]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
2005-02-24 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384 };
385
386 /* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389 struct line_header
390 {
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429 };
430
431 /* When we construct a partial symbol table entry we only
432 need this much information. */
433 struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510 /* This data structure holds a complete die structure. */
511 struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532 /* Attributes have a name and a value */
533 struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548 struct function_range
549 {
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554 };
555
556 /* Get at parts of an attribute structure */
557
558 #define DW_STRING(attr) ((attr)->u.str)
559 #define DW_UNSND(attr) ((attr)->u.unsnd)
560 #define DW_BLOCK(attr) ((attr)->u.blk)
561 #define DW_SND(attr) ((attr)->u.snd)
562 #define DW_ADDR(attr) ((attr)->u.addr)
563
564 /* Blocks are a bunch of untyped bytes. */
565 struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571 #ifndef ATTR_ALLOC_CHUNK
572 #define ATTR_ALLOC_CHUNK 4
573 #endif
574
575 /* Allocate fields for structs, unions and enums in this size. */
576 #ifndef DW_FIELD_ALLOC_CHUNK
577 #define DW_FIELD_ALLOC_CHUNK 4
578 #endif
579
580 /* A zeroed version of a partial die for initialization purposes. */
581 static struct partial_die_info zeroed_partial_die;
582
583 /* FIXME: decode_locdesc sets these variables to describe the location
584 to the caller. These ought to be a structure or something. If
585 none of the flags are set, the object lives at the address returned
586 by decode_locdesc. */
587
588 static int isreg; /* Object lives in register.
589 decode_locdesc's return value is
590 the register number. */
591
592 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
593 but this would require a corresponding change in unpack_field_as_long
594 and friends. */
595 static int bits_per_byte = 8;
596
597 /* The routines that read and process dies for a C struct or C++ class
598 pass lists of data member fields and lists of member function fields
599 in an instance of a field_info structure, as defined below. */
600 struct field_info
601 {
602 /* List of data member and baseclasses fields. */
603 struct nextfield
604 {
605 struct nextfield *next;
606 int accessibility;
607 int virtuality;
608 struct field field;
609 }
610 *fields;
611
612 /* Number of fields. */
613 int nfields;
614
615 /* Number of baseclasses. */
616 int nbaseclasses;
617
618 /* Set if the accesibility of one of the fields is not public. */
619 int non_public_fields;
620
621 /* Member function fields array, entries are allocated in the order they
622 are encountered in the object file. */
623 struct nextfnfield
624 {
625 struct nextfnfield *next;
626 struct fn_field fnfield;
627 }
628 *fnfields;
629
630 /* Member function fieldlist array, contains name of possibly overloaded
631 member function, number of overloaded member functions and a pointer
632 to the head of the member function field chain. */
633 struct fnfieldlist
634 {
635 char *name;
636 int length;
637 struct nextfnfield *head;
638 }
639 *fnfieldlists;
640
641 /* Number of entries in the fnfieldlists array. */
642 int nfnfields;
643 };
644
645 /* One item on the queue of compilation units to read in full symbols
646 for. */
647 struct dwarf2_queue_item
648 {
649 struct dwarf2_per_cu_data *per_cu;
650 struct dwarf2_queue_item *next;
651 };
652
653 /* The current queue. */
654 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
655
656 /* Loaded secondary compilation units are kept in memory until they
657 have not been referenced for the processing of this many
658 compilation units. Set this to zero to disable caching. Cache
659 sizes of up to at least twenty will improve startup time for
660 typical inter-CU-reference binaries, at an obvious memory cost. */
661 static int dwarf2_max_cache_age = 5;
662 static void
663 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
664 struct cmd_list_element *c, const char *value)
665 {
666 fprintf_filtered (file, _("\
667 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
668 value);
669 }
670
671
672 /* Various complaints about symbol reading that don't abort the process */
673
674 static void
675 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
676 {
677 complaint (&symfile_complaints,
678 _("statement list doesn't fit in .debug_line section"));
679 }
680
681 static void
682 dwarf2_complex_location_expr_complaint (void)
683 {
684 complaint (&symfile_complaints, _("location expression too complex"));
685 }
686
687 static void
688 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
689 int arg3)
690 {
691 complaint (&symfile_complaints,
692 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
693 arg2, arg3);
694 }
695
696 static void
697 dwarf2_macros_too_long_complaint (void)
698 {
699 complaint (&symfile_complaints,
700 _("macro info runs off end of `.debug_macinfo' section"));
701 }
702
703 static void
704 dwarf2_macro_malformed_definition_complaint (const char *arg1)
705 {
706 complaint (&symfile_complaints,
707 _("macro debug info contains a malformed macro definition:\n`%s'"),
708 arg1);
709 }
710
711 static void
712 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
713 {
714 complaint (&symfile_complaints,
715 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
716 }
717
718 /* local function prototypes */
719
720 static void dwarf2_locate_sections (bfd *, asection *, void *);
721
722 #if 0
723 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
724 #endif
725
726 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
727 struct objfile *);
728
729 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
730 struct partial_die_info *,
731 struct partial_symtab *);
732
733 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
734
735 static void scan_partial_symbols (struct partial_die_info *,
736 CORE_ADDR *, CORE_ADDR *,
737 struct dwarf2_cu *);
738
739 static void add_partial_symbol (struct partial_die_info *,
740 struct dwarf2_cu *);
741
742 static int pdi_needs_namespace (enum dwarf_tag tag);
743
744 static void add_partial_namespace (struct partial_die_info *pdi,
745 CORE_ADDR *lowpc, CORE_ADDR *highpc,
746 struct dwarf2_cu *cu);
747
748 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
749 struct dwarf2_cu *cu);
750
751 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
752 char *info_ptr,
753 bfd *abfd,
754 struct dwarf2_cu *cu);
755
756 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
757
758 static void psymtab_to_symtab_1 (struct partial_symtab *);
759
760 char *dwarf2_read_section (struct objfile *, asection *);
761
762 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
763
764 static void dwarf2_free_abbrev_table (void *);
765
766 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
767
768 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
769 struct dwarf2_cu *);
770
771 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
772 struct dwarf2_cu *);
773
774 static char *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, char *, struct dwarf2_cu *);
777
778 static struct partial_die_info *find_partial_die (unsigned long,
779 struct dwarf2_cu *);
780
781 static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
784 static char *read_full_die (struct die_info **, bfd *, char *,
785 struct dwarf2_cu *, int *);
786
787 static char *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, char *, struct dwarf2_cu *);
789
790 static char *read_attribute_value (struct attribute *, unsigned,
791 bfd *, char *, struct dwarf2_cu *);
792
793 static unsigned int read_1_byte (bfd *, char *);
794
795 static int read_1_signed_byte (bfd *, char *);
796
797 static unsigned int read_2_bytes (bfd *, char *);
798
799 static unsigned int read_4_bytes (bfd *, char *);
800
801 static unsigned long read_8_bytes (bfd *, char *);
802
803 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
804 int *bytes_read);
805
806 static LONGEST read_initial_length (bfd *, char *,
807 struct comp_unit_head *, int *bytes_read);
808
809 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
810 int *bytes_read);
811
812 static char *read_n_bytes (bfd *, char *, unsigned int);
813
814 static char *read_string (bfd *, char *, unsigned int *);
815
816 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
817 unsigned int *);
818
819 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
820
821 static long read_signed_leb128 (bfd *, char *, unsigned int *);
822
823 static char *skip_leb128 (bfd *, char *);
824
825 static void set_cu_language (unsigned int, struct dwarf2_cu *);
826
827 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
828 struct dwarf2_cu *);
829
830 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
831 struct dwarf2_cu *cu);
832
833 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
834
835 static struct die_info *die_specification (struct die_info *die,
836 struct dwarf2_cu *);
837
838 static void free_line_header (struct line_header *lh);
839
840 static void add_file_name (struct line_header *, char *, unsigned int,
841 unsigned int, unsigned int);
842
843 static struct line_header *(dwarf_decode_line_header
844 (unsigned int offset,
845 bfd *abfd, struct dwarf2_cu *cu));
846
847 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
848 struct dwarf2_cu *, struct partial_symtab *);
849
850 static void dwarf2_start_subfile (char *, char *);
851
852 static struct symbol *new_symbol (struct die_info *, struct type *,
853 struct dwarf2_cu *);
854
855 static void dwarf2_const_value (struct attribute *, struct symbol *,
856 struct dwarf2_cu *);
857
858 static void dwarf2_const_value_data (struct attribute *attr,
859 struct symbol *sym,
860 int bits);
861
862 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
863
864 static struct type *die_containing_type (struct die_info *,
865 struct dwarf2_cu *);
866
867 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
868
869 static void read_type_die (struct die_info *, struct dwarf2_cu *);
870
871 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
872
873 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
874 struct dwarf2_cu *);
875
876 static void read_typedef (struct die_info *, struct dwarf2_cu *);
877
878 static void read_base_type (struct die_info *, struct dwarf2_cu *);
879
880 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
881
882 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
883
884 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
885
886 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
887
888 static int dwarf2_get_pc_bounds (struct die_info *,
889 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
890
891 static void get_scope_pc_bounds (struct die_info *,
892 CORE_ADDR *, CORE_ADDR *,
893 struct dwarf2_cu *);
894
895 static void dwarf2_add_field (struct field_info *, struct die_info *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_attach_fields_to_type (struct field_info *,
899 struct type *, struct dwarf2_cu *);
900
901 static void dwarf2_add_member_fn (struct field_info *,
902 struct die_info *, struct type *,
903 struct dwarf2_cu *);
904
905 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
906 struct type *, struct dwarf2_cu *);
907
908 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
909
910 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
911
912 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
913
914 static void read_common_block (struct die_info *, struct dwarf2_cu *);
915
916 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
917
918 static const char *namespace_name (struct die_info *die,
919 int *is_anonymous, struct dwarf2_cu *);
920
921 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
922
923 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
924
925 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
926
927 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
928
929 static void read_array_type (struct die_info *, struct dwarf2_cu *);
930
931 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
932 struct dwarf2_cu *);
933
934 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_ptr_to_member_type (struct die_info *,
937 struct dwarf2_cu *);
938
939 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
940
941 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
942
943 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
944
945 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
946
947 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
948
949 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
950
951 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
952 struct dwarf2_cu *,
953 char **new_info_ptr,
954 struct die_info *parent);
955
956 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
957 struct dwarf2_cu *,
958 char **new_info_ptr,
959 struct die_info *parent);
960
961 static void free_die_list (struct die_info *);
962
963 static void process_die (struct die_info *, struct dwarf2_cu *);
964
965 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
966
967 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
968
969 static struct die_info *dwarf2_extension (struct die_info *die,
970 struct dwarf2_cu *);
971
972 static char *dwarf_tag_name (unsigned int);
973
974 static char *dwarf_attr_name (unsigned int);
975
976 static char *dwarf_form_name (unsigned int);
977
978 static char *dwarf_stack_op_name (unsigned int);
979
980 static char *dwarf_bool_name (unsigned int);
981
982 static char *dwarf_type_encoding_name (unsigned int);
983
984 #if 0
985 static char *dwarf_cfi_name (unsigned int);
986
987 struct die_info *copy_die (struct die_info *);
988 #endif
989
990 static struct die_info *sibling_die (struct die_info *);
991
992 static void dump_die (struct die_info *);
993
994 static void dump_die_list (struct die_info *);
995
996 static void store_in_ref_table (unsigned int, struct die_info *,
997 struct dwarf2_cu *);
998
999 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1000 struct dwarf2_cu *);
1001
1002 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1003
1004 static struct die_info *follow_die_ref (struct die_info *,
1005 struct attribute *,
1006 struct dwarf2_cu *);
1007
1008 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1009 struct dwarf2_cu *);
1010
1011 /* memory allocation interface */
1012
1013 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1014
1015 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1016
1017 static struct die_info *dwarf_alloc_die (void);
1018
1019 static void initialize_cu_func_list (struct dwarf2_cu *);
1020
1021 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1022 struct dwarf2_cu *);
1023
1024 static void dwarf_decode_macros (struct line_header *, unsigned int,
1025 char *, bfd *, struct dwarf2_cu *);
1026
1027 static int attr_form_is_block (struct attribute *);
1028
1029 static void
1030 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1031 struct dwarf2_cu *cu);
1032
1033 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1034 struct dwarf2_cu *cu);
1035
1036 static void free_stack_comp_unit (void *);
1037
1038 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1039
1040 static void dummy_obstack_deallocate (void *object, void *data);
1041
1042 static hashval_t partial_die_hash (const void *item);
1043
1044 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1045
1046 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1047 (unsigned long offset, struct objfile *objfile);
1048
1049 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1050 (unsigned long offset, struct objfile *objfile);
1051
1052 static void free_one_comp_unit (void *);
1053
1054 static void free_cached_comp_units (void *);
1055
1056 static void age_cached_comp_units (void);
1057
1058 static void free_one_cached_comp_unit (void *);
1059
1060 static void set_die_type (struct die_info *, struct type *,
1061 struct dwarf2_cu *);
1062
1063 static void reset_die_and_siblings_types (struct die_info *,
1064 struct dwarf2_cu *);
1065
1066 static void create_all_comp_units (struct objfile *);
1067
1068 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1069
1070 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1071
1072 static void dwarf2_add_dependence (struct dwarf2_cu *,
1073 struct dwarf2_per_cu_data *);
1074
1075 static void dwarf2_mark (struct dwarf2_cu *);
1076
1077 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1078
1079 /* Try to locate the sections we need for DWARF 2 debugging
1080 information and return true if we have enough to do something. */
1081
1082 int
1083 dwarf2_has_info (struct objfile *objfile)
1084 {
1085 struct dwarf2_per_objfile *data;
1086
1087 /* Initialize per-objfile state. */
1088 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1089 memset (data, 0, sizeof (*data));
1090 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1091 dwarf2_per_objfile = data;
1092
1093 dwarf_info_section = 0;
1094 dwarf_abbrev_section = 0;
1095 dwarf_line_section = 0;
1096 dwarf_str_section = 0;
1097 dwarf_macinfo_section = 0;
1098 dwarf_frame_section = 0;
1099 dwarf_eh_frame_section = 0;
1100 dwarf_ranges_section = 0;
1101 dwarf_loc_section = 0;
1102
1103 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1104 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1105 }
1106
1107 /* This function is mapped across the sections and remembers the
1108 offset and size of each of the debugging sections we are interested
1109 in. */
1110
1111 static void
1112 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1113 {
1114 if (strcmp (sectp->name, INFO_SECTION) == 0)
1115 {
1116 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1117 dwarf_info_section = sectp;
1118 }
1119 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1122 dwarf_abbrev_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1127 dwarf_line_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1132 dwarf_pubnames_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1137 dwarf_aranges_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1142 dwarf_loc_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1147 dwarf_macinfo_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, STR_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1152 dwarf_str_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1157 dwarf_frame_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1160 {
1161 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1162 if (aflag & SEC_HAS_CONTENTS)
1163 {
1164 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1165 dwarf_eh_frame_section = sectp;
1166 }
1167 }
1168 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1171 dwarf_ranges_section = sectp;
1172 }
1173 }
1174
1175 /* Build a partial symbol table. */
1176
1177 void
1178 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1179 {
1180 /* We definitely need the .debug_info and .debug_abbrev sections */
1181
1182 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1183 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1184
1185 if (dwarf_line_section)
1186 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1187 else
1188 dwarf2_per_objfile->line_buffer = NULL;
1189
1190 if (dwarf_str_section)
1191 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1192 else
1193 dwarf2_per_objfile->str_buffer = NULL;
1194
1195 if (dwarf_macinfo_section)
1196 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1197 dwarf_macinfo_section);
1198 else
1199 dwarf2_per_objfile->macinfo_buffer = NULL;
1200
1201 if (dwarf_ranges_section)
1202 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1203 else
1204 dwarf2_per_objfile->ranges_buffer = NULL;
1205
1206 if (dwarf_loc_section)
1207 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1208 else
1209 dwarf2_per_objfile->loc_buffer = NULL;
1210
1211 if (mainline
1212 || (objfile->global_psymbols.size == 0
1213 && objfile->static_psymbols.size == 0))
1214 {
1215 init_psymbol_list (objfile, 1024);
1216 }
1217
1218 #if 0
1219 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1220 {
1221 /* Things are significantly easier if we have .debug_aranges and
1222 .debug_pubnames sections */
1223
1224 dwarf2_build_psymtabs_easy (objfile, mainline);
1225 }
1226 else
1227 #endif
1228 /* only test this case for now */
1229 {
1230 /* In this case we have to work a bit harder */
1231 dwarf2_build_psymtabs_hard (objfile, mainline);
1232 }
1233 }
1234
1235 #if 0
1236 /* Build the partial symbol table from the information in the
1237 .debug_pubnames and .debug_aranges sections. */
1238
1239 static void
1240 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1241 {
1242 bfd *abfd = objfile->obfd;
1243 char *aranges_buffer, *pubnames_buffer;
1244 char *aranges_ptr, *pubnames_ptr;
1245 unsigned int entry_length, version, info_offset, info_size;
1246
1247 pubnames_buffer = dwarf2_read_section (objfile,
1248 dwarf_pubnames_section);
1249 pubnames_ptr = pubnames_buffer;
1250 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1251 {
1252 struct comp_unit_head cu_header;
1253 int bytes_read;
1254
1255 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1256 &bytes_read);
1257 pubnames_ptr += bytes_read;
1258 version = read_1_byte (abfd, pubnames_ptr);
1259 pubnames_ptr += 1;
1260 info_offset = read_4_bytes (abfd, pubnames_ptr);
1261 pubnames_ptr += 4;
1262 info_size = read_4_bytes (abfd, pubnames_ptr);
1263 pubnames_ptr += 4;
1264 }
1265
1266 aranges_buffer = dwarf2_read_section (objfile,
1267 dwarf_aranges_section);
1268
1269 }
1270 #endif
1271
1272 /* Read in the comp unit header information from the debug_info at
1273 info_ptr. */
1274
1275 static char *
1276 read_comp_unit_head (struct comp_unit_head *cu_header,
1277 char *info_ptr, bfd *abfd)
1278 {
1279 int signed_addr;
1280 int bytes_read;
1281 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1282 &bytes_read);
1283 info_ptr += bytes_read;
1284 cu_header->version = read_2_bytes (abfd, info_ptr);
1285 info_ptr += 2;
1286 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1287 &bytes_read);
1288 info_ptr += bytes_read;
1289 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1290 info_ptr += 1;
1291 signed_addr = bfd_get_sign_extend_vma (abfd);
1292 if (signed_addr < 0)
1293 internal_error (__FILE__, __LINE__,
1294 _("read_comp_unit_head: dwarf from non elf file"));
1295 cu_header->signed_addr_p = signed_addr;
1296 return info_ptr;
1297 }
1298
1299 static char *
1300 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1301 bfd *abfd)
1302 {
1303 char *beg_of_comp_unit = info_ptr;
1304
1305 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1306
1307 if (header->version != 2)
1308 error (_("Dwarf Error: wrong version in compilation unit header "
1309 "(is %d, should be %d) [in module %s]"), header->version,
1310 2, bfd_get_filename (abfd));
1311
1312 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1313 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1314 "(offset 0x%lx + 6) [in module %s]"),
1315 (long) header->abbrev_offset,
1316 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1317 bfd_get_filename (abfd));
1318
1319 if (beg_of_comp_unit + header->length + header->initial_length_size
1320 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1321 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1322 "(offset 0x%lx + 0) [in module %s]"),
1323 (long) header->length,
1324 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1325 bfd_get_filename (abfd));
1326
1327 return info_ptr;
1328 }
1329
1330 /* Allocate a new partial symtab for file named NAME and mark this new
1331 partial symtab as being an include of PST. */
1332
1333 static void
1334 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1335 struct objfile *objfile)
1336 {
1337 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1338
1339 subpst->section_offsets = pst->section_offsets;
1340 subpst->textlow = 0;
1341 subpst->texthigh = 0;
1342
1343 subpst->dependencies = (struct partial_symtab **)
1344 obstack_alloc (&objfile->objfile_obstack,
1345 sizeof (struct partial_symtab *));
1346 subpst->dependencies[0] = pst;
1347 subpst->number_of_dependencies = 1;
1348
1349 subpst->globals_offset = 0;
1350 subpst->n_global_syms = 0;
1351 subpst->statics_offset = 0;
1352 subpst->n_static_syms = 0;
1353 subpst->symtab = NULL;
1354 subpst->read_symtab = pst->read_symtab;
1355 subpst->readin = 0;
1356
1357 /* No private part is necessary for include psymtabs. This property
1358 can be used to differentiate between such include psymtabs and
1359 the regular ones. */
1360 subpst->read_symtab_private = NULL;
1361 }
1362
1363 /* Read the Line Number Program data and extract the list of files
1364 included by the source file represented by PST. Build an include
1365 partial symtab for each of these included files.
1366
1367 This procedure assumes that there *is* a Line Number Program in
1368 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1369 before calling this procedure. */
1370
1371 static void
1372 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1373 struct partial_die_info *pdi,
1374 struct partial_symtab *pst)
1375 {
1376 struct objfile *objfile = cu->objfile;
1377 bfd *abfd = objfile->obfd;
1378 struct line_header *lh;
1379
1380 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1381 if (lh == NULL)
1382 return; /* No linetable, so no includes. */
1383
1384 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1385
1386 free_line_header (lh);
1387 }
1388
1389
1390 /* Build the partial symbol table by doing a quick pass through the
1391 .debug_info and .debug_abbrev sections. */
1392
1393 static void
1394 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1395 {
1396 /* Instead of reading this into a big buffer, we should probably use
1397 mmap() on architectures that support it. (FIXME) */
1398 bfd *abfd = objfile->obfd;
1399 char *info_ptr;
1400 char *beg_of_comp_unit;
1401 struct partial_die_info comp_unit_die;
1402 struct partial_symtab *pst;
1403 struct cleanup *back_to;
1404 CORE_ADDR lowpc, highpc, baseaddr;
1405
1406 info_ptr = dwarf2_per_objfile->info_buffer;
1407
1408 /* Any cached compilation units will be linked by the per-objfile
1409 read_in_chain. Make sure to free them when we're done. */
1410 back_to = make_cleanup (free_cached_comp_units, NULL);
1411
1412 create_all_comp_units (objfile);
1413
1414 /* Since the objects we're extracting from .debug_info vary in
1415 length, only the individual functions to extract them (like
1416 read_comp_unit_head and load_partial_die) can really know whether
1417 the buffer is large enough to hold another complete object.
1418
1419 At the moment, they don't actually check that. If .debug_info
1420 holds just one extra byte after the last compilation unit's dies,
1421 then read_comp_unit_head will happily read off the end of the
1422 buffer. read_partial_die is similarly casual. Those functions
1423 should be fixed.
1424
1425 For this loop condition, simply checking whether there's any data
1426 left at all should be sufficient. */
1427 while (info_ptr < (dwarf2_per_objfile->info_buffer
1428 + dwarf2_per_objfile->info_size))
1429 {
1430 struct cleanup *back_to_inner;
1431 struct dwarf2_cu cu;
1432 struct abbrev_info *abbrev;
1433 unsigned int bytes_read;
1434 struct dwarf2_per_cu_data *this_cu;
1435
1436 beg_of_comp_unit = info_ptr;
1437
1438 memset (&cu, 0, sizeof (cu));
1439
1440 obstack_init (&cu.comp_unit_obstack);
1441
1442 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1443
1444 cu.objfile = objfile;
1445 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1446
1447 /* Complete the cu_header */
1448 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1449 cu.header.first_die_ptr = info_ptr;
1450 cu.header.cu_head_ptr = beg_of_comp_unit;
1451
1452 cu.list_in_scope = &file_symbols;
1453
1454 /* Read the abbrevs for this compilation unit into a table */
1455 dwarf2_read_abbrevs (abfd, &cu);
1456 make_cleanup (dwarf2_free_abbrev_table, &cu);
1457
1458 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1459
1460 /* Read the compilation unit die */
1461 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1462 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1463 abfd, info_ptr, &cu);
1464
1465 /* Set the language we're debugging */
1466 set_cu_language (comp_unit_die.language, &cu);
1467
1468 /* Allocate a new partial symbol table structure */
1469 pst = start_psymtab_common (objfile, objfile->section_offsets,
1470 comp_unit_die.name ? comp_unit_die.name : "",
1471 comp_unit_die.lowpc,
1472 objfile->global_psymbols.next,
1473 objfile->static_psymbols.next);
1474
1475 if (comp_unit_die.dirname)
1476 pst->dirname = xstrdup (comp_unit_die.dirname);
1477
1478 pst->read_symtab_private = (char *) this_cu;
1479
1480 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1481
1482 /* Store the function that reads in the rest of the symbol table */
1483 pst->read_symtab = dwarf2_psymtab_to_symtab;
1484
1485 /* If this compilation unit was already read in, free the
1486 cached copy in order to read it in again. This is
1487 necessary because we skipped some symbols when we first
1488 read in the compilation unit (see load_partial_dies).
1489 This problem could be avoided, but the benefit is
1490 unclear. */
1491 if (this_cu->cu != NULL)
1492 free_one_cached_comp_unit (this_cu->cu);
1493
1494 cu.per_cu = this_cu;
1495
1496 /* Note that this is a pointer to our stack frame, being
1497 added to a global data structure. It will be cleaned up
1498 in free_stack_comp_unit when we finish with this
1499 compilation unit. */
1500 this_cu->cu = &cu;
1501
1502 this_cu->psymtab = pst;
1503
1504 /* Check if comp unit has_children.
1505 If so, read the rest of the partial symbols from this comp unit.
1506 If not, there's no more debug_info for this comp unit. */
1507 if (comp_unit_die.has_children)
1508 {
1509 struct partial_die_info *first_die;
1510
1511 lowpc = ((CORE_ADDR) -1);
1512 highpc = ((CORE_ADDR) 0);
1513
1514 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1515
1516 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1517
1518 /* If we didn't find a lowpc, set it to highpc to avoid
1519 complaints from `maint check'. */
1520 if (lowpc == ((CORE_ADDR) -1))
1521 lowpc = highpc;
1522
1523 /* If the compilation unit didn't have an explicit address range,
1524 then use the information extracted from its child dies. */
1525 if (! comp_unit_die.has_pc_info)
1526 {
1527 comp_unit_die.lowpc = lowpc;
1528 comp_unit_die.highpc = highpc;
1529 }
1530 }
1531 pst->textlow = comp_unit_die.lowpc + baseaddr;
1532 pst->texthigh = comp_unit_die.highpc + baseaddr;
1533
1534 pst->n_global_syms = objfile->global_psymbols.next -
1535 (objfile->global_psymbols.list + pst->globals_offset);
1536 pst->n_static_syms = objfile->static_psymbols.next -
1537 (objfile->static_psymbols.list + pst->statics_offset);
1538 sort_pst_symbols (pst);
1539
1540 /* If there is already a psymtab or symtab for a file of this
1541 name, remove it. (If there is a symtab, more drastic things
1542 also happen.) This happens in VxWorks. */
1543 free_named_symtabs (pst->filename);
1544
1545 if (comp_unit_die.has_stmt_list)
1546 {
1547 /* Get the list of files included in the current compilation unit,
1548 and build a psymtab for each of them. */
1549 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1550 }
1551
1552 info_ptr = beg_of_comp_unit + cu.header.length
1553 + cu.header.initial_length_size;
1554
1555 do_cleanups (back_to_inner);
1556 }
1557 do_cleanups (back_to);
1558 }
1559
1560 /* Load the DIEs for a secondary CU into memory. */
1561
1562 static void
1563 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1564 {
1565 bfd *abfd = objfile->obfd;
1566 char *info_ptr, *beg_of_comp_unit;
1567 struct partial_die_info comp_unit_die;
1568 struct dwarf2_cu *cu;
1569 struct abbrev_info *abbrev;
1570 unsigned int bytes_read;
1571 struct cleanup *back_to;
1572
1573 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1574 beg_of_comp_unit = info_ptr;
1575
1576 cu = xmalloc (sizeof (struct dwarf2_cu));
1577 memset (cu, 0, sizeof (struct dwarf2_cu));
1578
1579 obstack_init (&cu->comp_unit_obstack);
1580
1581 cu->objfile = objfile;
1582 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1583
1584 /* Complete the cu_header. */
1585 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1586 cu->header.first_die_ptr = info_ptr;
1587 cu->header.cu_head_ptr = beg_of_comp_unit;
1588
1589 /* Read the abbrevs for this compilation unit into a table. */
1590 dwarf2_read_abbrevs (abfd, cu);
1591 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1592
1593 /* Read the compilation unit die. */
1594 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1595 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1596 abfd, info_ptr, cu);
1597
1598 /* Set the language we're debugging. */
1599 set_cu_language (comp_unit_die.language, cu);
1600
1601 /* Link this compilation unit into the compilation unit tree. */
1602 this_cu->cu = cu;
1603 cu->per_cu = this_cu;
1604
1605 /* Check if comp unit has_children.
1606 If so, read the rest of the partial symbols from this comp unit.
1607 If not, there's no more debug_info for this comp unit. */
1608 if (comp_unit_die.has_children)
1609 load_partial_dies (abfd, info_ptr, 0, cu);
1610
1611 do_cleanups (back_to);
1612 }
1613
1614 /* Create a list of all compilation units in OBJFILE. We do this only
1615 if an inter-comp-unit reference is found; presumably if there is one,
1616 there will be many, and one will occur early in the .debug_info section.
1617 So there's no point in building this list incrementally. */
1618
1619 static void
1620 create_all_comp_units (struct objfile *objfile)
1621 {
1622 int n_allocated;
1623 int n_comp_units;
1624 struct dwarf2_per_cu_data **all_comp_units;
1625 char *info_ptr = dwarf2_per_objfile->info_buffer;
1626
1627 n_comp_units = 0;
1628 n_allocated = 10;
1629 all_comp_units = xmalloc (n_allocated
1630 * sizeof (struct dwarf2_per_cu_data *));
1631
1632 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1633 {
1634 struct comp_unit_head cu_header;
1635 char *beg_of_comp_unit;
1636 struct dwarf2_per_cu_data *this_cu;
1637 unsigned long offset;
1638 int bytes_read;
1639
1640 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1641
1642 /* Read just enough information to find out where the next
1643 compilation unit is. */
1644 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1645 &cu_header, &bytes_read);
1646
1647 /* Save the compilation unit for later lookup. */
1648 this_cu = obstack_alloc (&objfile->objfile_obstack,
1649 sizeof (struct dwarf2_per_cu_data));
1650 memset (this_cu, 0, sizeof (*this_cu));
1651 this_cu->offset = offset;
1652 this_cu->length = cu_header.length + cu_header.initial_length_size;
1653
1654 if (n_comp_units == n_allocated)
1655 {
1656 n_allocated *= 2;
1657 all_comp_units = xrealloc (all_comp_units,
1658 n_allocated
1659 * sizeof (struct dwarf2_per_cu_data *));
1660 }
1661 all_comp_units[n_comp_units++] = this_cu;
1662
1663 info_ptr = info_ptr + this_cu->length;
1664 }
1665
1666 dwarf2_per_objfile->all_comp_units
1667 = obstack_alloc (&objfile->objfile_obstack,
1668 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1669 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1670 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1671 xfree (all_comp_units);
1672 dwarf2_per_objfile->n_comp_units = n_comp_units;
1673 }
1674
1675 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1676 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1677 in CU. */
1678
1679 static void
1680 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1681 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1682 {
1683 struct objfile *objfile = cu->objfile;
1684 bfd *abfd = objfile->obfd;
1685 struct partial_die_info *pdi;
1686
1687 /* Now, march along the PDI's, descending into ones which have
1688 interesting children but skipping the children of the other ones,
1689 until we reach the end of the compilation unit. */
1690
1691 pdi = first_die;
1692
1693 while (pdi != NULL)
1694 {
1695 fixup_partial_die (pdi, cu);
1696
1697 /* Anonymous namespaces have no name but have interesting
1698 children, so we need to look at them. Ditto for anonymous
1699 enums. */
1700
1701 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1702 || pdi->tag == DW_TAG_enumeration_type)
1703 {
1704 switch (pdi->tag)
1705 {
1706 case DW_TAG_subprogram:
1707 if (pdi->has_pc_info)
1708 {
1709 if (pdi->lowpc < *lowpc)
1710 {
1711 *lowpc = pdi->lowpc;
1712 }
1713 if (pdi->highpc > *highpc)
1714 {
1715 *highpc = pdi->highpc;
1716 }
1717 if (!pdi->is_declaration)
1718 {
1719 add_partial_symbol (pdi, cu);
1720 }
1721 }
1722 break;
1723 case DW_TAG_variable:
1724 case DW_TAG_typedef:
1725 case DW_TAG_union_type:
1726 if (!pdi->is_declaration)
1727 {
1728 add_partial_symbol (pdi, cu);
1729 }
1730 break;
1731 case DW_TAG_class_type:
1732 case DW_TAG_structure_type:
1733 if (!pdi->is_declaration)
1734 {
1735 add_partial_symbol (pdi, cu);
1736 }
1737 break;
1738 case DW_TAG_enumeration_type:
1739 if (!pdi->is_declaration)
1740 add_partial_enumeration (pdi, cu);
1741 break;
1742 case DW_TAG_base_type:
1743 case DW_TAG_subrange_type:
1744 /* File scope base type definitions are added to the partial
1745 symbol table. */
1746 add_partial_symbol (pdi, cu);
1747 break;
1748 case DW_TAG_namespace:
1749 add_partial_namespace (pdi, lowpc, highpc, cu);
1750 break;
1751 default:
1752 break;
1753 }
1754 }
1755
1756 /* If the die has a sibling, skip to the sibling. */
1757
1758 pdi = pdi->die_sibling;
1759 }
1760 }
1761
1762 /* Functions used to compute the fully scoped name of a partial DIE.
