]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Merge GCC producer parsers. Allow digits in identifiers.
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311
312 /* Table containing line_header indexed by offset and offset_in_dwz. */
313 htab_t line_header_hash;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
617 is active. Otherwise, the 'psymtab' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The compunit symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the compunit symtab. */
724 struct compunit_symtab *compunit_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 /* Offset of line number information in .debug_line section. */
1031 sect_offset offset;
1032
1033 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1034 unsigned offset_in_dwz : 1;
1035
1036 unsigned int total_length;
1037 unsigned short version;
1038 unsigned int header_length;
1039 unsigned char minimum_instruction_length;
1040 unsigned char maximum_ops_per_instruction;
1041 unsigned char default_is_stmt;
1042 int line_base;
1043 unsigned char line_range;
1044 unsigned char opcode_base;
1045
1046 /* standard_opcode_lengths[i] is the number of operands for the
1047 standard opcode whose value is i. This means that
1048 standard_opcode_lengths[0] is unused, and the last meaningful
1049 element is standard_opcode_lengths[opcode_base - 1]. */
1050 unsigned char *standard_opcode_lengths;
1051
1052 /* The include_directories table. NOTE! These strings are not
1053 allocated with xmalloc; instead, they are pointers into
1054 debug_line_buffer. If you try to free them, `free' will get
1055 indigestion. */
1056 unsigned int num_include_dirs, include_dirs_size;
1057 const char **include_dirs;
1058
1059 /* The file_names table. NOTE! These strings are not allocated
1060 with xmalloc; instead, they are pointers into debug_line_buffer.
1061 Don't try to free them directly. */
1062 unsigned int num_file_names, file_names_size;
1063 struct file_entry
1064 {
1065 const char *name;
1066 unsigned int dir_index;
1067 unsigned int mod_time;
1068 unsigned int length;
1069 int included_p; /* Non-zero if referenced by the Line Number Program. */
1070 struct symtab *symtab; /* The associated symbol table, if any. */
1071 } *file_names;
1072
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start, *statement_program_end;
1076 };
1077
1078 /* When we construct a partial symbol table entry we only
1079 need this much information. */
1080 struct partial_die_info
1081 {
1082 /* Offset of this DIE. */
1083 sect_offset offset;
1084
1085 /* DWARF-2 tag for this DIE. */
1086 ENUM_BITFIELD(dwarf_tag) tag : 16;
1087
1088 /* Assorted flags describing the data found in this DIE. */
1089 unsigned int has_children : 1;
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* Flag set if the SCOPE field of this structure has been
1098 computed. */
1099 unsigned int scope_set : 1;
1100
1101 /* Flag set if the DIE has a byte_size attribute. */
1102 unsigned int has_byte_size : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup_partial_die has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset offset;
1136 } d;
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc;
1140 CORE_ADDR highpc;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, read_partial_die could
1145 return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset;
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent, *die_child, *die_sibling;
1156 };
1157
1158 /* This data structure holds the information of an abbrev. */
1159 struct abbrev_info
1160 {
1161 unsigned int number; /* number identifying abbrev */
1162 enum dwarf_tag tag; /* dwarf tag */
1163 unsigned short has_children; /* boolean */
1164 unsigned short num_attrs; /* number of attributes */
1165 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1166 struct abbrev_info *next; /* next in chain */
1167 };
1168
1169 struct attr_abbrev
1170 {
1171 ENUM_BITFIELD(dwarf_attribute) name : 16;
1172 ENUM_BITFIELD(dwarf_form) form : 16;
1173 };
1174
1175 /* Size of abbrev_table.abbrev_hash_table. */
1176 #define ABBREV_HASH_SIZE 121
1177
1178 /* Top level data structure to contain an abbreviation table. */
1179
1180 struct abbrev_table
1181 {
1182 /* Where the abbrev table came from.
1183 This is used as a sanity check when the table is used. */
1184 sect_offset offset;
1185
1186 /* Storage for the abbrev table. */
1187 struct obstack abbrev_obstack;
1188
1189 /* Hash table of abbrevs.
1190 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1191 It could be statically allocated, but the previous code didn't so we
1192 don't either. */
1193 struct abbrev_info **abbrevs;
1194 };
1195
1196 /* Attributes have a name and a value. */
1197 struct attribute
1198 {
1199 ENUM_BITFIELD(dwarf_attribute) name : 16;
1200 ENUM_BITFIELD(dwarf_form) form : 15;
1201
1202 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1203 field should be in u.str (existing only for DW_STRING) but it is kept
1204 here for better struct attribute alignment. */
1205 unsigned int string_is_canonical : 1;
1206
1207 union
1208 {
1209 const char *str;
1210 struct dwarf_block *blk;
1211 ULONGEST unsnd;
1212 LONGEST snd;
1213 CORE_ADDR addr;
1214 ULONGEST signature;
1215 }
1216 u;
1217 };
1218
1219 /* This data structure holds a complete die structure. */
1220 struct die_info
1221 {
1222 /* DWARF-2 tag for this DIE. */
1223 ENUM_BITFIELD(dwarf_tag) tag : 16;
1224
1225 /* Number of attributes */
1226 unsigned char num_attrs;
1227
1228 /* True if we're presently building the full type name for the
1229 type derived from this DIE. */
1230 unsigned char building_fullname : 1;
1231
1232 /* True if this die is in process. PR 16581. */
1233 unsigned char in_process : 1;
1234
1235 /* Abbrev number */
1236 unsigned int abbrev;
1237
1238 /* Offset in .debug_info or .debug_types section. */
1239 sect_offset offset;
1240
1241 /* The dies in a compilation unit form an n-ary tree. PARENT
1242 points to this die's parent; CHILD points to the first child of
1243 this node; and all the children of a given node are chained
1244 together via their SIBLING fields. */
1245 struct die_info *child; /* Its first child, if any. */
1246 struct die_info *sibling; /* Its next sibling, if any. */
1247 struct die_info *parent; /* Its parent, if any. */
1248
1249 /* An array of attributes, with NUM_ATTRS elements. There may be
1250 zero, but it's not common and zero-sized arrays are not
1251 sufficiently portable C. */
1252 struct attribute attrs[1];
1253 };
1254
1255 /* Get at parts of an attribute structure. */
1256
1257 #define DW_STRING(attr) ((attr)->u.str)
1258 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1259 #define DW_UNSND(attr) ((attr)->u.unsnd)
1260 #define DW_BLOCK(attr) ((attr)->u.blk)
1261 #define DW_SND(attr) ((attr)->u.snd)
1262 #define DW_ADDR(attr) ((attr)->u.addr)
1263 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1264
1265 /* Blocks are a bunch of untyped bytes. */
1266 struct dwarf_block
1267 {
1268 size_t size;
1269
1270 /* Valid only if SIZE is not zero. */
1271 const gdb_byte *data;
1272 };
1273
1274 #ifndef ATTR_ALLOC_CHUNK
1275 #define ATTR_ALLOC_CHUNK 4
1276 #endif
1277
1278 /* Allocate fields for structs, unions and enums in this size. */
1279 #ifndef DW_FIELD_ALLOC_CHUNK
1280 #define DW_FIELD_ALLOC_CHUNK 4
1281 #endif
1282
1283 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1284 but this would require a corresponding change in unpack_field_as_long
1285 and friends. */
1286 static int bits_per_byte = 8;
1287
1288 /* The routines that read and process dies for a C struct or C++ class
1289 pass lists of data member fields and lists of member function fields
1290 in an instance of a field_info structure, as defined below. */
1291 struct field_info
1292 {
1293 /* List of data member and baseclasses fields. */
1294 struct nextfield
1295 {
1296 struct nextfield *next;
1297 int accessibility;
1298 int virtuality;
1299 struct field field;
1300 }
1301 *fields, *baseclasses;
1302
1303 /* Number of fields (including baseclasses). */
1304 int nfields;
1305
1306 /* Number of baseclasses. */
1307 int nbaseclasses;
1308
1309 /* Set if the accesibility of one of the fields is not public. */
1310 int non_public_fields;
1311
1312 /* Member function fields array, entries are allocated in the order they
1313 are encountered in the object file. */
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 }
1319 *fnfields;
1320
1321 /* Member function fieldlist array, contains name of possibly overloaded
1322 member function, number of overloaded member functions and a pointer
1323 to the head of the member function field chain. */
1324 struct fnfieldlist
1325 {
1326 const char *name;
1327 int length;
1328 struct nextfnfield *head;
1329 }
1330 *fnfieldlists;
1331
1332 /* Number of entries in the fnfieldlists array. */
1333 int nfnfields;
1334
1335 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1336 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1337 struct typedef_field_list
1338 {
1339 struct typedef_field field;
1340 struct typedef_field_list *next;
1341 }
1342 *typedef_field_list;
1343 unsigned typedef_field_list_count;
1344 };
1345
1346 /* One item on the queue of compilation units to read in full symbols
1347 for. */
1348 struct dwarf2_queue_item
1349 {
1350 struct dwarf2_per_cu_data *per_cu;
1351 enum language pretend_language;
1352 struct dwarf2_queue_item *next;
1353 };
1354
1355 /* The current queue. */
1356 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1357
1358 /* Loaded secondary compilation units are kept in memory until they
1359 have not been referenced for the processing of this many
1360 compilation units. Set this to zero to disable caching. Cache
1361 sizes of up to at least twenty will improve startup time for
1362 typical inter-CU-reference binaries, at an obvious memory cost. */
1363 static int dwarf2_max_cache_age = 5;
1364 static void
1365 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c, const char *value)
1367 {
1368 fprintf_filtered (file, _("The upper bound on the age of cached "
1369 "dwarf2 compilation units is %s.\n"),
1370 value);
1371 }
1372 \f
1373 /* local function prototypes */
1374
1375 static const char *get_section_name (const struct dwarf2_section_info *);
1376
1377 static const char *get_section_file_name (const struct dwarf2_section_info *);
1378
1379 static void dwarf2_locate_sections (bfd *, asection *, void *);
1380
1381 static void dwarf2_find_base_address (struct die_info *die,
1382 struct dwarf2_cu *cu);
1383
1384 static struct partial_symtab *create_partial_symtab
1385 (struct dwarf2_per_cu_data *per_cu, const char *name);
1386
1387 static void dwarf2_build_psymtabs_hard (struct objfile *);
1388
1389 static void scan_partial_symbols (struct partial_die_info *,
1390 CORE_ADDR *, CORE_ADDR *,
1391 int, struct dwarf2_cu *);
1392
1393 static void add_partial_symbol (struct partial_die_info *,
1394 struct dwarf2_cu *);
1395
1396 static void add_partial_namespace (struct partial_die_info *pdi,
1397 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1398 int set_addrmap, struct dwarf2_cu *cu);
1399
1400 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1401 CORE_ADDR *highpc, int set_addrmap,
1402 struct dwarf2_cu *cu);
1403
1404 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1405 struct dwarf2_cu *cu);
1406
1407 static void add_partial_subprogram (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1409 int need_pc, struct dwarf2_cu *cu);
1410
1411 static void dwarf2_read_symtab (struct partial_symtab *,
1412 struct objfile *);
1413
1414 static void psymtab_to_symtab_1 (struct partial_symtab *);
1415
1416 static struct abbrev_info *abbrev_table_lookup_abbrev
1417 (const struct abbrev_table *, unsigned int);
1418
1419 static struct abbrev_table *abbrev_table_read_table
1420 (struct dwarf2_section_info *, sect_offset);
1421
1422 static void abbrev_table_free (struct abbrev_table *);
1423
1424 static void abbrev_table_free_cleanup (void *);
1425
1426 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1427 struct dwarf2_section_info *);
1428
1429 static void dwarf2_free_abbrev_table (void *);
1430
1431 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1432
1433 static struct partial_die_info *load_partial_dies
1434 (const struct die_reader_specs *, const gdb_byte *, int);
1435
1436 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1437 struct partial_die_info *,
1438 struct abbrev_info *,
1439 unsigned int,
1440 const gdb_byte *);
1441
1442 static struct partial_die_info *find_partial_die (sect_offset, int,
1443 struct dwarf2_cu *);
1444
1445 static void fixup_partial_die (struct partial_die_info *,
1446 struct dwarf2_cu *);
1447
1448 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1449 struct attribute *, struct attr_abbrev *,
1450 const gdb_byte *);
1451
1452 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1453
1454 static int read_1_signed_byte (bfd *, const gdb_byte *);
1455
1456 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1457
1458 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1459
1460 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1461
1462 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1463 unsigned int *);
1464
1465 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1466
1467 static LONGEST read_checked_initial_length_and_offset
1468 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1469 unsigned int *, unsigned int *);
1470
1471 static LONGEST read_offset (bfd *, const gdb_byte *,
1472 const struct comp_unit_head *,
1473 unsigned int *);
1474
1475 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1476
1477 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1478 sect_offset);
1479
1480 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1481
1482 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1483
1484 static const char *read_indirect_string (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
1487
1488 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1489
1490 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1491
1492 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1495 const gdb_byte *,
1496 unsigned int *);
1497
1498 static const char *read_str_index (const struct die_reader_specs *reader,
1499 ULONGEST str_index);
1500
1501 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1502
1503 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1504 struct dwarf2_cu *);
1505
1506 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1507 unsigned int);
1508
1509 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1510 struct dwarf2_cu *cu);
1511
1512 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1513
1514 static struct die_info *die_specification (struct die_info *die,
1515 struct dwarf2_cu **);
1516
1517 static void free_line_header (struct line_header *lh);
1518
1519 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1520 struct dwarf2_cu *cu);
1521
1522 static void dwarf_decode_lines (struct line_header *, const char *,
1523 struct dwarf2_cu *, struct partial_symtab *,
1524 CORE_ADDR, int decode_mapping);
1525
1526 static void dwarf2_start_subfile (const char *, const char *);
1527
1528 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1529 const char *, const char *,
1530 CORE_ADDR);
1531
1532 static struct symbol *new_symbol (struct die_info *, struct type *,
1533 struct dwarf2_cu *);
1534
1535 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1536 struct dwarf2_cu *, struct symbol *);
1537
1538 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1539 struct dwarf2_cu *);
1540
1541 static void dwarf2_const_value_attr (const struct attribute *attr,
1542 struct type *type,
1543 const char *name,
1544 struct obstack *obstack,
1545 struct dwarf2_cu *cu, LONGEST *value,
1546 const gdb_byte **bytes,
1547 struct dwarf2_locexpr_baton **baton);
1548
1549 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1550
1551 static int need_gnat_info (struct dwarf2_cu *);
1552
1553 static struct type *die_descriptive_type (struct die_info *,
1554 struct dwarf2_cu *);
1555
1556 static void set_descriptive_type (struct type *, struct die_info *,
1557 struct dwarf2_cu *);
1558
1559 static struct type *die_containing_type (struct die_info *,
1560 struct dwarf2_cu *);
1561
1562 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1563 struct dwarf2_cu *);
1564
1565 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1566
1567 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1568
1569 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1570
1571 static char *typename_concat (struct obstack *obs, const char *prefix,
1572 const char *suffix, int physname,
1573 struct dwarf2_cu *cu);
1574
1575 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1576
1577 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1578
1579 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1580
1581 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1582
1583 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1584
1585 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *, struct partial_symtab *);
1587
1588 static int dwarf2_get_pc_bounds (struct die_info *,
1589 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1590 struct partial_symtab *);
1591
1592 static void get_scope_pc_bounds (struct die_info *,
1593 CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *);
1595
1596 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1597 CORE_ADDR, struct dwarf2_cu *);
1598
1599 static void dwarf2_add_field (struct field_info *, struct die_info *,
1600 struct dwarf2_cu *);
1601
1602 static void dwarf2_attach_fields_to_type (struct field_info *,
1603 struct type *, struct dwarf2_cu *);
1604
1605 static void dwarf2_add_member_fn (struct field_info *,
1606 struct die_info *, struct type *,
1607 struct dwarf2_cu *);
1608
1609 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1610 struct type *,
1611 struct dwarf2_cu *);
1612
1613 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1614
1615 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1616
1617 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1618
1619 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1620
1621 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1622
1623 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1624
1625 static struct type *read_module_type (struct die_info *die,
1626 struct dwarf2_cu *cu);
1627
1628 static const char *namespace_name (struct die_info *die,
1629 int *is_anonymous, struct dwarf2_cu *);
1630
1631 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1634
1635 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1636 struct dwarf2_cu *);
1637
1638 static struct die_info *read_die_and_siblings_1
1639 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1640 struct die_info *);
1641
1642 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1643 const gdb_byte *info_ptr,
1644 const gdb_byte **new_info_ptr,
1645 struct die_info *parent);
1646
1647 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1648 struct die_info **, const gdb_byte *,
1649 int *, int);
1650
1651 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1652 struct die_info **, const gdb_byte *,
1653 int *);
1654
1655 static void process_die (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1658 struct obstack *);
1659
1660 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1661
1662 static const char *dwarf2_full_name (const char *name,
1663 struct die_info *die,
1664 struct dwarf2_cu *cu);
1665
1666 static const char *dwarf2_physname (const char *name, struct die_info *die,
1667 struct dwarf2_cu *cu);
1668
1669 static struct die_info *dwarf2_extension (struct die_info *die,
1670 struct dwarf2_cu **);
1671
1672 static const char *dwarf_tag_name (unsigned int);
1673
1674 static const char *dwarf_attr_name (unsigned int);
1675
1676 static const char *dwarf_form_name (unsigned int);
1677
1678 static char *dwarf_bool_name (unsigned int);
1679
1680 static const char *dwarf_type_encoding_name (unsigned int);
1681
1682 static struct die_info *sibling_die (struct die_info *);
1683
1684 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1685
1686 static void dump_die_for_error (struct die_info *);
1687
1688 static void dump_die_1 (struct ui_file *, int level, int max_level,
1689 struct die_info *);
1690
1691 /*static*/ void dump_die (struct die_info *, int max_level);
1692
1693 static void store_in_ref_table (struct die_info *,
1694 struct dwarf2_cu *);
1695
1696 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1697
1698 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1699
1700 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct die_info *follow_die_ref (struct die_info *,
1705 const struct attribute *,
1706 struct dwarf2_cu **);
1707
1708 static struct die_info *follow_die_sig (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu **);
1711
1712 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1713 struct dwarf2_cu *);
1714
1715 static struct type *get_DW_AT_signature_type (struct die_info *,
1716 const struct attribute *,
1717 struct dwarf2_cu *);
1718
1719 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1720
1721 static void read_signatured_type (struct signatured_type *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1730
1731 static int attr_form_is_block (const struct attribute *);
1732
1733 static int attr_form_is_section_offset (const struct attribute *);
1734
1735 static int attr_form_is_constant (const struct attribute *);
1736
1737 static int attr_form_is_ref (const struct attribute *);
1738
1739 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1740 struct dwarf2_loclist_baton *baton,
1741 const struct attribute *attr);
1742
1743 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1744 struct symbol *sym,
1745 struct dwarf2_cu *cu,
1746 int is_block);
1747
1748 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1749 const gdb_byte *info_ptr,
1750 struct abbrev_info *abbrev);
1751
1752 static void free_stack_comp_unit (void *);
1753
1754 static hashval_t partial_die_hash (const void *item);
1755
1756 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1757
1758 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1759 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1760
1761 static void init_one_comp_unit (struct dwarf2_cu *cu,
1762 struct dwarf2_per_cu_data *per_cu);
1763
1764 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1765 struct die_info *comp_unit_die,
1766 enum language pretend_language);
1767
1768 static void free_heap_comp_unit (void *);
1769
1770 static void free_cached_comp_units (void *);
1771
1772 static void age_cached_comp_units (void);
1773
1774 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1775
1776 static struct type *set_die_type (struct die_info *, struct type *,
1777 struct dwarf2_cu *);
1778
1779 static void create_all_comp_units (struct objfile *);
1780
1781 static int create_all_type_units (struct objfile *);
1782
1783 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1787 enum language);
1788
1789 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1790 enum language);
1791
1792 static void dwarf2_add_dependence (struct dwarf2_cu *,
1793 struct dwarf2_per_cu_data *);
1794
1795 static void dwarf2_mark (struct dwarf2_cu *);
1796
1797 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1798
1799 static struct type *get_die_type_at_offset (sect_offset,
1800 struct dwarf2_per_cu_data *);
1801
1802 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1803
1804 static void dwarf2_release_queue (void *dummy);
1805
1806 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1807 enum language pretend_language);
1808
1809 static void process_queue (void);
1810
1811 static void find_file_and_directory (struct die_info *die,
1812 struct dwarf2_cu *cu,
1813 const char **name, const char **comp_dir);
1814
1815 static char *file_full_name (int file, struct line_header *lh,
1816 const char *comp_dir);
1817
1818 static const gdb_byte *read_and_check_comp_unit_head
1819 (struct comp_unit_head *header,
1820 struct dwarf2_section_info *section,
1821 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1822 int is_debug_types_section);
1823
1824 static void init_cutu_and_read_dies
1825 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1826 int use_existing_cu, int keep,
1827 die_reader_func_ftype *die_reader_func, void *data);
1828
1829 static void init_cutu_and_read_dies_simple
1830 (struct dwarf2_per_cu_data *this_cu,
1831 die_reader_func_ftype *die_reader_func, void *data);
1832
1833 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1834
1835 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1836
1837 static struct dwo_unit *lookup_dwo_unit_in_dwp
1838 (struct dwp_file *dwp_file, const char *comp_dir,
1839 ULONGEST signature, int is_debug_types);
1840
1841 static struct dwp_file *get_dwp_file (void);
1842
1843 static struct dwo_unit *lookup_dwo_comp_unit
1844 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1845
1846 static struct dwo_unit *lookup_dwo_type_unit
1847 (struct signatured_type *, const char *, const char *);
1848
1849 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1850
1851 static void free_dwo_file_cleanup (void *);
1852
1853 static void process_cu_includes (void);
1854
1855 static void check_producer (struct dwarf2_cu *cu);
1856
1857 static void free_line_header_voidp (void *arg);
1858 \f
1859 /* Various complaints about symbol reading that don't abort the process. */
1860
1861 static void
1862 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1863 {
1864 complaint (&symfile_complaints,
1865 _("statement list doesn't fit in .debug_line section"));
1866 }
1867
1868 static void
1869 dwarf2_debug_line_missing_file_complaint (void)
1870 {
1871 complaint (&symfile_complaints,
1872 _(".debug_line section has line data without a file"));
1873 }
1874
1875 static void
1876 dwarf2_debug_line_missing_end_sequence_complaint (void)
1877 {
1878 complaint (&symfile_complaints,
1879 _(".debug_line section has line "
1880 "program sequence without an end"));
1881 }
1882
1883 static void
1884 dwarf2_complex_location_expr_complaint (void)
1885 {
1886 complaint (&symfile_complaints, _("location expression too complex"));
1887 }
1888
1889 static void
1890 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1891 int arg3)
1892 {
1893 complaint (&symfile_complaints,
1894 _("const value length mismatch for '%s', got %d, expected %d"),
1895 arg1, arg2, arg3);
1896 }
1897
1898 static void
1899 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1900 {
1901 complaint (&symfile_complaints,
1902 _("debug info runs off end of %s section"
1903 " [in module %s]"),
1904 get_section_name (section),
1905 get_section_file_name (section));
1906 }
1907
1908 static void
1909 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1910 {
1911 complaint (&symfile_complaints,
1912 _("macro debug info contains a "
1913 "malformed macro definition:\n`%s'"),
1914 arg1);
1915 }
1916
1917 static void
1918 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1919 {
1920 complaint (&symfile_complaints,
1921 _("invalid attribute class or form for '%s' in '%s'"),
1922 arg1, arg2);
1923 }
1924
1925 /* Hash function for line_header_hash. */
1926
1927 static hashval_t
1928 line_header_hash (const struct line_header *ofs)
1929 {
1930 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1931 }
1932
1933 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1934
1935 static hashval_t
1936 line_header_hash_voidp (const void *item)
1937 {
1938 const struct line_header *ofs = item;
1939
1940 return line_header_hash (ofs);
1941 }
1942
1943 /* Equality function for line_header_hash. */
1944
1945 static int
1946 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1947 {
1948 const struct line_header *ofs_lhs = item_lhs;
1949 const struct line_header *ofs_rhs = item_rhs;
1950
1951 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1952 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1953 }
1954
1955 \f
1956 #if WORDS_BIGENDIAN
1957
1958 /* Convert VALUE between big- and little-endian. */
1959 static offset_type
1960 byte_swap (offset_type value)
1961 {
1962 offset_type result;
1963
1964 result = (value & 0xff) << 24;
1965 result |= (value & 0xff00) << 8;
1966 result |= (value & 0xff0000) >> 8;
1967 result |= (value & 0xff000000) >> 24;
1968 return result;
1969 }
1970
1971 #define MAYBE_SWAP(V) byte_swap (V)
1972
1973 #else
1974 #define MAYBE_SWAP(V) (V)
1975 #endif /* WORDS_BIGENDIAN */
1976
1977 /* Read the given attribute value as an address, taking the attribute's
1978 form into account. */
1979
1980 static CORE_ADDR
1981 attr_value_as_address (struct attribute *attr)
1982 {
1983 CORE_ADDR addr;
1984
1985 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1986 {
1987 /* Aside from a few clearly defined exceptions, attributes that
1988 contain an address must always be in DW_FORM_addr form.
1989 Unfortunately, some compilers happen to be violating this
1990 requirement by encoding addresses using other forms, such
1991 as DW_FORM_data4 for example. For those broken compilers,
1992 we try to do our best, without any guarantee of success,
1993 to interpret the address correctly. It would also be nice
1994 to generate a complaint, but that would require us to maintain
1995 a list of legitimate cases where a non-address form is allowed,
1996 as well as update callers to pass in at least the CU's DWARF
1997 version. This is more overhead than what we're willing to
1998 expand for a pretty rare case. */
1999 addr = DW_UNSND (attr);
2000 }
2001 else
2002 addr = DW_ADDR (attr);
2003
2004 return addr;
2005 }
2006
2007 /* The suffix for an index file. */
2008 #define INDEX_SUFFIX ".gdb-index"
2009
2010 /* Try to locate the sections we need for DWARF 2 debugging
2011 information and return true if we have enough to do something.
2012 NAMES points to the dwarf2 section names, or is NULL if the standard
2013 ELF names are used. */
2014
2015 int
2016 dwarf2_has_info (struct objfile *objfile,
2017 const struct dwarf2_debug_sections *names)
2018 {
2019 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2020 if (!dwarf2_per_objfile)
2021 {
2022 /* Initialize per-objfile state. */
2023 struct dwarf2_per_objfile *data
2024 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2025
2026 memset (data, 0, sizeof (*data));
2027 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2028 dwarf2_per_objfile = data;
2029
2030 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2031 (void *) names);
2032 dwarf2_per_objfile->objfile = objfile;
2033 }
2034 return (!dwarf2_per_objfile->info.is_virtual
2035 && dwarf2_per_objfile->info.s.asection != NULL
2036 && !dwarf2_per_objfile->abbrev.is_virtual
2037 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2038 }
2039
2040 /* Return the containing section of virtual section SECTION. */
2041
2042 static struct dwarf2_section_info *
2043 get_containing_section (const struct dwarf2_section_info *section)
2044 {
2045 gdb_assert (section->is_virtual);
2046 return section->s.containing_section;
2047 }
2048
2049 /* Return the bfd owner of SECTION. */
2050
2051 static struct bfd *
2052 get_section_bfd_owner (const struct dwarf2_section_info *section)
2053 {
2054 if (section->is_virtual)
2055 {
2056 section = get_containing_section (section);
2057 gdb_assert (!section->is_virtual);
2058 }
2059 return section->s.asection->owner;
2060 }
2061
2062 /* Return the bfd section of SECTION.
2063 Returns NULL if the section is not present. */
2064
2065 static asection *
2066 get_section_bfd_section (const struct dwarf2_section_info *section)
2067 {
2068 if (section->is_virtual)
2069 {
2070 section = get_containing_section (section);
2071 gdb_assert (!section->is_virtual);
2072 }
2073 return section->s.asection;
2074 }
2075
2076 /* Return the name of SECTION. */
2077
2078 static const char *
2079 get_section_name (const struct dwarf2_section_info *section)
2080 {
2081 asection *sectp = get_section_bfd_section (section);
2082
2083 gdb_assert (sectp != NULL);
2084 return bfd_section_name (get_section_bfd_owner (section), sectp);
2085 }
2086
2087 /* Return the name of the file SECTION is in. */
2088
2089 static const char *
2090 get_section_file_name (const struct dwarf2_section_info *section)
2091 {
2092 bfd *abfd = get_section_bfd_owner (section);
2093
2094 return bfd_get_filename (abfd);
2095 }
2096
2097 /* Return the id of SECTION.
2098 Returns 0 if SECTION doesn't exist. */
2099
2100 static int
2101 get_section_id (const struct dwarf2_section_info *section)
2102 {
2103 asection *sectp = get_section_bfd_section (section);
2104
2105 if (sectp == NULL)
2106 return 0;
2107 return sectp->id;
2108 }
2109
2110 /* Return the flags of SECTION.
2111 SECTION (or containing section if this is a virtual section) must exist. */
2112
2113 static int
2114 get_section_flags (const struct dwarf2_section_info *section)
2115 {
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 gdb_assert (sectp != NULL);
2119 return bfd_get_section_flags (sectp->owner, sectp);
2120 }
2121
2122 /* When loading sections, we look either for uncompressed section or for
2123 compressed section names. */
2124
2125 static int
2126 section_is_p (const char *section_name,
2127 const struct dwarf2_section_names *names)
2128 {
2129 if (names->normal != NULL
2130 && strcmp (section_name, names->normal) == 0)
2131 return 1;
2132 if (names->compressed != NULL
2133 && strcmp (section_name, names->compressed) == 0)
2134 return 1;
2135 return 0;
2136 }
2137
2138 /* This function is mapped across the sections and remembers the
2139 offset and size of each of the debugging sections we are interested
2140 in. */
2141
2142 static void
2143 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2144 {
2145 const struct dwarf2_debug_sections *names;
2146 flagword aflag = bfd_get_section_flags (abfd, sectp);
2147
2148 if (vnames == NULL)
2149 names = &dwarf2_elf_names;
2150 else
2151 names = (const struct dwarf2_debug_sections *) vnames;
2152
2153 if ((aflag & SEC_HAS_CONTENTS) == 0)
2154 {
2155 }
2156 else if (section_is_p (sectp->name, &names->info))
2157 {
2158 dwarf2_per_objfile->info.s.asection = sectp;
2159 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2160 }
2161 else if (section_is_p (sectp->name, &names->abbrev))
2162 {
2163 dwarf2_per_objfile->abbrev.s.asection = sectp;
2164 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2165 }
2166 else if (section_is_p (sectp->name, &names->line))
2167 {
2168 dwarf2_per_objfile->line.s.asection = sectp;
2169 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2170 }
2171 else if (section_is_p (sectp->name, &names->loc))
2172 {
2173 dwarf2_per_objfile->loc.s.asection = sectp;
2174 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2175 }
2176 else if (section_is_p (sectp->name, &names->macinfo))
2177 {
2178 dwarf2_per_objfile->macinfo.s.asection = sectp;
2179 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2180 }
2181 else if (section_is_p (sectp->name, &names->macro))
2182 {
2183 dwarf2_per_objfile->macro.s.asection = sectp;
2184 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2185 }
2186 else if (section_is_p (sectp->name, &names->str))
2187 {
2188 dwarf2_per_objfile->str.s.asection = sectp;
2189 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2190 }
2191 else if (section_is_p (sectp->name, &names->addr))
2192 {
2193 dwarf2_per_objfile->addr.s.asection = sectp;
2194 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2195 }
2196 else if (section_is_p (sectp->name, &names->frame))
2197 {
2198 dwarf2_per_objfile->frame.s.asection = sectp;
2199 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2200 }
2201 else if (section_is_p (sectp->name, &names->eh_frame))
2202 {
2203 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2204 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2205 }
2206 else if (section_is_p (sectp->name, &names->ranges))
2207 {
2208 dwarf2_per_objfile->ranges.s.asection = sectp;
2209 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->types))
2212 {
2213 struct dwarf2_section_info type_section;
2214
2215 memset (&type_section, 0, sizeof (type_section));
2216 type_section.s.asection = sectp;
2217 type_section.size = bfd_get_section_size (sectp);
2218
2219 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2220 &type_section);
2221 }
2222 else if (section_is_p (sectp->name, &names->gdb_index))
2223 {
2224 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2225 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2226 }
2227
2228 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2229 && bfd_section_vma (abfd, sectp) == 0)
2230 dwarf2_per_objfile->has_section_at_zero = 1;
2231 }
2232
2233 /* A helper function that decides whether a section is empty,
2234 or not present. */
2235
2236 static int
2237 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2238 {
2239 if (section->is_virtual)
2240 return section->size == 0;
2241 return section->s.asection == NULL || section->size == 0;
2242 }
2243
2244 /* Read the contents of the section INFO.
2245 OBJFILE is the main object file, but not necessarily the file where
2246 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2247 of the DWO file.
2248 If the section is compressed, uncompress it before returning. */
2249
2250 static void
2251 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2252 {
2253 asection *sectp;
2254 bfd *abfd;
2255 gdb_byte *buf, *retbuf;
2256
2257 if (info->readin)
2258 return;
2259 info->buffer = NULL;
2260 info->readin = 1;
2261
2262 if (dwarf2_section_empty_p (info))
2263 return;
2264
2265 sectp = get_section_bfd_section (info);
2266
2267 /* If this is a virtual section we need to read in the real one first. */
2268 if (info->is_virtual)
2269 {
2270 struct dwarf2_section_info *containing_section =
2271 get_containing_section (info);
2272
2273 gdb_assert (sectp != NULL);
2274 if ((sectp->flags & SEC_RELOC) != 0)
2275 {
2276 error (_("Dwarf Error: DWP format V2 with relocations is not"
2277 " supported in section %s [in module %s]"),
2278 get_section_name (info), get_section_file_name (info));
2279 }
2280 dwarf2_read_section (objfile, containing_section);
2281 /* Other code should have already caught virtual sections that don't
2282 fit. */
2283 gdb_assert (info->virtual_offset + info->size
2284 <= containing_section->size);
2285 /* If the real section is empty or there was a problem reading the
2286 section we shouldn't get here. */
2287 gdb_assert (containing_section->buffer != NULL);
2288 info->buffer = containing_section->buffer + info->virtual_offset;
2289 return;
2290 }
2291
2292 /* If the section has relocations, we must read it ourselves.
2293 Otherwise we attach it to the BFD. */
2294 if ((sectp->flags & SEC_RELOC) == 0)
2295 {
2296 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2297 return;
2298 }
2299
2300 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2301 info->buffer = buf;
2302
2303 /* When debugging .o files, we may need to apply relocations; see
2304 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2305 We never compress sections in .o files, so we only need to
2306 try this when the section is not compressed. */
2307 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2308 if (retbuf != NULL)
2309 {
2310 info->buffer = retbuf;
2311 return;
2312 }
2313
2314 abfd = get_section_bfd_owner (info);
2315 gdb_assert (abfd != NULL);
2316
2317 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2318 || bfd_bread (buf, info->size, abfd) != info->size)
2319 {
2320 error (_("Dwarf Error: Can't read DWARF data"
2321 " in section %s [in module %s]"),
2322 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2323 }
2324 }
2325
2326 /* A helper function that returns the size of a section in a safe way.
2327 If you are positive that the section has been read before using the
2328 size, then it is safe to refer to the dwarf2_section_info object's
2329 "size" field directly. In other cases, you must call this
2330 function, because for compressed sections the size field is not set
2331 correctly until the section has been read. */
2332
2333 static bfd_size_type
2334 dwarf2_section_size (struct objfile *objfile,
2335 struct dwarf2_section_info *info)
2336 {
2337 if (!info->readin)
2338 dwarf2_read_section (objfile, info);
2339 return info->size;
2340 }
2341
2342 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2343 SECTION_NAME. */
2344
2345 void
2346 dwarf2_get_section_info (struct objfile *objfile,
2347 enum dwarf2_section_enum sect,
2348 asection **sectp, const gdb_byte **bufp,
2349 bfd_size_type *sizep)
2350 {
2351 struct dwarf2_per_objfile *data
2352 = objfile_data (objfile, dwarf2_objfile_data_key);
2353 struct dwarf2_section_info *info;
2354
2355 /* We may see an objfile without any DWARF, in which case we just
2356 return nothing. */
2357 if (data == NULL)
2358 {
2359 *sectp = NULL;
2360 *bufp = NULL;
2361 *sizep = 0;
2362 return;
2363 }
2364 switch (sect)
2365 {
2366 case DWARF2_DEBUG_FRAME:
2367 info = &data->frame;
2368 break;
2369 case DWARF2_EH_FRAME:
2370 info = &data->eh_frame;
2371 break;
2372 default:
2373 gdb_assert_not_reached ("unexpected section");
2374 }
2375
2376 dwarf2_read_section (objfile, info);
2377
2378 *sectp = get_section_bfd_section (info);
2379 *bufp = info->buffer;
2380 *sizep = info->size;
2381 }
2382
2383 /* A helper function to find the sections for a .dwz file. */
2384
2385 static void
2386 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2387 {
2388 struct dwz_file *dwz_file = arg;
2389
2390 /* Note that we only support the standard ELF names, because .dwz
2391 is ELF-only (at the time of writing). */
2392 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2393 {
2394 dwz_file->abbrev.s.asection = sectp;
2395 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2398 {
2399 dwz_file->info.s.asection = sectp;
2400 dwz_file->info.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2403 {
2404 dwz_file->str.s.asection = sectp;
2405 dwz_file->str.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2408 {
2409 dwz_file->line.s.asection = sectp;
2410 dwz_file->line.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2413 {
2414 dwz_file->macro.s.asection = sectp;
2415 dwz_file->macro.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2418 {
2419 dwz_file->gdb_index.s.asection = sectp;
2420 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2421 }
2422 }
2423
2424 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2425 there is no .gnu_debugaltlink section in the file. Error if there
2426 is such a section but the file cannot be found. */
2427
2428 static struct dwz_file *
2429 dwarf2_get_dwz_file (void)
2430 {
2431 bfd *dwz_bfd;
2432 char *data;
2433 struct cleanup *cleanup;
2434 const char *filename;
2435 struct dwz_file *result;
2436 bfd_size_type buildid_len_arg;
2437 size_t buildid_len;
2438 bfd_byte *buildid;
2439
2440 if (dwarf2_per_objfile->dwz_file != NULL)
2441 return dwarf2_per_objfile->dwz_file;
2442
2443 bfd_set_error (bfd_error_no_error);
2444 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2445 &buildid_len_arg, &buildid);
2446 if (data == NULL)
2447 {
2448 if (bfd_get_error () == bfd_error_no_error)
2449 return NULL;
2450 error (_("could not read '.gnu_debugaltlink' section: %s"),
2451 bfd_errmsg (bfd_get_error ()));
2452 }
2453 cleanup = make_cleanup (xfree, data);
2454 make_cleanup (xfree, buildid);
2455
2456 buildid_len = (size_t) buildid_len_arg;
2457
2458 filename = (const char *) data;
2459 if (!IS_ABSOLUTE_PATH (filename))
2460 {
2461 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2462 char *rel;
2463
2464 make_cleanup (xfree, abs);
2465 abs = ldirname (abs);
2466 make_cleanup (xfree, abs);
2467
2468 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2469 make_cleanup (xfree, rel);
2470 filename = rel;
2471 }
2472
2473 /* First try the file name given in the section. If that doesn't
2474 work, try to use the build-id instead. */
2475 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2476 if (dwz_bfd != NULL)
2477 {
2478 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2479 {
2480 gdb_bfd_unref (dwz_bfd);
2481 dwz_bfd = NULL;
2482 }
2483 }
2484
2485 if (dwz_bfd == NULL)
2486 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2487
2488 if (dwz_bfd == NULL)
2489 error (_("could not find '.gnu_debugaltlink' file for %s"),
2490 objfile_name (dwarf2_per_objfile->objfile));
2491
2492 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2493 struct dwz_file);
2494 result->dwz_bfd = dwz_bfd;
2495
2496 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2497
2498 do_cleanups (cleanup);
2499
2500 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2501 dwarf2_per_objfile->dwz_file = result;
2502 return result;
2503 }
2504 \f
2505 /* DWARF quick_symbols_functions support. */
2506
2507 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2508 unique line tables, so we maintain a separate table of all .debug_line
2509 derived entries to support the sharing.
2510 All the quick functions need is the list of file names. We discard the
2511 line_header when we're done and don't need to record it here. */
2512 struct quick_file_names
2513 {
2514 /* The data used to construct the hash key. */
2515 struct stmt_list_hash hash;
2516
2517 /* The number of entries in file_names, real_names. */
2518 unsigned int num_file_names;
2519
2520 /* The file names from the line table, after being run through
2521 file_full_name. */
2522 const char **file_names;
2523
2524 /* The file names from the line table after being run through
2525 gdb_realpath. These are computed lazily. */
2526 const char **real_names;
2527 };
2528
2529 /* When using the index (and thus not using psymtabs), each CU has an
2530 object of this type. This is used to hold information needed by
2531 the various "quick" methods. */
2532 struct dwarf2_per_cu_quick_data
2533 {
2534 /* The file table. This can be NULL if there was no file table
2535 or it's currently not read in.
2536 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2537 struct quick_file_names *file_names;
2538
2539 /* The corresponding symbol table. This is NULL if symbols for this
2540 CU have not yet been read. */
2541 struct compunit_symtab *compunit_symtab;
2542
2543 /* A temporary mark bit used when iterating over all CUs in
2544 expand_symtabs_matching. */
2545 unsigned int mark : 1;
2546
2547 /* True if we've tried to read the file table and found there isn't one.
2548 There will be no point in trying to read it again next time. */
2549 unsigned int no_file_data : 1;
2550 };
2551
2552 /* Utility hash function for a stmt_list_hash. */
2553
2554 static hashval_t
2555 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2556 {
2557 hashval_t v = 0;
2558
2559 if (stmt_list_hash->dwo_unit != NULL)
2560 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2561 v += stmt_list_hash->line_offset.sect_off;
2562 return v;
2563 }
2564
2565 /* Utility equality function for a stmt_list_hash. */
2566
2567 static int
2568 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2569 const struct stmt_list_hash *rhs)
2570 {
2571 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2572 return 0;
2573 if (lhs->dwo_unit != NULL
2574 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2575 return 0;
2576
2577 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2578 }
2579
2580 /* Hash function for a quick_file_names. */
2581
2582 static hashval_t
2583 hash_file_name_entry (const void *e)
2584 {
2585 const struct quick_file_names *file_data = e;
2586
2587 return hash_stmt_list_entry (&file_data->hash);
2588 }
2589
2590 /* Equality function for a quick_file_names. */
2591
2592 static int
2593 eq_file_name_entry (const void *a, const void *b)
2594 {
2595 const struct quick_file_names *ea = a;
2596 const struct quick_file_names *eb = b;
2597
2598 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2599 }
2600
2601 /* Delete function for a quick_file_names. */
2602
2603 static void
2604 delete_file_name_entry (void *e)
2605 {
2606 struct quick_file_names *file_data = e;
2607 int i;
2608
2609 for (i = 0; i < file_data->num_file_names; ++i)
2610 {
2611 xfree ((void*) file_data->file_names[i]);
2612 if (file_data->real_names)
2613 xfree ((void*) file_data->real_names[i]);
2614 }
2615
2616 /* The space for the struct itself lives on objfile_obstack,
2617 so we don't free it here. */
2618 }
2619
2620 /* Create a quick_file_names hash table. */
2621
2622 static htab_t
2623 create_quick_file_names_table (unsigned int nr_initial_entries)
2624 {
2625 return htab_create_alloc (nr_initial_entries,
2626 hash_file_name_entry, eq_file_name_entry,
2627 delete_file_name_entry, xcalloc, xfree);
2628 }
2629
2630 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2631 have to be created afterwards. You should call age_cached_comp_units after
2632 processing PER_CU->CU. dw2_setup must have been already called. */
2633
2634 static void
2635 load_cu (struct dwarf2_per_cu_data *per_cu)
2636 {
2637 if (per_cu->is_debug_types)
2638 load_full_type_unit (per_cu);
2639 else
2640 load_full_comp_unit (per_cu, language_minimal);
2641
2642 gdb_assert (per_cu->cu != NULL);
2643
2644 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2645 }
2646
2647 /* Read in the symbols for PER_CU. */
2648
2649 static void
2650 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2651 {
2652 struct cleanup *back_to;
2653
2654 /* Skip type_unit_groups, reading the type units they contain
2655 is handled elsewhere. */
2656 if (IS_TYPE_UNIT_GROUP (per_cu))
2657 return;
2658
2659 back_to = make_cleanup (dwarf2_release_queue, NULL);
2660
2661 if (dwarf2_per_objfile->using_index
2662 ? per_cu->v.quick->compunit_symtab == NULL
2663 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2664 {
2665 queue_comp_unit (per_cu, language_minimal);
2666 load_cu (per_cu);
2667
2668 /* If we just loaded a CU from a DWO, and we're working with an index
2669 that may badly handle TUs, load all the TUs in that DWO as well.
2670 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2671 if (!per_cu->is_debug_types
2672 && per_cu->cu->dwo_unit != NULL
2673 && dwarf2_per_objfile->index_table != NULL
2674 && dwarf2_per_objfile->index_table->version <= 7
2675 /* DWP files aren't supported yet. */
2676 && get_dwp_file () == NULL)
2677 queue_and_load_all_dwo_tus (per_cu);
2678 }
2679
2680 process_queue ();
2681
2682 /* Age the cache, releasing compilation units that have not
2683 been used recently. */
2684 age_cached_comp_units ();
2685
2686 do_cleanups (back_to);
2687 }
2688
2689 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2690 the objfile from which this CU came. Returns the resulting symbol
2691 table. */
2692
2693 static struct compunit_symtab *
2694 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2695 {
2696 gdb_assert (dwarf2_per_objfile->using_index);
2697 if (!per_cu->v.quick->compunit_symtab)
2698 {
2699 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2700 increment_reading_symtab ();
2701 dw2_do_instantiate_symtab (per_cu);
2702 process_cu_includes ();
2703 do_cleanups (back_to);
2704 }
2705
2706 return per_cu->v.quick->compunit_symtab;
2707 }
2708
2709 /* Return the CU/TU given its index.
2710
2711 This is intended for loops like:
2712
2713 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2714 + dwarf2_per_objfile->n_type_units); ++i)
2715 {
2716 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2717
2718 ...;
2719 }
2720 */
2721
2722 static struct dwarf2_per_cu_data *
2723 dw2_get_cutu (int index)
2724 {
2725 if (index >= dwarf2_per_objfile->n_comp_units)
2726 {
2727 index -= dwarf2_per_objfile->n_comp_units;
2728 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2729 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2730 }
2731
2732 return dwarf2_per_objfile->all_comp_units[index];
2733 }
2734
2735 /* Return the CU given its index.
2736 This differs from dw2_get_cutu in that it's for when you know INDEX
2737 refers to a CU. */
2738
2739 static struct dwarf2_per_cu_data *
2740 dw2_get_cu (int index)
2741 {
2742 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2743
2744 return dwarf2_per_objfile->all_comp_units[index];
2745 }
2746
2747 /* A helper for create_cus_from_index that handles a given list of
2748 CUs. */
2749
2750 static void
2751 create_cus_from_index_list (struct objfile *objfile,
2752 const gdb_byte *cu_list, offset_type n_elements,
2753 struct dwarf2_section_info *section,
2754 int is_dwz,
2755 int base_offset)
2756 {
2757 offset_type i;
2758
2759 for (i = 0; i < n_elements; i += 2)
2760 {
2761 struct dwarf2_per_cu_data *the_cu;
2762 ULONGEST offset, length;
2763
2764 gdb_static_assert (sizeof (ULONGEST) >= 8);
2765 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2766 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2767 cu_list += 2 * 8;
2768
2769 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2770 struct dwarf2_per_cu_data);
2771 the_cu->offset.sect_off = offset;
2772 the_cu->length = length;
2773 the_cu->objfile = objfile;
2774 the_cu->section = section;
2775 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2776 struct dwarf2_per_cu_quick_data);
2777 the_cu->is_dwz = is_dwz;
2778 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2779 }
2780 }
2781
2782 /* Read the CU list from the mapped index, and use it to create all
2783 the CU objects for this objfile. */
2784
2785 static void
2786 create_cus_from_index (struct objfile *objfile,
2787 const gdb_byte *cu_list, offset_type cu_list_elements,
2788 const gdb_byte *dwz_list, offset_type dwz_elements)
2789 {
2790 struct dwz_file *dwz;
2791
2792 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2793 dwarf2_per_objfile->all_comp_units
2794 = obstack_alloc (&objfile->objfile_obstack,
2795 dwarf2_per_objfile->n_comp_units
2796 * sizeof (struct dwarf2_per_cu_data *));
2797
2798 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2799 &dwarf2_per_objfile->info, 0, 0);
2800
2801 if (dwz_elements == 0)
2802 return;
2803
2804 dwz = dwarf2_get_dwz_file ();
2805 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2806 cu_list_elements / 2);
2807 }
2808
2809 /* Create the signatured type hash table from the index. */
2810
2811 static void
2812 create_signatured_type_table_from_index (struct objfile *objfile,
2813 struct dwarf2_section_info *section,
2814 const gdb_byte *bytes,
2815 offset_type elements)
2816 {
2817 offset_type i;
2818 htab_t sig_types_hash;
2819
2820 dwarf2_per_objfile->n_type_units
2821 = dwarf2_per_objfile->n_allocated_type_units
2822 = elements / 3;
2823 dwarf2_per_objfile->all_type_units
2824 = xmalloc (dwarf2_per_objfile->n_type_units
2825 * sizeof (struct signatured_type *));
2826
2827 sig_types_hash = allocate_signatured_type_table (objfile);
2828
2829 for (i = 0; i < elements; i += 3)
2830 {
2831 struct signatured_type *sig_type;
2832 ULONGEST offset, type_offset_in_tu, signature;
2833 void **slot;
2834
2835 gdb_static_assert (sizeof (ULONGEST) >= 8);
2836 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2837 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2838 BFD_ENDIAN_LITTLE);
2839 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2840 bytes += 3 * 8;
2841
2842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2843 struct signatured_type);
2844 sig_type->signature = signature;
2845 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2846 sig_type->per_cu.is_debug_types = 1;
2847 sig_type->per_cu.section = section;
2848 sig_type->per_cu.offset.sect_off = offset;
2849 sig_type->per_cu.objfile = objfile;
2850 sig_type->per_cu.v.quick
2851 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2852 struct dwarf2_per_cu_quick_data);
2853
2854 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2855 *slot = sig_type;
2856
2857 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2858 }
2859
2860 dwarf2_per_objfile->signatured_types = sig_types_hash;
2861 }
2862
2863 /* Read the address map data from the mapped index, and use it to
2864 populate the objfile's psymtabs_addrmap. */
2865
2866 static void
2867 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2868 {
2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2870 const gdb_byte *iter, *end;
2871 struct obstack temp_obstack;
2872 struct addrmap *mutable_map;
2873 struct cleanup *cleanup;
2874 CORE_ADDR baseaddr;
2875
2876 obstack_init (&temp_obstack);
2877 cleanup = make_cleanup_obstack_free (&temp_obstack);
2878 mutable_map = addrmap_create_mutable (&temp_obstack);
2879
2880 iter = index->address_table;
2881 end = iter + index->address_table_size;
2882
2883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2884
2885 while (iter < end)
2886 {
2887 ULONGEST hi, lo, cu_index;
2888 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2889 iter += 8;
2890 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2891 iter += 8;
2892 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2893 iter += 4;
2894
2895 if (lo > hi)
2896 {
2897 complaint (&symfile_complaints,
2898 _(".gdb_index address table has invalid range (%s - %s)"),
2899 hex_string (lo), hex_string (hi));
2900 continue;
2901 }
2902
2903 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid CU number %u"),
2907 (unsigned) cu_index);
2908 continue;
2909 }
2910
2911 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2912 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2913 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2914 }
2915
2916 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2917 &objfile->objfile_obstack);
2918 do_cleanups (cleanup);
2919 }
2920
2921 /* The hash function for strings in the mapped index. This is the same as
2922 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2923 implementation. This is necessary because the hash function is tied to the
2924 format of the mapped index file. The hash values do not have to match with
2925 SYMBOL_HASH_NEXT.
2926
2927 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2928
2929 static hashval_t
2930 mapped_index_string_hash (int index_version, const void *p)
2931 {
2932 const unsigned char *str = (const unsigned char *) p;
2933 hashval_t r = 0;
2934 unsigned char c;
2935
2936 while ((c = *str++) != 0)
2937 {
2938 if (index_version >= 5)
2939 c = tolower (c);
2940 r = r * 67 + c - 113;
2941 }
2942
2943 return r;
2944 }
2945
2946 /* Find a slot in the mapped index INDEX for the object named NAME.
2947 If NAME is found, set *VEC_OUT to point to the CU vector in the
2948 constant pool and return 1. If NAME cannot be found, return 0. */
2949
2950 static int
2951 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2952 offset_type **vec_out)
2953 {
2954 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2955 offset_type hash;
2956 offset_type slot, step;
2957 int (*cmp) (const char *, const char *);
2958
2959 if (current_language->la_language == language_cplus
2960 || current_language->la_language == language_java
2961 || current_language->la_language == language_fortran)
2962 {
2963 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2964 not contain any. */
2965
2966 if (strchr (name, '(') != NULL)
2967 {
2968 char *without_params = cp_remove_params (name);
2969
2970 if (without_params != NULL)
2971 {
2972 make_cleanup (xfree, without_params);
2973 name = without_params;
2974 }
2975 }
2976 }
2977
2978 /* Index version 4 did not support case insensitive searches. But the
2979 indices for case insensitive languages are built in lowercase, therefore
2980 simulate our NAME being searched is also lowercased. */
2981 hash = mapped_index_string_hash ((index->version == 4
2982 && case_sensitivity == case_sensitive_off
2983 ? 5 : index->version),
2984 name);
2985
2986 slot = hash & (index->symbol_table_slots - 1);
2987 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2988 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2989
2990 for (;;)
2991 {
2992 /* Convert a slot number to an offset into the table. */
2993 offset_type i = 2 * slot;
2994 const char *str;
2995 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2996 {
2997 do_cleanups (back_to);
2998 return 0;
2999 }
3000
3001 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3002 if (!cmp (name, str))
3003 {
3004 *vec_out = (offset_type *) (index->constant_pool
3005 + MAYBE_SWAP (index->symbol_table[i + 1]));
3006 do_cleanups (back_to);
3007 return 1;
3008 }
3009
3010 slot = (slot + step) & (index->symbol_table_slots - 1);
3011 }
3012 }
3013
3014 /* A helper function that reads the .gdb_index from SECTION and fills
3015 in MAP. FILENAME is the name of the file containing the section;
3016 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3017 ok to use deprecated sections.
3018
3019 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3020 out parameters that are filled in with information about the CU and
3021 TU lists in the section.
3022
3023 Returns 1 if all went well, 0 otherwise. */
3024
3025 static int
3026 read_index_from_section (struct objfile *objfile,
3027 const char *filename,
3028 int deprecated_ok,
3029 struct dwarf2_section_info *section,
3030 struct mapped_index *map,
3031 const gdb_byte **cu_list,
3032 offset_type *cu_list_elements,
3033 const gdb_byte **types_list,
3034 offset_type *types_list_elements)
3035 {
3036 const gdb_byte *addr;
3037 offset_type version;
3038 offset_type *metadata;
3039 int i;
3040
3041 if (dwarf2_section_empty_p (section))
3042 return 0;
3043
3044 /* Older elfutils strip versions could keep the section in the main
3045 executable while splitting it for the separate debug info file. */
3046 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3047 return 0;
3048
3049 dwarf2_read_section (objfile, section);
3050
3051 addr = section->buffer;
3052 /* Version check. */
3053 version = MAYBE_SWAP (*(offset_type *) addr);
3054 /* Versions earlier than 3 emitted every copy of a psymbol. This
3055 causes the index to behave very poorly for certain requests. Version 3
3056 contained incomplete addrmap. So, it seems better to just ignore such
3057 indices. */
3058 if (version < 4)
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("Skipping obsolete .gdb_index section in %s."),
3064 filename);
3065 warning_printed = 1;
3066 }
3067 return 0;
3068 }
3069 /* Index version 4 uses a different hash function than index version
3070 5 and later.
3071
3072 Versions earlier than 6 did not emit psymbols for inlined
3073 functions. Using these files will cause GDB not to be able to
3074 set breakpoints on inlined functions by name, so we ignore these
3075 indices unless the user has done
3076 "set use-deprecated-index-sections on". */
3077 if (version < 6 && !deprecated_ok)
3078 {
3079 static int warning_printed = 0;
3080 if (!warning_printed)
3081 {
3082 warning (_("\
3083 Skipping deprecated .gdb_index section in %s.\n\
3084 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3085 to use the section anyway."),
3086 filename);
3087 warning_printed = 1;
3088 }
3089 return 0;
3090 }
3091 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3092 of the TU (for symbols coming from TUs),
3093 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3094 Plus gold-generated indices can have duplicate entries for global symbols,
3095 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3096 These are just performance bugs, and we can't distinguish gdb-generated
3097 indices from gold-generated ones, so issue no warning here. */
3098
3099 /* Indexes with higher version than the one supported by GDB may be no
3100 longer backward compatible. */
3101 if (version > 8)
3102 return 0;
3103
3104 map->version = version;
3105 map->total_size = section->size;
3106
3107 metadata = (offset_type *) (addr + sizeof (offset_type));
3108
3109 i = 0;
3110 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3111 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3112 / 8);
3113 ++i;
3114
3115 *types_list = addr + MAYBE_SWAP (metadata[i]);
3116 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3117 - MAYBE_SWAP (metadata[i]))
3118 / 8);
3119 ++i;
3120
3121 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3122 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3123 - MAYBE_SWAP (metadata[i]));
3124 ++i;
3125
3126 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3127 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / (2 * sizeof (offset_type)));
3130 ++i;
3131
3132 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3133
3134 return 1;
3135 }
3136
3137
3138 /* Read the index file. If everything went ok, initialize the "quick"
3139 elements of all the CUs and return 1. Otherwise, return 0. */
3140
3141 static int
3142 dwarf2_read_index (struct objfile *objfile)
3143 {
3144 struct mapped_index local_map, *map;
3145 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3146 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3147 struct dwz_file *dwz;
3148
3149 if (!read_index_from_section (objfile, objfile_name (objfile),
3150 use_deprecated_index_sections,
3151 &dwarf2_per_objfile->gdb_index, &local_map,
3152 &cu_list, &cu_list_elements,
3153 &types_list, &types_list_elements))
3154 return 0;
3155
3156 /* Don't use the index if it's empty. */
3157 if (local_map.symbol_table_slots == 0)
3158 return 0;
3159
3160 /* If there is a .dwz file, read it so we can get its CU list as
3161 well. */
3162 dwz = dwarf2_get_dwz_file ();
3163 if (dwz != NULL)
3164 {
3165 struct mapped_index dwz_map;
3166 const gdb_byte *dwz_types_ignore;
3167 offset_type dwz_types_elements_ignore;
3168
3169 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3170 1,
3171 &dwz->gdb_index, &dwz_map,
3172 &dwz_list, &dwz_list_elements,
3173 &dwz_types_ignore,
3174 &dwz_types_elements_ignore))
3175 {
3176 warning (_("could not read '.gdb_index' section from %s; skipping"),
3177 bfd_get_filename (dwz->dwz_bfd));
3178 return 0;
3179 }
3180 }
3181
3182 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3183 dwz_list_elements);
3184
3185 if (types_list_elements)
3186 {
3187 struct dwarf2_section_info *section;
3188
3189 /* We can only handle a single .debug_types when we have an
3190 index. */
3191 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3192 return 0;
3193
3194 section = VEC_index (dwarf2_section_info_def,
3195 dwarf2_per_objfile->types, 0);
3196
3197 create_signatured_type_table_from_index (objfile, section, types_list,
3198 types_list_elements);
3199 }
3200
3201 create_addrmap_from_index (objfile, &local_map);
3202
3203 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3204 *map = local_map;
3205
3206 dwarf2_per_objfile->index_table = map;
3207 dwarf2_per_objfile->using_index = 1;
3208 dwarf2_per_objfile->quick_file_names_table =
3209 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3210
3211 return 1;
3212 }
3213
3214 /* A helper for the "quick" functions which sets the global
3215 dwarf2_per_objfile according to OBJFILE. */
3216
3217 static void
3218 dw2_setup (struct objfile *objfile)
3219 {
3220 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3221 gdb_assert (dwarf2_per_objfile);
3222 }
3223
3224 /* die_reader_func for dw2_get_file_names. */
3225
3226 static void
3227 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3228 const gdb_byte *info_ptr,
3229 struct die_info *comp_unit_die,
3230 int has_children,
3231 void *data)
3232 {
3233 struct dwarf2_cu *cu = reader->cu;
3234 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3235 struct objfile *objfile = dwarf2_per_objfile->objfile;
3236 struct dwarf2_per_cu_data *lh_cu;
3237 struct line_header *lh;
3238 struct attribute *attr;
3239 int i;
3240 const char *name, *comp_dir;
3241 void **slot;
3242 struct quick_file_names *qfn;
3243 unsigned int line_offset;
3244
3245 gdb_assert (! this_cu->is_debug_types);
3246
3247 /* Our callers never want to match partial units -- instead they
3248 will match the enclosing full CU. */
3249 if (comp_unit_die->tag == DW_TAG_partial_unit)
3250 {
3251 this_cu->v.quick->no_file_data = 1;
3252 return;
3253 }
3254
3255 lh_cu = this_cu;
3256 lh = NULL;
3257 slot = NULL;
3258 line_offset = 0;
3259
3260 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3261 if (attr)
3262 {
3263 struct quick_file_names find_entry;
3264
3265 line_offset = DW_UNSND (attr);
3266
3267 /* We may have already read in this line header (TU line header sharing).
3268 If we have we're done. */
3269 find_entry.hash.dwo_unit = cu->dwo_unit;
3270 find_entry.hash.line_offset.sect_off = line_offset;
3271 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3272 &find_entry, INSERT);
3273 if (*slot != NULL)
3274 {
3275 lh_cu->v.quick->file_names = *slot;
3276 return;
3277 }
3278
3279 lh = dwarf_decode_line_header (line_offset, cu);
3280 }
3281 if (lh == NULL)
3282 {
3283 lh_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3288 qfn->hash.dwo_unit = cu->dwo_unit;
3289 qfn->hash.line_offset.sect_off = line_offset;
3290 gdb_assert (slot != NULL);
3291 *slot = qfn;
3292
3293 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3294
3295 qfn->num_file_names = lh->num_file_names;
3296 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3297 lh->num_file_names * sizeof (char *));
3298 for (i = 0; i < lh->num_file_names; ++i)
3299 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3300 qfn->real_names = NULL;
3301
3302 free_line_header (lh);
3303
3304 lh_cu->v.quick->file_names = qfn;
3305 }
3306
3307 /* A helper for the "quick" functions which attempts to read the line
3308 table for THIS_CU. */
3309
3310 static struct quick_file_names *
3311 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3312 {
3313 /* This should never be called for TUs. */
3314 gdb_assert (! this_cu->is_debug_types);
3315 /* Nor type unit groups. */
3316 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3317
3318 if (this_cu->v.quick->file_names != NULL)
3319 return this_cu->v.quick->file_names;
3320 /* If we know there is no line data, no point in looking again. */
3321 if (this_cu->v.quick->no_file_data)
3322 return NULL;
3323
3324 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3325
3326 if (this_cu->v.quick->no_file_data)
3327 return NULL;
3328 return this_cu->v.quick->file_names;
3329 }
3330
3331 /* A helper for the "quick" functions which computes and caches the
3332 real path for a given file name from the line table. */
3333
3334 static const char *
3335 dw2_get_real_path (struct objfile *objfile,
3336 struct quick_file_names *qfn, int index)
3337 {
3338 if (qfn->real_names == NULL)
3339 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3340 qfn->num_file_names, const char *);
3341
3342 if (qfn->real_names[index] == NULL)
3343 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3344
3345 return qfn->real_names[index];
3346 }
3347
3348 static struct symtab *
3349 dw2_find_last_source_symtab (struct objfile *objfile)
3350 {
3351 struct compunit_symtab *cust;
3352 int index;
3353
3354 dw2_setup (objfile);
3355 index = dwarf2_per_objfile->n_comp_units - 1;
3356 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3357 if (cust == NULL)
3358 return NULL;
3359 return compunit_primary_filetab (cust);
3360 }
3361
3362 /* Traversal function for dw2_forget_cached_source_info. */
3363
3364 static int
3365 dw2_free_cached_file_names (void **slot, void *info)
3366 {
3367 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3368
3369 if (file_data->real_names)
3370 {
3371 int i;
3372
3373 for (i = 0; i < file_data->num_file_names; ++i)
3374 {
3375 xfree ((void*) file_data->real_names[i]);
3376 file_data->real_names[i] = NULL;
3377 }
3378 }
3379
3380 return 1;
3381 }
3382
3383 static void
3384 dw2_forget_cached_source_info (struct objfile *objfile)
3385 {
3386 dw2_setup (objfile);
3387
3388 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3389 dw2_free_cached_file_names, NULL);
3390 }
3391
3392 /* Helper function for dw2_map_symtabs_matching_filename that expands
3393 the symtabs and calls the iterator. */
3394
3395 static int
3396 dw2_map_expand_apply (struct objfile *objfile,
3397 struct dwarf2_per_cu_data *per_cu,
3398 const char *name, const char *real_path,
3399 int (*callback) (struct symtab *, void *),
3400 void *data)
3401 {
3402 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3403
3404 /* Don't visit already-expanded CUs. */
3405 if (per_cu->v.quick->compunit_symtab)
3406 return 0;
3407
3408 /* This may expand more than one symtab, and we want to iterate over
3409 all of them. */
3410 dw2_instantiate_symtab (per_cu);
3411
3412 return iterate_over_some_symtabs (name, real_path, callback, data,
3413 objfile->compunit_symtabs, last_made);
3414 }
3415
3416 /* Implementation of the map_symtabs_matching_filename method. */
3417
3418 static int
3419 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3420 const char *real_path,
3421 int (*callback) (struct symtab *, void *),
3422 void *data)
3423 {
3424 int i;
3425 const char *name_basename = lbasename (name);
3426
3427 dw2_setup (objfile);
3428
3429 /* The rule is CUs specify all the files, including those used by
3430 any TU, so there's no need to scan TUs here. */
3431
3432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3433 {
3434 int j;
3435 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3436 struct quick_file_names *file_data;
3437
3438 /* We only need to look at symtabs not already expanded. */
3439 if (per_cu->v.quick->compunit_symtab)
3440 continue;
3441
3442 file_data = dw2_get_file_names (per_cu);
3443 if (file_data == NULL)
3444 continue;
3445
3446 for (j = 0; j < file_data->num_file_names; ++j)
3447 {
3448 const char *this_name = file_data->file_names[j];
3449 const char *this_real_name;
3450
3451 if (compare_filenames_for_search (this_name, name))
3452 {
3453 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3454 callback, data))
3455 return 1;
3456 continue;
3457 }
3458
3459 /* Before we invoke realpath, which can get expensive when many
3460 files are involved, do a quick comparison of the basenames. */
3461 if (! basenames_may_differ
3462 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3463 continue;
3464
3465 this_real_name = dw2_get_real_path (objfile, file_data, j);
3466 if (compare_filenames_for_search (this_real_name, name))
3467 {
3468 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3469 callback, data))
3470 return 1;
3471 continue;
3472 }
3473
3474 if (real_path != NULL)
3475 {
3476 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3477 gdb_assert (IS_ABSOLUTE_PATH (name));
3478 if (this_real_name != NULL
3479 && FILENAME_CMP (real_path, this_real_name) == 0)
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486 }
3487 }
3488 }
3489
3490 return 0;
3491 }
3492
3493 /* Struct used to manage iterating over all CUs looking for a symbol. */
3494
3495 struct dw2_symtab_iterator
3496 {
3497 /* The internalized form of .gdb_index. */
3498 struct mapped_index *index;
3499 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3500 int want_specific_block;
3501 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3502 Unused if !WANT_SPECIFIC_BLOCK. */
3503 int block_index;
3504 /* The kind of symbol we're looking for. */
3505 domain_enum domain;
3506 /* The list of CUs from the index entry of the symbol,
3507 or NULL if not found. */
3508 offset_type *vec;
3509 /* The next element in VEC to look at. */
3510 int next;
3511 /* The number of elements in VEC, or zero if there is no match. */
3512 int length;
3513 /* Have we seen a global version of the symbol?
3514 If so we can ignore all further global instances.
3515 This is to work around gold/15646, inefficient gold-generated
3516 indices. */
3517 int global_seen;
3518 };
3519
3520 /* Initialize the index symtab iterator ITER.
3521 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3522 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3523
3524 static void
3525 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3526 struct mapped_index *index,
3527 int want_specific_block,
3528 int block_index,
3529 domain_enum domain,
3530 const char *name)
3531 {
3532 iter->index = index;
3533 iter->want_specific_block = want_specific_block;
3534 iter->block_index = block_index;
3535 iter->domain = domain;
3536 iter->next = 0;
3537 iter->global_seen = 0;
3538
3539 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3540 iter->length = MAYBE_SWAP (*iter->vec);
3541 else
3542 {
3543 iter->vec = NULL;
3544 iter->length = 0;
3545 }
3546 }
3547
3548 /* Return the next matching CU or NULL if there are no more. */
3549
3550 static struct dwarf2_per_cu_data *
3551 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3552 {
3553 for ( ; iter->next < iter->length; ++iter->next)
3554 {
3555 offset_type cu_index_and_attrs =
3556 MAYBE_SWAP (iter->vec[iter->next + 1]);
3557 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3558 struct dwarf2_per_cu_data *per_cu;
3559 int want_static = iter->block_index != GLOBAL_BLOCK;
3560 /* This value is only valid for index versions >= 7. */
3561 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3562 gdb_index_symbol_kind symbol_kind =
3563 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3564 /* Only check the symbol attributes if they're present.
3565 Indices prior to version 7 don't record them,
3566 and indices >= 7 may elide them for certain symbols
3567 (gold does this). */
3568 int attrs_valid =
3569 (iter->index->version >= 7
3570 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3571
3572 /* Don't crash on bad data. */
3573 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3574 + dwarf2_per_objfile->n_type_units))
3575 {
3576 complaint (&symfile_complaints,
3577 _(".gdb_index entry has bad CU index"
3578 " [in module %s]"),
3579 objfile_name (dwarf2_per_objfile->objfile));
3580 continue;
3581 }
3582
3583 per_cu = dw2_get_cutu (cu_index);
3584
3585 /* Skip if already read in. */
3586 if (per_cu->v.quick->compunit_symtab)
3587 continue;
3588
3589 /* Check static vs global. */
3590 if (attrs_valid)
3591 {
3592 if (iter->want_specific_block
3593 && want_static != is_static)
3594 continue;
3595 /* Work around gold/15646. */
3596 if (!is_static && iter->global_seen)
3597 continue;
3598 if (!is_static)
3599 iter->global_seen = 1;
3600 }
3601
3602 /* Only check the symbol's kind if it has one. */
3603 if (attrs_valid)
3604 {
3605 switch (iter->domain)
3606 {
3607 case VAR_DOMAIN:
3608 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3609 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3610 /* Some types are also in VAR_DOMAIN. */
3611 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3612 continue;
3613 break;
3614 case STRUCT_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3616 continue;
3617 break;
3618 case LABEL_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3620 continue;
3621 break;
3622 default:
3623 break;
3624 }
3625 }
3626
3627 ++iter->next;
3628 return per_cu;
3629 }
3630
3631 return NULL;
3632 }
3633
3634 static struct compunit_symtab *
3635 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3636 const char *name, domain_enum domain)
3637 {
3638 struct compunit_symtab *stab_best = NULL;
3639 struct mapped_index *index;
3640
3641 dw2_setup (objfile);
3642
3643 index = dwarf2_per_objfile->index_table;
3644
3645 /* index is NULL if OBJF_READNOW. */
3646 if (index)
3647 {
3648 struct dw2_symtab_iterator iter;
3649 struct dwarf2_per_cu_data *per_cu;
3650
3651 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3652
3653 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3654 {
3655 struct symbol *sym = NULL;
3656 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3657 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3658 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3659
3660 /* Some caution must be observed with overloaded functions
3661 and methods, since the index will not contain any overload
3662 information (but NAME might contain it). */
3663 sym = block_lookup_symbol (block, name, domain);
3664
3665 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3666 {
3667 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3668 return stab;
3669
3670 stab_best = stab;
3671 }
3672
3673 /* Keep looking through other CUs. */
3674 }
3675 }
3676
3677 return stab_best;
3678 }
3679
3680 static void
3681 dw2_print_stats (struct objfile *objfile)
3682 {
3683 int i, total, count;
3684
3685 dw2_setup (objfile);
3686 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3687 count = 0;
3688 for (i = 0; i < total; ++i)
3689 {
3690 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3691
3692 if (!per_cu->v.quick->compunit_symtab)
3693 ++count;
3694 }
3695 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3696 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3697 }
3698
3699 /* This dumps minimal information about the index.
3700 It is called via "mt print objfiles".
3701 One use is to verify .gdb_index has been loaded by the
3702 gdb.dwarf2/gdb-index.exp testcase. */
3703
3704 static void
3705 dw2_dump (struct objfile *objfile)
3706 {
3707 dw2_setup (objfile);
3708 gdb_assert (dwarf2_per_objfile->using_index);
3709 printf_filtered (".gdb_index:");
3710 if (dwarf2_per_objfile->index_table != NULL)
3711 {
3712 printf_filtered (" version %d\n",
3713 dwarf2_per_objfile->index_table->version);
3714 }
3715 else
3716 printf_filtered (" faked for \"readnow\"\n");
3717 printf_filtered ("\n");
3718 }
3719
3720 static void
3721 dw2_relocate (struct objfile *objfile,
3722 const struct section_offsets *new_offsets,
3723 const struct section_offsets *delta)
3724 {
3725 /* There's nothing to relocate here. */
3726 }
3727
3728 static void
3729 dw2_expand_symtabs_for_function (struct objfile *objfile,
3730 const char *func_name)
3731 {
3732 struct mapped_index *index;
3733
3734 dw2_setup (objfile);
3735
3736 index = dwarf2_per_objfile->index_table;
3737
3738 /* index is NULL if OBJF_READNOW. */
3739 if (index)
3740 {
3741 struct dw2_symtab_iterator iter;
3742 struct dwarf2_per_cu_data *per_cu;
3743
3744 /* Note: It doesn't matter what we pass for block_index here. */
3745 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3746 func_name);
3747
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3749 dw2_instantiate_symtab (per_cu);
3750 }
3751 }
3752
3753 static void
3754 dw2_expand_all_symtabs (struct objfile *objfile)
3755 {
3756 int i;
3757
3758 dw2_setup (objfile);
3759
3760 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3761 + dwarf2_per_objfile->n_type_units); ++i)
3762 {
3763 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3764
3765 dw2_instantiate_symtab (per_cu);
3766 }
3767 }
3768
3769 static void
3770 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3771 const char *fullname)
3772 {
3773 int i;
3774
3775 dw2_setup (objfile);
3776
3777 /* We don't need to consider type units here.
3778 This is only called for examining code, e.g. expand_line_sal.
3779 There can be an order of magnitude (or more) more type units
3780 than comp units, and we avoid them if we can. */
3781
3782 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3783 {
3784 int j;
3785 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3786 struct quick_file_names *file_data;
3787
3788 /* We only need to look at symtabs not already expanded. */
3789 if (per_cu->v.quick->compunit_symtab)
3790 continue;
3791
3792 file_data = dw2_get_file_names (per_cu);
3793 if (file_data == NULL)
3794 continue;
3795
3796 for (j = 0; j < file_data->num_file_names; ++j)
3797 {
3798 const char *this_fullname = file_data->file_names[j];
3799
3800 if (filename_cmp (this_fullname, fullname) == 0)
3801 {
3802 dw2_instantiate_symtab (per_cu);
3803 break;
3804 }
3805 }
3806 }
3807 }
3808
3809 static void
3810 dw2_map_matching_symbols (struct objfile *objfile,
3811 const char * name, domain_enum namespace,
3812 int global,
3813 int (*callback) (struct block *,
3814 struct symbol *, void *),
3815 void *data, symbol_compare_ftype *match,
3816 symbol_compare_ftype *ordered_compare)
3817 {
3818 /* Currently unimplemented; used for Ada. The function can be called if the
3819 current language is Ada for a non-Ada objfile using GNU index. As Ada
3820 does not look for non-Ada symbols this function should just return. */
3821 }
3822
3823 static void
3824 dw2_expand_symtabs_matching
3825 (struct objfile *objfile,
3826 expand_symtabs_file_matcher_ftype *file_matcher,
3827 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3828 enum search_domain kind,
3829 void *data)
3830 {
3831 int i;
3832 offset_type iter;
3833 struct mapped_index *index;
3834
3835 dw2_setup (objfile);
3836
3837 /* index_table is NULL if OBJF_READNOW. */
3838 if (!dwarf2_per_objfile->index_table)
3839 return;
3840 index = dwarf2_per_objfile->index_table;
3841
3842 if (file_matcher != NULL)
3843 {
3844 struct cleanup *cleanup;
3845 htab_t visited_found, visited_not_found;
3846
3847 visited_found = htab_create_alloc (10,
3848 htab_hash_pointer, htab_eq_pointer,
3849 NULL, xcalloc, xfree);
3850 cleanup = make_cleanup_htab_delete (visited_found);
3851 visited_not_found = htab_create_alloc (10,
3852 htab_hash_pointer, htab_eq_pointer,
3853 NULL, xcalloc, xfree);
3854 make_cleanup_htab_delete (visited_not_found);
3855
3856 /* The rule is CUs specify all the files, including those used by
3857 any TU, so there's no need to scan TUs here. */
3858
3859 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3860 {
3861 int j;
3862 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3863 struct quick_file_names *file_data;
3864 void **slot;
3865
3866 per_cu->v.quick->mark = 0;
3867
3868 /* We only need to look at symtabs not already expanded. */
3869 if (per_cu->v.quick->compunit_symtab)
3870 continue;
3871
3872 file_data = dw2_get_file_names (per_cu);
3873 if (file_data == NULL)
3874 continue;
3875
3876 if (htab_find (visited_not_found, file_data) != NULL)
3877 continue;
3878 else if (htab_find (visited_found, file_data) != NULL)
3879 {
3880 per_cu->v.quick->mark = 1;
3881 continue;
3882 }
3883
3884 for (j = 0; j < file_data->num_file_names; ++j)
3885 {
3886 const char *this_real_name;
3887
3888 if (file_matcher (file_data->file_names[j], data, 0))
3889 {
3890 per_cu->v.quick->mark = 1;
3891 break;
3892 }
3893
3894 /* Before we invoke realpath, which can get expensive when many
3895 files are involved, do a quick comparison of the basenames. */
3896 if (!basenames_may_differ
3897 && !file_matcher (lbasename (file_data->file_names[j]),
3898 data, 1))
3899 continue;
3900
3901 this_real_name = dw2_get_real_path (objfile, file_data, j);
3902 if (file_matcher (this_real_name, data, 0))
3903 {
3904 per_cu->v.quick->mark = 1;
3905 break;
3906 }
3907 }
3908
3909 slot = htab_find_slot (per_cu->v.quick->mark
3910 ? visited_found
3911 : visited_not_found,
3912 file_data, INSERT);
3913 *slot = file_data;
3914 }
3915
3916 do_cleanups (cleanup);
3917 }
3918
3919 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3920 {
3921 offset_type idx = 2 * iter;
3922 const char *name;
3923 offset_type *vec, vec_len, vec_idx;
3924 int global_seen = 0;
3925
3926 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3927 continue;
3928
3929 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3930
3931 if (! (*symbol_matcher) (name, data))
3932 continue;
3933
3934 /* The name was matched, now expand corresponding CUs that were
3935 marked. */
3936 vec = (offset_type *) (index->constant_pool
3937 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3938 vec_len = MAYBE_SWAP (vec[0]);
3939 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3940 {
3941 struct dwarf2_per_cu_data *per_cu;
3942 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3943 /* This value is only valid for index versions >= 7. */
3944 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3945 gdb_index_symbol_kind symbol_kind =
3946 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3947 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3948 /* Only check the symbol attributes if they're present.
3949 Indices prior to version 7 don't record them,
3950 and indices >= 7 may elide them for certain symbols
3951 (gold does this). */
3952 int attrs_valid =
3953 (index->version >= 7
3954 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3955
3956 /* Work around gold/15646. */
3957 if (attrs_valid)
3958 {
3959 if (!is_static && global_seen)
3960 continue;
3961 if (!is_static)
3962 global_seen = 1;
3963 }
3964
3965 /* Only check the symbol's kind if it has one. */
3966 if (attrs_valid)
3967 {
3968 switch (kind)
3969 {
3970 case VARIABLES_DOMAIN:
3971 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3972 continue;
3973 break;
3974 case FUNCTIONS_DOMAIN:
3975 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3976 continue;
3977 break;
3978 case TYPES_DOMAIN:
3979 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3980 continue;
3981 break;
3982 default:
3983 break;
3984 }
3985 }
3986
3987 /* Don't crash on bad data. */
3988 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3989 + dwarf2_per_objfile->n_type_units))
3990 {
3991 complaint (&symfile_complaints,
3992 _(".gdb_index entry has bad CU index"
3993 " [in module %s]"), objfile_name (objfile));
3994 continue;
3995 }
3996
3997 per_cu = dw2_get_cutu (cu_index);
3998 if (file_matcher == NULL || per_cu->v.quick->mark)
3999 dw2_instantiate_symtab (per_cu);
4000 }
4001 }
4002 }
4003
4004 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4005 symtab. */
4006
4007 static struct compunit_symtab *
4008 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4009 CORE_ADDR pc)
4010 {
4011 int i;
4012
4013 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4014 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4015 return cust;
4016
4017 if (cust->includes == NULL)
4018 return NULL;
4019
4020 for (i = 0; cust->includes[i]; ++i)
4021 {
4022 struct compunit_symtab *s = cust->includes[i];
4023
4024 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4025 if (s != NULL)
4026 return s;
4027 }
4028
4029 return NULL;
4030 }
4031
4032 static struct compunit_symtab *
4033 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4034 struct bound_minimal_symbol msymbol,
4035 CORE_ADDR pc,
4036 struct obj_section *section,
4037 int warn_if_readin)
4038 {
4039 struct dwarf2_per_cu_data *data;
4040 struct compunit_symtab *result;
4041
4042 dw2_setup (objfile);
4043
4044 if (!objfile->psymtabs_addrmap)
4045 return NULL;
4046
4047 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4048 if (!data)
4049 return NULL;
4050
4051 if (warn_if_readin && data->v.quick->compunit_symtab)
4052 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4053 paddress (get_objfile_arch (objfile), pc));
4054
4055 result
4056 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4057 pc);
4058 gdb_assert (result != NULL);
4059 return result;
4060 }
4061
4062 static void
4063 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4064 void *data, int need_fullname)
4065 {
4066 int i;
4067 struct cleanup *cleanup;
4068 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4069 NULL, xcalloc, xfree);
4070
4071 cleanup = make_cleanup_htab_delete (visited);
4072 dw2_setup (objfile);
4073
4074 /* The rule is CUs specify all the files, including those used by
4075 any TU, so there's no need to scan TUs here.
