]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Remove no-longer applicable maintainer entries
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84 #include "selftest.h"
85
86 /* When == 1, print basic high level tracing messages.
87 When > 1, be more verbose.
88 This is in contrast to the low level DIE reading of dwarf_die_debug. */
89 static unsigned int dwarf_read_debug = 0;
90
91 /* When non-zero, dump DIEs after they are read in. */
92 static unsigned int dwarf_die_debug = 0;
93
94 /* When non-zero, dump line number entries as they are read in. */
95 static unsigned int dwarf_line_debug = 0;
96
97 /* When non-zero, cross-check physname against demangler. */
98 static int check_physname = 0;
99
100 /* When non-zero, do not reject deprecated .gdb_index sections. */
101 static int use_deprecated_index_sections = 0;
102
103 static const struct objfile_data *dwarf2_objfile_data_key;
104
105 /* The "aclass" indices for various kinds of computed DWARF symbols. */
106
107 static int dwarf2_locexpr_index;
108 static int dwarf2_loclist_index;
109 static int dwarf2_locexpr_block_index;
110 static int dwarf2_loclist_block_index;
111
112 /* A descriptor for dwarf sections.
113
114 S.ASECTION, SIZE are typically initialized when the objfile is first
115 scanned. BUFFER, READIN are filled in later when the section is read.
116 If the section contained compressed data then SIZE is updated to record
117 the uncompressed size of the section.
118
119 DWP file format V2 introduces a wrinkle that is easiest to handle by
120 creating the concept of virtual sections contained within a real section.
121 In DWP V2 the sections of the input DWO files are concatenated together
122 into one section, but section offsets are kept relative to the original
123 input section.
124 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
125 the real section this "virtual" section is contained in, and BUFFER,SIZE
126 describe the virtual section. */
127
128 struct dwarf2_section_info
129 {
130 union
131 {
132 /* If this is a real section, the bfd section. */
133 asection *section;
134 /* If this is a virtual section, pointer to the containing ("real")
135 section. */
136 struct dwarf2_section_info *containing_section;
137 } s;
138 /* Pointer to section data, only valid if readin. */
139 const gdb_byte *buffer;
140 /* The size of the section, real or virtual. */
141 bfd_size_type size;
142 /* If this is a virtual section, the offset in the real section.
143 Only valid if is_virtual. */
144 bfd_size_type virtual_offset;
145 /* True if we have tried to read this section. */
146 char readin;
147 /* True if this is a virtual section, False otherwise.
148 This specifies which of s.section and s.containing_section to use. */
149 char is_virtual;
150 };
151
152 typedef struct dwarf2_section_info dwarf2_section_info_def;
153 DEF_VEC_O (dwarf2_section_info_def);
154
155 /* All offsets in the index are of this type. It must be
156 architecture-independent. */
157 typedef uint32_t offset_type;
158
159 DEF_VEC_I (offset_type);
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((unsigned int) (value) <= 1); \
165 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
166 } while (0)
167
168 /* Ensure only legit values are used. */
169 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
170 do { \
171 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
172 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
173 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
177 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
178 do { \
179 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
180 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
181 } while (0)
182
183 #if WORDS_BIGENDIAN
184
185 /* Convert VALUE between big- and little-endian. */
186
187 static offset_type
188 byte_swap (offset_type value)
189 {
190 offset_type result;
191
192 result = (value & 0xff) << 24;
193 result |= (value & 0xff00) << 8;
194 result |= (value & 0xff0000) >> 8;
195 result |= (value & 0xff000000) >> 24;
196 return result;
197 }
198
199 #define MAYBE_SWAP(V) byte_swap (V)
200
201 #else
202 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
203 #endif /* WORDS_BIGENDIAN */
204
205 /* An index into a (C++) symbol name component in a symbol name as
206 recorded in the mapped_index's symbol table. For each C++ symbol
207 in the symbol table, we record one entry for the start of each
208 component in the symbol in a table of name components, and then
209 sort the table, in order to be able to binary search symbol names,
210 ignoring leading namespaces, both completion and regular look up.
211 For example, for symbol "A::B::C", we'll have an entry that points
212 to "A::B::C", another that points to "B::C", and another for "C".
213 Note that function symbols in GDB index have no parameter
214 information, just the function/method names. You can convert a
215 name_component to a "const char *" using the
216 'mapped_index::symbol_name_at(offset_type)' method. */
217
218 struct name_component
219 {
220 /* Offset in the symbol name where the component starts. Stored as
221 a (32-bit) offset instead of a pointer to save memory and improve
222 locality on 64-bit architectures. */
223 offset_type name_offset;
224
225 /* The symbol's index in the symbol and constant pool tables of a
226 mapped_index. */
227 offset_type idx;
228 };
229
230 /* A description of the mapped index. The file format is described in
231 a comment by the code that writes the index. */
232 struct mapped_index
233 {
234 /* Index data format version. */
235 int version;
236
237 /* The total length of the buffer. */
238 off_t total_size;
239
240 /* A pointer to the address table data. */
241 const gdb_byte *address_table;
242
243 /* Size of the address table data in bytes. */
244 offset_type address_table_size;
245
246 /* The symbol table, implemented as a hash table. */
247 const offset_type *symbol_table;
248
249 /* Size in slots, each slot is 2 offset_types. */
250 offset_type symbol_table_slots;
251
252 /* A pointer to the constant pool. */
253 const char *constant_pool;
254
255 /* The name_component table (a sorted vector). See name_component's
256 description above. */
257 std::vector<name_component> name_components;
258
259 /* Convenience method to get at the name of the symbol at IDX in the
260 symbol table. */
261 const char *symbol_name_at (offset_type idx) const
262 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx]); }
263 };
264
265 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
266 DEF_VEC_P (dwarf2_per_cu_ptr);
267
268 struct tu_stats
269 {
270 int nr_uniq_abbrev_tables;
271 int nr_symtabs;
272 int nr_symtab_sharers;
273 int nr_stmt_less_type_units;
274 int nr_all_type_units_reallocs;
275 };
276
277 /* Collection of data recorded per objfile.
278 This hangs off of dwarf2_objfile_data_key. */
279
280 struct dwarf2_per_objfile
281 {
282 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
283 dwarf2 section names, or is NULL if the standard ELF names are
284 used. */
285 dwarf2_per_objfile (struct objfile *objfile,
286 const dwarf2_debug_sections *names);
287
288 ~dwarf2_per_objfile ();
289
290 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
291
292 /* Free all cached compilation units. */
293 void free_cached_comp_units ();
294 private:
295 /* This function is mapped across the sections and remembers the
296 offset and size of each of the debugging sections we are
297 interested in. */
298 void locate_sections (bfd *abfd, asection *sectp,
299 const dwarf2_debug_sections &names);
300
301 public:
302 dwarf2_section_info info {};
303 dwarf2_section_info abbrev {};
304 dwarf2_section_info line {};
305 dwarf2_section_info loc {};
306 dwarf2_section_info loclists {};
307 dwarf2_section_info macinfo {};
308 dwarf2_section_info macro {};
309 dwarf2_section_info str {};
310 dwarf2_section_info line_str {};
311 dwarf2_section_info ranges {};
312 dwarf2_section_info rnglists {};
313 dwarf2_section_info addr {};
314 dwarf2_section_info frame {};
315 dwarf2_section_info eh_frame {};
316 dwarf2_section_info gdb_index {};
317
318 VEC (dwarf2_section_info_def) *types = NULL;
319
320 /* Back link. */
321 struct objfile *objfile = NULL;
322
323 /* Table of all the compilation units. This is used to locate
324 the target compilation unit of a particular reference. */
325 struct dwarf2_per_cu_data **all_comp_units = NULL;
326
327 /* The number of compilation units in ALL_COMP_UNITS. */
328 int n_comp_units = 0;
329
330 /* The number of .debug_types-related CUs. */
331 int n_type_units = 0;
332
333 /* The number of elements allocated in all_type_units.
334 If there are skeleton-less TUs, we add them to all_type_units lazily. */
335 int n_allocated_type_units = 0;
336
337 /* The .debug_types-related CUs (TUs).
338 This is stored in malloc space because we may realloc it. */
339 struct signatured_type **all_type_units = NULL;
340
341 /* Table of struct type_unit_group objects.
342 The hash key is the DW_AT_stmt_list value. */
343 htab_t type_unit_groups {};
344
345 /* A table mapping .debug_types signatures to its signatured_type entry.
346 This is NULL if the .debug_types section hasn't been read in yet. */
347 htab_t signatured_types {};
348
349 /* Type unit statistics, to see how well the scaling improvements
350 are doing. */
351 struct tu_stats tu_stats {};
352
353 /* A chain of compilation units that are currently read in, so that
354 they can be freed later. */
355 dwarf2_per_cu_data *read_in_chain = NULL;
356
357 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
358 This is NULL if the table hasn't been allocated yet. */
359 htab_t dwo_files {};
360
361 /* True if we've checked for whether there is a DWP file. */
362 bool dwp_checked = false;
363
364 /* The DWP file if there is one, or NULL. */
365 struct dwp_file *dwp_file = NULL;
366
367 /* The shared '.dwz' file, if one exists. This is used when the
368 original data was compressed using 'dwz -m'. */
369 struct dwz_file *dwz_file = NULL;
370
371 /* A flag indicating whether this objfile has a section loaded at a
372 VMA of 0. */
373 bool has_section_at_zero = false;
374
375 /* True if we are using the mapped index,
376 or we are faking it for OBJF_READNOW's sake. */
377 bool using_index = false;
378
379 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
380 mapped_index *index_table = NULL;
381
382 /* When using index_table, this keeps track of all quick_file_names entries.
383 TUs typically share line table entries with a CU, so we maintain a
384 separate table of all line table entries to support the sharing.
385 Note that while there can be way more TUs than CUs, we've already
386 sorted all the TUs into "type unit groups", grouped by their
387 DW_AT_stmt_list value. Therefore the only sharing done here is with a
388 CU and its associated TU group if there is one. */
389 htab_t quick_file_names_table {};
390
391 /* Set during partial symbol reading, to prevent queueing of full
392 symbols. */
393 bool reading_partial_symbols = false;
394
395 /* Table mapping type DIEs to their struct type *.
396 This is NULL if not allocated yet.
397 The mapping is done via (CU/TU + DIE offset) -> type. */
398 htab_t die_type_hash {};
399
400 /* The CUs we recently read. */
401 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
402
403 /* Table containing line_header indexed by offset and offset_in_dwz. */
404 htab_t line_header_hash {};
405
406 /* Table containing all filenames. This is an optional because the
407 table is lazily constructed on first access. */
408 gdb::optional<filename_seen_cache> filenames_cache;
409 };
410
411 static struct dwarf2_per_objfile *dwarf2_per_objfile;
412
413 /* Default names of the debugging sections. */
414
415 /* Note that if the debugging section has been compressed, it might
416 have a name like .zdebug_info. */
417
418 static const struct dwarf2_debug_sections dwarf2_elf_names =
419 {
420 { ".debug_info", ".zdebug_info" },
421 { ".debug_abbrev", ".zdebug_abbrev" },
422 { ".debug_line", ".zdebug_line" },
423 { ".debug_loc", ".zdebug_loc" },
424 { ".debug_loclists", ".zdebug_loclists" },
425 { ".debug_macinfo", ".zdebug_macinfo" },
426 { ".debug_macro", ".zdebug_macro" },
427 { ".debug_str", ".zdebug_str" },
428 { ".debug_line_str", ".zdebug_line_str" },
429 { ".debug_ranges", ".zdebug_ranges" },
430 { ".debug_rnglists", ".zdebug_rnglists" },
431 { ".debug_types", ".zdebug_types" },
432 { ".debug_addr", ".zdebug_addr" },
433 { ".debug_frame", ".zdebug_frame" },
434 { ".eh_frame", NULL },
435 { ".gdb_index", ".zgdb_index" },
436 23
437 };
438
439 /* List of DWO/DWP sections. */
440
441 static const struct dwop_section_names
442 {
443 struct dwarf2_section_names abbrev_dwo;
444 struct dwarf2_section_names info_dwo;
445 struct dwarf2_section_names line_dwo;
446 struct dwarf2_section_names loc_dwo;
447 struct dwarf2_section_names loclists_dwo;
448 struct dwarf2_section_names macinfo_dwo;
449 struct dwarf2_section_names macro_dwo;
450 struct dwarf2_section_names str_dwo;
451 struct dwarf2_section_names str_offsets_dwo;
452 struct dwarf2_section_names types_dwo;
453 struct dwarf2_section_names cu_index;
454 struct dwarf2_section_names tu_index;
455 }
456 dwop_section_names =
457 {
458 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
459 { ".debug_info.dwo", ".zdebug_info.dwo" },
460 { ".debug_line.dwo", ".zdebug_line.dwo" },
461 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
462 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
463 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
464 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
465 { ".debug_str.dwo", ".zdebug_str.dwo" },
466 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
467 { ".debug_types.dwo", ".zdebug_types.dwo" },
468 { ".debug_cu_index", ".zdebug_cu_index" },
469 { ".debug_tu_index", ".zdebug_tu_index" },
470 };
471
472 /* local data types */
473
474 /* The data in a compilation unit header, after target2host
475 translation, looks like this. */
476 struct comp_unit_head
477 {
478 unsigned int length;
479 short version;
480 unsigned char addr_size;
481 unsigned char signed_addr_p;
482 sect_offset abbrev_sect_off;
483
484 /* Size of file offsets; either 4 or 8. */
485 unsigned int offset_size;
486
487 /* Size of the length field; either 4 or 12. */
488 unsigned int initial_length_size;
489
490 enum dwarf_unit_type unit_type;
491
492 /* Offset to the first byte of this compilation unit header in the
493 .debug_info section, for resolving relative reference dies. */
494 sect_offset sect_off;
495
496 /* Offset to first die in this cu from the start of the cu.
497 This will be the first byte following the compilation unit header. */
498 cu_offset first_die_cu_offset;
499
500 /* 64-bit signature of this type unit - it is valid only for
501 UNIT_TYPE DW_UT_type. */
502 ULONGEST signature;
503
504 /* For types, offset in the type's DIE of the type defined by this TU. */
505 cu_offset type_cu_offset_in_tu;
506 };
507
508 /* Type used for delaying computation of method physnames.
509 See comments for compute_delayed_physnames. */
510 struct delayed_method_info
511 {
512 /* The type to which the method is attached, i.e., its parent class. */
513 struct type *type;
514
515 /* The index of the method in the type's function fieldlists. */
516 int fnfield_index;
517
518 /* The index of the method in the fieldlist. */
519 int index;
520
521 /* The name of the DIE. */
522 const char *name;
523
524 /* The DIE associated with this method. */
525 struct die_info *die;
526 };
527
528 typedef struct delayed_method_info delayed_method_info;
529 DEF_VEC_O (delayed_method_info);
530
531 /* Internal state when decoding a particular compilation unit. */
532 struct dwarf2_cu
533 {
534 /* The objfile containing this compilation unit. */
535 struct objfile *objfile;
536
537 /* The header of the compilation unit. */
538 struct comp_unit_head header;
539
540 /* Base address of this compilation unit. */
541 CORE_ADDR base_address;
542
543 /* Non-zero if base_address has been set. */
544 int base_known;
545
546 /* The language we are debugging. */
547 enum language language;
548 const struct language_defn *language_defn;
549
550 const char *producer;
551
552 /* The generic symbol table building routines have separate lists for
553 file scope symbols and all all other scopes (local scopes). So
554 we need to select the right one to pass to add_symbol_to_list().
555 We do it by keeping a pointer to the correct list in list_in_scope.
556
557 FIXME: The original dwarf code just treated the file scope as the
558 first local scope, and all other local scopes as nested local
559 scopes, and worked fine. Check to see if we really need to
560 distinguish these in buildsym.c. */
561 struct pending **list_in_scope;
562
563 /* The abbrev table for this CU.
564 Normally this points to the abbrev table in the objfile.
565 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
566 struct abbrev_table *abbrev_table;
567
568 /* Hash table holding all the loaded partial DIEs
569 with partial_die->offset.SECT_OFF as hash. */
570 htab_t partial_dies;
571
572 /* Storage for things with the same lifetime as this read-in compilation
573 unit, including partial DIEs. */
574 struct obstack comp_unit_obstack;
575
576 /* When multiple dwarf2_cu structures are living in memory, this field
577 chains them all together, so that they can be released efficiently.
578 We will probably also want a generation counter so that most-recently-used
579 compilation units are cached... */
580 struct dwarf2_per_cu_data *read_in_chain;
581
582 /* Backlink to our per_cu entry. */
583 struct dwarf2_per_cu_data *per_cu;
584
585 /* How many compilation units ago was this CU last referenced? */
586 int last_used;
587
588 /* A hash table of DIE cu_offset for following references with
589 die_info->offset.sect_off as hash. */
590 htab_t die_hash;
591
592 /* Full DIEs if read in. */
593 struct die_info *dies;
594
595 /* A set of pointers to dwarf2_per_cu_data objects for compilation
596 units referenced by this one. Only set during full symbol processing;
597 partial symbol tables do not have dependencies. */
598 htab_t dependencies;
599
600 /* Header data from the line table, during full symbol processing. */
601 struct line_header *line_header;
602 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
603 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
604 this is the DW_TAG_compile_unit die for this CU. We'll hold on
605 to the line header as long as this DIE is being processed. See
606 process_die_scope. */
607 die_info *line_header_die_owner;
608
609 /* A list of methods which need to have physnames computed
610 after all type information has been read. */
611 VEC (delayed_method_info) *method_list;
612
613 /* To be copied to symtab->call_site_htab. */
614 htab_t call_site_htab;
615
616 /* Non-NULL if this CU came from a DWO file.
617 There is an invariant here that is important to remember:
618 Except for attributes copied from the top level DIE in the "main"
619 (or "stub") file in preparation for reading the DWO file
620 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
621 Either there isn't a DWO file (in which case this is NULL and the point
622 is moot), or there is and either we're not going to read it (in which
623 case this is NULL) or there is and we are reading it (in which case this
624 is non-NULL). */
625 struct dwo_unit *dwo_unit;
626
627 /* The DW_AT_addr_base attribute if present, zero otherwise
628 (zero is a valid value though).
629 Note this value comes from the Fission stub CU/TU's DIE. */
630 ULONGEST addr_base;
631
632 /* The DW_AT_ranges_base attribute if present, zero otherwise
633 (zero is a valid value though).
634 Note this value comes from the Fission stub CU/TU's DIE.
635 Also note that the value is zero in the non-DWO case so this value can
636 be used without needing to know whether DWO files are in use or not.
637 N.B. This does not apply to DW_AT_ranges appearing in
638 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
639 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
640 DW_AT_ranges_base *would* have to be applied, and we'd have to care
641 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
642 ULONGEST ranges_base;
643
644 /* Mark used when releasing cached dies. */
645 unsigned int mark : 1;
646
647 /* This CU references .debug_loc. See the symtab->locations_valid field.
648 This test is imperfect as there may exist optimized debug code not using
649 any location list and still facing inlining issues if handled as
650 unoptimized code. For a future better test see GCC PR other/32998. */
651 unsigned int has_loclist : 1;
652
653 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
654 if all the producer_is_* fields are valid. This information is cached
655 because profiling CU expansion showed excessive time spent in
656 producer_is_gxx_lt_4_6. */
657 unsigned int checked_producer : 1;
658 unsigned int producer_is_gxx_lt_4_6 : 1;
659 unsigned int producer_is_gcc_lt_4_3 : 1;
660 unsigned int producer_is_icc_lt_14 : 1;
661
662 /* When set, the file that we're processing is known to have
663 debugging info for C++ namespaces. GCC 3.3.x did not produce
664 this information, but later versions do. */
665
666 unsigned int processing_has_namespace_info : 1;
667 };
668
669 /* Persistent data held for a compilation unit, even when not
670 processing it. We put a pointer to this structure in the
671 read_symtab_private field of the psymtab. */
672
673 struct dwarf2_per_cu_data
674 {
675 /* The start offset and length of this compilation unit.
676 NOTE: Unlike comp_unit_head.length, this length includes
677 initial_length_size.
678 If the DIE refers to a DWO file, this is always of the original die,
679 not the DWO file. */
680 sect_offset sect_off;
681 unsigned int length;
682
683 /* DWARF standard version this data has been read from (such as 4 or 5). */
684 short dwarf_version;
685
686 /* Flag indicating this compilation unit will be read in before
687 any of the current compilation units are processed. */
688 unsigned int queued : 1;
689
690 /* This flag will be set when reading partial DIEs if we need to load
691 absolutely all DIEs for this compilation unit, instead of just the ones
692 we think are interesting. It gets set if we look for a DIE in the
693 hash table and don't find it. */
694 unsigned int load_all_dies : 1;
695
696 /* Non-zero if this CU is from .debug_types.
697 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
698 this is non-zero. */
699 unsigned int is_debug_types : 1;
700
701 /* Non-zero if this CU is from the .dwz file. */
702 unsigned int is_dwz : 1;
703
704 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
705 This flag is only valid if is_debug_types is true.
706 We can't read a CU directly from a DWO file: There are required
707 attributes in the stub. */
708 unsigned int reading_dwo_directly : 1;
709
710 /* Non-zero if the TU has been read.
711 This is used to assist the "Stay in DWO Optimization" for Fission:
712 When reading a DWO, it's faster to read TUs from the DWO instead of
713 fetching them from random other DWOs (due to comdat folding).
714 If the TU has already been read, the optimization is unnecessary
715 (and unwise - we don't want to change where gdb thinks the TU lives
716 "midflight").
717 This flag is only valid if is_debug_types is true. */
718 unsigned int tu_read : 1;
719
720 /* The section this CU/TU lives in.
721 If the DIE refers to a DWO file, this is always the original die,
722 not the DWO file. */
723 struct dwarf2_section_info *section;
724
725 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
726 of the CU cache it gets reset to NULL again. This is left as NULL for
727 dummy CUs (a CU header, but nothing else). */
728 struct dwarf2_cu *cu;
729
730 /* The corresponding objfile.
731 Normally we can get the objfile from dwarf2_per_objfile.
732 However we can enter this file with just a "per_cu" handle. */
733 struct objfile *objfile;
734
735 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
736 is active. Otherwise, the 'psymtab' field is active. */
737 union
738 {
739 /* The partial symbol table associated with this compilation unit,
740 or NULL for unread partial units. */
741 struct partial_symtab *psymtab;
742
743 /* Data needed by the "quick" functions. */
744 struct dwarf2_per_cu_quick_data *quick;
745 } v;
746
747 /* The CUs we import using DW_TAG_imported_unit. This is filled in
748 while reading psymtabs, used to compute the psymtab dependencies,
749 and then cleared. Then it is filled in again while reading full
750 symbols, and only deleted when the objfile is destroyed.
751
752 This is also used to work around a difference between the way gold
753 generates .gdb_index version <=7 and the way gdb does. Arguably this
754 is a gold bug. For symbols coming from TUs, gold records in the index
755 the CU that includes the TU instead of the TU itself. This breaks
756 dw2_lookup_symbol: It assumes that if the index says symbol X lives
757 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
758 will find X. Alas TUs live in their own symtab, so after expanding CU Y
759 we need to look in TU Z to find X. Fortunately, this is akin to
760 DW_TAG_imported_unit, so we just use the same mechanism: For
761 .gdb_index version <=7 this also records the TUs that the CU referred
762 to. Concurrently with this change gdb was modified to emit version 8
763 indices so we only pay a price for gold generated indices.
764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
765 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
766 };
767
768 /* Entry in the signatured_types hash table. */
769
770 struct signatured_type
771 {
772 /* The "per_cu" object of this type.
773 This struct is used iff per_cu.is_debug_types.
774 N.B.: This is the first member so that it's easy to convert pointers
775 between them. */
776 struct dwarf2_per_cu_data per_cu;
777
778 /* The type's signature. */
779 ULONGEST signature;
780
781 /* Offset in the TU of the type's DIE, as read from the TU header.
782 If this TU is a DWO stub and the definition lives in a DWO file
783 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
784 cu_offset type_offset_in_tu;
785
786 /* Offset in the section of the type's DIE.
787 If the definition lives in a DWO file, this is the offset in the
788 .debug_types.dwo section.
789 The value is zero until the actual value is known.
790 Zero is otherwise not a valid section offset. */
791 sect_offset type_offset_in_section;
792
793 /* Type units are grouped by their DW_AT_stmt_list entry so that they
794 can share them. This points to the containing symtab. */
795 struct type_unit_group *type_unit_group;
796
797 /* The type.
798 The first time we encounter this type we fully read it in and install it
799 in the symbol tables. Subsequent times we only need the type. */
800 struct type *type;
801
802 /* Containing DWO unit.
803 This field is valid iff per_cu.reading_dwo_directly. */
804 struct dwo_unit *dwo_unit;
805 };
806
807 typedef struct signatured_type *sig_type_ptr;
808 DEF_VEC_P (sig_type_ptr);
809
810 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
811 This includes type_unit_group and quick_file_names. */
812
813 struct stmt_list_hash
814 {
815 /* The DWO unit this table is from or NULL if there is none. */
816 struct dwo_unit *dwo_unit;
817
818 /* Offset in .debug_line or .debug_line.dwo. */
819 sect_offset line_sect_off;
820 };
821
822 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
823 an object of this type. */
824
825 struct type_unit_group
826 {
827 /* dwarf2read.c's main "handle" on a TU symtab.
828 To simplify things we create an artificial CU that "includes" all the
829 type units using this stmt_list so that the rest of the code still has
830 a "per_cu" handle on the symtab.
831 This PER_CU is recognized by having no section. */
832 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
833 struct dwarf2_per_cu_data per_cu;
834
835 /* The TUs that share this DW_AT_stmt_list entry.
836 This is added to while parsing type units to build partial symtabs,
837 and is deleted afterwards and not used again. */
838 VEC (sig_type_ptr) *tus;
839
840 /* The compunit symtab.
841 Type units in a group needn't all be defined in the same source file,
842 so we create an essentially anonymous symtab as the compunit symtab. */
843 struct compunit_symtab *compunit_symtab;
844
845 /* The data used to construct the hash key. */
846 struct stmt_list_hash hash;
847
848 /* The number of symtabs from the line header.
849 The value here must match line_header.num_file_names. */
850 unsigned int num_symtabs;
851
852 /* The symbol tables for this TU (obtained from the files listed in
853 DW_AT_stmt_list).
854 WARNING: The order of entries here must match the order of entries
855 in the line header. After the first TU using this type_unit_group, the
856 line header for the subsequent TUs is recreated from this. This is done
857 because we need to use the same symtabs for each TU using the same
858 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
859 there's no guarantee the line header doesn't have duplicate entries. */
860 struct symtab **symtabs;
861 };
862
863 /* These sections are what may appear in a (real or virtual) DWO file. */
864
865 struct dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info loclists;
871 struct dwarf2_section_info macinfo;
872 struct dwarf2_section_info macro;
873 struct dwarf2_section_info str;
874 struct dwarf2_section_info str_offsets;
875 /* In the case of a virtual DWO file, these two are unused. */
876 struct dwarf2_section_info info;
877 VEC (dwarf2_section_info_def) *types;
878 };
879
880 /* CUs/TUs in DWP/DWO files. */
881
882 struct dwo_unit
883 {
884 /* Backlink to the containing struct dwo_file. */
885 struct dwo_file *dwo_file;
886
887 /* The "id" that distinguishes this CU/TU.
888 .debug_info calls this "dwo_id", .debug_types calls this "signature".
889 Since signatures came first, we stick with it for consistency. */
890 ULONGEST signature;
891
892 /* The section this CU/TU lives in, in the DWO file. */
893 struct dwarf2_section_info *section;
894
895 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
896 sect_offset sect_off;
897 unsigned int length;
898
899 /* For types, offset in the type's DIE of the type defined by this TU. */
900 cu_offset type_offset_in_tu;
901 };
902
903 /* include/dwarf2.h defines the DWP section codes.
904 It defines a max value but it doesn't define a min value, which we
905 use for error checking, so provide one. */
906
907 enum dwp_v2_section_ids
908 {
909 DW_SECT_MIN = 1
910 };
911
912 /* Data for one DWO file.
913
914 This includes virtual DWO files (a virtual DWO file is a DWO file as it
915 appears in a DWP file). DWP files don't really have DWO files per se -
916 comdat folding of types "loses" the DWO file they came from, and from
917 a high level view DWP files appear to contain a mass of random types.
918 However, to maintain consistency with the non-DWP case we pretend DWP
919 files contain virtual DWO files, and we assign each TU with one virtual
920 DWO file (generally based on the line and abbrev section offsets -
921 a heuristic that seems to work in practice). */
922
923 struct dwo_file
924 {
925 /* The DW_AT_GNU_dwo_name attribute.
926 For virtual DWO files the name is constructed from the section offsets
927 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
928 from related CU+TUs. */
929 const char *dwo_name;
930
931 /* The DW_AT_comp_dir attribute. */
932 const char *comp_dir;
933
934 /* The bfd, when the file is open. Otherwise this is NULL.
935 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
936 bfd *dbfd;
937
938 /* The sections that make up this DWO file.
939 Remember that for virtual DWO files in DWP V2, these are virtual
940 sections (for lack of a better name). */
941 struct dwo_sections sections;
942
943 /* The CUs in the file.
944 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
945 an extension to handle LLVM's Link Time Optimization output (where
946 multiple source files may be compiled into a single object/dwo pair). */
947 htab_t cus;
948
949 /* Table of TUs in the file.
950 Each element is a struct dwo_unit. */
951 htab_t tus;
952 };
953
954 /* These sections are what may appear in a DWP file. */
955
956 struct dwp_sections
957 {
958 /* These are used by both DWP version 1 and 2. */
959 struct dwarf2_section_info str;
960 struct dwarf2_section_info cu_index;
961 struct dwarf2_section_info tu_index;
962
963 /* These are only used by DWP version 2 files.
964 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
965 sections are referenced by section number, and are not recorded here.
966 In DWP version 2 there is at most one copy of all these sections, each
967 section being (effectively) comprised of the concatenation of all of the
968 individual sections that exist in the version 1 format.
969 To keep the code simple we treat each of these concatenated pieces as a
970 section itself (a virtual section?). */
971 struct dwarf2_section_info abbrev;
972 struct dwarf2_section_info info;
973 struct dwarf2_section_info line;
974 struct dwarf2_section_info loc;
975 struct dwarf2_section_info macinfo;
976 struct dwarf2_section_info macro;
977 struct dwarf2_section_info str_offsets;
978 struct dwarf2_section_info types;
979 };
980
981 /* These sections are what may appear in a virtual DWO file in DWP version 1.
982 A virtual DWO file is a DWO file as it appears in a DWP file. */
983
984 struct virtual_v1_dwo_sections
985 {
986 struct dwarf2_section_info abbrev;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info loc;
989 struct dwarf2_section_info macinfo;
990 struct dwarf2_section_info macro;
991 struct dwarf2_section_info str_offsets;
992 /* Each DWP hash table entry records one CU or one TU.
993 That is recorded here, and copied to dwo_unit.section. */
994 struct dwarf2_section_info info_or_types;
995 };
996
997 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
998 In version 2, the sections of the DWO files are concatenated together
999 and stored in one section of that name. Thus each ELF section contains
1000 several "virtual" sections. */
1001
1002 struct virtual_v2_dwo_sections
1003 {
1004 bfd_size_type abbrev_offset;
1005 bfd_size_type abbrev_size;
1006
1007 bfd_size_type line_offset;
1008 bfd_size_type line_size;
1009
1010 bfd_size_type loc_offset;
1011 bfd_size_type loc_size;
1012
1013 bfd_size_type macinfo_offset;
1014 bfd_size_type macinfo_size;
1015
1016 bfd_size_type macro_offset;
1017 bfd_size_type macro_size;
1018
1019 bfd_size_type str_offsets_offset;
1020 bfd_size_type str_offsets_size;
1021
1022 /* Each DWP hash table entry records one CU or one TU.
1023 That is recorded here, and copied to dwo_unit.section. */
1024 bfd_size_type info_or_types_offset;
1025 bfd_size_type info_or_types_size;
1026 };
1027
1028 /* Contents of DWP hash tables. */
1029
1030 struct dwp_hash_table
1031 {
1032 uint32_t version, nr_columns;
1033 uint32_t nr_units, nr_slots;
1034 const gdb_byte *hash_table, *unit_table;
1035 union
1036 {
1037 struct
1038 {
1039 const gdb_byte *indices;
1040 } v1;
1041 struct
1042 {
1043 /* This is indexed by column number and gives the id of the section
1044 in that column. */
1045 #define MAX_NR_V2_DWO_SECTIONS \
1046 (1 /* .debug_info or .debug_types */ \
1047 + 1 /* .debug_abbrev */ \
1048 + 1 /* .debug_line */ \
1049 + 1 /* .debug_loc */ \
1050 + 1 /* .debug_str_offsets */ \
1051 + 1 /* .debug_macro or .debug_macinfo */)
1052 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1053 const gdb_byte *offsets;
1054 const gdb_byte *sizes;
1055 } v2;
1056 } section_pool;
1057 };
1058
1059 /* Data for one DWP file. */
1060
1061 struct dwp_file
1062 {
1063 /* Name of the file. */
1064 const char *name;
1065
1066 /* File format version. */
1067 int version;
1068
1069 /* The bfd. */
1070 bfd *dbfd;
1071
1072 /* Section info for this file. */
1073 struct dwp_sections sections;
1074
1075 /* Table of CUs in the file. */
1076 const struct dwp_hash_table *cus;
1077
1078 /* Table of TUs in the file. */
1079 const struct dwp_hash_table *tus;
1080
1081 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1082 htab_t loaded_cus;
1083 htab_t loaded_tus;
1084
1085 /* Table to map ELF section numbers to their sections.
1086 This is only needed for the DWP V1 file format. */
1087 unsigned int num_sections;
1088 asection **elf_sections;
1089 };
1090
1091 /* This represents a '.dwz' file. */
1092
1093 struct dwz_file
1094 {
1095 /* A dwz file can only contain a few sections. */
1096 struct dwarf2_section_info abbrev;
1097 struct dwarf2_section_info info;
1098 struct dwarf2_section_info str;
1099 struct dwarf2_section_info line;
1100 struct dwarf2_section_info macro;
1101 struct dwarf2_section_info gdb_index;
1102
1103 /* The dwz's BFD. */
1104 bfd *dwz_bfd;
1105 };
1106
1107 /* Struct used to pass misc. parameters to read_die_and_children, et
1108 al. which are used for both .debug_info and .debug_types dies.
1109 All parameters here are unchanging for the life of the call. This
1110 struct exists to abstract away the constant parameters of die reading. */
1111
1112 struct die_reader_specs
1113 {
1114 /* The bfd of die_section. */
1115 bfd* abfd;
1116
1117 /* The CU of the DIE we are parsing. */
1118 struct dwarf2_cu *cu;
1119
1120 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1121 struct dwo_file *dwo_file;
1122
1123 /* The section the die comes from.
1124 This is either .debug_info or .debug_types, or the .dwo variants. */
1125 struct dwarf2_section_info *die_section;
1126
1127 /* die_section->buffer. */
1128 const gdb_byte *buffer;
1129
1130 /* The end of the buffer. */
1131 const gdb_byte *buffer_end;
1132
1133 /* The value of the DW_AT_comp_dir attribute. */
1134 const char *comp_dir;
1135 };
1136
1137 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1138 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1139 const gdb_byte *info_ptr,
1140 struct die_info *comp_unit_die,
1141 int has_children,
1142 void *data);
1143
1144 /* A 1-based directory index. This is a strong typedef to prevent
1145 accidentally using a directory index as a 0-based index into an
1146 array/vector. */
1147 enum class dir_index : unsigned int {};
1148
1149 /* Likewise, a 1-based file name index. */
1150 enum class file_name_index : unsigned int {};
1151
1152 struct file_entry
1153 {
1154 file_entry () = default;
1155
1156 file_entry (const char *name_, dir_index d_index_,
1157 unsigned int mod_time_, unsigned int length_)
1158 : name (name_),
1159 d_index (d_index_),
1160 mod_time (mod_time_),
1161 length (length_)
1162 {}
1163
1164 /* Return the include directory at D_INDEX stored in LH. Returns
1165 NULL if D_INDEX is out of bounds. */
1166 const char *include_dir (const line_header *lh) const;
1167
1168 /* The file name. Note this is an observing pointer. The memory is
1169 owned by debug_line_buffer. */
1170 const char *name {};
1171
1172 /* The directory index (1-based). */
1173 dir_index d_index {};
1174
1175 unsigned int mod_time {};
1176
1177 unsigned int length {};
1178
1179 /* True if referenced by the Line Number Program. */
1180 bool included_p {};
1181
1182 /* The associated symbol table, if any. */
1183 struct symtab *symtab {};
1184 };
1185
1186 /* The line number information for a compilation unit (found in the
1187 .debug_line section) begins with a "statement program header",
1188 which contains the following information. */
1189 struct line_header
1190 {
1191 line_header ()
1192 : offset_in_dwz {}
1193 {}
1194
1195 /* Add an entry to the include directory table. */
1196 void add_include_dir (const char *include_dir);
1197
1198 /* Add an entry to the file name table. */
1199 void add_file_name (const char *name, dir_index d_index,
1200 unsigned int mod_time, unsigned int length);
1201
1202 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1203 is out of bounds. */
1204 const char *include_dir_at (dir_index index) const
1205 {
1206 /* Convert directory index number (1-based) to vector index
1207 (0-based). */
1208 size_t vec_index = to_underlying (index) - 1;
1209
1210 if (vec_index >= include_dirs.size ())
1211 return NULL;
1212 return include_dirs[vec_index];
1213 }
1214
1215 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1216 is out of bounds. */
1217 file_entry *file_name_at (file_name_index index)
1218 {
1219 /* Convert file name index number (1-based) to vector index
1220 (0-based). */
1221 size_t vec_index = to_underlying (index) - 1;
1222
1223 if (vec_index >= file_names.size ())
1224 return NULL;
1225 return &file_names[vec_index];
1226 }
1227
1228 /* Const version of the above. */
1229 const file_entry *file_name_at (unsigned int index) const
1230 {
1231 if (index >= file_names.size ())
1232 return NULL;
1233 return &file_names[index];
1234 }
1235
1236 /* Offset of line number information in .debug_line section. */
1237 sect_offset sect_off {};
1238
1239 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1240 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1241
1242 unsigned int total_length {};
1243 unsigned short version {};
1244 unsigned int header_length {};
1245 unsigned char minimum_instruction_length {};
1246 unsigned char maximum_ops_per_instruction {};
1247 unsigned char default_is_stmt {};
1248 int line_base {};
1249 unsigned char line_range {};
1250 unsigned char opcode_base {};
1251
1252 /* standard_opcode_lengths[i] is the number of operands for the
1253 standard opcode whose value is i. This means that
1254 standard_opcode_lengths[0] is unused, and the last meaningful
1255 element is standard_opcode_lengths[opcode_base - 1]. */
1256 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1257
1258 /* The include_directories table. Note these are observing
1259 pointers. The memory is owned by debug_line_buffer. */
1260 std::vector<const char *> include_dirs;
1261
1262 /* The file_names table. */
1263 std::vector<file_entry> file_names;
1264
1265 /* The start and end of the statement program following this
1266 header. These point into dwarf2_per_objfile->line_buffer. */
1267 const gdb_byte *statement_program_start {}, *statement_program_end {};
1268 };
1269
1270 typedef std::unique_ptr<line_header> line_header_up;
1271
1272 const char *
1273 file_entry::include_dir (const line_header *lh) const
1274 {
1275 return lh->include_dir_at (d_index);
1276 }
1277
1278 /* When we construct a partial symbol table entry we only
1279 need this much information. */
1280 struct partial_die_info
1281 {
1282 /* Offset of this DIE. */
1283 sect_offset sect_off;
1284
1285 /* DWARF-2 tag for this DIE. */
1286 ENUM_BITFIELD(dwarf_tag) tag : 16;
1287
1288 /* Assorted flags describing the data found in this DIE. */
1289 unsigned int has_children : 1;
1290 unsigned int is_external : 1;
1291 unsigned int is_declaration : 1;
1292 unsigned int has_type : 1;
1293 unsigned int has_specification : 1;
1294 unsigned int has_pc_info : 1;
1295 unsigned int may_be_inlined : 1;
1296
1297 /* This DIE has been marked DW_AT_main_subprogram. */
1298 unsigned int main_subprogram : 1;
1299
1300 /* Flag set if the SCOPE field of this structure has been
1301 computed. */
1302 unsigned int scope_set : 1;
1303
1304 /* Flag set if the DIE has a byte_size attribute. */
1305 unsigned int has_byte_size : 1;
1306
1307 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1308 unsigned int has_const_value : 1;
1309
1310 /* Flag set if any of the DIE's children are template arguments. */
1311 unsigned int has_template_arguments : 1;
1312
1313 /* Flag set if fixup_partial_die has been called on this die. */
1314 unsigned int fixup_called : 1;
1315
1316 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1317 unsigned int is_dwz : 1;
1318
1319 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1320 unsigned int spec_is_dwz : 1;
1321
1322 /* The name of this DIE. Normally the value of DW_AT_name, but
1323 sometimes a default name for unnamed DIEs. */
1324 const char *name;
1325
1326 /* The linkage name, if present. */
1327 const char *linkage_name;
1328
1329 /* The scope to prepend to our children. This is generally
1330 allocated on the comp_unit_obstack, so will disappear
1331 when this compilation unit leaves the cache. */
1332 const char *scope;
1333
1334 /* Some data associated with the partial DIE. The tag determines
1335 which field is live. */
1336 union
1337 {
1338 /* The location description associated with this DIE, if any. */
1339 struct dwarf_block *locdesc;
1340 /* The offset of an import, for DW_TAG_imported_unit. */
1341 sect_offset sect_off;
1342 } d;
1343
1344 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1345 CORE_ADDR lowpc;
1346 CORE_ADDR highpc;
1347
1348 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1349 DW_AT_sibling, if any. */
1350 /* NOTE: This member isn't strictly necessary, read_partial_die could
1351 return DW_AT_sibling values to its caller load_partial_dies. */
1352 const gdb_byte *sibling;
1353
1354 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1355 DW_AT_specification (or DW_AT_abstract_origin or
1356 DW_AT_extension). */
1357 sect_offset spec_offset;
1358
1359 /* Pointers to this DIE's parent, first child, and next sibling,
1360 if any. */
1361 struct partial_die_info *die_parent, *die_child, *die_sibling;
1362 };
1363
1364 /* This data structure holds the information of an abbrev. */
1365 struct abbrev_info
1366 {
1367 unsigned int number; /* number identifying abbrev */
1368 enum dwarf_tag tag; /* dwarf tag */
1369 unsigned short has_children; /* boolean */
1370 unsigned short num_attrs; /* number of attributes */
1371 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1372 struct abbrev_info *next; /* next in chain */
1373 };
1374
1375 struct attr_abbrev
1376 {
1377 ENUM_BITFIELD(dwarf_attribute) name : 16;
1378 ENUM_BITFIELD(dwarf_form) form : 16;
1379
1380 /* It is valid only if FORM is DW_FORM_implicit_const. */
1381 LONGEST implicit_const;
1382 };
1383
1384 /* Size of abbrev_table.abbrev_hash_table. */
1385 #define ABBREV_HASH_SIZE 121
1386
1387 /* Top level data structure to contain an abbreviation table. */
1388
1389 struct abbrev_table
1390 {
1391 /* Where the abbrev table came from.
1392 This is used as a sanity check when the table is used. */
1393 sect_offset sect_off;
1394
1395 /* Storage for the abbrev table. */
1396 struct obstack abbrev_obstack;
1397
1398 /* Hash table of abbrevs.
1399 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1400 It could be statically allocated, but the previous code didn't so we
1401 don't either. */
1402 struct abbrev_info **abbrevs;
1403 };
1404
1405 /* Attributes have a name and a value. */
1406 struct attribute
1407 {
1408 ENUM_BITFIELD(dwarf_attribute) name : 16;
1409 ENUM_BITFIELD(dwarf_form) form : 15;
1410
1411 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1412 field should be in u.str (existing only for DW_STRING) but it is kept
1413 here for better struct attribute alignment. */
1414 unsigned int string_is_canonical : 1;
1415
1416 union
1417 {
1418 const char *str;
1419 struct dwarf_block *blk;
1420 ULONGEST unsnd;
1421 LONGEST snd;
1422 CORE_ADDR addr;
1423 ULONGEST signature;
1424 }
1425 u;
1426 };
1427
1428 /* This data structure holds a complete die structure. */
1429 struct die_info
1430 {
1431 /* DWARF-2 tag for this DIE. */
1432 ENUM_BITFIELD(dwarf_tag) tag : 16;
1433
1434 /* Number of attributes */
1435 unsigned char num_attrs;
1436
1437 /* True if we're presently building the full type name for the
1438 type derived from this DIE. */
1439 unsigned char building_fullname : 1;
1440
1441 /* True if this die is in process. PR 16581. */
1442 unsigned char in_process : 1;
1443
1444 /* Abbrev number */
1445 unsigned int abbrev;
1446
1447 /* Offset in .debug_info or .debug_types section. */
1448 sect_offset sect_off;
1449
1450 /* The dies in a compilation unit form an n-ary tree. PARENT
1451 points to this die's parent; CHILD points to the first child of
1452 this node; and all the children of a given node are chained
1453 together via their SIBLING fields. */
1454 struct die_info *child; /* Its first child, if any. */
1455 struct die_info *sibling; /* Its next sibling, if any. */
1456 struct die_info *parent; /* Its parent, if any. */
1457
1458 /* An array of attributes, with NUM_ATTRS elements. There may be
1459 zero, but it's not common and zero-sized arrays are not
1460 sufficiently portable C. */
1461 struct attribute attrs[1];
1462 };
1463
1464 /* Get at parts of an attribute structure. */
1465
1466 #define DW_STRING(attr) ((attr)->u.str)
1467 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1468 #define DW_UNSND(attr) ((attr)->u.unsnd)
1469 #define DW_BLOCK(attr) ((attr)->u.blk)
1470 #define DW_SND(attr) ((attr)->u.snd)
1471 #define DW_ADDR(attr) ((attr)->u.addr)
1472 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1473
1474 /* Blocks are a bunch of untyped bytes. */
1475 struct dwarf_block
1476 {
1477 size_t size;
1478
1479 /* Valid only if SIZE is not zero. */
1480 const gdb_byte *data;
1481 };
1482
1483 #ifndef ATTR_ALLOC_CHUNK
1484 #define ATTR_ALLOC_CHUNK 4
1485 #endif
1486
1487 /* Allocate fields for structs, unions and enums in this size. */
1488 #ifndef DW_FIELD_ALLOC_CHUNK
1489 #define DW_FIELD_ALLOC_CHUNK 4
1490 #endif
1491
1492 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1493 but this would require a corresponding change in unpack_field_as_long
1494 and friends. */
1495 static int bits_per_byte = 8;
1496
1497 struct nextfield
1498 {
1499 struct nextfield *next;
1500 int accessibility;
1501 int virtuality;
1502 struct field field;
1503 };
1504
1505 struct nextfnfield
1506 {
1507 struct nextfnfield *next;
1508 struct fn_field fnfield;
1509 };
1510
1511 struct fnfieldlist
1512 {
1513 const char *name;
1514 int length;
1515 struct nextfnfield *head;
1516 };
1517
1518 struct typedef_field_list
1519 {
1520 struct typedef_field field;
1521 struct typedef_field_list *next;
1522 };
1523
1524 /* The routines that read and process dies for a C struct or C++ class
1525 pass lists of data member fields and lists of member function fields
1526 in an instance of a field_info structure, as defined below. */
1527 struct field_info
1528 {
1529 /* List of data member and baseclasses fields. */
1530 struct nextfield *fields, *baseclasses;
1531
1532 /* Number of fields (including baseclasses). */
1533 int nfields;
1534
1535 /* Number of baseclasses. */
1536 int nbaseclasses;
1537
1538 /* Set if the accesibility of one of the fields is not public. */
1539 int non_public_fields;
1540
1541 /* Member function fieldlist array, contains name of possibly overloaded
1542 member function, number of overloaded member functions and a pointer
1543 to the head of the member function field chain. */
1544 struct fnfieldlist *fnfieldlists;
1545
1546 /* Number of entries in the fnfieldlists array. */
1547 int nfnfields;
1548
1549 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1550 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1551 struct typedef_field_list *typedef_field_list;
1552 unsigned typedef_field_list_count;
1553 };
1554
1555 /* One item on the queue of compilation units to read in full symbols
1556 for. */
1557 struct dwarf2_queue_item
1558 {
1559 struct dwarf2_per_cu_data *per_cu;
1560 enum language pretend_language;
1561 struct dwarf2_queue_item *next;
1562 };
1563
1564 /* The current queue. */
1565 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1566
1567 /* Loaded secondary compilation units are kept in memory until they
1568 have not been referenced for the processing of this many
1569 compilation units. Set this to zero to disable caching. Cache
1570 sizes of up to at least twenty will improve startup time for
1571 typical inter-CU-reference binaries, at an obvious memory cost. */
1572 static int dwarf_max_cache_age = 5;
1573 static void
1574 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c, const char *value)
1576 {
1577 fprintf_filtered (file, _("The upper bound on the age of cached "
1578 "DWARF compilation units is %s.\n"),
1579 value);
1580 }
1581 \f
1582 /* local function prototypes */
1583
1584 static const char *get_section_name (const struct dwarf2_section_info *);
1585
1586 static const char *get_section_file_name (const struct dwarf2_section_info *);
1587
1588 static void dwarf2_find_base_address (struct die_info *die,
1589 struct dwarf2_cu *cu);
1590
1591 static struct partial_symtab *create_partial_symtab
1592 (struct dwarf2_per_cu_data *per_cu, const char *name);
1593
1594 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1595 const gdb_byte *info_ptr,
1596 struct die_info *type_unit_die,
1597 int has_children, void *data);
1598
1599 static void dwarf2_build_psymtabs_hard (struct objfile *);
1600
1601 static void scan_partial_symbols (struct partial_die_info *,
1602 CORE_ADDR *, CORE_ADDR *,
1603 int, struct dwarf2_cu *);
1604
1605 static void add_partial_symbol (struct partial_die_info *,
1606 struct dwarf2_cu *);
1607
1608 static void add_partial_namespace (struct partial_die_info *pdi,
1609 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1610 int set_addrmap, struct dwarf2_cu *cu);
1611
1612 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1613 CORE_ADDR *highpc, int set_addrmap,
1614 struct dwarf2_cu *cu);
1615
1616 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1617 struct dwarf2_cu *cu);
1618
1619 static void add_partial_subprogram (struct partial_die_info *pdi,
1620 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1621 int need_pc, struct dwarf2_cu *cu);
1622
1623 static void dwarf2_read_symtab (struct partial_symtab *,
1624 struct objfile *);
1625
1626 static void psymtab_to_symtab_1 (struct partial_symtab *);
1627
1628 static struct abbrev_info *abbrev_table_lookup_abbrev
1629 (const struct abbrev_table *, unsigned int);
1630
1631 static struct abbrev_table *abbrev_table_read_table
1632 (struct dwarf2_section_info *, sect_offset);
1633
1634 static void abbrev_table_free (struct abbrev_table *);
1635
1636 static void abbrev_table_free_cleanup (void *);
1637
1638 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1639 struct dwarf2_section_info *);
1640
1641 static void dwarf2_free_abbrev_table (void *);
1642
1643 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1644
1645 static struct partial_die_info *load_partial_dies
1646 (const struct die_reader_specs *, const gdb_byte *, int);
1647
1648 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1649 struct partial_die_info *,
1650 struct abbrev_info *,
1651 unsigned int,
1652 const gdb_byte *);
1653
1654 static struct partial_die_info *find_partial_die (sect_offset, int,
1655 struct dwarf2_cu *);
1656
1657 static void fixup_partial_die (struct partial_die_info *,
1658 struct dwarf2_cu *);
1659
1660 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1661 struct attribute *, struct attr_abbrev *,
1662 const gdb_byte *);
1663
1664 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1665
1666 static int read_1_signed_byte (bfd *, const gdb_byte *);
1667
1668 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1669
1670 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1671
1672 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1673
1674 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1675 unsigned int *);
1676
1677 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1678
1679 static LONGEST read_checked_initial_length_and_offset
1680 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1681 unsigned int *, unsigned int *);
1682
1683 static LONGEST read_offset (bfd *, const gdb_byte *,
1684 const struct comp_unit_head *,
1685 unsigned int *);
1686
1687 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1688
1689 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1690 sect_offset);
1691
1692 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1693
1694 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1695
1696 static const char *read_indirect_string (bfd *, const gdb_byte *,
1697 const struct comp_unit_head *,
1698 unsigned int *);
1699
1700 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1701 const struct comp_unit_head *,
1702 unsigned int *);
1703
1704 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1705
1706 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1707
1708 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1709 const gdb_byte *,
1710 unsigned int *);
1711
1712 static const char *read_str_index (const struct die_reader_specs *reader,
1713 ULONGEST str_index);
1714
1715 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1716
1717 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1718 struct dwarf2_cu *);
1719
1720 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1721 unsigned int);
1722
1723 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1724 struct dwarf2_cu *cu);
1725
1726 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1727 struct dwarf2_cu *cu);
1728
1729 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1730
1731 static struct die_info *die_specification (struct die_info *die,
1732 struct dwarf2_cu **);
1733
1734 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1735 struct dwarf2_cu *cu);
1736
1737 static void dwarf_decode_lines (struct line_header *, const char *,
1738 struct dwarf2_cu *, struct partial_symtab *,
1739 CORE_ADDR, int decode_mapping);
1740
1741 static void dwarf2_start_subfile (const char *, const char *);
1742
1743 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1744 const char *, const char *,
1745 CORE_ADDR);
1746
1747 static struct symbol *new_symbol (struct die_info *, struct type *,
1748 struct dwarf2_cu *);
1749
1750 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1751 struct dwarf2_cu *, struct symbol *);
1752
1753 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1754 struct dwarf2_cu *);
1755
1756 static void dwarf2_const_value_attr (const struct attribute *attr,
1757 struct type *type,
1758 const char *name,
1759 struct obstack *obstack,
1760 struct dwarf2_cu *cu, LONGEST *value,
1761 const gdb_byte **bytes,
1762 struct dwarf2_locexpr_baton **baton);
1763
1764 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1765
1766 static int need_gnat_info (struct dwarf2_cu *);
1767
1768 static struct type *die_descriptive_type (struct die_info *,
1769 struct dwarf2_cu *);
1770
1771 static void set_descriptive_type (struct type *, struct die_info *,
1772 struct dwarf2_cu *);
1773
1774 static struct type *die_containing_type (struct die_info *,
1775 struct dwarf2_cu *);
1776
1777 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1778 struct dwarf2_cu *);
1779
1780 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1781
1782 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1783
1784 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1785
1786 static char *typename_concat (struct obstack *obs, const char *prefix,
1787 const char *suffix, int physname,
1788 struct dwarf2_cu *cu);
1789
1790 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1791
1792 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1793
1794 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1795
1796 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1797
1798 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1799
1800 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1801 struct dwarf2_cu *, struct partial_symtab *);
1802
1803 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1804 values. Keep the items ordered with increasing constraints compliance. */
1805 enum pc_bounds_kind
1806 {
1807 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1808 PC_BOUNDS_NOT_PRESENT,
1809
1810 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1811 were present but they do not form a valid range of PC addresses. */
1812 PC_BOUNDS_INVALID,
1813
1814 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1815 PC_BOUNDS_RANGES,
1816
1817 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1818 PC_BOUNDS_HIGH_LOW,
1819 };
1820
1821 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1822 CORE_ADDR *, CORE_ADDR *,
1823 struct dwarf2_cu *,
1824 struct partial_symtab *);
1825
1826 static void get_scope_pc_bounds (struct die_info *,
1827 CORE_ADDR *, CORE_ADDR *,
1828 struct dwarf2_cu *);
1829
1830 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1831 CORE_ADDR, struct dwarf2_cu *);
1832
1833 static void dwarf2_add_field (struct field_info *, struct die_info *,
1834 struct dwarf2_cu *);
1835
1836 static void dwarf2_attach_fields_to_type (struct field_info *,
1837 struct type *, struct dwarf2_cu *);
1838
1839 static void dwarf2_add_member_fn (struct field_info *,
1840 struct die_info *, struct type *,
1841 struct dwarf2_cu *);
1842
1843 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1844 struct type *,
1845 struct dwarf2_cu *);
1846
1847 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1848
1849 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1850
1851 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1852
1853 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1854
1855 static struct using_direct **using_directives (enum language);
1856
1857 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1858
1859 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1860
1861 static struct type *read_module_type (struct die_info *die,
1862 struct dwarf2_cu *cu);
1863
1864 static const char *namespace_name (struct die_info *die,
1865 int *is_anonymous, struct dwarf2_cu *);
1866
1867 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1868
1869 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1870
1871 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1872 struct dwarf2_cu *);
1873
1874 static struct die_info *read_die_and_siblings_1
1875 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1876 struct die_info *);
1877
1878 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1879 const gdb_byte *info_ptr,
1880 const gdb_byte **new_info_ptr,
1881 struct die_info *parent);
1882
1883 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1884 struct die_info **, const gdb_byte *,
1885 int *, int);
1886
1887 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1888 struct die_info **, const gdb_byte *,
1889 int *);
1890
1891 static void process_die (struct die_info *, struct dwarf2_cu *);
1892
1893 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1894 struct obstack *);
1895
1896 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1897
1898 static const char *dwarf2_full_name (const char *name,
1899 struct die_info *die,
1900 struct dwarf2_cu *cu);
1901
1902 static const char *dwarf2_physname (const char *name, struct die_info *die,
1903 struct dwarf2_cu *cu);
1904
1905 static struct die_info *dwarf2_extension (struct die_info *die,
1906 struct dwarf2_cu **);
1907
1908 static const char *dwarf_tag_name (unsigned int);
1909
1910 static const char *dwarf_attr_name (unsigned int);
1911
1912 static const char *dwarf_form_name (unsigned int);
1913
1914 static const char *dwarf_bool_name (unsigned int);
1915
1916 static const char *dwarf_type_encoding_name (unsigned int);
1917
1918 static struct die_info *sibling_die (struct die_info *);
1919
1920 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1921
1922 static void dump_die_for_error (struct die_info *);
1923
1924 static void dump_die_1 (struct ui_file *, int level, int max_level,
1925 struct die_info *);
1926
1927 /*static*/ void dump_die (struct die_info *, int max_level);
1928
1929 static void store_in_ref_table (struct die_info *,
1930 struct dwarf2_cu *);
1931
1932 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1933
1934 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1935
1936 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1937 const struct attribute *,
1938 struct dwarf2_cu **);
1939
1940 static struct die_info *follow_die_ref (struct die_info *,
1941 const struct attribute *,
1942 struct dwarf2_cu **);
1943
1944 static struct die_info *follow_die_sig (struct die_info *,
1945 const struct attribute *,
1946 struct dwarf2_cu **);
1947
1948 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1949 struct dwarf2_cu *);
1950
1951 static struct type *get_DW_AT_signature_type (struct die_info *,
1952 const struct attribute *,
1953 struct dwarf2_cu *);
1954
1955 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1956
1957 static void read_signatured_type (struct signatured_type *);
1958
1959 static int attr_to_dynamic_prop (const struct attribute *attr,
1960 struct die_info *die, struct dwarf2_cu *cu,
1961 struct dynamic_prop *prop);
1962
1963 /* memory allocation interface */
1964
1965 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1966
1967 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1968
1969 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1970
1971 static int attr_form_is_block (const struct attribute *);
1972
1973 static int attr_form_is_section_offset (const struct attribute *);
1974
1975 static int attr_form_is_constant (const struct attribute *);
1976
1977 static int attr_form_is_ref (const struct attribute *);
1978
1979 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1980 struct dwarf2_loclist_baton *baton,
1981 const struct attribute *attr);
1982
1983 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1984 struct symbol *sym,
1985 struct dwarf2_cu *cu,
1986 int is_block);
1987
1988 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1989 const gdb_byte *info_ptr,
1990 struct abbrev_info *abbrev);
1991
1992 static void free_stack_comp_unit (void *);
1993
1994 static hashval_t partial_die_hash (const void *item);
1995
1996 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1997
1998 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1999 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2000
2001 static void init_one_comp_unit (struct dwarf2_cu *cu,
2002 struct dwarf2_per_cu_data *per_cu);
2003
2004 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2005 struct die_info *comp_unit_die,
2006 enum language pretend_language);
2007
2008 static void free_heap_comp_unit (void *);
2009
2010 static void free_cached_comp_units (void *);
2011
2012 static void age_cached_comp_units (void);
2013
2014 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2015
2016 static struct type *set_die_type (struct die_info *, struct type *,
2017 struct dwarf2_cu *);
2018
2019 static void create_all_comp_units (struct objfile *);
2020
2021 static int create_all_type_units (struct objfile *);
2022
2023 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2024 enum language);
2025
2026 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2027 enum language);
2028
2029 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2030 enum language);
2031
2032 static void dwarf2_add_dependence (struct dwarf2_cu *,
2033 struct dwarf2_per_cu_data *);
2034
2035 static void dwarf2_mark (struct dwarf2_cu *);
2036
2037 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2038
2039 static struct type *get_die_type_at_offset (sect_offset,
2040 struct dwarf2_per_cu_data *);
2041
2042 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2043
2044 static void dwarf2_release_queue (void *dummy);
2045
2046 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2047 enum language pretend_language);
2048
2049 static void process_queue (void);
2050
2051 /* The return type of find_file_and_directory. Note, the enclosed
2052 string pointers are only valid while this object is valid. */
2053
2054 struct file_and_directory
2055 {
2056 /* The filename. This is never NULL. */
2057 const char *name;
2058
2059 /* The compilation directory. NULL if not known. If we needed to
2060 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2061 points directly to the DW_AT_comp_dir string attribute owned by
2062 the obstack that owns the DIE. */
2063 const char *comp_dir;
2064
2065 /* If we needed to build a new string for comp_dir, this is what
2066 owns the storage. */
2067 std::string comp_dir_storage;
2068 };
2069
2070 static file_and_directory find_file_and_directory (struct die_info *die,
2071 struct dwarf2_cu *cu);
2072
2073 static char *file_full_name (int file, struct line_header *lh,
2074 const char *comp_dir);
2075
2076 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2077 enum class rcuh_kind { COMPILE, TYPE };
2078
2079 static const gdb_byte *read_and_check_comp_unit_head
2080 (struct comp_unit_head *header,
2081 struct dwarf2_section_info *section,
2082 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2083 rcuh_kind section_kind);
2084
2085 static void init_cutu_and_read_dies
2086 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2087 int use_existing_cu, int keep,
2088 die_reader_func_ftype *die_reader_func, void *data);
2089
2090 static void init_cutu_and_read_dies_simple
2091 (struct dwarf2_per_cu_data *this_cu,
2092 die_reader_func_ftype *die_reader_func, void *data);
2093
2094 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2095
2096 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2097
2098 static struct dwo_unit *lookup_dwo_unit_in_dwp
2099 (struct dwp_file *dwp_file, const char *comp_dir,
2100 ULONGEST signature, int is_debug_types);
2101
2102 static struct dwp_file *get_dwp_file (void);
2103
2104 static struct dwo_unit *lookup_dwo_comp_unit
2105 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2106
2107 static struct dwo_unit *lookup_dwo_type_unit
2108 (struct signatured_type *, const char *, const char *);
2109
2110 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2111
2112 static void free_dwo_file_cleanup (void *);
2113
2114 static void process_cu_includes (void);
2115
2116 static void check_producer (struct dwarf2_cu *cu);
2117
2118 static void free_line_header_voidp (void *arg);
2119 \f
2120 /* Various complaints about symbol reading that don't abort the process. */
2121
2122 static void
2123 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2124 {
2125 complaint (&symfile_complaints,
2126 _("statement list doesn't fit in .debug_line section"));
2127 }
2128
2129 static void
2130 dwarf2_debug_line_missing_file_complaint (void)
2131 {
2132 complaint (&symfile_complaints,
2133 _(".debug_line section has line data without a file"));
2134 }
2135
2136 static void
2137 dwarf2_debug_line_missing_end_sequence_complaint (void)
2138 {
2139 complaint (&symfile_complaints,
2140 _(".debug_line section has line "
2141 "program sequence without an end"));
2142 }
2143
2144 static void
2145 dwarf2_complex_location_expr_complaint (void)
2146 {
2147 complaint (&symfile_complaints, _("location expression too complex"));
2148 }
2149
2150 static void
2151 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2152 int arg3)
2153 {
2154 complaint (&symfile_complaints,
2155 _("const value length mismatch for '%s', got %d, expected %d"),
2156 arg1, arg2, arg3);
2157 }
2158
2159 static void
2160 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2161 {
2162 complaint (&symfile_complaints,
2163 _("debug info runs off end of %s section"
2164 " [in module %s]"),
2165 get_section_name (section),
2166 get_section_file_name (section));
2167 }
2168
2169 static void
2170 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2171 {
2172 complaint (&symfile_complaints,
2173 _("macro debug info contains a "
2174 "malformed macro definition:\n`%s'"),
2175 arg1);
2176 }
2177
2178 static void
2179 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2180 {
2181 complaint (&symfile_complaints,
2182 _("invalid attribute class or form for '%s' in '%s'"),
2183 arg1, arg2);
2184 }
2185
2186 /* Hash function for line_header_hash. */
2187
2188 static hashval_t
2189 line_header_hash (const struct line_header *ofs)
2190 {
2191 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2192 }
2193
2194 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2195
2196 static hashval_t
2197 line_header_hash_voidp (const void *item)
2198 {
2199 const struct line_header *ofs = (const struct line_header *) item;
2200
2201 return line_header_hash (ofs);
2202 }
2203
2204 /* Equality function for line_header_hash. */
2205
2206 static int
2207 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2208 {
2209 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2210 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2211
2212 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2213 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2214 }
2215
2216 \f
2217
2218 /* Read the given attribute value as an address, taking the attribute's
2219 form into account. */
2220
2221 static CORE_ADDR
2222 attr_value_as_address (struct attribute *attr)
2223 {
2224 CORE_ADDR addr;
2225
2226 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2227 {
2228 /* Aside from a few clearly defined exceptions, attributes that
2229 contain an address must always be in DW_FORM_addr form.