1763
1764 Normally, this is simple. For C++, the parent DIE's fully scoped
1765 name is concatenated with "::" and the partial DIE's name. For
1766 Java, the same thing occurs except that "." is used instead of "::".
1767 Enumerators are an exception; they use the scope of their parent
1768 enumeration type, i.e. the name of the enumeration type is not
1769 prepended to the enumerator.
1770
1771 There are two complexities. One is DW_AT_specification; in this
1772 case "parent" means the parent of the target of the specification,
1773 instead of the direct parent of the DIE. The other is compilers
1774 which do not emit DW_TAG_namespace; in this case we try to guess
1775 the fully qualified name of structure types from their members'
1776 linkage names. This must be done using the DIE's children rather
1777 than the children of any DW_AT_specification target. We only need
1778 to do this for structures at the top level, i.e. if the target of
1779 any DW_AT_specification (if any; otherwise the DIE itself) does not
1780 have a parent. */
1781
1782 /* Compute the scope prefix associated with PDI's parent, in
1783 compilation unit CU. The result will be allocated on CU's
1784 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1785 field. NULL is returned if no prefix is necessary. */
1786 static char *
1787 partial_die_parent_scope (struct partial_die_info *pdi,
1788 struct dwarf2_cu *cu)
1789 {
1790 char *grandparent_scope;
1791 struct partial_die_info *parent, *real_pdi;
1792
1793 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1794 then this means the parent of the specification DIE. */
1795
1796 real_pdi = pdi;
1797 while (real_pdi->has_specification)
1798 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1799
1800 parent = real_pdi->die_parent;
1801 if (parent == NULL)
1802 return NULL;
1803
1804 if (parent->scope_set)
1805 return parent->scope;
1806
1807 fixup_partial_die (parent, cu);
1808
1809 grandparent_scope = partial_die_parent_scope (parent, cu);
1810
1811 if (parent->tag == DW_TAG_namespace
1812 || parent->tag == DW_TAG_structure_type
1813 || parent->tag == DW_TAG_class_type
1814 || parent->tag == DW_TAG_union_type)
1815 {
1816 if (grandparent_scope == NULL)
1817 parent->scope = parent->name;
1818 else
1819 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1820 parent->name, cu);
1821 }
1822 else if (parent->tag == DW_TAG_enumeration_type)
1823 /* Enumerators should not get the name of the enumeration as a prefix. */
1824 parent->scope = grandparent_scope;
1825 else
1826 {
1827 /* FIXME drow/2004-04-01: What should we be doing with
1828 function-local names? For partial symbols, we should probably be
1829 ignoring them. */
1830 complaint (&symfile_complaints,
1831 _("unhandled containing DIE tag %d for DIE at %d"),
1832 parent->tag, pdi->offset);
1833 parent->scope = grandparent_scope;
1834 }
1835
1836 parent->scope_set = 1;
1837 return parent->scope;
1838 }
1839
1840 /* Return the fully scoped name associated with PDI, from compilation unit
1841 CU. The result will be allocated with malloc. */
1842 static char *
1843 partial_die_full_name (struct partial_die_info *pdi,
1844 struct dwarf2_cu *cu)
1845 {
1846 char *parent_scope;
1847
1848 parent_scope = partial_die_parent_scope (pdi, cu);
1849 if (parent_scope == NULL)
1850 return NULL;
1851 else
1852 return typename_concat (NULL, parent_scope, pdi->name, cu);
1853 }
1854
1855 static void
1856 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1857 {
1858 struct objfile *objfile = cu->objfile;
1859 CORE_ADDR addr = 0;
1860 char *actual_name;
1861 const char *my_prefix;
1862 const struct partial_symbol *psym = NULL;
1863 CORE_ADDR baseaddr;
1864 int built_actual_name = 0;
1865
1866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1867
1868 actual_name = NULL;
1869
1870 if (pdi_needs_namespace (pdi->tag))
1871 {
1872 actual_name = partial_die_full_name (pdi, cu);
1873 if (actual_name)
1874 built_actual_name = 1;
1875 }
1876
1877 if (actual_name == NULL)
1878 actual_name = pdi->name;
1879
1880 switch (pdi->tag)
1881 {
1882 case DW_TAG_subprogram:
1883 if (pdi->is_external)
1884 {
1885 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1886 mst_text, objfile); */
1887 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1888 VAR_DOMAIN, LOC_BLOCK,
1889 &objfile->global_psymbols,
1890 0, pdi->lowpc + baseaddr,
1891 cu->language, objfile);
1892 }
1893 else
1894 {
1895 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1896 mst_file_text, objfile); */
1897 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1898 VAR_DOMAIN, LOC_BLOCK,
1899 &objfile->static_psymbols,
1900 0, pdi->lowpc + baseaddr,
1901 cu->language, objfile);
1902 }
1903 break;
1904 case DW_TAG_variable:
1905 if (pdi->is_external)
1906 {
1907 /* Global Variable.
1908 Don't enter into the minimal symbol tables as there is
1909 a minimal symbol table entry from the ELF symbols already.
1910 Enter into partial symbol table if it has a location
1911 descriptor or a type.
1912 If the location descriptor is missing, new_symbol will create
1913 a LOC_UNRESOLVED symbol, the address of the variable will then
1914 be determined from the minimal symbol table whenever the variable
1915 is referenced.
1916 The address for the partial symbol table entry is not
1917 used by GDB, but it comes in handy for debugging partial symbol
1918 table building. */
1919
1920 if (pdi->locdesc)
1921 addr = decode_locdesc (pdi->locdesc, cu);
1922 if (pdi->locdesc || pdi->has_type)
1923 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1924 VAR_DOMAIN, LOC_STATIC,
1925 &objfile->global_psymbols,
1926 0, addr + baseaddr,
1927 cu->language, objfile);
1928 }
1929 else
1930 {
1931 /* Static Variable. Skip symbols without location descriptors. */
1932 if (pdi->locdesc == NULL)
1933 return;
1934 addr = decode_locdesc (pdi->locdesc, cu);
1935 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1936 mst_file_data, objfile); */
1937 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1938 VAR_DOMAIN, LOC_STATIC,
1939 &objfile->static_psymbols,
1940 0, addr + baseaddr,
1941 cu->language, objfile);
1942 }
1943 break;
1944 case DW_TAG_typedef:
1945 case DW_TAG_base_type:
1946 case DW_TAG_subrange_type:
1947 add_psymbol_to_list (actual_name, strlen (actual_name),
1948 VAR_DOMAIN, LOC_TYPEDEF,
1949 &objfile->static_psymbols,
1950 0, (CORE_ADDR) 0, cu->language, objfile);
1951 break;
1952 case DW_TAG_namespace:
1953 add_psymbol_to_list (actual_name, strlen (actual_name),
1954 VAR_DOMAIN, LOC_TYPEDEF,
1955 &objfile->global_psymbols,
1956 0, (CORE_ADDR) 0, cu->language, objfile);
1957 break;
1958 case DW_TAG_class_type:
1959 case DW_TAG_structure_type:
1960 case DW_TAG_union_type:
1961 case DW_TAG_enumeration_type:
1962 /* Skip aggregate types without children, these are external
1963 references. */
1964 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1965 static vs. global. */
1966 if (pdi->has_children == 0)
1967 return;
1968 add_psymbol_to_list (actual_name, strlen (actual_name),
1969 STRUCT_DOMAIN, LOC_TYPEDEF,
1970 (cu->language == language_cplus
1971 || cu->language == language_java)
1972 ? &objfile->global_psymbols
1973 : &objfile->static_psymbols,
1974 0, (CORE_ADDR) 0, cu->language, objfile);
1975
1976 if (cu->language == language_cplus
1977 || cu->language == language_java)
1978 {
1979 /* For C++ and Java, these implicitly act as typedefs as well. */
1980 add_psymbol_to_list (actual_name, strlen (actual_name),
1981 VAR_DOMAIN, LOC_TYPEDEF,
1982 &objfile->global_psymbols,
1983 0, (CORE_ADDR) 0, cu->language, objfile);
1984 }
1985 break;
1986 case DW_TAG_enumerator:
1987 add_psymbol_to_list (actual_name, strlen (actual_name),
1988 VAR_DOMAIN, LOC_CONST,
1989 (cu->language == language_cplus
1990 || cu->language == language_java)
1991 ? &objfile->global_psymbols
1992 : &objfile->static_psymbols,
1993 0, (CORE_ADDR) 0, cu->language, objfile);
1994 break;
1995 default:
1996 break;
1997 }
1998
1999 /* Check to see if we should scan the name for possible namespace
2000 info. Only do this if this is C++, if we don't have namespace
2001 debugging info in the file, if the psym is of an appropriate type
2002 (otherwise we'll have psym == NULL), and if we actually had a
2003 mangled name to begin with. */
2004
2005 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2006 cases which do not set PSYM above? */
2007
2008 if (cu->language == language_cplus
2009 && cu->has_namespace_info == 0
2010 && psym != NULL
2011 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2012 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2013 objfile);
2014
2015 if (built_actual_name)
2016 xfree (actual_name);
2017 }
2018
2019 /* Determine whether a die of type TAG living in a C++ class or
2020 namespace needs to have the name of the scope prepended to the
2021 name listed in the die. */
2022
2023 static int
2024 pdi_needs_namespace (enum dwarf_tag tag)
2025 {
2026 switch (tag)
2027 {
2028 case DW_TAG_namespace:
2029 case DW_TAG_typedef:
2030 case DW_TAG_class_type:
2031 case DW_TAG_structure_type:
2032 case DW_TAG_union_type:
2033 case DW_TAG_enumeration_type:
2034 case DW_TAG_enumerator:
2035 return 1;
2036 default:
2037 return 0;
2038 }
2039 }
2040
2041 /* Read a partial die corresponding to a namespace; also, add a symbol
2042 corresponding to that namespace to the symbol table. NAMESPACE is
2043 the name of the enclosing namespace. */
2044
2045 static void
2046 add_partial_namespace (struct partial_die_info *pdi,
2047 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2048 struct dwarf2_cu *cu)
2049 {
2050 struct objfile *objfile = cu->objfile;
2051
2052 /* Add a symbol for the namespace. */
2053
2054 add_partial_symbol (pdi, cu);
2055
2056 /* Now scan partial symbols in that namespace. */
2057
2058 if (pdi->has_children)
2059 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2060 }
2061
2062 /* See if we can figure out if the class lives in a namespace. We do
2063 this by looking for a member function; its demangled name will
2064 contain namespace info, if there is any. */
2065
2066 static void
2067 guess_structure_name (struct partial_die_info *struct_pdi,
2068 struct dwarf2_cu *cu)
2069 {
2070 if ((cu->language == language_cplus
2071 || cu->language == language_java)
2072 && cu->has_namespace_info == 0
2073 && struct_pdi->has_children)
2074 {
2075 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2076 what template types look like, because the demangler
2077 frequently doesn't give the same name as the debug info. We
2078 could fix this by only using the demangled name to get the
2079 prefix (but see comment in read_structure_type). */
2080
2081 struct partial_die_info *child_pdi = struct_pdi->die_child;
2082 struct partial_die_info *real_pdi;
2083
2084 /* If this DIE (this DIE's specification, if any) has a parent, then
2085 we should not do this. We'll prepend the parent's fully qualified
2086 name when we create the partial symbol. */
2087
2088 real_pdi = struct_pdi;
2089 while (real_pdi->has_specification)
2090 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2091
2092 if (real_pdi->die_parent != NULL)
2093 return;
2094
2095 while (child_pdi != NULL)
2096 {
2097 if (child_pdi->tag == DW_TAG_subprogram)
2098 {
2099 char *actual_class_name
2100 = language_class_name_from_physname (cu->language_defn,
2101 child_pdi->name);
2102 if (actual_class_name != NULL)
2103 {
2104 struct_pdi->name
2105 = obsavestring (actual_class_name,
2106 strlen (actual_class_name),
2107 &cu->comp_unit_obstack);
2108 xfree (actual_class_name);
2109 }
2110 break;
2111 }
2112
2113 child_pdi = child_pdi->die_sibling;
2114 }
2115 }
2116 }
2117
2118 /* Read a partial die corresponding to an enumeration type. */
2119
2120 static void
2121 add_partial_enumeration (struct partial_die_info *enum_pdi,
2122 struct dwarf2_cu *cu)
2123 {
2124 struct objfile *objfile = cu->objfile;
2125 bfd *abfd = objfile->obfd;
2126 struct partial_die_info *pdi;
2127
2128 if (enum_pdi->name != NULL)
2129 add_partial_symbol (enum_pdi, cu);
2130
2131 pdi = enum_pdi->die_child;
2132 while (pdi)
2133 {
2134 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2135 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2136 else
2137 add_partial_symbol (pdi, cu);
2138 pdi = pdi->die_sibling;
2139 }
2140 }
2141
2142 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2143 Return the corresponding abbrev, or NULL if the number is zero (indicating
2144 an empty DIE). In either case *BYTES_READ will be set to the length of
2145 the initial number. */
2146
2147 static struct abbrev_info *
2148 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2149 {
2150 bfd *abfd = cu->objfile->obfd;
2151 unsigned int abbrev_number;
2152 struct abbrev_info *abbrev;
2153
2154 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2155
2156 if (abbrev_number == 0)
2157 return NULL;
2158
2159 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2160 if (!abbrev)
2161 {
2162 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2163 bfd_get_filename (abfd));
2164 }
2165
2166 return abbrev;
2167 }
2168
2169 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2170 pointer to the end of a series of DIEs, terminated by an empty
2171 DIE. Any children of the skipped DIEs will also be skipped. */
2172
2173 static char *
2174 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2175 {
2176 struct abbrev_info *abbrev;
2177 unsigned int bytes_read;
2178
2179 while (1)
2180 {
2181 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2182 if (abbrev == NULL)
2183 return info_ptr + bytes_read;
2184 else
2185 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2186 }
2187 }
2188
2189 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2190 should point just after the initial uleb128 of a DIE, and the
2191 abbrev corresponding to that skipped uleb128 should be passed in
2192 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2193 children. */
2194
2195 static char *
2196 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2197 struct dwarf2_cu *cu)
2198 {
2199 unsigned int bytes_read;
2200 struct attribute attr;
2201 bfd *abfd = cu->objfile->obfd;
2202 unsigned int form, i;
2203
2204 for (i = 0; i < abbrev->num_attrs; i++)
2205 {
2206 /* The only abbrev we care about is DW_AT_sibling. */
2207 if (abbrev->attrs[i].name == DW_AT_sibling)
2208 {
2209 read_attribute (&attr, &abbrev->attrs[i],
2210 abfd, info_ptr, cu);
2211 if (attr.form == DW_FORM_ref_addr)
2212 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2213 else
2214 return dwarf2_per_objfile->info_buffer
2215 + dwarf2_get_ref_die_offset (&attr, cu);
2216 }
2217
2218 /* If it isn't DW_AT_sibling, skip this attribute. */
2219 form = abbrev->attrs[i].form;
2220 skip_attribute:
2221 switch (form)
2222 {
2223 case DW_FORM_addr:
2224 case DW_FORM_ref_addr:
2225 info_ptr += cu->header.addr_size;
2226 break;
2227 case DW_FORM_data1:
2228 case DW_FORM_ref1:
2229 case DW_FORM_flag:
2230 info_ptr += 1;
2231 break;
2232 case DW_FORM_data2:
2233 case DW_FORM_ref2:
2234 info_ptr += 2;
2235 break;
2236 case DW_FORM_data4:
2237 case DW_FORM_ref4:
2238 info_ptr += 4;
2239 break;
2240 case DW_FORM_data8:
2241 case DW_FORM_ref8:
2242 info_ptr += 8;
2243 break;
2244 case DW_FORM_string:
2245 read_string (abfd, info_ptr, &bytes_read);
2246 info_ptr += bytes_read;
2247 break;
2248 case DW_FORM_strp:
2249 info_ptr += cu->header.offset_size;
2250 break;
2251 case DW_FORM_block:
2252 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2253 info_ptr += bytes_read;
2254 break;
2255 case DW_FORM_block1:
2256 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2257 break;
2258 case DW_FORM_block2:
2259 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2260 break;
2261 case DW_FORM_block4:
2262 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2263 break;
2264 case DW_FORM_sdata:
2265 case DW_FORM_udata:
2266 case DW_FORM_ref_udata:
2267 info_ptr = skip_leb128 (abfd, info_ptr);
2268 break;
2269 case DW_FORM_indirect:
2270 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2271 info_ptr += bytes_read;
2272 /* We need to continue parsing from here, so just go back to
2273 the top. */
2274 goto skip_attribute;
2275
2276 default:
2277 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2278 dwarf_form_name (form),
2279 bfd_get_filename (abfd));
2280 }
2281 }
2282
2283 if (abbrev->has_children)
2284 return skip_children (info_ptr, cu);
2285 else
2286 return info_ptr;
2287 }
2288
2289 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2290 the next DIE after ORIG_PDI. */
2291
2292 static char *
2293 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2294 bfd *abfd, struct dwarf2_cu *cu)
2295 {
2296 /* Do we know the sibling already? */
2297
2298 if (orig_pdi->sibling)
2299 return orig_pdi->sibling;
2300
2301 /* Are there any children to deal with? */
2302
2303 if (!orig_pdi->has_children)
2304 return info_ptr;
2305
2306 /* Skip the children the long way. */
2307
2308 return skip_children (info_ptr, cu);
2309 }
2310
2311 /* Expand this partial symbol table into a full symbol table. */
2312
2313 static void
2314 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2315 {
2316 /* FIXME: This is barely more than a stub. */
2317 if (pst != NULL)
2318 {
2319 if (pst->readin)
2320 {
2321 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2322 }
2323 else
2324 {
2325 if (info_verbose)
2326 {
2327 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2328 gdb_flush (gdb_stdout);
2329 }
2330
2331 /* Restore our global data. */
2332 dwarf2_per_objfile = objfile_data (pst->objfile,
2333 dwarf2_objfile_data_key);
2334
2335 psymtab_to_symtab_1 (pst);
2336
2337 /* Finish up the debug error message. */
2338 if (info_verbose)
2339 printf_filtered (_("done.\n"));
2340 }
2341 }
2342 }
2343
2344 /* Add PER_CU to the queue. */
2345
2346 static void
2347 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2348 {
2349 struct dwarf2_queue_item *item;
2350
2351 per_cu->queued = 1;
2352 item = xmalloc (sizeof (*item));
2353 item->per_cu = per_cu;
2354 item->next = NULL;
2355
2356 if (dwarf2_queue == NULL)
2357 dwarf2_queue = item;
2358 else
2359 dwarf2_queue_tail->next = item;
2360
2361 dwarf2_queue_tail = item;
2362 }
2363
2364 /* Process the queue. */
2365
2366 static void
2367 process_queue (struct objfile *objfile)
2368 {
2369 struct dwarf2_queue_item *item, *next_item;
2370
2371 /* Initially, there is just one item on the queue. Load its DIEs,
2372 and the DIEs of any other compilation units it requires,
2373 transitively. */
2374
2375 for (item = dwarf2_queue; item != NULL; item = item->next)
2376 {
2377 /* Read in this compilation unit. This may add new items to
2378 the end of the queue. */
2379 load_full_comp_unit (item->per_cu);
2380
2381 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2382 dwarf2_per_objfile->read_in_chain = item->per_cu;
2383
2384 /* If this compilation unit has already had full symbols created,
2385 reset the TYPE fields in each DIE. */
2386 if (item->per_cu->psymtab->readin)
2387 reset_die_and_siblings_types (item->per_cu->cu->dies,
2388 item->per_cu->cu);
2389 }
2390
2391 /* Now everything left on the queue needs to be read in. Process
2392 them, one at a time, removing from the queue as we finish. */
2393 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2394 {
2395 if (!item->per_cu->psymtab->readin)
2396 process_full_comp_unit (item->per_cu);
2397
2398 item->per_cu->queued = 0;
2399 next_item = item->next;
2400 xfree (item);
2401 }
2402
2403 dwarf2_queue_tail = NULL;
2404 }
2405
2406 /* Free all allocated queue entries. This function only releases anything if
2407 an error was thrown; if the queue was processed then it would have been
2408 freed as we went along. */
2409
2410 static void
2411 dwarf2_release_queue (void *dummy)
2412 {
2413 struct dwarf2_queue_item *item, *last;
2414
2415 item = dwarf2_queue;
2416 while (item)
2417 {
2418 /* Anything still marked queued is likely to be in an
2419 inconsistent state, so discard it. */
2420 if (item->per_cu->queued)
2421 {
2422 if (item->per_cu->cu != NULL)
2423 free_one_cached_comp_unit (item->per_cu->cu);
2424 item->per_cu->queued = 0;
2425 }
2426
2427 last = item;
2428 item = item->next;
2429 xfree (last);
2430 }
2431
2432 dwarf2_queue = dwarf2_queue_tail = NULL;
2433 }
2434
2435 /* Read in full symbols for PST, and anything it depends on. */
2436
2437 static void
2438 psymtab_to_symtab_1 (struct partial_symtab *pst)
2439 {
2440 struct dwarf2_per_cu_data *per_cu;
2441 struct cleanup *back_to;
2442 int i;
2443
2444 for (i = 0; i < pst->number_of_dependencies; i++)
2445 if (!pst->dependencies[i]->readin)
2446 {
2447 /* Inform about additional files that need to be read in. */
2448 if (info_verbose)
2449 {
2450 /* FIXME: i18n: Need to make this a single string. */
2451 fputs_filtered (" ", gdb_stdout);
2452 wrap_here ("");
2453 fputs_filtered ("and ", gdb_stdout);
2454 wrap_here ("");
2455 printf_filtered ("%s...", pst->dependencies[i]->filename);
2456 wrap_here (""); /* Flush output */
2457 gdb_flush (gdb_stdout);
2458 }
2459 psymtab_to_symtab_1 (pst->dependencies[i]);
2460 }
2461
2462 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2463
2464 if (per_cu == NULL)
2465 {
2466 /* It's an include file, no symbols to read for it.
2467 Everything is in the parent symtab. */
2468 pst->readin = 1;
2469 return;
2470 }
2471
2472 back_to = make_cleanup (dwarf2_release_queue, NULL);
2473
2474 queue_comp_unit (per_cu);
2475
2476 process_queue (pst->objfile);
2477
2478 /* Age the cache, releasing compilation units that have not
2479 been used recently. */
2480 age_cached_comp_units ();
2481
2482 do_cleanups (back_to);
2483 }
2484
2485 /* Load the DIEs associated with PST and PER_CU into memory. */
2486
2487 static struct dwarf2_cu *
2488 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2489 {
2490 struct partial_symtab *pst = per_cu->psymtab;
2491 bfd *abfd = pst->objfile->obfd;
2492 struct dwarf2_cu *cu;
2493 unsigned long offset;
2494 char *info_ptr;
2495 struct cleanup *back_to, *free_cu_cleanup;
2496 struct attribute *attr;
2497 CORE_ADDR baseaddr;
2498
2499 /* Set local variables from the partial symbol table info. */
2500 offset = per_cu->offset;
2501
2502 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2503
2504 cu = xmalloc (sizeof (struct dwarf2_cu));
2505 memset (cu, 0, sizeof (struct dwarf2_cu));
2506
2507 /* If an error occurs while loading, release our storage. */
2508 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2509
2510 cu->objfile = pst->objfile;
2511
2512 /* read in the comp_unit header */
2513 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2514
2515 /* Read the abbrevs for this compilation unit */
2516 dwarf2_read_abbrevs (abfd, cu);
2517 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2518
2519 cu->header.offset = offset;
2520
2521 cu->per_cu = per_cu;
2522 per_cu->cu = cu;
2523
2524 /* We use this obstack for block values in dwarf_alloc_block. */
2525 obstack_init (&cu->comp_unit_obstack);
2526
2527 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2528
2529 /* We try not to read any attributes in this function, because not
2530 all objfiles needed for references have been loaded yet, and symbol
2531 table processing isn't initialized. But we have to set the CU language,
2532 or we won't be able to build types correctly. */
2533 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2534 if (attr)
2535 set_cu_language (DW_UNSND (attr), cu);
2536 else
2537 set_cu_language (language_minimal, cu);
2538
2539 do_cleanups (back_to);
2540
2541 /* We've successfully allocated this compilation unit. Let our caller
2542 clean it up when finished with it. */
2543 discard_cleanups (free_cu_cleanup);
2544
2545 return cu;
2546 }
2547
2548 /* Generate full symbol information for PST and CU, whose DIEs have
2549 already been loaded into memory. */
2550
2551 static void
2552 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2553 {
2554 struct partial_symtab *pst = per_cu->psymtab;
2555 struct dwarf2_cu *cu = per_cu->cu;
2556 struct objfile *objfile = pst->objfile;
2557 bfd *abfd = objfile->obfd;
2558 CORE_ADDR lowpc, highpc;
2559 struct symtab *symtab;
2560 struct cleanup *back_to;
2561 struct attribute *attr;
2562 CORE_ADDR baseaddr;
2563
2564 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2565
2566 /* We're in the global namespace. */
2567 processing_current_prefix = "";
2568
2569 buildsym_init ();
2570 back_to = make_cleanup (really_free_pendings, NULL);
2571
2572 cu->list_in_scope = &file_symbols;
2573
2574 /* Find the base address of the compilation unit for range lists and
2575 location lists. It will normally be specified by DW_AT_low_pc.
2576 In DWARF-3 draft 4, the base address could be overridden by
2577 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2578 compilation units with discontinuous ranges. */
2579
2580 cu->header.base_known = 0;
2581 cu->header.base_address = 0;
2582
2583 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2584 if (attr)
2585 {
2586 cu->header.base_address = DW_ADDR (attr);
2587 cu->header.base_known = 1;
2588 }
2589 else
2590 {
2591 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2592 if (attr)
2593 {
2594 cu->header.base_address = DW_ADDR (attr);
2595 cu->header.base_known = 1;
2596 }
2597 }
2598
2599 /* Do line number decoding in read_file_scope () */
2600 process_die (cu->dies, cu);
2601
2602 /* Some compilers don't define a DW_AT_high_pc attribute for the
2603 compilation unit. If the DW_AT_high_pc is missing, synthesize
2604 it, by scanning the DIE's below the compilation unit. */
2605 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2606
2607 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2608
2609 /* Set symtab language to language from DW_AT_language.
2610 If the compilation is from a C file generated by language preprocessors,
2611 do not set the language if it was already deduced by start_subfile. */
2612 if (symtab != NULL
2613 && !(cu->language == language_c && symtab->language != language_c))
2614 {
2615 symtab->language = cu->language;
2616 }
2617 pst->symtab = symtab;
2618 pst->readin = 1;
2619
2620 do_cleanups (back_to);
2621 }
2622
2623 /* Process a die and its children. */
2624
2625 static void
2626 process_die (struct die_info *die, struct dwarf2_cu *cu)
2627 {
2628 switch (die->tag)
2629 {
2630 case DW_TAG_padding:
2631 break;
2632 case DW_TAG_compile_unit:
2633 read_file_scope (die, cu);
2634 break;
2635 case DW_TAG_subprogram:
2636 read_subroutine_type (die, cu);
2637 read_func_scope (die, cu);
2638 break;
2639 case DW_TAG_inlined_subroutine:
2640 /* FIXME: These are ignored for now.
2641 They could be used to set breakpoints on all inlined instances
2642 of a function and make GDB `next' properly over inlined functions. */
2643 break;
2644 case DW_TAG_lexical_block:
2645 case DW_TAG_try_block:
2646 case DW_TAG_catch_block:
2647 read_lexical_block_scope (die, cu);
2648 break;
2649 case DW_TAG_class_type:
2650 case DW_TAG_structure_type:
2651 case DW_TAG_union_type:
2652 read_structure_type (die, cu);
2653 process_structure_scope (die, cu);
2654 break;
2655 case DW_TAG_enumeration_type:
2656 read_enumeration_type (die, cu);
2657 process_enumeration_scope (die, cu);
2658 break;
2659
2660 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2661 a symbol or process any children. Therefore it doesn't do anything
2662 that won't be done on-demand by read_type_die. */
2663 case DW_TAG_subroutine_type:
2664 read_subroutine_type (die, cu);
2665 break;
2666 case DW_TAG_array_type:
2667 read_array_type (die, cu);
2668 break;
2669 case DW_TAG_pointer_type:
2670 read_tag_pointer_type (die, cu);
2671 break;
2672 case DW_TAG_ptr_to_member_type:
2673 read_tag_ptr_to_member_type (die, cu);
2674 break;
2675 case DW_TAG_reference_type:
2676 read_tag_reference_type (die, cu);
2677 break;
2678 case DW_TAG_string_type:
2679 read_tag_string_type (die, cu);
2680 break;
2681 /* END FIXME */
2682
2683 case DW_TAG_base_type:
2684 read_base_type (die, cu);
2685 /* Add a typedef symbol for the type definition, if it has a
2686 DW_AT_name. */
2687 new_symbol (die, die->type, cu);
2688 break;
2689 case DW_TAG_subrange_type:
2690 read_subrange_type (die, cu);
2691 /* Add a typedef symbol for the type definition, if it has a
2692 DW_AT_name. */
2693 new_symbol (die, die->type, cu);
2694 break;
2695 case DW_TAG_common_block:
2696 read_common_block (die, cu);
2697 break;
2698 case DW_TAG_common_inclusion:
2699 break;
2700 case DW_TAG_namespace:
2701 processing_has_namespace_info = 1;
2702 read_namespace (die, cu);
2703 break;
2704 case DW_TAG_imported_declaration:
2705 case DW_TAG_imported_module:
2706 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2707 information contained in these. DW_TAG_imported_declaration
2708 dies shouldn't have children; DW_TAG_imported_module dies
2709 shouldn't in the C++ case, but conceivably could in the
2710 Fortran case, so we'll have to replace this gdb_assert if
2711 Fortran compilers start generating that info. */
2712 processing_has_namespace_info = 1;
2713 gdb_assert (die->child == NULL);
2714 break;
2715 default:
2716 new_symbol (die, NULL, cu);
2717 break;
2718 }
2719 }
2720
2721 static void
2722 initialize_cu_func_list (struct dwarf2_cu *cu)
2723 {
2724 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2725 }
2726
2727 static void
2728 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2729 {
2730 struct objfile *objfile = cu->objfile;
2731 struct comp_unit_head *cu_header = &cu->header;
2732 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2733 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2734 CORE_ADDR highpc = ((CORE_ADDR) 0);
2735 struct attribute *attr;
2736 char *name = "<unknown>";
2737 char *comp_dir = NULL;
2738 struct die_info *child_die;
2739 bfd *abfd = objfile->obfd;
2740 struct line_header *line_header = 0;
2741 CORE_ADDR baseaddr;
2742
2743 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2744
2745 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2746
2747 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2748 from finish_block. */
2749 if (lowpc == ((CORE_ADDR) -1))
2750 lowpc = highpc;
2751 lowpc += baseaddr;
2752 highpc += baseaddr;
2753
2754 attr = dwarf2_attr (die, DW_AT_name, cu);
2755 if (attr)
2756 {
2757 name = DW_STRING (attr);
2758 }
2759 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2760 if (attr)
2761 {
2762 comp_dir = DW_STRING (attr);
2763 if (comp_dir)
2764 {
2765 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2766 directory, get rid of it. */
2767 char *cp = strchr (comp_dir, ':');
2768
2769 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2770 comp_dir = cp + 1;
2771 }
2772 }
2773
2774 attr = dwarf2_attr (die, DW_AT_language, cu);
2775 if (attr)
2776 {
2777 set_cu_language (DW_UNSND (attr), cu);
2778 }
2779
2780 attr = dwarf2_attr (die, DW_AT_producer, cu);
2781 if (attr)
2782 cu->producer = DW_STRING (attr);
2783
2784 /* We assume that we're processing GCC output. */
2785 processing_gcc_compilation = 2;
2786 #if 0
2787 /* FIXME:Do something here. */
2788 if (dip->at_producer != NULL)
2789 {
2790 handle_producer (dip->at_producer);
2791 }
2792 #endif
2793
2794 /* The compilation unit may be in a different language or objfile,
2795 zero out all remembered fundamental types. */
2796 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2797
2798 start_symtab (name, comp_dir, lowpc);
2799 record_debugformat ("DWARF 2");
2800
2801 initialize_cu_func_list (cu);
2802
2803 /* Process all dies in compilation unit. */
2804 if (die->child != NULL)
2805 {
2806 child_die = die->child;
2807 while (child_die && child_die->tag)
2808 {
2809 process_die (child_die, cu);
2810 child_die = sibling_die (child_die);
2811 }
2812 }
2813
2814 /* Decode line number information if present. */
2815 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2816 if (attr)
2817 {
2818 unsigned int line_offset = DW_UNSND (attr);
2819 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2820 if (line_header)
2821 {
2822 make_cleanup ((make_cleanup_ftype *) free_line_header,
2823 (void *) line_header);
2824 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2825 }
2826 }
2827
2828 /* Decode macro information, if present. Dwarf 2 macro information
2829 refers to information in the line number info statement program
2830 header, so we can only read it if we've read the header
2831 successfully. */
2832 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2833 if (attr && line_header)
2834 {
2835 unsigned int macro_offset = DW_UNSND (attr);
2836 dwarf_decode_macros (line_header, macro_offset,
2837 comp_dir, abfd, cu);
2838 }
2839 do_cleanups (back_to);
2840 }
2841
2842 static void
2843 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2844 struct dwarf2_cu *cu)
2845 {
2846 struct function_range *thisfn;
2847
2848 thisfn = (struct function_range *)
2849 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2850 thisfn->name = name;
2851 thisfn->lowpc = lowpc;
2852 thisfn->highpc = highpc;
2853 thisfn->seen_line = 0;
2854 thisfn->next = NULL;
2855
2856 if (cu->last_fn == NULL)
2857 cu->first_fn = thisfn;
2858 else
2859 cu->last_fn->next = thisfn;
2860
2861 cu->last_fn = thisfn;
2862 }
2863
2864 static void
2865 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2866 {
2867 struct objfile *objfile = cu->objfile;
2868 struct context_stack *new;
2869 CORE_ADDR lowpc;
2870 CORE_ADDR highpc;
2871 struct die_info *child_die;
2872 struct attribute *attr;
2873 char *name;
2874 const char *previous_prefix = processing_current_prefix;
2875 struct cleanup *back_to = NULL;
2876 CORE_ADDR baseaddr;
2877
2878 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2879
2880 name = dwarf2_linkage_name (die, cu);
2881
2882 /* Ignore functions with missing or empty names and functions with
2883 missing or invalid low and high pc attributes. */
2884 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2885 return;
2886
2887 if (cu->language == language_cplus
2888 || cu->language == language_java)
2889 {
2890 struct die_info *spec_die = die_specification (die, cu);
2891
2892 /* NOTE: carlton/2004-01-23: We have to be careful in the
2893 presence of DW_AT_specification. For example, with GCC 3.4,
2894 given the code
2895
2896 namespace N {
2897 void foo() {
2898 // Definition of N::foo.