4076 We can ignore file names coming from already-expanded CUs. */
4077
4078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4079 {
4080 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4081
4082 if (per_cu->v.quick->compunit_symtab)
4083 {
4084 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4085 INSERT);
4086
4087 *slot = per_cu->v.quick->file_names;
4088 }
4089 }
4090
4091 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4092 {
4093 int j;
4094 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4095 struct quick_file_names *file_data;
4096 void **slot;
4097
4098 /* We only need to look at symtabs not already expanded. */
4099 if (per_cu->v.quick->compunit_symtab)
4100 continue;
4101
4102 file_data = dw2_get_file_names (per_cu);
4103 if (file_data == NULL)
4104 continue;
4105
4106 slot = htab_find_slot (visited, file_data, INSERT);
4107 if (*slot)
4108 {
4109 /* Already visited. */
4110 continue;
4111 }
4112 *slot = file_data;
4113
4114 for (j = 0; j < file_data->num_file_names; ++j)
4115 {
4116 const char *this_real_name;
4117
4118 if (need_fullname)
4119 this_real_name = dw2_get_real_path (objfile, file_data, j);
4120 else
4121 this_real_name = NULL;
4122 (*fun) (file_data->file_names[j], this_real_name, data);
4123 }
4124 }
4125
4126 do_cleanups (cleanup);
4127 }
4128
4129 static int
4130 dw2_has_symbols (struct objfile *objfile)
4131 {
4132 return 1;
4133 }
4134
4135 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4136 {
4137 dw2_has_symbols,
4138 dw2_find_last_source_symtab,
4139 dw2_forget_cached_source_info,
4140 dw2_map_symtabs_matching_filename,
4141 dw2_lookup_symbol,
4142 dw2_print_stats,
4143 dw2_dump,
4144 dw2_relocate,
4145 dw2_expand_symtabs_for_function,
4146 dw2_expand_all_symtabs,
4147 dw2_expand_symtabs_with_fullname,
4148 dw2_map_matching_symbols,
4149 dw2_expand_symtabs_matching,
4150 dw2_find_pc_sect_compunit_symtab,
4151 dw2_map_symbol_filenames
4152 };
4153
4154 /* Initialize for reading DWARF for this objfile. Return 0 if this
4155 file will use psymtabs, or 1 if using the GNU index. */
4156
4157 int
4158 dwarf2_initialize_objfile (struct objfile *objfile)
4159 {
4160 /* If we're about to read full symbols, don't bother with the
4161 indices. In this case we also don't care if some other debug
4162 format is making psymtabs, because they are all about to be
4163 expanded anyway. */
4164 if ((objfile->flags & OBJF_READNOW))
4165 {
4166 int i;
4167
4168 dwarf2_per_objfile->using_index = 1;
4169 create_all_comp_units (objfile);
4170 create_all_type_units (objfile);
4171 dwarf2_per_objfile->quick_file_names_table =
4172 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4173
4174 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4175 + dwarf2_per_objfile->n_type_units); ++i)
4176 {
4177 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4178
4179 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4180 struct dwarf2_per_cu_quick_data);
4181 }
4182
4183 /* Return 1 so that gdb sees the "quick" functions. However,
4184 these functions will be no-ops because we will have expanded
4185 all symtabs. */
4186 return 1;
4187 }
4188
4189 if (dwarf2_read_index (objfile))
4190 return 1;
4191
4192 return 0;
4193 }
4194
4195 \f
4196
4197 /* Build a partial symbol table. */
4198
4199 void
4200 dwarf2_build_psymtabs (struct objfile *objfile)
4201 {
4202 volatile struct gdb_exception except;
4203
4204 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4205 {
4206 init_psymbol_list (objfile, 1024);
4207 }
4208
4209 TRY_CATCH (except, RETURN_MASK_ERROR)
4210 {
4211 /* This isn't really ideal: all the data we allocate on the
4212 objfile's obstack is still uselessly kept around. However,
4213 freeing it seems unsafe. */
4214 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4215
4216 dwarf2_build_psymtabs_hard (objfile);
4217 discard_cleanups (cleanups);
4218 }
4219 if (except.reason < 0)
4220 exception_print (gdb_stderr, except);
4221 }
4222
4223 /* Return the total length of the CU described by HEADER. */
4224
4225 static unsigned int
4226 get_cu_length (const struct comp_unit_head *header)
4227 {
4228 return header->initial_length_size + header->length;
4229 }
4230
4231 /* Return TRUE if OFFSET is within CU_HEADER. */
4232
4233 static inline int
4234 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4235 {
4236 sect_offset bottom = { cu_header->offset.sect_off };
4237 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4238
4239 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4240 }
4241
4242 /* Find the base address of the compilation unit for range lists and
4243 location lists. It will normally be specified by DW_AT_low_pc.
4244 In DWARF-3 draft 4, the base address could be overridden by
4245 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4246 compilation units with discontinuous ranges. */
4247
4248 static void
4249 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4250 {
4251 struct attribute *attr;
4252
4253 cu->base_known = 0;
4254 cu->base_address = 0;
4255
4256 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4257 if (attr)
4258 {
4259 cu->base_address = attr_value_as_address (attr);
4260 cu->base_known = 1;
4261 }
4262 else
4263 {
4264 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4265 if (attr)
4266 {
4267 cu->base_address = attr_value_as_address (attr);
4268 cu->base_known = 1;
4269 }
4270 }
4271 }
4272
4273 /* Read in the comp unit header information from the debug_info at info_ptr.
4274 NOTE: This leaves members offset, first_die_offset to be filled in
4275 by the caller. */
4276
4277 static const gdb_byte *
4278 read_comp_unit_head (struct comp_unit_head *cu_header,
4279 const gdb_byte *info_ptr, bfd *abfd)
4280 {
4281 int signed_addr;
4282 unsigned int bytes_read;
4283
4284 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4285 cu_header->initial_length_size = bytes_read;
4286 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4287 info_ptr += bytes_read;
4288 cu_header->version = read_2_bytes (abfd, info_ptr);
4289 info_ptr += 2;
4290 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4291 &bytes_read);
4292 info_ptr += bytes_read;
4293 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4294 info_ptr += 1;
4295 signed_addr = bfd_get_sign_extend_vma (abfd);
4296 if (signed_addr < 0)
4297 internal_error (__FILE__, __LINE__,
4298 _("read_comp_unit_head: dwarf from non elf file"));
4299 cu_header->signed_addr_p = signed_addr;
4300
4301 return info_ptr;
4302 }
4303
4304 /* Helper function that returns the proper abbrev section for
4305 THIS_CU. */
4306
4307 static struct dwarf2_section_info *
4308 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4309 {
4310 struct dwarf2_section_info *abbrev;
4311
4312 if (this_cu->is_dwz)
4313 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4314 else
4315 abbrev = &dwarf2_per_objfile->abbrev;
4316
4317 return abbrev;
4318 }
4319
4320 /* Subroutine of read_and_check_comp_unit_head and
4321 read_and_check_type_unit_head to simplify them.
4322 Perform various error checking on the header. */
4323
4324 static void
4325 error_check_comp_unit_head (struct comp_unit_head *header,
4326 struct dwarf2_section_info *section,
4327 struct dwarf2_section_info *abbrev_section)
4328 {
4329 bfd *abfd = get_section_bfd_owner (section);
4330 const char *filename = get_section_file_name (section);
4331
4332 if (header->version != 2 && header->version != 3 && header->version != 4)
4333 error (_("Dwarf Error: wrong version in compilation unit header "
4334 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4335 filename);
4336
4337 if (header->abbrev_offset.sect_off
4338 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4339 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4340 "(offset 0x%lx + 6) [in module %s]"),
4341 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4342 filename);
4343
4344 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4345 avoid potential 32-bit overflow. */
4346 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4347 > section->size)
4348 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4349 "(offset 0x%lx + 0) [in module %s]"),
4350 (long) header->length, (long) header->offset.sect_off,
4351 filename);
4352 }
4353
4354 /* Read in a CU/TU header and perform some basic error checking.
4355 The contents of the header are stored in HEADER.
4356 The result is a pointer to the start of the first DIE. */
4357
4358 static const gdb_byte *
4359 read_and_check_comp_unit_head (struct comp_unit_head *header,
4360 struct dwarf2_section_info *section,
4361 struct dwarf2_section_info *abbrev_section,
4362 const gdb_byte *info_ptr,
4363 int is_debug_types_section)
4364 {
4365 const gdb_byte *beg_of_comp_unit = info_ptr;
4366 bfd *abfd = get_section_bfd_owner (section);
4367
4368 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4369
4370 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4371
4372 /* If we're reading a type unit, skip over the signature and
4373 type_offset fields. */
4374 if (is_debug_types_section)
4375 info_ptr += 8 /*signature*/ + header->offset_size;
4376
4377 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4378
4379 error_check_comp_unit_head (header, section, abbrev_section);
4380
4381 return info_ptr;
4382 }
4383
4384 /* Read in the types comp unit header information from .debug_types entry at
4385 types_ptr. The result is a pointer to one past the end of the header. */
4386
4387 static const gdb_byte *
4388 read_and_check_type_unit_head (struct comp_unit_head *header,
4389 struct dwarf2_section_info *section,
4390 struct dwarf2_section_info *abbrev_section,
4391 const gdb_byte *info_ptr,
4392 ULONGEST *signature,
4393 cu_offset *type_offset_in_tu)
4394 {
4395 const gdb_byte *beg_of_comp_unit = info_ptr;
4396 bfd *abfd = get_section_bfd_owner (section);
4397
4398 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4399
4400 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4401
4402 /* If we're reading a type unit, skip over the signature and
4403 type_offset fields. */
4404 if (signature != NULL)
4405 *signature = read_8_bytes (abfd, info_ptr);
4406 info_ptr += 8;
4407 if (type_offset_in_tu != NULL)
4408 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4409 header->offset_size);
4410 info_ptr += header->offset_size;
4411
4412 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4413
4414 error_check_comp_unit_head (header, section, abbrev_section);
4415
4416 return info_ptr;
4417 }
4418
4419 /* Fetch the abbreviation table offset from a comp or type unit header. */
4420
4421 static sect_offset
4422 read_abbrev_offset (struct dwarf2_section_info *section,
4423 sect_offset offset)
4424 {
4425 bfd *abfd = get_section_bfd_owner (section);
4426 const gdb_byte *info_ptr;
4427 unsigned int length, initial_length_size, offset_size;
4428 sect_offset abbrev_offset;
4429
4430 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4431 info_ptr = section->buffer + offset.sect_off;
4432 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4433 offset_size = initial_length_size == 4 ? 4 : 8;
4434 info_ptr += initial_length_size + 2 /*version*/;
4435 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4436 return abbrev_offset;
4437 }
4438
4439 /* Allocate a new partial symtab for file named NAME and mark this new
4440 partial symtab as being an include of PST. */
4441
4442 static void
4443 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4444 struct objfile *objfile)
4445 {
4446 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4447
4448 if (!IS_ABSOLUTE_PATH (subpst->filename))
4449 {
4450 /* It shares objfile->objfile_obstack. */
4451 subpst->dirname = pst->dirname;
4452 }
4453
4454 subpst->section_offsets = pst->section_offsets;
4455 subpst->textlow = 0;
4456 subpst->texthigh = 0;
4457
4458 subpst->dependencies = (struct partial_symtab **)
4459 obstack_alloc (&objfile->objfile_obstack,
4460 sizeof (struct partial_symtab *));
4461 subpst->dependencies[0] = pst;
4462 subpst->number_of_dependencies = 1;
4463
4464 subpst->globals_offset = 0;
4465 subpst->n_global_syms = 0;
4466 subpst->statics_offset = 0;
4467 subpst->n_static_syms = 0;
4468 subpst->compunit_symtab = NULL;
4469 subpst->read_symtab = pst->read_symtab;
4470 subpst->readin = 0;
4471
4472 /* No private part is necessary for include psymtabs. This property
4473 can be used to differentiate between such include psymtabs and
4474 the regular ones. */
4475 subpst->read_symtab_private = NULL;
4476 }
4477
4478 /* Read the Line Number Program data and extract the list of files
4479 included by the source file represented by PST. Build an include
4480 partial symtab for each of these included files. */
4481
4482 static void
4483 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4484 struct die_info *die,
4485 struct partial_symtab *pst)
4486 {
4487 struct line_header *lh = NULL;
4488 struct attribute *attr;
4489
4490 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4491 if (attr)
4492 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4493 if (lh == NULL)
4494 return; /* No linetable, so no includes. */
4495
4496 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4497 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4498
4499 free_line_header (lh);
4500 }
4501
4502 static hashval_t
4503 hash_signatured_type (const void *item)
4504 {
4505 const struct signatured_type *sig_type = item;
4506
4507 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4508 return sig_type->signature;
4509 }
4510
4511 static int
4512 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4513 {
4514 const struct signatured_type *lhs = item_lhs;
4515 const struct signatured_type *rhs = item_rhs;
4516
4517 return lhs->signature == rhs->signature;
4518 }
4519
4520 /* Allocate a hash table for signatured types. */
4521
4522 static htab_t
4523 allocate_signatured_type_table (struct objfile *objfile)
4524 {
4525 return htab_create_alloc_ex (41,
4526 hash_signatured_type,
4527 eq_signatured_type,
4528 NULL,
4529 &objfile->objfile_obstack,
4530 hashtab_obstack_allocate,
4531 dummy_obstack_deallocate);
4532 }
4533
4534 /* A helper function to add a signatured type CU to a table. */
4535
4536 static int
4537 add_signatured_type_cu_to_table (void **slot, void *datum)
4538 {
4539 struct signatured_type *sigt = *slot;
4540 struct signatured_type ***datap = datum;
4541
4542 **datap = sigt;
4543 ++*datap;
4544
4545 return 1;
4546 }
4547
4548 /* Create the hash table of all entries in the .debug_types
4549 (or .debug_types.dwo) section(s).
4550 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4551 otherwise it is NULL.
4552
4553 The result is a pointer to the hash table or NULL if there are no types.
4554
4555 Note: This function processes DWO files only, not DWP files. */
4556
4557 static htab_t
4558 create_debug_types_hash_table (struct dwo_file *dwo_file,
4559 VEC (dwarf2_section_info_def) *types)
4560 {
4561 struct objfile *objfile = dwarf2_per_objfile->objfile;
4562 htab_t types_htab = NULL;
4563 int ix;
4564 struct dwarf2_section_info *section;
4565 struct dwarf2_section_info *abbrev_section;
4566
4567 if (VEC_empty (dwarf2_section_info_def, types))
4568 return NULL;
4569
4570 abbrev_section = (dwo_file != NULL
4571 ? &dwo_file->sections.abbrev
4572 : &dwarf2_per_objfile->abbrev);
4573
4574 if (dwarf2_read_debug)
4575 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4576 dwo_file ? ".dwo" : "",
4577 get_section_file_name (abbrev_section));
4578
4579 for (ix = 0;
4580 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4581 ++ix)
4582 {
4583 bfd *abfd;
4584 const gdb_byte *info_ptr, *end_ptr;
4585
4586 dwarf2_read_section (objfile, section);
4587 info_ptr = section->buffer;
4588
4589 if (info_ptr == NULL)
4590 continue;
4591
4592 /* We can't set abfd until now because the section may be empty or
4593 not present, in which case the bfd is unknown. */
4594 abfd = get_section_bfd_owner (section);
4595
4596 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4597 because we don't need to read any dies: the signature is in the
4598 header. */
4599
4600 end_ptr = info_ptr + section->size;
4601 while (info_ptr < end_ptr)
4602 {
4603 sect_offset offset;
4604 cu_offset type_offset_in_tu;
4605 ULONGEST signature;
4606 struct signatured_type *sig_type;
4607 struct dwo_unit *dwo_tu;
4608 void **slot;
4609 const gdb_byte *ptr = info_ptr;
4610 struct comp_unit_head header;
4611 unsigned int length;
4612
4613 offset.sect_off = ptr - section->buffer;
4614
4615 /* We need to read the type's signature in order to build the hash
4616 table, but we don't need anything else just yet. */
4617
4618 ptr = read_and_check_type_unit_head (&header, section,
4619 abbrev_section, ptr,
4620 &signature, &type_offset_in_tu);
4621
4622 length = get_cu_length (&header);
4623
4624 /* Skip dummy type units. */
4625 if (ptr >= info_ptr + length
4626 || peek_abbrev_code (abfd, ptr) == 0)
4627 {
4628 info_ptr += length;
4629 continue;
4630 }
4631
4632 if (types_htab == NULL)
4633 {
4634 if (dwo_file)
4635 types_htab = allocate_dwo_unit_table (objfile);
4636 else
4637 types_htab = allocate_signatured_type_table (objfile);
4638 }
4639
4640 if (dwo_file)
4641 {
4642 sig_type = NULL;
4643 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4644 struct dwo_unit);
4645 dwo_tu->dwo_file = dwo_file;
4646 dwo_tu->signature = signature;
4647 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4648 dwo_tu->section = section;
4649 dwo_tu->offset = offset;
4650 dwo_tu->length = length;
4651 }
4652 else
4653 {
4654 /* N.B.: type_offset is not usable if this type uses a DWO file.
4655 The real type_offset is in the DWO file. */
4656 dwo_tu = NULL;
4657 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4658 struct signatured_type);
4659 sig_type->signature = signature;
4660 sig_type->type_offset_in_tu = type_offset_in_tu;
4661 sig_type->per_cu.objfile = objfile;
4662 sig_type->per_cu.is_debug_types = 1;
4663 sig_type->per_cu.section = section;
4664 sig_type->per_cu.offset = offset;
4665 sig_type->per_cu.length = length;
4666 }
4667
4668 slot = htab_find_slot (types_htab,
4669 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4670 INSERT);
4671 gdb_assert (slot != NULL);
4672 if (*slot != NULL)
4673 {
4674 sect_offset dup_offset;
4675
4676 if (dwo_file)
4677 {
4678 const struct dwo_unit *dup_tu = *slot;
4679
4680 dup_offset = dup_tu->offset;
4681 }
4682 else
4683 {
4684 const struct signatured_type *dup_tu = *slot;
4685
4686 dup_offset = dup_tu->per_cu.offset;
4687 }
4688
4689 complaint (&symfile_complaints,
4690 _("debug type entry at offset 0x%x is duplicate to"
4691 " the entry at offset 0x%x, signature %s"),
4692 offset.sect_off, dup_offset.sect_off,
4693 hex_string (signature));
4694 }
4695 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4696
4697 if (dwarf2_read_debug > 1)
4698 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4699 offset.sect_off,
4700 hex_string (signature));
4701
4702 info_ptr += length;
4703 }
4704 }
4705
4706 return types_htab;
4707 }
4708
4709 /* Create the hash table of all entries in the .debug_types section,
4710 and initialize all_type_units.
4711 The result is zero if there is an error (e.g. missing .debug_types section),
4712 otherwise non-zero. */
4713
4714 static int
4715 create_all_type_units (struct objfile *objfile)
4716 {
4717 htab_t types_htab;
4718 struct signatured_type **iter;
4719
4720 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4721 if (types_htab == NULL)
4722 {
4723 dwarf2_per_objfile->signatured_types = NULL;
4724 return 0;
4725 }
4726
4727 dwarf2_per_objfile->signatured_types = types_htab;
4728
4729 dwarf2_per_objfile->n_type_units
4730 = dwarf2_per_objfile->n_allocated_type_units
4731 = htab_elements (types_htab);
4732 dwarf2_per_objfile->all_type_units
4733 = xmalloc (dwarf2_per_objfile->n_type_units
4734 * sizeof (struct signatured_type *));
4735 iter = &dwarf2_per_objfile->all_type_units[0];
4736 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4737 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4738 == dwarf2_per_objfile->n_type_units);
4739
4740 return 1;
4741 }
4742
4743 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4744 If SLOT is non-NULL, it is the entry to use in the hash table.
4745 Otherwise we find one. */
4746
4747 static struct signatured_type *
4748 add_type_unit (ULONGEST sig, void **slot)
4749 {
4750 struct objfile *objfile = dwarf2_per_objfile->objfile;
4751 int n_type_units = dwarf2_per_objfile->n_type_units;
4752 struct signatured_type *sig_type;
4753
4754 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4755 ++n_type_units;
4756 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4757 {
4758 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4759 dwarf2_per_objfile->n_allocated_type_units = 1;
4760 dwarf2_per_objfile->n_allocated_type_units *= 2;
4761 dwarf2_per_objfile->all_type_units
4762 = xrealloc (dwarf2_per_objfile->all_type_units,
4763 dwarf2_per_objfile->n_allocated_type_units
4764 * sizeof (struct signatured_type *));
4765 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4766 }
4767 dwarf2_per_objfile->n_type_units = n_type_units;
4768
4769 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4770 struct signatured_type);
4771 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4772 sig_type->signature = sig;
4773 sig_type->per_cu.is_debug_types = 1;
4774 if (dwarf2_per_objfile->using_index)
4775 {
4776 sig_type->per_cu.v.quick =
4777 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4778 struct dwarf2_per_cu_quick_data);
4779 }
4780
4781 if (slot == NULL)
4782 {
4783 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4784 sig_type, INSERT);
4785 }
4786 gdb_assert (*slot == NULL);
4787 *slot = sig_type;
4788 /* The rest of sig_type must be filled in by the caller. */
4789 return sig_type;
4790 }
4791
4792 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4793 Fill in SIG_ENTRY with DWO_ENTRY. */
4794
4795 static void
4796 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4797 struct signatured_type *sig_entry,
4798 struct dwo_unit *dwo_entry)
4799 {
4800 /* Make sure we're not clobbering something we don't expect to. */
4801 gdb_assert (! sig_entry->per_cu.queued);
4802 gdb_assert (sig_entry->per_cu.cu == NULL);
4803 if (dwarf2_per_objfile->using_index)
4804 {
4805 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4806 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4807 }
4808 else
4809 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4810 gdb_assert (sig_entry->signature == dwo_entry->signature);
4811 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4812 gdb_assert (sig_entry->type_unit_group == NULL);
4813 gdb_assert (sig_entry->dwo_unit == NULL);
4814
4815 sig_entry->per_cu.section = dwo_entry->section;
4816 sig_entry->per_cu.offset = dwo_entry->offset;
4817 sig_entry->per_cu.length = dwo_entry->length;
4818 sig_entry->per_cu.reading_dwo_directly = 1;
4819 sig_entry->per_cu.objfile = objfile;
4820 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4821 sig_entry->dwo_unit = dwo_entry;
4822 }
4823
4824 /* Subroutine of lookup_signatured_type.
4825 If we haven't read the TU yet, create the signatured_type data structure
4826 for a TU to be read in directly from a DWO file, bypassing the stub.
4827 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4828 using .gdb_index, then when reading a CU we want to stay in the DWO file
4829 containing that CU. Otherwise we could end up reading several other DWO
4830 files (due to comdat folding) to process the transitive closure of all the
4831 mentioned TUs, and that can be slow. The current DWO file will have every
4832 type signature that it needs.
4833 We only do this for .gdb_index because in the psymtab case we already have
4834 to read all the DWOs to build the type unit groups. */
4835
4836 static struct signatured_type *
4837 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4838 {
4839 struct objfile *objfile = dwarf2_per_objfile->objfile;
4840 struct dwo_file *dwo_file;
4841 struct dwo_unit find_dwo_entry, *dwo_entry;
4842 struct signatured_type find_sig_entry, *sig_entry;
4843 void **slot;
4844
4845 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4846
4847 /* If TU skeletons have been removed then we may not have read in any
4848 TUs yet. */
4849 if (dwarf2_per_objfile->signatured_types == NULL)
4850 {
4851 dwarf2_per_objfile->signatured_types
4852 = allocate_signatured_type_table (objfile);
4853 }
4854
4855 /* We only ever need to read in one copy of a signatured type.
4856 Use the global signatured_types array to do our own comdat-folding
4857 of types. If this is the first time we're reading this TU, and
4858 the TU has an entry in .gdb_index, replace the recorded data from
4859 .gdb_index with this TU. */
4860
4861 find_sig_entry.signature = sig;
4862 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4863 &find_sig_entry, INSERT);
4864 sig_entry = *slot;
4865
4866 /* We can get here with the TU already read, *or* in the process of being
4867 read. Don't reassign the global entry to point to this DWO if that's
4868 the case. Also note that if the TU is already being read, it may not
4869 have come from a DWO, the program may be a mix of Fission-compiled
4870 code and non-Fission-compiled code. */
4871
4872 /* Have we already tried to read this TU?
4873 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4874 needn't exist in the global table yet). */
4875 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4876 return sig_entry;
4877
4878 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4879 dwo_unit of the TU itself. */
4880 dwo_file = cu->dwo_unit->dwo_file;
4881
4882 /* Ok, this is the first time we're reading this TU. */
4883 if (dwo_file->tus == NULL)
4884 return NULL;
4885 find_dwo_entry.signature = sig;
4886 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4887 if (dwo_entry == NULL)
4888 return NULL;
4889
4890 /* If the global table doesn't have an entry for this TU, add one. */
4891 if (sig_entry == NULL)
4892 sig_entry = add_type_unit (sig, slot);
4893
4894 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4895 sig_entry->per_cu.tu_read = 1;
4896 return sig_entry;
4897 }
4898
4899 /* Subroutine of lookup_signatured_type.
4900 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4901 then try the DWP file. If the TU stub (skeleton) has been removed then
4902 it won't be in .gdb_index. */
4903
4904 static struct signatured_type *
4905 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4906 {
4907 struct objfile *objfile = dwarf2_per_objfile->objfile;
4908 struct dwp_file *dwp_file = get_dwp_file ();
4909 struct dwo_unit *dwo_entry;
4910 struct signatured_type find_sig_entry, *sig_entry;
4911 void **slot;
4912
4913 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4914 gdb_assert (dwp_file != NULL);
4915
4916 /* If TU skeletons have been removed then we may not have read in any
4917 TUs yet. */
4918 if (dwarf2_per_objfile->signatured_types == NULL)
4919 {
4920 dwarf2_per_objfile->signatured_types
4921 = allocate_signatured_type_table (objfile);
4922 }
4923
4924 find_sig_entry.signature = sig;
4925 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4926 &find_sig_entry, INSERT);
4927 sig_entry = *slot;
4928
4929 /* Have we already tried to read this TU?
4930 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4931 needn't exist in the global table yet). */
4932 if (sig_entry != NULL)
4933 return sig_entry;
4934
4935 if (dwp_file->tus == NULL)
4936 return NULL;
4937 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4938 sig, 1 /* is_debug_types */);
4939 if (dwo_entry == NULL)
4940 return NULL;
4941
4942 sig_entry = add_type_unit (sig, slot);
4943 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4944
4945 return sig_entry;
4946 }
4947
4948 /* Lookup a signature based type for DW_FORM_ref_sig8.
4949 Returns NULL if signature SIG is not present in the table.
4950 It is up to the caller to complain about this. */
4951
4952 static struct signatured_type *
4953 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4954 {
4955 if (cu->dwo_unit
4956 && dwarf2_per_objfile->using_index)
4957 {
4958 /* We're in a DWO/DWP file, and we're using .gdb_index.
4959 These cases require special processing. */
4960 if (get_dwp_file () == NULL)
4961 return lookup_dwo_signatured_type (cu, sig);
4962 else
4963 return lookup_dwp_signatured_type (cu, sig);
4964 }
4965 else
4966 {
4967 struct signatured_type find_entry, *entry;
4968
4969 if (dwarf2_per_objfile->signatured_types == NULL)
4970 return NULL;
4971 find_entry.signature = sig;
4972 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4973 return entry;
4974 }
4975 }
4976 \f
4977 /* Low level DIE reading support. */
4978
4979 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4980
4981 static void
4982 init_cu_die_reader (struct die_reader_specs *reader,
4983 struct dwarf2_cu *cu,
4984 struct dwarf2_section_info *section,
4985 struct dwo_file *dwo_file)
4986 {
4987 gdb_assert (section->readin && section->buffer != NULL);
4988 reader->abfd = get_section_bfd_owner (section);
4989 reader->cu = cu;
4990 reader->dwo_file = dwo_file;
4991 reader->die_section = section;
4992 reader->buffer = section->buffer;
4993 reader->buffer_end = section->buffer + section->size;
4994 reader->comp_dir = NULL;
4995 }
4996
4997 /* Subroutine of init_cutu_and_read_dies to simplify it.
4998 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4999 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5000 already.
5001
5002 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5003 from it to the DIE in the DWO. If NULL we are skipping the stub.
5004 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5005 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5006 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5007 STUB_COMP_DIR may be non-NULL.
5008 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5009 are filled in with the info of the DIE from the DWO file.
5010 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5011 provided an abbrev table to use.
5012 The result is non-zero if a valid (non-dummy) DIE was found. */
5013
5014 static int
5015 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5016 struct dwo_unit *dwo_unit,
5017 int abbrev_table_provided,
5018 struct die_info *stub_comp_unit_die,
5019 const char *stub_comp_dir,
5020 struct die_reader_specs *result_reader,
5021 const gdb_byte **result_info_ptr,
5022 struct die_info **result_comp_unit_die,
5023 int *result_has_children)
5024 {
5025 struct objfile *objfile = dwarf2_per_objfile->objfile;
5026 struct dwarf2_cu *cu = this_cu->cu;
5027 struct dwarf2_section_info *section;
5028 bfd *abfd;
5029 const gdb_byte *begin_info_ptr, *info_ptr;
5030 ULONGEST signature; /* Or dwo_id. */
5031 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5032 int i,num_extra_attrs;
5033 struct dwarf2_section_info *dwo_abbrev_section;
5034 struct attribute *attr;
5035 struct die_info *comp_unit_die;
5036
5037 /* At most one of these may be provided. */
5038 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5039
5040 /* These attributes aren't processed until later:
5041 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5042 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5043 referenced later. However, these attributes are found in the stub
5044 which we won't have later. In order to not impose this complication
5045 on the rest of the code, we read them here and copy them to the
5046 DWO CU/TU die. */
5047
5048 stmt_list = NULL;
5049 low_pc = NULL;
5050 high_pc = NULL;
5051 ranges = NULL;
5052 comp_dir = NULL;
5053
5054 if (stub_comp_unit_die != NULL)
5055 {
5056 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5057 DWO file. */
5058 if (! this_cu->is_debug_types)
5059 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5060 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5061 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5062 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5063 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5064
5065 /* There should be a DW_AT_addr_base attribute here (if needed).
5066 We need the value before we can process DW_FORM_GNU_addr_index. */
5067 cu->addr_base = 0;
5068 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5069 if (attr)
5070 cu->addr_base = DW_UNSND (attr);
5071
5072 /* There should be a DW_AT_ranges_base attribute here (if needed).
5073 We need the value before we can process DW_AT_ranges. */
5074 cu->ranges_base = 0;
5075 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5076 if (attr)
5077 cu->ranges_base = DW_UNSND (attr);
5078 }
5079 else if (stub_comp_dir != NULL)
5080 {
5081 /* Reconstruct the comp_dir attribute to simplify the code below. */
5082 comp_dir = (struct attribute *)
5083 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5084 comp_dir->name = DW_AT_comp_dir;
5085 comp_dir->form = DW_FORM_string;
5086 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5087 DW_STRING (comp_dir) = stub_comp_dir;
5088 }
5089
5090 /* Set up for reading the DWO CU/TU. */
5091 cu->dwo_unit = dwo_unit;
5092 section = dwo_unit->section;
5093 dwarf2_read_section (objfile, section);
5094 abfd = get_section_bfd_owner (section);
5095 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5096 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5097 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5098
5099 if (this_cu->is_debug_types)
5100 {
5101 ULONGEST header_signature;
5102 cu_offset type_offset_in_tu;
5103 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5104
5105 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5106 dwo_abbrev_section,
5107 info_ptr,
5108 &header_signature,
5109 &type_offset_in_tu);
5110 /* This is not an assert because it can be caused by bad debug info. */
5111 if (sig_type->signature != header_signature)
5112 {
5113 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5114 " TU at offset 0x%x [in module %s]"),
5115 hex_string (sig_type->signature),
5116 hex_string (header_signature),
5117 dwo_unit->offset.sect_off,
5118 bfd_get_filename (abfd));
5119 }
5120 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5121 /* For DWOs coming from DWP files, we don't know the CU length
5122 nor the type's offset in the TU until now. */
5123 dwo_unit->length = get_cu_length (&cu->header);
5124 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5125
5126 /* Establish the type offset that can be used to lookup the type.
5127 For DWO files, we don't know it until now. */
5128 sig_type->type_offset_in_section.sect_off =
5129 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5130 }
5131 else
5132 {
5133 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5134 dwo_abbrev_section,
5135 info_ptr, 0);
5136 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5137 /* For DWOs coming from DWP files, we don't know the CU length
5138 until now. */
5139 dwo_unit->length = get_cu_length (&cu->header);
5140 }
5141
5142 /* Replace the CU's original abbrev table with the DWO's.
5143 Reminder: We can't read the abbrev table until we've read the header. */
5144 if (abbrev_table_provided)
5145 {
5146 /* Don't free the provided abbrev table, the caller of
5147 init_cutu_and_read_dies owns it. */
5148 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5149 /* Ensure the DWO abbrev table gets freed. */
5150 make_cleanup (dwarf2_free_abbrev_table, cu);
5151 }
5152 else
5153 {
5154 dwarf2_free_abbrev_table (cu);
5155 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5156 /* Leave any existing abbrev table cleanup as is. */
5157 }
5158
5159 /* Read in the die, but leave space to copy over the attributes
5160 from the stub. This has the benefit of simplifying the rest of
5161 the code - all the work to maintain the illusion of a single
5162 DW_TAG_{compile,type}_unit DIE is done here. */
5163 num_extra_attrs = ((stmt_list != NULL)
5164 + (low_pc != NULL)
5165 + (high_pc != NULL)
5166 + (ranges != NULL)
5167 + (comp_dir != NULL));
5168 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5169 result_has_children, num_extra_attrs);
5170
5171 /* Copy over the attributes from the stub to the DIE we just read in. */
5172 comp_unit_die = *result_comp_unit_die;
5173 i = comp_unit_die->num_attrs;
5174 if (stmt_list != NULL)
5175 comp_unit_die->attrs[i++] = *stmt_list;
5176 if (low_pc != NULL)
5177 comp_unit_die->attrs[i++] = *low_pc;
5178 if (high_pc != NULL)
5179 comp_unit_die->attrs[i++] = *high_pc;
5180 if (ranges != NULL)
5181 comp_unit_die->attrs[i++] = *ranges;
5182 if (comp_dir != NULL)
5183 comp_unit_die->attrs[i++] = *comp_dir;
5184 comp_unit_die->num_attrs += num_extra_attrs;
5185
5186 if (dwarf2_die_debug)
5187 {
5188 fprintf_unfiltered (gdb_stdlog,
5189 "Read die from %s@0x%x of %s:\n",
5190 get_section_name (section),
5191 (unsigned) (begin_info_ptr - section->buffer),
5192 bfd_get_filename (abfd));
5193 dump_die (comp_unit_die, dwarf2_die_debug);
5194 }
5195
5196 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5197 TUs by skipping the stub and going directly to the entry in the DWO file.
5198 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5199 to get it via circuitous means. Blech. */
5200 if (comp_dir != NULL)
5201 result_reader->comp_dir = DW_STRING (comp_dir);
5202
5203 /* Skip dummy compilation units. */
5204 if (info_ptr >= begin_info_ptr + dwo_unit->length
5205 || peek_abbrev_code (abfd, info_ptr) == 0)
5206 return 0;
5207
5208 *result_info_ptr = info_ptr;
5209 return 1;
5210 }
5211
5212 /* Subroutine of init_cutu_and_read_dies to simplify it.
5213 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5214 Returns NULL if the specified DWO unit cannot be found. */
5215
5216 static struct dwo_unit *
5217 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5218 struct die_info *comp_unit_die)
5219 {
5220 struct dwarf2_cu *cu = this_cu->cu;
5221 struct attribute *attr;
5222 ULONGEST signature;
5223 struct dwo_unit *dwo_unit;
5224 const char *comp_dir, *dwo_name;
5225
5226 gdb_assert (cu != NULL);
5227
5228 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5229 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5230 gdb_assert (attr != NULL);
5231 dwo_name = DW_STRING (attr);
5232 comp_dir = NULL;
5233 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5234 if (attr)
5235 comp_dir = DW_STRING (attr);
5236
5237 if (this_cu->is_debug_types)
5238 {
5239 struct signatured_type *sig_type;
5240
5241 /* Since this_cu is the first member of struct signatured_type,
5242 we can go from a pointer to one to a pointer to the other. */
5243 sig_type = (struct signatured_type *) this_cu;
5244 signature = sig_type->signature;
5245 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5246 }
5247 else
5248 {
5249 struct attribute *attr;
5250
5251 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5252 if (! attr)
5253 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5254 " [in module %s]"),
5255 dwo_name, objfile_name (this_cu->objfile));
5256 signature = DW_UNSND (attr);
5257 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5258 signature);
5259 }
5260
5261 return dwo_unit;
5262 }
5263
5264 /* Subroutine of init_cutu_and_read_dies to simplify it.
5265 See it for a description of the parameters.
5266 Read a TU directly from a DWO file, bypassing the stub.
5267
5268 Note: This function could be a little bit simpler if we shared cleanups
5269 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5270 to do, so we keep this function self-contained. Or we could move this
5271 into our caller, but it's complex enough already. */
5272
5273 static void
5274 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5275 int use_existing_cu, int keep,
5276 die_reader_func_ftype *die_reader_func,
5277 void *data)
5278 {
5279 struct dwarf2_cu *cu;
5280 struct signatured_type *sig_type;
5281 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5282 struct die_reader_specs reader;
5283 const gdb_byte *info_ptr;
5284 struct die_info *comp_unit_die;
5285 int has_children;
5286
5287 /* Verify we can do the following downcast, and that we have the
5288 data we need. */
5289 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5290 sig_type = (struct signatured_type *) this_cu;
5291 gdb_assert (sig_type->dwo_unit != NULL);
5292
5293 cleanups = make_cleanup (null_cleanup, NULL);
5294
5295 if (use_existing_cu && this_cu->cu != NULL)
5296 {
5297 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5298 cu = this_cu->cu;
5299 /* There's no need to do the rereading_dwo_cu handling that
5300 init_cutu_and_read_dies does since we don't read the stub. */
5301 }
5302 else
5303 {
5304 /* If !use_existing_cu, this_cu->cu must be NULL. */
5305 gdb_assert (this_cu->cu == NULL);
5306 cu = xmalloc (sizeof (*cu));
5307 init_one_comp_unit (cu, this_cu);
5308 /* If an error occurs while loading, release our storage. */
5309 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5310 }
5311
5312 /* A future optimization, if needed, would be to use an existing
5313 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5314 could share abbrev tables. */
5315
5316 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5317 0 /* abbrev_table_provided */,
5318 NULL /* stub_comp_unit_die */,
5319 sig_type->dwo_unit->dwo_file->comp_dir,
5320 &reader, &info_ptr,
5321 &comp_unit_die, &has_children) == 0)
5322 {
5323 /* Dummy die. */
5324 do_cleanups (cleanups);
5325 return;
5326 }
5327
5328 /* All the "real" work is done here. */
5329 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5330
5331 /* This duplicates the code in init_cutu_and_read_dies,
5332 but the alternative is making the latter more complex.
5333 This function is only for the special case of using DWO files directly:
5334 no point in overly complicating the general case just to handle this. */
5335 if (free_cu_cleanup != NULL)
5336 {
5337 if (keep)
5338 {
5339 /* We've successfully allocated this compilation unit. Let our
5340 caller clean it up when finished with it. */
5341 discard_cleanups (free_cu_cleanup);
5342
5343 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5344 So we have to manually free the abbrev table. */
5345 dwarf2_free_abbrev_table (cu);
5346
5347 /* Link this CU into read_in_chain. */
5348 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5349 dwarf2_per_objfile->read_in_chain = this_cu;
5350 }
5351 else
5352 do_cleanups (free_cu_cleanup);
5353 }
5354
5355 do_cleanups (cleanups);
5356 }
5357
5358 /* Initialize a CU (or TU) and read its DIEs.
5359 If the CU defers to a DWO file, read the DWO file as well.
5360
5361 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5362 Otherwise the table specified in the comp unit header is read in and used.
5363 This is an optimization for when we already have the abbrev table.
5364
5365 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5366 Otherwise, a new CU is allocated with xmalloc.
5367
5368 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5369 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5370
5371 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5372 linker) then DIE_READER_FUNC will not get called. */
5373
5374 static void
5375 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5376 struct abbrev_table *abbrev_table,
5377 int use_existing_cu, int keep,
5378 die_reader_func_ftype *die_reader_func,
5379 void *data)
5380 {
5381 struct objfile *objfile = dwarf2_per_objfile->objfile;
5382 struct dwarf2_section_info *section = this_cu->section;
5383 bfd *abfd = get_section_bfd_owner (section);
5384 struct dwarf2_cu *cu;
5385 const gdb_byte *begin_info_ptr, *info_ptr;
5386 struct die_reader_specs reader;
5387 struct die_info *comp_unit_die;
5388 int has_children;
5389 struct attribute *attr;
5390 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5391 struct signatured_type *sig_type = NULL;
5392 struct dwarf2_section_info *abbrev_section;
5393 /* Non-zero if CU currently points to a DWO file and we need to
5394 reread it. When this happens we need to reread the skeleton die
5395 before we can reread the DWO file (this only applies to CUs, not TUs). */
5396 int rereading_dwo_cu = 0;
5397
5398 if (dwarf2_die_debug)
5399 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5400 this_cu->is_debug_types ? "type" : "comp",
5401 this_cu->offset.sect_off);
5402
5403 if (use_existing_cu)
5404 gdb_assert (keep);
5405
5406 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5407 file (instead of going through the stub), short-circuit all of this. */
5408 if (this_cu->reading_dwo_directly)
5409 {
5410 /* Narrow down the scope of possibilities to have to understand. */
5411 gdb_assert (this_cu->is_debug_types);
5412 gdb_assert (abbrev_table == NULL);
5413 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5414 die_reader_func, data);
5415 return;
5416 }
5417
5418 cleanups = make_cleanup (null_cleanup, NULL);
5419
5420 /* This is cheap if the section is already read in. */
5421 dwarf2_read_section (objfile, section);
5422
5423 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5424
5425 abbrev_section = get_abbrev_section_for_cu (this_cu);
5426
5427 if (use_existing_cu && this_cu->cu != NULL)
5428 {
5429 cu = this_cu->cu;
5430 /* If this CU is from a DWO file we need to start over, we need to
5431 refetch the attributes from the skeleton CU.
5432 This could be optimized by retrieving those attributes from when we
5433 were here the first time: the previous comp_unit_die was stored in
5434 comp_unit_obstack. But there's no data yet that we need this
5435 optimization. */
5436 if (cu->dwo_unit != NULL)
5437 rereading_dwo_cu = 1;
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
5443 cu = xmalloc (sizeof (*cu));
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* Get the header. */
5450 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5451 {
5452 /* We already have the header, there's no need to read it in again. */
5453 info_ptr += cu->header.first_die_offset.cu_off;
5454 }
5455 else
5456 {
5457 if (this_cu->is_debug_types)
5458 {
5459 ULONGEST signature;
5460 cu_offset type_offset_in_tu;
5461
5462 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5463 abbrev_section, info_ptr,
5464 &signature,
5465 &type_offset_in_tu);
5466
5467 /* Since per_cu is the first member of struct signatured_type,
5468 we can go from a pointer to one to a pointer to the other. */
5469 sig_type = (struct signatured_type *) this_cu;
5470 gdb_assert (sig_type->signature == signature);
5471 gdb_assert (sig_type->type_offset_in_tu.cu_off
5472 == type_offset_in_tu.cu_off);
5473 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5474
5475 /* LENGTH has not been set yet for type units if we're
5476 using .gdb_index. */
5477 this_cu->length = get_cu_length (&cu->header);
5478
5479 /* Establish the type offset that can be used to lookup the type. */
5480 sig_type->type_offset_in_section.sect_off =
5481 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5482 }
5483 else
5484 {
5485 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5486 abbrev_section,
5487 info_ptr, 0);
5488
5489 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5490 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5491 }
5492 }
5493
5494 /* Skip dummy compilation units. */
5495 if (info_ptr >= begin_info_ptr + this_cu->length
5496 || peek_abbrev_code (abfd, info_ptr) == 0)
5497 {
5498 do_cleanups (cleanups);
5499 return;
5500 }
5501
5502 /* If we don't have them yet, read the abbrevs for this compilation unit.
5503 And if we need to read them now, make sure they're freed when we're
5504 done. Note that it's important that if the CU had an abbrev table
5505 on entry we don't free it when we're done: Somewhere up the call stack
5506 it may be in use. */
5507 if (abbrev_table != NULL)
5508 {
5509 gdb_assert (cu->abbrev_table == NULL);
5510 gdb_assert (cu->header.abbrev_offset.sect_off
5511 == abbrev_table->offset.sect_off);
5512 cu->abbrev_table = abbrev_table;
5513 }
5514 else if (cu->abbrev_table == NULL)
5515 {
5516 dwarf2_read_abbrevs (cu, abbrev_section);
5517 make_cleanup (dwarf2_free_abbrev_table, cu);
5518 }
5519 else if (rereading_dwo_cu)
5520 {
5521 dwarf2_free_abbrev_table (cu);
5522 dwarf2_read_abbrevs (cu, abbrev_section);
5523 }
5524
5525 /* Read the top level CU/TU die. */
5526 init_cu_die_reader (&reader, cu, section, NULL);
5527 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5528
5529 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5530 from the DWO file.
5531 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5532 DWO CU, that this test will fail (the attribute will not be present). */
5533 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 if (attr)
5535 {
5536 struct dwo_unit *dwo_unit;
5537 struct die_info *dwo_comp_unit_die;
5538
5539 if (has_children)
5540 {
5541 complaint (&symfile_complaints,
5542 _("compilation unit with DW_AT_GNU_dwo_name"
5543 " has children (offset 0x%x) [in module %s]"),
5544 this_cu->offset.sect_off, bfd_get_filename (abfd));
5545 }
5546 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5547 if (dwo_unit != NULL)
5548 {
5549 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5550 abbrev_table != NULL,
5551 comp_unit_die, NULL,
5552 &reader, &info_ptr,
5553 &dwo_comp_unit_die, &has_children) == 0)
5554 {
5555 /* Dummy die. */
5556 do_cleanups (cleanups);
5557 return;
5558 }
5559 comp_unit_die = dwo_comp_unit_die;
5560 }
5561 else
5562 {
5563 /* Yikes, we couldn't find the rest of the DIE, we only have
5564 the stub. A complaint has already been logged. There's
5565 not much more we can do except pass on the stub DIE to
5566 die_reader_func. We don't want to throw an error on bad
5567 debug info. */
5568 }
5569 }
5570
5571 /* All of the above is setup for this call. Yikes. */
5572 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5573
5574 /* Done, clean up. */
5575 if (free_cu_cleanup != NULL)
5576 {
5577 if (keep)
5578 {
5579 /* We've successfully allocated this compilation unit. Let our
5580 caller clean it up when finished with it. */
5581 discard_cleanups (free_cu_cleanup);
5582
5583 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5584 So we have to manually free the abbrev table. */
5585 dwarf2_free_abbrev_table (cu);
5586
5587 /* Link this CU into read_in_chain. */
5588 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5589 dwarf2_per_objfile->read_in_chain = this_cu;
5590 }
5591 else
5592 do_cleanups (free_cu_cleanup);
5593 }
5594
5595 do_cleanups (cleanups);
5596 }
5597
5598 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5600 to have already done the lookup to find the DWO file).
5601
5602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5603 THIS_CU->is_debug_types, but nothing else.
5604
5605 We fill in THIS_CU->length.
5606
5607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5608 linker) then DIE_READER_FUNC will not get called.
5609
5610 THIS_CU->cu is always freed when done.
5611 This is done in order to not leave THIS_CU->cu in a state where we have
5612 to care whether it refers to the "main" CU or the DWO CU. */
5613
5614 static void
5615 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5616 struct dwo_file *dwo_file,
5617 die_reader_func_ftype *die_reader_func,
5618 void *data)
5619 {
5620 struct objfile *objfile = dwarf2_per_objfile->objfile;
5621 struct dwarf2_section_info *section = this_cu->section;
5622 bfd *abfd = get_section_bfd_owner (section);
5623 struct dwarf2_section_info *abbrev_section;
5624 struct dwarf2_cu cu;
5625 const gdb_byte *begin_info_ptr, *info_ptr;
5626 struct die_reader_specs reader;
5627 struct cleanup *cleanups;
5628 struct die_info *comp_unit_die;
5629 int has_children;
5630
5631 if (dwarf2_die_debug)
5632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5633 this_cu->is_debug_types ? "type" : "comp",
5634 this_cu->offset.sect_off);
5635
5636 gdb_assert (this_cu->cu == NULL);
5637
5638 abbrev_section = (dwo_file != NULL
5639 ? &dwo_file->sections.abbrev
5640 : get_abbrev_section_for_cu (this_cu));
5641
5642 /* This is cheap if the section is already read in. */
5643 dwarf2_read_section (objfile, section);
5644
5645 init_one_comp_unit (&cu, this_cu);
5646
5647 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5648
5649 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5650 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5651 abbrev_section, info_ptr,
5652 this_cu->is_debug_types);
5653
5654 this_cu->length = get_cu_length (&cu.header);
5655
5656 /* Skip dummy compilation units. */
5657 if (info_ptr >= begin_info_ptr + this_cu->length
5658 || peek_abbrev_code (abfd, info_ptr) == 0)
5659 {
5660 do_cleanups (cleanups);
5661 return;
5662 }
5663
5664 dwarf2_read_abbrevs (&cu, abbrev_section);
5665 make_cleanup (dwarf2_free_abbrev_table, &cu);
5666
5667 init_cu_die_reader (&reader, &cu, section, dwo_file);
5668 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5669
5670 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5671
5672 do_cleanups (cleanups);
5673 }
5674
5675 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5676 does not lookup the specified DWO file.
5677 This cannot be used to read DWO files.
5678
5679 THIS_CU->cu is always freed when done.
5680 This is done in order to not leave THIS_CU->cu in a state where we have
5681 to care whether it refers to the "main" CU or the DWO CU.
5682 We can revisit this if the data shows there's a performance issue. */
5683
5684 static void
5685 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5686 die_reader_func_ftype *die_reader_func,
5687 void *data)
5688 {
5689 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5690 }
5691 \f
5692 /* Type Unit Groups.
5693
5694 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5695 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5696 so that all types coming from the same compilation (.o file) are grouped
5697 together. A future step could be to put the types in the same symtab as
5698 the CU the types ultimately came from. */
5699
5700 static hashval_t
5701 hash_type_unit_group (const void *item)
5702 {
5703 const struct type_unit_group *tu_group = item;
5704
5705 return hash_stmt_list_entry (&tu_group->hash);
5706 }
5707
5708 static int
5709 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5710 {
5711 const struct type_unit_group *lhs = item_lhs;
5712 const struct type_unit_group *rhs = item_rhs;
5713
5714 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5715 }
5716
5717 /* Allocate a hash table for type unit groups. */
5718
5719 static htab_t
5720 allocate_type_unit_groups_table (void)
5721 {
5722 return htab_create_alloc_ex (3,
5723 hash_type_unit_group,
5724 eq_type_unit_group,
5725 NULL,
5726 &dwarf2_per_objfile->objfile->objfile_obstack,
5727 hashtab_obstack_allocate,
5728 dummy_obstack_deallocate);
5729 }
5730
5731 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5732 partial symtabs. We combine several TUs per psymtab to not let the size
5733 of any one psymtab grow too big. */
5734 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5735 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5736
5737 /* Helper routine for get_type_unit_group.
5738 Create the type_unit_group object used to hold one or more TUs. */
5739
5740 static struct type_unit_group *
5741 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5742 {
5743 struct objfile *objfile = dwarf2_per_objfile->objfile;
5744 struct dwarf2_per_cu_data *per_cu;
5745 struct type_unit_group *tu_group;
5746
5747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5748 struct type_unit_group);
5749 per_cu = &tu_group->per_cu;
5750 per_cu->objfile = objfile;
5751
5752 if (dwarf2_per_objfile->using_index)
5753 {
5754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5755 struct dwarf2_per_cu_quick_data);
5756 }
5757 else
5758 {
5759 unsigned int line_offset = line_offset_struct.sect_off;
5760 struct partial_symtab *pst;
5761 char *name;
5762
5763 /* Give the symtab a useful name for debug purposes. */
5764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5765 name = xstrprintf ("<type_units_%d>",
5766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5767 else
5768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5769
5770 pst = create_partial_symtab (per_cu, name);
5771 pst->anonymous = 1;
5772
5773 xfree (name);
5774 }
5775
5776 tu_group->hash.dwo_unit = cu->dwo_unit;
5777 tu_group->hash.line_offset = line_offset_struct;
5778
5779 return tu_group;
5780 }
5781
5782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5783 STMT_LIST is a DW_AT_stmt_list attribute. */
5784
5785 static struct type_unit_group *
5786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5787 {
5788 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5789 struct type_unit_group *tu_group;
5790 void **slot;
5791 unsigned int line_offset;
5792 struct type_unit_group type_unit_group_for_lookup;
5793
5794 if (dwarf2_per_objfile->type_unit_groups == NULL)
5795 {
5796 dwarf2_per_objfile->type_unit_groups =
5797 allocate_type_unit_groups_table ();
5798 }
5799
5800 /* Do we need to create a new group, or can we use an existing one? */
5801
5802 if (stmt_list)
5803 {
5804 line_offset = DW_UNSND (stmt_list);
5805 ++tu_stats->nr_symtab_sharers;
5806 }
5807 else
5808 {
5809 /* Ugh, no stmt_list. Rare, but we have to handle it.
5810 We can do various things here like create one group per TU or
5811 spread them over multiple groups to split up the expansion work.
5812 To avoid worst case scenarios (too many groups or too large groups)
5813 we, umm, group them in bunches. */
5814 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5815 | (tu_stats->nr_stmt_less_type_units
5816 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5817 ++tu_stats->nr_stmt_less_type_units;
5818 }
5819
5820 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5821 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5822 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5823 &type_unit_group_for_lookup, INSERT);
5824 if (*slot != NULL)
5825 {
5826 tu_group = *slot;
5827 gdb_assert (tu_group != NULL);
5828 }
5829 else
5830 {
5831 sect_offset line_offset_struct;
5832
5833 line_offset_struct.sect_off = line_offset;
5834 tu_group = create_type_unit_group (cu, line_offset_struct);
5835 *slot = tu_group;
5836 ++tu_stats->nr_symtabs;
5837 }
5838
5839 return tu_group;
5840 }
5841 \f
5842 /* Partial symbol tables. */
5843
5844 /* Create a psymtab named NAME and assign it to PER_CU.
5845
5846 The caller must fill in the following details:
5847 dirname, textlow, texthigh. */
5848
5849 static struct partial_symtab *
5850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5851 {
5852 struct objfile *objfile = per_cu->objfile;
5853 struct partial_symtab *pst;
5854
5855 pst = start_psymtab_common (objfile, objfile->section_offsets,
5856 name, 0,
5857 objfile->global_psymbols.next,
5858 objfile->static_psymbols.next);
5859
5860 pst->psymtabs_addrmap_supported = 1;
5861
5862 /* This is the glue that links PST into GDB's symbol API. */
5863 pst->read_symtab_private = per_cu;
5864 pst->read_symtab = dwarf2_read_symtab;
5865 per_cu->v.psymtab = pst;
5866
5867 return pst;
5868 }
5869
5870 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5871 type. */
5872
5873 struct process_psymtab_comp_unit_data
5874 {
5875 /* True if we are reading a DW_TAG_partial_unit. */
5876
5877 int want_partial_unit;
5878
5879 /* The "pretend" language that is used if the CU doesn't declare a
5880 language. */
5881
5882 enum language pretend_language;
5883 };
5884
5885 /* die_reader_func for process_psymtab_comp_unit. */
5886
5887 static void
5888 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5889 const gdb_byte *info_ptr,
5890 struct die_info *comp_unit_die,
5891 int has_children,
5892 void *data)
5893 {
5894 struct dwarf2_cu *cu = reader->cu;
5895 struct objfile *objfile = cu->objfile;
5896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5897 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5898 struct attribute *attr;
5899 CORE_ADDR baseaddr;
5900 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5901 struct partial_symtab *pst;
5902 int has_pc_info;
5903 const char *filename;
5904 struct process_psymtab_comp_unit_data *info = data;
5905
5906 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5907 return;
5908
5909 gdb_assert (! per_cu->is_debug_types);
5910
5911 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5912
5913 cu->list_in_scope = &file_symbols;
5914
5915 /* Allocate a new partial symbol table structure. */
5916 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5917 if (attr == NULL || !DW_STRING (attr))
5918 filename = "";
5919 else
5920 filename = DW_STRING (attr);
5921
5922 pst = create_partial_symtab (per_cu, filename);
5923
5924 /* This must be done before calling dwarf2_build_include_psymtabs. */
5925 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5926 if (attr != NULL)
5927 pst->dirname = DW_STRING (attr);
5928
5929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5930
5931 dwarf2_find_base_address (comp_unit_die, cu);
5932
5933 /* Possibly set the default values of LOWPC and HIGHPC from
5934 `DW_AT_ranges'. */
5935 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5936 &best_highpc, cu, pst);
5937 if (has_pc_info == 1 && best_lowpc < best_highpc)
5938 /* Store the contiguous range if it is not empty; it can be empty for
5939 CUs with no code. */
5940 addrmap_set_empty (objfile->psymtabs_addrmap,
5941 gdbarch_adjust_dwarf2_addr (gdbarch,
5942 best_lowpc + baseaddr),
5943 gdbarch_adjust_dwarf2_addr (gdbarch,
5944 best_highpc + baseaddr) - 1,
5945 pst);
5946
5947 /* Check if comp unit has_children.
5948 If so, read the rest of the partial symbols from this comp unit.
5949 If not, there's no more debug_info for this comp unit. */
5950 if (has_children)
5951 {
5952 struct partial_die_info *first_die;
5953 CORE_ADDR lowpc, highpc;
5954
5955 lowpc = ((CORE_ADDR) -1);
5956 highpc = ((CORE_ADDR) 0);
5957
5958 first_die = load_partial_dies (reader, info_ptr, 1);
5959
5960 scan_partial_symbols (first_die, &lowpc, &highpc,
5961 ! has_pc_info, cu);
5962
5963 /* If we didn't find a lowpc, set it to highpc to avoid
5964 complaints from `maint check'. */
5965 if (lowpc == ((CORE_ADDR) -1))
5966 lowpc = highpc;
5967
5968 /* If the compilation unit didn't have an explicit address range,
5969 then use the information extracted from its child dies. */
5970 if (! has_pc_info)
5971 {
5972 best_lowpc = lowpc;
5973 best_highpc = highpc;
5974 }
5975 }
5976 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5977 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
5978
5979 pst->n_global_syms = objfile->global_psymbols.next -
5980 (objfile->global_psymbols.list + pst->globals_offset);
5981 pst->n_static_syms = objfile->static_psymbols.next -
5982 (objfile->static_psymbols.list + pst->statics_offset);
5983 sort_pst_symbols (objfile, pst);
5984
5985 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5986 {
5987 int i;
5988 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5989 struct dwarf2_per_cu_data *iter;
5990
5991 /* Fill in 'dependencies' here; we fill in 'users' in a
5992 post-pass. */
5993 pst->number_of_dependencies = len;
5994 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5995 len * sizeof (struct symtab *));
5996 for (i = 0;
5997 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5998 i, iter);
5999 ++i)
6000 pst->dependencies[i] = iter->v.psymtab;
6001
6002 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6003 }
6004
6005 /* Get the list of files included in the current compilation unit,
6006 and build a psymtab for each of them. */
6007 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6008
6009 if (dwarf2_read_debug)
6010 {
6011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6012
6013 fprintf_unfiltered (gdb_stdlog,
6014 "Psymtab for %s unit @0x%x: %s - %s"
6015 ", %d global, %d static syms\n",
6016 per_cu->is_debug_types ? "type" : "comp",
6017 per_cu->offset.sect_off,
6018 paddress (gdbarch, pst->textlow),
6019 paddress (gdbarch, pst->texthigh),
6020 pst->n_global_syms, pst->n_static_syms);
6021 }
6022 }
6023
6024 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6025 Process compilation unit THIS_CU for a psymtab. */
6026
6027 static void
6028 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6029 int want_partial_unit,
6030 enum language pretend_language)
6031 {
6032 struct process_psymtab_comp_unit_data info;
6033
6034 /* If this compilation unit was already read in, free the
6035 cached copy in order to read it in again. This is
6036 necessary because we skipped some symbols when we first
6037 read in the compilation unit (see load_partial_dies).
6038 This problem could be avoided, but the benefit is unclear. */
6039 if (this_cu->cu != NULL)
6040 free_one_cached_comp_unit (this_cu);
6041
6042 gdb_assert (! this_cu->is_debug_types);
6043 info.want_partial_unit = want_partial_unit;
6044 info.pretend_language = pretend_language;
6045 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6046 process_psymtab_comp_unit_reader,
6047 &info);
6048
6049 /* Age out any secondary CUs. */
6050 age_cached_comp_units ();
6051 }
6052
6053 /* Reader function for build_type_psymtabs. */
6054
6055 static void
6056 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6057 const gdb_byte *info_ptr,
6058 struct die_info *type_unit_die,
6059 int has_children,
6060 void *data)
6061 {
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_cu *cu = reader->cu;
6064 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6065 struct signatured_type *sig_type;
6066 struct type_unit_group *tu_group;
6067 struct attribute *attr;
6068 struct partial_die_info *first_die;
6069 CORE_ADDR lowpc, highpc;
6070 struct partial_symtab *pst;
6071
6072 gdb_assert (data == NULL);
6073 gdb_assert (per_cu->is_debug_types);
6074 sig_type = (struct signatured_type *) per_cu;
6075
6076 if (! has_children)
6077 return;
6078
6079 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6080 tu_group = get_type_unit_group (cu, attr);
6081
6082 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6083
6084 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6085 cu->list_in_scope = &file_symbols;
6086 pst = create_partial_symtab (per_cu, "");
6087 pst->anonymous = 1;
6088
6089 first_die = load_partial_dies (reader, info_ptr, 1);
6090
6091 lowpc = (CORE_ADDR) -1;
6092 highpc = (CORE_ADDR) 0;
6093 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6094
6095 pst->n_global_syms = objfile->global_psymbols.next -
6096 (objfile->global_psymbols.list + pst->globals_offset);
6097 pst->n_static_syms = objfile->static_psymbols.next -
6098 (objfile->static_psymbols.list + pst->statics_offset);
6099 sort_pst_symbols (objfile, pst);
6100 }
6101
6102 /* Struct used to sort TUs by their abbreviation table offset. */
6103
6104 struct tu_abbrev_offset
6105 {
6106 struct signatured_type *sig_type;
6107 sect_offset abbrev_offset;
6108 };
6109
6110 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6111
6112 static int
6113 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6114 {
6115 const struct tu_abbrev_offset * const *a = ap;
6116 const struct tu_abbrev_offset * const *b = bp;
6117 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6118 unsigned int boff = (*b)->abbrev_offset.sect_off;
6119
6120 return (aoff > boff) - (aoff < boff);
6121 }
6122
6123 /* Efficiently read all the type units.
6124 This does the bulk of the work for build_type_psymtabs.
6125
6126 The efficiency is because we sort TUs by the abbrev table they use and
6127 only read each abbrev table once. In one program there are 200K TUs
6128 sharing 8K abbrev tables.
6129
6130 The main purpose of this function is to support building the
6131 dwarf2_per_objfile->type_unit_groups table.
6132 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6133 can collapse the search space by grouping them by stmt_list.
6134 The savings can be significant, in the same program from above the 200K TUs
6135 share 8K stmt_list tables.
6136
6137 FUNC is expected to call get_type_unit_group, which will create the
6138 struct type_unit_group if necessary and add it to
6139 dwarf2_per_objfile->type_unit_groups. */
6140
6141 static void
6142 build_type_psymtabs_1 (void)
6143 {
6144 struct objfile *objfile = dwarf2_per_objfile->objfile;
6145 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6146 struct cleanup *cleanups;
6147 struct abbrev_table *abbrev_table;
6148 sect_offset abbrev_offset;
6149 struct tu_abbrev_offset *sorted_by_abbrev;
6150 struct type_unit_group **iter;
6151 int i;
6152
6153 /* It's up to the caller to not call us multiple times. */
6154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6155
6156 if (dwarf2_per_objfile->n_type_units == 0)
6157 return;
6158
6159 /* TUs typically share abbrev tables, and there can be way more TUs than
6160 abbrev tables. Sort by abbrev table to reduce the number of times we
6161 read each abbrev table in.
6162 Alternatives are to punt or to maintain a cache of abbrev tables.
6163 This is simpler and efficient enough for now.
6164
6165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6166 symtab to use). Typically TUs with the same abbrev offset have the same
6167 stmt_list value too so in practice this should work well.
6168
6169 The basic algorithm here is:
6170
6171 sort TUs by abbrev table
6172 for each TU with same abbrev table:
6173 read abbrev table if first user
6174 read TU top level DIE
6175 [IWBN if DWO skeletons had DW_AT_stmt_list]
6176 call FUNC */
6177
6178 if (dwarf2_read_debug)
6179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6180
6181 /* Sort in a separate table to maintain the order of all_type_units
6182 for .gdb_index: TU indices directly index all_type_units. */
6183 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6184 dwarf2_per_objfile->n_type_units);
6185 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6186 {
6187 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6188
6189 sorted_by_abbrev[i].sig_type = sig_type;
6190 sorted_by_abbrev[i].abbrev_offset =
6191 read_abbrev_offset (sig_type->per_cu.section,
6192 sig_type->per_cu.offset);
6193 }
6194 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6195 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6196 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6197
6198 abbrev_offset.sect_off = ~(unsigned) 0;
6199 abbrev_table = NULL;
6200 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6201
6202 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6203 {
6204 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6205
6206 /* Switch to the next abbrev table if necessary. */
6207 if (abbrev_table == NULL
6208 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6209 {
6210 if (abbrev_table != NULL)
6211 {
6212 abbrev_table_free (abbrev_table);
6213 /* Reset to NULL in case abbrev_table_read_table throws
6214 an error: abbrev_table_free_cleanup will get called. */
6215 abbrev_table = NULL;
6216 }
6217 abbrev_offset = tu->abbrev_offset;
6218 abbrev_table =
6219 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6220 abbrev_offset);
6221 ++tu_stats->nr_uniq_abbrev_tables;
6222 }
6223
6224 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6225 build_type_psymtabs_reader, NULL);
6226 }
6227
6228 do_cleanups (cleanups);
6229 }
6230
6231 /* Print collected type unit statistics. */
6232
6233 static void
6234 print_tu_stats (void)
6235 {
6236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6237
6238 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6239 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6240 dwarf2_per_objfile->n_type_units);
6241 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6242 tu_stats->nr_uniq_abbrev_tables);
6243 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6244 tu_stats->nr_symtabs);
6245 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6246 tu_stats->nr_symtab_sharers);
6247 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6248 tu_stats->nr_stmt_less_type_units);
6249 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6250 tu_stats->nr_all_type_units_reallocs);
6251 }
6252
6253 /* Traversal function for build_type_psymtabs. */
6254
6255 static int
6256 build_type_psymtab_dependencies (void **slot, void *info)
6257 {
6258 struct objfile *objfile = dwarf2_per_objfile->objfile;
6259 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6260 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6261 struct partial_symtab *pst = per_cu->v.psymtab;
6262 int len = VEC_length (sig_type_ptr, tu_group->tus);
6263 struct signatured_type *iter;
6264 int i;
6265
6266 gdb_assert (len > 0);
6267 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6268
6269 pst->number_of_dependencies = len;
6270 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6271 len * sizeof (struct psymtab *));
6272 for (i = 0;
6273 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6274 ++i)
6275 {
6276 gdb_assert (iter->per_cu.is_debug_types);
6277 pst->dependencies[i] = iter->per_cu.v.psymtab;
6278 iter->type_unit_group = tu_group;
6279 }
6280
6281 VEC_free (sig_type_ptr, tu_group->tus);
6282
6283 return 1;
6284 }
6285
6286 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6287 Build partial symbol tables for the .debug_types comp-units. */
6288
6289 static void
6290 build_type_psymtabs (struct objfile *objfile)
6291 {
6292 if (! create_all_type_units (objfile))
6293 return;
6294
6295 build_type_psymtabs_1 ();
6296 }
6297
6298 /* Traversal function for process_skeletonless_type_unit.
6299 Read a TU in a DWO file and build partial symbols for it. */
6300
6301 static int
6302 process_skeletonless_type_unit (void **slot, void *info)
6303 {
6304 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6305 struct objfile *objfile = info;
6306 struct signatured_type find_entry, *entry;
6307
6308 /* If this TU doesn't exist in the global table, add it and read it in. */
6309
6310 if (dwarf2_per_objfile->signatured_types == NULL)
6311 {
6312 dwarf2_per_objfile->signatured_types
6313 = allocate_signatured_type_table (objfile);
6314 }
6315
6316 find_entry.signature = dwo_unit->signature;
6317 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6318 INSERT);
6319 /* If we've already seen this type there's nothing to do. What's happening
6320 is we're doing our own version of comdat-folding here. */
6321 if (*slot != NULL)
6322 return 1;
6323
6324 /* This does the job that create_all_type_units would have done for
6325 this TU. */
6326 entry = add_type_unit (dwo_unit->signature, slot);
6327 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6328 *slot = entry;
6329
6330 /* This does the job that build_type_psymtabs_1 would have done. */
6331 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6332 build_type_psymtabs_reader, NULL);
6333
6334 return 1;
6335 }
6336
6337 /* Traversal function for process_skeletonless_type_units. */
6338
6339 static int
6340 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6341 {
6342 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6343
6344 if (dwo_file->tus != NULL)
6345 {
6346 htab_traverse_noresize (dwo_file->tus,
6347 process_skeletonless_type_unit, info);
6348 }
6349
6350 return 1;
6351 }
6352
6353 /* Scan all TUs of DWO files, verifying we've processed them.
6354 This is needed in case a TU was emitted without its skeleton.
6355 Note: This can't be done until we know what all the DWO files are. */
6356
6357 static void
6358 process_skeletonless_type_units (struct objfile *objfile)
6359 {
6360 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6361 if (get_dwp_file () == NULL
6362 && dwarf2_per_objfile->dwo_files != NULL)
6363 {
6364 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6365 process_dwo_file_for_skeletonless_type_units,
6366 objfile);
6367 }
6368 }
6369
6370 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6371
6372 static void
6373 psymtabs_addrmap_cleanup (void *o)
6374 {
6375 struct objfile *objfile = o;
6376
6377 objfile->psymtabs_addrmap = NULL;
6378 }
6379
6380 /* Compute the 'user' field for each psymtab in OBJFILE. */
6381
6382 static void
6383 set_partial_user (struct objfile *objfile)
6384 {
6385 int i;
6386
6387 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6388 {
6389 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6390 struct partial_symtab *pst = per_cu->v.psymtab;
6391 int j;
6392
6393 if (pst == NULL)
6394 continue;
6395
6396 for (j = 0; j < pst->number_of_dependencies; ++j)
6397 {
6398 /* Set the 'user' field only if it is not already set. */
6399 if (pst->dependencies[j]->user == NULL)
6400 pst->dependencies[j]->user = pst;
6401 }
6402 }
6403 }
6404
6405 /* Build the partial symbol table by doing a quick pass through the
6406 .debug_info and .debug_abbrev sections. */
6407
6408 static void
6409 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6410 {
6411 struct cleanup *back_to, *addrmap_cleanup;
6412 struct obstack temp_obstack;
6413 int i;
6414
6415 if (dwarf2_read_debug)
6416 {
6417 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6418 objfile_name (objfile));
6419 }
6420
6421 dwarf2_per_objfile->reading_partial_symbols = 1;
6422
6423 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6424
6425 /* Any cached compilation units will be linked by the per-objfile
6426 read_in_chain. Make sure to free them when we're done. */
6427 back_to = make_cleanup (free_cached_comp_units, NULL);
6428
6429 build_type_psymtabs (objfile);
6430
6431 create_all_comp_units (objfile);
6432
6433 /* Create a temporary address map on a temporary obstack. We later
6434 copy this to the final obstack. */
6435 obstack_init (&temp_obstack);
6436 make_cleanup_obstack_free (&temp_obstack);
6437 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6438 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6439
6440 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6441 {
6442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6443
6444 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6445 }
6446
6447 /* This has to wait until we read the CUs, we need the list of DWOs. */
6448 process_skeletonless_type_units (objfile);
6449
6450 /* Now that all TUs have been processed we can fill in the dependencies. */
6451 if (dwarf2_per_objfile->type_unit_groups != NULL)
6452 {
6453 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6454 build_type_psymtab_dependencies, NULL);
6455 }
6456
6457 if (dwarf2_read_debug)
6458 print_tu_stats ();
6459
6460 set_partial_user (objfile);
6461
6462 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6463 &objfile->objfile_obstack);
6464 discard_cleanups (addrmap_cleanup);
6465
6466 do_cleanups (back_to);
6467
6468 if (dwarf2_read_debug)
6469 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6470 objfile_name (objfile));
6471 }
6472
6473 /* die_reader_func for load_partial_comp_unit. */
6474
6475 static void
6476 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6477 const gdb_byte *info_ptr,
6478 struct die_info *comp_unit_die,
6479 int has_children,
6480 void *data)
6481 {
6482 struct dwarf2_cu *cu = reader->cu;
6483
6484 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6485
6486 /* Check if comp unit has_children.
6487 If so, read the rest of the partial symbols from this comp unit.
6488 If not, there's no more debug_info for this comp unit. */
6489 if (has_children)
6490 load_partial_dies (reader, info_ptr, 0);
6491 }
6492
6493 /* Load the partial DIEs for a secondary CU into memory.
6494 This is also used when rereading a primary CU with load_all_dies. */
6495
6496 static void
6497 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6498 {
6499 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6500 load_partial_comp_unit_reader, NULL);
6501 }
6502
6503 static void
6504 read_comp_units_from_section (struct objfile *objfile,
6505 struct dwarf2_section_info *section,
6506 unsigned int is_dwz,
6507 int *n_allocated,
6508 int *n_comp_units,
6509 struct dwarf2_per_cu_data ***all_comp_units)
6510 {
6511 const gdb_byte *info_ptr;
6512 bfd *abfd = get_section_bfd_owner (section);
6513
6514 if (dwarf2_read_debug)
6515 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6516 get_section_name (section),
6517 get_section_file_name (section));
6518
6519 dwarf2_read_section (objfile, section);
6520
6521 info_ptr = section->buffer;
6522
6523 while (info_ptr < section->buffer + section->size)
6524 {
6525 unsigned int length, initial_length_size;
6526 struct dwarf2_per_cu_data *this_cu;
6527 sect_offset offset;
6528
6529 offset.sect_off = info_ptr - section->buffer;
6530
6531 /* Read just enough information to find out where the next
6532 compilation unit is. */
6533 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6534
6535 /* Save the compilation unit for later lookup. */
6536 this_cu = obstack_alloc (&objfile->objfile_obstack,
6537 sizeof (struct dwarf2_per_cu_data));
6538 memset (this_cu, 0, sizeof (*this_cu));
6539 this_cu->offset = offset;
6540 this_cu->length = length + initial_length_size;
6541 this_cu->is_dwz = is_dwz;
6542 this_cu->objfile = objfile;
6543 this_cu->section = section;
6544
6545 if (*n_comp_units == *n_allocated)
6546 {
6547 *n_allocated *= 2;
6548 *all_comp_units = xrealloc (*all_comp_units,
6549 *n_allocated
6550 * sizeof (struct dwarf2_per_cu_data *));
6551 }
6552 (*all_comp_units)[*n_comp_units] = this_cu;
6553 ++*n_comp_units;
6554
6555 info_ptr = info_ptr + this_cu->length;
6556 }
6557 }
6558
6559 /* Create a list of all compilation units in OBJFILE.
6560 This is only done for -readnow and building partial symtabs. */
6561
6562 static void
6563 create_all_comp_units (struct objfile *objfile)
6564 {
6565 int n_allocated;
6566 int n_comp_units;
6567 struct dwarf2_per_cu_data **all_comp_units;
6568 struct dwz_file *dwz;
6569
6570 n_comp_units = 0;
6571 n_allocated = 10;
6572 all_comp_units = xmalloc (n_allocated
6573 * sizeof (struct dwarf2_per_cu_data *));
6574
6575 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6576 &n_allocated, &n_comp_units, &all_comp_units);
6577
6578 dwz = dwarf2_get_dwz_file ();
6579 if (dwz != NULL)
6580 read_comp_units_from_section (objfile, &dwz->info, 1,
6581 &n_allocated, &n_comp_units,
6582 &all_comp_units);
6583
6584 dwarf2_per_objfile->all_comp_units
6585 = obstack_alloc (&objfile->objfile_obstack,
6586 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6587 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6588 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6589 xfree (all_comp_units);
6590 dwarf2_per_objfile->n_comp_units = n_comp_units;
6591 }
6592
6593 /* Process all loaded DIEs for compilation unit CU, starting at
6594 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6595 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6596 DW_AT_ranges). See the comments of add_partial_subprogram on how
6597 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6598
6599 static void
6600 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6601 CORE_ADDR *highpc, int set_addrmap,
6602 struct dwarf2_cu *cu)
6603 {
6604 struct partial_die_info *pdi;
6605
6606 /* Now, march along the PDI's, descending into ones which have
6607 interesting children but skipping the children of the other ones,
6608 until we reach the end of the compilation unit. */
6609
6610 pdi = first_die;
6611
6612 while (pdi != NULL)
6613 {
6614 fixup_partial_die (pdi, cu);
6615
6616 /* Anonymous namespaces or modules have no name but have interesting
6617 children, so we need to look at them. Ditto for anonymous
6618 enums. */
6619
6620 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6621 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6622 || pdi->tag == DW_TAG_imported_unit)
6623 {
6624 switch (pdi->tag)
6625 {
6626 case DW_TAG_subprogram:
6627 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6628 break;
6629 case DW_TAG_constant:
6630 case DW_TAG_variable:
6631 case DW_TAG_typedef:
6632 case DW_TAG_union_type:
6633 if (!pdi->is_declaration)
6634 {
6635 add_partial_symbol (pdi, cu);
6636 }
6637 break;
6638 case DW_TAG_class_type:
6639 case DW_TAG_interface_type:
6640 case DW_TAG_structure_type:
6641 if (!pdi->is_declaration)
6642 {
6643 add_partial_symbol (pdi, cu);
6644 }
6645 break;
6646 case DW_TAG_enumeration_type:
6647 if (!pdi->is_declaration)
6648 add_partial_enumeration (pdi, cu);
6649 break;
6650 case DW_TAG_base_type:
6651 case DW_TAG_subrange_type:
6652 /* File scope base type definitions are added to the partial
6653 symbol table. */
6654 add_partial_symbol (pdi, cu);
6655 break;
6656 case DW_TAG_namespace:
6657 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6658 break;
6659 case DW_TAG_module:
6660 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6661 break;
6662 case DW_TAG_imported_unit:
6663 {
6664 struct dwarf2_per_cu_data *per_cu;
6665
6666 /* For now we don't handle imported units in type units. */
6667 if (cu->per_cu->is_debug_types)
6668 {
6669 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6670 " supported in type units [in module %s]"),
6671 objfile_name (cu->objfile));
6672 }
6673
6674 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6675 pdi->is_dwz,
6676 cu->objfile);
6677
6678 /* Go read the partial unit, if needed. */
6679 if (per_cu->v.psymtab == NULL)
6680 process_psymtab_comp_unit (per_cu, 1, cu->language);
6681
6682 VEC_safe_push (dwarf2_per_cu_ptr,
6683 cu->per_cu->imported_symtabs, per_cu);
6684 }
6685 break;
6686 case DW_TAG_imported_declaration:
6687 add_partial_symbol (pdi, cu);
6688 break;
6689 default:
6690 break;
6691 }
6692 }
6693
6694 /* If the die has a sibling, skip to the sibling. */
6695
6696 pdi = pdi->die_sibling;
6697 }
6698 }
6699
6700 /* Functions used to compute the fully scoped name of a partial DIE.
6701
6702 Normally, this is simple. For C++, the parent DIE's fully scoped
6703 name is concatenated with "::" and the partial DIE's name. For
6704 Java, the same thing occurs except that "." is used instead of "::".
6705 Enumerators are an exception; they use the scope of their parent
6706 enumeration type, i.e. the name of the enumeration type is not
6707 prepended to the enumerator.