2230 Unfortunately, some compilers happen to be violating this
2231 requirement by encoding addresses using other forms, such
2232 as DW_FORM_data4 for example. For those broken compilers,
2233 we try to do our best, without any guarantee of success,
2234 to interpret the address correctly. It would also be nice
2235 to generate a complaint, but that would require us to maintain
2236 a list of legitimate cases where a non-address form is allowed,
2237 as well as update callers to pass in at least the CU's DWARF
2238 version. This is more overhead than what we're willing to
2239 expand for a pretty rare case. */
2240 addr = DW_UNSND (attr);
2241 }
2242 else
2243 addr = DW_ADDR (attr);
2244
2245 return addr;
2246 }
2247
2248 /* The suffix for an index file. */
2249 #define INDEX_SUFFIX ".gdb-index"
2250
2251 /* See declaration. */
2252
2253 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2254 const dwarf2_debug_sections *names)
2255 : objfile (objfile_)
2256 {
2257 if (names == NULL)
2258 names = &dwarf2_elf_names;
2259
2260 bfd *obfd = objfile->obfd;
2261
2262 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2263 locate_sections (obfd, sec, *names);
2264 }
2265
2266 dwarf2_per_objfile::~dwarf2_per_objfile ()
2267 {
2268 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2269 free_cached_comp_units ();
2270
2271 if (quick_file_names_table)
2272 htab_delete (quick_file_names_table);
2273
2274 if (line_header_hash)
2275 htab_delete (line_header_hash);
2276
2277 /* Everything else should be on the objfile obstack. */
2278 }
2279
2280 /* See declaration. */
2281
2282 void
2283 dwarf2_per_objfile::free_cached_comp_units ()
2284 {
2285 dwarf2_per_cu_data *per_cu = read_in_chain;
2286 dwarf2_per_cu_data **last_chain = &read_in_chain;
2287 while (per_cu != NULL)
2288 {
2289 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2290
2291 free_heap_comp_unit (per_cu->cu);
2292 *last_chain = next_cu;
2293 per_cu = next_cu;
2294 }
2295 }
2296
2297 /* Try to locate the sections we need for DWARF 2 debugging
2298 information and return true if we have enough to do something.
2299 NAMES points to the dwarf2 section names, or is NULL if the standard
2300 ELF names are used. */
2301
2302 int
2303 dwarf2_has_info (struct objfile *objfile,
2304 const struct dwarf2_debug_sections *names)
2305 {
2306 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2307 objfile_data (objfile, dwarf2_objfile_data_key));
2308 if (!dwarf2_per_objfile)
2309 {
2310 /* Initialize per-objfile state. */
2311 struct dwarf2_per_objfile *data
2312 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2313
2314 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2315 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2316 }
2317 return (!dwarf2_per_objfile->info.is_virtual
2318 && dwarf2_per_objfile->info.s.section != NULL
2319 && !dwarf2_per_objfile->abbrev.is_virtual
2320 && dwarf2_per_objfile->abbrev.s.section != NULL);
2321 }
2322
2323 /* Return the containing section of virtual section SECTION. */
2324
2325 static struct dwarf2_section_info *
2326 get_containing_section (const struct dwarf2_section_info *section)
2327 {
2328 gdb_assert (section->is_virtual);
2329 return section->s.containing_section;
2330 }
2331
2332 /* Return the bfd owner of SECTION. */
2333
2334 static struct bfd *
2335 get_section_bfd_owner (const struct dwarf2_section_info *section)
2336 {
2337 if (section->is_virtual)
2338 {
2339 section = get_containing_section (section);
2340 gdb_assert (!section->is_virtual);
2341 }
2342 return section->s.section->owner;
2343 }
2344
2345 /* Return the bfd section of SECTION.
2346 Returns NULL if the section is not present. */
2347
2348 static asection *
2349 get_section_bfd_section (const struct dwarf2_section_info *section)
2350 {
2351 if (section->is_virtual)
2352 {
2353 section = get_containing_section (section);
2354 gdb_assert (!section->is_virtual);
2355 }
2356 return section->s.section;
2357 }
2358
2359 /* Return the name of SECTION. */
2360
2361 static const char *
2362 get_section_name (const struct dwarf2_section_info *section)
2363 {
2364 asection *sectp = get_section_bfd_section (section);
2365
2366 gdb_assert (sectp != NULL);
2367 return bfd_section_name (get_section_bfd_owner (section), sectp);
2368 }
2369
2370 /* Return the name of the file SECTION is in. */
2371
2372 static const char *
2373 get_section_file_name (const struct dwarf2_section_info *section)
2374 {
2375 bfd *abfd = get_section_bfd_owner (section);
2376
2377 return bfd_get_filename (abfd);
2378 }
2379
2380 /* Return the id of SECTION.
2381 Returns 0 if SECTION doesn't exist. */
2382
2383 static int
2384 get_section_id (const struct dwarf2_section_info *section)
2385 {
2386 asection *sectp = get_section_bfd_section (section);
2387
2388 if (sectp == NULL)
2389 return 0;
2390 return sectp->id;
2391 }
2392
2393 /* Return the flags of SECTION.
2394 SECTION (or containing section if this is a virtual section) must exist. */
2395
2396 static int
2397 get_section_flags (const struct dwarf2_section_info *section)
2398 {
2399 asection *sectp = get_section_bfd_section (section);
2400
2401 gdb_assert (sectp != NULL);
2402 return bfd_get_section_flags (sectp->owner, sectp);
2403 }
2404
2405 /* When loading sections, we look either for uncompressed section or for
2406 compressed section names. */
2407
2408 static int
2409 section_is_p (const char *section_name,
2410 const struct dwarf2_section_names *names)
2411 {
2412 if (names->normal != NULL
2413 && strcmp (section_name, names->normal) == 0)
2414 return 1;
2415 if (names->compressed != NULL
2416 && strcmp (section_name, names->compressed) == 0)
2417 return 1;
2418 return 0;
2419 }
2420
2421 /* See declaration. */
2422
2423 void
2424 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2425 const dwarf2_debug_sections &names)
2426 {
2427 flagword aflag = bfd_get_section_flags (abfd, sectp);
2428
2429 if ((aflag & SEC_HAS_CONTENTS) == 0)
2430 {
2431 }
2432 else if (section_is_p (sectp->name, &names.info))
2433 {
2434 this->info.s.section = sectp;
2435 this->info.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.abbrev))
2438 {
2439 this->abbrev.s.section = sectp;
2440 this->abbrev.size = bfd_get_section_size (sectp);
2441 }
2442 else if (section_is_p (sectp->name, &names.line))
2443 {
2444 this->line.s.section = sectp;
2445 this->line.size = bfd_get_section_size (sectp);
2446 }
2447 else if (section_is_p (sectp->name, &names.loc))
2448 {
2449 this->loc.s.section = sectp;
2450 this->loc.size = bfd_get_section_size (sectp);
2451 }
2452 else if (section_is_p (sectp->name, &names.loclists))
2453 {
2454 this->loclists.s.section = sectp;
2455 this->loclists.size = bfd_get_section_size (sectp);
2456 }
2457 else if (section_is_p (sectp->name, &names.macinfo))
2458 {
2459 this->macinfo.s.section = sectp;
2460 this->macinfo.size = bfd_get_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.macro))
2463 {
2464 this->macro.s.section = sectp;
2465 this->macro.size = bfd_get_section_size (sectp);
2466 }
2467 else if (section_is_p (sectp->name, &names.str))
2468 {
2469 this->str.s.section = sectp;
2470 this->str.size = bfd_get_section_size (sectp);
2471 }
2472 else if (section_is_p (sectp->name, &names.line_str))
2473 {
2474 this->line_str.s.section = sectp;
2475 this->line_str.size = bfd_get_section_size (sectp);
2476 }
2477 else if (section_is_p (sectp->name, &names.addr))
2478 {
2479 this->addr.s.section = sectp;
2480 this->addr.size = bfd_get_section_size (sectp);
2481 }
2482 else if (section_is_p (sectp->name, &names.frame))
2483 {
2484 this->frame.s.section = sectp;
2485 this->frame.size = bfd_get_section_size (sectp);
2486 }
2487 else if (section_is_p (sectp->name, &names.eh_frame))
2488 {
2489 this->eh_frame.s.section = sectp;
2490 this->eh_frame.size = bfd_get_section_size (sectp);
2491 }
2492 else if (section_is_p (sectp->name, &names.ranges))
2493 {
2494 this->ranges.s.section = sectp;
2495 this->ranges.size = bfd_get_section_size (sectp);
2496 }
2497 else if (section_is_p (sectp->name, &names.rnglists))
2498 {
2499 this->rnglists.s.section = sectp;
2500 this->rnglists.size = bfd_get_section_size (sectp);
2501 }
2502 else if (section_is_p (sectp->name, &names.types))
2503 {
2504 struct dwarf2_section_info type_section;
2505
2506 memset (&type_section, 0, sizeof (type_section));
2507 type_section.s.section = sectp;
2508 type_section.size = bfd_get_section_size (sectp);
2509
2510 VEC_safe_push (dwarf2_section_info_def, this->types,
2511 &type_section);
2512 }
2513 else if (section_is_p (sectp->name, &names.gdb_index))
2514 {
2515 this->gdb_index.s.section = sectp;
2516 this->gdb_index.size = bfd_get_section_size (sectp);
2517 }
2518
2519 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2520 && bfd_section_vma (abfd, sectp) == 0)
2521 this->has_section_at_zero = true;
2522 }
2523
2524 /* A helper function that decides whether a section is empty,
2525 or not present. */
2526
2527 static int
2528 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2529 {
2530 if (section->is_virtual)
2531 return section->size == 0;
2532 return section->s.section == NULL || section->size == 0;
2533 }
2534
2535 /* Read the contents of the section INFO.
2536 OBJFILE is the main object file, but not necessarily the file where
2537 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2538 of the DWO file.
2539 If the section is compressed, uncompress it before returning. */
2540
2541 static void
2542 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2543 {
2544 asection *sectp;
2545 bfd *abfd;
2546 gdb_byte *buf, *retbuf;
2547
2548 if (info->readin)
2549 return;
2550 info->buffer = NULL;
2551 info->readin = 1;
2552
2553 if (dwarf2_section_empty_p (info))
2554 return;
2555
2556 sectp = get_section_bfd_section (info);
2557
2558 /* If this is a virtual section we need to read in the real one first. */
2559 if (info->is_virtual)
2560 {
2561 struct dwarf2_section_info *containing_section =
2562 get_containing_section (info);
2563
2564 gdb_assert (sectp != NULL);
2565 if ((sectp->flags & SEC_RELOC) != 0)
2566 {
2567 error (_("Dwarf Error: DWP format V2 with relocations is not"
2568 " supported in section %s [in module %s]"),
2569 get_section_name (info), get_section_file_name (info));
2570 }
2571 dwarf2_read_section (objfile, containing_section);
2572 /* Other code should have already caught virtual sections that don't
2573 fit. */
2574 gdb_assert (info->virtual_offset + info->size
2575 <= containing_section->size);
2576 /* If the real section is empty or there was a problem reading the
2577 section we shouldn't get here. */
2578 gdb_assert (containing_section->buffer != NULL);
2579 info->buffer = containing_section->buffer + info->virtual_offset;
2580 return;
2581 }
2582
2583 /* If the section has relocations, we must read it ourselves.
2584 Otherwise we attach it to the BFD. */
2585 if ((sectp->flags & SEC_RELOC) == 0)
2586 {
2587 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2588 return;
2589 }
2590
2591 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2592 info->buffer = buf;
2593
2594 /* When debugging .o files, we may need to apply relocations; see
2595 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2596 We never compress sections in .o files, so we only need to
2597 try this when the section is not compressed. */
2598 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2599 if (retbuf != NULL)
2600 {
2601 info->buffer = retbuf;
2602 return;
2603 }
2604
2605 abfd = get_section_bfd_owner (info);
2606 gdb_assert (abfd != NULL);
2607
2608 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2609 || bfd_bread (buf, info->size, abfd) != info->size)
2610 {
2611 error (_("Dwarf Error: Can't read DWARF data"
2612 " in section %s [in module %s]"),
2613 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2614 }
2615 }
2616
2617 /* A helper function that returns the size of a section in a safe way.
2618 If you are positive that the section has been read before using the
2619 size, then it is safe to refer to the dwarf2_section_info object's
2620 "size" field directly. In other cases, you must call this
2621 function, because for compressed sections the size field is not set
2622 correctly until the section has been read. */
2623
2624 static bfd_size_type
2625 dwarf2_section_size (struct objfile *objfile,
2626 struct dwarf2_section_info *info)
2627 {
2628 if (!info->readin)
2629 dwarf2_read_section (objfile, info);
2630 return info->size;
2631 }
2632
2633 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2634 SECTION_NAME. */
2635
2636 void
2637 dwarf2_get_section_info (struct objfile *objfile,
2638 enum dwarf2_section_enum sect,
2639 asection **sectp, const gdb_byte **bufp,
2640 bfd_size_type *sizep)
2641 {
2642 struct dwarf2_per_objfile *data
2643 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2644 dwarf2_objfile_data_key);
2645 struct dwarf2_section_info *info;
2646
2647 /* We may see an objfile without any DWARF, in which case we just
2648 return nothing. */
2649 if (data == NULL)
2650 {
2651 *sectp = NULL;
2652 *bufp = NULL;
2653 *sizep = 0;
2654 return;
2655 }
2656 switch (sect)
2657 {
2658 case DWARF2_DEBUG_FRAME:
2659 info = &data->frame;
2660 break;
2661 case DWARF2_EH_FRAME:
2662 info = &data->eh_frame;
2663 break;
2664 default:
2665 gdb_assert_not_reached ("unexpected section");
2666 }
2667
2668 dwarf2_read_section (objfile, info);
2669
2670 *sectp = get_section_bfd_section (info);
2671 *bufp = info->buffer;
2672 *sizep = info->size;
2673 }
2674
2675 /* A helper function to find the sections for a .dwz file. */
2676
2677 static void
2678 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2679 {
2680 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2681
2682 /* Note that we only support the standard ELF names, because .dwz
2683 is ELF-only (at the time of writing). */
2684 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2685 {
2686 dwz_file->abbrev.s.section = sectp;
2687 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2688 }
2689 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2690 {
2691 dwz_file->info.s.section = sectp;
2692 dwz_file->info.size = bfd_get_section_size (sectp);
2693 }
2694 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2695 {
2696 dwz_file->str.s.section = sectp;
2697 dwz_file->str.size = bfd_get_section_size (sectp);
2698 }
2699 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2700 {
2701 dwz_file->line.s.section = sectp;
2702 dwz_file->line.size = bfd_get_section_size (sectp);
2703 }
2704 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2705 {
2706 dwz_file->macro.s.section = sectp;
2707 dwz_file->macro.size = bfd_get_section_size (sectp);
2708 }
2709 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2710 {
2711 dwz_file->gdb_index.s.section = sectp;
2712 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2713 }
2714 }
2715
2716 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2717 there is no .gnu_debugaltlink section in the file. Error if there
2718 is such a section but the file cannot be found. */
2719
2720 static struct dwz_file *
2721 dwarf2_get_dwz_file (void)
2722 {
2723 const char *filename;
2724 struct dwz_file *result;
2725 bfd_size_type buildid_len_arg;
2726 size_t buildid_len;
2727 bfd_byte *buildid;
2728
2729 if (dwarf2_per_objfile->dwz_file != NULL)
2730 return dwarf2_per_objfile->dwz_file;
2731
2732 bfd_set_error (bfd_error_no_error);
2733 gdb::unique_xmalloc_ptr<char> data
2734 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2735 &buildid_len_arg, &buildid));
2736 if (data == NULL)
2737 {
2738 if (bfd_get_error () == bfd_error_no_error)
2739 return NULL;
2740 error (_("could not read '.gnu_debugaltlink' section: %s"),
2741 bfd_errmsg (bfd_get_error ()));
2742 }
2743
2744 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2745
2746 buildid_len = (size_t) buildid_len_arg;
2747
2748 filename = data.get ();
2749
2750 std::string abs_storage;
2751 if (!IS_ABSOLUTE_PATH (filename))
2752 {
2753 gdb::unique_xmalloc_ptr<char> abs
2754 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2755
2756 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2757 filename = abs_storage.c_str ();
2758 }
2759
2760 /* First try the file name given in the section. If that doesn't
2761 work, try to use the build-id instead. */
2762 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2763 if (dwz_bfd != NULL)
2764 {
2765 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2766 dwz_bfd.release ();
2767 }
2768
2769 if (dwz_bfd == NULL)
2770 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2771
2772 if (dwz_bfd == NULL)
2773 error (_("could not find '.gnu_debugaltlink' file for %s"),
2774 objfile_name (dwarf2_per_objfile->objfile));
2775
2776 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2777 struct dwz_file);
2778 result->dwz_bfd = dwz_bfd.release ();
2779
2780 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2781
2782 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2783 dwarf2_per_objfile->dwz_file = result;
2784 return result;
2785 }
2786 \f
2787 /* DWARF quick_symbols_functions support. */
2788
2789 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2790 unique line tables, so we maintain a separate table of all .debug_line
2791 derived entries to support the sharing.
2792 All the quick functions need is the list of file names. We discard the
2793 line_header when we're done and don't need to record it here. */
2794 struct quick_file_names
2795 {
2796 /* The data used to construct the hash key. */
2797 struct stmt_list_hash hash;
2798
2799 /* The number of entries in file_names, real_names. */
2800 unsigned int num_file_names;
2801
2802 /* The file names from the line table, after being run through
2803 file_full_name. */
2804 const char **file_names;
2805
2806 /* The file names from the line table after being run through
2807 gdb_realpath. These are computed lazily. */
2808 const char **real_names;
2809 };
2810
2811 /* When using the index (and thus not using psymtabs), each CU has an
2812 object of this type. This is used to hold information needed by
2813 the various "quick" methods. */
2814 struct dwarf2_per_cu_quick_data
2815 {
2816 /* The file table. This can be NULL if there was no file table
2817 or it's currently not read in.
2818 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2819 struct quick_file_names *file_names;
2820
2821 /* The corresponding symbol table. This is NULL if symbols for this
2822 CU have not yet been read. */
2823 struct compunit_symtab *compunit_symtab;
2824
2825 /* A temporary mark bit used when iterating over all CUs in
2826 expand_symtabs_matching. */
2827 unsigned int mark : 1;
2828
2829 /* True if we've tried to read the file table and found there isn't one.
2830 There will be no point in trying to read it again next time. */
2831 unsigned int no_file_data : 1;
2832 };
2833
2834 /* Utility hash function for a stmt_list_hash. */
2835
2836 static hashval_t
2837 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2838 {
2839 hashval_t v = 0;
2840
2841 if (stmt_list_hash->dwo_unit != NULL)
2842 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2843 v += to_underlying (stmt_list_hash->line_sect_off);
2844 return v;
2845 }
2846
2847 /* Utility equality function for a stmt_list_hash. */
2848
2849 static int
2850 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2851 const struct stmt_list_hash *rhs)
2852 {
2853 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2854 return 0;
2855 if (lhs->dwo_unit != NULL
2856 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2857 return 0;
2858
2859 return lhs->line_sect_off == rhs->line_sect_off;
2860 }
2861
2862 /* Hash function for a quick_file_names. */
2863
2864 static hashval_t
2865 hash_file_name_entry (const void *e)
2866 {
2867 const struct quick_file_names *file_data
2868 = (const struct quick_file_names *) e;
2869
2870 return hash_stmt_list_entry (&file_data->hash);
2871 }
2872
2873 /* Equality function for a quick_file_names. */
2874
2875 static int
2876 eq_file_name_entry (const void *a, const void *b)
2877 {
2878 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2879 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2880
2881 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2882 }
2883
2884 /* Delete function for a quick_file_names. */
2885
2886 static void
2887 delete_file_name_entry (void *e)
2888 {
2889 struct quick_file_names *file_data = (struct quick_file_names *) e;
2890 int i;
2891
2892 for (i = 0; i < file_data->num_file_names; ++i)
2893 {
2894 xfree ((void*) file_data->file_names[i]);
2895 if (file_data->real_names)
2896 xfree ((void*) file_data->real_names[i]);
2897 }
2898
2899 /* The space for the struct itself lives on objfile_obstack,
2900 so we don't free it here. */
2901 }
2902
2903 /* Create a quick_file_names hash table. */
2904
2905 static htab_t
2906 create_quick_file_names_table (unsigned int nr_initial_entries)
2907 {
2908 return htab_create_alloc (nr_initial_entries,
2909 hash_file_name_entry, eq_file_name_entry,
2910 delete_file_name_entry, xcalloc, xfree);
2911 }
2912
2913 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2914 have to be created afterwards. You should call age_cached_comp_units after
2915 processing PER_CU->CU. dw2_setup must have been already called. */
2916
2917 static void
2918 load_cu (struct dwarf2_per_cu_data *per_cu)
2919 {
2920 if (per_cu->is_debug_types)
2921 load_full_type_unit (per_cu);
2922 else
2923 load_full_comp_unit (per_cu, language_minimal);
2924
2925 if (per_cu->cu == NULL)
2926 return; /* Dummy CU. */
2927
2928 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2929 }
2930
2931 /* Read in the symbols for PER_CU. */
2932
2933 static void
2934 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2935 {
2936 struct cleanup *back_to;
2937
2938 /* Skip type_unit_groups, reading the type units they contain
2939 is handled elsewhere. */
2940 if (IS_TYPE_UNIT_GROUP (per_cu))
2941 return;
2942
2943 back_to = make_cleanup (dwarf2_release_queue, NULL);
2944
2945 if (dwarf2_per_objfile->using_index
2946 ? per_cu->v.quick->compunit_symtab == NULL
2947 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2948 {
2949 queue_comp_unit (per_cu, language_minimal);
2950 load_cu (per_cu);
2951
2952 /* If we just loaded a CU from a DWO, and we're working with an index
2953 that may badly handle TUs, load all the TUs in that DWO as well.
2954 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2955 if (!per_cu->is_debug_types
2956 && per_cu->cu != NULL
2957 && per_cu->cu->dwo_unit != NULL
2958 && dwarf2_per_objfile->index_table != NULL
2959 && dwarf2_per_objfile->index_table->version <= 7
2960 /* DWP files aren't supported yet. */
2961 && get_dwp_file () == NULL)
2962 queue_and_load_all_dwo_tus (per_cu);
2963 }
2964
2965 process_queue ();
2966
2967 /* Age the cache, releasing compilation units that have not
2968 been used recently. */
2969 age_cached_comp_units ();
2970
2971 do_cleanups (back_to);
2972 }
2973
2974 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2975 the objfile from which this CU came. Returns the resulting symbol
2976 table. */
2977
2978 static struct compunit_symtab *
2979 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2980 {
2981 gdb_assert (dwarf2_per_objfile->using_index);
2982 if (!per_cu->v.quick->compunit_symtab)
2983 {
2984 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2985 scoped_restore decrementer = increment_reading_symtab ();
2986 dw2_do_instantiate_symtab (per_cu);
2987 process_cu_includes ();
2988 do_cleanups (back_to);
2989 }
2990
2991 return per_cu->v.quick->compunit_symtab;
2992 }
2993
2994 /* Return the CU/TU given its index.
2995
2996 This is intended for loops like:
2997
2998 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2999 + dwarf2_per_objfile->n_type_units); ++i)
3000 {
3001 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3002
3003 ...;
3004 }
3005 */
3006
3007 static struct dwarf2_per_cu_data *
3008 dw2_get_cutu (int index)
3009 {
3010 if (index >= dwarf2_per_objfile->n_comp_units)
3011 {
3012 index -= dwarf2_per_objfile->n_comp_units;
3013 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3014 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3015 }
3016
3017 return dwarf2_per_objfile->all_comp_units[index];
3018 }
3019
3020 /* Return the CU given its index.
3021 This differs from dw2_get_cutu in that it's for when you know INDEX
3022 refers to a CU. */
3023
3024 static struct dwarf2_per_cu_data *
3025 dw2_get_cu (int index)
3026 {
3027 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3028
3029 return dwarf2_per_objfile->all_comp_units[index];
3030 }
3031
3032 /* A helper for create_cus_from_index that handles a given list of
3033 CUs. */
3034
3035 static void
3036 create_cus_from_index_list (struct objfile *objfile,
3037 const gdb_byte *cu_list, offset_type n_elements,
3038 struct dwarf2_section_info *section,
3039 int is_dwz,
3040 int base_offset)
3041 {
3042 offset_type i;
3043
3044 for (i = 0; i < n_elements; i += 2)
3045 {
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047
3048 sect_offset sect_off
3049 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3050 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3051 cu_list += 2 * 8;
3052
3053 dwarf2_per_cu_data *the_cu
3054 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3055 struct dwarf2_per_cu_data);
3056 the_cu->sect_off = sect_off;
3057 the_cu->length = length;
3058 the_cu->objfile = objfile;
3059 the_cu->section = section;
3060 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062 the_cu->is_dwz = is_dwz;
3063 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3064 }
3065 }
3066
3067 /* Read the CU list from the mapped index, and use it to create all
3068 the CU objects for this objfile. */
3069
3070 static void
3071 create_cus_from_index (struct objfile *objfile,
3072 const gdb_byte *cu_list, offset_type cu_list_elements,
3073 const gdb_byte *dwz_list, offset_type dwz_elements)
3074 {
3075 struct dwz_file *dwz;
3076
3077 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3078 dwarf2_per_objfile->all_comp_units =
3079 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3080 dwarf2_per_objfile->n_comp_units);
3081
3082 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3083 &dwarf2_per_objfile->info, 0, 0);
3084
3085 if (dwz_elements == 0)
3086 return;
3087
3088 dwz = dwarf2_get_dwz_file ();
3089 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3090 cu_list_elements / 2);
3091 }
3092
3093 /* Create the signatured type hash table from the index. */
3094
3095 static void
3096 create_signatured_type_table_from_index (struct objfile *objfile,
3097 struct dwarf2_section_info *section,
3098 const gdb_byte *bytes,
3099 offset_type elements)
3100 {
3101 offset_type i;
3102 htab_t sig_types_hash;
3103
3104 dwarf2_per_objfile->n_type_units
3105 = dwarf2_per_objfile->n_allocated_type_units
3106 = elements / 3;
3107 dwarf2_per_objfile->all_type_units =
3108 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3109
3110 sig_types_hash = allocate_signatured_type_table (objfile);
3111
3112 for (i = 0; i < elements; i += 3)
3113 {
3114 struct signatured_type *sig_type;
3115 ULONGEST signature;
3116 void **slot;
3117 cu_offset type_offset_in_tu;
3118
3119 gdb_static_assert (sizeof (ULONGEST) >= 8);
3120 sect_offset sect_off
3121 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3122 type_offset_in_tu
3123 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3124 BFD_ENDIAN_LITTLE);
3125 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3126 bytes += 3 * 8;
3127
3128 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3129 struct signatured_type);
3130 sig_type->signature = signature;
3131 sig_type->type_offset_in_tu = type_offset_in_tu;
3132 sig_type->per_cu.is_debug_types = 1;
3133 sig_type->per_cu.section = section;
3134 sig_type->per_cu.sect_off = sect_off;
3135 sig_type->per_cu.objfile = objfile;
3136 sig_type->per_cu.v.quick
3137 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3138 struct dwarf2_per_cu_quick_data);
3139
3140 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3141 *slot = sig_type;
3142
3143 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3144 }
3145
3146 dwarf2_per_objfile->signatured_types = sig_types_hash;
3147 }
3148
3149 /* Read the address map data from the mapped index, and use it to
3150 populate the objfile's psymtabs_addrmap. */
3151
3152 static void
3153 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3154 {
3155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3156 const gdb_byte *iter, *end;
3157 struct addrmap *mutable_map;
3158 CORE_ADDR baseaddr;
3159
3160 auto_obstack temp_obstack;
3161
3162 mutable_map = addrmap_create_mutable (&temp_obstack);
3163
3164 iter = index->address_table;
3165 end = iter + index->address_table_size;
3166
3167 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3168
3169 while (iter < end)
3170 {
3171 ULONGEST hi, lo, cu_index;
3172 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3173 iter += 8;
3174 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3175 iter += 8;
3176 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3177 iter += 4;
3178
3179 if (lo > hi)
3180 {
3181 complaint (&symfile_complaints,
3182 _(".gdb_index address table has invalid range (%s - %s)"),
3183 hex_string (lo), hex_string (hi));
3184 continue;
3185 }
3186
3187 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3188 {
3189 complaint (&symfile_complaints,
3190 _(".gdb_index address table has invalid CU number %u"),
3191 (unsigned) cu_index);
3192 continue;
3193 }
3194
3195 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3196 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3197 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3198 }
3199
3200 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3201 &objfile->objfile_obstack);
3202 }
3203
3204 /* The hash function for strings in the mapped index. This is the same as
3205 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3206 implementation. This is necessary because the hash function is tied to the
3207 format of the mapped index file. The hash values do not have to match with
3208 SYMBOL_HASH_NEXT.
3209
3210 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3211
3212 static hashval_t
3213 mapped_index_string_hash (int index_version, const void *p)
3214 {
3215 const unsigned char *str = (const unsigned char *) p;
3216 hashval_t r = 0;
3217 unsigned char c;
3218
3219 while ((c = *str++) != 0)
3220 {
3221 if (index_version >= 5)
3222 c = tolower (c);
3223 r = r * 67 + c - 113;
3224 }
3225
3226 return r;
3227 }
3228
3229 /* Find a slot in the mapped index INDEX for the object named NAME.
3230 If NAME is found, set *VEC_OUT to point to the CU vector in the
3231 constant pool and return true. If NAME cannot be found, return
3232 false. */
3233
3234 static bool
3235 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3236 offset_type **vec_out)
3237 {
3238 offset_type hash;
3239 offset_type slot, step;
3240 int (*cmp) (const char *, const char *);
3241
3242 gdb::unique_xmalloc_ptr<char> without_params;
3243 if (current_language->la_language == language_cplus
3244 || current_language->la_language == language_fortran
3245 || current_language->la_language == language_d)
3246 {
3247 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3248 not contain any. */
3249
3250 if (strchr (name, '(') != NULL)
3251 {
3252 without_params = cp_remove_params (name);
3253
3254 if (without_params != NULL)
3255 name = without_params.get ();
3256 }
3257 }
3258
3259 /* Index version 4 did not support case insensitive searches. But the
3260 indices for case insensitive languages are built in lowercase, therefore
3261 simulate our NAME being searched is also lowercased. */
3262 hash = mapped_index_string_hash ((index->version == 4
3263 && case_sensitivity == case_sensitive_off
3264 ? 5 : index->version),
3265 name);
3266
3267 slot = hash & (index->symbol_table_slots - 1);
3268 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3269 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3270
3271 for (;;)
3272 {
3273 /* Convert a slot number to an offset into the table. */
3274 offset_type i = 2 * slot;
3275 const char *str;
3276 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3277 return false;
3278
3279 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3280 if (!cmp (name, str))
3281 {
3282 *vec_out = (offset_type *) (index->constant_pool
3283 + MAYBE_SWAP (index->symbol_table[i + 1]));
3284 return true;
3285 }
3286
3287 slot = (slot + step) & (index->symbol_table_slots - 1);
3288 }
3289 }
3290
3291 /* A helper function that reads the .gdb_index from SECTION and fills
3292 in MAP. FILENAME is the name of the file containing the section;
3293 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3294 ok to use deprecated sections.
3295
3296 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3297 out parameters that are filled in with information about the CU and
3298 TU lists in the section.
3299
3300 Returns 1 if all went well, 0 otherwise. */
3301
3302 static int
3303 read_index_from_section (struct objfile *objfile,
3304 const char *filename,
3305 int deprecated_ok,
3306 struct dwarf2_section_info *section,
3307 struct mapped_index *map,
3308 const gdb_byte **cu_list,
3309 offset_type *cu_list_elements,
3310 const gdb_byte **types_list,
3311 offset_type *types_list_elements)
3312 {
3313 const gdb_byte *addr;
3314 offset_type version;
3315 offset_type *metadata;
3316 int i;
3317
3318 if (dwarf2_section_empty_p (section))
3319 return 0;
3320
3321 /* Older elfutils strip versions could keep the section in the main
3322 executable while splitting it for the separate debug info file. */
3323 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3324 return 0;
3325
3326 dwarf2_read_section (objfile, section);
3327
3328 addr = section->buffer;
3329 /* Version check. */
3330 version = MAYBE_SWAP (*(offset_type *) addr);
3331 /* Versions earlier than 3 emitted every copy of a psymbol. This
3332 causes the index to behave very poorly for certain requests. Version 3
3333 contained incomplete addrmap. So, it seems better to just ignore such
3334 indices. */
3335 if (version < 4)
3336 {
3337 static int warning_printed = 0;
3338 if (!warning_printed)
3339 {
3340 warning (_("Skipping obsolete .gdb_index section in %s."),
3341 filename);
3342 warning_printed = 1;
3343 }
3344 return 0;
3345 }
3346 /* Index version 4 uses a different hash function than index version
3347 5 and later.
3348
3349 Versions earlier than 6 did not emit psymbols for inlined
3350 functions. Using these files will cause GDB not to be able to
3351 set breakpoints on inlined functions by name, so we ignore these
3352 indices unless the user has done
3353 "set use-deprecated-index-sections on". */
3354 if (version < 6 && !deprecated_ok)
3355 {
3356 static int warning_printed = 0;
3357 if (!warning_printed)
3358 {
3359 warning (_("\
3360 Skipping deprecated .gdb_index section in %s.\n\
3361 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3362 to use the section anyway."),
3363 filename);
3364 warning_printed = 1;
3365 }
3366 return 0;
3367 }
3368 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3369 of the TU (for symbols coming from TUs),
3370 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3371 Plus gold-generated indices can have duplicate entries for global symbols,
3372 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3373 These are just performance bugs, and we can't distinguish gdb-generated
3374 indices from gold-generated ones, so issue no warning here. */
3375
3376 /* Indexes with higher version than the one supported by GDB may be no
3377 longer backward compatible. */
3378 if (version > 8)
3379 return 0;
3380
3381 map->version = version;
3382 map->total_size = section->size;
3383
3384 metadata = (offset_type *) (addr + sizeof (offset_type));
3385
3386 i = 0;
3387 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3388 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3389 / 8);
3390 ++i;
3391
3392 *types_list = addr + MAYBE_SWAP (metadata[i]);
3393 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3394 - MAYBE_SWAP (metadata[i]))
3395 / 8);
3396 ++i;
3397
3398 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3399 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3400 - MAYBE_SWAP (metadata[i]));
3401 ++i;
3402
3403 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3404 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3405 - MAYBE_SWAP (metadata[i]))
3406 / (2 * sizeof (offset_type)));
3407 ++i;
3408
3409 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3410
3411 return 1;
3412 }
3413
3414
3415 /* Read the index file. If everything went ok, initialize the "quick"
3416 elements of all the CUs and return 1. Otherwise, return 0. */
3417
3418 static int
3419 dwarf2_read_index (struct objfile *objfile)
3420 {
3421 struct mapped_index local_map, *map;
3422 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3423 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3424 struct dwz_file *dwz;
3425
3426 if (!read_index_from_section (objfile, objfile_name (objfile),
3427 use_deprecated_index_sections,
3428 &dwarf2_per_objfile->gdb_index, &local_map,
3429 &cu_list, &cu_list_elements,
3430 &types_list, &types_list_elements))
3431 return 0;
3432
3433 /* Don't use the index if it's empty. */
3434 if (local_map.symbol_table_slots == 0)
3435 return 0;
3436
3437 /* If there is a .dwz file, read it so we can get its CU list as
3438 well. */
3439 dwz = dwarf2_get_dwz_file ();
3440 if (dwz != NULL)
3441 {
3442 struct mapped_index dwz_map;
3443 const gdb_byte *dwz_types_ignore;
3444 offset_type dwz_types_elements_ignore;
3445
3446 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3447 1,
3448 &dwz->gdb_index, &dwz_map,
3449 &dwz_list, &dwz_list_elements,
3450 &dwz_types_ignore,
3451 &dwz_types_elements_ignore))
3452 {
3453 warning (_("could not read '.gdb_index' section from %s; skipping"),
3454 bfd_get_filename (dwz->dwz_bfd));
3455 return 0;
3456 }
3457 }
3458
3459 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3460 dwz_list_elements);
3461
3462 if (types_list_elements)
3463 {
3464 struct dwarf2_section_info *section;
3465
3466 /* We can only handle a single .debug_types when we have an
3467 index. */
3468 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3469 return 0;
3470
3471 section = VEC_index (dwarf2_section_info_def,
3472 dwarf2_per_objfile->types, 0);
3473
3474 create_signatured_type_table_from_index (objfile, section, types_list,
3475 types_list_elements);
3476 }
3477
3478 create_addrmap_from_index (objfile, &local_map);
3479
3480 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3481 map = new (map) mapped_index ();
3482 *map = local_map;
3483
3484 dwarf2_per_objfile->index_table = map;
3485 dwarf2_per_objfile->using_index = 1;
3486 dwarf2_per_objfile->quick_file_names_table =
3487 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3488
3489 return 1;
3490 }
3491
3492 /* A helper for the "quick" functions which sets the global
3493 dwarf2_per_objfile according to OBJFILE. */
3494
3495 static void
3496 dw2_setup (struct objfile *objfile)
3497 {
3498 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3499 objfile_data (objfile, dwarf2_objfile_data_key));
3500 gdb_assert (dwarf2_per_objfile);
3501 }
3502
3503 /* die_reader_func for dw2_get_file_names. */
3504
3505 static void
3506 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3507 const gdb_byte *info_ptr,
3508 struct die_info *comp_unit_die,
3509 int has_children,
3510 void *data)
3511 {
3512 struct dwarf2_cu *cu = reader->cu;
3513 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3514 struct objfile *objfile = dwarf2_per_objfile->objfile;
3515 struct dwarf2_per_cu_data *lh_cu;
3516 struct attribute *attr;
3517 int i;
3518 void **slot;
3519 struct quick_file_names *qfn;
3520
3521 gdb_assert (! this_cu->is_debug_types);
3522
3523 /* Our callers never want to match partial units -- instead they
3524 will match the enclosing full CU. */
3525 if (comp_unit_die->tag == DW_TAG_partial_unit)
3526 {
3527 this_cu->v.quick->no_file_data = 1;
3528 return;
3529 }
3530
3531 lh_cu = this_cu;
3532 slot = NULL;
3533
3534 line_header_up lh;
3535 sect_offset line_offset {};
3536
3537 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3538 if (attr)
3539 {
3540 struct quick_file_names find_entry;
3541
3542 line_offset = (sect_offset) DW_UNSND (attr);
3543
3544 /* We may have already read in this line header (TU line header sharing).
3545 If we have we're done. */
3546 find_entry.hash.dwo_unit = cu->dwo_unit;
3547 find_entry.hash.line_sect_off = line_offset;
3548 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3549 &find_entry, INSERT);
3550 if (*slot != NULL)
3551 {
3552 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3553 return;
3554 }
3555
3556 lh = dwarf_decode_line_header (line_offset, cu);
3557 }
3558 if (lh == NULL)
3559 {
3560 lh_cu->v.quick->no_file_data = 1;
3561 return;
3562 }
3563
3564 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3565 qfn->hash.dwo_unit = cu->dwo_unit;
3566 qfn->hash.line_sect_off = line_offset;
3567 gdb_assert (slot != NULL);
3568 *slot = qfn;
3569
3570 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3571
3572 qfn->num_file_names = lh->file_names.size ();
3573 qfn->file_names =
3574 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3575 for (i = 0; i < lh->file_names.size (); ++i)
3576 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3577 qfn->real_names = NULL;
3578
3579 lh_cu->v.quick->file_names = qfn;
3580 }
3581
3582 /* A helper for the "quick" functions which attempts to read the line
3583 table for THIS_CU. */
3584
3585 static struct quick_file_names *
3586 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3587 {
3588 /* This should never be called for TUs. */
3589 gdb_assert (! this_cu->is_debug_types);
3590 /* Nor type unit groups. */
3591 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3592
3593 if (this_cu->v.quick->file_names != NULL)
3594 return this_cu->v.quick->file_names;
3595 /* If we know there is no line data, no point in looking again. */
3596 if (this_cu->v.quick->no_file_data)
3597 return NULL;
3598
3599 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3600
3601 if (this_cu->v.quick->no_file_data)
3602 return NULL;
3603 return this_cu->v.quick->file_names;
3604 }
3605
3606 /* A helper for the "quick" functions which computes and caches the
3607 real path for a given file name from the line table. */
3608
3609 static const char *
3610 dw2_get_real_path (struct objfile *objfile,
3611 struct quick_file_names *qfn, int index)
3612 {
3613 if (qfn->real_names == NULL)
3614 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3615 qfn->num_file_names, const char *);
3616
3617 if (qfn->real_names[index] == NULL)
3618 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3619
3620 return qfn->real_names[index];
3621 }
3622
3623 static struct symtab *
3624 dw2_find_last_source_symtab (struct objfile *objfile)
3625 {
3626 struct compunit_symtab *cust;
3627 int index;
3628
3629 dw2_setup (objfile);
3630 index = dwarf2_per_objfile->n_comp_units - 1;
3631 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3632 if (cust == NULL)
3633 return NULL;
3634 return compunit_primary_filetab (cust);
3635 }
3636
3637 /* Traversal function for dw2_forget_cached_source_info. */
3638
3639 static int
3640 dw2_free_cached_file_names (void **slot, void *info)
3641 {
3642 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3643
3644 if (file_data->real_names)
3645 {
3646 int i;
3647
3648 for (i = 0; i < file_data->num_file_names; ++i)
3649 {
3650 xfree ((void*) file_data->real_names[i]);
3651 file_data->real_names[i] = NULL;
3652 }
3653 }
3654
3655 return 1;
3656 }
3657
3658 static void
3659 dw2_forget_cached_source_info (struct objfile *objfile)
3660 {
3661 dw2_setup (objfile);
3662
3663 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3664 dw2_free_cached_file_names, NULL);
3665 }
3666
3667 /* Helper function for dw2_map_symtabs_matching_filename that expands
3668 the symtabs and calls the iterator. */
3669
3670 static int
3671 dw2_map_expand_apply (struct objfile *objfile,
3672 struct dwarf2_per_cu_data *per_cu,
3673 const char *name, const char *real_path,
3674 gdb::function_view<bool (symtab *)> callback)
3675 {
3676 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3677
3678 /* Don't visit already-expanded CUs. */
3679 if (per_cu->v.quick->compunit_symtab)
3680 return 0;
3681
3682 /* This may expand more than one symtab, and we want to iterate over
3683 all of them. */
3684 dw2_instantiate_symtab (per_cu);
3685
3686 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3687 last_made, callback);
3688 }
3689
3690 /* Implementation of the map_symtabs_matching_filename method. */
3691
3692 static bool
3693 dw2_map_symtabs_matching_filename
3694 (struct objfile *objfile, const char *name, const char *real_path,
3695 gdb::function_view<bool (symtab *)> callback)
3696 {
3697 int i;
3698 const char *name_basename = lbasename (name);
3699
3700 dw2_setup (objfile);
3701
3702 /* The rule is CUs specify all the files, including those used by
3703 any TU, so there's no need to scan TUs here. */
3704
3705 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3706 {
3707 int j;
3708 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3709 struct quick_file_names *file_data;
3710
3711 /* We only need to look at symtabs not already expanded. */
3712 if (per_cu->v.quick->compunit_symtab)
3713 continue;
3714
3715 file_data = dw2_get_file_names (per_cu);
3716 if (file_data == NULL)
3717 continue;
3718
3719 for (j = 0; j < file_data->num_file_names; ++j)
3720 {
3721 const char *this_name = file_data->file_names[j];
3722 const char *this_real_name;
3723
3724 if (compare_filenames_for_search (this_name, name))
3725 {
3726 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3727 callback))
3728 return true;
3729 continue;
3730 }
3731
3732 /* Before we invoke realpath, which can get expensive when many
3733 files are involved, do a quick comparison of the basenames. */
3734 if (! basenames_may_differ
3735 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3736 continue;
3737
3738 this_real_name = dw2_get_real_path (objfile, file_data, j);
3739 if (compare_filenames_for_search (this_real_name, name))
3740 {
3741 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3742 callback))
3743 return true;
3744 continue;
3745 }
3746
3747 if (real_path != NULL)
3748 {
3749 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3750 gdb_assert (IS_ABSOLUTE_PATH (name));
3751 if (this_real_name != NULL
3752 && FILENAME_CMP (real_path, this_real_name) == 0)
3753 {
3754 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3755 callback))
3756 return true;
3757 continue;
3758 }
3759 }
3760 }
3761 }
3762
3763 return false;
3764 }
3765
3766 /* Struct used to manage iterating over all CUs looking for a symbol. */
3767
3768 struct dw2_symtab_iterator
3769 {
3770 /* The internalized form of .gdb_index. */
3771 struct mapped_index *index;
3772 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3773 int want_specific_block;
3774 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3775 Unused if !WANT_SPECIFIC_BLOCK. */
3776 int block_index;
3777 /* The kind of symbol we're looking for. */
3778 domain_enum domain;
3779 /* The list of CUs from the index entry of the symbol,
3780 or NULL if not found. */
3781 offset_type *vec;
3782 /* The next element in VEC to look at. */
3783 int next;
3784 /* The number of elements in VEC, or zero if there is no match. */
3785 int length;
3786 /* Have we seen a global version of the symbol?