2899 }
2900 }
2901
2902 then we'll have a tree of DIEs like this:
2903
2904 1: DW_TAG_compile_unit
2905 2: DW_TAG_namespace // N
2906 3: DW_TAG_subprogram // declaration of N::foo
2907 4: DW_TAG_subprogram // definition of N::foo
2908 DW_AT_specification // refers to die #3
2909
2910 Thus, when processing die #4, we have to pretend that we're
2911 in the context of its DW_AT_specification, namely the contex
2912 of die #3. */
2913
2914 if (spec_die != NULL)
2915 {
2916 char *specification_prefix = determine_prefix (spec_die, cu);
2917 processing_current_prefix = specification_prefix;
2918 back_to = make_cleanup (xfree, specification_prefix);
2919 }
2920 }
2921
2922 lowpc += baseaddr;
2923 highpc += baseaddr;
2924
2925 /* Record the function range for dwarf_decode_lines. */
2926 add_to_cu_func_list (name, lowpc, highpc, cu);
2927
2928 new = push_context (0, lowpc);
2929 new->name = new_symbol (die, die->type, cu);
2930
2931 /* If there is a location expression for DW_AT_frame_base, record
2932 it. */
2933 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2934 if (attr)
2935 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2936 expression is being recorded directly in the function's symbol
2937 and not in a separate frame-base object. I guess this hack is
2938 to avoid adding some sort of frame-base adjunct/annex to the
2939 function's symbol :-(. The problem with doing this is that it
2940 results in a function symbol with a location expression that
2941 has nothing to do with the location of the function, ouch! The
2942 relationship should be: a function's symbol has-a frame base; a
2943 frame-base has-a location expression. */
2944 dwarf2_symbol_mark_computed (attr, new->name, cu);
2945
2946 cu->list_in_scope = &local_symbols;
2947
2948 if (die->child != NULL)
2949 {
2950 child_die = die->child;
2951 while (child_die && child_die->tag)
2952 {
2953 process_die (child_die, cu);
2954 child_die = sibling_die (child_die);
2955 }
2956 }
2957
2958 new = pop_context ();
2959 /* Make a block for the local symbols within. */
2960 finish_block (new->name, &local_symbols, new->old_blocks,
2961 lowpc, highpc, objfile);
2962
2963 /* In C++, we can have functions nested inside functions (e.g., when
2964 a function declares a class that has methods). This means that
2965 when we finish processing a function scope, we may need to go
2966 back to building a containing block's symbol lists. */
2967 local_symbols = new->locals;
2968 param_symbols = new->params;
2969
2970 /* If we've finished processing a top-level function, subsequent
2971 symbols go in the file symbol list. */
2972 if (outermost_context_p ())
2973 cu->list_in_scope = &file_symbols;
2974
2975 processing_current_prefix = previous_prefix;
2976 if (back_to != NULL)
2977 do_cleanups (back_to);
2978 }
2979
2980 /* Process all the DIES contained within a lexical block scope. Start
2981 a new scope, process the dies, and then close the scope. */
2982
2983 static void
2984 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2985 {
2986 struct objfile *objfile = cu->objfile;
2987 struct context_stack *new;
2988 CORE_ADDR lowpc, highpc;
2989 struct die_info *child_die;
2990 CORE_ADDR baseaddr;
2991
2992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2993
2994 /* Ignore blocks with missing or invalid low and high pc attributes. */
2995 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2996 as multiple lexical blocks? Handling children in a sane way would
2997 be nasty. Might be easier to properly extend generic blocks to
2998 describe ranges. */
2999 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3000 return;
3001 lowpc += baseaddr;
3002 highpc += baseaddr;
3003
3004 push_context (0, lowpc);
3005 if (die->child != NULL)
3006 {
3007 child_die = die->child;
3008 while (child_die && child_die->tag)
3009 {
3010 process_die (child_die, cu);
3011 child_die = sibling_die (child_die);
3012 }
3013 }
3014 new = pop_context ();
3015
3016 if (local_symbols != NULL)
3017 {
3018 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3019 highpc, objfile);
3020 }
3021 local_symbols = new->locals;
3022 }
3023
3024 /* Get low and high pc attributes from a die. Return 1 if the attributes
3025 are present and valid, otherwise, return 0. Return -1 if the range is
3026 discontinuous, i.e. derived from DW_AT_ranges information. */
3027 static int
3028 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3029 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3030 {
3031 struct objfile *objfile = cu->objfile;
3032 struct comp_unit_head *cu_header = &cu->header;
3033 struct attribute *attr;
3034 bfd *obfd = objfile->obfd;
3035 CORE_ADDR low = 0;
3036 CORE_ADDR high = 0;
3037 int ret = 0;
3038
3039 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3040 if (attr)
3041 {
3042 high = DW_ADDR (attr);
3043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3044 if (attr)
3045 low = DW_ADDR (attr);
3046 else
3047 /* Found high w/o low attribute. */
3048 return 0;
3049
3050 /* Found consecutive range of addresses. */
3051 ret = 1;
3052 }
3053 else
3054 {
3055 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3056 if (attr != NULL)
3057 {
3058 unsigned int addr_size = cu_header->addr_size;
3059 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3060 /* Value of the DW_AT_ranges attribute is the offset in the
3061 .debug_ranges section. */
3062 unsigned int offset = DW_UNSND (attr);
3063 /* Base address selection entry. */
3064 CORE_ADDR base;
3065 int found_base;
3066 int dummy;
3067 char *buffer;
3068 CORE_ADDR marker;
3069 int low_set;
3070
3071 found_base = cu_header->base_known;
3072 base = cu_header->base_address;
3073
3074 if (offset >= dwarf2_per_objfile->ranges_size)
3075 {
3076 complaint (&symfile_complaints,
3077 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3078 offset);
3079 return 0;
3080 }
3081 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3082
3083 /* Read in the largest possible address. */
3084 marker = read_address (obfd, buffer, cu, &dummy);
3085 if ((marker & mask) == mask)
3086 {
3087 /* If we found the largest possible address, then
3088 read the base address. */
3089 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3090 buffer += 2 * addr_size;
3091 offset += 2 * addr_size;
3092 found_base = 1;
3093 }
3094
3095 low_set = 0;
3096
3097 while (1)
3098 {
3099 CORE_ADDR range_beginning, range_end;
3100
3101 range_beginning = read_address (obfd, buffer, cu, &dummy);
3102 buffer += addr_size;
3103 range_end = read_address (obfd, buffer, cu, &dummy);
3104 buffer += addr_size;
3105 offset += 2 * addr_size;
3106
3107 /* An end of list marker is a pair of zero addresses. */
3108 if (range_beginning == 0 && range_end == 0)
3109 /* Found the end of list entry. */
3110 break;
3111
3112 /* Each base address selection entry is a pair of 2 values.
3113 The first is the largest possible address, the second is
3114 the base address. Check for a base address here. */
3115 if ((range_beginning & mask) == mask)
3116 {
3117 /* If we found the largest possible address, then
3118 read the base address. */
3119 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3120 found_base = 1;
3121 continue;
3122 }
3123
3124 if (!found_base)
3125 {
3126 /* We have no valid base address for the ranges
3127 data. */
3128 complaint (&symfile_complaints,
3129 _("Invalid .debug_ranges data (no base address)"));
3130 return 0;
3131 }
3132
3133 range_beginning += base;
3134 range_end += base;
3135
3136 /* FIXME: This is recording everything as a low-high
3137 segment of consecutive addresses. We should have a
3138 data structure for discontiguous block ranges
3139 instead. */
3140 if (! low_set)
3141 {
3142 low = range_beginning;
3143 high = range_end;
3144 low_set = 1;
3145 }
3146 else
3147 {
3148 if (range_beginning < low)
3149 low = range_beginning;
3150 if (range_end > high)
3151 high = range_end;
3152 }
3153 }
3154
3155 if (! low_set)
3156 /* If the first entry is an end-of-list marker, the range
3157 describes an empty scope, i.e. no instructions. */
3158 return 0;
3159
3160 ret = -1;
3161 }
3162 }
3163
3164 if (high < low)
3165 return 0;
3166
3167 /* When using the GNU linker, .gnu.linkonce. sections are used to
3168 eliminate duplicate copies of functions and vtables and such.
3169 The linker will arbitrarily choose one and discard the others.
3170 The AT_*_pc values for such functions refer to local labels in
3171 these sections. If the section from that file was discarded, the
3172 labels are not in the output, so the relocs get a value of 0.
3173 If this is a discarded function, mark the pc bounds as invalid,
3174 so that GDB will ignore it. */
3175 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3176 return 0;
3177
3178 *lowpc = low;
3179 *highpc = high;
3180 return ret;
3181 }
3182
3183 /* Get the low and high pc's represented by the scope DIE, and store
3184 them in *LOWPC and *HIGHPC. If the correct values can't be
3185 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3186
3187 static void
3188 get_scope_pc_bounds (struct die_info *die,
3189 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3190 struct dwarf2_cu *cu)
3191 {
3192 CORE_ADDR best_low = (CORE_ADDR) -1;
3193 CORE_ADDR best_high = (CORE_ADDR) 0;
3194 CORE_ADDR current_low, current_high;
3195
3196 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3197 {
3198 best_low = current_low;
3199 best_high = current_high;
3200 }
3201 else
3202 {
3203 struct die_info *child = die->child;
3204
3205 while (child && child->tag)
3206 {
3207 switch (child->tag) {
3208 case DW_TAG_subprogram:
3209 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3210 {
3211 best_low = min (best_low, current_low);
3212 best_high = max (best_high, current_high);
3213 }
3214 break;
3215 case DW_TAG_namespace:
3216 /* FIXME: carlton/2004-01-16: Should we do this for
3217 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3218 that current GCC's always emit the DIEs corresponding
3219 to definitions of methods of classes as children of a
3220 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3221 the DIEs giving the declarations, which could be
3222 anywhere). But I don't see any reason why the
3223 standards says that they have to be there. */
3224 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3225
3226 if (current_low != ((CORE_ADDR) -1))
3227 {
3228 best_low = min (best_low, current_low);
3229 best_high = max (best_high, current_high);
3230 }
3231 break;
3232 default:
3233 /* Ignore. */
3234 break;
3235 }
3236
3237 child = sibling_die (child);
3238 }
3239 }
3240
3241 *lowpc = best_low;
3242 *highpc = best_high;
3243 }
3244
3245 /* Add an aggregate field to the field list. */
3246
3247 static void
3248 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3249 struct dwarf2_cu *cu)
3250 {
3251 struct objfile *objfile = cu->objfile;
3252 struct nextfield *new_field;
3253 struct attribute *attr;
3254 struct field *fp;
3255 char *fieldname = "";
3256
3257 /* Allocate a new field list entry and link it in. */
3258 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3259 make_cleanup (xfree, new_field);
3260 memset (new_field, 0, sizeof (struct nextfield));
3261 new_field->next = fip->fields;
3262 fip->fields = new_field;
3263 fip->nfields++;
3264
3265 /* Handle accessibility and virtuality of field.
3266 The default accessibility for members is public, the default
3267 accessibility for inheritance is private. */
3268 if (die->tag != DW_TAG_inheritance)
3269 new_field->accessibility = DW_ACCESS_public;
3270 else
3271 new_field->accessibility = DW_ACCESS_private;
3272 new_field->virtuality = DW_VIRTUALITY_none;
3273
3274 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3275 if (attr)
3276 new_field->accessibility = DW_UNSND (attr);
3277 if (new_field->accessibility != DW_ACCESS_public)
3278 fip->non_public_fields = 1;
3279 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3280 if (attr)
3281 new_field->virtuality = DW_UNSND (attr);
3282
3283 fp = &new_field->field;
3284
3285 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3286 {
3287 /* Data member other than a C++ static data member. */
3288
3289 /* Get type of field. */
3290 fp->type = die_type (die, cu);
3291
3292 FIELD_STATIC_KIND (*fp) = 0;
3293
3294 /* Get bit size of field (zero if none). */
3295 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3296 if (attr)
3297 {
3298 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3299 }
3300 else
3301 {
3302 FIELD_BITSIZE (*fp) = 0;
3303 }
3304
3305 /* Get bit offset of field. */
3306 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3307 if (attr)
3308 {
3309 FIELD_BITPOS (*fp) =
3310 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3311 }
3312 else
3313 FIELD_BITPOS (*fp) = 0;
3314 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3315 if (attr)
3316 {
3317 if (BITS_BIG_ENDIAN)
3318 {
3319 /* For big endian bits, the DW_AT_bit_offset gives the
3320 additional bit offset from the MSB of the containing
3321 anonymous object to the MSB of the field. We don't
3322 have to do anything special since we don't need to
3323 know the size of the anonymous object. */
3324 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3325 }
3326 else
3327 {
3328 /* For little endian bits, compute the bit offset to the
3329 MSB of the anonymous object, subtract off the number of
3330 bits from the MSB of the field to the MSB of the
3331 object, and then subtract off the number of bits of
3332 the field itself. The result is the bit offset of
3333 the LSB of the field. */
3334 int anonymous_size;
3335 int bit_offset = DW_UNSND (attr);
3336
3337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3338 if (attr)
3339 {
3340 /* The size of the anonymous object containing
3341 the bit field is explicit, so use the
3342 indicated size (in bytes). */
3343 anonymous_size = DW_UNSND (attr);
3344 }
3345 else
3346 {
3347 /* The size of the anonymous object containing
3348 the bit field must be inferred from the type
3349 attribute of the data member containing the
3350 bit field. */
3351 anonymous_size = TYPE_LENGTH (fp->type);
3352 }
3353 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3354 - bit_offset - FIELD_BITSIZE (*fp);
3355 }
3356 }
3357
3358 /* Get name of field. */
3359 attr = dwarf2_attr (die, DW_AT_name, cu);
3360 if (attr && DW_STRING (attr))
3361 fieldname = DW_STRING (attr);
3362
3363 /* The name is already allocated along with this objfile, so we don't
3364 need to duplicate it for the type. */
3365 fp->name = fieldname;
3366
3367 /* Change accessibility for artificial fields (e.g. virtual table
3368 pointer or virtual base class pointer) to private. */
3369 if (dwarf2_attr (die, DW_AT_artificial, cu))
3370 {
3371 new_field->accessibility = DW_ACCESS_private;
3372 fip->non_public_fields = 1;
3373 }
3374 }
3375 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3376 {
3377 /* C++ static member. */
3378
3379 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3380 is a declaration, but all versions of G++ as of this writing
3381 (so through at least 3.2.1) incorrectly generate
3382 DW_TAG_variable tags. */
3383
3384 char *physname;
3385
3386 /* Get name of field. */
3387 attr = dwarf2_attr (die, DW_AT_name, cu);
3388 if (attr && DW_STRING (attr))
3389 fieldname = DW_STRING (attr);
3390 else
3391 return;
3392
3393 /* Get physical name. */
3394 physname = dwarf2_linkage_name (die, cu);
3395
3396 /* The name is already allocated along with this objfile, so we don't
3397 need to duplicate it for the type. */
3398 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3399 FIELD_TYPE (*fp) = die_type (die, cu);
3400 FIELD_NAME (*fp) = fieldname;
3401 }
3402 else if (die->tag == DW_TAG_inheritance)
3403 {
3404 /* C++ base class field. */
3405 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3406 if (attr)
3407 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3408 * bits_per_byte);
3409 FIELD_BITSIZE (*fp) = 0;
3410 FIELD_STATIC_KIND (*fp) = 0;
3411 FIELD_TYPE (*fp) = die_type (die, cu);
3412 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3413 fip->nbaseclasses++;
3414 }
3415 }
3416
3417 /* Create the vector of fields, and attach it to the type. */
3418
3419 static void
3420 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3421 struct dwarf2_cu *cu)
3422 {
3423 int nfields = fip->nfields;
3424
3425 /* Record the field count, allocate space for the array of fields,
3426 and create blank accessibility bitfields if necessary. */
3427 TYPE_NFIELDS (type) = nfields;
3428 TYPE_FIELDS (type) = (struct field *)
3429 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3430 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3431
3432 if (fip->non_public_fields)
3433 {
3434 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3435
3436 TYPE_FIELD_PRIVATE_BITS (type) =
3437 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3438 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3439
3440 TYPE_FIELD_PROTECTED_BITS (type) =
3441 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3442 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3443
3444 TYPE_FIELD_IGNORE_BITS (type) =
3445 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3446 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3447 }
3448
3449 /* If the type has baseclasses, allocate and clear a bit vector for
3450 TYPE_FIELD_VIRTUAL_BITS. */
3451 if (fip->nbaseclasses)
3452 {
3453 int num_bytes = B_BYTES (fip->nbaseclasses);
3454 char *pointer;
3455
3456 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3457 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3458 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3459 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3460 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3461 }
3462
3463 /* Copy the saved-up fields into the field vector. Start from the head
3464 of the list, adding to the tail of the field array, so that they end
3465 up in the same order in the array in which they were added to the list. */
3466 while (nfields-- > 0)
3467 {
3468 TYPE_FIELD (type, nfields) = fip->fields->field;
3469 switch (fip->fields->accessibility)
3470 {
3471 case DW_ACCESS_private:
3472 SET_TYPE_FIELD_PRIVATE (type, nfields);
3473 break;
3474
3475 case DW_ACCESS_protected:
3476 SET_TYPE_FIELD_PROTECTED (type, nfields);
3477 break;
3478
3479 case DW_ACCESS_public:
3480 break;
3481
3482 default:
3483 /* Unknown accessibility. Complain and treat it as public. */
3484 {
3485 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3486 fip->fields->accessibility);
3487 }
3488 break;
3489 }
3490 if (nfields < fip->nbaseclasses)
3491 {
3492 switch (fip->fields->virtuality)
3493 {
3494 case DW_VIRTUALITY_virtual:
3495 case DW_VIRTUALITY_pure_virtual:
3496 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3497 break;
3498 }
3499 }
3500 fip->fields = fip->fields->next;
3501 }
3502 }
3503
3504 /* Add a member function to the proper fieldlist. */
3505
3506 static void
3507 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3508 struct type *type, struct dwarf2_cu *cu)
3509 {
3510 struct objfile *objfile = cu->objfile;
3511 struct attribute *attr;
3512 struct fnfieldlist *flp;
3513 int i;
3514 struct fn_field *fnp;
3515 char *fieldname;
3516 char *physname;
3517 struct nextfnfield *new_fnfield;
3518
3519 /* Get name of member function. */
3520 attr = dwarf2_attr (die, DW_AT_name, cu);
3521 if (attr && DW_STRING (attr))
3522 fieldname = DW_STRING (attr);
3523 else
3524 return;
3525
3526 /* Get the mangled name. */
3527 physname = dwarf2_linkage_name (die, cu);
3528
3529 /* Look up member function name in fieldlist. */
3530 for (i = 0; i < fip->nfnfields; i++)
3531 {
3532 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3533 break;
3534 }
3535
3536 /* Create new list element if necessary. */
3537 if (i < fip->nfnfields)
3538 flp = &fip->fnfieldlists[i];
3539 else
3540 {
3541 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3542 {
3543 fip->fnfieldlists = (struct fnfieldlist *)
3544 xrealloc (fip->fnfieldlists,
3545 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3546 * sizeof (struct fnfieldlist));
3547 if (fip->nfnfields == 0)
3548 make_cleanup (free_current_contents, &fip->fnfieldlists);
3549 }
3550 flp = &fip->fnfieldlists[fip->nfnfields];
3551 flp->name = fieldname;
3552 flp->length = 0;
3553 flp->head = NULL;
3554 fip->nfnfields++;
3555 }
3556
3557 /* Create a new member function field and chain it to the field list
3558 entry. */
3559 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3560 make_cleanup (xfree, new_fnfield);
3561 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3562 new_fnfield->next = flp->head;
3563 flp->head = new_fnfield;
3564 flp->length++;
3565
3566 /* Fill in the member function field info. */
3567 fnp = &new_fnfield->fnfield;
3568 /* The name is already allocated along with this objfile, so we don't
3569 need to duplicate it for the type. */
3570 fnp->physname = physname ? physname : "";
3571 fnp->type = alloc_type (objfile);
3572 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3573 {
3574 int nparams = TYPE_NFIELDS (die->type);
3575
3576 /* TYPE is the domain of this method, and DIE->TYPE is the type
3577 of the method itself (TYPE_CODE_METHOD). */
3578 smash_to_method_type (fnp->type, type,
3579 TYPE_TARGET_TYPE (die->type),
3580 TYPE_FIELDS (die->type),
3581 TYPE_NFIELDS (die->type),
3582 TYPE_VARARGS (die->type));
3583
3584 /* Handle static member functions.
3585 Dwarf2 has no clean way to discern C++ static and non-static
3586 member functions. G++ helps GDB by marking the first
3587 parameter for non-static member functions (which is the
3588 this pointer) as artificial. We obtain this information
3589 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3590 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3591 fnp->voffset = VOFFSET_STATIC;
3592 }
3593 else
3594 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3595 physname);
3596
3597 /* Get fcontext from DW_AT_containing_type if present. */
3598 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3599 fnp->fcontext = die_containing_type (die, cu);
3600
3601 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3602 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3603
3604 /* Get accessibility. */
3605 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3606 if (attr)
3607 {
3608 switch (DW_UNSND (attr))
3609 {
3610 case DW_ACCESS_private:
3611 fnp->is_private = 1;
3612 break;
3613 case DW_ACCESS_protected:
3614 fnp->is_protected = 1;
3615 break;
3616 }
3617 }
3618
3619 /* Check for artificial methods. */
3620 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3621 if (attr && DW_UNSND (attr) != 0)
3622 fnp->is_artificial = 1;
3623
3624 /* Get index in virtual function table if it is a virtual member function. */
3625 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3626 if (attr)
3627 {
3628 /* Support the .debug_loc offsets */
3629 if (attr_form_is_block (attr))
3630 {
3631 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3632 }
3633 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3634 {
3635 dwarf2_complex_location_expr_complaint ();
3636 }
3637 else
3638 {
3639 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3640 fieldname);
3641 }
3642 }
3643 }
3644
3645 /* Create the vector of member function fields, and attach it to the type. */
3646
3647 static void
3648 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3649 struct dwarf2_cu *cu)
3650 {
3651 struct fnfieldlist *flp;
3652 int total_length = 0;
3653 int i;
3654
3655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3656 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3657 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3658
3659 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3660 {
3661 struct nextfnfield *nfp = flp->head;
3662 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3663 int k;
3664
3665 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3666 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3667 fn_flp->fn_fields = (struct fn_field *)
3668 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3669 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3670 fn_flp->fn_fields[k] = nfp->fnfield;
3671
3672 total_length += flp->length;
3673 }
3674
3675 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3676 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3677 }
3678
3679
3680 /* Returns non-zero if NAME is the name of a vtable member in CU's
3681 language, zero otherwise. */
3682 static int
3683 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3684 {
3685 static const char vptr[] = "_vptr";
3686 static const char vtable[] = "vtable";
3687
3688 /* Look for the C++ and Java forms of the vtable. */
3689 if ((cu->language == language_java
3690 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3691 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3692 && is_cplus_marker (name[sizeof (vptr) - 1])))
3693 return 1;
3694
3695 return 0;
3696 }
3697
3698
3699 /* Called when we find the DIE that starts a structure or union scope
3700 (definition) to process all dies that define the members of the
3701 structure or union.
3702
3703 NOTE: we need to call struct_type regardless of whether or not the
3704 DIE has an at_name attribute, since it might be an anonymous
3705 structure or union. This gets the type entered into our set of
3706 user defined types.
3707
3708 However, if the structure is incomplete (an opaque struct/union)
3709 then suppress creating a symbol table entry for it since gdb only
3710 wants to find the one with the complete definition. Note that if
3711 it is complete, we just call new_symbol, which does it's own
3712 checking about whether the struct/union is anonymous or not (and
3713 suppresses creating a symbol table entry itself). */
3714
3715 static void
3716 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3717 {
3718 struct objfile *objfile = cu->objfile;
3719 struct type *type;
3720 struct attribute *attr;
3721 const char *previous_prefix = processing_current_prefix;
3722 struct cleanup *back_to = NULL;
3723
3724 if (die->type)
3725 return;
3726
3727 type = alloc_type (objfile);
3728
3729 INIT_CPLUS_SPECIFIC (type);
3730 attr = dwarf2_attr (die, DW_AT_name, cu);
3731 if (attr && DW_STRING (attr))
3732 {
3733 if (cu->language == language_cplus
3734 || cu->language == language_java)
3735 {
3736 char *new_prefix = determine_class_name (die, cu);
3737 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3738 strlen (new_prefix),
3739 &objfile->objfile_obstack);
3740 back_to = make_cleanup (xfree, new_prefix);
3741 processing_current_prefix = new_prefix;
3742 }
3743 else
3744 {
3745 /* The name is already allocated along with this objfile, so
3746 we don't need to duplicate it for the type. */
3747 TYPE_TAG_NAME (type) = DW_STRING (attr);
3748 }
3749 }
3750
3751 if (die->tag == DW_TAG_structure_type)
3752 {
3753 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3754 }
3755 else if (die->tag == DW_TAG_union_type)
3756 {
3757 TYPE_CODE (type) = TYPE_CODE_UNION;
3758 }
3759 else
3760 {
3761 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3762 in gdbtypes.h. */
3763 TYPE_CODE (type) = TYPE_CODE_CLASS;
3764 }
3765
3766 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3767 if (attr)
3768 {
3769 TYPE_LENGTH (type) = DW_UNSND (attr);
3770 }
3771 else
3772 {
3773 TYPE_LENGTH (type) = 0;
3774 }
3775
3776 if (die_is_declaration (die, cu))
3777 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3778
3779 /* We need to add the type field to the die immediately so we don't
3780 infinitely recurse when dealing with pointers to the structure
3781 type within the structure itself. */
3782 set_die_type (die, type, cu);
3783
3784 if (die->child != NULL && ! die_is_declaration (die, cu))
3785 {
3786 struct field_info fi;
3787 struct die_info *child_die;
3788 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3789
3790 memset (&fi, 0, sizeof (struct field_info));
3791
3792 child_die = die->child;
3793
3794 while (child_die && child_die->tag)
3795 {
3796 if (child_die->tag == DW_TAG_member
3797 || child_die->tag == DW_TAG_variable)
3798 {
3799 /* NOTE: carlton/2002-11-05: A C++ static data member
3800 should be a DW_TAG_member that is a declaration, but
3801 all versions of G++ as of this writing (so through at
3802 least 3.2.1) incorrectly generate DW_TAG_variable
3803 tags for them instead. */
3804 dwarf2_add_field (&fi, child_die, cu);
3805 }
3806 else if (child_die->tag == DW_TAG_subprogram)
3807 {
3808 /* C++ member function. */
3809 read_type_die (child_die, cu);
3810 dwarf2_add_member_fn (&fi, child_die, type, cu);
3811 }
3812 else if (child_die->tag == DW_TAG_inheritance)
3813 {
3814 /* C++ base class field. */
3815 dwarf2_add_field (&fi, child_die, cu);
3816 }
3817 child_die = sibling_die (child_die);
3818 }
3819
3820 /* Attach fields and member functions to the type. */
3821 if (fi.nfields)
3822 dwarf2_attach_fields_to_type (&fi, type, cu);
3823 if (fi.nfnfields)
3824 {
3825 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3826
3827 /* Get the type which refers to the base class (possibly this
3828 class itself) which contains the vtable pointer for the current
3829 class from the DW_AT_containing_type attribute. */
3830
3831 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3832 {
3833 struct type *t = die_containing_type (die, cu);
3834
3835 TYPE_VPTR_BASETYPE (type) = t;
3836 if (type == t)
3837 {
3838 int i;
3839
3840 /* Our own class provides vtbl ptr. */
3841 for (i = TYPE_NFIELDS (t) - 1;
3842 i >= TYPE_N_BASECLASSES (t);
3843 --i)
3844 {
3845 char *fieldname = TYPE_FIELD_NAME (t, i);
3846
3847 if (is_vtable_name (fieldname, cu))
3848 {
3849 TYPE_VPTR_FIELDNO (type) = i;
3850 break;
3851 }
3852 }
3853
3854 /* Complain if virtual function table field not found. */
3855 if (i < TYPE_N_BASECLASSES (t))
3856 complaint (&symfile_complaints,
3857 _("virtual function table pointer not found when defining class '%s'"),
3858 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3859 "");
3860 }
3861 else
3862 {
3863 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3864 }
3865 }
3866 }
3867
3868 do_cleanups (back_to);
3869 }
3870
3871 processing_current_prefix = previous_prefix;
3872 if (back_to != NULL)
3873 do_cleanups (back_to);
3874 }
3875
3876 static void
3877 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3878 {
3879 struct objfile *objfile = cu->objfile;
3880 const char *previous_prefix = processing_current_prefix;
3881 struct die_info *child_die = die->child;
3882
3883 if (TYPE_TAG_NAME (die->type) != NULL)
3884 processing_current_prefix = TYPE_TAG_NAME (die->type);
3885
3886 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3887 snapshots) has been known to create a die giving a declaration
3888 for a class that has, as a child, a die giving a definition for a
3889 nested class. So we have to process our children even if the
3890 current die is a declaration. Normally, of course, a declaration
3891 won't have any children at all. */
3892
3893 while (child_die != NULL && child_die->tag)
3894 {
3895 if (child_die->tag == DW_TAG_member
3896 || child_die->tag == DW_TAG_variable
3897 || child_die->tag == DW_TAG_inheritance)
3898 {
3899 /* Do nothing. */
3900 }
3901 else
3902 process_die (child_die, cu);
3903
3904 child_die = sibling_die (child_die);
3905 }
3906
3907 if (die->child != NULL && ! die_is_declaration (die, cu))
3908 new_symbol (die, die->type, cu);
3909
3910 processing_current_prefix = previous_prefix;
3911 }
3912
3913 /* Given a DW_AT_enumeration_type die, set its type. We do not
3914 complete the type's fields yet, or create any symbols. */
3915
3916 static void
3917 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3918 {
3919 struct objfile *objfile = cu->objfile;
3920 struct type *type;
3921 struct attribute *attr;
3922
3923 if (die->type)
3924 return;
3925
3926 type = alloc_type (objfile);
3927
3928 TYPE_CODE (type) = TYPE_CODE_ENUM;
3929 attr = dwarf2_attr (die, DW_AT_name, cu);
3930 if (attr && DW_STRING (attr))
3931 {
3932 char *name = DW_STRING (attr);
3933
3934 if (processing_has_namespace_info)
3935 {
3936 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3937 processing_current_prefix,
3938 name, cu);
3939 }
3940 else
3941 {
3942 /* The name is already allocated along with this objfile, so
3943 we don't need to duplicate it for the type. */
3944 TYPE_TAG_NAME (type) = name;
3945 }
3946 }
3947
3948 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3949 if (attr)
3950 {
3951 TYPE_LENGTH (type) = DW_UNSND (attr);
3952 }
3953 else
3954 {
3955 TYPE_LENGTH (type) = 0;
3956 }
3957
3958 set_die_type (die, type, cu);
3959 }
3960
3961 /* Determine the name of the type represented by DIE, which should be
3962 a named C++ or Java compound type. Return the name in question; the caller
3963 is responsible for xfree()'ing it. */
3964
3965 static char *
3966 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3967 {
3968 struct cleanup *back_to = NULL;
3969 struct die_info *spec_die = die_specification (die, cu);
3970 char *new_prefix = NULL;
3971
3972 /* If this is the definition of a class that is declared by another
3973 die, then processing_current_prefix may not be accurate; see
3974 read_func_scope for a similar example. */
3975 if (spec_die != NULL)
3976 {
3977 char *specification_prefix = determine_prefix (spec_die, cu);
3978 processing_current_prefix = specification_prefix;
3979 back_to = make_cleanup (xfree, specification_prefix);
3980 }
3981
3982 /* If we don't have namespace debug info, guess the name by trying
3983 to demangle the names of members, just like we did in
3984 guess_structure_name. */
3985 if (!processing_has_namespace_info)
3986 {
3987 struct die_info *child;
3988
3989 for (child = die->child;
3990 child != NULL && child->tag != 0;
3991 child = sibling_die (child))
3992 {
3993 if (child->tag == DW_TAG_subprogram)
3994 {
3995 new_prefix
3996 = language_class_name_from_physname (cu->language_defn,
3997 dwarf2_linkage_name
3998 (child, cu));
3999
4000 if (new_prefix != NULL)
4001 break;
4002 }
4003 }
4004 }
4005
4006 if (new_prefix == NULL)
4007 {
4008 const char *name = dwarf2_name (die, cu);
4009 new_prefix = typename_concat (NULL, processing_current_prefix,
4010 name ? name : "<<anonymous>>",
4011 cu);
4012 }
4013
4014 if (back_to != NULL)
4015 do_cleanups (back_to);
4016
4017 return new_prefix;
4018 }
4019
4020 /* Given a pointer to a die which begins an enumeration, process all
4021 the dies that define the members of the enumeration, and create the
4022 symbol for the enumeration type.