6708
6709 There are two complexities. One is DW_AT_specification; in this
6710 case "parent" means the parent of the target of the specification,
6711 instead of the direct parent of the DIE. The other is compilers
6712 which do not emit DW_TAG_namespace; in this case we try to guess
6713 the fully qualified name of structure types from their members'
6714 linkage names. This must be done using the DIE's children rather
6715 than the children of any DW_AT_specification target. We only need
6716 to do this for structures at the top level, i.e. if the target of
6717 any DW_AT_specification (if any; otherwise the DIE itself) does not
6718 have a parent. */
6719
6720 /* Compute the scope prefix associated with PDI's parent, in
6721 compilation unit CU. The result will be allocated on CU's
6722 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6723 field. NULL is returned if no prefix is necessary. */
6724 static const char *
6725 partial_die_parent_scope (struct partial_die_info *pdi,
6726 struct dwarf2_cu *cu)
6727 {
6728 const char *grandparent_scope;
6729 struct partial_die_info *parent, *real_pdi;
6730
6731 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6732 then this means the parent of the specification DIE. */
6733
6734 real_pdi = pdi;
6735 while (real_pdi->has_specification)
6736 real_pdi = find_partial_die (real_pdi->spec_offset,
6737 real_pdi->spec_is_dwz, cu);
6738
6739 parent = real_pdi->die_parent;
6740 if (parent == NULL)
6741 return NULL;
6742
6743 if (parent->scope_set)
6744 return parent->scope;
6745
6746 fixup_partial_die (parent, cu);
6747
6748 grandparent_scope = partial_die_parent_scope (parent, cu);
6749
6750 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6751 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6752 Work around this problem here. */
6753 if (cu->language == language_cplus
6754 && parent->tag == DW_TAG_namespace
6755 && strcmp (parent->name, "::") == 0
6756 && grandparent_scope == NULL)
6757 {
6758 parent->scope = NULL;
6759 parent->scope_set = 1;
6760 return NULL;
6761 }
6762
6763 if (pdi->tag == DW_TAG_enumerator)
6764 /* Enumerators should not get the name of the enumeration as a prefix. */
6765 parent->scope = grandparent_scope;
6766 else if (parent->tag == DW_TAG_namespace
6767 || parent->tag == DW_TAG_module
6768 || parent->tag == DW_TAG_structure_type
6769 || parent->tag == DW_TAG_class_type
6770 || parent->tag == DW_TAG_interface_type
6771 || parent->tag == DW_TAG_union_type
6772 || parent->tag == DW_TAG_enumeration_type)
6773 {
6774 if (grandparent_scope == NULL)
6775 parent->scope = parent->name;
6776 else
6777 parent->scope = typename_concat (&cu->comp_unit_obstack,
6778 grandparent_scope,
6779 parent->name, 0, cu);
6780 }
6781 else
6782 {
6783 /* FIXME drow/2004-04-01: What should we be doing with
6784 function-local names? For partial symbols, we should probably be
6785 ignoring them. */
6786 complaint (&symfile_complaints,
6787 _("unhandled containing DIE tag %d for DIE at %d"),
6788 parent->tag, pdi->offset.sect_off);
6789 parent->scope = grandparent_scope;
6790 }
6791
6792 parent->scope_set = 1;
6793 return parent->scope;
6794 }
6795
6796 /* Return the fully scoped name associated with PDI, from compilation unit
6797 CU. The result will be allocated with malloc. */
6798
6799 static char *
6800 partial_die_full_name (struct partial_die_info *pdi,
6801 struct dwarf2_cu *cu)
6802 {
6803 const char *parent_scope;
6804
6805 /* If this is a template instantiation, we can not work out the
6806 template arguments from partial DIEs. So, unfortunately, we have
6807 to go through the full DIEs. At least any work we do building
6808 types here will be reused if full symbols are loaded later. */
6809 if (pdi->has_template_arguments)
6810 {
6811 fixup_partial_die (pdi, cu);
6812
6813 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6814 {
6815 struct die_info *die;
6816 struct attribute attr;
6817 struct dwarf2_cu *ref_cu = cu;
6818
6819 /* DW_FORM_ref_addr is using section offset. */
6820 attr.name = 0;
6821 attr.form = DW_FORM_ref_addr;
6822 attr.u.unsnd = pdi->offset.sect_off;
6823 die = follow_die_ref (NULL, &attr, &ref_cu);
6824
6825 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6826 }
6827 }
6828
6829 parent_scope = partial_die_parent_scope (pdi, cu);
6830 if (parent_scope == NULL)
6831 return NULL;
6832 else
6833 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6834 }
6835
6836 static void
6837 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6838 {
6839 struct objfile *objfile = cu->objfile;
6840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6841 CORE_ADDR addr = 0;
6842 const char *actual_name = NULL;
6843 CORE_ADDR baseaddr;
6844 char *built_actual_name;
6845
6846 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6847
6848 built_actual_name = partial_die_full_name (pdi, cu);
6849 if (built_actual_name != NULL)
6850 actual_name = built_actual_name;
6851
6852 if (actual_name == NULL)
6853 actual_name = pdi->name;
6854
6855 switch (pdi->tag)
6856 {
6857 case DW_TAG_subprogram:
6858 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6859 if (pdi->is_external || cu->language == language_ada)
6860 {
6861 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6862 of the global scope. But in Ada, we want to be able to access
6863 nested procedures globally. So all Ada subprograms are stored
6864 in the global scope. */
6865 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6866 objfile); */
6867 add_psymbol_to_list (actual_name, strlen (actual_name),
6868 built_actual_name != NULL,
6869 VAR_DOMAIN, LOC_BLOCK,
6870 &objfile->global_psymbols,
6871 0, addr, cu->language, objfile);
6872 }
6873 else
6874 {
6875 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6876 objfile); */
6877 add_psymbol_to_list (actual_name, strlen (actual_name),
6878 built_actual_name != NULL,
6879 VAR_DOMAIN, LOC_BLOCK,
6880 &objfile->static_psymbols,
6881 0, addr, cu->language, objfile);
6882 }
6883 break;
6884 case DW_TAG_constant:
6885 {
6886 struct psymbol_allocation_list *list;
6887
6888 if (pdi->is_external)
6889 list = &objfile->global_psymbols;
6890 else
6891 list = &objfile->static_psymbols;
6892 add_psymbol_to_list (actual_name, strlen (actual_name),
6893 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6894 list, 0, 0, cu->language, objfile);
6895 }
6896 break;
6897 case DW_TAG_variable:
6898 if (pdi->d.locdesc)
6899 addr = decode_locdesc (pdi->d.locdesc, cu);
6900
6901 if (pdi->d.locdesc
6902 && addr == 0
6903 && !dwarf2_per_objfile->has_section_at_zero)
6904 {
6905 /* A global or static variable may also have been stripped
6906 out by the linker if unused, in which case its address
6907 will be nullified; do not add such variables into partial
6908 symbol table then. */
6909 }
6910 else if (pdi->is_external)
6911 {
6912 /* Global Variable.
6913 Don't enter into the minimal symbol tables as there is
6914 a minimal symbol table entry from the ELF symbols already.
6915 Enter into partial symbol table if it has a location
6916 descriptor or a type.
6917 If the location descriptor is missing, new_symbol will create
6918 a LOC_UNRESOLVED symbol, the address of the variable will then
6919 be determined from the minimal symbol table whenever the variable
6920 is referenced.
6921 The address for the partial symbol table entry is not
6922 used by GDB, but it comes in handy for debugging partial symbol
6923 table building. */
6924
6925 if (pdi->d.locdesc || pdi->has_type)
6926 add_psymbol_to_list (actual_name, strlen (actual_name),
6927 built_actual_name != NULL,
6928 VAR_DOMAIN, LOC_STATIC,
6929 &objfile->global_psymbols,
6930 0, addr + baseaddr,
6931 cu->language, objfile);
6932 }
6933 else
6934 {
6935 /* Static Variable. Skip symbols without location descriptors. */
6936 if (pdi->d.locdesc == NULL)
6937 {
6938 xfree (built_actual_name);
6939 return;
6940 }
6941 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6942 mst_file_data, objfile); */
6943 add_psymbol_to_list (actual_name, strlen (actual_name),
6944 built_actual_name != NULL,
6945 VAR_DOMAIN, LOC_STATIC,
6946 &objfile->static_psymbols,
6947 0, addr + baseaddr,
6948 cu->language, objfile);
6949 }
6950 break;
6951 case DW_TAG_typedef:
6952 case DW_TAG_base_type:
6953 case DW_TAG_subrange_type:
6954 add_psymbol_to_list (actual_name, strlen (actual_name),
6955 built_actual_name != NULL,
6956 VAR_DOMAIN, LOC_TYPEDEF,
6957 &objfile->static_psymbols,
6958 0, (CORE_ADDR) 0, cu->language, objfile);
6959 break;
6960 case DW_TAG_imported_declaration:
6961 case DW_TAG_namespace:
6962 add_psymbol_to_list (actual_name, strlen (actual_name),
6963 built_actual_name != NULL,
6964 VAR_DOMAIN, LOC_TYPEDEF,
6965 &objfile->global_psymbols,
6966 0, (CORE_ADDR) 0, cu->language, objfile);
6967 break;
6968 case DW_TAG_module:
6969 add_psymbol_to_list (actual_name, strlen (actual_name),
6970 built_actual_name != NULL,
6971 MODULE_DOMAIN, LOC_TYPEDEF,
6972 &objfile->global_psymbols,
6973 0, (CORE_ADDR) 0, cu->language, objfile);
6974 break;
6975 case DW_TAG_class_type:
6976 case DW_TAG_interface_type:
6977 case DW_TAG_structure_type:
6978 case DW_TAG_union_type:
6979 case DW_TAG_enumeration_type:
6980 /* Skip external references. The DWARF standard says in the section
6981 about "Structure, Union, and Class Type Entries": "An incomplete
6982 structure, union or class type is represented by a structure,
6983 union or class entry that does not have a byte size attribute
6984 and that has a DW_AT_declaration attribute." */
6985 if (!pdi->has_byte_size && pdi->is_declaration)
6986 {
6987 xfree (built_actual_name);
6988 return;
6989 }
6990
6991 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6992 static vs. global. */
6993 add_psymbol_to_list (actual_name, strlen (actual_name),
6994 built_actual_name != NULL,
6995 STRUCT_DOMAIN, LOC_TYPEDEF,
6996 (cu->language == language_cplus
6997 || cu->language == language_java)
6998 ? &objfile->global_psymbols
6999 : &objfile->static_psymbols,
7000 0, (CORE_ADDR) 0, cu->language, objfile);
7001
7002 break;
7003 case DW_TAG_enumerator:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 VAR_DOMAIN, LOC_CONST,
7007 (cu->language == language_cplus
7008 || cu->language == language_java)
7009 ? &objfile->global_psymbols
7010 : &objfile->static_psymbols,
7011 0, (CORE_ADDR) 0, cu->language, objfile);
7012 break;
7013 default:
7014 break;
7015 }
7016
7017 xfree (built_actual_name);
7018 }
7019
7020 /* Read a partial die corresponding to a namespace; also, add a symbol
7021 corresponding to that namespace to the symbol table. NAMESPACE is
7022 the name of the enclosing namespace. */
7023
7024 static void
7025 add_partial_namespace (struct partial_die_info *pdi,
7026 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7027 int set_addrmap, struct dwarf2_cu *cu)
7028 {
7029 /* Add a symbol for the namespace. */
7030
7031 add_partial_symbol (pdi, cu);
7032
7033 /* Now scan partial symbols in that namespace. */
7034
7035 if (pdi->has_children)
7036 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7037 }
7038
7039 /* Read a partial die corresponding to a Fortran module. */
7040
7041 static void
7042 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7043 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7044 {
7045 /* Add a symbol for the namespace. */
7046
7047 add_partial_symbol (pdi, cu);
7048
7049 /* Now scan partial symbols in that module. */
7050
7051 if (pdi->has_children)
7052 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7053 }
7054
7055 /* Read a partial die corresponding to a subprogram and create a partial
7056 symbol for that subprogram. When the CU language allows it, this
7057 routine also defines a partial symbol for each nested subprogram
7058 that this subprogram contains. If SET_ADDRMAP is true, record the
7059 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7060 and highest PC values found in PDI.
7061
7062 PDI may also be a lexical block, in which case we simply search
7063 recursively for subprograms defined inside that lexical block.
7064 Again, this is only performed when the CU language allows this
7065 type of definitions. */
7066
7067 static void
7068 add_partial_subprogram (struct partial_die_info *pdi,
7069 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7070 int set_addrmap, struct dwarf2_cu *cu)
7071 {
7072 if (pdi->tag == DW_TAG_subprogram)
7073 {
7074 if (pdi->has_pc_info)
7075 {
7076 if (pdi->lowpc < *lowpc)
7077 *lowpc = pdi->lowpc;
7078 if (pdi->highpc > *highpc)
7079 *highpc = pdi->highpc;
7080 if (set_addrmap)
7081 {
7082 struct objfile *objfile = cu->objfile;
7083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7084 CORE_ADDR baseaddr;
7085 CORE_ADDR highpc;
7086 CORE_ADDR lowpc;
7087
7088 baseaddr = ANOFFSET (objfile->section_offsets,
7089 SECT_OFF_TEXT (objfile));
7090 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7091 pdi->lowpc + baseaddr);
7092 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7093 pdi->highpc + baseaddr);
7094 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7095 cu->per_cu->v.psymtab);
7096 }
7097 }
7098
7099 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7100 {
7101 if (!pdi->is_declaration)
7102 /* Ignore subprogram DIEs that do not have a name, they are
7103 illegal. Do not emit a complaint at this point, we will
7104 do so when we convert this psymtab into a symtab. */
7105 if (pdi->name)
7106 add_partial_symbol (pdi, cu);
7107 }
7108 }
7109
7110 if (! pdi->has_children)
7111 return;
7112
7113 if (cu->language == language_ada)
7114 {
7115 pdi = pdi->die_child;
7116 while (pdi != NULL)
7117 {
7118 fixup_partial_die (pdi, cu);
7119 if (pdi->tag == DW_TAG_subprogram
7120 || pdi->tag == DW_TAG_lexical_block)
7121 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7122 pdi = pdi->die_sibling;
7123 }
7124 }
7125 }
7126
7127 /* Read a partial die corresponding to an enumeration type. */
7128
7129 static void
7130 add_partial_enumeration (struct partial_die_info *enum_pdi,
7131 struct dwarf2_cu *cu)
7132 {
7133 struct partial_die_info *pdi;
7134
7135 if (enum_pdi->name != NULL)
7136 add_partial_symbol (enum_pdi, cu);
7137
7138 pdi = enum_pdi->die_child;
7139 while (pdi)
7140 {
7141 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7142 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7143 else
7144 add_partial_symbol (pdi, cu);
7145 pdi = pdi->die_sibling;
7146 }
7147 }
7148
7149 /* Return the initial uleb128 in the die at INFO_PTR. */
7150
7151 static unsigned int
7152 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7153 {
7154 unsigned int bytes_read;
7155
7156 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7157 }
7158
7159 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7160 Return the corresponding abbrev, or NULL if the number is zero (indicating
7161 an empty DIE). In either case *BYTES_READ will be set to the length of
7162 the initial number. */
7163
7164 static struct abbrev_info *
7165 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7166 struct dwarf2_cu *cu)
7167 {
7168 bfd *abfd = cu->objfile->obfd;
7169 unsigned int abbrev_number;
7170 struct abbrev_info *abbrev;
7171
7172 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7173
7174 if (abbrev_number == 0)
7175 return NULL;
7176
7177 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7178 if (!abbrev)
7179 {
7180 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7181 " at offset 0x%x [in module %s]"),
7182 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7183 cu->header.offset.sect_off, bfd_get_filename (abfd));
7184 }
7185
7186 return abbrev;
7187 }
7188
7189 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7190 Returns a pointer to the end of a series of DIEs, terminated by an empty
7191 DIE. Any children of the skipped DIEs will also be skipped. */
7192
7193 static const gdb_byte *
7194 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7195 {
7196 struct dwarf2_cu *cu = reader->cu;
7197 struct abbrev_info *abbrev;
7198 unsigned int bytes_read;
7199
7200 while (1)
7201 {
7202 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7203 if (abbrev == NULL)
7204 return info_ptr + bytes_read;
7205 else
7206 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7207 }
7208 }
7209
7210 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7211 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7212 abbrev corresponding to that skipped uleb128 should be passed in
7213 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7214 children. */
7215
7216 static const gdb_byte *
7217 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7218 struct abbrev_info *abbrev)
7219 {
7220 unsigned int bytes_read;
7221 struct attribute attr;
7222 bfd *abfd = reader->abfd;
7223 struct dwarf2_cu *cu = reader->cu;
7224 const gdb_byte *buffer = reader->buffer;
7225 const gdb_byte *buffer_end = reader->buffer_end;
7226 const gdb_byte *start_info_ptr = info_ptr;
7227 unsigned int form, i;
7228
7229 for (i = 0; i < abbrev->num_attrs; i++)
7230 {
7231 /* The only abbrev we care about is DW_AT_sibling. */
7232 if (abbrev->attrs[i].name == DW_AT_sibling)
7233 {
7234 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7235 if (attr.form == DW_FORM_ref_addr)
7236 complaint (&symfile_complaints,
7237 _("ignoring absolute DW_AT_sibling"));
7238 else
7239 {
7240 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7241 const gdb_byte *sibling_ptr = buffer + off;
7242
7243 if (sibling_ptr < info_ptr)
7244 complaint (&symfile_complaints,
7245 _("DW_AT_sibling points backwards"));
7246 else if (sibling_ptr > reader->buffer_end)
7247 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7248 else
7249 return sibling_ptr;
7250 }
7251 }
7252
7253 /* If it isn't DW_AT_sibling, skip this attribute. */
7254 form = abbrev->attrs[i].form;
7255 skip_attribute:
7256 switch (form)
7257 {
7258 case DW_FORM_ref_addr:
7259 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7260 and later it is offset sized. */
7261 if (cu->header.version == 2)
7262 info_ptr += cu->header.addr_size;
7263 else
7264 info_ptr += cu->header.offset_size;
7265 break;
7266 case DW_FORM_GNU_ref_alt:
7267 info_ptr += cu->header.offset_size;
7268 break;
7269 case DW_FORM_addr:
7270 info_ptr += cu->header.addr_size;
7271 break;
7272 case DW_FORM_data1:
7273 case DW_FORM_ref1:
7274 case DW_FORM_flag:
7275 info_ptr += 1;
7276 break;
7277 case DW_FORM_flag_present:
7278 break;
7279 case DW_FORM_data2:
7280 case DW_FORM_ref2:
7281 info_ptr += 2;
7282 break;
7283 case DW_FORM_data4:
7284 case DW_FORM_ref4:
7285 info_ptr += 4;
7286 break;
7287 case DW_FORM_data8:
7288 case DW_FORM_ref8:
7289 case DW_FORM_ref_sig8:
7290 info_ptr += 8;
7291 break;
7292 case DW_FORM_string:
7293 read_direct_string (abfd, info_ptr, &bytes_read);
7294 info_ptr += bytes_read;
7295 break;
7296 case DW_FORM_sec_offset:
7297 case DW_FORM_strp:
7298 case DW_FORM_GNU_strp_alt:
7299 info_ptr += cu->header.offset_size;
7300 break;
7301 case DW_FORM_exprloc:
7302 case DW_FORM_block:
7303 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7304 info_ptr += bytes_read;
7305 break;
7306 case DW_FORM_block1:
7307 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7308 break;
7309 case DW_FORM_block2:
7310 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7311 break;
7312 case DW_FORM_block4:
7313 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7314 break;
7315 case DW_FORM_sdata:
7316 case DW_FORM_udata:
7317 case DW_FORM_ref_udata:
7318 case DW_FORM_GNU_addr_index:
7319 case DW_FORM_GNU_str_index:
7320 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7321 break;
7322 case DW_FORM_indirect:
7323 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7324 info_ptr += bytes_read;
7325 /* We need to continue parsing from here, so just go back to
7326 the top. */
7327 goto skip_attribute;
7328
7329 default:
7330 error (_("Dwarf Error: Cannot handle %s "
7331 "in DWARF reader [in module %s]"),
7332 dwarf_form_name (form),
7333 bfd_get_filename (abfd));
7334 }
7335 }
7336
7337 if (abbrev->has_children)
7338 return skip_children (reader, info_ptr);
7339 else
7340 return info_ptr;
7341 }
7342
7343 /* Locate ORIG_PDI's sibling.
7344 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7345
7346 static const gdb_byte *
7347 locate_pdi_sibling (const struct die_reader_specs *reader,
7348 struct partial_die_info *orig_pdi,
7349 const gdb_byte *info_ptr)
7350 {
7351 /* Do we know the sibling already? */
7352
7353 if (orig_pdi->sibling)
7354 return orig_pdi->sibling;
7355
7356 /* Are there any children to deal with? */
7357
7358 if (!orig_pdi->has_children)
7359 return info_ptr;
7360
7361 /* Skip the children the long way. */
7362
7363 return skip_children (reader, info_ptr);
7364 }
7365
7366 /* Expand this partial symbol table into a full symbol table. SELF is
7367 not NULL. */
7368
7369 static void
7370 dwarf2_read_symtab (struct partial_symtab *self,
7371 struct objfile *objfile)
7372 {
7373 if (self->readin)
7374 {
7375 warning (_("bug: psymtab for %s is already read in."),
7376 self->filename);
7377 }
7378 else
7379 {
7380 if (info_verbose)
7381 {
7382 printf_filtered (_("Reading in symbols for %s..."),
7383 self->filename);
7384 gdb_flush (gdb_stdout);
7385 }
7386
7387 /* Restore our global data. */
7388 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7389
7390 /* If this psymtab is constructed from a debug-only objfile, the
7391 has_section_at_zero flag will not necessarily be correct. We
7392 can get the correct value for this flag by looking at the data
7393 associated with the (presumably stripped) associated objfile. */
7394 if (objfile->separate_debug_objfile_backlink)
7395 {
7396 struct dwarf2_per_objfile *dpo_backlink
7397 = objfile_data (objfile->separate_debug_objfile_backlink,
7398 dwarf2_objfile_data_key);
7399
7400 dwarf2_per_objfile->has_section_at_zero
7401 = dpo_backlink->has_section_at_zero;
7402 }
7403
7404 dwarf2_per_objfile->reading_partial_symbols = 0;
7405
7406 psymtab_to_symtab_1 (self);
7407
7408 /* Finish up the debug error message. */
7409 if (info_verbose)
7410 printf_filtered (_("done.\n"));
7411 }
7412
7413 process_cu_includes ();
7414 }
7415 \f
7416 /* Reading in full CUs. */
7417
7418 /* Add PER_CU to the queue. */
7419
7420 static void
7421 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7422 enum language pretend_language)
7423 {
7424 struct dwarf2_queue_item *item;
7425
7426 per_cu->queued = 1;
7427 item = xmalloc (sizeof (*item));
7428 item->per_cu = per_cu;
7429 item->pretend_language = pretend_language;
7430 item->next = NULL;
7431
7432 if (dwarf2_queue == NULL)
7433 dwarf2_queue = item;
7434 else
7435 dwarf2_queue_tail->next = item;
7436
7437 dwarf2_queue_tail = item;
7438 }
7439
7440 /* If PER_CU is not yet queued, add it to the queue.
7441 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7442 dependency.
7443 The result is non-zero if PER_CU was queued, otherwise the result is zero
7444 meaning either PER_CU is already queued or it is already loaded.
7445
7446 N.B. There is an invariant here that if a CU is queued then it is loaded.
7447 The caller is required to load PER_CU if we return non-zero. */
7448
7449 static int
7450 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7451 struct dwarf2_per_cu_data *per_cu,
7452 enum language pretend_language)
7453 {
7454 /* We may arrive here during partial symbol reading, if we need full
7455 DIEs to process an unusual case (e.g. template arguments). Do
7456 not queue PER_CU, just tell our caller to load its DIEs. */
7457 if (dwarf2_per_objfile->reading_partial_symbols)
7458 {
7459 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7460 return 1;
7461 return 0;
7462 }
7463
7464 /* Mark the dependence relation so that we don't flush PER_CU
7465 too early. */
7466 if (dependent_cu != NULL)
7467 dwarf2_add_dependence (dependent_cu, per_cu);
7468
7469 /* If it's already on the queue, we have nothing to do. */
7470 if (per_cu->queued)
7471 return 0;
7472
7473 /* If the compilation unit is already loaded, just mark it as
7474 used. */
7475 if (per_cu->cu != NULL)
7476 {
7477 per_cu->cu->last_used = 0;
7478 return 0;
7479 }
7480
7481 /* Add it to the queue. */
7482 queue_comp_unit (per_cu, pretend_language);
7483
7484 return 1;
7485 }
7486
7487 /* Process the queue. */
7488
7489 static void
7490 process_queue (void)
7491 {
7492 struct dwarf2_queue_item *item, *next_item;
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog,
7497 "Expanding one or more symtabs of objfile %s ...\n",
7498 objfile_name (dwarf2_per_objfile->objfile));
7499 }
7500
7501 /* The queue starts out with one item, but following a DIE reference
7502 may load a new CU, adding it to the end of the queue. */
7503 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7504 {
7505 if (dwarf2_per_objfile->using_index
7506 ? !item->per_cu->v.quick->compunit_symtab
7507 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7508 {
7509 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7510 unsigned int debug_print_threshold;
7511 char buf[100];
7512
7513 if (per_cu->is_debug_types)
7514 {
7515 struct signatured_type *sig_type =
7516 (struct signatured_type *) per_cu;
7517
7518 sprintf (buf, "TU %s at offset 0x%x",
7519 hex_string (sig_type->signature),
7520 per_cu->offset.sect_off);
7521 /* There can be 100s of TUs.
7522 Only print them in verbose mode. */
7523 debug_print_threshold = 2;
7524 }
7525 else
7526 {
7527 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7528 debug_print_threshold = 1;
7529 }
7530
7531 if (dwarf2_read_debug >= debug_print_threshold)
7532 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7533
7534 if (per_cu->is_debug_types)
7535 process_full_type_unit (per_cu, item->pretend_language);
7536 else
7537 process_full_comp_unit (per_cu, item->pretend_language);
7538
7539 if (dwarf2_read_debug >= debug_print_threshold)
7540 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7541 }
7542
7543 item->per_cu->queued = 0;
7544 next_item = item->next;
7545 xfree (item);
7546 }
7547
7548 dwarf2_queue_tail = NULL;
7549
7550 if (dwarf2_read_debug)
7551 {
7552 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7553 objfile_name (dwarf2_per_objfile->objfile));
7554 }
7555 }
7556
7557 /* Free all allocated queue entries. This function only releases anything if
7558 an error was thrown; if the queue was processed then it would have been
7559 freed as we went along. */
7560
7561 static void
7562 dwarf2_release_queue (void *dummy)
7563 {
7564 struct dwarf2_queue_item *item, *last;
7565
7566 item = dwarf2_queue;
7567 while (item)
7568 {
7569 /* Anything still marked queued is likely to be in an
7570 inconsistent state, so discard it. */
7571 if (item->per_cu->queued)
7572 {
7573 if (item->per_cu->cu != NULL)
7574 free_one_cached_comp_unit (item->per_cu);
7575 item->per_cu->queued = 0;
7576 }
7577
7578 last = item;
7579 item = item->next;
7580 xfree (last);
7581 }
7582
7583 dwarf2_queue = dwarf2_queue_tail = NULL;
7584 }
7585
7586 /* Read in full symbols for PST, and anything it depends on. */
7587
7588 static void
7589 psymtab_to_symtab_1 (struct partial_symtab *pst)
7590 {
7591 struct dwarf2_per_cu_data *per_cu;
7592 int i;
7593
7594 if (pst->readin)
7595 return;
7596
7597 for (i = 0; i < pst->number_of_dependencies; i++)
7598 if (!pst->dependencies[i]->readin
7599 && pst->dependencies[i]->user == NULL)
7600 {
7601 /* Inform about additional files that need to be read in. */
7602 if (info_verbose)
7603 {
7604 /* FIXME: i18n: Need to make this a single string. */
7605 fputs_filtered (" ", gdb_stdout);
7606 wrap_here ("");
7607 fputs_filtered ("and ", gdb_stdout);
7608 wrap_here ("");
7609 printf_filtered ("%s...", pst->dependencies[i]->filename);
7610 wrap_here (""); /* Flush output. */
7611 gdb_flush (gdb_stdout);
7612 }
7613 psymtab_to_symtab_1 (pst->dependencies[i]);
7614 }
7615
7616 per_cu = pst->read_symtab_private;
7617
7618 if (per_cu == NULL)
7619 {
7620 /* It's an include file, no symbols to read for it.
7621 Everything is in the parent symtab. */
7622 pst->readin = 1;
7623 return;
7624 }
7625
7626 dw2_do_instantiate_symtab (per_cu);
7627 }
7628
7629 /* Trivial hash function for die_info: the hash value of a DIE
7630 is its offset in .debug_info for this objfile. */
7631
7632 static hashval_t
7633 die_hash (const void *item)
7634 {
7635 const struct die_info *die = item;
7636
7637 return die->offset.sect_off;
7638 }
7639
7640 /* Trivial comparison function for die_info structures: two DIEs
7641 are equal if they have the same offset. */
7642
7643 static int
7644 die_eq (const void *item_lhs, const void *item_rhs)
7645 {
7646 const struct die_info *die_lhs = item_lhs;
7647 const struct die_info *die_rhs = item_rhs;
7648
7649 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7650 }
7651
7652 /* die_reader_func for load_full_comp_unit.
7653 This is identical to read_signatured_type_reader,
7654 but is kept separate for now. */
7655
7656 static void
7657 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7658 const gdb_byte *info_ptr,
7659 struct die_info *comp_unit_die,
7660 int has_children,
7661 void *data)
7662 {
7663 struct dwarf2_cu *cu = reader->cu;
7664 enum language *language_ptr = data;
7665
7666 gdb_assert (cu->die_hash == NULL);
7667 cu->die_hash =
7668 htab_create_alloc_ex (cu->header.length / 12,
7669 die_hash,
7670 die_eq,
7671 NULL,
7672 &cu->comp_unit_obstack,
7673 hashtab_obstack_allocate,
7674 dummy_obstack_deallocate);
7675
7676 if (has_children)
7677 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7678 &info_ptr, comp_unit_die);
7679 cu->dies = comp_unit_die;
7680 /* comp_unit_die is not stored in die_hash, no need. */
7681
7682 /* We try not to read any attributes in this function, because not
7683 all CUs needed for references have been loaded yet, and symbol
7684 table processing isn't initialized. But we have to set the CU language,
7685 or we won't be able to build types correctly.
7686 Similarly, if we do not read the producer, we can not apply
7687 producer-specific interpretation. */
7688 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7689 }
7690
7691 /* Load the DIEs associated with PER_CU into memory. */
7692
7693 static void
7694 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7695 enum language pretend_language)
7696 {
7697 gdb_assert (! this_cu->is_debug_types);
7698
7699 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7700 load_full_comp_unit_reader, &pretend_language);
7701 }
7702
7703 /* Add a DIE to the delayed physname list. */
7704
7705 static void
7706 add_to_method_list (struct type *type, int fnfield_index, int index,
7707 const char *name, struct die_info *die,
7708 struct dwarf2_cu *cu)
7709 {
7710 struct delayed_method_info mi;
7711 mi.type = type;
7712 mi.fnfield_index = fnfield_index;
7713 mi.index = index;
7714 mi.name = name;
7715 mi.die = die;
7716 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7717 }
7718
7719 /* A cleanup for freeing the delayed method list. */
7720
7721 static void
7722 free_delayed_list (void *ptr)
7723 {
7724 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7725 if (cu->method_list != NULL)
7726 {
7727 VEC_free (delayed_method_info, cu->method_list);
7728 cu->method_list = NULL;
7729 }
7730 }
7731
7732 /* Compute the physnames of any methods on the CU's method list.
7733
7734 The computation of method physnames is delayed in order to avoid the
7735 (bad) condition that one of the method's formal parameters is of an as yet
7736 incomplete type. */
7737
7738 static void
7739 compute_delayed_physnames (struct dwarf2_cu *cu)
7740 {
7741 int i;
7742 struct delayed_method_info *mi;
7743 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7744 {
7745 const char *physname;
7746 struct fn_fieldlist *fn_flp
7747 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7748 physname = dwarf2_physname (mi->name, mi->die, cu);
7749 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7750 = physname ? physname : "";
7751 }
7752 }
7753
7754 /* Go objects should be embedded in a DW_TAG_module DIE,
7755 and it's not clear if/how imported objects will appear.
7756 To keep Go support simple until that's worked out,
7757 go back through what we've read and create something usable.
7758 We could do this while processing each DIE, and feels kinda cleaner,
7759 but that way is more invasive.
7760 This is to, for example, allow the user to type "p var" or "b main"
7761 without having to specify the package name, and allow lookups
7762 of module.object to work in contexts that use the expression
7763 parser. */
7764
7765 static void
7766 fixup_go_packaging (struct dwarf2_cu *cu)
7767 {
7768 char *package_name = NULL;
7769 struct pending *list;
7770 int i;
7771
7772 for (list = global_symbols; list != NULL; list = list->next)
7773 {
7774 for (i = 0; i < list->nsyms; ++i)
7775 {
7776 struct symbol *sym = list->symbol[i];
7777
7778 if (SYMBOL_LANGUAGE (sym) == language_go
7779 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7780 {
7781 char *this_package_name = go_symbol_package_name (sym);
7782
7783 if (this_package_name == NULL)
7784 continue;
7785 if (package_name == NULL)
7786 package_name = this_package_name;
7787 else
7788 {
7789 if (strcmp (package_name, this_package_name) != 0)
7790 complaint (&symfile_complaints,
7791 _("Symtab %s has objects from two different Go packages: %s and %s"),
7792 (symbol_symtab (sym) != NULL
7793 ? symtab_to_filename_for_display
7794 (symbol_symtab (sym))
7795 : objfile_name (cu->objfile)),
7796 this_package_name, package_name);
7797 xfree (this_package_name);
7798 }
7799 }
7800 }
7801 }
7802
7803 if (package_name != NULL)
7804 {
7805 struct objfile *objfile = cu->objfile;
7806 const char *saved_package_name
7807 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7808 package_name,
7809 strlen (package_name));
7810 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7811 saved_package_name, objfile);
7812 struct symbol *sym;
7813
7814 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7815
7816 sym = allocate_symbol (objfile);
7817 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7818 SYMBOL_SET_NAMES (sym, saved_package_name,
7819 strlen (saved_package_name), 0, objfile);
7820 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7821 e.g., "main" finds the "main" module and not C's main(). */
7822 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7823 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7824 SYMBOL_TYPE (sym) = type;
7825
7826 add_symbol_to_list (sym, &global_symbols);
7827
7828 xfree (package_name);
7829 }
7830 }
7831
7832 /* Return the symtab for PER_CU. This works properly regardless of
7833 whether we're using the index or psymtabs. */
7834
7835 static struct compunit_symtab *
7836 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7837 {
7838 return (dwarf2_per_objfile->using_index
7839 ? per_cu->v.quick->compunit_symtab
7840 : per_cu->v.psymtab->compunit_symtab);
7841 }
7842
7843 /* A helper function for computing the list of all symbol tables
7844 included by PER_CU. */
7845
7846 static void
7847 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7848 htab_t all_children, htab_t all_type_symtabs,
7849 struct dwarf2_per_cu_data *per_cu,
7850 struct compunit_symtab *immediate_parent)
7851 {
7852 void **slot;
7853 int ix;
7854 struct compunit_symtab *cust;
7855 struct dwarf2_per_cu_data *iter;
7856
7857 slot = htab_find_slot (all_children, per_cu, INSERT);
7858 if (*slot != NULL)
7859 {
7860 /* This inclusion and its children have been processed. */
7861 return;
7862 }
7863
7864 *slot = per_cu;
7865 /* Only add a CU if it has a symbol table. */
7866 cust = get_compunit_symtab (per_cu);
7867 if (cust != NULL)
7868 {
7869 /* If this is a type unit only add its symbol table if we haven't
7870 seen it yet (type unit per_cu's can share symtabs). */
7871 if (per_cu->is_debug_types)
7872 {
7873 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7874 if (*slot == NULL)
7875 {
7876 *slot = cust;
7877 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7878 if (cust->user == NULL)
7879 cust->user = immediate_parent;
7880 }
7881 }
7882 else
7883 {
7884 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7885 if (cust->user == NULL)
7886 cust->user = immediate_parent;
7887 }
7888 }
7889
7890 for (ix = 0;
7891 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7892 ++ix)
7893 {
7894 recursively_compute_inclusions (result, all_children,
7895 all_type_symtabs, iter, cust);
7896 }
7897 }
7898
7899 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7900 PER_CU. */
7901
7902 static void
7903 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7904 {
7905 gdb_assert (! per_cu->is_debug_types);
7906
7907 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7908 {
7909 int ix, len;
7910 struct dwarf2_per_cu_data *per_cu_iter;
7911 struct compunit_symtab *compunit_symtab_iter;
7912 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7913 htab_t all_children, all_type_symtabs;
7914 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7915
7916 /* If we don't have a symtab, we can just skip this case. */
7917 if (cust == NULL)
7918 return;
7919
7920 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7921 NULL, xcalloc, xfree);
7922 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7923 NULL, xcalloc, xfree);
7924
7925 for (ix = 0;
7926 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7927 ix, per_cu_iter);
7928 ++ix)
7929 {
7930 recursively_compute_inclusions (&result_symtabs, all_children,
7931 all_type_symtabs, per_cu_iter,
7932 cust);
7933 }
7934
7935 /* Now we have a transitive closure of all the included symtabs. */
7936 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7937 cust->includes
7938 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7939 (len + 1) * sizeof (struct symtab *));
7940 for (ix = 0;
7941 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7942 compunit_symtab_iter);
7943 ++ix)
7944 cust->includes[ix] = compunit_symtab_iter;
7945 cust->includes[len] = NULL;
7946
7947 VEC_free (compunit_symtab_ptr, result_symtabs);
7948 htab_delete (all_children);
7949 htab_delete (all_type_symtabs);
7950 }
7951 }
7952
7953 /* Compute the 'includes' field for the symtabs of all the CUs we just
7954 read. */
7955
7956 static void
7957 process_cu_includes (void)
7958 {
7959 int ix;
7960 struct dwarf2_per_cu_data *iter;
7961
7962 for (ix = 0;
7963 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7964 ix, iter);
7965 ++ix)
7966 {
7967 if (! iter->is_debug_types)
7968 compute_compunit_symtab_includes (iter);
7969 }
7970
7971 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7972 }
7973
7974 /* Generate full symbol information for PER_CU, whose DIEs have
7975 already been loaded into memory. */
7976
7977 static void
7978 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7979 enum language pretend_language)
7980 {
7981 struct dwarf2_cu *cu = per_cu->cu;
7982 struct objfile *objfile = per_cu->objfile;
7983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7984 CORE_ADDR lowpc, highpc;
7985 struct compunit_symtab *cust;
7986 struct cleanup *back_to, *delayed_list_cleanup;
7987 CORE_ADDR baseaddr;
7988 struct block *static_block;
7989 CORE_ADDR addr;
7990
7991 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7992
7993 buildsym_init ();
7994 back_to = make_cleanup (really_free_pendings, NULL);
7995 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7996
7997 cu->list_in_scope = &file_symbols;
7998
7999 cu->language = pretend_language;
8000 cu->language_defn = language_def (cu->language);
8001
8002 /* Do line number decoding in read_file_scope () */
8003 process_die (cu->dies, cu);
8004
8005 /* For now fudge the Go package. */
8006 if (cu->language == language_go)
8007 fixup_go_packaging (cu);
8008
8009 /* Now that we have processed all the DIEs in the CU, all the types
8010 should be complete, and it should now be safe to compute all of the
8011 physnames. */
8012 compute_delayed_physnames (cu);
8013 do_cleanups (delayed_list_cleanup);
8014
8015 /* Some compilers don't define a DW_AT_high_pc attribute for the
8016 compilation unit. If the DW_AT_high_pc is missing, synthesize
8017 it, by scanning the DIE's below the compilation unit. */
8018 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8019
8020 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8021 static_block = end_symtab_get_static_block (addr, 0, 1);
8022
8023 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8024 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8025 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8026 addrmap to help ensure it has an accurate map of pc values belonging to
8027 this comp unit. */
8028 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8029
8030 cust = end_symtab_from_static_block (static_block,
8031 SECT_OFF_TEXT (objfile), 0);
8032
8033 if (cust != NULL)
8034 {
8035 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8036
8037 /* Set symtab language to language from DW_AT_language. If the
8038 compilation is from a C file generated by language preprocessors, do
8039 not set the language if it was already deduced by start_subfile. */
8040 if (!(cu->language == language_c
8041 && COMPUNIT_FILETABS (cust)->language != language_c))
8042 COMPUNIT_FILETABS (cust)->language = cu->language;
8043
8044 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8045 produce DW_AT_location with location lists but it can be possibly
8046 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8047 there were bugs in prologue debug info, fixed later in GCC-4.5
8048 by "unwind info for epilogues" patch (which is not directly related).
8049
8050 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8051 needed, it would be wrong due to missing DW_AT_producer there.
8052
8053 Still one can confuse GDB by using non-standard GCC compilation
8054 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8055 */
8056 if (cu->has_loclist && gcc_4_minor >= 5)
8057 cust->locations_valid = 1;
8058
8059 if (gcc_4_minor >= 5)
8060 cust->epilogue_unwind_valid = 1;
8061
8062 cust->call_site_htab = cu->call_site_htab;
8063 }
8064
8065 if (dwarf2_per_objfile->using_index)
8066 per_cu->v.quick->compunit_symtab = cust;
8067 else
8068 {
8069 struct partial_symtab *pst = per_cu->v.psymtab;
8070 pst->compunit_symtab = cust;
8071 pst->readin = 1;
8072 }
8073
8074 /* Push it for inclusion processing later. */
8075 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8076
8077 do_cleanups (back_to);
8078 }
8079
8080 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8081 already been loaded into memory. */
8082
8083 static void
8084 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8085 enum language pretend_language)
8086 {
8087 struct dwarf2_cu *cu = per_cu->cu;
8088 struct objfile *objfile = per_cu->objfile;
8089 struct compunit_symtab *cust;
8090 struct cleanup *back_to, *delayed_list_cleanup;
8091 struct signatured_type *sig_type;
8092
8093 gdb_assert (per_cu->is_debug_types);
8094 sig_type = (struct signatured_type *) per_cu;
8095
8096 buildsym_init ();
8097 back_to = make_cleanup (really_free_pendings, NULL);
8098 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8099
8100 cu->list_in_scope = &file_symbols;
8101
8102 cu->language = pretend_language;
8103 cu->language_defn = language_def (cu->language);
8104
8105 /* The symbol tables are set up in read_type_unit_scope. */
8106 process_die (cu->dies, cu);
8107
8108 /* For now fudge the Go package. */
8109 if (cu->language == language_go)
8110 fixup_go_packaging (cu);
8111
8112 /* Now that we have processed all the DIEs in the CU, all the types
8113 should be complete, and it should now be safe to compute all of the
8114 physnames. */
8115 compute_delayed_physnames (cu);
8116 do_cleanups (delayed_list_cleanup);
8117
8118 /* TUs share symbol tables.
8119 If this is the first TU to use this symtab, complete the construction
8120 of it with end_expandable_symtab. Otherwise, complete the addition of
8121 this TU's symbols to the existing symtab. */
8122 if (sig_type->type_unit_group->compunit_symtab == NULL)
8123 {
8124 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8125 sig_type->type_unit_group->compunit_symtab = cust;
8126
8127 if (cust != NULL)
8128 {
8129 /* Set symtab language to language from DW_AT_language. If the
8130 compilation is from a C file generated by language preprocessors,
8131 do not set the language if it was already deduced by
8132 start_subfile. */
8133 if (!(cu->language == language_c
8134 && COMPUNIT_FILETABS (cust)->language != language_c))
8135 COMPUNIT_FILETABS (cust)->language = cu->language;
8136 }
8137 }
8138 else
8139 {
8140 augment_type_symtab ();
8141 cust = sig_type->type_unit_group->compunit_symtab;
8142 }
8143
8144 if (dwarf2_per_objfile->using_index)
8145 per_cu->v.quick->compunit_symtab = cust;
8146 else
8147 {
8148 struct partial_symtab *pst = per_cu->v.psymtab;
8149 pst->compunit_symtab = cust;
8150 pst->readin = 1;
8151 }
8152
8153 do_cleanups (back_to);
8154 }
8155
8156 /* Process an imported unit DIE. */
8157
8158 static void
8159 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8160 {
8161 struct attribute *attr;
8162
8163 /* For now we don't handle imported units in type units. */
8164 if (cu->per_cu->is_debug_types)
8165 {
8166 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8167 " supported in type units [in module %s]"),
8168 objfile_name (cu->objfile));
8169 }
8170
8171 attr = dwarf2_attr (die, DW_AT_import, cu);
8172 if (attr != NULL)
8173 {
8174 struct dwarf2_per_cu_data *per_cu;
8175 struct symtab *imported_symtab;
8176 sect_offset offset;
8177 int is_dwz;
8178
8179 offset = dwarf2_get_ref_die_offset (attr);
8180 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8181 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8182
8183 /* If necessary, add it to the queue and load its DIEs. */
8184 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8185 load_full_comp_unit (per_cu, cu->language);
8186
8187 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8188 per_cu);
8189 }
8190 }
8191
8192 /* Reset the in_process bit of a die. */
8193
8194 static void
8195 reset_die_in_process (void *arg)
8196 {
8197 struct die_info *die = arg;
8198
8199 die->in_process = 0;
8200 }
8201
8202 /* Process a die and its children. */
8203
8204 static void
8205 process_die (struct die_info *die, struct dwarf2_cu *cu)
8206 {
8207 struct cleanup *in_process;
8208
8209 /* We should only be processing those not already in process. */
8210 gdb_assert (!die->in_process);
8211
8212 die->in_process = 1;
8213 in_process = make_cleanup (reset_die_in_process,die);
8214
8215 switch (die->tag)
8216 {
8217 case DW_TAG_padding:
8218 break;
8219 case DW_TAG_compile_unit:
8220 case DW_TAG_partial_unit:
8221 read_file_scope (die, cu);
8222 break;
8223 case DW_TAG_type_unit:
8224 read_type_unit_scope (die, cu);
8225 break;
8226 case DW_TAG_subprogram:
8227 case DW_TAG_inlined_subroutine:
8228 read_func_scope (die, cu);
8229 break;
8230 case DW_TAG_lexical_block:
8231 case DW_TAG_try_block:
8232 case DW_TAG_catch_block:
8233 read_lexical_block_scope (die, cu);
8234 break;
8235 case DW_TAG_GNU_call_site:
8236 read_call_site_scope (die, cu);
8237 break;
8238 case DW_TAG_class_type:
8239 case DW_TAG_interface_type:
8240 case DW_TAG_structure_type:
8241 case DW_TAG_union_type:
8242 process_structure_scope (die, cu);
8243 break;
8244 case DW_TAG_enumeration_type:
8245 process_enumeration_scope (die, cu);
8246 break;
8247
8248 /* These dies have a type, but processing them does not create
8249 a symbol or recurse to process the children. Therefore we can
8250 read them on-demand through read_type_die. */
8251 case DW_TAG_subroutine_type:
8252 case DW_TAG_set_type:
8253 case DW_TAG_array_type:
8254 case DW_TAG_pointer_type:
8255 case DW_TAG_ptr_to_member_type:
8256 case DW_TAG_reference_type:
8257 case DW_TAG_string_type:
8258 break;
8259
8260 case DW_TAG_base_type:
8261 case DW_TAG_subrange_type:
8262 case DW_TAG_typedef:
8263 /* Add a typedef symbol for the type definition, if it has a
8264 DW_AT_name. */
8265 new_symbol (die, read_type_die (die, cu), cu);
8266 break;
8267 case DW_TAG_common_block:
8268 read_common_block (die, cu);
8269 break;
8270 case DW_TAG_common_inclusion:
8271 break;
8272 case DW_TAG_namespace:
8273 cu->processing_has_namespace_info = 1;
8274 read_namespace (die, cu);
8275 break;
8276 case DW_TAG_module:
8277 cu->processing_has_namespace_info = 1;
8278 read_module (die, cu);
8279 break;
8280 case DW_TAG_imported_declaration:
8281 cu->processing_has_namespace_info = 1;
8282 if (read_namespace_alias (die, cu))
8283 break;
8284 /* The declaration is not a global namespace alias: fall through. */
8285 case DW_TAG_imported_module:
8286 cu->processing_has_namespace_info = 1;
8287 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8288 || cu->language != language_fortran))
8289 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8290 dwarf_tag_name (die->tag));
8291 read_import_statement (die, cu);
8292 break;
8293
8294 case DW_TAG_imported_unit:
8295 process_imported_unit_die (die, cu);
8296 break;
8297
8298 default:
8299 new_symbol (die, NULL, cu);
8300 break;
8301 }
8302
8303 do_cleanups (in_process);
8304 }
8305 \f
8306 /* DWARF name computation. */
8307
8308 /* A helper function for dwarf2_compute_name which determines whether DIE
8309 needs to have the name of the scope prepended to the name listed in the
8310 die. */
8311
8312 static int
8313 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8314 {
8315 struct attribute *attr;
8316
8317 switch (die->tag)
8318 {
8319 case DW_TAG_namespace:
8320 case DW_TAG_typedef:
8321 case DW_TAG_class_type:
8322 case DW_TAG_interface_type:
8323 case DW_TAG_structure_type:
8324 case DW_TAG_union_type:
8325 case DW_TAG_enumeration_type:
8326 case DW_TAG_enumerator:
8327 case DW_TAG_subprogram:
8328 case DW_TAG_member:
8329 case DW_TAG_imported_declaration:
8330 return 1;
8331
8332 case DW_TAG_variable:
8333 case DW_TAG_constant:
8334 /* We only need to prefix "globally" visible variables. These include
8335 any variable marked with DW_AT_external or any variable that
8336 lives in a namespace. [Variables in anonymous namespaces
8337 require prefixing, but they are not DW_AT_external.] */
8338
8339 if (dwarf2_attr (die, DW_AT_specification, cu))
8340 {
8341 struct dwarf2_cu *spec_cu = cu;
8342
8343 return die_needs_namespace (die_specification (die, &spec_cu),
8344 spec_cu);
8345 }
8346
8347 attr = dwarf2_attr (die, DW_AT_external, cu);
8348 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8349 && die->parent->tag != DW_TAG_module)
8350 return 0;
8351 /* A variable in a lexical block of some kind does not need a
8352 namespace, even though in C++ such variables may be external
8353 and have a mangled name. */
8354 if (die->parent->tag == DW_TAG_lexical_block
8355 || die->parent->tag == DW_TAG_try_block
8356 || die->parent->tag == DW_TAG_catch_block
8357 || die->parent->tag == DW_TAG_subprogram)
8358 return 0;
8359 return 1;
8360
8361 default:
8362 return 0;
8363 }
8364 }
8365
8366 /* Retrieve the last character from a mem_file. */
8367
8368 static void
8369 do_ui_file_peek_last (void *object, const char *buffer, long length)
8370 {
8371 char *last_char_p = (char *) object;
8372
8373 if (length > 0)
8374 *last_char_p = buffer[length - 1];
8375 }
8376
8377 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8378 compute the physname for the object, which include a method's:
8379 - formal parameters (C++/Java),
8380 - receiver type (Go),
8381 - return type (Java).
8382
8383 The term "physname" is a bit confusing.
8384 For C++, for example, it is the demangled name.
8385 For Go, for example, it's the mangled name.
8386
8387 For Ada, return the DIE's linkage name rather than the fully qualified
8388 name. PHYSNAME is ignored..
8389
8390 The result is allocated on the objfile_obstack and canonicalized. */
8391
8392 static const char *
8393 dwarf2_compute_name (const char *name,
8394 struct die_info *die, struct dwarf2_cu *cu,
8395 int physname)
8396 {
8397 struct objfile *objfile = cu->objfile;
8398
8399 if (name == NULL)
8400 name = dwarf2_name (die, cu);
8401
8402 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8403 compute it by typename_concat inside GDB. */
8404 if (cu->language == language_ada
8405 || (cu->language == language_fortran && physname))
8406 {
8407 /* For Ada unit, we prefer the linkage name over the name, as
8408 the former contains the exported name, which the user expects
8409 to be able to reference. Ideally, we want the user to be able
8410 to reference this entity using either natural or linkage name,
8411 but we haven't started looking at this enhancement yet. */
8412 struct attribute *attr;
8413
8414 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8415 if (attr == NULL)
8416 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8417 if (attr && DW_STRING (attr))
8418 return DW_STRING (attr);
8419 }
8420
8421 /* These are the only languages we know how to qualify names in. */
8422 if (name != NULL
8423 && (cu->language == language_cplus || cu->language == language_java
8424 || cu->language == language_fortran))
8425 {
8426 if (die_needs_namespace (die, cu))
8427 {
8428 long length;
8429 const char *prefix;
8430 struct ui_file *buf;
8431 char *intermediate_name;
8432 const char *canonical_name = NULL;
8433
8434 prefix = determine_prefix (die, cu);
8435 buf = mem_fileopen ();
8436 if (*prefix != '\0')
8437 {
8438 char *prefixed_name = typename_concat (NULL, prefix, name,
8439 physname, cu);
8440
8441 fputs_unfiltered (prefixed_name, buf);
8442 xfree (prefixed_name);
8443 }
8444 else
8445 fputs_unfiltered (name, buf);
8446
8447 /* Template parameters may be specified in the DIE's DW_AT_name, or
8448 as children with DW_TAG_template_type_param or
8449 DW_TAG_value_type_param. If the latter, add them to the name
8450 here. If the name already has template parameters, then
8451 skip this step; some versions of GCC emit both, and
8452 it is more efficient to use the pre-computed name.
8453
8454 Something to keep in mind about this process: it is very
8455 unlikely, or in some cases downright impossible, to produce
8456 something that will match the mangled name of a function.
8457 If the definition of the function has the same debug info,
8458 we should be able to match up with it anyway. But fallbacks
8459 using the minimal symbol, for instance to find a method
8460 implemented in a stripped copy of libstdc++, will not work.
8461 If we do not have debug info for the definition, we will have to
8462 match them up some other way.
8463
8464 When we do name matching there is a related problem with function
8465 templates; two instantiated function templates are allowed to
8466 differ only by their return types, which we do not add here. */
8467
8468 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8469 {
8470 struct attribute *attr;
8471 struct die_info *child;
8472 int first = 1;
8473
8474 die->building_fullname = 1;
8475
8476 for (child = die->child; child != NULL; child = child->sibling)
8477 {
8478 struct type *type;
8479 LONGEST value;
8480 const gdb_byte *bytes;
8481 struct dwarf2_locexpr_baton *baton;
8482 struct value *v;
8483
8484 if (child->tag != DW_TAG_template_type_param
8485 && child->tag != DW_TAG_template_value_param)
8486 continue;
8487
8488 if (first)
8489 {
8490 fputs_unfiltered ("<", buf);
8491 first = 0;
8492 }
8493 else
8494 fputs_unfiltered (", ", buf);
8495
8496 attr = dwarf2_attr (child, DW_AT_type, cu);
8497 if (attr == NULL)
8498 {
8499 complaint (&symfile_complaints,
8500 _("template parameter missing DW_AT_type"));
8501 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8502 continue;
8503 }
8504 type = die_type (child, cu);
8505
8506 if (child->tag == DW_TAG_template_type_param)
8507 {
8508 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8509 continue;
8510 }
8511
8512 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8513 if (attr == NULL)
8514 {
8515 complaint (&symfile_complaints,
8516 _("template parameter missing "
8517 "DW_AT_const_value"));
8518 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8519 continue;
8520 }
8521
8522 dwarf2_const_value_attr (attr, type, name,
8523 &cu->comp_unit_obstack, cu,
8524 &value, &bytes, &baton);
8525
8526 if (TYPE_NOSIGN (type))
8527 /* GDB prints characters as NUMBER 'CHAR'. If that's
8528 changed, this can use value_print instead. */
8529 c_printchar (value, type, buf);
8530 else
8531 {
8532 struct value_print_options opts;
8533
8534 if (baton != NULL)
8535 v = dwarf2_evaluate_loc_desc (type, NULL,
8536 baton->data,
8537 baton->size,
8538 baton->per_cu);
8539 else if (bytes != NULL)
8540 {
8541 v = allocate_value (type);
8542 memcpy (value_contents_writeable (v), bytes,
8543 TYPE_LENGTH (type));
8544 }
8545 else
8546 v = value_from_longest (type, value);
8547
8548 /* Specify decimal so that we do not depend on
8549 the radix. */
8550 get_formatted_print_options (&opts, 'd');
8551 opts.raw = 1;
8552 value_print (v, buf, &opts);
8553 release_value (v);
8554 value_free (v);
8555 }
8556 }
8557
8558 die->building_fullname = 0;
8559
8560 if (!first)
8561 {
8562 /* Close the argument list, with a space if necessary
8563 (nested templates). */
8564 char last_char = '\0';
8565 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8566 if (last_char == '>')
8567 fputs_unfiltered (" >", buf);
8568 else
8569 fputs_unfiltered (">", buf);
8570 }
8571 }
8572
8573 /* For Java and C++ methods, append formal parameter type
8574 information, if PHYSNAME. */
8575
8576 if (physname && die->tag == DW_TAG_subprogram
8577 && (cu->language == language_cplus
8578 || cu->language == language_java))
8579 {
8580 struct type *type = read_type_die (die, cu);
8581
8582 c_type_print_args (type, buf, 1, cu->language,
8583 &type_print_raw_options);
8584
8585 if (cu->language == language_java)
8586 {
8587 /* For java, we must append the return type to method
8588 names. */
8589 if (die->tag == DW_TAG_subprogram)
8590 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8591 0, 0, &type_print_raw_options);
8592 }
8593 else if (cu->language == language_cplus)
8594 {
8595 /* Assume that an artificial first parameter is
8596 "this", but do not crash if it is not. RealView
8597 marks unnamed (and thus unused) parameters as
8598 artificial; there is no way to differentiate
8599 the two cases. */
8600 if (TYPE_NFIELDS (type) > 0
8601 && TYPE_FIELD_ARTIFICIAL (type, 0)
8602 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8603 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8604 0))))
8605 fputs_unfiltered (" const", buf);
8606 }
8607 }
8608
8609 intermediate_name = ui_file_xstrdup (buf, &length);
8610 ui_file_delete (buf);
8611
8612 if (cu->language == language_cplus)
8613 canonical_name
8614 = dwarf2_canonicalize_name (intermediate_name, cu,
8615 &objfile->per_bfd->storage_obstack);
8616
8617 /* If we only computed INTERMEDIATE_NAME, or if
8618 INTERMEDIATE_NAME is already canonical, then we need to
8619 copy it to the appropriate obstack. */
8620 if (canonical_name == NULL || canonical_name == intermediate_name)
8621 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8622 intermediate_name,
8623 strlen (intermediate_name));
8624 else
8625 name = canonical_name;
8626
8627 xfree (intermediate_name);
8628 }
8629 }
8630
8631 return name;
8632 }
8633
8634 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8635 If scope qualifiers are appropriate they will be added. The result
8636 will be allocated on the storage_obstack, or NULL if the DIE does
8637 not have a name. NAME may either be from a previous call to
8638 dwarf2_name or NULL.
8639
8640 The output string will be canonicalized (if C++/Java). */
8641
8642 static const char *
8643 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8644 {
8645 return dwarf2_compute_name (name, die, cu, 0);
8646 }
8647
8648 /* Construct a physname for the given DIE in CU. NAME may either be
8649 from a previous call to dwarf2_name or NULL. The result will be
8650 allocated on the objfile_objstack or NULL if the DIE does not have a
8651 name.
8652
8653 The output string will be canonicalized (if C++/Java). */
8654
8655 static const char *
8656 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8657 {
8658 struct objfile *objfile = cu->objfile;
8659 struct attribute *attr;
8660 const char *retval, *mangled = NULL, *canon = NULL;
8661 struct cleanup *back_to;
8662 int need_copy = 1;
8663
8664 /* In this case dwarf2_compute_name is just a shortcut not building anything
8665 on its own. */
8666 if (!die_needs_namespace (die, cu))
8667 return dwarf2_compute_name (name, die, cu, 1);
8668
8669 back_to = make_cleanup (null_cleanup, NULL);
8670
8671 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8672 if (!attr)
8673 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8674
8675 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8676 has computed. */
8677 if (attr && DW_STRING (attr))
8678 {
8679 char *demangled;
8680
8681 mangled = DW_STRING (attr);
8682
8683 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8684 type. It is easier for GDB users to search for such functions as
8685 `name(params)' than `long name(params)'. In such case the minimal
8686 symbol names do not match the full symbol names but for template
8687 functions there is never a need to look up their definition from their
8688 declaration so the only disadvantage remains the minimal symbol
8689 variant `long name(params)' does not have the proper inferior type.
8690 */
8691
8692 if (cu->language == language_go)
8693 {
8694 /* This is a lie, but we already lie to the caller new_symbol_full.
8695 new_symbol_full assumes we return the mangled name.
8696 This just undoes that lie until things are cleaned up. */
8697 demangled = NULL;
8698 }
8699 else
8700 {
8701 demangled = gdb_demangle (mangled,
8702 (DMGL_PARAMS | DMGL_ANSI
8703 | (cu->language == language_java
8704 ? DMGL_JAVA | DMGL_RET_POSTFIX
8705 : DMGL_RET_DROP)));
8706 }
8707 if (demangled)
8708 {
8709 make_cleanup (xfree, demangled);
8710 canon = demangled;
8711 }
8712 else
8713 {
8714 canon = mangled;
8715 need_copy = 0;
8716 }
8717 }
8718
8719 if (canon == NULL || check_physname)
8720 {
8721 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8722
8723 if (canon != NULL && strcmp (physname, canon) != 0)
8724 {
8725 /* It may not mean a bug in GDB. The compiler could also
8726 compute DW_AT_linkage_name incorrectly. But in such case
8727 GDB would need to be bug-to-bug compatible. */
8728
8729 complaint (&symfile_complaints,
8730 _("Computed physname <%s> does not match demangled <%s> "
8731 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8732 physname, canon, mangled, die->offset.sect_off,
8733 objfile_name (objfile));
8734
8735 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8736 is available here - over computed PHYSNAME. It is safer
8737 against both buggy GDB and buggy compilers. */
8738
8739 retval = canon;
8740 }
8741 else
8742 {
8743 retval = physname;
8744 need_copy = 0;
8745 }
8746 }
8747 else
8748 retval = canon;
8749
8750 if (need_copy)
8751 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8752 retval, strlen (retval));
8753
8754 do_cleanups (back_to);
8755 return retval;
8756 }
8757
8758 /* Inspect DIE in CU for a namespace alias. If one exists, record
8759 a new symbol for it.
8760
8761 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8762
8763 static int
8764 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8765 {
8766 struct attribute *attr;
8767
8768 /* If the die does not have a name, this is not a namespace
8769 alias. */
8770 attr = dwarf2_attr (die, DW_AT_name, cu);
8771 if (attr != NULL)
8772 {
8773 int num;
8774 struct die_info *d = die;
8775 struct dwarf2_cu *imported_cu = cu;
8776
8777 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8778 keep inspecting DIEs until we hit the underlying import. */
8779 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8780 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8781 {
8782 attr = dwarf2_attr (d, DW_AT_import, cu);
8783 if (attr == NULL)
8784 break;
8785
8786 d = follow_die_ref (d, attr, &imported_cu);
8787 if (d->tag != DW_TAG_imported_declaration)
8788 break;
8789 }
8790
8791 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8792 {
8793 complaint (&symfile_complaints,
8794 _("DIE at 0x%x has too many recursively imported "
8795 "declarations"), d->offset.sect_off);
8796 return 0;
8797 }
8798
8799 if (attr != NULL)
8800 {
8801 struct type *type;
8802 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8803
8804 type = get_die_type_at_offset (offset, cu->per_cu);
8805 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8806 {
8807 /* This declaration is a global namespace alias. Add
8808 a symbol for it whose type is the aliased namespace. */
8809 new_symbol (die, type, cu);
8810 return 1;
8811 }
8812 }
8813 }
8814
8815 return 0;
8816 }
8817
8818 /* Read the import statement specified by the given die and record it. */
8819
8820 static void
8821 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8822 {
8823 struct objfile *objfile = cu->objfile;
8824 struct attribute *import_attr;
8825 struct die_info *imported_die, *child_die;
8826 struct dwarf2_cu *imported_cu;
8827 const char *imported_name;
8828 const char *imported_name_prefix;
8829 const char *canonical_name;
8830 const char *import_alias;
8831 const char *imported_declaration = NULL;
8832 const char *import_prefix;
8833 VEC (const_char_ptr) *excludes = NULL;
8834 struct cleanup *cleanups;
8835
8836 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8837 if (import_attr == NULL)
8838 {
8839 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8840 dwarf_tag_name (die->tag));
8841 return;
8842 }
8843
8844 imported_cu = cu;
8845 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8846 imported_name = dwarf2_name (imported_die, imported_cu);
8847 if (imported_name == NULL)
8848 {
8849 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8850
8851 The import in the following code:
8852 namespace A
8853 {
8854 typedef int B;
8855 }
8856
8857 int main ()
8858 {
8859 using A::B;
8860 B b;
8861 return b;
8862 }
8863
8864 ...
8865 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8866 <52> DW_AT_decl_file : 1
8867 <53> DW_AT_decl_line : 6
8868 <54> DW_AT_import : <0x75>
8869 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8870 <59> DW_AT_name : B
8871 <5b> DW_AT_decl_file : 1
8872 <5c> DW_AT_decl_line : 2
8873 <5d> DW_AT_type : <0x6e>
8874 ...
8875 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8876 <76> DW_AT_byte_size : 4
8877 <77> DW_AT_encoding : 5 (signed)
8878
8879 imports the wrong die ( 0x75 instead of 0x58 ).
8880 This case will be ignored until the gcc bug is fixed. */
8881 return;
8882 }
8883
8884 /* Figure out the local name after import. */
8885 import_alias = dwarf2_name (die, cu);
8886
8887 /* Figure out where the statement is being imported to. */
8888 import_prefix = determine_prefix (die, cu);
8889
8890 /* Figure out what the scope of the imported die is and prepend it
8891 to the name of the imported die. */
8892 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8893
8894 if (imported_die->tag != DW_TAG_namespace
8895 && imported_die->tag != DW_TAG_module)
8896 {
8897 imported_declaration = imported_name;
8898 canonical_name = imported_name_prefix;
8899 }
8900 else if (strlen (imported_name_prefix) > 0)
8901 canonical_name = obconcat (&objfile->objfile_obstack,
8902 imported_name_prefix, "::", imported_name,
8903 (char *) NULL);
8904 else
8905 canonical_name = imported_name;
8906
8907 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8908
8909 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8910 for (child_die = die->child; child_die && child_die->tag;
8911 child_die = sibling_die (child_die))
8912 {
8913 /* DWARF-4: A Fortran use statement with a “rename list” may be
8914 represented by an imported module entry with an import attribute
8915 referring to the module and owned entries corresponding to those
8916 entities that are renamed as part of being imported. */
8917
8918 if (child_die->tag != DW_TAG_imported_declaration)
8919 {
8920 complaint (&symfile_complaints,
8921 _("child DW_TAG_imported_declaration expected "
8922 "- DIE at 0x%x [in module %s]"),
8923 child_die->offset.sect_off, objfile_name (objfile));
8924 continue;
8925 }
8926
8927 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8928 if (import_attr == NULL)
8929 {
8930 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8931 dwarf_tag_name (child_die->tag));
8932 continue;
8933 }
8934
8935 imported_cu = cu;
8936 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8937 &imported_cu);
8938 imported_name = dwarf2_name (imported_die, imported_cu);
8939 if (imported_name == NULL)
8940 {
8941 complaint (&symfile_complaints,
8942 _("child DW_TAG_imported_declaration has unknown "
8943 "imported name - DIE at 0x%x [in module %s]"),
8944 child_die->offset.sect_off, objfile_name (objfile));
8945 continue;
8946 }
8947
8948 VEC_safe_push (const_char_ptr, excludes, imported_name);
8949
8950 process_die (child_die, cu);
8951 }
8952
8953 cp_add_using_directive (import_prefix,
8954 canonical_name,
8955 import_alias,
8956 imported_declaration,
8957 excludes,
8958 0,
8959 &objfile->objfile_obstack);
8960
8961 do_cleanups (cleanups);
8962 }
8963
8964 /* Cleanup function for handle_DW_AT_stmt_list. */
8965
8966 static void
8967 free_cu_line_header (void *arg)
8968 {
8969 struct dwarf2_cu *cu = arg;
8970
8971 free_line_header (cu->line_header);
8972 cu->line_header = NULL;
8973 }
8974
8975 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8976 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8977 this, it was first present in GCC release 4.3.0. */
8978
8979 static int
8980 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8981 {
8982 if (!cu->checked_producer)
8983 check_producer (cu);
8984
8985 return cu->producer_is_gcc_lt_4_3;
8986 }
8987
8988 static void
8989 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8990 const char **name, const char **comp_dir)
8991 {
8992 struct attribute *attr;
8993
8994 *name = NULL;
8995 *comp_dir = NULL;
8996
8997 /* Find the filename. Do not use dwarf2_name here, since the filename
8998 is not a source language identifier. */
8999 attr = dwarf2_attr (die, DW_AT_name, cu);
9000 if (attr)
9001 {
9002 *name = DW_STRING (attr);
9003 }
9004
9005 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9006 if (attr)
9007 *comp_dir = DW_STRING (attr);
9008 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9009 && IS_ABSOLUTE_PATH (*name))
9010 {
9011 char *d = ldirname (*name);
9012
9013 *comp_dir = d;
9014 if (d != NULL)
9015 make_cleanup (xfree, d);
9016 }
9017 if (*comp_dir != NULL)
9018 {
9019 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9020 directory, get rid of it. */
9021 char *cp = strchr (*comp_dir, ':');
9022
9023 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9024 *comp_dir = cp + 1;
9025 }
9026
9027 if (*name == NULL)
9028 *name = "<unknown>";
9029 }
9030
9031 /* Handle DW_AT_stmt_list for a compilation unit.
9032 DIE is the DW_TAG_compile_unit die for CU.
9033 COMP_DIR is the compilation directory. LOWPC is passed to
9034 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9035
9036 static void
9037 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9038 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9039 {
9040 struct objfile *objfile = dwarf2_per_objfile->objfile;
9041 struct attribute *attr;
9042 unsigned int line_offset;
9043 struct line_header line_header_local;
9044 hashval_t line_header_local_hash;
9045 unsigned u;
9046 void **slot;
9047 int decode_mapping;
9048
9049 gdb_assert (! cu->per_cu->is_debug_types);
9050
9051 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9052 if (attr == NULL)
9053 return;
9054
9055 line_offset = DW_UNSND (attr);
9056
9057 /* The line header hash table is only created if needed (it exists to
9058 prevent redundant reading of the line table for partial_units).
9059 If we're given a partial_unit, we'll need it. If we're given a
9060 compile_unit, then use the line header hash table if it's already
9061 created, but don't create one just yet. */
9062
9063 if (dwarf2_per_objfile->line_header_hash == NULL
9064 && die->tag == DW_TAG_partial_unit)
9065 {
9066 dwarf2_per_objfile->line_header_hash
9067 = htab_create_alloc_ex (127, line_header_hash_voidp,
9068 line_header_eq_voidp,
9069 free_line_header_voidp,
9070 &objfile->objfile_obstack,
9071 hashtab_obstack_allocate,
9072 dummy_obstack_deallocate);
9073 }
9074
9075 line_header_local.offset.sect_off = line_offset;
9076 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9077 line_header_local_hash = line_header_hash (&line_header_local);
9078 if (dwarf2_per_objfile->line_header_hash != NULL)
9079 {
9080 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9081 &line_header_local,
9082 line_header_local_hash, NO_INSERT);
9083
9084 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9085 is not present in *SLOT (since if there is something in *SLOT then
9086 it will be for a partial_unit). */
9087 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9088 {
9089 gdb_assert (*slot != NULL);
9090 cu->line_header = *slot;
9091 return;
9092 }
9093 }
9094
9095 /* dwarf_decode_line_header does not yet provide sufficient information.
9096 We always have to call also dwarf_decode_lines for it. */
9097 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9098 if (cu->line_header == NULL)
9099 return;
9100
9101 if (dwarf2_per_objfile->line_header_hash == NULL)
9102 slot = NULL;
9103 else
9104 {
9105 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9106 &line_header_local,
9107 line_header_local_hash, INSERT);
9108 gdb_assert (slot != NULL);
9109 }
9110 if (slot != NULL && *slot == NULL)
9111 {
9112 /* This newly decoded line number information unit will be owned
9113 by line_header_hash hash table. */
9114 *slot = cu->line_header;
9115 }
9116 else
9117 {
9118 /* We cannot free any current entry in (*slot) as that struct line_header
9119 may be already used by multiple CUs. Create only temporary decoded
9120 line_header for this CU - it may happen at most once for each line
9121 number information unit. And if we're not using line_header_hash
9122 then this is what we want as well. */
9123 gdb_assert (die->tag != DW_TAG_partial_unit);
9124 make_cleanup (free_cu_line_header, cu);
9125 }
9126 decode_mapping = (die->tag != DW_TAG_partial_unit);
9127 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9128 decode_mapping);
9129 }
9130
9131 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9132
9133 static void
9134 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9135 {
9136 struct objfile *objfile = dwarf2_per_objfile->objfile;
9137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9138 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9139 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9140 CORE_ADDR highpc = ((CORE_ADDR) 0);
9141 struct attribute *attr;
9142 const char *name = NULL;
9143 const char *comp_dir = NULL;
9144 struct die_info *child_die;
9145 bfd *abfd = objfile->obfd;
9146 CORE_ADDR baseaddr;
9147
9148 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9149
9150 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9151
9152 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9153 from finish_block. */
9154 if (lowpc == ((CORE_ADDR) -1))
9155 lowpc = highpc;
9156 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9157
9158 find_file_and_directory (die, cu, &name, &comp_dir);
9159
9160 prepare_one_comp_unit (cu, die, cu->language);
9161
9162 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9163 standardised yet. As a workaround for the language detection we fall
9164 back to the DW_AT_producer string. */
9165 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9166 cu->language = language_opencl;
9167
9168 /* Similar hack for Go. */
9169 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9170 set_cu_language (DW_LANG_Go, cu);
9171
9172 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9173
9174 /* Decode line number information if present. We do this before
9175 processing child DIEs, so that the line header table is available
9176 for DW_AT_decl_file. */
9177 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9178
9179 /* Process all dies in compilation unit. */
9180 if (die->child != NULL)
9181 {
9182 child_die = die->child;
9183 while (child_die && child_die->tag)
9184 {
9185 process_die (child_die, cu);
9186 child_die = sibling_die (child_die);
9187 }
9188 }
9189
9190 /* Decode macro information, if present. Dwarf 2 macro information
9191 refers to information in the line number info statement program
9192 header, so we can only read it if we've read the header
9193 successfully. */
9194 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9195 if (attr && cu->line_header)
9196 {
9197 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9198 complaint (&symfile_complaints,
9199 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9200
9201 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9202 }
9203 else
9204 {
9205 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9206 if (attr && cu->line_header)
9207 {
9208 unsigned int macro_offset = DW_UNSND (attr);
9209
9210 dwarf_decode_macros (cu, macro_offset, 0);
9211 }
9212 }
9213
9214 do_cleanups (back_to);
9215 }
9216
9217 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9218 Create the set of symtabs used by this TU, or if this TU is sharing
9219 symtabs with another TU and the symtabs have already been created
9220 then restore those symtabs in the line header.
9221 We don't need the pc/line-number mapping for type units. */
9222
9223 static void
9224 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9225 {
9226 struct objfile *objfile = dwarf2_per_objfile->objfile;
9227 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9228 struct type_unit_group *tu_group;
9229 int first_time;
9230 struct line_header *lh;
9231 struct attribute *attr;
9232 unsigned int i, line_offset;
9233 struct signatured_type *sig_type;
9234
9235 gdb_assert (per_cu->is_debug_types);
9236 sig_type = (struct signatured_type *) per_cu;
9237
9238 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9239
9240 /* If we're using .gdb_index (includes -readnow) then
9241 per_cu->type_unit_group may not have been set up yet. */
9242 if (sig_type->type_unit_group == NULL)
9243 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9244 tu_group = sig_type->type_unit_group;
9245
9246 /* If we've already processed this stmt_list there's no real need to
9247 do it again, we could fake it and just recreate the part we need
9248 (file name,index -> symtab mapping). If data shows this optimization
9249 is useful we can do it then. */
9250 first_time = tu_group->compunit_symtab == NULL;
9251
9252 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9253 debug info. */
9254 lh = NULL;
9255 if (attr != NULL)
9256 {
9257 line_offset = DW_UNSND (attr);
9258 lh = dwarf_decode_line_header (line_offset, cu);
9259 }
9260 if (lh == NULL)
9261 {
9262 if (first_time)
9263 dwarf2_start_symtab (cu, "", NULL, 0);
9264 else
9265 {
9266 gdb_assert (tu_group->symtabs == NULL);
9267 restart_symtab (tu_group->compunit_symtab, "", 0);
9268 }
9269 return;
9270 }
9271
9272 cu->line_header = lh;
9273 make_cleanup (free_cu_line_header, cu);
9274
9275 if (first_time)
9276 {
9277 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9278
9279 tu_group->num_symtabs = lh->num_file_names;
9280 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9281
9282 for (i = 0; i < lh->num_file_names; ++i)
9283 {
9284 const char *dir = NULL;
9285 struct file_entry *fe = &lh->file_names[i];
9286
9287 if (fe->dir_index)
9288 dir = lh->include_dirs[fe->dir_index - 1];
9289 dwarf2_start_subfile (fe->name, dir);
9290
9291 if (current_subfile->symtab == NULL)
9292 {
9293 /* NOTE: start_subfile will recognize when it's been passed
9294 a file it has already seen. So we can't assume there's a
9295 simple mapping from lh->file_names to subfiles, plus
9296 lh->file_names may contain dups. */
9297 current_subfile->symtab
9298 = allocate_symtab (cust, current_subfile->name);
9299 }
9300
9301 fe->symtab = current_subfile->symtab;
9302 tu_group->symtabs[i] = fe->symtab;
9303 }
9304 }
9305 else
9306 {
9307 restart_symtab (tu_group->compunit_symtab, "", 0);
9308
9309 for (i = 0; i < lh->num_file_names; ++i)
9310 {
9311 struct file_entry *fe = &lh->file_names[i];
9312
9313 fe->symtab = tu_group->symtabs[i];
9314 }
9315 }
9316
9317 /* The main symtab is allocated last. Type units don't have DW_AT_name
9318 so they don't have a "real" (so to speak) symtab anyway.
9319 There is later code that will assign the main symtab to all symbols
9320 that don't have one. We need to handle the case of a symbol with a
9321 missing symtab (DW_AT_decl_file) anyway. */
9322 }
9323
9324 /* Process DW_TAG_type_unit.
9325 For TUs we want to skip the first top level sibling if it's not the
9326 actual type being defined by this TU. In this case the first top
9327 level sibling is there to provide context only. */
9328
9329 static void
9330 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9331 {
9332 struct die_info *child_die;
9333
9334 prepare_one_comp_unit (cu, die, language_minimal);
9335
9336 /* Initialize (or reinitialize) the machinery for building symtabs.
9337 We do this before processing child DIEs, so that the line header table
9338 is available for DW_AT_decl_file. */
9339 setup_type_unit_groups (die, cu);
9340
9341 if (die->child != NULL)
9342 {
9343 child_die = die->child;
9344 while (child_die && child_die->tag)
9345 {
9346 process_die (child_die, cu);
9347 child_die = sibling_die (child_die);
9348 }
9349 }
9350 }
9351 \f
9352 /* DWO/DWP files.
9353
9354 http://gcc.gnu.org/wiki/DebugFission
9355 http://gcc.gnu.org/wiki/DebugFissionDWP
9356
9357 To simplify handling of both DWO files ("object" files with the DWARF info)
9358 and DWP files (a file with the DWOs packaged up into one file), we treat
9359 DWP files as having a collection of virtual DWO files. */
9360
9361 static hashval_t
9362 hash_dwo_file (const void *item)
9363 {
9364 const struct dwo_file *dwo_file = item;
9365 hashval_t hash;
9366
9367 hash = htab_hash_string (dwo_file->dwo_name);
9368 if (dwo_file->comp_dir != NULL)
9369 hash += htab_hash_string (dwo_file->comp_dir);
9370 return hash;
9371 }
9372
9373 static int
9374 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9375 {
9376 const struct dwo_file *lhs = item_lhs;
9377 const struct dwo_file *rhs = item_rhs;
9378
9379 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9380 return 0;
9381 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9382 return lhs->comp_dir == rhs->comp_dir;
9383 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9384 }
9385
9386 /* Allocate a hash table for DWO files. */
9387
9388 static htab_t
9389 allocate_dwo_file_hash_table (void)
9390 {
9391 struct objfile *objfile = dwarf2_per_objfile->objfile;
9392
9393 return htab_create_alloc_ex (41,
9394 hash_dwo_file,
9395 eq_dwo_file,
9396 NULL,
9397 &objfile->objfile_obstack,
9398 hashtab_obstack_allocate,
9399 dummy_obstack_deallocate);
9400 }
9401
9402 /* Lookup DWO file DWO_NAME. */
9403
9404 static void **
9405 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9406 {
9407 struct dwo_file find_entry;
9408 void **slot;
9409
9410 if (dwarf2_per_objfile->dwo_files == NULL)
9411 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9412
9413 memset (&find_entry, 0, sizeof (find_entry));
9414 find_entry.dwo_name = dwo_name;
9415 find_entry.comp_dir = comp_dir;
9416 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9417
9418 return slot;
9419 }
9420
9421 static hashval_t
9422 hash_dwo_unit (const void *item)
9423 {
9424 const struct dwo_unit *dwo_unit = item;
9425
9426 /* This drops the top 32 bits of the id, but is ok for a hash. */
9427 return dwo_unit->signature;
9428 }
9429
9430 static int
9431 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9432 {
9433 const struct dwo_unit *lhs = item_lhs;
9434 const struct dwo_unit *rhs = item_rhs;
9435
9436 /* The signature is assumed to be unique within the DWO file.
9437 So while object file CU dwo_id's always have the value zero,
9438 that's OK, assuming each object file DWO file has only one CU,
9439 and that's the rule for now. */
9440 return lhs->signature == rhs->signature;
9441 }
9442
9443 /* Allocate a hash table for DWO CUs,TUs.
9444 There is one of these tables for each of CUs,TUs for each DWO file. */
9445
9446 static htab_t
9447 allocate_dwo_unit_table (struct objfile *objfile)
9448 {
9449 /* Start out with a pretty small number.
9450 Generally DWO files contain only one CU and maybe some TUs. */
9451 return htab_create_alloc_ex (3,
9452 hash_dwo_unit,
9453 eq_dwo_unit,
9454 NULL,
9455 &objfile->objfile_obstack,
9456 hashtab_obstack_allocate,
9457 dummy_obstack_deallocate);
9458 }
9459
9460 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9461
9462 struct create_dwo_cu_data
9463 {
9464 struct dwo_file *dwo_file;
9465 struct dwo_unit dwo_unit;
9466 };
9467
9468 /* die_reader_func for create_dwo_cu. */
9469
9470 static void
9471 create_dwo_cu_reader (const struct die_reader_specs *reader,
9472 const gdb_byte *info_ptr,
9473 struct die_info *comp_unit_die,
9474 int has_children,
9475 void *datap)
9476 {
9477 struct dwarf2_cu *cu = reader->cu;
9478 struct objfile *objfile = dwarf2_per_objfile->objfile;
9479 sect_offset offset = cu->per_cu->offset;
9480 struct dwarf2_section_info *section = cu->per_cu->section;
9481 struct create_dwo_cu_data *data = datap;
9482 struct dwo_file *dwo_file = data->dwo_file;
9483 struct dwo_unit *dwo_unit = &data->dwo_unit;
9484 struct attribute *attr;
9485
9486 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9487 if (attr == NULL)
9488 {
9489 complaint (&symfile_complaints,
9490 _("Dwarf Error: debug entry at offset 0x%x is missing"
9491 " its dwo_id [in module %s]"),
9492 offset.sect_off, dwo_file->dwo_name);
9493 return;
9494 }
9495
9496 dwo_unit->dwo_file = dwo_file;
9497 dwo_unit->signature = DW_UNSND (attr);
9498 dwo_unit->section = section;
9499 dwo_unit->offset = offset;
9500 dwo_unit->length = cu->per_cu->length;
9501
9502 if (dwarf2_read_debug)
9503 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9504 offset.sect_off, hex_string (dwo_unit->signature));
9505 }
9506
9507 /* Create the dwo_unit for the lone CU in DWO_FILE.
