."), _("\
24731 Show debugging of the DWARF reader."), _("\
24732 When enabled (non-zero), debugging messages are printed during DWARF\n\
24733 reading and symtab expansion. A value of 1 (one) provides basic\n\
24734 information. A value greater than 1 provides more verbose information."),
24735 NULL,
24736 NULL,
24737 &setdebuglist, &showdebuglist);
24738
24739 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24740 Set debugging of the DWARF DIE reader."), _("\
24741 Show debugging of the DWARF DIE reader."), _("\
24742 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24743 The value is the maximum depth to print."),
24744 NULL,
24745 NULL,
24746 &setdebuglist, &showdebuglist);
24747
24748 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24749 Set debugging of the dwarf line reader."), _("\
24750 Show debugging of the dwarf line reader."), _("\
24751 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24752 A value of 1 (one) provides basic information.\n\
24753 A value greater than 1 provides more verbose information."),
24754 NULL,
24755 NULL,
24756 &setdebuglist, &showdebuglist);
24757
24758 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24759 Set cross-checking of \"physname\" code against demangler."), _("\
24760 Show cross-checking of \"physname\" code against demangler."), _("\
24761 When enabled, GDB's internal \"physname\" code is checked against\n\
24762 the demangler."),
24763 NULL, show_check_physname,
24764 &setdebuglist, &showdebuglist);
24765
24766 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24767 no_class, &use_deprecated_index_sections, _("\
24768 Set whether to use deprecated gdb_index sections."), _("\
24769 Show whether to use deprecated gdb_index sections."), _("\
24770 When enabled, deprecated .gdb_index sections are used anyway.\n\
24771 Normally they are ignored either because of a missing feature or\n\
24772 performance issue.\n\
24773 Warning: This option must be enabled before gdb reads the file."),
24774 NULL,
24775 NULL,
24776 &setlist, &showlist);
24777
24778 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24779 _("\
24780 Save a gdb-index file.\n\
24781 Usage: save gdb-index DIRECTORY"),
24782 &save_cmdlist);
24783 set_cmd_completer (c, filename_completer);
24784
24785 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24786 &dwarf2_locexpr_funcs);
24787 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24788 &dwarf2_loclist_funcs);
24789
24790 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24791 &dwarf2_block_frame_base_locexpr_funcs);
24792 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24793 &dwarf2_block_frame_base_loclist_funcs);
24794
24795 #if GDB_SELF_TEST
24796 selftests::register_test ("dw2_expand_symtabs_matching",
24797 selftests::dw2_expand_symtabs_matching::run_test);
24798 #endif
24799 }