4023
4024 NOTE: We reverse the order of the element list. */
4025
4026 static void
4027 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4028 {
4029 struct objfile *objfile = cu->objfile;
4030 struct die_info *child_die;
4031 struct field *fields;
4032 struct attribute *attr;
4033 struct symbol *sym;
4034 int num_fields;
4035 int unsigned_enum = 1;
4036
4037 num_fields = 0;
4038 fields = NULL;
4039 if (die->child != NULL)
4040 {
4041 child_die = die->child;
4042 while (child_die && child_die->tag)
4043 {
4044 if (child_die->tag != DW_TAG_enumerator)
4045 {
4046 process_die (child_die, cu);
4047 }
4048 else
4049 {
4050 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4051 if (attr)
4052 {
4053 sym = new_symbol (child_die, die->type, cu);
4054 if (SYMBOL_VALUE (sym) < 0)
4055 unsigned_enum = 0;
4056
4057 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4058 {
4059 fields = (struct field *)
4060 xrealloc (fields,
4061 (num_fields + DW_FIELD_ALLOC_CHUNK)
4062 * sizeof (struct field));
4063 }
4064
4065 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4066 FIELD_TYPE (fields[num_fields]) = NULL;
4067 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4068 FIELD_BITSIZE (fields[num_fields]) = 0;
4069 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4070
4071 num_fields++;
4072 }
4073 }
4074
4075 child_die = sibling_die (child_die);
4076 }
4077
4078 if (num_fields)
4079 {
4080 TYPE_NFIELDS (die->type) = num_fields;
4081 TYPE_FIELDS (die->type) = (struct field *)
4082 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4083 memcpy (TYPE_FIELDS (die->type), fields,
4084 sizeof (struct field) * num_fields);
4085 xfree (fields);
4086 }
4087 if (unsigned_enum)
4088 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4089 }
4090
4091 new_symbol (die, die->type, cu);
4092 }
4093
4094 /* Extract all information from a DW_TAG_array_type DIE and put it in
4095 the DIE's type field. For now, this only handles one dimensional
4096 arrays. */
4097
4098 static void
4099 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4100 {
4101 struct objfile *objfile = cu->objfile;
4102 struct die_info *child_die;
4103 struct type *type = NULL;
4104 struct type *element_type, *range_type, *index_type;
4105 struct type **range_types = NULL;
4106 struct attribute *attr;
4107 int ndim = 0;
4108 struct cleanup *back_to;
4109
4110 /* Return if we've already decoded this type. */
4111 if (die->type)
4112 {
4113 return;
4114 }
4115
4116 element_type = die_type (die, cu);
4117
4118 /* Irix 6.2 native cc creates array types without children for
4119 arrays with unspecified length. */
4120 if (die->child == NULL)
4121 {
4122 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4123 range_type = create_range_type (NULL, index_type, 0, -1);
4124 set_die_type (die, create_array_type (NULL, element_type, range_type),
4125 cu);
4126 return;
4127 }
4128
4129 back_to = make_cleanup (null_cleanup, NULL);
4130 child_die = die->child;
4131 while (child_die && child_die->tag)
4132 {
4133 if (child_die->tag == DW_TAG_subrange_type)
4134 {
4135 read_subrange_type (child_die, cu);
4136
4137 if (child_die->type != NULL)
4138 {
4139 /* The range type was succesfully read. Save it for
4140 the array type creation. */
4141 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4142 {
4143 range_types = (struct type **)
4144 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4145 * sizeof (struct type *));
4146 if (ndim == 0)
4147 make_cleanup (free_current_contents, &range_types);
4148 }
4149 range_types[ndim++] = child_die->type;
4150 }
4151 }
4152 child_die = sibling_die (child_die);
4153 }
4154
4155 /* Dwarf2 dimensions are output from left to right, create the
4156 necessary array types in backwards order. */
4157
4158 type = element_type;
4159
4160 if (read_array_order (die, cu) == DW_ORD_col_major)
4161 {
4162 int i = 0;
4163 while (i < ndim)
4164 type = create_array_type (NULL, type, range_types[i++]);
4165 }
4166 else
4167 {
4168 while (ndim-- > 0)
4169 type = create_array_type (NULL, type, range_types[ndim]);
4170 }
4171
4172 /* Understand Dwarf2 support for vector types (like they occur on
4173 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4174 array type. This is not part of the Dwarf2/3 standard yet, but a
4175 custom vendor extension. The main difference between a regular
4176 array and the vector variant is that vectors are passed by value
4177 to functions. */
4178 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4179 if (attr)
4180 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4181
4182 do_cleanups (back_to);
4183
4184 /* Install the type in the die. */
4185 set_die_type (die, type, cu);
4186 }
4187
4188 static enum dwarf_array_dim_ordering
4189 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4190 {
4191 struct attribute *attr;
4192
4193 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4194
4195 if (attr) return DW_SND (attr);
4196
4197 /*
4198 GNU F77 is a special case, as at 08/2004 array type info is the
4199 opposite order to the dwarf2 specification, but data is still
4200 laid out as per normal fortran.
4201
4202 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4203 version checking.
4204 */
4205
4206 if (cu->language == language_fortran &&
4207 cu->producer && strstr (cu->producer, "GNU F77"))
4208 {
4209 return DW_ORD_row_major;
4210 }
4211
4212 switch (cu->language_defn->la_array_ordering)
4213 {
4214 case array_column_major:
4215 return DW_ORD_col_major;
4216 case array_row_major:
4217 default:
4218 return DW_ORD_row_major;
4219 };
4220 }
4221
4222
4223 /* First cut: install each common block member as a global variable. */
4224
4225 static void
4226 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4227 {
4228 struct die_info *child_die;
4229 struct attribute *attr;
4230 struct symbol *sym;
4231 CORE_ADDR base = (CORE_ADDR) 0;
4232
4233 attr = dwarf2_attr (die, DW_AT_location, cu);
4234 if (attr)
4235 {
4236 /* Support the .debug_loc offsets */
4237 if (attr_form_is_block (attr))
4238 {
4239 base = decode_locdesc (DW_BLOCK (attr), cu);
4240 }
4241 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4242 {
4243 dwarf2_complex_location_expr_complaint ();
4244 }
4245 else
4246 {
4247 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4248 "common block member");
4249 }
4250 }
4251 if (die->child != NULL)
4252 {
4253 child_die = die->child;
4254 while (child_die && child_die->tag)
4255 {
4256 sym = new_symbol (child_die, NULL, cu);
4257 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4258 if (attr)
4259 {
4260 SYMBOL_VALUE_ADDRESS (sym) =
4261 base + decode_locdesc (DW_BLOCK (attr), cu);
4262 add_symbol_to_list (sym, &global_symbols);
4263 }
4264 child_die = sibling_die (child_die);
4265 }
4266 }
4267 }
4268
4269 /* Read a C++ namespace. */
4270
4271 static void
4272 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4273 {
4274 struct objfile *objfile = cu->objfile;
4275 const char *previous_prefix = processing_current_prefix;
4276 const char *name;
4277 int is_anonymous;
4278 struct die_info *current_die;
4279 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4280
4281 name = namespace_name (die, &is_anonymous, cu);
4282
4283 /* Now build the name of the current namespace. */
4284
4285 if (previous_prefix[0] == '\0')
4286 {
4287 processing_current_prefix = name;
4288 }
4289 else
4290 {
4291 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4292 make_cleanup (xfree, temp_name);
4293 processing_current_prefix = temp_name;
4294 }
4295
4296 /* Add a symbol associated to this if we haven't seen the namespace
4297 before. Also, add a using directive if it's an anonymous
4298 namespace. */
4299
4300 if (dwarf2_extension (die, cu) == NULL)
4301 {
4302 struct type *type;
4303
4304 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4305 this cast will hopefully become unnecessary. */
4306 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4307 (char *) processing_current_prefix,
4308 objfile);
4309 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4310
4311 new_symbol (die, type, cu);
4312 set_die_type (die, type, cu);
4313
4314 if (is_anonymous)
4315 cp_add_using_directive (processing_current_prefix,
4316 strlen (previous_prefix),
4317 strlen (processing_current_prefix));
4318 }
4319
4320 if (die->child != NULL)
4321 {
4322 struct die_info *child_die = die->child;
4323
4324 while (child_die && child_die->tag)
4325 {
4326 process_die (child_die, cu);
4327 child_die = sibling_die (child_die);
4328 }
4329 }
4330
4331 processing_current_prefix = previous_prefix;
4332 do_cleanups (back_to);
4333 }
4334
4335 /* Return the name of the namespace represented by DIE. Set
4336 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4337 namespace. */
4338
4339 static const char *
4340 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4341 {
4342 struct die_info *current_die;
4343 const char *name = NULL;
4344
4345 /* Loop through the extensions until we find a name. */
4346
4347 for (current_die = die;
4348 current_die != NULL;
4349 current_die = dwarf2_extension (die, cu))
4350 {
4351 name = dwarf2_name (current_die, cu);
4352 if (name != NULL)
4353 break;
4354 }
4355
4356 /* Is it an anonymous namespace? */
4357
4358 *is_anonymous = (name == NULL);
4359 if (*is_anonymous)
4360 name = "(anonymous namespace)";
4361
4362 return name;
4363 }
4364
4365 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4366 the user defined type vector. */
4367
4368 static void
4369 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4370 {
4371 struct comp_unit_head *cu_header = &cu->header;
4372 struct type *type;
4373 struct attribute *attr_byte_size;
4374 struct attribute *attr_address_class;
4375 int byte_size, addr_class;
4376
4377 if (die->type)
4378 {
4379 return;
4380 }
4381
4382 type = lookup_pointer_type (die_type (die, cu));
4383
4384 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4385 if (attr_byte_size)
4386 byte_size = DW_UNSND (attr_byte_size);
4387 else
4388 byte_size = cu_header->addr_size;
4389
4390 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4391 if (attr_address_class)
4392 addr_class = DW_UNSND (attr_address_class);
4393 else
4394 addr_class = DW_ADDR_none;
4395
4396 /* If the pointer size or address class is different than the
4397 default, create a type variant marked as such and set the
4398 length accordingly. */
4399 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4400 {
4401 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4402 {
4403 int type_flags;
4404
4405 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4406 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4407 type = make_type_with_address_space (type, type_flags);
4408 }
4409 else if (TYPE_LENGTH (type) != byte_size)
4410 {
4411 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4412 }
4413 else {
4414 /* Should we also complain about unhandled address classes? */
4415 }
4416 }
4417
4418 TYPE_LENGTH (type) = byte_size;
4419 set_die_type (die, type, cu);
4420 }
4421
4422 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4423 the user defined type vector. */
4424
4425 static void
4426 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4427 {
4428 struct objfile *objfile = cu->objfile;
4429 struct type *type;
4430 struct type *to_type;
4431 struct type *domain;
4432
4433 if (die->type)
4434 {
4435 return;
4436 }
4437
4438 type = alloc_type (objfile);
4439 to_type = die_type (die, cu);
4440 domain = die_containing_type (die, cu);
4441 smash_to_member_type (type, domain, to_type);
4442
4443 set_die_type (die, type, cu);
4444 }
4445
4446 /* Extract all information from a DW_TAG_reference_type DIE and add to
4447 the user defined type vector. */
4448
4449 static void
4450 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4451 {
4452 struct comp_unit_head *cu_header = &cu->header;
4453 struct type *type;
4454 struct attribute *attr;
4455
4456 if (die->type)
4457 {
4458 return;
4459 }
4460
4461 type = lookup_reference_type (die_type (die, cu));
4462 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4463 if (attr)
4464 {
4465 TYPE_LENGTH (type) = DW_UNSND (attr);
4466 }
4467 else
4468 {
4469 TYPE_LENGTH (type) = cu_header->addr_size;
4470 }
4471 set_die_type (die, type, cu);
4472 }
4473
4474 static void
4475 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4476 {
4477 struct type *base_type;
4478
4479 if (die->type)
4480 {
4481 return;
4482 }
4483
4484 base_type = die_type (die, cu);
4485 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4486 cu);
4487 }
4488
4489 static void
4490 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4491 {
4492 struct type *base_type;
4493
4494 if (die->type)
4495 {
4496 return;
4497 }
4498
4499 base_type = die_type (die, cu);
4500 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4501 cu);
4502 }
4503
4504 /* Extract all information from a DW_TAG_string_type DIE and add to
4505 the user defined type vector. It isn't really a user defined type,
4506 but it behaves like one, with other DIE's using an AT_user_def_type
4507 attribute to reference it. */
4508
4509 static void
4510 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4511 {
4512 struct objfile *objfile = cu->objfile;
4513 struct type *type, *range_type, *index_type, *char_type;
4514 struct attribute *attr;
4515 unsigned int length;
4516
4517 if (die->type)
4518 {
4519 return;
4520 }
4521
4522 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4523 if (attr)
4524 {
4525 length = DW_UNSND (attr);
4526 }
4527 else
4528 {
4529 /* check for the DW_AT_byte_size attribute */
4530 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4531 if (attr)
4532 {
4533 length = DW_UNSND (attr);
4534 }
4535 else
4536 {
4537 length = 1;
4538 }
4539 }
4540 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4541 range_type = create_range_type (NULL, index_type, 1, length);
4542 if (cu->language == language_fortran)
4543 {
4544 /* Need to create a unique string type for bounds
4545 information */
4546 type = create_string_type (0, range_type);
4547 }
4548 else
4549 {
4550 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4551 type = create_string_type (char_type, range_type);
4552 }
4553 set_die_type (die, type, cu);
4554 }
4555
4556 /* Handle DIES due to C code like:
4557
4558 struct foo
4559 {
4560 int (*funcp)(int a, long l);
4561 int b;
4562 };
4563
4564 ('funcp' generates a DW_TAG_subroutine_type DIE)
4565 */
4566
4567 static void
4568 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4569 {
4570 struct type *type; /* Type that this function returns */
4571 struct type *ftype; /* Function that returns above type */
4572 struct attribute *attr;
4573
4574 /* Decode the type that this subroutine returns */
4575 if (die->type)
4576 {
4577 return;
4578 }
4579 type = die_type (die, cu);
4580 ftype = make_function_type (type, (struct type **) 0);
4581
4582 /* All functions in C++ and Java have prototypes. */
4583 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4584 if ((attr && (DW_UNSND (attr) != 0))
4585 || cu->language == language_cplus
4586 || cu->language == language_java)
4587 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4588
4589 if (die->child != NULL)
4590 {
4591 struct die_info *child_die;
4592 int nparams = 0;
4593 int iparams = 0;
4594
4595 /* Count the number of parameters.
4596 FIXME: GDB currently ignores vararg functions, but knows about
4597 vararg member functions. */
4598 child_die = die->child;
4599 while (child_die && child_die->tag)
4600 {
4601 if (child_die->tag == DW_TAG_formal_parameter)
4602 nparams++;
4603 else if (child_die->tag == DW_TAG_unspecified_parameters)
4604 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4605 child_die = sibling_die (child_die);
4606 }
4607
4608 /* Allocate storage for parameters and fill them in. */
4609 TYPE_NFIELDS (ftype) = nparams;
4610 TYPE_FIELDS (ftype) = (struct field *)
4611 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4612
4613 child_die = die->child;
4614 while (child_die && child_die->tag)
4615 {
4616 if (child_die->tag == DW_TAG_formal_parameter)
4617 {
4618 /* Dwarf2 has no clean way to discern C++ static and non-static
4619 member functions. G++ helps GDB by marking the first
4620 parameter for non-static member functions (which is the
4621 this pointer) as artificial. We pass this information
4622 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4623 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4624 if (attr)
4625 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4626 else
4627 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4628 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4629 iparams++;
4630 }
4631 child_die = sibling_die (child_die);
4632 }
4633 }
4634
4635 set_die_type (die, ftype, cu);
4636 }
4637
4638 static void
4639 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4640 {
4641 struct objfile *objfile = cu->objfile;
4642 struct attribute *attr;
4643 char *name = NULL;
4644
4645 if (!die->type)
4646 {
4647 attr = dwarf2_attr (die, DW_AT_name, cu);
4648 if (attr && DW_STRING (attr))
4649 {
4650 name = DW_STRING (attr);
4651 }
4652 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4653 TYPE_FLAG_TARGET_STUB, name, objfile),
4654 cu);
4655 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4656 }
4657 }
4658
4659 /* Find a representation of a given base type and install
4660 it in the TYPE field of the die. */
4661
4662 static void
4663 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4664 {
4665 struct objfile *objfile = cu->objfile;
4666 struct type *type;
4667 struct attribute *attr;
4668 int encoding = 0, size = 0;
4669
4670 /* If we've already decoded this die, this is a no-op. */
4671 if (die->type)
4672 {
4673 return;
4674 }
4675
4676 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4677 if (attr)
4678 {
4679 encoding = DW_UNSND (attr);
4680 }
4681 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4682 if (attr)
4683 {
4684 size = DW_UNSND (attr);
4685 }
4686 attr = dwarf2_attr (die, DW_AT_name, cu);
4687 if (attr && DW_STRING (attr))
4688 {
4689 enum type_code code = TYPE_CODE_INT;
4690 int type_flags = 0;
4691
4692 switch (encoding)
4693 {
4694 case DW_ATE_address:
4695 /* Turn DW_ATE_address into a void * pointer. */
4696 code = TYPE_CODE_PTR;
4697 type_flags |= TYPE_FLAG_UNSIGNED;
4698 break;
4699 case DW_ATE_boolean:
4700 code = TYPE_CODE_BOOL;
4701 type_flags |= TYPE_FLAG_UNSIGNED;
4702 break;
4703 case DW_ATE_complex_float:
4704 code = TYPE_CODE_COMPLEX;
4705 break;
4706 case DW_ATE_float:
4707 code = TYPE_CODE_FLT;
4708 break;
4709 case DW_ATE_signed:
4710 case DW_ATE_signed_char:
4711 break;
4712 case DW_ATE_unsigned:
4713 case DW_ATE_unsigned_char:
4714 type_flags |= TYPE_FLAG_UNSIGNED;
4715 break;
4716 default:
4717 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4718 dwarf_type_encoding_name (encoding));
4719 break;
4720 }
4721 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4722 if (encoding == DW_ATE_address)
4723 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4724 cu);
4725 else if (encoding == DW_ATE_complex_float)
4726 {
4727 if (size == 32)
4728 TYPE_TARGET_TYPE (type)
4729 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4730 else if (size == 16)
4731 TYPE_TARGET_TYPE (type)
4732 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4733 else if (size == 8)
4734 TYPE_TARGET_TYPE (type)
4735 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4736 }
4737 }
4738 else
4739 {
4740 type = dwarf_base_type (encoding, size, cu);
4741 }
4742 set_die_type (die, type, cu);
4743 }
4744
4745 /* Read the given DW_AT_subrange DIE. */
4746
4747 static void
4748 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4749 {
4750 struct type *base_type;
4751 struct type *range_type;
4752 struct attribute *attr;
4753 int low = 0;
4754 int high = -1;
4755
4756 /* If we have already decoded this die, then nothing more to do. */
4757 if (die->type)
4758 return;
4759
4760 base_type = die_type (die, cu);
4761 if (base_type == NULL)
4762 {
4763 complaint (&symfile_complaints,
4764 _("DW_AT_type missing from DW_TAG_subrange_type"));
4765 return;
4766 }
4767
4768 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4769 base_type = alloc_type (NULL);
4770
4771 if (cu->language == language_fortran)
4772 {
4773 /* FORTRAN implies a lower bound of 1, if not given. */
4774 low = 1;
4775 }
4776
4777 /* FIXME: For variable sized arrays either of these could be
4778 a variable rather than a constant value. We'll allow it,
4779 but we don't know how to handle it. */
4780 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4781 if (attr)
4782 low = dwarf2_get_attr_constant_value (attr, 0);
4783
4784 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4785 if (attr)
4786 {
4787 if (attr->form == DW_FORM_block1)
4788 {
4789 /* GCC encodes arrays with unspecified or dynamic length
4790 with a DW_FORM_block1 attribute.
4791 FIXME: GDB does not yet know how to handle dynamic
4792 arrays properly, treat them as arrays with unspecified
4793 length for now.
4794
4795 FIXME: jimb/2003-09-22: GDB does not really know
4796 how to handle arrays of unspecified length
4797 either; we just represent them as zero-length
4798 arrays. Choose an appropriate upper bound given
4799 the lower bound we've computed above. */
4800 high = low - 1;
4801 }
4802 else
4803 high = dwarf2_get_attr_constant_value (attr, 1);
4804 }
4805
4806 range_type = create_range_type (NULL, base_type, low, high);
4807
4808 attr = dwarf2_attr (die, DW_AT_name, cu);
4809 if (attr && DW_STRING (attr))
4810 TYPE_NAME (range_type) = DW_STRING (attr);
4811
4812 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4813 if (attr)
4814 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4815
4816 set_die_type (die, range_type, cu);
4817 }
4818
4819
4820 /* Read a whole compilation unit into a linked list of dies. */
4821
4822 static struct die_info *
4823 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4824 {
4825 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4826 }
4827
4828 /* Read a single die and all its descendents. Set the die's sibling
4829 field to NULL; set other fields in the die correctly, and set all
4830 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4831 location of the info_ptr after reading all of those dies. PARENT
4832 is the parent of the die in question. */
4833
4834 static struct die_info *
4835 read_die_and_children (char *info_ptr, bfd *abfd,
4836 struct dwarf2_cu *cu,
4837 char **new_info_ptr,
4838 struct die_info *parent)
4839 {
4840 struct die_info *die;
4841 char *cur_ptr;
4842 int has_children;
4843
4844 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4845 store_in_ref_table (die->offset, die, cu);
4846
4847 if (has_children)
4848 {
4849 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4850 new_info_ptr, die);
4851 }
4852 else
4853 {
4854 die->child = NULL;
4855 *new_info_ptr = cur_ptr;
4856 }
4857
4858 die->sibling = NULL;
4859 die->parent = parent;
4860 return die;
4861 }
4862
4863 /* Read a die, all of its descendents, and all of its siblings; set
4864 all of the fields of all of the dies correctly. Arguments are as
4865 in read_die_and_children. */
4866
4867 static struct die_info *
4868 read_die_and_siblings (char *info_ptr, bfd *abfd,
4869 struct dwarf2_cu *cu,
4870 char **new_info_ptr,
4871 struct die_info *parent)
4872 {
4873 struct die_info *first_die, *last_sibling;
4874 char *cur_ptr;
4875
4876 cur_ptr = info_ptr;
4877 first_die = last_sibling = NULL;
4878
4879 while (1)
4880 {
4881 struct die_info *die
4882 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4883
4884 if (!first_die)
4885 {
4886 first_die = die;
4887 }
4888 else
4889 {
4890 last_sibling->sibling = die;
4891 }
4892
4893 if (die->tag == 0)
4894 {
4895 *new_info_ptr = cur_ptr;
4896 return first_die;
4897 }
4898 else
4899 {
4900 last_sibling = die;
4901 }
4902 }
4903 }
4904
4905 /* Free a linked list of dies. */
4906
4907 static void
4908 free_die_list (struct die_info *dies)
4909 {
4910 struct die_info *die, *next;
4911
4912 die = dies;
4913 while (die)
4914 {
4915 if (die->child != NULL)
4916 free_die_list (die->child);
4917 next = die->sibling;
4918 xfree (die->attrs);
4919 xfree (die);
4920 die = next;
4921 }
4922 }
4923
4924 /* Read the contents of the section at OFFSET and of size SIZE from the
4925 object file specified by OBJFILE into the objfile_obstack and return it. */
4926
4927 char *
4928 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4929 {
4930 bfd *abfd = objfile->obfd;
4931 char *buf, *retbuf;
4932 bfd_size_type size = bfd_get_section_size (sectp);
4933
4934 if (size == 0)
4935 return NULL;
4936
4937 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4938 retbuf
4939 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4940 if (retbuf != NULL)
4941 return retbuf;
4942
4943 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4944 || bfd_bread (buf, size, abfd) != size)
4945 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4946 bfd_get_filename (abfd));
4947
4948 return buf;
4949 }
4950
4951 /* In DWARF version 2, the description of the debugging information is
4952 stored in a separate .debug_abbrev section. Before we read any
4953 dies from a section we read in all abbreviations and install them
4954 in a hash table. This function also sets flags in CU describing
4955 the data found in the abbrev table. */
4956
4957 static void
4958 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4959 {
4960 struct comp_unit_head *cu_header = &cu->header;
4961 char *abbrev_ptr;
4962 struct abbrev_info *cur_abbrev;
4963 unsigned int abbrev_number, bytes_read, abbrev_name;
4964 unsigned int abbrev_form, hash_number;
4965 struct attr_abbrev *cur_attrs;
4966 unsigned int allocated_attrs;
4967
4968 /* Initialize dwarf2 abbrevs */
4969 obstack_init (&cu->abbrev_obstack);
4970 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4971 (ABBREV_HASH_SIZE
4972 * sizeof (struct abbrev_info *)));
4973 memset (cu->dwarf2_abbrevs, 0,
4974 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4975
4976 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4977 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4978 abbrev_ptr += bytes_read;
4979
4980 allocated_attrs = ATTR_ALLOC_CHUNK;
4981 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4982
4983 /* loop until we reach an abbrev number of 0 */
4984 while (abbrev_number)
4985 {
4986 cur_abbrev = dwarf_alloc_abbrev (cu);
4987
4988 /* read in abbrev header */
4989 cur_abbrev->number = abbrev_number;
4990 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4991 abbrev_ptr += bytes_read;
4992 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4993 abbrev_ptr += 1;
4994
4995 if (cur_abbrev->tag == DW_TAG_namespace)
4996 cu->has_namespace_info = 1;
4997
4998 /* now read in declarations */
4999 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5000 abbrev_ptr += bytes_read;
5001 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5002 abbrev_ptr += bytes_read;
5003 while (abbrev_name)
5004 {
5005 if (cur_abbrev->num_attrs == allocated_attrs)
5006 {
5007 allocated_attrs += ATTR_ALLOC_CHUNK;
5008 cur_attrs
5009 = xrealloc (cur_attrs, (allocated_attrs
5010 * sizeof (struct attr_abbrev)));
5011 }
5012
5013 /* Record whether this compilation unit might have
5014 inter-compilation-unit references. If we don't know what form
5015 this attribute will have, then it might potentially be a
5016 DW_FORM_ref_addr, so we conservatively expect inter-CU
5017 references. */
5018
5019 if (abbrev_form == DW_FORM_ref_addr
5020 || abbrev_form == DW_FORM_indirect)
5021 cu->has_form_ref_addr = 1;
5022
5023 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5024 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5025 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5026 abbrev_ptr += bytes_read;
5027 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5028 abbrev_ptr += bytes_read;
5029 }
5030
5031 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5032 (cur_abbrev->num_attrs
5033 * sizeof (struct attr_abbrev)));
5034 memcpy (cur_abbrev->attrs, cur_attrs,
5035 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5036
5037 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5038 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5039 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5040
5041 /* Get next abbreviation.
5042 Under Irix6 the abbreviations for a compilation unit are not
5043 always properly terminated with an abbrev number of 0.
5044 Exit loop if we encounter an abbreviation which we have
5045 already read (which means we are about to read the abbreviations
5046 for the next compile unit) or if the end of the abbreviation
5047 table is reached. */
5048 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5049 >= dwarf2_per_objfile->abbrev_size)
5050 break;
5051 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5052 abbrev_ptr += bytes_read;
5053 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5054 break;
5055 }
5056
5057 xfree (cur_attrs);
5058 }
5059
5060 /* Release the memory used by the abbrev table for a compilation unit. */
5061
5062 static void
5063 dwarf2_free_abbrev_table (void *ptr_to_cu)
5064 {
5065 struct dwarf2_cu *cu = ptr_to_cu;
5066
5067 obstack_free (&cu->abbrev_obstack, NULL);
5068 cu->dwarf2_abbrevs = NULL;
5069 }
5070
5071 /* Lookup an abbrev_info structure in the abbrev hash table. */
5072
5073 static struct abbrev_info *
5074 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5075 {
5076 unsigned int hash_number;
5077 struct abbrev_info *abbrev;
5078
5079 hash_number = number % ABBREV_HASH_SIZE;
5080 abbrev = cu->dwarf2_abbrevs[hash_number];
5081
5082 while (abbrev)
5083 {
5084 if (abbrev->number == number)
5085 return abbrev;
5086 else
5087 abbrev = abbrev->next;
5088 }
5089 return NULL;
5090 }
5091
5092 /* Returns nonzero if TAG represents a type that we might generate a partial
5093 symbol for. */
5094
5095 static int
5096 is_type_tag_for_partial (int tag)
5097 {
5098 switch (tag)
5099 {
5100 #if 0
5101 /* Some types that would be reasonable to generate partial symbols for,
5102 that we don't at present. */
5103 case DW_TAG_array_type:
5104 case DW_TAG_file_type:
5105 case DW_TAG_ptr_to_member_type:
5106 case DW_TAG_set_type:
5107 case DW_TAG_string_type:
5108 case DW_TAG_subroutine_type:
5109 #endif
5110 case DW_TAG_base_type:
5111 case DW_TAG_class_type:
5112 case DW_TAG_enumeration_type:
5113 case DW_TAG_structure_type:
5114 case DW_TAG_subrange_type:
5115 case DW_TAG_typedef:
5116 case DW_TAG_union_type:
5117 return 1;
5118 default:
5119 return 0;
5120 }
5121 }
5122
5123 /* Load all DIEs that are interesting for partial symbols into memory. */
5124
5125 static struct partial_die_info *
5126 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5127 struct dwarf2_cu *cu)
5128 {
5129 struct partial_die_info *part_die;
5130 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5131 struct abbrev_info *abbrev;
5132 unsigned int bytes_read;
5133
5134 int nesting_level = 1;
5135
5136 parent_die = NULL;
5137 last_die = NULL;
5138
5139 cu->partial_dies
5140 = htab_create_alloc_ex (cu->header.length / 12,
5141 partial_die_hash,
5142 partial_die_eq,
5143 NULL,
5144 &cu->comp_unit_obstack,
5145 hashtab_obstack_allocate,
5146 dummy_obstack_deallocate);
5147
5148 part_die = obstack_alloc (&cu->comp_unit_obstack,
5149 sizeof (struct partial_die_info));
5150
5151 while (1)
5152 {
5153 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5154
5155 /* A NULL abbrev means the end of a series of children. */
5156 if (abbrev == NULL)
5157 {
5158 if (--nesting_level == 0)
5159 {
5160 /* PART_DIE was probably the last thing allocated on the
5161 comp_unit_obstack, so we could call obstack_free
5162 here. We don't do that because the waste is small,
5163 and will be cleaned up when we're done with this
5164 compilation unit. This way, we're also more robust
5165 against other users of the comp_unit_obstack. */
5166 return first_die;
5167 }
5168 info_ptr += bytes_read;
5169 last_die = parent_die;
5170 parent_die = parent_die->die_parent;
5171 continue;
5172 }
5173
5174 /* Check whether this DIE is interesting enough to save. */
5175 if (!is_type_tag_for_partial (abbrev->tag)
5176 && abbrev->tag != DW_TAG_enumerator
5177 && abbrev->tag != DW_TAG_subprogram
5178 && abbrev->tag != DW_TAG_variable
5179 && abbrev->tag != DW_TAG_namespace)
5180 {
5181 /* Otherwise we skip to the next sibling, if any. */
5182 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5183 continue;
5184 }
5185
5186 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5187 abfd, info_ptr, cu);
5188
5189 /* This two-pass algorithm for processing partial symbols has a
5190 high cost in cache pressure. Thus, handle some simple cases
5191 here which cover the majority of C partial symbols. DIEs
5192 which neither have specification tags in them, nor could have
5193 specification tags elsewhere pointing at them, can simply be
5194 processed and discarded.
5195
5196 This segment is also optional; scan_partial_symbols and
5197 add_partial_symbol will handle these DIEs if we chain
5198 them in normally. When compilers which do not emit large
5199 quantities of duplicate debug information are more common,
5200 this code can probably be removed. */
5201
5202 /* Any complete simple types at the top level (pretty much all
5203 of them, for a language without namespaces), can be processed
5204 directly. */
5205 if (parent_die == NULL
5206 && part_die->has_specification == 0
5207 && part_die->is_declaration == 0
5208 && (part_die->tag == DW_TAG_typedef
5209 || part_die->tag == DW_TAG_base_type
5210 || part_die->tag == DW_TAG_subrange_type))
5211 {
5212 if (building_psymtab && part_die->name != NULL)
5213 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5214 VAR_DOMAIN, LOC_TYPEDEF,
5215 &cu->objfile->static_psymbols,
5216 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5217 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5218 continue;
5219 }
5220
5221 /* If we're at the second level, and we're an enumerator, and
5222 our parent has no specification (meaning possibly lives in a
5223 namespace elsewhere), then we can add the partial symbol now
5224 instead of queueing it. */
5225 if (part_die->tag == DW_TAG_enumerator
5226 && parent_die != NULL
5227 && parent_die->die_parent == NULL
5228 && parent_die->tag == DW_TAG_enumeration_type
5229 && parent_die->has_specification == 0)
5230 {
5231 if (part_die->name == NULL)
5232 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5233 else if (building_psymtab)
5234 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5235 VAR_DOMAIN, LOC_CONST,
5236 (cu->language == language_cplus
5237 || cu->language == language_java)
5238 ? &cu->objfile->global_psymbols
5239 : &cu->objfile->static_psymbols,
5240 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5241
5242 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5243 continue;
5244 }
5245
5246 /* We'll save this DIE so link it in. */
5247 part_die->die_parent = parent_die;
5248 part_die->die_sibling = NULL;
5249 part_die->die_child = NULL;
5250
5251 if (last_die && last_die == parent_die)
5252 last_die->die_child = part_die;
5253 else if (last_die)
5254 last_die->die_sibling = part_die;
5255
5256 last_die = part_die;
5257
5258 if (first_die == NULL)
5259 first_die = part_die;
5260
5261 /* Maybe add the DIE to the hash table. Not all DIEs that we
5262 find interesting need to be in the hash table, because we
5263 also have the parent/sibling/child chains; only those that we
5264 might refer to by offset later during partial symbol reading.