9508 Note: This function processes DWO files only, not DWP files. */
9509
9510 static struct dwo_unit *
9511 create_dwo_cu (struct dwo_file *dwo_file)
9512 {
9513 struct objfile *objfile = dwarf2_per_objfile->objfile;
9514 struct dwarf2_section_info *section = &dwo_file->sections.info;
9515 bfd *abfd;
9516 htab_t cu_htab;
9517 const gdb_byte *info_ptr, *end_ptr;
9518 struct create_dwo_cu_data create_dwo_cu_data;
9519 struct dwo_unit *dwo_unit;
9520
9521 dwarf2_read_section (objfile, section);
9522 info_ptr = section->buffer;
9523
9524 if (info_ptr == NULL)
9525 return NULL;
9526
9527 /* We can't set abfd until now because the section may be empty or
9528 not present, in which case section->asection will be NULL. */
9529 abfd = get_section_bfd_owner (section);
9530
9531 if (dwarf2_read_debug)
9532 {
9533 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9534 get_section_name (section),
9535 get_section_file_name (section));
9536 }
9537
9538 create_dwo_cu_data.dwo_file = dwo_file;
9539 dwo_unit = NULL;
9540
9541 end_ptr = info_ptr + section->size;
9542 while (info_ptr < end_ptr)
9543 {
9544 struct dwarf2_per_cu_data per_cu;
9545
9546 memset (&create_dwo_cu_data.dwo_unit, 0,
9547 sizeof (create_dwo_cu_data.dwo_unit));
9548 memset (&per_cu, 0, sizeof (per_cu));
9549 per_cu.objfile = objfile;
9550 per_cu.is_debug_types = 0;
9551 per_cu.offset.sect_off = info_ptr - section->buffer;
9552 per_cu.section = section;
9553
9554 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9555 create_dwo_cu_reader,
9556 &create_dwo_cu_data);
9557
9558 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9559 {
9560 /* If we've already found one, complain. We only support one
9561 because having more than one requires hacking the dwo_name of
9562 each to match, which is highly unlikely to happen. */
9563 if (dwo_unit != NULL)
9564 {
9565 complaint (&symfile_complaints,
9566 _("Multiple CUs in DWO file %s [in module %s]"),
9567 dwo_file->dwo_name, objfile_name (objfile));
9568 break;
9569 }
9570
9571 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9572 *dwo_unit = create_dwo_cu_data.dwo_unit;
9573 }
9574
9575 info_ptr += per_cu.length;
9576 }
9577
9578 return dwo_unit;
9579 }
9580
9581 /* DWP file .debug_{cu,tu}_index section format:
9582 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9583
9584 DWP Version 1:
9585
9586 Both index sections have the same format, and serve to map a 64-bit
9587 signature to a set of section numbers. Each section begins with a header,
9588 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9589 indexes, and a pool of 32-bit section numbers. The index sections will be
9590 aligned at 8-byte boundaries in the file.
9591
9592 The index section header consists of:
9593
9594 V, 32 bit version number
9595 -, 32 bits unused
9596 N, 32 bit number of compilation units or type units in the index
9597 M, 32 bit number of slots in the hash table
9598
9599 Numbers are recorded using the byte order of the application binary.
9600
9601 The hash table begins at offset 16 in the section, and consists of an array
9602 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9603 order of the application binary). Unused slots in the hash table are 0.
9604 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9605
9606 The parallel table begins immediately after the hash table
9607 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9608 array of 32-bit indexes (using the byte order of the application binary),
9609 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9610 table contains a 32-bit index into the pool of section numbers. For unused
9611 hash table slots, the corresponding entry in the parallel table will be 0.
9612
9613 The pool of section numbers begins immediately following the hash table
9614 (at offset 16 + 12 * M from the beginning of the section). The pool of
9615 section numbers consists of an array of 32-bit words (using the byte order
9616 of the application binary). Each item in the array is indexed starting
9617 from 0. The hash table entry provides the index of the first section
9618 number in the set. Additional section numbers in the set follow, and the
9619 set is terminated by a 0 entry (section number 0 is not used in ELF).
9620
9621 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9622 section must be the first entry in the set, and the .debug_abbrev.dwo must
9623 be the second entry. Other members of the set may follow in any order.
9624
9625 ---
9626
9627 DWP Version 2:
9628
9629 DWP Version 2 combines all the .debug_info, etc. sections into one,
9630 and the entries in the index tables are now offsets into these sections.
9631 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9632 section.
9633
9634 Index Section Contents:
9635 Header
9636 Hash Table of Signatures dwp_hash_table.hash_table
9637 Parallel Table of Indices dwp_hash_table.unit_table
9638 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9639 Table of Section Sizes dwp_hash_table.v2.sizes
9640
9641 The index section header consists of:
9642
9643 V, 32 bit version number
9644 L, 32 bit number of columns in the table of section offsets
9645 N, 32 bit number of compilation units or type units in the index
9646 M, 32 bit number of slots in the hash table
9647
9648 Numbers are recorded using the byte order of the application binary.
9649
9650 The hash table has the same format as version 1.
9651 The parallel table of indices has the same format as version 1,
9652 except that the entries are origin-1 indices into the table of sections
9653 offsets and the table of section sizes.
9654
9655 The table of offsets begins immediately following the parallel table
9656 (at offset 16 + 12 * M from the beginning of the section). The table is
9657 a two-dimensional array of 32-bit words (using the byte order of the
9658 application binary), with L columns and N+1 rows, in row-major order.
9659 Each row in the array is indexed starting from 0. The first row provides
9660 a key to the remaining rows: each column in this row provides an identifier
9661 for a debug section, and the offsets in the same column of subsequent rows
9662 refer to that section. The section identifiers are:
9663
9664 DW_SECT_INFO 1 .debug_info.dwo
9665 DW_SECT_TYPES 2 .debug_types.dwo
9666 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9667 DW_SECT_LINE 4 .debug_line.dwo
9668 DW_SECT_LOC 5 .debug_loc.dwo
9669 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9670 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9671 DW_SECT_MACRO 8 .debug_macro.dwo
9672
9673 The offsets provided by the CU and TU index sections are the base offsets
9674 for the contributions made by each CU or TU to the corresponding section
9675 in the package file. Each CU and TU header contains an abbrev_offset
9676 field, used to find the abbreviations table for that CU or TU within the
9677 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9678 be interpreted as relative to the base offset given in the index section.
9679 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9680 should be interpreted as relative to the base offset for .debug_line.dwo,
9681 and offsets into other debug sections obtained from DWARF attributes should
9682 also be interpreted as relative to the corresponding base offset.
9683
9684 The table of sizes begins immediately following the table of offsets.
9685 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9686 with L columns and N rows, in row-major order. Each row in the array is
9687 indexed starting from 1 (row 0 is shared by the two tables).
9688
9689 ---
9690
9691 Hash table lookup is handled the same in version 1 and 2:
9692
9693 We assume that N and M will not exceed 2^32 - 1.
9694 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9695
9696 Given a 64-bit compilation unit signature or a type signature S, an entry
9697 in the hash table is located as follows:
9698
9699 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9700 the low-order k bits all set to 1.
9701
9702 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9703
9704 3) If the hash table entry at index H matches the signature, use that
9705 entry. If the hash table entry at index H is unused (all zeroes),
9706 terminate the search: the signature is not present in the table.
9707
9708 4) Let H = (H + H') modulo M. Repeat at Step 3.
9709
9710 Because M > N and H' and M are relatively prime, the search is guaranteed
9711 to stop at an unused slot or find the match. */
9712
9713 /* Create a hash table to map DWO IDs to their CU/TU entry in
9714 .debug_{info,types}.dwo in DWP_FILE.
9715 Returns NULL if there isn't one.
9716 Note: This function processes DWP files only, not DWO files. */
9717
9718 static struct dwp_hash_table *
9719 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9720 {
9721 struct objfile *objfile = dwarf2_per_objfile->objfile;
9722 bfd *dbfd = dwp_file->dbfd;
9723 const gdb_byte *index_ptr, *index_end;
9724 struct dwarf2_section_info *index;
9725 uint32_t version, nr_columns, nr_units, nr_slots;
9726 struct dwp_hash_table *htab;
9727
9728 if (is_debug_types)
9729 index = &dwp_file->sections.tu_index;
9730 else
9731 index = &dwp_file->sections.cu_index;
9732
9733 if (dwarf2_section_empty_p (index))
9734 return NULL;
9735 dwarf2_read_section (objfile, index);
9736
9737 index_ptr = index->buffer;
9738 index_end = index_ptr + index->size;
9739
9740 version = read_4_bytes (dbfd, index_ptr);
9741 index_ptr += 4;
9742 if (version == 2)
9743 nr_columns = read_4_bytes (dbfd, index_ptr);
9744 else
9745 nr_columns = 0;
9746 index_ptr += 4;
9747 nr_units = read_4_bytes (dbfd, index_ptr);
9748 index_ptr += 4;
9749 nr_slots = read_4_bytes (dbfd, index_ptr);
9750 index_ptr += 4;
9751
9752 if (version != 1 && version != 2)
9753 {
9754 error (_("Dwarf Error: unsupported DWP file version (%s)"
9755 " [in module %s]"),
9756 pulongest (version), dwp_file->name);
9757 }
9758 if (nr_slots != (nr_slots & -nr_slots))
9759 {
9760 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9761 " is not power of 2 [in module %s]"),
9762 pulongest (nr_slots), dwp_file->name);
9763 }
9764
9765 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9766 htab->version = version;
9767 htab->nr_columns = nr_columns;
9768 htab->nr_units = nr_units;
9769 htab->nr_slots = nr_slots;
9770 htab->hash_table = index_ptr;
9771 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9772
9773 /* Exit early if the table is empty. */
9774 if (nr_slots == 0 || nr_units == 0
9775 || (version == 2 && nr_columns == 0))
9776 {
9777 /* All must be zero. */
9778 if (nr_slots != 0 || nr_units != 0
9779 || (version == 2 && nr_columns != 0))
9780 {
9781 complaint (&symfile_complaints,
9782 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9783 " all zero [in modules %s]"),
9784 dwp_file->name);
9785 }
9786 return htab;
9787 }
9788
9789 if (version == 1)
9790 {
9791 htab->section_pool.v1.indices =
9792 htab->unit_table + sizeof (uint32_t) * nr_slots;
9793 /* It's harder to decide whether the section is too small in v1.
9794 V1 is deprecated anyway so we punt. */
9795 }
9796 else
9797 {
9798 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9799 int *ids = htab->section_pool.v2.section_ids;
9800 /* Reverse map for error checking. */
9801 int ids_seen[DW_SECT_MAX + 1];
9802 int i;
9803
9804 if (nr_columns < 2)
9805 {
9806 error (_("Dwarf Error: bad DWP hash table, too few columns"
9807 " in section table [in module %s]"),
9808 dwp_file->name);
9809 }
9810 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9811 {
9812 error (_("Dwarf Error: bad DWP hash table, too many columns"
9813 " in section table [in module %s]"),
9814 dwp_file->name);
9815 }
9816 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9817 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9818 for (i = 0; i < nr_columns; ++i)
9819 {
9820 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9821
9822 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9823 {
9824 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9825 " in section table [in module %s]"),
9826 id, dwp_file->name);
9827 }
9828 if (ids_seen[id] != -1)
9829 {
9830 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9831 " id %d in section table [in module %s]"),
9832 id, dwp_file->name);
9833 }
9834 ids_seen[id] = i;
9835 ids[i] = id;
9836 }
9837 /* Must have exactly one info or types section. */
9838 if (((ids_seen[DW_SECT_INFO] != -1)
9839 + (ids_seen[DW_SECT_TYPES] != -1))
9840 != 1)
9841 {
9842 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9843 " DWO info/types section [in module %s]"),
9844 dwp_file->name);
9845 }
9846 /* Must have an abbrev section. */
9847 if (ids_seen[DW_SECT_ABBREV] == -1)
9848 {
9849 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9850 " section [in module %s]"),
9851 dwp_file->name);
9852 }
9853 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9854 htab->section_pool.v2.sizes =
9855 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9856 * nr_units * nr_columns);
9857 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9858 * nr_units * nr_columns))
9859 > index_end)
9860 {
9861 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9862 " [in module %s]"),
9863 dwp_file->name);
9864 }
9865 }
9866
9867 return htab;
9868 }
9869
9870 /* Update SECTIONS with the data from SECTP.
9871
9872 This function is like the other "locate" section routines that are
9873 passed to bfd_map_over_sections, but in this context the sections to
9874 read comes from the DWP V1 hash table, not the full ELF section table.
9875
9876 The result is non-zero for success, or zero if an error was found. */
9877
9878 static int
9879 locate_v1_virtual_dwo_sections (asection *sectp,
9880 struct virtual_v1_dwo_sections *sections)
9881 {
9882 const struct dwop_section_names *names = &dwop_section_names;
9883
9884 if (section_is_p (sectp->name, &names->abbrev_dwo))
9885 {
9886 /* There can be only one. */
9887 if (sections->abbrev.s.asection != NULL)
9888 return 0;
9889 sections->abbrev.s.asection = sectp;
9890 sections->abbrev.size = bfd_get_section_size (sectp);
9891 }
9892 else if (section_is_p (sectp->name, &names->info_dwo)
9893 || section_is_p (sectp->name, &names->types_dwo))
9894 {
9895 /* There can be only one. */
9896 if (sections->info_or_types.s.asection != NULL)
9897 return 0;
9898 sections->info_or_types.s.asection = sectp;
9899 sections->info_or_types.size = bfd_get_section_size (sectp);
9900 }
9901 else if (section_is_p (sectp->name, &names->line_dwo))
9902 {
9903 /* There can be only one. */
9904 if (sections->line.s.asection != NULL)
9905 return 0;
9906 sections->line.s.asection = sectp;
9907 sections->line.size = bfd_get_section_size (sectp);
9908 }
9909 else if (section_is_p (sectp->name, &names->loc_dwo))
9910 {
9911 /* There can be only one. */
9912 if (sections->loc.s.asection != NULL)
9913 return 0;
9914 sections->loc.s.asection = sectp;
9915 sections->loc.size = bfd_get_section_size (sectp);
9916 }
9917 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9918 {
9919 /* There can be only one. */
9920 if (sections->macinfo.s.asection != NULL)
9921 return 0;
9922 sections->macinfo.s.asection = sectp;
9923 sections->macinfo.size = bfd_get_section_size (sectp);
9924 }
9925 else if (section_is_p (sectp->name, &names->macro_dwo))
9926 {
9927 /* There can be only one. */
9928 if (sections->macro.s.asection != NULL)
9929 return 0;
9930 sections->macro.s.asection = sectp;
9931 sections->macro.size = bfd_get_section_size (sectp);
9932 }
9933 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9934 {
9935 /* There can be only one. */
9936 if (sections->str_offsets.s.asection != NULL)
9937 return 0;
9938 sections->str_offsets.s.asection = sectp;
9939 sections->str_offsets.size = bfd_get_section_size (sectp);
9940 }
9941 else
9942 {
9943 /* No other kind of section is valid. */
9944 return 0;
9945 }
9946
9947 return 1;
9948 }
9949
9950 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9951 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9952 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9953 This is for DWP version 1 files. */
9954
9955 static struct dwo_unit *
9956 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9957 uint32_t unit_index,
9958 const char *comp_dir,
9959 ULONGEST signature, int is_debug_types)
9960 {
9961 struct objfile *objfile = dwarf2_per_objfile->objfile;
9962 const struct dwp_hash_table *dwp_htab =
9963 is_debug_types ? dwp_file->tus : dwp_file->cus;
9964 bfd *dbfd = dwp_file->dbfd;
9965 const char *kind = is_debug_types ? "TU" : "CU";
9966 struct dwo_file *dwo_file;
9967 struct dwo_unit *dwo_unit;
9968 struct virtual_v1_dwo_sections sections;
9969 void **dwo_file_slot;
9970 char *virtual_dwo_name;
9971 struct dwarf2_section_info *cutu;
9972 struct cleanup *cleanups;
9973 int i;
9974
9975 gdb_assert (dwp_file->version == 1);
9976
9977 if (dwarf2_read_debug)
9978 {
9979 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9980 kind,
9981 pulongest (unit_index), hex_string (signature),
9982 dwp_file->name);
9983 }
9984
9985 /* Fetch the sections of this DWO unit.
9986 Put a limit on the number of sections we look for so that bad data
9987 doesn't cause us to loop forever. */
9988
9989 #define MAX_NR_V1_DWO_SECTIONS \
9990 (1 /* .debug_info or .debug_types */ \
9991 + 1 /* .debug_abbrev */ \
9992 + 1 /* .debug_line */ \
9993 + 1 /* .debug_loc */ \
9994 + 1 /* .debug_str_offsets */ \
9995 + 1 /* .debug_macro or .debug_macinfo */ \
9996 + 1 /* trailing zero */)
9997
9998 memset (&sections, 0, sizeof (sections));
9999 cleanups = make_cleanup (null_cleanup, 0);
10000
10001 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10002 {
10003 asection *sectp;
10004 uint32_t section_nr =
10005 read_4_bytes (dbfd,
10006 dwp_htab->section_pool.v1.indices
10007 + (unit_index + i) * sizeof (uint32_t));
10008
10009 if (section_nr == 0)
10010 break;
10011 if (section_nr >= dwp_file->num_sections)
10012 {
10013 error (_("Dwarf Error: bad DWP hash table, section number too large"
10014 " [in module %s]"),
10015 dwp_file->name);
10016 }
10017
10018 sectp = dwp_file->elf_sections[section_nr];
10019 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10020 {
10021 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10022 " [in module %s]"),
10023 dwp_file->name);
10024 }
10025 }
10026
10027 if (i < 2
10028 || dwarf2_section_empty_p (&sections.info_or_types)
10029 || dwarf2_section_empty_p (&sections.abbrev))
10030 {
10031 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10032 " [in module %s]"),
10033 dwp_file->name);
10034 }
10035 if (i == MAX_NR_V1_DWO_SECTIONS)
10036 {
10037 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10038 " [in module %s]"),
10039 dwp_file->name);
10040 }
10041
10042 /* It's easier for the rest of the code if we fake a struct dwo_file and
10043 have dwo_unit "live" in that. At least for now.
10044
10045 The DWP file can be made up of a random collection of CUs and TUs.
10046 However, for each CU + set of TUs that came from the same original DWO
10047 file, we can combine them back into a virtual DWO file to save space
10048 (fewer struct dwo_file objects to allocate). Remember that for really
10049 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10050
10051 virtual_dwo_name =
10052 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10053 get_section_id (&sections.abbrev),
10054 get_section_id (&sections.line),
10055 get_section_id (&sections.loc),
10056 get_section_id (&sections.str_offsets));
10057 make_cleanup (xfree, virtual_dwo_name);
10058 /* Can we use an existing virtual DWO file? */
10059 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10060 /* Create one if necessary. */
10061 if (*dwo_file_slot == NULL)
10062 {
10063 if (dwarf2_read_debug)
10064 {
10065 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10066 virtual_dwo_name);
10067 }
10068 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10069 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10070 virtual_dwo_name,
10071 strlen (virtual_dwo_name));
10072 dwo_file->comp_dir = comp_dir;
10073 dwo_file->sections.abbrev = sections.abbrev;
10074 dwo_file->sections.line = sections.line;
10075 dwo_file->sections.loc = sections.loc;
10076 dwo_file->sections.macinfo = sections.macinfo;
10077 dwo_file->sections.macro = sections.macro;
10078 dwo_file->sections.str_offsets = sections.str_offsets;
10079 /* The "str" section is global to the entire DWP file. */
10080 dwo_file->sections.str = dwp_file->sections.str;
10081 /* The info or types section is assigned below to dwo_unit,
10082 there's no need to record it in dwo_file.
10083 Also, we can't simply record type sections in dwo_file because
10084 we record a pointer into the vector in dwo_unit. As we collect more
10085 types we'll grow the vector and eventually have to reallocate space
10086 for it, invalidating all copies of pointers into the previous
10087 contents. */
10088 *dwo_file_slot = dwo_file;
10089 }
10090 else
10091 {
10092 if (dwarf2_read_debug)
10093 {
10094 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10095 virtual_dwo_name);
10096 }
10097 dwo_file = *dwo_file_slot;
10098 }
10099 do_cleanups (cleanups);
10100
10101 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10102 dwo_unit->dwo_file = dwo_file;
10103 dwo_unit->signature = signature;
10104 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10105 sizeof (struct dwarf2_section_info));
10106 *dwo_unit->section = sections.info_or_types;
10107 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10108
10109 return dwo_unit;
10110 }
10111
10112 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10113 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10114 piece within that section used by a TU/CU, return a virtual section
10115 of just that piece. */
10116
10117 static struct dwarf2_section_info
10118 create_dwp_v2_section (struct dwarf2_section_info *section,
10119 bfd_size_type offset, bfd_size_type size)
10120 {
10121 struct dwarf2_section_info result;
10122 asection *sectp;
10123
10124 gdb_assert (section != NULL);
10125 gdb_assert (!section->is_virtual);
10126
10127 memset (&result, 0, sizeof (result));
10128 result.s.containing_section = section;
10129 result.is_virtual = 1;
10130
10131 if (size == 0)
10132 return result;
10133
10134 sectp = get_section_bfd_section (section);
10135
10136 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10137 bounds of the real section. This is a pretty-rare event, so just
10138 flag an error (easier) instead of a warning and trying to cope. */
10139 if (sectp == NULL
10140 || offset + size > bfd_get_section_size (sectp))
10141 {
10142 bfd *abfd = sectp->owner;
10143
10144 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10145 " in section %s [in module %s]"),
10146 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10147 objfile_name (dwarf2_per_objfile->objfile));
10148 }
10149
10150 result.virtual_offset = offset;
10151 result.size = size;
10152 return result;
10153 }
10154
10155 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10156 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10157 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10158 This is for DWP version 2 files. */
10159
10160 static struct dwo_unit *
10161 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10162 uint32_t unit_index,
10163 const char *comp_dir,
10164 ULONGEST signature, int is_debug_types)
10165 {
10166 struct objfile *objfile = dwarf2_per_objfile->objfile;
10167 const struct dwp_hash_table *dwp_htab =
10168 is_debug_types ? dwp_file->tus : dwp_file->cus;
10169 bfd *dbfd = dwp_file->dbfd;
10170 const char *kind = is_debug_types ? "TU" : "CU";
10171 struct dwo_file *dwo_file;
10172 struct dwo_unit *dwo_unit;
10173 struct virtual_v2_dwo_sections sections;
10174 void **dwo_file_slot;
10175 char *virtual_dwo_name;
10176 struct dwarf2_section_info *cutu;
10177 struct cleanup *cleanups;
10178 int i;
10179
10180 gdb_assert (dwp_file->version == 2);
10181
10182 if (dwarf2_read_debug)
10183 {
10184 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10185 kind,
10186 pulongest (unit_index), hex_string (signature),
10187 dwp_file->name);
10188 }
10189
10190 /* Fetch the section offsets of this DWO unit. */
10191
10192 memset (&sections, 0, sizeof (sections));
10193 cleanups = make_cleanup (null_cleanup, 0);
10194
10195 for (i = 0; i < dwp_htab->nr_columns; ++i)
10196 {
10197 uint32_t offset = read_4_bytes (dbfd,
10198 dwp_htab->section_pool.v2.offsets
10199 + (((unit_index - 1) * dwp_htab->nr_columns
10200 + i)
10201 * sizeof (uint32_t)));
10202 uint32_t size = read_4_bytes (dbfd,
10203 dwp_htab->section_pool.v2.sizes
10204 + (((unit_index - 1) * dwp_htab->nr_columns
10205 + i)
10206 * sizeof (uint32_t)));
10207
10208 switch (dwp_htab->section_pool.v2.section_ids[i])
10209 {
10210 case DW_SECT_INFO:
10211 case DW_SECT_TYPES:
10212 sections.info_or_types_offset = offset;
10213 sections.info_or_types_size = size;
10214 break;
10215 case DW_SECT_ABBREV:
10216 sections.abbrev_offset = offset;
10217 sections.abbrev_size = size;
10218 break;
10219 case DW_SECT_LINE:
10220 sections.line_offset = offset;
10221 sections.line_size = size;
10222 break;
10223 case DW_SECT_LOC:
10224 sections.loc_offset = offset;
10225 sections.loc_size = size;
10226 break;
10227 case DW_SECT_STR_OFFSETS:
10228 sections.str_offsets_offset = offset;
10229 sections.str_offsets_size = size;
10230 break;
10231 case DW_SECT_MACINFO:
10232 sections.macinfo_offset = offset;
10233 sections.macinfo_size = size;
10234 break;
10235 case DW_SECT_MACRO:
10236 sections.macro_offset = offset;
10237 sections.macro_size = size;
10238 break;
10239 }
10240 }
10241
10242 /* It's easier for the rest of the code if we fake a struct dwo_file and
10243 have dwo_unit "live" in that. At least for now.
10244
10245 The DWP file can be made up of a random collection of CUs and TUs.
10246 However, for each CU + set of TUs that came from the same original DWO
10247 file, we can combine them back into a virtual DWO file to save space
10248 (fewer struct dwo_file objects to allocate). Remember that for really
10249 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10250
10251 virtual_dwo_name =
10252 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10253 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10254 (long) (sections.line_size ? sections.line_offset : 0),
10255 (long) (sections.loc_size ? sections.loc_offset : 0),
10256 (long) (sections.str_offsets_size
10257 ? sections.str_offsets_offset : 0));
10258 make_cleanup (xfree, virtual_dwo_name);
10259 /* Can we use an existing virtual DWO file? */
10260 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10261 /* Create one if necessary. */
10262 if (*dwo_file_slot == NULL)
10263 {
10264 if (dwarf2_read_debug)
10265 {
10266 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10267 virtual_dwo_name);
10268 }
10269 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10270 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10271 virtual_dwo_name,
10272 strlen (virtual_dwo_name));
10273 dwo_file->comp_dir = comp_dir;
10274 dwo_file->sections.abbrev =
10275 create_dwp_v2_section (&dwp_file->sections.abbrev,
10276 sections.abbrev_offset, sections.abbrev_size);
10277 dwo_file->sections.line =
10278 create_dwp_v2_section (&dwp_file->sections.line,
10279 sections.line_offset, sections.line_size);
10280 dwo_file->sections.loc =
10281 create_dwp_v2_section (&dwp_file->sections.loc,
10282 sections.loc_offset, sections.loc_size);
10283 dwo_file->sections.macinfo =
10284 create_dwp_v2_section (&dwp_file->sections.macinfo,
10285 sections.macinfo_offset, sections.macinfo_size);
10286 dwo_file->sections.macro =
10287 create_dwp_v2_section (&dwp_file->sections.macro,
10288 sections.macro_offset, sections.macro_size);
10289 dwo_file->sections.str_offsets =
10290 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10291 sections.str_offsets_offset,
10292 sections.str_offsets_size);
10293 /* The "str" section is global to the entire DWP file. */
10294 dwo_file->sections.str = dwp_file->sections.str;
10295 /* The info or types section is assigned below to dwo_unit,
10296 there's no need to record it in dwo_file.
10297 Also, we can't simply record type sections in dwo_file because
10298 we record a pointer into the vector in dwo_unit. As we collect more
10299 types we'll grow the vector and eventually have to reallocate space
10300 for it, invalidating all copies of pointers into the previous
10301 contents. */
10302 *dwo_file_slot = dwo_file;
10303 }
10304 else
10305 {
10306 if (dwarf2_read_debug)
10307 {
10308 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10309 virtual_dwo_name);
10310 }
10311 dwo_file = *dwo_file_slot;
10312 }
10313 do_cleanups (cleanups);
10314
10315 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10316 dwo_unit->dwo_file = dwo_file;
10317 dwo_unit->signature = signature;
10318 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10319 sizeof (struct dwarf2_section_info));
10320 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10321 ? &dwp_file->sections.types
10322 : &dwp_file->sections.info,
10323 sections.info_or_types_offset,
10324 sections.info_or_types_size);
10325 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10326
10327 return dwo_unit;
10328 }
10329
10330 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10331 Returns NULL if the signature isn't found. */
10332
10333 static struct dwo_unit *
10334 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10335 ULONGEST signature, int is_debug_types)
10336 {
10337 const struct dwp_hash_table *dwp_htab =
10338 is_debug_types ? dwp_file->tus : dwp_file->cus;
10339 bfd *dbfd = dwp_file->dbfd;
10340 uint32_t mask = dwp_htab->nr_slots - 1;
10341 uint32_t hash = signature & mask;
10342 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10343 unsigned int i;
10344 void **slot;
10345 struct dwo_unit find_dwo_cu, *dwo_cu;
10346
10347 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10348 find_dwo_cu.signature = signature;
10349 slot = htab_find_slot (is_debug_types
10350 ? dwp_file->loaded_tus
10351 : dwp_file->loaded_cus,
10352 &find_dwo_cu, INSERT);
10353
10354 if (*slot != NULL)
10355 return *slot;
10356
10357 /* Use a for loop so that we don't loop forever on bad debug info. */
10358 for (i = 0; i < dwp_htab->nr_slots; ++i)
10359 {
10360 ULONGEST signature_in_table;
10361
10362 signature_in_table =
10363 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10364 if (signature_in_table == signature)
10365 {
10366 uint32_t unit_index =
10367 read_4_bytes (dbfd,
10368 dwp_htab->unit_table + hash * sizeof (uint32_t));
10369
10370 if (dwp_file->version == 1)
10371 {
10372 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10373 comp_dir, signature,
10374 is_debug_types);
10375 }
10376 else
10377 {
10378 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10379 comp_dir, signature,
10380 is_debug_types);
10381 }
10382 return *slot;
10383 }
10384 if (signature_in_table == 0)
10385 return NULL;
10386 hash = (hash + hash2) & mask;
10387 }
10388
10389 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10390 " [in module %s]"),
10391 dwp_file->name);
10392 }
10393
10394 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10395 Open the file specified by FILE_NAME and hand it off to BFD for
10396 preliminary analysis. Return a newly initialized bfd *, which
10397 includes a canonicalized copy of FILE_NAME.
10398 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10399 SEARCH_CWD is true if the current directory is to be searched.
10400 It will be searched before debug-file-directory.
10401 If successful, the file is added to the bfd include table of the
10402 objfile's bfd (see gdb_bfd_record_inclusion).
10403 If unable to find/open the file, return NULL.
10404 NOTE: This function is derived from symfile_bfd_open. */
10405
10406 static bfd *
10407 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10408 {
10409 bfd *sym_bfd;
10410 int desc, flags;
10411 char *absolute_name;
10412 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10413 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10414 to debug_file_directory. */
10415 char *search_path;
10416 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10417
10418 if (search_cwd)
10419 {
10420 if (*debug_file_directory != '\0')
10421 search_path = concat (".", dirname_separator_string,
10422 debug_file_directory, NULL);
10423 else
10424 search_path = xstrdup (".");
10425 }
10426 else
10427 search_path = xstrdup (debug_file_directory);
10428
10429 flags = OPF_RETURN_REALPATH;
10430 if (is_dwp)
10431 flags |= OPF_SEARCH_IN_PATH;
10432 desc = openp (search_path, flags, file_name,
10433 O_RDONLY | O_BINARY, &absolute_name);
10434 xfree (search_path);
10435 if (desc < 0)
10436 return NULL;
10437
10438 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10439 xfree (absolute_name);
10440 if (sym_bfd == NULL)
10441 return NULL;
10442 bfd_set_cacheable (sym_bfd, 1);
10443
10444 if (!bfd_check_format (sym_bfd, bfd_object))
10445 {
10446 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10447 return NULL;
10448 }
10449
10450 /* Success. Record the bfd as having been included by the objfile's bfd.
10451 This is important because things like demangled_names_hash lives in the
10452 objfile's per_bfd space and may have references to things like symbol
10453 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10454 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10455
10456 return sym_bfd;
10457 }
10458
10459 /* Try to open DWO file FILE_NAME.
10460 COMP_DIR is the DW_AT_comp_dir attribute.
10461 The result is the bfd handle of the file.
10462 If there is a problem finding or opening the file, return NULL.
10463 Upon success, the canonicalized path of the file is stored in the bfd,
10464 same as symfile_bfd_open. */
10465
10466 static bfd *
10467 open_dwo_file (const char *file_name, const char *comp_dir)
10468 {
10469 bfd *abfd;
10470
10471 if (IS_ABSOLUTE_PATH (file_name))
10472 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10473
10474 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10475
10476 if (comp_dir != NULL)
10477 {
10478 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10479
10480 /* NOTE: If comp_dir is a relative path, this will also try the
10481 search path, which seems useful. */
10482 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10483 xfree (path_to_try);
10484 if (abfd != NULL)
10485 return abfd;
10486 }
10487
10488 /* That didn't work, try debug-file-directory, which, despite its name,
10489 is a list of paths. */
10490
10491 if (*debug_file_directory == '\0')
10492 return NULL;
10493
10494 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10495 }
10496
10497 /* This function is mapped across the sections and remembers the offset and
10498 size of each of the DWO debugging sections we are interested in. */
10499
10500 static void
10501 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10502 {
10503 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10504 const struct dwop_section_names *names = &dwop_section_names;
10505
10506 if (section_is_p (sectp->name, &names->abbrev_dwo))
10507 {
10508 dwo_sections->abbrev.s.asection = sectp;
10509 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10510 }
10511 else if (section_is_p (sectp->name, &names->info_dwo))
10512 {
10513 dwo_sections->info.s.asection = sectp;
10514 dwo_sections->info.size = bfd_get_section_size (sectp);
10515 }
10516 else if (section_is_p (sectp->name, &names->line_dwo))
10517 {
10518 dwo_sections->line.s.asection = sectp;
10519 dwo_sections->line.size = bfd_get_section_size (sectp);
10520 }
10521 else if (section_is_p (sectp->name, &names->loc_dwo))
10522 {
10523 dwo_sections->loc.s.asection = sectp;
10524 dwo_sections->loc.size = bfd_get_section_size (sectp);
10525 }
10526 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10527 {
10528 dwo_sections->macinfo.s.asection = sectp;
10529 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10530 }
10531 else if (section_is_p (sectp->name, &names->macro_dwo))
10532 {
10533 dwo_sections->macro.s.asection = sectp;
10534 dwo_sections->macro.size = bfd_get_section_size (sectp);
10535 }
10536 else if (section_is_p (sectp->name, &names->str_dwo))
10537 {
10538 dwo_sections->str.s.asection = sectp;
10539 dwo_sections->str.size = bfd_get_section_size (sectp);
10540 }
10541 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10542 {
10543 dwo_sections->str_offsets.s.asection = sectp;
10544 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10545 }
10546 else if (section_is_p (sectp->name, &names->types_dwo))
10547 {
10548 struct dwarf2_section_info type_section;
10549
10550 memset (&type_section, 0, sizeof (type_section));
10551 type_section.s.asection = sectp;
10552 type_section.size = bfd_get_section_size (sectp);
10553 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10554 &type_section);
10555 }
10556 }
10557
10558 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10559 by PER_CU. This is for the non-DWP case.
10560 The result is NULL if DWO_NAME can't be found. */
10561
10562 static struct dwo_file *
10563 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10564 const char *dwo_name, const char *comp_dir)
10565 {
10566 struct objfile *objfile = dwarf2_per_objfile->objfile;
10567 struct dwo_file *dwo_file;
10568 bfd *dbfd;
10569 struct cleanup *cleanups;
10570
10571 dbfd = open_dwo_file (dwo_name, comp_dir);
10572 if (dbfd == NULL)
10573 {
10574 if (dwarf2_read_debug)
10575 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10576 return NULL;
10577 }
10578 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10579 dwo_file->dwo_name = dwo_name;
10580 dwo_file->comp_dir = comp_dir;
10581 dwo_file->dbfd = dbfd;
10582
10583 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10584
10585 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10586
10587 dwo_file->cu = create_dwo_cu (dwo_file);
10588
10589 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10590 dwo_file->sections.types);
10591
10592 discard_cleanups (cleanups);
10593
10594 if (dwarf2_read_debug)
10595 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10596
10597 return dwo_file;
10598 }
10599
10600 /* This function is mapped across the sections and remembers the offset and
10601 size of each of the DWP debugging sections common to version 1 and 2 that
10602 we are interested in. */
10603
10604 static void
10605 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10606 void *dwp_file_ptr)
10607 {
10608 struct dwp_file *dwp_file = dwp_file_ptr;
10609 const struct dwop_section_names *names = &dwop_section_names;
10610 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10611
10612 /* Record the ELF section number for later lookup: this is what the
10613 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10614 gdb_assert (elf_section_nr < dwp_file->num_sections);
10615 dwp_file->elf_sections[elf_section_nr] = sectp;
10616
10617 /* Look for specific sections that we need. */
10618 if (section_is_p (sectp->name, &names->str_dwo))
10619 {
10620 dwp_file->sections.str.s.asection = sectp;
10621 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10622 }
10623 else if (section_is_p (sectp->name, &names->cu_index))
10624 {
10625 dwp_file->sections.cu_index.s.asection = sectp;
10626 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10627 }
10628 else if (section_is_p (sectp->name, &names->tu_index))
10629 {
10630 dwp_file->sections.tu_index.s.asection = sectp;
10631 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10632 }
10633 }
10634
10635 /* This function is mapped across the sections and remembers the offset and
10636 size of each of the DWP version 2 debugging sections that we are interested
10637 in. This is split into a separate function because we don't know if we
10638 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10639
10640 static void
10641 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10642 {
10643 struct dwp_file *dwp_file = dwp_file_ptr;
10644 const struct dwop_section_names *names = &dwop_section_names;
10645 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10646
10647 /* Record the ELF section number for later lookup: this is what the
10648 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10649 gdb_assert (elf_section_nr < dwp_file->num_sections);
10650 dwp_file->elf_sections[elf_section_nr] = sectp;
10651
10652 /* Look for specific sections that we need. */
10653 if (section_is_p (sectp->name, &names->abbrev_dwo))
10654 {
10655 dwp_file->sections.abbrev.s.asection = sectp;
10656 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10657 }
10658 else if (section_is_p (sectp->name, &names->info_dwo))
10659 {
10660 dwp_file->sections.info.s.asection = sectp;
10661 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10662 }
10663 else if (section_is_p (sectp->name, &names->line_dwo))
10664 {
10665 dwp_file->sections.line.s.asection = sectp;
10666 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10667 }
10668 else if (section_is_p (sectp->name, &names->loc_dwo))
10669 {
10670 dwp_file->sections.loc.s.asection = sectp;
10671 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10672 }
10673 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10674 {
10675 dwp_file->sections.macinfo.s.asection = sectp;
10676 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10677 }
10678 else if (section_is_p (sectp->name, &names->macro_dwo))
10679 {
10680 dwp_file->sections.macro.s.asection = sectp;
10681 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10682 }
10683 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10684 {
10685 dwp_file->sections.str_offsets.s.asection = sectp;
10686 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10687 }
10688 else if (section_is_p (sectp->name, &names->types_dwo))
10689 {
10690 dwp_file->sections.types.s.asection = sectp;
10691 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10692 }
10693 }
10694
10695 /* Hash function for dwp_file loaded CUs/TUs. */
10696
10697 static hashval_t
10698 hash_dwp_loaded_cutus (const void *item)
10699 {
10700 const struct dwo_unit *dwo_unit = item;
10701
10702 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10703 return dwo_unit->signature;
10704 }
10705
10706 /* Equality function for dwp_file loaded CUs/TUs. */
10707
10708 static int
10709 eq_dwp_loaded_cutus (const void *a, const void *b)
10710 {
10711 const struct dwo_unit *dua = a;
10712 const struct dwo_unit *dub = b;
10713
10714 return dua->signature == dub->signature;
10715 }
10716
10717 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10718
10719 static htab_t
10720 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10721 {
10722 return htab_create_alloc_ex (3,
10723 hash_dwp_loaded_cutus,
10724 eq_dwp_loaded_cutus,
10725 NULL,
10726 &objfile->objfile_obstack,
10727 hashtab_obstack_allocate,
10728 dummy_obstack_deallocate);
10729 }
10730
10731 /* Try to open DWP file FILE_NAME.
10732 The result is the bfd handle of the file.
10733 If there is a problem finding or opening the file, return NULL.
10734 Upon success, the canonicalized path of the file is stored in the bfd,
10735 same as symfile_bfd_open. */
10736
10737 static bfd *
10738 open_dwp_file (const char *file_name)
10739 {
10740 bfd *abfd;
10741
10742 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10743 if (abfd != NULL)
10744 return abfd;
10745
10746 /* Work around upstream bug 15652.
10747 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10748 [Whether that's a "bug" is debatable, but it is getting in our way.]
10749 We have no real idea where the dwp file is, because gdb's realpath-ing
10750 of the executable's path may have discarded the needed info.
10751 [IWBN if the dwp file name was recorded in the executable, akin to
10752 .gnu_debuglink, but that doesn't exist yet.]
10753 Strip the directory from FILE_NAME and search again. */
10754 if (*debug_file_directory != '\0')
10755 {
10756 /* Don't implicitly search the current directory here.
10757 If the user wants to search "." to handle this case,
10758 it must be added to debug-file-directory. */
10759 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10760 0 /*search_cwd*/);
10761 }
10762
10763 return NULL;
10764 }
10765
10766 /* Initialize the use of the DWP file for the current objfile.
10767 By convention the name of the DWP file is ${objfile}.dwp.
10768 The result is NULL if it can't be found. */
10769
10770 static struct dwp_file *
10771 open_and_init_dwp_file (void)
10772 {
10773 struct objfile *objfile = dwarf2_per_objfile->objfile;
10774 struct dwp_file *dwp_file;
10775 char *dwp_name;
10776 bfd *dbfd;
10777 struct cleanup *cleanups;
10778
10779 /* Try to find first .dwp for the binary file before any symbolic links
10780 resolving. */
10781 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10782 cleanups = make_cleanup (xfree, dwp_name);
10783
10784 dbfd = open_dwp_file (dwp_name);
10785 if (dbfd == NULL
10786 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10787 {
10788 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10789 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10790 make_cleanup (xfree, dwp_name);
10791 dbfd = open_dwp_file (dwp_name);
10792 }
10793
10794 if (dbfd == NULL)
10795 {
10796 if (dwarf2_read_debug)
10797 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10798 do_cleanups (cleanups);
10799 return NULL;
10800 }
10801 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10802 dwp_file->name = bfd_get_filename (dbfd);
10803 dwp_file->dbfd = dbfd;
10804 do_cleanups (cleanups);
10805
10806 /* +1: section 0 is unused */
10807 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10808 dwp_file->elf_sections =
10809 OBSTACK_CALLOC (&objfile->objfile_obstack,
10810 dwp_file->num_sections, asection *);
10811
10812 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10813
10814 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10815
10816 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10817
10818 /* The DWP file version is stored in the hash table. Oh well. */
10819 if (dwp_file->cus->version != dwp_file->tus->version)
10820 {
10821 /* Technically speaking, we should try to limp along, but this is
10822 pretty bizarre. We use pulongest here because that's the established
10823 portability solution (e.g, we cannot use %u for uint32_t). */
10824 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10825 " TU version %s [in DWP file %s]"),
10826 pulongest (dwp_file->cus->version),
10827 pulongest (dwp_file->tus->version), dwp_name);
10828 }
10829 dwp_file->version = dwp_file->cus->version;
10830
10831 if (dwp_file->version == 2)
10832 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10833
10834 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10835 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10836
10837 if (dwarf2_read_debug)
10838 {
10839 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10840 fprintf_unfiltered (gdb_stdlog,
10841 " %s CUs, %s TUs\n",
10842 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10843 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10844 }
10845
10846 return dwp_file;
10847 }
10848
10849 /* Wrapper around open_and_init_dwp_file, only open it once. */
10850
10851 static struct dwp_file *
10852 get_dwp_file (void)
10853 {
10854 if (! dwarf2_per_objfile->dwp_checked)
10855 {
10856 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10857 dwarf2_per_objfile->dwp_checked = 1;
10858 }
10859 return dwarf2_per_objfile->dwp_file;
10860 }
10861
10862 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10863 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10864 or in the DWP file for the objfile, referenced by THIS_UNIT.
10865 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10866 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10867
10868 This is called, for example, when wanting to read a variable with a
10869 complex location. Therefore we don't want to do file i/o for every call.
10870 Therefore we don't want to look for a DWO file on every call.
10871 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10872 then we check if we've already seen DWO_NAME, and only THEN do we check
10873 for a DWO file.
10874
10875 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10876 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10877
10878 static struct dwo_unit *
10879 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10880 const char *dwo_name, const char *comp_dir,
10881 ULONGEST signature, int is_debug_types)
10882 {
10883 struct objfile *objfile = dwarf2_per_objfile->objfile;
10884 const char *kind = is_debug_types ? "TU" : "CU";
10885 void **dwo_file_slot;
10886 struct dwo_file *dwo_file;
10887 struct dwp_file *dwp_file;
10888
10889 /* First see if there's a DWP file.
10890 If we have a DWP file but didn't find the DWO inside it, don't
10891 look for the original DWO file. It makes gdb behave differently
10892 depending on whether one is debugging in the build tree. */
10893
10894 dwp_file = get_dwp_file ();
10895 if (dwp_file != NULL)
10896 {
10897 const struct dwp_hash_table *dwp_htab =
10898 is_debug_types ? dwp_file->tus : dwp_file->cus;
10899
10900 if (dwp_htab != NULL)
10901 {
10902 struct dwo_unit *dwo_cutu =
10903 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10904 signature, is_debug_types);
10905
10906 if (dwo_cutu != NULL)
10907 {
10908 if (dwarf2_read_debug)
10909 {
10910 fprintf_unfiltered (gdb_stdlog,
10911 "Virtual DWO %s %s found: @%s\n",
10912 kind, hex_string (signature),
10913 host_address_to_string (dwo_cutu));
10914 }
10915 return dwo_cutu;
10916 }
10917 }
10918 }
10919 else
10920 {
10921 /* No DWP file, look for the DWO file. */
10922
10923 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10924 if (*dwo_file_slot == NULL)
10925 {
10926 /* Read in the file and build a table of the CUs/TUs it contains. */
10927 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10928 }
10929 /* NOTE: This will be NULL if unable to open the file. */
10930 dwo_file = *dwo_file_slot;
10931
10932 if (dwo_file != NULL)
10933 {
10934 struct dwo_unit *dwo_cutu = NULL;
10935
10936 if (is_debug_types && dwo_file->tus)
10937 {
10938 struct dwo_unit find_dwo_cutu;
10939
10940 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10941 find_dwo_cutu.signature = signature;
10942 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10943 }
10944 else if (!is_debug_types && dwo_file->cu)
10945 {
10946 if (signature == dwo_file->cu->signature)
10947 dwo_cutu = dwo_file->cu;
10948 }
10949
10950 if (dwo_cutu != NULL)
10951 {
10952 if (dwarf2_read_debug)
10953 {
10954 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10955 kind, dwo_name, hex_string (signature),
10956 host_address_to_string (dwo_cutu));
10957 }
10958 return dwo_cutu;
10959 }
10960 }
10961 }
10962
10963 /* We didn't find it. This could mean a dwo_id mismatch, or
10964 someone deleted the DWO/DWP file, or the search path isn't set up
10965 correctly to find the file. */
10966
10967 if (dwarf2_read_debug)
10968 {
10969 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10970 kind, dwo_name, hex_string (signature));
10971 }
10972
10973 /* This is a warning and not a complaint because it can be caused by
10974 pilot error (e.g., user accidentally deleting the DWO). */
10975 {
10976 /* Print the name of the DWP file if we looked there, helps the user
10977 better diagnose the problem. */
10978 char *dwp_text = NULL;
10979 struct cleanup *cleanups;
10980
10981 if (dwp_file != NULL)
10982 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10983 cleanups = make_cleanup (xfree, dwp_text);
10984
10985 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10986 " [in module %s]"),
10987 kind, dwo_name, hex_string (signature),
10988 dwp_text != NULL ? dwp_text : "",
10989 this_unit->is_debug_types ? "TU" : "CU",
10990 this_unit->offset.sect_off, objfile_name (objfile));
10991
10992 do_cleanups (cleanups);
10993 }
10994 return NULL;
10995 }
10996
10997 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10998 See lookup_dwo_cutu_unit for details. */
10999
11000 static struct dwo_unit *
11001 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11002 const char *dwo_name, const char *comp_dir,
11003 ULONGEST signature)
11004 {
11005 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11006 }
11007
11008 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11009 See lookup_dwo_cutu_unit for details. */
11010
11011 static struct dwo_unit *
11012 lookup_dwo_type_unit (struct signatured_type *this_tu,
11013 const char *dwo_name, const char *comp_dir)
11014 {
11015 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11016 }
11017
11018 /* Traversal function for queue_and_load_all_dwo_tus. */
11019
11020 static int
11021 queue_and_load_dwo_tu (void **slot, void *info)
11022 {
11023 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11024 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11025 ULONGEST signature = dwo_unit->signature;
11026 struct signatured_type *sig_type =
11027 lookup_dwo_signatured_type (per_cu->cu, signature);
11028
11029 if (sig_type != NULL)
11030 {
11031 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11032
11033 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11034 a real dependency of PER_CU on SIG_TYPE. That is detected later
11035 while processing PER_CU. */
11036 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11037 load_full_type_unit (sig_cu);
11038 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11039 }
11040
11041 return 1;
11042 }
11043
11044 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11045 The DWO may have the only definition of the type, though it may not be
11046 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11047 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11048
11049 static void
11050 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11051 {
11052 struct dwo_unit *dwo_unit;
11053 struct dwo_file *dwo_file;
11054
11055 gdb_assert (!per_cu->is_debug_types);
11056 gdb_assert (get_dwp_file () == NULL);
11057 gdb_assert (per_cu->cu != NULL);
11058
11059 dwo_unit = per_cu->cu->dwo_unit;
11060 gdb_assert (dwo_unit != NULL);
11061
11062 dwo_file = dwo_unit->dwo_file;
11063 if (dwo_file->tus != NULL)
11064 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11065 }
11066
11067 /* Free all resources associated with DWO_FILE.
11068 Close the DWO file and munmap the sections.
11069 All memory should be on the objfile obstack. */
11070
11071 static void
11072 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11073 {
11074 int ix;
11075 struct dwarf2_section_info *section;
11076
11077 /* Note: dbfd is NULL for virtual DWO files. */
11078 gdb_bfd_unref (dwo_file->dbfd);
11079
11080 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11081 }
11082
11083 /* Wrapper for free_dwo_file for use in cleanups. */
11084
11085 static void
11086 free_dwo_file_cleanup (void *arg)
11087 {
11088 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11089 struct objfile *objfile = dwarf2_per_objfile->objfile;
11090
11091 free_dwo_file (dwo_file, objfile);
11092 }
11093
11094 /* Traversal function for free_dwo_files. */
11095
11096 static int
11097 free_dwo_file_from_slot (void **slot, void *info)
11098 {
11099 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11100 struct objfile *objfile = (struct objfile *) info;
11101
11102 free_dwo_file (dwo_file, objfile);
11103
11104 return 1;
11105 }
11106
11107 /* Free all resources associated with DWO_FILES. */
11108
11109 static void
11110 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11111 {
11112 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11113 }
11114 \f
11115 /* Read in various DIEs. */
11116
11117 /* qsort helper for inherit_abstract_dies. */
11118
11119 static int
11120 unsigned_int_compar (const void *ap, const void *bp)
11121 {
11122 unsigned int a = *(unsigned int *) ap;
11123 unsigned int b = *(unsigned int *) bp;
11124
11125 return (a > b) - (b > a);
11126 }
11127
11128 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11129 Inherit only the children of the DW_AT_abstract_origin DIE not being
11130 already referenced by DW_AT_abstract_origin from the children of the
11131 current DIE. */
11132
11133 static void
11134 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11135 {
11136 struct die_info *child_die;
11137 unsigned die_children_count;
11138 /* CU offsets which were referenced by children of the current DIE. */
11139 sect_offset *offsets;
11140 sect_offset *offsets_end, *offsetp;
11141 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11142 struct die_info *origin_die;
11143 /* Iterator of the ORIGIN_DIE children. */
11144 struct die_info *origin_child_die;
11145 struct cleanup *cleanups;
11146 struct attribute *attr;
11147 struct dwarf2_cu *origin_cu;
11148 struct pending **origin_previous_list_in_scope;
11149
11150 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11151 if (!attr)
11152 return;
11153
11154 /* Note that following die references may follow to a die in a
11155 different cu. */
11156
11157 origin_cu = cu;
11158 origin_die = follow_die_ref (die, attr, &origin_cu);
11159
11160 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11161 symbols in. */
11162 origin_previous_list_in_scope = origin_cu->list_in_scope;
11163 origin_cu->list_in_scope = cu->list_in_scope;
11164
11165 if (die->tag != origin_die->tag
11166 && !(die->tag == DW_TAG_inlined_subroutine
11167 && origin_die->tag == DW_TAG_subprogram))
11168 complaint (&symfile_complaints,
11169 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11170 die->offset.sect_off, origin_die->offset.sect_off);
11171
11172 child_die = die->child;
11173 die_children_count = 0;
11174 while (child_die && child_die->tag)
11175 {
11176 child_die = sibling_die (child_die);
11177 die_children_count++;
11178 }
11179 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11180 cleanups = make_cleanup (xfree, offsets);
11181
11182 offsets_end = offsets;
11183 child_die = die->child;
11184 while (child_die && child_die->tag)
11185 {
11186 /* For each CHILD_DIE, find the corresponding child of
11187 ORIGIN_DIE. If there is more than one layer of
11188 DW_AT_abstract_origin, follow them all; there shouldn't be,
11189 but GCC versions at least through 4.4 generate this (GCC PR
11190 40573). */
11191 struct die_info *child_origin_die = child_die;
11192 struct dwarf2_cu *child_origin_cu = cu;
11193
11194 while (1)
11195 {
11196 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11197 child_origin_cu);
11198 if (attr == NULL)
11199 break;
11200 child_origin_die = follow_die_ref (child_origin_die, attr,
11201 &child_origin_cu);
11202 }
11203
11204 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11205 counterpart may exist. */
11206 if (child_origin_die != child_die)
11207 {
11208 if (child_die->tag != child_origin_die->tag
11209 && !(child_die->tag == DW_TAG_inlined_subroutine
11210 && child_origin_die->tag == DW_TAG_subprogram))
11211 complaint (&symfile_complaints,
11212 _("Child DIE 0x%x and its abstract origin 0x%x have "
11213 "different tags"), child_die->offset.sect_off,
11214 child_origin_die->offset.sect_off);
11215 if (child_origin_die->parent != origin_die)
11216 complaint (&symfile_complaints,
11217 _("Child DIE 0x%x and its abstract origin 0x%x have "
11218 "different parents"), child_die->offset.sect_off,
11219 child_origin_die->offset.sect_off);
11220 else
11221 *offsets_end++ = child_origin_die->offset;
11222 }
11223 child_die = sibling_die (child_die);
11224 }
11225 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11226 unsigned_int_compar);
11227 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11228 if (offsetp[-1].sect_off == offsetp->sect_off)
11229 complaint (&symfile_complaints,
11230 _("Multiple children of DIE 0x%x refer "
11231 "to DIE 0x%x as their abstract origin"),
11232 die->offset.sect_off, offsetp->sect_off);
11233
11234 offsetp = offsets;
11235 origin_child_die = origin_die->child;
11236 while (origin_child_die && origin_child_die->tag)
11237 {
11238 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11239 while (offsetp < offsets_end
11240 && offsetp->sect_off < origin_child_die->offset.sect_off)
11241 offsetp++;
11242 if (offsetp >= offsets_end
11243 || offsetp->sect_off > origin_child_die->offset.sect_off)
11244 {
11245 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11246 Check whether we're already processing ORIGIN_CHILD_DIE.
11247 This can happen with mutually referenced abstract_origins.
11248 PR 16581. */
11249 if (!origin_child_die->in_process)
11250 process_die (origin_child_die, origin_cu);
11251 }
11252 origin_child_die = sibling_die (origin_child_die);
11253 }
11254 origin_cu->list_in_scope = origin_previous_list_in_scope;
11255
11256 do_cleanups (cleanups);
11257 }
11258
11259 static void
11260 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11261 {
11262 struct objfile *objfile = cu->objfile;
11263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11264 struct context_stack *new;
11265 CORE_ADDR lowpc;
11266 CORE_ADDR highpc;
11267 struct die_info *child_die;
11268 struct attribute *attr, *call_line, *call_file;
11269 const char *name;
11270 CORE_ADDR baseaddr;
11271 struct block *block;
11272 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11273 VEC (symbolp) *template_args = NULL;
11274 struct template_symbol *templ_func = NULL;
11275
11276 if (inlined_func)
11277 {
11278 /* If we do not have call site information, we can't show the
11279 caller of this inlined function. That's too confusing, so
11280 only use the scope for local variables. */
11281 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11282 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11283 if (call_line == NULL || call_file == NULL)
11284 {
11285 read_lexical_block_scope (die, cu);
11286 return;
11287 }
11288 }
11289
11290 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11291
11292 name = dwarf2_name (die, cu);
11293
11294 /* Ignore functions with missing or empty names. These are actually
11295 illegal according to the DWARF standard. */
11296 if (name == NULL)
11297 {
11298 complaint (&symfile_complaints,
11299 _("missing name for subprogram DIE at %d"),
11300 die->offset.sect_off);
11301 return;
11302 }
11303
11304 /* Ignore functions with missing or invalid low and high pc attributes. */
11305 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11306 {
11307 attr = dwarf2_attr (die, DW_AT_external, cu);
11308 if (!attr || !DW_UNSND (attr))
11309 complaint (&symfile_complaints,
11310 _("cannot get low and high bounds "
11311 "for subprogram DIE at %d"),
11312 die->offset.sect_off);
11313 return;
11314 }
11315
11316 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11317 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11318
11319 /* If we have any template arguments, then we must allocate a
11320 different sort of symbol. */
11321 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11322 {
11323 if (child_die->tag == DW_TAG_template_type_param
11324 || child_die->tag == DW_TAG_template_value_param)
11325 {
11326 templ_func = allocate_template_symbol (objfile);
11327 templ_func->base.is_cplus_template_function = 1;
11328 break;
11329 }
11330 }
11331
11332 new = push_context (0, lowpc);
11333 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11334 (struct symbol *) templ_func);
11335
11336 /* If there is a location expression for DW_AT_frame_base, record
11337 it. */
11338 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11339 if (attr)
11340 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11341
11342 cu->list_in_scope = &local_symbols;
11343
11344 if (die->child != NULL)
11345 {
11346 child_die = die->child;
11347 while (child_die && child_die->tag)
11348 {
11349 if (child_die->tag == DW_TAG_template_type_param
11350 || child_die->tag == DW_TAG_template_value_param)
11351 {
11352 struct symbol *arg = new_symbol (child_die, NULL, cu);
11353
11354 if (arg != NULL)
11355 VEC_safe_push (symbolp, template_args, arg);
11356 }
11357 else
11358 process_die (child_die, cu);
11359 child_die = sibling_die (child_die);
11360 }
11361 }
11362
11363 inherit_abstract_dies (die, cu);
11364
11365 /* If we have a DW_AT_specification, we might need to import using
11366 directives from the context of the specification DIE. See the
11367 comment in determine_prefix. */
11368 if (cu->language == language_cplus
11369 && dwarf2_attr (die, DW_AT_specification, cu))
11370 {
11371 struct dwarf2_cu *spec_cu = cu;
11372 struct die_info *spec_die = die_specification (die, &spec_cu);
11373
11374 while (spec_die)
11375 {
11376 child_die = spec_die->child;
11377 while (child_die && child_die->tag)
11378 {
11379 if (child_die->tag == DW_TAG_imported_module)
11380 process_die (child_die, spec_cu);
11381 child_die = sibling_die (child_die);
11382 }
11383
11384 /* In some cases, GCC generates specification DIEs that
11385 themselves contain DW_AT_specification attributes. */
11386 spec_die = die_specification (spec_die, &spec_cu);
11387 }
11388 }
11389
11390 new = pop_context ();
11391 /* Make a block for the local symbols within. */
11392 block = finish_block (new->name, &local_symbols, new->old_blocks,
11393 lowpc, highpc);
11394
11395 /* For C++, set the block's scope. */
11396 if ((cu->language == language_cplus || cu->language == language_fortran)
11397 && cu->processing_has_namespace_info)
11398 block_set_scope (block, determine_prefix (die, cu),
11399 &objfile->objfile_obstack);
11400
11401 /* If we have address ranges, record them. */
11402 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11403
11404 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11405
11406 /* Attach template arguments to function. */
11407 if (! VEC_empty (symbolp, template_args))
11408 {
11409 gdb_assert (templ_func != NULL);
11410
11411 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11412 templ_func->template_arguments
11413 = obstack_alloc (&objfile->objfile_obstack,
11414 (templ_func->n_template_arguments
11415 * sizeof (struct symbol *)));
11416 memcpy (templ_func->template_arguments,
11417 VEC_address (symbolp, template_args),
11418 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11419 VEC_free (symbolp, template_args);
11420 }
11421
11422 /* In C++, we can have functions nested inside functions (e.g., when
11423 a function declares a class that has methods). This means that
11424 when we finish processing a function scope, we may need to go
11425 back to building a containing block's symbol lists. */
11426 local_symbols = new->locals;
11427 using_directives = new->using_directives;
11428
11429 /* If we've finished processing a top-level function, subsequent
11430 symbols go in the file symbol list. */
11431 if (outermost_context_p ())
11432 cu->list_in_scope = &file_symbols;
11433 }
11434
11435 /* Process all the DIES contained within a lexical block scope. Start
11436 a new scope, process the dies, and then close the scope. */
11437
11438 static void
11439 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11440 {
11441 struct objfile *objfile = cu->objfile;
11442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11443 struct context_stack *new;
11444 CORE_ADDR lowpc, highpc;
11445 struct die_info *child_die;
11446 CORE_ADDR baseaddr;
11447
11448 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11449
11450 /* Ignore blocks with missing or invalid low and high pc attributes. */
11451 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11452 as multiple lexical blocks? Handling children in a sane way would
11453 be nasty. Might be easier to properly extend generic blocks to
11454 describe ranges. */
11455 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11456 return;
11457 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11458 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11459
11460 push_context (0, lowpc);
11461 if (die->child != NULL)
11462 {
11463 child_die = die->child;
11464 while (child_die && child_die->tag)
11465 {
11466 process_die (child_die, cu);
11467 child_die = sibling_die (child_die);
11468 }
11469 }
11470 new = pop_context ();
11471
11472 if (local_symbols != NULL || using_directives != NULL)
11473 {
11474 struct block *block
11475 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11476 highpc);
11477
11478 /* Note that recording ranges after traversing children, as we
11479 do here, means that recording a parent's ranges entails
11480 walking across all its children's ranges as they appear in
11481 the address map, which is quadratic behavior.
11482
11483 It would be nicer to record the parent's ranges before
11484 traversing its children, simply overriding whatever you find
11485 there. But since we don't even decide whether to create a
11486 block until after we've traversed its children, that's hard
11487 to do. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11489 }
11490 local_symbols = new->locals;
11491 using_directives = new->using_directives;
11492 }
11493
11494 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11495
11496 static void
11497 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11498 {
11499 struct objfile *objfile = cu->objfile;
11500 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11501 CORE_ADDR pc, baseaddr;
11502 struct attribute *attr;
11503 struct call_site *call_site, call_site_local;
11504 void **slot;
11505 int nparams;
11506 struct die_info *child_die;
11507
11508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11509
11510 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11511 if (!attr)
11512 {
11513 complaint (&symfile_complaints,
11514 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11515 "DIE 0x%x [in module %s]"),
11516 die->offset.sect_off, objfile_name (objfile));
11517 return;
11518 }
11519 pc = attr_value_as_address (attr) + baseaddr;
11520 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11521
11522 if (cu->call_site_htab == NULL)
11523 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11524 NULL, &objfile->objfile_obstack,
11525 hashtab_obstack_allocate, NULL);
11526 call_site_local.pc = pc;
11527 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11528 if (*slot != NULL)
11529 {
11530 complaint (&symfile_complaints,
11531 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11532 "DIE 0x%x [in module %s]"),
11533 paddress (gdbarch, pc), die->offset.sect_off,
11534 objfile_name (objfile));
11535 return;
11536 }
11537
11538 /* Count parameters at the caller. */
11539
11540 nparams = 0;
11541 for (child_die = die->child; child_die && child_die->tag;
11542 child_die = sibling_die (child_die))
11543 {
11544 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11545 {
11546 complaint (&symfile_complaints,
11547 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11548 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11549 child_die->tag, child_die->offset.sect_off,
11550 objfile_name (objfile));
11551 continue;
11552 }
11553
11554 nparams++;
11555 }
11556
11557 call_site = obstack_alloc (&objfile->objfile_obstack,
11558 (sizeof (*call_site)
11559 + (sizeof (*call_site->parameter)
11560 * (nparams - 1))));
11561 *slot = call_site;
11562 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11563 call_site->pc = pc;
11564
11565 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11566 {
11567 struct die_info *func_die;
11568
11569 /* Skip also over DW_TAG_inlined_subroutine. */
11570 for (func_die = die->parent;
11571 func_die && func_die->tag != DW_TAG_subprogram
11572 && func_die->tag != DW_TAG_subroutine_type;
11573 func_die = func_die->parent);
11574
11575 /* DW_AT_GNU_all_call_sites is a superset
11576 of DW_AT_GNU_all_tail_call_sites. */
11577 if (func_die
11578 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11579 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11580 {
11581 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11582 not complete. But keep CALL_SITE for look ups via call_site_htab,
11583 both the initial caller containing the real return address PC and
11584 the final callee containing the current PC of a chain of tail
11585 calls do not need to have the tail call list complete. But any
11586 function candidate for a virtual tail call frame searched via
11587 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11588 determined unambiguously. */
11589 }
11590 else
11591 {
11592 struct type *func_type = NULL;
11593
11594 if (func_die)
11595 func_type = get_die_type (func_die, cu);
11596 if (func_type != NULL)
11597 {
11598 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11599
11600 /* Enlist this call site to the function. */
11601 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11602 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11603 }
11604 else
11605 complaint (&symfile_complaints,
11606 _("Cannot find function owning DW_TAG_GNU_call_site "
11607 "DIE 0x%x [in module %s]"),
11608 die->offset.sect_off, objfile_name (objfile));
11609 }
11610 }
11611
11612 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11613 if (attr == NULL)
11614 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11615 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11616 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11617 /* Keep NULL DWARF_BLOCK. */;
11618 else if (attr_form_is_block (attr))
11619 {
11620 struct dwarf2_locexpr_baton *dlbaton;
11621
11622 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11623 dlbaton->data = DW_BLOCK (attr)->data;
11624 dlbaton->size = DW_BLOCK (attr)->size;
11625 dlbaton->per_cu = cu->per_cu;
11626
11627 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11628 }
11629 else if (attr_form_is_ref (attr))
11630 {
11631 struct dwarf2_cu *target_cu = cu;
11632 struct die_info *target_die;
11633
11634 target_die = follow_die_ref (die, attr, &target_cu);
11635 gdb_assert (target_cu->objfile == objfile);
11636 if (die_is_declaration (target_die, target_cu))
11637 {
11638 const char *target_physname = NULL;
11639 struct attribute *target_attr;
11640
11641 /* Prefer the mangled name; otherwise compute the demangled one. */
11642 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11643 if (target_attr == NULL)
11644 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11645 target_cu);
11646 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11647 target_physname = DW_STRING (target_attr);
11648 else
11649 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11650 if (target_physname == NULL)
11651 complaint (&symfile_complaints,
11652 _("DW_AT_GNU_call_site_target target DIE has invalid "
11653 "physname, for referencing DIE 0x%x [in module %s]"),
11654 die->offset.sect_off, objfile_name (objfile));
11655 else
11656 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11657 }
11658 else
11659 {
11660 CORE_ADDR lowpc;
11661
11662 /* DW_AT_entry_pc should be preferred. */
11663 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11664 complaint (&symfile_complaints,
11665 _("DW_AT_GNU_call_site_target target DIE has invalid "
11666 "low pc, for referencing DIE 0x%x [in module %s]"),
11667 die->offset.sect_off, objfile_name (objfile));
11668 else
11669 {
11670 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11671 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11672 }
11673 }
11674 }
11675 else
11676 complaint (&symfile_complaints,
11677 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11678 "block nor reference, for DIE 0x%x [in module %s]"),
11679 die->offset.sect_off, objfile_name (objfile));
11680
11681 call_site->per_cu = cu->per_cu;
11682
11683 for (child_die = die->child;
11684 child_die && child_die->tag;
11685 child_die = sibling_die (child_die))
11686 {
11687 struct call_site_parameter *parameter;
11688 struct attribute *loc, *origin;
11689
11690 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11691 {
11692 /* Already printed the complaint above. */
11693 continue;
11694 }
11695
11696 gdb_assert (call_site->parameter_count < nparams);
11697 parameter = &call_site->parameter[call_site->parameter_count];
11698
11699 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11700 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11701 register is contained in DW_AT_GNU_call_site_value. */
11702
11703 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11704 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11705 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11706 {
11707 sect_offset offset;
11708
11709 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11710 offset = dwarf2_get_ref_die_offset (origin);
11711 if (!offset_in_cu_p (&cu->header, offset))
11712 {
11713 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11714 binding can be done only inside one CU. Such referenced DIE
11715 therefore cannot be even moved to DW_TAG_partial_unit. */
11716 complaint (&symfile_complaints,
11717 _("DW_AT_abstract_origin offset is not in CU for "
11718 "DW_TAG_GNU_call_site child DIE 0x%x "
11719 "[in module %s]"),
11720 child_die->offset.sect_off, objfile_name (objfile));
11721 continue;
11722 }
11723 parameter->u.param_offset.cu_off = (offset.sect_off
11724 - cu->header.offset.sect_off);
11725 }
11726 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11727 {
11728 complaint (&symfile_complaints,
11729 _("No DW_FORM_block* DW_AT_location for "
11730 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11731 child_die->offset.sect_off, objfile_name (objfile));
11732 continue;
11733 }
11734 else
11735 {
11736 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11737 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11738 if (parameter->u.dwarf_reg != -1)
11739 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11740 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11741 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11742 &parameter->u.fb_offset))
11743 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11744 else
11745 {
11746 complaint (&symfile_complaints,
11747 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11748 "for DW_FORM_block* DW_AT_location is supported for "
11749 "DW_TAG_GNU_call_site child DIE 0x%x "
11750 "[in module %s]"),
11751 child_die->offset.sect_off, objfile_name (objfile));
11752 continue;
11753 }
11754 }
11755
11756 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11757 if (!attr_form_is_block (attr))
11758 {
11759 complaint (&symfile_complaints,
11760 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11761 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11762 child_die->offset.sect_off, objfile_name (objfile));
11763 continue;
11764 }
11765 parameter->value = DW_BLOCK (attr)->data;
11766 parameter->value_size = DW_BLOCK (attr)->size;
11767
11768 /* Parameters are not pre-cleared by memset above. */
11769 parameter->data_value = NULL;
11770 parameter->data_value_size = 0;
11771 call_site->parameter_count++;
11772
11773 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11774 if (attr)
11775 {
11776 if (!attr_form_is_block (attr))
11777 complaint (&symfile_complaints,
11778 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11780 child_die->offset.sect_off, objfile_name (objfile));
11781 else
11782 {
11783 parameter->data_value = DW_BLOCK (attr)->data;
11784 parameter->data_value_size = DW_BLOCK (attr)->size;
11785 }
11786 }
11787 }
11788 }
11789
11790 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11791 Return 1 if the attributes are present and valid, otherwise, return 0.
11792 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11793
11794 static int
11795 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11796 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11797 struct partial_symtab *ranges_pst)
11798 {
11799 struct objfile *objfile = cu->objfile;
11800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11801 struct comp_unit_head *cu_header = &cu->header;
11802 bfd *obfd = objfile->obfd;
11803 unsigned int addr_size = cu_header->addr_size;
11804 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11805 /* Base address selection entry. */
11806 CORE_ADDR base;
11807 int found_base;
11808 unsigned int dummy;
11809 const gdb_byte *buffer;
11810 CORE_ADDR marker;
11811 int low_set;
11812 CORE_ADDR low = 0;
11813 CORE_ADDR high = 0;
11814 CORE_ADDR baseaddr;
11815
11816 found_base = cu->base_known;
11817 base = cu->base_address;
11818
11819 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11820 if (offset >= dwarf2_per_objfile->ranges.size)
11821 {
11822 complaint (&symfile_complaints,
11823 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11824 offset);
11825 return 0;
11826 }
11827 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11828
11829 /* Read in the largest possible address. */
11830 marker = read_address (obfd, buffer, cu, &dummy);
11831 if ((marker & mask) == mask)
11832 {
11833 /* If we found the largest possible address, then
11834 read the base address. */
11835 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11836 buffer += 2 * addr_size;
11837 offset += 2 * addr_size;
11838 found_base = 1;
11839 }
11840
11841 low_set = 0;
11842
11843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11844
11845 while (1)
11846 {
11847 CORE_ADDR range_beginning, range_end;
11848
11849 range_beginning = read_address (obfd, buffer, cu, &dummy);
11850 buffer += addr_size;
11851 range_end = read_address (obfd, buffer, cu, &dummy);
11852 buffer += addr_size;
11853 offset += 2 * addr_size;
11854
11855 /* An end of list marker is a pair of zero addresses. */
11856 if (range_beginning == 0 && range_end == 0)
11857 /* Found the end of list entry. */
11858 break;
11859
11860 /* Each base address selection entry is a pair of 2 values.
11861 The first is the largest possible address, the second is
11862 the base address. Check for a base address here. */
11863 if ((range_beginning & mask) == mask)
11864 {
11865 /* If we found the largest possible address, then
11866 read the base address. */
11867 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11868 found_base = 1;
11869 continue;
11870 }
11871
11872 if (!found_base)
11873 {
11874 /* We have no valid base address for the ranges
11875 data. */
11876 complaint (&symfile_complaints,
11877 _("Invalid .debug_ranges data (no base address)"));
11878 return 0;
11879 }
11880
11881 if (range_beginning > range_end)
11882 {
11883 /* Inverted range entries are invalid. */
11884 complaint (&symfile_complaints,
11885 _("Invalid .debug_ranges data (inverted range)"));
11886 return 0;
11887 }
11888
11889 /* Empty range entries have no effect. */
11890 if (range_beginning == range_end)
11891 continue;
11892
11893 range_beginning += base;
11894 range_end += base;
11895
11896 /* A not-uncommon case of bad debug info.
11897 Don't pollute the addrmap with bad data. */
11898 if (range_beginning + baseaddr == 0
11899 && !dwarf2_per_objfile->has_section_at_zero)
11900 {
11901 complaint (&symfile_complaints,
11902 _(".debug_ranges entry has start address of zero"
11903 " [in module %s]"), objfile_name (objfile));
11904 continue;
11905 }
11906
11907 if (ranges_pst != NULL)
11908 {
11909 CORE_ADDR lowpc;
11910 CORE_ADDR highpc;
11911
11912 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11913 range_beginning + baseaddr);
11914 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11915 range_end + baseaddr);
11916 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11917 ranges_pst);
11918 }
11919
11920 /* FIXME: This is recording everything as a low-high
11921 segment of consecutive addresses. We should have a
11922 data structure for discontiguous block ranges
11923 instead. */
11924 if (! low_set)
11925 {
11926 low = range_beginning;
11927 high = range_end;
11928 low_set = 1;
11929 }
11930 else
11931 {
11932 if (range_beginning < low)
11933 low = range_beginning;
11934 if (range_end > high)
11935 high = range_end;
11936 }
11937 }
11938
11939 if (! low_set)
11940 /* If the first entry is an end-of-list marker, the range
11941 describes an empty scope, i.e. no instructions. */
11942 return 0;
11943
11944 if (low_return)
11945 *low_return = low;
11946 if (high_return)
11947 *high_return = high;
11948 return 1;
11949 }
11950
11951 /* Get low and high pc attributes from a die. Return 1 if the attributes
11952 are present and valid, otherwise, return 0. Return -1 if the range is
11953 discontinuous, i.e. derived from DW_AT_ranges information. */
11954
11955 static int
11956 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11957 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11958 struct partial_symtab *pst)
11959 {
11960 struct attribute *attr;
11961 struct attribute *attr_high;
11962 CORE_ADDR low = 0;
11963 CORE_ADDR high = 0;
11964 int ret = 0;
11965
11966 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11967 if (attr_high)
11968 {
11969 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11970 if (attr)
11971 {
11972 low = attr_value_as_address (attr);
11973 high = attr_value_as_address (attr_high);
11974 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11975 high += low;
11976 }
11977 else
11978 /* Found high w/o low attribute. */
11979 return 0;
11980
11981 /* Found consecutive range of addresses. */
11982 ret = 1;
11983 }
11984 else
11985 {
11986 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11987 if (attr != NULL)
11988 {
11989 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11990 We take advantage of the fact that DW_AT_ranges does not appear
11991 in DW_TAG_compile_unit of DWO files. */
11992 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11993 unsigned int ranges_offset = (DW_UNSND (attr)
11994 + (need_ranges_base
11995 ? cu->ranges_base
11996 : 0));
11997
11998 /* Value of the DW_AT_ranges attribute is the offset in the
11999 .debug_ranges section. */
12000 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12001 return 0;
12002 /* Found discontinuous range of addresses. */
12003 ret = -1;
12004 }
12005 }
12006
12007 /* read_partial_die has also the strict LOW < HIGH requirement. */
12008 if (high <= low)
12009 return 0;
12010
12011 /* When using the GNU linker, .gnu.linkonce. sections are used to
12012 eliminate duplicate copies of functions and vtables and such.
12013 The linker will arbitrarily choose one and discard the others.
12014 The AT_*_pc values for such functions refer to local labels in
12015 these sections. If the section from that file was discarded, the
12016 labels are not in the output, so the relocs get a value of 0.
12017 If this is a discarded function, mark the pc bounds as invalid,
12018 so that GDB will ignore it. */
12019 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12020 return 0;
12021
12022 *lowpc = low;
12023 if (highpc)
12024 *highpc = high;
12025 return ret;
12026 }
12027
12028 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12029 its low and high PC addresses. Do nothing if these addresses could not
12030 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12031 and HIGHPC to the high address if greater than HIGHPC. */
12032
12033 static void
12034 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12035 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12036 struct dwarf2_cu *cu)
12037 {
12038 CORE_ADDR low, high;
12039 struct die_info *child = die->child;
12040
12041 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12042 {
12043 *lowpc = min (*lowpc, low);
12044 *highpc = max (*highpc, high);
12045 }
12046
12047 /* If the language does not allow nested subprograms (either inside
12048 subprograms or lexical blocks), we're done. */
12049 if (cu->language != language_ada)
12050 return;
12051
12052 /* Check all the children of the given DIE. If it contains nested
12053 subprograms, then check their pc bounds. Likewise, we need to
12054 check lexical blocks as well, as they may also contain subprogram
12055 definitions. */
12056 while (child && child->tag)
12057 {
12058 if (child->tag == DW_TAG_subprogram
12059 || child->tag == DW_TAG_lexical_block)
12060 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12061 child = sibling_die (child);
12062 }
12063 }
12064
12065 /* Get the low and high pc's represented by the scope DIE, and store
12066 them in *LOWPC and *HIGHPC. If the correct values can't be
12067 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12068
12069 static void
12070 get_scope_pc_bounds (struct die_info *die,
12071 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12072 struct dwarf2_cu *cu)
12073 {
12074 CORE_ADDR best_low = (CORE_ADDR) -1;
12075 CORE_ADDR best_high = (CORE_ADDR) 0;
12076 CORE_ADDR current_low, current_high;
12077
12078 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12079 {
12080 best_low = current_low;
12081 best_high = current_high;
12082 }
12083 else
12084 {
12085 struct die_info *child = die->child;
12086
12087 while (child && child->tag)
12088 {
12089 switch (child->tag) {
12090 case DW_TAG_subprogram:
12091 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12092 break;
12093 case DW_TAG_namespace:
12094 case DW_TAG_module:
12095 /* FIXME: carlton/2004-01-16: Should we do this for
12096 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12097 that current GCC's always emit the DIEs corresponding
12098 to definitions of methods of classes as children of a
12099 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12100 the DIEs giving the declarations, which could be
12101 anywhere). But I don't see any reason why the
12102 standards says that they have to be there. */
12103 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12104
12105 if (current_low != ((CORE_ADDR) -1))
12106 {
12107 best_low = min (best_low, current_low);
12108 best_high = max (best_high, current_high);
12109 }
12110 break;
12111 default:
12112 /* Ignore. */
12113 break;
12114 }
12115
12116 child = sibling_die (child);
12117 }
12118 }
12119
12120 *lowpc = best_low;
12121 *highpc = best_high;
12122 }
12123
12124 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12125 in DIE. */
12126
12127 static void
12128 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12129 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12130 {
12131 struct objfile *objfile = cu->objfile;
12132 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12133 struct attribute *attr;
12134 struct attribute *attr_high;
12135
12136 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12137 if (attr_high)
12138 {
12139 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12140 if (attr)
12141 {
12142 CORE_ADDR low = attr_value_as_address (attr);
12143 CORE_ADDR high = attr_value_as_address (attr_high);
12144
12145 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12146 high += low;
12147
12148 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12149 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12150 record_block_range (block, low, high - 1);
12151 }
12152 }
12153
12154 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12155 if (attr)
12156 {
12157 bfd *obfd = objfile->obfd;
12158 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12159 We take advantage of the fact that DW_AT_ranges does not appear
12160 in DW_TAG_compile_unit of DWO files. */
12161 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12162
12163 /* The value of the DW_AT_ranges attribute is the offset of the
12164 address range list in the .debug_ranges section. */
12165 unsigned long offset = (DW_UNSND (attr)
12166 + (need_ranges_base ? cu->ranges_base : 0));
12167 const gdb_byte *buffer;
12168
12169 /* For some target architectures, but not others, the
12170 read_address function sign-extends the addresses it returns.