3787 If so we can ignore all further global instances.
3788 This is to work around gold/15646, inefficient gold-generated
3789 indices. */
3790 int global_seen;
3791 };
3792
3793 /* Initialize the index symtab iterator ITER.
3794 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3795 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3796
3797 static void
3798 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3799 struct mapped_index *index,
3800 int want_specific_block,
3801 int block_index,
3802 domain_enum domain,
3803 const char *name)
3804 {
3805 iter->index = index;
3806 iter->want_specific_block = want_specific_block;
3807 iter->block_index = block_index;
3808 iter->domain = domain;
3809 iter->next = 0;
3810 iter->global_seen = 0;
3811
3812 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3813 iter->length = MAYBE_SWAP (*iter->vec);
3814 else
3815 {
3816 iter->vec = NULL;
3817 iter->length = 0;
3818 }
3819 }
3820
3821 /* Return the next matching CU or NULL if there are no more. */
3822
3823 static struct dwarf2_per_cu_data *
3824 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3825 {
3826 for ( ; iter->next < iter->length; ++iter->next)
3827 {
3828 offset_type cu_index_and_attrs =
3829 MAYBE_SWAP (iter->vec[iter->next + 1]);
3830 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3831 struct dwarf2_per_cu_data *per_cu;
3832 int want_static = iter->block_index != GLOBAL_BLOCK;
3833 /* This value is only valid for index versions >= 7. */
3834 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3835 gdb_index_symbol_kind symbol_kind =
3836 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3837 /* Only check the symbol attributes if they're present.
3838 Indices prior to version 7 don't record them,
3839 and indices >= 7 may elide them for certain symbols
3840 (gold does this). */
3841 int attrs_valid =
3842 (iter->index->version >= 7
3843 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3844
3845 /* Don't crash on bad data. */
3846 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3847 + dwarf2_per_objfile->n_type_units))
3848 {
3849 complaint (&symfile_complaints,
3850 _(".gdb_index entry has bad CU index"
3851 " [in module %s]"),
3852 objfile_name (dwarf2_per_objfile->objfile));
3853 continue;
3854 }
3855
3856 per_cu = dw2_get_cutu (cu_index);
3857
3858 /* Skip if already read in. */
3859 if (per_cu->v.quick->compunit_symtab)
3860 continue;
3861
3862 /* Check static vs global. */
3863 if (attrs_valid)
3864 {
3865 if (iter->want_specific_block
3866 && want_static != is_static)
3867 continue;
3868 /* Work around gold/15646. */
3869 if (!is_static && iter->global_seen)
3870 continue;
3871 if (!is_static)
3872 iter->global_seen = 1;
3873 }
3874
3875 /* Only check the symbol's kind if it has one. */
3876 if (attrs_valid)
3877 {
3878 switch (iter->domain)
3879 {
3880 case VAR_DOMAIN:
3881 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3882 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3883 /* Some types are also in VAR_DOMAIN. */
3884 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3885 continue;
3886 break;
3887 case STRUCT_DOMAIN:
3888 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3889 continue;
3890 break;
3891 case LABEL_DOMAIN:
3892 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3893 continue;
3894 break;
3895 default:
3896 break;
3897 }
3898 }
3899
3900 ++iter->next;
3901 return per_cu;
3902 }
3903
3904 return NULL;
3905 }
3906
3907 static struct compunit_symtab *
3908 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3909 const char *name, domain_enum domain)
3910 {
3911 struct compunit_symtab *stab_best = NULL;
3912 struct mapped_index *index;
3913
3914 dw2_setup (objfile);
3915
3916 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3917
3918 index = dwarf2_per_objfile->index_table;
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index)
3922 {
3923 struct dw2_symtab_iterator iter;
3924 struct dwarf2_per_cu_data *per_cu;
3925
3926 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3927
3928 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3929 {
3930 struct symbol *sym, *with_opaque = NULL;
3931 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3932 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3933 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3934
3935 sym = block_find_symbol (block, name, domain,
3936 block_find_non_opaque_type_preferred,
3937 &with_opaque);
3938
3939 /* Some caution must be observed with overloaded functions
3940 and methods, since the index will not contain any overload
3941 information (but NAME might contain it). */
3942
3943 if (sym != NULL
3944 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3945 return stab;
3946 if (with_opaque != NULL
3947 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3948 stab_best = stab;
3949
3950 /* Keep looking through other CUs. */
3951 }
3952 }
3953
3954 return stab_best;
3955 }
3956
3957 static void
3958 dw2_print_stats (struct objfile *objfile)
3959 {
3960 int i, total, count;
3961
3962 dw2_setup (objfile);
3963 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3964 count = 0;
3965 for (i = 0; i < total; ++i)
3966 {
3967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3968
3969 if (!per_cu->v.quick->compunit_symtab)
3970 ++count;
3971 }
3972 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3973 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3974 }
3975
3976 /* This dumps minimal information about the index.
3977 It is called via "mt print objfiles".
3978 One use is to verify .gdb_index has been loaded by the
3979 gdb.dwarf2/gdb-index.exp testcase. */
3980
3981 static void
3982 dw2_dump (struct objfile *objfile)
3983 {
3984 dw2_setup (objfile);
3985 gdb_assert (dwarf2_per_objfile->using_index);
3986 printf_filtered (".gdb_index:");
3987 if (dwarf2_per_objfile->index_table != NULL)
3988 {
3989 printf_filtered (" version %d\n",
3990 dwarf2_per_objfile->index_table->version);
3991 }
3992 else
3993 printf_filtered (" faked for \"readnow\"\n");
3994 printf_filtered ("\n");
3995 }
3996
3997 static void
3998 dw2_relocate (struct objfile *objfile,
3999 const struct section_offsets *new_offsets,
4000 const struct section_offsets *delta)
4001 {
4002 /* There's nothing to relocate here. */
4003 }
4004
4005 static void
4006 dw2_expand_symtabs_for_function (struct objfile *objfile,
4007 const char *func_name)
4008 {
4009 struct mapped_index *index;
4010
4011 dw2_setup (objfile);
4012
4013 index = dwarf2_per_objfile->index_table;
4014
4015 /* index is NULL if OBJF_READNOW. */
4016 if (index)
4017 {
4018 struct dw2_symtab_iterator iter;
4019 struct dwarf2_per_cu_data *per_cu;
4020
4021 /* Note: It doesn't matter what we pass for block_index here. */
4022 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4023 func_name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 dw2_instantiate_symtab (per_cu);
4027 }
4028 }
4029
4030 static void
4031 dw2_expand_all_symtabs (struct objfile *objfile)
4032 {
4033 int i;
4034
4035 dw2_setup (objfile);
4036
4037 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4038 + dwarf2_per_objfile->n_type_units); ++i)
4039 {
4040 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4041
4042 dw2_instantiate_symtab (per_cu);
4043 }
4044 }
4045
4046 static void
4047 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4048 const char *fullname)
4049 {
4050 int i;
4051
4052 dw2_setup (objfile);
4053
4054 /* We don't need to consider type units here.
4055 This is only called for examining code, e.g. expand_line_sal.
4056 There can be an order of magnitude (or more) more type units
4057 than comp units, and we avoid them if we can. */
4058
4059 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4060 {
4061 int j;
4062 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4063 struct quick_file_names *file_data;
4064
4065 /* We only need to look at symtabs not already expanded. */
4066 if (per_cu->v.quick->compunit_symtab)
4067 continue;
4068
4069 file_data = dw2_get_file_names (per_cu);
4070 if (file_data == NULL)
4071 continue;
4072
4073 for (j = 0; j < file_data->num_file_names; ++j)
4074 {
4075 const char *this_fullname = file_data->file_names[j];
4076
4077 if (filename_cmp (this_fullname, fullname) == 0)
4078 {
4079 dw2_instantiate_symtab (per_cu);
4080 break;
4081 }
4082 }
4083 }
4084 }
4085
4086 static void
4087 dw2_map_matching_symbols (struct objfile *objfile,
4088 const char * name, domain_enum domain,
4089 int global,
4090 int (*callback) (struct block *,
4091 struct symbol *, void *),
4092 void *data, symbol_name_match_type match,
4093 symbol_compare_ftype *ordered_compare)
4094 {
4095 /* Currently unimplemented; used for Ada. The function can be called if the
4096 current language is Ada for a non-Ada objfile using GNU index. As Ada
4097 does not look for non-Ada symbols this function should just return. */
4098 }
4099
4100 /* Symbol name matcher for .gdb_index names.
4101
4102 Symbol names in .gdb_index have a few particularities:
4103
4104 - There's no indication of which is the language of each symbol.
4105
4106 Since each language has its own symbol name matching algorithm,
4107 and we don't know which language is the right one, we must match
4108 each symbol against all languages. This would be a potential
4109 performance problem if it were not mitigated by the
4110 mapped_index::name_components lookup table, which significantly
4111 reduces the number of times we need to call into this matcher,
4112 making it a non-issue.
4113
4114 - Symbol names in the index have no overload (parameter)
4115 information. I.e., in C++, "foo(int)" and "foo(long)" both
4116 appear as "foo" in the index, for example.
4117
4118 This means that the lookup names passed to the symbol name
4119 matcher functions must have no parameter information either
4120 because (e.g.) symbol search name "foo" does not match
4121 lookup-name "foo(int)" [while swapping search name for lookup
4122 name would match].
4123 */
4124 class gdb_index_symbol_name_matcher
4125 {
4126 public:
4127 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4128 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4129
4130 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4131 Returns true if any matcher matches. */
4132 bool matches (const char *symbol_name);
4133
4134 private:
4135 /* A reference to the lookup name we're matching against. */
4136 const lookup_name_info &m_lookup_name;
4137
4138 /* A vector holding all the different symbol name matchers, for all
4139 languages. */
4140 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4141 };
4142
4143 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4144 (const lookup_name_info &lookup_name)
4145 : m_lookup_name (lookup_name)
4146 {
4147 /* Prepare the vector of comparison functions upfront, to avoid
4148 doing the same work for each symbol. Care is taken to avoid
4149 matching with the same matcher more than once if/when multiple
4150 languages use the same matcher function. */
4151 auto &matchers = m_symbol_name_matcher_funcs;
4152 matchers.reserve (nr_languages);
4153
4154 matchers.push_back (default_symbol_name_matcher);
4155
4156 for (int i = 0; i < nr_languages; i++)
4157 {
4158 const language_defn *lang = language_def ((enum language) i);
4159 if (lang->la_get_symbol_name_matcher != NULL)
4160 {
4161 symbol_name_matcher_ftype *name_matcher
4162 = lang->la_get_symbol_name_matcher (m_lookup_name);
4163
4164 /* Don't insert the same comparison routine more than once.
4165 Note that we do this linear walk instead of a cheaper
4166 sorted insert, or use a std::set or something like that,
4167 because relative order of function addresses is not
4168 stable. This is not a problem in practice because the
4169 number of supported languages is low, and the cost here
4170 is tiny compared to the number of searches we'll do
4171 afterwards using this object. */
4172 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4173 == matchers.end ())
4174 matchers.push_back (name_matcher);
4175 }
4176 }
4177 }
4178
4179 bool
4180 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4181 {
4182 for (auto matches_name : m_symbol_name_matcher_funcs)
4183 if (matches_name (symbol_name, m_lookup_name, NULL))
4184 return true;
4185
4186 return false;
4187 }
4188
4189 /* Helper for dw2_expand_symtabs_matching that works with a
4190 mapped_index instead of the containing objfile. This is split to a
4191 separate function in order to be able to unit test the
4192 name_components matching using a mock mapped_index. For each
4193 symbol name that matches, calls MATCH_CALLBACK, passing it the
4194 symbol's index in the mapped_index symbol table. */
4195
4196 static void
4197 dw2_expand_symtabs_matching_symbol
4198 (mapped_index &index,
4199 const lookup_name_info &lookup_name_in,
4200 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4201 enum search_domain kind,
4202 gdb::function_view<void (offset_type)> match_callback)
4203 {
4204 lookup_name_info lookup_name_without_params
4205 = lookup_name_in.make_ignore_params ();
4206 gdb_index_symbol_name_matcher lookup_name_matcher
4207 (lookup_name_without_params);
4208
4209 auto *name_cmp = case_sensitivity == case_sensitive_on ? strcmp : strcasecmp;
4210
4211 /* Build the symbol name component sorted vector, if we haven't yet.
4212 The code below only knows how to break apart components of C++
4213 symbol names (and other languages that use '::' as
4214 namespace/module separator). If we add support for wild matching
4215 to some language that uses some other operator (E.g., Ada, Go and
4216 D use '.'), then we'll need to try splitting the symbol name
4217 according to that language too. Note that Ada does support wild
4218 matching, but doesn't currently support .gdb_index. */
4219 if (index.name_components.empty ())
4220 {
4221 for (size_t iter = 0; iter < index.symbol_table_slots; ++iter)
4222 {
4223 offset_type idx = 2 * iter;
4224
4225 if (index.symbol_table[idx] == 0
4226 && index.symbol_table[idx + 1] == 0)
4227 continue;
4228
4229 const char *name = index.symbol_name_at (idx);
4230
4231 /* Add each name component to the name component table. */
4232 unsigned int previous_len = 0;
4233 for (unsigned int current_len = cp_find_first_component (name);
4234 name[current_len] != '\0';
4235 current_len += cp_find_first_component (name + current_len))
4236 {
4237 gdb_assert (name[current_len] == ':');
4238 index.name_components.push_back ({previous_len, idx});
4239 /* Skip the '::'. */
4240 current_len += 2;
4241 previous_len = current_len;
4242 }
4243 index.name_components.push_back ({previous_len, idx});
4244 }
4245
4246 /* Sort name_components elements by name. */
4247 auto name_comp_compare = [&] (const name_component &left,
4248 const name_component &right)
4249 {
4250 const char *left_qualified = index.symbol_name_at (left.idx);
4251 const char *right_qualified = index.symbol_name_at (right.idx);
4252
4253 const char *left_name = left_qualified + left.name_offset;
4254 const char *right_name = right_qualified + right.name_offset;
4255
4256 return name_cmp (left_name, right_name) < 0;
4257 };
4258
4259 std::sort (index.name_components.begin (),
4260 index.name_components.end (),
4261 name_comp_compare);
4262 }
4263
4264 const char *cplus
4265 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4266
4267 /* Comparison function object for lower_bound that matches against a
4268 given symbol name. */
4269 auto lookup_compare_lower = [&] (const name_component &elem,
4270 const char *name)
4271 {
4272 const char *elem_qualified = index.symbol_name_at (elem.idx);
4273 const char *elem_name = elem_qualified + elem.name_offset;
4274 return name_cmp (elem_name, name) < 0;
4275 };
4276
4277 /* Comparison function object for upper_bound that matches against a
4278 given symbol name. */
4279 auto lookup_compare_upper = [&] (const char *name,
4280 const name_component &elem)
4281 {
4282 const char *elem_qualified = index.symbol_name_at (elem.idx);
4283 const char *elem_name = elem_qualified + elem.name_offset;
4284 return name_cmp (name, elem_name) < 0;
4285 };
4286
4287 auto begin = index.name_components.begin ();
4288 auto end = index.name_components.end ();
4289
4290 /* Find the lower bound. */
4291 auto lower = [&] ()
4292 {
4293 if (lookup_name_in.completion_mode () && cplus[0] == '\0')
4294 return begin;
4295 else
4296 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4297 } ();
4298
4299 /* Find the upper bound. */
4300 auto upper = [&] ()
4301 {
4302 if (lookup_name_in.completion_mode ())
4303 {
4304 /* The string frobbing below won't work if the string is
4305 empty. We don't need it then, anyway -- if we're
4306 completing an empty string, then we want to iterate over
4307 the whole range. */
4308 if (cplus[0] == '\0')
4309 return end;
4310
4311 /* In completion mode, increment the last character because
4312 we want UPPER to point past all symbols names that have
4313 the same prefix. */
4314 std::string after = cplus;
4315
4316 gdb_assert (after.back () != 0xff);
4317 after.back ()++;
4318
4319 return std::upper_bound (lower, end, after.c_str (),
4320 lookup_compare_upper);
4321 }
4322 else
4323 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4324 } ();
4325
4326 /* Now for each symbol name in range, check to see if we have a name
4327 match, and if so, call the MATCH_CALLBACK callback. */
4328
4329 /* The same symbol may appear more than once in the range though.
4330 E.g., if we're looking for symbols that complete "w", and we have
4331 a symbol named "w1::w2", we'll find the two name components for
4332 that same symbol in the range. To be sure we only call the
4333 callback once per symbol, we first collect the symbol name
4334 indexes that matched in a temporary vector and ignore
4335 duplicates. */
4336 std::vector<offset_type> matches;
4337 matches.reserve (std::distance (lower, upper));
4338
4339 for (;lower != upper; ++lower)
4340 {
4341 const char *qualified = index.symbol_name_at (lower->idx);
4342
4343 if (!lookup_name_matcher.matches (qualified)
4344 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4345 continue;
4346
4347 matches.push_back (lower->idx);
4348 }
4349
4350 std::sort (matches.begin (), matches.end ());
4351
4352 /* Finally call the callback, once per match. */
4353 ULONGEST prev = -1;
4354 for (offset_type idx : matches)
4355 {
4356 if (prev != idx)
4357 {
4358 match_callback (idx);
4359 prev = idx;
4360 }
4361 }
4362
4363 /* Above we use a type wider than idx's for 'prev', since 0 and
4364 (offset_type)-1 are both possible values. */
4365 static_assert (sizeof (prev) > sizeof (offset_type), "");
4366 }
4367
4368 #if GDB_SELF_TEST
4369
4370 namespace selftests { namespace dw2_expand_symtabs_matching {
4371
4372 /* A wrapper around mapped_index that builds a mock mapped_index, from
4373 the symbol list passed as parameter to the constructor. */
4374 class mock_mapped_index
4375 {
4376 public:
4377 template<size_t N>
4378 mock_mapped_index (const char *(&symbols)[N])
4379 : mock_mapped_index (symbols, N)
4380 {}
4381
4382 /* Access the built index. */
4383 mapped_index &index ()
4384 { return m_index; }
4385
4386 /* Disable copy. */
4387 mock_mapped_index(const mock_mapped_index &) = delete;
4388 void operator= (const mock_mapped_index &) = delete;
4389
4390 private:
4391 mock_mapped_index (const char **symbols, size_t symbols_size)
4392 {
4393 /* No string can live at offset zero. Add a dummy entry. */
4394 obstack_grow_str0 (&m_constant_pool, "");
4395
4396 for (size_t i = 0; i < symbols_size; i++)
4397 {
4398 const char *sym = symbols[i];
4399 size_t offset = obstack_object_size (&m_constant_pool);
4400 obstack_grow_str0 (&m_constant_pool, sym);
4401 m_symbol_table.push_back (offset);
4402 m_symbol_table.push_back (0);
4403 };
4404
4405 m_index.constant_pool = (const char *) obstack_base (&m_constant_pool);
4406 m_index.symbol_table = m_symbol_table.data ();
4407 m_index.symbol_table_slots = m_symbol_table.size () / 2;
4408 }
4409
4410 public:
4411 /* The built mapped_index. */
4412 mapped_index m_index{};
4413
4414 /* The storage that the built mapped_index uses for symbol and
4415 constant pool tables. */
4416 std::vector<offset_type> m_symbol_table;
4417 auto_obstack m_constant_pool;
4418 };
4419
4420 /* Convenience function that converts a NULL pointer to a "<null>"
4421 string, to pass to print routines. */
4422
4423 static const char *
4424 string_or_null (const char *str)
4425 {
4426 return str != NULL ? str : "<null>";
4427 }
4428
4429 /* Check if a lookup_name_info built from
4430 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4431 index. EXPECTED_LIST is the list of expected matches, in expected
4432 matching order. If no match expected, then an empty list is
4433 specified. Returns true on success. On failure prints a warning
4434 indicating the file:line that failed, and returns false. */
4435
4436 static bool
4437 check_match (const char *file, int line,
4438 mock_mapped_index &mock_index,
4439 const char *name, symbol_name_match_type match_type,
4440 bool completion_mode,
4441 std::initializer_list<const char *> expected_list)
4442 {
4443 lookup_name_info lookup_name (name, match_type, completion_mode);
4444
4445 bool matched = true;
4446
4447 auto mismatch = [&] (const char *expected_str,
4448 const char *got)
4449 {
4450 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4451 "expected=\"%s\", got=\"%s\"\n"),
4452 file, line,
4453 (match_type == symbol_name_match_type::FULL
4454 ? "FULL" : "WILD"),
4455 name, string_or_null (expected_str), string_or_null (got));
4456 matched = false;
4457 };
4458
4459 auto expected_it = expected_list.begin ();
4460 auto expected_end = expected_list.end ();
4461
4462 dw2_expand_symtabs_matching_symbol (mock_index.index (), lookup_name,
4463 NULL, ALL_DOMAIN,
4464 [&] (offset_type idx)
4465 {
4466 const char *matched_name = mock_index.index ().symbol_name_at (idx);
4467 const char *expected_str
4468 = expected_it == expected_end ? NULL : *expected_it++;
4469
4470 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4471 mismatch (expected_str, matched_name);
4472 });
4473
4474 const char *expected_str
4475 = expected_it == expected_end ? NULL : *expected_it++;
4476 if (expected_str != NULL)
4477 mismatch (expected_str, NULL);
4478
4479 return matched;
4480 }
4481
4482 /* The symbols added to the mock mapped_index for testing (in
4483 canonical form). */
4484 static const char *test_symbols[] = {
4485 "function",
4486 "std::bar",
4487 "std::zfunction",
4488 "std::zfunction2",
4489 "w1::w2",
4490 "ns::foo<char*>",
4491 "ns::foo<int>",
4492 "ns::foo<long>",
4493
4494 /* A name with all sorts of complications. Starts with "z" to make
4495 it easier for the completion tests below. */
4496 #define Z_SYM_NAME \
4497 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4498 "::tuple<(anonymous namespace)::ui*, " \
4499 "std::default_delete<(anonymous namespace)::ui>, void>"
4500
4501 Z_SYM_NAME
4502 };
4503
4504 static void
4505 run_test ()
4506 {
4507 mock_mapped_index mock_index (test_symbols);
4508
4509 /* We let all tests run until the end even if some fails, for debug
4510 convenience. */
4511 bool any_mismatch = false;
4512
4513 /* Create the expected symbols list (an initializer_list). Needed
4514 because lists have commas, and we need to pass them to CHECK,
4515 which is a macro. */
4516 #define EXPECT(...) { __VA_ARGS__ }
4517
4518 /* Wrapper for check_match that passes down the current
4519 __FILE__/__LINE__. */
4520 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4521 any_mismatch |= !check_match (__FILE__, __LINE__, \
4522 mock_index, \
4523 NAME, MATCH_TYPE, COMPLETION_MODE, \
4524 EXPECTED_LIST)
4525
4526 /* Identity checks. */
4527 for (const char *sym : test_symbols)
4528 {
4529 /* Should be able to match all existing symbols. */
4530 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4531 EXPECT (sym));
4532
4533 /* Should be able to match all existing symbols with
4534 parameters. */
4535 std::string with_params = std::string (sym) + "(int)";
4536 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4537 EXPECT (sym));
4538
4539 /* Should be able to match all existing symbols with
4540 parameters and qualifiers. */
4541 with_params = std::string (sym) + " ( int ) const";
4542 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4543 EXPECT (sym));
4544
4545 /* This should really find sym, but cp-name-parser.y doesn't
4546 know about lvalue/rvalue qualifiers yet. */
4547 with_params = std::string (sym) + " ( int ) &&";
4548 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4549 {});
4550 }
4551
4552 /* Check that completion mode works at each prefix of the expected
4553 symbol name. */
4554 {
4555 static const char str[] = "function(int)";
4556 size_t len = strlen (str);
4557 std::string lookup;
4558
4559 for (size_t i = 1; i < len; i++)
4560 {
4561 lookup.assign (str, i);
4562 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4563 EXPECT ("function"));
4564 }
4565 }
4566
4567 /* While "w" is a prefix of both components, the match function
4568 should still only be called once. */
4569 {
4570 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4571 EXPECT ("w1::w2"));
4572 }
4573
4574 /* Same, with a "complicated" symbol. */
4575 {
4576 static const char str[] = Z_SYM_NAME;
4577 size_t len = strlen (str);
4578 std::string lookup;
4579
4580 for (size_t i = 1; i < len; i++)
4581 {
4582 lookup.assign (str, i);
4583 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4584 EXPECT (Z_SYM_NAME));
4585 }
4586 }
4587
4588 /* In FULL mode, an incomplete symbol doesn't match. */
4589 {
4590 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4591 {});
4592 }
4593
4594 /* A complete symbol with parameters matches any overload, since the
4595 index has no overload info. */
4596 {
4597 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4598 EXPECT ("std::zfunction", "std::zfunction2"));
4599 }
4600
4601 /* Check that whitespace is ignored appropriately. A symbol with a
4602 template argument list. */
4603 {
4604 static const char expected[] = "ns::foo<int>";
4605 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4606 EXPECT (expected));
4607 }
4608
4609 /* Check that whitespace is ignored appropriately. A symbol with a
4610 template argument list that includes a pointer. */
4611 {
4612 static const char expected[] = "ns::foo<char*>";
4613 /* Try both completion and non-completion modes. */
4614 static const bool completion_mode[2] = {false, true};
4615 for (size_t i = 0; i < 2; i++)
4616 {
4617 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4618 completion_mode[i], EXPECT (expected));
4619
4620 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4621 completion_mode[i], EXPECT (expected));
4622 }
4623 }
4624
4625 {
4626 /* Check method qualifiers are ignored. */
4627 static const char expected[] = "ns::foo<char*>";
4628 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4629 symbol_name_match_type::FULL, true, EXPECT (expected));
4630 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4631 symbol_name_match_type::FULL, true, EXPECT (expected));
4632 }
4633
4634 /* Test lookup names that don't match anything. */
4635 {
4636 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4637 {});
4638 }
4639
4640 SELF_CHECK (!any_mismatch);
4641
4642 #undef EXPECT
4643 #undef CHECK_MATCH
4644 }
4645
4646 }} // namespace selftests::dw2_expand_symtabs_matching
4647
4648 #endif /* GDB_SELF_TEST */
4649
4650 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4651 matched, to expand corresponding CUs that were marked. IDX is the
4652 index of the symbol name that matched. */
4653
4654 static void
4655 dw2_expand_marked_cus
4656 (mapped_index &index, offset_type idx,
4657 struct objfile *objfile,
4658 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4659 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4660 search_domain kind)
4661 {
4662 const char *name;
4663 offset_type *vec, vec_len, vec_idx;
4664 bool global_seen = false;
4665
4666 vec = (offset_type *) (index.constant_pool
4667 + MAYBE_SWAP (index.symbol_table[idx + 1]));
4668 vec_len = MAYBE_SWAP (vec[0]);
4669 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4670 {
4671 struct dwarf2_per_cu_data *per_cu;
4672 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4673 /* This value is only valid for index versions >= 7. */
4674 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4675 gdb_index_symbol_kind symbol_kind =
4676 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4677 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4678 /* Only check the symbol attributes if they're present.
4679 Indices prior to version 7 don't record them,
4680 and indices >= 7 may elide them for certain symbols
4681 (gold does this). */
4682 int attrs_valid =
4683 (index.version >= 7
4684 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4685
4686 /* Work around gold/15646. */
4687 if (attrs_valid)
4688 {
4689 if (!is_static && global_seen)
4690 continue;
4691 if (!is_static)
4692 global_seen = true;
4693 }
4694
4695 /* Only check the symbol's kind if it has one. */
4696 if (attrs_valid)
4697 {
4698 switch (kind)
4699 {
4700 case VARIABLES_DOMAIN:
4701 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4702 continue;
4703 break;
4704 case FUNCTIONS_DOMAIN:
4705 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4706 continue;
4707 break;
4708 case TYPES_DOMAIN:
4709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4710 continue;
4711 break;
4712 default:
4713 break;
4714 }
4715 }
4716
4717 /* Don't crash on bad data. */
4718 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4719 + dwarf2_per_objfile->n_type_units))
4720 {
4721 complaint (&symfile_complaints,
4722 _(".gdb_index entry has bad CU index"
4723 " [in module %s]"), objfile_name (objfile));
4724 continue;
4725 }
4726
4727 per_cu = dw2_get_cutu (cu_index);
4728 if (file_matcher == NULL || per_cu->v.quick->mark)
4729 {
4730 int symtab_was_null =
4731 (per_cu->v.quick->compunit_symtab == NULL);
4732
4733 dw2_instantiate_symtab (per_cu);
4734
4735 if (expansion_notify != NULL
4736 && symtab_was_null
4737 && per_cu->v.quick->compunit_symtab != NULL)
4738 expansion_notify (per_cu->v.quick->compunit_symtab);
4739 }
4740 }
4741 }
4742
4743 static void
4744 dw2_expand_symtabs_matching
4745 (struct objfile *objfile,
4746 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4747 const lookup_name_info &lookup_name,
4748 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4749 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4750 enum search_domain kind)
4751 {
4752 int i;
4753 offset_type iter;
4754
4755 dw2_setup (objfile);
4756
4757 /* index_table is NULL if OBJF_READNOW. */
4758 if (!dwarf2_per_objfile->index_table)
4759 return;
4760
4761 if (file_matcher != NULL)
4762 {
4763 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4764 htab_eq_pointer,
4765 NULL, xcalloc, xfree));
4766 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4767 htab_eq_pointer,
4768 NULL, xcalloc, xfree));
4769
4770 /* The rule is CUs specify all the files, including those used by
4771 any TU, so there's no need to scan TUs here. */
4772
4773 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4774 {
4775 int j;
4776 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4777 struct quick_file_names *file_data;
4778 void **slot;
4779
4780 QUIT;
4781
4782 per_cu->v.quick->mark = 0;
4783
4784 /* We only need to look at symtabs not already expanded. */
4785 if (per_cu->v.quick->compunit_symtab)
4786 continue;
4787
4788 file_data = dw2_get_file_names (per_cu);
4789 if (file_data == NULL)
4790 continue;
4791
4792 if (htab_find (visited_not_found.get (), file_data) != NULL)
4793 continue;
4794 else if (htab_find (visited_found.get (), file_data) != NULL)
4795 {
4796 per_cu->v.quick->mark = 1;
4797 continue;
4798 }
4799
4800 for (j = 0; j < file_data->num_file_names; ++j)
4801 {
4802 const char *this_real_name;
4803
4804 if (file_matcher (file_data->file_names[j], false))
4805 {
4806 per_cu->v.quick->mark = 1;
4807 break;
4808 }
4809
4810 /* Before we invoke realpath, which can get expensive when many
4811 files are involved, do a quick comparison of the basenames. */
4812 if (!basenames_may_differ
4813 && !file_matcher (lbasename (file_data->file_names[j]),
4814 true))
4815 continue;
4816
4817 this_real_name = dw2_get_real_path (objfile, file_data, j);
4818 if (file_matcher (this_real_name, false))
4819 {
4820 per_cu->v.quick->mark = 1;
4821 break;
4822 }
4823 }
4824
4825 slot = htab_find_slot (per_cu->v.quick->mark
4826 ? visited_found.get ()
4827 : visited_not_found.get (),
4828 file_data, INSERT);
4829 *slot = file_data;
4830 }
4831 }
4832
4833 mapped_index &index = *dwarf2_per_objfile->index_table;
4834
4835 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4836 symbol_matcher,
4837 kind, [&] (offset_type idx)
4838 {
4839 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
4840 expansion_notify, kind);
4841 });
4842 }
4843
4844 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4845 symtab. */
4846
4847 static struct compunit_symtab *
4848 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4849 CORE_ADDR pc)
4850 {
4851 int i;
4852
4853 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4854 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4855 return cust;
4856
4857 if (cust->includes == NULL)
4858 return NULL;
4859
4860 for (i = 0; cust->includes[i]; ++i)
4861 {
4862 struct compunit_symtab *s = cust->includes[i];
4863
4864 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4865 if (s != NULL)
4866 return s;
4867 }
4868
4869 return NULL;
4870 }
4871
4872 static struct compunit_symtab *
4873 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4874 struct bound_minimal_symbol msymbol,
4875 CORE_ADDR pc,
4876 struct obj_section *section,
4877 int warn_if_readin)
4878 {
4879 struct dwarf2_per_cu_data *data;
4880 struct compunit_symtab *result;
4881
4882 dw2_setup (objfile);
4883
4884 if (!objfile->psymtabs_addrmap)
4885 return NULL;
4886
4887 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4888 pc);
4889 if (!data)
4890 return NULL;
4891
4892 if (warn_if_readin && data->v.quick->compunit_symtab)
4893 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4894 paddress (get_objfile_arch (objfile), pc));
4895
4896 result
4897 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4898 pc);
4899 gdb_assert (result != NULL);
4900 return result;
4901 }
4902
4903 static void
4904 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4905 void *data, int need_fullname)
4906 {
4907 dw2_setup (objfile);
4908
4909 if (!dwarf2_per_objfile->filenames_cache)
4910 {
4911 dwarf2_per_objfile->filenames_cache.emplace ();
4912
4913 htab_up visited (htab_create_alloc (10,
4914 htab_hash_pointer, htab_eq_pointer,
4915 NULL, xcalloc, xfree));
4916
4917 /* The rule is CUs specify all the files, including those used
4918 by any TU, so there's no need to scan TUs here. We can
4919 ignore file names coming from already-expanded CUs. */
4920
4921 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4922 {
4923 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4924
4925 if (per_cu->v.quick->compunit_symtab)
4926 {
4927 void **slot = htab_find_slot (visited.get (),
4928 per_cu->v.quick->file_names,
4929 INSERT);
4930
4931 *slot = per_cu->v.quick->file_names;
4932 }
4933 }
4934
4935 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4936 {
4937 int j;
4938 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4939 struct quick_file_names *file_data;
4940 void **slot;
4941
4942 /* We only need to look at symtabs not already expanded. */
4943 if (per_cu->v.quick->compunit_symtab)
4944 continue;
4945
4946 file_data = dw2_get_file_names (per_cu);
4947 if (file_data == NULL)
4948 continue;
4949
4950 slot = htab_find_slot (visited.get (), file_data, INSERT);
4951 if (*slot)
4952 {
4953 /* Already visited. */
4954 continue;
4955 }
4956 *slot = file_data;
4957
4958 for (int j = 0; j < file_data->num_file_names; ++j)
4959 {
4960 const char *filename = file_data->file_names[j];
4961 dwarf2_per_objfile->filenames_cache->seen (filename);
4962 }
4963 }
4964 }
4965
4966 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4967 {
4968 gdb::unique_xmalloc_ptr<char> this_real_name;
4969
4970 if (need_fullname)
4971 this_real_name = gdb_realpath (filename);
4972 (*fun) (filename, this_real_name.get (), data);
4973 });
4974 }
4975
4976 static int
4977 dw2_has_symbols (struct objfile *objfile)
4978 {
4979 return 1;
4980 }
4981
4982 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4983 {
4984 dw2_has_symbols,
4985 dw2_find_last_source_symtab,
4986 dw2_forget_cached_source_info,
4987 dw2_map_symtabs_matching_filename,
4988 dw2_lookup_symbol,
4989 dw2_print_stats,
4990 dw2_dump,
4991 dw2_relocate,
4992 dw2_expand_symtabs_for_function,
4993 dw2_expand_all_symtabs,
4994 dw2_expand_symtabs_with_fullname,
4995 dw2_map_matching_symbols,
4996 dw2_expand_symtabs_matching,
4997 dw2_find_pc_sect_compunit_symtab,
4998 dw2_map_symbol_filenames
4999 };
5000
5001 /* Initialize for reading DWARF for this objfile. Return 0 if this
5002 file will use psymtabs, or 1 if using the GNU index. */
5003
5004 int
5005 dwarf2_initialize_objfile (struct objfile *objfile)
5006 {
5007 /* If we're about to read full symbols, don't bother with the
5008 indices. In this case we also don't care if some other debug
5009 format is making psymtabs, because they are all about to be
5010 expanded anyway. */
5011 if ((objfile->flags & OBJF_READNOW))
5012 {
5013 int i;
5014
5015 dwarf2_per_objfile->using_index = 1;
5016 create_all_comp_units (objfile);
5017 create_all_type_units (objfile);
5018 dwarf2_per_objfile->quick_file_names_table =
5019 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5020
5021 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
5022 + dwarf2_per_objfile->n_type_units); ++i)
5023 {
5024 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5025
5026 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5027 struct dwarf2_per_cu_quick_data);
5028 }
5029
5030 /* Return 1 so that gdb sees the "quick" functions. However,
5031 these functions will be no-ops because we will have expanded
5032 all symtabs. */
5033 return 1;
5034 }
5035
5036 if (dwarf2_read_index (objfile))
5037 return 1;
5038
5039 return 0;
5040 }
5041
5042 \f
5043
5044 /* Build a partial symbol table. */
5045
5046 void
5047 dwarf2_build_psymtabs (struct objfile *objfile)
5048 {
5049
5050 if (objfile->global_psymbols.capacity () == 0
5051 && objfile->static_psymbols.capacity () == 0)
5052 init_psymbol_list (objfile, 1024);
5053
5054 TRY
5055 {
5056 /* This isn't really ideal: all the data we allocate on the
5057 objfile's obstack is still uselessly kept around. However,
5058 freeing it seems unsafe. */
5059 psymtab_discarder psymtabs (objfile);
5060 dwarf2_build_psymtabs_hard (objfile);
5061 psymtabs.keep ();
5062 }
5063 CATCH (except, RETURN_MASK_ERROR)
5064 {
5065 exception_print (gdb_stderr, except);
5066 }
5067 END_CATCH
5068 }
5069
5070 /* Return the total length of the CU described by HEADER. */
5071
5072 static unsigned int
5073 get_cu_length (const struct comp_unit_head *header)
5074 {
5075 return header->initial_length_size + header->length;
5076 }
5077
5078 /* Return TRUE if SECT_OFF is within CU_HEADER. */
5079
5080 static inline bool
5081 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
5082 {
5083 sect_offset bottom = cu_header->sect_off;
5084 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
5085
5086 return sect_off >= bottom && sect_off < top;
5087 }
5088
5089 /* Find the base address of the compilation unit for range lists and
5090 location lists. It will normally be specified by DW_AT_low_pc.
5091 In DWARF-3 draft 4, the base address could be overridden by
5092 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5093 compilation units with discontinuous ranges. */
5094
5095 static void
5096 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5097 {
5098 struct attribute *attr;
5099
5100 cu->base_known = 0;
5101 cu->base_address = 0;
5102
5103 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5104 if (attr)
5105 {
5106 cu->base_address = attr_value_as_address (attr);
5107 cu->base_known = 1;
5108 }
5109 else
5110 {
5111 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5112 if (attr)
5113 {
5114 cu->base_address = attr_value_as_address (attr);
5115 cu->base_known = 1;
5116 }
5117 }
5118 }
5119
5120 /* Read in the comp unit header information from the debug_info at info_ptr.
5121 Use rcuh_kind::COMPILE as the default type if not known by the caller.
5122 NOTE: This leaves members offset, first_die_offset to be filled in
5123 by the caller. */
5124
5125 static const gdb_byte *
5126 read_comp_unit_head (struct comp_unit_head *cu_header,
5127 const gdb_byte *info_ptr,
5128 struct dwarf2_section_info *section,
5129 rcuh_kind section_kind)
5130 {
5131 int signed_addr;
5132 unsigned int bytes_read;
5133 const char *filename = get_section_file_name (section);
5134 bfd *abfd = get_section_bfd_owner (section);
5135
5136 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
5137 cu_header->initial_length_size = bytes_read;
5138 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
5139 info_ptr += bytes_read;
5140 cu_header->version = read_2_bytes (abfd, info_ptr);
5141 info_ptr += 2;
5142 if (cu_header->version < 5)
5143 switch (section_kind)
5144 {
5145 case rcuh_kind::COMPILE:
5146 cu_header->unit_type = DW_UT_compile;
5147 break;
5148 case rcuh_kind::TYPE:
5149 cu_header->unit_type = DW_UT_type;
5150 break;
5151 default:
5152 internal_error (__FILE__, __LINE__,
5153 _("read_comp_unit_head: invalid section_kind"));
5154 }
5155 else
5156 {
5157 cu_header->unit_type = static_cast<enum dwarf_unit_type>
5158 (read_1_byte (abfd, info_ptr));
5159 info_ptr += 1;
5160 switch (cu_header->unit_type)
5161 {
5162 case DW_UT_compile:
5163 if (section_kind != rcuh_kind::COMPILE)
5164 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5165 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
5166 filename);
5167 break;
5168 case DW_UT_type:
5169 section_kind = rcuh_kind::TYPE;
5170 break;
5171 default:
5172 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5173 "(is %d, should be %d or %d) [in module %s]"),
5174 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
5175 }
5176
5177 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5178 info_ptr += 1;
5179 }
5180 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
5181 cu_header,
5182 &bytes_read);
5183 info_ptr += bytes_read;
5184 if (cu_header->version < 5)
5185 {
5186 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5187 info_ptr += 1;
5188 }
5189 signed_addr = bfd_get_sign_extend_vma (abfd);
5190 if (signed_addr < 0)
5191 internal_error (__FILE__, __LINE__,
5192 _("read_comp_unit_head: dwarf from non elf file"));
5193 cu_header->signed_addr_p = signed_addr;
5194
5195 if (section_kind == rcuh_kind::TYPE)
5196 {
5197 LONGEST type_offset;
5198
5199 cu_header->signature = read_8_bytes (abfd, info_ptr);
5200 info_ptr += 8;
5201
5202 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
5203 info_ptr += bytes_read;
5204 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
5205 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
5206 error (_("Dwarf Error: Too big type_offset in compilation unit "
5207 "header (is %s) [in module %s]"), plongest (type_offset),
5208 filename);
5209 }
5210
5211 return info_ptr;
5212 }
5213
5214 /* Helper function that returns the proper abbrev section for
5215 THIS_CU. */
5216
5217 static struct dwarf2_section_info *
5218 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5219 {
5220 struct dwarf2_section_info *abbrev;
5221
5222 if (this_cu->is_dwz)
5223 abbrev = &dwarf2_get_dwz_file ()->abbrev;
5224 else
5225 abbrev = &dwarf2_per_objfile->abbrev;
5226
5227 return abbrev;
5228 }
5229
5230 /* Subroutine of read_and_check_comp_unit_head and
5231 read_and_check_type_unit_head to simplify them.
5232 Perform various error checking on the header. */
5233
5234 static void
5235 error_check_comp_unit_head (struct comp_unit_head *header,
5236 struct dwarf2_section_info *section,
5237 struct dwarf2_section_info *abbrev_section)
5238 {
5239 const char *filename = get_section_file_name (section);
5240
5241 if (header->version < 2 || header->version > 5)
5242 error (_("Dwarf Error: wrong version in compilation unit header "
5243 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
5244 filename);
5245
5246 if (to_underlying (header->abbrev_sect_off)
5247 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
5248 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
5249 "(offset 0x%x + 6) [in module %s]"),
5250 to_underlying (header->abbrev_sect_off),
5251 to_underlying (header->sect_off),
5252 filename);
5253
5254 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
5255 avoid potential 32-bit overflow. */
5256 if (((ULONGEST) header->sect_off + get_cu_length (header))
5257 > section->size)
5258 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
5259 "(offset 0x%x + 0) [in module %s]"),
5260 header->length, to_underlying (header->sect_off),
5261 filename);
5262 }
5263
5264 /* Read in a CU/TU header and perform some basic error checking.
5265 The contents of the header are stored in HEADER.
5266 The result is a pointer to the start of the first DIE. */
5267
5268 static const gdb_byte *
5269 read_and_check_comp_unit_head (struct comp_unit_head *header,
5270 struct dwarf2_section_info *section,
5271 struct dwarf2_section_info *abbrev_section,
5272 const gdb_byte *info_ptr,
5273 rcuh_kind section_kind)
5274 {
5275 const gdb_byte *beg_of_comp_unit = info_ptr;
5276 bfd *abfd = get_section_bfd_owner (section);
5277
5278 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
5279
5280 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
5281
5282 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
5283
5284 error_check_comp_unit_head (header, section, abbrev_section);
5285
5286 return info_ptr;
5287 }
5288
5289 /* Fetch the abbreviation table offset from a comp or type unit header. */
5290
5291 static sect_offset
5292 read_abbrev_offset (struct dwarf2_section_info *section,
5293 sect_offset sect_off)
5294 {
5295 bfd *abfd = get_section_bfd_owner (section);
5296 const gdb_byte *info_ptr;
5297 unsigned int initial_length_size, offset_size;
5298 uint16_t version;
5299
5300 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
5301 info_ptr = section->buffer + to_underlying (sect_off);
5302 read_initial_length (abfd, info_ptr, &initial_length_size);
5303 offset_size = initial_length_size == 4 ? 4 : 8;
5304 info_ptr += initial_length_size;
5305
5306 version = read_2_bytes (abfd, info_ptr);
5307 info_ptr += 2;
5308 if (version >= 5)
5309 {
5310 /* Skip unit type and address size. */
5311 info_ptr += 2;
5312 }
5313
5314 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
5315 }
5316
5317 /* Allocate a new partial symtab for file named NAME and mark this new
5318 partial symtab as being an include of PST. */
5319
5320 static void
5321 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
5322 struct objfile *objfile)
5323 {
5324 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
5325
5326 if (!IS_ABSOLUTE_PATH (subpst->filename))
5327 {
5328 /* It shares objfile->objfile_obstack. */
5329 subpst->dirname = pst->dirname;
5330 }
5331
5332 subpst->textlow = 0;
5333 subpst->texthigh = 0;
5334
5335 subpst->dependencies
5336 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
5337 subpst->dependencies[0] = pst;
5338 subpst->number_of_dependencies = 1;
5339
5340 subpst->globals_offset = 0;
5341 subpst->n_global_syms = 0;
5342 subpst->statics_offset = 0;
5343 subpst->n_static_syms = 0;
5344 subpst->compunit_symtab = NULL;
5345 subpst->read_symtab = pst->read_symtab;
5346 subpst->readin = 0;
5347
5348 /* No private part is necessary for include psymtabs. This property
5349 can be used to differentiate between such include psymtabs and
5350 the regular ones. */
5351 subpst->read_symtab_private = NULL;
5352 }
5353
5354 /* Read the Line Number Program data and extract the list of files
5355 included by the source file represented by PST. Build an include
5356 partial symtab for each of these included files. */
5357
5358 static void
5359 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5360 struct die_info *die,
5361 struct partial_symtab *pst)
5362 {
5363 line_header_up lh;
5364 struct attribute *attr;
5365
5366 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5367 if (attr)
5368 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5369 if (lh == NULL)
5370 return; /* No linetable, so no includes. */
5371
5372 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
5373 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
5374 }
5375
5376 static hashval_t
5377 hash_signatured_type (const void *item)
5378 {
5379 const struct signatured_type *sig_type
5380 = (const struct signatured_type *) item;
5381
5382 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5383 return sig_type->signature;
5384 }
5385
5386 static int
5387 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5388 {
5389 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5390 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5391
5392 return lhs->signature == rhs->signature;
5393 }
5394
5395 /* Allocate a hash table for signatured types. */
5396
5397 static htab_t
5398 allocate_signatured_type_table (struct objfile *objfile)
5399 {
5400 return htab_create_alloc_ex (41,
5401 hash_signatured_type,
5402 eq_signatured_type,
5403 NULL,
5404 &objfile->objfile_obstack,
5405 hashtab_obstack_allocate,
5406 dummy_obstack_deallocate);
5407 }
5408
5409 /* A helper function to add a signatured type CU to a table. */
5410
5411 static int
5412 add_signatured_type_cu_to_table (void **slot, void *datum)
5413 {
5414 struct signatured_type *sigt = (struct signatured_type *) *slot;
5415 struct signatured_type ***datap = (struct signatured_type ***) datum;
5416
5417 **datap = sigt;
5418 ++*datap;
5419
5420 return 1;
5421 }
5422
5423 /* A helper for create_debug_types_hash_table. Read types from SECTION
5424 and fill them into TYPES_HTAB. It will process only type units,
5425 therefore DW_UT_type. */
5426
5427 static void
5428 create_debug_type_hash_table (struct dwo_file *dwo_file,
5429 dwarf2_section_info *section, htab_t &types_htab,
5430 rcuh_kind section_kind)
5431 {
5432 struct objfile *objfile = dwarf2_per_objfile->objfile;
5433 struct dwarf2_section_info *abbrev_section;
5434 bfd *abfd;
5435 const gdb_byte *info_ptr, *end_ptr;
5436
5437 abbrev_section = (dwo_file != NULL
5438 ? &dwo_file->sections.abbrev
5439 : &dwarf2_per_objfile->abbrev);
5440
5441 if (dwarf_read_debug)
5442 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
5443 get_section_name (section),
5444 get_section_file_name (abbrev_section));
5445
5446 dwarf2_read_section (objfile, section);
5447 info_ptr = section->buffer;
5448
5449 if (info_ptr == NULL)
5450 return;
5451
5452 /* We can't set abfd until now because the section may be empty or
5453 not present, in which case the bfd is unknown. */
5454 abfd = get_section_bfd_owner (section);
5455
5456 /* We don't use init_cutu_and_read_dies_simple, or some such, here
5457 because we don't need to read any dies: the signature is in the
5458 header. */
5459
5460 end_ptr = info_ptr + section->size;
5461 while (info_ptr < end_ptr)
5462 {
5463 struct signatured_type *sig_type;
5464 struct dwo_unit *dwo_tu;
5465 void **slot;
5466 const gdb_byte *ptr = info_ptr;
5467 struct comp_unit_head header;
5468 unsigned int length;
5469
5470 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5471
5472 /* Initialize it due to a false compiler warning. */
5473 header.signature = -1;
5474 header.type_cu_offset_in_tu = (cu_offset) -1;
5475
5476 /* We need to read the type's signature in order to build the hash
5477 table, but we don't need anything else just yet. */
5478
5479 ptr = read_and_check_comp_unit_head (&header, section,
5480 abbrev_section, ptr, section_kind);
5481
5482 length = get_cu_length (&header);
5483
5484 /* Skip dummy type units. */
5485 if (ptr >= info_ptr + length
5486 || peek_abbrev_code (abfd, ptr) == 0
5487 || header.unit_type != DW_UT_type)
5488 {
5489 info_ptr += length;
5490 continue;
5491 }
5492
5493 if (types_htab == NULL)
5494 {
5495 if (dwo_file)
5496 types_htab = allocate_dwo_unit_table (objfile);
5497 else
5498 types_htab = allocate_signatured_type_table (objfile);
5499 }
5500
5501 if (dwo_file)
5502 {
5503 sig_type = NULL;
5504 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5505 struct dwo_unit);
5506 dwo_tu->dwo_file = dwo_file;
5507 dwo_tu->signature = header.signature;
5508 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5509 dwo_tu->section = section;
5510 dwo_tu->sect_off = sect_off;
5511 dwo_tu->length = length;
5512 }
5513 else
5514 {
5515 /* N.B.: type_offset is not usable if this type uses a DWO file.
5516 The real type_offset is in the DWO file. */
5517 dwo_tu = NULL;
5518 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5519 struct signatured_type);
5520 sig_type->signature = header.signature;
5521 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
5522 sig_type->per_cu.objfile = objfile;
5523 sig_type->per_cu.is_debug_types = 1;
5524 sig_type->per_cu.section = section;
5525 sig_type->per_cu.sect_off = sect_off;
5526 sig_type->per_cu.length = length;
5527 }
5528
5529 slot = htab_find_slot (types_htab,
5530 dwo_file ? (void*) dwo_tu : (void *) sig_type,
5531 INSERT);
5532 gdb_assert (slot != NULL);
5533 if (*slot != NULL)
5534 {
5535 sect_offset dup_sect_off;
5536
5537 if (dwo_file)
5538 {
5539 const struct dwo_unit *dup_tu
5540 = (const struct dwo_unit *) *slot;
5541
5542 dup_sect_off = dup_tu->sect_off;
5543 }
5544 else
5545 {
5546 const struct signatured_type *dup_tu
5547 = (const struct signatured_type *) *slot;
5548
5549 dup_sect_off = dup_tu->per_cu.sect_off;
5550 }
5551
5552 complaint (&symfile_complaints,
5553 _("debug type entry at offset 0x%x is duplicate to"
5554 " the entry at offset 0x%x, signature %s"),
5555 to_underlying (sect_off), to_underlying (dup_sect_off),
5556 hex_string (header.signature));
5557 }
5558 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
5559
5560 if (dwarf_read_debug > 1)
5561 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
5562 to_underlying (sect_off),
5563 hex_string (header.signature));
5564
5565 info_ptr += length;
5566 }
5567 }
5568
5569 /* Create the hash table of all entries in the .debug_types
5570 (or .debug_types.dwo) section(s).
5571 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
5572 otherwise it is NULL.
5573
5574 The result is a pointer to the hash table or NULL if there are no types.
5575
5576 Note: This function processes DWO files only, not DWP files. */
5577
5578 static void
5579 create_debug_types_hash_table (struct dwo_file *dwo_file,
5580 VEC (dwarf2_section_info_def) *types,
5581 htab_t &types_htab)
5582 {
5583 int ix;
5584 struct dwarf2_section_info *section;
5585
5586 if (VEC_empty (dwarf2_section_info_def, types))
5587 return;
5588
5589 for (ix = 0;
5590 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5591 ++ix)
5592 create_debug_type_hash_table (dwo_file, section, types_htab,
5593 rcuh_kind::TYPE);
5594 }
5595
5596 /* Create the hash table of all entries in the .debug_types section,
5597 and initialize all_type_units.