5265
5266 For now this means things that might have be the target of a
5267 DW_AT_specification, DW_AT_abstract_origin, or
5268 DW_AT_extension. DW_AT_extension will refer only to
5269 namespaces; DW_AT_abstract_origin refers to functions (and
5270 many things under the function DIE, but we do not recurse
5271 into function DIEs during partial symbol reading) and
5272 possibly variables as well; DW_AT_specification refers to
5273 declarations. Declarations ought to have the DW_AT_declaration
5274 flag. It happens that GCC forgets to put it in sometimes, but
5275 only for functions, not for types.
5276
5277 Adding more things than necessary to the hash table is harmless
5278 except for the performance cost. Adding too few will result in
5279 internal errors in find_partial_die. */
5280
5281 if (abbrev->tag == DW_TAG_subprogram
5282 || abbrev->tag == DW_TAG_variable
5283 || abbrev->tag == DW_TAG_namespace
5284 || part_die->is_declaration)
5285 {
5286 void **slot;
5287
5288 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5289 part_die->offset, INSERT);
5290 *slot = part_die;
5291 }
5292
5293 part_die = obstack_alloc (&cu->comp_unit_obstack,
5294 sizeof (struct partial_die_info));
5295
5296 /* For some DIEs we want to follow their children (if any). For C
5297 we have no reason to follow the children of structures; for other
5298 languages we have to, both so that we can get at method physnames
5299 to infer fully qualified class names, and for DW_AT_specification. */
5300 if (last_die->has_children
5301 && (last_die->tag == DW_TAG_namespace
5302 || last_die->tag == DW_TAG_enumeration_type
5303 || (cu->language != language_c
5304 && (last_die->tag == DW_TAG_class_type
5305 || last_die->tag == DW_TAG_structure_type
5306 || last_die->tag == DW_TAG_union_type))))
5307 {
5308 nesting_level++;
5309 parent_die = last_die;
5310 continue;
5311 }
5312
5313 /* Otherwise we skip to the next sibling, if any. */
5314 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5315
5316 /* Back to the top, do it again. */
5317 }
5318 }
5319
5320 /* Read a minimal amount of information into the minimal die structure. */
5321
5322 static char *
5323 read_partial_die (struct partial_die_info *part_die,
5324 struct abbrev_info *abbrev,
5325 unsigned int abbrev_len, bfd *abfd,
5326 char *info_ptr, struct dwarf2_cu *cu)
5327 {
5328 unsigned int bytes_read, i;
5329 struct attribute attr;
5330 int has_low_pc_attr = 0;
5331 int has_high_pc_attr = 0;
5332
5333 memset (part_die, 0, sizeof (struct partial_die_info));
5334
5335 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5336
5337 info_ptr += abbrev_len;
5338
5339 if (abbrev == NULL)
5340 return info_ptr;
5341
5342 part_die->tag = abbrev->tag;
5343 part_die->has_children = abbrev->has_children;
5344
5345 for (i = 0; i < abbrev->num_attrs; ++i)
5346 {
5347 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5348
5349 /* Store the data if it is of an attribute we want to keep in a
5350 partial symbol table. */
5351 switch (attr.name)
5352 {
5353 case DW_AT_name:
5354
5355 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5356 if (part_die->name == NULL)
5357 part_die->name = DW_STRING (&attr);
5358 break;
5359 case DW_AT_comp_dir:
5360 if (part_die->dirname == NULL)
5361 part_die->dirname = DW_STRING (&attr);
5362 break;
5363 case DW_AT_MIPS_linkage_name:
5364 part_die->name = DW_STRING (&attr);
5365 break;
5366 case DW_AT_low_pc:
5367 has_low_pc_attr = 1;
5368 part_die->lowpc = DW_ADDR (&attr);
5369 break;
5370 case DW_AT_high_pc:
5371 has_high_pc_attr = 1;
5372 part_die->highpc = DW_ADDR (&attr);
5373 break;
5374 case DW_AT_location:
5375 /* Support the .debug_loc offsets */
5376 if (attr_form_is_block (&attr))
5377 {
5378 part_die->locdesc = DW_BLOCK (&attr);
5379 }
5380 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5381 {
5382 dwarf2_complex_location_expr_complaint ();
5383 }
5384 else
5385 {
5386 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5387 "partial symbol information");
5388 }
5389 break;
5390 case DW_AT_language:
5391 part_die->language = DW_UNSND (&attr);
5392 break;
5393 case DW_AT_external:
5394 part_die->is_external = DW_UNSND (&attr);
5395 break;
5396 case DW_AT_declaration:
5397 part_die->is_declaration = DW_UNSND (&attr);
5398 break;
5399 case DW_AT_type:
5400 part_die->has_type = 1;
5401 break;
5402 case DW_AT_abstract_origin:
5403 case DW_AT_specification:
5404 case DW_AT_extension:
5405 part_die->has_specification = 1;
5406 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5407 break;
5408 case DW_AT_sibling:
5409 /* Ignore absolute siblings, they might point outside of
5410 the current compile unit. */
5411 if (attr.form == DW_FORM_ref_addr)
5412 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5413 else
5414 part_die->sibling = dwarf2_per_objfile->info_buffer
5415 + dwarf2_get_ref_die_offset (&attr, cu);
5416 break;
5417 case DW_AT_stmt_list:
5418 part_die->has_stmt_list = 1;
5419 part_die->line_offset = DW_UNSND (&attr);
5420 break;
5421 default:
5422 break;
5423 }
5424 }
5425
5426 /* When using the GNU linker, .gnu.linkonce. sections are used to
5427 eliminate duplicate copies of functions and vtables and such.
5428 The linker will arbitrarily choose one and discard the others.
5429 The AT_*_pc values for such functions refer to local labels in
5430 these sections. If the section from that file was discarded, the
5431 labels are not in the output, so the relocs get a value of 0.
5432 If this is a discarded function, mark the pc bounds as invalid,
5433 so that GDB will ignore it. */
5434 if (has_low_pc_attr && has_high_pc_attr
5435 && part_die->lowpc < part_die->highpc
5436 && (part_die->lowpc != 0
5437 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5438 part_die->has_pc_info = 1;
5439 return info_ptr;
5440 }
5441
5442 /* Find a cached partial DIE at OFFSET in CU. */
5443
5444 static struct partial_die_info *
5445 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5446 {
5447 struct partial_die_info *lookup_die = NULL;
5448 struct partial_die_info part_die;
5449
5450 part_die.offset = offset;
5451 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5452
5453 if (lookup_die == NULL)
5454 internal_error (__FILE__, __LINE__,
5455 _("could not find partial DIE in cache\n"));
5456
5457 return lookup_die;
5458 }
5459
5460 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5461
5462 static struct partial_die_info *
5463 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5464 {
5465 struct dwarf2_per_cu_data *per_cu;
5466
5467 if (offset >= cu->header.offset
5468 && offset < cu->header.offset + cu->header.length)
5469 return find_partial_die_in_comp_unit (offset, cu);
5470
5471 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5472
5473 if (per_cu->cu == NULL)
5474 {
5475 load_comp_unit (per_cu, cu->objfile);
5476 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5477 dwarf2_per_objfile->read_in_chain = per_cu;
5478 }
5479
5480 per_cu->cu->last_used = 0;
5481 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5482 }
5483
5484 /* Adjust PART_DIE before generating a symbol for it. This function
5485 may set the is_external flag or change the DIE's name. */
5486
5487 static void
5488 fixup_partial_die (struct partial_die_info *part_die,
5489 struct dwarf2_cu *cu)
5490 {
5491 /* If we found a reference attribute and the DIE has no name, try
5492 to find a name in the referred to DIE. */
5493
5494 if (part_die->name == NULL && part_die->has_specification)
5495 {
5496 struct partial_die_info *spec_die;
5497
5498 spec_die = find_partial_die (part_die->spec_offset, cu);
5499
5500 fixup_partial_die (spec_die, cu);
5501
5502 if (spec_die->name)
5503 {
5504 part_die->name = spec_die->name;
5505
5506 /* Copy DW_AT_external attribute if it is set. */
5507 if (spec_die->is_external)
5508 part_die->is_external = spec_die->is_external;
5509 }
5510 }
5511
5512 /* Set default names for some unnamed DIEs. */
5513 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5514 || part_die->tag == DW_TAG_class_type))
5515 part_die->name = "(anonymous class)";
5516
5517 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5518 part_die->name = "(anonymous namespace)";
5519
5520 if (part_die->tag == DW_TAG_structure_type
5521 || part_die->tag == DW_TAG_class_type
5522 || part_die->tag == DW_TAG_union_type)
5523 guess_structure_name (part_die, cu);
5524 }
5525
5526 /* Read the die from the .debug_info section buffer. Set DIEP to
5527 point to a newly allocated die with its information, except for its
5528 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5529 whether the die has children or not. */
5530
5531 static char *
5532 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5533 struct dwarf2_cu *cu, int *has_children)
5534 {
5535 unsigned int abbrev_number, bytes_read, i, offset;
5536 struct abbrev_info *abbrev;
5537 struct die_info *die;
5538
5539 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5540 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5541 info_ptr += bytes_read;
5542 if (!abbrev_number)
5543 {
5544 die = dwarf_alloc_die ();
5545 die->tag = 0;
5546 die->abbrev = abbrev_number;
5547 die->type = NULL;
5548 *diep = die;
5549 *has_children = 0;
5550 return info_ptr;
5551 }
5552
5553 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5554 if (!abbrev)
5555 {
5556 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5557 abbrev_number,
5558 bfd_get_filename (abfd));
5559 }
5560 die = dwarf_alloc_die ();
5561 die->offset = offset;
5562 die->tag = abbrev->tag;
5563 die->abbrev = abbrev_number;
5564 die->type = NULL;
5565
5566 die->num_attrs = abbrev->num_attrs;
5567 die->attrs = (struct attribute *)
5568 xmalloc (die->num_attrs * sizeof (struct attribute));
5569
5570 for (i = 0; i < abbrev->num_attrs; ++i)
5571 {
5572 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5573 abfd, info_ptr, cu);
5574
5575 /* If this attribute is an absolute reference to a different
5576 compilation unit, make sure that compilation unit is loaded
5577 also. */
5578 if (die->attrs[i].form == DW_FORM_ref_addr
5579 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5580 || (DW_ADDR (&die->attrs[i])
5581 >= cu->header.offset + cu->header.length)))
5582 {
5583 struct dwarf2_per_cu_data *per_cu;
5584 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5585 cu->objfile);
5586
5587 /* Mark the dependence relation so that we don't flush PER_CU
5588 too early. */
5589 dwarf2_add_dependence (cu, per_cu);
5590
5591 /* If it's already on the queue, we have nothing to do. */
5592 if (per_cu->queued)
5593 continue;
5594
5595 /* If the compilation unit is already loaded, just mark it as
5596 used. */
5597 if (per_cu->cu != NULL)
5598 {
5599 per_cu->cu->last_used = 0;
5600 continue;
5601 }
5602
5603 /* Add it to the queue. */
5604 queue_comp_unit (per_cu);
5605 }
5606 }
5607
5608 *diep = die;
5609 *has_children = abbrev->has_children;
5610 return info_ptr;
5611 }
5612
5613 /* Read an attribute value described by an attribute form. */
5614
5615 static char *
5616 read_attribute_value (struct attribute *attr, unsigned form,
5617 bfd *abfd, char *info_ptr,
5618 struct dwarf2_cu *cu)
5619 {
5620 struct comp_unit_head *cu_header = &cu->header;
5621 unsigned int bytes_read;
5622 struct dwarf_block *blk;
5623
5624 attr->form = form;
5625 switch (form)
5626 {
5627 case DW_FORM_addr:
5628 case DW_FORM_ref_addr:
5629 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5630 info_ptr += bytes_read;
5631 break;
5632 case DW_FORM_block2:
5633 blk = dwarf_alloc_block (cu);
5634 blk->size = read_2_bytes (abfd, info_ptr);
5635 info_ptr += 2;
5636 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5637 info_ptr += blk->size;
5638 DW_BLOCK (attr) = blk;
5639 break;
5640 case DW_FORM_block4:
5641 blk = dwarf_alloc_block (cu);
5642 blk->size = read_4_bytes (abfd, info_ptr);
5643 info_ptr += 4;
5644 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5645 info_ptr += blk->size;
5646 DW_BLOCK (attr) = blk;
5647 break;
5648 case DW_FORM_data2:
5649 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5650 info_ptr += 2;
5651 break;
5652 case DW_FORM_data4:
5653 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5654 info_ptr += 4;
5655 break;
5656 case DW_FORM_data8:
5657 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5658 info_ptr += 8;
5659 break;
5660 case DW_FORM_string:
5661 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5662 info_ptr += bytes_read;
5663 break;
5664 case DW_FORM_strp:
5665 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5666 &bytes_read);
5667 info_ptr += bytes_read;
5668 break;
5669 case DW_FORM_block:
5670 blk = dwarf_alloc_block (cu);
5671 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5672 info_ptr += bytes_read;
5673 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5674 info_ptr += blk->size;
5675 DW_BLOCK (attr) = blk;
5676 break;
5677 case DW_FORM_block1:
5678 blk = dwarf_alloc_block (cu);
5679 blk->size = read_1_byte (abfd, info_ptr);
5680 info_ptr += 1;
5681 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5682 info_ptr += blk->size;
5683 DW_BLOCK (attr) = blk;
5684 break;
5685 case DW_FORM_data1:
5686 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5687 info_ptr += 1;
5688 break;
5689 case DW_FORM_flag:
5690 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5691 info_ptr += 1;
5692 break;
5693 case DW_FORM_sdata:
5694 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5695 info_ptr += bytes_read;
5696 break;
5697 case DW_FORM_udata:
5698 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5699 info_ptr += bytes_read;
5700 break;
5701 case DW_FORM_ref1:
5702 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5703 info_ptr += 1;
5704 break;
5705 case DW_FORM_ref2:
5706 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5707 info_ptr += 2;
5708 break;
5709 case DW_FORM_ref4:
5710 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5711 info_ptr += 4;
5712 break;
5713 case DW_FORM_ref8:
5714 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5715 info_ptr += 8;
5716 break;
5717 case DW_FORM_ref_udata:
5718 DW_ADDR (attr) = (cu->header.offset
5719 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5720 info_ptr += bytes_read;
5721 break;
5722 case DW_FORM_indirect:
5723 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5724 info_ptr += bytes_read;
5725 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5726 break;
5727 default:
5728 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5729 dwarf_form_name (form),
5730 bfd_get_filename (abfd));
5731 }
5732 return info_ptr;
5733 }
5734
5735 /* Read an attribute described by an abbreviated attribute. */
5736
5737 static char *
5738 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5739 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5740 {
5741 attr->name = abbrev->name;
5742 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5743 }
5744
5745 /* read dwarf information from a buffer */
5746
5747 static unsigned int
5748 read_1_byte (bfd *abfd, char *buf)
5749 {
5750 return bfd_get_8 (abfd, (bfd_byte *) buf);
5751 }
5752
5753 static int
5754 read_1_signed_byte (bfd *abfd, char *buf)
5755 {
5756 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5757 }
5758
5759 static unsigned int
5760 read_2_bytes (bfd *abfd, char *buf)
5761 {
5762 return bfd_get_16 (abfd, (bfd_byte *) buf);
5763 }
5764
5765 static int
5766 read_2_signed_bytes (bfd *abfd, char *buf)
5767 {
5768 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5769 }
5770
5771 static unsigned int
5772 read_4_bytes (bfd *abfd, char *buf)
5773 {
5774 return bfd_get_32 (abfd, (bfd_byte *) buf);
5775 }
5776
5777 static int
5778 read_4_signed_bytes (bfd *abfd, char *buf)
5779 {
5780 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5781 }
5782
5783 static unsigned long
5784 read_8_bytes (bfd *abfd, char *buf)
5785 {
5786 return bfd_get_64 (abfd, (bfd_byte *) buf);
5787 }
5788
5789 static CORE_ADDR
5790 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5791 {
5792 struct comp_unit_head *cu_header = &cu->header;
5793 CORE_ADDR retval = 0;
5794
5795 if (cu_header->signed_addr_p)
5796 {
5797 switch (cu_header->addr_size)
5798 {
5799 case 2:
5800 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5801 break;
5802 case 4:
5803 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5804 break;
5805 case 8:
5806 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5807 break;
5808 default:
5809 internal_error (__FILE__, __LINE__,
5810 _("read_address: bad switch, signed [in module %s]"),
5811 bfd_get_filename (abfd));
5812 }
5813 }
5814 else
5815 {
5816 switch (cu_header->addr_size)
5817 {
5818 case 2:
5819 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5820 break;
5821 case 4:
5822 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5823 break;
5824 case 8:
5825 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5826 break;
5827 default:
5828 internal_error (__FILE__, __LINE__,
5829 _("read_address: bad switch, unsigned [in module %s]"),
5830 bfd_get_filename (abfd));
5831 }
5832 }
5833
5834 *bytes_read = cu_header->addr_size;
5835 return retval;
5836 }
5837
5838 /* Read the initial length from a section. The (draft) DWARF 3
5839 specification allows the initial length to take up either 4 bytes
5840 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5841 bytes describe the length and all offsets will be 8 bytes in length
5842 instead of 4.
5843
5844 An older, non-standard 64-bit format is also handled by this
5845 function. The older format in question stores the initial length
5846 as an 8-byte quantity without an escape value. Lengths greater
5847 than 2^32 aren't very common which means that the initial 4 bytes
5848 is almost always zero. Since a length value of zero doesn't make
5849 sense for the 32-bit format, this initial zero can be considered to
5850 be an escape value which indicates the presence of the older 64-bit
5851 format. As written, the code can't detect (old format) lengths
5852 greater than 4GB. If it becomes necessary to handle lengths
5853 somewhat larger than 4GB, we could allow other small values (such
5854 as the non-sensical values of 1, 2, and 3) to also be used as
5855 escape values indicating the presence of the old format.
5856
5857 The value returned via bytes_read should be used to increment the
5858 relevant pointer after calling read_initial_length().
5859
5860 As a side effect, this function sets the fields initial_length_size
5861 and offset_size in cu_header to the values appropriate for the
5862 length field. (The format of the initial length field determines
5863 the width of file offsets to be fetched later with fetch_offset().)
5864
5865 [ Note: read_initial_length() and read_offset() are based on the
5866 document entitled "DWARF Debugging Information Format", revision
5867 3, draft 8, dated November 19, 2001. This document was obtained
5868 from:
5869
5870 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5871
5872 This document is only a draft and is subject to change. (So beware.)
5873
5874 Details regarding the older, non-standard 64-bit format were
5875 determined empirically by examining 64-bit ELF files produced by
5876 the SGI toolchain on an IRIX 6.5 machine.
5877
5878 - Kevin, July 16, 2002
5879 ] */
5880
5881 static LONGEST
5882 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5883 int *bytes_read)
5884 {
5885 LONGEST retval = 0;
5886
5887 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5888
5889 if (retval == 0xffffffff)
5890 {
5891 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5892 *bytes_read = 12;
5893 if (cu_header != NULL)
5894 {
5895 cu_header->initial_length_size = 12;
5896 cu_header->offset_size = 8;
5897 }
5898 }
5899 else if (retval == 0)
5900 {
5901 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5902 by IRIX. */
5903 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5904 *bytes_read = 8;
5905 if (cu_header != NULL)
5906 {
5907 cu_header->initial_length_size = 8;
5908 cu_header->offset_size = 8;
5909 }
5910 }
5911 else
5912 {
5913 *bytes_read = 4;
5914 if (cu_header != NULL)
5915 {
5916 cu_header->initial_length_size = 4;
5917 cu_header->offset_size = 4;
5918 }
5919 }
5920
5921 return retval;
5922 }
5923
5924 /* Read an offset from the data stream. The size of the offset is
5925 given by cu_header->offset_size. */
5926
5927 static LONGEST
5928 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5929 int *bytes_read)
5930 {
5931 LONGEST retval = 0;
5932
5933 switch (cu_header->offset_size)
5934 {
5935 case 4:
5936 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5937 *bytes_read = 4;
5938 break;
5939 case 8:
5940 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5941 *bytes_read = 8;
5942 break;
5943 default:
5944 internal_error (__FILE__, __LINE__,
5945 _("read_offset: bad switch [in module %s]"),
5946 bfd_get_filename (abfd));
5947 }
5948
5949 return retval;
5950 }
5951
5952 static char *
5953 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5954 {
5955 /* If the size of a host char is 8 bits, we can return a pointer
5956 to the buffer, otherwise we have to copy the data to a buffer
5957 allocated on the temporary obstack. */
5958 gdb_assert (HOST_CHAR_BIT == 8);
5959 return buf;
5960 }
5961
5962 static char *
5963 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5964 {
5965 /* If the size of a host char is 8 bits, we can return a pointer
5966 to the string, otherwise we have to copy the string to a buffer
5967 allocated on the temporary obstack. */
5968 gdb_assert (HOST_CHAR_BIT == 8);
5969 if (*buf == '\0')
5970 {
5971 *bytes_read_ptr = 1;
5972 return NULL;
5973 }
5974 *bytes_read_ptr = strlen (buf) + 1;
5975 return buf;
5976 }
5977
5978 static char *
5979 read_indirect_string (bfd *abfd, char *buf,
5980 const struct comp_unit_head *cu_header,
5981 unsigned int *bytes_read_ptr)
5982 {
5983 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5984 (int *) bytes_read_ptr);
5985
5986 if (dwarf2_per_objfile->str_buffer == NULL)
5987 {
5988 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
5989 bfd_get_filename (abfd));
5990 return NULL;
5991 }
5992 if (str_offset >= dwarf2_per_objfile->str_size)
5993 {
5994 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
5995 bfd_get_filename (abfd));
5996 return NULL;
5997 }
5998 gdb_assert (HOST_CHAR_BIT == 8);
5999 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6000 return NULL;
6001 return dwarf2_per_objfile->str_buffer + str_offset;
6002 }
6003
6004 static unsigned long
6005 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6006 {
6007 unsigned long result;
6008 unsigned int num_read;
6009 int i, shift;
6010 unsigned char byte;
6011
6012 result = 0;
6013 shift = 0;
6014 num_read = 0;
6015 i = 0;
6016 while (1)
6017 {
6018 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6019 buf++;
6020 num_read++;
6021 result |= ((unsigned long)(byte & 127) << shift);
6022 if ((byte & 128) == 0)
6023 {
6024 break;
6025 }
6026 shift += 7;
6027 }
6028 *bytes_read_ptr = num_read;
6029 return result;
6030 }
6031
6032 static long
6033 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6034 {
6035 long result;
6036 int i, shift, size, num_read;
6037 unsigned char byte;
6038
6039 result = 0;
6040 shift = 0;
6041 size = 32;
6042 num_read = 0;
6043 i = 0;
6044 while (1)
6045 {
6046 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6047 buf++;
6048 num_read++;
6049 result |= ((long)(byte & 127) << shift);
6050 shift += 7;
6051 if ((byte & 128) == 0)
6052 {
6053 break;
6054 }
6055 }
6056 if ((shift < size) && (byte & 0x40))
6057 {
6058 result |= -(1 << shift);
6059 }
6060 *bytes_read_ptr = num_read;
6061 return result;
6062 }
6063
6064 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6065
6066 static char *
6067 skip_leb128 (bfd *abfd, char *buf)
6068 {
6069 int byte;
6070
6071 while (1)
6072 {
6073 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6074 buf++;
6075 if ((byte & 128) == 0)
6076 return buf;
6077 }
6078 }
6079
6080 static void
6081 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6082 {
6083 switch (lang)
6084 {
6085 case DW_LANG_C89:
6086 case DW_LANG_C:
6087 cu->language = language_c;
6088 break;
6089 case DW_LANG_C_plus_plus:
6090 cu->language = language_cplus;
6091 break;
6092 case DW_LANG_Fortran77:
6093 case DW_LANG_Fortran90:
6094 case DW_LANG_Fortran95:
6095 cu->language = language_fortran;
6096 break;
6097 case DW_LANG_Mips_Assembler:
6098 cu->language = language_asm;
6099 break;
6100 case DW_LANG_Java:
6101 cu->language = language_java;
6102 break;
6103 case DW_LANG_Ada83:
6104 case DW_LANG_Ada95:
6105 cu->language = language_ada;
6106 break;
6107 case DW_LANG_Cobol74:
6108 case DW_LANG_Cobol85:
6109 case DW_LANG_Pascal83:
6110 case DW_LANG_Modula2:
6111 default:
6112 cu->language = language_minimal;
6113 break;
6114 }
6115 cu->language_defn = language_def (cu->language);
6116 }
6117
6118 /* Return the named attribute or NULL if not there. */
6119
6120 static struct attribute *
6121 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6122 {
6123 unsigned int i;
6124 struct attribute *spec = NULL;
6125
6126 for (i = 0; i < die->num_attrs; ++i)
6127 {
6128 if (die->attrs[i].name == name)
6129 return &die->attrs[i];
6130 if (die->attrs[i].name == DW_AT_specification
6131 || die->attrs[i].name == DW_AT_abstract_origin)
6132 spec = &die->attrs[i];
6133 }
6134
6135 if (spec)
6136 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6137
6138 return NULL;
6139 }
6140
6141 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6142 and holds a non-zero value. This function should only be used for
6143 DW_FORM_flag attributes. */
6144
6145 static int
6146 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6147 {
6148 struct attribute *attr = dwarf2_attr (die, name, cu);
6149
6150 return (attr && DW_UNSND (attr));
6151 }
6152
6153 static int
6154 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6155 {
6156 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6157 which value is non-zero. However, we have to be careful with
6158 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6159 (via dwarf2_flag_true_p) follows this attribute. So we may
6160 end up accidently finding a declaration attribute that belongs
6161 to a different DIE referenced by the specification attribute,
6162 even though the given DIE does not have a declaration attribute. */
6163 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6164 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6165 }
6166
6167 /* Return the die giving the specification for DIE, if there is
6168 one. */
6169
6170 static struct die_info *
6171 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6172 {
6173 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6174
6175 if (spec_attr == NULL)
6176 return NULL;
6177 else
6178 return follow_die_ref (die, spec_attr, cu);
6179 }
6180
6181 /* Free the line_header structure *LH, and any arrays and strings it
6182 refers to. */
6183 static void
6184 free_line_header (struct line_header *lh)
6185 {
6186 if (lh->standard_opcode_lengths)
6187 xfree (lh->standard_opcode_lengths);
6188
6189 /* Remember that all the lh->file_names[i].name pointers are
6190 pointers into debug_line_buffer, and don't need to be freed. */
6191 if (lh->file_names)
6192 xfree (lh->file_names);
6193
6194 /* Similarly for the include directory names. */
6195 if (lh->include_dirs)
6196 xfree (lh->include_dirs);
6197
6198 xfree (lh);
6199 }
6200
6201
6202 /* Add an entry to LH's include directory table. */
6203 static void
6204 add_include_dir (struct line_header *lh, char *include_dir)
6205 {
6206 /* Grow the array if necessary. */
6207 if (lh->include_dirs_size == 0)
6208 {
6209 lh->include_dirs_size = 1; /* for testing */
6210 lh->include_dirs = xmalloc (lh->include_dirs_size
6211 * sizeof (*lh->include_dirs));
6212 }
6213 else if (lh->num_include_dirs >= lh->include_dirs_size)
6214 {
6215 lh->include_dirs_size *= 2;
6216 lh->include_dirs = xrealloc (lh->include_dirs,
6217 (lh->include_dirs_size
6218 * sizeof (*lh->include_dirs)));
6219 }
6220
6221 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6222 }
6223
6224
6225 /* Add an entry to LH's file name table. */
6226 static void
6227 add_file_name (struct line_header *lh,
6228 char *name,
6229 unsigned int dir_index,
6230 unsigned int mod_time,
6231 unsigned int length)
6232 {
6233 struct file_entry *fe;
6234
6235 /* Grow the array if necessary. */
6236 if (lh->file_names_size == 0)
6237 {
6238 lh->file_names_size = 1; /* for testing */
6239 lh->file_names = xmalloc (lh->file_names_size
6240 * sizeof (*lh->file_names));
6241 }
6242 else if (lh->num_file_names >= lh->file_names_size)
6243 {
6244 lh->file_names_size *= 2;
6245 lh->file_names = xrealloc (lh->file_names,
6246 (lh->file_names_size
6247 * sizeof (*lh->file_names)));
6248 }
6249
6250 fe = &lh->file_names[lh->num_file_names++];
6251 fe->name = name;
6252 fe->dir_index = dir_index;
6253 fe->mod_time = mod_time;
6254 fe->length = length;
6255 fe->included_p = 0;
6256 }
6257
6258
6259 /* Read the statement program header starting at OFFSET in
6260 .debug_line, according to the endianness of ABFD. Return a pointer
6261 to a struct line_header, allocated using xmalloc.
6262
6263 NOTE: the strings in the include directory and file name tables of
6264 the returned object point into debug_line_buffer, and must not be
6265 freed. */
6266 static struct line_header *
6267 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6268 struct dwarf2_cu *cu)
6269 {
6270 struct cleanup *back_to;
6271 struct line_header *lh;
6272 char *line_ptr;
6273 int bytes_read;
6274 int i;
6275 char *cur_dir, *cur_file;
6276
6277 if (dwarf2_per_objfile->line_buffer == NULL)
6278 {
6279 complaint (&symfile_complaints, _("missing .debug_line section"));
6280 return 0;
6281 }
6282
6283 /* Make sure that at least there's room for the total_length field.
6284 That could be 12 bytes long, but we're just going to fudge that. */
6285 if (offset + 4 >= dwarf2_per_objfile->line_size)
6286 {
6287 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6288 return 0;
6289 }
6290
6291 lh = xmalloc (sizeof (*lh));
6292 memset (lh, 0, sizeof (*lh));
6293 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6294 (void *) lh);
6295
6296 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6297
6298 /* Read in the header. */
6299 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
6300 line_ptr += bytes_read;
6301 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6302 + dwarf2_per_objfile->line_size))
6303 {
6304 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6305 return 0;
6306 }
6307 lh->statement_program_end = line_ptr + lh->total_length;
6308 lh->version = read_2_bytes (abfd, line_ptr);
6309 line_ptr += 2;
6310 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6311 line_ptr += bytes_read;
6312 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6313 line_ptr += 1;
6314 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6315 line_ptr += 1;
6316 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6317 line_ptr += 1;
6318 lh->line_range = read_1_byte (abfd, line_ptr);
6319 line_ptr += 1;
6320 lh->opcode_base = read_1_byte (abfd, line_ptr);
6321 line_ptr += 1;
6322 lh->standard_opcode_lengths
6323 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6324
6325 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6326 for (i = 1; i < lh->opcode_base; ++i)
6327 {
6328 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6329 line_ptr += 1;
6330 }
6331
6332 /* Read directory table. */
6333 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6334 {
6335 line_ptr += bytes_read;
6336 add_include_dir (lh, cur_dir);
6337 }
6338 line_ptr += bytes_read;
6339
6340 /* Read file name table. */
6341 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6342 {
6343 unsigned int dir_index, mod_time, length;
6344
6345 line_ptr += bytes_read;
6346 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6347 line_ptr += bytes_read;
6348 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6349 line_ptr += bytes_read;
6350 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6351 line_ptr += bytes_read;
6352
6353 add_file_name (lh, cur_file, dir_index, mod_time, length);
6354 }
6355 line_ptr += bytes_read;
6356 lh->statement_program_start = line_ptr;
6357
6358 if (line_ptr > (dwarf2_per_objfile->line_buffer
6359 + dwarf2_per_objfile->line_size))
6360 complaint (&symfile_complaints,
6361 _("line number info header doesn't fit in `.debug_line' section"));
6362
6363 discard_cleanups (back_to);
6364 return lh;
6365 }
6366
6367 /* This function exists to work around a bug in certain compilers
6368 (particularly GCC 2.95), in which the first line number marker of a
6369 function does not show up until after the prologue, right before
6370 the second line number marker. This function shifts ADDRESS down
6371 to the beginning of the function if necessary, and is called on
6372 addresses passed to record_line. */
6373
6374 static CORE_ADDR
6375 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6376 {
6377 struct function_range *fn;
6378
6379 /* Find the function_range containing address. */
6380 if (!cu->first_fn)
6381 return address;
6382
6383 if (!cu->cached_fn)
6384 cu->cached_fn = cu->first_fn;
6385
6386 fn = cu->cached_fn;
6387 while (fn)
6388 if (fn->lowpc <= address && fn->highpc > address)
6389 goto found;
6390 else
6391 fn = fn->next;
6392
6393 fn = cu->first_fn;
6394 while (fn && fn != cu->cached_fn)
6395 if (fn->lowpc <= address && fn->highpc > address)
6396 goto found;
6397 else
6398 fn = fn->next;
6399
6400 return address;
6401
6402 found:
6403 if (fn->seen_line)
6404 return address;
6405 if (address != fn->lowpc)
6406 complaint (&symfile_complaints,
6407 _("misplaced first line number at 0x%lx for '%s'"),
6408 (unsigned long) address, fn->name);
6409 fn->seen_line = 1;
6410 return fn->lowpc;
6411 }
6412
6413 /* Decode the Line Number Program (LNP) for the given line_header
6414 structure and CU. The actual information extracted and the type
6415 of structures created from the LNP depends on the value of PST.