12171 To recognize base address selection entries, we need a
12172 mask. */
12173 unsigned int addr_size = cu->header.addr_size;
12174 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12175
12176 /* The base address, to which the next pair is relative. Note
12177 that this 'base' is a DWARF concept: most entries in a range
12178 list are relative, to reduce the number of relocs against the
12179 debugging information. This is separate from this function's
12180 'baseaddr' argument, which GDB uses to relocate debugging
12181 information from a shared library based on the address at
12182 which the library was loaded. */
12183 CORE_ADDR base = cu->base_address;
12184 int base_known = cu->base_known;
12185
12186 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12187 if (offset >= dwarf2_per_objfile->ranges.size)
12188 {
12189 complaint (&symfile_complaints,
12190 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12191 offset);
12192 return;
12193 }
12194 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12195
12196 for (;;)
12197 {
12198 unsigned int bytes_read;
12199 CORE_ADDR start, end;
12200
12201 start = read_address (obfd, buffer, cu, &bytes_read);
12202 buffer += bytes_read;
12203 end = read_address (obfd, buffer, cu, &bytes_read);
12204 buffer += bytes_read;
12205
12206 /* Did we find the end of the range list? */
12207 if (start == 0 && end == 0)
12208 break;
12209
12210 /* Did we find a base address selection entry? */
12211 else if ((start & base_select_mask) == base_select_mask)
12212 {
12213 base = end;
12214 base_known = 1;
12215 }
12216
12217 /* We found an ordinary address range. */
12218 else
12219 {
12220 if (!base_known)
12221 {
12222 complaint (&symfile_complaints,
12223 _("Invalid .debug_ranges data "
12224 "(no base address)"));
12225 return;
12226 }
12227
12228 if (start > end)
12229 {
12230 /* Inverted range entries are invalid. */
12231 complaint (&symfile_complaints,
12232 _("Invalid .debug_ranges data "
12233 "(inverted range)"));
12234 return;
12235 }
12236
12237 /* Empty range entries have no effect. */
12238 if (start == end)
12239 continue;
12240
12241 start += base + baseaddr;
12242 end += base + baseaddr;
12243
12244 /* A not-uncommon case of bad debug info.
12245 Don't pollute the addrmap with bad data. */
12246 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12247 {
12248 complaint (&symfile_complaints,
12249 _(".debug_ranges entry has start address of zero"
12250 " [in module %s]"), objfile_name (objfile));
12251 continue;
12252 }
12253
12254 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12255 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12256 record_block_range (block, start, end - 1);
12257 }
12258 }
12259 }
12260 }
12261
12262 /* Check whether the producer field indicates either of GCC < 4.6, or the
12263 Intel C/C++ compiler, and cache the result in CU. */
12264
12265 static void
12266 check_producer (struct dwarf2_cu *cu)
12267 {
12268 const char *cs;
12269 int major, minor;
12270
12271 if (cu->producer == NULL)
12272 {
12273 /* For unknown compilers expect their behavior is DWARF version
12274 compliant.
12275
12276 GCC started to support .debug_types sections by -gdwarf-4 since
12277 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12278 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12279 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12280 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12281 }
12282 else if ((major = producer_is_gcc (cu->producer, &minor)) > 0)
12283 {
12284 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12285 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12286 }
12287 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12288 cu->producer_is_icc = 1;
12289 else
12290 {
12291 /* For other non-GCC compilers, expect their behavior is DWARF version
12292 compliant. */
12293 }
12294
12295 cu->checked_producer = 1;
12296 }
12297
12298 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12299 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12300 during 4.6.0 experimental. */
12301
12302 static int
12303 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12304 {
12305 if (!cu->checked_producer)
12306 check_producer (cu);
12307
12308 return cu->producer_is_gxx_lt_4_6;
12309 }
12310
12311 /* Return the default accessibility type if it is not overriden by
12312 DW_AT_accessibility. */
12313
12314 static enum dwarf_access_attribute
12315 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12316 {
12317 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12318 {
12319 /* The default DWARF 2 accessibility for members is public, the default
12320 accessibility for inheritance is private. */
12321
12322 if (die->tag != DW_TAG_inheritance)
12323 return DW_ACCESS_public;
12324 else
12325 return DW_ACCESS_private;
12326 }
12327 else
12328 {
12329 /* DWARF 3+ defines the default accessibility a different way. The same
12330 rules apply now for DW_TAG_inheritance as for the members and it only
12331 depends on the container kind. */
12332
12333 if (die->parent->tag == DW_TAG_class_type)
12334 return DW_ACCESS_private;
12335 else
12336 return DW_ACCESS_public;
12337 }
12338 }
12339
12340 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12341 offset. If the attribute was not found return 0, otherwise return
12342 1. If it was found but could not properly be handled, set *OFFSET
12343 to 0. */
12344
12345 static int
12346 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12347 LONGEST *offset)
12348 {
12349 struct attribute *attr;
12350
12351 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12352 if (attr != NULL)
12353 {
12354 *offset = 0;
12355
12356 /* Note that we do not check for a section offset first here.
12357 This is because DW_AT_data_member_location is new in DWARF 4,
12358 so if we see it, we can assume that a constant form is really
12359 a constant and not a section offset. */
12360 if (attr_form_is_constant (attr))
12361 *offset = dwarf2_get_attr_constant_value (attr, 0);
12362 else if (attr_form_is_section_offset (attr))
12363 dwarf2_complex_location_expr_complaint ();
12364 else if (attr_form_is_block (attr))
12365 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12366 else
12367 dwarf2_complex_location_expr_complaint ();
12368
12369 return 1;
12370 }
12371
12372 return 0;
12373 }
12374
12375 /* Add an aggregate field to the field list. */
12376
12377 static void
12378 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12379 struct dwarf2_cu *cu)
12380 {
12381 struct objfile *objfile = cu->objfile;
12382 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12383 struct nextfield *new_field;
12384 struct attribute *attr;
12385 struct field *fp;
12386 const char *fieldname = "";
12387
12388 /* Allocate a new field list entry and link it in. */
12389 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12390 make_cleanup (xfree, new_field);
12391 memset (new_field, 0, sizeof (struct nextfield));
12392
12393 if (die->tag == DW_TAG_inheritance)
12394 {
12395 new_field->next = fip->baseclasses;
12396 fip->baseclasses = new_field;
12397 }
12398 else
12399 {
12400 new_field->next = fip->fields;
12401 fip->fields = new_field;
12402 }
12403 fip->nfields++;
12404
12405 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12406 if (attr)
12407 new_field->accessibility = DW_UNSND (attr);
12408 else
12409 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12410 if (new_field->accessibility != DW_ACCESS_public)
12411 fip->non_public_fields = 1;
12412
12413 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12414 if (attr)
12415 new_field->virtuality = DW_UNSND (attr);
12416 else
12417 new_field->virtuality = DW_VIRTUALITY_none;
12418
12419 fp = &new_field->field;
12420
12421 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12422 {
12423 LONGEST offset;
12424
12425 /* Data member other than a C++ static data member. */
12426
12427 /* Get type of field. */
12428 fp->type = die_type (die, cu);
12429
12430 SET_FIELD_BITPOS (*fp, 0);
12431
12432 /* Get bit size of field (zero if none). */
12433 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12434 if (attr)
12435 {
12436 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12437 }
12438 else
12439 {
12440 FIELD_BITSIZE (*fp) = 0;
12441 }
12442
12443 /* Get bit offset of field. */
12444 if (handle_data_member_location (die, cu, &offset))
12445 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12446 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12447 if (attr)
12448 {
12449 if (gdbarch_bits_big_endian (gdbarch))
12450 {
12451 /* For big endian bits, the DW_AT_bit_offset gives the
12452 additional bit offset from the MSB of the containing
12453 anonymous object to the MSB of the field. We don't
12454 have to do anything special since we don't need to
12455 know the size of the anonymous object. */
12456 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12457 }
12458 else
12459 {
12460 /* For little endian bits, compute the bit offset to the
12461 MSB of the anonymous object, subtract off the number of
12462 bits from the MSB of the field to the MSB of the
12463 object, and then subtract off the number of bits of
12464 the field itself. The result is the bit offset of
12465 the LSB of the field. */
12466 int anonymous_size;
12467 int bit_offset = DW_UNSND (attr);
12468
12469 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12470 if (attr)
12471 {
12472 /* The size of the anonymous object containing
12473 the bit field is explicit, so use the
12474 indicated size (in bytes). */
12475 anonymous_size = DW_UNSND (attr);
12476 }
12477 else
12478 {
12479 /* The size of the anonymous object containing
12480 the bit field must be inferred from the type
12481 attribute of the data member containing the
12482 bit field. */
12483 anonymous_size = TYPE_LENGTH (fp->type);
12484 }
12485 SET_FIELD_BITPOS (*fp,
12486 (FIELD_BITPOS (*fp)
12487 + anonymous_size * bits_per_byte
12488 - bit_offset - FIELD_BITSIZE (*fp)));
12489 }
12490 }
12491
12492 /* Get name of field. */
12493 fieldname = dwarf2_name (die, cu);
12494 if (fieldname == NULL)
12495 fieldname = "";
12496
12497 /* The name is already allocated along with this objfile, so we don't
12498 need to duplicate it for the type. */
12499 fp->name = fieldname;
12500
12501 /* Change accessibility for artificial fields (e.g. virtual table
12502 pointer or virtual base class pointer) to private. */
12503 if (dwarf2_attr (die, DW_AT_artificial, cu))
12504 {
12505 FIELD_ARTIFICIAL (*fp) = 1;
12506 new_field->accessibility = DW_ACCESS_private;
12507 fip->non_public_fields = 1;
12508 }
12509 }
12510 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12511 {
12512 /* C++ static member. */
12513
12514 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12515 is a declaration, but all versions of G++ as of this writing
12516 (so through at least 3.2.1) incorrectly generate
12517 DW_TAG_variable tags. */
12518
12519 const char *physname;
12520
12521 /* Get name of field. */
12522 fieldname = dwarf2_name (die, cu);
12523 if (fieldname == NULL)
12524 return;
12525
12526 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12527 if (attr
12528 /* Only create a symbol if this is an external value.
12529 new_symbol checks this and puts the value in the global symbol
12530 table, which we want. If it is not external, new_symbol
12531 will try to put the value in cu->list_in_scope which is wrong. */
12532 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12533 {
12534 /* A static const member, not much different than an enum as far as
12535 we're concerned, except that we can support more types. */
12536 new_symbol (die, NULL, cu);
12537 }
12538
12539 /* Get physical name. */
12540 physname = dwarf2_physname (fieldname, die, cu);
12541
12542 /* The name is already allocated along with this objfile, so we don't
12543 need to duplicate it for the type. */
12544 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12545 FIELD_TYPE (*fp) = die_type (die, cu);
12546 FIELD_NAME (*fp) = fieldname;
12547 }
12548 else if (die->tag == DW_TAG_inheritance)
12549 {
12550 LONGEST offset;
12551
12552 /* C++ base class field. */
12553 if (handle_data_member_location (die, cu, &offset))
12554 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12555 FIELD_BITSIZE (*fp) = 0;
12556 FIELD_TYPE (*fp) = die_type (die, cu);
12557 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12558 fip->nbaseclasses++;
12559 }
12560 }
12561
12562 /* Add a typedef defined in the scope of the FIP's class. */
12563
12564 static void
12565 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12566 struct dwarf2_cu *cu)
12567 {
12568 struct objfile *objfile = cu->objfile;
12569 struct typedef_field_list *new_field;
12570 struct attribute *attr;
12571 struct typedef_field *fp;
12572 char *fieldname = "";
12573
12574 /* Allocate a new field list entry and link it in. */
12575 new_field = xzalloc (sizeof (*new_field));
12576 make_cleanup (xfree, new_field);
12577
12578 gdb_assert (die->tag == DW_TAG_typedef);
12579
12580 fp = &new_field->field;
12581
12582 /* Get name of field. */
12583 fp->name = dwarf2_name (die, cu);
12584 if (fp->name == NULL)
12585 return;
12586
12587 fp->type = read_type_die (die, cu);
12588
12589 new_field->next = fip->typedef_field_list;
12590 fip->typedef_field_list = new_field;
12591 fip->typedef_field_list_count++;
12592 }
12593
12594 /* Create the vector of fields, and attach it to the type. */
12595
12596 static void
12597 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12598 struct dwarf2_cu *cu)
12599 {
12600 int nfields = fip->nfields;
12601
12602 /* Record the field count, allocate space for the array of fields,
12603 and create blank accessibility bitfields if necessary. */
12604 TYPE_NFIELDS (type) = nfields;
12605 TYPE_FIELDS (type) = (struct field *)
12606 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12607 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12608
12609 if (fip->non_public_fields && cu->language != language_ada)
12610 {
12611 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12612
12613 TYPE_FIELD_PRIVATE_BITS (type) =
12614 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12615 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12616
12617 TYPE_FIELD_PROTECTED_BITS (type) =
12618 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12619 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12620
12621 TYPE_FIELD_IGNORE_BITS (type) =
12622 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12623 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12624 }
12625
12626 /* If the type has baseclasses, allocate and clear a bit vector for
12627 TYPE_FIELD_VIRTUAL_BITS. */
12628 if (fip->nbaseclasses && cu->language != language_ada)
12629 {
12630 int num_bytes = B_BYTES (fip->nbaseclasses);
12631 unsigned char *pointer;
12632
12633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12634 pointer = TYPE_ALLOC (type, num_bytes);
12635 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12636 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12637 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12638 }
12639
12640 /* Copy the saved-up fields into the field vector. Start from the head of
12641 the list, adding to the tail of the field array, so that they end up in
12642 the same order in the array in which they were added to the list. */
12643 while (nfields-- > 0)
12644 {
12645 struct nextfield *fieldp;
12646
12647 if (fip->fields)
12648 {
12649 fieldp = fip->fields;
12650 fip->fields = fieldp->next;
12651 }
12652 else
12653 {
12654 fieldp = fip->baseclasses;
12655 fip->baseclasses = fieldp->next;
12656 }
12657
12658 TYPE_FIELD (type, nfields) = fieldp->field;
12659 switch (fieldp->accessibility)
12660 {
12661 case DW_ACCESS_private:
12662 if (cu->language != language_ada)
12663 SET_TYPE_FIELD_PRIVATE (type, nfields);
12664 break;
12665
12666 case DW_ACCESS_protected:
12667 if (cu->language != language_ada)
12668 SET_TYPE_FIELD_PROTECTED (type, nfields);
12669 break;
12670
12671 case DW_ACCESS_public:
12672 break;
12673
12674 default:
12675 /* Unknown accessibility. Complain and treat it as public. */
12676 {
12677 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12678 fieldp->accessibility);
12679 }
12680 break;
12681 }
12682 if (nfields < fip->nbaseclasses)
12683 {
12684 switch (fieldp->virtuality)
12685 {
12686 case DW_VIRTUALITY_virtual:
12687 case DW_VIRTUALITY_pure_virtual:
12688 if (cu->language == language_ada)
12689 error (_("unexpected virtuality in component of Ada type"));
12690 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12691 break;
12692 }
12693 }
12694 }
12695 }
12696
12697 /* Return true if this member function is a constructor, false
12698 otherwise. */
12699
12700 static int
12701 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12702 {
12703 const char *fieldname;
12704 const char *typename;
12705 int len;
12706
12707 if (die->parent == NULL)
12708 return 0;
12709
12710 if (die->parent->tag != DW_TAG_structure_type
12711 && die->parent->tag != DW_TAG_union_type
12712 && die->parent->tag != DW_TAG_class_type)
12713 return 0;
12714
12715 fieldname = dwarf2_name (die, cu);
12716 typename = dwarf2_name (die->parent, cu);
12717 if (fieldname == NULL || typename == NULL)
12718 return 0;
12719
12720 len = strlen (fieldname);
12721 return (strncmp (fieldname, typename, len) == 0
12722 && (typename[len] == '\0' || typename[len] == '<'));
12723 }
12724
12725 /* Add a member function to the proper fieldlist. */
12726
12727 static void
12728 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12729 struct type *type, struct dwarf2_cu *cu)
12730 {
12731 struct objfile *objfile = cu->objfile;
12732 struct attribute *attr;
12733 struct fnfieldlist *flp;
12734 int i;
12735 struct fn_field *fnp;
12736 const char *fieldname;
12737 struct nextfnfield *new_fnfield;
12738 struct type *this_type;
12739 enum dwarf_access_attribute accessibility;
12740
12741 if (cu->language == language_ada)
12742 error (_("unexpected member function in Ada type"));
12743
12744 /* Get name of member function. */
12745 fieldname = dwarf2_name (die, cu);
12746 if (fieldname == NULL)
12747 return;
12748
12749 /* Look up member function name in fieldlist. */
12750 for (i = 0; i < fip->nfnfields; i++)
12751 {
12752 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12753 break;
12754 }
12755
12756 /* Create new list element if necessary. */
12757 if (i < fip->nfnfields)
12758 flp = &fip->fnfieldlists[i];
12759 else
12760 {
12761 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12762 {
12763 fip->fnfieldlists = (struct fnfieldlist *)
12764 xrealloc (fip->fnfieldlists,
12765 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12766 * sizeof (struct fnfieldlist));
12767 if (fip->nfnfields == 0)
12768 make_cleanup (free_current_contents, &fip->fnfieldlists);
12769 }
12770 flp = &fip->fnfieldlists[fip->nfnfields];
12771 flp->name = fieldname;
12772 flp->length = 0;
12773 flp->head = NULL;
12774 i = fip->nfnfields++;
12775 }
12776
12777 /* Create a new member function field and chain it to the field list
12778 entry. */
12779 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12780 make_cleanup (xfree, new_fnfield);
12781 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12782 new_fnfield->next = flp->head;
12783 flp->head = new_fnfield;
12784 flp->length++;
12785
12786 /* Fill in the member function field info. */
12787 fnp = &new_fnfield->fnfield;
12788
12789 /* Delay processing of the physname until later. */
12790 if (cu->language == language_cplus || cu->language == language_java)
12791 {
12792 add_to_method_list (type, i, flp->length - 1, fieldname,
12793 die, cu);
12794 }
12795 else
12796 {
12797 const char *physname = dwarf2_physname (fieldname, die, cu);
12798 fnp->physname = physname ? physname : "";
12799 }
12800
12801 fnp->type = alloc_type (objfile);
12802 this_type = read_type_die (die, cu);
12803 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12804 {
12805 int nparams = TYPE_NFIELDS (this_type);
12806
12807 /* TYPE is the domain of this method, and THIS_TYPE is the type
12808 of the method itself (TYPE_CODE_METHOD). */
12809 smash_to_method_type (fnp->type, type,
12810 TYPE_TARGET_TYPE (this_type),
12811 TYPE_FIELDS (this_type),
12812 TYPE_NFIELDS (this_type),
12813 TYPE_VARARGS (this_type));
12814
12815 /* Handle static member functions.
12816 Dwarf2 has no clean way to discern C++ static and non-static
12817 member functions. G++ helps GDB by marking the first
12818 parameter for non-static member functions (which is the this
12819 pointer) as artificial. We obtain this information from
12820 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12821 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12822 fnp->voffset = VOFFSET_STATIC;
12823 }
12824 else
12825 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12826 dwarf2_full_name (fieldname, die, cu));
12827
12828 /* Get fcontext from DW_AT_containing_type if present. */
12829 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12830 fnp->fcontext = die_containing_type (die, cu);
12831
12832 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12833 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12834
12835 /* Get accessibility. */
12836 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12837 if (attr)
12838 accessibility = DW_UNSND (attr);
12839 else
12840 accessibility = dwarf2_default_access_attribute (die, cu);
12841 switch (accessibility)
12842 {
12843 case DW_ACCESS_private:
12844 fnp->is_private = 1;
12845 break;
12846 case DW_ACCESS_protected:
12847 fnp->is_protected = 1;
12848 break;
12849 }
12850
12851 /* Check for artificial methods. */
12852 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12853 if (attr && DW_UNSND (attr) != 0)
12854 fnp->is_artificial = 1;
12855
12856 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12857
12858 /* Get index in virtual function table if it is a virtual member
12859 function. For older versions of GCC, this is an offset in the
12860 appropriate virtual table, as specified by DW_AT_containing_type.
12861 For everyone else, it is an expression to be evaluated relative
12862 to the object address. */
12863
12864 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12865 if (attr)
12866 {
12867 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12868 {
12869 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12870 {
12871 /* Old-style GCC. */
12872 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12873 }
12874 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12875 || (DW_BLOCK (attr)->size > 1
12876 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12877 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12878 {
12879 struct dwarf_block blk;
12880 int offset;
12881
12882 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12883 ? 1 : 2);
12884 blk.size = DW_BLOCK (attr)->size - offset;
12885 blk.data = DW_BLOCK (attr)->data + offset;
12886 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12887 if ((fnp->voffset % cu->header.addr_size) != 0)
12888 dwarf2_complex_location_expr_complaint ();
12889 else
12890 fnp->voffset /= cu->header.addr_size;
12891 fnp->voffset += 2;
12892 }
12893 else
12894 dwarf2_complex_location_expr_complaint ();
12895
12896 if (!fnp->fcontext)
12897 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12898 }
12899 else if (attr_form_is_section_offset (attr))
12900 {
12901 dwarf2_complex_location_expr_complaint ();
12902 }
12903 else
12904 {
12905 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12906 fieldname);
12907 }
12908 }
12909 else
12910 {
12911 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12912 if (attr && DW_UNSND (attr))
12913 {
12914 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12915 complaint (&symfile_complaints,
12916 _("Member function \"%s\" (offset %d) is virtual "
12917 "but the vtable offset is not specified"),
12918 fieldname, die->offset.sect_off);
12919 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12920 TYPE_CPLUS_DYNAMIC (type) = 1;
12921 }
12922 }
12923 }
12924
12925 /* Create the vector of member function fields, and attach it to the type. */
12926
12927 static void
12928 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12929 struct dwarf2_cu *cu)
12930 {
12931 struct fnfieldlist *flp;
12932 int i;
12933
12934 if (cu->language == language_ada)
12935 error (_("unexpected member functions in Ada type"));
12936
12937 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12938 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12939 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12940
12941 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12942 {
12943 struct nextfnfield *nfp = flp->head;
12944 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12945 int k;
12946
12947 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12948 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12949 fn_flp->fn_fields = (struct fn_field *)
12950 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12951 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12952 fn_flp->fn_fields[k] = nfp->fnfield;
12953 }
12954
12955 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12956 }
12957
12958 /* Returns non-zero if NAME is the name of a vtable member in CU's
12959 language, zero otherwise. */
12960 static int
12961 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12962 {
12963 static const char vptr[] = "_vptr";
12964 static const char vtable[] = "vtable";
12965
12966 /* Look for the C++ and Java forms of the vtable. */
12967 if ((cu->language == language_java
12968 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12969 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12970 && is_cplus_marker (name[sizeof (vptr) - 1])))
12971 return 1;
12972
12973 return 0;
12974 }
12975
12976 /* GCC outputs unnamed structures that are really pointers to member
12977 functions, with the ABI-specified layout. If TYPE describes
12978 such a structure, smash it into a member function type.
12979
12980 GCC shouldn't do this; it should just output pointer to member DIEs.
12981 This is GCC PR debug/28767. */
12982
12983 static void
12984 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12985 {
12986 struct type *pfn_type, *domain_type, *new_type;
12987
12988 /* Check for a structure with no name and two children. */
12989 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12990 return;
12991
12992 /* Check for __pfn and __delta members. */
12993 if (TYPE_FIELD_NAME (type, 0) == NULL
12994 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12995 || TYPE_FIELD_NAME (type, 1) == NULL
12996 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12997 return;
12998
12999 /* Find the type of the method. */
13000 pfn_type = TYPE_FIELD_TYPE (type, 0);
13001 if (pfn_type == NULL
13002 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13003 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13004 return;
13005
13006 /* Look for the "this" argument. */
13007 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13008 if (TYPE_NFIELDS (pfn_type) == 0
13009 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13010 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13011 return;
13012
13013 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13014 new_type = alloc_type (objfile);
13015 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
13016 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13017 TYPE_VARARGS (pfn_type));
13018 smash_to_methodptr_type (type, new_type);
13019 }
13020
13021 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13022 (icc). */
13023
13024 static int
13025 producer_is_icc (struct dwarf2_cu *cu)
13026 {
13027 if (!cu->checked_producer)
13028 check_producer (cu);
13029
13030 return cu->producer_is_icc;
13031 }
13032
13033 /* Called when we find the DIE that starts a structure or union scope
13034 (definition) to create a type for the structure or union. Fill in
13035 the type's name and general properties; the members will not be
13036 processed until process_structure_scope. A symbol table entry for
13037 the type will also not be done until process_structure_scope (assuming
13038 the type has a name).
13039
13040 NOTE: we need to call these functions regardless of whether or not the
13041 DIE has a DW_AT_name attribute, since it might be an anonymous
13042 structure or union. This gets the type entered into our set of
13043 user defined types. */
13044
13045 static struct type *
13046 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13047 {
13048 struct objfile *objfile = cu->objfile;
13049 struct type *type;
13050 struct attribute *attr;
13051 const char *name;
13052
13053 /* If the definition of this type lives in .debug_types, read that type.
13054 Don't follow DW_AT_specification though, that will take us back up
13055 the chain and we want to go down. */
13056 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13057 if (attr)
13058 {
13059 type = get_DW_AT_signature_type (die, attr, cu);
13060
13061 /* The type's CU may not be the same as CU.
13062 Ensure TYPE is recorded with CU in die_type_hash. */
13063 return set_die_type (die, type, cu);
13064 }
13065
13066 type = alloc_type (objfile);
13067 INIT_CPLUS_SPECIFIC (type);
13068
13069 name = dwarf2_name (die, cu);
13070 if (name != NULL)
13071 {
13072 if (cu->language == language_cplus
13073 || cu->language == language_java)
13074 {
13075 const char *full_name = dwarf2_full_name (name, die, cu);
13076
13077 /* dwarf2_full_name might have already finished building the DIE's
13078 type. If so, there is no need to continue. */
13079 if (get_die_type (die, cu) != NULL)
13080 return get_die_type (die, cu);
13081
13082 TYPE_TAG_NAME (type) = full_name;
13083 if (die->tag == DW_TAG_structure_type
13084 || die->tag == DW_TAG_class_type)
13085 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13086 }
13087 else
13088 {
13089 /* The name is already allocated along with this objfile, so
13090 we don't need to duplicate it for the type. */
13091 TYPE_TAG_NAME (type) = name;
13092 if (die->tag == DW_TAG_class_type)
13093 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13094 }
13095 }
13096
13097 if (die->tag == DW_TAG_structure_type)
13098 {
13099 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13100 }
13101 else if (die->tag == DW_TAG_union_type)
13102 {
13103 TYPE_CODE (type) = TYPE_CODE_UNION;
13104 }
13105 else
13106 {
13107 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13108 }
13109
13110 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13111 TYPE_DECLARED_CLASS (type) = 1;
13112
13113 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13114 if (attr)
13115 {
13116 TYPE_LENGTH (type) = DW_UNSND (attr);
13117 }
13118 else
13119 {
13120 TYPE_LENGTH (type) = 0;
13121 }
13122
13123 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13124 {
13125 /* ICC does not output the required DW_AT_declaration
13126 on incomplete types, but gives them a size of zero. */
13127 TYPE_STUB (type) = 1;
13128 }
13129 else
13130 TYPE_STUB_SUPPORTED (type) = 1;
13131
13132 if (die_is_declaration (die, cu))
13133 TYPE_STUB (type) = 1;
13134 else if (attr == NULL && die->child == NULL
13135 && producer_is_realview (cu->producer))
13136 /* RealView does not output the required DW_AT_declaration
13137 on incomplete types. */
13138 TYPE_STUB (type) = 1;
13139
13140 /* We need to add the type field to the die immediately so we don't
13141 infinitely recurse when dealing with pointers to the structure
13142 type within the structure itself. */
13143 set_die_type (die, type, cu);
13144
13145 /* set_die_type should be already done. */
13146 set_descriptive_type (type, die, cu);
13147
13148 return type;
13149 }
13150
13151 /* Finish creating a structure or union type, including filling in
13152 its members and creating a symbol for it. */
13153
13154 static void
13155 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13156 {
13157 struct objfile *objfile = cu->objfile;
13158 struct die_info *child_die;
13159 struct type *type;
13160
13161 type = get_die_type (die, cu);
13162 if (type == NULL)
13163 type = read_structure_type (die, cu);
13164
13165 if (die->child != NULL && ! die_is_declaration (die, cu))
13166 {
13167 struct field_info fi;
13168 VEC (symbolp) *template_args = NULL;
13169 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13170
13171 memset (&fi, 0, sizeof (struct field_info));
13172
13173 child_die = die->child;
13174
13175 while (child_die && child_die->tag)
13176 {
13177 if (child_die->tag == DW_TAG_member
13178 || child_die->tag == DW_TAG_variable)
13179 {
13180 /* NOTE: carlton/2002-11-05: A C++ static data member
13181 should be a DW_TAG_member that is a declaration, but
13182 all versions of G++ as of this writing (so through at
13183 least 3.2.1) incorrectly generate DW_TAG_variable
13184 tags for them instead. */
13185 dwarf2_add_field (&fi, child_die, cu);
13186 }
13187 else if (child_die->tag == DW_TAG_subprogram)
13188 {
13189 /* C++ member function. */
13190 dwarf2_add_member_fn (&fi, child_die, type, cu);
13191 }
13192 else if (child_die->tag == DW_TAG_inheritance)
13193 {
13194 /* C++ base class field. */
13195 dwarf2_add_field (&fi, child_die, cu);
13196 }
13197 else if (child_die->tag == DW_TAG_typedef)
13198 dwarf2_add_typedef (&fi, child_die, cu);
13199 else if (child_die->tag == DW_TAG_template_type_param
13200 || child_die->tag == DW_TAG_template_value_param)
13201 {
13202 struct symbol *arg = new_symbol (child_die, NULL, cu);
13203
13204 if (arg != NULL)
13205 VEC_safe_push (symbolp, template_args, arg);
13206 }
13207
13208 child_die = sibling_die (child_die);
13209 }
13210
13211 /* Attach template arguments to type. */
13212 if (! VEC_empty (symbolp, template_args))
13213 {
13214 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13215 TYPE_N_TEMPLATE_ARGUMENTS (type)
13216 = VEC_length (symbolp, template_args);
13217 TYPE_TEMPLATE_ARGUMENTS (type)
13218 = obstack_alloc (&objfile->objfile_obstack,
13219 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13220 * sizeof (struct symbol *)));
13221 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13222 VEC_address (symbolp, template_args),
13223 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13224 * sizeof (struct symbol *)));
13225 VEC_free (symbolp, template_args);
13226 }
13227
13228 /* Attach fields and member functions to the type. */
13229 if (fi.nfields)
13230 dwarf2_attach_fields_to_type (&fi, type, cu);
13231 if (fi.nfnfields)
13232 {
13233 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13234
13235 /* Get the type which refers to the base class (possibly this
13236 class itself) which contains the vtable pointer for the current
13237 class from the DW_AT_containing_type attribute. This use of
13238 DW_AT_containing_type is a GNU extension. */
13239
13240 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13241 {
13242 struct type *t = die_containing_type (die, cu);
13243
13244 TYPE_VPTR_BASETYPE (type) = t;
13245 if (type == t)
13246 {
13247 int i;
13248
13249 /* Our own class provides vtbl ptr. */
13250 for (i = TYPE_NFIELDS (t) - 1;
13251 i >= TYPE_N_BASECLASSES (t);
13252 --i)
13253 {
13254 const char *fieldname = TYPE_FIELD_NAME (t, i);
13255
13256 if (is_vtable_name (fieldname, cu))
13257 {
13258 TYPE_VPTR_FIELDNO (type) = i;
13259 break;
13260 }
13261 }
13262
13263 /* Complain if virtual function table field not found. */
13264 if (i < TYPE_N_BASECLASSES (t))
13265 complaint (&symfile_complaints,
13266 _("virtual function table pointer "
13267 "not found when defining class '%s'"),
13268 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13269 "");
13270 }
13271 else
13272 {
13273 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13274 }
13275 }
13276 else if (cu->producer
13277 && strncmp (cu->producer,
13278 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13279 {
13280 /* The IBM XLC compiler does not provide direct indication
13281 of the containing type, but the vtable pointer is
13282 always named __vfp. */
13283
13284 int i;
13285
13286 for (i = TYPE_NFIELDS (type) - 1;
13287 i >= TYPE_N_BASECLASSES (type);
13288 --i)
13289 {
13290 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13291 {
13292 TYPE_VPTR_FIELDNO (type) = i;
13293 TYPE_VPTR_BASETYPE (type) = type;
13294 break;
13295 }
13296 }
13297 }
13298 }
13299
13300 /* Copy fi.typedef_field_list linked list elements content into the
13301 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13302 if (fi.typedef_field_list)
13303 {
13304 int i = fi.typedef_field_list_count;
13305
13306 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13307 TYPE_TYPEDEF_FIELD_ARRAY (type)
13308 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13309 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13310
13311 /* Reverse the list order to keep the debug info elements order. */
13312 while (--i >= 0)
13313 {
13314 struct typedef_field *dest, *src;
13315
13316 dest = &TYPE_TYPEDEF_FIELD (type, i);
13317 src = &fi.typedef_field_list->field;
13318 fi.typedef_field_list = fi.typedef_field_list->next;
13319 *dest = *src;
13320 }
13321 }
13322
13323 do_cleanups (back_to);
13324
13325 if (HAVE_CPLUS_STRUCT (type))
13326 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13327 }
13328
13329 quirk_gcc_member_function_pointer (type, objfile);
13330
13331 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13332 snapshots) has been known to create a die giving a declaration
13333 for a class that has, as a child, a die giving a definition for a
13334 nested class. So we have to process our children even if the
13335 current die is a declaration. Normally, of course, a declaration
13336 won't have any children at all. */
13337
13338 child_die = die->child;
13339
13340 while (child_die != NULL && child_die->tag)
13341 {
13342 if (child_die->tag == DW_TAG_member
13343 || child_die->tag == DW_TAG_variable
13344 || child_die->tag == DW_TAG_inheritance
13345 || child_die->tag == DW_TAG_template_value_param
13346 || child_die->tag == DW_TAG_template_type_param)
13347 {
13348 /* Do nothing. */
13349 }
13350 else
13351 process_die (child_die, cu);
13352
13353 child_die = sibling_die (child_die);
13354 }
13355
13356 /* Do not consider external references. According to the DWARF standard,
13357 these DIEs are identified by the fact that they have no byte_size
13358 attribute, and a declaration attribute. */
13359 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13360 || !die_is_declaration (die, cu))
13361 new_symbol (die, type, cu);
13362 }
13363
13364 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13365 update TYPE using some information only available in DIE's children. */
13366
13367 static void
13368 update_enumeration_type_from_children (struct die_info *die,
13369 struct type *type,
13370 struct dwarf2_cu *cu)
13371 {
13372 struct obstack obstack;
13373 struct die_info *child_die;
13374 int unsigned_enum = 1;
13375 int flag_enum = 1;
13376 ULONGEST mask = 0;
13377 struct cleanup *old_chain;
13378
13379 obstack_init (&obstack);
13380 old_chain = make_cleanup_obstack_free (&obstack);
13381
13382 for (child_die = die->child;
13383 child_die != NULL && child_die->tag;
13384 child_die = sibling_die (child_die))
13385 {
13386 struct attribute *attr;
13387 LONGEST value;
13388 const gdb_byte *bytes;
13389 struct dwarf2_locexpr_baton *baton;
13390 const char *name;
13391
13392 if (child_die->tag != DW_TAG_enumerator)
13393 continue;
13394
13395 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13396 if (attr == NULL)
13397 continue;
13398
13399 name = dwarf2_name (child_die, cu);
13400 if (name == NULL)
13401 name = "<anonymous enumerator>";
13402
13403 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13404 &value, &bytes, &baton);
13405 if (value < 0)
13406 {
13407 unsigned_enum = 0;
13408 flag_enum = 0;
13409 }
13410 else if ((mask & value) != 0)
13411 flag_enum = 0;
13412 else
13413 mask |= value;
13414
13415 /* If we already know that the enum type is neither unsigned, nor
13416 a flag type, no need to look at the rest of the enumerates. */
13417 if (!unsigned_enum && !flag_enum)
13418 break;
13419 }
13420
13421 if (unsigned_enum)
13422 TYPE_UNSIGNED (type) = 1;
13423 if (flag_enum)
13424 TYPE_FLAG_ENUM (type) = 1;
13425
13426 do_cleanups (old_chain);
13427 }
13428
13429 /* Given a DW_AT_enumeration_type die, set its type. We do not
13430 complete the type's fields yet, or create any symbols. */
13431
13432 static struct type *
13433 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13434 {
13435 struct objfile *objfile = cu->objfile;
13436 struct type *type;
13437 struct attribute *attr;
13438 const char *name;
13439
13440 /* If the definition of this type lives in .debug_types, read that type.
13441 Don't follow DW_AT_specification though, that will take us back up
13442 the chain and we want to go down. */
13443 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13444 if (attr)
13445 {
13446 type = get_DW_AT_signature_type (die, attr, cu);
13447
13448 /* The type's CU may not be the same as CU.
13449 Ensure TYPE is recorded with CU in die_type_hash. */
13450 return set_die_type (die, type, cu);
13451 }
13452
13453 type = alloc_type (objfile);
13454
13455 TYPE_CODE (type) = TYPE_CODE_ENUM;
13456 name = dwarf2_full_name (NULL, die, cu);
13457 if (name != NULL)
13458 TYPE_TAG_NAME (type) = name;
13459
13460 attr = dwarf2_attr (die, DW_AT_type, cu);
13461 if (attr != NULL)
13462 {
13463 struct type *underlying_type = die_type (die, cu);
13464
13465 TYPE_TARGET_TYPE (type) = underlying_type;
13466 }
13467
13468 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13469 if (attr)
13470 {
13471 TYPE_LENGTH (type) = DW_UNSND (attr);
13472 }
13473 else
13474 {
13475 TYPE_LENGTH (type) = 0;
13476 }
13477
13478 /* The enumeration DIE can be incomplete. In Ada, any type can be
13479 declared as private in the package spec, and then defined only
13480 inside the package body. Such types are known as Taft Amendment
13481 Types. When another package uses such a type, an incomplete DIE
13482 may be generated by the compiler. */
13483 if (die_is_declaration (die, cu))
13484 TYPE_STUB (type) = 1;
13485
13486 /* Finish the creation of this type by using the enum's children.
13487 We must call this even when the underlying type has been provided
13488 so that we can determine if we're looking at a "flag" enum. */
13489 update_enumeration_type_from_children (die, type, cu);
13490
13491 /* If this type has an underlying type that is not a stub, then we
13492 may use its attributes. We always use the "unsigned" attribute
13493 in this situation, because ordinarily we guess whether the type
13494 is unsigned -- but the guess can be wrong and the underlying type
13495 can tell us the reality. However, we defer to a local size
13496 attribute if one exists, because this lets the compiler override
13497 the underlying type if needed. */
13498 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13499 {
13500 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13501 if (TYPE_LENGTH (type) == 0)
13502 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13503 }
13504
13505 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13506
13507 return set_die_type (die, type, cu);
13508 }
13509
13510 /* Given a pointer to a die which begins an enumeration, process all
13511 the dies that define the members of the enumeration, and create the
13512 symbol for the enumeration type.
13513
13514 NOTE: We reverse the order of the element list. */
13515
13516 static void
13517 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13518 {
13519 struct type *this_type;
13520
13521 this_type = get_die_type (die, cu);
13522 if (this_type == NULL)
13523 this_type = read_enumeration_type (die, cu);
13524
13525 if (die->child != NULL)
13526 {
13527 struct die_info *child_die;
13528 struct symbol *sym;
13529 struct field *fields = NULL;
13530 int num_fields = 0;
13531 const char *name;
13532
13533 child_die = die->child;
13534 while (child_die && child_die->tag)
13535 {
13536 if (child_die->tag != DW_TAG_enumerator)
13537 {
13538 process_die (child_die, cu);
13539 }
13540 else
13541 {
13542 name = dwarf2_name (child_die, cu);
13543 if (name)
13544 {
13545 sym = new_symbol (child_die, this_type, cu);
13546
13547 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13548 {
13549 fields = (struct field *)
13550 xrealloc (fields,
13551 (num_fields + DW_FIELD_ALLOC_CHUNK)
13552 * sizeof (struct field));
13553 }
13554
13555 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13556 FIELD_TYPE (fields[num_fields]) = NULL;
13557 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13558 FIELD_BITSIZE (fields[num_fields]) = 0;
13559
13560 num_fields++;
13561 }
13562 }
13563
13564 child_die = sibling_die (child_die);
13565 }
13566
13567 if (num_fields)
13568 {
13569 TYPE_NFIELDS (this_type) = num_fields;
13570 TYPE_FIELDS (this_type) = (struct field *)
13571 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13572 memcpy (TYPE_FIELDS (this_type), fields,
13573 sizeof (struct field) * num_fields);
13574 xfree (fields);
13575 }
13576 }
13577
13578 /* If we are reading an enum from a .debug_types unit, and the enum
13579 is a declaration, and the enum is not the signatured type in the
13580 unit, then we do not want to add a symbol for it. Adding a
13581 symbol would in some cases obscure the true definition of the
13582 enum, giving users an incomplete type when the definition is
13583 actually available. Note that we do not want to do this for all
13584 enums which are just declarations, because C++0x allows forward
13585 enum declarations. */
13586 if (cu->per_cu->is_debug_types
13587 && die_is_declaration (die, cu))
13588 {
13589 struct signatured_type *sig_type;
13590
13591 sig_type = (struct signatured_type *) cu->per_cu;
13592 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13593 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13594 return;
13595 }
13596
13597 new_symbol (die, this_type, cu);
13598 }
13599
13600 /* Extract all information from a DW_TAG_array_type DIE and put it in
13601 the DIE's type field. For now, this only handles one dimensional
13602 arrays. */
13603
13604 static struct type *
13605 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13606 {
13607 struct objfile *objfile = cu->objfile;
13608 struct die_info *child_die;
13609 struct type *type;
13610 struct type *element_type, *range_type, *index_type;
13611 struct type **range_types = NULL;
13612 struct attribute *attr;
13613 int ndim = 0;
13614 struct cleanup *back_to;
13615 const char *name;
13616 unsigned int bit_stride = 0;
13617
13618 element_type = die_type (die, cu);
13619
13620 /* The die_type call above may have already set the type for this DIE. */
13621 type = get_die_type (die, cu);
13622 if (type)
13623 return type;
13624
13625 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13626 if (attr != NULL)
13627 bit_stride = DW_UNSND (attr) * 8;
13628
13629 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13630 if (attr != NULL)
13631 bit_stride = DW_UNSND (attr);
13632
13633 /* Irix 6.2 native cc creates array types without children for
13634 arrays with unspecified length. */
13635 if (die->child == NULL)
13636 {
13637 index_type = objfile_type (objfile)->builtin_int;
13638 range_type = create_static_range_type (NULL, index_type, 0, -1);
13639 type = create_array_type_with_stride (NULL, element_type, range_type,
13640 bit_stride);
13641 return set_die_type (die, type, cu);
13642 }
13643
13644 back_to = make_cleanup (null_cleanup, NULL);
13645 child_die = die->child;
13646 while (child_die && child_die->tag)
13647 {
13648 if (child_die->tag == DW_TAG_subrange_type)
13649 {
13650 struct type *child_type = read_type_die (child_die, cu);
13651
13652 if (child_type != NULL)
13653 {
13654 /* The range type was succesfully read. Save it for the
13655 array type creation. */
13656 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13657 {
13658 range_types = (struct type **)
13659 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13660 * sizeof (struct type *));
13661 if (ndim == 0)
13662 make_cleanup (free_current_contents, &range_types);
13663 }
13664 range_types[ndim++] = child_type;
13665 }
13666 }
13667 child_die = sibling_die (child_die);
13668 }
13669
13670 /* Dwarf2 dimensions are output from left to right, create the
13671 necessary array types in backwards order. */
13672
13673 type = element_type;
13674
13675 if (read_array_order (die, cu) == DW_ORD_col_major)
13676 {
13677 int i = 0;
13678
13679 while (i < ndim)
13680 type = create_array_type_with_stride (NULL, type, range_types[i++],
13681 bit_stride);
13682 }
13683 else
13684 {
13685 while (ndim-- > 0)
13686 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13687 bit_stride);
13688 }
13689
13690 /* Understand Dwarf2 support for vector types (like they occur on
13691 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13692 array type. This is not part of the Dwarf2/3 standard yet, but a
13693 custom vendor extension. The main difference between a regular
13694 array and the vector variant is that vectors are passed by value
13695 to functions. */
13696 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13697 if (attr)
13698 make_vector_type (type);
13699
13700 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13701 implementation may choose to implement triple vectors using this
13702 attribute. */
13703 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13704 if (attr)
13705 {
13706 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13707 TYPE_LENGTH (type) = DW_UNSND (attr);
13708 else
13709 complaint (&symfile_complaints,
13710 _("DW_AT_byte_size for array type smaller "
13711 "than the total size of elements"));
13712 }
13713
13714 name = dwarf2_name (die, cu);
13715 if (name)
13716 TYPE_NAME (type) = name;
13717
13718 /* Install the type in the die. */
13719 set_die_type (die, type, cu);
13720
13721 /* set_die_type should be already done. */
13722 set_descriptive_type (type, die, cu);
13723
13724 do_cleanups (back_to);
13725
13726 return type;
13727 }
13728
13729 static enum dwarf_array_dim_ordering
13730 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13731 {
13732 struct attribute *attr;
13733
13734 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13735
13736 if (attr) return DW_SND (attr);
13737
13738 /* GNU F77 is a special case, as at 08/2004 array type info is the
13739 opposite order to the dwarf2 specification, but data is still
13740 laid out as per normal fortran.
13741
13742 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13743 version checking. */
13744
13745 if (cu->language == language_fortran
13746 && cu->producer && strstr (cu->producer, "GNU F77"))
13747 {
13748 return DW_ORD_row_major;
13749 }
13750
13751 switch (cu->language_defn->la_array_ordering)
13752 {
13753 case array_column_major:
13754 return DW_ORD_col_major;
13755 case array_row_major:
13756 default:
13757 return DW_ORD_row_major;
13758 };
13759 }
13760
13761 /* Extract all information from a DW_TAG_set_type DIE and put it in
13762 the DIE's type field. */
13763
13764 static struct type *
13765 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13766 {
13767 struct type *domain_type, *set_type;
13768 struct attribute *attr;
13769
13770 domain_type = die_type (die, cu);
13771
13772 /* The die_type call above may have already set the type for this DIE. */
13773 set_type = get_die_type (die, cu);
13774 if (set_type)
13775 return set_type;
13776
13777 set_type = create_set_type (NULL, domain_type);
13778
13779 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13780 if (attr)
13781 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13782
13783 return set_die_type (die, set_type, cu);
13784 }
13785
13786 /* A helper for read_common_block that creates a locexpr baton.
13787 SYM is the symbol which we are marking as computed.
13788 COMMON_DIE is the DIE for the common block.
13789 COMMON_LOC is the location expression attribute for the common
13790 block itself.
13791 MEMBER_LOC is the location expression attribute for the particular
13792 member of the common block that we are processing.
13793 CU is the CU from which the above come. */
13794
13795 static void
13796 mark_common_block_symbol_computed (struct symbol *sym,
13797 struct die_info *common_die,
13798 struct attribute *common_loc,
13799 struct attribute *member_loc,
13800 struct dwarf2_cu *cu)
13801 {
13802 struct objfile *objfile = dwarf2_per_objfile->objfile;
13803 struct dwarf2_locexpr_baton *baton;
13804 gdb_byte *ptr;
13805 unsigned int cu_off;
13806 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13807 LONGEST offset = 0;
13808
13809 gdb_assert (common_loc && member_loc);
13810 gdb_assert (attr_form_is_block (common_loc));
13811 gdb_assert (attr_form_is_block (member_loc)
13812 || attr_form_is_constant (member_loc));
13813
13814 baton = obstack_alloc (&objfile->objfile_obstack,
13815 sizeof (struct dwarf2_locexpr_baton));
13816 baton->per_cu = cu->per_cu;
13817 gdb_assert (baton->per_cu);
13818
13819 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13820
13821 if (attr_form_is_constant (member_loc))
13822 {
13823 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13824 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13825 }
13826 else
13827 baton->size += DW_BLOCK (member_loc)->size;
13828
13829 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13830 baton->data = ptr;
13831
13832 *ptr++ = DW_OP_call4;
13833 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13834 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13835 ptr += 4;
13836
13837 if (attr_form_is_constant (member_loc))
13838 {
13839 *ptr++ = DW_OP_addr;
13840 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13841 ptr += cu->header.addr_size;
13842 }
13843 else
13844 {
13845 /* We have to copy the data here, because DW_OP_call4 will only
13846 use a DW_AT_location attribute. */
13847 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13848 ptr += DW_BLOCK (member_loc)->size;
13849 }
13850
13851 *ptr++ = DW_OP_plus;
13852 gdb_assert (ptr - baton->data == baton->size);
13853
13854 SYMBOL_LOCATION_BATON (sym) = baton;
13855 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13856 }
13857
13858 /* Create appropriate locally-scoped variables for all the
13859 DW_TAG_common_block entries. Also create a struct common_block
13860 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13861 is used to sepate the common blocks name namespace from regular
13862 variable names. */
13863
13864 static void
13865 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13866 {
13867 struct attribute *attr;
13868
13869 attr = dwarf2_attr (die, DW_AT_location, cu);
13870 if (attr)
13871 {
13872 /* Support the .debug_loc offsets. */
13873 if (attr_form_is_block (attr))
13874 {
13875 /* Ok. */
13876 }
13877 else if (attr_form_is_section_offset (attr))
13878 {
13879 dwarf2_complex_location_expr_complaint ();
13880 attr = NULL;
13881 }
13882 else
13883 {
13884 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13885 "common block member");
13886 attr = NULL;
13887 }
13888 }
13889
13890 if (die->child != NULL)
13891 {
13892 struct objfile *objfile = cu->objfile;
13893 struct die_info *child_die;
13894 size_t n_entries = 0, size;
13895 struct common_block *common_block;
13896 struct symbol *sym;
13897
13898 for (child_die = die->child;
13899 child_die && child_die->tag;
13900 child_die = sibling_die (child_die))
13901 ++n_entries;
13902
13903 size = (sizeof (struct common_block)
13904 + (n_entries - 1) * sizeof (struct symbol *));
13905 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13906 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13907 common_block->n_entries = 0;
13908
13909 for (child_die = die->child;
13910 child_die && child_die->tag;
13911 child_die = sibling_die (child_die))
13912 {
13913 /* Create the symbol in the DW_TAG_common_block block in the current
13914 symbol scope. */
13915 sym = new_symbol (child_die, NULL, cu);
13916 if (sym != NULL)
13917 {
13918 struct attribute *member_loc;
13919
13920 common_block->contents[common_block->n_entries++] = sym;
13921
13922 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13923 cu);
13924 if (member_loc)
13925 {
13926 /* GDB has handled this for a long time, but it is
13927 not specified by DWARF. It seems to have been
13928 emitted by gfortran at least as recently as:
13929 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13930 complaint (&symfile_complaints,
13931 _("Variable in common block has "
13932 "DW_AT_data_member_location "
13933 "- DIE at 0x%x [in module %s]"),
13934 child_die->offset.sect_off,
13935 objfile_name (cu->objfile));
13936
13937 if (attr_form_is_section_offset (member_loc))
13938 dwarf2_complex_location_expr_complaint ();
13939 else if (attr_form_is_constant (member_loc)
13940 || attr_form_is_block (member_loc))
13941 {
13942 if (attr)
13943 mark_common_block_symbol_computed (sym, die, attr,
13944 member_loc, cu);
13945 }
13946 else
13947 dwarf2_complex_location_expr_complaint ();
13948 }
13949 }
13950 }
13951
13952 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13953 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13954 }
13955 }
13956
13957 /* Create a type for a C++ namespace. */
13958
13959 static struct type *
13960 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13961 {
13962 struct objfile *objfile = cu->objfile;
13963 const char *previous_prefix, *name;
13964 int is_anonymous;
13965 struct type *type;
13966
13967 /* For extensions, reuse the type of the original namespace. */
13968 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13969 {
13970 struct die_info *ext_die;
13971 struct dwarf2_cu *ext_cu = cu;
13972
13973 ext_die = dwarf2_extension (die, &ext_cu);
13974 type = read_type_die (ext_die, ext_cu);
13975
13976 /* EXT_CU may not be the same as CU.
13977 Ensure TYPE is recorded with CU in die_type_hash. */
13978 return set_die_type (die, type, cu);
13979 }
13980
13981 name = namespace_name (die, &is_anonymous, cu);
13982
13983 /* Now build the name of the current namespace. */
13984
13985 previous_prefix = determine_prefix (die, cu);
13986 if (previous_prefix[0] != '\0')
13987 name = typename_concat (&objfile->objfile_obstack,
13988 previous_prefix, name, 0, cu);
13989
13990 /* Create the type. */
13991 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13992 objfile);
13993 TYPE_NAME (type) = name;
13994 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13995
13996 return set_die_type (die, type, cu);
13997 }
13998
13999 /* Read a C++ namespace. */
14000
14001 static void
14002 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14003 {
14004 struct objfile *objfile = cu->objfile;
14005 int is_anonymous;
14006
14007 /* Add a symbol associated to this if we haven't seen the namespace
14008 before. Also, add a using directive if it's an anonymous
14009 namespace. */
14010
14011 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14012 {
14013 struct type *type;
14014
14015 type = read_type_die (die, cu);
14016 new_symbol (die, type, cu);
14017
14018 namespace_name (die, &is_anonymous, cu);
14019 if (is_anonymous)
14020 {
14021 const char *previous_prefix = determine_prefix (die, cu);
14022
14023 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14024 NULL, NULL, 0, &objfile->objfile_obstack);
14025 }
14026 }
14027
14028 if (die->child != NULL)
14029 {
14030 struct die_info *child_die = die->child;
14031
14032 while (child_die && child_die->tag)
14033 {
14034 process_die (child_die, cu);
14035 child_die = sibling_die (child_die);
14036 }
14037 }
14038 }
14039
14040 /* Read a Fortran module as type. This DIE can be only a declaration used for
14041 imported module. Still we need that type as local Fortran "use ... only"
14042 declaration imports depend on the created type in determine_prefix. */
14043
14044 static struct type *
14045 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14046 {
14047 struct objfile *objfile = cu->objfile;
14048 const char *module_name;
14049 struct type *type;
14050
14051 module_name = dwarf2_name (die, cu);
14052 if (!module_name)
14053 complaint (&symfile_complaints,
14054 _("DW_TAG_module has no name, offset 0x%x"),
14055 die->offset.sect_off);
14056 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14057
14058 /* determine_prefix uses TYPE_TAG_NAME. */
14059 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14060
14061 return set_die_type (die, type, cu);
14062 }
14063
14064 /* Read a Fortran module. */
14065
14066 static void
14067 read_module (struct die_info *die, struct dwarf2_cu *cu)
14068 {
14069 struct die_info *child_die = die->child;
14070 struct type *type;
14071
14072 type = read_type_die (die, cu);
14073 new_symbol (die, type, cu);
14074
14075 while (child_die && child_die->tag)
14076 {
14077 process_die (child_die, cu);
14078 child_die = sibling_die (child_die);
14079 }
14080 }
14081
14082 /* Return the name of the namespace represented by DIE. Set
14083 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14084 namespace. */
14085
14086 static const char *
14087 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14088 {
14089 struct die_info *current_die;
14090 const char *name = NULL;
14091
14092 /* Loop through the extensions until we find a name. */
14093
14094 for (current_die = die;
14095 current_die != NULL;
14096 current_die = dwarf2_extension (die, &cu))
14097 {
14098 name = dwarf2_name (current_die, cu);
14099 if (name != NULL)
14100 break;
14101 }
14102
14103 /* Is it an anonymous namespace? */
14104
14105 *is_anonymous = (name == NULL);
14106 if (*is_anonymous)
14107 name = CP_ANONYMOUS_NAMESPACE_STR;
14108
14109 return name;
14110 }
14111
14112 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14113 the user defined type vector. */
14114
14115 static struct type *
14116 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14117 {
14118 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14119 struct comp_unit_head *cu_header = &cu->header;
14120 struct type *type;
14121 struct attribute *attr_byte_size;
14122 struct attribute *attr_address_class;
14123 int byte_size, addr_class;
14124 struct type *target_type;
14125
14126 target_type = die_type (die, cu);
14127
14128 /* The die_type call above may have already set the type for this DIE. */
14129 type = get_die_type (die, cu);
14130 if (type)
14131 return type;
14132
14133 type = lookup_pointer_type (target_type);
14134
14135 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14136 if (attr_byte_size)
14137 byte_size = DW_UNSND (attr_byte_size);
14138 else
14139 byte_size = cu_header->addr_size;
14140
14141 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14142 if (attr_address_class)
14143 addr_class = DW_UNSND (attr_address_class);
14144 else
14145 addr_class = DW_ADDR_none;
14146
14147 /* If the pointer size or address class is different than the
14148 default, create a type variant marked as such and set the
14149 length accordingly. */
14150 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14151 {
14152 if (gdbarch_address_class_type_flags_p (gdbarch))
14153 {
14154 int type_flags;
14155
14156 type_flags = gdbarch_address_class_type_flags
14157 (gdbarch, byte_size, addr_class);
14158 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14159 == 0);
14160 type = make_type_with_address_space (type, type_flags);
14161 }
14162 else if (TYPE_LENGTH (type) != byte_size)
14163 {
14164 complaint (&symfile_complaints,
14165 _("invalid pointer size %d"), byte_size);
14166 }
14167 else
14168 {
14169 /* Should we also complain about unhandled address classes? */
14170 }
14171 }
14172
14173 TYPE_LENGTH (type) = byte_size;
14174 return set_die_type (die, type, cu);
14175 }
14176
14177 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14178 the user defined type vector. */
14179
14180 static struct type *
14181 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14182 {
14183 struct type *type;
14184 struct type *to_type;
14185 struct type *domain;
14186
14187 to_type = die_type (die, cu);
14188 domain = die_containing_type (die, cu);
14189
14190 /* The calls above may have already set the type for this DIE. */
14191 type = get_die_type (die, cu);
14192 if (type)
14193 return type;
14194
14195 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14196 type = lookup_methodptr_type (to_type);
14197 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14198 {
14199 struct type *new_type = alloc_type (cu->objfile);
14200
14201 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14202 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14203 TYPE_VARARGS (to_type));
14204 type = lookup_methodptr_type (new_type);
14205 }
14206 else
14207 type = lookup_memberptr_type (to_type, domain);
14208
14209 return set_die_type (die, type, cu);
14210 }
14211
14212 /* Extract all information from a DW_TAG_reference_type DIE and add to
14213 the user defined type vector. */
14214
14215 static struct type *
14216 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14217 {
14218 struct comp_unit_head *cu_header = &cu->header;
14219 struct type *type, *target_type;
14220 struct attribute *attr;
14221
14222 target_type = die_type (die, cu);
14223
14224 /* The die_type call above may have already set the type for this DIE. */
14225 type = get_die_type (die, cu);
14226 if (type)
14227 return type;
14228
14229 type = lookup_reference_type (target_type);
14230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14231 if (attr)
14232 {
14233 TYPE_LENGTH (type) = DW_UNSND (attr);
14234 }
14235 else
14236 {
14237 TYPE_LENGTH (type) = cu_header->addr_size;
14238 }
14239 return set_die_type (die, type, cu);
14240 }
14241
14242 /* Add the given cv-qualifiers to the element type of the array. GCC
14243 outputs DWARF type qualifiers that apply to an array, not the
14244 element type. But GDB relies on the array element type to carry
14245 the cv-qualifiers. This mimics section 6.7.3 of the C99
14246 specification. */
14247
14248 static struct type *
14249 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14250 struct type *base_type, int cnst, int voltl)
14251 {
14252 struct type *el_type, *inner_array;
14253
14254 base_type = copy_type (base_type);
14255 inner_array = base_type;
14256
14257 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14258 {
14259 TYPE_TARGET_TYPE (inner_array) =
14260 copy_type (TYPE_TARGET_TYPE (inner_array));
14261 inner_array = TYPE_TARGET_TYPE (inner_array);
14262 }
14263
14264 el_type = TYPE_TARGET_TYPE (inner_array);
14265 cnst |= TYPE_CONST (el_type);
14266 voltl |= TYPE_VOLATILE (el_type);
14267 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14268
14269 return set_die_type (die, base_type, cu);
14270 }
14271
14272 static struct type *
14273 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14274 {
14275 struct type *base_type, *cv_type;
14276
14277 base_type = die_type (die, cu);
14278
14279 /* The die_type call above may have already set the type for this DIE. */
14280 cv_type = get_die_type (die, cu);
14281 if (cv_type)
14282 return cv_type;
14283
14284 /* In case the const qualifier is applied to an array type, the element type
14285 is so qualified, not the array type (section 6.7.3 of C99). */
14286 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14287 return add_array_cv_type (die, cu, base_type, 1, 0);
14288
14289 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14290 return set_die_type (die, cv_type, cu);
14291 }
14292
14293 static struct type *
14294 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14295 {
14296 struct type *base_type, *cv_type;
14297
14298 base_type = die_type (die, cu);
14299
14300 /* The die_type call above may have already set the type for this DIE. */
14301 cv_type = get_die_type (die, cu);
14302 if (cv_type)
14303 return cv_type;
14304
14305 /* In case the volatile qualifier is applied to an array type, the
14306 element type is so qualified, not the array type (section 6.7.3
14307 of C99). */
14308 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14309 return add_array_cv_type (die, cu, base_type, 0, 1);
14310
14311 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14312 return set_die_type (die, cv_type, cu);
14313 }
14314
14315 /* Handle DW_TAG_restrict_type. */
14316
14317 static struct type *
14318 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14319 {
14320 struct type *base_type, *cv_type;
14321
14322 base_type = die_type (die, cu);
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 cv_type = get_die_type (die, cu);
14326 if (cv_type)
14327 return cv_type;
14328
14329 cv_type = make_restrict_type (base_type);
14330 return set_die_type (die, cv_type, cu);
14331 }
14332
14333 /* Extract all information from a DW_TAG_string_type DIE and add to
14334 the user defined type vector. It isn't really a user defined type,
14335 but it behaves like one, with other DIE's using an AT_user_def_type
14336 attribute to reference it. */
14337
14338 static struct type *
14339 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14340 {
14341 struct objfile *objfile = cu->objfile;
14342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14343 struct type *type, *range_type, *index_type, *char_type;
14344 struct attribute *attr;
14345 unsigned int length;
14346
14347 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14348 if (attr)
14349 {
14350 length = DW_UNSND (attr);
14351 }
14352 else
14353 {
14354 /* Check for the DW_AT_byte_size attribute. */
14355 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14356 if (attr)
14357 {
14358 length = DW_UNSND (attr);
14359 }
14360 else
14361 {
14362 length = 1;
14363 }
14364 }
14365
14366 index_type = objfile_type (objfile)->builtin_int;
14367 range_type = create_static_range_type (NULL, index_type, 1, length);
14368 char_type = language_string_char_type (cu->language_defn, gdbarch);
14369 type = create_string_type (NULL, char_type, range_type);
14370
14371 return set_die_type (die, type, cu);
14372 }
14373
14374 /* Assuming that DIE corresponds to a function, returns nonzero
14375 if the function is prototyped. */
14376
14377 static int
14378 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14379 {
14380 struct attribute *attr;
14381
14382 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14383 if (attr && (DW_UNSND (attr) != 0))
14384 return 1;
14385
14386 /* The DWARF standard implies that the DW_AT_prototyped attribute
14387 is only meaninful for C, but the concept also extends to other
14388 languages that allow unprototyped functions (Eg: Objective C).
14389 For all other languages, assume that functions are always
14390 prototyped. */
14391 if (cu->language != language_c
14392 && cu->language != language_objc
14393 && cu->language != language_opencl)
14394 return 1;
14395
14396 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14397 prototyped and unprototyped functions; default to prototyped,
14398 since that is more common in modern code (and RealView warns
14399 about unprototyped functions). */
14400 if (producer_is_realview (cu->producer))
14401 return 1;
14402
14403 return 0;
14404 }
14405
14406 /* Handle DIES due to C code like:
14407
14408 struct foo
14409 {
14410 int (*funcp)(int a, long l);
14411 int b;
14412 };
14413
14414 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14415
14416 static struct type *
14417 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14418 {
14419 struct objfile *objfile = cu->objfile;
14420 struct type *type; /* Type that this function returns. */
14421 struct type *ftype; /* Function that returns above type. */
14422 struct attribute *attr;
14423
14424 type = die_type (die, cu);
14425
14426 /* The die_type call above may have already set the type for this DIE. */
14427 ftype = get_die_type (die, cu);
14428 if (ftype)
14429 return ftype;
14430
14431 ftype = lookup_function_type (type);
14432
14433 if (prototyped_function_p (die, cu))
14434 TYPE_PROTOTYPED (ftype) = 1;
14435
14436 /* Store the calling convention in the type if it's available in
14437 the subroutine die. Otherwise set the calling convention to
14438 the default value DW_CC_normal. */
14439 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14440 if (attr)
14441 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14442 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14443 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14444 else
14445 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14446
14447 /* Record whether the function returns normally to its caller or not
14448 if the DWARF producer set that information. */
14449 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14450 if (attr && (DW_UNSND (attr) != 0))
14451 TYPE_NO_RETURN (ftype) = 1;
14452
14453 /* We need to add the subroutine type to the die immediately so
14454 we don't infinitely recurse when dealing with parameters
14455 declared as the same subroutine type. */
14456 set_die_type (die, ftype, cu);
14457
14458 if (die->child != NULL)
14459 {
14460 struct type *void_type = objfile_type (objfile)->builtin_void;
14461 struct die_info *child_die;
14462 int nparams, iparams;
14463
14464 /* Count the number of parameters.
14465 FIXME: GDB currently ignores vararg functions, but knows about
14466 vararg member functions. */
14467 nparams = 0;
14468 child_die = die->child;
14469 while (child_die && child_die->tag)
14470 {
14471 if (child_die->tag == DW_TAG_formal_parameter)
14472 nparams++;
14473 else if (child_die->tag == DW_TAG_unspecified_parameters)
14474 TYPE_VARARGS (ftype) = 1;
14475 child_die = sibling_die (child_die);
14476 }
14477
14478 /* Allocate storage for parameters and fill them in. */
14479 TYPE_NFIELDS (ftype) = nparams;
14480 TYPE_FIELDS (ftype) = (struct field *)
14481 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14482
14483 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14484 even if we error out during the parameters reading below. */
14485 for (iparams = 0; iparams < nparams; iparams++)
14486 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14487
14488 iparams = 0;
14489 child_die = die->child;
14490 while (child_die && child_die->tag)
14491 {
14492 if (child_die->tag == DW_TAG_formal_parameter)
14493 {
14494 struct type *arg_type;
14495
14496 /* DWARF version 2 has no clean way to discern C++
14497 static and non-static member functions. G++ helps
14498 GDB by marking the first parameter for non-static
14499 member functions (which is the this pointer) as
14500 artificial. We pass this information to
14501 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14502
14503 DWARF version 3 added DW_AT_object_pointer, which GCC
14504 4.5 does not yet generate. */
14505 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14506 if (attr)
14507 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14508 else
14509 {
14510 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14511
14512 /* GCC/43521: In java, the formal parameter
14513 "this" is sometimes not marked with DW_AT_artificial. */
14514 if (cu->language == language_java)
14515 {
14516 const char *name = dwarf2_name (child_die, cu);
14517
14518 if (name && !strcmp (name, "this"))
14519 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14520 }
14521 }
14522 arg_type = die_type (child_die, cu);
14523
14524 /* RealView does not mark THIS as const, which the testsuite
14525 expects. GCC marks THIS as const in method definitions,
14526 but not in the class specifications (GCC PR 43053). */
14527 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14528 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14529 {
14530 int is_this = 0;
14531 struct dwarf2_cu *arg_cu = cu;
14532 const char *name = dwarf2_name (child_die, cu);
14533
14534 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14535 if (attr)
14536 {
14537 /* If the compiler emits this, use it. */
14538 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14539 is_this = 1;
14540 }
14541 else if (name && strcmp (name, "this") == 0)
14542 /* Function definitions will have the argument names. */
14543 is_this = 1;
14544 else if (name == NULL && iparams == 0)
14545 /* Declarations may not have the names, so like
14546 elsewhere in GDB, assume an artificial first
14547 argument is "this". */
14548 is_this = 1;
14549
14550 if (is_this)
14551 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14552 arg_type, 0);
14553 }
14554
14555 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14556 iparams++;
14557 }
14558 child_die = sibling_die (child_die);
14559 }
14560 }
14561
14562 return ftype;
14563 }
14564
14565 static struct type *
14566 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14567 {
14568 struct objfile *objfile = cu->objfile;
14569 const char *name = NULL;
14570 struct type *this_type, *target_type;
14571
14572 name = dwarf2_full_name (NULL, die, cu);
14573 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14574 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14575 TYPE_NAME (this_type) = name;
14576 set_die_type (die, this_type, cu);
14577 target_type = die_type (die, cu);
14578 if (target_type != this_type)
14579 TYPE_TARGET_TYPE (this_type) = target_type;
14580 else
14581 {
14582 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14583 spec and cause infinite loops in GDB. */
14584 complaint (&symfile_complaints,
14585 _("Self-referential DW_TAG_typedef "
14586 "- DIE at 0x%x [in module %s]"),
14587 die->offset.sect_off, objfile_name (objfile));
14588 TYPE_TARGET_TYPE (this_type) = NULL;
14589 }
14590 return this_type;
14591 }
14592
14593 /* Find a representation of a given base type and install
14594 it in the TYPE field of the die. */
14595
14596 static struct type *
14597 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14598 {
14599 struct objfile *objfile = cu->objfile;
14600 struct type *type;
14601 struct attribute *attr;
14602 int encoding = 0, size = 0;
14603 const char *name;
14604 enum type_code code = TYPE_CODE_INT;
14605 int type_flags = 0;
14606 struct type *target_type = NULL;
14607
14608 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14609 if (attr)
14610 {
14611 encoding = DW_UNSND (attr);
14612 }
14613 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14614 if (attr)
14615 {
14616 size = DW_UNSND (attr);
14617 }
14618 name = dwarf2_name (die, cu);
14619 if (!name)
14620 {
14621 complaint (&symfile_complaints,
14622 _("DW_AT_name missing from DW_TAG_base_type"));
14623 }
14624
14625 switch (encoding)
14626 {
14627 case DW_ATE_address:
14628 /* Turn DW_ATE_address into a void * pointer. */
14629 code = TYPE_CODE_PTR;
14630 type_flags |= TYPE_FLAG_UNSIGNED;
14631 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14632 break;
14633 case DW_ATE_boolean:
14634 code = TYPE_CODE_BOOL;
14635 type_flags |= TYPE_FLAG_UNSIGNED;
14636 break;
14637 case DW_ATE_complex_float:
14638 code = TYPE_CODE_COMPLEX;
14639 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14640 break;
14641 case DW_ATE_decimal_float:
14642 code = TYPE_CODE_DECFLOAT;
14643 break;
14644 case DW_ATE_float:
14645 code = TYPE_CODE_FLT;
14646 break;
14647 case DW_ATE_signed:
14648 break;
14649 case DW_ATE_unsigned:
14650 type_flags |= TYPE_FLAG_UNSIGNED;
14651 if (cu->language == language_fortran
14652 && name
14653 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14654 code = TYPE_CODE_CHAR;
14655 break;
14656 case DW_ATE_signed_char:
14657 if (cu->language == language_ada || cu->language == language_m2
14658 || cu->language == language_pascal
14659 || cu->language == language_fortran)
14660 code = TYPE_CODE_CHAR;
14661 break;
14662 case DW_ATE_unsigned_char:
14663 if (cu->language == language_ada || cu->language == language_m2
14664 || cu->language == language_pascal
14665 || cu->language == language_fortran)
14666 code = TYPE_CODE_CHAR;
14667 type_flags |= TYPE_FLAG_UNSIGNED;
14668 break;
14669 case DW_ATE_UTF:
14670 /* We just treat this as an integer and then recognize the
14671 type by name elsewhere. */
14672 break;
14673
14674 default:
14675 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14676 dwarf_type_encoding_name (encoding));
14677 break;
14678 }
14679
14680 type = init_type (code, size, type_flags, NULL, objfile);
14681 TYPE_NAME (type) = name;
14682 TYPE_TARGET_TYPE (type) = target_type;
14683
14684 if (name && strcmp (name, "char") == 0)
14685 TYPE_NOSIGN (type) = 1;
14686
14687 return set_die_type (die, type, cu);
14688 }
14689
14690 /* Parse dwarf attribute if it's a block, reference or constant and put the
14691 resulting value of the attribute into struct bound_prop.
14692 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14693
14694 static int
14695 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14696 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14697 {
14698 struct dwarf2_property_baton *baton;
14699 struct obstack *obstack = &cu->objfile->objfile_obstack;
14700
14701 if (attr == NULL || prop == NULL)
14702 return 0;
14703
14704 if (attr_form_is_block (attr))
14705 {
14706 baton = obstack_alloc (obstack, sizeof (*baton));
14707 baton->referenced_type = NULL;
14708 baton->locexpr.per_cu = cu->per_cu;
14709 baton->locexpr.size = DW_BLOCK (attr)->size;
14710 baton->locexpr.data = DW_BLOCK (attr)->data;
14711 prop->data.baton = baton;
14712 prop->kind = PROP_LOCEXPR;
14713 gdb_assert (prop->data.baton != NULL);
14714 }
14715 else if (attr_form_is_ref (attr))
14716 {
14717 struct dwarf2_cu *target_cu = cu;
14718 struct die_info *target_die;
14719 struct attribute *target_attr;
14720
14721 target_die = follow_die_ref (die, attr, &target_cu);
14722 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14723 if (target_attr == NULL)
14724 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14725 target_cu);
14726 if (target_attr == NULL)
14727 return 0;
14728
14729 switch (target_attr->name)
14730 {
14731 case DW_AT_location:
14732 if (attr_form_is_section_offset (target_attr))
14733 {
14734 baton = obstack_alloc (obstack, sizeof (*baton));
14735 baton->referenced_type = die_type (target_die, target_cu);
14736 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14737 prop->data.baton = baton;
14738 prop->kind = PROP_LOCLIST;
14739 gdb_assert (prop->data.baton != NULL);
14740 }
14741 else if (attr_form_is_block (target_attr))
14742 {
14743 baton = obstack_alloc (obstack, sizeof (*baton));
14744 baton->referenced_type = die_type (target_die, target_cu);
14745 baton->locexpr.per_cu = cu->per_cu;
14746 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14747 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14748 prop->data.baton = baton;
14749 prop->kind = PROP_LOCEXPR;
14750 gdb_assert (prop->data.baton != NULL);
14751 }
14752 else
14753 {
14754 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14755 "dynamic property");
14756 return 0;
14757 }
14758 break;
14759 case DW_AT_data_member_location:
14760 {
14761 LONGEST offset;
14762
14763 if (!handle_data_member_location (target_die, target_cu,
14764 &offset))
14765 return 0;
14766
14767 baton = obstack_alloc (obstack, sizeof (*baton));
14768 baton->referenced_type = get_die_type (target_die->parent,
14769 target_cu);
14770 baton->offset_info.offset = offset;
14771 baton->offset_info.type = die_type (target_die, target_cu);
14772 prop->data.baton = baton;
14773 prop->kind = PROP_ADDR_OFFSET;
14774 break;
14775 }
14776 }
14777 }
14778 else if (attr_form_is_constant (attr))
14779 {
14780 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14781 prop->kind = PROP_CONST;
14782 }
14783 else
14784 {
14785 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14786 dwarf2_name (die, cu));
14787 return 0;
14788 }
14789
14790 return 1;
14791 }
14792
14793 /* Read the given DW_AT_subrange DIE. */
14794
14795 static struct type *
14796 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14797 {
14798 struct type *base_type, *orig_base_type;
14799 struct type *range_type;
14800 struct attribute *attr;
14801 struct dynamic_prop low, high;
14802 int low_default_is_valid;
14803 int high_bound_is_count = 0;
14804 const char *name;
14805 LONGEST negative_mask;
14806
14807 orig_base_type = die_type (die, cu);
14808 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14809 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14810 creating the range type, but we use the result of check_typedef
14811 when examining properties of the type. */
14812 base_type = check_typedef (orig_base_type);
14813
14814 /* The die_type call above may have already set the type for this DIE. */
14815 range_type = get_die_type (die, cu);
14816 if (range_type)
14817 return range_type;
14818
14819 low.kind = PROP_CONST;
14820 high.kind = PROP_CONST;
14821 high.data.const_val = 0;
14822
14823 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14824 omitting DW_AT_lower_bound. */
14825 switch (cu->language)
14826 {
14827 case language_c:
14828 case language_cplus:
14829 low.data.const_val = 0;
14830 low_default_is_valid = 1;
14831 break;
14832 case language_fortran:
14833 low.data.const_val = 1;
14834 low_default_is_valid = 1;
14835 break;
14836 case language_d:
14837 case language_java:
14838 case language_objc:
14839 low.data.const_val = 0;
14840 low_default_is_valid = (cu->header.version >= 4);
14841 break;
14842 case language_ada:
14843 case language_m2:
14844 case language_pascal:
14845 low.data.const_val = 1;
14846 low_default_is_valid = (cu->header.version >= 4);
14847 break;
14848 default:
14849 low.data.const_val = 0;
14850 low_default_is_valid = 0;
14851 break;
14852 }
14853
14854 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14855 if (attr)
14856 attr_to_dynamic_prop (attr, die, cu, &low);
14857 else if (!low_default_is_valid)
14858 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14859 "- DIE at 0x%x [in module %s]"),
14860 die->offset.sect_off, objfile_name (cu->objfile));
14861
14862 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14863 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14864 {
14865 attr = dwarf2_attr (die, DW_AT_count, cu);
14866 if (attr_to_dynamic_prop (attr, die, cu, &high))
14867 {
14868 /* If bounds are constant do the final calculation here. */
14869 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14870 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14871 else
14872 high_bound_is_count = 1;
14873 }
14874 }
14875
14876 /* Dwarf-2 specifications explicitly allows to create subrange types
14877 without specifying a base type.
14878 In that case, the base type must be set to the type of
14879 the lower bound, upper bound or count, in that order, if any of these
14880 three attributes references an object that has a type.
14881 If no base type is found, the Dwarf-2 specifications say that
14882 a signed integer type of size equal to the size of an address should
14883 be used.
14884 For the following C code: `extern char gdb_int [];'
14885 GCC produces an empty range DIE.
14886 FIXME: muller/2010-05-28: Possible references to object for low bound,
14887 high bound or count are not yet handled by this code. */
14888 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14889 {
14890 struct objfile *objfile = cu->objfile;
14891 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14892 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14893 struct type *int_type = objfile_type (objfile)->builtin_int;
14894
14895 /* Test "int", "long int", and "long long int" objfile types,
14896 and select the first one having a size above or equal to the
14897 architecture address size. */
14898 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14899 base_type = int_type;
14900 else
14901 {
14902 int_type = objfile_type (objfile)->builtin_long;
14903 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14904 base_type = int_type;
14905 else
14906 {
14907 int_type = objfile_type (objfile)->builtin_long_long;
14908 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14909 base_type = int_type;
14910 }
14911 }
14912 }
14913
14914 /* Normally, the DWARF producers are expected to use a signed
14915 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14916 But this is unfortunately not always the case, as witnessed
14917 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14918 is used instead. To work around that ambiguity, we treat
14919 the bounds as signed, and thus sign-extend their values, when
14920 the base type is signed. */
14921 negative_mask =
14922 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14923 if (low.kind == PROP_CONST
14924 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14925 low.data.const_val |= negative_mask;
14926 if (high.kind == PROP_CONST
14927 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14928 high.data.const_val |= negative_mask;
14929
14930 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14931
14932 if (high_bound_is_count)
14933 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14934
14935 /* Ada expects an empty array on no boundary attributes. */
14936 if (attr == NULL && cu->language != language_ada)
14937 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14938
14939 name = dwarf2_name (die, cu);
14940 if (name)
14941 TYPE_NAME (range_type) = name;
14942
14943 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14944 if (attr)
14945 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14946
14947 set_die_type (die, range_type, cu);
14948
14949 /* set_die_type should be already done. */
14950 set_descriptive_type (range_type, die, cu);
14951
14952 return range_type;
14953 }
14954
14955 static struct type *
14956 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14957 {
14958 struct type *type;
14959
14960 /* For now, we only support the C meaning of an unspecified type: void. */
14961
14962 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14963 TYPE_NAME (type) = dwarf2_name (die, cu);
14964
14965 return set_die_type (die, type, cu);
14966 }
14967
14968 /* Read a single die and all its descendents. Set the die's sibling
14969 field to NULL; set other fields in the die correctly, and set all
14970 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14971 location of the info_ptr after reading all of those dies. PARENT
14972 is the parent of the die in question. */
14973
14974 static struct die_info *
14975 read_die_and_children (const struct die_reader_specs *reader,
14976 const gdb_byte *info_ptr,
14977 const gdb_byte **new_info_ptr,
14978 struct die_info *parent)
14979 {
14980 struct die_info *die;
14981 const gdb_byte *cur_ptr;
14982 int has_children;
14983
14984 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14985 if (die == NULL)
14986 {
14987 *new_info_ptr = cur_ptr;
14988 return NULL;
14989 }
14990 store_in_ref_table (die, reader->cu);
14991
14992 if (has_children)
14993 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14994 else
14995 {
14996 die->child = NULL;
14997 *new_info_ptr = cur_ptr;
14998 }
14999
15000 die->sibling = NULL;
15001 die->parent = parent;
15002 return die;
15003 }
15004
15005 /* Read a die, all of its descendents, and all of its siblings; set
15006 all of the fields of all of the dies correctly. Arguments are as
15007 in read_die_and_children. */
15008
15009 static struct die_info *
15010 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15011 const gdb_byte *info_ptr,
15012 const gdb_byte **new_info_ptr,
15013 struct die_info *parent)
15014 {
15015 struct die_info *first_die, *last_sibling;
15016 const gdb_byte *cur_ptr;
15017
15018 cur_ptr = info_ptr;
15019 first_die = last_sibling = NULL;
15020
15021 while (1)
15022 {
15023 struct die_info *die
15024 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15025
15026 if (die == NULL)
15027 {
15028 *new_info_ptr = cur_ptr;
15029 return first_die;
15030 }
15031
15032 if (!first_die)
15033 first_die = die;
15034 else
15035 last_sibling->sibling = die;
15036
15037 last_sibling = die;
15038 }
15039 }
15040
15041 /* Read a die, all of its descendents, and all of its siblings; set
15042 all of the fields of all of the dies correctly. Arguments are as
15043 in read_die_and_children.
15044 This the main entry point for reading a DIE and all its children. */
15045
15046 static struct die_info *
15047 read_die_and_siblings (const struct die_reader_specs *reader,
15048 const gdb_byte *info_ptr,
15049 const gdb_byte **new_info_ptr,
15050 struct die_info *parent)
15051 {
15052 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15053 new_info_ptr, parent);
15054
15055 if (dwarf2_die_debug)
15056 {
15057 fprintf_unfiltered (gdb_stdlog,
15058 "Read die from %s@0x%x of %s:\n",
15059 get_section_name (reader->die_section),
15060 (unsigned) (info_ptr - reader->die_section->buffer),
15061 bfd_get_filename (reader->abfd));
15062 dump_die (die, dwarf2_die_debug);
15063 }
15064
15065 return die;
15066 }
15067
15068 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15069 attributes.