5598 The result is zero if there is an error (e.g. missing .debug_types section),
5599 otherwise non-zero. */
5600
5601 static int
5602 create_all_type_units (struct objfile *objfile)
5603 {
5604 htab_t types_htab = NULL;
5605 struct signatured_type **iter;
5606
5607 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5608 rcuh_kind::COMPILE);
5609 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5610 if (types_htab == NULL)
5611 {
5612 dwarf2_per_objfile->signatured_types = NULL;
5613 return 0;
5614 }
5615
5616 dwarf2_per_objfile->signatured_types = types_htab;
5617
5618 dwarf2_per_objfile->n_type_units
5619 = dwarf2_per_objfile->n_allocated_type_units
5620 = htab_elements (types_htab);
5621 dwarf2_per_objfile->all_type_units =
5622 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5623 iter = &dwarf2_per_objfile->all_type_units[0];
5624 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5625 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5626 == dwarf2_per_objfile->n_type_units);
5627
5628 return 1;
5629 }
5630
5631 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5632 If SLOT is non-NULL, it is the entry to use in the hash table.
5633 Otherwise we find one. */
5634
5635 static struct signatured_type *
5636 add_type_unit (ULONGEST sig, void **slot)
5637 {
5638 struct objfile *objfile = dwarf2_per_objfile->objfile;
5639 int n_type_units = dwarf2_per_objfile->n_type_units;
5640 struct signatured_type *sig_type;
5641
5642 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5643 ++n_type_units;
5644 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5645 {
5646 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5647 dwarf2_per_objfile->n_allocated_type_units = 1;
5648 dwarf2_per_objfile->n_allocated_type_units *= 2;
5649 dwarf2_per_objfile->all_type_units
5650 = XRESIZEVEC (struct signatured_type *,
5651 dwarf2_per_objfile->all_type_units,
5652 dwarf2_per_objfile->n_allocated_type_units);
5653 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5654 }
5655 dwarf2_per_objfile->n_type_units = n_type_units;
5656
5657 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5658 struct signatured_type);
5659 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5660 sig_type->signature = sig;
5661 sig_type->per_cu.is_debug_types = 1;
5662 if (dwarf2_per_objfile->using_index)
5663 {
5664 sig_type->per_cu.v.quick =
5665 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5666 struct dwarf2_per_cu_quick_data);
5667 }
5668
5669 if (slot == NULL)
5670 {
5671 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5672 sig_type, INSERT);
5673 }
5674 gdb_assert (*slot == NULL);
5675 *slot = sig_type;
5676 /* The rest of sig_type must be filled in by the caller. */
5677 return sig_type;
5678 }
5679
5680 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5681 Fill in SIG_ENTRY with DWO_ENTRY. */
5682
5683 static void
5684 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5685 struct signatured_type *sig_entry,
5686 struct dwo_unit *dwo_entry)
5687 {
5688 /* Make sure we're not clobbering something we don't expect to. */
5689 gdb_assert (! sig_entry->per_cu.queued);
5690 gdb_assert (sig_entry->per_cu.cu == NULL);
5691 if (dwarf2_per_objfile->using_index)
5692 {
5693 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5694 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5695 }
5696 else
5697 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5698 gdb_assert (sig_entry->signature == dwo_entry->signature);
5699 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5700 gdb_assert (sig_entry->type_unit_group == NULL);
5701 gdb_assert (sig_entry->dwo_unit == NULL);
5702
5703 sig_entry->per_cu.section = dwo_entry->section;
5704 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5705 sig_entry->per_cu.length = dwo_entry->length;
5706 sig_entry->per_cu.reading_dwo_directly = 1;
5707 sig_entry->per_cu.objfile = objfile;
5708 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5709 sig_entry->dwo_unit = dwo_entry;
5710 }
5711
5712 /* Subroutine of lookup_signatured_type.
5713 If we haven't read the TU yet, create the signatured_type data structure
5714 for a TU to be read in directly from a DWO file, bypassing the stub.
5715 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5716 using .gdb_index, then when reading a CU we want to stay in the DWO file
5717 containing that CU. Otherwise we could end up reading several other DWO
5718 files (due to comdat folding) to process the transitive closure of all the
5719 mentioned TUs, and that can be slow. The current DWO file will have every
5720 type signature that it needs.
5721 We only do this for .gdb_index because in the psymtab case we already have
5722 to read all the DWOs to build the type unit groups. */
5723
5724 static struct signatured_type *
5725 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5726 {
5727 struct objfile *objfile = dwarf2_per_objfile->objfile;
5728 struct dwo_file *dwo_file;
5729 struct dwo_unit find_dwo_entry, *dwo_entry;
5730 struct signatured_type find_sig_entry, *sig_entry;
5731 void **slot;
5732
5733 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5734
5735 /* If TU skeletons have been removed then we may not have read in any
5736 TUs yet. */
5737 if (dwarf2_per_objfile->signatured_types == NULL)
5738 {
5739 dwarf2_per_objfile->signatured_types
5740 = allocate_signatured_type_table (objfile);
5741 }
5742
5743 /* We only ever need to read in one copy of a signatured type.
5744 Use the global signatured_types array to do our own comdat-folding
5745 of types. If this is the first time we're reading this TU, and
5746 the TU has an entry in .gdb_index, replace the recorded data from
5747 .gdb_index with this TU. */
5748
5749 find_sig_entry.signature = sig;
5750 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5751 &find_sig_entry, INSERT);
5752 sig_entry = (struct signatured_type *) *slot;
5753
5754 /* We can get here with the TU already read, *or* in the process of being
5755 read. Don't reassign the global entry to point to this DWO if that's
5756 the case. Also note that if the TU is already being read, it may not
5757 have come from a DWO, the program may be a mix of Fission-compiled
5758 code and non-Fission-compiled code. */
5759
5760 /* Have we already tried to read this TU?
5761 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5762 needn't exist in the global table yet). */
5763 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5764 return sig_entry;
5765
5766 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5767 dwo_unit of the TU itself. */
5768 dwo_file = cu->dwo_unit->dwo_file;
5769
5770 /* Ok, this is the first time we're reading this TU. */
5771 if (dwo_file->tus == NULL)
5772 return NULL;
5773 find_dwo_entry.signature = sig;
5774 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5775 if (dwo_entry == NULL)
5776 return NULL;
5777
5778 /* If the global table doesn't have an entry for this TU, add one. */
5779 if (sig_entry == NULL)
5780 sig_entry = add_type_unit (sig, slot);
5781
5782 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5783 sig_entry->per_cu.tu_read = 1;
5784 return sig_entry;
5785 }
5786
5787 /* Subroutine of lookup_signatured_type.
5788 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5789 then try the DWP file. If the TU stub (skeleton) has been removed then
5790 it won't be in .gdb_index. */
5791
5792 static struct signatured_type *
5793 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5794 {
5795 struct objfile *objfile = dwarf2_per_objfile->objfile;
5796 struct dwp_file *dwp_file = get_dwp_file ();
5797 struct dwo_unit *dwo_entry;
5798 struct signatured_type find_sig_entry, *sig_entry;
5799 void **slot;
5800
5801 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5802 gdb_assert (dwp_file != NULL);
5803
5804 /* If TU skeletons have been removed then we may not have read in any
5805 TUs yet. */
5806 if (dwarf2_per_objfile->signatured_types == NULL)
5807 {
5808 dwarf2_per_objfile->signatured_types
5809 = allocate_signatured_type_table (objfile);
5810 }
5811
5812 find_sig_entry.signature = sig;
5813 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5814 &find_sig_entry, INSERT);
5815 sig_entry = (struct signatured_type *) *slot;
5816
5817 /* Have we already tried to read this TU?
5818 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5819 needn't exist in the global table yet). */
5820 if (sig_entry != NULL)
5821 return sig_entry;
5822
5823 if (dwp_file->tus == NULL)
5824 return NULL;
5825 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5826 sig, 1 /* is_debug_types */);
5827 if (dwo_entry == NULL)
5828 return NULL;
5829
5830 sig_entry = add_type_unit (sig, slot);
5831 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5832
5833 return sig_entry;
5834 }
5835
5836 /* Lookup a signature based type for DW_FORM_ref_sig8.
5837 Returns NULL if signature SIG is not present in the table.
5838 It is up to the caller to complain about this. */
5839
5840 static struct signatured_type *
5841 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5842 {
5843 if (cu->dwo_unit
5844 && dwarf2_per_objfile->using_index)
5845 {
5846 /* We're in a DWO/DWP file, and we're using .gdb_index.
5847 These cases require special processing. */
5848 if (get_dwp_file () == NULL)
5849 return lookup_dwo_signatured_type (cu, sig);
5850 else
5851 return lookup_dwp_signatured_type (cu, sig);
5852 }
5853 else
5854 {
5855 struct signatured_type find_entry, *entry;
5856
5857 if (dwarf2_per_objfile->signatured_types == NULL)
5858 return NULL;
5859 find_entry.signature = sig;
5860 entry = ((struct signatured_type *)
5861 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5862 return entry;
5863 }
5864 }
5865 \f
5866 /* Low level DIE reading support. */
5867
5868 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5869
5870 static void
5871 init_cu_die_reader (struct die_reader_specs *reader,
5872 struct dwarf2_cu *cu,
5873 struct dwarf2_section_info *section,
5874 struct dwo_file *dwo_file)
5875 {
5876 gdb_assert (section->readin && section->buffer != NULL);
5877 reader->abfd = get_section_bfd_owner (section);
5878 reader->cu = cu;
5879 reader->dwo_file = dwo_file;
5880 reader->die_section = section;
5881 reader->buffer = section->buffer;
5882 reader->buffer_end = section->buffer + section->size;
5883 reader->comp_dir = NULL;
5884 }
5885
5886 /* Subroutine of init_cutu_and_read_dies to simplify it.
5887 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5888 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5889 already.
5890
5891 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5892 from it to the DIE in the DWO. If NULL we are skipping the stub.
5893 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5894 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5895 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5896 STUB_COMP_DIR may be non-NULL.
5897 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5898 are filled in with the info of the DIE from the DWO file.
5899 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5900 provided an abbrev table to use.
5901 The result is non-zero if a valid (non-dummy) DIE was found. */
5902
5903 static int
5904 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5905 struct dwo_unit *dwo_unit,
5906 int abbrev_table_provided,
5907 struct die_info *stub_comp_unit_die,
5908 const char *stub_comp_dir,
5909 struct die_reader_specs *result_reader,
5910 const gdb_byte **result_info_ptr,
5911 struct die_info **result_comp_unit_die,
5912 int *result_has_children)
5913 {
5914 struct objfile *objfile = dwarf2_per_objfile->objfile;
5915 struct dwarf2_cu *cu = this_cu->cu;
5916 struct dwarf2_section_info *section;
5917 bfd *abfd;
5918 const gdb_byte *begin_info_ptr, *info_ptr;
5919 ULONGEST signature; /* Or dwo_id. */
5920 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5921 int i,num_extra_attrs;
5922 struct dwarf2_section_info *dwo_abbrev_section;
5923 struct attribute *attr;
5924 struct die_info *comp_unit_die;
5925
5926 /* At most one of these may be provided. */
5927 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5928
5929 /* These attributes aren't processed until later:
5930 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5931 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5932 referenced later. However, these attributes are found in the stub
5933 which we won't have later. In order to not impose this complication
5934 on the rest of the code, we read them here and copy them to the
5935 DWO CU/TU die. */
5936
5937 stmt_list = NULL;
5938 low_pc = NULL;
5939 high_pc = NULL;
5940 ranges = NULL;
5941 comp_dir = NULL;
5942
5943 if (stub_comp_unit_die != NULL)
5944 {
5945 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5946 DWO file. */
5947 if (! this_cu->is_debug_types)
5948 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5949 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5950 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5951 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5952 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5953
5954 /* There should be a DW_AT_addr_base attribute here (if needed).
5955 We need the value before we can process DW_FORM_GNU_addr_index. */
5956 cu->addr_base = 0;
5957 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5958 if (attr)
5959 cu->addr_base = DW_UNSND (attr);
5960
5961 /* There should be a DW_AT_ranges_base attribute here (if needed).
5962 We need the value before we can process DW_AT_ranges. */
5963 cu->ranges_base = 0;
5964 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5965 if (attr)
5966 cu->ranges_base = DW_UNSND (attr);
5967 }
5968 else if (stub_comp_dir != NULL)
5969 {
5970 /* Reconstruct the comp_dir attribute to simplify the code below. */
5971 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5972 comp_dir->name = DW_AT_comp_dir;
5973 comp_dir->form = DW_FORM_string;
5974 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5975 DW_STRING (comp_dir) = stub_comp_dir;
5976 }
5977
5978 /* Set up for reading the DWO CU/TU. */
5979 cu->dwo_unit = dwo_unit;
5980 section = dwo_unit->section;
5981 dwarf2_read_section (objfile, section);
5982 abfd = get_section_bfd_owner (section);
5983 begin_info_ptr = info_ptr = (section->buffer
5984 + to_underlying (dwo_unit->sect_off));
5985 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5986 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5987
5988 if (this_cu->is_debug_types)
5989 {
5990 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5991
5992 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5993 dwo_abbrev_section,
5994 info_ptr, rcuh_kind::TYPE);
5995 /* This is not an assert because it can be caused by bad debug info. */
5996 if (sig_type->signature != cu->header.signature)
5997 {
5998 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5999 " TU at offset 0x%x [in module %s]"),
6000 hex_string (sig_type->signature),
6001 hex_string (cu->header.signature),
6002 to_underlying (dwo_unit->sect_off),
6003 bfd_get_filename (abfd));
6004 }
6005 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6006 /* For DWOs coming from DWP files, we don't know the CU length
6007 nor the type's offset in the TU until now. */
6008 dwo_unit->length = get_cu_length (&cu->header);
6009 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6010
6011 /* Establish the type offset that can be used to lookup the type.
6012 For DWO files, we don't know it until now. */
6013 sig_type->type_offset_in_section
6014 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6015 }
6016 else
6017 {
6018 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6019 dwo_abbrev_section,
6020 info_ptr, rcuh_kind::COMPILE);
6021 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6022 /* For DWOs coming from DWP files, we don't know the CU length
6023 until now. */
6024 dwo_unit->length = get_cu_length (&cu->header);
6025 }
6026
6027 /* Replace the CU's original abbrev table with the DWO's.
6028 Reminder: We can't read the abbrev table until we've read the header. */
6029 if (abbrev_table_provided)
6030 {
6031 /* Don't free the provided abbrev table, the caller of
6032 init_cutu_and_read_dies owns it. */
6033 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6034 /* Ensure the DWO abbrev table gets freed. */
6035 make_cleanup (dwarf2_free_abbrev_table, cu);
6036 }
6037 else
6038 {
6039 dwarf2_free_abbrev_table (cu);
6040 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6041 /* Leave any existing abbrev table cleanup as is. */
6042 }
6043
6044 /* Read in the die, but leave space to copy over the attributes
6045 from the stub. This has the benefit of simplifying the rest of
6046 the code - all the work to maintain the illusion of a single
6047 DW_TAG_{compile,type}_unit DIE is done here. */
6048 num_extra_attrs = ((stmt_list != NULL)
6049 + (low_pc != NULL)
6050 + (high_pc != NULL)
6051 + (ranges != NULL)
6052 + (comp_dir != NULL));
6053 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6054 result_has_children, num_extra_attrs);
6055
6056 /* Copy over the attributes from the stub to the DIE we just read in. */
6057 comp_unit_die = *result_comp_unit_die;
6058 i = comp_unit_die->num_attrs;
6059 if (stmt_list != NULL)
6060 comp_unit_die->attrs[i++] = *stmt_list;
6061 if (low_pc != NULL)
6062 comp_unit_die->attrs[i++] = *low_pc;
6063 if (high_pc != NULL)
6064 comp_unit_die->attrs[i++] = *high_pc;
6065 if (ranges != NULL)
6066 comp_unit_die->attrs[i++] = *ranges;
6067 if (comp_dir != NULL)
6068 comp_unit_die->attrs[i++] = *comp_dir;
6069 comp_unit_die->num_attrs += num_extra_attrs;
6070
6071 if (dwarf_die_debug)
6072 {
6073 fprintf_unfiltered (gdb_stdlog,
6074 "Read die from %s@0x%x of %s:\n",
6075 get_section_name (section),
6076 (unsigned) (begin_info_ptr - section->buffer),
6077 bfd_get_filename (abfd));
6078 dump_die (comp_unit_die, dwarf_die_debug);
6079 }
6080
6081 /* Save the comp_dir attribute. If there is no DWP file then we'll read
6082 TUs by skipping the stub and going directly to the entry in the DWO file.
6083 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
6084 to get it via circuitous means. Blech. */
6085 if (comp_dir != NULL)
6086 result_reader->comp_dir = DW_STRING (comp_dir);
6087
6088 /* Skip dummy compilation units. */
6089 if (info_ptr >= begin_info_ptr + dwo_unit->length
6090 || peek_abbrev_code (abfd, info_ptr) == 0)
6091 return 0;
6092
6093 *result_info_ptr = info_ptr;
6094 return 1;
6095 }
6096
6097 /* Subroutine of init_cutu_and_read_dies to simplify it.
6098 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6099 Returns NULL if the specified DWO unit cannot be found. */
6100
6101 static struct dwo_unit *
6102 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6103 struct die_info *comp_unit_die)
6104 {
6105 struct dwarf2_cu *cu = this_cu->cu;
6106 struct attribute *attr;
6107 ULONGEST signature;
6108 struct dwo_unit *dwo_unit;
6109 const char *comp_dir, *dwo_name;
6110
6111 gdb_assert (cu != NULL);
6112
6113 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6114 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6115 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6116
6117 if (this_cu->is_debug_types)
6118 {
6119 struct signatured_type *sig_type;
6120
6121 /* Since this_cu is the first member of struct signatured_type,
6122 we can go from a pointer to one to a pointer to the other. */
6123 sig_type = (struct signatured_type *) this_cu;
6124 signature = sig_type->signature;
6125 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6126 }
6127 else
6128 {
6129 struct attribute *attr;
6130
6131 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6132 if (! attr)
6133 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6134 " [in module %s]"),
6135 dwo_name, objfile_name (this_cu->objfile));
6136 signature = DW_UNSND (attr);
6137 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6138 signature);
6139 }
6140
6141 return dwo_unit;
6142 }
6143
6144 /* Subroutine of init_cutu_and_read_dies to simplify it.
6145 See it for a description of the parameters.
6146 Read a TU directly from a DWO file, bypassing the stub.
6147
6148 Note: This function could be a little bit simpler if we shared cleanups
6149 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
6150 to do, so we keep this function self-contained. Or we could move this
6151 into our caller, but it's complex enough already. */
6152
6153 static void
6154 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6155 int use_existing_cu, int keep,
6156 die_reader_func_ftype *die_reader_func,
6157 void *data)
6158 {
6159 struct dwarf2_cu *cu;
6160 struct signatured_type *sig_type;
6161 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6162 struct die_reader_specs reader;
6163 const gdb_byte *info_ptr;
6164 struct die_info *comp_unit_die;
6165 int has_children;
6166
6167 /* Verify we can do the following downcast, and that we have the
6168 data we need. */
6169 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6170 sig_type = (struct signatured_type *) this_cu;
6171 gdb_assert (sig_type->dwo_unit != NULL);
6172
6173 cleanups = make_cleanup (null_cleanup, NULL);
6174
6175 if (use_existing_cu && this_cu->cu != NULL)
6176 {
6177 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6178 cu = this_cu->cu;
6179 /* There's no need to do the rereading_dwo_cu handling that
6180 init_cutu_and_read_dies does since we don't read the stub. */
6181 }
6182 else
6183 {
6184 /* If !use_existing_cu, this_cu->cu must be NULL. */
6185 gdb_assert (this_cu->cu == NULL);
6186 cu = XNEW (struct dwarf2_cu);
6187 init_one_comp_unit (cu, this_cu);
6188 /* If an error occurs while loading, release our storage. */
6189 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6190 }
6191
6192 /* A future optimization, if needed, would be to use an existing
6193 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6194 could share abbrev tables. */
6195
6196 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6197 0 /* abbrev_table_provided */,
6198 NULL /* stub_comp_unit_die */,
6199 sig_type->dwo_unit->dwo_file->comp_dir,
6200 &reader, &info_ptr,
6201 &comp_unit_die, &has_children) == 0)
6202 {
6203 /* Dummy die. */
6204 do_cleanups (cleanups);
6205 return;
6206 }
6207
6208 /* All the "real" work is done here. */
6209 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6210
6211 /* This duplicates the code in init_cutu_and_read_dies,
6212 but the alternative is making the latter more complex.
6213 This function is only for the special case of using DWO files directly:
6214 no point in overly complicating the general case just to handle this. */
6215 if (free_cu_cleanup != NULL)
6216 {
6217 if (keep)
6218 {
6219 /* We've successfully allocated this compilation unit. Let our
6220 caller clean it up when finished with it. */
6221 discard_cleanups (free_cu_cleanup);
6222
6223 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6224 So we have to manually free the abbrev table. */
6225 dwarf2_free_abbrev_table (cu);
6226
6227 /* Link this CU into read_in_chain. */
6228 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6229 dwarf2_per_objfile->read_in_chain = this_cu;
6230 }
6231 else
6232 do_cleanups (free_cu_cleanup);
6233 }
6234
6235 do_cleanups (cleanups);
6236 }
6237
6238 /* Initialize a CU (or TU) and read its DIEs.
6239 If the CU defers to a DWO file, read the DWO file as well.
6240
6241 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6242 Otherwise the table specified in the comp unit header is read in and used.
6243 This is an optimization for when we already have the abbrev table.
6244
6245 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6246 Otherwise, a new CU is allocated with xmalloc.
6247
6248 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
6249 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
6250
6251 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6252 linker) then DIE_READER_FUNC will not get called. */
6253
6254 static void
6255 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
6256 struct abbrev_table *abbrev_table,
6257 int use_existing_cu, int keep,
6258 die_reader_func_ftype *die_reader_func,
6259 void *data)
6260 {
6261 struct objfile *objfile = dwarf2_per_objfile->objfile;
6262 struct dwarf2_section_info *section = this_cu->section;
6263 bfd *abfd = get_section_bfd_owner (section);
6264 struct dwarf2_cu *cu;
6265 const gdb_byte *begin_info_ptr, *info_ptr;
6266 struct die_reader_specs reader;
6267 struct die_info *comp_unit_die;
6268 int has_children;
6269 struct attribute *attr;
6270 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6271 struct signatured_type *sig_type = NULL;
6272 struct dwarf2_section_info *abbrev_section;
6273 /* Non-zero if CU currently points to a DWO file and we need to
6274 reread it. When this happens we need to reread the skeleton die
6275 before we can reread the DWO file (this only applies to CUs, not TUs). */
6276 int rereading_dwo_cu = 0;
6277
6278 if (dwarf_die_debug)
6279 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6280 this_cu->is_debug_types ? "type" : "comp",
6281 to_underlying (this_cu->sect_off));
6282
6283 if (use_existing_cu)
6284 gdb_assert (keep);
6285
6286 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6287 file (instead of going through the stub), short-circuit all of this. */
6288 if (this_cu->reading_dwo_directly)
6289 {
6290 /* Narrow down the scope of possibilities to have to understand. */
6291 gdb_assert (this_cu->is_debug_types);
6292 gdb_assert (abbrev_table == NULL);
6293 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
6294 die_reader_func, data);
6295 return;
6296 }
6297
6298 cleanups = make_cleanup (null_cleanup, NULL);
6299
6300 /* This is cheap if the section is already read in. */
6301 dwarf2_read_section (objfile, section);
6302
6303 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6304
6305 abbrev_section = get_abbrev_section_for_cu (this_cu);
6306
6307 if (use_existing_cu && this_cu->cu != NULL)
6308 {
6309 cu = this_cu->cu;
6310 /* If this CU is from a DWO file we need to start over, we need to
6311 refetch the attributes from the skeleton CU.
6312 This could be optimized by retrieving those attributes from when we
6313 were here the first time: the previous comp_unit_die was stored in
6314 comp_unit_obstack. But there's no data yet that we need this
6315 optimization. */
6316 if (cu->dwo_unit != NULL)
6317 rereading_dwo_cu = 1;
6318 }
6319 else
6320 {
6321 /* If !use_existing_cu, this_cu->cu must be NULL. */
6322 gdb_assert (this_cu->cu == NULL);
6323 cu = XNEW (struct dwarf2_cu);
6324 init_one_comp_unit (cu, this_cu);
6325 /* If an error occurs while loading, release our storage. */
6326 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6327 }
6328
6329 /* Get the header. */
6330 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6331 {
6332 /* We already have the header, there's no need to read it in again. */
6333 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6334 }
6335 else
6336 {
6337 if (this_cu->is_debug_types)
6338 {
6339 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6340 abbrev_section, info_ptr,
6341 rcuh_kind::TYPE);
6342
6343 /* Since per_cu is the first member of struct signatured_type,
6344 we can go from a pointer to one to a pointer to the other. */
6345 sig_type = (struct signatured_type *) this_cu;
6346 gdb_assert (sig_type->signature == cu->header.signature);
6347 gdb_assert (sig_type->type_offset_in_tu
6348 == cu->header.type_cu_offset_in_tu);
6349 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6350
6351 /* LENGTH has not been set yet for type units if we're
6352 using .gdb_index. */
6353 this_cu->length = get_cu_length (&cu->header);
6354
6355 /* Establish the type offset that can be used to lookup the type. */
6356 sig_type->type_offset_in_section =
6357 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6358
6359 this_cu->dwarf_version = cu->header.version;
6360 }
6361 else
6362 {
6363 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6364 abbrev_section,
6365 info_ptr,
6366 rcuh_kind::COMPILE);
6367
6368 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6369 gdb_assert (this_cu->length == get_cu_length (&cu->header));
6370 this_cu->dwarf_version = cu->header.version;
6371 }
6372 }
6373
6374 /* Skip dummy compilation units. */
6375 if (info_ptr >= begin_info_ptr + this_cu->length
6376 || peek_abbrev_code (abfd, info_ptr) == 0)
6377 {
6378 do_cleanups (cleanups);
6379 return;
6380 }
6381
6382 /* If we don't have them yet, read the abbrevs for this compilation unit.
6383 And if we need to read them now, make sure they're freed when we're
6384 done. Note that it's important that if the CU had an abbrev table
6385 on entry we don't free it when we're done: Somewhere up the call stack
6386 it may be in use. */
6387 if (abbrev_table != NULL)
6388 {
6389 gdb_assert (cu->abbrev_table == NULL);
6390 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6391 cu->abbrev_table = abbrev_table;
6392 }
6393 else if (cu->abbrev_table == NULL)
6394 {
6395 dwarf2_read_abbrevs (cu, abbrev_section);
6396 make_cleanup (dwarf2_free_abbrev_table, cu);
6397 }
6398 else if (rereading_dwo_cu)
6399 {
6400 dwarf2_free_abbrev_table (cu);
6401 dwarf2_read_abbrevs (cu, abbrev_section);
6402 }
6403
6404 /* Read the top level CU/TU die. */
6405 init_cu_die_reader (&reader, cu, section, NULL);
6406 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6407
6408 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6409 from the DWO file.
6410 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6411 DWO CU, that this test will fail (the attribute will not be present). */
6412 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6413 if (attr)
6414 {
6415 struct dwo_unit *dwo_unit;
6416 struct die_info *dwo_comp_unit_die;
6417
6418 if (has_children)
6419 {
6420 complaint (&symfile_complaints,
6421 _("compilation unit with DW_AT_GNU_dwo_name"
6422 " has children (offset 0x%x) [in module %s]"),
6423 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6424 }
6425 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6426 if (dwo_unit != NULL)
6427 {
6428 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6429 abbrev_table != NULL,
6430 comp_unit_die, NULL,
6431 &reader, &info_ptr,
6432 &dwo_comp_unit_die, &has_children) == 0)
6433 {
6434 /* Dummy die. */
6435 do_cleanups (cleanups);
6436 return;
6437 }
6438 comp_unit_die = dwo_comp_unit_die;
6439 }
6440 else
6441 {
6442 /* Yikes, we couldn't find the rest of the DIE, we only have
6443 the stub. A complaint has already been logged. There's
6444 not much more we can do except pass on the stub DIE to
6445 die_reader_func. We don't want to throw an error on bad
6446 debug info. */
6447 }
6448 }
6449
6450 /* All of the above is setup for this call. Yikes. */
6451 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6452
6453 /* Done, clean up. */
6454 if (free_cu_cleanup != NULL)
6455 {
6456 if (keep)
6457 {
6458 /* We've successfully allocated this compilation unit. Let our
6459 caller clean it up when finished with it. */
6460 discard_cleanups (free_cu_cleanup);
6461
6462 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6463 So we have to manually free the abbrev table. */
6464 dwarf2_free_abbrev_table (cu);
6465
6466 /* Link this CU into read_in_chain. */
6467 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6468 dwarf2_per_objfile->read_in_chain = this_cu;
6469 }
6470 else
6471 do_cleanups (free_cu_cleanup);
6472 }
6473
6474 do_cleanups (cleanups);
6475 }
6476
6477 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
6478 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
6479 to have already done the lookup to find the DWO file).
6480
6481 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6482 THIS_CU->is_debug_types, but nothing else.
6483
6484 We fill in THIS_CU->length.
6485
6486 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6487 linker) then DIE_READER_FUNC will not get called.
6488
6489 THIS_CU->cu is always freed when done.
6490 This is done in order to not leave THIS_CU->cu in a state where we have
6491 to care whether it refers to the "main" CU or the DWO CU. */
6492
6493 static void
6494 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
6495 struct dwo_file *dwo_file,
6496 die_reader_func_ftype *die_reader_func,
6497 void *data)
6498 {
6499 struct objfile *objfile = dwarf2_per_objfile->objfile;
6500 struct dwarf2_section_info *section = this_cu->section;
6501 bfd *abfd = get_section_bfd_owner (section);
6502 struct dwarf2_section_info *abbrev_section;
6503 struct dwarf2_cu cu;
6504 const gdb_byte *begin_info_ptr, *info_ptr;
6505 struct die_reader_specs reader;
6506 struct cleanup *cleanups;
6507 struct die_info *comp_unit_die;
6508 int has_children;
6509
6510 if (dwarf_die_debug)
6511 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6512 this_cu->is_debug_types ? "type" : "comp",
6513 to_underlying (this_cu->sect_off));
6514
6515 gdb_assert (this_cu->cu == NULL);
6516
6517 abbrev_section = (dwo_file != NULL
6518 ? &dwo_file->sections.abbrev
6519 : get_abbrev_section_for_cu (this_cu));
6520
6521 /* This is cheap if the section is already read in. */
6522 dwarf2_read_section (objfile, section);
6523
6524 init_one_comp_unit (&cu, this_cu);
6525
6526 cleanups = make_cleanup (free_stack_comp_unit, &cu);
6527
6528 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6529 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
6530 abbrev_section, info_ptr,
6531 (this_cu->is_debug_types
6532 ? rcuh_kind::TYPE
6533 : rcuh_kind::COMPILE));
6534
6535 this_cu->length = get_cu_length (&cu.header);
6536
6537 /* Skip dummy compilation units. */
6538 if (info_ptr >= begin_info_ptr + this_cu->length
6539 || peek_abbrev_code (abfd, info_ptr) == 0)
6540 {
6541 do_cleanups (cleanups);
6542 return;
6543 }
6544
6545 dwarf2_read_abbrevs (&cu, abbrev_section);
6546 make_cleanup (dwarf2_free_abbrev_table, &cu);
6547
6548 init_cu_die_reader (&reader, &cu, section, dwo_file);
6549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6550
6551 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6552
6553 do_cleanups (cleanups);
6554 }
6555
6556 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
6557 does not lookup the specified DWO file.
6558 This cannot be used to read DWO files.
6559
6560 THIS_CU->cu is always freed when done.
6561 This is done in order to not leave THIS_CU->cu in a state where we have
6562 to care whether it refers to the "main" CU or the DWO CU.
6563 We can revisit this if the data shows there's a performance issue. */
6564
6565 static void
6566 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
6567 die_reader_func_ftype *die_reader_func,
6568 void *data)
6569 {
6570 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
6571 }
6572 \f
6573 /* Type Unit Groups.
6574
6575 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6576 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6577 so that all types coming from the same compilation (.o file) are grouped
6578 together. A future step could be to put the types in the same symtab as
6579 the CU the types ultimately came from. */
6580
6581 static hashval_t
6582 hash_type_unit_group (const void *item)
6583 {
6584 const struct type_unit_group *tu_group
6585 = (const struct type_unit_group *) item;
6586
6587 return hash_stmt_list_entry (&tu_group->hash);
6588 }
6589
6590 static int
6591 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6592 {
6593 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6594 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6595
6596 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6597 }
6598
6599 /* Allocate a hash table for type unit groups. */
6600
6601 static htab_t
6602 allocate_type_unit_groups_table (void)
6603 {
6604 return htab_create_alloc_ex (3,
6605 hash_type_unit_group,
6606 eq_type_unit_group,
6607 NULL,
6608 &dwarf2_per_objfile->objfile->objfile_obstack,
6609 hashtab_obstack_allocate,
6610 dummy_obstack_deallocate);
6611 }
6612
6613 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6614 partial symtabs. We combine several TUs per psymtab to not let the size
6615 of any one psymtab grow too big. */
6616 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6617 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6618
6619 /* Helper routine for get_type_unit_group.
6620 Create the type_unit_group object used to hold one or more TUs. */
6621
6622 static struct type_unit_group *
6623 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6624 {
6625 struct objfile *objfile = dwarf2_per_objfile->objfile;
6626 struct dwarf2_per_cu_data *per_cu;
6627 struct type_unit_group *tu_group;
6628
6629 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6630 struct type_unit_group);
6631 per_cu = &tu_group->per_cu;
6632 per_cu->objfile = objfile;
6633
6634 if (dwarf2_per_objfile->using_index)
6635 {
6636 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6637 struct dwarf2_per_cu_quick_data);
6638 }
6639 else
6640 {
6641 unsigned int line_offset = to_underlying (line_offset_struct);
6642 struct partial_symtab *pst;
6643 char *name;
6644
6645 /* Give the symtab a useful name for debug purposes. */
6646 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6647 name = xstrprintf ("<type_units_%d>",
6648 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6649 else
6650 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6651
6652 pst = create_partial_symtab (per_cu, name);
6653 pst->anonymous = 1;
6654
6655 xfree (name);
6656 }
6657
6658 tu_group->hash.dwo_unit = cu->dwo_unit;
6659 tu_group->hash.line_sect_off = line_offset_struct;
6660
6661 return tu_group;
6662 }
6663
6664 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6665 STMT_LIST is a DW_AT_stmt_list attribute. */
6666
6667 static struct type_unit_group *
6668 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6669 {
6670 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6671 struct type_unit_group *tu_group;
6672 void **slot;
6673 unsigned int line_offset;
6674 struct type_unit_group type_unit_group_for_lookup;
6675
6676 if (dwarf2_per_objfile->type_unit_groups == NULL)
6677 {
6678 dwarf2_per_objfile->type_unit_groups =
6679 allocate_type_unit_groups_table ();
6680 }
6681
6682 /* Do we need to create a new group, or can we use an existing one? */
6683
6684 if (stmt_list)
6685 {
6686 line_offset = DW_UNSND (stmt_list);
6687 ++tu_stats->nr_symtab_sharers;
6688 }
6689 else
6690 {
6691 /* Ugh, no stmt_list. Rare, but we have to handle it.
6692 We can do various things here like create one group per TU or
6693 spread them over multiple groups to split up the expansion work.
6694 To avoid worst case scenarios (too many groups or too large groups)
6695 we, umm, group them in bunches. */
6696 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6697 | (tu_stats->nr_stmt_less_type_units
6698 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6699 ++tu_stats->nr_stmt_less_type_units;
6700 }
6701
6702 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6703 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6704 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6705 &type_unit_group_for_lookup, INSERT);
6706 if (*slot != NULL)
6707 {
6708 tu_group = (struct type_unit_group *) *slot;
6709 gdb_assert (tu_group != NULL);
6710 }
6711 else
6712 {
6713 sect_offset line_offset_struct = (sect_offset) line_offset;
6714 tu_group = create_type_unit_group (cu, line_offset_struct);
6715 *slot = tu_group;
6716 ++tu_stats->nr_symtabs;
6717 }
6718
6719 return tu_group;
6720 }
6721 \f
6722 /* Partial symbol tables. */
6723
6724 /* Create a psymtab named NAME and assign it to PER_CU.
6725
6726 The caller must fill in the following details:
6727 dirname, textlow, texthigh. */
6728
6729 static struct partial_symtab *
6730 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6731 {
6732 struct objfile *objfile = per_cu->objfile;
6733 struct partial_symtab *pst;
6734
6735 pst = start_psymtab_common (objfile, name, 0,
6736 objfile->global_psymbols,
6737 objfile->static_psymbols);
6738
6739 pst->psymtabs_addrmap_supported = 1;
6740
6741 /* This is the glue that links PST into GDB's symbol API. */
6742 pst->read_symtab_private = per_cu;
6743 pst->read_symtab = dwarf2_read_symtab;
6744 per_cu->v.psymtab = pst;
6745
6746 return pst;
6747 }
6748
6749 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6750 type. */
6751
6752 struct process_psymtab_comp_unit_data
6753 {
6754 /* True if we are reading a DW_TAG_partial_unit. */
6755
6756 int want_partial_unit;
6757
6758 /* The "pretend" language that is used if the CU doesn't declare a
6759 language. */
6760
6761 enum language pretend_language;
6762 };
6763
6764 /* die_reader_func for process_psymtab_comp_unit. */
6765
6766 static void
6767 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6768 const gdb_byte *info_ptr,
6769 struct die_info *comp_unit_die,
6770 int has_children,
6771 void *data)
6772 {
6773 struct dwarf2_cu *cu = reader->cu;
6774 struct objfile *objfile = cu->objfile;
6775 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6776 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6777 CORE_ADDR baseaddr;
6778 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6779 struct partial_symtab *pst;
6780 enum pc_bounds_kind cu_bounds_kind;
6781 const char *filename;
6782 struct process_psymtab_comp_unit_data *info
6783 = (struct process_psymtab_comp_unit_data *) data;
6784
6785 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6786 return;
6787
6788 gdb_assert (! per_cu->is_debug_types);
6789
6790 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6791
6792 cu->list_in_scope = &file_symbols;
6793
6794 /* Allocate a new partial symbol table structure. */
6795 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6796 if (filename == NULL)
6797 filename = "";
6798
6799 pst = create_partial_symtab (per_cu, filename);
6800
6801 /* This must be done before calling dwarf2_build_include_psymtabs. */
6802 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6803
6804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6805
6806 dwarf2_find_base_address (comp_unit_die, cu);
6807
6808 /* Possibly set the default values of LOWPC and HIGHPC from
6809 `DW_AT_ranges'. */
6810 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6811 &best_highpc, cu, pst);
6812 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6813 /* Store the contiguous range if it is not empty; it can be empty for
6814 CUs with no code. */
6815 addrmap_set_empty (objfile->psymtabs_addrmap,
6816 gdbarch_adjust_dwarf2_addr (gdbarch,
6817 best_lowpc + baseaddr),
6818 gdbarch_adjust_dwarf2_addr (gdbarch,
6819 best_highpc + baseaddr) - 1,
6820 pst);
6821
6822 /* Check if comp unit has_children.
6823 If so, read the rest of the partial symbols from this comp unit.
6824 If not, there's no more debug_info for this comp unit. */
6825 if (has_children)
6826 {
6827 struct partial_die_info *first_die;
6828 CORE_ADDR lowpc, highpc;
6829
6830 lowpc = ((CORE_ADDR) -1);
6831 highpc = ((CORE_ADDR) 0);
6832
6833 first_die = load_partial_dies (reader, info_ptr, 1);
6834
6835 scan_partial_symbols (first_die, &lowpc, &highpc,
6836 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6837
6838 /* If we didn't find a lowpc, set it to highpc to avoid
6839 complaints from `maint check'. */
6840 if (lowpc == ((CORE_ADDR) -1))
6841 lowpc = highpc;
6842
6843 /* If the compilation unit didn't have an explicit address range,
6844 then use the information extracted from its child dies. */
6845 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6846 {
6847 best_lowpc = lowpc;
6848 best_highpc = highpc;
6849 }
6850 }
6851 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6852 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6853
6854 end_psymtab_common (objfile, pst);
6855
6856 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6857 {
6858 int i;
6859 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6860 struct dwarf2_per_cu_data *iter;
6861
6862 /* Fill in 'dependencies' here; we fill in 'users' in a
6863 post-pass. */
6864 pst->number_of_dependencies = len;
6865 pst->dependencies =
6866 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6867 for (i = 0;
6868 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6869 i, iter);
6870 ++i)
6871 pst->dependencies[i] = iter->v.psymtab;
6872
6873 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6874 }
6875
6876 /* Get the list of files included in the current compilation unit,
6877 and build a psymtab for each of them. */
6878 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6879
6880 if (dwarf_read_debug)
6881 {
6882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6883
6884 fprintf_unfiltered (gdb_stdlog,
6885 "Psymtab for %s unit @0x%x: %s - %s"
6886 ", %d global, %d static syms\n",
6887 per_cu->is_debug_types ? "type" : "comp",
6888 to_underlying (per_cu->sect_off),
6889 paddress (gdbarch, pst->textlow),
6890 paddress (gdbarch, pst->texthigh),
6891 pst->n_global_syms, pst->n_static_syms);
6892 }
6893 }
6894
6895 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6896 Process compilation unit THIS_CU for a psymtab. */
6897
6898 static void
6899 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6900 int want_partial_unit,
6901 enum language pretend_language)
6902 {
6903 /* If this compilation unit was already read in, free the
6904 cached copy in order to read it in again. This is
6905 necessary because we skipped some symbols when we first
6906 read in the compilation unit (see load_partial_dies).
6907 This problem could be avoided, but the benefit is unclear. */
6908 if (this_cu->cu != NULL)
6909 free_one_cached_comp_unit (this_cu);
6910
6911 if (this_cu->is_debug_types)
6912 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6913 NULL);
6914 else
6915 {
6916 process_psymtab_comp_unit_data info;
6917 info.want_partial_unit = want_partial_unit;
6918 info.pretend_language = pretend_language;
6919 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6920 process_psymtab_comp_unit_reader, &info);
6921 }
6922
6923 /* Age out any secondary CUs. */
6924 age_cached_comp_units ();
6925 }
6926
6927 /* Reader function for build_type_psymtabs. */
6928
6929 static void
6930 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6931 const gdb_byte *info_ptr,
6932 struct die_info *type_unit_die,
6933 int has_children,
6934 void *data)
6935 {
6936 struct objfile *objfile = dwarf2_per_objfile->objfile;
6937 struct dwarf2_cu *cu = reader->cu;
6938 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6939 struct signatured_type *sig_type;
6940 struct type_unit_group *tu_group;
6941 struct attribute *attr;
6942 struct partial_die_info *first_die;
6943 CORE_ADDR lowpc, highpc;
6944 struct partial_symtab *pst;
6945
6946 gdb_assert (data == NULL);
6947 gdb_assert (per_cu->is_debug_types);
6948 sig_type = (struct signatured_type *) per_cu;
6949
6950 if (! has_children)
6951 return;
6952
6953 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6954 tu_group = get_type_unit_group (cu, attr);
6955
6956 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6957
6958 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6959 cu->list_in_scope = &file_symbols;
6960 pst = create_partial_symtab (per_cu, "");
6961 pst->anonymous = 1;
6962
6963 first_die = load_partial_dies (reader, info_ptr, 1);
6964
6965 lowpc = (CORE_ADDR) -1;
6966 highpc = (CORE_ADDR) 0;
6967 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6968
6969 end_psymtab_common (objfile, pst);
6970 }
6971
6972 /* Struct used to sort TUs by their abbreviation table offset. */
6973
6974 struct tu_abbrev_offset
6975 {
6976 struct signatured_type *sig_type;
6977 sect_offset abbrev_offset;
6978 };
6979
6980 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6981
6982 static int
6983 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6984 {
6985 const struct tu_abbrev_offset * const *a
6986 = (const struct tu_abbrev_offset * const*) ap;
6987 const struct tu_abbrev_offset * const *b
6988 = (const struct tu_abbrev_offset * const*) bp;
6989 sect_offset aoff = (*a)->abbrev_offset;
6990 sect_offset boff = (*b)->abbrev_offset;
6991
6992 return (aoff > boff) - (aoff < boff);
6993 }
6994
6995 /* Efficiently read all the type units.
6996 This does the bulk of the work for build_type_psymtabs.
6997
6998 The efficiency is because we sort TUs by the abbrev table they use and
6999 only read each abbrev table once. In one program there are 200K TUs
7000 sharing 8K abbrev tables.
7001
7002 The main purpose of this function is to support building the
7003 dwarf2_per_objfile->type_unit_groups table.
7004 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7005 can collapse the search space by grouping them by stmt_list.
7006 The savings can be significant, in the same program from above the 200K TUs
7007 share 8K stmt_list tables.
7008
7009 FUNC is expected to call get_type_unit_group, which will create the
7010 struct type_unit_group if necessary and add it to
7011 dwarf2_per_objfile->type_unit_groups. */
7012
7013 static void
7014 build_type_psymtabs_1 (void)
7015 {
7016 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7017 struct cleanup *cleanups;
7018 struct abbrev_table *abbrev_table;
7019 sect_offset abbrev_offset;
7020 struct tu_abbrev_offset *sorted_by_abbrev;
7021 int i;
7022
7023 /* It's up to the caller to not call us multiple times. */
7024 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7025
7026 if (dwarf2_per_objfile->n_type_units == 0)
7027 return;
7028
7029 /* TUs typically share abbrev tables, and there can be way more TUs than
7030 abbrev tables. Sort by abbrev table to reduce the number of times we
7031 read each abbrev table in.
7032 Alternatives are to punt or to maintain a cache of abbrev tables.
7033 This is simpler and efficient enough for now.
7034
7035 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7036 symtab to use). Typically TUs with the same abbrev offset have the same
7037 stmt_list value too so in practice this should work well.
7038
7039 The basic algorithm here is:
7040
7041 sort TUs by abbrev table
7042 for each TU with same abbrev table:
7043 read abbrev table if first user
7044 read TU top level DIE
7045 [IWBN if DWO skeletons had DW_AT_stmt_list]
7046 call FUNC */
7047
7048 if (dwarf_read_debug)
7049 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7050
7051 /* Sort in a separate table to maintain the order of all_type_units
7052 for .gdb_index: TU indices directly index all_type_units. */
7053 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
7054 dwarf2_per_objfile->n_type_units);
7055 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7056 {
7057 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
7058
7059 sorted_by_abbrev[i].sig_type = sig_type;
7060 sorted_by_abbrev[i].abbrev_offset =
7061 read_abbrev_offset (sig_type->per_cu.section,
7062 sig_type->per_cu.sect_off);
7063 }
7064 cleanups = make_cleanup (xfree, sorted_by_abbrev);
7065 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
7066 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
7067
7068 abbrev_offset = (sect_offset) ~(unsigned) 0;
7069 abbrev_table = NULL;
7070 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
7071
7072 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7073 {
7074 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
7075
7076 /* Switch to the next abbrev table if necessary. */
7077 if (abbrev_table == NULL
7078 || tu->abbrev_offset != abbrev_offset)
7079 {
7080 if (abbrev_table != NULL)
7081 {
7082 abbrev_table_free (abbrev_table);
7083 /* Reset to NULL in case abbrev_table_read_table throws
7084 an error: abbrev_table_free_cleanup will get called. */
7085 abbrev_table = NULL;
7086 }
7087 abbrev_offset = tu->abbrev_offset;
7088 abbrev_table =
7089 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
7090 abbrev_offset);
7091 ++tu_stats->nr_uniq_abbrev_tables;
7092 }
7093
7094 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
7095 build_type_psymtabs_reader, NULL);
7096 }
7097
7098 do_cleanups (cleanups);
7099 }
7100
7101 /* Print collected type unit statistics. */
7102
7103 static void
7104 print_tu_stats (void)
7105 {
7106 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7107
7108 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7109 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
7110 dwarf2_per_objfile->n_type_units);
7111 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7112 tu_stats->nr_uniq_abbrev_tables);
7113 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7114 tu_stats->nr_symtabs);
7115 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7116 tu_stats->nr_symtab_sharers);
7117 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7118 tu_stats->nr_stmt_less_type_units);
7119 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7120 tu_stats->nr_all_type_units_reallocs);
7121 }
7122
7123 /* Traversal function for build_type_psymtabs. */
7124
7125 static int
7126 build_type_psymtab_dependencies (void **slot, void *info)
7127 {
7128 struct objfile *objfile = dwarf2_per_objfile->objfile;
7129 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7130 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7131 struct partial_symtab *pst = per_cu->v.psymtab;
7132 int len = VEC_length (sig_type_ptr, tu_group->tus);
7133 struct signatured_type *iter;
7134 int i;
7135
7136 gdb_assert (len > 0);
7137 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
7138
7139 pst->number_of_dependencies = len;
7140 pst->dependencies =
7141 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7142 for (i = 0;
7143 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
7144 ++i)
7145 {
7146 gdb_assert (iter->per_cu.is_debug_types);
7147 pst->dependencies[i] = iter->per_cu.v.psymtab;
7148 iter->type_unit_group = tu_group;
7149 }
7150
7151 VEC_free (sig_type_ptr, tu_group->tus);
7152
7153 return 1;
7154 }
7155
7156 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7157 Build partial symbol tables for the .debug_types comp-units. */
7158
7159 static void
7160 build_type_psymtabs (struct objfile *objfile)
7161 {
7162 if (! create_all_type_units (objfile))
7163 return;
7164
7165 build_type_psymtabs_1 ();
7166 }
7167
7168 /* Traversal function for process_skeletonless_type_unit.
7169 Read a TU in a DWO file and build partial symbols for it. */
7170
7171 static int
7172 process_skeletonless_type_unit (void **slot, void *info)
7173 {
7174 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7175 struct objfile *objfile = (struct objfile *) info;
7176 struct signatured_type find_entry, *entry;
7177
7178 /* If this TU doesn't exist in the global table, add it and read it in. */
7179
7180 if (dwarf2_per_objfile->signatured_types == NULL)
7181 {
7182 dwarf2_per_objfile->signatured_types
7183 = allocate_signatured_type_table (objfile);
7184 }
7185
7186 find_entry.signature = dwo_unit->signature;
7187 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
7188 INSERT);
7189 /* If we've already seen this type there's nothing to do. What's happening
7190 is we're doing our own version of comdat-folding here. */
7191 if (*slot != NULL)
7192 return 1;
7193
7194 /* This does the job that create_all_type_units would have done for
7195 this TU. */
7196 entry = add_type_unit (dwo_unit->signature, slot);
7197 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
7198 *slot = entry;
7199
7200 /* This does the job that build_type_psymtabs_1 would have done. */
7201 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
7202 build_type_psymtabs_reader, NULL);
7203
7204 return 1;
7205 }
7206
7207 /* Traversal function for process_skeletonless_type_units. */
7208
7209 static int
7210 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7211 {
7212 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7213
7214 if (dwo_file->tus != NULL)
7215 {
7216 htab_traverse_noresize (dwo_file->tus,
7217 process_skeletonless_type_unit, info);
7218 }
7219
7220 return 1;
7221 }
7222
7223 /* Scan all TUs of DWO files, verifying we've processed them.
7224 This is needed in case a TU was emitted without its skeleton.
7225 Note: This can't be done until we know what all the DWO files are. */
7226
7227 static void
7228 process_skeletonless_type_units (struct objfile *objfile)
7229 {
7230 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7231 if (get_dwp_file () == NULL
7232 && dwarf2_per_objfile->dwo_files != NULL)
7233 {
7234 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
7235 process_dwo_file_for_skeletonless_type_units,
7236 objfile);
7237 }
7238 }
7239
7240 /* Compute the 'user' field for each psymtab in OBJFILE. */
7241
7242 static void
7243 set_partial_user (struct objfile *objfile)
7244 {
7245 int i;
7246
7247 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7248 {
7249 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7250 struct partial_symtab *pst = per_cu->v.psymtab;
7251 int j;
7252
7253 if (pst == NULL)
7254 continue;
7255
7256 for (j = 0; j < pst->number_of_dependencies; ++j)
7257 {
7258 /* Set the 'user' field only if it is not already set. */
7259 if (pst->dependencies[j]->user == NULL)
7260 pst->dependencies[j]->user = pst;
7261 }
7262 }
7263 }
7264
7265 /* Build the partial symbol table by doing a quick pass through the
7266 .debug_info and .debug_abbrev sections. */
7267
7268 static void
7269 dwarf2_build_psymtabs_hard (struct objfile *objfile)
7270 {
7271 struct cleanup *back_to;
7272 int i;
7273
7274 if (dwarf_read_debug)
7275 {
7276 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7277 objfile_name (objfile));
7278 }
7279
7280 dwarf2_per_objfile->reading_partial_symbols = 1;
7281
7282 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
7283
7284 /* Any cached compilation units will be linked by the per-objfile
7285 read_in_chain. Make sure to free them when we're done. */
7286 back_to = make_cleanup (free_cached_comp_units, NULL);
7287
7288 build_type_psymtabs (objfile);
7289
7290 create_all_comp_units (objfile);
7291
7292 /* Create a temporary address map on a temporary obstack. We later
7293 copy this to the final obstack. */
7294 auto_obstack temp_obstack;
7295
7296 scoped_restore save_psymtabs_addrmap
7297 = make_scoped_restore (&objfile->psymtabs_addrmap,
7298 addrmap_create_mutable (&temp_obstack));
7299
7300 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7301 {
7302 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7303
7304 process_psymtab_comp_unit (per_cu, 0, language_minimal);
7305 }
7306
7307 /* This has to wait until we read the CUs, we need the list of DWOs. */
7308 process_skeletonless_type_units (objfile);
7309
7310 /* Now that all TUs have been processed we can fill in the dependencies. */
7311 if (dwarf2_per_objfile->type_unit_groups != NULL)
7312 {
7313 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
7314 build_type_psymtab_dependencies, NULL);
7315 }
7316
7317 if (dwarf_read_debug)
7318 print_tu_stats ();
7319
7320 set_partial_user (objfile);
7321
7322 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
7323 &objfile->objfile_obstack);
7324 /* At this point we want to keep the address map. */
7325 save_psymtabs_addrmap.release ();
7326
7327 do_cleanups (back_to);
7328
7329 if (dwarf_read_debug)
7330 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7331 objfile_name (objfile));
7332 }
7333
7334 /* die_reader_func for load_partial_comp_unit. */
7335
7336 static void
7337 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
7338 const gdb_byte *info_ptr,
7339 struct die_info *comp_unit_die,
7340 int has_children,
7341 void *data)
7342 {
7343 struct dwarf2_cu *cu = reader->cu;
7344
7345 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
7346
7347 /* Check if comp unit has_children.
7348 If so, read the rest of the partial symbols from this comp unit.
7349 If not, there's no more debug_info for this comp unit. */
7350 if (has_children)
7351 load_partial_dies (reader, info_ptr, 0);
7352 }
7353
7354 /* Load the partial DIEs for a secondary CU into memory.