6416
6417 1. If PST is NULL, then this procedure uses the data from the program
6418 to create all necessary symbol tables, and their linetables.
6419 The compilation directory of the file is passed in COMP_DIR,
6420 and must not be NULL.
6421
6422 2. If PST is not NULL, this procedure reads the program to determine
6423 the list of files included by the unit represented by PST, and
6424 builds all the associated partial symbol tables. In this case,
6425 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6426 is not used to compute the full name of the symtab, and therefore
6427 omitting it when building the partial symtab does not introduce
6428 the potential for inconsistency - a partial symtab and its associated
6429 symbtab having a different fullname -). */
6430
6431 static void
6432 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6433 struct dwarf2_cu *cu, struct partial_symtab *pst)
6434 {
6435 char *line_ptr;
6436 char *line_end;
6437 unsigned int bytes_read;
6438 unsigned char op_code, extended_op, adj_opcode;
6439 CORE_ADDR baseaddr;
6440 struct objfile *objfile = cu->objfile;
6441 const int decode_for_pst_p = (pst != NULL);
6442
6443 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6444
6445 line_ptr = lh->statement_program_start;
6446 line_end = lh->statement_program_end;
6447
6448 /* Read the statement sequences until there's nothing left. */
6449 while (line_ptr < line_end)
6450 {
6451 /* state machine registers */
6452 CORE_ADDR address = 0;
6453 unsigned int file = 1;
6454 unsigned int line = 1;
6455 unsigned int column = 0;
6456 int is_stmt = lh->default_is_stmt;
6457 int basic_block = 0;
6458 int end_sequence = 0;
6459
6460 if (!decode_for_pst_p && lh->num_file_names >= file)
6461 {
6462 /* Start a subfile for the current file of the state machine. */
6463 /* lh->include_dirs and lh->file_names are 0-based, but the
6464 directory and file name numbers in the statement program
6465 are 1-based. */
6466 struct file_entry *fe = &lh->file_names[file - 1];
6467 char *dir;
6468
6469 if (fe->dir_index)
6470 dir = lh->include_dirs[fe->dir_index - 1];
6471 else
6472 dir = comp_dir;
6473 dwarf2_start_subfile (fe->name, dir);
6474 }
6475
6476 /* Decode the table. */
6477 while (!end_sequence)
6478 {
6479 op_code = read_1_byte (abfd, line_ptr);
6480 line_ptr += 1;
6481
6482 if (op_code >= lh->opcode_base)
6483 {
6484 /* Special operand. */
6485 adj_opcode = op_code - lh->opcode_base;
6486 address += (adj_opcode / lh->line_range)
6487 * lh->minimum_instruction_length;
6488 line += lh->line_base + (adj_opcode % lh->line_range);
6489 lh->file_names[file - 1].included_p = 1;
6490 if (!decode_for_pst_p)
6491 {
6492 /* Append row to matrix using current values. */
6493 record_line (current_subfile, line,
6494 check_cu_functions (address, cu));
6495 }
6496 basic_block = 1;
6497 }
6498 else switch (op_code)
6499 {
6500 case DW_LNS_extended_op:
6501 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6502 line_ptr += bytes_read;
6503 extended_op = read_1_byte (abfd, line_ptr);
6504 line_ptr += 1;
6505 switch (extended_op)
6506 {
6507 case DW_LNE_end_sequence:
6508 end_sequence = 1;
6509 lh->file_names[file - 1].included_p = 1;
6510 if (!decode_for_pst_p)
6511 record_line (current_subfile, 0, address);
6512 break;
6513 case DW_LNE_set_address:
6514 address = read_address (abfd, line_ptr, cu, &bytes_read);
6515 line_ptr += bytes_read;
6516 address += baseaddr;
6517 break;
6518 case DW_LNE_define_file:
6519 {
6520 char *cur_file;
6521 unsigned int dir_index, mod_time, length;
6522
6523 cur_file = read_string (abfd, line_ptr, &bytes_read);
6524 line_ptr += bytes_read;
6525 dir_index =
6526 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6527 line_ptr += bytes_read;
6528 mod_time =
6529 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6530 line_ptr += bytes_read;
6531 length =
6532 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6533 line_ptr += bytes_read;
6534 add_file_name (lh, cur_file, dir_index, mod_time, length);
6535 }
6536 break;
6537 default:
6538 complaint (&symfile_complaints,
6539 _("mangled .debug_line section"));
6540 return;
6541 }
6542 break;
6543 case DW_LNS_copy:
6544 lh->file_names[file - 1].included_p = 1;
6545 if (!decode_for_pst_p)
6546 record_line (current_subfile, line,
6547 check_cu_functions (address, cu));
6548 basic_block = 0;
6549 break;
6550 case DW_LNS_advance_pc:
6551 address += lh->minimum_instruction_length
6552 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6553 line_ptr += bytes_read;
6554 break;
6555 case DW_LNS_advance_line:
6556 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6557 line_ptr += bytes_read;
6558 break;
6559 case DW_LNS_set_file:
6560 {
6561 /* The arrays lh->include_dirs and lh->file_names are
6562 0-based, but the directory and file name numbers in
6563 the statement program are 1-based. */
6564 struct file_entry *fe;
6565 char *dir;
6566
6567 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6568 line_ptr += bytes_read;
6569 fe = &lh->file_names[file - 1];
6570 if (fe->dir_index)
6571 dir = lh->include_dirs[fe->dir_index - 1];
6572 else
6573 dir = comp_dir;
6574 if (!decode_for_pst_p)
6575 dwarf2_start_subfile (fe->name, dir);
6576 }
6577 break;
6578 case DW_LNS_set_column:
6579 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6580 line_ptr += bytes_read;
6581 break;
6582 case DW_LNS_negate_stmt:
6583 is_stmt = (!is_stmt);
6584 break;
6585 case DW_LNS_set_basic_block:
6586 basic_block = 1;
6587 break;
6588 /* Add to the address register of the state machine the
6589 address increment value corresponding to special opcode
6590 255. I.e., this value is scaled by the minimum
6591 instruction length since special opcode 255 would have
6592 scaled the the increment. */
6593 case DW_LNS_const_add_pc:
6594 address += (lh->minimum_instruction_length
6595 * ((255 - lh->opcode_base) / lh->line_range));
6596 break;
6597 case DW_LNS_fixed_advance_pc:
6598 address += read_2_bytes (abfd, line_ptr);
6599 line_ptr += 2;
6600 break;
6601 default:
6602 {
6603 /* Unknown standard opcode, ignore it. */
6604 int i;
6605
6606 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6607 {
6608 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6609 line_ptr += bytes_read;
6610 }
6611 }
6612 }
6613 }
6614 }
6615
6616 if (decode_for_pst_p)
6617 {
6618 int file_index;
6619
6620 /* Now that we're done scanning the Line Header Program, we can
6621 create the psymtab of each included file. */
6622 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6623 if (lh->file_names[file_index].included_p == 1)
6624 {
6625 char *include_name = lh->file_names [file_index].name;
6626
6627 if (strcmp (include_name, pst->filename) != 0)
6628 dwarf2_create_include_psymtab (include_name, pst, objfile);
6629 }
6630 }
6631 }
6632
6633 /* Start a subfile for DWARF. FILENAME is the name of the file and
6634 DIRNAME the name of the source directory which contains FILENAME
6635 or NULL if not known.
6636 This routine tries to keep line numbers from identical absolute and
6637 relative file names in a common subfile.
6638
6639 Using the `list' example from the GDB testsuite, which resides in
6640 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6641 of /srcdir/list0.c yields the following debugging information for list0.c:
6642
6643 DW_AT_name: /srcdir/list0.c
6644 DW_AT_comp_dir: /compdir
6645 files.files[0].name: list0.h
6646 files.files[0].dir: /srcdir
6647 files.files[1].name: list0.c
6648 files.files[1].dir: /srcdir
6649
6650 The line number information for list0.c has to end up in a single
6651 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6652
6653 static void
6654 dwarf2_start_subfile (char *filename, char *dirname)
6655 {
6656 /* If the filename isn't absolute, try to match an existing subfile
6657 with the full pathname. */
6658
6659 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6660 {
6661 struct subfile *subfile;
6662 char *fullname = concat (dirname, "/", filename, NULL);
6663
6664 for (subfile = subfiles; subfile; subfile = subfile->next)
6665 {
6666 if (FILENAME_CMP (subfile->name, fullname) == 0)
6667 {
6668 current_subfile = subfile;
6669 xfree (fullname);
6670 return;
6671 }
6672 }
6673 xfree (fullname);
6674 }
6675 start_subfile (filename, dirname);
6676 }
6677
6678 static void
6679 var_decode_location (struct attribute *attr, struct symbol *sym,
6680 struct dwarf2_cu *cu)
6681 {
6682 struct objfile *objfile = cu->objfile;
6683 struct comp_unit_head *cu_header = &cu->header;
6684
6685 /* NOTE drow/2003-01-30: There used to be a comment and some special
6686 code here to turn a symbol with DW_AT_external and a
6687 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6688 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6689 with some versions of binutils) where shared libraries could have
6690 relocations against symbols in their debug information - the
6691 minimal symbol would have the right address, but the debug info
6692 would not. It's no longer necessary, because we will explicitly
6693 apply relocations when we read in the debug information now. */
6694
6695 /* A DW_AT_location attribute with no contents indicates that a
6696 variable has been optimized away. */
6697 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6698 {
6699 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6700 return;
6701 }
6702
6703 /* Handle one degenerate form of location expression specially, to
6704 preserve GDB's previous behavior when section offsets are
6705 specified. If this is just a DW_OP_addr then mark this symbol
6706 as LOC_STATIC. */
6707
6708 if (attr_form_is_block (attr)
6709 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6710 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6711 {
6712 int dummy;
6713
6714 SYMBOL_VALUE_ADDRESS (sym) =
6715 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6716 fixup_symbol_section (sym, objfile);
6717 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6718 SYMBOL_SECTION (sym));
6719 SYMBOL_CLASS (sym) = LOC_STATIC;
6720 return;
6721 }
6722
6723 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6724 expression evaluator, and use LOC_COMPUTED only when necessary
6725 (i.e. when the value of a register or memory location is
6726 referenced, or a thread-local block, etc.). Then again, it might
6727 not be worthwhile. I'm assuming that it isn't unless performance
6728 or memory numbers show me otherwise. */
6729
6730 dwarf2_symbol_mark_computed (attr, sym, cu);
6731 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6732 }
6733
6734 /* Given a pointer to a DWARF information entry, figure out if we need
6735 to make a symbol table entry for it, and if so, create a new entry
6736 and return a pointer to it.
6737 If TYPE is NULL, determine symbol type from the die, otherwise
6738 used the passed type. */
6739
6740 static struct symbol *
6741 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6742 {
6743 struct objfile *objfile = cu->objfile;
6744 struct symbol *sym = NULL;
6745 char *name;
6746 struct attribute *attr = NULL;
6747 struct attribute *attr2 = NULL;
6748 CORE_ADDR baseaddr;
6749
6750 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6751
6752 if (die->tag != DW_TAG_namespace)
6753 name = dwarf2_linkage_name (die, cu);
6754 else
6755 name = TYPE_NAME (type);
6756
6757 if (name)
6758 {
6759 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6760 sizeof (struct symbol));
6761 OBJSTAT (objfile, n_syms++);
6762 memset (sym, 0, sizeof (struct symbol));
6763
6764 /* Cache this symbol's name and the name's demangled form (if any). */
6765 SYMBOL_LANGUAGE (sym) = cu->language;
6766 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6767
6768 /* Default assumptions.
6769 Use the passed type or decode it from the die. */
6770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6771 SYMBOL_CLASS (sym) = LOC_STATIC;
6772 if (type != NULL)
6773 SYMBOL_TYPE (sym) = type;
6774 else
6775 SYMBOL_TYPE (sym) = die_type (die, cu);
6776 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6777 if (attr)
6778 {
6779 SYMBOL_LINE (sym) = DW_UNSND (attr);
6780 }
6781 switch (die->tag)
6782 {
6783 case DW_TAG_label:
6784 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6785 if (attr)
6786 {
6787 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6788 }
6789 SYMBOL_CLASS (sym) = LOC_LABEL;
6790 break;
6791 case DW_TAG_subprogram:
6792 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6793 finish_block. */
6794 SYMBOL_CLASS (sym) = LOC_BLOCK;
6795 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6796 if (attr2 && (DW_UNSND (attr2) != 0))
6797 {
6798 add_symbol_to_list (sym, &global_symbols);
6799 }
6800 else
6801 {
6802 add_symbol_to_list (sym, cu->list_in_scope);
6803 }
6804 break;
6805 case DW_TAG_variable:
6806 /* Compilation with minimal debug info may result in variables
6807 with missing type entries. Change the misleading `void' type
6808 to something sensible. */
6809 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6810 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6811 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6812 "<variable, no debug info>",
6813 objfile);
6814 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6815 if (attr)
6816 {
6817 dwarf2_const_value (attr, sym, cu);
6818 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6819 if (attr2 && (DW_UNSND (attr2) != 0))
6820 add_symbol_to_list (sym, &global_symbols);
6821 else
6822 add_symbol_to_list (sym, cu->list_in_scope);
6823 break;
6824 }
6825 attr = dwarf2_attr (die, DW_AT_location, cu);
6826 if (attr)
6827 {
6828 var_decode_location (attr, sym, cu);
6829 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6830 if (attr2 && (DW_UNSND (attr2) != 0))
6831 add_symbol_to_list (sym, &global_symbols);
6832 else
6833 add_symbol_to_list (sym, cu->list_in_scope);
6834 }
6835 else
6836 {
6837 /* We do not know the address of this symbol.
6838 If it is an external symbol and we have type information
6839 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6840 The address of the variable will then be determined from
6841 the minimal symbol table whenever the variable is
6842 referenced. */
6843 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6844 if (attr2 && (DW_UNSND (attr2) != 0)
6845 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6846 {
6847 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6848 add_symbol_to_list (sym, &global_symbols);
6849 }
6850 }
6851 break;
6852 case DW_TAG_formal_parameter:
6853 attr = dwarf2_attr (die, DW_AT_location, cu);
6854 if (attr)
6855 {
6856 var_decode_location (attr, sym, cu);
6857 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6858 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6859 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6860 }
6861 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6862 if (attr)
6863 {
6864 dwarf2_const_value (attr, sym, cu);
6865 }
6866 add_symbol_to_list (sym, cu->list_in_scope);
6867 break;
6868 case DW_TAG_unspecified_parameters:
6869 /* From varargs functions; gdb doesn't seem to have any
6870 interest in this information, so just ignore it for now.
6871 (FIXME?) */
6872 break;
6873 case DW_TAG_class_type:
6874 case DW_TAG_structure_type:
6875 case DW_TAG_union_type:
6876 case DW_TAG_enumeration_type:
6877 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6878 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6879
6880 /* Make sure that the symbol includes appropriate enclosing
6881 classes/namespaces in its name. These are calculated in
6882 read_structure_type, and the correct name is saved in
6883 the type. */
6884
6885 if (cu->language == language_cplus
6886 || cu->language == language_java)
6887 {
6888 struct type *type = SYMBOL_TYPE (sym);
6889
6890 if (TYPE_TAG_NAME (type) != NULL)
6891 {
6892 /* FIXME: carlton/2003-11-10: Should this use
6893 SYMBOL_SET_NAMES instead? (The same problem also
6894 arises further down in this function.) */
6895 /* The type's name is already allocated along with
6896 this objfile, so we don't need to duplicate it
6897 for the symbol. */
6898 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6899 }
6900 }
6901
6902 {
6903 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6904 really ever be static objects: otherwise, if you try
6905 to, say, break of a class's method and you're in a file
6906 which doesn't mention that class, it won't work unless
6907 the check for all static symbols in lookup_symbol_aux
6908 saves you. See the OtherFileClass tests in
6909 gdb.c++/namespace.exp. */
6910
6911 struct pending **list_to_add;
6912
6913 list_to_add = (cu->list_in_scope == &file_symbols
6914 && (cu->language == language_cplus
6915 || cu->language == language_java)
6916 ? &global_symbols : cu->list_in_scope);
6917
6918 add_symbol_to_list (sym, list_to_add);
6919
6920 /* The semantics of C++ state that "struct foo { ... }" also
6921 defines a typedef for "foo". A Java class declaration also
6922 defines a typedef for the class. Synthesize a typedef symbol
6923 so that "ptype foo" works as expected. */
6924 if (cu->language == language_cplus
6925 || cu->language == language_java)
6926 {
6927 struct symbol *typedef_sym = (struct symbol *)
6928 obstack_alloc (&objfile->objfile_obstack,
6929 sizeof (struct symbol));
6930 *typedef_sym = *sym;
6931 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6932 /* The symbol's name is already allocated along with
6933 this objfile, so we don't need to duplicate it for
6934 the type. */
6935 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6936 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
6937 add_symbol_to_list (typedef_sym, list_to_add);
6938 }
6939 }
6940 break;
6941 case DW_TAG_typedef:
6942 if (processing_has_namespace_info
6943 && processing_current_prefix[0] != '\0')
6944 {
6945 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6946 processing_current_prefix,
6947 name, cu);
6948 }
6949 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6950 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6951 add_symbol_to_list (sym, cu->list_in_scope);
6952 break;
6953 case DW_TAG_base_type:
6954 case DW_TAG_subrange_type:
6955 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6956 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6957 add_symbol_to_list (sym, cu->list_in_scope);
6958 break;
6959 case DW_TAG_enumerator:
6960 if (processing_has_namespace_info
6961 && processing_current_prefix[0] != '\0')
6962 {
6963 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6964 processing_current_prefix,
6965 name, cu);
6966 }
6967 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6968 if (attr)
6969 {
6970 dwarf2_const_value (attr, sym, cu);
6971 }
6972 {
6973 /* NOTE: carlton/2003-11-10: See comment above in the
6974 DW_TAG_class_type, etc. block. */
6975
6976 struct pending **list_to_add;
6977
6978 list_to_add = (cu->list_in_scope == &file_symbols
6979 && (cu->language == language_cplus
6980 || cu->language == language_java)
6981 ? &global_symbols : cu->list_in_scope);
6982
6983 add_symbol_to_list (sym, list_to_add);
6984 }
6985 break;
6986 case DW_TAG_namespace:
6987 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6988 add_symbol_to_list (sym, &global_symbols);
6989 break;
6990 default:
6991 /* Not a tag we recognize. Hopefully we aren't processing
6992 trash data, but since we must specifically ignore things
6993 we don't recognize, there is nothing else we should do at
6994 this point. */
6995 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
6996 dwarf_tag_name (die->tag));
6997 break;
6998 }
6999 }
7000 return (sym);
7001 }
7002
7003 /* Copy constant value from an attribute to a symbol. */
7004
7005 static void
7006 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7007 struct dwarf2_cu *cu)
7008 {
7009 struct objfile *objfile = cu->objfile;
7010 struct comp_unit_head *cu_header = &cu->header;
7011 struct dwarf_block *blk;
7012
7013 switch (attr->form)
7014 {
7015 case DW_FORM_addr:
7016 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7017 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7018 cu_header->addr_size,
7019 TYPE_LENGTH (SYMBOL_TYPE
7020 (sym)));
7021 SYMBOL_VALUE_BYTES (sym) = (char *)
7022 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7023 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7024 it's body - store_unsigned_integer. */
7025 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7026 DW_ADDR (attr));
7027 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7028 break;
7029 case DW_FORM_block1:
7030 case DW_FORM_block2:
7031 case DW_FORM_block4:
7032 case DW_FORM_block:
7033 blk = DW_BLOCK (attr);
7034 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7035 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7036 blk->size,
7037 TYPE_LENGTH (SYMBOL_TYPE
7038 (sym)));
7039 SYMBOL_VALUE_BYTES (sym) = (char *)
7040 obstack_alloc (&objfile->objfile_obstack, blk->size);
7041 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7042 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7043 break;
7044
7045 /* The DW_AT_const_value attributes are supposed to carry the
7046 symbol's value "represented as it would be on the target
7047 architecture." By the time we get here, it's already been
7048 converted to host endianness, so we just need to sign- or
7049 zero-extend it as appropriate. */
7050 case DW_FORM_data1:
7051 dwarf2_const_value_data (attr, sym, 8);
7052 break;
7053 case DW_FORM_data2:
7054 dwarf2_const_value_data (attr, sym, 16);
7055 break;
7056 case DW_FORM_data4:
7057 dwarf2_const_value_data (attr, sym, 32);
7058 break;
7059 case DW_FORM_data8:
7060 dwarf2_const_value_data (attr, sym, 64);
7061 break;
7062
7063 case DW_FORM_sdata:
7064 SYMBOL_VALUE (sym) = DW_SND (attr);
7065 SYMBOL_CLASS (sym) = LOC_CONST;
7066 break;
7067
7068 case DW_FORM_udata:
7069 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7070 SYMBOL_CLASS (sym) = LOC_CONST;
7071 break;
7072
7073 default:
7074 complaint (&symfile_complaints,
7075 _("unsupported const value attribute form: '%s'"),
7076 dwarf_form_name (attr->form));
7077 SYMBOL_VALUE (sym) = 0;
7078 SYMBOL_CLASS (sym) = LOC_CONST;
7079 break;
7080 }
7081 }
7082
7083
7084 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7085 or zero-extend it as appropriate for the symbol's type. */
7086 static void
7087 dwarf2_const_value_data (struct attribute *attr,
7088 struct symbol *sym,
7089 int bits)
7090 {
7091 LONGEST l = DW_UNSND (attr);
7092
7093 if (bits < sizeof (l) * 8)
7094 {
7095 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7096 l &= ((LONGEST) 1 << bits) - 1;
7097 else
7098 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7099 }
7100
7101 SYMBOL_VALUE (sym) = l;
7102 SYMBOL_CLASS (sym) = LOC_CONST;
7103 }
7104
7105
7106 /* Return the type of the die in question using its DW_AT_type attribute. */
7107
7108 static struct type *
7109 die_type (struct die_info *die, struct dwarf2_cu *cu)
7110 {
7111 struct type *type;
7112 struct attribute *type_attr;
7113 struct die_info *type_die;
7114
7115 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7116 if (!type_attr)
7117 {
7118 /* A missing DW_AT_type represents a void type. */
7119 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7120 }
7121 else
7122 type_die = follow_die_ref (die, type_attr, cu);
7123
7124 type = tag_type_to_type (type_die, cu);
7125 if (!type)
7126 {
7127 dump_die (type_die);
7128 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7129 cu->objfile->name);
7130 }
7131 return type;
7132 }
7133
7134 /* Return the containing type of the die in question using its
7135 DW_AT_containing_type attribute. */
7136
7137 static struct type *
7138 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7139 {
7140 struct type *type = NULL;
7141 struct attribute *type_attr;
7142 struct die_info *type_die = NULL;
7143
7144 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7145 if (type_attr)
7146 {
7147 type_die = follow_die_ref (die, type_attr, cu);
7148 type = tag_type_to_type (type_die, cu);
7149 }
7150 if (!type)
7151 {
7152 if (type_die)
7153 dump_die (type_die);
7154 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7155 cu->objfile->name);
7156 }
7157 return type;
7158 }
7159
7160 static struct type *
7161 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7162 {
7163 if (die->type)
7164 {
7165 return die->type;
7166 }
7167 else
7168 {
7169 read_type_die (die, cu);
7170 if (!die->type)
7171 {
7172 dump_die (die);
7173 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7174 cu->objfile->name);
7175 }
7176 return die->type;
7177 }
7178 }
7179
7180 static void
7181 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7182 {
7183 char *prefix = determine_prefix (die, cu);
7184 const char *old_prefix = processing_current_prefix;
7185 struct cleanup *back_to = make_cleanup (xfree, prefix);
7186 processing_current_prefix = prefix;
7187
7188 switch (die->tag)
7189 {
7190 case DW_TAG_class_type:
7191 case DW_TAG_structure_type:
7192 case DW_TAG_union_type:
7193 read_structure_type (die, cu);
7194 break;
7195 case DW_TAG_enumeration_type:
7196 read_enumeration_type (die, cu);
7197 break;
7198 case DW_TAG_subprogram:
7199 case DW_TAG_subroutine_type:
7200 read_subroutine_type (die, cu);
7201 break;
7202 case DW_TAG_array_type:
7203 read_array_type (die, cu);
7204 break;
7205 case DW_TAG_pointer_type:
7206 read_tag_pointer_type (die, cu);
7207 break;
7208 case DW_TAG_ptr_to_member_type:
7209 read_tag_ptr_to_member_type (die, cu);
7210 break;
7211 case DW_TAG_reference_type:
7212 read_tag_reference_type (die, cu);
7213 break;
7214 case DW_TAG_const_type:
7215 read_tag_const_type (die, cu);
7216 break;
7217 case DW_TAG_volatile_type:
7218 read_tag_volatile_type (die, cu);
7219 break;
7220 case DW_TAG_string_type:
7221 read_tag_string_type (die, cu);
7222 break;
7223 case DW_TAG_typedef:
7224 read_typedef (die, cu);
7225 break;
7226 case DW_TAG_subrange_type:
7227 read_subrange_type (die, cu);
7228 break;
7229 case DW_TAG_base_type:
7230 read_base_type (die, cu);
7231 break;
7232 default:
7233 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7234 dwarf_tag_name (die->tag));
7235 break;
7236 }
7237
7238 processing_current_prefix = old_prefix;
7239 do_cleanups (back_to);
7240 }
7241
7242 /* Return the name of the namespace/class that DIE is defined within,
7243 or "" if we can't tell. The caller should xfree the result. */
7244
7245 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7246 therein) for an example of how to use this function to deal with
7247 DW_AT_specification. */
7248
7249 static char *
7250 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7251 {
7252 struct die_info *parent;
7253
7254 if (cu->language != language_cplus
7255 && cu->language != language_java)
7256 return NULL;
7257
7258 parent = die->parent;
7259
7260 if (parent == NULL)
7261 {
7262 return xstrdup ("");
7263 }
7264 else
7265 {
7266 switch (parent->tag) {
7267 case DW_TAG_namespace:
7268 {
7269 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7270 before doing this check? */
7271 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7272 {
7273 return xstrdup (TYPE_TAG_NAME (parent->type));
7274 }
7275 else
7276 {
7277 int dummy;
7278 char *parent_prefix = determine_prefix (parent, cu);
7279 char *retval = typename_concat (NULL, parent_prefix,
7280 namespace_name (parent, &dummy,
7281 cu),
7282 cu);
7283 xfree (parent_prefix);
7284 return retval;
7285 }
7286 }
7287 break;
7288 case DW_TAG_class_type:
7289 case DW_TAG_structure_type:
7290 {
7291 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7292 {
7293 return xstrdup (TYPE_TAG_NAME (parent->type));
7294 }
7295 else
7296 {
7297 const char *old_prefix = processing_current_prefix;
7298 char *new_prefix = determine_prefix (parent, cu);
7299 char *retval;
7300
7301 processing_current_prefix = new_prefix;
7302 retval = determine_class_name (parent, cu);
7303 processing_current_prefix = old_prefix;
7304
7305 xfree (new_prefix);
7306 return retval;
7307 }
7308 }
7309 default:
7310 return determine_prefix (parent, cu);
7311 }
7312 }
7313 }
7314
7315 /* Return a newly-allocated string formed by concatenating PREFIX and
7316 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7317 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7318 perform an obconcat, otherwise allocate storage for the result. The CU argument
7319 is used to determine the language and hence, the appropriate separator. */
7320
7321 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7322
7323 static char *
7324 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7325 struct dwarf2_cu *cu)
7326 {
7327 char *sep;
7328
7329 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7330 sep = "";
7331 else if (cu->language == language_java)
7332 sep = ".";
7333 else
7334 sep = "::";
7335
7336 if (obs == NULL)
7337 {
7338 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7339 retval[0] = '\0';
7340
7341 if (prefix)
7342 {
7343 strcpy (retval, prefix);
7344 strcat (retval, sep);
7345 }
7346 if (suffix)
7347 strcat (retval, suffix);
7348
7349 return retval;
7350 }
7351 else
7352 {
7353 /* We have an obstack. */
7354 return obconcat (obs, prefix, sep, suffix);
7355 }
7356 }
7357
7358 static struct type *
7359 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7360 {
7361 struct objfile *objfile = cu->objfile;
7362
7363 /* FIXME - this should not produce a new (struct type *)
7364 every time. It should cache base types. */
7365 struct type *type;
7366 switch (encoding)
7367 {
7368 case DW_ATE_address:
7369 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7370 return type;
7371 case DW_ATE_boolean:
7372 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7373 return type;
7374 case DW_ATE_complex_float:
7375 if (size == 16)
7376 {
7377 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7378 }
7379 else
7380 {
7381 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7382 }
7383 return type;
7384 case DW_ATE_float:
7385 if (size == 8)
7386 {
7387 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7388 }
7389 else
7390 {
7391 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7392 }
7393 return type;
7394 case DW_ATE_signed:
7395 switch (size)
7396 {
7397 case 1:
7398 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7399 break;
7400 case 2:
7401 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7402 break;
7403 default:
7404 case 4:
7405 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7406 break;
7407 }
7408 return type;