15070 The caller is responsible for filling in the extra attributes
15071 and updating (*DIEP)->num_attrs.
15072 Set DIEP to point to a newly allocated die with its information,
15073 except for its child, sibling, and parent fields.
15074 Set HAS_CHILDREN to tell whether the die has children or not. */
15075
15076 static const gdb_byte *
15077 read_full_die_1 (const struct die_reader_specs *reader,
15078 struct die_info **diep, const gdb_byte *info_ptr,
15079 int *has_children, int num_extra_attrs)
15080 {
15081 unsigned int abbrev_number, bytes_read, i;
15082 sect_offset offset;
15083 struct abbrev_info *abbrev;
15084 struct die_info *die;
15085 struct dwarf2_cu *cu = reader->cu;
15086 bfd *abfd = reader->abfd;
15087
15088 offset.sect_off = info_ptr - reader->buffer;
15089 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15090 info_ptr += bytes_read;
15091 if (!abbrev_number)
15092 {
15093 *diep = NULL;
15094 *has_children = 0;
15095 return info_ptr;
15096 }
15097
15098 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15099 if (!abbrev)
15100 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15101 abbrev_number,
15102 bfd_get_filename (abfd));
15103
15104 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15105 die->offset = offset;
15106 die->tag = abbrev->tag;
15107 die->abbrev = abbrev_number;
15108
15109 /* Make the result usable.
15110 The caller needs to update num_attrs after adding the extra
15111 attributes. */
15112 die->num_attrs = abbrev->num_attrs;
15113
15114 for (i = 0; i < abbrev->num_attrs; ++i)
15115 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15116 info_ptr);
15117
15118 *diep = die;
15119 *has_children = abbrev->has_children;
15120 return info_ptr;
15121 }
15122
15123 /* Read a die and all its attributes.
15124 Set DIEP to point to a newly allocated die with its information,
15125 except for its child, sibling, and parent fields.
15126 Set HAS_CHILDREN to tell whether the die has children or not. */
15127
15128 static const gdb_byte *
15129 read_full_die (const struct die_reader_specs *reader,
15130 struct die_info **diep, const gdb_byte *info_ptr,
15131 int *has_children)
15132 {
15133 const gdb_byte *result;
15134
15135 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15136
15137 if (dwarf2_die_debug)
15138 {
15139 fprintf_unfiltered (gdb_stdlog,
15140 "Read die from %s@0x%x of %s:\n",
15141 get_section_name (reader->die_section),
15142 (unsigned) (info_ptr - reader->die_section->buffer),
15143 bfd_get_filename (reader->abfd));
15144 dump_die (*diep, dwarf2_die_debug);
15145 }
15146
15147 return result;
15148 }
15149 \f
15150 /* Abbreviation tables.
15151
15152 In DWARF version 2, the description of the debugging information is
15153 stored in a separate .debug_abbrev section. Before we read any
15154 dies from a section we read in all abbreviations and install them
15155 in a hash table. */
15156
15157 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15158
15159 static struct abbrev_info *
15160 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15161 {
15162 struct abbrev_info *abbrev;
15163
15164 abbrev = (struct abbrev_info *)
15165 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15166 memset (abbrev, 0, sizeof (struct abbrev_info));
15167 return abbrev;
15168 }
15169
15170 /* Add an abbreviation to the table. */
15171
15172 static void
15173 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15174 unsigned int abbrev_number,
15175 struct abbrev_info *abbrev)
15176 {
15177 unsigned int hash_number;
15178
15179 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15180 abbrev->next = abbrev_table->abbrevs[hash_number];
15181 abbrev_table->abbrevs[hash_number] = abbrev;
15182 }
15183
15184 /* Look up an abbrev in the table.
15185 Returns NULL if the abbrev is not found. */
15186
15187 static struct abbrev_info *
15188 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15189 unsigned int abbrev_number)
15190 {
15191 unsigned int hash_number;
15192 struct abbrev_info *abbrev;
15193
15194 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15195 abbrev = abbrev_table->abbrevs[hash_number];
15196
15197 while (abbrev)
15198 {
15199 if (abbrev->number == abbrev_number)
15200 return abbrev;
15201 abbrev = abbrev->next;
15202 }
15203 return NULL;
15204 }
15205
15206 /* Read in an abbrev table. */
15207
15208 static struct abbrev_table *
15209 abbrev_table_read_table (struct dwarf2_section_info *section,
15210 sect_offset offset)
15211 {
15212 struct objfile *objfile = dwarf2_per_objfile->objfile;
15213 bfd *abfd = get_section_bfd_owner (section);
15214 struct abbrev_table *abbrev_table;
15215 const gdb_byte *abbrev_ptr;
15216 struct abbrev_info *cur_abbrev;
15217 unsigned int abbrev_number, bytes_read, abbrev_name;
15218 unsigned int abbrev_form;
15219 struct attr_abbrev *cur_attrs;
15220 unsigned int allocated_attrs;
15221
15222 abbrev_table = XNEW (struct abbrev_table);
15223 abbrev_table->offset = offset;
15224 obstack_init (&abbrev_table->abbrev_obstack);
15225 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15226 (ABBREV_HASH_SIZE
15227 * sizeof (struct abbrev_info *)));
15228 memset (abbrev_table->abbrevs, 0,
15229 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15230
15231 dwarf2_read_section (objfile, section);
15232 abbrev_ptr = section->buffer + offset.sect_off;
15233 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15234 abbrev_ptr += bytes_read;
15235
15236 allocated_attrs = ATTR_ALLOC_CHUNK;
15237 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15238
15239 /* Loop until we reach an abbrev number of 0. */
15240 while (abbrev_number)
15241 {
15242 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15243
15244 /* read in abbrev header */
15245 cur_abbrev->number = abbrev_number;
15246 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15247 abbrev_ptr += bytes_read;
15248 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15249 abbrev_ptr += 1;
15250
15251 /* now read in declarations */
15252 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15253 abbrev_ptr += bytes_read;
15254 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15255 abbrev_ptr += bytes_read;
15256 while (abbrev_name)
15257 {
15258 if (cur_abbrev->num_attrs == allocated_attrs)
15259 {
15260 allocated_attrs += ATTR_ALLOC_CHUNK;
15261 cur_attrs
15262 = xrealloc (cur_attrs, (allocated_attrs
15263 * sizeof (struct attr_abbrev)));
15264 }
15265
15266 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15267 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15268 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15269 abbrev_ptr += bytes_read;
15270 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15271 abbrev_ptr += bytes_read;
15272 }
15273
15274 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15275 (cur_abbrev->num_attrs
15276 * sizeof (struct attr_abbrev)));
15277 memcpy (cur_abbrev->attrs, cur_attrs,
15278 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15279
15280 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15281
15282 /* Get next abbreviation.
15283 Under Irix6 the abbreviations for a compilation unit are not
15284 always properly terminated with an abbrev number of 0.
15285 Exit loop if we encounter an abbreviation which we have
15286 already read (which means we are about to read the abbreviations
15287 for the next compile unit) or if the end of the abbreviation
15288 table is reached. */
15289 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15290 break;
15291 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15292 abbrev_ptr += bytes_read;
15293 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15294 break;
15295 }
15296
15297 xfree (cur_attrs);
15298 return abbrev_table;
15299 }
15300
15301 /* Free the resources held by ABBREV_TABLE. */
15302
15303 static void
15304 abbrev_table_free (struct abbrev_table *abbrev_table)
15305 {
15306 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15307 xfree (abbrev_table);
15308 }
15309
15310 /* Same as abbrev_table_free but as a cleanup.
15311 We pass in a pointer to the pointer to the table so that we can
15312 set the pointer to NULL when we're done. It also simplifies
15313 build_type_psymtabs_1. */
15314
15315 static void
15316 abbrev_table_free_cleanup (void *table_ptr)
15317 {
15318 struct abbrev_table **abbrev_table_ptr = table_ptr;
15319
15320 if (*abbrev_table_ptr != NULL)
15321 abbrev_table_free (*abbrev_table_ptr);
15322 *abbrev_table_ptr = NULL;
15323 }
15324
15325 /* Read the abbrev table for CU from ABBREV_SECTION. */
15326
15327 static void
15328 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15329 struct dwarf2_section_info *abbrev_section)
15330 {
15331 cu->abbrev_table =
15332 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15333 }
15334
15335 /* Release the memory used by the abbrev table for a compilation unit. */
15336
15337 static void
15338 dwarf2_free_abbrev_table (void *ptr_to_cu)
15339 {
15340 struct dwarf2_cu *cu = ptr_to_cu;
15341
15342 if (cu->abbrev_table != NULL)
15343 abbrev_table_free (cu->abbrev_table);
15344 /* Set this to NULL so that we SEGV if we try to read it later,
15345 and also because free_comp_unit verifies this is NULL. */
15346 cu->abbrev_table = NULL;
15347 }
15348 \f
15349 /* Returns nonzero if TAG represents a type that we might generate a partial
15350 symbol for. */
15351
15352 static int
15353 is_type_tag_for_partial (int tag)
15354 {
15355 switch (tag)
15356 {
15357 #if 0
15358 /* Some types that would be reasonable to generate partial symbols for,
15359 that we don't at present. */
15360 case DW_TAG_array_type:
15361 case DW_TAG_file_type:
15362 case DW_TAG_ptr_to_member_type:
15363 case DW_TAG_set_type:
15364 case DW_TAG_string_type:
15365 case DW_TAG_subroutine_type:
15366 #endif
15367 case DW_TAG_base_type:
15368 case DW_TAG_class_type:
15369 case DW_TAG_interface_type:
15370 case DW_TAG_enumeration_type:
15371 case DW_TAG_structure_type:
15372 case DW_TAG_subrange_type:
15373 case DW_TAG_typedef:
15374 case DW_TAG_union_type:
15375 return 1;
15376 default:
15377 return 0;
15378 }
15379 }
15380
15381 /* Load all DIEs that are interesting for partial symbols into memory. */
15382
15383 static struct partial_die_info *
15384 load_partial_dies (const struct die_reader_specs *reader,
15385 const gdb_byte *info_ptr, int building_psymtab)
15386 {
15387 struct dwarf2_cu *cu = reader->cu;
15388 struct objfile *objfile = cu->objfile;
15389 struct partial_die_info *part_die;
15390 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15391 struct abbrev_info *abbrev;
15392 unsigned int bytes_read;
15393 unsigned int load_all = 0;
15394 int nesting_level = 1;
15395
15396 parent_die = NULL;
15397 last_die = NULL;
15398
15399 gdb_assert (cu->per_cu != NULL);
15400 if (cu->per_cu->load_all_dies)
15401 load_all = 1;
15402
15403 cu->partial_dies
15404 = htab_create_alloc_ex (cu->header.length / 12,
15405 partial_die_hash,
15406 partial_die_eq,
15407 NULL,
15408 &cu->comp_unit_obstack,
15409 hashtab_obstack_allocate,
15410 dummy_obstack_deallocate);
15411
15412 part_die = obstack_alloc (&cu->comp_unit_obstack,
15413 sizeof (struct partial_die_info));
15414
15415 while (1)
15416 {
15417 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15418
15419 /* A NULL abbrev means the end of a series of children. */
15420 if (abbrev == NULL)
15421 {
15422 if (--nesting_level == 0)
15423 {
15424 /* PART_DIE was probably the last thing allocated on the
15425 comp_unit_obstack, so we could call obstack_free
15426 here. We don't do that because the waste is small,
15427 and will be cleaned up when we're done with this
15428 compilation unit. This way, we're also more robust
15429 against other users of the comp_unit_obstack. */
15430 return first_die;
15431 }
15432 info_ptr += bytes_read;
15433 last_die = parent_die;
15434 parent_die = parent_die->die_parent;
15435 continue;
15436 }
15437
15438 /* Check for template arguments. We never save these; if
15439 they're seen, we just mark the parent, and go on our way. */
15440 if (parent_die != NULL
15441 && cu->language == language_cplus
15442 && (abbrev->tag == DW_TAG_template_type_param
15443 || abbrev->tag == DW_TAG_template_value_param))
15444 {
15445 parent_die->has_template_arguments = 1;
15446
15447 if (!load_all)
15448 {
15449 /* We don't need a partial DIE for the template argument. */
15450 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15451 continue;
15452 }
15453 }
15454
15455 /* We only recurse into c++ subprograms looking for template arguments.
15456 Skip their other children. */
15457 if (!load_all
15458 && cu->language == language_cplus
15459 && parent_die != NULL
15460 && parent_die->tag == DW_TAG_subprogram)
15461 {
15462 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15463 continue;
15464 }
15465
15466 /* Check whether this DIE is interesting enough to save. Normally
15467 we would not be interested in members here, but there may be
15468 later variables referencing them via DW_AT_specification (for
15469 static members). */
15470 if (!load_all
15471 && !is_type_tag_for_partial (abbrev->tag)
15472 && abbrev->tag != DW_TAG_constant
15473 && abbrev->tag != DW_TAG_enumerator
15474 && abbrev->tag != DW_TAG_subprogram
15475 && abbrev->tag != DW_TAG_lexical_block
15476 && abbrev->tag != DW_TAG_variable
15477 && abbrev->tag != DW_TAG_namespace
15478 && abbrev->tag != DW_TAG_module
15479 && abbrev->tag != DW_TAG_member
15480 && abbrev->tag != DW_TAG_imported_unit
15481 && abbrev->tag != DW_TAG_imported_declaration)
15482 {
15483 /* Otherwise we skip to the next sibling, if any. */
15484 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15485 continue;
15486 }
15487
15488 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15489 info_ptr);
15490
15491 /* This two-pass algorithm for processing partial symbols has a
15492 high cost in cache pressure. Thus, handle some simple cases
15493 here which cover the majority of C partial symbols. DIEs
15494 which neither have specification tags in them, nor could have
15495 specification tags elsewhere pointing at them, can simply be
15496 processed and discarded.
15497
15498 This segment is also optional; scan_partial_symbols and
15499 add_partial_symbol will handle these DIEs if we chain
15500 them in normally. When compilers which do not emit large
15501 quantities of duplicate debug information are more common,
15502 this code can probably be removed. */
15503
15504 /* Any complete simple types at the top level (pretty much all
15505 of them, for a language without namespaces), can be processed
15506 directly. */
15507 if (parent_die == NULL
15508 && part_die->has_specification == 0
15509 && part_die->is_declaration == 0
15510 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15511 || part_die->tag == DW_TAG_base_type
15512 || part_die->tag == DW_TAG_subrange_type))
15513 {
15514 if (building_psymtab && part_die->name != NULL)
15515 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15516 VAR_DOMAIN, LOC_TYPEDEF,
15517 &objfile->static_psymbols,
15518 0, (CORE_ADDR) 0, cu->language, objfile);
15519 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15520 continue;
15521 }
15522
15523 /* The exception for DW_TAG_typedef with has_children above is
15524 a workaround of GCC PR debug/47510. In the case of this complaint
15525 type_name_no_tag_or_error will error on such types later.
15526
15527 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15528 it could not find the child DIEs referenced later, this is checked
15529 above. In correct DWARF DW_TAG_typedef should have no children. */
15530
15531 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15532 complaint (&symfile_complaints,
15533 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15534 "- DIE at 0x%x [in module %s]"),
15535 part_die->offset.sect_off, objfile_name (objfile));
15536
15537 /* If we're at the second level, and we're an enumerator, and
15538 our parent has no specification (meaning possibly lives in a
15539 namespace elsewhere), then we can add the partial symbol now
15540 instead of queueing it. */
15541 if (part_die->tag == DW_TAG_enumerator
15542 && parent_die != NULL
15543 && parent_die->die_parent == NULL
15544 && parent_die->tag == DW_TAG_enumeration_type
15545 && parent_die->has_specification == 0)
15546 {
15547 if (part_die->name == NULL)
15548 complaint (&symfile_complaints,
15549 _("malformed enumerator DIE ignored"));
15550 else if (building_psymtab)
15551 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15552 VAR_DOMAIN, LOC_CONST,
15553 (cu->language == language_cplus
15554 || cu->language == language_java)
15555 ? &objfile->global_psymbols
15556 : &objfile->static_psymbols,
15557 0, (CORE_ADDR) 0, cu->language, objfile);
15558
15559 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15560 continue;
15561 }
15562
15563 /* We'll save this DIE so link it in. */
15564 part_die->die_parent = parent_die;
15565 part_die->die_sibling = NULL;
15566 part_die->die_child = NULL;
15567
15568 if (last_die && last_die == parent_die)
15569 last_die->die_child = part_die;
15570 else if (last_die)
15571 last_die->die_sibling = part_die;
15572
15573 last_die = part_die;
15574
15575 if (first_die == NULL)
15576 first_die = part_die;
15577
15578 /* Maybe add the DIE to the hash table. Not all DIEs that we
15579 find interesting need to be in the hash table, because we
15580 also have the parent/sibling/child chains; only those that we
15581 might refer to by offset later during partial symbol reading.
15582
15583 For now this means things that might have be the target of a
15584 DW_AT_specification, DW_AT_abstract_origin, or
15585 DW_AT_extension. DW_AT_extension will refer only to
15586 namespaces; DW_AT_abstract_origin refers to functions (and
15587 many things under the function DIE, but we do not recurse
15588 into function DIEs during partial symbol reading) and
15589 possibly variables as well; DW_AT_specification refers to
15590 declarations. Declarations ought to have the DW_AT_declaration
15591 flag. It happens that GCC forgets to put it in sometimes, but
15592 only for functions, not for types.
15593
15594 Adding more things than necessary to the hash table is harmless
15595 except for the performance cost. Adding too few will result in
15596 wasted time in find_partial_die, when we reread the compilation
15597 unit with load_all_dies set. */
15598
15599 if (load_all
15600 || abbrev->tag == DW_TAG_constant
15601 || abbrev->tag == DW_TAG_subprogram
15602 || abbrev->tag == DW_TAG_variable
15603 || abbrev->tag == DW_TAG_namespace
15604 || part_die->is_declaration)
15605 {
15606 void **slot;
15607
15608 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15609 part_die->offset.sect_off, INSERT);
15610 *slot = part_die;
15611 }
15612
15613 part_die = obstack_alloc (&cu->comp_unit_obstack,
15614 sizeof (struct partial_die_info));
15615
15616 /* For some DIEs we want to follow their children (if any). For C
15617 we have no reason to follow the children of structures; for other
15618 languages we have to, so that we can get at method physnames
15619 to infer fully qualified class names, for DW_AT_specification,
15620 and for C++ template arguments. For C++, we also look one level
15621 inside functions to find template arguments (if the name of the
15622 function does not already contain the template arguments).
15623
15624 For Ada, we need to scan the children of subprograms and lexical
15625 blocks as well because Ada allows the definition of nested
15626 entities that could be interesting for the debugger, such as
15627 nested subprograms for instance. */
15628 if (last_die->has_children
15629 && (load_all
15630 || last_die->tag == DW_TAG_namespace
15631 || last_die->tag == DW_TAG_module
15632 || last_die->tag == DW_TAG_enumeration_type
15633 || (cu->language == language_cplus
15634 && last_die->tag == DW_TAG_subprogram
15635 && (last_die->name == NULL
15636 || strchr (last_die->name, '<') == NULL))
15637 || (cu->language != language_c
15638 && (last_die->tag == DW_TAG_class_type
15639 || last_die->tag == DW_TAG_interface_type
15640 || last_die->tag == DW_TAG_structure_type
15641 || last_die->tag == DW_TAG_union_type))
15642 || (cu->language == language_ada
15643 && (last_die->tag == DW_TAG_subprogram
15644 || last_die->tag == DW_TAG_lexical_block))))
15645 {
15646 nesting_level++;
15647 parent_die = last_die;
15648 continue;
15649 }
15650
15651 /* Otherwise we skip to the next sibling, if any. */
15652 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15653
15654 /* Back to the top, do it again. */
15655 }
15656 }
15657
15658 /* Read a minimal amount of information into the minimal die structure. */
15659
15660 static const gdb_byte *
15661 read_partial_die (const struct die_reader_specs *reader,
15662 struct partial_die_info *part_die,
15663 struct abbrev_info *abbrev, unsigned int abbrev_len,
15664 const gdb_byte *info_ptr)
15665 {
15666 struct dwarf2_cu *cu = reader->cu;
15667 struct objfile *objfile = cu->objfile;
15668 const gdb_byte *buffer = reader->buffer;
15669 unsigned int i;
15670 struct attribute attr;
15671 int has_low_pc_attr = 0;
15672 int has_high_pc_attr = 0;
15673 int high_pc_relative = 0;
15674
15675 memset (part_die, 0, sizeof (struct partial_die_info));
15676
15677 part_die->offset.sect_off = info_ptr - buffer;
15678
15679 info_ptr += abbrev_len;
15680
15681 if (abbrev == NULL)
15682 return info_ptr;
15683
15684 part_die->tag = abbrev->tag;
15685 part_die->has_children = abbrev->has_children;
15686
15687 for (i = 0; i < abbrev->num_attrs; ++i)
15688 {
15689 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15690
15691 /* Store the data if it is of an attribute we want to keep in a
15692 partial symbol table. */
15693 switch (attr.name)
15694 {
15695 case DW_AT_name:
15696 switch (part_die->tag)
15697 {
15698 case DW_TAG_compile_unit:
15699 case DW_TAG_partial_unit:
15700 case DW_TAG_type_unit:
15701 /* Compilation units have a DW_AT_name that is a filename, not
15702 a source language identifier. */
15703 case DW_TAG_enumeration_type:
15704 case DW_TAG_enumerator:
15705 /* These tags always have simple identifiers already; no need
15706 to canonicalize them. */
15707 part_die->name = DW_STRING (&attr);
15708 break;
15709 default:
15710 part_die->name
15711 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15712 &objfile->per_bfd->storage_obstack);
15713 break;
15714 }
15715 break;
15716 case DW_AT_linkage_name:
15717 case DW_AT_MIPS_linkage_name:
15718 /* Note that both forms of linkage name might appear. We
15719 assume they will be the same, and we only store the last
15720 one we see. */
15721 if (cu->language == language_ada)
15722 part_die->name = DW_STRING (&attr);
15723 part_die->linkage_name = DW_STRING (&attr);
15724 break;
15725 case DW_AT_low_pc:
15726 has_low_pc_attr = 1;
15727 part_die->lowpc = attr_value_as_address (&attr);
15728 break;
15729 case DW_AT_high_pc:
15730 has_high_pc_attr = 1;
15731 part_die->highpc = attr_value_as_address (&attr);
15732 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15733 high_pc_relative = 1;
15734 break;
15735 case DW_AT_location:
15736 /* Support the .debug_loc offsets. */
15737 if (attr_form_is_block (&attr))
15738 {
15739 part_die->d.locdesc = DW_BLOCK (&attr);
15740 }
15741 else if (attr_form_is_section_offset (&attr))
15742 {
15743 dwarf2_complex_location_expr_complaint ();
15744 }
15745 else
15746 {
15747 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15748 "partial symbol information");
15749 }
15750 break;
15751 case DW_AT_external:
15752 part_die->is_external = DW_UNSND (&attr);
15753 break;
15754 case DW_AT_declaration:
15755 part_die->is_declaration = DW_UNSND (&attr);
15756 break;
15757 case DW_AT_type:
15758 part_die->has_type = 1;
15759 break;
15760 case DW_AT_abstract_origin:
15761 case DW_AT_specification:
15762 case DW_AT_extension:
15763 part_die->has_specification = 1;
15764 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15765 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15766 || cu->per_cu->is_dwz);
15767 break;
15768 case DW_AT_sibling:
15769 /* Ignore absolute siblings, they might point outside of
15770 the current compile unit. */
15771 if (attr.form == DW_FORM_ref_addr)
15772 complaint (&symfile_complaints,
15773 _("ignoring absolute DW_AT_sibling"));
15774 else
15775 {
15776 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15777 const gdb_byte *sibling_ptr = buffer + off;
15778
15779 if (sibling_ptr < info_ptr)
15780 complaint (&symfile_complaints,
15781 _("DW_AT_sibling points backwards"));
15782 else if (sibling_ptr > reader->buffer_end)
15783 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15784 else
15785 part_die->sibling = sibling_ptr;
15786 }
15787 break;
15788 case DW_AT_byte_size:
15789 part_die->has_byte_size = 1;
15790 break;
15791 case DW_AT_calling_convention:
15792 /* DWARF doesn't provide a way to identify a program's source-level
15793 entry point. DW_AT_calling_convention attributes are only meant
15794 to describe functions' calling conventions.
15795
15796 However, because it's a necessary piece of information in
15797 Fortran, and because DW_CC_program is the only piece of debugging
15798 information whose definition refers to a 'main program' at all,
15799 several compilers have begun marking Fortran main programs with
15800 DW_CC_program --- even when those functions use the standard
15801 calling conventions.
15802
15803 So until DWARF specifies a way to provide this information and
15804 compilers pick up the new representation, we'll support this
15805 practice. */
15806 if (DW_UNSND (&attr) == DW_CC_program
15807 && cu->language == language_fortran)
15808 set_objfile_main_name (objfile, part_die->name, language_fortran);
15809 break;
15810 case DW_AT_inline:
15811 if (DW_UNSND (&attr) == DW_INL_inlined
15812 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15813 part_die->may_be_inlined = 1;
15814 break;
15815
15816 case DW_AT_import:
15817 if (part_die->tag == DW_TAG_imported_unit)
15818 {
15819 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15820 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15821 || cu->per_cu->is_dwz);
15822 }
15823 break;
15824
15825 default:
15826 break;
15827 }
15828 }
15829
15830 if (high_pc_relative)
15831 part_die->highpc += part_die->lowpc;
15832
15833 if (has_low_pc_attr && has_high_pc_attr)
15834 {
15835 /* When using the GNU linker, .gnu.linkonce. sections are used to
15836 eliminate duplicate copies of functions and vtables and such.
15837 The linker will arbitrarily choose one and discard the others.
15838 The AT_*_pc values for such functions refer to local labels in
15839 these sections. If the section from that file was discarded, the
15840 labels are not in the output, so the relocs get a value of 0.
15841 If this is a discarded function, mark the pc bounds as invalid,
15842 so that GDB will ignore it. */
15843 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15844 {
15845 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15846
15847 complaint (&symfile_complaints,
15848 _("DW_AT_low_pc %s is zero "
15849 "for DIE at 0x%x [in module %s]"),
15850 paddress (gdbarch, part_die->lowpc),
15851 part_die->offset.sect_off, objfile_name (objfile));
15852 }
15853 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15854 else if (part_die->lowpc >= part_die->highpc)
15855 {
15856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15857
15858 complaint (&symfile_complaints,
15859 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15860 "for DIE at 0x%x [in module %s]"),
15861 paddress (gdbarch, part_die->lowpc),
15862 paddress (gdbarch, part_die->highpc),
15863 part_die->offset.sect_off, objfile_name (objfile));
15864 }
15865 else
15866 part_die->has_pc_info = 1;
15867 }
15868
15869 return info_ptr;
15870 }
15871
15872 /* Find a cached partial DIE at OFFSET in CU. */
15873
15874 static struct partial_die_info *
15875 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15876 {
15877 struct partial_die_info *lookup_die = NULL;
15878 struct partial_die_info part_die;
15879
15880 part_die.offset = offset;
15881 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15882 offset.sect_off);
15883
15884 return lookup_die;
15885 }
15886
15887 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15888 except in the case of .debug_types DIEs which do not reference
15889 outside their CU (they do however referencing other types via
15890 DW_FORM_ref_sig8). */
15891
15892 static struct partial_die_info *
15893 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15894 {
15895 struct objfile *objfile = cu->objfile;
15896 struct dwarf2_per_cu_data *per_cu = NULL;
15897 struct partial_die_info *pd = NULL;
15898
15899 if (offset_in_dwz == cu->per_cu->is_dwz
15900 && offset_in_cu_p (&cu->header, offset))
15901 {
15902 pd = find_partial_die_in_comp_unit (offset, cu);
15903 if (pd != NULL)
15904 return pd;
15905 /* We missed recording what we needed.
15906 Load all dies and try again. */
15907 per_cu = cu->per_cu;
15908 }
15909 else
15910 {
15911 /* TUs don't reference other CUs/TUs (except via type signatures). */
15912 if (cu->per_cu->is_debug_types)
15913 {
15914 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15915 " external reference to offset 0x%lx [in module %s].\n"),
15916 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15917 bfd_get_filename (objfile->obfd));
15918 }
15919 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15920 objfile);
15921
15922 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15923 load_partial_comp_unit (per_cu);
15924
15925 per_cu->cu->last_used = 0;
15926 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15927 }
15928
15929 /* If we didn't find it, and not all dies have been loaded,
15930 load them all and try again. */
15931
15932 if (pd == NULL && per_cu->load_all_dies == 0)
15933 {
15934 per_cu->load_all_dies = 1;
15935
15936 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15937 THIS_CU->cu may already be in use. So we can't just free it and
15938 replace its DIEs with the ones we read in. Instead, we leave those
15939 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15940 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15941 set. */
15942 load_partial_comp_unit (per_cu);
15943
15944 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15945 }
15946
15947 if (pd == NULL)
15948 internal_error (__FILE__, __LINE__,
15949 _("could not find partial DIE 0x%x "
15950 "in cache [from module %s]\n"),
15951 offset.sect_off, bfd_get_filename (objfile->obfd));
15952 return pd;
15953 }
15954
15955 /* See if we can figure out if the class lives in a namespace. We do
15956 this by looking for a member function; its demangled name will
15957 contain namespace info, if there is any. */
15958
15959 static void
15960 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15961 struct dwarf2_cu *cu)
15962 {
15963 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15964 what template types look like, because the demangler
15965 frequently doesn't give the same name as the debug info. We
15966 could fix this by only using the demangled name to get the
15967 prefix (but see comment in read_structure_type). */
15968
15969 struct partial_die_info *real_pdi;
15970 struct partial_die_info *child_pdi;
15971
15972 /* If this DIE (this DIE's specification, if any) has a parent, then
15973 we should not do this. We'll prepend the parent's fully qualified
15974 name when we create the partial symbol. */
15975
15976 real_pdi = struct_pdi;
15977 while (real_pdi->has_specification)
15978 real_pdi = find_partial_die (real_pdi->spec_offset,
15979 real_pdi->spec_is_dwz, cu);
15980
15981 if (real_pdi->die_parent != NULL)
15982 return;
15983
15984 for (child_pdi = struct_pdi->die_child;
15985 child_pdi != NULL;
15986 child_pdi = child_pdi->die_sibling)
15987 {
15988 if (child_pdi->tag == DW_TAG_subprogram
15989 && child_pdi->linkage_name != NULL)
15990 {
15991 char *actual_class_name
15992 = language_class_name_from_physname (cu->language_defn,
15993 child_pdi->linkage_name);
15994 if (actual_class_name != NULL)
15995 {
15996 struct_pdi->name
15997 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15998 actual_class_name,
15999 strlen (actual_class_name));
16000 xfree (actual_class_name);
16001 }
16002 break;
16003 }
16004 }
16005 }
16006
16007 /* Adjust PART_DIE before generating a symbol for it. This function
16008 may set the is_external flag or change the DIE's name. */
16009
16010 static void
16011 fixup_partial_die (struct partial_die_info *part_die,
16012 struct dwarf2_cu *cu)
16013 {
16014 /* Once we've fixed up a die, there's no point in doing so again.
16015 This also avoids a memory leak if we were to call
16016 guess_partial_die_structure_name multiple times. */
16017 if (part_die->fixup_called)
16018 return;
16019
16020 /* If we found a reference attribute and the DIE has no name, try
16021 to find a name in the referred to DIE. */
16022
16023 if (part_die->name == NULL && part_die->has_specification)
16024 {
16025 struct partial_die_info *spec_die;
16026
16027 spec_die = find_partial_die (part_die->spec_offset,
16028 part_die->spec_is_dwz, cu);
16029
16030 fixup_partial_die (spec_die, cu);
16031
16032 if (spec_die->name)
16033 {
16034 part_die->name = spec_die->name;
16035
16036 /* Copy DW_AT_external attribute if it is set. */
16037 if (spec_die->is_external)
16038 part_die->is_external = spec_die->is_external;
16039 }
16040 }
16041
16042 /* Set default names for some unnamed DIEs. */
16043
16044 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16045 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16046
16047 /* If there is no parent die to provide a namespace, and there are
16048 children, see if we can determine the namespace from their linkage
16049 name. */
16050 if (cu->language == language_cplus
16051 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16052 && part_die->die_parent == NULL
16053 && part_die->has_children
16054 && (part_die->tag == DW_TAG_class_type
16055 || part_die->tag == DW_TAG_structure_type
16056 || part_die->tag == DW_TAG_union_type))
16057 guess_partial_die_structure_name (part_die, cu);
16058
16059 /* GCC might emit a nameless struct or union that has a linkage
16060 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16061 if (part_die->name == NULL
16062 && (part_die->tag == DW_TAG_class_type
16063 || part_die->tag == DW_TAG_interface_type
16064 || part_die->tag == DW_TAG_structure_type
16065 || part_die->tag == DW_TAG_union_type)
16066 && part_die->linkage_name != NULL)
16067 {
16068 char *demangled;
16069
16070 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16071 if (demangled)
16072 {
16073 const char *base;
16074
16075 /* Strip any leading namespaces/classes, keep only the base name.
16076 DW_AT_name for named DIEs does not contain the prefixes. */
16077 base = strrchr (demangled, ':');
16078 if (base && base > demangled && base[-1] == ':')
16079 base++;
16080 else
16081 base = demangled;
16082
16083 part_die->name
16084 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16085 base, strlen (base));
16086 xfree (demangled);
16087 }
16088 }
16089
16090 part_die->fixup_called = 1;
16091 }
16092
16093 /* Read an attribute value described by an attribute form. */
16094
16095 static const gdb_byte *
16096 read_attribute_value (const struct die_reader_specs *reader,
16097 struct attribute *attr, unsigned form,
16098 const gdb_byte *info_ptr)
16099 {
16100 struct dwarf2_cu *cu = reader->cu;
16101 struct objfile *objfile = cu->objfile;
16102 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16103 bfd *abfd = reader->abfd;
16104 struct comp_unit_head *cu_header = &cu->header;
16105 unsigned int bytes_read;
16106 struct dwarf_block *blk;
16107
16108 attr->form = form;
16109 switch (form)
16110 {
16111 case DW_FORM_ref_addr:
16112 if (cu->header.version == 2)
16113 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16114 else
16115 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16116 &cu->header, &bytes_read);
16117 info_ptr += bytes_read;
16118 break;
16119 case DW_FORM_GNU_ref_alt:
16120 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16121 info_ptr += bytes_read;
16122 break;
16123 case DW_FORM_addr:
16124 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16125 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16126 info_ptr += bytes_read;
16127 break;
16128 case DW_FORM_block2:
16129 blk = dwarf_alloc_block (cu);
16130 blk->size = read_2_bytes (abfd, info_ptr);
16131 info_ptr += 2;
16132 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16133 info_ptr += blk->size;
16134 DW_BLOCK (attr) = blk;
16135 break;
16136 case DW_FORM_block4:
16137 blk = dwarf_alloc_block (cu);
16138 blk->size = read_4_bytes (abfd, info_ptr);
16139 info_ptr += 4;
16140 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16141 info_ptr += blk->size;
16142 DW_BLOCK (attr) = blk;
16143 break;
16144 case DW_FORM_data2:
16145 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16146 info_ptr += 2;
16147 break;
16148 case DW_FORM_data4:
16149 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16150 info_ptr += 4;
16151 break;
16152 case DW_FORM_data8:
16153 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16154 info_ptr += 8;
16155 break;
16156 case DW_FORM_sec_offset:
16157 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16158 info_ptr += bytes_read;
16159 break;
16160 case DW_FORM_string:
16161 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16162 DW_STRING_IS_CANONICAL (attr) = 0;
16163 info_ptr += bytes_read;
16164 break;
16165 case DW_FORM_strp:
16166 if (!cu->per_cu->is_dwz)
16167 {
16168 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16169 &bytes_read);
16170 DW_STRING_IS_CANONICAL (attr) = 0;
16171 info_ptr += bytes_read;
16172 break;
16173 }
16174 /* FALLTHROUGH */
16175 case DW_FORM_GNU_strp_alt:
16176 {
16177 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16178 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16179 &bytes_read);
16180
16181 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16182 DW_STRING_IS_CANONICAL (attr) = 0;
16183 info_ptr += bytes_read;
16184 }
16185 break;
16186 case DW_FORM_exprloc:
16187 case DW_FORM_block:
16188 blk = dwarf_alloc_block (cu);
16189 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16190 info_ptr += bytes_read;
16191 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16192 info_ptr += blk->size;
16193 DW_BLOCK (attr) = blk;
16194 break;
16195 case DW_FORM_block1:
16196 blk = dwarf_alloc_block (cu);
16197 blk->size = read_1_byte (abfd, info_ptr);
16198 info_ptr += 1;
16199 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16200 info_ptr += blk->size;
16201 DW_BLOCK (attr) = blk;
16202 break;
16203 case DW_FORM_data1:
16204 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16205 info_ptr += 1;
16206 break;
16207 case DW_FORM_flag:
16208 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16209 info_ptr += 1;
16210 break;
16211 case DW_FORM_flag_present:
16212 DW_UNSND (attr) = 1;
16213 break;
16214 case DW_FORM_sdata:
16215 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16216 info_ptr += bytes_read;
16217 break;
16218 case DW_FORM_udata:
16219 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16220 info_ptr += bytes_read;
16221 break;
16222 case DW_FORM_ref1:
16223 DW_UNSND (attr) = (cu->header.offset.sect_off
16224 + read_1_byte (abfd, info_ptr));
16225 info_ptr += 1;
16226 break;
16227 case DW_FORM_ref2:
16228 DW_UNSND (attr) = (cu->header.offset.sect_off
16229 + read_2_bytes (abfd, info_ptr));
16230 info_ptr += 2;
16231 break;
16232 case DW_FORM_ref4:
16233 DW_UNSND (attr) = (cu->header.offset.sect_off
16234 + read_4_bytes (abfd, info_ptr));
16235 info_ptr += 4;
16236 break;
16237 case DW_FORM_ref8:
16238 DW_UNSND (attr) = (cu->header.offset.sect_off
16239 + read_8_bytes (abfd, info_ptr));
16240 info_ptr += 8;
16241 break;
16242 case DW_FORM_ref_sig8:
16243 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16244 info_ptr += 8;
16245 break;
16246 case DW_FORM_ref_udata:
16247 DW_UNSND (attr) = (cu->header.offset.sect_off
16248 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16249 info_ptr += bytes_read;
16250 break;
16251 case DW_FORM_indirect:
16252 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16253 info_ptr += bytes_read;
16254 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16255 break;
16256 case DW_FORM_GNU_addr_index:
16257 if (reader->dwo_file == NULL)
16258 {
16259 /* For now flag a hard error.
16260 Later we can turn this into a complaint. */
16261 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16262 dwarf_form_name (form),
16263 bfd_get_filename (abfd));
16264 }
16265 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16266 info_ptr += bytes_read;
16267 break;
16268 case DW_FORM_GNU_str_index:
16269 if (reader->dwo_file == NULL)
16270 {
16271 /* For now flag a hard error.
16272 Later we can turn this into a complaint if warranted. */
16273 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16274 dwarf_form_name (form),
16275 bfd_get_filename (abfd));
16276 }
16277 {
16278 ULONGEST str_index =
16279 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16280
16281 DW_STRING (attr) = read_str_index (reader, str_index);
16282 DW_STRING_IS_CANONICAL (attr) = 0;
16283 info_ptr += bytes_read;
16284 }
16285 break;
16286 default:
16287 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16288 dwarf_form_name (form),
16289 bfd_get_filename (abfd));
16290 }
16291
16292 /* Super hack. */
16293 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16294 attr->form = DW_FORM_GNU_ref_alt;
16295
16296 /* We have seen instances where the compiler tried to emit a byte
16297 size attribute of -1 which ended up being encoded as an unsigned
16298 0xffffffff. Although 0xffffffff is technically a valid size value,
16299 an object of this size seems pretty unlikely so we can relatively
16300 safely treat these cases as if the size attribute was invalid and
16301 treat them as zero by default. */
16302 if (attr->name == DW_AT_byte_size
16303 && form == DW_FORM_data4
16304 && DW_UNSND (attr) >= 0xffffffff)
16305 {
16306 complaint
16307 (&symfile_complaints,
16308 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16309 hex_string (DW_UNSND (attr)));
16310 DW_UNSND (attr) = 0;
16311 }
16312
16313 return info_ptr;
16314 }
16315
16316 /* Read an attribute described by an abbreviated attribute. */
16317
16318 static const gdb_byte *
16319 read_attribute (const struct die_reader_specs *reader,
16320 struct attribute *attr, struct attr_abbrev *abbrev,
16321 const gdb_byte *info_ptr)
16322 {
16323 attr->name = abbrev->name;
16324 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16325 }
16326
16327 /* Read dwarf information from a buffer. */
16328
16329 static unsigned int
16330 read_1_byte (bfd *abfd, const gdb_byte *buf)
16331 {
16332 return bfd_get_8 (abfd, buf);
16333 }
16334
16335 static int
16336 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16337 {
16338 return bfd_get_signed_8 (abfd, buf);
16339 }
16340
16341 static unsigned int
16342 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16343 {
16344 return bfd_get_16 (abfd, buf);
16345 }
16346
16347 static int
16348 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16349 {
16350 return bfd_get_signed_16 (abfd, buf);
16351 }
16352
16353 static unsigned int
16354 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16355 {
16356 return bfd_get_32 (abfd, buf);
16357 }
16358
16359 static int
16360 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16361 {
16362 return bfd_get_signed_32 (abfd, buf);
16363 }
16364
16365 static ULONGEST
16366 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16367 {
16368 return bfd_get_64 (abfd, buf);
16369 }
16370
16371 static CORE_ADDR
16372 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16373 unsigned int *bytes_read)
16374 {
16375 struct comp_unit_head *cu_header = &cu->header;
16376 CORE_ADDR retval = 0;
16377
16378 if (cu_header->signed_addr_p)
16379 {
16380 switch (cu_header->addr_size)
16381 {
16382 case 2:
16383 retval = bfd_get_signed_16 (abfd, buf);
16384 break;
16385 case 4:
16386 retval = bfd_get_signed_32 (abfd, buf);
16387 break;
16388 case 8:
16389 retval = bfd_get_signed_64 (abfd, buf);
16390 break;
16391 default:
16392 internal_error (__FILE__, __LINE__,
16393 _("read_address: bad switch, signed [in module %s]"),
16394 bfd_get_filename (abfd));
16395 }
16396 }
16397 else
16398 {
16399 switch (cu_header->addr_size)
16400 {
16401 case 2:
16402 retval = bfd_get_16 (abfd, buf);
16403 break;
16404 case 4:
16405 retval = bfd_get_32 (abfd, buf);
16406 break;
16407 case 8:
16408 retval = bfd_get_64 (abfd, buf);
16409 break;
16410 default:
16411 internal_error (__FILE__, __LINE__,
16412 _("read_address: bad switch, "
16413 "unsigned [in module %s]"),
16414 bfd_get_filename (abfd));
16415 }
16416 }
16417
16418 *bytes_read = cu_header->addr_size;
16419 return retval;
16420 }
16421
16422 /* Read the initial length from a section. The (draft) DWARF 3
16423 specification allows the initial length to take up either 4 bytes
16424 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16425 bytes describe the length and all offsets will be 8 bytes in length
16426 instead of 4.
16427
16428 An older, non-standard 64-bit format is also handled by this
16429 function. The older format in question stores the initial length
16430 as an 8-byte quantity without an escape value. Lengths greater
16431 than 2^32 aren't very common which means that the initial 4 bytes
16432 is almost always zero. Since a length value of zero doesn't make
16433 sense for the 32-bit format, this initial zero can be considered to
16434 be an escape value which indicates the presence of the older 64-bit
16435 format. As written, the code can't detect (old format) lengths
16436 greater than 4GB. If it becomes necessary to handle lengths
16437 somewhat larger than 4GB, we could allow other small values (such
16438 as the non-sensical values of 1, 2, and 3) to also be used as
16439 escape values indicating the presence of the old format.
16440
16441 The value returned via bytes_read should be used to increment the
16442 relevant pointer after calling read_initial_length().
16443
16444 [ Note: read_initial_length() and read_offset() are based on the
16445 document entitled "DWARF Debugging Information Format", revision
16446 3, draft 8, dated November 19, 2001. This document was obtained
16447 from:
16448
16449 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16450
16451 This document is only a draft and is subject to change. (So beware.)
16452
16453 Details regarding the older, non-standard 64-bit format were
16454 determined empirically by examining 64-bit ELF files produced by
16455 the SGI toolchain on an IRIX 6.5 machine.
16456
16457 - Kevin, July 16, 2002
16458 ] */
16459
16460 static LONGEST
16461 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16462 {
16463 LONGEST length = bfd_get_32 (abfd, buf);
16464
16465 if (length == 0xffffffff)
16466 {
16467 length = bfd_get_64 (abfd, buf + 4);
16468 *bytes_read = 12;
16469 }
16470 else if (length == 0)
16471 {
16472 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16473 length = bfd_get_64 (abfd, buf);
16474 *bytes_read = 8;
16475 }
16476 else
16477 {
16478 *bytes_read = 4;
16479 }
16480
16481 return length;
16482 }
16483
16484 /* Cover function for read_initial_length.
16485 Returns the length of the object at BUF, and stores the size of the
16486 initial length in *BYTES_READ and stores the size that offsets will be in
16487 *OFFSET_SIZE.
16488 If the initial length size is not equivalent to that specified in
16489 CU_HEADER then issue a complaint.
16490 This is useful when reading non-comp-unit headers. */
16491
16492 static LONGEST
16493 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16494 const struct comp_unit_head *cu_header,
16495 unsigned int *bytes_read,
16496 unsigned int *offset_size)
16497 {
16498 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16499
16500 gdb_assert (cu_header->initial_length_size == 4
16501 || cu_header->initial_length_size == 8
16502 || cu_header->initial_length_size == 12);
16503
16504 if (cu_header->initial_length_size != *bytes_read)
16505 complaint (&symfile_complaints,
16506 _("intermixed 32-bit and 64-bit DWARF sections"));
16507
16508 *offset_size = (*bytes_read == 4) ? 4 : 8;
16509 return length;
16510 }
16511
16512 /* Read an offset from the data stream. The size of the offset is
16513 given by cu_header->offset_size. */
16514
16515 static LONGEST
16516 read_offset (bfd *abfd, const gdb_byte *buf,
16517 const struct comp_unit_head *cu_header,
16518 unsigned int *bytes_read)
16519 {
16520 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16521
16522 *bytes_read = cu_header->offset_size;
16523 return offset;
16524 }
16525
16526 /* Read an offset from the data stream. */
16527
16528 static LONGEST
16529 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16530 {
16531 LONGEST retval = 0;
16532
16533 switch (offset_size)
16534 {
16535 case 4:
16536 retval = bfd_get_32 (abfd, buf);
16537 break;
16538 case 8:
16539 retval = bfd_get_64 (abfd, buf);
16540 break;
16541 default:
16542 internal_error (__FILE__, __LINE__,
16543 _("read_offset_1: bad switch [in module %s]"),
16544 bfd_get_filename (abfd));
16545 }
16546
16547 return retval;
16548 }
16549
16550 static const gdb_byte *
16551 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16552 {
16553 /* If the size of a host char is 8 bits, we can return a pointer
16554 to the buffer, otherwise we have to copy the data to a buffer
16555 allocated on the temporary obstack. */
16556 gdb_assert (HOST_CHAR_BIT == 8);
16557 return buf;
16558 }
16559
16560 static const char *
16561 read_direct_string (bfd *abfd, const gdb_byte *buf,
16562 unsigned int *bytes_read_ptr)
16563 {
16564 /* If the size of a host char is 8 bits, we can return a pointer
16565 to the string, otherwise we have to copy the string to a buffer
16566 allocated on the temporary obstack. */
16567 gdb_assert (HOST_CHAR_BIT == 8);
16568 if (*buf == '\0')
16569 {
16570 *bytes_read_ptr = 1;
16571 return NULL;
16572 }
16573 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16574 return (const char *) buf;
16575 }
16576
16577 static const char *
16578 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16579 {
16580 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16581 if (dwarf2_per_objfile->str.buffer == NULL)
16582 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16583 bfd_get_filename (abfd));
16584 if (str_offset >= dwarf2_per_objfile->str.size)
16585 error (_("DW_FORM_strp pointing outside of "
16586 ".debug_str section [in module %s]"),
16587 bfd_get_filename (abfd));
16588 gdb_assert (HOST_CHAR_BIT == 8);
16589 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16590 return NULL;
16591 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16592 }
16593
16594 /* Read a string at offset STR_OFFSET in the .debug_str section from
16595 the .dwz file DWZ. Throw an error if the offset is too large. If
16596 the string consists of a single NUL byte, return NULL; otherwise
16597 return a pointer to the string. */
16598
16599 static const char *
16600 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16601 {
16602 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16603
16604 if (dwz->str.buffer == NULL)
16605 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16606 "section [in module %s]"),
16607 bfd_get_filename (dwz->dwz_bfd));
16608 if (str_offset >= dwz->str.size)
16609 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16610 ".debug_str section [in module %s]"),
16611 bfd_get_filename (dwz->dwz_bfd));
16612 gdb_assert (HOST_CHAR_BIT == 8);
16613 if (dwz->str.buffer[str_offset] == '\0')
16614 return NULL;
16615 return (const char *) (dwz->str.buffer + str_offset);
16616 }
16617
16618 static const char *
16619 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16620 const struct comp_unit_head *cu_header,
16621 unsigned int *bytes_read_ptr)
16622 {
16623 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16624
16625 return read_indirect_string_at_offset (abfd, str_offset);
16626 }
16627
16628 static ULONGEST
16629 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16630 unsigned int *bytes_read_ptr)
16631 {
16632 ULONGEST result;
16633 unsigned int num_read;
16634 int i, shift;
16635 unsigned char byte;
16636
16637 result = 0;
16638 shift = 0;
16639 num_read = 0;
16640 i = 0;
16641 while (1)
16642 {
16643 byte = bfd_get_8 (abfd, buf);
16644 buf++;
16645 num_read++;
16646 result |= ((ULONGEST) (byte & 127) << shift);
16647 if ((byte & 128) == 0)
16648 {
16649 break;
16650 }
16651 shift += 7;
16652 }
16653 *bytes_read_ptr = num_read;
16654 return result;
16655 }
16656
16657 static LONGEST
16658 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16659 unsigned int *bytes_read_ptr)
16660 {
16661 LONGEST result;
16662 int i, shift, num_read;
16663 unsigned char byte;
16664
16665 result = 0;
16666 shift = 0;
16667 num_read = 0;
16668 i = 0;
16669 while (1)
16670 {
16671 byte = bfd_get_8 (abfd, buf);
16672 buf++;
16673 num_read++;
16674 result |= ((LONGEST) (byte & 127) << shift);
16675 shift += 7;
16676 if ((byte & 128) == 0)
16677 {
16678 break;
16679 }
16680 }
16681 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16682 result |= -(((LONGEST) 1) << shift);
16683 *bytes_read_ptr = num_read;
16684 return result;
16685 }
16686
16687 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16688 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16689 ADDR_SIZE is the size of addresses from the CU header. */
16690
16691 static CORE_ADDR
16692 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16693 {
16694 struct objfile *objfile = dwarf2_per_objfile->objfile;
16695 bfd *abfd = objfile->obfd;
16696 const gdb_byte *info_ptr;
16697
16698 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16699 if (dwarf2_per_objfile->addr.buffer == NULL)
16700 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16701 objfile_name (objfile));
16702 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16703 error (_("DW_FORM_addr_index pointing outside of "
16704 ".debug_addr section [in module %s]"),
16705 objfile_name (objfile));
16706 info_ptr = (dwarf2_per_objfile->addr.buffer
16707 + addr_base + addr_index * addr_size);
16708 if (addr_size == 4)
16709 return bfd_get_32 (abfd, info_ptr);
16710 else
16711 return bfd_get_64 (abfd, info_ptr);
16712 }
16713
16714 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16715
16716 static CORE_ADDR
16717 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16718 {
16719 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16720 }
16721
16722 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16723
16724 static CORE_ADDR
16725 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16726 unsigned int *bytes_read)
16727 {
16728 bfd *abfd = cu->objfile->obfd;
16729 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16730
16731 return read_addr_index (cu, addr_index);
16732 }
16733
16734 /* Data structure to pass results from dwarf2_read_addr_index_reader
16735 back to dwarf2_read_addr_index. */
16736
16737 struct dwarf2_read_addr_index_data
16738 {
16739 ULONGEST addr_base;
16740 int addr_size;
16741 };
16742
16743 /* die_reader_func for dwarf2_read_addr_index. */
16744
16745 static void
16746 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16747 const gdb_byte *info_ptr,
16748 struct die_info *comp_unit_die,
16749 int has_children,
16750 void *data)
16751 {
16752 struct dwarf2_cu *cu = reader->cu;
16753 struct dwarf2_read_addr_index_data *aidata =
16754 (struct dwarf2_read_addr_index_data *) data;
16755
16756 aidata->addr_base = cu->addr_base;
16757 aidata->addr_size = cu->header.addr_size;
16758 }
16759
16760 /* Given an index in .debug_addr, fetch the value.
16761 NOTE: This can be called during dwarf expression evaluation,
16762 long after the debug information has been read, and thus per_cu->cu
16763 may no longer exist. */
16764
16765 CORE_ADDR
16766 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16767 unsigned int addr_index)
16768 {
16769 struct objfile *objfile = per_cu->objfile;
16770 struct dwarf2_cu *cu = per_cu->cu;
16771 ULONGEST addr_base;
16772 int addr_size;
16773
16774 /* This is intended to be called from outside this file. */
16775 dw2_setup (objfile);
16776
16777 /* We need addr_base and addr_size.
16778 If we don't have PER_CU->cu, we have to get it.
16779 Nasty, but the alternative is storing the needed info in PER_CU,
16780 which at this point doesn't seem justified: it's not clear how frequently
16781 it would get used and it would increase the size of every PER_CU.
16782 Entry points like dwarf2_per_cu_addr_size do a similar thing
16783 so we're not in uncharted territory here.
16784 Alas we need to be a bit more complicated as addr_base is contained
16785 in the DIE.
16786
16787 We don't need to read the entire CU(/TU).
16788 We just need the header and top level die.
16789
16790 IWBN to use the aging mechanism to let us lazily later discard the CU.
16791 For now we skip this optimization. */
16792
16793 if (cu != NULL)
16794 {
16795 addr_base = cu->addr_base;
16796 addr_size = cu->header.addr_size;
16797 }
16798 else
16799 {
16800 struct dwarf2_read_addr_index_data aidata;
16801
16802 /* Note: We can't use init_cutu_and_read_dies_simple here,
16803 we need addr_base. */
16804 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16805 dwarf2_read_addr_index_reader, &aidata);
16806 addr_base = aidata.addr_base;
16807 addr_size = aidata.addr_size;
16808 }
16809
16810 return read_addr_index_1 (addr_index, addr_base, addr_size);
16811 }
16812
16813 /* Given a DW_FORM_GNU_str_index, fetch the string.
16814 This is only used by the Fission support. */
16815
16816 static const char *
16817 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16818 {
16819 struct objfile *objfile = dwarf2_per_objfile->objfile;
16820 const char *objf_name = objfile_name (objfile);
16821 bfd *abfd = objfile->obfd;
16822 struct dwarf2_cu *cu = reader->cu;
16823 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16824 struct dwarf2_section_info *str_offsets_section =
16825 &reader->dwo_file->sections.str_offsets;
16826 const gdb_byte *info_ptr;
16827 ULONGEST str_offset;
16828 static const char form_name[] = "DW_FORM_GNU_str_index";
16829
16830 dwarf2_read_section (objfile, str_section);
16831 dwarf2_read_section (objfile, str_offsets_section);
16832 if (str_section->buffer == NULL)
16833 error (_("%s used without .debug_str.dwo section"
16834 " in CU at offset 0x%lx [in module %s]"),
16835 form_name, (long) cu->header.offset.sect_off, objf_name);
16836 if (str_offsets_section->buffer == NULL)
16837 error (_("%s used without .debug_str_offsets.dwo section"
16838 " in CU at offset 0x%lx [in module %s]"),
16839 form_name, (long) cu->header.offset.sect_off, objf_name);
16840 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16841 error (_("%s pointing outside of .debug_str_offsets.dwo"
16842 " section in CU at offset 0x%lx [in module %s]"),
16843 form_name, (long) cu->header.offset.sect_off, objf_name);
16844 info_ptr = (str_offsets_section->buffer
16845 + str_index * cu->header.offset_size);
16846 if (cu->header.offset_size == 4)
16847 str_offset = bfd_get_32 (abfd, info_ptr);
16848 else
16849 str_offset = bfd_get_64 (abfd, info_ptr);
16850 if (str_offset >= str_section->size)
16851 error (_("Offset from %s pointing outside of"
16852 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16853 form_name, (long) cu->header.offset.sect_off, objf_name);
16854 return (const char *) (str_section->buffer + str_offset);
16855 }
16856
16857 /* Return the length of an LEB128 number in BUF. */
16858
16859 static int
16860 leb128_size (const gdb_byte *buf)
16861 {
16862 const gdb_byte *begin = buf;
16863 gdb_byte byte;
16864
16865 while (1)
16866 {
16867 byte = *buf++;
16868 if ((byte & 128) == 0)
16869 return buf - begin;
16870 }
16871 }
16872
16873 static void
16874 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16875 {
16876 switch (lang)
16877 {
16878 case DW_LANG_C89:
16879 case DW_LANG_C99:
16880 case DW_LANG_C11:
16881 case DW_LANG_C:
16882 case DW_LANG_UPC:
16883 cu->language = language_c;
16884 break;
16885 case DW_LANG_C_plus_plus:
16886 case DW_LANG_C_plus_plus_11:
16887 case DW_LANG_C_plus_plus_14:
16888 cu->language = language_cplus;
16889 break;
16890 case DW_LANG_D:
16891 cu->language = language_d;
16892 break;
16893 case DW_LANG_Fortran77:
16894 case DW_LANG_Fortran90:
16895 case DW_LANG_Fortran95:
16896 cu->language = language_fortran;
16897 break;
16898 case DW_LANG_Go:
16899 cu->language = language_go;
16900 break;
16901 case DW_LANG_Mips_Assembler:
16902 cu->language = language_asm;
16903 break;
16904 case DW_LANG_Java:
16905 cu->language = language_java;
16906 break;
16907 case DW_LANG_Ada83:
16908 case DW_LANG_Ada95:
16909 cu->language = language_ada;
16910 break;
16911 case DW_LANG_Modula2:
16912 cu->language = language_m2;
16913 break;
16914 case DW_LANG_Pascal83:
16915 cu->language = language_pascal;
16916 break;
16917 case DW_LANG_ObjC:
16918 cu->language = language_objc;
16919 break;
16920 case DW_LANG_Cobol74:
16921 case DW_LANG_Cobol85:
16922 default:
16923 cu->language = language_minimal;
16924 break;
16925 }
16926 cu->language_defn = language_def (cu->language);
16927 }
16928
16929 /* Return the named attribute or NULL if not there. */
16930
16931 static struct attribute *
16932 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16933 {
16934 for (;;)
16935 {
16936 unsigned int i;
16937 struct attribute *spec = NULL;
16938
16939 for (i = 0; i < die->num_attrs; ++i)
16940 {
16941 if (die->attrs[i].name == name)
16942 return &die->attrs[i];
16943 if (die->attrs[i].name == DW_AT_specification
16944 || die->attrs[i].name == DW_AT_abstract_origin)
16945 spec = &die->attrs[i];
16946 }
16947
16948 if (!spec)
16949 break;
16950
16951 die = follow_die_ref (die, spec, &cu);
16952 }
16953
16954 return NULL;
16955 }
16956
16957 /* Return the named attribute or NULL if not there,
16958 but do not follow DW_AT_specification, etc.
16959 This is for use in contexts where we're reading .debug_types dies.
16960 Following DW_AT_specification, DW_AT_abstract_origin will take us
16961 back up the chain, and we want to go down. */
16962
16963 static struct attribute *
16964 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16965 {
16966 unsigned int i;
16967
16968 for (i = 0; i < die->num_attrs; ++i)
16969 if (die->attrs[i].name == name)
16970 return &die->attrs[i];
16971
16972 return NULL;
16973 }
16974
16975 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16976 and holds a non-zero value. This function should only be used for
16977 DW_FORM_flag or DW_FORM_flag_present attributes. */
16978
16979 static int
16980 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16981 {
16982 struct attribute *attr = dwarf2_attr (die, name, cu);
16983
16984 return (attr && DW_UNSND (attr));
16985 }
16986
16987 static int
16988 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16989 {
16990 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16991 which value is non-zero. However, we have to be careful with
16992 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16993 (via dwarf2_flag_true_p) follows this attribute. So we may
16994 end up accidently finding a declaration attribute that belongs
16995 to a different DIE referenced by the specification attribute,
16996 even though the given DIE does not have a declaration attribute. */
16997 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16998 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16999 }
17000
17001 /* Return the die giving the specification for DIE, if there is
17002 one. *SPEC_CU is the CU containing DIE on input, and the CU
17003 containing the return value on output. If there is no
17004 specification, but there is an abstract origin, that is
17005 returned. */
17006
17007 static struct die_info *
17008 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17009 {
17010 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17011 *spec_cu);
17012
17013 if (spec_attr == NULL)
17014 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17015
17016 if (spec_attr == NULL)
17017 return NULL;
17018 else
17019 return follow_die_ref (die, spec_attr, spec_cu);
17020 }
17021
17022 /* Free the line_header structure *LH, and any arrays and strings it
17023 refers to.
17024 NOTE: This is also used as a "cleanup" function. */
17025
17026 static void
17027 free_line_header (struct line_header *lh)
17028 {
17029 if (lh->standard_opcode_lengths)
17030 xfree (lh->standard_opcode_lengths);
17031
17032 /* Remember that all the lh->file_names[i].name pointers are
17033 pointers into debug_line_buffer, and don't need to be freed. */
17034 if (lh->file_names)
17035 xfree (lh->file_names);
17036
17037 /* Similarly for the include directory names. */
17038 if (lh->include_dirs)
17039 xfree (lh->include_dirs);
17040
17041 xfree (lh);
17042 }
17043
17044 /* Stub for free_line_header to match void * callback types. */
17045
17046 static void
17047 free_line_header_voidp (void *arg)
17048 {
17049 struct line_header *lh = arg;
17050
17051 free_line_header (lh);
17052 }
17053
17054 /* Add an entry to LH's include directory table. */
17055
17056 static void
17057 add_include_dir (struct line_header *lh, const char *include_dir)
17058 {
17059 /* Grow the array if necessary. */
17060 if (lh->include_dirs_size == 0)
17061 {
17062 lh->include_dirs_size = 1; /* for testing */
17063 lh->include_dirs = xmalloc (lh->include_dirs_size
17064 * sizeof (*lh->include_dirs));
17065 }
17066 else if (lh->num_include_dirs >= lh->include_dirs_size)
17067 {
17068 lh->include_dirs_size *= 2;
17069 lh->include_dirs = xrealloc (lh->include_dirs,
17070 (lh->include_dirs_size
17071 * sizeof (*lh->include_dirs)));
17072 }
17073
17074 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17075 }
17076
17077 /* Add an entry to LH's file name table. */
17078
17079 static void
17080 add_file_name (struct line_header *lh,
17081 const char *name,
17082 unsigned int dir_index,
17083 unsigned int mod_time,
17084 unsigned int length)
17085 {
17086 struct file_entry *fe;
17087
17088 /* Grow the array if necessary. */
17089 if (lh->file_names_size == 0)
17090 {
17091 lh->file_names_size = 1; /* for testing */
17092 lh->file_names = xmalloc (lh->file_names_size
17093 * sizeof (*lh->file_names));
17094 }
17095 else if (lh->num_file_names >= lh->file_names_size)
17096 {
17097 lh->file_names_size *= 2;
17098 lh->file_names = xrealloc (lh->file_names,
17099 (lh->file_names_size
17100 * sizeof (*lh->file_names)));
17101 }
17102
17103 fe = &lh->file_names[lh->num_file_names++];
17104 fe->name = name;
17105 fe->dir_index = dir_index;
17106 fe->mod_time = mod_time;
17107 fe->length = length;
17108 fe->included_p = 0;
17109 fe->symtab = NULL;
17110 }
17111
17112 /* A convenience function to find the proper .debug_line section for a
17113 CU. */
17114
17115 static struct dwarf2_section_info *
17116 get_debug_line_section (struct dwarf2_cu *cu)
17117 {
17118 struct dwarf2_section_info *section;
17119
17120 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17121 DWO file. */
17122 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17123 section = &cu->dwo_unit->dwo_file->sections.line;
17124 else if (cu->per_cu->is_dwz)
17125 {
17126 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17127
17128 section = &dwz->line;
17129 }
17130 else
17131 section = &dwarf2_per_objfile->line;
17132
17133 return section;
17134 }
17135
17136 /* Read the statement program header starting at OFFSET in
17137 .debug_line, or .debug_line.dwo. Return a pointer
17138 to a struct line_header, allocated using xmalloc.
17139
17140 NOTE: the strings in the include directory and file name tables of
17141 the returned object point into the dwarf line section buffer,
17142 and must not be freed. */
17143
17144 static struct line_header *
17145 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17146 {
17147 struct cleanup *back_to;
17148 struct line_header *lh;
17149 const gdb_byte *line_ptr;
17150 unsigned int bytes_read, offset_size;
17151 int i;
17152 const char *cur_dir, *cur_file;
17153 struct dwarf2_section_info *section;
17154 bfd *abfd;
17155
17156 section = get_debug_line_section (cu);
17157 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17158 if (section->buffer == NULL)
17159 {
17160 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17161 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17162 else
17163 complaint (&symfile_complaints, _("missing .debug_line section"));
17164 return 0;
17165 }
17166
17167 /* We can't do this until we know the section is non-empty.
17168 Only then do we know we have such a section. */
17169 abfd = get_section_bfd_owner (section);
17170
17171 /* Make sure that at least there's room for the total_length field.
17172 That could be 12 bytes long, but we're just going to fudge that. */
17173 if (offset + 4 >= section->size)
17174 {
17175 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17176 return 0;
17177 }
17178
17179 lh = xmalloc (sizeof (*lh));
17180 memset (lh, 0, sizeof (*lh));
17181 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17182 (void *) lh);
17183
17184 lh->offset.sect_off = offset;
17185 lh->offset_in_dwz = cu->per_cu->is_dwz;
17186
17187 line_ptr = section->buffer + offset;
17188
17189 /* Read in the header. */
17190 lh->total_length =
17191 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17192 &bytes_read, &offset_size);
17193 line_ptr += bytes_read;
17194 if (line_ptr + lh->total_length > (section->buffer + section->size))
17195 {
17196 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17197 do_cleanups (back_to);
17198 return 0;
17199 }
17200 lh->statement_program_end = line_ptr + lh->total_length;
17201 lh->version = read_2_bytes (abfd, line_ptr);
17202 line_ptr += 2;
17203 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17204 line_ptr += offset_size;
17205 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17206 line_ptr += 1;
17207 if (lh->version >= 4)
17208 {
17209 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17210 line_ptr += 1;
17211 }
17212 else
17213 lh->maximum_ops_per_instruction = 1;
17214
17215 if (lh->maximum_ops_per_instruction == 0)
17216 {
17217 lh->maximum_ops_per_instruction = 1;
17218 complaint (&symfile_complaints,
17219 _("invalid maximum_ops_per_instruction "
17220 "in `.debug_line' section"));
17221 }
17222
17223 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17224 line_ptr += 1;
17225 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17226 line_ptr += 1;
17227 lh->line_range = read_1_byte (abfd, line_ptr);
17228 line_ptr += 1;
17229 lh->opcode_base = read_1_byte (abfd, line_ptr);
17230 line_ptr += 1;
17231 lh->standard_opcode_lengths
17232 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17233
17234 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17235 for (i = 1; i < lh->opcode_base; ++i)
17236 {
17237 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17238 line_ptr += 1;
17239 }
17240
17241 /* Read directory table. */
17242 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17243 {
17244 line_ptr += bytes_read;
17245 add_include_dir (lh, cur_dir);
17246 }
17247 line_ptr += bytes_read;
17248
17249 /* Read file name table. */
17250 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17251 {
17252 unsigned int dir_index, mod_time, length;
17253
17254 line_ptr += bytes_read;
17255 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17256 line_ptr += bytes_read;
17257 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17258 line_ptr += bytes_read;
17259 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17260 line_ptr += bytes_read;
17261
17262 add_file_name (lh, cur_file, dir_index, mod_time, length);
17263 }
17264 line_ptr += bytes_read;
17265 lh->statement_program_start = line_ptr;
17266
17267 if (line_ptr > (section->buffer + section->size))
17268 complaint (&symfile_complaints,
17269 _("line number info header doesn't "
17270 "fit in `.debug_line' section"));
17271
17272 discard_cleanups (back_to);
17273 return lh;
17274 }
17275
17276 /* Subroutine of dwarf_decode_lines to simplify it.
17277 Return the file name of the psymtab for included file FILE_INDEX
17278 in line header LH of PST.
17279 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17280 If space for the result is malloc'd, it will be freed by a cleanup.
17281 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17282
17283 The function creates dangling cleanup registration. */
17284
17285 static const char *
17286 psymtab_include_file_name (const struct line_header *lh, int file_index,
17287 const struct partial_symtab *pst,
17288 const char *comp_dir)
17289 {
17290 const struct file_entry fe = lh->file_names [file_index];
17291 const char *include_name = fe.name;
17292 const char *include_name_to_compare = include_name;
17293 const char *dir_name = NULL;
17294 const char *pst_filename;
17295 char *copied_name = NULL;
17296 int file_is_pst;
17297
17298 if (fe.dir_index)
17299 dir_name = lh->include_dirs[fe.dir_index - 1];
17300
17301 if (!IS_ABSOLUTE_PATH (include_name)
17302 && (dir_name != NULL || comp_dir != NULL))
17303 {
17304 /* Avoid creating a duplicate psymtab for PST.
17305 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17306 Before we do the comparison, however, we need to account
17307 for DIR_NAME and COMP_DIR.
17308 First prepend dir_name (if non-NULL). If we still don't
17309 have an absolute path prepend comp_dir (if non-NULL).
17310 However, the directory we record in the include-file's
17311 psymtab does not contain COMP_DIR (to match the
17312 corresponding symtab(s)).
17313
17314 Example:
17315
17316 bash$ cd /tmp
17317 bash$ gcc -g ./hello.c
17318 include_name = "hello.c"
17319 dir_name = "."
17320 DW_AT_comp_dir = comp_dir = "/tmp"
17321 DW_AT_name = "./hello.c"
17322
17323 */
17324
17325 if (dir_name != NULL)
17326 {
17327 char *tem = concat (dir_name, SLASH_STRING,
17328 include_name, (char *)NULL);
17329
17330 make_cleanup (xfree, tem);
17331 include_name = tem;
17332 include_name_to_compare = include_name;
17333 }
17334 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17335 {
17336 char *tem = concat (comp_dir, SLASH_STRING,
17337 include_name, (char *)NULL);
17338
17339 make_cleanup (xfree, tem);
17340 include_name_to_compare = tem;
17341 }
17342 }
17343
17344 pst_filename = pst->filename;
17345 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17346 {
17347 copied_name = concat (pst->dirname, SLASH_STRING,
17348 pst_filename, (char *)NULL);
17349 pst_filename = copied_name;
17350 }
17351
17352 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17353
17354 if (copied_name != NULL)
17355 xfree (copied_name);
17356
17357 if (file_is_pst)
17358 return NULL;
17359 return include_name;
17360 }
17361
17362 /* Ignore this record_line request. */
17363
17364 static void
17365 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17366 {
17367 return;
17368 }
17369
17370 /* Return non-zero if we should add LINE to the line number table.
17371 LINE is the line to add, LAST_LINE is the last line that was added,
17372 LAST_SUBFILE is the subfile for LAST_LINE.
17373 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17374 had a non-zero discriminator.
17375
17376 We have to be careful in the presence of discriminators.
17377 E.g., for this line:
17378
17379 for (i = 0; i < 100000; i++);
17380
17381 clang can emit four line number entries for that one line,
17382 each with a different discriminator.
17383 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17384
17385 However, we want gdb to coalesce all four entries into one.
17386 Otherwise the user could stepi into the middle of the line and
17387 gdb would get confused about whether the pc really was in the
17388 middle of the line.
17389
17390 Things are further complicated by the fact that two consecutive
17391 line number entries for the same line is a heuristic used by gcc
17392 to denote the end of the prologue. So we can't just discard duplicate
17393 entries, we have to be selective about it. The heuristic we use is
17394 that we only collapse consecutive entries for the same line if at least
17395 one of those entries has a non-zero discriminator. PR 17276.
17396
17397 Note: Addresses in the line number state machine can never go backwards
17398 within one sequence, thus this coalescing is ok. */
17399
17400 static int
17401 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17402 int line_has_non_zero_discriminator,
17403 struct subfile *last_subfile)
17404 {
17405 if (current_subfile != last_subfile)
17406 return 1;
17407 if (line != last_line)
17408 return 1;
17409 /* Same line for the same file that we've seen already.
17410 As a last check, for pr 17276, only record the line if the line
17411 has never had a non-zero discriminator. */
17412 if (!line_has_non_zero_discriminator)
17413 return 1;
17414 return 0;
17415 }
17416
17417 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17418 in the line table of subfile SUBFILE. */
17419
17420 static void
17421 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17422 unsigned int line, CORE_ADDR address,
17423 record_line_ftype p_record_line)
17424 {
17425 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17426
17427 (*p_record_line) (subfile, line, addr);
17428 }
17429
17430 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17431 Mark the end of a set of line number records.
17432 The arguments are the same as for dwarf_record_line.
17433 If SUBFILE is NULL the request is ignored. */
17434
17435 static void
17436 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17437 CORE_ADDR address, record_line_ftype p_record_line)
17438 {
17439 if (subfile != NULL)
17440 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17441 }
17442
17443 /* Subroutine of dwarf_decode_lines to simplify it.
17444 Process the line number information in LH. */
17445
17446 static void
17447 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17448 const int decode_for_pst_p, CORE_ADDR lowpc)
17449 {
17450 const gdb_byte *line_ptr, *extended_end;
17451 const gdb_byte *line_end;
17452 unsigned int bytes_read, extended_len;
17453 unsigned char op_code, extended_op;
17454 CORE_ADDR baseaddr;
17455 struct objfile *objfile = cu->objfile;
17456 bfd *abfd = objfile->obfd;
17457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17458 struct subfile *last_subfile = NULL;
17459 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17460 = record_line;
17461
17462 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17463
17464 line_ptr = lh->statement_program_start;
17465 line_end = lh->statement_program_end;
17466
17467 /* Read the statement sequences until there's nothing left. */
17468 while (line_ptr < line_end)
17469 {
17470 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17471 on the initial 0 address as if there was a line entry for it
17472 so that the backend has a chance to adjust it and also record
17473 it in case it needs it. This is currently used by MIPS code,
17474 cf. `mips_adjust_dwarf2_line'. */
17475 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17476 unsigned int file = 1;
17477 unsigned int line = 1;
17478 int is_stmt = lh->default_is_stmt;
17479 int end_sequence = 0;
17480 unsigned char op_index = 0;
17481 unsigned int discriminator = 0;
17482 /* The last line number that was recorded, used to coalesce
17483 consecutive entries for the same line. This can happen, for
17484 example, when discriminators are present. PR 17276. */
17485 unsigned int last_line = 0;
17486 int line_has_non_zero_discriminator = 0;
17487
17488 if (!decode_for_pst_p && lh->num_file_names >= file)
17489 {
17490 /* Start a subfile for the current file of the state machine. */
17491 /* lh->include_dirs and lh->file_names are 0-based, but the
17492 directory and file name numbers in the statement program
17493 are 1-based. */
17494 struct file_entry *fe = &lh->file_names[file - 1];
17495 const char *dir = NULL;
17496
17497 if (fe->dir_index)
17498 dir = lh->include_dirs[fe->dir_index - 1];
17499
17500 dwarf2_start_subfile (fe->name, dir);
17501 }
17502
17503 /* Decode the table. */
17504 while (!end_sequence)
17505 {
17506 op_code = read_1_byte (abfd, line_ptr);
17507 line_ptr += 1;
17508 if (line_ptr > line_end)
17509 {
17510 dwarf2_debug_line_missing_end_sequence_complaint ();
17511 break;
17512 }
17513
17514 if (op_code >= lh->opcode_base)
17515 {
17516 /* Special opcode. */
17517 unsigned char adj_opcode;
17518 CORE_ADDR addr_adj;
17519 int line_delta;
17520
17521 adj_opcode = op_code - lh->opcode_base;
17522 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17523 / lh->maximum_ops_per_instruction)
17524 * lh->minimum_instruction_length);
17525 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17526 op_index = ((op_index + (adj_opcode / lh->line_range))
17527 % lh->maximum_ops_per_instruction);
17528 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17529 line += line_delta;
17530 if (line_delta != 0)
17531 line_has_non_zero_discriminator = discriminator != 0;
17532 if (lh->num_file_names < file || file == 0)
17533 dwarf2_debug_line_missing_file_complaint ();
17534 /* For now we ignore lines not starting on an
17535 instruction boundary. */
17536 else if (op_index == 0)
17537 {
17538 lh->file_names[file - 1].included_p = 1;
17539 if (!decode_for_pst_p && is_stmt)
17540 {
17541 if (last_subfile != current_subfile)
17542 {
17543 dwarf_finish_line (gdbarch, last_subfile,
17544 address, p_record_line);
17545 }
17546 if (dwarf_record_line_p (line, last_line,
17547 line_has_non_zero_discriminator,
17548 last_subfile))
17549 {
17550 dwarf_record_line (gdbarch, current_subfile,
17551 line, address, p_record_line);
17552 }
17553 last_subfile = current_subfile;
17554 last_line = line;
17555 }
17556 }
17557 discriminator = 0;
17558 }
17559 else switch (op_code)
17560 {
17561 case DW_LNS_extended_op:
17562 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17563 &bytes_read);
17564 line_ptr += bytes_read;
17565 extended_end = line_ptr + extended_len;
17566 extended_op = read_1_byte (abfd, line_ptr);
17567 line_ptr += 1;
17568 switch (extended_op)
17569 {
17570 case DW_LNE_end_sequence:
17571 p_record_line = record_line;
17572 end_sequence = 1;
17573 break;
17574 case DW_LNE_set_address:
17575 address = read_address (abfd, line_ptr, cu, &bytes_read);
17576
17577 /* If address < lowpc then it's not a usable value, it's
17578 outside the pc range of the CU. However, we restrict
17579 the test to only address values of zero to preserve
17580 GDB's previous behaviour which is to handle the specific
17581 case of a function being GC'd by the linker. */
17582 if (address == 0 && address < lowpc)
17583 {
17584 /* This line table is for a function which has been
17585 GCd by the linker. Ignore it. PR gdb/12528 */
17586
17587 long line_offset
17588 = line_ptr - get_debug_line_section (cu)->buffer;
17589
17590 complaint (&symfile_complaints,
17591 _(".debug_line address at offset 0x%lx is 0 "
17592 "[in module %s]"),
17593 line_offset, objfile_name (objfile));
17594 p_record_line = noop_record_line;
17595 /* Note: p_record_line is left as noop_record_line
17596 until we see DW_LNE_end_sequence. */
17597 }
17598
17599 op_index = 0;
17600 line_ptr += bytes_read;
17601 address += baseaddr;
17602 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17603 break;
17604 case DW_LNE_define_file:
17605 {
17606 const char *cur_file;
17607 unsigned int dir_index, mod_time, length;
17608
17609 cur_file = read_direct_string (abfd, line_ptr,
17610 &bytes_read);
17611 line_ptr += bytes_read;
17612 dir_index =
17613 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17614 line_ptr += bytes_read;
17615 mod_time =
17616 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17617 line_ptr += bytes_read;
17618 length =
17619 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17620 line_ptr += bytes_read;
17621 add_file_name (lh, cur_file, dir_index, mod_time, length);
17622 }
17623 break;
17624 case DW_LNE_set_discriminator:
17625 /* The discriminator is not interesting to the debugger;
17626 just ignore it. We still need to check its value though:
17627 if there are consecutive entries for the same
17628 (non-prologue) line we want to coalesce them.
17629 PR 17276. */
17630 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17631 &bytes_read);
17632 line_has_non_zero_discriminator |= discriminator != 0;
17633 line_ptr += bytes_read;
17634 break;
17635 default:
17636 complaint (&symfile_complaints,
17637 _("mangled .debug_line section"));
17638 return;
17639 }
17640 /* Make sure that we parsed the extended op correctly. If e.g.