7355 This is also used when rereading a primary CU with load_all_dies. */
7356
7357 static void
7358 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7359 {
7360 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7361 load_partial_comp_unit_reader, NULL);
7362 }
7363
7364 static void
7365 read_comp_units_from_section (struct objfile *objfile,
7366 struct dwarf2_section_info *section,
7367 struct dwarf2_section_info *abbrev_section,
7368 unsigned int is_dwz,
7369 int *n_allocated,
7370 int *n_comp_units,
7371 struct dwarf2_per_cu_data ***all_comp_units)
7372 {
7373 const gdb_byte *info_ptr;
7374 bfd *abfd = get_section_bfd_owner (section);
7375
7376 if (dwarf_read_debug)
7377 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7378 get_section_name (section),
7379 get_section_file_name (section));
7380
7381 dwarf2_read_section (objfile, section);
7382
7383 info_ptr = section->buffer;
7384
7385 while (info_ptr < section->buffer + section->size)
7386 {
7387 struct dwarf2_per_cu_data *this_cu;
7388
7389 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7390
7391 comp_unit_head cu_header;
7392 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
7393 info_ptr, rcuh_kind::COMPILE);
7394
7395 /* Save the compilation unit for later lookup. */
7396 if (cu_header.unit_type != DW_UT_type)
7397 {
7398 this_cu = XOBNEW (&objfile->objfile_obstack,
7399 struct dwarf2_per_cu_data);
7400 memset (this_cu, 0, sizeof (*this_cu));
7401 }
7402 else
7403 {
7404 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7405 struct signatured_type);
7406 memset (sig_type, 0, sizeof (*sig_type));
7407 sig_type->signature = cu_header.signature;
7408 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7409 this_cu = &sig_type->per_cu;
7410 }
7411 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7412 this_cu->sect_off = sect_off;
7413 this_cu->length = cu_header.length + cu_header.initial_length_size;
7414 this_cu->is_dwz = is_dwz;
7415 this_cu->objfile = objfile;
7416 this_cu->section = section;
7417
7418 if (*n_comp_units == *n_allocated)
7419 {
7420 *n_allocated *= 2;
7421 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
7422 *all_comp_units, *n_allocated);
7423 }
7424 (*all_comp_units)[*n_comp_units] = this_cu;
7425 ++*n_comp_units;
7426
7427 info_ptr = info_ptr + this_cu->length;
7428 }
7429 }
7430
7431 /* Create a list of all compilation units in OBJFILE.
7432 This is only done for -readnow and building partial symtabs. */
7433
7434 static void
7435 create_all_comp_units (struct objfile *objfile)
7436 {
7437 int n_allocated;
7438 int n_comp_units;
7439 struct dwarf2_per_cu_data **all_comp_units;
7440 struct dwz_file *dwz;
7441
7442 n_comp_units = 0;
7443 n_allocated = 10;
7444 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
7445
7446 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
7447 &dwarf2_per_objfile->abbrev, 0,
7448 &n_allocated, &n_comp_units, &all_comp_units);
7449
7450 dwz = dwarf2_get_dwz_file ();
7451 if (dwz != NULL)
7452 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
7453 &n_allocated, &n_comp_units,
7454 &all_comp_units);
7455
7456 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
7457 struct dwarf2_per_cu_data *,
7458 n_comp_units);
7459 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
7460 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
7461 xfree (all_comp_units);
7462 dwarf2_per_objfile->n_comp_units = n_comp_units;
7463 }
7464
7465 /* Process all loaded DIEs for compilation unit CU, starting at
7466 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7467 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7468 DW_AT_ranges). See the comments of add_partial_subprogram on how
7469 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7470
7471 static void
7472 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7473 CORE_ADDR *highpc, int set_addrmap,
7474 struct dwarf2_cu *cu)
7475 {
7476 struct partial_die_info *pdi;
7477
7478 /* Now, march along the PDI's, descending into ones which have
7479 interesting children but skipping the children of the other ones,
7480 until we reach the end of the compilation unit. */
7481
7482 pdi = first_die;
7483
7484 while (pdi != NULL)
7485 {
7486 fixup_partial_die (pdi, cu);
7487
7488 /* Anonymous namespaces or modules have no name but have interesting
7489 children, so we need to look at them. Ditto for anonymous
7490 enums. */
7491
7492 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7493 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7494 || pdi->tag == DW_TAG_imported_unit)
7495 {
7496 switch (pdi->tag)
7497 {
7498 case DW_TAG_subprogram:
7499 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7500 break;
7501 case DW_TAG_constant:
7502 case DW_TAG_variable:
7503 case DW_TAG_typedef:
7504 case DW_TAG_union_type:
7505 if (!pdi->is_declaration)
7506 {
7507 add_partial_symbol (pdi, cu);
7508 }
7509 break;
7510 case DW_TAG_class_type:
7511 case DW_TAG_interface_type:
7512 case DW_TAG_structure_type:
7513 if (!pdi->is_declaration)
7514 {
7515 add_partial_symbol (pdi, cu);
7516 }
7517 if (cu->language == language_rust && pdi->has_children)
7518 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7519 set_addrmap, cu);
7520 break;
7521 case DW_TAG_enumeration_type:
7522 if (!pdi->is_declaration)
7523 add_partial_enumeration (pdi, cu);
7524 break;
7525 case DW_TAG_base_type:
7526 case DW_TAG_subrange_type:
7527 /* File scope base type definitions are added to the partial
7528 symbol table. */
7529 add_partial_symbol (pdi, cu);
7530 break;
7531 case DW_TAG_namespace:
7532 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7533 break;
7534 case DW_TAG_module:
7535 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7536 break;
7537 case DW_TAG_imported_unit:
7538 {
7539 struct dwarf2_per_cu_data *per_cu;
7540
7541 /* For now we don't handle imported units in type units. */
7542 if (cu->per_cu->is_debug_types)
7543 {
7544 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7545 " supported in type units [in module %s]"),
7546 objfile_name (cu->objfile));
7547 }
7548
7549 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
7550 pdi->is_dwz,
7551 cu->objfile);
7552
7553 /* Go read the partial unit, if needed. */
7554 if (per_cu->v.psymtab == NULL)
7555 process_psymtab_comp_unit (per_cu, 1, cu->language);
7556
7557 VEC_safe_push (dwarf2_per_cu_ptr,
7558 cu->per_cu->imported_symtabs, per_cu);
7559 }
7560 break;
7561 case DW_TAG_imported_declaration:
7562 add_partial_symbol (pdi, cu);
7563 break;
7564 default:
7565 break;
7566 }
7567 }
7568
7569 /* If the die has a sibling, skip to the sibling. */
7570
7571 pdi = pdi->die_sibling;
7572 }
7573 }
7574
7575 /* Functions used to compute the fully scoped name of a partial DIE.
7576
7577 Normally, this is simple. For C++, the parent DIE's fully scoped
7578 name is concatenated with "::" and the partial DIE's name.
7579 Enumerators are an exception; they use the scope of their parent
7580 enumeration type, i.e. the name of the enumeration type is not
7581 prepended to the enumerator.
7582
7583 There are two complexities. One is DW_AT_specification; in this
7584 case "parent" means the parent of the target of the specification,
7585 instead of the direct parent of the DIE. The other is compilers
7586 which do not emit DW_TAG_namespace; in this case we try to guess
7587 the fully qualified name of structure types from their members'
7588 linkage names. This must be done using the DIE's children rather
7589 than the children of any DW_AT_specification target. We only need
7590 to do this for structures at the top level, i.e. if the target of
7591 any DW_AT_specification (if any; otherwise the DIE itself) does not
7592 have a parent. */
7593
7594 /* Compute the scope prefix associated with PDI's parent, in
7595 compilation unit CU. The result will be allocated on CU's
7596 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7597 field. NULL is returned if no prefix is necessary. */
7598 static const char *
7599 partial_die_parent_scope (struct partial_die_info *pdi,
7600 struct dwarf2_cu *cu)
7601 {
7602 const char *grandparent_scope;
7603 struct partial_die_info *parent, *real_pdi;
7604
7605 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7606 then this means the parent of the specification DIE. */
7607
7608 real_pdi = pdi;
7609 while (real_pdi->has_specification)
7610 real_pdi = find_partial_die (real_pdi->spec_offset,
7611 real_pdi->spec_is_dwz, cu);
7612
7613 parent = real_pdi->die_parent;
7614 if (parent == NULL)
7615 return NULL;
7616
7617 if (parent->scope_set)
7618 return parent->scope;
7619
7620 fixup_partial_die (parent, cu);
7621
7622 grandparent_scope = partial_die_parent_scope (parent, cu);
7623
7624 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7625 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7626 Work around this problem here. */
7627 if (cu->language == language_cplus
7628 && parent->tag == DW_TAG_namespace
7629 && strcmp (parent->name, "::") == 0
7630 && grandparent_scope == NULL)
7631 {
7632 parent->scope = NULL;
7633 parent->scope_set = 1;
7634 return NULL;
7635 }
7636
7637 if (pdi->tag == DW_TAG_enumerator)
7638 /* Enumerators should not get the name of the enumeration as a prefix. */
7639 parent->scope = grandparent_scope;
7640 else if (parent->tag == DW_TAG_namespace
7641 || parent->tag == DW_TAG_module
7642 || parent->tag == DW_TAG_structure_type
7643 || parent->tag == DW_TAG_class_type
7644 || parent->tag == DW_TAG_interface_type
7645 || parent->tag == DW_TAG_union_type
7646 || parent->tag == DW_TAG_enumeration_type)
7647 {
7648 if (grandparent_scope == NULL)
7649 parent->scope = parent->name;
7650 else
7651 parent->scope = typename_concat (&cu->comp_unit_obstack,
7652 grandparent_scope,
7653 parent->name, 0, cu);
7654 }
7655 else
7656 {
7657 /* FIXME drow/2004-04-01: What should we be doing with
7658 function-local names? For partial symbols, we should probably be
7659 ignoring them. */
7660 complaint (&symfile_complaints,
7661 _("unhandled containing DIE tag %d for DIE at %d"),
7662 parent->tag, to_underlying (pdi->sect_off));
7663 parent->scope = grandparent_scope;
7664 }
7665
7666 parent->scope_set = 1;
7667 return parent->scope;
7668 }
7669
7670 /* Return the fully scoped name associated with PDI, from compilation unit
7671 CU. The result will be allocated with malloc. */
7672
7673 static char *
7674 partial_die_full_name (struct partial_die_info *pdi,
7675 struct dwarf2_cu *cu)
7676 {
7677 const char *parent_scope;
7678
7679 /* If this is a template instantiation, we can not work out the
7680 template arguments from partial DIEs. So, unfortunately, we have
7681 to go through the full DIEs. At least any work we do building
7682 types here will be reused if full symbols are loaded later. */
7683 if (pdi->has_template_arguments)
7684 {
7685 fixup_partial_die (pdi, cu);
7686
7687 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7688 {
7689 struct die_info *die;
7690 struct attribute attr;
7691 struct dwarf2_cu *ref_cu = cu;
7692
7693 /* DW_FORM_ref_addr is using section offset. */
7694 attr.name = (enum dwarf_attribute) 0;
7695 attr.form = DW_FORM_ref_addr;
7696 attr.u.unsnd = to_underlying (pdi->sect_off);
7697 die = follow_die_ref (NULL, &attr, &ref_cu);
7698
7699 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7700 }
7701 }
7702
7703 parent_scope = partial_die_parent_scope (pdi, cu);
7704 if (parent_scope == NULL)
7705 return NULL;
7706 else
7707 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7708 }
7709
7710 static void
7711 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7712 {
7713 struct objfile *objfile = cu->objfile;
7714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7715 CORE_ADDR addr = 0;
7716 const char *actual_name = NULL;
7717 CORE_ADDR baseaddr;
7718 char *built_actual_name;
7719
7720 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7721
7722 built_actual_name = partial_die_full_name (pdi, cu);
7723 if (built_actual_name != NULL)
7724 actual_name = built_actual_name;
7725
7726 if (actual_name == NULL)
7727 actual_name = pdi->name;
7728
7729 switch (pdi->tag)
7730 {
7731 case DW_TAG_subprogram:
7732 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7733 if (pdi->is_external || cu->language == language_ada)
7734 {
7735 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7736 of the global scope. But in Ada, we want to be able to access
7737 nested procedures globally. So all Ada subprograms are stored
7738 in the global scope. */
7739 add_psymbol_to_list (actual_name, strlen (actual_name),
7740 built_actual_name != NULL,
7741 VAR_DOMAIN, LOC_BLOCK,
7742 &objfile->global_psymbols,
7743 addr, cu->language, objfile);
7744 }
7745 else
7746 {
7747 add_psymbol_to_list (actual_name, strlen (actual_name),
7748 built_actual_name != NULL,
7749 VAR_DOMAIN, LOC_BLOCK,
7750 &objfile->static_psymbols,
7751 addr, cu->language, objfile);
7752 }
7753
7754 if (pdi->main_subprogram && actual_name != NULL)
7755 set_objfile_main_name (objfile, actual_name, cu->language);
7756 break;
7757 case DW_TAG_constant:
7758 {
7759 std::vector<partial_symbol *> *list;
7760
7761 if (pdi->is_external)
7762 list = &objfile->global_psymbols;
7763 else
7764 list = &objfile->static_psymbols;
7765 add_psymbol_to_list (actual_name, strlen (actual_name),
7766 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7767 list, 0, cu->language, objfile);
7768 }
7769 break;
7770 case DW_TAG_variable:
7771 if (pdi->d.locdesc)
7772 addr = decode_locdesc (pdi->d.locdesc, cu);
7773
7774 if (pdi->d.locdesc
7775 && addr == 0
7776 && !dwarf2_per_objfile->has_section_at_zero)
7777 {
7778 /* A global or static variable may also have been stripped
7779 out by the linker if unused, in which case its address
7780 will be nullified; do not add such variables into partial
7781 symbol table then. */
7782 }
7783 else if (pdi->is_external)
7784 {
7785 /* Global Variable.
7786 Don't enter into the minimal symbol tables as there is
7787 a minimal symbol table entry from the ELF symbols already.
7788 Enter into partial symbol table if it has a location
7789 descriptor or a type.
7790 If the location descriptor is missing, new_symbol will create
7791 a LOC_UNRESOLVED symbol, the address of the variable will then
7792 be determined from the minimal symbol table whenever the variable
7793 is referenced.
7794 The address for the partial symbol table entry is not
7795 used by GDB, but it comes in handy for debugging partial symbol
7796 table building. */
7797
7798 if (pdi->d.locdesc || pdi->has_type)
7799 add_psymbol_to_list (actual_name, strlen (actual_name),
7800 built_actual_name != NULL,
7801 VAR_DOMAIN, LOC_STATIC,
7802 &objfile->global_psymbols,
7803 addr + baseaddr,
7804 cu->language, objfile);
7805 }
7806 else
7807 {
7808 int has_loc = pdi->d.locdesc != NULL;
7809
7810 /* Static Variable. Skip symbols whose value we cannot know (those
7811 without location descriptors or constant values). */
7812 if (!has_loc && !pdi->has_const_value)
7813 {
7814 xfree (built_actual_name);
7815 return;
7816 }
7817
7818 add_psymbol_to_list (actual_name, strlen (actual_name),
7819 built_actual_name != NULL,
7820 VAR_DOMAIN, LOC_STATIC,
7821 &objfile->static_psymbols,
7822 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7823 cu->language, objfile);
7824 }
7825 break;
7826 case DW_TAG_typedef:
7827 case DW_TAG_base_type:
7828 case DW_TAG_subrange_type:
7829 add_psymbol_to_list (actual_name, strlen (actual_name),
7830 built_actual_name != NULL,
7831 VAR_DOMAIN, LOC_TYPEDEF,
7832 &objfile->static_psymbols,
7833 0, cu->language, objfile);
7834 break;
7835 case DW_TAG_imported_declaration:
7836 case DW_TAG_namespace:
7837 add_psymbol_to_list (actual_name, strlen (actual_name),
7838 built_actual_name != NULL,
7839 VAR_DOMAIN, LOC_TYPEDEF,
7840 &objfile->global_psymbols,
7841 0, cu->language, objfile);
7842 break;
7843 case DW_TAG_module:
7844 add_psymbol_to_list (actual_name, strlen (actual_name),
7845 built_actual_name != NULL,
7846 MODULE_DOMAIN, LOC_TYPEDEF,
7847 &objfile->global_psymbols,
7848 0, cu->language, objfile);
7849 break;
7850 case DW_TAG_class_type:
7851 case DW_TAG_interface_type:
7852 case DW_TAG_structure_type:
7853 case DW_TAG_union_type:
7854 case DW_TAG_enumeration_type:
7855 /* Skip external references. The DWARF standard says in the section
7856 about "Structure, Union, and Class Type Entries": "An incomplete
7857 structure, union or class type is represented by a structure,
7858 union or class entry that does not have a byte size attribute
7859 and that has a DW_AT_declaration attribute." */
7860 if (!pdi->has_byte_size && pdi->is_declaration)
7861 {
7862 xfree (built_actual_name);
7863 return;
7864 }
7865
7866 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7867 static vs. global. */
7868 add_psymbol_to_list (actual_name, strlen (actual_name),
7869 built_actual_name != NULL,
7870 STRUCT_DOMAIN, LOC_TYPEDEF,
7871 cu->language == language_cplus
7872 ? &objfile->global_psymbols
7873 : &objfile->static_psymbols,
7874 0, cu->language, objfile);
7875
7876 break;
7877 case DW_TAG_enumerator:
7878 add_psymbol_to_list (actual_name, strlen (actual_name),
7879 built_actual_name != NULL,
7880 VAR_DOMAIN, LOC_CONST,
7881 cu->language == language_cplus
7882 ? &objfile->global_psymbols
7883 : &objfile->static_psymbols,
7884 0, cu->language, objfile);
7885 break;
7886 default:
7887 break;
7888 }
7889
7890 xfree (built_actual_name);
7891 }
7892
7893 /* Read a partial die corresponding to a namespace; also, add a symbol
7894 corresponding to that namespace to the symbol table. NAMESPACE is
7895 the name of the enclosing namespace. */
7896
7897 static void
7898 add_partial_namespace (struct partial_die_info *pdi,
7899 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7900 int set_addrmap, struct dwarf2_cu *cu)
7901 {
7902 /* Add a symbol for the namespace. */
7903
7904 add_partial_symbol (pdi, cu);
7905
7906 /* Now scan partial symbols in that namespace. */
7907
7908 if (pdi->has_children)
7909 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7910 }
7911
7912 /* Read a partial die corresponding to a Fortran module. */
7913
7914 static void
7915 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7916 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7917 {
7918 /* Add a symbol for the namespace. */
7919
7920 add_partial_symbol (pdi, cu);
7921
7922 /* Now scan partial symbols in that module. */
7923
7924 if (pdi->has_children)
7925 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7926 }
7927
7928 /* Read a partial die corresponding to a subprogram and create a partial
7929 symbol for that subprogram. When the CU language allows it, this
7930 routine also defines a partial symbol for each nested subprogram
7931 that this subprogram contains. If SET_ADDRMAP is true, record the
7932 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7933 and highest PC values found in PDI.
7934
7935 PDI may also be a lexical block, in which case we simply search
7936 recursively for subprograms defined inside that lexical block.
7937 Again, this is only performed when the CU language allows this
7938 type of definitions. */
7939
7940 static void
7941 add_partial_subprogram (struct partial_die_info *pdi,
7942 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7943 int set_addrmap, struct dwarf2_cu *cu)
7944 {
7945 if (pdi->tag == DW_TAG_subprogram)
7946 {
7947 if (pdi->has_pc_info)
7948 {
7949 if (pdi->lowpc < *lowpc)
7950 *lowpc = pdi->lowpc;
7951 if (pdi->highpc > *highpc)
7952 *highpc = pdi->highpc;
7953 if (set_addrmap)
7954 {
7955 struct objfile *objfile = cu->objfile;
7956 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7957 CORE_ADDR baseaddr;
7958 CORE_ADDR highpc;
7959 CORE_ADDR lowpc;
7960
7961 baseaddr = ANOFFSET (objfile->section_offsets,
7962 SECT_OFF_TEXT (objfile));
7963 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7964 pdi->lowpc + baseaddr);
7965 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7966 pdi->highpc + baseaddr);
7967 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7968 cu->per_cu->v.psymtab);
7969 }
7970 }
7971
7972 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7973 {
7974 if (!pdi->is_declaration)
7975 /* Ignore subprogram DIEs that do not have a name, they are
7976 illegal. Do not emit a complaint at this point, we will
7977 do so when we convert this psymtab into a symtab. */
7978 if (pdi->name)
7979 add_partial_symbol (pdi, cu);
7980 }
7981 }
7982
7983 if (! pdi->has_children)
7984 return;
7985
7986 if (cu->language == language_ada)
7987 {
7988 pdi = pdi->die_child;
7989 while (pdi != NULL)
7990 {
7991 fixup_partial_die (pdi, cu);
7992 if (pdi->tag == DW_TAG_subprogram
7993 || pdi->tag == DW_TAG_lexical_block)
7994 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7995 pdi = pdi->die_sibling;
7996 }
7997 }
7998 }
7999
8000 /* Read a partial die corresponding to an enumeration type. */
8001
8002 static void
8003 add_partial_enumeration (struct partial_die_info *enum_pdi,
8004 struct dwarf2_cu *cu)
8005 {
8006 struct partial_die_info *pdi;
8007
8008 if (enum_pdi->name != NULL)
8009 add_partial_symbol (enum_pdi, cu);
8010
8011 pdi = enum_pdi->die_child;
8012 while (pdi)
8013 {
8014 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8015 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8016 else
8017 add_partial_symbol (pdi, cu);
8018 pdi = pdi->die_sibling;
8019 }
8020 }
8021
8022 /* Return the initial uleb128 in the die at INFO_PTR. */
8023
8024 static unsigned int
8025 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8026 {
8027 unsigned int bytes_read;
8028
8029 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8030 }
8031
8032 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
8033 Return the corresponding abbrev, or NULL if the number is zero (indicating
8034 an empty DIE). In either case *BYTES_READ will be set to the length of
8035 the initial number. */
8036
8037 static struct abbrev_info *
8038 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
8039 struct dwarf2_cu *cu)
8040 {
8041 bfd *abfd = cu->objfile->obfd;
8042 unsigned int abbrev_number;
8043 struct abbrev_info *abbrev;
8044
8045 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8046
8047 if (abbrev_number == 0)
8048 return NULL;
8049
8050 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
8051 if (!abbrev)
8052 {
8053 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8054 " at offset 0x%x [in module %s]"),
8055 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8056 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
8057 }
8058
8059 return abbrev;
8060 }
8061
8062 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8063 Returns a pointer to the end of a series of DIEs, terminated by an empty
8064 DIE. Any children of the skipped DIEs will also be skipped. */
8065
8066 static const gdb_byte *
8067 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8068 {
8069 struct dwarf2_cu *cu = reader->cu;
8070 struct abbrev_info *abbrev;
8071 unsigned int bytes_read;
8072
8073 while (1)
8074 {
8075 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8076 if (abbrev == NULL)
8077 return info_ptr + bytes_read;
8078 else
8079 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8080 }
8081 }
8082
8083 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8084 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8085 abbrev corresponding to that skipped uleb128 should be passed in
8086 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8087 children. */
8088
8089 static const gdb_byte *
8090 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8091 struct abbrev_info *abbrev)
8092 {
8093 unsigned int bytes_read;
8094 struct attribute attr;
8095 bfd *abfd = reader->abfd;
8096 struct dwarf2_cu *cu = reader->cu;
8097 const gdb_byte *buffer = reader->buffer;
8098 const gdb_byte *buffer_end = reader->buffer_end;
8099 unsigned int form, i;
8100
8101 for (i = 0; i < abbrev->num_attrs; i++)
8102 {
8103 /* The only abbrev we care about is DW_AT_sibling. */
8104 if (abbrev->attrs[i].name == DW_AT_sibling)
8105 {
8106 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8107 if (attr.form == DW_FORM_ref_addr)
8108 complaint (&symfile_complaints,
8109 _("ignoring absolute DW_AT_sibling"));
8110 else
8111 {
8112 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8113 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8114
8115 if (sibling_ptr < info_ptr)
8116 complaint (&symfile_complaints,
8117 _("DW_AT_sibling points backwards"));
8118 else if (sibling_ptr > reader->buffer_end)
8119 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8120 else
8121 return sibling_ptr;
8122 }
8123 }
8124
8125 /* If it isn't DW_AT_sibling, skip this attribute. */
8126 form = abbrev->attrs[i].form;
8127 skip_attribute:
8128 switch (form)
8129 {
8130 case DW_FORM_ref_addr:
8131 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8132 and later it is offset sized. */
8133 if (cu->header.version == 2)
8134 info_ptr += cu->header.addr_size;
8135 else
8136 info_ptr += cu->header.offset_size;
8137 break;
8138 case DW_FORM_GNU_ref_alt:
8139 info_ptr += cu->header.offset_size;
8140 break;
8141 case DW_FORM_addr:
8142 info_ptr += cu->header.addr_size;
8143 break;
8144 case DW_FORM_data1:
8145 case DW_FORM_ref1:
8146 case DW_FORM_flag:
8147 info_ptr += 1;
8148 break;
8149 case DW_FORM_flag_present:
8150 case DW_FORM_implicit_const:
8151 break;
8152 case DW_FORM_data2:
8153 case DW_FORM_ref2:
8154 info_ptr += 2;
8155 break;
8156 case DW_FORM_data4:
8157 case DW_FORM_ref4:
8158 info_ptr += 4;
8159 break;
8160 case DW_FORM_data8:
8161 case DW_FORM_ref8:
8162 case DW_FORM_ref_sig8:
8163 info_ptr += 8;
8164 break;
8165 case DW_FORM_data16:
8166 info_ptr += 16;
8167 break;
8168 case DW_FORM_string:
8169 read_direct_string (abfd, info_ptr, &bytes_read);
8170 info_ptr += bytes_read;
8171 break;
8172 case DW_FORM_sec_offset:
8173 case DW_FORM_strp:
8174 case DW_FORM_GNU_strp_alt:
8175 info_ptr += cu->header.offset_size;
8176 break;
8177 case DW_FORM_exprloc:
8178 case DW_FORM_block:
8179 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8180 info_ptr += bytes_read;
8181 break;
8182 case DW_FORM_block1:
8183 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8184 break;
8185 case DW_FORM_block2:
8186 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8187 break;
8188 case DW_FORM_block4:
8189 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8190 break;
8191 case DW_FORM_sdata:
8192 case DW_FORM_udata:
8193 case DW_FORM_ref_udata:
8194 case DW_FORM_GNU_addr_index:
8195 case DW_FORM_GNU_str_index:
8196 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8197 break;
8198 case DW_FORM_indirect:
8199 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8200 info_ptr += bytes_read;
8201 /* We need to continue parsing from here, so just go back to
8202 the top. */
8203 goto skip_attribute;
8204
8205 default:
8206 error (_("Dwarf Error: Cannot handle %s "
8207 "in DWARF reader [in module %s]"),
8208 dwarf_form_name (form),
8209 bfd_get_filename (abfd));
8210 }
8211 }
8212
8213 if (abbrev->has_children)
8214 return skip_children (reader, info_ptr);
8215 else
8216 return info_ptr;
8217 }
8218
8219 /* Locate ORIG_PDI's sibling.
8220 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8221
8222 static const gdb_byte *
8223 locate_pdi_sibling (const struct die_reader_specs *reader,
8224 struct partial_die_info *orig_pdi,
8225 const gdb_byte *info_ptr)
8226 {
8227 /* Do we know the sibling already? */
8228
8229 if (orig_pdi->sibling)
8230 return orig_pdi->sibling;
8231
8232 /* Are there any children to deal with? */
8233
8234 if (!orig_pdi->has_children)
8235 return info_ptr;
8236
8237 /* Skip the children the long way. */
8238
8239 return skip_children (reader, info_ptr);
8240 }
8241
8242 /* Expand this partial symbol table into a full symbol table. SELF is
8243 not NULL. */
8244
8245 static void
8246 dwarf2_read_symtab (struct partial_symtab *self,
8247 struct objfile *objfile)
8248 {
8249 if (self->readin)
8250 {
8251 warning (_("bug: psymtab for %s is already read in."),
8252 self->filename);
8253 }
8254 else
8255 {
8256 if (info_verbose)
8257 {
8258 printf_filtered (_("Reading in symbols for %s..."),
8259 self->filename);
8260 gdb_flush (gdb_stdout);
8261 }
8262
8263 /* Restore our global data. */
8264 dwarf2_per_objfile
8265 = (struct dwarf2_per_objfile *) objfile_data (objfile,
8266 dwarf2_objfile_data_key);
8267
8268 /* If this psymtab is constructed from a debug-only objfile, the
8269 has_section_at_zero flag will not necessarily be correct. We
8270 can get the correct value for this flag by looking at the data
8271 associated with the (presumably stripped) associated objfile. */
8272 if (objfile->separate_debug_objfile_backlink)
8273 {
8274 struct dwarf2_per_objfile *dpo_backlink
8275 = ((struct dwarf2_per_objfile *)
8276 objfile_data (objfile->separate_debug_objfile_backlink,
8277 dwarf2_objfile_data_key));
8278
8279 dwarf2_per_objfile->has_section_at_zero
8280 = dpo_backlink->has_section_at_zero;
8281 }
8282
8283 dwarf2_per_objfile->reading_partial_symbols = 0;
8284
8285 psymtab_to_symtab_1 (self);
8286
8287 /* Finish up the debug error message. */
8288 if (info_verbose)
8289 printf_filtered (_("done.\n"));
8290 }
8291
8292 process_cu_includes ();
8293 }
8294 \f
8295 /* Reading in full CUs. */
8296
8297 /* Add PER_CU to the queue. */
8298
8299 static void
8300 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8301 enum language pretend_language)
8302 {
8303 struct dwarf2_queue_item *item;
8304
8305 per_cu->queued = 1;
8306 item = XNEW (struct dwarf2_queue_item);
8307 item->per_cu = per_cu;
8308 item->pretend_language = pretend_language;
8309 item->next = NULL;
8310
8311 if (dwarf2_queue == NULL)
8312 dwarf2_queue = item;
8313 else
8314 dwarf2_queue_tail->next = item;
8315
8316 dwarf2_queue_tail = item;
8317 }
8318
8319 /* If PER_CU is not yet queued, add it to the queue.
8320 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8321 dependency.
8322 The result is non-zero if PER_CU was queued, otherwise the result is zero
8323 meaning either PER_CU is already queued or it is already loaded.
8324
8325 N.B. There is an invariant here that if a CU is queued then it is loaded.
8326 The caller is required to load PER_CU if we return non-zero. */
8327
8328 static int
8329 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8330 struct dwarf2_per_cu_data *per_cu,
8331 enum language pretend_language)
8332 {
8333 /* We may arrive here during partial symbol reading, if we need full
8334 DIEs to process an unusual case (e.g. template arguments). Do
8335 not queue PER_CU, just tell our caller to load its DIEs. */
8336 if (dwarf2_per_objfile->reading_partial_symbols)
8337 {
8338 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8339 return 1;
8340 return 0;
8341 }
8342
8343 /* Mark the dependence relation so that we don't flush PER_CU
8344 too early. */
8345 if (dependent_cu != NULL)
8346 dwarf2_add_dependence (dependent_cu, per_cu);
8347
8348 /* If it's already on the queue, we have nothing to do. */
8349 if (per_cu->queued)
8350 return 0;
8351
8352 /* If the compilation unit is already loaded, just mark it as
8353 used. */
8354 if (per_cu->cu != NULL)
8355 {
8356 per_cu->cu->last_used = 0;
8357 return 0;
8358 }
8359
8360 /* Add it to the queue. */
8361 queue_comp_unit (per_cu, pretend_language);
8362
8363 return 1;
8364 }
8365
8366 /* Process the queue. */
8367
8368 static void
8369 process_queue (void)
8370 {
8371 struct dwarf2_queue_item *item, *next_item;
8372
8373 if (dwarf_read_debug)
8374 {
8375 fprintf_unfiltered (gdb_stdlog,
8376 "Expanding one or more symtabs of objfile %s ...\n",
8377 objfile_name (dwarf2_per_objfile->objfile));
8378 }
8379
8380 /* The queue starts out with one item, but following a DIE reference
8381 may load a new CU, adding it to the end of the queue. */
8382 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
8383 {
8384 if ((dwarf2_per_objfile->using_index
8385 ? !item->per_cu->v.quick->compunit_symtab
8386 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
8387 /* Skip dummy CUs. */
8388 && item->per_cu->cu != NULL)
8389 {
8390 struct dwarf2_per_cu_data *per_cu = item->per_cu;
8391 unsigned int debug_print_threshold;
8392 char buf[100];
8393
8394 if (per_cu->is_debug_types)
8395 {
8396 struct signatured_type *sig_type =
8397 (struct signatured_type *) per_cu;
8398
8399 sprintf (buf, "TU %s at offset 0x%x",
8400 hex_string (sig_type->signature),
8401 to_underlying (per_cu->sect_off));
8402 /* There can be 100s of TUs.
8403 Only print them in verbose mode. */
8404 debug_print_threshold = 2;
8405 }
8406 else
8407 {
8408 sprintf (buf, "CU at offset 0x%x",
8409 to_underlying (per_cu->sect_off));
8410 debug_print_threshold = 1;
8411 }
8412
8413 if (dwarf_read_debug >= debug_print_threshold)
8414 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8415
8416 if (per_cu->is_debug_types)
8417 process_full_type_unit (per_cu, item->pretend_language);
8418 else
8419 process_full_comp_unit (per_cu, item->pretend_language);
8420
8421 if (dwarf_read_debug >= debug_print_threshold)
8422 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8423 }
8424
8425 item->per_cu->queued = 0;
8426 next_item = item->next;
8427 xfree (item);
8428 }
8429
8430 dwarf2_queue_tail = NULL;
8431
8432 if (dwarf_read_debug)
8433 {
8434 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8435 objfile_name (dwarf2_per_objfile->objfile));
8436 }
8437 }
8438
8439 /* Free all allocated queue entries. This function only releases anything if
8440 an error was thrown; if the queue was processed then it would have been
8441 freed as we went along. */
8442
8443 static void
8444 dwarf2_release_queue (void *dummy)
8445 {
8446 struct dwarf2_queue_item *item, *last;
8447
8448 item = dwarf2_queue;
8449 while (item)
8450 {
8451 /* Anything still marked queued is likely to be in an
8452 inconsistent state, so discard it. */
8453 if (item->per_cu->queued)
8454 {
8455 if (item->per_cu->cu != NULL)
8456 free_one_cached_comp_unit (item->per_cu);
8457 item->per_cu->queued = 0;
8458 }
8459
8460 last = item;
8461 item = item->next;
8462 xfree (last);
8463 }
8464
8465 dwarf2_queue = dwarf2_queue_tail = NULL;
8466 }
8467
8468 /* Read in full symbols for PST, and anything it depends on. */
8469
8470 static void
8471 psymtab_to_symtab_1 (struct partial_symtab *pst)
8472 {
8473 struct dwarf2_per_cu_data *per_cu;
8474 int i;
8475
8476 if (pst->readin)
8477 return;
8478
8479 for (i = 0; i < pst->number_of_dependencies; i++)
8480 if (!pst->dependencies[i]->readin
8481 && pst->dependencies[i]->user == NULL)
8482 {
8483 /* Inform about additional files that need to be read in. */
8484 if (info_verbose)
8485 {
8486 /* FIXME: i18n: Need to make this a single string. */
8487 fputs_filtered (" ", gdb_stdout);
8488 wrap_here ("");
8489 fputs_filtered ("and ", gdb_stdout);
8490 wrap_here ("");
8491 printf_filtered ("%s...", pst->dependencies[i]->filename);
8492 wrap_here (""); /* Flush output. */
8493 gdb_flush (gdb_stdout);
8494 }
8495 psymtab_to_symtab_1 (pst->dependencies[i]);
8496 }
8497
8498 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
8499
8500 if (per_cu == NULL)
8501 {
8502 /* It's an include file, no symbols to read for it.
8503 Everything is in the parent symtab. */
8504 pst->readin = 1;
8505 return;
8506 }
8507
8508 dw2_do_instantiate_symtab (per_cu);
8509 }
8510
8511 /* Trivial hash function for die_info: the hash value of a DIE
8512 is its offset in .debug_info for this objfile. */
8513
8514 static hashval_t
8515 die_hash (const void *item)
8516 {
8517 const struct die_info *die = (const struct die_info *) item;
8518
8519 return to_underlying (die->sect_off);
8520 }
8521
8522 /* Trivial comparison function for die_info structures: two DIEs
8523 are equal if they have the same offset. */
8524
8525 static int
8526 die_eq (const void *item_lhs, const void *item_rhs)
8527 {
8528 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8529 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8530
8531 return die_lhs->sect_off == die_rhs->sect_off;
8532 }
8533
8534 /* die_reader_func for load_full_comp_unit.
8535 This is identical to read_signatured_type_reader,
8536 but is kept separate for now. */
8537
8538 static void
8539 load_full_comp_unit_reader (const struct die_reader_specs *reader,
8540 const gdb_byte *info_ptr,
8541 struct die_info *comp_unit_die,
8542 int has_children,
8543 void *data)
8544 {
8545 struct dwarf2_cu *cu = reader->cu;
8546 enum language *language_ptr = (enum language *) data;
8547
8548 gdb_assert (cu->die_hash == NULL);
8549 cu->die_hash =
8550 htab_create_alloc_ex (cu->header.length / 12,
8551 die_hash,
8552 die_eq,
8553 NULL,
8554 &cu->comp_unit_obstack,
8555 hashtab_obstack_allocate,
8556 dummy_obstack_deallocate);
8557
8558 if (has_children)
8559 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
8560 &info_ptr, comp_unit_die);
8561 cu->dies = comp_unit_die;
8562 /* comp_unit_die is not stored in die_hash, no need. */
8563
8564 /* We try not to read any attributes in this function, because not
8565 all CUs needed for references have been loaded yet, and symbol
8566 table processing isn't initialized. But we have to set the CU language,
8567 or we won't be able to build types correctly.
8568 Similarly, if we do not read the producer, we can not apply
8569 producer-specific interpretation. */
8570 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8571 }
8572
8573 /* Load the DIEs associated with PER_CU into memory. */
8574
8575 static void
8576 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8577 enum language pretend_language)
8578 {
8579 gdb_assert (! this_cu->is_debug_types);
8580
8581 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8582 load_full_comp_unit_reader, &pretend_language);
8583 }
8584
8585 /* Add a DIE to the delayed physname list. */
8586
8587 static void
8588 add_to_method_list (struct type *type, int fnfield_index, int index,
8589 const char *name, struct die_info *die,
8590 struct dwarf2_cu *cu)
8591 {
8592 struct delayed_method_info mi;
8593 mi.type = type;
8594 mi.fnfield_index = fnfield_index;
8595 mi.index = index;
8596 mi.name = name;
8597 mi.die = die;
8598 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8599 }
8600
8601 /* A cleanup for freeing the delayed method list. */
8602
8603 static void
8604 free_delayed_list (void *ptr)
8605 {
8606 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8607 if (cu->method_list != NULL)
8608 {
8609 VEC_free (delayed_method_info, cu->method_list);
8610 cu->method_list = NULL;
8611 }
8612 }
8613
8614 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8615 "const" / "volatile". If so, decrements LEN by the length of the
8616 modifier and return true. Otherwise return false. */
8617
8618 template<size_t N>
8619 static bool
8620 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8621 {
8622 size_t mod_len = sizeof (mod) - 1;
8623 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8624 {
8625 len -= mod_len;
8626 return true;
8627 }
8628 return false;
8629 }
8630
8631 /* Compute the physnames of any methods on the CU's method list.
8632
8633 The computation of method physnames is delayed in order to avoid the
8634 (bad) condition that one of the method's formal parameters is of an as yet
8635 incomplete type. */
8636
8637 static void
8638 compute_delayed_physnames (struct dwarf2_cu *cu)
8639 {
8640 int i;
8641 struct delayed_method_info *mi;
8642
8643 /* Only C++ delays computing physnames. */
8644 if (VEC_empty (delayed_method_info, cu->method_list))
8645 return;
8646 gdb_assert (cu->language == language_cplus);
8647
8648 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8649 {
8650 const char *physname;
8651 struct fn_fieldlist *fn_flp
8652 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8653 physname = dwarf2_physname (mi->name, mi->die, cu);
8654 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8655 = physname ? physname : "";
8656
8657 /* Since there's no tag to indicate whether a method is a
8658 const/volatile overload, extract that information out of the
8659 demangled name. */
8660 if (physname != NULL)
8661 {
8662 size_t len = strlen (physname);
8663
8664 while (1)
8665 {
8666 if (physname[len] == ')') /* shortcut */
8667 break;
8668 else if (check_modifier (physname, len, " const"))
8669 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8670 else if (check_modifier (physname, len, " volatile"))
8671 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8672 else
8673 break;
8674 }
8675 }
8676 }
8677 }
8678
8679 /* Go objects should be embedded in a DW_TAG_module DIE,
8680 and it's not clear if/how imported objects will appear.
8681 To keep Go support simple until that's worked out,
8682 go back through what we've read and create something usable.
8683 We could do this while processing each DIE, and feels kinda cleaner,
8684 but that way is more invasive.
8685 This is to, for example, allow the user to type "p var" or "b main"
8686 without having to specify the package name, and allow lookups
8687 of module.object to work in contexts that use the expression
8688 parser. */
8689
8690 static void
8691 fixup_go_packaging (struct dwarf2_cu *cu)
8692 {
8693 char *package_name = NULL;
8694 struct pending *list;
8695 int i;
8696
8697 for (list = global_symbols; list != NULL; list = list->next)
8698 {
8699 for (i = 0; i < list->nsyms; ++i)
8700 {
8701 struct symbol *sym = list->symbol[i];
8702
8703 if (SYMBOL_LANGUAGE (sym) == language_go
8704 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8705 {
8706 char *this_package_name = go_symbol_package_name (sym);
8707
8708 if (this_package_name == NULL)
8709 continue;
8710 if (package_name == NULL)
8711 package_name = this_package_name;
8712 else
8713 {
8714 if (strcmp (package_name, this_package_name) != 0)
8715 complaint (&symfile_complaints,
8716 _("Symtab %s has objects from two different Go packages: %s and %s"),
8717 (symbol_symtab (sym) != NULL
8718 ? symtab_to_filename_for_display
8719 (symbol_symtab (sym))
8720 : objfile_name (cu->objfile)),
8721 this_package_name, package_name);
8722 xfree (this_package_name);
8723 }
8724 }
8725 }
8726 }
8727
8728 if (package_name != NULL)
8729 {
8730 struct objfile *objfile = cu->objfile;
8731 const char *saved_package_name
8732 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8733 package_name,
8734 strlen (package_name));
8735 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8736 saved_package_name);
8737 struct symbol *sym;
8738
8739 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8740
8741 sym = allocate_symbol (objfile);
8742 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8743 SYMBOL_SET_NAMES (sym, saved_package_name,
8744 strlen (saved_package_name), 0, objfile);
8745 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8746 e.g., "main" finds the "main" module and not C's main(). */
8747 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8748 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8749 SYMBOL_TYPE (sym) = type;
8750
8751 add_symbol_to_list (sym, &global_symbols);
8752
8753 xfree (package_name);
8754 }
8755 }
8756
8757 /* Return the symtab for PER_CU. This works properly regardless of
8758 whether we're using the index or psymtabs. */
8759
8760 static struct compunit_symtab *
8761 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8762 {
8763 return (dwarf2_per_objfile->using_index
8764 ? per_cu->v.quick->compunit_symtab
8765 : per_cu->v.psymtab->compunit_symtab);
8766 }
8767
8768 /* A helper function for computing the list of all symbol tables
8769 included by PER_CU. */
8770
8771 static void
8772 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8773 htab_t all_children, htab_t all_type_symtabs,
8774 struct dwarf2_per_cu_data *per_cu,
8775 struct compunit_symtab *immediate_parent)
8776 {
8777 void **slot;
8778 int ix;
8779 struct compunit_symtab *cust;
8780 struct dwarf2_per_cu_data *iter;
8781
8782 slot = htab_find_slot (all_children, per_cu, INSERT);
8783 if (*slot != NULL)
8784 {
8785 /* This inclusion and its children have been processed. */
8786 return;
8787 }
8788
8789 *slot = per_cu;
8790 /* Only add a CU if it has a symbol table. */
8791 cust = get_compunit_symtab (per_cu);
8792 if (cust != NULL)
8793 {
8794 /* If this is a type unit only add its symbol table if we haven't
8795 seen it yet (type unit per_cu's can share symtabs). */
8796 if (per_cu->is_debug_types)
8797 {
8798 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8799 if (*slot == NULL)
8800 {
8801 *slot = cust;
8802 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8803 if (cust->user == NULL)
8804 cust->user = immediate_parent;
8805 }
8806 }
8807 else
8808 {
8809 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8810 if (cust->user == NULL)
8811 cust->user = immediate_parent;
8812 }
8813 }
8814
8815 for (ix = 0;
8816 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8817 ++ix)
8818 {
8819 recursively_compute_inclusions (result, all_children,
8820 all_type_symtabs, iter, cust);
8821 }
8822 }
8823
8824 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8825 PER_CU. */
8826
8827 static void
8828 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8829 {
8830 gdb_assert (! per_cu->is_debug_types);
8831
8832 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8833 {
8834 int ix, len;
8835 struct dwarf2_per_cu_data *per_cu_iter;
8836 struct compunit_symtab *compunit_symtab_iter;
8837 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8838 htab_t all_children, all_type_symtabs;
8839 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8840
8841 /* If we don't have a symtab, we can just skip this case. */
8842 if (cust == NULL)
8843 return;
8844
8845 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8846 NULL, xcalloc, xfree);
8847 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8848 NULL, xcalloc, xfree);
8849
8850 for (ix = 0;
8851 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8852 ix, per_cu_iter);
8853 ++ix)
8854 {
8855 recursively_compute_inclusions (&result_symtabs, all_children,
8856 all_type_symtabs, per_cu_iter,
8857 cust);
8858 }
8859
8860 /* Now we have a transitive closure of all the included symtabs. */
8861 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8862 cust->includes
8863 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8864 struct compunit_symtab *, len + 1);
8865 for (ix = 0;
8866 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8867 compunit_symtab_iter);
8868 ++ix)
8869 cust->includes[ix] = compunit_symtab_iter;
8870 cust->includes[len] = NULL;
8871
8872 VEC_free (compunit_symtab_ptr, result_symtabs);
8873 htab_delete (all_children);
8874 htab_delete (all_type_symtabs);
8875 }
8876 }
8877
8878 /* Compute the 'includes' field for the symtabs of all the CUs we just
8879 read. */
8880
8881 static void
8882 process_cu_includes (void)
8883 {
8884 int ix;
8885 struct dwarf2_per_cu_data *iter;
8886
8887 for (ix = 0;
8888 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8889 ix, iter);
8890 ++ix)
8891 {
8892 if (! iter->is_debug_types)
8893 compute_compunit_symtab_includes (iter);
8894 }
8895
8896 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8897 }
8898
8899 /* Generate full symbol information for PER_CU, whose DIEs have
8900 already been loaded into memory. */
8901
8902 static void
8903 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8904 enum language pretend_language)
8905 {
8906 struct dwarf2_cu *cu = per_cu->cu;
8907 struct objfile *objfile = per_cu->objfile;
8908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8909 CORE_ADDR lowpc, highpc;
8910 struct compunit_symtab *cust;
8911 struct cleanup *delayed_list_cleanup;
8912 CORE_ADDR baseaddr;
8913 struct block *static_block;
8914 CORE_ADDR addr;
8915
8916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8917
8918 buildsym_init ();
8919 scoped_free_pendings free_pending;
8920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8921
8922 cu->list_in_scope = &file_symbols;
8923
8924 cu->language = pretend_language;
8925 cu->language_defn = language_def (cu->language);
8926
8927 /* Do line number decoding in read_file_scope () */
8928 process_die (cu->dies, cu);
8929
8930 /* For now fudge the Go package. */
8931 if (cu->language == language_go)
8932 fixup_go_packaging (cu);
8933
8934 /* Now that we have processed all the DIEs in the CU, all the types
8935 should be complete, and it should now be safe to compute all of the
8936 physnames. */
8937 compute_delayed_physnames (cu);
8938 do_cleanups (delayed_list_cleanup);
8939
8940 /* Some compilers don't define a DW_AT_high_pc attribute for the
8941 compilation unit. If the DW_AT_high_pc is missing, synthesize
8942 it, by scanning the DIE's below the compilation unit. */
8943 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8944
8945 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8946 static_block = end_symtab_get_static_block (addr, 0, 1);
8947
8948 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8949 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8950 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8951 addrmap to help ensure it has an accurate map of pc values belonging to
8952 this comp unit. */
8953 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8954
8955 cust = end_symtab_from_static_block (static_block,
8956 SECT_OFF_TEXT (objfile), 0);
8957
8958 if (cust != NULL)
8959 {
8960 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8961
8962 /* Set symtab language to language from DW_AT_language. If the
8963 compilation is from a C file generated by language preprocessors, do
8964 not set the language if it was already deduced by start_subfile. */
8965 if (!(cu->language == language_c
8966 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8967 COMPUNIT_FILETABS (cust)->language = cu->language;
8968
8969 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8970 produce DW_AT_location with location lists but it can be possibly
8971 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8972 there were bugs in prologue debug info, fixed later in GCC-4.5
8973 by "unwind info for epilogues" patch (which is not directly related).
8974
8975 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8976 needed, it would be wrong due to missing DW_AT_producer there.
8977
8978 Still one can confuse GDB by using non-standard GCC compilation
8979 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8980 */
8981 if (cu->has_loclist && gcc_4_minor >= 5)
8982 cust->locations_valid = 1;
8983
8984 if (gcc_4_minor >= 5)
8985 cust->epilogue_unwind_valid = 1;
8986
8987 cust->call_site_htab = cu->call_site_htab;
8988 }
8989
8990 if (dwarf2_per_objfile->using_index)
8991 per_cu->v.quick->compunit_symtab = cust;
8992 else
8993 {
8994 struct partial_symtab *pst = per_cu->v.psymtab;
8995 pst->compunit_symtab = cust;
8996 pst->readin = 1;
8997 }
8998
8999 /* Push it for inclusion processing later. */
9000 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
9001 }
9002
9003 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9004 already been loaded into memory. */
9005
9006 static void
9007 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9008 enum language pretend_language)
9009 {
9010 struct dwarf2_cu *cu = per_cu->cu;
9011 struct objfile *objfile = per_cu->objfile;
9012 struct compunit_symtab *cust;
9013 struct cleanup *delayed_list_cleanup;
9014 struct signatured_type *sig_type;
9015
9016 gdb_assert (per_cu->is_debug_types);
9017 sig_type = (struct signatured_type *) per_cu;
9018
9019 buildsym_init ();
9020 scoped_free_pendings free_pending;
9021 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
9022
9023 cu->list_in_scope = &file_symbols;
9024
9025 cu->language = pretend_language;
9026 cu->language_defn = language_def (cu->language);
9027
9028 /* The symbol tables are set up in read_type_unit_scope. */
9029 process_die (cu->dies, cu);
9030
9031 /* For now fudge the Go package. */
9032 if (cu->language == language_go)
9033 fixup_go_packaging (cu);
9034
9035 /* Now that we have processed all the DIEs in the CU, all the types
9036 should be complete, and it should now be safe to compute all of the
9037 physnames. */
9038 compute_delayed_physnames (cu);
9039 do_cleanups (delayed_list_cleanup);
9040
9041 /* TUs share symbol tables.