7409 case DW_ATE_signed_char:
7410 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7411 return type;
7412 case DW_ATE_unsigned:
7413 switch (size)
7414 {
7415 case 1:
7416 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7417 break;
7418 case 2:
7419 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7420 break;
7421 default:
7422 case 4:
7423 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7424 break;
7425 }
7426 return type;
7427 case DW_ATE_unsigned_char:
7428 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7429 return type;
7430 default:
7431 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7432 return type;
7433 }
7434 }
7435
7436 #if 0
7437 struct die_info *
7438 copy_die (struct die_info *old_die)
7439 {
7440 struct die_info *new_die;
7441 int i, num_attrs;
7442
7443 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7444 memset (new_die, 0, sizeof (struct die_info));
7445
7446 new_die->tag = old_die->tag;
7447 new_die->has_children = old_die->has_children;
7448 new_die->abbrev = old_die->abbrev;
7449 new_die->offset = old_die->offset;
7450 new_die->type = NULL;
7451
7452 num_attrs = old_die->num_attrs;
7453 new_die->num_attrs = num_attrs;
7454 new_die->attrs = (struct attribute *)
7455 xmalloc (num_attrs * sizeof (struct attribute));
7456
7457 for (i = 0; i < old_die->num_attrs; ++i)
7458 {
7459 new_die->attrs[i].name = old_die->attrs[i].name;
7460 new_die->attrs[i].form = old_die->attrs[i].form;
7461 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7462 }
7463
7464 new_die->next = NULL;
7465 return new_die;
7466 }
7467 #endif
7468
7469 /* Return sibling of die, NULL if no sibling. */
7470
7471 static struct die_info *
7472 sibling_die (struct die_info *die)
7473 {
7474 return die->sibling;
7475 }
7476
7477 /* Get linkage name of a die, return NULL if not found. */
7478
7479 static char *
7480 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7481 {
7482 struct attribute *attr;
7483
7484 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7485 if (attr && DW_STRING (attr))
7486 return DW_STRING (attr);
7487 attr = dwarf2_attr (die, DW_AT_name, cu);
7488 if (attr && DW_STRING (attr))
7489 return DW_STRING (attr);
7490 return NULL;
7491 }
7492
7493 /* Get name of a die, return NULL if not found. */
7494
7495 static char *
7496 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7497 {
7498 struct attribute *attr;
7499
7500 attr = dwarf2_attr (die, DW_AT_name, cu);
7501 if (attr && DW_STRING (attr))
7502 return DW_STRING (attr);
7503 return NULL;
7504 }
7505
7506 /* Return the die that this die in an extension of, or NULL if there
7507 is none. */
7508
7509 static struct die_info *
7510 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7511 {
7512 struct attribute *attr;
7513
7514 attr = dwarf2_attr (die, DW_AT_extension, cu);
7515 if (attr == NULL)
7516 return NULL;
7517
7518 return follow_die_ref (die, attr, cu);
7519 }
7520
7521 /* Convert a DIE tag into its string name. */
7522
7523 static char *
7524 dwarf_tag_name (unsigned tag)
7525 {
7526 switch (tag)
7527 {
7528 case DW_TAG_padding:
7529 return "DW_TAG_padding";
7530 case DW_TAG_array_type:
7531 return "DW_TAG_array_type";
7532 case DW_TAG_class_type:
7533 return "DW_TAG_class_type";
7534 case DW_TAG_entry_point:
7535 return "DW_TAG_entry_point";
7536 case DW_TAG_enumeration_type:
7537 return "DW_TAG_enumeration_type";
7538 case DW_TAG_formal_parameter:
7539 return "DW_TAG_formal_parameter";
7540 case DW_TAG_imported_declaration:
7541 return "DW_TAG_imported_declaration";
7542 case DW_TAG_label:
7543 return "DW_TAG_label";
7544 case DW_TAG_lexical_block:
7545 return "DW_TAG_lexical_block";
7546 case DW_TAG_member:
7547 return "DW_TAG_member";
7548 case DW_TAG_pointer_type:
7549 return "DW_TAG_pointer_type";
7550 case DW_TAG_reference_type:
7551 return "DW_TAG_reference_type";
7552 case DW_TAG_compile_unit:
7553 return "DW_TAG_compile_unit";
7554 case DW_TAG_string_type:
7555 return "DW_TAG_string_type";
7556 case DW_TAG_structure_type:
7557 return "DW_TAG_structure_type";
7558 case DW_TAG_subroutine_type:
7559 return "DW_TAG_subroutine_type";
7560 case DW_TAG_typedef:
7561 return "DW_TAG_typedef";
7562 case DW_TAG_union_type:
7563 return "DW_TAG_union_type";
7564 case DW_TAG_unspecified_parameters:
7565 return "DW_TAG_unspecified_parameters";
7566 case DW_TAG_variant:
7567 return "DW_TAG_variant";
7568 case DW_TAG_common_block:
7569 return "DW_TAG_common_block";
7570 case DW_TAG_common_inclusion:
7571 return "DW_TAG_common_inclusion";
7572 case DW_TAG_inheritance:
7573 return "DW_TAG_inheritance";
7574 case DW_TAG_inlined_subroutine:
7575 return "DW_TAG_inlined_subroutine";
7576 case DW_TAG_module:
7577 return "DW_TAG_module";
7578 case DW_TAG_ptr_to_member_type:
7579 return "DW_TAG_ptr_to_member_type";
7580 case DW_TAG_set_type:
7581 return "DW_TAG_set_type";
7582 case DW_TAG_subrange_type:
7583 return "DW_TAG_subrange_type";
7584 case DW_TAG_with_stmt:
7585 return "DW_TAG_with_stmt";
7586 case DW_TAG_access_declaration:
7587 return "DW_TAG_access_declaration";
7588 case DW_TAG_base_type:
7589 return "DW_TAG_base_type";
7590 case DW_TAG_catch_block:
7591 return "DW_TAG_catch_block";
7592 case DW_TAG_const_type:
7593 return "DW_TAG_const_type";
7594 case DW_TAG_constant:
7595 return "DW_TAG_constant";
7596 case DW_TAG_enumerator:
7597 return "DW_TAG_enumerator";
7598 case DW_TAG_file_type:
7599 return "DW_TAG_file_type";
7600 case DW_TAG_friend:
7601 return "DW_TAG_friend";
7602 case DW_TAG_namelist:
7603 return "DW_TAG_namelist";
7604 case DW_TAG_namelist_item:
7605 return "DW_TAG_namelist_item";
7606 case DW_TAG_packed_type:
7607 return "DW_TAG_packed_type";
7608 case DW_TAG_subprogram:
7609 return "DW_TAG_subprogram";
7610 case DW_TAG_template_type_param:
7611 return "DW_TAG_template_type_param";
7612 case DW_TAG_template_value_param:
7613 return "DW_TAG_template_value_param";
7614 case DW_TAG_thrown_type:
7615 return "DW_TAG_thrown_type";
7616 case DW_TAG_try_block:
7617 return "DW_TAG_try_block";
7618 case DW_TAG_variant_part:
7619 return "DW_TAG_variant_part";
7620 case DW_TAG_variable:
7621 return "DW_TAG_variable";
7622 case DW_TAG_volatile_type:
7623 return "DW_TAG_volatile_type";
7624 case DW_TAG_dwarf_procedure:
7625 return "DW_TAG_dwarf_procedure";
7626 case DW_TAG_restrict_type:
7627 return "DW_TAG_restrict_type";
7628 case DW_TAG_interface_type:
7629 return "DW_TAG_interface_type";
7630 case DW_TAG_namespace:
7631 return "DW_TAG_namespace";
7632 case DW_TAG_imported_module:
7633 return "DW_TAG_imported_module";
7634 case DW_TAG_unspecified_type:
7635 return "DW_TAG_unspecified_type";
7636 case DW_TAG_partial_unit:
7637 return "DW_TAG_partial_unit";
7638 case DW_TAG_imported_unit:
7639 return "DW_TAG_imported_unit";
7640 case DW_TAG_MIPS_loop:
7641 return "DW_TAG_MIPS_loop";
7642 case DW_TAG_format_label:
7643 return "DW_TAG_format_label";
7644 case DW_TAG_function_template:
7645 return "DW_TAG_function_template";
7646 case DW_TAG_class_template:
7647 return "DW_TAG_class_template";
7648 default:
7649 return "DW_TAG_<unknown>";
7650 }
7651 }
7652
7653 /* Convert a DWARF attribute code into its string name. */
7654
7655 static char *
7656 dwarf_attr_name (unsigned attr)
7657 {
7658 switch (attr)
7659 {
7660 case DW_AT_sibling:
7661 return "DW_AT_sibling";
7662 case DW_AT_location:
7663 return "DW_AT_location";
7664 case DW_AT_name:
7665 return "DW_AT_name";
7666 case DW_AT_ordering:
7667 return "DW_AT_ordering";
7668 case DW_AT_subscr_data:
7669 return "DW_AT_subscr_data";
7670 case DW_AT_byte_size:
7671 return "DW_AT_byte_size";
7672 case DW_AT_bit_offset:
7673 return "DW_AT_bit_offset";
7674 case DW_AT_bit_size:
7675 return "DW_AT_bit_size";
7676 case DW_AT_element_list:
7677 return "DW_AT_element_list";
7678 case DW_AT_stmt_list:
7679 return "DW_AT_stmt_list";
7680 case DW_AT_low_pc:
7681 return "DW_AT_low_pc";
7682 case DW_AT_high_pc:
7683 return "DW_AT_high_pc";
7684 case DW_AT_language:
7685 return "DW_AT_language";
7686 case DW_AT_member:
7687 return "DW_AT_member";
7688 case DW_AT_discr:
7689 return "DW_AT_discr";
7690 case DW_AT_discr_value:
7691 return "DW_AT_discr_value";
7692 case DW_AT_visibility:
7693 return "DW_AT_visibility";
7694 case DW_AT_import:
7695 return "DW_AT_import";
7696 case DW_AT_string_length:
7697 return "DW_AT_string_length";
7698 case DW_AT_common_reference:
7699 return "DW_AT_common_reference";
7700 case DW_AT_comp_dir:
7701 return "DW_AT_comp_dir";
7702 case DW_AT_const_value:
7703 return "DW_AT_const_value";
7704 case DW_AT_containing_type:
7705 return "DW_AT_containing_type";
7706 case DW_AT_default_value:
7707 return "DW_AT_default_value";
7708 case DW_AT_inline:
7709 return "DW_AT_inline";
7710 case DW_AT_is_optional:
7711 return "DW_AT_is_optional";
7712 case DW_AT_lower_bound:
7713 return "DW_AT_lower_bound";
7714 case DW_AT_producer:
7715 return "DW_AT_producer";
7716 case DW_AT_prototyped:
7717 return "DW_AT_prototyped";
7718 case DW_AT_return_addr:
7719 return "DW_AT_return_addr";
7720 case DW_AT_start_scope:
7721 return "DW_AT_start_scope";
7722 case DW_AT_stride_size:
7723 return "DW_AT_stride_size";
7724 case DW_AT_upper_bound:
7725 return "DW_AT_upper_bound";
7726 case DW_AT_abstract_origin:
7727 return "DW_AT_abstract_origin";
7728 case DW_AT_accessibility:
7729 return "DW_AT_accessibility";
7730 case DW_AT_address_class:
7731 return "DW_AT_address_class";
7732 case DW_AT_artificial:
7733 return "DW_AT_artificial";
7734 case DW_AT_base_types:
7735 return "DW_AT_base_types";
7736 case DW_AT_calling_convention:
7737 return "DW_AT_calling_convention";
7738 case DW_AT_count:
7739 return "DW_AT_count";
7740 case DW_AT_data_member_location:
7741 return "DW_AT_data_member_location";
7742 case DW_AT_decl_column:
7743 return "DW_AT_decl_column";
7744 case DW_AT_decl_file:
7745 return "DW_AT_decl_file";
7746 case DW_AT_decl_line:
7747 return "DW_AT_decl_line";
7748 case DW_AT_declaration:
7749 return "DW_AT_declaration";
7750 case DW_AT_discr_list:
7751 return "DW_AT_discr_list";
7752 case DW_AT_encoding:
7753 return "DW_AT_encoding";
7754 case DW_AT_external:
7755 return "DW_AT_external";
7756 case DW_AT_frame_base:
7757 return "DW_AT_frame_base";
7758 case DW_AT_friend:
7759 return "DW_AT_friend";
7760 case DW_AT_identifier_case:
7761 return "DW_AT_identifier_case";
7762 case DW_AT_macro_info:
7763 return "DW_AT_macro_info";
7764 case DW_AT_namelist_items:
7765 return "DW_AT_namelist_items";
7766 case DW_AT_priority:
7767 return "DW_AT_priority";
7768 case DW_AT_segment:
7769 return "DW_AT_segment";
7770 case DW_AT_specification:
7771 return "DW_AT_specification";
7772 case DW_AT_static_link:
7773 return "DW_AT_static_link";
7774 case DW_AT_type:
7775 return "DW_AT_type";
7776 case DW_AT_use_location:
7777 return "DW_AT_use_location";
7778 case DW_AT_variable_parameter:
7779 return "DW_AT_variable_parameter";
7780 case DW_AT_virtuality:
7781 return "DW_AT_virtuality";
7782 case DW_AT_vtable_elem_location:
7783 return "DW_AT_vtable_elem_location";
7784 case DW_AT_allocated:
7785 return "DW_AT_allocated";
7786 case DW_AT_associated:
7787 return "DW_AT_associated";
7788 case DW_AT_data_location:
7789 return "DW_AT_data_location";
7790 case DW_AT_stride:
7791 return "DW_AT_stride";
7792 case DW_AT_entry_pc:
7793 return "DW_AT_entry_pc";
7794 case DW_AT_use_UTF8:
7795 return "DW_AT_use_UTF8";
7796 case DW_AT_extension:
7797 return "DW_AT_extension";
7798 case DW_AT_ranges:
7799 return "DW_AT_ranges";
7800 case DW_AT_trampoline:
7801 return "DW_AT_trampoline";
7802 case DW_AT_call_column:
7803 return "DW_AT_call_column";
7804 case DW_AT_call_file:
7805 return "DW_AT_call_file";
7806 case DW_AT_call_line:
7807 return "DW_AT_call_line";
7808 #ifdef MIPS
7809 case DW_AT_MIPS_fde:
7810 return "DW_AT_MIPS_fde";
7811 case DW_AT_MIPS_loop_begin:
7812 return "DW_AT_MIPS_loop_begin";
7813 case DW_AT_MIPS_tail_loop_begin:
7814 return "DW_AT_MIPS_tail_loop_begin";
7815 case DW_AT_MIPS_epilog_begin:
7816 return "DW_AT_MIPS_epilog_begin";
7817 case DW_AT_MIPS_loop_unroll_factor:
7818 return "DW_AT_MIPS_loop_unroll_factor";
7819 case DW_AT_MIPS_software_pipeline_depth:
7820 return "DW_AT_MIPS_software_pipeline_depth";
7821 #endif
7822 case DW_AT_MIPS_linkage_name:
7823 return "DW_AT_MIPS_linkage_name";
7824
7825 case DW_AT_sf_names:
7826 return "DW_AT_sf_names";
7827 case DW_AT_src_info:
7828 return "DW_AT_src_info";
7829 case DW_AT_mac_info:
7830 return "DW_AT_mac_info";
7831 case DW_AT_src_coords:
7832 return "DW_AT_src_coords";
7833 case DW_AT_body_begin:
7834 return "DW_AT_body_begin";
7835 case DW_AT_body_end:
7836 return "DW_AT_body_end";
7837 case DW_AT_GNU_vector:
7838 return "DW_AT_GNU_vector";
7839 default:
7840 return "DW_AT_<unknown>";
7841 }
7842 }
7843
7844 /* Convert a DWARF value form code into its string name. */
7845
7846 static char *
7847 dwarf_form_name (unsigned form)
7848 {
7849 switch (form)
7850 {
7851 case DW_FORM_addr:
7852 return "DW_FORM_addr";
7853 case DW_FORM_block2:
7854 return "DW_FORM_block2";
7855 case DW_FORM_block4:
7856 return "DW_FORM_block4";
7857 case DW_FORM_data2:
7858 return "DW_FORM_data2";
7859 case DW_FORM_data4:
7860 return "DW_FORM_data4";
7861 case DW_FORM_data8:
7862 return "DW_FORM_data8";
7863 case DW_FORM_string:
7864 return "DW_FORM_string";
7865 case DW_FORM_block:
7866 return "DW_FORM_block";
7867 case DW_FORM_block1:
7868 return "DW_FORM_block1";
7869 case DW_FORM_data1:
7870 return "DW_FORM_data1";
7871 case DW_FORM_flag:
7872 return "DW_FORM_flag";
7873 case DW_FORM_sdata:
7874 return "DW_FORM_sdata";
7875 case DW_FORM_strp:
7876 return "DW_FORM_strp";
7877 case DW_FORM_udata:
7878 return "DW_FORM_udata";
7879 case DW_FORM_ref_addr:
7880 return "DW_FORM_ref_addr";
7881 case DW_FORM_ref1:
7882 return "DW_FORM_ref1";
7883 case DW_FORM_ref2:
7884 return "DW_FORM_ref2";
7885 case DW_FORM_ref4:
7886 return "DW_FORM_ref4";
7887 case DW_FORM_ref8:
7888 return "DW_FORM_ref8";
7889 case DW_FORM_ref_udata:
7890 return "DW_FORM_ref_udata";
7891 case DW_FORM_indirect:
7892 return "DW_FORM_indirect";
7893 default:
7894 return "DW_FORM_<unknown>";
7895 }
7896 }
7897
7898 /* Convert a DWARF stack opcode into its string name. */
7899
7900 static char *
7901 dwarf_stack_op_name (unsigned op)
7902 {
7903 switch (op)
7904 {
7905 case DW_OP_addr:
7906 return "DW_OP_addr";
7907 case DW_OP_deref:
7908 return "DW_OP_deref";
7909 case DW_OP_const1u:
7910 return "DW_OP_const1u";
7911 case DW_OP_const1s:
7912 return "DW_OP_const1s";
7913 case DW_OP_const2u:
7914 return "DW_OP_const2u";
7915 case DW_OP_const2s:
7916 return "DW_OP_const2s";
7917 case DW_OP_const4u:
7918 return "DW_OP_const4u";
7919 case DW_OP_const4s:
7920 return "DW_OP_const4s";
7921 case DW_OP_const8u:
7922 return "DW_OP_const8u";
7923 case DW_OP_const8s:
7924 return "DW_OP_const8s";
7925 case DW_OP_constu:
7926 return "DW_OP_constu";
7927 case DW_OP_consts:
7928 return "DW_OP_consts";
7929 case DW_OP_dup:
7930 return "DW_OP_dup";
7931 case DW_OP_drop:
7932 return "DW_OP_drop";
7933 case DW_OP_over:
7934 return "DW_OP_over";
7935 case DW_OP_pick:
7936 return "DW_OP_pick";
7937 case DW_OP_swap:
7938 return "DW_OP_swap";
7939 case DW_OP_rot:
7940 return "DW_OP_rot";
7941 case DW_OP_xderef:
7942 return "DW_OP_xderef";
7943 case DW_OP_abs:
7944 return "DW_OP_abs";
7945 case DW_OP_and:
7946 return "DW_OP_and";
7947 case DW_OP_div:
7948 return "DW_OP_div";
7949 case DW_OP_minus:
7950 return "DW_OP_minus";
7951 case DW_OP_mod:
7952 return "DW_OP_mod";
7953 case DW_OP_mul:
7954 return "DW_OP_mul";
7955 case DW_OP_neg:
7956 return "DW_OP_neg";
7957 case DW_OP_not:
7958 return "DW_OP_not";
7959 case DW_OP_or:
7960 return "DW_OP_or";
7961 case DW_OP_plus:
7962 return "DW_OP_plus";
7963 case DW_OP_plus_uconst:
7964 return "DW_OP_plus_uconst";
7965 case DW_OP_shl:
7966 return "DW_OP_shl";
7967 case DW_OP_shr:
7968 return "DW_OP_shr";
7969 case DW_OP_shra:
7970 return "DW_OP_shra";
7971 case DW_OP_xor:
7972 return "DW_OP_xor";
7973 case DW_OP_bra:
7974 return "DW_OP_bra";
7975 case DW_OP_eq:
7976 return "DW_OP_eq";
7977 case DW_OP_ge:
7978 return "DW_OP_ge";
7979 case DW_OP_gt:
7980 return "DW_OP_gt";
7981 case DW_OP_le:
7982 return "DW_OP_le";
7983 case DW_OP_lt:
7984 return "DW_OP_lt";
7985 case DW_OP_ne:
7986 return "DW_OP_ne";
7987 case DW_OP_skip:
7988 return "DW_OP_skip";
7989 case DW_OP_lit0:
7990 return "DW_OP_lit0";
7991 case DW_OP_lit1:
7992 return "DW_OP_lit1";
7993 case DW_OP_lit2:
7994 return "DW_OP_lit2";
7995 case DW_OP_lit3:
7996 return "DW_OP_lit3";
7997 case DW_OP_lit4:
7998 return "DW_OP_lit4";
7999 case DW_OP_lit5:
8000 return "DW_OP_lit5";
8001 case DW_OP_lit6:
8002 return "DW_OP_lit6";
8003 case DW_OP_lit7:
8004 return "DW_OP_lit7";
8005 case DW_OP_lit8:
8006 return "DW_OP_lit8";
8007 case DW_OP_lit9:
8008 return "DW_OP_lit9";
8009 case DW_OP_lit10:
8010 return "DW_OP_lit10";
8011 case DW_OP_lit11:
8012 return "DW_OP_lit11";
8013 case DW_OP_lit12:
8014 return "DW_OP_lit12";
8015 case DW_OP_lit13:
8016 return "DW_OP_lit13";
8017 case DW_OP_lit14:
8018 return "DW_OP_lit14";
8019 case DW_OP_lit15:
8020 return "DW_OP_lit15";
8021 case DW_OP_lit16:
8022 return "DW_OP_lit16";
8023 case DW_OP_lit17:
8024 return "DW_OP_lit17";
8025 case DW_OP_lit18:
8026 return "DW_OP_lit18";
8027 case DW_OP_lit19:
8028 return "DW_OP_lit19";
8029 case DW_OP_lit20:
8030 return "DW_OP_lit20";
8031 case DW_OP_lit21:
8032 return "DW_OP_lit21";
8033 case DW_OP_lit22:
8034 return "DW_OP_lit22";
8035 case DW_OP_lit23:
8036 return "DW_OP_lit23";
8037 case DW_OP_lit24:
8038 return "DW_OP_lit24";
8039 case DW_OP_lit25:
8040 return "DW_OP_lit25";
8041 case DW_OP_lit26:
8042 return "DW_OP_lit26";
8043 case DW_OP_lit27:
8044 return "DW_OP_lit27";
8045 case DW_OP_lit28:
8046 return "DW_OP_lit28";
8047 case DW_OP_lit29:
8048 return "DW_OP_lit29";
8049 case DW_OP_lit30:
8050 return "DW_OP_lit30";
8051 case DW_OP_lit31:
8052 return "DW_OP_lit31";
8053 case DW_OP_reg0:
8054 return "DW_OP_reg0";
8055 case DW_OP_reg1:
8056 return "DW_OP_reg1";
8057 case DW_OP_reg2:
8058 return "DW_OP_reg2";
8059 case DW_OP_reg3:
8060 return "DW_OP_reg3";
8061 case DW_OP_reg4:
8062 return "DW_OP_reg4";
8063 case DW_OP_reg5:
8064 return "DW_OP_reg5";
8065 case DW_OP_reg6:
8066 return "DW_OP_reg6";
8067 case DW_OP_reg7:
8068 return "DW_OP_reg7";
8069 case DW_OP_reg8:
8070 return "DW_OP_reg8";
8071 case DW_OP_reg9:
8072 return "DW_OP_reg9";
8073 case DW_OP_reg10:
8074 return "DW_OP_reg10";
8075 case DW_OP_reg11:
8076 return "DW_OP_reg11";
8077 case DW_OP_reg12:
8078 return "DW_OP_reg12";
8079 case DW_OP_reg13:
8080 return "DW_OP_reg13";
8081 case DW_OP_reg14:
8082 return "DW_OP_reg14";
8083 case DW_OP_reg15:
8084 return "DW_OP_reg15";
8085 case DW_OP_reg16:
8086 return "DW_OP_reg16";
8087 case DW_OP_reg17:
8088 return "DW_OP_reg17";
8089 case DW_OP_reg18:
8090 return "DW_OP_reg18";
8091 case DW_OP_reg19:
8092 return "DW_OP_reg19";
8093 case DW_OP_reg20:
8094 return "DW_OP_reg20";
8095 case DW_OP_reg21:
8096 return "DW_OP_reg21";
8097 case DW_OP_reg22:
8098 return "DW_OP_reg22";
8099 case DW_OP_reg23:
8100 return "DW_OP_reg23";
8101 case DW_OP_reg24:
8102 return "DW_OP_reg24";
8103 case DW_OP_reg25:
8104 return "DW_OP_reg25";
8105 case DW_OP_reg26:
8106 return "DW_OP_reg26";
8107 case DW_OP_reg27:
8108 return "DW_OP_reg27";
8109 case DW_OP_reg28:
8110 return "DW_OP_reg28";
8111 case DW_OP_reg29:
8112 return "DW_OP_reg29";
8113 case DW_OP_reg30:
8114 return "DW_OP_reg30";
8115 case DW_OP_reg31:
8116 return "DW_OP_reg31";
8117 case DW_OP_breg0:
8118 return "DW_OP_breg0";
8119 case DW_OP_breg1:
8120 return "DW_OP_breg1";
8121 case DW_OP_breg2:
8122 return "DW_OP_breg2";
8123 case DW_OP_breg3:
8124 return "DW_OP_breg3";
8125 case DW_OP_breg4:
8126 return "DW_OP_breg4";
8127 case DW_OP_breg5:
8128 return "DW_OP_breg5";
8129 case DW_OP_breg6:
8130 return "DW_OP_breg6";
8131 case DW_OP_breg7:
8132 return "DW_OP_breg7";
8133 case DW_OP_breg8:
8134 return "DW_OP_breg8";
8135 case DW_OP_breg9:
8136 return "DW_OP_breg9";
8137 case DW_OP_breg10:
8138 return "DW_OP_breg10";
8139 case DW_OP_breg11:
8140 return "DW_OP_breg11";
8141 case DW_OP_breg12:
8142 return "DW_OP_breg12";
8143 case DW_OP_breg13:
8144 return "DW_OP_breg13";
8145 case DW_OP_breg14:
8146 return "DW_OP_breg14";
8147 case DW_OP_breg15:
8148 return "DW_OP_breg15";
8149 case DW_OP_breg16:
8150 return "DW_OP_breg16";
8151 case DW_OP_breg17:
8152 return "DW_OP_breg17";
8153 case DW_OP_breg18:
8154 return "DW_OP_breg18";
8155 case DW_OP_breg19:
8156 return "DW_OP_breg19";
8157 case DW_OP_breg20:
8158 return "DW_OP_breg20";
8159 case DW_OP_breg21:
8160 return "DW_OP_breg21";
8161 case DW_OP_breg22:
8162 return "DW_OP_breg22";
8163 case DW_OP_breg23:
8164 return "DW_OP_breg23";
8165 case DW_OP_breg24:
8166 return "DW_OP_breg24";
8167 case DW_OP_breg25:
8168 return "DW_OP_breg25";
8169 case DW_OP_breg26:
8170 return "DW_OP_breg26";
8171 case DW_OP_breg27:
8172 return "DW_OP_breg27";
8173 case DW_OP_breg28:
8174 return "DW_OP_breg28";
8175 case DW_OP_breg29:
8176 return "DW_OP_breg29";
8177 case DW_OP_breg30:
8178 return "DW_OP_breg30";
8179 case DW_OP_breg31:
8180 return "DW_OP_breg31";
8181 case DW_OP_regx:
8182 return "DW_OP_regx";
8183 case DW_OP_fbreg:
8184 return "DW_OP_fbreg";
8185 case DW_OP_bregx:
8186 return "DW_OP_bregx";
8187 case DW_OP_piece:
8188 return "DW_OP_piece";
8189 case DW_OP_deref_size:
8190 return "DW_OP_deref_size";
8191 case DW_OP_xderef_size:
8192 return "DW_OP_xderef_size";
8193 case DW_OP_nop:
8194 return "DW_OP_nop";
8195 /* DWARF 3 extensions. */
8196 case DW_OP_push_object_address:
8197 return "DW_OP_push_object_address";
8198 case DW_OP_call2:
8199 return "DW_OP_call2";
8200 case DW_OP_call4:
8201 return "DW_OP_call4";
8202 case DW_OP_call_ref:
8203 return "DW_OP_call_ref";
8204 /* GNU extensions. */
8205 case DW_OP_GNU_push_tls_address:
8206 return "DW_OP_GNU_push_tls_address";
8207 default:
8208 return "OP_<unknown>";
8209 }
8210 }
8211
8212 static char *
8213 dwarf_bool_name (unsigned mybool)
8214 {
8215 if (mybool)
8216 return "TRUE";
8217 else
8218 return "FALSE";
8219 }
8220
8221 /* Convert a DWARF type code into its string name. */
8222
8223 static char *
8224 dwarf_type_encoding_name (unsigned enc)
8225 {
8226 switch (enc)
8227 {
8228 case DW_ATE_address:
8229 return "DW_ATE_address";
8230 case DW_ATE_boolean:
8231 return "DW_ATE_boolean";
8232 case DW_ATE_complex_float:
8233 return "DW_ATE_complex_float";
8234 case DW_ATE_float:
8235 return "DW_ATE_float";
8236 case DW_ATE_signed:
8237 return "DW_ATE_signed";
8238 case DW_ATE_signed_char:
8239 return "DW_ATE_signed_char";
8240 case DW_ATE_unsigned:
8241 return "DW_ATE_unsigned";
8242 case DW_ATE_unsigned_char:
8243 return "DW_ATE_unsigned_char";
8244 case DW_ATE_imaginary_float:
8245 return "DW_ATE_imaginary_float";
8246 default:
8247 return "DW_ATE_<unknown>";
8248 }
8249 }
8250
8251 /* Convert a DWARF call frame info operation to its string name. */
8252
8253 #if 0
8254 static char *
8255 dwarf_cfi_name (unsigned cfi_opc)
8256 {
8257 switch (cfi_opc)
8258 {
8259 case DW_CFA_advance_loc:
8260 return "DW_CFA_advance_loc";
8261 case DW_CFA_offset:
8262 return "DW_CFA_offset";
8263 case DW_CFA_restore:
8264 return "DW_CFA_restore";
8265 case DW_CFA_nop:
8266 return "DW_CFA_nop";
8267 case DW_CFA_set_loc:
8268 return "DW_CFA_set_loc";
8269 case DW_CFA_advance_loc1:
8270 return "DW_CFA_advance_loc1";
8271 case DW_CFA_advance_loc2:
8272 return "DW_CFA_advance_loc2";
8273 case DW_CFA_advance_loc4:
8274 return "DW_CFA_advance_loc4";
8275 case DW_CFA_offset_extended:
8276 return "DW_CFA_offset_extended";
8277 case DW_CFA_restore_extended:
8278 return "DW_CFA_restore_extended";
8279 case DW_CFA_undefined:
8280 return "DW_CFA_undefined";
8281 case DW_CFA_same_value:
8282 return "DW_CFA_same_value";
8283 case DW_CFA_register:
8284 return "DW_CFA_register";
8285 case DW_CFA_remember_state:
8286 return "DW_CFA_remember_state";
8287 case DW_CFA_restore_state:
8288 return "DW_CFA_restore_state";
8289 case DW_CFA_def_cfa:
8290 return "DW_CFA_def_cfa";
8291 case DW_CFA_def_cfa_register:
8292 return "DW_CFA_def_cfa_register";
8293 case DW_CFA_def_cfa_offset:
8294 return "DW_CFA_def_cfa_offset";
8295
8296 /* DWARF 3 */
8297 case DW_CFA_def_cfa_expression:
8298 return "DW_CFA_def_cfa_expression";
8299 case DW_CFA_expression:
8300 return "DW_CFA_expression";
8301 case DW_CFA_offset_extended_sf:
8302 return "DW_CFA_offset_extended_sf";
8303 case DW_CFA_def_cfa_sf:
8304 return "DW_CFA_def_cfa_sf";
8305 case DW_CFA_def_cfa_offset_sf:
8306 return "DW_CFA_def_cfa_offset_sf";
8307
8308 /* SGI/MIPS specific */
8309 case DW_CFA_MIPS_advance_loc8:
8310 return "DW_CFA_MIPS_advance_loc8";
8311
8312 /* GNU extensions */
8313 case DW_CFA_GNU_window_save:
8314 return "DW_CFA_GNU_window_save";
8315 case DW_CFA_GNU_args_size:
8316 return "DW_CFA_GNU_args_size";
8317 case DW_CFA_GNU_negative_offset_extended:
8318 return "DW_CFA_GNU_negative_offset_extended";
8319
8320 default:
8321 return "DW_CFA_<unknown>";
8322 }
8323 }
8324 #endif
8325
8326 static void
8327 dump_die (struct die_info *die)
8328 {
8329 unsigned int i;
8330
8331 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8332 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8333 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8334 dwarf_bool_name (die->child != NULL));
8335
8336 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8337 for (i = 0; i < die->num_attrs; ++i)
8338 {
8339 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8340 dwarf_attr_name (die->attrs[i].name),
8341 dwarf_form_name (die->attrs[i].form));
8342 switch (die->attrs[i].form)
8343 {
8344 case DW_FORM_ref_addr:
8345 case DW_FORM_addr:
8346 fprintf_unfiltered (gdb_stderr, "address: ");
8347 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8348 break;
8349 case DW_FORM_block2:
8350 case DW_FORM_block4:
8351 case DW_FORM_block:
8352 case DW_FORM_block1:
8353 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8354 break;
8355 case DW_FORM_ref1:
8356 case DW_FORM_ref2:
8357 case DW_FORM_ref4:
8358 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8359 (long) (DW_ADDR (&die->attrs[i])));
8360 break;
8361 case DW_FORM_data1:
8362 case DW_FORM_data2:
8363 case DW_FORM_data4:
8364 case DW_FORM_data8:
8365 case DW_FORM_udata:
8366 case DW_FORM_sdata:
8367 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8368 break;
8369 case DW_FORM_string:
8370 case DW_FORM_strp:
8371 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8372 DW_STRING (&die->attrs[i])
8373 ? DW_STRING (&die->attrs[i]) : "");
8374 break;
8375 case DW_FORM_flag:
8376 if (DW_UNSND (&die->attrs[i]))
8377 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8378 else
8379 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8380 break;
8381 case DW_FORM_indirect:
8382 /* the reader will have reduced the indirect form to
8383 the "base form" so this form should not occur */
8384 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8385 break;
8386 default:
8387 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8388 die->attrs[i].form);
8389 }
8390 fprintf_unfiltered (gdb_stderr, "\n");
8391 }
8392 }
8393
8394 static void
8395 dump_die_list (struct die_info *die)
8396 {
8397 while (die)
8398 {
8399 dump_die (die);
8400 if (die->child != NULL)
8401 dump_die_list (die->child);
8402 if (die->sibling != NULL)
8403 dump_die_list (die->sibling);
8404 }
8405 }
8406
8407 static void
8408 store_in_ref_table (unsigned int offset, struct die_info *die,
8409 struct dwarf2_cu *cu)
8410 {
8411 int h;
8412 struct die_info *old;
8413
8414 h = (offset % REF_HASH_SIZE);
8415 old = cu->die_ref_table[h];
8416 die->next_ref = old;
8417 cu->die_ref_table[h] = die;
8418 }
8419
8420 static unsigned int
8421 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8422 {
8423 unsigned int result = 0;
8424
8425 switch (attr->form)
8426 {
8427 case DW_FORM_ref_addr:
8428 case DW_FORM_ref1:
8429 case DW_FORM_ref2:
8430 case DW_FORM_ref4:
8431 case DW_FORM_ref8:
8432 case DW_FORM_ref_udata:
8433 result = DW_ADDR (attr);
8434 break;
8435 default:
8436 complaint (&symfile_complaints,
8437 _("unsupported die ref attribute form: '%s'"),
8438 dwarf_form_name (attr->form));
8439 }
8440 return result;
8441 }
8442
8443 /* Return the constant value held by the given attribute. Return -1
8444 if the value held by the attribute is not constant. */
8445
8446 static int
8447 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8448 {
8449 if (attr->form == DW_FORM_sdata)
8450 return DW_SND (attr);
8451 else if (attr->form == DW_FORM_udata
8452 || attr->form == DW_FORM_data1
8453 || attr->form == DW_FORM_data2
8454 || attr->form == DW_FORM_data4
8455 || attr->form == DW_FORM_data8)
8456 return DW_UNSND (attr);
8457 else
8458 {
8459 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8460 dwarf_form_name (attr->form));
8461 return default_value;
8462 }
8463 }
8464
8465 static struct die_info *
8466 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8467 struct dwarf2_cu *cu)
8468 {
8469 struct die_info *die;
8470 unsigned int offset;
8471 int h;
8472 struct die_info temp_die;
8473 struct dwarf2_cu *target_cu;
8474
8475 offset = dwarf2_get_ref_die_offset (attr, cu);
8476
8477 if (DW_ADDR (attr) < cu->header.offset
8478 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8479 {
8480 struct dwarf2_per_cu_data *per_cu;
8481 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8482 cu->objfile);
8483 target_cu = per_cu->cu;
8484 }
8485 else
8486 target_cu = cu;
8487
8488 h = (offset % REF_HASH_SIZE);
8489 die = target_cu->die_ref_table[h];
8490 while (die)
8491 {
8492 if (die->offset == offset)
8493 return die;
8494 die = die->next_ref;
8495 }
8496
8497 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8498 "at 0x%lx [in module %s]"),
8499 (long) src_die->offset, (long) offset, cu->objfile->name);
8500
8501 return NULL;
8502 }
8503
8504 static struct type *
8505 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8506 struct dwarf2_cu *cu)
8507 {
8508 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8509 {
8510 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8511 typeid, objfile->name);
8512 }
8513
8514 /* Look for this particular type in the fundamental type vector. If
8515 one is not found, create and install one appropriate for the
8516 current language and the current target machine. */
8517
8518 if (cu->ftypes[typeid] == NULL)
8519 {
8520 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8521 }
8522
8523 return (cu->ftypes[typeid]);
8524 }
8525
8526 /* Decode simple location descriptions.