17641 we expected a different address size than the producer used,
17642 we may have read the wrong number of bytes. */
17643 if (line_ptr != extended_end)
17644 {
17645 complaint (&symfile_complaints,
17646 _("mangled .debug_line section"));
17647 return;
17648 }
17649 break;
17650 case DW_LNS_copy:
17651 if (lh->num_file_names < file || file == 0)
17652 dwarf2_debug_line_missing_file_complaint ();
17653 else
17654 {
17655 lh->file_names[file - 1].included_p = 1;
17656 if (!decode_for_pst_p && is_stmt)
17657 {
17658 if (last_subfile != current_subfile)
17659 {
17660 dwarf_finish_line (gdbarch, last_subfile,
17661 address, p_record_line);
17662 }
17663 if (dwarf_record_line_p (line, last_line,
17664 line_has_non_zero_discriminator,
17665 last_subfile))
17666 {
17667 dwarf_record_line (gdbarch, current_subfile,
17668 line, address, p_record_line);
17669 }
17670 last_subfile = current_subfile;
17671 last_line = line;
17672 }
17673 }
17674 discriminator = 0;
17675 break;
17676 case DW_LNS_advance_pc:
17677 {
17678 CORE_ADDR adjust
17679 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17680 CORE_ADDR addr_adj;
17681
17682 addr_adj = (((op_index + adjust)
17683 / lh->maximum_ops_per_instruction)
17684 * lh->minimum_instruction_length);
17685 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17686 op_index = ((op_index + adjust)
17687 % lh->maximum_ops_per_instruction);
17688 line_ptr += bytes_read;
17689 }
17690 break;
17691 case DW_LNS_advance_line:
17692 {
17693 int line_delta
17694 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17695
17696 line += line_delta;
17697 if (line_delta != 0)
17698 line_has_non_zero_discriminator = discriminator != 0;
17699 line_ptr += bytes_read;
17700 }
17701 break;
17702 case DW_LNS_set_file:
17703 {
17704 /* The arrays lh->include_dirs and lh->file_names are
17705 0-based, but the directory and file name numbers in
17706 the statement program are 1-based. */
17707 struct file_entry *fe;
17708 const char *dir = NULL;
17709
17710 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17711 line_ptr += bytes_read;
17712 if (lh->num_file_names < file || file == 0)
17713 dwarf2_debug_line_missing_file_complaint ();
17714 else
17715 {
17716 fe = &lh->file_names[file - 1];
17717 if (fe->dir_index)
17718 dir = lh->include_dirs[fe->dir_index - 1];
17719 if (!decode_for_pst_p)
17720 {
17721 last_subfile = current_subfile;
17722 line_has_non_zero_discriminator = discriminator != 0;
17723 dwarf2_start_subfile (fe->name, dir);
17724 }
17725 }
17726 }
17727 break;
17728 case DW_LNS_set_column:
17729 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17730 line_ptr += bytes_read;
17731 break;
17732 case DW_LNS_negate_stmt:
17733 is_stmt = (!is_stmt);
17734 break;
17735 case DW_LNS_set_basic_block:
17736 break;
17737 /* Add to the address register of the state machine the
17738 address increment value corresponding to special opcode
17739 255. I.e., this value is scaled by the minimum
17740 instruction length since special opcode 255 would have
17741 scaled the increment. */
17742 case DW_LNS_const_add_pc:
17743 {
17744 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17745 CORE_ADDR addr_adj;
17746
17747 addr_adj = (((op_index + adjust)
17748 / lh->maximum_ops_per_instruction)
17749 * lh->minimum_instruction_length);
17750 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17751 op_index = ((op_index + adjust)
17752 % lh->maximum_ops_per_instruction);
17753 }
17754 break;
17755 case DW_LNS_fixed_advance_pc:
17756 {
17757 CORE_ADDR addr_adj;
17758
17759 addr_adj = read_2_bytes (abfd, line_ptr);
17760 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17761 op_index = 0;
17762 line_ptr += 2;
17763 }
17764 break;
17765 default:
17766 {
17767 /* Unknown standard opcode, ignore it. */
17768 int i;
17769
17770 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17771 {
17772 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17773 line_ptr += bytes_read;
17774 }
17775 }
17776 }
17777 }
17778 if (lh->num_file_names < file || file == 0)
17779 dwarf2_debug_line_missing_file_complaint ();
17780 else
17781 {
17782 lh->file_names[file - 1].included_p = 1;
17783 if (!decode_for_pst_p)
17784 {
17785 dwarf_finish_line (gdbarch, current_subfile, address,
17786 p_record_line);
17787 }
17788 }
17789 }
17790 }
17791
17792 /* Decode the Line Number Program (LNP) for the given line_header
17793 structure and CU. The actual information extracted and the type
17794 of structures created from the LNP depends on the value of PST.
17795
17796 1. If PST is NULL, then this procedure uses the data from the program
17797 to create all necessary symbol tables, and their linetables.
17798
17799 2. If PST is not NULL, this procedure reads the program to determine
17800 the list of files included by the unit represented by PST, and
17801 builds all the associated partial symbol tables.
17802
17803 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17804 It is used for relative paths in the line table.
17805 NOTE: When processing partial symtabs (pst != NULL),
17806 comp_dir == pst->dirname.
17807
17808 NOTE: It is important that psymtabs have the same file name (via strcmp)
17809 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17810 symtab we don't use it in the name of the psymtabs we create.
17811 E.g. expand_line_sal requires this when finding psymtabs to expand.
17812 A good testcase for this is mb-inline.exp.
17813
17814 LOWPC is the lowest address in CU (or 0 if not known).
17815
17816 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17817 for its PC<->lines mapping information. Otherwise only the filename
17818 table is read in. */
17819
17820 static void
17821 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17822 struct dwarf2_cu *cu, struct partial_symtab *pst,
17823 CORE_ADDR lowpc, int decode_mapping)
17824 {
17825 struct objfile *objfile = cu->objfile;
17826 const int decode_for_pst_p = (pst != NULL);
17827
17828 if (decode_mapping)
17829 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17830
17831 if (decode_for_pst_p)
17832 {
17833 int file_index;
17834
17835 /* Now that we're done scanning the Line Header Program, we can
17836 create the psymtab of each included file. */
17837 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17838 if (lh->file_names[file_index].included_p == 1)
17839 {
17840 const char *include_name =
17841 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17842 if (include_name != NULL)
17843 dwarf2_create_include_psymtab (include_name, pst, objfile);
17844 }
17845 }
17846 else
17847 {
17848 /* Make sure a symtab is created for every file, even files
17849 which contain only variables (i.e. no code with associated
17850 line numbers). */
17851 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17852 int i;
17853
17854 for (i = 0; i < lh->num_file_names; i++)
17855 {
17856 const char *dir = NULL;
17857 struct file_entry *fe;
17858
17859 fe = &lh->file_names[i];
17860 if (fe->dir_index)
17861 dir = lh->include_dirs[fe->dir_index - 1];
17862 dwarf2_start_subfile (fe->name, dir);
17863
17864 if (current_subfile->symtab == NULL)
17865 {
17866 current_subfile->symtab
17867 = allocate_symtab (cust, current_subfile->name);
17868 }
17869 fe->symtab = current_subfile->symtab;
17870 }
17871 }
17872 }
17873
17874 /* Start a subfile for DWARF. FILENAME is the name of the file and
17875 DIRNAME the name of the source directory which contains FILENAME
17876 or NULL if not known.
17877 This routine tries to keep line numbers from identical absolute and
17878 relative file names in a common subfile.
17879
17880 Using the `list' example from the GDB testsuite, which resides in
17881 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17882 of /srcdir/list0.c yields the following debugging information for list0.c:
17883
17884 DW_AT_name: /srcdir/list0.c
17885 DW_AT_comp_dir: /compdir
17886 files.files[0].name: list0.h
17887 files.files[0].dir: /srcdir
17888 files.files[1].name: list0.c
17889 files.files[1].dir: /srcdir
17890
17891 The line number information for list0.c has to end up in a single
17892 subfile, so that `break /srcdir/list0.c:1' works as expected.
17893 start_subfile will ensure that this happens provided that we pass the
17894 concatenation of files.files[1].dir and files.files[1].name as the
17895 subfile's name. */
17896
17897 static void
17898 dwarf2_start_subfile (const char *filename, const char *dirname)
17899 {
17900 char *copy = NULL;
17901
17902 /* In order not to lose the line information directory,
17903 we concatenate it to the filename when it makes sense.
17904 Note that the Dwarf3 standard says (speaking of filenames in line
17905 information): ``The directory index is ignored for file names
17906 that represent full path names''. Thus ignoring dirname in the
17907 `else' branch below isn't an issue. */
17908
17909 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17910 {
17911 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17912 filename = copy;
17913 }
17914
17915 start_subfile (filename);
17916
17917 if (copy != NULL)
17918 xfree (copy);
17919 }
17920
17921 /* Start a symtab for DWARF.
17922 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17923
17924 static struct compunit_symtab *
17925 dwarf2_start_symtab (struct dwarf2_cu *cu,
17926 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17927 {
17928 struct compunit_symtab *cust
17929 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17930
17931 record_debugformat ("DWARF 2");
17932 record_producer (cu->producer);
17933
17934 /* We assume that we're processing GCC output. */
17935 processing_gcc_compilation = 2;
17936
17937 cu->processing_has_namespace_info = 0;
17938
17939 return cust;
17940 }
17941
17942 static void
17943 var_decode_location (struct attribute *attr, struct symbol *sym,
17944 struct dwarf2_cu *cu)
17945 {
17946 struct objfile *objfile = cu->objfile;
17947 struct comp_unit_head *cu_header = &cu->header;
17948
17949 /* NOTE drow/2003-01-30: There used to be a comment and some special
17950 code here to turn a symbol with DW_AT_external and a
17951 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17952 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17953 with some versions of binutils) where shared libraries could have
17954 relocations against symbols in their debug information - the
17955 minimal symbol would have the right address, but the debug info
17956 would not. It's no longer necessary, because we will explicitly
17957 apply relocations when we read in the debug information now. */
17958
17959 /* A DW_AT_location attribute with no contents indicates that a
17960 variable has been optimized away. */
17961 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17962 {
17963 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17964 return;
17965 }
17966
17967 /* Handle one degenerate form of location expression specially, to
17968 preserve GDB's previous behavior when section offsets are
17969 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17970 then mark this symbol as LOC_STATIC. */
17971
17972 if (attr_form_is_block (attr)
17973 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17974 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17975 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17976 && (DW_BLOCK (attr)->size
17977 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17978 {
17979 unsigned int dummy;
17980
17981 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17982 SYMBOL_VALUE_ADDRESS (sym) =
17983 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17984 else
17985 SYMBOL_VALUE_ADDRESS (sym) =
17986 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17987 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17988 fixup_symbol_section (sym, objfile);
17989 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17990 SYMBOL_SECTION (sym));
17991 return;
17992 }
17993
17994 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17995 expression evaluator, and use LOC_COMPUTED only when necessary
17996 (i.e. when the value of a register or memory location is
17997 referenced, or a thread-local block, etc.). Then again, it might
17998 not be worthwhile. I'm assuming that it isn't unless performance
17999 or memory numbers show me otherwise. */
18000
18001 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18002
18003 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18004 cu->has_loclist = 1;
18005 }
18006
18007 /* Given a pointer to a DWARF information entry, figure out if we need
18008 to make a symbol table entry for it, and if so, create a new entry
18009 and return a pointer to it.
18010 If TYPE is NULL, determine symbol type from the die, otherwise
18011 used the passed type.
18012 If SPACE is not NULL, use it to hold the new symbol. If it is
18013 NULL, allocate a new symbol on the objfile's obstack. */
18014
18015 static struct symbol *
18016 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18017 struct symbol *space)
18018 {
18019 struct objfile *objfile = cu->objfile;
18020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18021 struct symbol *sym = NULL;
18022 const char *name;
18023 struct attribute *attr = NULL;
18024 struct attribute *attr2 = NULL;
18025 CORE_ADDR baseaddr;
18026 struct pending **list_to_add = NULL;
18027
18028 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18029
18030 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18031
18032 name = dwarf2_name (die, cu);
18033 if (name)
18034 {
18035 const char *linkagename;
18036 int suppress_add = 0;
18037
18038 if (space)
18039 sym = space;
18040 else
18041 sym = allocate_symbol (objfile);
18042 OBJSTAT (objfile, n_syms++);
18043
18044 /* Cache this symbol's name and the name's demangled form (if any). */
18045 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18046 linkagename = dwarf2_physname (name, die, cu);
18047 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18048
18049 /* Fortran does not have mangling standard and the mangling does differ
18050 between gfortran, iFort etc. */
18051 if (cu->language == language_fortran
18052 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18053 symbol_set_demangled_name (&(sym->ginfo),
18054 dwarf2_full_name (name, die, cu),
18055 NULL);
18056
18057 /* Default assumptions.
18058 Use the passed type or decode it from the die. */
18059 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18060 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18061 if (type != NULL)
18062 SYMBOL_TYPE (sym) = type;
18063 else
18064 SYMBOL_TYPE (sym) = die_type (die, cu);
18065 attr = dwarf2_attr (die,
18066 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18067 cu);
18068 if (attr)
18069 {
18070 SYMBOL_LINE (sym) = DW_UNSND (attr);
18071 }
18072
18073 attr = dwarf2_attr (die,
18074 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18075 cu);
18076 if (attr)
18077 {
18078 int file_index = DW_UNSND (attr);
18079
18080 if (cu->line_header == NULL
18081 || file_index > cu->line_header->num_file_names)
18082 complaint (&symfile_complaints,
18083 _("file index out of range"));
18084 else if (file_index > 0)
18085 {
18086 struct file_entry *fe;
18087
18088 fe = &cu->line_header->file_names[file_index - 1];
18089 symbol_set_symtab (sym, fe->symtab);
18090 }
18091 }
18092
18093 switch (die->tag)
18094 {
18095 case DW_TAG_label:
18096 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18097 if (attr)
18098 {
18099 CORE_ADDR addr;
18100
18101 addr = attr_value_as_address (attr);
18102 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18103 SYMBOL_VALUE_ADDRESS (sym) = addr;
18104 }
18105 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18106 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18107 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18108 add_symbol_to_list (sym, cu->list_in_scope);
18109 break;
18110 case DW_TAG_subprogram:
18111 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18112 finish_block. */
18113 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18114 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18115 if ((attr2 && (DW_UNSND (attr2) != 0))
18116 || cu->language == language_ada)
18117 {
18118 /* Subprograms marked external are stored as a global symbol.
18119 Ada subprograms, whether marked external or not, are always
18120 stored as a global symbol, because we want to be able to
18121 access them globally. For instance, we want to be able
18122 to break on a nested subprogram without having to
18123 specify the context. */
18124 list_to_add = &global_symbols;
18125 }
18126 else
18127 {
18128 list_to_add = cu->list_in_scope;
18129 }
18130 break;
18131 case DW_TAG_inlined_subroutine:
18132 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18133 finish_block. */
18134 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18135 SYMBOL_INLINED (sym) = 1;
18136 list_to_add = cu->list_in_scope;
18137 break;
18138 case DW_TAG_template_value_param:
18139 suppress_add = 1;
18140 /* Fall through. */
18141 case DW_TAG_constant:
18142 case DW_TAG_variable:
18143 case DW_TAG_member:
18144 /* Compilation with minimal debug info may result in
18145 variables with missing type entries. Change the
18146 misleading `void' type to something sensible. */
18147 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18148 SYMBOL_TYPE (sym)
18149 = objfile_type (objfile)->nodebug_data_symbol;
18150
18151 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18152 /* In the case of DW_TAG_member, we should only be called for
18153 static const members. */
18154 if (die->tag == DW_TAG_member)
18155 {
18156 /* dwarf2_add_field uses die_is_declaration,
18157 so we do the same. */
18158 gdb_assert (die_is_declaration (die, cu));
18159 gdb_assert (attr);
18160 }
18161 if (attr)
18162 {
18163 dwarf2_const_value (attr, sym, cu);
18164 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18165 if (!suppress_add)
18166 {
18167 if (attr2 && (DW_UNSND (attr2) != 0))
18168 list_to_add = &global_symbols;
18169 else
18170 list_to_add = cu->list_in_scope;
18171 }
18172 break;
18173 }
18174 attr = dwarf2_attr (die, DW_AT_location, cu);
18175 if (attr)
18176 {
18177 var_decode_location (attr, sym, cu);
18178 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18179
18180 /* Fortran explicitly imports any global symbols to the local
18181 scope by DW_TAG_common_block. */
18182 if (cu->language == language_fortran && die->parent
18183 && die->parent->tag == DW_TAG_common_block)
18184 attr2 = NULL;
18185
18186 if (SYMBOL_CLASS (sym) == LOC_STATIC
18187 && SYMBOL_VALUE_ADDRESS (sym) == 0
18188 && !dwarf2_per_objfile->has_section_at_zero)
18189 {
18190 /* When a static variable is eliminated by the linker,
18191 the corresponding debug information is not stripped
18192 out, but the variable address is set to null;
18193 do not add such variables into symbol table. */
18194 }
18195 else if (attr2 && (DW_UNSND (attr2) != 0))
18196 {
18197 /* Workaround gfortran PR debug/40040 - it uses
18198 DW_AT_location for variables in -fPIC libraries which may
18199 get overriden by other libraries/executable and get
18200 a different address. Resolve it by the minimal symbol
18201 which may come from inferior's executable using copy
18202 relocation. Make this workaround only for gfortran as for
18203 other compilers GDB cannot guess the minimal symbol
18204 Fortran mangling kind. */
18205 if (cu->language == language_fortran && die->parent
18206 && die->parent->tag == DW_TAG_module
18207 && cu->producer
18208 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18209 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18210
18211 /* A variable with DW_AT_external is never static,
18212 but it may be block-scoped. */
18213 list_to_add = (cu->list_in_scope == &file_symbols
18214 ? &global_symbols : cu->list_in_scope);
18215 }
18216 else
18217 list_to_add = cu->list_in_scope;
18218 }
18219 else
18220 {
18221 /* We do not know the address of this symbol.
18222 If it is an external symbol and we have type information
18223 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18224 The address of the variable will then be determined from
18225 the minimal symbol table whenever the variable is
18226 referenced. */
18227 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18228
18229 /* Fortran explicitly imports any global symbols to the local
18230 scope by DW_TAG_common_block. */
18231 if (cu->language == language_fortran && die->parent
18232 && die->parent->tag == DW_TAG_common_block)
18233 {
18234 /* SYMBOL_CLASS doesn't matter here because
18235 read_common_block is going to reset it. */
18236 if (!suppress_add)
18237 list_to_add = cu->list_in_scope;
18238 }
18239 else if (attr2 && (DW_UNSND (attr2) != 0)
18240 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18241 {
18242 /* A variable with DW_AT_external is never static, but it
18243 may be block-scoped. */
18244 list_to_add = (cu->list_in_scope == &file_symbols
18245 ? &global_symbols : cu->list_in_scope);
18246
18247 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18248 }
18249 else if (!die_is_declaration (die, cu))
18250 {
18251 /* Use the default LOC_OPTIMIZED_OUT class. */
18252 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18253 if (!suppress_add)
18254 list_to_add = cu->list_in_scope;
18255 }
18256 }
18257 break;
18258 case DW_TAG_formal_parameter:
18259 /* If we are inside a function, mark this as an argument. If
18260 not, we might be looking at an argument to an inlined function
18261 when we do not have enough information to show inlined frames;
18262 pretend it's a local variable in that case so that the user can
18263 still see it. */
18264 if (context_stack_depth > 0
18265 && context_stack[context_stack_depth - 1].name != NULL)
18266 SYMBOL_IS_ARGUMENT (sym) = 1;
18267 attr = dwarf2_attr (die, DW_AT_location, cu);
18268 if (attr)
18269 {
18270 var_decode_location (attr, sym, cu);
18271 }
18272 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18273 if (attr)
18274 {
18275 dwarf2_const_value (attr, sym, cu);
18276 }
18277
18278 list_to_add = cu->list_in_scope;
18279 break;
18280 case DW_TAG_unspecified_parameters:
18281 /* From varargs functions; gdb doesn't seem to have any
18282 interest in this information, so just ignore it for now.
18283 (FIXME?) */
18284 break;
18285 case DW_TAG_template_type_param:
18286 suppress_add = 1;
18287 /* Fall through. */
18288 case DW_TAG_class_type:
18289 case DW_TAG_interface_type:
18290 case DW_TAG_structure_type:
18291 case DW_TAG_union_type:
18292 case DW_TAG_set_type:
18293 case DW_TAG_enumeration_type:
18294 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18295 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18296
18297 {
18298 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18299 really ever be static objects: otherwise, if you try
18300 to, say, break of a class's method and you're in a file
18301 which doesn't mention that class, it won't work unless
18302 the check for all static symbols in lookup_symbol_aux
18303 saves you. See the OtherFileClass tests in
18304 gdb.c++/namespace.exp. */
18305
18306 if (!suppress_add)
18307 {
18308 list_to_add = (cu->list_in_scope == &file_symbols
18309 && (cu->language == language_cplus
18310 || cu->language == language_java)
18311 ? &global_symbols : cu->list_in_scope);
18312
18313 /* The semantics of C++ state that "struct foo {
18314 ... }" also defines a typedef for "foo". A Java
18315 class declaration also defines a typedef for the
18316 class. */
18317 if (cu->language == language_cplus
18318 || cu->language == language_java
18319 || cu->language == language_ada)
18320 {
18321 /* The symbol's name is already allocated along
18322 with this objfile, so we don't need to
18323 duplicate it for the type. */
18324 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18325 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18326 }
18327 }
18328 }
18329 break;
18330 case DW_TAG_typedef:
18331 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18332 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18333 list_to_add = cu->list_in_scope;
18334 break;
18335 case DW_TAG_base_type:
18336 case DW_TAG_subrange_type:
18337 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18338 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18339 list_to_add = cu->list_in_scope;
18340 break;
18341 case DW_TAG_enumerator:
18342 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18343 if (attr)
18344 {
18345 dwarf2_const_value (attr, sym, cu);
18346 }
18347 {
18348 /* NOTE: carlton/2003-11-10: See comment above in the
18349 DW_TAG_class_type, etc. block. */
18350
18351 list_to_add = (cu->list_in_scope == &file_symbols
18352 && (cu->language == language_cplus
18353 || cu->language == language_java)
18354 ? &global_symbols : cu->list_in_scope);
18355 }
18356 break;
18357 case DW_TAG_imported_declaration:
18358 case DW_TAG_namespace:
18359 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18360 list_to_add = &global_symbols;
18361 break;
18362 case DW_TAG_module:
18363 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18364 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18365 list_to_add = &global_symbols;
18366 break;
18367 case DW_TAG_common_block:
18368 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18369 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18370 add_symbol_to_list (sym, cu->list_in_scope);
18371 break;
18372 default:
18373 /* Not a tag we recognize. Hopefully we aren't processing
18374 trash data, but since we must specifically ignore things
18375 we don't recognize, there is nothing else we should do at
18376 this point. */
18377 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18378 dwarf_tag_name (die->tag));
18379 break;
18380 }
18381
18382 if (suppress_add)
18383 {
18384 sym->hash_next = objfile->template_symbols;
18385 objfile->template_symbols = sym;
18386 list_to_add = NULL;
18387 }
18388
18389 if (list_to_add != NULL)
18390 add_symbol_to_list (sym, list_to_add);
18391
18392 /* For the benefit of old versions of GCC, check for anonymous
18393 namespaces based on the demangled name. */
18394 if (!cu->processing_has_namespace_info
18395 && cu->language == language_cplus)
18396 cp_scan_for_anonymous_namespaces (sym, objfile);
18397 }
18398 return (sym);
18399 }
18400
18401 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18402
18403 static struct symbol *
18404 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18405 {
18406 return new_symbol_full (die, type, cu, NULL);
18407 }
18408
18409 /* Given an attr with a DW_FORM_dataN value in host byte order,
18410 zero-extend it as appropriate for the symbol's type. The DWARF
18411 standard (v4) is not entirely clear about the meaning of using
18412 DW_FORM_dataN for a constant with a signed type, where the type is
18413 wider than the data. The conclusion of a discussion on the DWARF
18414 list was that this is unspecified. We choose to always zero-extend
18415 because that is the interpretation long in use by GCC. */
18416
18417 static gdb_byte *
18418 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18419 struct dwarf2_cu *cu, LONGEST *value, int bits)
18420 {
18421 struct objfile *objfile = cu->objfile;
18422 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18423 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18424 LONGEST l = DW_UNSND (attr);
18425
18426 if (bits < sizeof (*value) * 8)
18427 {
18428 l &= ((LONGEST) 1 << bits) - 1;
18429 *value = l;
18430 }
18431 else if (bits == sizeof (*value) * 8)
18432 *value = l;
18433 else
18434 {
18435 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18436 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18437 return bytes;
18438 }
18439
18440 return NULL;
18441 }
18442
18443 /* Read a constant value from an attribute. Either set *VALUE, or if
18444 the value does not fit in *VALUE, set *BYTES - either already
18445 allocated on the objfile obstack, or newly allocated on OBSTACK,
18446 or, set *BATON, if we translated the constant to a location
18447 expression. */
18448
18449 static void
18450 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18451 const char *name, struct obstack *obstack,
18452 struct dwarf2_cu *cu,
18453 LONGEST *value, const gdb_byte **bytes,
18454 struct dwarf2_locexpr_baton **baton)
18455 {
18456 struct objfile *objfile = cu->objfile;
18457 struct comp_unit_head *cu_header = &cu->header;
18458 struct dwarf_block *blk;
18459 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18460 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18461
18462 *value = 0;
18463 *bytes = NULL;
18464 *baton = NULL;
18465
18466 switch (attr->form)
18467 {
18468 case DW_FORM_addr:
18469 case DW_FORM_GNU_addr_index:
18470 {
18471 gdb_byte *data;
18472
18473 if (TYPE_LENGTH (type) != cu_header->addr_size)
18474 dwarf2_const_value_length_mismatch_complaint (name,
18475 cu_header->addr_size,
18476 TYPE_LENGTH (type));
18477 /* Symbols of this form are reasonably rare, so we just
18478 piggyback on the existing location code rather than writing
18479 a new implementation of symbol_computed_ops. */
18480 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18481 (*baton)->per_cu = cu->per_cu;
18482 gdb_assert ((*baton)->per_cu);
18483
18484 (*baton)->size = 2 + cu_header->addr_size;
18485 data = obstack_alloc (obstack, (*baton)->size);
18486 (*baton)->data = data;
18487
18488 data[0] = DW_OP_addr;
18489 store_unsigned_integer (&data[1], cu_header->addr_size,
18490 byte_order, DW_ADDR (attr));
18491 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18492 }
18493 break;
18494 case DW_FORM_string:
18495 case DW_FORM_strp:
18496 case DW_FORM_GNU_str_index:
18497 case DW_FORM_GNU_strp_alt:
18498 /* DW_STRING is already allocated on the objfile obstack, point
18499 directly to it. */
18500 *bytes = (const gdb_byte *) DW_STRING (attr);
18501 break;
18502 case DW_FORM_block1:
18503 case DW_FORM_block2:
18504 case DW_FORM_block4:
18505 case DW_FORM_block:
18506 case DW_FORM_exprloc:
18507 blk = DW_BLOCK (attr);
18508 if (TYPE_LENGTH (type) != blk->size)
18509 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18510 TYPE_LENGTH (type));
18511 *bytes = blk->data;
18512 break;
18513
18514 /* The DW_AT_const_value attributes are supposed to carry the
18515 symbol's value "represented as it would be on the target
18516 architecture." By the time we get here, it's already been
18517 converted to host endianness, so we just need to sign- or
18518 zero-extend it as appropriate. */
18519 case DW_FORM_data1:
18520 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18521 break;
18522 case DW_FORM_data2:
18523 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18524 break;
18525 case DW_FORM_data4:
18526 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18527 break;
18528 case DW_FORM_data8:
18529 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18530 break;
18531
18532 case DW_FORM_sdata:
18533 *value = DW_SND (attr);
18534 break;
18535
18536 case DW_FORM_udata:
18537 *value = DW_UNSND (attr);
18538 break;
18539
18540 default:
18541 complaint (&symfile_complaints,
18542 _("unsupported const value attribute form: '%s'"),
18543 dwarf_form_name (attr->form));
18544 *value = 0;
18545 break;
18546 }
18547 }
18548
18549
18550 /* Copy constant value from an attribute to a symbol. */
18551
18552 static void
18553 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18554 struct dwarf2_cu *cu)
18555 {
18556 struct objfile *objfile = cu->objfile;
18557 struct comp_unit_head *cu_header = &cu->header;
18558 LONGEST value;
18559 const gdb_byte *bytes;
18560 struct dwarf2_locexpr_baton *baton;
18561
18562 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18563 SYMBOL_PRINT_NAME (sym),
18564 &objfile->objfile_obstack, cu,
18565 &value, &bytes, &baton);
18566
18567 if (baton != NULL)
18568 {
18569 SYMBOL_LOCATION_BATON (sym) = baton;
18570 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18571 }
18572 else if (bytes != NULL)
18573 {
18574 SYMBOL_VALUE_BYTES (sym) = bytes;
18575 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18576 }
18577 else
18578 {
18579 SYMBOL_VALUE (sym) = value;
18580 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18581 }
18582 }
18583
18584 /* Return the type of the die in question using its DW_AT_type attribute. */
18585
18586 static struct type *
18587 die_type (struct die_info *die, struct dwarf2_cu *cu)
18588 {
18589 struct attribute *type_attr;
18590
18591 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18592 if (!type_attr)
18593 {
18594 /* A missing DW_AT_type represents a void type. */
18595 return objfile_type (cu->objfile)->builtin_void;
18596 }
18597
18598 return lookup_die_type (die, type_attr, cu);
18599 }
18600
18601 /* True iff CU's producer generates GNAT Ada auxiliary information
18602 that allows to find parallel types through that information instead
18603 of having to do expensive parallel lookups by type name. */
18604
18605 static int
18606 need_gnat_info (struct dwarf2_cu *cu)
18607 {
18608 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18609 of GNAT produces this auxiliary information, without any indication
18610 that it is produced. Part of enhancing the FSF version of GNAT
18611 to produce that information will be to put in place an indicator
18612 that we can use in order to determine whether the descriptive type
18613 info is available or not. One suggestion that has been made is
18614 to use a new attribute, attached to the CU die. For now, assume
18615 that the descriptive type info is not available. */
18616 return 0;
18617 }
18618
18619 /* Return the auxiliary type of the die in question using its
18620 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18621 attribute is not present. */
18622
18623 static struct type *
18624 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18625 {
18626 struct attribute *type_attr;
18627
18628 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18629 if (!type_attr)
18630 return NULL;
18631
18632 return lookup_die_type (die, type_attr, cu);
18633 }
18634
18635 /* If DIE has a descriptive_type attribute, then set the TYPE's
18636 descriptive type accordingly. */
18637
18638 static void
18639 set_descriptive_type (struct type *type, struct die_info *die,
18640 struct dwarf2_cu *cu)
18641 {
18642 struct type *descriptive_type = die_descriptive_type (die, cu);
18643
18644 if (descriptive_type)
18645 {
18646 ALLOCATE_GNAT_AUX_TYPE (type);
18647 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18648 }
18649 }
18650
18651 /* Return the containing type of the die in question using its
18652 DW_AT_containing_type attribute. */
18653
18654 static struct type *
18655 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18656 {
18657 struct attribute *type_attr;
18658
18659 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18660 if (!type_attr)
18661 error (_("Dwarf Error: Problem turning containing type into gdb type "
18662 "[in module %s]"), objfile_name (cu->objfile));
18663
18664 return lookup_die_type (die, type_attr, cu);
18665 }
18666
18667 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18668
18669 static struct type *
18670 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18671 {
18672 struct objfile *objfile = dwarf2_per_objfile->objfile;
18673 char *message, *saved;
18674
18675 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18676 objfile_name (objfile),
18677 cu->header.offset.sect_off,
18678 die->offset.sect_off);
18679 saved = obstack_copy0 (&objfile->objfile_obstack,
18680 message, strlen (message));
18681 xfree (message);
18682
18683 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18684 }
18685
18686 /* Look up the type of DIE in CU using its type attribute ATTR.
18687 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18688 DW_AT_containing_type.
18689 If there is no type substitute an error marker. */
18690
18691 static struct type *
18692 lookup_die_type (struct die_info *die, const struct attribute *attr,
18693 struct dwarf2_cu *cu)
18694 {
18695 struct objfile *objfile = cu->objfile;
18696 struct type *this_type;
18697
18698 gdb_assert (attr->name == DW_AT_type
18699 || attr->name == DW_AT_GNAT_descriptive_type
18700 || attr->name == DW_AT_containing_type);
18701
18702 /* First see if we have it cached. */
18703
18704 if (attr->form == DW_FORM_GNU_ref_alt)
18705 {
18706 struct dwarf2_per_cu_data *per_cu;
18707 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18708
18709 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18710 this_type = get_die_type_at_offset (offset, per_cu);
18711 }
18712 else if (attr_form_is_ref (attr))
18713 {
18714 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18715
18716 this_type = get_die_type_at_offset (offset, cu->per_cu);
18717 }
18718 else if (attr->form == DW_FORM_ref_sig8)
18719 {
18720 ULONGEST signature = DW_SIGNATURE (attr);
18721
18722 return get_signatured_type (die, signature, cu);
18723 }
18724 else
18725 {
18726 complaint (&symfile_complaints,
18727 _("Dwarf Error: Bad type attribute %s in DIE"
18728 " at 0x%x [in module %s]"),
18729 dwarf_attr_name (attr->name), die->offset.sect_off,
18730 objfile_name (objfile));
18731 return build_error_marker_type (cu, die);
18732 }
18733
18734 /* If not cached we need to read it in. */
18735
18736 if (this_type == NULL)
18737 {
18738 struct die_info *type_die = NULL;
18739 struct dwarf2_cu *type_cu = cu;
18740
18741 if (attr_form_is_ref (attr))
18742 type_die = follow_die_ref (die, attr, &type_cu);
18743 if (type_die == NULL)
18744 return build_error_marker_type (cu, die);
18745 /* If we find the type now, it's probably because the type came
18746 from an inter-CU reference and the type's CU got expanded before
18747 ours. */
18748 this_type = read_type_die (type_die, type_cu);
18749 }
18750
18751 /* If we still don't have a type use an error marker. */
18752
18753 if (this_type == NULL)
18754 return build_error_marker_type (cu, die);
18755
18756 return this_type;
18757 }
18758
18759 /* Return the type in DIE, CU.
18760 Returns NULL for invalid types.
18761
18762 This first does a lookup in die_type_hash,
18763 and only reads the die in if necessary.
18764
18765 NOTE: This can be called when reading in partial or full symbols. */
18766
18767 static struct type *
18768 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18769 {
18770 struct type *this_type;
18771
18772 this_type = get_die_type (die, cu);
18773 if (this_type)
18774 return this_type;
18775
18776 return read_type_die_1 (die, cu);
18777 }
18778
18779 /* Read the type in DIE, CU.
18780 Returns NULL for invalid types. */
18781
18782 static struct type *
18783 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18784 {
18785 struct type *this_type = NULL;
18786
18787 switch (die->tag)
18788 {
18789 case DW_TAG_class_type:
18790 case DW_TAG_interface_type:
18791 case DW_TAG_structure_type:
18792 case DW_TAG_union_type:
18793 this_type = read_structure_type (die, cu);
18794 break;
18795 case DW_TAG_enumeration_type:
18796 this_type = read_enumeration_type (die, cu);
18797 break;
18798 case DW_TAG_subprogram:
18799 case DW_TAG_subroutine_type:
18800 case DW_TAG_inlined_subroutine:
18801 this_type = read_subroutine_type (die, cu);
18802 break;
18803 case DW_TAG_array_type:
18804 this_type = read_array_type (die, cu);
18805 break;
18806 case DW_TAG_set_type:
18807 this_type = read_set_type (die, cu);
18808 break;
18809 case DW_TAG_pointer_type:
18810 this_type = read_tag_pointer_type (die, cu);
18811 break;
18812 case DW_TAG_ptr_to_member_type:
18813 this_type = read_tag_ptr_to_member_type (die, cu);
18814 break;
18815 case DW_TAG_reference_type:
18816 this_type = read_tag_reference_type (die, cu);
18817 break;
18818 case DW_TAG_const_type:
18819 this_type = read_tag_const_type (die, cu);
18820 break;
18821 case DW_TAG_volatile_type:
18822 this_type = read_tag_volatile_type (die, cu);
18823 break;
18824 case DW_TAG_restrict_type:
18825 this_type = read_tag_restrict_type (die, cu);
18826 break;
18827 case DW_TAG_string_type:
18828 this_type = read_tag_string_type (die, cu);
18829 break;
18830 case DW_TAG_typedef:
18831 this_type = read_typedef (die, cu);
18832 break;
18833 case DW_TAG_subrange_type:
18834 this_type = read_subrange_type (die, cu);
18835 break;
18836 case DW_TAG_base_type:
18837 this_type = read_base_type (die, cu);
18838 break;
18839 case DW_TAG_unspecified_type:
18840 this_type = read_unspecified_type (die, cu);
18841 break;
18842 case DW_TAG_namespace:
18843 this_type = read_namespace_type (die, cu);
18844 break;
18845 case DW_TAG_module:
18846 this_type = read_module_type (die, cu);
18847 break;
18848 default:
18849 complaint (&symfile_complaints,
18850 _("unexpected tag in read_type_die: '%s'"),
18851 dwarf_tag_name (die->tag));
18852 break;
18853 }
18854
18855 return this_type;
18856 }
18857
18858 /* See if we can figure out if the class lives in a namespace. We do
18859 this by looking for a member function; its demangled name will
18860 contain namespace info, if there is any.
18861 Return the computed name or NULL.
18862 Space for the result is allocated on the objfile's obstack.
18863 This is the full-die version of guess_partial_die_structure_name.
18864 In this case we know DIE has no useful parent. */
18865
18866 static char *
18867 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18868 {
18869 struct die_info *spec_die;
18870 struct dwarf2_cu *spec_cu;
18871 struct die_info *child;
18872
18873 spec_cu = cu;
18874 spec_die = die_specification (die, &spec_cu);
18875 if (spec_die != NULL)
18876 {
18877 die = spec_die;
18878 cu = spec_cu;
18879 }
18880
18881 for (child = die->child;
18882 child != NULL;
18883 child = child->sibling)
18884 {
18885 if (child->tag == DW_TAG_subprogram)
18886 {
18887 struct attribute *attr;
18888
18889 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18890 if (attr == NULL)
18891 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18892 if (attr != NULL)
18893 {
18894 char *actual_name
18895 = language_class_name_from_physname (cu->language_defn,
18896 DW_STRING (attr));
18897 char *name = NULL;
18898
18899 if (actual_name != NULL)
18900 {
18901 const char *die_name = dwarf2_name (die, cu);
18902
18903 if (die_name != NULL
18904 && strcmp (die_name, actual_name) != 0)
18905 {
18906 /* Strip off the class name from the full name.
18907 We want the prefix. */
18908 int die_name_len = strlen (die_name);
18909 int actual_name_len = strlen (actual_name);
18910
18911 /* Test for '::' as a sanity check. */
18912 if (actual_name_len > die_name_len + 2
18913 && actual_name[actual_name_len
18914 - die_name_len - 1] == ':')
18915 name =
18916 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18917 actual_name,
18918 actual_name_len - die_name_len - 2);
18919 }
18920 }
18921 xfree (actual_name);
18922 return name;
18923 }
18924 }
18925 }
18926
18927 return NULL;
18928 }
18929
18930 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18931 prefix part in such case. See
18932 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18933
18934 static char *
18935 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18936 {
18937 struct attribute *attr;
18938 char *base;
18939
18940 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18941 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18942 return NULL;
18943
18944 attr = dwarf2_attr (die, DW_AT_name, cu);
18945 if (attr != NULL && DW_STRING (attr) != NULL)
18946 return NULL;
18947
18948 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18949 if (attr == NULL)
18950 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18951 if (attr == NULL || DW_STRING (attr) == NULL)
18952 return NULL;
18953
18954 /* dwarf2_name had to be already called. */
18955 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18956
18957 /* Strip the base name, keep any leading namespaces/classes. */
18958 base = strrchr (DW_STRING (attr), ':');
18959 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18960 return "";
18961
18962 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18963 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18964 }
18965
18966 /* Return the name of the namespace/class that DIE is defined within,
18967 or "" if we can't tell. The caller should not xfree the result.
18968
18969 For example, if we're within the method foo() in the following
18970 code:
18971
18972 namespace N {
18973 class C {
18974 void foo () {
18975 }
18976 };
18977 }
18978
18979 then determine_prefix on foo's die will return "N::C". */
18980
18981 static const char *
18982 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18983 {
18984 struct die_info *parent, *spec_die;
18985 struct dwarf2_cu *spec_cu;
18986 struct type *parent_type;
18987 char *retval;
18988
18989 if (cu->language != language_cplus && cu->language != language_java
18990 && cu->language != language_fortran)
18991 return "";
18992
18993 retval = anonymous_struct_prefix (die, cu);
18994 if (retval)
18995 return retval;
18996
18997 /* We have to be careful in the presence of DW_AT_specification.
18998 For example, with GCC 3.4, given the code
18999
19000 namespace N {
19001 void foo() {
19002 // Definition of N::foo.
19003 }
19004 }
19005
19006 then we'll have a tree of DIEs like this:
19007
19008 1: DW_TAG_compile_unit
19009 2: DW_TAG_namespace // N
19010 3: DW_TAG_subprogram // declaration of N::foo
19011 4: DW_TAG_subprogram // definition of N::foo
19012 DW_AT_specification // refers to die #3
19013
19014 Thus, when processing die #4, we have to pretend that we're in
19015 the context of its DW_AT_specification, namely the contex of die
19016 #3. */
19017 spec_cu = cu;
19018 spec_die = die_specification (die, &spec_cu);
19019 if (spec_die == NULL)
19020 parent = die->parent;
19021 else
19022 {
19023 parent = spec_die->parent;
19024 cu = spec_cu;
19025 }
19026
19027 if (parent == NULL)
19028 return "";
19029 else if (parent->building_fullname)
19030 {
19031 const char *name;
19032 const char *parent_name;
19033
19034 /* It has been seen on RealView 2.2 built binaries,
19035 DW_TAG_template_type_param types actually _defined_ as
19036 children of the parent class:
19037
19038 enum E {};
19039 template class <class Enum> Class{};
19040 Class<enum E> class_e;
19041
19042 1: DW_TAG_class_type (Class)
19043 2: DW_TAG_enumeration_type (E)
19044 3: DW_TAG_enumerator (enum1:0)
19045 3: DW_TAG_enumerator (enum2:1)
19046 ...
19047 2: DW_TAG_template_type_param
19048 DW_AT_type DW_FORM_ref_udata (E)
19049
19050 Besides being broken debug info, it can put GDB into an
19051 infinite loop. Consider:
19052
19053 When we're building the full name for Class<E>, we'll start
19054 at Class, and go look over its template type parameters,
19055 finding E. We'll then try to build the full name of E, and
19056 reach here. We're now trying to build the full name of E,
19057 and look over the parent DIE for containing scope. In the
19058 broken case, if we followed the parent DIE of E, we'd again
19059 find Class, and once again go look at its template type
19060 arguments, etc., etc. Simply don't consider such parent die
19061 as source-level parent of this die (it can't be, the language
19062 doesn't allow it), and break the loop here. */
19063 name = dwarf2_name (die, cu);
19064 parent_name = dwarf2_name (parent, cu);
19065 complaint (&symfile_complaints,
19066 _("template param type '%s' defined within parent '%s'"),
19067 name ? name : "<unknown>",
19068 parent_name ? parent_name : "<unknown>");
19069 return "";
19070 }
19071 else
19072 switch (parent->tag)
19073 {
19074 case DW_TAG_namespace:
19075 parent_type = read_type_die (parent, cu);
19076 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19077 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19078 Work around this problem here. */
19079 if (cu->language == language_cplus
19080 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19081 return "";
19082 /* We give a name to even anonymous namespaces. */
19083 return TYPE_TAG_NAME (parent_type);
19084 case DW_TAG_class_type:
19085 case DW_TAG_interface_type:
19086 case DW_TAG_structure_type:
19087 case DW_TAG_union_type:
19088 case DW_TAG_module:
19089 parent_type = read_type_die (parent, cu);
19090 if (TYPE_TAG_NAME (parent_type) != NULL)
19091 return TYPE_TAG_NAME (parent_type);
19092 else
19093 /* An anonymous structure is only allowed non-static data
19094 members; no typedefs, no member functions, et cetera.
19095 So it does not need a prefix. */
19096 return "";
19097 case DW_TAG_compile_unit:
19098 case DW_TAG_partial_unit:
19099 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19100 if (cu->language == language_cplus
19101 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19102 && die->child != NULL
19103 && (die->tag == DW_TAG_class_type
19104 || die->tag == DW_TAG_structure_type
19105 || die->tag == DW_TAG_union_type))
19106 {
19107 char *name = guess_full_die_structure_name (die, cu);
19108 if (name != NULL)
19109 return name;
19110 }
19111 return "";
19112 case DW_TAG_enumeration_type:
19113 parent_type = read_type_die (parent, cu);
19114 if (TYPE_DECLARED_CLASS (parent_type))
19115 {
19116 if (TYPE_TAG_NAME (parent_type) != NULL)
19117 return TYPE_TAG_NAME (parent_type);
19118 return "";
19119 }
19120 /* Fall through. */
19121 default:
19122 return determine_prefix (parent, cu);
19123 }
19124 }
19125
19126 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19127 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19128 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19129 an obconcat, otherwise allocate storage for the result. The CU argument is
19130 used to determine the language and hence, the appropriate separator. */
19131
19132 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19133
19134 static char *
19135 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19136 int physname, struct dwarf2_cu *cu)
19137 {
19138 const char *lead = "";
19139 const char *sep;
19140
19141 if (suffix == NULL || suffix[0] == '\0'
19142 || prefix == NULL || prefix[0] == '\0')
19143 sep = "";
19144 else if (cu->language == language_java)
19145 sep = ".";
19146 else if (cu->language == language_fortran && physname)
19147 {
19148 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19149 DW_AT_MIPS_linkage_name is preferred and used instead. */
19150
19151 lead = "__";
19152 sep = "_MOD_";
19153 }
19154 else
19155 sep = "::";
19156
19157 if (prefix == NULL)
19158 prefix = "";
19159 if (suffix == NULL)
19160 suffix = "";
19161
19162 if (obs == NULL)
19163 {
19164 char *retval
19165 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19166
19167 strcpy (retval, lead);
19168 strcat (retval, prefix);
19169 strcat (retval, sep);
19170 strcat (retval, suffix);
19171 return retval;
19172 }
19173 else
19174 {
19175 /* We have an obstack. */
19176 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19177 }
19178 }
19179
19180 /* Return sibling of die, NULL if no sibling. */
19181
19182 static struct die_info *
19183 sibling_die (struct die_info *die)
19184 {
19185 return die->sibling;
19186 }
19187
19188 /* Get name of a die, return NULL if not found. */
19189
19190 static const char *
19191 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19192 struct obstack *obstack)
19193 {
19194 if (name && cu->language == language_cplus)
19195 {
19196 char *canon_name = cp_canonicalize_string (name);
19197
19198 if (canon_name != NULL)
19199 {
19200 if (strcmp (canon_name, name) != 0)
19201 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19202 xfree (canon_name);
19203 }
19204 }
19205
19206 return name;
19207 }
19208
19209 /* Get name of a die, return NULL if not found. */
19210
19211 static const char *
19212 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19213 {
19214 struct attribute *attr;
19215
19216 attr = dwarf2_attr (die, DW_AT_name, cu);
19217 if ((!attr || !DW_STRING (attr))
19218 && die->tag != DW_TAG_class_type
19219 && die->tag != DW_TAG_interface_type
19220 && die->tag != DW_TAG_structure_type
19221 && die->tag != DW_TAG_union_type)
19222 return NULL;
19223
19224 switch (die->tag)
19225 {
19226 case DW_TAG_compile_unit:
19227 case DW_TAG_partial_unit:
19228 /* Compilation units have a DW_AT_name that is a filename, not
19229 a source language identifier. */
19230 case DW_TAG_enumeration_type:
19231 case DW_TAG_enumerator:
19232 /* These tags always have simple identifiers already; no need
19233 to canonicalize them. */
19234 return DW_STRING (attr);
19235
19236 case DW_TAG_subprogram:
19237 /* Java constructors will all be named "<init>", so return
19238 the class name when we see this special case. */
19239 if (cu->language == language_java
19240 && DW_STRING (attr) != NULL
19241 && strcmp (DW_STRING (attr), "<init>") == 0)
19242 {
19243 struct dwarf2_cu *spec_cu = cu;
19244 struct die_info *spec_die;
19245
19246 /* GCJ will output '<init>' for Java constructor names.
19247 For this special case, return the name of the parent class. */
19248
19249 /* GCJ may output subprogram DIEs with AT_specification set.
19250 If so, use the name of the specified DIE. */
19251 spec_die = die_specification (die, &spec_cu);
19252 if (spec_die != NULL)
19253 return dwarf2_name (spec_die, spec_cu);
19254
19255 do
19256 {
19257 die = die->parent;
19258 if (die->tag == DW_TAG_class_type)
19259 return dwarf2_name (die, cu);
19260 }
19261 while (die->tag != DW_TAG_compile_unit
19262 && die->tag != DW_TAG_partial_unit);
19263 }
19264 break;
19265
19266 case DW_TAG_class_type:
19267 case DW_TAG_interface_type:
19268 case DW_TAG_structure_type:
19269 case DW_TAG_union_type:
19270 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19271 structures or unions. These were of the form "._%d" in GCC 4.1,
19272 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19273 and GCC 4.4. We work around this problem by ignoring these. */
19274 if (attr && DW_STRING (attr)
19275 && (strncmp (DW_STRING (attr), "._", 2) == 0
19276 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19277 return NULL;
19278
19279 /* GCC might emit a nameless typedef that has a linkage name. See
19280 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19281 if (!attr || DW_STRING (attr) == NULL)
19282 {
19283 char *demangled = NULL;
19284
19285 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19286 if (attr == NULL)
19287 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19288
19289 if (attr == NULL || DW_STRING (attr) == NULL)
19290 return NULL;
19291
19292 /* Avoid demangling DW_STRING (attr) the second time on a second
19293 call for the same DIE. */
19294 if (!DW_STRING_IS_CANONICAL (attr))
19295 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19296
19297 if (demangled)
19298 {
19299 char *base;
19300
19301 /* FIXME: we already did this for the partial symbol... */
19302 DW_STRING (attr)
19303 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19304 demangled, strlen (demangled));
19305 DW_STRING_IS_CANONICAL (attr) = 1;
19306 xfree (demangled);
19307
19308 /* Strip any leading namespaces/classes, keep only the base name.
19309 DW_AT_name for named DIEs does not contain the prefixes. */
19310 base = strrchr (DW_STRING (attr), ':');
19311 if (base && base > DW_STRING (attr) && base[-1] == ':')
19312 return &base[1];
19313 else
19314 return DW_STRING (attr);
19315 }
19316 }
19317 break;
19318
19319 default:
19320 break;
19321 }
19322
19323 if (!DW_STRING_IS_CANONICAL (attr))
19324 {
19325 DW_STRING (attr)
19326 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19327 &cu->objfile->per_bfd->storage_obstack);
19328 DW_STRING_IS_CANONICAL (attr) = 1;
19329 }
19330 return DW_STRING (attr);
19331 }
19332
19333 /* Return the die that this die in an extension of, or NULL if there
19334 is none. *EXT_CU is the CU containing DIE on input, and the CU
19335 containing the return value on output. */
19336
19337 static struct die_info *
19338 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19339 {
19340 struct attribute *attr;
19341
19342 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19343 if (attr == NULL)
19344 return NULL;
19345
19346 return follow_die_ref (die, attr, ext_cu);
19347 }
19348
19349 /* Convert a DIE tag into its string name. */
19350
19351 static const char *
19352 dwarf_tag_name (unsigned tag)
19353 {
19354 const char *name = get_DW_TAG_name (tag);
19355
19356 if (name == NULL)
19357 return "DW_TAG_<unknown>";
19358
19359 return name;
19360 }
19361
19362 /* Convert a DWARF attribute code into its string name. */
19363
19364 static const char *
19365 dwarf_attr_name (unsigned attr)
19366 {
19367 const char *name;
19368
19369 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19370 if (attr == DW_AT_MIPS_fde)
19371 return "DW_AT_MIPS_fde";
19372 #else
19373 if (attr == DW_AT_HP_block_index)
19374 return "DW_AT_HP_block_index";
19375 #endif
19376
19377 name = get_DW_AT_name (attr);
19378
19379 if (name == NULL)
19380 return "DW_AT_<unknown>";
19381
19382 return name;
19383 }
19384
19385 /* Convert a DWARF value form code into its string name. */
19386
19387 static const char *
19388 dwarf_form_name (unsigned form)
19389 {
19390 const char *name = get_DW_FORM_name (form);
19391
19392 if (name == NULL)
19393 return "DW_FORM_<unknown>";
19394
19395 return name;
19396 }
19397
19398 static char *
19399 dwarf_bool_name (unsigned mybool)
19400 {
19401 if (mybool)
19402 return "TRUE";
19403 else
19404 return "FALSE";
19405 }
19406
19407 /* Convert a DWARF type code into its string name. */
19408
19409 static const char *
19410 dwarf_type_encoding_name (unsigned enc)
19411 {
19412 const char *name = get_DW_ATE_name (enc);
19413
19414 if (name == NULL)
19415 return "DW_ATE_<unknown>";
19416
19417 return name;
19418 }
19419
19420 static void
19421 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19422 {
19423 unsigned int i;
19424
19425 print_spaces (indent, f);
19426 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19427 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19428
19429 if (die->parent != NULL)
19430 {
19431 print_spaces (indent, f);
19432 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19433 die->parent->offset.sect_off);
19434 }
19435
19436 print_spaces (indent, f);
19437 fprintf_unfiltered (f, " has children: %s\n",
19438 dwarf_bool_name (die->child != NULL));
19439
19440 print_spaces (indent, f);
19441 fprintf_unfiltered (f, " attributes:\n");
19442
19443 for (i = 0; i < die->num_attrs; ++i)
19444 {
19445 print_spaces (indent, f);
19446 fprintf_unfiltered (f, " %s (%s) ",
19447 dwarf_attr_name (die->attrs[i].name),
19448 dwarf_form_name (die->attrs[i].form));
19449
19450 switch (die->attrs[i].form)
19451 {
19452 case DW_FORM_addr:
19453 case DW_FORM_GNU_addr_index:
19454 fprintf_unfiltered (f, "address: ");
19455 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19456 break;
19457 case DW_FORM_block2:
19458 case DW_FORM_block4:
19459 case DW_FORM_block:
19460 case DW_FORM_block1:
19461 fprintf_unfiltered (f, "block: size %s",
19462 pulongest (DW_BLOCK (&die->attrs[i])->size));
19463 break;
19464 case DW_FORM_exprloc:
19465 fprintf_unfiltered (f, "expression: size %s",
19466 pulongest (DW_BLOCK (&die->attrs[i])->size));
19467 break;
19468 case DW_FORM_ref_addr:
19469 fprintf_unfiltered (f, "ref address: ");
19470 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19471 break;
19472 case DW_FORM_GNU_ref_alt:
19473 fprintf_unfiltered (f, "alt ref address: ");
19474 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19475 break;
19476 case DW_FORM_ref1:
19477 case DW_FORM_ref2:
19478 case DW_FORM_ref4:
19479 case DW_FORM_ref8:
19480 case DW_FORM_ref_udata:
19481 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19482 (long) (DW_UNSND (&die->attrs[i])));
19483 break;
19484 case DW_FORM_data1:
19485 case DW_FORM_data2:
19486 case DW_FORM_data4:
19487 case DW_FORM_data8:
19488 case DW_FORM_udata:
19489 case DW_FORM_sdata:
19490 fprintf_unfiltered (f, "constant: %s",
19491 pulongest (DW_UNSND (&die->attrs[i])));
19492 break;
19493 case DW_FORM_sec_offset:
19494 fprintf_unfiltered (f, "section offset: %s",
19495 pulongest (DW_UNSND (&die->attrs[i])));
19496 break;
19497 case DW_FORM_ref_sig8:
19498 fprintf_unfiltered (f, "signature: %s",
19499 hex_string (DW_SIGNATURE (&die->attrs[i])));
19500 break;
19501 case DW_FORM_string:
19502 case DW_FORM_strp:
19503 case DW_FORM_GNU_str_index:
19504 case DW_FORM_GNU_strp_alt:
19505 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19506 DW_STRING (&die->attrs[i])
19507 ? DW_STRING (&die->attrs[i]) : "",
19508 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19509 break;
19510 case DW_FORM_flag:
19511 if (DW_UNSND (&die->attrs[i]))
19512 fprintf_unfiltered (f, "flag: TRUE");
19513 else
19514 fprintf_unfiltered (f, "flag: FALSE");
19515 break;
19516 case DW_FORM_flag_present:
19517 fprintf_unfiltered (f, "flag: TRUE");
19518 break;
19519 case DW_FORM_indirect:
19520 /* The reader will have reduced the indirect form to
19521 the "base form" so this form should not occur. */
19522 fprintf_unfiltered (f,
19523 "unexpected attribute form: DW_FORM_indirect");
19524 break;
19525 default:
19526 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19527 die->attrs[i].form);
19528 break;
19529 }
19530 fprintf_unfiltered (f, "\n");
19531 }
19532 }
19533
19534 static void
19535 dump_die_for_error (struct die_info *die)
19536 {
19537 dump_die_shallow (gdb_stderr, 0, die);
19538 }
19539
19540 static void
19541 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19542 {
19543 int indent = level * 4;
19544
19545 gdb_assert (die != NULL);
19546
19547 if (level >= max_level)
19548 return;
19549
19550 dump_die_shallow (f, indent, die);
19551
19552 if (die->child != NULL)
19553 {
19554 print_spaces (indent, f);
19555 fprintf_unfiltered (f, " Children:");
19556 if (level + 1 < max_level)
19557 {
19558 fprintf_unfiltered (f, "\n");
19559 dump_die_1 (f, level + 1, max_level, die->child);
19560 }
19561 else
19562 {
19563 fprintf_unfiltered (f,
19564 " [not printed, max nesting level reached]\n");
19565 }
19566 }
19567
19568 if (die->sibling != NULL && level > 0)
19569 {
19570 dump_die_1 (f, level, max_level, die->sibling);
19571 }
19572 }
19573
19574 /* This is called from the pdie macro in gdbinit.in.
19575 It's not static so gcc will keep a copy callable from gdb. */
19576
19577 void
19578 dump_die (struct die_info *die, int max_level)
19579 {
19580 dump_die_1 (gdb_stdlog, 0, max_level, die);
19581 }
19582
19583 static void
19584 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19585 {
19586 void **slot;
19587
19588 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19589 INSERT);
19590
19591 *slot = die;
19592 }
19593
19594 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19595 required kind. */
19596
19597 static sect_offset
19598 dwarf2_get_ref_die_offset (const struct attribute *attr)
19599 {
19600 sect_offset retval = { DW_UNSND (attr) };
19601
19602 if (attr_form_is_ref (attr))
19603 return retval;
19604
19605 retval.sect_off = 0;
19606 complaint (&symfile_complaints,
19607 _("unsupported die ref attribute form: '%s'"),
19608 dwarf_form_name (attr->form));
19609 return retval;
19610 }
19611
19612 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19613 * the value held by the attribute is not constant. */
19614
19615 static LONGEST
19616 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19617 {
19618 if (attr->form == DW_FORM_sdata)
19619 return DW_SND (attr);
19620 else if (attr->form == DW_FORM_udata
19621 || attr->form == DW_FORM_data1
19622 || attr->form == DW_FORM_data2
19623 || attr->form == DW_FORM_data4
19624 || attr->form == DW_FORM_data8)
19625 return DW_UNSND (attr);
19626 else
19627 {
19628 complaint (&symfile_complaints,
19629 _("Attribute value is not a constant (%s)"),
19630 dwarf_form_name (attr->form));
19631 return default_value;
19632 }
19633 }
19634
19635 /* Follow reference or signature attribute ATTR of SRC_DIE.
19636 On entry *REF_CU is the CU of SRC_DIE.
19637 On exit *REF_CU is the CU of the result. */
19638
19639 static struct die_info *
19640 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19641 struct dwarf2_cu **ref_cu)
19642 {
19643 struct die_info *die;
19644
19645 if (attr_form_is_ref (attr))
19646 die = follow_die_ref (src_die, attr, ref_cu);
19647 else if (attr->form == DW_FORM_ref_sig8)
19648 die = follow_die_sig (src_die, attr, ref_cu);
19649 else
19650 {
19651 dump_die_for_error (src_die);
19652 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19653 objfile_name ((*ref_cu)->objfile));
19654 }
19655
19656 return die;
19657 }
19658
19659 /* Follow reference OFFSET.
19660 On entry *REF_CU is the CU of the source die referencing OFFSET.
19661 On exit *REF_CU is the CU of the result.
19662 Returns NULL if OFFSET is invalid. */
19663
19664 static struct die_info *
19665 follow_die_offset (sect_offset offset, int offset_in_dwz,
19666 struct dwarf2_cu **ref_cu)
19667 {
19668 struct die_info temp_die;
19669 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19670
19671 gdb_assert (cu->per_cu != NULL);
19672
19673 target_cu = cu;
19674
19675 if (cu->per_cu->is_debug_types)
19676 {
19677 /* .debug_types CUs cannot reference anything outside their CU.
19678 If they need to, they have to reference a signatured type via
19679 DW_FORM_ref_sig8. */
19680 if (! offset_in_cu_p (&cu->header, offset))
19681 return NULL;
19682 }
19683 else if (offset_in_dwz != cu->per_cu->is_dwz
19684 || ! offset_in_cu_p (&cu->header, offset))
19685 {
19686 struct dwarf2_per_cu_data *per_cu;
19687
19688 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19689 cu->objfile);
19690
19691 /* If necessary, add it to the queue and load its DIEs. */
19692 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19693 load_full_comp_unit (per_cu, cu->language);
19694
19695 target_cu = per_cu->cu;
19696 }
19697 else if (cu->dies == NULL)
19698 {
19699 /* We're loading full DIEs during partial symbol reading. */
19700 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19701 load_full_comp_unit (cu->per_cu, language_minimal);
19702 }
19703
19704 *ref_cu = target_cu;
19705 temp_die.offset = offset;
19706 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19707 }
19708
19709 /* Follow reference attribute ATTR of SRC_DIE.
19710 On entry *REF_CU is the CU of SRC_DIE.
19711 On exit *REF_CU is the CU of the result. */
19712
19713 static struct die_info *
19714 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19715 struct dwarf2_cu **ref_cu)
19716 {
19717 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19718 struct dwarf2_cu *cu = *ref_cu;
19719 struct die_info *die;
19720
19721 die = follow_die_offset (offset,
19722 (attr->form == DW_FORM_GNU_ref_alt
19723 || cu->per_cu->is_dwz),
19724 ref_cu);
19725 if (!die)
19726 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19727 "at 0x%x [in module %s]"),
19728 offset.sect_off, src_die->offset.sect_off,
19729 objfile_name (cu->objfile));
19730
19731 return die;
19732 }
19733
19734 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19735 Returned value is intended for DW_OP_call*. Returned
19736 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19737
19738 struct dwarf2_locexpr_baton
19739 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19740 struct dwarf2_per_cu_data *per_cu,
19741 CORE_ADDR (*get_frame_pc) (void *baton),
19742 void *baton)
19743 {
19744 struct dwarf2_cu *cu;
19745 struct die_info *die;
19746 struct attribute *attr;
19747 struct dwarf2_locexpr_baton retval;
19748
19749 dw2_setup (per_cu->objfile);
19750
19751 if (per_cu->cu == NULL)
19752 load_cu (per_cu);
19753 cu = per_cu->cu;
19754
19755 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19756 if (!die)
19757 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19758 offset.sect_off, objfile_name (per_cu->objfile));
19759
19760 attr = dwarf2_attr (die, DW_AT_location, cu);
19761 if (!attr)
19762 {
19763 /* DWARF: "If there is no such attribute, then there is no effect.".
19764 DATA is ignored if SIZE is 0. */
19765
19766 retval.data = NULL;
19767 retval.size = 0;
19768 }
19769 else if (attr_form_is_section_offset (attr))
19770 {
19771 struct dwarf2_loclist_baton loclist_baton;
19772 CORE_ADDR pc = (*get_frame_pc) (baton);
19773 size_t size;
19774
19775 fill_in_loclist_baton (cu, &loclist_baton, attr);
19776
19777 retval.data = dwarf2_find_location_expression (&loclist_baton,
19778 &size, pc);
19779 retval.size = size;
19780 }
19781 else
19782 {
19783 if (!attr_form_is_block (attr))
19784 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19785 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19786 offset.sect_off, objfile_name (per_cu->objfile));
19787
19788 retval.data = DW_BLOCK (attr)->data;
19789 retval.size = DW_BLOCK (attr)->size;
19790 }
19791 retval.per_cu = cu->per_cu;
19792
19793 age_cached_comp_units ();
19794
19795 return retval;
19796 }
19797
19798 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19799 offset. */
19800
19801 struct dwarf2_locexpr_baton
19802 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19803 struct dwarf2_per_cu_data *per_cu,
19804 CORE_ADDR (*get_frame_pc) (void *baton),
19805 void *baton)
19806 {
19807 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19808
19809 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19810 }
19811
19812 /* Write a constant of a given type as target-ordered bytes into
19813 OBSTACK. */
19814
19815 static const gdb_byte *
19816 write_constant_as_bytes (struct obstack *obstack,
19817 enum bfd_endian byte_order,
19818 struct type *type,
19819 ULONGEST value,
19820 LONGEST *len)
19821 {
19822 gdb_byte *result;
19823
19824 *len = TYPE_LENGTH (type);
19825 result = obstack_alloc (obstack, *len);
19826 store_unsigned_integer (result, *len, byte_order, value);
19827
19828 return result;
19829 }
19830
19831 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19832 pointer to the constant bytes and set LEN to the length of the
19833 data. If memory is needed, allocate it on OBSTACK. If the DIE
19834 does not have a DW_AT_const_value, return NULL. */
19835
19836 const gdb_byte *
19837 dwarf2_fetch_constant_bytes (sect_offset offset,
19838 struct dwarf2_per_cu_data *per_cu,
19839 struct obstack *obstack,
19840 LONGEST *len)
19841 {
19842 struct dwarf2_cu *cu;
19843 struct die_info *die;
19844 struct attribute *attr;
19845 const gdb_byte *result = NULL;
19846 struct type *type;
19847 LONGEST value;
19848 enum bfd_endian byte_order;
19849
19850 dw2_setup (per_cu->objfile);
19851
19852 if (per_cu->cu == NULL)
19853 load_cu (per_cu);
19854 cu = per_cu->cu;
19855
19856 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19857 if (!die)
19858 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19859 offset.sect_off, objfile_name (per_cu->objfile));
19860
19861
19862 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19863 if (attr == NULL)
19864 return NULL;
19865
19866 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19867 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19868
19869 switch (attr->form)
19870 {
19871 case DW_FORM_addr:
19872 case DW_FORM_GNU_addr_index:
19873 {
19874 gdb_byte *tem;
19875
19876 *len = cu->header.addr_size;
19877 tem = obstack_alloc (obstack, *len);
19878 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19879 result = tem;
19880 }
19881 break;
19882 case DW_FORM_string:
19883 case DW_FORM_strp:
19884 case DW_FORM_GNU_str_index:
19885 case DW_FORM_GNU_strp_alt:
19886 /* DW_STRING is already allocated on the objfile obstack, point
19887 directly to it. */
19888 result = (const gdb_byte *) DW_STRING (attr);
19889 *len = strlen (DW_STRING (attr));
19890 break;
19891 case DW_FORM_block1:
19892 case DW_FORM_block2:
19893 case DW_FORM_block4:
19894 case DW_FORM_block:
19895 case DW_FORM_exprloc:
19896 result = DW_BLOCK (attr)->data;
19897 *len = DW_BLOCK (attr)->size;
19898 break;
19899
19900 /* The DW_AT_const_value attributes are supposed to carry the
19901 symbol's value "represented as it would be on the target
19902 architecture." By the time we get here, it's already been
19903 converted to host endianness, so we just need to sign- or
19904 zero-extend it as appropriate. */
19905 case DW_FORM_data1:
19906 type = die_type (die, cu);
19907 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19908 if (result == NULL)
19909 result = write_constant_as_bytes (obstack, byte_order,
19910 type, value, len);
19911 break;
19912 case DW_FORM_data2:
19913 type = die_type (die, cu);
19914 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19915 if (result == NULL)
19916 result = write_constant_as_bytes (obstack, byte_order,
19917 type, value, len);
19918 break;
19919 case DW_FORM_data4:
19920 type = die_type (die, cu);
19921 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19922 if (result == NULL)
19923 result = write_constant_as_bytes (obstack, byte_order,
19924 type, value, len);
19925 break;
19926 case DW_FORM_data8:
19927 type = die_type (die, cu);
19928 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19929 if (result == NULL)
19930 result = write_constant_as_bytes (obstack, byte_order,
19931 type, value, len);
19932 break;
19933
19934 case DW_FORM_sdata:
19935 type = die_type (die, cu);
19936 result = write_constant_as_bytes (obstack, byte_order,
19937 type, DW_SND (attr), len);
19938 break;
19939
19940 case DW_FORM_udata:
19941 type = die_type (die, cu);
19942 result = write_constant_as_bytes (obstack, byte_order,
19943 type, DW_UNSND (attr), len);
19944 break;
19945
19946 default:
19947 complaint (&symfile_complaints,
19948 _("unsupported const value attribute form: '%s'"),
19949 dwarf_form_name (attr->form));
19950 break;
19951 }
19952
19953 return result;
19954 }
19955
19956 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19957 PER_CU. */
19958
19959 struct type *
19960 dwarf2_get_die_type (cu_offset die_offset,
19961 struct dwarf2_per_cu_data *per_cu)
19962 {
19963 sect_offset die_offset_sect;
19964
19965 dw2_setup (per_cu->objfile);
19966
19967 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19968 return get_die_type_at_offset (die_offset_sect, per_cu);
19969 }
19970
19971 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19972 On entry *REF_CU is the CU of SRC_DIE.
19973 On exit *REF_CU is the CU of the result.
19974 Returns NULL if the referenced DIE isn't found. */
19975
19976 static struct die_info *
19977 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19978 struct dwarf2_cu **ref_cu)
19979 {
19980 struct objfile *objfile = (*ref_cu)->objfile;
19981 struct die_info temp_die;
19982 struct dwarf2_cu *sig_cu;
19983 struct die_info *die;
19984
19985 /* While it might be nice to assert sig_type->type == NULL here,
19986 we can get here for DW_AT_imported_declaration where we need
19987 the DIE not the type. */
19988
19989 /* If necessary, add it to the queue and load its DIEs. */
19990
19991 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19992 read_signatured_type (sig_type);
19993
19994 sig_cu = sig_type->per_cu.cu;
19995 gdb_assert (sig_cu != NULL);
19996 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19997 temp_die.offset = sig_type->type_offset_in_section;
19998 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19999 temp_die.offset.sect_off);
20000 if (die)
20001 {
20002 /* For .gdb_index version 7 keep track of included TUs.
20003 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20004 if (dwarf2_per_objfile->index_table != NULL
20005 && dwarf2_per_objfile->index_table->version <= 7)
20006 {
20007 VEC_safe_push (dwarf2_per_cu_ptr,
20008 (*ref_cu)->per_cu->imported_symtabs,
20009 sig_cu->per_cu);
20010 }
20011
20012 *ref_cu = sig_cu;
20013 return die;
20014 }
20015
20016 return NULL;
20017 }
20018
20019 /* Follow signatured type referenced by ATTR in SRC_DIE.
20020 On entry *REF_CU is the CU of SRC_DIE.
20021 On exit *REF_CU is the CU of the result.
20022 The result is the DIE of the type.
20023 If the referenced type cannot be found an error is thrown. */
20024
20025 static struct die_info *
20026 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20027 struct dwarf2_cu **ref_cu)
20028 {
20029 ULONGEST signature = DW_SIGNATURE (attr);
20030 struct signatured_type *sig_type;
20031 struct die_info *die;
20032
20033 gdb_assert (attr->form == DW_FORM_ref_sig8);
20034
20035 sig_type = lookup_signatured_type (*ref_cu, signature);
20036 /* sig_type will be NULL if the signatured type is missing from
20037 the debug info. */
20038 if (sig_type == NULL)
20039 {
20040 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20041 " from DIE at 0x%x [in module %s]"),
20042 hex_string (signature), src_die->offset.sect_off,
20043 objfile_name ((*ref_cu)->objfile));
20044 }
20045
20046 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20047 if (die == NULL)
20048 {
20049 dump_die_for_error (src_die);
20050 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20051 " from DIE at 0x%x [in module %s]"),
20052 hex_string (signature), src_die->offset.sect_off,
20053 objfile_name ((*ref_cu)->objfile));
20054 }
20055
20056 return die;
20057 }
20058
20059 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20060 reading in and processing the type unit if necessary. */
20061
20062 static struct type *
20063 get_signatured_type (struct die_info *die, ULONGEST signature,
20064 struct dwarf2_cu *cu)
20065 {
20066 struct signatured_type *sig_type;
20067 struct dwarf2_cu *type_cu;
20068 struct die_info *type_die;
20069 struct type *type;
20070
20071 sig_type = lookup_signatured_type (cu, signature);
20072 /* sig_type will be NULL if the signatured type is missing from
20073 the debug info. */
20074 if (sig_type == NULL)
20075 {
20076 complaint (&symfile_complaints,
20077 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20078 " from DIE at 0x%x [in module %s]"),
20079 hex_string (signature), die->offset.sect_off,
20080 objfile_name (dwarf2_per_objfile->objfile));
20081 return build_error_marker_type (cu, die);
20082 }
20083
20084 /* If we already know the type we're done. */
20085 if (sig_type->type != NULL)
20086 return sig_type->type;
20087
20088 type_cu = cu;
20089 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20090 if (type_die != NULL)
20091 {
20092 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20093 is created. This is important, for example, because for c++ classes
20094 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20095 type = read_type_die (type_die, type_cu);
20096 if (type == NULL)
20097 {
20098 complaint (&symfile_complaints,
20099 _("Dwarf Error: Cannot build signatured type %s"
20100 " referenced from DIE at 0x%x [in module %s]"),
20101 hex_string (signature), die->offset.sect_off,
20102 objfile_name (dwarf2_per_objfile->objfile));
20103 type = build_error_marker_type (cu, die);
20104 }
20105 }
20106 else
20107 {
20108 complaint (&symfile_complaints,
20109 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20110 " from DIE at 0x%x [in module %s]"),
20111 hex_string (signature), die->offset.sect_off,
20112 objfile_name (dwarf2_per_objfile->objfile));
20113 type = build_error_marker_type (cu, die);
20114 }
20115 sig_type->type = type;
20116
20117 return type;
20118 }
20119
20120 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20121 reading in and processing the type unit if necessary. */
20122
20123 static struct type *
20124 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20125 struct dwarf2_cu *cu) /* ARI: editCase function */
20126 {
20127 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20128 if (attr_form_is_ref (attr))
20129 {
20130 struct dwarf2_cu *type_cu = cu;
20131 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20132
20133 return read_type_die (type_die, type_cu);
20134 }
20135 else if (attr->form == DW_FORM_ref_sig8)
20136 {
20137 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20138 }
20139 else
20140 {
20141 complaint (&symfile_complaints,
20142 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20143 " at 0x%x [in module %s]"),
20144 dwarf_form_name (attr->form), die->offset.sect_off,
20145 objfile_name (dwarf2_per_objfile->objfile));
20146 return build_error_marker_type (cu, die);
20147 }
20148 }
20149
20150 /* Load the DIEs associated with type unit PER_CU into memory. */
20151
20152 static void
20153 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20154 {
20155 struct signatured_type *sig_type;
20156
20157 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20158 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20159
20160 /* We have the per_cu, but we need the signatured_type.
20161 Fortunately this is an easy translation. */
20162 gdb_assert (per_cu->is_debug_types);
20163 sig_type = (struct signatured_type *) per_cu;
20164
20165 gdb_assert (per_cu->cu == NULL);
20166
20167 read_signatured_type (sig_type);
20168
20169 gdb_assert (per_cu->cu != NULL);
20170 }
20171
20172 /* die_reader_func for read_signatured_type.
20173 This is identical to load_full_comp_unit_reader,
20174 but is kept separate for now. */
20175
20176 static void
20177 read_signatured_type_reader (const struct die_reader_specs *reader,
20178 const gdb_byte *info_ptr,
20179 struct die_info *comp_unit_die,
20180 int has_children,
20181 void *data)
20182 {
20183 struct dwarf2_cu *cu = reader->cu;
20184
20185 gdb_assert (cu->die_hash == NULL);
20186 cu->die_hash =
20187 htab_create_alloc_ex (cu->header.length / 12,
20188 die_hash,
20189 die_eq,
20190 NULL,
20191 &cu->comp_unit_obstack,
20192 hashtab_obstack_allocate,
20193 dummy_obstack_deallocate);
20194
20195 if (has_children)
20196 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20197 &info_ptr, comp_unit_die);
20198 cu->dies = comp_unit_die;
20199 /* comp_unit_die is not stored in die_hash, no need. */
20200
20201 /* We try not to read any attributes in this function, because not
20202 all CUs needed for references have been loaded yet, and symbol
20203 table processing isn't initialized. But we have to set the CU language,
20204 or we won't be able to build types correctly.
20205 Similarly, if we do not read the producer, we can not apply
20206 producer-specific interpretation. */
20207 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20208 }
20209
20210 /* Read in a signatured type and build its CU and DIEs.
20211 If the type is a stub for the real type in a DWO file,
20212 read in the real type from the DWO file as well. */
20213
20214 static void
20215 read_signatured_type (struct signatured_type *sig_type)
20216 {
20217 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20218
20219 gdb_assert (per_cu->is_debug_types);
20220 gdb_assert (per_cu->cu == NULL);
20221
20222 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20223 read_signatured_type_reader, NULL);
20224 sig_type->per_cu.tu_read = 1;
20225 }
20226
20227 /* Decode simple location descriptions.
20228 Given a pointer to a dwarf block that defines a location, compute
20229 the location and return the value.
20230
20231 NOTE drow/2003-11-18: This function is called in two situations
20232 now: for the address of static or global variables (partial symbols
20233 only) and for offsets into structures which are expected to be
20234 (more or less) constant. The partial symbol case should go away,
20235 and only the constant case should remain. That will let this
20236 function complain more accurately. A few special modes are allowed
20237 without complaint for global variables (for instance, global
20238 register values and thread-local values).
20239
20240 A location description containing no operations indicates that the
20241 object is optimized out. The return value is 0 for that case.
20242 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20243 callers will only want a very basic result and this can become a
20244 complaint.
20245
20246 Note that stack[0] is unused except as a default error return. */
20247
20248 static CORE_ADDR
20249 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20250 {
20251 struct objfile *objfile = cu->objfile;
20252 size_t i;
20253 size_t size = blk->size;
20254 const gdb_byte *data = blk->data;
20255 CORE_ADDR stack[64];
20256 int stacki;
20257 unsigned int bytes_read, unsnd;
20258 gdb_byte op;
20259
20260 i = 0;
20261 stacki = 0;
20262 stack[stacki] = 0;
20263 stack[++stacki] = 0;
20264
20265 while (i < size)
20266 {
20267 op = data[i++];
20268 switch (op)
20269 {
20270 case DW_OP_lit0:
20271 case DW_OP_lit1:
20272 case DW_OP_lit2:
20273 case DW_OP_lit3:
20274 case DW_OP_lit4:
20275 case DW_OP_lit5:
20276 case DW_OP_lit6:
20277 case DW_OP_lit7:
20278 case DW_OP_lit8:
20279 case DW_OP_lit9:
20280 case DW_OP_lit10:
20281 case DW_OP_lit11:
20282 case DW_OP_lit12:
20283 case DW_OP_lit13:
20284 case DW_OP_lit14:
20285 case DW_OP_lit15:
20286 case DW_OP_lit16:
20287 case DW_OP_lit17:
20288 case DW_OP_lit18:
20289 case DW_OP_lit19:
20290 case DW_OP_lit20:
20291 case DW_OP_lit21:
20292 case DW_OP_lit22:
20293 case DW_OP_lit23:
20294 case DW_OP_lit24:
20295 case DW_OP_lit25:
20296 case DW_OP_lit26:
20297 case DW_OP_lit27:
20298 case DW_OP_lit28:
20299 case DW_OP_lit29:
20300 case DW_OP_lit30:
20301 case DW_OP_lit31:
20302 stack[++stacki] = op - DW_OP_lit0;
20303 break;
20304
20305 case DW_OP_reg0:
20306 case DW_OP_reg1:
20307 case DW_OP_reg2:
20308 case DW_OP_reg3:
20309 case DW_OP_reg4:
20310 case DW_OP_reg5:
20311 case DW_OP_reg6:
20312 case DW_OP_reg7:
20313 case DW_OP_reg8:
20314 case DW_OP_reg9:
20315 case DW_OP_reg10:
20316 case DW_OP_reg11:
20317 case DW_OP_reg12:
20318 case DW_OP_reg13:
20319 case DW_OP_reg14:
20320 case DW_OP_reg15:
20321 case DW_OP_reg16:
20322 case DW_OP_reg17:
20323 case DW_OP_reg18:
20324 case DW_OP_reg19:
20325 case DW_OP_reg20:
20326 case DW_OP_reg21:
20327 case DW_OP_reg22:
20328 case DW_OP_reg23:
20329 case DW_OP_reg24:
20330 case DW_OP_reg25:
20331 case DW_OP_reg26:
20332 case DW_OP_reg27:
20333 case DW_OP_reg28:
20334 case DW_OP_reg29:
20335 case DW_OP_reg30:
20336 case DW_OP_reg31:
20337 stack[++stacki] = op - DW_OP_reg0;
20338 if (i < size)
20339 dwarf2_complex_location_expr_complaint ();
20340 break;
20341
20342 case DW_OP_regx:
20343 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20344 i += bytes_read;
20345 stack[++stacki] = unsnd;
20346 if (i < size)
20347 dwarf2_complex_location_expr_complaint ();
20348 break;
20349
20350 case DW_OP_addr:
20351 stack[++stacki] = read_address (objfile->obfd, &data[i],
20352 cu, &bytes_read);
20353 i += bytes_read;
20354 break;
20355
20356 case DW_OP_const1u:
20357 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20358 i += 1;
20359 break;
20360
20361 case DW_OP_const1s:
20362 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20363 i += 1;
20364 break;
20365
20366 case DW_OP_const2u:
20367 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20368 i += 2;
20369 break;
20370
20371 case DW_OP_const2s:
20372 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20373 i += 2;
20374 break;
20375
20376 case DW_OP_const4u:
20377 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20378 i += 4;
20379 break;
20380
20381 case DW_OP_const4s:
20382 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20383 i += 4;
20384 break;
20385
20386 case DW_OP_const8u:
20387 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20388 i += 8;
20389 break;
20390
20391 case DW_OP_constu:
20392 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20393 &bytes_read);
20394 i += bytes_read;
20395 break;
20396
20397 case DW_OP_consts:
20398 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20399 i += bytes_read;
20400 break;
20401
20402 case DW_OP_dup:
20403 stack[stacki + 1] = stack[stacki];
20404 stacki++;
20405 break;
20406
20407 case DW_OP_plus:
20408 stack[stacki - 1] += stack[stacki];
20409 stacki--;
20410 break;
20411
20412 case DW_OP_plus_uconst:
20413 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20414 &bytes_read);
20415 i += bytes_read;
20416 break;
20417
20418 case DW_OP_minus:
20419 stack[stacki - 1] -= stack[stacki];
20420 stacki--;
20421 break;
20422
20423 case DW_OP_deref:
20424 /* If we're not the last op, then we definitely can't encode
20425 this using GDB's address_class enum. This is valid for partial
20426 global symbols, although the variable's address will be bogus
20427 in the psymtab. */
20428 if (i < size)
20429 dwarf2_complex_location_expr_complaint ();
20430 break;
20431
20432 case DW_OP_GNU_push_tls_address:
20433 /* The top of the stack has the offset from the beginning
20434 of the thread control block at which the variable is located. */
20435 /* Nothing should follow this operator, so the top of stack would
20436 be returned. */
20437 /* This is valid for partial global symbols, but the variable's
20438 address will be bogus in the psymtab. Make it always at least
20439 non-zero to not look as a variable garbage collected by linker
20440 which have DW_OP_addr 0. */
20441 if (i < size)
20442 dwarf2_complex_location_expr_complaint ();
20443 stack[stacki]++;
20444 break;
20445
20446 case DW_OP_GNU_uninit:
20447 break;
20448
20449 case DW_OP_GNU_addr_index:
20450 case DW_OP_GNU_const_index:
20451 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20452 &bytes_read);
20453 i += bytes_read;
20454 break;
20455
20456 default:
20457 {
20458 const char *name = get_DW_OP_name (op);
20459
20460 if (name)
20461 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20462 name);
20463 else
20464 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20465 op);
20466 }
20467
20468 return (stack[stacki]);
20469 }
20470
20471 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20472 outside of the allocated space. Also enforce minimum>0. */
20473 if (stacki >= ARRAY_SIZE (stack) - 1)
20474 {
20475 complaint (&symfile_complaints,
20476 _("location description stack overflow"));
20477 return 0;
20478 }
20479
20480 if (stacki <= 0)
20481 {
20482 complaint (&symfile_complaints,
20483 _("location description stack underflow"));
20484 return 0;
20485 }
20486 }
20487 return (stack[stacki]);
20488 }
20489
20490 /* memory allocation interface */
20491
20492 static struct dwarf_block *
20493 dwarf_alloc_block (struct dwarf2_cu *cu)
20494 {
20495 struct dwarf_block *blk;
20496
20497 blk = (struct dwarf_block *)
20498 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20499 return (blk);
20500 }
20501
20502 static struct die_info *
20503 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20504 {
20505 struct die_info *die;
20506 size_t size = sizeof (struct die_info);
20507
20508 if (num_attrs > 1)
20509 size += (num_attrs - 1) * sizeof (struct attribute);
20510
20511 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20512 memset (die, 0, sizeof (struct die_info));
20513 return (die);
20514 }
20515
20516 \f
20517 /* Macro support. */
20518
20519 /* Return file name relative to the compilation directory of file number I in
20520 *LH's file name table. The result is allocated using xmalloc; the caller is
20521 responsible for freeing it. */
20522
20523 static char *
20524 file_file_name (int file, struct line_header *lh)
20525 {
20526 /* Is the file number a valid index into the line header's file name
20527 table? Remember that file numbers start with one, not zero. */
20528 if (1 <= file && file <= lh->num_file_names)
20529 {
20530 struct file_entry *fe = &lh->file_names[file - 1];
20531
20532 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20533 return xstrdup (fe->name);
20534 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20535 fe->name, NULL);
20536 }
20537 else
20538 {
20539 /* The compiler produced a bogus file number. We can at least
20540 record the macro definitions made in the file, even if we
20541 won't be able to find the file by name. */
20542 char fake_name[80];
20543
20544 xsnprintf (fake_name, sizeof (fake_name),
20545 "<bad macro file number %d>", file);
20546
20547 complaint (&symfile_complaints,
20548 _("bad file number in macro information (%d)"),
20549 file);
20550
20551 return xstrdup (fake_name);
20552 }
20553 }
20554
20555 /* Return the full name of file number I in *LH's file name table.