9042 If this is the first TU to use this symtab, complete the construction
9043 of it with end_expandable_symtab. Otherwise, complete the addition of
9044 this TU's symbols to the existing symtab. */
9045 if (sig_type->type_unit_group->compunit_symtab == NULL)
9046 {
9047 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9048 sig_type->type_unit_group->compunit_symtab = cust;
9049
9050 if (cust != NULL)
9051 {
9052 /* Set symtab language to language from DW_AT_language. If the
9053 compilation is from a C file generated by language preprocessors,
9054 do not set the language if it was already deduced by
9055 start_subfile. */
9056 if (!(cu->language == language_c
9057 && COMPUNIT_FILETABS (cust)->language != language_c))
9058 COMPUNIT_FILETABS (cust)->language = cu->language;
9059 }
9060 }
9061 else
9062 {
9063 augment_type_symtab ();
9064 cust = sig_type->type_unit_group->compunit_symtab;
9065 }
9066
9067 if (dwarf2_per_objfile->using_index)
9068 per_cu->v.quick->compunit_symtab = cust;
9069 else
9070 {
9071 struct partial_symtab *pst = per_cu->v.psymtab;
9072 pst->compunit_symtab = cust;
9073 pst->readin = 1;
9074 }
9075 }
9076
9077 /* Process an imported unit DIE. */
9078
9079 static void
9080 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9081 {
9082 struct attribute *attr;
9083
9084 /* For now we don't handle imported units in type units. */
9085 if (cu->per_cu->is_debug_types)
9086 {
9087 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9088 " supported in type units [in module %s]"),
9089 objfile_name (cu->objfile));
9090 }
9091
9092 attr = dwarf2_attr (die, DW_AT_import, cu);
9093 if (attr != NULL)
9094 {
9095 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9096 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9097 dwarf2_per_cu_data *per_cu
9098 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
9099
9100 /* If necessary, add it to the queue and load its DIEs. */
9101 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9102 load_full_comp_unit (per_cu, cu->language);
9103
9104 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
9105 per_cu);
9106 }
9107 }
9108
9109 /* RAII object that represents a process_die scope: i.e.,
9110 starts/finishes processing a DIE. */
9111 class process_die_scope
9112 {
9113 public:
9114 process_die_scope (die_info *die, dwarf2_cu *cu)
9115 : m_die (die), m_cu (cu)
9116 {
9117 /* We should only be processing DIEs not already in process. */
9118 gdb_assert (!m_die->in_process);
9119 m_die->in_process = true;
9120 }
9121
9122 ~process_die_scope ()
9123 {
9124 m_die->in_process = false;
9125
9126 /* If we're done processing the DIE for the CU that owns the line
9127 header, we don't need the line header anymore. */
9128 if (m_cu->line_header_die_owner == m_die)
9129 {
9130 delete m_cu->line_header;
9131 m_cu->line_header = NULL;
9132 m_cu->line_header_die_owner = NULL;
9133 }
9134 }
9135
9136 private:
9137 die_info *m_die;
9138 dwarf2_cu *m_cu;
9139 };
9140
9141 /* Process a die and its children. */
9142
9143 static void
9144 process_die (struct die_info *die, struct dwarf2_cu *cu)
9145 {
9146 process_die_scope scope (die, cu);
9147
9148 switch (die->tag)
9149 {
9150 case DW_TAG_padding:
9151 break;
9152 case DW_TAG_compile_unit:
9153 case DW_TAG_partial_unit:
9154 read_file_scope (die, cu);
9155 break;
9156 case DW_TAG_type_unit:
9157 read_type_unit_scope (die, cu);
9158 break;
9159 case DW_TAG_subprogram:
9160 case DW_TAG_inlined_subroutine:
9161 read_func_scope (die, cu);
9162 break;
9163 case DW_TAG_lexical_block:
9164 case DW_TAG_try_block:
9165 case DW_TAG_catch_block:
9166 read_lexical_block_scope (die, cu);
9167 break;
9168 case DW_TAG_call_site:
9169 case DW_TAG_GNU_call_site:
9170 read_call_site_scope (die, cu);
9171 break;
9172 case DW_TAG_class_type:
9173 case DW_TAG_interface_type:
9174 case DW_TAG_structure_type:
9175 case DW_TAG_union_type:
9176 process_structure_scope (die, cu);
9177 break;
9178 case DW_TAG_enumeration_type:
9179 process_enumeration_scope (die, cu);
9180 break;
9181
9182 /* These dies have a type, but processing them does not create
9183 a symbol or recurse to process the children. Therefore we can
9184 read them on-demand through read_type_die. */
9185 case DW_TAG_subroutine_type:
9186 case DW_TAG_set_type:
9187 case DW_TAG_array_type:
9188 case DW_TAG_pointer_type:
9189 case DW_TAG_ptr_to_member_type:
9190 case DW_TAG_reference_type:
9191 case DW_TAG_rvalue_reference_type:
9192 case DW_TAG_string_type:
9193 break;
9194
9195 case DW_TAG_base_type:
9196 case DW_TAG_subrange_type:
9197 case DW_TAG_typedef:
9198 /* Add a typedef symbol for the type definition, if it has a
9199 DW_AT_name. */
9200 new_symbol (die, read_type_die (die, cu), cu);
9201 break;
9202 case DW_TAG_common_block:
9203 read_common_block (die, cu);
9204 break;
9205 case DW_TAG_common_inclusion:
9206 break;
9207 case DW_TAG_namespace:
9208 cu->processing_has_namespace_info = 1;
9209 read_namespace (die, cu);
9210 break;
9211 case DW_TAG_module:
9212 cu->processing_has_namespace_info = 1;
9213 read_module (die, cu);
9214 break;
9215 case DW_TAG_imported_declaration:
9216 cu->processing_has_namespace_info = 1;
9217 if (read_namespace_alias (die, cu))
9218 break;
9219 /* The declaration is not a global namespace alias: fall through. */
9220 case DW_TAG_imported_module:
9221 cu->processing_has_namespace_info = 1;
9222 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9223 || cu->language != language_fortran))
9224 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
9225 dwarf_tag_name (die->tag));
9226 read_import_statement (die, cu);
9227 break;
9228
9229 case DW_TAG_imported_unit:
9230 process_imported_unit_die (die, cu);
9231 break;
9232
9233 default:
9234 new_symbol (die, NULL, cu);
9235 break;
9236 }
9237 }
9238 \f
9239 /* DWARF name computation. */
9240
9241 /* A helper function for dwarf2_compute_name which determines whether DIE
9242 needs to have the name of the scope prepended to the name listed in the
9243 die. */
9244
9245 static int
9246 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9247 {
9248 struct attribute *attr;
9249
9250 switch (die->tag)
9251 {
9252 case DW_TAG_namespace:
9253 case DW_TAG_typedef:
9254 case DW_TAG_class_type:
9255 case DW_TAG_interface_type:
9256 case DW_TAG_structure_type:
9257 case DW_TAG_union_type:
9258 case DW_TAG_enumeration_type:
9259 case DW_TAG_enumerator:
9260 case DW_TAG_subprogram:
9261 case DW_TAG_inlined_subroutine:
9262 case DW_TAG_member:
9263 case DW_TAG_imported_declaration:
9264 return 1;
9265
9266 case DW_TAG_variable:
9267 case DW_TAG_constant:
9268 /* We only need to prefix "globally" visible variables. These include
9269 any variable marked with DW_AT_external or any variable that
9270 lives in a namespace. [Variables in anonymous namespaces
9271 require prefixing, but they are not DW_AT_external.] */
9272
9273 if (dwarf2_attr (die, DW_AT_specification, cu))
9274 {
9275 struct dwarf2_cu *spec_cu = cu;
9276
9277 return die_needs_namespace (die_specification (die, &spec_cu),
9278 spec_cu);
9279 }
9280
9281 attr = dwarf2_attr (die, DW_AT_external, cu);
9282 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9283 && die->parent->tag != DW_TAG_module)
9284 return 0;
9285 /* A variable in a lexical block of some kind does not need a
9286 namespace, even though in C++ such variables may be external
9287 and have a mangled name. */
9288 if (die->parent->tag == DW_TAG_lexical_block
9289 || die->parent->tag == DW_TAG_try_block
9290 || die->parent->tag == DW_TAG_catch_block
9291 || die->parent->tag == DW_TAG_subprogram)
9292 return 0;
9293 return 1;
9294
9295 default:
9296 return 0;
9297 }
9298 }
9299
9300 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9301 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9302 defined for the given DIE. */
9303
9304 static struct attribute *
9305 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9306 {
9307 struct attribute *attr;
9308
9309 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9310 if (attr == NULL)
9311 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9312
9313 return attr;
9314 }
9315
9316 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9317 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9318 defined for the given DIE. */
9319
9320 static const char *
9321 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9322 {
9323 const char *linkage_name;
9324
9325 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9326 if (linkage_name == NULL)
9327 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9328
9329 return linkage_name;
9330 }
9331
9332 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9333 compute the physname for the object, which include a method's:
9334 - formal parameters (C++),
9335 - receiver type (Go),
9336
9337 The term "physname" is a bit confusing.
9338 For C++, for example, it is the demangled name.
9339 For Go, for example, it's the mangled name.
9340
9341 For Ada, return the DIE's linkage name rather than the fully qualified
9342 name. PHYSNAME is ignored..
9343
9344 The result is allocated on the objfile_obstack and canonicalized. */
9345
9346 static const char *
9347 dwarf2_compute_name (const char *name,
9348 struct die_info *die, struct dwarf2_cu *cu,
9349 int physname)
9350 {
9351 struct objfile *objfile = cu->objfile;
9352
9353 if (name == NULL)
9354 name = dwarf2_name (die, cu);
9355
9356 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9357 but otherwise compute it by typename_concat inside GDB.
9358 FIXME: Actually this is not really true, or at least not always true.
9359 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
9360 Fortran names because there is no mangling standard. So new_symbol_full
9361 will set the demangled name to the result of dwarf2_full_name, and it is
9362 the demangled name that GDB uses if it exists. */
9363 if (cu->language == language_ada
9364 || (cu->language == language_fortran && physname))
9365 {
9366 /* For Ada unit, we prefer the linkage name over the name, as
9367 the former contains the exported name, which the user expects
9368 to be able to reference. Ideally, we want the user to be able
9369 to reference this entity using either natural or linkage name,
9370 but we haven't started looking at this enhancement yet. */
9371 const char *linkage_name = dw2_linkage_name (die, cu);
9372
9373 if (linkage_name != NULL)
9374 return linkage_name;
9375 }
9376
9377 /* These are the only languages we know how to qualify names in. */
9378 if (name != NULL
9379 && (cu->language == language_cplus
9380 || cu->language == language_fortran || cu->language == language_d
9381 || cu->language == language_rust))
9382 {
9383 if (die_needs_namespace (die, cu))
9384 {
9385 long length;
9386 const char *prefix;
9387 const char *canonical_name = NULL;
9388
9389 string_file buf;
9390
9391 prefix = determine_prefix (die, cu);
9392 if (*prefix != '\0')
9393 {
9394 char *prefixed_name = typename_concat (NULL, prefix, name,
9395 physname, cu);
9396
9397 buf.puts (prefixed_name);
9398 xfree (prefixed_name);
9399 }
9400 else
9401 buf.puts (name);
9402
9403 /* Template parameters may be specified in the DIE's DW_AT_name, or
9404 as children with DW_TAG_template_type_param or
9405 DW_TAG_value_type_param. If the latter, add them to the name
9406 here. If the name already has template parameters, then
9407 skip this step; some versions of GCC emit both, and
9408 it is more efficient to use the pre-computed name.
9409
9410 Something to keep in mind about this process: it is very
9411 unlikely, or in some cases downright impossible, to produce
9412 something that will match the mangled name of a function.
9413 If the definition of the function has the same debug info,
9414 we should be able to match up with it anyway. But fallbacks
9415 using the minimal symbol, for instance to find a method
9416 implemented in a stripped copy of libstdc++, will not work.
9417 If we do not have debug info for the definition, we will have to
9418 match them up some other way.
9419
9420 When we do name matching there is a related problem with function
9421 templates; two instantiated function templates are allowed to
9422 differ only by their return types, which we do not add here. */
9423
9424 if (cu->language == language_cplus && strchr (name, '<') == NULL)
9425 {
9426 struct attribute *attr;
9427 struct die_info *child;
9428 int first = 1;
9429
9430 die->building_fullname = 1;
9431
9432 for (child = die->child; child != NULL; child = child->sibling)
9433 {
9434 struct type *type;
9435 LONGEST value;
9436 const gdb_byte *bytes;
9437 struct dwarf2_locexpr_baton *baton;
9438 struct value *v;
9439
9440 if (child->tag != DW_TAG_template_type_param
9441 && child->tag != DW_TAG_template_value_param)
9442 continue;
9443
9444 if (first)
9445 {
9446 buf.puts ("<");
9447 first = 0;
9448 }
9449 else
9450 buf.puts (", ");
9451
9452 attr = dwarf2_attr (child, DW_AT_type, cu);
9453 if (attr == NULL)
9454 {
9455 complaint (&symfile_complaints,
9456 _("template parameter missing DW_AT_type"));
9457 buf.puts ("UNKNOWN_TYPE");
9458 continue;
9459 }
9460 type = die_type (child, cu);
9461
9462 if (child->tag == DW_TAG_template_type_param)
9463 {
9464 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
9465 continue;
9466 }
9467
9468 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9469 if (attr == NULL)
9470 {
9471 complaint (&symfile_complaints,
9472 _("template parameter missing "
9473 "DW_AT_const_value"));
9474 buf.puts ("UNKNOWN_VALUE");
9475 continue;
9476 }
9477
9478 dwarf2_const_value_attr (attr, type, name,
9479 &cu->comp_unit_obstack, cu,
9480 &value, &bytes, &baton);
9481
9482 if (TYPE_NOSIGN (type))
9483 /* GDB prints characters as NUMBER 'CHAR'. If that's
9484 changed, this can use value_print instead. */
9485 c_printchar (value, type, &buf);
9486 else
9487 {
9488 struct value_print_options opts;
9489
9490 if (baton != NULL)
9491 v = dwarf2_evaluate_loc_desc (type, NULL,
9492 baton->data,
9493 baton->size,
9494 baton->per_cu);
9495 else if (bytes != NULL)
9496 {
9497 v = allocate_value (type);
9498 memcpy (value_contents_writeable (v), bytes,
9499 TYPE_LENGTH (type));
9500 }
9501 else
9502 v = value_from_longest (type, value);
9503
9504 /* Specify decimal so that we do not depend on
9505 the radix. */
9506 get_formatted_print_options (&opts, 'd');
9507 opts.raw = 1;
9508 value_print (v, &buf, &opts);
9509 release_value (v);
9510 value_free (v);
9511 }
9512 }
9513
9514 die->building_fullname = 0;
9515
9516 if (!first)
9517 {
9518 /* Close the argument list, with a space if necessary
9519 (nested templates). */
9520 if (!buf.empty () && buf.string ().back () == '>')
9521 buf.puts (" >");
9522 else
9523 buf.puts (">");
9524 }
9525 }
9526
9527 /* For C++ methods, append formal parameter type
9528 information, if PHYSNAME. */
9529
9530 if (physname && die->tag == DW_TAG_subprogram
9531 && cu->language == language_cplus)
9532 {
9533 struct type *type = read_type_die (die, cu);
9534
9535 c_type_print_args (type, &buf, 1, cu->language,
9536 &type_print_raw_options);
9537
9538 if (cu->language == language_cplus)
9539 {
9540 /* Assume that an artificial first parameter is
9541 "this", but do not crash if it is not. RealView
9542 marks unnamed (and thus unused) parameters as
9543 artificial; there is no way to differentiate
9544 the two cases. */
9545 if (TYPE_NFIELDS (type) > 0
9546 && TYPE_FIELD_ARTIFICIAL (type, 0)
9547 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
9548 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
9549 0))))
9550 buf.puts (" const");
9551 }
9552 }
9553
9554 const std::string &intermediate_name = buf.string ();
9555
9556 if (cu->language == language_cplus)
9557 canonical_name
9558 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9559 &objfile->per_bfd->storage_obstack);
9560
9561 /* If we only computed INTERMEDIATE_NAME, or if
9562 INTERMEDIATE_NAME is already canonical, then we need to
9563 copy it to the appropriate obstack. */
9564 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9565 name = ((const char *)
9566 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9567 intermediate_name.c_str (),
9568 intermediate_name.length ()));
9569 else
9570 name = canonical_name;
9571 }
9572 }
9573
9574 return name;
9575 }
9576
9577 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9578 If scope qualifiers are appropriate they will be added. The result
9579 will be allocated on the storage_obstack, or NULL if the DIE does
9580 not have a name. NAME may either be from a previous call to
9581 dwarf2_name or NULL.
9582
9583 The output string will be canonicalized (if C++). */
9584
9585 static const char *
9586 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9587 {
9588 return dwarf2_compute_name (name, die, cu, 0);
9589 }
9590
9591 /* Construct a physname for the given DIE in CU. NAME may either be
9592 from a previous call to dwarf2_name or NULL. The result will be
9593 allocated on the objfile_objstack or NULL if the DIE does not have a
9594 name.
9595
9596 The output string will be canonicalized (if C++). */
9597
9598 static const char *
9599 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9600 {
9601 struct objfile *objfile = cu->objfile;
9602 const char *retval, *mangled = NULL, *canon = NULL;
9603 int need_copy = 1;
9604
9605 /* In this case dwarf2_compute_name is just a shortcut not building anything
9606 on its own. */
9607 if (!die_needs_namespace (die, cu))
9608 return dwarf2_compute_name (name, die, cu, 1);
9609
9610 mangled = dw2_linkage_name (die, cu);
9611
9612 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9613 See https://github.com/rust-lang/rust/issues/32925. */
9614 if (cu->language == language_rust && mangled != NULL
9615 && strchr (mangled, '{') != NULL)
9616 mangled = NULL;
9617
9618 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9619 has computed. */
9620 gdb::unique_xmalloc_ptr<char> demangled;
9621 if (mangled != NULL)
9622 {
9623 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9624 type. It is easier for GDB users to search for such functions as
9625 `name(params)' than `long name(params)'. In such case the minimal
9626 symbol names do not match the full symbol names but for template
9627 functions there is never a need to look up their definition from their
9628 declaration so the only disadvantage remains the minimal symbol
9629 variant `long name(params)' does not have the proper inferior type.
9630 */
9631
9632 if (cu->language == language_go)
9633 {
9634 /* This is a lie, but we already lie to the caller new_symbol_full.
9635 new_symbol_full assumes we return the mangled name.
9636 This just undoes that lie until things are cleaned up. */
9637 }
9638 else
9639 {
9640 demangled.reset (gdb_demangle (mangled,
9641 (DMGL_PARAMS | DMGL_ANSI
9642 | DMGL_RET_DROP)));
9643 }
9644 if (demangled)
9645 canon = demangled.get ();
9646 else
9647 {
9648 canon = mangled;
9649 need_copy = 0;
9650 }
9651 }
9652
9653 if (canon == NULL || check_physname)
9654 {
9655 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9656
9657 if (canon != NULL && strcmp (physname, canon) != 0)
9658 {
9659 /* It may not mean a bug in GDB. The compiler could also
9660 compute DW_AT_linkage_name incorrectly. But in such case
9661 GDB would need to be bug-to-bug compatible. */
9662
9663 complaint (&symfile_complaints,
9664 _("Computed physname <%s> does not match demangled <%s> "
9665 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9666 physname, canon, mangled, to_underlying (die->sect_off),
9667 objfile_name (objfile));
9668
9669 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9670 is available here - over computed PHYSNAME. It is safer
9671 against both buggy GDB and buggy compilers. */
9672
9673 retval = canon;
9674 }
9675 else
9676 {
9677 retval = physname;
9678 need_copy = 0;
9679 }
9680 }
9681 else
9682 retval = canon;
9683
9684 if (need_copy)
9685 retval = ((const char *)
9686 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9687 retval, strlen (retval)));
9688
9689 return retval;
9690 }
9691
9692 /* Inspect DIE in CU for a namespace alias. If one exists, record
9693 a new symbol for it.
9694
9695 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9696
9697 static int
9698 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9699 {
9700 struct attribute *attr;
9701
9702 /* If the die does not have a name, this is not a namespace
9703 alias. */
9704 attr = dwarf2_attr (die, DW_AT_name, cu);
9705 if (attr != NULL)
9706 {
9707 int num;
9708 struct die_info *d = die;
9709 struct dwarf2_cu *imported_cu = cu;
9710
9711 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9712 keep inspecting DIEs until we hit the underlying import. */
9713 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9714 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9715 {
9716 attr = dwarf2_attr (d, DW_AT_import, cu);
9717 if (attr == NULL)
9718 break;
9719
9720 d = follow_die_ref (d, attr, &imported_cu);
9721 if (d->tag != DW_TAG_imported_declaration)
9722 break;
9723 }
9724
9725 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9726 {
9727 complaint (&symfile_complaints,
9728 _("DIE at 0x%x has too many recursively imported "
9729 "declarations"), to_underlying (d->sect_off));
9730 return 0;
9731 }
9732
9733 if (attr != NULL)
9734 {
9735 struct type *type;
9736 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9737
9738 type = get_die_type_at_offset (sect_off, cu->per_cu);
9739 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9740 {
9741 /* This declaration is a global namespace alias. Add
9742 a symbol for it whose type is the aliased namespace. */
9743 new_symbol (die, type, cu);
9744 return 1;
9745 }
9746 }
9747 }
9748
9749 return 0;
9750 }
9751
9752 /* Return the using directives repository (global or local?) to use in the
9753 current context for LANGUAGE.
9754
9755 For Ada, imported declarations can materialize renamings, which *may* be
9756 global. However it is impossible (for now?) in DWARF to distinguish
9757 "external" imported declarations and "static" ones. As all imported
9758 declarations seem to be static in all other languages, make them all CU-wide
9759 global only in Ada. */
9760
9761 static struct using_direct **
9762 using_directives (enum language language)
9763 {
9764 if (language == language_ada && context_stack_depth == 0)
9765 return &global_using_directives;
9766 else
9767 return &local_using_directives;
9768 }
9769
9770 /* Read the import statement specified by the given die and record it. */
9771
9772 static void
9773 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9774 {
9775 struct objfile *objfile = cu->objfile;
9776 struct attribute *import_attr;
9777 struct die_info *imported_die, *child_die;
9778 struct dwarf2_cu *imported_cu;
9779 const char *imported_name;
9780 const char *imported_name_prefix;
9781 const char *canonical_name;
9782 const char *import_alias;
9783 const char *imported_declaration = NULL;
9784 const char *import_prefix;
9785 std::vector<const char *> excludes;
9786
9787 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9788 if (import_attr == NULL)
9789 {
9790 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9791 dwarf_tag_name (die->tag));
9792 return;
9793 }
9794
9795 imported_cu = cu;
9796 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9797 imported_name = dwarf2_name (imported_die, imported_cu);
9798 if (imported_name == NULL)
9799 {
9800 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9801
9802 The import in the following code:
9803 namespace A
9804 {
9805 typedef int B;
9806 }
9807
9808 int main ()
9809 {
9810 using A::B;
9811 B b;
9812 return b;
9813 }
9814
9815 ...
9816 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9817 <52> DW_AT_decl_file : 1
9818 <53> DW_AT_decl_line : 6
9819 <54> DW_AT_import : <0x75>
9820 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9821 <59> DW_AT_name : B
9822 <5b> DW_AT_decl_file : 1
9823 <5c> DW_AT_decl_line : 2
9824 <5d> DW_AT_type : <0x6e>
9825 ...
9826 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9827 <76> DW_AT_byte_size : 4
9828 <77> DW_AT_encoding : 5 (signed)
9829
9830 imports the wrong die ( 0x75 instead of 0x58 ).
9831 This case will be ignored until the gcc bug is fixed. */
9832 return;
9833 }
9834
9835 /* Figure out the local name after import. */
9836 import_alias = dwarf2_name (die, cu);
9837
9838 /* Figure out where the statement is being imported to. */
9839 import_prefix = determine_prefix (die, cu);
9840
9841 /* Figure out what the scope of the imported die is and prepend it
9842 to the name of the imported die. */
9843 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9844
9845 if (imported_die->tag != DW_TAG_namespace
9846 && imported_die->tag != DW_TAG_module)
9847 {
9848 imported_declaration = imported_name;
9849 canonical_name = imported_name_prefix;
9850 }
9851 else if (strlen (imported_name_prefix) > 0)
9852 canonical_name = obconcat (&objfile->objfile_obstack,
9853 imported_name_prefix,
9854 (cu->language == language_d ? "." : "::"),
9855 imported_name, (char *) NULL);
9856 else
9857 canonical_name = imported_name;
9858
9859 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9860 for (child_die = die->child; child_die && child_die->tag;
9861 child_die = sibling_die (child_die))
9862 {
9863 /* DWARF-4: A Fortran use statement with a “rename list” may be
9864 represented by an imported module entry with an import attribute
9865 referring to the module and owned entries corresponding to those
9866 entities that are renamed as part of being imported. */
9867
9868 if (child_die->tag != DW_TAG_imported_declaration)
9869 {
9870 complaint (&symfile_complaints,
9871 _("child DW_TAG_imported_declaration expected "
9872 "- DIE at 0x%x [in module %s]"),
9873 to_underlying (child_die->sect_off), objfile_name (objfile));
9874 continue;
9875 }
9876
9877 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9878 if (import_attr == NULL)
9879 {
9880 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9881 dwarf_tag_name (child_die->tag));
9882 continue;
9883 }
9884
9885 imported_cu = cu;
9886 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9887 &imported_cu);
9888 imported_name = dwarf2_name (imported_die, imported_cu);
9889 if (imported_name == NULL)
9890 {
9891 complaint (&symfile_complaints,
9892 _("child DW_TAG_imported_declaration has unknown "
9893 "imported name - DIE at 0x%x [in module %s]"),
9894 to_underlying (child_die->sect_off), objfile_name (objfile));
9895 continue;
9896 }
9897
9898 excludes.push_back (imported_name);
9899
9900 process_die (child_die, cu);
9901 }
9902
9903 add_using_directive (using_directives (cu->language),
9904 import_prefix,
9905 canonical_name,
9906 import_alias,
9907 imported_declaration,
9908 excludes,
9909 0,
9910 &objfile->objfile_obstack);
9911 }
9912
9913 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9914 types, but gives them a size of zero. Starting with version 14,
9915 ICC is compatible with GCC. */
9916
9917 static int
9918 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9919 {
9920 if (!cu->checked_producer)
9921 check_producer (cu);
9922
9923 return cu->producer_is_icc_lt_14;
9924 }
9925
9926 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9927 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9928 this, it was first present in GCC release 4.3.0. */
9929
9930 static int
9931 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9932 {
9933 if (!cu->checked_producer)
9934 check_producer (cu);
9935
9936 return cu->producer_is_gcc_lt_4_3;
9937 }
9938
9939 static file_and_directory
9940 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9941 {
9942 file_and_directory res;
9943
9944 /* Find the filename. Do not use dwarf2_name here, since the filename
9945 is not a source language identifier. */
9946 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9947 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9948
9949 if (res.comp_dir == NULL
9950 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9951 && IS_ABSOLUTE_PATH (res.name))
9952 {
9953 res.comp_dir_storage = ldirname (res.name);
9954 if (!res.comp_dir_storage.empty ())
9955 res.comp_dir = res.comp_dir_storage.c_str ();
9956 }
9957 if (res.comp_dir != NULL)
9958 {
9959 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9960 directory, get rid of it. */
9961 const char *cp = strchr (res.comp_dir, ':');
9962
9963 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9964 res.comp_dir = cp + 1;
9965 }
9966
9967 if (res.name == NULL)
9968 res.name = "<unknown>";
9969
9970 return res;
9971 }
9972
9973 /* Handle DW_AT_stmt_list for a compilation unit.
9974 DIE is the DW_TAG_compile_unit die for CU.
9975 COMP_DIR is the compilation directory. LOWPC is passed to
9976 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9977
9978 static void
9979 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9980 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9981 {
9982 struct objfile *objfile = dwarf2_per_objfile->objfile;
9983 struct attribute *attr;
9984 struct line_header line_header_local;
9985 hashval_t line_header_local_hash;
9986 unsigned u;
9987 void **slot;
9988 int decode_mapping;
9989
9990 gdb_assert (! cu->per_cu->is_debug_types);
9991
9992 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9993 if (attr == NULL)
9994 return;
9995
9996 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9997
9998 /* The line header hash table is only created if needed (it exists to
9999 prevent redundant reading of the line table for partial_units).
10000 If we're given a partial_unit, we'll need it. If we're given a
10001 compile_unit, then use the line header hash table if it's already
10002 created, but don't create one just yet. */
10003
10004 if (dwarf2_per_objfile->line_header_hash == NULL
10005 && die->tag == DW_TAG_partial_unit)
10006 {
10007 dwarf2_per_objfile->line_header_hash
10008 = htab_create_alloc_ex (127, line_header_hash_voidp,
10009 line_header_eq_voidp,
10010 free_line_header_voidp,
10011 &objfile->objfile_obstack,
10012 hashtab_obstack_allocate,
10013 dummy_obstack_deallocate);
10014 }
10015
10016 line_header_local.sect_off = line_offset;
10017 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10018 line_header_local_hash = line_header_hash (&line_header_local);
10019 if (dwarf2_per_objfile->line_header_hash != NULL)
10020 {
10021 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10022 &line_header_local,
10023 line_header_local_hash, NO_INSERT);
10024
10025 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10026 is not present in *SLOT (since if there is something in *SLOT then
10027 it will be for a partial_unit). */
10028 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10029 {
10030 gdb_assert (*slot != NULL);
10031 cu->line_header = (struct line_header *) *slot;
10032 return;
10033 }
10034 }
10035
10036 /* dwarf_decode_line_header does not yet provide sufficient information.
10037 We always have to call also dwarf_decode_lines for it. */
10038 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10039 if (lh == NULL)
10040 return;
10041
10042 cu->line_header = lh.release ();
10043 cu->line_header_die_owner = die;
10044
10045 if (dwarf2_per_objfile->line_header_hash == NULL)
10046 slot = NULL;
10047 else
10048 {
10049 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10050 &line_header_local,
10051 line_header_local_hash, INSERT);
10052 gdb_assert (slot != NULL);
10053 }
10054 if (slot != NULL && *slot == NULL)
10055 {
10056 /* This newly decoded line number information unit will be owned
10057 by line_header_hash hash table. */
10058 *slot = cu->line_header;
10059 cu->line_header_die_owner = NULL;
10060 }
10061 else
10062 {
10063 /* We cannot free any current entry in (*slot) as that struct line_header
10064 may be already used by multiple CUs. Create only temporary decoded
10065 line_header for this CU - it may happen at most once for each line
10066 number information unit. And if we're not using line_header_hash
10067 then this is what we want as well. */
10068 gdb_assert (die->tag != DW_TAG_partial_unit);
10069 }
10070 decode_mapping = (die->tag != DW_TAG_partial_unit);
10071 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10072 decode_mapping);
10073
10074 }
10075
10076 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10077
10078 static void
10079 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10080 {
10081 struct objfile *objfile = dwarf2_per_objfile->objfile;
10082 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10083 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10084 CORE_ADDR highpc = ((CORE_ADDR) 0);
10085 struct attribute *attr;
10086 struct die_info *child_die;
10087 CORE_ADDR baseaddr;
10088
10089 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10090
10091 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10092
10093 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10094 from finish_block. */
10095 if (lowpc == ((CORE_ADDR) -1))
10096 lowpc = highpc;
10097 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10098
10099 file_and_directory fnd = find_file_and_directory (die, cu);
10100
10101 prepare_one_comp_unit (cu, die, cu->language);
10102
10103 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10104 standardised yet. As a workaround for the language detection we fall
10105 back to the DW_AT_producer string. */
10106 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10107 cu->language = language_opencl;
10108
10109 /* Similar hack for Go. */
10110 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10111 set_cu_language (DW_LANG_Go, cu);
10112
10113 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
10114
10115 /* Decode line number information if present. We do this before
10116 processing child DIEs, so that the line header table is available
10117 for DW_AT_decl_file. */
10118 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10119
10120 /* Process all dies in compilation unit. */
10121 if (die->child != NULL)
10122 {
10123 child_die = die->child;
10124 while (child_die && child_die->tag)
10125 {
10126 process_die (child_die, cu);
10127 child_die = sibling_die (child_die);
10128 }
10129 }
10130
10131 /* Decode macro information, if present. Dwarf 2 macro information
10132 refers to information in the line number info statement program
10133 header, so we can only read it if we've read the header
10134 successfully. */
10135 attr = dwarf2_attr (die, DW_AT_macros, cu);
10136 if (attr == NULL)
10137 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10138 if (attr && cu->line_header)
10139 {
10140 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10141 complaint (&symfile_complaints,
10142 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10143
10144 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10145 }
10146 else
10147 {
10148 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10149 if (attr && cu->line_header)
10150 {
10151 unsigned int macro_offset = DW_UNSND (attr);
10152
10153 dwarf_decode_macros (cu, macro_offset, 0);
10154 }
10155 }
10156 }
10157
10158 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
10159 Create the set of symtabs used by this TU, or if this TU is sharing
10160 symtabs with another TU and the symtabs have already been created
10161 then restore those symtabs in the line header.
10162 We don't need the pc/line-number mapping for type units. */
10163
10164 static void
10165 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
10166 {
10167 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
10168 struct type_unit_group *tu_group;
10169 int first_time;
10170 struct attribute *attr;
10171 unsigned int i;
10172 struct signatured_type *sig_type;
10173
10174 gdb_assert (per_cu->is_debug_types);
10175 sig_type = (struct signatured_type *) per_cu;
10176
10177 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10178
10179 /* If we're using .gdb_index (includes -readnow) then
10180 per_cu->type_unit_group may not have been set up yet. */
10181 if (sig_type->type_unit_group == NULL)
10182 sig_type->type_unit_group = get_type_unit_group (cu, attr);
10183 tu_group = sig_type->type_unit_group;
10184
10185 /* If we've already processed this stmt_list there's no real need to
10186 do it again, we could fake it and just recreate the part we need
10187 (file name,index -> symtab mapping). If data shows this optimization
10188 is useful we can do it then. */
10189 first_time = tu_group->compunit_symtab == NULL;
10190
10191 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10192 debug info. */
10193 line_header_up lh;
10194 if (attr != NULL)
10195 {
10196 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10197 lh = dwarf_decode_line_header (line_offset, cu);
10198 }
10199 if (lh == NULL)
10200 {
10201 if (first_time)
10202 dwarf2_start_symtab (cu, "", NULL, 0);
10203 else
10204 {
10205 gdb_assert (tu_group->symtabs == NULL);
10206 restart_symtab (tu_group->compunit_symtab, "", 0);
10207 }
10208 return;
10209 }
10210
10211 cu->line_header = lh.release ();
10212 cu->line_header_die_owner = die;
10213
10214 if (first_time)
10215 {
10216 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
10217
10218 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10219 still initializing it, and our caller (a few levels up)
10220 process_full_type_unit still needs to know if this is the first
10221 time. */
10222
10223 tu_group->num_symtabs = cu->line_header->file_names.size ();
10224 tu_group->symtabs = XNEWVEC (struct symtab *,
10225 cu->line_header->file_names.size ());
10226
10227 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10228 {
10229 file_entry &fe = cu->line_header->file_names[i];
10230
10231 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
10232
10233 if (current_subfile->symtab == NULL)
10234 {
10235 /* NOTE: start_subfile will recognize when it's been
10236 passed a file it has already seen. So we can't
10237 assume there's a simple mapping from
10238 cu->line_header->file_names to subfiles, plus
10239 cu->line_header->file_names may contain dups. */
10240 current_subfile->symtab
10241 = allocate_symtab (cust, current_subfile->name);
10242 }
10243
10244 fe.symtab = current_subfile->symtab;
10245 tu_group->symtabs[i] = fe.symtab;
10246 }
10247 }
10248 else
10249 {
10250 restart_symtab (tu_group->compunit_symtab, "", 0);
10251
10252 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10253 {
10254 file_entry &fe = cu->line_header->file_names[i];
10255
10256 fe.symtab = tu_group->symtabs[i];
10257 }
10258 }
10259
10260 /* The main symtab is allocated last. Type units don't have DW_AT_name
10261 so they don't have a "real" (so to speak) symtab anyway.
10262 There is later code that will assign the main symtab to all symbols
10263 that don't have one. We need to handle the case of a symbol with a
10264 missing symtab (DW_AT_decl_file) anyway. */
10265 }
10266
10267 /* Process DW_TAG_type_unit.
10268 For TUs we want to skip the first top level sibling if it's not the
10269 actual type being defined by this TU. In this case the first top
10270 level sibling is there to provide context only. */
10271
10272 static void
10273 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10274 {
10275 struct die_info *child_die;
10276
10277 prepare_one_comp_unit (cu, die, language_minimal);
10278
10279 /* Initialize (or reinitialize) the machinery for building symtabs.
10280 We do this before processing child DIEs, so that the line header table
10281 is available for DW_AT_decl_file. */
10282 setup_type_unit_groups (die, cu);
10283
10284 if (die->child != NULL)
10285 {
10286 child_die = die->child;
10287 while (child_die && child_die->tag)
10288 {
10289 process_die (child_die, cu);
10290 child_die = sibling_die (child_die);
10291 }
10292 }
10293 }
10294 \f
10295 /* DWO/DWP files.
10296
10297 http://gcc.gnu.org/wiki/DebugFission
10298 http://gcc.gnu.org/wiki/DebugFissionDWP
10299
10300 To simplify handling of both DWO files ("object" files with the DWARF info)
10301 and DWP files (a file with the DWOs packaged up into one file), we treat
10302 DWP files as having a collection of virtual DWO files. */
10303
10304 static hashval_t
10305 hash_dwo_file (const void *item)
10306 {
10307 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10308 hashval_t hash;
10309
10310 hash = htab_hash_string (dwo_file->dwo_name);
10311 if (dwo_file->comp_dir != NULL)
10312 hash += htab_hash_string (dwo_file->comp_dir);
10313 return hash;
10314 }
10315
10316 static int
10317 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10318 {
10319 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10320 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10321
10322 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10323 return 0;
10324 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10325 return lhs->comp_dir == rhs->comp_dir;
10326 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10327 }
10328
10329 /* Allocate a hash table for DWO files. */
10330
10331 static htab_t
10332 allocate_dwo_file_hash_table (void)
10333 {
10334 struct objfile *objfile = dwarf2_per_objfile->objfile;
10335
10336 return htab_create_alloc_ex (41,
10337 hash_dwo_file,
10338 eq_dwo_file,
10339 NULL,
10340 &objfile->objfile_obstack,
10341 hashtab_obstack_allocate,
10342 dummy_obstack_deallocate);
10343 }
10344
10345 /* Lookup DWO file DWO_NAME. */
10346
10347 static void **
10348 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
10349 {
10350 struct dwo_file find_entry;
10351 void **slot;
10352
10353 if (dwarf2_per_objfile->dwo_files == NULL)
10354 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
10355
10356 memset (&find_entry, 0, sizeof (find_entry));
10357 find_entry.dwo_name = dwo_name;
10358 find_entry.comp_dir = comp_dir;
10359 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
10360
10361 return slot;
10362 }
10363
10364 static hashval_t
10365 hash_dwo_unit (const void *item)
10366 {
10367 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10368
10369 /* This drops the top 32 bits of the id, but is ok for a hash. */
10370 return dwo_unit->signature;
10371 }
10372
10373 static int
10374 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10375 {
10376 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10377 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10378
10379 /* The signature is assumed to be unique within the DWO file.
10380 So while object file CU dwo_id's always have the value zero,
10381 that's OK, assuming each object file DWO file has only one CU,
10382 and that's the rule for now. */
10383 return lhs->signature == rhs->signature;
10384 }
10385
10386 /* Allocate a hash table for DWO CUs,TUs.
10387 There is one of these tables for each of CUs,TUs for each DWO file. */
10388
10389 static htab_t
10390 allocate_dwo_unit_table (struct objfile *objfile)
10391 {
10392 /* Start out with a pretty small number.
10393 Generally DWO files contain only one CU and maybe some TUs. */
10394 return htab_create_alloc_ex (3,
10395 hash_dwo_unit,
10396 eq_dwo_unit,
10397 NULL,
10398 &objfile->objfile_obstack,
10399 hashtab_obstack_allocate,
10400 dummy_obstack_deallocate);
10401 }
10402
10403 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
10404
10405 struct create_dwo_cu_data
10406 {
10407 struct dwo_file *dwo_file;
10408 struct dwo_unit dwo_unit;
10409 };
10410
10411 /* die_reader_func for create_dwo_cu. */
10412
10413 static void
10414 create_dwo_cu_reader (const struct die_reader_specs *reader,
10415 const gdb_byte *info_ptr,
10416 struct die_info *comp_unit_die,
10417 int has_children,
10418 void *datap)
10419 {
10420 struct dwarf2_cu *cu = reader->cu;
10421 sect_offset sect_off = cu->per_cu->sect_off;
10422 struct dwarf2_section_info *section = cu->per_cu->section;
10423 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
10424 struct dwo_file *dwo_file = data->dwo_file;
10425 struct dwo_unit *dwo_unit = &data->dwo_unit;
10426 struct attribute *attr;
10427
10428 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
10429 if (attr == NULL)
10430 {
10431 complaint (&symfile_complaints,
10432 _("Dwarf Error: debug entry at offset 0x%x is missing"
10433 " its dwo_id [in module %s]"),
10434 to_underlying (sect_off), dwo_file->dwo_name);
10435 return;
10436 }
10437
10438 dwo_unit->dwo_file = dwo_file;
10439 dwo_unit->signature = DW_UNSND (attr);
10440 dwo_unit->section = section;
10441 dwo_unit->sect_off = sect_off;
10442 dwo_unit->length = cu->per_cu->length;
10443
10444 if (dwarf_read_debug)
10445 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
10446 to_underlying (sect_off),
10447 hex_string (dwo_unit->signature));
10448 }
10449
10450 /* Create the dwo_units for the CUs in a DWO_FILE.
10451 Note: This function processes DWO files only, not DWP files. */
10452
10453 static void
10454 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
10455 htab_t &cus_htab)
10456 {
10457 struct objfile *objfile = dwarf2_per_objfile->objfile;
10458 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
10459 const gdb_byte *info_ptr, *end_ptr;
10460
10461 dwarf2_read_section (objfile, &section);
10462 info_ptr = section.buffer;
10463
10464 if (info_ptr == NULL)
10465 return;
10466
10467 if (dwarf_read_debug)
10468 {
10469 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
10470 get_section_name (&section),
10471 get_section_file_name (&section));
10472 }
10473
10474 end_ptr = info_ptr + section.size;
10475 while (info_ptr < end_ptr)
10476 {
10477 struct dwarf2_per_cu_data per_cu;
10478 struct create_dwo_cu_data create_dwo_cu_data;
10479 struct dwo_unit *dwo_unit;
10480 void **slot;
10481 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10482
10483 memset (&create_dwo_cu_data.dwo_unit, 0,
10484 sizeof (create_dwo_cu_data.dwo_unit));
10485 memset (&per_cu, 0, sizeof (per_cu));
10486 per_cu.objfile = objfile;
10487 per_cu.is_debug_types = 0;
10488 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10489 per_cu.section = &section;
10490 create_dwo_cu_data.dwo_file = &dwo_file;
10491
10492 init_cutu_and_read_dies_no_follow (
10493 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
10494 info_ptr += per_cu.length;
10495
10496 // If the unit could not be parsed, skip it.
10497 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
10498 continue;
10499
10500 if (cus_htab == NULL)
10501 cus_htab = allocate_dwo_unit_table (objfile);
10502
10503 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10504 *dwo_unit = create_dwo_cu_data.dwo_unit;
10505 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
10506 gdb_assert (slot != NULL);
10507 if (*slot != NULL)
10508 {
10509 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10510 sect_offset dup_sect_off = dup_cu->sect_off;
10511
10512 complaint (&symfile_complaints,
10513 _("debug cu entry at offset 0x%x is duplicate to"
10514 " the entry at offset 0x%x, signature %s"),
10515 to_underlying (sect_off), to_underlying (dup_sect_off),
10516 hex_string (dwo_unit->signature));
10517 }
10518 *slot = (void *)dwo_unit;
10519 }
10520 }
10521
10522 /* DWP file .debug_{cu,tu}_index section format:
10523 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10524
10525 DWP Version 1:
10526
10527 Both index sections have the same format, and serve to map a 64-bit
10528 signature to a set of section numbers. Each section begins with a header,
10529 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10530 indexes, and a pool of 32-bit section numbers. The index sections will be
10531 aligned at 8-byte boundaries in the file.
10532
10533 The index section header consists of:
10534
10535 V, 32 bit version number
10536 -, 32 bits unused
10537 N, 32 bit number of compilation units or type units in the index
10538 M, 32 bit number of slots in the hash table
10539
10540 Numbers are recorded using the byte order of the application binary.
10541
10542 The hash table begins at offset 16 in the section, and consists of an array
10543 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10544 order of the application binary). Unused slots in the hash table are 0.
10545 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10546
10547 The parallel table begins immediately after the hash table
10548 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10549 array of 32-bit indexes (using the byte order of the application binary),
10550 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10551 table contains a 32-bit index into the pool of section numbers. For unused
10552 hash table slots, the corresponding entry in the parallel table will be 0.
10553
10554 The pool of section numbers begins immediately following the hash table
10555 (at offset 16 + 12 * M from the beginning of the section). The pool of
10556 section numbers consists of an array of 32-bit words (using the byte order
10557 of the application binary). Each item in the array is indexed starting
10558 from 0. The hash table entry provides the index of the first section
10559 number in the set. Additional section numbers in the set follow, and the
10560 set is terminated by a 0 entry (section number 0 is not used in ELF).
10561
10562 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10563 section must be the first entry in the set, and the .debug_abbrev.dwo must
10564 be the second entry. Other members of the set may follow in any order.
10565
10566 ---
10567
10568 DWP Version 2:
10569
10570 DWP Version 2 combines all the .debug_info, etc. sections into one,
10571 and the entries in the index tables are now offsets into these sections.
10572 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10573 section.
10574
10575 Index Section Contents:
10576 Header
10577 Hash Table of Signatures dwp_hash_table.hash_table
10578 Parallel Table of Indices dwp_hash_table.unit_table
10579 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10580 Table of Section Sizes dwp_hash_table.v2.sizes
10581
10582 The index section header consists of:
10583
10584 V, 32 bit version number
10585 L, 32 bit number of columns in the table of section offsets
10586 N, 32 bit number of compilation units or type units in the index
10587 M, 32 bit number of slots in the hash table
10588
10589 Numbers are recorded using the byte order of the application binary.
10590
10591 The hash table has the same format as version 1.
10592 The parallel table of indices has the same format as version 1,
10593 except that the entries are origin-1 indices into the table of sections
10594 offsets and the table of section sizes.
10595
10596 The table of offsets begins immediately following the parallel table
10597 (at offset 16 + 12 * M from the beginning of the section). The table is
10598 a two-dimensional array of 32-bit words (using the byte order of the
10599 application binary), with L columns and N+1 rows, in row-major order.
10600 Each row in the array is indexed starting from 0. The first row provides
10601 a key to the remaining rows: each column in this row provides an identifier
10602 for a debug section, and the offsets in the same column of subsequent rows
10603 refer to that section. The section identifiers are:
10604
10605 DW_SECT_INFO 1 .debug_info.dwo
10606 DW_SECT_TYPES 2 .debug_types.dwo
10607 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10608 DW_SECT_LINE 4 .debug_line.dwo
10609 DW_SECT_LOC 5 .debug_loc.dwo
10610 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10611 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10612 DW_SECT_MACRO 8 .debug_macro.dwo
10613
10614 The offsets provided by the CU and TU index sections are the base offsets
10615 for the contributions made by each CU or TU to the corresponding section
10616 in the package file. Each CU and TU header contains an abbrev_offset
10617 field, used to find the abbreviations table for that CU or TU within the
10618 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10619 be interpreted as relative to the base offset given in the index section.
10620 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10621 should be interpreted as relative to the base offset for .debug_line.dwo,
10622 and offsets into other debug sections obtained from DWARF attributes should
10623 also be interpreted as relative to the corresponding base offset.
10624
10625 The table of sizes begins immediately following the table of offsets.
10626 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10627 with L columns and N rows, in row-major order. Each row in the array is
10628 indexed starting from 1 (row 0 is shared by the two tables).
10629
10630 ---
10631
10632 Hash table lookup is handled the same in version 1 and 2:
10633
10634 We assume that N and M will not exceed 2^32 - 1.
10635 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10636
10637 Given a 64-bit compilation unit signature or a type signature S, an entry
10638 in the hash table is located as follows:
10639
10640 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10641 the low-order k bits all set to 1.
10642
10643 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10644
10645 3) If the hash table entry at index H matches the signature, use that
10646 entry. If the hash table entry at index H is unused (all zeroes),
10647 terminate the search: the signature is not present in the table.
10648
10649 4) Let H = (H + H') modulo M. Repeat at Step 3.
10650
10651 Because M > N and H' and M are relatively prime, the search is guaranteed
10652 to stop at an unused slot or find the match. */
10653
10654 /* Create a hash table to map DWO IDs to their CU/TU entry in
10655 .debug_{info,types}.dwo in DWP_FILE.
10656 Returns NULL if there isn't one.
10657 Note: This function processes DWP files only, not DWO files. */
10658
10659 static struct dwp_hash_table *
10660 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10661 {
10662 struct objfile *objfile = dwarf2_per_objfile->objfile;
10663 bfd *dbfd = dwp_file->dbfd;
10664 const gdb_byte *index_ptr, *index_end;
10665 struct dwarf2_section_info *index;
10666 uint32_t version, nr_columns, nr_units, nr_slots;
10667 struct dwp_hash_table *htab;
10668
10669 if (is_debug_types)
10670 index = &dwp_file->sections.tu_index;
10671 else
10672 index = &dwp_file->sections.cu_index;
10673
10674 if (dwarf2_section_empty_p (index))
10675 return NULL;
10676 dwarf2_read_section (objfile, index);
10677
10678 index_ptr = index->buffer;
10679 index_end = index_ptr + index->size;
10680
10681 version = read_4_bytes (dbfd, index_ptr);
10682 index_ptr += 4;
10683 if (version == 2)
10684 nr_columns = read_4_bytes (dbfd, index_ptr);
10685 else
10686 nr_columns = 0;
10687 index_ptr += 4;
10688 nr_units = read_4_bytes (dbfd, index_ptr);
10689 index_ptr += 4;
10690 nr_slots = read_4_bytes (dbfd, index_ptr);
10691 index_ptr += 4;
10692
10693 if (version != 1 && version != 2)
10694 {
10695 error (_("Dwarf Error: unsupported DWP file version (%s)"
10696 " [in module %s]"),
10697 pulongest (version), dwp_file->name);
10698 }
10699 if (nr_slots != (nr_slots & -nr_slots))
10700 {
10701 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10702 " is not power of 2 [in module %s]"),
10703 pulongest (nr_slots), dwp_file->name);
10704 }
10705
10706 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10707 htab->version = version;
10708 htab->nr_columns = nr_columns;
10709 htab->nr_units = nr_units;
10710 htab->nr_slots = nr_slots;
10711 htab->hash_table = index_ptr;
10712 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10713
10714 /* Exit early if the table is empty. */
10715 if (nr_slots == 0 || nr_units == 0
10716 || (version == 2 && nr_columns == 0))
10717 {
10718 /* All must be zero. */
10719 if (nr_slots != 0 || nr_units != 0
10720 || (version == 2 && nr_columns != 0))
10721 {
10722 complaint (&symfile_complaints,
10723 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10724 " all zero [in modules %s]"),
10725 dwp_file->name);
10726 }
10727 return htab;
10728 }
10729
10730 if (version == 1)
10731 {
10732 htab->section_pool.v1.indices =
10733 htab->unit_table + sizeof (uint32_t) * nr_slots;
10734 /* It's harder to decide whether the section is too small in v1.
10735 V1 is deprecated anyway so we punt. */
10736 }
10737 else
10738 {
10739 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10740 int *ids = htab->section_pool.v2.section_ids;
10741 /* Reverse map for error checking. */
10742 int ids_seen[DW_SECT_MAX + 1];
10743 int i;
10744
10745 if (nr_columns < 2)
10746 {
10747 error (_("Dwarf Error: bad DWP hash table, too few columns"
10748 " in section table [in module %s]"),
10749 dwp_file->name);
10750 }
10751 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10752 {
10753 error (_("Dwarf Error: bad DWP hash table, too many columns"
10754 " in section table [in module %s]"),
10755 dwp_file->name);
10756 }
10757 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10758 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10759 for (i = 0; i < nr_columns; ++i)
10760 {
10761 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10762
10763 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10764 {
10765 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10766 " in section table [in module %s]"),
10767 id, dwp_file->name);
10768 }
10769 if (ids_seen[id] != -1)
10770 {
10771 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10772 " id %d in section table [in module %s]"),
10773 id, dwp_file->name);
10774 }
10775 ids_seen[id] = i;
10776 ids[i] = id;
10777 }
10778 /* Must have exactly one info or types section. */
10779 if (((ids_seen[DW_SECT_INFO] != -1)
10780 + (ids_seen[DW_SECT_TYPES] != -1))
10781 != 1)
10782 {
10783 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10784 " DWO info/types section [in module %s]"),
10785 dwp_file->name);
10786 }
10787 /* Must have an abbrev section. */
10788 if (ids_seen[DW_SECT_ABBREV] == -1)
10789 {
10790 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10791 " section [in module %s]"),
10792 dwp_file->name);
10793 }
10794 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10795 htab->section_pool.v2.sizes =
10796 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10797 * nr_units * nr_columns);
10798 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10799 * nr_units * nr_columns))
10800 > index_end)
10801 {
10802 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10803 " [in module %s]"),
10804 dwp_file->name);
10805 }
10806 }
10807
10808 return htab;
10809 }
10810
10811 /* Update SECTIONS with the data from SECTP.
10812
10813 This function is like the other "locate" section routines that are
10814 passed to bfd_map_over_sections, but in this context the sections to
10815 read comes from the DWP V1 hash table, not the full ELF section table.
10816
10817 The result is non-zero for success, or zero if an error was found. */
10818
10819 static int
10820 locate_v1_virtual_dwo_sections (asection *sectp,
10821 struct virtual_v1_dwo_sections *sections)
10822 {
10823 const struct dwop_section_names *names = &dwop_section_names;
10824
10825 if (section_is_p (sectp->name, &names->abbrev_dwo))
10826 {
10827 /* There can be only one. */
10828 if (sections->abbrev.s.section != NULL)
10829 return 0;
10830 sections->abbrev.s.section = sectp;
10831 sections->abbrev.size = bfd_get_section_size (sectp);
10832 }
10833 else if (section_is_p (sectp->name, &names->info_dwo)
10834 || section_is_p (sectp->name, &names->types_dwo))
10835 {
10836 /* There can be only one. */
10837 if (sections->info_or_types.s.section != NULL)
10838 return 0;
10839 sections->info_or_types.s.section = sectp;
10840 sections->info_or_types.size = bfd_get_section_size (sectp);
10841 }
10842 else if (section_is_p (sectp->name, &names->line_dwo))
10843 {
10844 /* There can be only one. */
10845 if (sections->line.s.section != NULL)
10846 return 0;
10847 sections->line.s.section = sectp;
10848 sections->line.size = bfd_get_section_size (sectp);
10849 }
10850 else if (section_is_p (sectp->name, &names->loc_dwo))
10851 {
10852 /* There can be only one. */
10853 if (sections->loc.s.section != NULL)
10854 return 0;
10855 sections->loc.s.section = sectp;
10856 sections->loc.size = bfd_get_section_size (sectp);
10857 }
10858 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10859 {
10860 /* There can be only one. */
10861 if (sections->macinfo.s.section != NULL)
10862 return 0;
10863 sections->macinfo.s.section = sectp;
10864 sections->macinfo.size = bfd_get_section_size (sectp);
10865 }
10866 else if (section_is_p (sectp->name, &names->macro_dwo))
10867 {
10868 /* There can be only one. */
10869 if (sections->macro.s.section != NULL)
10870 return 0;
10871 sections->macro.s.section = sectp;
10872 sections->macro.size = bfd_get_section_size (sectp);
10873 }
10874 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10875 {
10876 /* There can be only one. */
10877 if (sections->str_offsets.s.section != NULL)
10878 return 0;
10879 sections->str_offsets.s.section = sectp;
10880 sections->str_offsets.size = bfd_get_section_size (sectp);
10881 }
10882 else
10883 {
10884 /* No other kind of section is valid. */
10885 return 0;
10886 }
10887
10888 return 1;
10889 }
10890
10891 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10892 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10893 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10894 This is for DWP version 1 files. */
10895
10896 static struct dwo_unit *
10897 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10898 uint32_t unit_index,
10899 const char *comp_dir,
10900 ULONGEST signature, int is_debug_types)
10901 {
10902 struct objfile *objfile = dwarf2_per_objfile->objfile;
10903 const struct dwp_hash_table *dwp_htab =
10904 is_debug_types ? dwp_file->tus : dwp_file->cus;
10905 bfd *dbfd = dwp_file->dbfd;
10906 const char *kind = is_debug_types ? "TU" : "CU";
10907 struct dwo_file *dwo_file;
10908 struct dwo_unit *dwo_unit;
10909 struct virtual_v1_dwo_sections sections;
10910 void **dwo_file_slot;
10911 int i;
10912
10913 gdb_assert (dwp_file->version == 1);
10914
10915 if (dwarf_read_debug)
10916 {
10917 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10918 kind,
10919 pulongest (unit_index), hex_string (signature),
10920 dwp_file->name);
10921 }
10922
10923 /* Fetch the sections of this DWO unit.