8527 Given a pointer to a dwarf block that defines a location, compute
8528 the location and return the value.
8529
8530 NOTE drow/2003-11-18: This function is called in two situations
8531 now: for the address of static or global variables (partial symbols
8532 only) and for offsets into structures which are expected to be
8533 (more or less) constant. The partial symbol case should go away,
8534 and only the constant case should remain. That will let this
8535 function complain more accurately. A few special modes are allowed
8536 without complaint for global variables (for instance, global
8537 register values and thread-local values).
8538
8539 A location description containing no operations indicates that the
8540 object is optimized out. The return value is 0 for that case.
8541 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8542 callers will only want a very basic result and this can become a
8543 complaint.
8544
8545 When the result is a register number, the global isreg flag is set,
8546 otherwise it is cleared.
8547
8548 Note that stack[0] is unused except as a default error return.
8549 Note that stack overflow is not yet handled. */
8550
8551 static CORE_ADDR
8552 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8553 {
8554 struct objfile *objfile = cu->objfile;
8555 struct comp_unit_head *cu_header = &cu->header;
8556 int i;
8557 int size = blk->size;
8558 char *data = blk->data;
8559 CORE_ADDR stack[64];
8560 int stacki;
8561 unsigned int bytes_read, unsnd;
8562 unsigned char op;
8563
8564 i = 0;
8565 stacki = 0;
8566 stack[stacki] = 0;
8567 isreg = 0;
8568
8569 while (i < size)
8570 {
8571 op = data[i++];
8572 switch (op)
8573 {
8574 case DW_OP_lit0:
8575 case DW_OP_lit1:
8576 case DW_OP_lit2:
8577 case DW_OP_lit3:
8578 case DW_OP_lit4:
8579 case DW_OP_lit5:
8580 case DW_OP_lit6:
8581 case DW_OP_lit7:
8582 case DW_OP_lit8:
8583 case DW_OP_lit9:
8584 case DW_OP_lit10:
8585 case DW_OP_lit11:
8586 case DW_OP_lit12:
8587 case DW_OP_lit13:
8588 case DW_OP_lit14:
8589 case DW_OP_lit15:
8590 case DW_OP_lit16:
8591 case DW_OP_lit17:
8592 case DW_OP_lit18:
8593 case DW_OP_lit19:
8594 case DW_OP_lit20:
8595 case DW_OP_lit21:
8596 case DW_OP_lit22:
8597 case DW_OP_lit23:
8598 case DW_OP_lit24:
8599 case DW_OP_lit25:
8600 case DW_OP_lit26:
8601 case DW_OP_lit27:
8602 case DW_OP_lit28:
8603 case DW_OP_lit29:
8604 case DW_OP_lit30:
8605 case DW_OP_lit31:
8606 stack[++stacki] = op - DW_OP_lit0;
8607 break;
8608
8609 case DW_OP_reg0:
8610 case DW_OP_reg1:
8611 case DW_OP_reg2:
8612 case DW_OP_reg3:
8613 case DW_OP_reg4:
8614 case DW_OP_reg5:
8615 case DW_OP_reg6:
8616 case DW_OP_reg7:
8617 case DW_OP_reg8:
8618 case DW_OP_reg9:
8619 case DW_OP_reg10:
8620 case DW_OP_reg11:
8621 case DW_OP_reg12:
8622 case DW_OP_reg13:
8623 case DW_OP_reg14:
8624 case DW_OP_reg15:
8625 case DW_OP_reg16:
8626 case DW_OP_reg17:
8627 case DW_OP_reg18:
8628 case DW_OP_reg19:
8629 case DW_OP_reg20:
8630 case DW_OP_reg21:
8631 case DW_OP_reg22:
8632 case DW_OP_reg23:
8633 case DW_OP_reg24:
8634 case DW_OP_reg25:
8635 case DW_OP_reg26:
8636 case DW_OP_reg27:
8637 case DW_OP_reg28:
8638 case DW_OP_reg29:
8639 case DW_OP_reg30:
8640 case DW_OP_reg31:
8641 isreg = 1;
8642 stack[++stacki] = op - DW_OP_reg0;
8643 if (i < size)
8644 dwarf2_complex_location_expr_complaint ();
8645 break;
8646
8647 case DW_OP_regx:
8648 isreg = 1;
8649 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8650 i += bytes_read;
8651 stack[++stacki] = unsnd;
8652 if (i < size)
8653 dwarf2_complex_location_expr_complaint ();
8654 break;
8655
8656 case DW_OP_addr:
8657 stack[++stacki] = read_address (objfile->obfd, &data[i],
8658 cu, &bytes_read);
8659 i += bytes_read;
8660 break;
8661
8662 case DW_OP_const1u:
8663 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8664 i += 1;
8665 break;
8666
8667 case DW_OP_const1s:
8668 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8669 i += 1;
8670 break;
8671
8672 case DW_OP_const2u:
8673 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8674 i += 2;
8675 break;
8676
8677 case DW_OP_const2s:
8678 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8679 i += 2;
8680 break;
8681
8682 case DW_OP_const4u:
8683 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8684 i += 4;
8685 break;
8686
8687 case DW_OP_const4s:
8688 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8689 i += 4;
8690 break;
8691
8692 case DW_OP_constu:
8693 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8694 &bytes_read);
8695 i += bytes_read;
8696 break;
8697
8698 case DW_OP_consts:
8699 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8700 i += bytes_read;
8701 break;
8702
8703 case DW_OP_dup:
8704 stack[stacki + 1] = stack[stacki];
8705 stacki++;
8706 break;
8707
8708 case DW_OP_plus:
8709 stack[stacki - 1] += stack[stacki];
8710 stacki--;
8711 break;
8712
8713 case DW_OP_plus_uconst:
8714 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8715 i += bytes_read;
8716 break;
8717
8718 case DW_OP_minus:
8719 stack[stacki - 1] -= stack[stacki];
8720 stacki--;
8721 break;
8722
8723 case DW_OP_deref:
8724 /* If we're not the last op, then we definitely can't encode
8725 this using GDB's address_class enum. This is valid for partial
8726 global symbols, although the variable's address will be bogus
8727 in the psymtab. */
8728 if (i < size)
8729 dwarf2_complex_location_expr_complaint ();
8730 break;
8731
8732 case DW_OP_GNU_push_tls_address:
8733 /* The top of the stack has the offset from the beginning
8734 of the thread control block at which the variable is located. */
8735 /* Nothing should follow this operator, so the top of stack would
8736 be returned. */
8737 /* This is valid for partial global symbols, but the variable's
8738 address will be bogus in the psymtab. */
8739 if (i < size)
8740 dwarf2_complex_location_expr_complaint ();
8741 break;
8742
8743 default:
8744 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8745 dwarf_stack_op_name (op));
8746 return (stack[stacki]);
8747 }
8748 }
8749 return (stack[stacki]);
8750 }
8751
8752 /* memory allocation interface */
8753
8754 static struct dwarf_block *
8755 dwarf_alloc_block (struct dwarf2_cu *cu)
8756 {
8757 struct dwarf_block *blk;
8758
8759 blk = (struct dwarf_block *)
8760 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8761 return (blk);
8762 }
8763
8764 static struct abbrev_info *
8765 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8766 {
8767 struct abbrev_info *abbrev;
8768
8769 abbrev = (struct abbrev_info *)
8770 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8771 memset (abbrev, 0, sizeof (struct abbrev_info));
8772 return (abbrev);
8773 }
8774
8775 static struct die_info *
8776 dwarf_alloc_die (void)
8777 {
8778 struct die_info *die;
8779
8780 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8781 memset (die, 0, sizeof (struct die_info));
8782 return (die);
8783 }
8784
8785 \f
8786 /* Macro support. */
8787
8788
8789 /* Return the full name of file number I in *LH's file name table.
8790 Use COMP_DIR as the name of the current directory of the
8791 compilation. The result is allocated using xmalloc; the caller is
8792 responsible for freeing it. */
8793 static char *
8794 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8795 {
8796 struct file_entry *fe = &lh->file_names[file - 1];
8797
8798 if (IS_ABSOLUTE_PATH (fe->name))
8799 return xstrdup (fe->name);
8800 else
8801 {
8802 const char *dir;
8803 int dir_len;
8804 char *full_name;
8805
8806 if (fe->dir_index)
8807 dir = lh->include_dirs[fe->dir_index - 1];
8808 else
8809 dir = comp_dir;
8810
8811 if (dir)
8812 {
8813 dir_len = strlen (dir);
8814 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8815 strcpy (full_name, dir);
8816 full_name[dir_len] = '/';
8817 strcpy (full_name + dir_len + 1, fe->name);
8818 return full_name;
8819 }
8820 else
8821 return xstrdup (fe->name);
8822 }
8823 }
8824
8825
8826 static struct macro_source_file *
8827 macro_start_file (int file, int line,
8828 struct macro_source_file *current_file,
8829 const char *comp_dir,
8830 struct line_header *lh, struct objfile *objfile)
8831 {
8832 /* The full name of this source file. */
8833 char *full_name = file_full_name (file, lh, comp_dir);
8834
8835 /* We don't create a macro table for this compilation unit
8836 at all until we actually get a filename. */
8837 if (! pending_macros)
8838 pending_macros = new_macro_table (&objfile->objfile_obstack,
8839 objfile->macro_cache);
8840
8841 if (! current_file)
8842 /* If we have no current file, then this must be the start_file
8843 directive for the compilation unit's main source file. */
8844 current_file = macro_set_main (pending_macros, full_name);
8845 else
8846 current_file = macro_include (current_file, line, full_name);
8847
8848 xfree (full_name);
8849
8850 return current_file;
8851 }
8852
8853
8854 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8855 followed by a null byte. */
8856 static char *
8857 copy_string (const char *buf, int len)
8858 {
8859 char *s = xmalloc (len + 1);
8860 memcpy (s, buf, len);
8861 s[len] = '\0';
8862
8863 return s;
8864 }
8865
8866
8867 static const char *
8868 consume_improper_spaces (const char *p, const char *body)
8869 {
8870 if (*p == ' ')
8871 {
8872 complaint (&symfile_complaints,
8873 _("macro definition contains spaces in formal argument list:\n`%s'"),
8874 body);
8875
8876 while (*p == ' ')
8877 p++;
8878 }
8879
8880 return p;
8881 }
8882
8883
8884 static void
8885 parse_macro_definition (struct macro_source_file *file, int line,
8886 const char *body)
8887 {
8888 const char *p;
8889
8890 /* The body string takes one of two forms. For object-like macro
8891 definitions, it should be:
8892
8893 <macro name> " " <definition>
8894
8895 For function-like macro definitions, it should be:
8896
8897 <macro name> "() " <definition>
8898 or
8899 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8900
8901 Spaces may appear only where explicitly indicated, and in the
8902 <definition>.
8903
8904 The Dwarf 2 spec says that an object-like macro's name is always
8905 followed by a space, but versions of GCC around March 2002 omit
8906 the space when the macro's definition is the empty string.
8907
8908 The Dwarf 2 spec says that there should be no spaces between the
8909 formal arguments in a function-like macro's formal argument list,
8910 but versions of GCC around March 2002 include spaces after the
8911 commas. */
8912
8913
8914 /* Find the extent of the macro name. The macro name is terminated
8915 by either a space or null character (for an object-like macro) or
8916 an opening paren (for a function-like macro). */
8917 for (p = body; *p; p++)
8918 if (*p == ' ' || *p == '(')
8919 break;
8920
8921 if (*p == ' ' || *p == '\0')
8922 {
8923 /* It's an object-like macro. */
8924 int name_len = p - body;
8925 char *name = copy_string (body, name_len);
8926 const char *replacement;
8927
8928 if (*p == ' ')
8929 replacement = body + name_len + 1;
8930 else
8931 {
8932 dwarf2_macro_malformed_definition_complaint (body);
8933 replacement = body + name_len;
8934 }
8935
8936 macro_define_object (file, line, name, replacement);
8937
8938 xfree (name);
8939 }
8940 else if (*p == '(')
8941 {
8942 /* It's a function-like macro. */
8943 char *name = copy_string (body, p - body);
8944 int argc = 0;
8945 int argv_size = 1;
8946 char **argv = xmalloc (argv_size * sizeof (*argv));
8947
8948 p++;
8949
8950 p = consume_improper_spaces (p, body);
8951
8952 /* Parse the formal argument list. */
8953 while (*p && *p != ')')
8954 {
8955 /* Find the extent of the current argument name. */
8956 const char *arg_start = p;
8957
8958 while (*p && *p != ',' && *p != ')' && *p != ' ')
8959 p++;
8960
8961 if (! *p || p == arg_start)
8962 dwarf2_macro_malformed_definition_complaint (body);
8963 else
8964 {
8965 /* Make sure argv has room for the new argument. */
8966 if (argc >= argv_size)
8967 {
8968 argv_size *= 2;
8969 argv = xrealloc (argv, argv_size * sizeof (*argv));
8970 }
8971
8972 argv[argc++] = copy_string (arg_start, p - arg_start);
8973 }
8974
8975 p = consume_improper_spaces (p, body);
8976
8977 /* Consume the comma, if present. */
8978 if (*p == ',')
8979 {
8980 p++;
8981
8982 p = consume_improper_spaces (p, body);
8983 }
8984 }
8985
8986 if (*p == ')')
8987 {
8988 p++;
8989
8990 if (*p == ' ')
8991 /* Perfectly formed definition, no complaints. */
8992 macro_define_function (file, line, name,
8993 argc, (const char **) argv,
8994 p + 1);
8995 else if (*p == '\0')
8996 {
8997 /* Complain, but do define it. */
8998 dwarf2_macro_malformed_definition_complaint (body);
8999 macro_define_function (file, line, name,
9000 argc, (const char **) argv,
9001 p);
9002 }
9003 else
9004 /* Just complain. */
9005 dwarf2_macro_malformed_definition_complaint (body);
9006 }
9007 else
9008 /* Just complain. */
9009 dwarf2_macro_malformed_definition_complaint (body);
9010
9011 xfree (name);
9012 {
9013 int i;
9014
9015 for (i = 0; i < argc; i++)
9016 xfree (argv[i]);
9017 }
9018 xfree (argv);
9019 }
9020 else
9021 dwarf2_macro_malformed_definition_complaint (body);
9022 }
9023
9024
9025 static void
9026 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9027 char *comp_dir, bfd *abfd,
9028 struct dwarf2_cu *cu)
9029 {
9030 char *mac_ptr, *mac_end;
9031 struct macro_source_file *current_file = 0;
9032
9033 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9034 {
9035 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9036 return;
9037 }
9038
9039 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9040 mac_end = dwarf2_per_objfile->macinfo_buffer
9041 + dwarf2_per_objfile->macinfo_size;
9042
9043 for (;;)
9044 {
9045 enum dwarf_macinfo_record_type macinfo_type;
9046
9047 /* Do we at least have room for a macinfo type byte? */
9048 if (mac_ptr >= mac_end)
9049 {
9050 dwarf2_macros_too_long_complaint ();
9051 return;
9052 }
9053
9054 macinfo_type = read_1_byte (abfd, mac_ptr);
9055 mac_ptr++;
9056
9057 switch (macinfo_type)
9058 {
9059 /* A zero macinfo type indicates the end of the macro
9060 information. */
9061 case 0:
9062 return;
9063
9064 case DW_MACINFO_define:
9065 case DW_MACINFO_undef:
9066 {
9067 int bytes_read;
9068 int line;
9069 char *body;
9070
9071 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9072 mac_ptr += bytes_read;
9073 body = read_string (abfd, mac_ptr, &bytes_read);
9074 mac_ptr += bytes_read;
9075
9076 if (! current_file)
9077 complaint (&symfile_complaints,
9078 _("debug info gives macro %s outside of any file: %s"),
9079 macinfo_type ==
9080 DW_MACINFO_define ? "definition" : macinfo_type ==
9081 DW_MACINFO_undef ? "undefinition" :
9082 "something-or-other", body);
9083 else
9084 {
9085 if (macinfo_type == DW_MACINFO_define)
9086 parse_macro_definition (current_file, line, body);
9087 else if (macinfo_type == DW_MACINFO_undef)
9088 macro_undef (current_file, line, body);
9089 }
9090 }
9091 break;
9092
9093 case DW_MACINFO_start_file:
9094 {
9095 int bytes_read;
9096 int line, file;
9097
9098 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9099 mac_ptr += bytes_read;
9100 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9101 mac_ptr += bytes_read;
9102
9103 current_file = macro_start_file (file, line,
9104 current_file, comp_dir,
9105 lh, cu->objfile);
9106 }
9107 break;
9108
9109 case DW_MACINFO_end_file:
9110 if (! current_file)
9111 complaint (&symfile_complaints,
9112 _("macro debug info has an unmatched `close_file' directive"));
9113 else
9114 {
9115 current_file = current_file->included_by;
9116 if (! current_file)
9117 {
9118 enum dwarf_macinfo_record_type next_type;
9119
9120 /* GCC circa March 2002 doesn't produce the zero
9121 type byte marking the end of the compilation
9122 unit. Complain if it's not there, but exit no
9123 matter what. */
9124
9125 /* Do we at least have room for a macinfo type byte? */
9126 if (mac_ptr >= mac_end)
9127 {
9128 dwarf2_macros_too_long_complaint ();
9129 return;
9130 }
9131
9132 /* We don't increment mac_ptr here, so this is just
9133 a look-ahead. */
9134 next_type = read_1_byte (abfd, mac_ptr);
9135 if (next_type != 0)
9136 complaint (&symfile_complaints,
9137 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9138
9139 return;
9140 }
9141 }
9142 break;
9143
9144 case DW_MACINFO_vendor_ext:
9145 {
9146 int bytes_read;
9147 int constant;
9148 char *string;
9149
9150 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9151 mac_ptr += bytes_read;
9152 string = read_string (abfd, mac_ptr, &bytes_read);
9153 mac_ptr += bytes_read;
9154
9155 /* We don't recognize any vendor extensions. */
9156 }
9157 break;
9158 }
9159 }
9160 }
9161
9162 /* Check if the attribute's form is a DW_FORM_block*
9163 if so return true else false. */
9164 static int
9165 attr_form_is_block (struct attribute *attr)
9166 {
9167 return (attr == NULL ? 0 :
9168 attr->form == DW_FORM_block1
9169 || attr->form == DW_FORM_block2
9170 || attr->form == DW_FORM_block4
9171 || attr->form == DW_FORM_block);
9172 }
9173
9174 static void
9175 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9176 struct dwarf2_cu *cu)
9177 {
9178 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9179 {
9180 struct dwarf2_loclist_baton *baton;
9181
9182 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9183 sizeof (struct dwarf2_loclist_baton));
9184 baton->objfile = cu->objfile;
9185
9186 /* We don't know how long the location list is, but make sure we
9187 don't run off the edge of the section. */
9188 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9189 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9190 baton->base_address = cu->header.base_address;
9191 if (cu->header.base_known == 0)
9192 complaint (&symfile_complaints,
9193 _("Location list used without specifying the CU base address."));
9194
9195 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9196 SYMBOL_LOCATION_BATON (sym) = baton;
9197 }
9198 else
9199 {
9200 struct dwarf2_locexpr_baton *baton;
9201
9202 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9203 sizeof (struct dwarf2_locexpr_baton));
9204 baton->objfile = cu->objfile;
9205
9206 if (attr_form_is_block (attr))
9207 {
9208 /* Note that we're just copying the block's data pointer
9209 here, not the actual data. We're still pointing into the
9210 info_buffer for SYM's objfile; right now we never release
9211 that buffer, but when we do clean up properly this may
9212 need to change. */
9213 baton->size = DW_BLOCK (attr)->size;
9214 baton->data = DW_BLOCK (attr)->data;
9215 }
9216 else
9217 {
9218 dwarf2_invalid_attrib_class_complaint ("location description",
9219 SYMBOL_NATURAL_NAME (sym));
9220 baton->size = 0;
9221 baton->data = NULL;
9222 }
9223
9224 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9225 SYMBOL_LOCATION_BATON (sym) = baton;
9226 }
9227 }
9228
9229 /* Locate the compilation unit from CU's objfile which contains the
9230 DIE at OFFSET. Raises an error on failure. */
9231
9232 static struct dwarf2_per_cu_data *
9233 dwarf2_find_containing_comp_unit (unsigned long offset,
9234 struct objfile *objfile)
9235 {
9236 struct dwarf2_per_cu_data *this_cu;
9237 int low, high;
9238
9239 low = 0;
9240 high = dwarf2_per_objfile->n_comp_units - 1;
9241 while (high > low)
9242 {
9243 int mid = low + (high - low) / 2;
9244 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9245 high = mid;
9246 else
9247 low = mid + 1;
9248 }
9249 gdb_assert (low == high);
9250 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9251 {
9252 if (low == 0)
9253 error (_("Dwarf Error: could not find partial DIE containing "
9254 "offset 0x%lx [in module %s]"),
9255 (long) offset, bfd_get_filename (objfile->obfd));
9256
9257 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9258 return dwarf2_per_objfile->all_comp_units[low-1];
9259 }
9260 else
9261 {
9262 this_cu = dwarf2_per_objfile->all_comp_units[low];
9263 if (low == dwarf2_per_objfile->n_comp_units - 1
9264 && offset >= this_cu->offset + this_cu->length)
9265 error (_("invalid dwarf2 offset %ld"), offset);
9266 gdb_assert (offset < this_cu->offset + this_cu->length);
9267 return this_cu;
9268 }
9269 }
9270
9271 /* Locate the compilation unit from OBJFILE which is located at exactly
9272 OFFSET. Raises an error on failure. */
9273
9274 static struct dwarf2_per_cu_data *
9275 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9276 {
9277 struct dwarf2_per_cu_data *this_cu;
9278 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9279 if (this_cu->offset != offset)
9280 error (_("no compilation unit with offset %ld."), offset);
9281 return this_cu;
9282 }
9283
9284 /* Release one cached compilation unit, CU. We unlink it from the tree
9285 of compilation units, but we don't remove it from the read_in_chain;
9286 the caller is responsible for that. */
9287
9288 static void
9289 free_one_comp_unit (void *data)
9290 {
9291 struct dwarf2_cu *cu = data;
9292
9293 if (cu->per_cu != NULL)
9294 cu->per_cu->cu = NULL;
9295 cu->per_cu = NULL;
9296
9297 obstack_free (&cu->comp_unit_obstack, NULL);
9298 if (cu->dies)
9299 free_die_list (cu->dies);
9300
9301 xfree (cu);
9302 }
9303
9304 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9305 when we're finished with it. We can't free the pointer itself, but be
9306 sure to unlink it from the cache. Also release any associated storage
9307 and perform cache maintenance.
9308
9309 Only used during partial symbol parsing. */
9310
9311 static void
9312 free_stack_comp_unit (void *data)
9313 {
9314 struct dwarf2_cu *cu = data;
9315
9316 obstack_free (&cu->comp_unit_obstack, NULL);
9317 cu->partial_dies = NULL;
9318
9319 if (cu->per_cu != NULL)
9320 {
9321 /* This compilation unit is on the stack in our caller, so we
9322 should not xfree it. Just unlink it. */
9323 cu->per_cu->cu = NULL;
9324 cu->per_cu = NULL;
9325
9326 /* If we had a per-cu pointer, then we may have other compilation
9327 units loaded, so age them now. */
9328 age_cached_comp_units ();
9329 }
9330 }
9331
9332 /* Free all cached compilation units. */
9333
9334 static void
9335 free_cached_comp_units (void *data)
9336 {
9337 struct dwarf2_per_cu_data *per_cu, **last_chain;
9338
9339 per_cu = dwarf2_per_objfile->read_in_chain;
9340 last_chain = &dwarf2_per_objfile->read_in_chain;
9341 while (per_cu != NULL)
9342 {
9343 struct dwarf2_per_cu_data *next_cu;
9344
9345 next_cu = per_cu->cu->read_in_chain;
9346
9347 free_one_comp_unit (per_cu->cu);
9348 *last_chain = next_cu;
9349
9350 per_cu = next_cu;
9351 }
9352 }
9353
9354 /* Increase the age counter on each cached compilation unit, and free
9355 any that are too old. */
9356
9357 static void
9358 age_cached_comp_units (void)
9359 {
9360 struct dwarf2_per_cu_data *per_cu, **last_chain;
9361
9362 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9363 per_cu = dwarf2_per_objfile->read_in_chain;
9364 while (per_cu != NULL)
9365 {
9366 per_cu->cu->last_used ++;
9367 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9368 dwarf2_mark (per_cu->cu);
9369 per_cu = per_cu->cu->read_in_chain;
9370 }
9371
9372 per_cu = dwarf2_per_objfile->read_in_chain;
9373 last_chain = &dwarf2_per_objfile->read_in_chain;
9374 while (per_cu != NULL)
9375 {
9376 struct dwarf2_per_cu_data *next_cu;
9377
9378 next_cu = per_cu->cu->read_in_chain;
9379
9380 if (!per_cu->cu->mark)
9381 {
9382 free_one_comp_unit (per_cu->cu);
9383 *last_chain = next_cu;
9384 }
9385 else
9386 last_chain = &per_cu->cu->read_in_chain;
9387
9388 per_cu = next_cu;
9389 }
9390 }
9391
9392 /* Remove a single compilation unit from the cache. */
9393
9394 static void
9395 free_one_cached_comp_unit (void *target_cu)
9396 {
9397 struct dwarf2_per_cu_data *per_cu, **last_chain;
9398
9399 per_cu = dwarf2_per_objfile->read_in_chain;
9400 last_chain = &dwarf2_per_objfile->read_in_chain;
9401 while (per_cu != NULL)
9402 {
9403 struct dwarf2_per_cu_data *next_cu;
9404
9405 next_cu = per_cu->cu->read_in_chain;
9406
9407 if (per_cu->cu == target_cu)
9408 {
9409 free_one_comp_unit (per_cu->cu);
9410 *last_chain = next_cu;
9411 break;
9412 }
9413 else
9414 last_chain = &per_cu->cu->read_in_chain;
9415
9416 per_cu = next_cu;
9417 }
9418 }
9419
9420 /* A pair of DIE offset and GDB type pointer. We store these
9421 in a hash table separate from the DIEs, and preserve them
9422 when the DIEs are flushed out of cache. */
9423
9424 struct dwarf2_offset_and_type
9425 {
9426 unsigned int offset;
9427 struct type *type;
9428 };
9429
9430 /* Hash function for a dwarf2_offset_and_type. */
9431
9432 static hashval_t
9433 offset_and_type_hash (const void *item)
9434 {
9435 const struct dwarf2_offset_and_type *ofs = item;
9436 return ofs->offset;
9437 }
9438
9439 /* Equality function for a dwarf2_offset_and_type. */
9440
9441 static int
9442 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9443 {
9444 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9445 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9446 return ofs_lhs->offset == ofs_rhs->offset;
9447 }
9448
9449 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9450 table if necessary. */
9451
9452 static void
9453 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9454 {
9455 struct dwarf2_offset_and_type **slot, ofs;
9456
9457 die->type = type;
9458
9459 if (cu->per_cu == NULL)
9460 return;
9461
9462 if (cu->per_cu->type_hash == NULL)
9463 cu->per_cu->type_hash
9464 = htab_create_alloc_ex (cu->header.length / 24,
9465 offset_and_type_hash,
9466 offset_and_type_eq,
9467 NULL,
9468 &cu->objfile->objfile_obstack,
9469 hashtab_obstack_allocate,
9470 dummy_obstack_deallocate);
9471
9472 ofs.offset = die->offset;
9473 ofs.type = type;
9474 slot = (struct dwarf2_offset_and_type **)
9475 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9476 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9477 **slot = ofs;
9478 }
9479
9480 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9481 have a saved type. */
9482
9483 static struct type *
9484 get_die_type (struct die_info *die, htab_t type_hash)
9485 {
9486 struct dwarf2_offset_and_type *slot, ofs;
9487
9488 ofs.offset = die->offset;
9489 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9490 if (slot)
9491 return slot->type;
9492 else
9493 return NULL;
9494 }
9495
9496 /* Restore the types of the DIE tree starting at START_DIE from the hash
9497 table saved in CU. */
9498
9499 static void
9500 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9501 {
9502 struct die_info *die;
9503
9504 if (cu->per_cu->type_hash == NULL)
9505 return;
9506
9507 for (die = start_die; die != NULL; die = die->sibling)
9508 {
9509 die->type = get_die_type (die, cu->per_cu->type_hash);
9510 if (die->child != NULL)
9511 reset_die_and_siblings_types (die->child, cu);
9512 }
9513 }
9514
9515 /* Set the mark field in CU and in every other compilation unit in the
9516 cache that we must keep because we are keeping CU. */
9517
9518 /* Add a dependence relationship from CU to REF_PER_CU. */
9519
9520 static void
9521 dwarf2_add_dependence (struct dwarf2_cu *cu,
9522 struct dwarf2_per_cu_data *ref_per_cu)
9523 {
9524 void **slot;
9525
9526 if (cu->dependencies == NULL)
9527 cu->dependencies
9528 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9529 NULL, &cu->comp_unit_obstack,
9530 hashtab_obstack_allocate,
9531 dummy_obstack_deallocate);
9532
9533 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9534 if (*slot == NULL)
9535 *slot = ref_per_cu;
9536 }
9537
9538 /* Set the mark field in CU and in every other compilation unit in the
9539 cache that we must keep because we are keeping CU. */
9540
9541 static int
9542 dwarf2_mark_helper (void **slot, void *data)
9543 {
9544 struct dwarf2_per_cu_data *per_cu;
9545
9546 per_cu = (struct dwarf2_per_cu_data *) *slot;
9547 if (per_cu->cu->mark)
9548 return 1;
9549 per_cu->cu->mark = 1;
9550
9551 if (per_cu->cu->dependencies != NULL)
9552 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9553
9554 return 1;
9555 }
9556
9557 static void
9558 dwarf2_mark (struct dwarf2_cu *cu)
9559 {
9560 if (cu->mark)
9561 return;
9562 cu->mark = 1;
9563 if (cu->dependencies != NULL)
9564 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9565 }
9566
9567 static void
9568 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9569 {
9570 while (per_cu)
9571 {
9572 per_cu->cu->mark = 0;
9573 per_cu = per_cu->cu->read_in_chain;
9574 }
9575 }
9576
9577 /* Allocation function for the libiberty hash table which uses an
9578 obstack. */
9579
9580 static void *
9581 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9582 {
9583 unsigned int total = size * count;
9584 void *ptr = obstack_alloc ((struct obstack *) data, total);
9585 memset (ptr, 0, total);
9586 return ptr;
9587 }
9588
9589 /* Trivial deallocation function for the libiberty splay tree and hash
9590 table - don't deallocate anything. Rely on later deletion of the
9591 obstack. */
9592
9593 static void
9594 dummy_obstack_deallocate (void *object, void *data)
9595 {
9596 return;
9597 }
9598
9599 /* Trivial hash function for partial_die_info: the hash value of a DIE
9600 is its offset in .debug_info for this objfile. */
9601
9602 static hashval_t
9603 partial_die_hash (const void *item)
9604 {
9605 const struct partial_die_info *part_die = item;
9606 return part_die->offset;
9607 }
9608
9609 /* Trivial comparison function for partial_die_info structures: two DIEs
9610 are equal if they have the same offset. */
9611
9612 static int
9613 partial_die_eq (const void *item_lhs, const void *item_rhs)
9614 {
9615 const struct partial_die_info *part_die_lhs = item_lhs;
9616 const struct partial_die_info *part_die_rhs = item_rhs;
9617 return part_die_lhs->offset == part_die_rhs->offset;
9618 }
9619
9620 static struct cmd_list_element *set_dwarf2_cmdlist;
9621 static struct cmd_list_element *show_dwarf2_cmdlist;
9622
9623 static void
9624 set_dwarf2_cmd (char *args, int from_tty)
9625 {
9626 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9627 }
9628
9629 static void
9630 show_dwarf2_cmd (char *args, int from_tty)
9631 {
9632 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9633 }
9634
9635 void _initialize_dwarf2_read (void);
9636
9637 void
9638 _initialize_dwarf2_read (void)
9639 {
9640 dwarf2_objfile_data_key = register_objfile_data ();
9641
9642 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9643 Set DWARF 2 specific variables.\n\
9644 Configure DWARF 2 variables such as the cache size"),
9645 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9646 0/*allow-unknown*/, &maintenance_set_cmdlist);
9647
9648 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9649 Show DWARF 2 specific variables\n\
9650 Show DWARF 2 variables such as the cache size"),
9651 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9652 0/*allow-unknown*/, &maintenance_show_cmdlist);
9653
9654 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9655 &dwarf2_max_cache_age, _("\
9656 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9657 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9658 A higher limit means that cached compilation units will be stored\n\
9659 in memory longer, and more total memory will be used. Zero disables\n\
9660 caching, which can slow down startup."),
9661 NULL,
9662 show_dwarf2_max_cache_age,
9663 &set_dwarf2_cmdlist,
9664 &show_dwarf2_cmdlist);
9665 }