20556 Use COMP_DIR as the name of the current directory of the
20557 compilation. The result is allocated using xmalloc; the caller is
20558 responsible for freeing it. */
20559 static char *
20560 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20561 {
20562 /* Is the file number a valid index into the line header's file name
20563 table? Remember that file numbers start with one, not zero. */
20564 if (1 <= file && file <= lh->num_file_names)
20565 {
20566 char *relative = file_file_name (file, lh);
20567
20568 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20569 return relative;
20570 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20571 }
20572 else
20573 return file_file_name (file, lh);
20574 }
20575
20576
20577 static struct macro_source_file *
20578 macro_start_file (int file, int line,
20579 struct macro_source_file *current_file,
20580 struct line_header *lh)
20581 {
20582 /* File name relative to the compilation directory of this source file. */
20583 char *file_name = file_file_name (file, lh);
20584
20585 if (! current_file)
20586 {
20587 /* Note: We don't create a macro table for this compilation unit
20588 at all until we actually get a filename. */
20589 struct macro_table *macro_table = get_macro_table ();
20590
20591 /* If we have no current file, then this must be the start_file
20592 directive for the compilation unit's main source file. */
20593 current_file = macro_set_main (macro_table, file_name);
20594 macro_define_special (macro_table);
20595 }
20596 else
20597 current_file = macro_include (current_file, line, file_name);
20598
20599 xfree (file_name);
20600
20601 return current_file;
20602 }
20603
20604
20605 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20606 followed by a null byte. */
20607 static char *
20608 copy_string (const char *buf, int len)
20609 {
20610 char *s = xmalloc (len + 1);
20611
20612 memcpy (s, buf, len);
20613 s[len] = '\0';
20614 return s;
20615 }
20616
20617
20618 static const char *
20619 consume_improper_spaces (const char *p, const char *body)
20620 {
20621 if (*p == ' ')
20622 {
20623 complaint (&symfile_complaints,
20624 _("macro definition contains spaces "
20625 "in formal argument list:\n`%s'"),
20626 body);
20627
20628 while (*p == ' ')
20629 p++;
20630 }
20631
20632 return p;
20633 }
20634
20635
20636 static void
20637 parse_macro_definition (struct macro_source_file *file, int line,
20638 const char *body)
20639 {
20640 const char *p;
20641
20642 /* The body string takes one of two forms. For object-like macro
20643 definitions, it should be:
20644
20645 <macro name> " " <definition>
20646
20647 For function-like macro definitions, it should be:
20648
20649 <macro name> "() " <definition>
20650 or
20651 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20652
20653 Spaces may appear only where explicitly indicated, and in the
20654 <definition>.
20655
20656 The Dwarf 2 spec says that an object-like macro's name is always
20657 followed by a space, but versions of GCC around March 2002 omit
20658 the space when the macro's definition is the empty string.
20659
20660 The Dwarf 2 spec says that there should be no spaces between the
20661 formal arguments in a function-like macro's formal argument list,
20662 but versions of GCC around March 2002 include spaces after the
20663 commas. */
20664
20665
20666 /* Find the extent of the macro name. The macro name is terminated
20667 by either a space or null character (for an object-like macro) or
20668 an opening paren (for a function-like macro). */
20669 for (p = body; *p; p++)
20670 if (*p == ' ' || *p == '(')
20671 break;
20672
20673 if (*p == ' ' || *p == '\0')
20674 {
20675 /* It's an object-like macro. */
20676 int name_len = p - body;
20677 char *name = copy_string (body, name_len);
20678 const char *replacement;
20679
20680 if (*p == ' ')
20681 replacement = body + name_len + 1;
20682 else
20683 {
20684 dwarf2_macro_malformed_definition_complaint (body);
20685 replacement = body + name_len;
20686 }
20687
20688 macro_define_object (file, line, name, replacement);
20689
20690 xfree (name);
20691 }
20692 else if (*p == '(')
20693 {
20694 /* It's a function-like macro. */
20695 char *name = copy_string (body, p - body);
20696 int argc = 0;
20697 int argv_size = 1;
20698 char **argv = xmalloc (argv_size * sizeof (*argv));
20699
20700 p++;
20701
20702 p = consume_improper_spaces (p, body);
20703
20704 /* Parse the formal argument list. */
20705 while (*p && *p != ')')
20706 {
20707 /* Find the extent of the current argument name. */
20708 const char *arg_start = p;
20709
20710 while (*p && *p != ',' && *p != ')' && *p != ' ')
20711 p++;
20712
20713 if (! *p || p == arg_start)
20714 dwarf2_macro_malformed_definition_complaint (body);
20715 else
20716 {
20717 /* Make sure argv has room for the new argument. */
20718 if (argc >= argv_size)
20719 {
20720 argv_size *= 2;
20721 argv = xrealloc (argv, argv_size * sizeof (*argv));
20722 }
20723
20724 argv[argc++] = copy_string (arg_start, p - arg_start);
20725 }
20726
20727 p = consume_improper_spaces (p, body);
20728
20729 /* Consume the comma, if present. */
20730 if (*p == ',')
20731 {
20732 p++;
20733
20734 p = consume_improper_spaces (p, body);
20735 }
20736 }
20737
20738 if (*p == ')')
20739 {
20740 p++;
20741
20742 if (*p == ' ')
20743 /* Perfectly formed definition, no complaints. */
20744 macro_define_function (file, line, name,
20745 argc, (const char **) argv,
20746 p + 1);
20747 else if (*p == '\0')
20748 {
20749 /* Complain, but do define it. */
20750 dwarf2_macro_malformed_definition_complaint (body);
20751 macro_define_function (file, line, name,
20752 argc, (const char **) argv,
20753 p);
20754 }
20755 else
20756 /* Just complain. */
20757 dwarf2_macro_malformed_definition_complaint (body);
20758 }
20759 else
20760 /* Just complain. */
20761 dwarf2_macro_malformed_definition_complaint (body);
20762
20763 xfree (name);
20764 {
20765 int i;
20766
20767 for (i = 0; i < argc; i++)
20768 xfree (argv[i]);
20769 }
20770 xfree (argv);
20771 }
20772 else
20773 dwarf2_macro_malformed_definition_complaint (body);
20774 }
20775
20776 /* Skip some bytes from BYTES according to the form given in FORM.
20777 Returns the new pointer. */
20778
20779 static const gdb_byte *
20780 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20781 enum dwarf_form form,
20782 unsigned int offset_size,
20783 struct dwarf2_section_info *section)
20784 {
20785 unsigned int bytes_read;
20786
20787 switch (form)
20788 {
20789 case DW_FORM_data1:
20790 case DW_FORM_flag:
20791 ++bytes;
20792 break;
20793
20794 case DW_FORM_data2:
20795 bytes += 2;
20796 break;
20797
20798 case DW_FORM_data4:
20799 bytes += 4;
20800 break;
20801
20802 case DW_FORM_data8:
20803 bytes += 8;
20804 break;
20805
20806 case DW_FORM_string:
20807 read_direct_string (abfd, bytes, &bytes_read);
20808 bytes += bytes_read;
20809 break;
20810
20811 case DW_FORM_sec_offset:
20812 case DW_FORM_strp:
20813 case DW_FORM_GNU_strp_alt:
20814 bytes += offset_size;
20815 break;
20816
20817 case DW_FORM_block:
20818 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20819 bytes += bytes_read;
20820 break;
20821
20822 case DW_FORM_block1:
20823 bytes += 1 + read_1_byte (abfd, bytes);
20824 break;
20825 case DW_FORM_block2:
20826 bytes += 2 + read_2_bytes (abfd, bytes);
20827 break;
20828 case DW_FORM_block4:
20829 bytes += 4 + read_4_bytes (abfd, bytes);
20830 break;
20831
20832 case DW_FORM_sdata:
20833 case DW_FORM_udata:
20834 case DW_FORM_GNU_addr_index:
20835 case DW_FORM_GNU_str_index:
20836 bytes = gdb_skip_leb128 (bytes, buffer_end);
20837 if (bytes == NULL)
20838 {
20839 dwarf2_section_buffer_overflow_complaint (section);
20840 return NULL;
20841 }
20842 break;
20843
20844 default:
20845 {
20846 complain:
20847 complaint (&symfile_complaints,
20848 _("invalid form 0x%x in `%s'"),
20849 form, get_section_name (section));
20850 return NULL;
20851 }
20852 }
20853
20854 return bytes;
20855 }
20856
20857 /* A helper for dwarf_decode_macros that handles skipping an unknown
20858 opcode. Returns an updated pointer to the macro data buffer; or,
20859 on error, issues a complaint and returns NULL. */
20860
20861 static const gdb_byte *
20862 skip_unknown_opcode (unsigned int opcode,
20863 const gdb_byte **opcode_definitions,
20864 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20865 bfd *abfd,
20866 unsigned int offset_size,
20867 struct dwarf2_section_info *section)
20868 {
20869 unsigned int bytes_read, i;
20870 unsigned long arg;
20871 const gdb_byte *defn;
20872
20873 if (opcode_definitions[opcode] == NULL)
20874 {
20875 complaint (&symfile_complaints,
20876 _("unrecognized DW_MACFINO opcode 0x%x"),
20877 opcode);
20878 return NULL;
20879 }
20880
20881 defn = opcode_definitions[opcode];
20882 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20883 defn += bytes_read;
20884
20885 for (i = 0; i < arg; ++i)
20886 {
20887 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20888 section);
20889 if (mac_ptr == NULL)
20890 {
20891 /* skip_form_bytes already issued the complaint. */
20892 return NULL;
20893 }
20894 }
20895
20896 return mac_ptr;
20897 }
20898
20899 /* A helper function which parses the header of a macro section.
20900 If the macro section is the extended (for now called "GNU") type,
20901 then this updates *OFFSET_SIZE. Returns a pointer to just after
20902 the header, or issues a complaint and returns NULL on error. */
20903
20904 static const gdb_byte *
20905 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20906 bfd *abfd,
20907 const gdb_byte *mac_ptr,
20908 unsigned int *offset_size,
20909 int section_is_gnu)
20910 {
20911 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20912
20913 if (section_is_gnu)
20914 {
20915 unsigned int version, flags;
20916
20917 version = read_2_bytes (abfd, mac_ptr);
20918 if (version != 4)
20919 {
20920 complaint (&symfile_complaints,
20921 _("unrecognized version `%d' in .debug_macro section"),
20922 version);
20923 return NULL;
20924 }
20925 mac_ptr += 2;
20926
20927 flags = read_1_byte (abfd, mac_ptr);
20928 ++mac_ptr;
20929 *offset_size = (flags & 1) ? 8 : 4;
20930
20931 if ((flags & 2) != 0)
20932 /* We don't need the line table offset. */
20933 mac_ptr += *offset_size;
20934
20935 /* Vendor opcode descriptions. */
20936 if ((flags & 4) != 0)
20937 {
20938 unsigned int i, count;
20939
20940 count = read_1_byte (abfd, mac_ptr);
20941 ++mac_ptr;
20942 for (i = 0; i < count; ++i)
20943 {
20944 unsigned int opcode, bytes_read;
20945 unsigned long arg;
20946
20947 opcode = read_1_byte (abfd, mac_ptr);
20948 ++mac_ptr;
20949 opcode_definitions[opcode] = mac_ptr;
20950 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20951 mac_ptr += bytes_read;
20952 mac_ptr += arg;
20953 }
20954 }
20955 }
20956
20957 return mac_ptr;
20958 }
20959
20960 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20961 including DW_MACRO_GNU_transparent_include. */
20962
20963 static void
20964 dwarf_decode_macro_bytes (bfd *abfd,
20965 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20966 struct macro_source_file *current_file,
20967 struct line_header *lh,
20968 struct dwarf2_section_info *section,
20969 int section_is_gnu, int section_is_dwz,
20970 unsigned int offset_size,
20971 htab_t include_hash)
20972 {
20973 struct objfile *objfile = dwarf2_per_objfile->objfile;
20974 enum dwarf_macro_record_type macinfo_type;
20975 int at_commandline;
20976 const gdb_byte *opcode_definitions[256];
20977
20978 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20979 &offset_size, section_is_gnu);
20980 if (mac_ptr == NULL)
20981 {
20982 /* We already issued a complaint. */
20983 return;
20984 }
20985
20986 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20987 GDB is still reading the definitions from command line. First
20988 DW_MACINFO_start_file will need to be ignored as it was already executed
20989 to create CURRENT_FILE for the main source holding also the command line
20990 definitions. On first met DW_MACINFO_start_file this flag is reset to
20991 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20992
20993 at_commandline = 1;
20994
20995 do
20996 {
20997 /* Do we at least have room for a macinfo type byte? */
20998 if (mac_ptr >= mac_end)
20999 {
21000 dwarf2_section_buffer_overflow_complaint (section);
21001 break;
21002 }
21003
21004 macinfo_type = read_1_byte (abfd, mac_ptr);
21005 mac_ptr++;
21006
21007 /* Note that we rely on the fact that the corresponding GNU and
21008 DWARF constants are the same. */
21009 switch (macinfo_type)
21010 {
21011 /* A zero macinfo type indicates the end of the macro
21012 information. */
21013 case 0:
21014 break;
21015
21016 case DW_MACRO_GNU_define:
21017 case DW_MACRO_GNU_undef:
21018 case DW_MACRO_GNU_define_indirect:
21019 case DW_MACRO_GNU_undef_indirect:
21020 case DW_MACRO_GNU_define_indirect_alt:
21021 case DW_MACRO_GNU_undef_indirect_alt:
21022 {
21023 unsigned int bytes_read;
21024 int line;
21025 const char *body;
21026 int is_define;
21027
21028 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21029 mac_ptr += bytes_read;
21030
21031 if (macinfo_type == DW_MACRO_GNU_define
21032 || macinfo_type == DW_MACRO_GNU_undef)
21033 {
21034 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21035 mac_ptr += bytes_read;
21036 }
21037 else
21038 {
21039 LONGEST str_offset;
21040
21041 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21042 mac_ptr += offset_size;
21043
21044 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21045 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21046 || section_is_dwz)
21047 {
21048 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21049
21050 body = read_indirect_string_from_dwz (dwz, str_offset);
21051 }
21052 else
21053 body = read_indirect_string_at_offset (abfd, str_offset);
21054 }
21055
21056 is_define = (macinfo_type == DW_MACRO_GNU_define
21057 || macinfo_type == DW_MACRO_GNU_define_indirect
21058 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21059 if (! current_file)
21060 {
21061 /* DWARF violation as no main source is present. */
21062 complaint (&symfile_complaints,
21063 _("debug info with no main source gives macro %s "
21064 "on line %d: %s"),
21065 is_define ? _("definition") : _("undefinition"),
21066 line, body);
21067 break;
21068 }
21069 if ((line == 0 && !at_commandline)
21070 || (line != 0 && at_commandline))
21071 complaint (&symfile_complaints,
21072 _("debug info gives %s macro %s with %s line %d: %s"),
21073 at_commandline ? _("command-line") : _("in-file"),
21074 is_define ? _("definition") : _("undefinition"),
21075 line == 0 ? _("zero") : _("non-zero"), line, body);
21076
21077 if (is_define)
21078 parse_macro_definition (current_file, line, body);
21079 else
21080 {
21081 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21082 || macinfo_type == DW_MACRO_GNU_undef_indirect
21083 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21084 macro_undef (current_file, line, body);
21085 }
21086 }
21087 break;
21088
21089 case DW_MACRO_GNU_start_file:
21090 {
21091 unsigned int bytes_read;
21092 int line, file;
21093
21094 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21095 mac_ptr += bytes_read;
21096 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21097 mac_ptr += bytes_read;
21098
21099 if ((line == 0 && !at_commandline)
21100 || (line != 0 && at_commandline))
21101 complaint (&symfile_complaints,
21102 _("debug info gives source %d included "
21103 "from %s at %s line %d"),
21104 file, at_commandline ? _("command-line") : _("file"),
21105 line == 0 ? _("zero") : _("non-zero"), line);
21106
21107 if (at_commandline)
21108 {
21109 /* This DW_MACRO_GNU_start_file was executed in the
21110 pass one. */
21111 at_commandline = 0;
21112 }
21113 else
21114 current_file = macro_start_file (file, line, current_file, lh);
21115 }
21116 break;
21117
21118 case DW_MACRO_GNU_end_file:
21119 if (! current_file)
21120 complaint (&symfile_complaints,
21121 _("macro debug info has an unmatched "
21122 "`close_file' directive"));
21123 else
21124 {
21125 current_file = current_file->included_by;
21126 if (! current_file)
21127 {
21128 enum dwarf_macro_record_type next_type;
21129
21130 /* GCC circa March 2002 doesn't produce the zero
21131 type byte marking the end of the compilation
21132 unit. Complain if it's not there, but exit no
21133 matter what. */
21134
21135 /* Do we at least have room for a macinfo type byte? */
21136 if (mac_ptr >= mac_end)
21137 {
21138 dwarf2_section_buffer_overflow_complaint (section);
21139 return;
21140 }
21141
21142 /* We don't increment mac_ptr here, so this is just
21143 a look-ahead. */
21144 next_type = read_1_byte (abfd, mac_ptr);
21145 if (next_type != 0)
21146 complaint (&symfile_complaints,
21147 _("no terminating 0-type entry for "
21148 "macros in `.debug_macinfo' section"));
21149
21150 return;
21151 }
21152 }
21153 break;
21154
21155 case DW_MACRO_GNU_transparent_include:
21156 case DW_MACRO_GNU_transparent_include_alt:
21157 {
21158 LONGEST offset;
21159 void **slot;
21160 bfd *include_bfd = abfd;
21161 struct dwarf2_section_info *include_section = section;
21162 struct dwarf2_section_info alt_section;
21163 const gdb_byte *include_mac_end = mac_end;
21164 int is_dwz = section_is_dwz;
21165 const gdb_byte *new_mac_ptr;
21166
21167 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21168 mac_ptr += offset_size;
21169
21170 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21171 {
21172 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21173
21174 dwarf2_read_section (objfile, &dwz->macro);
21175
21176 include_section = &dwz->macro;
21177 include_bfd = get_section_bfd_owner (include_section);
21178 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21179 is_dwz = 1;
21180 }
21181
21182 new_mac_ptr = include_section->buffer + offset;
21183 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21184
21185 if (*slot != NULL)
21186 {
21187 /* This has actually happened; see
21188 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21189 complaint (&symfile_complaints,
21190 _("recursive DW_MACRO_GNU_transparent_include in "
21191 ".debug_macro section"));
21192 }
21193 else
21194 {
21195 *slot = (void *) new_mac_ptr;
21196
21197 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21198 include_mac_end, current_file, lh,
21199 section, section_is_gnu, is_dwz,
21200 offset_size, include_hash);
21201
21202 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21203 }
21204 }
21205 break;
21206
21207 case DW_MACINFO_vendor_ext:
21208 if (!section_is_gnu)
21209 {
21210 unsigned int bytes_read;
21211 int constant;
21212
21213 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21214 mac_ptr += bytes_read;
21215 read_direct_string (abfd, mac_ptr, &bytes_read);
21216 mac_ptr += bytes_read;
21217
21218 /* We don't recognize any vendor extensions. */
21219 break;
21220 }
21221 /* FALLTHROUGH */
21222
21223 default:
21224 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21225 mac_ptr, mac_end, abfd, offset_size,
21226 section);
21227 if (mac_ptr == NULL)
21228 return;
21229 break;
21230 }
21231 } while (macinfo_type != 0);
21232 }
21233
21234 static void
21235 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21236 int section_is_gnu)
21237 {
21238 struct objfile *objfile = dwarf2_per_objfile->objfile;
21239 struct line_header *lh = cu->line_header;
21240 bfd *abfd;
21241 const gdb_byte *mac_ptr, *mac_end;
21242 struct macro_source_file *current_file = 0;
21243 enum dwarf_macro_record_type macinfo_type;
21244 unsigned int offset_size = cu->header.offset_size;
21245 const gdb_byte *opcode_definitions[256];
21246 struct cleanup *cleanup;
21247 htab_t include_hash;
21248 void **slot;
21249 struct dwarf2_section_info *section;
21250 const char *section_name;
21251
21252 if (cu->dwo_unit != NULL)
21253 {
21254 if (section_is_gnu)
21255 {
21256 section = &cu->dwo_unit->dwo_file->sections.macro;
21257 section_name = ".debug_macro.dwo";
21258 }
21259 else
21260 {
21261 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21262 section_name = ".debug_macinfo.dwo";
21263 }
21264 }
21265 else
21266 {
21267 if (section_is_gnu)
21268 {
21269 section = &dwarf2_per_objfile->macro;
21270 section_name = ".debug_macro";
21271 }
21272 else
21273 {
21274 section = &dwarf2_per_objfile->macinfo;
21275 section_name = ".debug_macinfo";
21276 }
21277 }
21278
21279 dwarf2_read_section (objfile, section);
21280 if (section->buffer == NULL)
21281 {
21282 complaint (&symfile_complaints, _("missing %s section"), section_name);
21283 return;
21284 }
21285 abfd = get_section_bfd_owner (section);
21286
21287 /* First pass: Find the name of the base filename.
21288 This filename is needed in order to process all macros whose definition
21289 (or undefinition) comes from the command line. These macros are defined
21290 before the first DW_MACINFO_start_file entry, and yet still need to be
21291 associated to the base file.
21292
21293 To determine the base file name, we scan the macro definitions until we
21294 reach the first DW_MACINFO_start_file entry. We then initialize
21295 CURRENT_FILE accordingly so that any macro definition found before the
21296 first DW_MACINFO_start_file can still be associated to the base file. */
21297
21298 mac_ptr = section->buffer + offset;
21299 mac_end = section->buffer + section->size;
21300
21301 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21302 &offset_size, section_is_gnu);
21303 if (mac_ptr == NULL)
21304 {
21305 /* We already issued a complaint. */
21306 return;
21307 }
21308
21309 do
21310 {
21311 /* Do we at least have room for a macinfo type byte? */
21312 if (mac_ptr >= mac_end)
21313 {
21314 /* Complaint is printed during the second pass as GDB will probably
21315 stop the first pass earlier upon finding
21316 DW_MACINFO_start_file. */
21317 break;
21318 }
21319
21320 macinfo_type = read_1_byte (abfd, mac_ptr);
21321 mac_ptr++;
21322
21323 /* Note that we rely on the fact that the corresponding GNU and
21324 DWARF constants are the same. */
21325 switch (macinfo_type)
21326 {
21327 /* A zero macinfo type indicates the end of the macro
21328 information. */
21329 case 0:
21330 break;
21331
21332 case DW_MACRO_GNU_define:
21333 case DW_MACRO_GNU_undef:
21334 /* Only skip the data by MAC_PTR. */
21335 {
21336 unsigned int bytes_read;
21337
21338 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21339 mac_ptr += bytes_read;
21340 read_direct_string (abfd, mac_ptr, &bytes_read);
21341 mac_ptr += bytes_read;
21342 }
21343 break;
21344
21345 case DW_MACRO_GNU_start_file:
21346 {
21347 unsigned int bytes_read;
21348 int line, file;
21349
21350 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21351 mac_ptr += bytes_read;
21352 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21353 mac_ptr += bytes_read;
21354
21355 current_file = macro_start_file (file, line, current_file, lh);
21356 }
21357 break;
21358
21359 case DW_MACRO_GNU_end_file:
21360 /* No data to skip by MAC_PTR. */
21361 break;
21362
21363 case DW_MACRO_GNU_define_indirect:
21364 case DW_MACRO_GNU_undef_indirect:
21365 case DW_MACRO_GNU_define_indirect_alt:
21366 case DW_MACRO_GNU_undef_indirect_alt:
21367 {
21368 unsigned int bytes_read;
21369
21370 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21371 mac_ptr += bytes_read;
21372 mac_ptr += offset_size;
21373 }
21374 break;
21375
21376 case DW_MACRO_GNU_transparent_include:
21377 case DW_MACRO_GNU_transparent_include_alt:
21378 /* Note that, according to the spec, a transparent include
21379 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21380 skip this opcode. */
21381 mac_ptr += offset_size;
21382 break;
21383
21384 case DW_MACINFO_vendor_ext:
21385 /* Only skip the data by MAC_PTR. */
21386 if (!section_is_gnu)
21387 {
21388 unsigned int bytes_read;
21389
21390 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21391 mac_ptr += bytes_read;
21392 read_direct_string (abfd, mac_ptr, &bytes_read);
21393 mac_ptr += bytes_read;
21394 }
21395 /* FALLTHROUGH */
21396
21397 default:
21398 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21399 mac_ptr, mac_end, abfd, offset_size,
21400 section);
21401 if (mac_ptr == NULL)
21402 return;
21403 break;
21404 }
21405 } while (macinfo_type != 0 && current_file == NULL);
21406
21407 /* Second pass: Process all entries.
21408
21409 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21410 command-line macro definitions/undefinitions. This flag is unset when we
21411 reach the first DW_MACINFO_start_file entry. */
21412
21413 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21414 NULL, xcalloc, xfree);
21415 cleanup = make_cleanup_htab_delete (include_hash);
21416 mac_ptr = section->buffer + offset;
21417 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21418 *slot = (void *) mac_ptr;
21419 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21420 current_file, lh, section,
21421 section_is_gnu, 0, offset_size, include_hash);
21422 do_cleanups (cleanup);
21423 }
21424
21425 /* Check if the attribute's form is a DW_FORM_block*
21426 if so return true else false. */
21427
21428 static int
21429 attr_form_is_block (const struct attribute *attr)
21430 {
21431 return (attr == NULL ? 0 :
21432 attr->form == DW_FORM_block1
21433 || attr->form == DW_FORM_block2
21434 || attr->form == DW_FORM_block4
21435 || attr->form == DW_FORM_block
21436 || attr->form == DW_FORM_exprloc);
21437 }
21438
21439 /* Return non-zero if ATTR's value is a section offset --- classes
21440 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21441 You may use DW_UNSND (attr) to retrieve such offsets.
21442
21443 Section 7.5.4, "Attribute Encodings", explains that no attribute
21444 may have a value that belongs to more than one of these classes; it
21445 would be ambiguous if we did, because we use the same forms for all
21446 of them. */
21447
21448 static int
21449 attr_form_is_section_offset (const struct attribute *attr)
21450 {
21451 return (attr->form == DW_FORM_data4
21452 || attr->form == DW_FORM_data8
21453 || attr->form == DW_FORM_sec_offset);
21454 }
21455
21456 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21457 zero otherwise. When this function returns true, you can apply
21458 dwarf2_get_attr_constant_value to it.
21459
21460 However, note that for some attributes you must check
21461 attr_form_is_section_offset before using this test. DW_FORM_data4
21462 and DW_FORM_data8 are members of both the constant class, and of
21463 the classes that contain offsets into other debug sections
21464 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21465 that, if an attribute's can be either a constant or one of the
21466 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21467 taken as section offsets, not constants. */
21468
21469 static int
21470 attr_form_is_constant (const struct attribute *attr)
21471 {
21472 switch (attr->form)
21473 {
21474 case DW_FORM_sdata:
21475 case DW_FORM_udata:
21476 case DW_FORM_data1:
21477 case DW_FORM_data2:
21478 case DW_FORM_data4:
21479 case DW_FORM_data8:
21480 return 1;
21481 default:
21482 return 0;
21483 }
21484 }
21485
21486
21487 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21488 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21489
21490 static int
21491 attr_form_is_ref (const struct attribute *attr)
21492 {
21493 switch (attr->form)
21494 {
21495 case DW_FORM_ref_addr:
21496 case DW_FORM_ref1:
21497 case DW_FORM_ref2:
21498 case DW_FORM_ref4:
21499 case DW_FORM_ref8:
21500 case DW_FORM_ref_udata:
21501 case DW_FORM_GNU_ref_alt:
21502 return 1;
21503 default:
21504 return 0;
21505 }
21506 }
21507
21508 /* Return the .debug_loc section to use for CU.
21509 For DWO files use .debug_loc.dwo. */
21510
21511 static struct dwarf2_section_info *
21512 cu_debug_loc_section (struct dwarf2_cu *cu)
21513 {
21514 if (cu->dwo_unit)
21515 return &cu->dwo_unit->dwo_file->sections.loc;
21516 return &dwarf2_per_objfile->loc;
21517 }
21518
21519 /* A helper function that fills in a dwarf2_loclist_baton. */
21520
21521 static void
21522 fill_in_loclist_baton (struct dwarf2_cu *cu,
21523 struct dwarf2_loclist_baton *baton,
21524 const struct attribute *attr)
21525 {
21526 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21527
21528 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21529
21530 baton->per_cu = cu->per_cu;
21531 gdb_assert (baton->per_cu);
21532 /* We don't know how long the location list is, but make sure we
21533 don't run off the edge of the section. */
21534 baton->size = section->size - DW_UNSND (attr);
21535 baton->data = section->buffer + DW_UNSND (attr);
21536 baton->base_address = cu->base_address;
21537 baton->from_dwo = cu->dwo_unit != NULL;
21538 }
21539
21540 static void
21541 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21542 struct dwarf2_cu *cu, int is_block)
21543 {
21544 struct objfile *objfile = dwarf2_per_objfile->objfile;
21545 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21546
21547 if (attr_form_is_section_offset (attr)
21548 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21549 the section. If so, fall through to the complaint in the
21550 other branch. */
21551 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21552 {
21553 struct dwarf2_loclist_baton *baton;
21554
21555 baton = obstack_alloc (&objfile->objfile_obstack,
21556 sizeof (struct dwarf2_loclist_baton));
21557
21558 fill_in_loclist_baton (cu, baton, attr);
21559
21560 if (cu->base_known == 0)
21561 complaint (&symfile_complaints,
21562 _("Location list used without "
21563 "specifying the CU base address."));
21564
21565 SYMBOL_ACLASS_INDEX (sym) = (is_block
21566 ? dwarf2_loclist_block_index
21567 : dwarf2_loclist_index);
21568 SYMBOL_LOCATION_BATON (sym) = baton;
21569 }
21570 else
21571 {
21572 struct dwarf2_locexpr_baton *baton;
21573
21574 baton = obstack_alloc (&objfile->objfile_obstack,
21575 sizeof (struct dwarf2_locexpr_baton));
21576 baton->per_cu = cu->per_cu;
21577 gdb_assert (baton->per_cu);
21578
21579 if (attr_form_is_block (attr))
21580 {
21581 /* Note that we're just copying the block's data pointer
21582 here, not the actual data. We're still pointing into the
21583 info_buffer for SYM's objfile; right now we never release
21584 that buffer, but when we do clean up properly this may
21585 need to change. */
21586 baton->size = DW_BLOCK (attr)->size;
21587 baton->data = DW_BLOCK (attr)->data;
21588 }
21589 else
21590 {
21591 dwarf2_invalid_attrib_class_complaint ("location description",
21592 SYMBOL_NATURAL_NAME (sym));
21593 baton->size = 0;
21594 }
21595
21596 SYMBOL_ACLASS_INDEX (sym) = (is_block
21597 ? dwarf2_locexpr_block_index
21598 : dwarf2_locexpr_index);
21599 SYMBOL_LOCATION_BATON (sym) = baton;
21600 }
21601 }
21602
21603 /* Return the OBJFILE associated with the compilation unit CU. If CU
21604 came from a separate debuginfo file, then the master objfile is
21605 returned. */
21606
21607 struct objfile *
21608 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21609 {
21610 struct objfile *objfile = per_cu->objfile;
21611
21612 /* Return the master objfile, so that we can report and look up the
21613 correct file containing this variable. */
21614 if (objfile->separate_debug_objfile_backlink)
21615 objfile = objfile->separate_debug_objfile_backlink;
21616
21617 return objfile;
21618 }
21619
21620 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21621 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21622 CU_HEADERP first. */
21623
21624 static const struct comp_unit_head *
21625 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21626 struct dwarf2_per_cu_data *per_cu)
21627 {
21628 const gdb_byte *info_ptr;
21629
21630 if (per_cu->cu)
21631 return &per_cu->cu->header;
21632
21633 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21634
21635 memset (cu_headerp, 0, sizeof (*cu_headerp));
21636 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21637
21638 return cu_headerp;
21639 }
21640
21641 /* Return the address size given in the compilation unit header for CU. */
21642
21643 int
21644 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21645 {
21646 struct comp_unit_head cu_header_local;
21647 const struct comp_unit_head *cu_headerp;
21648
21649 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21650
21651 return cu_headerp->addr_size;
21652 }
21653
21654 /* Return the offset size given in the compilation unit header for CU. */
21655
21656 int
21657 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21658 {
21659 struct comp_unit_head cu_header_local;
21660 const struct comp_unit_head *cu_headerp;
21661
21662 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21663
21664 return cu_headerp->offset_size;
21665 }
21666
21667 /* See its dwarf2loc.h declaration. */
21668
21669 int
21670 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21671 {
21672 struct comp_unit_head cu_header_local;
21673 const struct comp_unit_head *cu_headerp;
21674
21675 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21676
21677 if (cu_headerp->version == 2)
21678 return cu_headerp->addr_size;
21679 else
21680 return cu_headerp->offset_size;
21681 }
21682
21683 /* Return the text offset of the CU. The returned offset comes from
21684 this CU's objfile. If this objfile came from a separate debuginfo
21685 file, then the offset may be different from the corresponding
21686 offset in the parent objfile. */
21687
21688 CORE_ADDR
21689 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21690 {
21691 struct objfile *objfile = per_cu->objfile;
21692
21693 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21694 }
21695
21696 /* Locate the .debug_info compilation unit from CU's objfile which contains
21697 the DIE at OFFSET. Raises an error on failure. */
21698
21699 static struct dwarf2_per_cu_data *
21700 dwarf2_find_containing_comp_unit (sect_offset offset,
21701 unsigned int offset_in_dwz,
21702 struct objfile *objfile)
21703 {
21704 struct dwarf2_per_cu_data *this_cu;
21705 int low, high;
21706 const sect_offset *cu_off;
21707
21708 low = 0;
21709 high = dwarf2_per_objfile->n_comp_units - 1;
21710 while (high > low)
21711 {
21712 struct dwarf2_per_cu_data *mid_cu;
21713 int mid = low + (high - low) / 2;
21714
21715 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21716 cu_off = &mid_cu->offset;
21717 if (mid_cu->is_dwz > offset_in_dwz
21718 || (mid_cu->is_dwz == offset_in_dwz
21719 && cu_off->sect_off >= offset.sect_off))
21720 high = mid;
21721 else
21722 low = mid + 1;
21723 }
21724 gdb_assert (low == high);
21725 this_cu = dwarf2_per_objfile->all_comp_units[low];
21726 cu_off = &this_cu->offset;
21727 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21728 {
21729 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21730 error (_("Dwarf Error: could not find partial DIE containing "
21731 "offset 0x%lx [in module %s]"),
21732 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21733
21734 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21735 <= offset.sect_off);
21736 return dwarf2_per_objfile->all_comp_units[low-1];
21737 }
21738 else
21739 {
21740 this_cu = dwarf2_per_objfile->all_comp_units[low];
21741 if (low == dwarf2_per_objfile->n_comp_units - 1
21742 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21743 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21744 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21745 return this_cu;
21746 }
21747 }
21748
21749 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21750
21751 static void
21752 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21753 {
21754 memset (cu, 0, sizeof (*cu));
21755 per_cu->cu = cu;
21756 cu->per_cu = per_cu;
21757 cu->objfile = per_cu->objfile;
21758 obstack_init (&cu->comp_unit_obstack);
21759 }
21760
21761 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21762
21763 static void
21764 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21765 enum language pretend_language)
21766 {
21767 struct attribute *attr;
21768
21769 /* Set the language we're debugging. */
21770 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21771 if (attr)
21772 set_cu_language (DW_UNSND (attr), cu);
21773 else
21774 {
21775 cu->language = pretend_language;
21776 cu->language_defn = language_def (cu->language);
21777 }
21778
21779 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21780 if (attr)
21781 cu->producer = DW_STRING (attr);
21782 }
21783
21784 /* Release one cached compilation unit, CU. We unlink it from the tree
21785 of compilation units, but we don't remove it from the read_in_chain;
21786 the caller is responsible for that.
21787 NOTE: DATA is a void * because this function is also used as a
21788 cleanup routine. */
21789
21790 static void
21791 free_heap_comp_unit (void *data)
21792 {
21793 struct dwarf2_cu *cu = data;
21794
21795 gdb_assert (cu->per_cu != NULL);
21796 cu->per_cu->cu = NULL;
21797 cu->per_cu = NULL;
21798
21799 obstack_free (&cu->comp_unit_obstack, NULL);
21800
21801 xfree (cu);
21802 }
21803
21804 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21805 when we're finished with it. We can't free the pointer itself, but be
21806 sure to unlink it from the cache. Also release any associated storage. */
21807
21808 static void
21809 free_stack_comp_unit (void *data)
21810 {
21811 struct dwarf2_cu *cu = data;
21812
21813 gdb_assert (cu->per_cu != NULL);
21814 cu->per_cu->cu = NULL;
21815 cu->per_cu = NULL;
21816
21817 obstack_free (&cu->comp_unit_obstack, NULL);
21818 cu->partial_dies = NULL;
21819 }
21820
21821 /* Free all cached compilation units. */
21822
21823 static void
21824 free_cached_comp_units (void *data)
21825 {
21826 struct dwarf2_per_cu_data *per_cu, **last_chain;
21827
21828 per_cu = dwarf2_per_objfile->read_in_chain;
21829 last_chain = &dwarf2_per_objfile->read_in_chain;
21830 while (per_cu != NULL)
21831 {
21832 struct dwarf2_per_cu_data *next_cu;
21833
21834 next_cu = per_cu->cu->read_in_chain;
21835
21836 free_heap_comp_unit (per_cu->cu);
21837 *last_chain = next_cu;
21838
21839 per_cu = next_cu;
21840 }
21841 }
21842
21843 /* Increase the age counter on each cached compilation unit, and free
21844 any that are too old. */
21845
21846 static void
21847 age_cached_comp_units (void)
21848 {
21849 struct dwarf2_per_cu_data *per_cu, **last_chain;
21850
21851 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21852 per_cu = dwarf2_per_objfile->read_in_chain;
21853 while (per_cu != NULL)
21854 {
21855 per_cu->cu->last_used ++;
21856 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21857 dwarf2_mark (per_cu->cu);
21858 per_cu = per_cu->cu->read_in_chain;
21859 }
21860
21861 per_cu = dwarf2_per_objfile->read_in_chain;
21862 last_chain = &dwarf2_per_objfile->read_in_chain;
21863 while (per_cu != NULL)
21864 {
21865 struct dwarf2_per_cu_data *next_cu;
21866
21867 next_cu = per_cu->cu->read_in_chain;
21868
21869 if (!per_cu->cu->mark)
21870 {
21871 free_heap_comp_unit (per_cu->cu);
21872 *last_chain = next_cu;
21873 }
21874 else
21875 last_chain = &per_cu->cu->read_in_chain;
21876
21877 per_cu = next_cu;
21878 }
21879 }
21880
21881 /* Remove a single compilation unit from the cache. */
21882
21883 static void
21884 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21885 {
21886 struct dwarf2_per_cu_data *per_cu, **last_chain;
21887
21888 per_cu = dwarf2_per_objfile->read_in_chain;
21889 last_chain = &dwarf2_per_objfile->read_in_chain;
21890 while (per_cu != NULL)
21891 {
21892 struct dwarf2_per_cu_data *next_cu;
21893
21894 next_cu = per_cu->cu->read_in_chain;
21895
21896 if (per_cu == target_per_cu)
21897 {
21898 free_heap_comp_unit (per_cu->cu);
21899 per_cu->cu = NULL;
21900 *last_chain = next_cu;
21901 break;
21902 }
21903 else
21904 last_chain = &per_cu->cu->read_in_chain;
21905
21906 per_cu = next_cu;
21907 }
21908 }
21909
21910 /* Release all extra memory associated with OBJFILE. */
21911
21912 void
21913 dwarf2_free_objfile (struct objfile *objfile)
21914 {
21915 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21916
21917 if (dwarf2_per_objfile == NULL)
21918 return;
21919
21920 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21921 free_cached_comp_units (NULL);
21922
21923 if (dwarf2_per_objfile->quick_file_names_table)
21924 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21925
21926 if (dwarf2_per_objfile->line_header_hash)
21927 htab_delete (dwarf2_per_objfile->line_header_hash);
21928
21929 /* Everything else should be on the objfile obstack. */
21930 }
21931
21932 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21933 We store these in a hash table separate from the DIEs, and preserve them
21934 when the DIEs are flushed out of cache.
21935
21936 The CU "per_cu" pointer is needed because offset alone is not enough to
21937 uniquely identify the type. A file may have multiple .debug_types sections,
21938 or the type may come from a DWO file. Furthermore, while it's more logical
21939 to use per_cu->section+offset, with Fission the section with the data is in
21940 the DWO file but we don't know that section at the point we need it.
21941 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21942 because we can enter the lookup routine, get_die_type_at_offset, from
21943 outside this file, and thus won't necessarily have PER_CU->cu.
21944 Fortunately, PER_CU is stable for the life of the objfile. */
21945
21946 struct dwarf2_per_cu_offset_and_type
21947 {
21948 const struct dwarf2_per_cu_data *per_cu;
21949 sect_offset offset;
21950 struct type *type;
21951 };
21952
21953 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21954
21955 static hashval_t
21956 per_cu_offset_and_type_hash (const void *item)
21957 {
21958 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21959
21960 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21961 }
21962
21963 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21964
21965 static int
21966 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21967 {
21968 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21969 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21970
21971 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21972 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21973 }
21974
21975 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21976 table if necessary. For convenience, return TYPE.
21977
21978 The DIEs reading must have careful ordering to:
21979 * Not cause infite loops trying to read in DIEs as a prerequisite for
21980 reading current DIE.
21981 * Not trying to dereference contents of still incompletely read in types
21982 while reading in other DIEs.
21983 * Enable referencing still incompletely read in types just by a pointer to
21984 the type without accessing its fields.
21985
21986 Therefore caller should follow these rules:
21987 * Try to fetch any prerequisite types we may need to build this DIE type
21988 before building the type and calling set_die_type.
21989 * After building type call set_die_type for current DIE as soon as
21990 possible before fetching more types to complete the current type.
21991 * Make the type as complete as possible before fetching more types. */
21992
21993 static struct type *
21994 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21995 {
21996 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21997 struct objfile *objfile = cu->objfile;
21998 struct attribute *attr;
21999 struct dynamic_prop prop;
22000
22001 /* For Ada types, make sure that the gnat-specific data is always
22002 initialized (if not already set). There are a few types where
22003 we should not be doing so, because the type-specific area is
22004 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22005 where the type-specific area is used to store the floatformat).
22006 But this is not a problem, because the gnat-specific information
22007 is actually not needed for these types. */
22008 if (need_gnat_info (cu)
22009 && TYPE_CODE (type) != TYPE_CODE_FUNC
22010 && TYPE_CODE (type) != TYPE_CODE_FLT
22011 && !HAVE_GNAT_AUX_INFO (type))
22012 INIT_GNAT_SPECIFIC (type);
22013
22014 /* Read DW_AT_data_location and set in type. */
22015 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22016 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22017 {
22018 TYPE_DATA_LOCATION (type)
22019 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
22020 *TYPE_DATA_LOCATION (type) = prop;
22021 }
22022
22023 if (dwarf2_per_objfile->die_type_hash == NULL)
22024 {
22025 dwarf2_per_objfile->die_type_hash =
22026 htab_create_alloc_ex (127,
22027 per_cu_offset_and_type_hash,
22028 per_cu_offset_and_type_eq,
22029 NULL,
22030 &objfile->objfile_obstack,
22031 hashtab_obstack_allocate,
22032 dummy_obstack_deallocate);
22033 }
22034
22035 ofs.per_cu = cu->per_cu;
22036 ofs.offset = die->offset;
22037 ofs.type = type;
22038 slot = (struct dwarf2_per_cu_offset_and_type **)
22039 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22040 if (*slot)
22041 complaint (&symfile_complaints,
22042 _("A problem internal to GDB: DIE 0x%x has type already set"),
22043 die->offset.sect_off);
22044 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22045 **slot = ofs;
22046 return type;
22047 }
22048
22049 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22050 or return NULL if the die does not have a saved type. */
22051
22052 static struct type *
22053 get_die_type_at_offset (sect_offset offset,
22054 struct dwarf2_per_cu_data *per_cu)
22055 {
22056 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22057
22058 if (dwarf2_per_objfile->die_type_hash == NULL)
22059 return NULL;
22060
22061 ofs.per_cu = per_cu;
22062 ofs.offset = offset;
22063 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22064 if (slot)
22065 return slot->type;
22066 else
22067 return NULL;
22068 }
22069
22070 /* Look up the type for DIE in CU in die_type_hash,
22071 or return NULL if DIE does not have a saved type. */
22072
22073 static struct type *
22074 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22075 {
22076 return get_die_type_at_offset (die->offset, cu->per_cu);
22077 }
22078
22079 /* Add a dependence relationship from CU to REF_PER_CU. */
22080
22081 static void
22082 dwarf2_add_dependence (struct dwarf2_cu *cu,
22083 struct dwarf2_per_cu_data *ref_per_cu)
22084 {
22085 void **slot;
22086
22087 if (cu->dependencies == NULL)
22088 cu->dependencies
22089 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22090 NULL, &cu->comp_unit_obstack,
22091 hashtab_obstack_allocate,
22092 dummy_obstack_deallocate);
22093
22094 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22095 if (*slot == NULL)
22096 *slot = ref_per_cu;
22097 }
22098
22099 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22100 Set the mark field in every compilation unit in the
22101 cache that we must keep because we are keeping CU. */
22102
22103 static int
22104 dwarf2_mark_helper (void **slot, void *data)
22105 {
22106 struct dwarf2_per_cu_data *per_cu;
22107
22108 per_cu = (struct dwarf2_per_cu_data *) *slot;
22109
22110 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22111 reading of the chain. As such dependencies remain valid it is not much
22112 useful to track and undo them during QUIT cleanups. */
22113 if (per_cu->cu == NULL)
22114 return 1;
22115
22116 if (per_cu->cu->mark)
22117 return 1;
22118 per_cu->cu->mark = 1;
22119
22120 if (per_cu->cu->dependencies != NULL)
22121 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22122
22123 return 1;
22124 }
22125
22126 /* Set the mark field in CU and in every other compilation unit in the
22127 cache that we must keep because we are keeping CU. */
22128
22129 static void
22130 dwarf2_mark (struct dwarf2_cu *cu)
22131 {
22132 if (cu->mark)
22133 return;
22134 cu->mark = 1;
22135 if (cu->dependencies != NULL)
22136 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22137 }
22138
22139 static void
22140 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22141 {
22142 while (per_cu)
22143 {
22144 per_cu->cu->mark = 0;
22145 per_cu = per_cu->cu->read_in_chain;
22146 }
22147 }
22148
22149 /* Trivial hash function for partial_die_info: the hash value of a DIE
22150 is its offset in .debug_info for this objfile. */
22151
22152 static hashval_t
22153 partial_die_hash (const void *item)
22154 {
22155 const struct partial_die_info *part_die = item;
22156
22157 return part_die->offset.sect_off;
22158 }
22159
22160 /* Trivial comparison function for partial_die_info structures: two DIEs
22161 are equal if they have the same offset. */
22162
22163 static int
22164 partial_die_eq (const void *item_lhs, const void *item_rhs)
22165 {
22166 const struct partial_die_info *part_die_lhs = item_lhs;
22167 const struct partial_die_info *part_die_rhs = item_rhs;
22168
22169 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22170 }
22171
22172 static struct cmd_list_element *set_dwarf2_cmdlist;
22173 static struct cmd_list_element *show_dwarf2_cmdlist;
22174
22175 static void
22176 set_dwarf2_cmd (char *args, int from_tty)
22177 {
22178 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22179 gdb_stdout);
22180 }
22181
22182 static void
22183 show_dwarf2_cmd (char *args, int from_tty)
22184 {
22185 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22186 }
22187
22188 /* Free data associated with OBJFILE, if necessary. */
22189
22190 static void
22191 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22192 {
22193 struct dwarf2_per_objfile *data = d;
22194 int ix;
22195
22196 /* Make sure we don't accidentally use dwarf2_per_objfile while
22197 cleaning up. */
22198 dwarf2_per_objfile = NULL;
22199
22200 for (ix = 0; ix < data->n_comp_units; ++ix)
22201 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22202
22203 for (ix = 0; ix < data->n_type_units; ++ix)
22204 VEC_free (dwarf2_per_cu_ptr,
22205 data->all_type_units[ix]->per_cu.imported_symtabs);
22206 xfree (data->all_type_units);
22207
22208 VEC_free (dwarf2_section_info_def, data->types);
22209
22210 if (data->dwo_files)
22211 free_dwo_files (data->dwo_files, objfile);
22212 if (data->dwp_file)
22213 gdb_bfd_unref (data->dwp_file->dbfd);
22214
22215 if (data->dwz_file && data->dwz_file->dwz_bfd)
22216 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22217 }
22218
22219 \f
22220 /* The "save gdb-index" command. */
22221
22222 /* The contents of the hash table we create when building the string
22223 table. */
22224 struct strtab_entry
22225 {
22226 offset_type offset;
22227 const char *str;
22228 };
22229
22230 /* Hash function for a strtab_entry.
22231
22232 Function is used only during write_hash_table so no index format backward
22233 compatibility is needed. */
22234
22235 static hashval_t
22236 hash_strtab_entry (const void *e)
22237 {
22238 const struct strtab_entry *entry = e;
22239 return mapped_index_string_hash (INT_MAX, entry->str);
22240 }
22241
22242 /* Equality function for a strtab_entry. */
22243
22244 static int
22245 eq_strtab_entry (const void *a, const void *b)
22246 {
22247 const struct strtab_entry *ea = a;
22248 const struct strtab_entry *eb = b;
22249 return !strcmp (ea->str, eb->str);
22250 }
22251
22252 /* Create a strtab_entry hash table. */
22253
22254 static htab_t
22255 create_strtab (void)
22256 {
22257 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22258 xfree, xcalloc, xfree);
22259 }
22260
22261 /* Add a string to the constant pool. Return the string's offset in
22262 host order. */
22263
22264 static offset_type
22265 add_string (htab_t table, struct obstack *cpool, const char *str)
22266 {
22267 void **slot;
22268 struct strtab_entry entry;
22269 struct strtab_entry *result;
22270
22271 entry.str = str;
22272 slot = htab_find_slot (table, &entry, INSERT);
22273 if (*slot)
22274 result = *slot;
22275 else
22276 {
22277 result = XNEW (struct strtab_entry);
22278 result->offset = obstack_object_size (cpool);
22279 result->str = str;
22280 obstack_grow_str0 (cpool, str);
22281 *slot = result;
22282 }
22283 return result->offset;
22284 }
22285
22286 /* An entry in the symbol table. */
22287 struct symtab_index_entry
22288 {
22289 /* The name of the symbol. */
22290 const char *name;
22291 /* The offset of the name in the constant pool. */
22292 offset_type index_offset;
22293 /* A sorted vector of the indices of all the CUs that hold an object
22294 of this name. */
22295 VEC (offset_type) *cu_indices;
22296 };
22297
22298 /* The symbol table. This is a power-of-2-sized hash table. */
22299 struct mapped_symtab
22300 {
22301 offset_type n_elements;
22302 offset_type size;
22303 struct symtab_index_entry **data;
22304 };
22305
22306 /* Hash function for a symtab_index_entry. */
22307
22308 static hashval_t
22309 hash_symtab_entry (const void *e)
22310 {
22311 const struct symtab_index_entry *entry = e;
22312 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22313 sizeof (offset_type) * VEC_length (offset_type,
22314 entry->cu_indices),
22315 0);
22316 }
22317
22318 /* Equality function for a symtab_index_entry. */
22319
22320 static int
22321 eq_symtab_entry (const void *a, const void *b)
22322 {
22323 const struct symtab_index_entry *ea = a;
22324 const struct symtab_index_entry *eb = b;
22325 int len = VEC_length (offset_type, ea->cu_indices);
22326 if (len != VEC_length (offset_type, eb->cu_indices))
22327 return 0;
22328 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22329 VEC_address (offset_type, eb->cu_indices),
22330 sizeof (offset_type) * len);
22331 }
22332
22333 /* Destroy a symtab_index_entry. */
22334
22335 static void
22336 delete_symtab_entry (void *p)
22337 {
22338 struct symtab_index_entry *entry = p;
22339 VEC_free (offset_type, entry->cu_indices);
22340 xfree (entry);
22341 }
22342
22343 /* Create a hash table holding symtab_index_entry objects. */
22344
22345 static htab_t
22346 create_symbol_hash_table (void)
22347 {
22348 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22349 delete_symtab_entry, xcalloc, xfree);
22350 }
22351
22352 /* Create a new mapped symtab object. */
22353
22354 static struct mapped_symtab *
22355 create_mapped_symtab (void)
22356 {
22357 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22358 symtab->n_elements = 0;
22359 symtab->size = 1024;
22360 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22361 return symtab;
22362 }
22363
22364 /* Destroy a mapped_symtab. */
22365
22366 static void
22367 cleanup_mapped_symtab (void *p)
22368 {
22369 struct mapped_symtab *symtab = p;
22370 /* The contents of the array are freed when the other hash table is
22371 destroyed. */
22372 xfree (symtab->data);
22373 xfree (symtab);
22374 }
22375
22376 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22377 the slot.
22378
22379 Function is used only during write_hash_table so no index format backward
22380 compatibility is needed. */
22381
22382 static struct symtab_index_entry **
22383 find_slot (struct mapped_symtab *symtab, const char *name)
22384 {
22385 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22386
22387 index = hash & (symtab->size - 1);
22388 step = ((hash * 17) & (symtab->size - 1)) | 1;
22389
22390 for (;;)
22391 {
22392 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22393 return &symtab->data[index];
22394 index = (index + step) & (symtab->size - 1);
22395 }
22396 }
22397
22398 /* Expand SYMTAB's hash table. */
22399
22400 static void
22401 hash_expand (struct mapped_symtab *symtab)
22402 {
22403 offset_type old_size = symtab->size;
22404 offset_type i;
22405 struct symtab_index_entry **old_entries = symtab->data;
22406
22407 symtab->size *= 2;
22408 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22409
22410 for (i = 0; i < old_size; ++i)
22411 {
22412 if (old_entries[i])
22413 {
22414 struct symtab_index_entry **slot = find_slot (symtab,
22415 old_entries[i]->name);
22416 *slot = old_entries[i];
22417 }
22418 }
22419
22420 xfree (old_entries);
22421 }
22422
22423 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22424 CU_INDEX is the index of the CU in which the symbol appears.
22425 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22426
22427 static void
22428 add_index_entry (struct mapped_symtab *symtab, const char *name,
22429 int is_static, gdb_index_symbol_kind kind,
22430 offset_type cu_index)
22431 {
22432 struct symtab_index_entry **slot;
22433 offset_type cu_index_and_attrs;
22434
22435 ++symtab->n_elements;
22436 if (4 * symtab->n_elements / 3 >= symtab->size)
22437 hash_expand (symtab);
22438
22439 slot = find_slot (symtab, name);
22440 if (!*slot)
22441 {
22442 *slot = XNEW (struct symtab_index_entry);
22443 (*slot)->name = name;
22444 /* index_offset is set later. */
22445 (*slot)->cu_indices = NULL;
22446 }
22447
22448 cu_index_and_attrs = 0;
22449 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22450 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22451 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22452
22453 /* We don't want to record an index value twice as we want to avoid the
22454 duplication.
22455 We process all global symbols and then all static symbols
22456 (which would allow us to avoid the duplication by only having to check
22457 the last entry pushed), but a symbol could have multiple kinds in one CU.
22458 To keep things simple we don't worry about the duplication here and
22459 sort and uniqufy the list after we've processed all symbols. */
22460 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22461 }
22462
22463 /* qsort helper routine for uniquify_cu_indices. */
22464
22465 static int
22466 offset_type_compare (const void *ap, const void *bp)
22467 {
22468 offset_type a = *(offset_type *) ap;
22469 offset_type b = *(offset_type *) bp;
22470
22471 return (a > b) - (b > a);
22472 }
22473
22474 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22475
22476 static void
22477 uniquify_cu_indices (struct mapped_symtab *symtab)
22478 {
22479 int i;
22480
22481 for (i = 0; i < symtab->size; ++i)
22482 {
22483 struct symtab_index_entry *entry = symtab->data[i];
22484
22485 if (entry
22486 && entry->cu_indices != NULL)
22487 {
22488 unsigned int next_to_insert, next_to_check;
22489 offset_type last_value;
22490
22491 qsort (VEC_address (offset_type, entry->cu_indices),
22492 VEC_length (offset_type, entry->cu_indices),
22493 sizeof (offset_type), offset_type_compare);
22494
22495 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22496 next_to_insert = 1;
22497 for (next_to_check = 1;
22498 next_to_check < VEC_length (offset_type, entry->cu_indices);
22499 ++next_to_check)
22500 {
22501 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22502 != last_value)
22503 {
22504 last_value = VEC_index (offset_type, entry->cu_indices,
22505 next_to_check);
22506 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22507 last_value);
22508 ++next_to_insert;
22509 }
22510 }
22511 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22512 }
22513 }
22514 }
22515
22516 /* Add a vector of indices to the constant pool. */
22517
22518 static offset_type
22519 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22520 struct symtab_index_entry *entry)
22521 {
22522 void **slot;
22523
22524 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22525 if (!*slot)
22526 {
22527 offset_type len = VEC_length (offset_type, entry->cu_indices);
22528 offset_type val = MAYBE_SWAP (len);
22529 offset_type iter;
22530 int i;
22531
22532 *slot = entry;
22533 entry->index_offset = obstack_object_size (cpool);
22534
22535 obstack_grow (cpool, &val, sizeof (val));
22536 for (i = 0;
22537 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22538 ++i)
22539 {
22540 val = MAYBE_SWAP (iter);
22541 obstack_grow (cpool, &val, sizeof (val));
22542 }
22543 }
22544 else
22545 {
22546 struct symtab_index_entry *old_entry = *slot;
22547 entry->index_offset = old_entry->index_offset;
22548 entry = old_entry;
22549 }
22550 return entry->index_offset;
22551 }
22552
22553 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22554 constant pool entries going into the obstack CPOOL. */
22555
22556 static void
22557 write_hash_table (struct mapped_symtab *symtab,
22558 struct obstack *output, struct obstack *cpool)
22559 {
22560 offset_type i;
22561 htab_t symbol_hash_table;
22562 htab_t str_table;
22563
22564 symbol_hash_table = create_symbol_hash_table ();
22565 str_table = create_strtab ();
22566
22567 /* We add all the index vectors to the constant pool first, to
22568 ensure alignment is ok. */
22569 for (i = 0; i < symtab->size; ++i)
22570 {
22571 if (symtab->data[i])
22572 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22573 }
22574
22575 /* Now write out the hash table. */
22576 for (i = 0; i < symtab->size; ++i)
22577 {
22578 offset_type str_off, vec_off;
22579
22580 if (symtab->data[i])
22581 {
22582 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22583 vec_off = symtab->data[i]->index_offset;
22584 }
22585 else
22586 {
22587 /* While 0 is a valid constant pool index, it is not valid
22588 to have 0 for both offsets. */
22589 str_off = 0;
22590 vec_off = 0;
22591 }
22592
22593 str_off = MAYBE_SWAP (str_off);
22594 vec_off = MAYBE_SWAP (vec_off);
22595
22596 obstack_grow (output, &str_off, sizeof (str_off));
22597 obstack_grow (output, &vec_off, sizeof (vec_off));
22598 }
22599
22600 htab_delete (str_table);
22601 htab_delete (symbol_hash_table);
22602 }
22603
22604 /* Struct to map psymtab to CU index in the index file. */
22605 struct psymtab_cu_index_map
22606 {
22607 struct partial_symtab *psymtab;
22608 unsigned int cu_index;
22609 };
22610
22611 static hashval_t
22612 hash_psymtab_cu_index (const void *item)
22613 {
22614 const struct psymtab_cu_index_map *map = item;
22615
22616 return htab_hash_pointer (map->psymtab);
22617 }
22618
22619 static int
22620 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22621 {
22622 const struct psymtab_cu_index_map *lhs = item_lhs;
22623 const struct psymtab_cu_index_map *rhs = item_rhs;
22624
22625 return lhs->psymtab == rhs->psymtab;
22626 }
22627
22628 /* Helper struct for building the address table. */
22629 struct addrmap_index_data
22630 {
22631 struct objfile *objfile;
22632 struct obstack *addr_obstack;
22633 htab_t cu_index_htab;
22634
22635 /* Non-zero if the previous_* fields are valid.
22636 We can't write an entry until we see the next entry (since it is only then
22637 that we know the end of the entry). */
22638 int previous_valid;
22639 /* Index of the CU in the table of all CUs in the index file. */
22640 unsigned int previous_cu_index;
22641 /* Start address of the CU. */
22642 CORE_ADDR previous_cu_start;
22643 };
22644
22645 /* Write an address entry to OBSTACK. */
22646
22647 static void
22648 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22649 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22650 {
22651 offset_type cu_index_to_write;
22652 gdb_byte addr[8];
22653 CORE_ADDR baseaddr;
22654
22655 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22656
22657 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22658 obstack_grow (obstack, addr, 8);
22659 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22660 obstack_grow (obstack, addr, 8);
22661 cu_index_to_write = MAYBE_SWAP (cu_index);
22662 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22663 }
22664
22665 /* Worker function for traversing an addrmap to build the address table. */
22666
22667 static int
22668 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22669 {
22670 struct addrmap_index_data *data = datap;
22671 struct partial_symtab *pst = obj;
22672
22673 if (data->previous_valid)
22674 add_address_entry (data->objfile, data->addr_obstack,
22675 data->previous_cu_start, start_addr,
22676 data->previous_cu_index);
22677
22678 data->previous_cu_start = start_addr;
22679 if (pst != NULL)
22680 {
22681 struct psymtab_cu_index_map find_map, *map;
22682 find_map.psymtab = pst;
22683 map = htab_find (data->cu_index_htab, &find_map);
22684 gdb_assert (map != NULL);
22685 data->previous_cu_index = map->cu_index;
22686 data->previous_valid = 1;
22687 }
22688 else
22689 data->previous_valid = 0;
22690
22691 return 0;
22692 }
22693
22694 /* Write OBJFILE's address map to OBSTACK.
22695 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22696 in the index file. */
22697
22698 static void
22699 write_address_map (struct objfile *objfile, struct obstack *obstack,
22700 htab_t cu_index_htab)
22701 {
22702 struct addrmap_index_data addrmap_index_data;
22703
22704 /* When writing the address table, we have to cope with the fact that
22705 the addrmap iterator only provides the start of a region; we have to
22706 wait until the next invocation to get the start of the next region. */
22707
22708 addrmap_index_data.objfile = objfile;
22709 addrmap_index_data.addr_obstack = obstack;
22710 addrmap_index_data.cu_index_htab = cu_index_htab;
22711 addrmap_index_data.previous_valid = 0;
22712
22713 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22714 &addrmap_index_data);
22715
22716 /* It's highly unlikely the last entry (end address = 0xff...ff)
22717 is valid, but we should still handle it.
22718 The end address is recorded as the start of the next region, but that
22719 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22720 anyway. */
22721 if (addrmap_index_data.previous_valid)
22722 add_address_entry (objfile, obstack,
22723 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22724 addrmap_index_data.previous_cu_index);
22725 }
22726
22727 /* Return the symbol kind of PSYM. */
22728
22729 static gdb_index_symbol_kind
22730 symbol_kind (struct partial_symbol *psym)
22731 {
22732 domain_enum domain = PSYMBOL_DOMAIN (psym);
22733 enum address_class aclass = PSYMBOL_CLASS (psym);
22734
22735 switch (domain)
22736 {
22737 case VAR_DOMAIN:
22738 switch (aclass)
22739 {
22740 case LOC_BLOCK:
22741 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22742 case LOC_TYPEDEF:
22743 return GDB_INDEX_SYMBOL_KIND_TYPE;
22744 case LOC_COMPUTED:
22745 case LOC_CONST_BYTES:
22746 case LOC_OPTIMIZED_OUT:
22747 case LOC_STATIC:
22748 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22749 case LOC_CONST:
22750 /* Note: It's currently impossible to recognize psyms as enum values
22751 short of reading the type info. For now punt. */
22752 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22753 default:
22754 /* There are other LOC_FOO values that one might want to classify
22755 as variables, but dwarf2read.c doesn't currently use them. */
22756 return GDB_INDEX_SYMBOL_KIND_OTHER;
22757 }
22758 case STRUCT_DOMAIN:
22759 return GDB_INDEX_SYMBOL_KIND_TYPE;
22760 default:
22761 return GDB_INDEX_SYMBOL_KIND_OTHER;
22762 }
22763 }
22764
22765 /* Add a list of partial symbols to SYMTAB. */
22766
22767 static void
22768 write_psymbols (struct mapped_symtab *symtab,
22769 htab_t psyms_seen,
22770 struct partial_symbol **psymp,
22771 int count,
22772 offset_type cu_index,
22773 int is_static)
22774 {
22775 for (; count-- > 0; ++psymp)
22776 {
22777 struct partial_symbol *psym = *psymp;
22778 void **slot;
22779
22780 if (SYMBOL_LANGUAGE (psym) == language_ada)
22781 error (_("Ada is not currently supported by the index"));
22782
22783 /* Only add a given psymbol once. */
22784 slot = htab_find_slot (psyms_seen, psym, INSERT);
22785 if (!*slot)
22786 {
22787 gdb_index_symbol_kind kind = symbol_kind (psym);
22788
22789 *slot = psym;
22790 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22791 is_static, kind, cu_index);
22792 }
22793 }
22794 }
22795
22796 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22797 exception if there is an error. */
22798
22799 static void
22800 write_obstack (FILE *file, struct obstack *obstack)
22801 {
22802 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22803 file)
22804 != obstack_object_size (obstack))
22805 error (_("couldn't data write to file"));
22806 }
22807
22808 /* Unlink a file if the argument is not NULL. */
22809
22810 static void
22811 unlink_if_set (void *p)
22812 {
22813 char **filename = p;
22814 if (*filename)
22815 unlink (*filename);
22816 }
22817
22818 /* A helper struct used when iterating over debug_types. */
22819 struct signatured_type_index_data
22820 {
22821 struct objfile *objfile;
22822 struct mapped_symtab *symtab;
22823 struct obstack *types_list;
22824 htab_t psyms_seen;
22825 int cu_index;
22826 };
22827
22828 /* A helper function that writes a single signatured_type to an
22829 obstack. */
22830
22831 static int
22832 write_one_signatured_type (void **slot, void *d)
22833 {
22834 struct signatured_type_index_data *info = d;
22835 struct signatured_type *entry = (struct signatured_type *) *slot;
22836 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22837 gdb_byte val[8];
22838
22839 write_psymbols (info->symtab,
22840 info->psyms_seen,
22841 info->objfile->global_psymbols.list
22842 + psymtab->globals_offset,
22843 psymtab->n_global_syms, info->cu_index,
22844 0);
22845 write_psymbols (info->symtab,
22846 info->psyms_seen,
22847 info->objfile->static_psymbols.list
22848 + psymtab->statics_offset,
22849 psymtab->n_static_syms, info->cu_index,
22850 1);
22851
22852 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22853 entry->per_cu.offset.sect_off);
22854 obstack_grow (info->types_list, val, 8);
22855 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22856 entry->type_offset_in_tu.cu_off);
22857 obstack_grow (info->types_list, val, 8);
22858 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22859 obstack_grow (info->types_list, val, 8);
22860
22861 ++info->cu_index;
22862
22863 return 1;
22864 }
22865
22866 /* Recurse into all "included" dependencies and write their symbols as
22867 if they appeared in this psymtab. */
22868
22869 static void
22870 recursively_write_psymbols (struct objfile *objfile,
22871 struct partial_symtab *psymtab,
22872 struct mapped_symtab *symtab,
22873 htab_t psyms_seen,
22874 offset_type cu_index)
22875 {
22876 int i;
22877
22878 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22879 if (psymtab->dependencies[i]->user != NULL)
22880 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22881 symtab, psyms_seen, cu_index);
22882
22883 write_psymbols (symtab,
22884 psyms_seen,
22885 objfile->global_psymbols.list + psymtab->globals_offset,
22886 psymtab->n_global_syms, cu_index,
22887 0);
22888 write_psymbols (symtab,
22889 psyms_seen,
22890 objfile->static_psymbols.list + psymtab->statics_offset,
22891 psymtab->n_static_syms, cu_index,
22892 1);
22893 }
22894
22895 /* Create an index file for OBJFILE in the directory DIR. */
22896
22897 static void
22898 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22899 {
22900 struct cleanup *cleanup;
22901 char *filename, *cleanup_filename;
22902 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22903 struct obstack cu_list, types_cu_list;
22904 int i;
22905 FILE *out_file;
22906 struct mapped_symtab *symtab;
22907 offset_type val, size_of_contents, total_len;
22908 struct stat st;
22909 htab_t psyms_seen;
22910 htab_t cu_index_htab;
22911 struct psymtab_cu_index_map *psymtab_cu_index_map;
22912
22913 if (dwarf2_per_objfile->using_index)
22914 error (_("Cannot use an index to create the index"));
22915
22916 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22917 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22918
22919 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22920 return;
22921
22922 if (stat (objfile_name (objfile), &st) < 0)
22923 perror_with_name (objfile_name (objfile));
22924
22925 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22926 INDEX_SUFFIX, (char *) NULL);
22927 cleanup = make_cleanup (xfree, filename);
22928
22929 out_file = gdb_fopen_cloexec (filename, "wb");
22930 if (!out_file)
22931 error (_("Can't open `%s' for writing"), filename);
22932
22933 cleanup_filename = filename;
22934 make_cleanup (unlink_if_set, &cleanup_filename);
22935
22936 symtab = create_mapped_symtab ();
22937 make_cleanup (cleanup_mapped_symtab, symtab);
22938
22939 obstack_init (&addr_obstack);
22940 make_cleanup_obstack_free (&addr_obstack);
22941
22942 obstack_init (&cu_list);
22943 make_cleanup_obstack_free (&cu_list);
22944
22945 obstack_init (&types_cu_list);
22946 make_cleanup_obstack_free (&types_cu_list);
22947
22948 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22949 NULL, xcalloc, xfree);
22950 make_cleanup_htab_delete (psyms_seen);
22951
22952 /* While we're scanning CU's create a table that maps a psymtab pointer
22953 (which is what addrmap records) to its index (which is what is recorded
22954 in the index file). This will later be needed to write the address
22955 table. */
22956 cu_index_htab = htab_create_alloc (100,
22957 hash_psymtab_cu_index,
22958 eq_psymtab_cu_index,
22959 NULL, xcalloc, xfree);
22960 make_cleanup_htab_delete (cu_index_htab);
22961 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22962 xmalloc (sizeof (struct psymtab_cu_index_map)
22963 * dwarf2_per_objfile->n_comp_units);
22964 make_cleanup (xfree, psymtab_cu_index_map);
22965
22966 /* The CU list is already sorted, so we don't need to do additional
22967 work here. Also, the debug_types entries do not appear in
22968 all_comp_units, but only in their own hash table. */
22969 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22970 {
22971 struct dwarf2_per_cu_data *per_cu
22972 = dwarf2_per_objfile->all_comp_units[i];
22973 struct partial_symtab *psymtab = per_cu->v.psymtab;
22974 gdb_byte val[8];
22975 struct psymtab_cu_index_map *map;
22976 void **slot;
22977
22978 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22979 It may be referenced from a local scope but in such case it does not
22980 need to be present in .gdb_index. */
22981 if (psymtab == NULL)
22982 continue;
22983
22984 if (psymtab->user == NULL)
22985 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22986
22987 map = &psymtab_cu_index_map[i];
22988 map->psymtab = psymtab;
22989 map->cu_index = i;
22990 slot = htab_find_slot (cu_index_htab, map, INSERT);
22991 gdb_assert (slot != NULL);
22992 gdb_assert (*slot == NULL);
22993 *slot = map;
22994
22995 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22996 per_cu->offset.sect_off);
22997 obstack_grow (&cu_list, val, 8);
22998 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22999 obstack_grow (&cu_list, val, 8);
23000 }
23001
23002 /* Dump the address map. */
23003 write_address_map (objfile, &addr_obstack, cu_index_htab);
23004
23005 /* Write out the .debug_type entries, if any. */
23006 if (dwarf2_per_objfile->signatured_types)
23007 {
23008 struct signatured_type_index_data sig_data;
23009
23010 sig_data.objfile = objfile;
23011 sig_data.symtab = symtab;
23012 sig_data.types_list = &types_cu_list;
23013 sig_data.psyms_seen = psyms_seen;
23014 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23015 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23016 write_one_signatured_type, &sig_data);
23017 }
23018
23019 /* Now that we've processed all symbols we can shrink their cu_indices
23020 lists. */
23021 uniquify_cu_indices (symtab);
23022
23023 obstack_init (&constant_pool);
23024 make_cleanup_obstack_free (&constant_pool);
23025 obstack_init (&symtab_obstack);
23026 make_cleanup_obstack_free (&symtab_obstack);
23027 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23028
23029 obstack_init (&contents);
23030 make_cleanup_obstack_free (&contents);
23031 size_of_contents = 6 * sizeof (offset_type);
23032 total_len = size_of_contents;
23033
23034 /* The version number. */
23035 val = MAYBE_SWAP (8);
23036 obstack_grow (&contents, &val, sizeof (val));
23037
23038 /* The offset of the CU list from the start of the file. */
23039 val = MAYBE_SWAP (total_len);
23040 obstack_grow (&contents, &val, sizeof (val));
23041 total_len += obstack_object_size (&cu_list);
23042
23043 /* The offset of the types CU list from the start of the file. */
23044 val = MAYBE_SWAP (total_len);
23045 obstack_grow (&contents, &val, sizeof (val));
23046 total_len += obstack_object_size (&types_cu_list);
23047
23048 /* The offset of the address table from the start of the file. */
23049 val = MAYBE_SWAP (total_len);
23050 obstack_grow (&contents, &val, sizeof (val));
23051 total_len += obstack_object_size (&addr_obstack);
23052
23053 /* The offset of the symbol table from the start of the file. */
23054 val = MAYBE_SWAP (total_len);
23055 obstack_grow (&contents, &val, sizeof (val));
23056 total_len += obstack_object_size (&symtab_obstack);
23057
23058 /* The offset of the constant pool from the start of the file. */
23059 val = MAYBE_SWAP (total_len);
23060 obstack_grow (&contents, &val, sizeof (val));
23061 total_len += obstack_object_size (&constant_pool);
23062
23063 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23064
23065 write_obstack (out_file, &contents);
23066 write_obstack (out_file, &cu_list);
23067 write_obstack (out_file, &types_cu_list);
23068 write_obstack (out_file, &addr_obstack);
23069 write_obstack (out_file, &symtab_obstack);
23070 write_obstack (out_file, &constant_pool);
23071
23072 fclose (out_file);
23073
23074 /* We want to keep the file, so we set cleanup_filename to NULL
23075 here. See unlink_if_set. */
23076 cleanup_filename = NULL;
23077
23078 do_cleanups (cleanup);
23079 }
23080
23081 /* Implementation of the `save gdb-index' command.
23082
23083 Note that the file format used by this command is documented in the
23084 GDB manual. Any changes here must be documented there. */
23085
23086 static void
23087 save_gdb_index_command (char *arg, int from_tty)
23088 {
23089 struct objfile *objfile;
23090
23091 if (!arg || !*arg)
23092 error (_("usage: save gdb-index DIRECTORY"));
23093
23094 ALL_OBJFILES (objfile)
23095 {
23096 struct stat st;
23097
23098 /* If the objfile does not correspond to an actual file, skip it. */
23099 if (stat (objfile_name (objfile), &st) < 0)
23100 continue;
23101
23102 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23103 if (dwarf2_per_objfile)
23104 {
23105 volatile struct gdb_exception except;
23106
23107 TRY_CATCH (except, RETURN_MASK_ERROR)
23108 {
23109 write_psymtabs_to_index (objfile, arg);
23110 }
23111 if (except.reason < 0)
23112 exception_fprintf (gdb_stderr, except,
23113 _("Error while writing index for `%s': "),
23114 objfile_name (objfile));
23115 }
23116 }
23117 }
23118
23119 \f
23120
23121 int dwarf2_always_disassemble;
23122
23123 static void
23124 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23125 struct cmd_list_element *c, const char *value)
23126 {
23127 fprintf_filtered (file,
23128 _("Whether to always disassemble "
23129 "DWARF expressions is %s.\n"),
23130 value);
23131 }
23132
23133 static void
23134 show_check_physname (struct ui_file *file, int from_tty,
23135 struct cmd_list_element *c, const char *value)
23136 {
23137 fprintf_filtered (file,
23138 _("Whether to check \"physname\" is %s.\n"),
23139 value);
23140 }
23141
23142 void _initialize_dwarf2_read (void);
23143
23144 void
23145 _initialize_dwarf2_read (void)
23146 {
23147 struct cmd_list_element *c;
23148
23149 dwarf2_objfile_data_key
23150 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23151
23152 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23153 Set DWARF 2 specific variables.\n\
23154 Configure DWARF 2 variables such as the cache size"),
23155 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23156 0/*allow-unknown*/, &maintenance_set_cmdlist);
23157
23158 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23159 Show DWARF 2 specific variables\n\
23160 Show DWARF 2 variables such as the cache size"),
23161 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23162 0/*allow-unknown*/, &maintenance_show_cmdlist);
23163
23164 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23165 &dwarf2_max_cache_age, _("\
23166 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23167 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23168 A higher limit means that cached compilation units will be stored\n\
23169 in memory longer, and more total memory will be used. Zero disables\n\
23170 caching, which can slow down startup."),
23171 NULL,
23172 show_dwarf2_max_cache_age,
23173 &set_dwarf2_cmdlist,
23174 &show_dwarf2_cmdlist);
23175
23176 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23177 &dwarf2_always_disassemble, _("\
23178 Set whether `info address' always disassembles DWARF expressions."), _("\
23179 Show whether `info address' always disassembles DWARF expressions."), _("\
23180 When enabled, DWARF expressions are always printed in an assembly-like\n\
23181 syntax. When disabled, expressions will be printed in a more\n\
23182 conversational style, when possible."),
23183 NULL,
23184 show_dwarf2_always_disassemble,
23185 &set_dwarf2_cmdlist,
23186 &show_dwarf2_cmdlist);
23187
23188 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23189 Set debugging of the dwarf2 reader."), _("\
23190 Show debugging of the dwarf2 reader."), _("\
23191 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23192 reading and symtab expansion. A value of 1 (one) provides basic\n\
23193 information. A value greater than 1 provides more verbose information."),
23194 NULL,
23195 NULL,
23196 &setdebuglist, &showdebuglist);
23197
23198 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23199 Set debugging of the dwarf2 DIE reader."), _("\
23200 Show debugging of the dwarf2 DIE reader."), _("\
23201 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23202 The value is the maximum depth to print."),
23203 NULL,
23204 NULL,
23205 &setdebuglist, &showdebuglist);
23206
23207 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23208 Set cross-checking of \"physname\" code against demangler."), _("\
23209 Show cross-checking of \"physname\" code against demangler."), _("\
23210 When enabled, GDB's internal \"physname\" code is checked against\n\
23211 the demangler."),
23212 NULL, show_check_physname,
23213 &setdebuglist, &showdebuglist);
23214
23215 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23216 no_class, &use_deprecated_index_sections, _("\
23217 Set whether to use deprecated gdb_index sections."), _("\
23218 Show whether to use deprecated gdb_index sections."), _("\
23219 When enabled, deprecated .gdb_index sections are used anyway.\n\
23220 Normally they are ignored either because of a missing feature or\n\
23221 performance issue.\n\
23222 Warning: This option must be enabled before gdb reads the file."),
23223 NULL,
23224 NULL,
23225 &setlist, &showlist);
23226
23227 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23228 _("\
23229 Save a gdb-index file.\n\
23230 Usage: save gdb-index DIRECTORY"),
23231 &save_cmdlist);
23232 set_cmd_completer (c, filename_completer);
23233
23234 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23235 &dwarf2_locexpr_funcs);
23236 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23237 &dwarf2_loclist_funcs);
23238
23239 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23240 &dwarf2_block_frame_base_locexpr_funcs);
23241 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23242 &dwarf2_block_frame_base_loclist_funcs);
23243 }