10924 Put a limit on the number of sections we look for so that bad data
10925 doesn't cause us to loop forever. */
10926
10927 #define MAX_NR_V1_DWO_SECTIONS \
10928 (1 /* .debug_info or .debug_types */ \
10929 + 1 /* .debug_abbrev */ \
10930 + 1 /* .debug_line */ \
10931 + 1 /* .debug_loc */ \
10932 + 1 /* .debug_str_offsets */ \
10933 + 1 /* .debug_macro or .debug_macinfo */ \
10934 + 1 /* trailing zero */)
10935
10936 memset (&sections, 0, sizeof (sections));
10937
10938 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10939 {
10940 asection *sectp;
10941 uint32_t section_nr =
10942 read_4_bytes (dbfd,
10943 dwp_htab->section_pool.v1.indices
10944 + (unit_index + i) * sizeof (uint32_t));
10945
10946 if (section_nr == 0)
10947 break;
10948 if (section_nr >= dwp_file->num_sections)
10949 {
10950 error (_("Dwarf Error: bad DWP hash table, section number too large"
10951 " [in module %s]"),
10952 dwp_file->name);
10953 }
10954
10955 sectp = dwp_file->elf_sections[section_nr];
10956 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10957 {
10958 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10959 " [in module %s]"),
10960 dwp_file->name);
10961 }
10962 }
10963
10964 if (i < 2
10965 || dwarf2_section_empty_p (&sections.info_or_types)
10966 || dwarf2_section_empty_p (&sections.abbrev))
10967 {
10968 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10969 " [in module %s]"),
10970 dwp_file->name);
10971 }
10972 if (i == MAX_NR_V1_DWO_SECTIONS)
10973 {
10974 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10975 " [in module %s]"),
10976 dwp_file->name);
10977 }
10978
10979 /* It's easier for the rest of the code if we fake a struct dwo_file and
10980 have dwo_unit "live" in that. At least for now.
10981
10982 The DWP file can be made up of a random collection of CUs and TUs.
10983 However, for each CU + set of TUs that came from the same original DWO
10984 file, we can combine them back into a virtual DWO file to save space
10985 (fewer struct dwo_file objects to allocate). Remember that for really
10986 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10987
10988 std::string virtual_dwo_name =
10989 string_printf ("virtual-dwo/%d-%d-%d-%d",
10990 get_section_id (&sections.abbrev),
10991 get_section_id (&sections.line),
10992 get_section_id (&sections.loc),
10993 get_section_id (&sections.str_offsets));
10994 /* Can we use an existing virtual DWO file? */
10995 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10996 /* Create one if necessary. */
10997 if (*dwo_file_slot == NULL)
10998 {
10999 if (dwarf_read_debug)
11000 {
11001 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11002 virtual_dwo_name.c_str ());
11003 }
11004 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11005 dwo_file->dwo_name
11006 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11007 virtual_dwo_name.c_str (),
11008 virtual_dwo_name.size ());
11009 dwo_file->comp_dir = comp_dir;
11010 dwo_file->sections.abbrev = sections.abbrev;
11011 dwo_file->sections.line = sections.line;
11012 dwo_file->sections.loc = sections.loc;
11013 dwo_file->sections.macinfo = sections.macinfo;
11014 dwo_file->sections.macro = sections.macro;
11015 dwo_file->sections.str_offsets = sections.str_offsets;
11016 /* The "str" section is global to the entire DWP file. */
11017 dwo_file->sections.str = dwp_file->sections.str;
11018 /* The info or types section is assigned below to dwo_unit,
11019 there's no need to record it in dwo_file.
11020 Also, we can't simply record type sections in dwo_file because
11021 we record a pointer into the vector in dwo_unit. As we collect more
11022 types we'll grow the vector and eventually have to reallocate space
11023 for it, invalidating all copies of pointers into the previous
11024 contents. */
11025 *dwo_file_slot = dwo_file;
11026 }
11027 else
11028 {
11029 if (dwarf_read_debug)
11030 {
11031 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11032 virtual_dwo_name.c_str ());
11033 }
11034 dwo_file = (struct dwo_file *) *dwo_file_slot;
11035 }
11036
11037 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11038 dwo_unit->dwo_file = dwo_file;
11039 dwo_unit->signature = signature;
11040 dwo_unit->section =
11041 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11042 *dwo_unit->section = sections.info_or_types;
11043 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11044
11045 return dwo_unit;
11046 }
11047
11048 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11049 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11050 piece within that section used by a TU/CU, return a virtual section
11051 of just that piece. */
11052
11053 static struct dwarf2_section_info
11054 create_dwp_v2_section (struct dwarf2_section_info *section,
11055 bfd_size_type offset, bfd_size_type size)
11056 {
11057 struct dwarf2_section_info result;
11058 asection *sectp;
11059
11060 gdb_assert (section != NULL);
11061 gdb_assert (!section->is_virtual);
11062
11063 memset (&result, 0, sizeof (result));
11064 result.s.containing_section = section;
11065 result.is_virtual = 1;
11066
11067 if (size == 0)
11068 return result;
11069
11070 sectp = get_section_bfd_section (section);
11071
11072 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11073 bounds of the real section. This is a pretty-rare event, so just
11074 flag an error (easier) instead of a warning and trying to cope. */
11075 if (sectp == NULL
11076 || offset + size > bfd_get_section_size (sectp))
11077 {
11078 bfd *abfd = sectp->owner;
11079
11080 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11081 " in section %s [in module %s]"),
11082 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
11083 objfile_name (dwarf2_per_objfile->objfile));
11084 }
11085
11086 result.virtual_offset = offset;
11087 result.size = size;
11088 return result;
11089 }
11090
11091 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11092 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11093 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11094 This is for DWP version 2 files. */
11095
11096 static struct dwo_unit *
11097 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
11098 uint32_t unit_index,
11099 const char *comp_dir,
11100 ULONGEST signature, int is_debug_types)
11101 {
11102 struct objfile *objfile = dwarf2_per_objfile->objfile;
11103 const struct dwp_hash_table *dwp_htab =
11104 is_debug_types ? dwp_file->tus : dwp_file->cus;
11105 bfd *dbfd = dwp_file->dbfd;
11106 const char *kind = is_debug_types ? "TU" : "CU";
11107 struct dwo_file *dwo_file;
11108 struct dwo_unit *dwo_unit;
11109 struct virtual_v2_dwo_sections sections;
11110 void **dwo_file_slot;
11111 int i;
11112
11113 gdb_assert (dwp_file->version == 2);
11114
11115 if (dwarf_read_debug)
11116 {
11117 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11118 kind,
11119 pulongest (unit_index), hex_string (signature),
11120 dwp_file->name);
11121 }
11122
11123 /* Fetch the section offsets of this DWO unit. */
11124
11125 memset (&sections, 0, sizeof (sections));
11126
11127 for (i = 0; i < dwp_htab->nr_columns; ++i)
11128 {
11129 uint32_t offset = read_4_bytes (dbfd,
11130 dwp_htab->section_pool.v2.offsets
11131 + (((unit_index - 1) * dwp_htab->nr_columns
11132 + i)
11133 * sizeof (uint32_t)));
11134 uint32_t size = read_4_bytes (dbfd,
11135 dwp_htab->section_pool.v2.sizes
11136 + (((unit_index - 1) * dwp_htab->nr_columns
11137 + i)
11138 * sizeof (uint32_t)));
11139
11140 switch (dwp_htab->section_pool.v2.section_ids[i])
11141 {
11142 case DW_SECT_INFO:
11143 case DW_SECT_TYPES:
11144 sections.info_or_types_offset = offset;
11145 sections.info_or_types_size = size;
11146 break;
11147 case DW_SECT_ABBREV:
11148 sections.abbrev_offset = offset;
11149 sections.abbrev_size = size;
11150 break;
11151 case DW_SECT_LINE:
11152 sections.line_offset = offset;
11153 sections.line_size = size;
11154 break;
11155 case DW_SECT_LOC:
11156 sections.loc_offset = offset;
11157 sections.loc_size = size;
11158 break;
11159 case DW_SECT_STR_OFFSETS:
11160 sections.str_offsets_offset = offset;
11161 sections.str_offsets_size = size;
11162 break;
11163 case DW_SECT_MACINFO:
11164 sections.macinfo_offset = offset;
11165 sections.macinfo_size = size;
11166 break;
11167 case DW_SECT_MACRO:
11168 sections.macro_offset = offset;
11169 sections.macro_size = size;
11170 break;
11171 }
11172 }
11173
11174 /* It's easier for the rest of the code if we fake a struct dwo_file and
11175 have dwo_unit "live" in that. At least for now.
11176
11177 The DWP file can be made up of a random collection of CUs and TUs.
11178 However, for each CU + set of TUs that came from the same original DWO
11179 file, we can combine them back into a virtual DWO file to save space
11180 (fewer struct dwo_file objects to allocate). Remember that for really
11181 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11182
11183 std::string virtual_dwo_name =
11184 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11185 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11186 (long) (sections.line_size ? sections.line_offset : 0),
11187 (long) (sections.loc_size ? sections.loc_offset : 0),
11188 (long) (sections.str_offsets_size
11189 ? sections.str_offsets_offset : 0));
11190 /* Can we use an existing virtual DWO file? */
11191 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11192 /* Create one if necessary. */
11193 if (*dwo_file_slot == NULL)
11194 {
11195 if (dwarf_read_debug)
11196 {
11197 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11198 virtual_dwo_name.c_str ());
11199 }
11200 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11201 dwo_file->dwo_name
11202 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11203 virtual_dwo_name.c_str (),
11204 virtual_dwo_name.size ());
11205 dwo_file->comp_dir = comp_dir;
11206 dwo_file->sections.abbrev =
11207 create_dwp_v2_section (&dwp_file->sections.abbrev,
11208 sections.abbrev_offset, sections.abbrev_size);
11209 dwo_file->sections.line =
11210 create_dwp_v2_section (&dwp_file->sections.line,
11211 sections.line_offset, sections.line_size);
11212 dwo_file->sections.loc =
11213 create_dwp_v2_section (&dwp_file->sections.loc,
11214 sections.loc_offset, sections.loc_size);
11215 dwo_file->sections.macinfo =
11216 create_dwp_v2_section (&dwp_file->sections.macinfo,
11217 sections.macinfo_offset, sections.macinfo_size);
11218 dwo_file->sections.macro =
11219 create_dwp_v2_section (&dwp_file->sections.macro,
11220 sections.macro_offset, sections.macro_size);
11221 dwo_file->sections.str_offsets =
11222 create_dwp_v2_section (&dwp_file->sections.str_offsets,
11223 sections.str_offsets_offset,
11224 sections.str_offsets_size);
11225 /* The "str" section is global to the entire DWP file. */
11226 dwo_file->sections.str = dwp_file->sections.str;
11227 /* The info or types section is assigned below to dwo_unit,
11228 there's no need to record it in dwo_file.
11229 Also, we can't simply record type sections in dwo_file because
11230 we record a pointer into the vector in dwo_unit. As we collect more
11231 types we'll grow the vector and eventually have to reallocate space
11232 for it, invalidating all copies of pointers into the previous
11233 contents. */
11234 *dwo_file_slot = dwo_file;
11235 }
11236 else
11237 {
11238 if (dwarf_read_debug)
11239 {
11240 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11241 virtual_dwo_name.c_str ());
11242 }
11243 dwo_file = (struct dwo_file *) *dwo_file_slot;
11244 }
11245
11246 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11247 dwo_unit->dwo_file = dwo_file;
11248 dwo_unit->signature = signature;
11249 dwo_unit->section =
11250 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11251 *dwo_unit->section = create_dwp_v2_section (is_debug_types
11252 ? &dwp_file->sections.types
11253 : &dwp_file->sections.info,
11254 sections.info_or_types_offset,
11255 sections.info_or_types_size);
11256 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11257
11258 return dwo_unit;
11259 }
11260
11261 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11262 Returns NULL if the signature isn't found. */
11263
11264 static struct dwo_unit *
11265 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
11266 ULONGEST signature, int is_debug_types)
11267 {
11268 const struct dwp_hash_table *dwp_htab =
11269 is_debug_types ? dwp_file->tus : dwp_file->cus;
11270 bfd *dbfd = dwp_file->dbfd;
11271 uint32_t mask = dwp_htab->nr_slots - 1;
11272 uint32_t hash = signature & mask;
11273 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11274 unsigned int i;
11275 void **slot;
11276 struct dwo_unit find_dwo_cu;
11277
11278 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11279 find_dwo_cu.signature = signature;
11280 slot = htab_find_slot (is_debug_types
11281 ? dwp_file->loaded_tus
11282 : dwp_file->loaded_cus,
11283 &find_dwo_cu, INSERT);
11284
11285 if (*slot != NULL)
11286 return (struct dwo_unit *) *slot;
11287
11288 /* Use a for loop so that we don't loop forever on bad debug info. */
11289 for (i = 0; i < dwp_htab->nr_slots; ++i)
11290 {
11291 ULONGEST signature_in_table;
11292
11293 signature_in_table =
11294 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11295 if (signature_in_table == signature)
11296 {
11297 uint32_t unit_index =
11298 read_4_bytes (dbfd,
11299 dwp_htab->unit_table + hash * sizeof (uint32_t));
11300
11301 if (dwp_file->version == 1)
11302 {
11303 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
11304 comp_dir, signature,
11305 is_debug_types);
11306 }
11307 else
11308 {
11309 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
11310 comp_dir, signature,
11311 is_debug_types);
11312 }
11313 return (struct dwo_unit *) *slot;
11314 }
11315 if (signature_in_table == 0)
11316 return NULL;
11317 hash = (hash + hash2) & mask;
11318 }
11319
11320 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11321 " [in module %s]"),
11322 dwp_file->name);
11323 }
11324
11325 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11326 Open the file specified by FILE_NAME and hand it off to BFD for
11327 preliminary analysis. Return a newly initialized bfd *, which
11328 includes a canonicalized copy of FILE_NAME.
11329 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11330 SEARCH_CWD is true if the current directory is to be searched.
11331 It will be searched before debug-file-directory.
11332 If successful, the file is added to the bfd include table of the
11333 objfile's bfd (see gdb_bfd_record_inclusion).
11334 If unable to find/open the file, return NULL.
11335 NOTE: This function is derived from symfile_bfd_open. */
11336
11337 static gdb_bfd_ref_ptr
11338 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
11339 {
11340 int desc, flags;
11341 char *absolute_name;
11342 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11343 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11344 to debug_file_directory. */
11345 char *search_path;
11346 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11347
11348 if (search_cwd)
11349 {
11350 if (*debug_file_directory != '\0')
11351 search_path = concat (".", dirname_separator_string,
11352 debug_file_directory, (char *) NULL);
11353 else
11354 search_path = xstrdup (".");
11355 }
11356 else
11357 search_path = xstrdup (debug_file_directory);
11358
11359 flags = OPF_RETURN_REALPATH;
11360 if (is_dwp)
11361 flags |= OPF_SEARCH_IN_PATH;
11362 desc = openp (search_path, flags, file_name,
11363 O_RDONLY | O_BINARY, &absolute_name);
11364 xfree (search_path);
11365 if (desc < 0)
11366 return NULL;
11367
11368 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
11369 xfree (absolute_name);
11370 if (sym_bfd == NULL)
11371 return NULL;
11372 bfd_set_cacheable (sym_bfd.get (), 1);
11373
11374 if (!bfd_check_format (sym_bfd.get (), bfd_object))
11375 return NULL;
11376
11377 /* Success. Record the bfd as having been included by the objfile's bfd.
11378 This is important because things like demangled_names_hash lives in the
11379 objfile's per_bfd space and may have references to things like symbol
11380 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
11381 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
11382
11383 return sym_bfd;
11384 }
11385
11386 /* Try to open DWO file FILE_NAME.
11387 COMP_DIR is the DW_AT_comp_dir attribute.
11388 The result is the bfd handle of the file.
11389 If there is a problem finding or opening the file, return NULL.
11390 Upon success, the canonicalized path of the file is stored in the bfd,
11391 same as symfile_bfd_open. */
11392
11393 static gdb_bfd_ref_ptr
11394 open_dwo_file (const char *file_name, const char *comp_dir)
11395 {
11396 if (IS_ABSOLUTE_PATH (file_name))
11397 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
11398
11399 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
11400
11401 if (comp_dir != NULL)
11402 {
11403 char *path_to_try = concat (comp_dir, SLASH_STRING,
11404 file_name, (char *) NULL);
11405
11406 /* NOTE: If comp_dir is a relative path, this will also try the
11407 search path, which seems useful. */
11408 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
11409 1 /*search_cwd*/));
11410 xfree (path_to_try);
11411 if (abfd != NULL)
11412 return abfd;
11413 }
11414
11415 /* That didn't work, try debug-file-directory, which, despite its name,
11416 is a list of paths. */
11417
11418 if (*debug_file_directory == '\0')
11419 return NULL;
11420
11421 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
11422 }
11423
11424 /* This function is mapped across the sections and remembers the offset and
11425 size of each of the DWO debugging sections we are interested in. */
11426
11427 static void
11428 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
11429 {
11430 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
11431 const struct dwop_section_names *names = &dwop_section_names;
11432
11433 if (section_is_p (sectp->name, &names->abbrev_dwo))
11434 {
11435 dwo_sections->abbrev.s.section = sectp;
11436 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
11437 }
11438 else if (section_is_p (sectp->name, &names->info_dwo))
11439 {
11440 dwo_sections->info.s.section = sectp;
11441 dwo_sections->info.size = bfd_get_section_size (sectp);
11442 }
11443 else if (section_is_p (sectp->name, &names->line_dwo))
11444 {
11445 dwo_sections->line.s.section = sectp;
11446 dwo_sections->line.size = bfd_get_section_size (sectp);
11447 }
11448 else if (section_is_p (sectp->name, &names->loc_dwo))
11449 {
11450 dwo_sections->loc.s.section = sectp;
11451 dwo_sections->loc.size = bfd_get_section_size (sectp);
11452 }
11453 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11454 {
11455 dwo_sections->macinfo.s.section = sectp;
11456 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
11457 }
11458 else if (section_is_p (sectp->name, &names->macro_dwo))
11459 {
11460 dwo_sections->macro.s.section = sectp;
11461 dwo_sections->macro.size = bfd_get_section_size (sectp);
11462 }
11463 else if (section_is_p (sectp->name, &names->str_dwo))
11464 {
11465 dwo_sections->str.s.section = sectp;
11466 dwo_sections->str.size = bfd_get_section_size (sectp);
11467 }
11468 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11469 {
11470 dwo_sections->str_offsets.s.section = sectp;
11471 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
11472 }
11473 else if (section_is_p (sectp->name, &names->types_dwo))
11474 {
11475 struct dwarf2_section_info type_section;
11476
11477 memset (&type_section, 0, sizeof (type_section));
11478 type_section.s.section = sectp;
11479 type_section.size = bfd_get_section_size (sectp);
11480 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
11481 &type_section);
11482 }
11483 }
11484
11485 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
11486 by PER_CU. This is for the non-DWP case.
11487 The result is NULL if DWO_NAME can't be found. */
11488
11489 static struct dwo_file *
11490 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
11491 const char *dwo_name, const char *comp_dir)
11492 {
11493 struct objfile *objfile = dwarf2_per_objfile->objfile;
11494 struct dwo_file *dwo_file;
11495 struct cleanup *cleanups;
11496
11497 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
11498 if (dbfd == NULL)
11499 {
11500 if (dwarf_read_debug)
11501 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
11502 return NULL;
11503 }
11504 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11505 dwo_file->dwo_name = dwo_name;
11506 dwo_file->comp_dir = comp_dir;
11507 dwo_file->dbfd = dbfd.release ();
11508
11509 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
11510
11511 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
11512 &dwo_file->sections);
11513
11514 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
11515
11516 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
11517 dwo_file->tus);
11518
11519 discard_cleanups (cleanups);
11520
11521 if (dwarf_read_debug)
11522 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
11523
11524 return dwo_file;
11525 }
11526
11527 /* This function is mapped across the sections and remembers the offset and
11528 size of each of the DWP debugging sections common to version 1 and 2 that
11529 we are interested in. */
11530
11531 static void
11532 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
11533 void *dwp_file_ptr)
11534 {
11535 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11536 const struct dwop_section_names *names = &dwop_section_names;
11537 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11538
11539 /* Record the ELF section number for later lookup: this is what the
11540 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11541 gdb_assert (elf_section_nr < dwp_file->num_sections);
11542 dwp_file->elf_sections[elf_section_nr] = sectp;
11543
11544 /* Look for specific sections that we need. */
11545 if (section_is_p (sectp->name, &names->str_dwo))
11546 {
11547 dwp_file->sections.str.s.section = sectp;
11548 dwp_file->sections.str.size = bfd_get_section_size (sectp);
11549 }
11550 else if (section_is_p (sectp->name, &names->cu_index))
11551 {
11552 dwp_file->sections.cu_index.s.section = sectp;
11553 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11554 }
11555 else if (section_is_p (sectp->name, &names->tu_index))
11556 {
11557 dwp_file->sections.tu_index.s.section = sectp;
11558 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11559 }
11560 }
11561
11562 /* This function is mapped across the sections and remembers the offset and
11563 size of each of the DWP version 2 debugging sections that we are interested
11564 in. This is split into a separate function because we don't know if we
11565 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11566
11567 static void
11568 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11569 {
11570 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11571 const struct dwop_section_names *names = &dwop_section_names;
11572 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11573
11574 /* Record the ELF section number for later lookup: this is what the
11575 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11576 gdb_assert (elf_section_nr < dwp_file->num_sections);
11577 dwp_file->elf_sections[elf_section_nr] = sectp;
11578
11579 /* Look for specific sections that we need. */
11580 if (section_is_p (sectp->name, &names->abbrev_dwo))
11581 {
11582 dwp_file->sections.abbrev.s.section = sectp;
11583 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11584 }
11585 else if (section_is_p (sectp->name, &names->info_dwo))
11586 {
11587 dwp_file->sections.info.s.section = sectp;
11588 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11589 }
11590 else if (section_is_p (sectp->name, &names->line_dwo))
11591 {
11592 dwp_file->sections.line.s.section = sectp;
11593 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11594 }
11595 else if (section_is_p (sectp->name, &names->loc_dwo))
11596 {
11597 dwp_file->sections.loc.s.section = sectp;
11598 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11599 }
11600 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11601 {
11602 dwp_file->sections.macinfo.s.section = sectp;
11603 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11604 }
11605 else if (section_is_p (sectp->name, &names->macro_dwo))
11606 {
11607 dwp_file->sections.macro.s.section = sectp;
11608 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11609 }
11610 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11611 {
11612 dwp_file->sections.str_offsets.s.section = sectp;
11613 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11614 }
11615 else if (section_is_p (sectp->name, &names->types_dwo))
11616 {
11617 dwp_file->sections.types.s.section = sectp;
11618 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11619 }
11620 }
11621
11622 /* Hash function for dwp_file loaded CUs/TUs. */
11623
11624 static hashval_t
11625 hash_dwp_loaded_cutus (const void *item)
11626 {
11627 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11628
11629 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11630 return dwo_unit->signature;
11631 }
11632
11633 /* Equality function for dwp_file loaded CUs/TUs. */
11634
11635 static int
11636 eq_dwp_loaded_cutus (const void *a, const void *b)
11637 {
11638 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11639 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11640
11641 return dua->signature == dub->signature;
11642 }
11643
11644 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11645
11646 static htab_t
11647 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11648 {
11649 return htab_create_alloc_ex (3,
11650 hash_dwp_loaded_cutus,
11651 eq_dwp_loaded_cutus,
11652 NULL,
11653 &objfile->objfile_obstack,
11654 hashtab_obstack_allocate,
11655 dummy_obstack_deallocate);
11656 }
11657
11658 /* Try to open DWP file FILE_NAME.
11659 The result is the bfd handle of the file.
11660 If there is a problem finding or opening the file, return NULL.
11661 Upon success, the canonicalized path of the file is stored in the bfd,
11662 same as symfile_bfd_open. */
11663
11664 static gdb_bfd_ref_ptr
11665 open_dwp_file (const char *file_name)
11666 {
11667 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11668 1 /*search_cwd*/));
11669 if (abfd != NULL)
11670 return abfd;
11671
11672 /* Work around upstream bug 15652.
11673 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11674 [Whether that's a "bug" is debatable, but it is getting in our way.]
11675 We have no real idea where the dwp file is, because gdb's realpath-ing
11676 of the executable's path may have discarded the needed info.
11677 [IWBN if the dwp file name was recorded in the executable, akin to
11678 .gnu_debuglink, but that doesn't exist yet.]
11679 Strip the directory from FILE_NAME and search again. */
11680 if (*debug_file_directory != '\0')
11681 {
11682 /* Don't implicitly search the current directory here.
11683 If the user wants to search "." to handle this case,
11684 it must be added to debug-file-directory. */
11685 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11686 0 /*search_cwd*/);
11687 }
11688
11689 return NULL;
11690 }
11691
11692 /* Initialize the use of the DWP file for the current objfile.
11693 By convention the name of the DWP file is ${objfile}.dwp.
11694 The result is NULL if it can't be found. */
11695
11696 static struct dwp_file *
11697 open_and_init_dwp_file (void)
11698 {
11699 struct objfile *objfile = dwarf2_per_objfile->objfile;
11700 struct dwp_file *dwp_file;
11701
11702 /* Try to find first .dwp for the binary file before any symbolic links
11703 resolving. */
11704
11705 /* If the objfile is a debug file, find the name of the real binary
11706 file and get the name of dwp file from there. */
11707 std::string dwp_name;
11708 if (objfile->separate_debug_objfile_backlink != NULL)
11709 {
11710 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11711 const char *backlink_basename = lbasename (backlink->original_name);
11712
11713 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11714 }
11715 else
11716 dwp_name = objfile->original_name;
11717
11718 dwp_name += ".dwp";
11719
11720 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11721 if (dbfd == NULL
11722 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11723 {
11724 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11725 dwp_name = objfile_name (objfile);
11726 dwp_name += ".dwp";
11727 dbfd = open_dwp_file (dwp_name.c_str ());
11728 }
11729
11730 if (dbfd == NULL)
11731 {
11732 if (dwarf_read_debug)
11733 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11734 return NULL;
11735 }
11736 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11737 dwp_file->name = bfd_get_filename (dbfd.get ());
11738 dwp_file->dbfd = dbfd.release ();
11739
11740 /* +1: section 0 is unused */
11741 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11742 dwp_file->elf_sections =
11743 OBSTACK_CALLOC (&objfile->objfile_obstack,
11744 dwp_file->num_sections, asection *);
11745
11746 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11747 dwp_file);
11748
11749 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11750
11751 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11752
11753 /* The DWP file version is stored in the hash table. Oh well. */
11754 if (dwp_file->cus && dwp_file->tus
11755 && dwp_file->cus->version != dwp_file->tus->version)
11756 {
11757 /* Technically speaking, we should try to limp along, but this is
11758 pretty bizarre. We use pulongest here because that's the established
11759 portability solution (e.g, we cannot use %u for uint32_t). */
11760 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11761 " TU version %s [in DWP file %s]"),
11762 pulongest (dwp_file->cus->version),
11763 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11764 }
11765
11766 if (dwp_file->cus)
11767 dwp_file->version = dwp_file->cus->version;
11768 else if (dwp_file->tus)
11769 dwp_file->version = dwp_file->tus->version;
11770 else
11771 dwp_file->version = 2;
11772
11773 if (dwp_file->version == 2)
11774 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11775 dwp_file);
11776
11777 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11778 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11779
11780 if (dwarf_read_debug)
11781 {
11782 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11783 fprintf_unfiltered (gdb_stdlog,
11784 " %s CUs, %s TUs\n",
11785 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11786 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11787 }
11788
11789 return dwp_file;
11790 }
11791
11792 /* Wrapper around open_and_init_dwp_file, only open it once. */
11793
11794 static struct dwp_file *
11795 get_dwp_file (void)
11796 {
11797 if (! dwarf2_per_objfile->dwp_checked)
11798 {
11799 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11800 dwarf2_per_objfile->dwp_checked = 1;
11801 }
11802 return dwarf2_per_objfile->dwp_file;
11803 }
11804
11805 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11806 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11807 or in the DWP file for the objfile, referenced by THIS_UNIT.
11808 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11809 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11810
11811 This is called, for example, when wanting to read a variable with a
11812 complex location. Therefore we don't want to do file i/o for every call.
11813 Therefore we don't want to look for a DWO file on every call.
11814 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11815 then we check if we've already seen DWO_NAME, and only THEN do we check
11816 for a DWO file.
11817
11818 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11819 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11820
11821 static struct dwo_unit *
11822 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11823 const char *dwo_name, const char *comp_dir,
11824 ULONGEST signature, int is_debug_types)
11825 {
11826 struct objfile *objfile = dwarf2_per_objfile->objfile;
11827 const char *kind = is_debug_types ? "TU" : "CU";
11828 void **dwo_file_slot;
11829 struct dwo_file *dwo_file;
11830 struct dwp_file *dwp_file;
11831
11832 /* First see if there's a DWP file.
11833 If we have a DWP file but didn't find the DWO inside it, don't
11834 look for the original DWO file. It makes gdb behave differently
11835 depending on whether one is debugging in the build tree. */
11836
11837 dwp_file = get_dwp_file ();
11838 if (dwp_file != NULL)
11839 {
11840 const struct dwp_hash_table *dwp_htab =
11841 is_debug_types ? dwp_file->tus : dwp_file->cus;
11842
11843 if (dwp_htab != NULL)
11844 {
11845 struct dwo_unit *dwo_cutu =
11846 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11847 signature, is_debug_types);
11848
11849 if (dwo_cutu != NULL)
11850 {
11851 if (dwarf_read_debug)
11852 {
11853 fprintf_unfiltered (gdb_stdlog,
11854 "Virtual DWO %s %s found: @%s\n",
11855 kind, hex_string (signature),
11856 host_address_to_string (dwo_cutu));
11857 }
11858 return dwo_cutu;
11859 }
11860 }
11861 }
11862 else
11863 {
11864 /* No DWP file, look for the DWO file. */
11865
11866 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11867 if (*dwo_file_slot == NULL)
11868 {
11869 /* Read in the file and build a table of the CUs/TUs it contains. */
11870 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11871 }
11872 /* NOTE: This will be NULL if unable to open the file. */
11873 dwo_file = (struct dwo_file *) *dwo_file_slot;
11874
11875 if (dwo_file != NULL)
11876 {
11877 struct dwo_unit *dwo_cutu = NULL;
11878
11879 if (is_debug_types && dwo_file->tus)
11880 {
11881 struct dwo_unit find_dwo_cutu;
11882
11883 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11884 find_dwo_cutu.signature = signature;
11885 dwo_cutu
11886 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11887 }
11888 else if (!is_debug_types && dwo_file->cus)
11889 {
11890 struct dwo_unit find_dwo_cutu;
11891
11892 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11893 find_dwo_cutu.signature = signature;
11894 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11895 &find_dwo_cutu);
11896 }
11897
11898 if (dwo_cutu != NULL)
11899 {
11900 if (dwarf_read_debug)
11901 {
11902 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11903 kind, dwo_name, hex_string (signature),
11904 host_address_to_string (dwo_cutu));
11905 }
11906 return dwo_cutu;
11907 }
11908 }
11909 }
11910
11911 /* We didn't find it. This could mean a dwo_id mismatch, or
11912 someone deleted the DWO/DWP file, or the search path isn't set up
11913 correctly to find the file. */
11914
11915 if (dwarf_read_debug)
11916 {
11917 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11918 kind, dwo_name, hex_string (signature));
11919 }
11920
11921 /* This is a warning and not a complaint because it can be caused by
11922 pilot error (e.g., user accidentally deleting the DWO). */
11923 {
11924 /* Print the name of the DWP file if we looked there, helps the user
11925 better diagnose the problem. */
11926 std::string dwp_text;
11927
11928 if (dwp_file != NULL)
11929 dwp_text = string_printf (" [in DWP file %s]",
11930 lbasename (dwp_file->name));
11931
11932 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11933 " [in module %s]"),
11934 kind, dwo_name, hex_string (signature),
11935 dwp_text.c_str (),
11936 this_unit->is_debug_types ? "TU" : "CU",
11937 to_underlying (this_unit->sect_off), objfile_name (objfile));
11938 }
11939 return NULL;
11940 }
11941
11942 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11943 See lookup_dwo_cutu_unit for details. */
11944
11945 static struct dwo_unit *
11946 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11947 const char *dwo_name, const char *comp_dir,
11948 ULONGEST signature)
11949 {
11950 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11951 }
11952
11953 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11954 See lookup_dwo_cutu_unit for details. */
11955
11956 static struct dwo_unit *
11957 lookup_dwo_type_unit (struct signatured_type *this_tu,
11958 const char *dwo_name, const char *comp_dir)
11959 {
11960 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11961 }
11962
11963 /* Traversal function for queue_and_load_all_dwo_tus. */
11964
11965 static int
11966 queue_and_load_dwo_tu (void **slot, void *info)
11967 {
11968 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11969 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11970 ULONGEST signature = dwo_unit->signature;
11971 struct signatured_type *sig_type =
11972 lookup_dwo_signatured_type (per_cu->cu, signature);
11973
11974 if (sig_type != NULL)
11975 {
11976 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11977
11978 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11979 a real dependency of PER_CU on SIG_TYPE. That is detected later
11980 while processing PER_CU. */
11981 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11982 load_full_type_unit (sig_cu);
11983 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11984 }
11985
11986 return 1;
11987 }
11988
11989 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11990 The DWO may have the only definition of the type, though it may not be
11991 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11992 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11993
11994 static void
11995 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11996 {
11997 struct dwo_unit *dwo_unit;
11998 struct dwo_file *dwo_file;
11999
12000 gdb_assert (!per_cu->is_debug_types);
12001 gdb_assert (get_dwp_file () == NULL);
12002 gdb_assert (per_cu->cu != NULL);
12003
12004 dwo_unit = per_cu->cu->dwo_unit;
12005 gdb_assert (dwo_unit != NULL);
12006
12007 dwo_file = dwo_unit->dwo_file;
12008 if (dwo_file->tus != NULL)
12009 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
12010 }
12011
12012 /* Free all resources associated with DWO_FILE.
12013 Close the DWO file and munmap the sections.
12014 All memory should be on the objfile obstack. */
12015
12016 static void
12017 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
12018 {
12019
12020 /* Note: dbfd is NULL for virtual DWO files. */
12021 gdb_bfd_unref (dwo_file->dbfd);
12022
12023 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
12024 }
12025
12026 /* Wrapper for free_dwo_file for use in cleanups. */
12027
12028 static void
12029 free_dwo_file_cleanup (void *arg)
12030 {
12031 struct dwo_file *dwo_file = (struct dwo_file *) arg;
12032 struct objfile *objfile = dwarf2_per_objfile->objfile;
12033
12034 free_dwo_file (dwo_file, objfile);
12035 }
12036
12037 /* Traversal function for free_dwo_files. */
12038
12039 static int
12040 free_dwo_file_from_slot (void **slot, void *info)
12041 {
12042 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
12043 struct objfile *objfile = (struct objfile *) info;
12044
12045 free_dwo_file (dwo_file, objfile);
12046
12047 return 1;
12048 }
12049
12050 /* Free all resources associated with DWO_FILES. */
12051
12052 static void
12053 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
12054 {
12055 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
12056 }
12057 \f
12058 /* Read in various DIEs. */
12059
12060 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12061 Inherit only the children of the DW_AT_abstract_origin DIE not being
12062 already referenced by DW_AT_abstract_origin from the children of the
12063 current DIE. */
12064
12065 static void
12066 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12067 {
12068 struct die_info *child_die;
12069 sect_offset *offsetp;
12070 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12071 struct die_info *origin_die;
12072 /* Iterator of the ORIGIN_DIE children. */
12073 struct die_info *origin_child_die;
12074 struct attribute *attr;
12075 struct dwarf2_cu *origin_cu;
12076 struct pending **origin_previous_list_in_scope;
12077
12078 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12079 if (!attr)
12080 return;
12081
12082 /* Note that following die references may follow to a die in a
12083 different cu. */
12084
12085 origin_cu = cu;
12086 origin_die = follow_die_ref (die, attr, &origin_cu);
12087
12088 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12089 symbols in. */
12090 origin_previous_list_in_scope = origin_cu->list_in_scope;
12091 origin_cu->list_in_scope = cu->list_in_scope;
12092
12093 if (die->tag != origin_die->tag
12094 && !(die->tag == DW_TAG_inlined_subroutine
12095 && origin_die->tag == DW_TAG_subprogram))
12096 complaint (&symfile_complaints,
12097 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
12098 to_underlying (die->sect_off),
12099 to_underlying (origin_die->sect_off));
12100
12101 std::vector<sect_offset> offsets;
12102
12103 for (child_die = die->child;
12104 child_die && child_die->tag;
12105 child_die = sibling_die (child_die))
12106 {
12107 struct die_info *child_origin_die;
12108 struct dwarf2_cu *child_origin_cu;
12109
12110 /* We are trying to process concrete instance entries:
12111 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12112 it's not relevant to our analysis here. i.e. detecting DIEs that are
12113 present in the abstract instance but not referenced in the concrete
12114 one. */
12115 if (child_die->tag == DW_TAG_call_site
12116 || child_die->tag == DW_TAG_GNU_call_site)
12117 continue;
12118
12119 /* For each CHILD_DIE, find the corresponding child of
12120 ORIGIN_DIE. If there is more than one layer of
12121 DW_AT_abstract_origin, follow them all; there shouldn't be,
12122 but GCC versions at least through 4.4 generate this (GCC PR
12123 40573). */
12124 child_origin_die = child_die;
12125 child_origin_cu = cu;
12126 while (1)
12127 {
12128 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12129 child_origin_cu);
12130 if (attr == NULL)
12131 break;
12132 child_origin_die = follow_die_ref (child_origin_die, attr,
12133 &child_origin_cu);
12134 }
12135
12136 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12137 counterpart may exist. */
12138 if (child_origin_die != child_die)
12139 {
12140 if (child_die->tag != child_origin_die->tag
12141 && !(child_die->tag == DW_TAG_inlined_subroutine
12142 && child_origin_die->tag == DW_TAG_subprogram))
12143 complaint (&symfile_complaints,
12144 _("Child DIE 0x%x and its abstract origin 0x%x have "
12145 "different tags"),
12146 to_underlying (child_die->sect_off),
12147 to_underlying (child_origin_die->sect_off));
12148 if (child_origin_die->parent != origin_die)
12149 complaint (&symfile_complaints,
12150 _("Child DIE 0x%x and its abstract origin 0x%x have "
12151 "different parents"),
12152 to_underlying (child_die->sect_off),
12153 to_underlying (child_origin_die->sect_off));
12154 else
12155 offsets.push_back (child_origin_die->sect_off);
12156 }
12157 }
12158 std::sort (offsets.begin (), offsets.end ());
12159 sect_offset *offsets_end = offsets.data () + offsets.size ();
12160 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12161 if (offsetp[-1] == *offsetp)
12162 complaint (&symfile_complaints,
12163 _("Multiple children of DIE 0x%x refer "
12164 "to DIE 0x%x as their abstract origin"),
12165 to_underlying (die->sect_off), to_underlying (*offsetp));
12166
12167 offsetp = offsets.data ();
12168 origin_child_die = origin_die->child;
12169 while (origin_child_die && origin_child_die->tag)
12170 {
12171 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12172 while (offsetp < offsets_end
12173 && *offsetp < origin_child_die->sect_off)
12174 offsetp++;
12175 if (offsetp >= offsets_end
12176 || *offsetp > origin_child_die->sect_off)
12177 {
12178 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12179 Check whether we're already processing ORIGIN_CHILD_DIE.
12180 This can happen with mutually referenced abstract_origins.
12181 PR 16581. */
12182 if (!origin_child_die->in_process)
12183 process_die (origin_child_die, origin_cu);
12184 }
12185 origin_child_die = sibling_die (origin_child_die);
12186 }
12187 origin_cu->list_in_scope = origin_previous_list_in_scope;
12188 }
12189
12190 static void
12191 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12192 {
12193 struct objfile *objfile = cu->objfile;
12194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12195 struct context_stack *newobj;
12196 CORE_ADDR lowpc;
12197 CORE_ADDR highpc;
12198 struct die_info *child_die;
12199 struct attribute *attr, *call_line, *call_file;
12200 const char *name;
12201 CORE_ADDR baseaddr;
12202 struct block *block;
12203 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12204 std::vector<struct symbol *> template_args;
12205 struct template_symbol *templ_func = NULL;
12206
12207 if (inlined_func)
12208 {
12209 /* If we do not have call site information, we can't show the
12210 caller of this inlined function. That's too confusing, so
12211 only use the scope for local variables. */
12212 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12213 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12214 if (call_line == NULL || call_file == NULL)
12215 {
12216 read_lexical_block_scope (die, cu);
12217 return;
12218 }
12219 }
12220
12221 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12222
12223 name = dwarf2_name (die, cu);
12224
12225 /* Ignore functions with missing or empty names. These are actually
12226 illegal according to the DWARF standard. */
12227 if (name == NULL)
12228 {
12229 complaint (&symfile_complaints,
12230 _("missing name for subprogram DIE at %d"),
12231 to_underlying (die->sect_off));
12232 return;
12233 }
12234
12235 /* Ignore functions with missing or invalid low and high pc attributes. */
12236 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12237 <= PC_BOUNDS_INVALID)
12238 {
12239 attr = dwarf2_attr (die, DW_AT_external, cu);
12240 if (!attr || !DW_UNSND (attr))
12241 complaint (&symfile_complaints,
12242 _("cannot get low and high bounds "
12243 "for subprogram DIE at %d"),
12244 to_underlying (die->sect_off));
12245 return;
12246 }
12247
12248 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12249 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12250
12251 /* If we have any template arguments, then we must allocate a
12252 different sort of symbol. */
12253 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12254 {
12255 if (child_die->tag == DW_TAG_template_type_param
12256 || child_die->tag == DW_TAG_template_value_param)
12257 {
12258 templ_func = allocate_template_symbol (objfile);
12259 templ_func->base.is_cplus_template_function = 1;
12260 break;
12261 }
12262 }
12263
12264 newobj = push_context (0, lowpc);
12265 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
12266 (struct symbol *) templ_func);
12267
12268 /* If there is a location expression for DW_AT_frame_base, record
12269 it. */
12270 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12271 if (attr)
12272 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12273
12274 /* If there is a location for the static link, record it. */
12275 newobj->static_link = NULL;
12276 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12277 if (attr)
12278 {
12279 newobj->static_link
12280 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12281 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
12282 }
12283
12284 cu->list_in_scope = &local_symbols;
12285
12286 if (die->child != NULL)
12287 {
12288 child_die = die->child;
12289 while (child_die && child_die->tag)
12290 {
12291 if (child_die->tag == DW_TAG_template_type_param
12292 || child_die->tag == DW_TAG_template_value_param)
12293 {
12294 struct symbol *arg = new_symbol (child_die, NULL, cu);
12295
12296 if (arg != NULL)
12297 template_args.push_back (arg);
12298 }
12299 else
12300 process_die (child_die, cu);
12301 child_die = sibling_die (child_die);
12302 }
12303 }
12304
12305 inherit_abstract_dies (die, cu);
12306
12307 /* If we have a DW_AT_specification, we might need to import using
12308 directives from the context of the specification DIE. See the
12309 comment in determine_prefix. */
12310 if (cu->language == language_cplus
12311 && dwarf2_attr (die, DW_AT_specification, cu))
12312 {
12313 struct dwarf2_cu *spec_cu = cu;
12314 struct die_info *spec_die = die_specification (die, &spec_cu);
12315
12316 while (spec_die)
12317 {
12318 child_die = spec_die->child;
12319 while (child_die && child_die->tag)
12320 {
12321 if (child_die->tag == DW_TAG_imported_module)
12322 process_die (child_die, spec_cu);
12323 child_die = sibling_die (child_die);
12324 }
12325
12326 /* In some cases, GCC generates specification DIEs that
12327 themselves contain DW_AT_specification attributes. */
12328 spec_die = die_specification (spec_die, &spec_cu);
12329 }
12330 }
12331
12332 newobj = pop_context ();
12333 /* Make a block for the local symbols within. */
12334 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
12335 newobj->static_link, lowpc, highpc);
12336
12337 /* For C++, set the block's scope. */
12338 if ((cu->language == language_cplus
12339 || cu->language == language_fortran
12340 || cu->language == language_d
12341 || cu->language == language_rust)
12342 && cu->processing_has_namespace_info)
12343 block_set_scope (block, determine_prefix (die, cu),
12344 &objfile->objfile_obstack);
12345
12346 /* If we have address ranges, record them. */
12347 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12348
12349 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
12350
12351 /* Attach template arguments to function. */
12352 if (!template_args.empty ())
12353 {
12354 gdb_assert (templ_func != NULL);
12355
12356 templ_func->n_template_arguments = template_args.size ();
12357 templ_func->template_arguments
12358 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12359 templ_func->n_template_arguments);
12360 memcpy (templ_func->template_arguments,
12361 template_args.data (),
12362 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12363 }
12364
12365 /* In C++, we can have functions nested inside functions (e.g., when
12366 a function declares a class that has methods). This means that
12367 when we finish processing a function scope, we may need to go
12368 back to building a containing block's symbol lists. */
12369 local_symbols = newobj->locals;
12370 local_using_directives = newobj->local_using_directives;
12371
12372 /* If we've finished processing a top-level function, subsequent
12373 symbols go in the file symbol list. */
12374 if (outermost_context_p ())
12375 cu->list_in_scope = &file_symbols;
12376 }
12377
12378 /* Process all the DIES contained within a lexical block scope. Start
12379 a new scope, process the dies, and then close the scope. */
12380
12381 static void
12382 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12383 {
12384 struct objfile *objfile = cu->objfile;
12385 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12386 struct context_stack *newobj;
12387 CORE_ADDR lowpc, highpc;
12388 struct die_info *child_die;
12389 CORE_ADDR baseaddr;
12390
12391 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12392
12393 /* Ignore blocks with missing or invalid low and high pc attributes. */
12394 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
12395 as multiple lexical blocks? Handling children in a sane way would
12396 be nasty. Might be easier to properly extend generic blocks to
12397 describe ranges. */
12398 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
12399 {
12400 case PC_BOUNDS_NOT_PRESENT:
12401 /* DW_TAG_lexical_block has no attributes, process its children as if
12402 there was no wrapping by that DW_TAG_lexical_block.
12403 GCC does no longer produces such DWARF since GCC r224161. */
12404 for (child_die = die->child;
12405 child_die != NULL && child_die->tag;
12406 child_die = sibling_die (child_die))
12407 process_die (child_die, cu);
12408 return;
12409 case PC_BOUNDS_INVALID:
12410 return;
12411 }
12412 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12413 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12414
12415 push_context (0, lowpc);
12416 if (die->child != NULL)
12417 {
12418 child_die = die->child;
12419 while (child_die && child_die->tag)
12420 {
12421 process_die (child_die, cu);
12422 child_die = sibling_die (child_die);
12423 }
12424 }
12425 inherit_abstract_dies (die, cu);
12426 newobj = pop_context ();
12427
12428 if (local_symbols != NULL || local_using_directives != NULL)
12429 {
12430 struct block *block
12431 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
12432 newobj->start_addr, highpc);
12433
12434 /* Note that recording ranges after traversing children, as we
12435 do here, means that recording a parent's ranges entails
12436 walking across all its children's ranges as they appear in
12437 the address map, which is quadratic behavior.
12438
12439 It would be nicer to record the parent's ranges before
12440 traversing its children, simply overriding whatever you find
12441 there. But since we don't even decide whether to create a
12442 block until after we've traversed its children, that's hard
12443 to do. */
12444 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12445 }
12446 local_symbols = newobj->locals;
12447 local_using_directives = newobj->local_using_directives;
12448 }
12449
12450 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
12451
12452 static void
12453 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
12454 {
12455 struct objfile *objfile = cu->objfile;
12456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12457 CORE_ADDR pc, baseaddr;
12458 struct attribute *attr;
12459 struct call_site *call_site, call_site_local;
12460 void **slot;
12461 int nparams;
12462 struct die_info *child_die;
12463
12464 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12465
12466 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
12467 if (attr == NULL)
12468 {
12469 /* This was a pre-DWARF-5 GNU extension alias
12470 for DW_AT_call_return_pc. */
12471 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12472 }
12473 if (!attr)
12474 {
12475 complaint (&symfile_complaints,
12476 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
12477 "DIE 0x%x [in module %s]"),
12478 to_underlying (die->sect_off), objfile_name (objfile));
12479 return;
12480 }
12481 pc = attr_value_as_address (attr) + baseaddr;
12482 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
12483
12484 if (cu->call_site_htab == NULL)
12485 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
12486 NULL, &objfile->objfile_obstack,
12487 hashtab_obstack_allocate, NULL);
12488 call_site_local.pc = pc;
12489 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
12490 if (*slot != NULL)
12491 {
12492 complaint (&symfile_complaints,
12493 _("Duplicate PC %s for DW_TAG_call_site "
12494 "DIE 0x%x [in module %s]"),
12495 paddress (gdbarch, pc), to_underlying (die->sect_off),
12496 objfile_name (objfile));
12497 return;
12498 }
12499
12500 /* Count parameters at the caller. */
12501
12502 nparams = 0;
12503 for (child_die = die->child; child_die && child_die->tag;
12504 child_die = sibling_die (child_die))
12505 {
12506 if (child_die->tag != DW_TAG_call_site_parameter
12507 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12508 {
12509 complaint (&symfile_complaints,
12510 _("Tag %d is not DW_TAG_call_site_parameter in "
12511 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12512 child_die->tag, to_underlying (child_die->sect_off),
12513 objfile_name (objfile));
12514 continue;
12515 }
12516
12517 nparams++;
12518 }
12519
12520 call_site
12521 = ((struct call_site *)
12522 obstack_alloc (&objfile->objfile_obstack,
12523 sizeof (*call_site)
12524 + (sizeof (*call_site->parameter) * (nparams - 1))));
12525 *slot = call_site;
12526 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
12527 call_site->pc = pc;
12528
12529 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12530 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12531 {
12532 struct die_info *func_die;
12533
12534 /* Skip also over DW_TAG_inlined_subroutine. */
12535 for (func_die = die->parent;
12536 func_die && func_die->tag != DW_TAG_subprogram
12537 && func_die->tag != DW_TAG_subroutine_type;
12538 func_die = func_die->parent);
12539
12540 /* DW_AT_call_all_calls is a superset
12541 of DW_AT_call_all_tail_calls. */
12542 if (func_die
12543 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12544 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12545 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12546 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12547 {
12548 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12549 not complete. But keep CALL_SITE for look ups via call_site_htab,
12550 both the initial caller containing the real return address PC and
12551 the final callee containing the current PC of a chain of tail
12552 calls do not need to have the tail call list complete. But any
12553 function candidate for a virtual tail call frame searched via
12554 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12555 determined unambiguously. */
12556 }
12557 else
12558 {
12559 struct type *func_type = NULL;
12560
12561 if (func_die)
12562 func_type = get_die_type (func_die, cu);
12563 if (func_type != NULL)
12564 {
12565 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12566
12567 /* Enlist this call site to the function. */
12568 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12569 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12570 }
12571 else
12572 complaint (&symfile_complaints,
12573 _("Cannot find function owning DW_TAG_call_site "
12574 "DIE 0x%x [in module %s]"),
12575 to_underlying (die->sect_off), objfile_name (objfile));
12576 }
12577 }
12578
12579 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12580 if (attr == NULL)
12581 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12582 if (attr == NULL)
12583 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12584 if (attr == NULL)
12585 {
12586 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12587 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12588 }
12589 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12590 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12591 /* Keep NULL DWARF_BLOCK. */;
12592 else if (attr_form_is_block (attr))
12593 {
12594 struct dwarf2_locexpr_baton *dlbaton;
12595
12596 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12597 dlbaton->data = DW_BLOCK (attr)->data;
12598 dlbaton->size = DW_BLOCK (attr)->size;
12599 dlbaton->per_cu = cu->per_cu;
12600
12601 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12602 }
12603 else if (attr_form_is_ref (attr))
12604 {
12605 struct dwarf2_cu *target_cu = cu;
12606 struct die_info *target_die;
12607
12608 target_die = follow_die_ref (die, attr, &target_cu);
12609 gdb_assert (target_cu->objfile == objfile);
12610 if (die_is_declaration (target_die, target_cu))
12611 {
12612 const char *target_physname;
12613
12614 /* Prefer the mangled name; otherwise compute the demangled one. */
12615 target_physname = dw2_linkage_name (target_die, target_cu);
12616 if (target_physname == NULL)
12617 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12618 if (target_physname == NULL)
12619 complaint (&symfile_complaints,
12620 _("DW_AT_call_target target DIE has invalid "
12621 "physname, for referencing DIE 0x%x [in module %s]"),
12622 to_underlying (die->sect_off), objfile_name (objfile));
12623 else
12624 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12625 }
12626 else
12627 {
12628 CORE_ADDR lowpc;
12629
12630 /* DW_AT_entry_pc should be preferred. */
12631 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12632 <= PC_BOUNDS_INVALID)
12633 complaint (&symfile_complaints,
12634 _("DW_AT_call_target target DIE has invalid "
12635 "low pc, for referencing DIE 0x%x [in module %s]"),
12636 to_underlying (die->sect_off), objfile_name (objfile));
12637 else
12638 {
12639 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12640 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12641 }
12642 }
12643 }
12644 else
12645 complaint (&symfile_complaints,
12646 _("DW_TAG_call_site DW_AT_call_target is neither "
12647 "block nor reference, for DIE 0x%x [in module %s]"),
12648 to_underlying (die->sect_off), objfile_name (objfile));
12649
12650 call_site->per_cu = cu->per_cu;
12651
12652 for (child_die = die->child;
12653 child_die && child_die->tag;
12654 child_die = sibling_die (child_die))
12655 {
12656 struct call_site_parameter *parameter;
12657 struct attribute *loc, *origin;
12658
12659 if (child_die->tag != DW_TAG_call_site_parameter
12660 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12661 {
12662 /* Already printed the complaint above. */
12663 continue;
12664 }
12665
12666 gdb_assert (call_site->parameter_count < nparams);
12667 parameter = &call_site->parameter[call_site->parameter_count];
12668
12669 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12670 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12671 register is contained in DW_AT_call_value. */
12672
12673 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12674 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12675 if (origin == NULL)
12676 {
12677 /* This was a pre-DWARF-5 GNU extension alias
12678 for DW_AT_call_parameter. */
12679 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12680 }
12681 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12682 {
12683 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12684
12685 sect_offset sect_off
12686 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12687 if (!offset_in_cu_p (&cu->header, sect_off))
12688 {
12689 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12690 binding can be done only inside one CU. Such referenced DIE
12691 therefore cannot be even moved to DW_TAG_partial_unit. */
12692 complaint (&symfile_complaints,
12693 _("DW_AT_call_parameter offset is not in CU for "
12694 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12695 to_underlying (child_die->sect_off),
12696 objfile_name (objfile));
12697 continue;
12698 }
12699 parameter->u.param_cu_off
12700 = (cu_offset) (sect_off - cu->header.sect_off);
12701 }
12702 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12703 {
12704 complaint (&symfile_complaints,
12705 _("No DW_FORM_block* DW_AT_location for "
12706 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12707 to_underlying (child_die->sect_off), objfile_name (objfile));
12708 continue;
12709 }
12710 else
12711 {
12712 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12713 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12714 if (parameter->u.dwarf_reg != -1)
12715 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12716 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12717 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12718 &parameter->u.fb_offset))
12719 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12720 else
12721 {
12722 complaint (&symfile_complaints,
12723 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12724 "for DW_FORM_block* DW_AT_location is supported for "
12725 "DW_TAG_call_site child DIE 0x%x "
12726 "[in module %s]"),
12727 to_underlying (child_die->sect_off),
12728 objfile_name (objfile));
12729 continue;
12730 }
12731 }
12732
12733 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12734 if (attr == NULL)
12735 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12736 if (!attr_form_is_block (attr))
12737 {
12738 complaint (&symfile_complaints,
12739 _("No DW_FORM_block* DW_AT_call_value for "
12740 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12741 to_underlying (child_die->sect_off),
12742 objfile_name (objfile));
12743 continue;
12744 }
12745 parameter->value = DW_BLOCK (attr)->data;
12746 parameter->value_size = DW_BLOCK (attr)->size;
12747
12748 /* Parameters are not pre-cleared by memset above. */
12749 parameter->data_value = NULL;
12750 parameter->data_value_size = 0;
12751 call_site->parameter_count++;
12752
12753 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12754 if (attr == NULL)
12755 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12756 if (attr)
12757 {
12758 if (!attr_form_is_block (attr))
12759 complaint (&symfile_complaints,
12760 _("No DW_FORM_block* DW_AT_call_data_value for "
12761 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12762 to_underlying (child_die->sect_off),
12763 objfile_name (objfile));
12764 else
12765 {
12766 parameter->data_value = DW_BLOCK (attr)->data;
12767 parameter->data_value_size = DW_BLOCK (attr)->size;
12768 }
12769 }
12770 }
12771 }
12772
12773 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12774 reading .debug_rnglists.
12775 Callback's type should be:
12776 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12777 Return true if the attributes are present and valid, otherwise,
12778 return false. */
12779
12780 template <typename Callback>
12781 static bool
12782 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12783 Callback &&callback)
12784 {
12785 struct objfile *objfile = cu->objfile;
12786 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12787 struct comp_unit_head *cu_header = &cu->header;
12788 bfd *obfd = objfile->obfd;
12789 unsigned int addr_size = cu_header->addr_size;
12790 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12791 /* Base address selection entry. */
12792 CORE_ADDR base;
12793 int found_base;
12794 unsigned int dummy;
12795 const gdb_byte *buffer;
12796 CORE_ADDR low = 0;
12797 CORE_ADDR high = 0;
12798 CORE_ADDR baseaddr;
12799 bool overflow = false;
12800
12801 found_base = cu->base_known;
12802 base = cu->base_address;
12803
12804 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12805 if (offset >= dwarf2_per_objfile->rnglists.size)
12806 {
12807 complaint (&symfile_complaints,
12808 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12809 offset);
12810 return false;
12811 }
12812 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12813
12814 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12815
12816 while (1)
12817 {
12818 /* Initialize it due to a false compiler warning. */
12819 CORE_ADDR range_beginning = 0, range_end = 0;
12820 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12821 + dwarf2_per_objfile->rnglists.size);
12822 unsigned int bytes_read;
12823
12824 if (buffer == buf_end)
12825 {
12826 overflow = true;
12827 break;
12828 }
12829 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12830 switch (rlet)
12831 {
12832 case DW_RLE_end_of_list:
12833 break;
12834 case DW_RLE_base_address:
12835 if (buffer + cu->header.addr_size > buf_end)
12836 {
12837 overflow = true;
12838 break;
12839 }
12840 base = read_address (obfd, buffer, cu, &bytes_read);
12841 found_base = 1;
12842 buffer += bytes_read;
12843 break;
12844 case DW_RLE_start_length:
12845 if (buffer + cu->header.addr_size > buf_end)
12846 {
12847 overflow = true;
12848 break;
12849 }
12850 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12851 buffer += bytes_read;
12852 range_end = (range_beginning
12853 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12854 buffer += bytes_read;
12855 if (buffer > buf_end)
12856 {
12857 overflow = true;
12858 break;
12859 }
12860 break;
12861 case DW_RLE_offset_pair:
12862 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12863 buffer += bytes_read;
12864 if (buffer > buf_end)
12865 {
12866 overflow = true;
12867 break;
12868 }
12869 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12870 buffer += bytes_read;
12871 if (buffer > buf_end)
12872 {
12873 overflow = true;
12874 break;
12875 }
12876 break;
12877 case DW_RLE_start_end:
12878 if (buffer + 2 * cu->header.addr_size > buf_end)
12879 {
12880 overflow = true;
12881 break;
12882 }
12883 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12884 buffer += bytes_read;
12885 range_end = read_address (obfd, buffer, cu, &bytes_read);
12886 buffer += bytes_read;
12887 break;
12888 default:
12889 complaint (&symfile_complaints,
12890 _("Invalid .debug_rnglists data (no base address)"));
12891 return false;
12892 }
12893 if (rlet == DW_RLE_end_of_list || overflow)
12894 break;
12895 if (rlet == DW_RLE_base_address)
12896 continue;
12897
12898 if (!found_base)
12899 {
12900 /* We have no valid base address for the ranges
12901 data. */
12902 complaint (&symfile_complaints,
12903 _("Invalid .debug_rnglists data (no base address)"));
12904 return false;
12905 }
12906
12907 if (range_beginning > range_end)
12908 {
12909 /* Inverted range entries are invalid. */
12910 complaint (&symfile_complaints,
12911 _("Invalid .debug_rnglists data (inverted range)"));
12912 return false;
12913 }
12914
12915 /* Empty range entries have no effect. */
12916 if (range_beginning == range_end)
12917 continue;
12918
12919 range_beginning += base;
12920 range_end += base;
12921
12922 /* A not-uncommon case of bad debug info.
12923 Don't pollute the addrmap with bad data. */
12924 if (range_beginning + baseaddr == 0
12925 && !dwarf2_per_objfile->has_section_at_zero)
12926 {
12927 complaint (&symfile_complaints,
12928 _(".debug_rnglists entry has start address of zero"
12929 " [in module %s]"), objfile_name (objfile));
12930 continue;
12931 }
12932
12933 callback (range_beginning, range_end);
12934 }
12935
12936 if (overflow)
12937 {
12938 complaint (&symfile_complaints,
12939 _("Offset %d is not terminated "
12940 "for DW_AT_ranges attribute"),
12941 offset);
12942 return false;
12943 }
12944
12945 return true;
12946 }
12947
12948 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12949 Callback's type should be:
12950 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12951 Return 1 if the attributes are present and valid, otherwise, return 0. */
12952
12953 template <typename Callback>
12954 static int
12955 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12956 Callback &&callback)
12957 {
12958 struct objfile *objfile = cu->objfile;
12959 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12960 struct comp_unit_head *cu_header = &cu->header;
12961 bfd *obfd = objfile->obfd;
12962 unsigned int addr_size = cu_header->addr_size;
12963 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12964 /* Base address selection entry. */
12965 CORE_ADDR base;
12966 int found_base;
12967 unsigned int dummy;
12968 const gdb_byte *buffer;
12969 CORE_ADDR baseaddr;
12970
12971 if (cu_header->version >= 5)
12972 return dwarf2_rnglists_process (offset, cu, callback);
12973
12974 found_base = cu->base_known;
12975 base = cu->base_address;
12976
12977 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12978 if (offset >= dwarf2_per_objfile->ranges.size)
12979 {
12980 complaint (&symfile_complaints,
12981 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12982 offset);
12983 return 0;
12984 }
12985 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12986
12987 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12988
12989 while (1)
12990 {
12991 CORE_ADDR range_beginning, range_end;
12992
12993 range_beginning = read_address (obfd, buffer, cu, &dummy);
12994 buffer += addr_size;
12995 range_end = read_address (obfd, buffer, cu, &dummy);
12996 buffer += addr_size;
12997 offset += 2 * addr_size;
12998
12999 /* An end of list marker is a pair of zero addresses. */
13000 if (range_beginning == 0 && range_end == 0)
13001 /* Found the end of list entry. */
13002 break;
13003
13004 /* Each base address selection entry is a pair of 2 values.
13005 The first is the largest possible address, the second is
13006 the base address. Check for a base address here. */
13007 if ((range_beginning & mask) == mask)
13008 {
13009 /* If we found the largest possible address, then we already
13010 have the base address in range_end. */
13011 base = range_end;
13012 found_base = 1;
13013 continue;
13014 }
13015
13016 if (!found_base)
13017 {
13018 /* We have no valid base address for the ranges
13019 data. */
13020 complaint (&symfile_complaints,
13021 _("Invalid .debug_ranges data (no base address)"));
13022 return 0;
13023 }
13024
13025 if (range_beginning > range_end)
13026 {
13027 /* Inverted range entries are invalid. */
13028 complaint (&symfile_complaints,
13029 _("Invalid .debug_ranges data (inverted range)"));
13030 return 0;
13031 }
13032
13033 /* Empty range entries have no effect. */
13034 if (range_beginning == range_end)
13035 continue;
13036
13037 range_beginning += base;
13038 range_end += base;
13039
13040 /* A not-uncommon case of bad debug info.
13041 Don't pollute the addrmap with bad data. */
13042 if (range_beginning + baseaddr == 0
13043 && !dwarf2_per_objfile->has_section_at_zero)
13044 {
13045 complaint (&symfile_complaints,
13046 _(".debug_ranges entry has start address of zero"
13047 " [in module %s]"), objfile_name (objfile));
13048 continue;
13049 }
13050
13051 callback (range_beginning, range_end);
13052 }
13053
13054 return 1;
13055 }
13056
13057 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13058 Return 1 if the attributes are present and valid, otherwise, return 0.
13059 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13060
13061 static int
13062 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13063 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13064 struct partial_symtab *ranges_pst)
13065 {
13066 struct objfile *objfile = cu->objfile;
13067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13068 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
13069 SECT_OFF_TEXT (objfile));
13070 int low_set = 0;
13071 CORE_ADDR low = 0;
13072 CORE_ADDR high = 0;
13073 int retval;
13074
13075 retval = dwarf2_ranges_process (offset, cu,
13076 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13077 {
13078 if (ranges_pst != NULL)
13079 {
13080 CORE_ADDR lowpc;
13081 CORE_ADDR highpc;
13082
13083 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13084 range_beginning + baseaddr);
13085 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13086 range_end + baseaddr);
13087 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
13088 ranges_pst);
13089 }
13090
13091 /* FIXME: This is recording everything as a low-high
13092 segment of consecutive addresses. We should have a
13093 data structure for discontiguous block ranges
13094 instead. */
13095 if (! low_set)
13096 {
13097 low = range_beginning;
13098 high = range_end;
13099 low_set = 1;
13100 }
13101 else
13102 {
13103 if (range_beginning < low)
13104 low = range_beginning;
13105 if (range_end > high)
13106 high = range_end;
13107 }
13108 });
13109 if (!retval)
13110 return 0;
13111
13112 if (! low_set)
13113 /* If the first entry is an end-of-list marker, the range
13114 describes an empty scope, i.e. no instructions. */
13115 return 0;
13116
13117 if (low_return)
13118 *low_return = low;
13119 if (high_return)
13120 *high_return = high;
13121 return 1;
13122 }
13123
13124 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13125 definition for the return value. *LOWPC and *HIGHPC are set iff
13126 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13127
13128 static enum pc_bounds_kind
13129 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13130 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13131 struct partial_symtab *pst)
13132 {
13133 struct attribute *attr;
13134 struct attribute *attr_high;
13135 CORE_ADDR low = 0;
13136 CORE_ADDR high = 0;
13137 enum pc_bounds_kind ret;
13138
13139 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13140 if (attr_high)
13141 {
13142 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13143 if (attr)
13144 {
13145 low = attr_value_as_address (attr);
13146 high = attr_value_as_address (attr_high);
13147 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13148 high += low;
13149 }
13150 else
13151 /* Found high w/o low attribute. */
13152 return PC_BOUNDS_INVALID;
13153
13154 /* Found consecutive range of addresses. */
13155 ret = PC_BOUNDS_HIGH_LOW;
13156 }
13157 else
13158 {
13159 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13160 if (attr != NULL)
13161 {
13162 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13163 We take advantage of the fact that DW_AT_ranges does not appear
13164 in DW_TAG_compile_unit of DWO files. */
13165 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13166 unsigned int ranges_offset = (DW_UNSND (attr)
13167 + (need_ranges_base
13168 ? cu->ranges_base
13169 : 0));
13170
13171 /* Value of the DW_AT_ranges attribute is the offset in the
13172 .debug_ranges section. */
13173 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13174 return PC_BOUNDS_INVALID;
13175 /* Found discontinuous range of addresses. */
13176 ret = PC_BOUNDS_RANGES;
13177 }
13178 else
13179 return PC_BOUNDS_NOT_PRESENT;
13180 }
13181
13182 /* read_partial_die has also the strict LOW < HIGH requirement. */
13183 if (high <= low)
13184 return PC_BOUNDS_INVALID;
13185
13186 /* When using the GNU linker, .gnu.linkonce. sections are used to
13187 eliminate duplicate copies of functions and vtables and such.
13188 The linker will arbitrarily choose one and discard the others.
13189 The AT_*_pc values for such functions refer to local labels in
13190 these sections. If the section from that file was discarded, the
13191 labels are not in the output, so the relocs get a value of 0.
13192 If this is a discarded function, mark the pc bounds as invalid,
13193 so that GDB will ignore it. */
13194 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13195 return PC_BOUNDS_INVALID;
13196
13197 *lowpc = low;
13198 if (highpc)
13199 *highpc = high;
13200 return ret;
13201 }
13202
13203 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13204 its low and high PC addresses. Do nothing if these addresses could not
13205 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13206 and HIGHPC to the high address if greater than HIGHPC. */
13207
13208 static void
13209 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13210 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13211 struct dwarf2_cu *cu)
13212 {
13213 CORE_ADDR low, high;
13214 struct die_info *child = die->child;
13215
13216 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13217 {
13218 *lowpc = std::min (*lowpc, low);
13219 *highpc = std::max (*highpc, high);
13220 }
13221
13222 /* If the language does not allow nested subprograms (either inside
13223 subprograms or lexical blocks), we're done. */
13224 if (cu->language != language_ada)
13225 return;
13226
13227 /* Check all the children of the given DIE. If it contains nested
13228 subprograms, then check their pc bounds. Likewise, we need to
13229 check lexical blocks as well, as they may also contain subprogram
13230 definitions. */
13231 while (child && child->tag)
13232 {
13233 if (child->tag == DW_TAG_subprogram
13234 || child->tag == DW_TAG_lexical_block)
13235 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13236 child = sibling_die (child);
13237 }
13238 }
13239
13240 /* Get the low and high pc's represented by the scope DIE, and store
13241 them in *LOWPC and *HIGHPC. If the correct values can't be
13242 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13243
13244 static void
13245 get_scope_pc_bounds (struct die_info *die,
13246 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13247 struct dwarf2_cu *cu)
13248 {
13249 CORE_ADDR best_low = (CORE_ADDR) -1;
13250 CORE_ADDR best_high = (CORE_ADDR) 0;
13251 CORE_ADDR current_low, current_high;
13252
13253 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13254 >= PC_BOUNDS_RANGES)
13255 {
13256 best_low = current_low;
13257 best_high = current_high;
13258 }
13259 else
13260 {
13261 struct die_info *child = die->child;
13262
13263 while (child && child->tag)
13264 {
13265 switch (child->tag) {
13266 case DW_TAG_subprogram:
13267 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13268 break;
13269 case DW_TAG_namespace:
13270 case DW_TAG_module:
13271 /* FIXME: carlton/2004-01-16: Should we do this for
13272 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13273 that current GCC's always emit the DIEs corresponding
13274 to definitions of methods of classes as children of a
13275 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13276 the DIEs giving the declarations, which could be
13277 anywhere). But I don't see any reason why the
13278 standards says that they have to be there. */
13279 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13280
13281 if (current_low != ((CORE_ADDR) -1))
13282 {
13283 best_low = std::min (best_low, current_low);
13284 best_high = std::max (best_high, current_high);
13285 }
13286 break;
13287 default:
13288 /* Ignore. */
13289 break;
13290 }
13291
13292 child = sibling_die (child);
13293 }
13294 }
13295
13296 *lowpc = best_low;
13297 *highpc = best_high;
13298 }
13299
13300 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13301 in DIE. */
13302
13303 static void
13304 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13305 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13306 {
13307 struct objfile *objfile = cu->objfile;
13308 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13309 struct attribute *attr;
13310 struct attribute *attr_high;
13311
13312 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13313 if (attr_high)
13314 {
13315 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13316 if (attr)
13317 {
13318 CORE_ADDR low = attr_value_as_address (attr);
13319 CORE_ADDR high = attr_value_as_address (attr_high);
13320
13321 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13322 high += low;
13323
13324 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13325 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13326 record_block_range (block, low, high - 1);
13327 }
13328 }
13329
13330 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13331 if (attr)
13332 {
13333 bfd *obfd = objfile->obfd;
13334 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13335 We take advantage of the fact that DW_AT_ranges does not appear
13336 in DW_TAG_compile_unit of DWO files. */
13337 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13338
13339 /* The value of the DW_AT_ranges attribute is the offset of the
13340 address range list in the .debug_ranges section. */
13341 unsigned long offset = (DW_UNSND (attr)
13342 + (need_ranges_base ? cu->ranges_base : 0));
13343 const gdb_byte *buffer;
13344
13345 /* For some target architectures, but not others, the
13346 read_address function sign-extends the addresses it returns.
13347 To recognize base address selection entries, we need a
13348 mask. */
13349 unsigned int addr_size = cu->header.addr_size;
13350 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13351
13352 /* The base address, to which the next pair is relative. Note
13353 that this 'base' is a DWARF concept: most entries in a range
13354 list are relative, to reduce the number of relocs against the
13355 debugging information. This is separate from this function's
13356 'baseaddr' argument, which GDB uses to relocate debugging
13357 information from a shared library based on the address at
13358 which the library was loaded. */
13359 CORE_ADDR base = cu->base_address;
13360 int base_known = cu->base_known;
13361
13362 dwarf2_ranges_process (offset, cu,
13363 [&] (CORE_ADDR start, CORE_ADDR end)
13364 {
13365 start += baseaddr;
13366 end += baseaddr;
13367 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
13368 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
13369 record_block_range (block, start, end - 1);
13370 });
13371 }
13372 }
13373
13374 /* Check whether the producer field indicates either of GCC < 4.6, or the
13375 Intel C/C++ compiler, and cache the result in CU. */
13376
13377 static void
13378 check_producer (struct dwarf2_cu *cu)
13379 {
13380 int major, minor;
13381
13382 if (cu->producer == NULL)
13383 {
13384 /* For unknown compilers expect their behavior is DWARF version
13385 compliant.
13386
13387 GCC started to support .debug_types sections by -gdwarf-4 since
13388 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
13389 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
13390 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
13391 interpreted incorrectly by GDB now - GCC PR debug/48229. */
13392 }
13393 else if (producer_is_gcc (cu->producer, &major, &minor))
13394 {
13395 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
13396 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
13397 }
13398 else if (producer_is_icc (cu->producer, &major, &minor))
13399 cu->producer_is_icc_lt_14 = major < 14;
13400 else
13401 {
13402 /* For other non-GCC compilers, expect their behavior is DWARF version
13403 compliant. */
13404 }
13405
13406 cu->checked_producer = 1;
13407 }
13408
13409 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
13410 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
13411 during 4.6.0 experimental. */
13412
13413 static int
13414 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
13415 {
13416 if (!cu->checked_producer)
13417 check_producer (cu);
13418
13419 return cu->producer_is_gxx_lt_4_6;
13420 }
13421
13422 /* Return the default accessibility type if it is not overriden by
13423 DW_AT_accessibility. */
13424
13425 static enum dwarf_access_attribute
13426 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
13427 {
13428 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
13429 {
13430 /* The default DWARF 2 accessibility for members is public, the default
13431 accessibility for inheritance is private. */
13432
13433 if (die->tag != DW_TAG_inheritance)
13434 return DW_ACCESS_public;
13435 else
13436 return DW_ACCESS_private;
13437 }
13438 else
13439 {
13440 /* DWARF 3+ defines the default accessibility a different way. The same
13441 rules apply now for DW_TAG_inheritance as for the members and it only
13442 depends on the container kind. */
13443
13444 if (die->parent->tag == DW_TAG_class_type)
13445 return DW_ACCESS_private;
13446 else
13447 return DW_ACCESS_public;
13448 }
13449 }
13450
13451 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
13452 offset. If the attribute was not found return 0, otherwise return
13453 1. If it was found but could not properly be handled, set *OFFSET
13454 to 0. */
13455
13456 static int
13457 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
13458 LONGEST *offset)
13459 {
13460 struct attribute *attr;
13461
13462 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
13463 if (attr != NULL)
13464 {
13465 *offset = 0;
13466
13467 /* Note that we do not check for a section offset first here.
13468 This is because DW_AT_data_member_location is new in DWARF 4,
13469 so if we see it, we can assume that a constant form is really
13470 a constant and not a section offset. */
13471 if (attr_form_is_constant (attr))
13472 *offset = dwarf2_get_attr_constant_value (attr, 0);
13473 else if (attr_form_is_section_offset (attr))
13474 dwarf2_complex_location_expr_complaint ();
13475 else if (attr_form_is_block (attr))
13476 *offset = decode_locdesc (DW_BLOCK (attr), cu);
13477 else
13478 dwarf2_complex_location_expr_complaint ();
13479
13480 return 1;
13481 }
13482
13483 return 0;
13484 }
13485
13486 /* Add an aggregate field to the field list. */
13487
13488 static void
13489 dwarf2_add_field (struct field_info *fip, struct die_info *die,
13490 struct dwarf2_cu *cu)
13491 {
13492 struct objfile *objfile = cu->objfile;
13493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13494 struct nextfield *new_field;
13495 struct attribute *attr;
13496 struct field *fp;
13497 const char *fieldname = "";
13498
13499 /* Allocate a new field list entry and link it in. */
13500 new_field = XNEW (struct nextfield);
13501 make_cleanup (xfree, new_field);
13502 memset (new_field, 0, sizeof (struct nextfield));
13503
13504 if (die->tag == DW_TAG_inheritance)
13505 {
13506 new_field->next = fip->baseclasses;
13507 fip->baseclasses = new_field;
13508 }
13509 else
13510 {
13511 new_field->next = fip->fields;
13512 fip->fields = new_field;
13513 }
13514 fip->nfields++;
13515
13516 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13517 if (attr)
13518 new_field->accessibility = DW_UNSND (attr);
13519 else
13520 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
13521 if (new_field->accessibility != DW_ACCESS_public)
13522 fip->non_public_fields = 1;
13523
13524 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13525 if (attr)
13526 new_field->virtuality = DW_UNSND (attr);
13527 else
13528 new_field->virtuality = DW_VIRTUALITY_none;
13529
13530 fp = &new_field->field;
13531
13532 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13533 {
13534 LONGEST offset;
13535
13536 /* Data member other than a C++ static data member. */
13537
13538 /* Get type of field. */
13539 fp->type = die_type (die, cu);
13540
13541 SET_FIELD_BITPOS (*fp, 0);
13542
13543 /* Get bit size of field (zero if none). */
13544 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13545 if (attr)
13546 {
13547 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13548 }
13549 else
13550 {
13551 FIELD_BITSIZE (*fp) = 0;
13552 }
13553
13554 /* Get bit offset of field. */
13555 if (handle_data_member_location (die, cu, &offset))
13556 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13557 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13558 if (attr)
13559 {
13560 if (gdbarch_bits_big_endian (gdbarch))
13561 {
13562 /* For big endian bits, the DW_AT_bit_offset gives the
13563 additional bit offset from the MSB of the containing
13564 anonymous object to the MSB of the field. We don't
13565 have to do anything special since we don't need to
13566 know the size of the anonymous object. */
13567 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13568 }
13569 else
13570 {
13571 /* For little endian bits, compute the bit offset to the
13572 MSB of the anonymous object, subtract off the number of
13573 bits from the MSB of the field to the MSB of the
13574 object, and then subtract off the number of bits of
13575 the field itself. The result is the bit offset of
13576 the LSB of the field. */
13577 int anonymous_size;
13578 int bit_offset = DW_UNSND (attr);
13579
13580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13581 if (attr)
13582 {
13583 /* The size of the anonymous object containing
13584 the bit field is explicit, so use the
13585 indicated size (in bytes). */
13586 anonymous_size = DW_UNSND (attr);
13587 }
13588 else
13589 {
13590 /* The size of the anonymous object containing
13591 the bit field must be inferred from the type
13592 attribute of the data member containing the
13593 bit field. */
13594 anonymous_size = TYPE_LENGTH (fp->type);
13595 }
13596 SET_FIELD_BITPOS (*fp,
13597 (FIELD_BITPOS (*fp)
13598 + anonymous_size * bits_per_byte
13599 - bit_offset - FIELD_BITSIZE (*fp)));
13600 }
13601 }
13602 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13603 if (attr != NULL)
13604 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13605 + dwarf2_get_attr_constant_value (attr, 0)));
13606
13607 /* Get name of field. */
13608 fieldname = dwarf2_name (die, cu);
13609 if (fieldname == NULL)
13610 fieldname = "";
13611
13612 /* The name is already allocated along with this objfile, so we don't
13613 need to duplicate it for the type. */
13614 fp->name = fieldname;
13615
13616 /* Change accessibility for artificial fields (e.g. virtual table
13617 pointer or virtual base class pointer) to private. */
13618 if (dwarf2_attr (die, DW_AT_artificial, cu))
13619 {
13620 FIELD_ARTIFICIAL (*fp) = 1;
13621 new_field->accessibility = DW_ACCESS_private;
13622 fip->non_public_fields = 1;
13623 }
13624 }
13625 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13626 {
13627 /* C++ static member. */
13628
13629 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13630 is a declaration, but all versions of G++ as of this writing
13631 (so through at least 3.2.1) incorrectly generate
13632 DW_TAG_variable tags. */
13633
13634 const char *physname;
13635
13636 /* Get name of field. */
13637 fieldname = dwarf2_name (die, cu);
13638 if (fieldname == NULL)
13639 return;
13640
13641 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13642 if (attr
13643 /* Only create a symbol if this is an external value.
13644 new_symbol checks this and puts the value in the global symbol
13645 table, which we want. If it is not external, new_symbol
13646 will try to put the value in cu->list_in_scope which is wrong. */
13647 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13648 {
13649 /* A static const member, not much different than an enum as far as
13650 we're concerned, except that we can support more types. */
13651 new_symbol (die, NULL, cu);
13652 }
13653
13654 /* Get physical name. */
13655 physname = dwarf2_physname (fieldname, die, cu);
13656
13657 /* The name is already allocated along with this objfile, so we don't
13658 need to duplicate it for the type. */
13659 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13660 FIELD_TYPE (*fp) = die_type (die, cu);
13661 FIELD_NAME (*fp) = fieldname;
13662 }
13663 else if (die->tag == DW_TAG_inheritance)
13664 {
13665 LONGEST offset;
13666
13667 /* C++ base class field. */
13668 if (handle_data_member_location (die, cu, &offset))
13669 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13670 FIELD_BITSIZE (*fp) = 0;
13671 FIELD_TYPE (*fp) = die_type (die, cu);
13672 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13673 fip->nbaseclasses++;
13674 }
13675 }
13676
13677 /* Add a typedef defined in the scope of the FIP's class. */
13678
13679 static void
13680 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13681 struct dwarf2_cu *cu)
13682 {
13683 struct typedef_field_list *new_field;
13684 struct typedef_field *fp;
13685
13686 /* Allocate a new field list entry and link it in. */
13687 new_field = XCNEW (struct typedef_field_list);
13688 make_cleanup (xfree, new_field);
13689
13690 gdb_assert (die->tag == DW_TAG_typedef);
13691
13692 fp = &new_field->field;
13693
13694 /* Get name of field. */
13695 fp->name = dwarf2_name (die, cu);
13696 if (fp->name == NULL)
13697 return;
13698
13699 fp->type = read_type_die (die, cu);
13700
13701 /* Save accessibility. */
13702 enum dwarf_access_attribute accessibility;
13703 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13704 if (attr != NULL)
13705 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13706 else
13707 accessibility = dwarf2_default_access_attribute (die, cu);
13708 switch (accessibility)
13709 {
13710 case DW_ACCESS_public:
13711 /* The assumed value if neither private nor protected. */
13712 break;
13713 case DW_ACCESS_private:
13714 fp->is_private = 1;
13715 break;
13716 case DW_ACCESS_protected:
13717 fp->is_protected = 1;
13718 break;
13719 default:
13720 complaint (&symfile_complaints,
13721 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
13722 }
13723
13724 new_field->next = fip->typedef_field_list;
13725 fip->typedef_field_list = new_field;
13726 fip->typedef_field_list_count++;
13727 }
13728
13729 /* Create the vector of fields, and attach it to the type. */
13730
13731 static void
13732 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13733 struct dwarf2_cu *cu)
13734 {
13735 int nfields = fip->nfields;
13736
13737 /* Record the field count, allocate space for the array of fields,
13738 and create blank accessibility bitfields if necessary. */
13739 TYPE_NFIELDS (type) = nfields;
13740 TYPE_FIELDS (type) = (struct field *)
13741 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13742 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13743
13744 if (fip->non_public_fields && cu->language != language_ada)
13745 {
13746 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13747
13748 TYPE_FIELD_PRIVATE_BITS (type) =
13749 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13750 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13751
13752 TYPE_FIELD_PROTECTED_BITS (type) =
13753 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13754 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13755
13756 TYPE_FIELD_IGNORE_BITS (type) =
13757 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13758 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13759 }
13760
13761 /* If the type has baseclasses, allocate and clear a bit vector for
13762 TYPE_FIELD_VIRTUAL_BITS. */
13763 if (fip->nbaseclasses && cu->language != language_ada)
13764 {
13765 int num_bytes = B_BYTES (fip->nbaseclasses);
13766 unsigned char *pointer;
13767
13768 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13769 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13770 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13771 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13772 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13773 }
13774
13775 /* Copy the saved-up fields into the field vector. Start from the head of
13776 the list, adding to the tail of the field array, so that they end up in
13777 the same order in the array in which they were added to the list. */
13778 while (nfields-- > 0)
13779 {
13780 struct nextfield *fieldp;
13781
13782 if (fip->fields)
13783 {
13784 fieldp = fip->fields;
13785 fip->fields = fieldp->next;
13786 }
13787 else
13788 {
13789 fieldp = fip->baseclasses;
13790 fip->baseclasses = fieldp->next;
13791 }
13792
13793 TYPE_FIELD (type, nfields) = fieldp->field;
13794 switch (fieldp->accessibility)
13795 {
13796 case DW_ACCESS_private:
13797 if (cu->language != language_ada)
13798 SET_TYPE_FIELD_PRIVATE (type, nfields);
13799 break;
13800
13801 case DW_ACCESS_protected:
13802 if (cu->language != language_ada)
13803 SET_TYPE_FIELD_PROTECTED (type, nfields);
13804 break;
13805
13806 case DW_ACCESS_public:
13807 break;
13808
13809 default:
13810 /* Unknown accessibility. Complain and treat it as public. */
13811 {
13812 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13813 fieldp->accessibility);
13814 }
13815 break;
13816 }
13817 if (nfields < fip->nbaseclasses)
13818 {
13819 switch (fieldp->virtuality)
13820 {
13821 case DW_VIRTUALITY_virtual:
13822 case DW_VIRTUALITY_pure_virtual:
13823 if (cu->language == language_ada)
13824 error (_("unexpected virtuality in component of Ada type"));
13825 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13826 break;
13827 }
13828 }
13829 }
13830 }
13831
13832 /* Return true if this member function is a constructor, false
13833 otherwise. */
13834
13835 static int
13836 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13837 {
13838 const char *fieldname;
13839 const char *type_name;
13840 int len;
13841
13842 if (die->parent == NULL)
13843 return 0;
13844
13845 if (die->parent->tag != DW_TAG_structure_type
13846 && die->parent->tag != DW_TAG_union_type
13847 && die->parent->tag != DW_TAG_class_type)
13848 return 0;
13849
13850 fieldname = dwarf2_name (die, cu);
13851 type_name = dwarf2_name (die->parent, cu);
13852 if (fieldname == NULL || type_name == NULL)
13853 return 0;
13854
13855 len = strlen (fieldname);
13856 return (strncmp (fieldname, type_name, len) == 0
13857 && (type_name[len] == '\0' || type_name[len] == '<'));
13858 }
13859
13860 /* Add a member function to the proper fieldlist. */
13861
13862 static void
13863 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13864 struct type *type, struct dwarf2_cu *cu)
13865 {
13866 struct objfile *objfile = cu->objfile;
13867 struct attribute *attr;
13868 struct fnfieldlist *flp;
13869 int i;
13870 struct fn_field *fnp;
13871 const char *fieldname;
13872 struct nextfnfield *new_fnfield;
13873 struct type *this_type;
13874 enum dwarf_access_attribute accessibility;
13875
13876 if (cu->language == language_ada)
13877 error (_("unexpected member function in Ada type"));
13878
13879 /* Get name of member function. */
13880 fieldname = dwarf2_name (die, cu);
13881 if (fieldname == NULL)
13882 return;
13883
13884 /* Look up member function name in fieldlist. */
13885 for (i = 0; i < fip->nfnfields; i++)
13886 {
13887 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13888 break;
13889 }
13890
13891 /* Create new list element if necessary. */
13892 if (i < fip->nfnfields)
13893 flp = &fip->fnfieldlists[i];
13894 else
13895 {
13896 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13897 {
13898 fip->fnfieldlists = (struct fnfieldlist *)
13899 xrealloc (fip->fnfieldlists,
13900 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13901 * sizeof (struct fnfieldlist));
13902 if (fip->nfnfields == 0)
13903 make_cleanup (free_current_contents, &fip->fnfieldlists);
13904 }
13905 flp = &fip->fnfieldlists[fip->nfnfields];
13906 flp->name = fieldname;
13907 flp->length = 0;
13908 flp->head = NULL;
13909 i = fip->nfnfields++;
13910 }
13911
13912 /* Create a new member function field and chain it to the field list
13913 entry. */
13914 new_fnfield = XNEW (struct nextfnfield);
13915 make_cleanup (xfree, new_fnfield);
13916 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13917 new_fnfield->next = flp->head;
13918 flp->head = new_fnfield;
13919 flp->length++;
13920
13921 /* Fill in the member function field info. */
13922 fnp = &new_fnfield->fnfield;
13923
13924 /* Delay processing of the physname until later. */
13925 if (cu->language == language_cplus)
13926 {
13927 add_to_method_list (type, i, flp->length - 1, fieldname,
13928 die, cu);
13929 }
13930 else
13931 {
13932 const char *physname = dwarf2_physname (fieldname, die, cu);
13933 fnp->physname = physname ? physname : "";
13934 }
13935
13936 fnp->type = alloc_type (objfile);
13937 this_type = read_type_die (die, cu);
13938 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13939 {
13940 int nparams = TYPE_NFIELDS (this_type);
13941
13942 /* TYPE is the domain of this method, and THIS_TYPE is the type
13943 of the method itself (TYPE_CODE_METHOD). */
13944 smash_to_method_type (fnp->type, type,
13945 TYPE_TARGET_TYPE (this_type),
13946 TYPE_FIELDS (this_type),
13947 TYPE_NFIELDS (this_type),
13948 TYPE_VARARGS (this_type));
13949
13950 /* Handle static member functions.
13951 Dwarf2 has no clean way to discern C++ static and non-static
13952 member functions. G++ helps GDB by marking the first
13953 parameter for non-static member functions (which is the this
13954 pointer) as artificial. We obtain this information from
13955 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13956 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13957 fnp->voffset = VOFFSET_STATIC;
13958 }
13959 else
13960 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13961 dwarf2_full_name (fieldname, die, cu));
13962
13963 /* Get fcontext from DW_AT_containing_type if present. */
13964 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13965 fnp->fcontext = die_containing_type (die, cu);
13966
13967 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13968 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13969
13970 /* Get accessibility. */
13971 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13972 if (attr)
13973 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13974 else
13975 accessibility = dwarf2_default_access_attribute (die, cu);
13976 switch (accessibility)
13977 {
13978 case DW_ACCESS_private:
13979 fnp->is_private = 1;
13980 break;
13981 case DW_ACCESS_protected:
13982 fnp->is_protected = 1;
13983 break;
13984 }
13985
13986 /* Check for artificial methods. */
13987 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13988 if (attr && DW_UNSND (attr) != 0)
13989 fnp->is_artificial = 1;
13990
13991 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13992
13993 /* Get index in virtual function table if it is a virtual member
13994 function. For older versions of GCC, this is an offset in the
13995 appropriate virtual table, as specified by DW_AT_containing_type.
13996 For everyone else, it is an expression to be evaluated relative
13997 to the object address. */
13998
13999 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14000 if (attr)
14001 {
14002 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
14003 {
14004 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14005 {
14006 /* Old-style GCC. */
14007 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14008 }
14009 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14010 || (DW_BLOCK (attr)->size > 1
14011 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14012 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14013 {
14014 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14015 if ((fnp->voffset % cu->header.addr_size) != 0)
14016 dwarf2_complex_location_expr_complaint ();
14017 else
14018 fnp->voffset /= cu->header.addr_size;
14019 fnp->voffset += 2;
14020 }
14021 else
14022 dwarf2_complex_location_expr_complaint ();
14023
14024 if (!fnp->fcontext)
14025 {
14026 /* If there is no `this' field and no DW_AT_containing_type,
14027 we cannot actually find a base class context for the
14028 vtable! */
14029 if (TYPE_NFIELDS (this_type) == 0
14030 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14031 {
14032 complaint (&symfile_complaints,
14033 _("cannot determine context for virtual member "
14034 "function \"%s\" (offset %d)"),
14035 fieldname, to_underlying (die->sect_off));
14036 }
14037 else
14038 {
14039 fnp->fcontext
14040 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14041 }
14042 }
14043 }
14044 else if (attr_form_is_section_offset (attr))
14045 {
14046 dwarf2_complex_location_expr_complaint ();
14047 }
14048 else
14049 {
14050 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14051 fieldname);
14052 }
14053 }
14054 else
14055 {
14056 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14057 if (attr && DW_UNSND (attr))
14058 {
14059 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14060 complaint (&symfile_complaints,
14061 _("Member function \"%s\" (offset %d) is virtual "
14062 "but the vtable offset is not specified"),
14063 fieldname, to_underlying (die->sect_off));
14064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14065 TYPE_CPLUS_DYNAMIC (type) = 1;
14066 }
14067 }
14068 }
14069
14070 /* Create the vector of member function fields, and attach it to the type. */
14071
14072 static void
14073 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14074 struct dwarf2_cu *cu)
14075 {
14076 struct fnfieldlist *flp;
14077 int i;
14078
14079 if (cu->language == language_ada)
14080 error (_("unexpected member functions in Ada type"));
14081
14082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14083 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14084 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
14085
14086 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
14087 {
14088 struct nextfnfield *nfp = flp->head;
14089 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14090 int k;
14091
14092 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
14093 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
14094 fn_flp->fn_fields = (struct fn_field *)
14095 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
14096 for (k = flp->length; (k--, nfp); nfp = nfp->next)
14097 fn_flp->fn_fields[k] = nfp->fnfield;
14098 }
14099
14100 TYPE_NFN_FIELDS (type) = fip->nfnfields;
14101 }
14102
14103 /* Returns non-zero if NAME is the name of a vtable member in CU's
14104 language, zero otherwise. */
14105 static int
14106 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14107 {
14108 static const char vptr[] = "_vptr";
14109 static const char vtable[] = "vtable";
14110
14111 /* Look for the C++ form of the vtable. */
14112 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14113 return 1;
14114
14115 return 0;
14116 }
14117
14118 /* GCC outputs unnamed structures that are really pointers to member
14119 functions, with the ABI-specified layout. If TYPE describes
14120 such a structure, smash it into a member function type.
14121
14122 GCC shouldn't do this; it should just output pointer to member DIEs.
14123 This is GCC PR debug/28767. */
14124
14125 static void
14126 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14127 {
14128 struct type *pfn_type, *self_type, *new_type;
14129
14130 /* Check for a structure with no name and two children. */
14131 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14132 return;
14133
14134 /* Check for __pfn and __delta members. */
14135 if (TYPE_FIELD_NAME (type, 0) == NULL
14136 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14137 || TYPE_FIELD_NAME (type, 1) == NULL
14138 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14139 return;
14140
14141 /* Find the type of the method. */
14142 pfn_type = TYPE_FIELD_TYPE (type, 0);
14143 if (pfn_type == NULL
14144 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14145 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14146 return;
14147
14148 /* Look for the "this" argument. */
14149 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14150 if (TYPE_NFIELDS (pfn_type) == 0
14151 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14152 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14153 return;
14154
14155 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14156 new_type = alloc_type (objfile);
14157 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14158 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14159 TYPE_VARARGS (pfn_type));
14160 smash_to_methodptr_type (type, new_type);
14161 }
14162
14163
14164 /* Called when we find the DIE that starts a structure or union scope
14165 (definition) to create a type for the structure or union. Fill in
14166 the type's name and general properties; the members will not be
14167 processed until process_structure_scope. A symbol table entry for
14168 the type will also not be done until process_structure_scope (assuming
14169 the type has a name).
14170
14171 NOTE: we need to call these functions regardless of whether or not the
14172 DIE has a DW_AT_name attribute, since it might be an anonymous
14173 structure or union. This gets the type entered into our set of
14174 user defined types. */
14175
14176 static struct type *
14177 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
14178 {
14179 struct objfile *objfile = cu->objfile;
14180 struct type *type;
14181 struct attribute *attr;
14182 const char *name;
14183
14184 /* If the definition of this type lives in .debug_types, read that type.
14185 Don't follow DW_AT_specification though, that will take us back up
14186 the chain and we want to go down. */
14187 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14188 if (attr)
14189 {
14190 type = get_DW_AT_signature_type (die, attr, cu);
14191
14192 /* The type's CU may not be the same as CU.
14193 Ensure TYPE is recorded with CU in die_type_hash. */
14194 return set_die_type (die, type, cu);
14195 }
14196
14197 type = alloc_type (objfile);
14198 INIT_CPLUS_SPECIFIC (type);
14199
14200 name = dwarf2_name (die, cu);
14201 if (name != NULL)
14202 {
14203 if (cu->language == language_cplus
14204 || cu->language == language_d
14205 || cu->language == language_rust)
14206 {
14207 const char *full_name = dwarf2_full_name (name, die, cu);
14208
14209 /* dwarf2_full_name might have already finished building the DIE's
14210 type. If so, there is no need to continue. */
14211 if (get_die_type (die, cu) != NULL)
14212 return get_die_type (die, cu);
14213
14214 TYPE_TAG_NAME (type) = full_name;
14215 if (die->tag == DW_TAG_structure_type
14216 || die->tag == DW_TAG_class_type)
14217 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14218 }
14219 else
14220 {
14221 /* The name is already allocated along with this objfile, so
14222 we don't need to duplicate it for the type. */
14223 TYPE_TAG_NAME (type) = name;
14224 if (die->tag == DW_TAG_class_type)
14225 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14226 }
14227 }
14228
14229 if (die->tag == DW_TAG_structure_type)
14230 {
14231 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14232 }
14233 else if (die->tag == DW_TAG_union_type)
14234 {
14235 TYPE_CODE (type) = TYPE_CODE_UNION;
14236 }
14237 else
14238 {
14239 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14240 }
14241
14242 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
14243 TYPE_DECLARED_CLASS (type) = 1;
14244
14245 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14246 if (attr)
14247 {
14248 if (attr_form_is_constant (attr))
14249 TYPE_LENGTH (type) = DW_UNSND (attr);
14250 else
14251 {
14252 /* For the moment, dynamic type sizes are not supported
14253 by GDB's struct type. The actual size is determined
14254 on-demand when resolving the type of a given object,
14255 so set the type's length to zero for now. Otherwise,
14256 we record an expression as the length, and that expression
14257 could lead to a very large value, which could eventually
14258 lead to us trying to allocate that much memory when creating
14259 a value of that type. */
14260 TYPE_LENGTH (type) = 0;
14261 }
14262 }
14263 else
14264 {
14265 TYPE_LENGTH (type) = 0;
14266 }
14267
14268 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
14269 {
14270 /* ICC<14 does not output the required DW_AT_declaration on
14271 incomplete types, but gives them a size of zero. */
14272 TYPE_STUB (type) = 1;
14273 }
14274 else
14275 TYPE_STUB_SUPPORTED (type) = 1;
14276
14277 if (die_is_declaration (die, cu))
14278 TYPE_STUB (type) = 1;
14279 else if (attr == NULL && die->child == NULL
14280 && producer_is_realview (cu->producer))
14281 /* RealView does not output the required DW_AT_declaration
14282 on incomplete types. */
14283 TYPE_STUB (type) = 1;
14284
14285 /* We need to add the type field to the die immediately so we don't
14286 infinitely recurse when dealing with pointers to the structure
14287 type within the structure itself. */
14288 set_die_type (die, type, cu);
14289
14290 /* set_die_type should be already done. */
14291 set_descriptive_type (type, die, cu);
14292
14293 return type;
14294 }
14295
14296 /* Finish creating a structure or union type, including filling in
14297 its members and creating a symbol for it. */
14298
14299 static void
14300 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
14301 {
14302 struct objfile *objfile = cu->objfile;
14303 struct die_info *child_die;
14304 struct type *type;
14305
14306 type = get_die_type (die, cu);
14307 if (type == NULL)
14308 type = read_structure_type (die, cu);
14309
14310 if (die->child != NULL && ! die_is_declaration (die, cu))
14311 {
14312 struct field_info fi;
14313 std::vector<struct symbol *> template_args;
14314 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
14315
14316 memset (&fi, 0, sizeof (struct field_info));
14317
14318 child_die = die->child;
14319
14320 while (child_die && child_die->tag)
14321 {
14322 if (child_die->tag == DW_TAG_member
14323 || child_die->tag == DW_TAG_variable)
14324 {
14325 /* NOTE: carlton/2002-11-05: A C++ static data member
14326 should be a DW_TAG_member that is a declaration, but
14327 all versions of G++ as of this writing (so through at
14328 least 3.2.1) incorrectly generate DW_TAG_variable
14329 tags for them instead. */
14330 dwarf2_add_field (&fi, child_die, cu);
14331 }
14332 else if (child_die->tag == DW_TAG_subprogram)
14333 {
14334 /* Rust doesn't have member functions in the C++ sense.
14335 However, it does emit ordinary functions as children
14336 of a struct DIE. */
14337 if (cu->language == language_rust)
14338 read_func_scope (child_die, cu);
14339 else
14340 {
14341 /* C++ member function. */
14342 dwarf2_add_member_fn (&fi, child_die, type, cu);
14343 }
14344 }
14345 else if (child_die->tag == DW_TAG_inheritance)
14346 {
14347 /* C++ base class field. */
14348 dwarf2_add_field (&fi, child_die, cu);
14349 }
14350 else if (child_die->tag == DW_TAG_typedef)
14351 dwarf2_add_typedef (&fi, child_die, cu);
14352 else if (child_die->tag == DW_TAG_template_type_param
14353 || child_die->tag == DW_TAG_template_value_param)
14354 {
14355 struct symbol *arg = new_symbol (child_die, NULL, cu);
14356
14357 if (arg != NULL)
14358 template_args.push_back (arg);
14359 }
14360
14361 child_die = sibling_die (child_die);
14362 }
14363
14364 /* Attach template arguments to type. */
14365 if (!template_args.empty ())
14366 {
14367 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14368 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
14369 TYPE_TEMPLATE_ARGUMENTS (type)
14370 = XOBNEWVEC (&objfile->objfile_obstack,
14371 struct symbol *,
14372 TYPE_N_TEMPLATE_ARGUMENTS (type));
14373 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
14374 template_args.data (),
14375 (TYPE_N_TEMPLATE_ARGUMENTS (type)
14376 * sizeof (struct symbol *)));
14377 }
14378
14379 /* Attach fields and member functions to the type. */
14380 if (fi.nfields)
14381 dwarf2_attach_fields_to_type (&fi, type, cu);
14382 if (fi.nfnfields)
14383 {
14384 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
14385
14386 /* Get the type which refers to the base class (possibly this
14387 class itself) which contains the vtable pointer for the current
14388 class from the DW_AT_containing_type attribute. This use of
14389 DW_AT_containing_type is a GNU extension. */
14390
14391 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14392 {
14393 struct type *t = die_containing_type (die, cu);
14394
14395 set_type_vptr_basetype (type, t);
14396 if (type == t)
14397 {
14398 int i;
14399
14400 /* Our own class provides vtbl ptr. */
14401 for (i = TYPE_NFIELDS (t) - 1;
14402 i >= TYPE_N_BASECLASSES (t);
14403 --i)
14404 {
14405 const char *fieldname = TYPE_FIELD_NAME (t, i);
14406
14407 if (is_vtable_name (fieldname, cu))
14408 {
14409 set_type_vptr_fieldno (type, i);
14410 break;
14411 }
14412 }
14413
14414 /* Complain if virtual function table field not found. */
14415 if (i < TYPE_N_BASECLASSES (t))
14416 complaint (&symfile_complaints,
14417 _("virtual function table pointer "
14418 "not found when defining class '%s'"),
14419 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
14420 "");
14421 }
14422 else
14423 {
14424 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
14425 }
14426 }
14427 else if (cu->producer
14428 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
14429 {
14430 /* The IBM XLC compiler does not provide direct indication
14431 of the containing type, but the vtable pointer is
14432 always named __vfp. */
14433
14434 int i;
14435
14436 for (i = TYPE_NFIELDS (type) - 1;
14437 i >= TYPE_N_BASECLASSES (type);
14438 --i)
14439 {
14440 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
14441 {
14442 set_type_vptr_fieldno (type, i);
14443 set_type_vptr_basetype (type, type);
14444 break;
14445 }
14446 }
14447 }
14448 }
14449
14450 /* Copy fi.typedef_field_list linked list elements content into the
14451 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
14452 if (fi.typedef_field_list)
14453 {
14454 int i = fi.typedef_field_list_count;
14455
14456 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14457 TYPE_TYPEDEF_FIELD_ARRAY (type)
14458 = ((struct typedef_field *)
14459 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
14460 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
14461
14462 /* Reverse the list order to keep the debug info elements order. */
14463 while (--i >= 0)
14464 {
14465 struct typedef_field *dest, *src;
14466
14467 dest = &TYPE_TYPEDEF_FIELD (type, i);
14468 src = &fi.typedef_field_list->field;
14469 fi.typedef_field_list = fi.typedef_field_list->next;
14470 *dest = *src;
14471 }
14472 }
14473
14474 do_cleanups (back_to);
14475 }
14476
14477 quirk_gcc_member_function_pointer (type, objfile);
14478
14479 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
14480 snapshots) has been known to create a die giving a declaration
14481 for a class that has, as a child, a die giving a definition for a
14482 nested class. So we have to process our children even if the
14483 current die is a declaration. Normally, of course, a declaration
14484 won't have any children at all. */
14485
14486 child_die = die->child;
14487
14488 while (child_die != NULL && child_die->tag)
14489 {
14490 if (child_die->tag == DW_TAG_member
14491 || child_die->tag == DW_TAG_variable
14492 || child_die->tag == DW_TAG_inheritance
14493 || child_die->tag == DW_TAG_template_value_param
14494 || child_die->tag == DW_TAG_template_type_param)
14495 {
14496 /* Do nothing. */
14497 }
14498 else
14499 process_die (child_die, cu);
14500
14501 child_die = sibling_die (child_die);
14502 }
14503
14504 /* Do not consider external references. According to the DWARF standard,
14505 these DIEs are identified by the fact that they have no byte_size
14506 attribute, and a declaration attribute. */
14507 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
14508 || !die_is_declaration (die, cu))
14509 new_symbol (die, type, cu);
14510 }
14511
14512 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
14513 update TYPE using some information only available in DIE's children. */
14514
14515 static void
14516 update_enumeration_type_from_children (struct die_info *die,
14517 struct type *type,
14518 struct dwarf2_cu *cu)
14519 {
14520 struct die_info *child_die;
14521 int unsigned_enum = 1;
14522 int flag_enum = 1;
14523 ULONGEST mask = 0;
14524
14525 auto_obstack obstack;
14526
14527 for (child_die = die->child;
14528 child_die != NULL && child_die->tag;
14529 child_die = sibling_die (child_die))
14530 {
14531 struct attribute *attr;
14532 LONGEST value;
14533 const gdb_byte *bytes;
14534 struct dwarf2_locexpr_baton *baton;
14535 const char *name;
14536
14537 if (child_die->tag != DW_TAG_enumerator)
14538 continue;
14539
14540 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
14541 if (attr == NULL)
14542 continue;
14543
14544 name = dwarf2_name (child_die, cu);
14545 if (name == NULL)
14546 name = "<anonymous enumerator>";
14547
14548 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14549 &value, &bytes, &baton);
14550 if (value < 0)
14551 {
14552 unsigned_enum = 0;
14553 flag_enum = 0;
14554 }
14555 else if ((mask & value) != 0)
14556 flag_enum = 0;
14557 else
14558 mask |= value;
14559
14560 /* If we already know that the enum type is neither unsigned, nor
14561 a flag type, no need to look at the rest of the enumerates. */
14562 if (!unsigned_enum && !flag_enum)
14563 break;
14564 }
14565
14566 if (unsigned_enum)
14567 TYPE_UNSIGNED (type) = 1;
14568 if (flag_enum)
14569 TYPE_FLAG_ENUM (type) = 1;
14570 }
14571
14572 /* Given a DW_AT_enumeration_type die, set its type. We do not
14573 complete the type's fields yet, or create any symbols. */
14574
14575 static struct type *
14576 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14577 {
14578 struct objfile *objfile = cu->objfile;
14579 struct type *type;
14580 struct attribute *attr;
14581 const char *name;
14582
14583 /* If the definition of this type lives in .debug_types, read that type.
14584 Don't follow DW_AT_specification though, that will take us back up
14585 the chain and we want to go down. */
14586 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14587 if (attr)
14588 {
14589 type = get_DW_AT_signature_type (die, attr, cu);
14590
14591 /* The type's CU may not be the same as CU.
14592 Ensure TYPE is recorded with CU in die_type_hash. */
14593 return set_die_type (die, type, cu);
14594 }
14595
14596 type = alloc_type (objfile);
14597
14598 TYPE_CODE (type) = TYPE_CODE_ENUM;
14599 name = dwarf2_full_name (NULL, die, cu);
14600 if (name != NULL)
14601 TYPE_TAG_NAME (type) = name;
14602
14603 attr = dwarf2_attr (die, DW_AT_type, cu);
14604 if (attr != NULL)
14605 {
14606 struct type *underlying_type = die_type (die, cu);
14607
14608 TYPE_TARGET_TYPE (type) = underlying_type;
14609 }
14610
14611 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14612 if (attr)
14613 {
14614 TYPE_LENGTH (type) = DW_UNSND (attr);
14615 }
14616 else
14617 {
14618 TYPE_LENGTH (type) = 0;
14619 }
14620
14621 /* The enumeration DIE can be incomplete. In Ada, any type can be
14622 declared as private in the package spec, and then defined only
14623 inside the package body. Such types are known as Taft Amendment
14624 Types. When another package uses such a type, an incomplete DIE
14625 may be generated by the compiler. */
14626 if (die_is_declaration (die, cu))
14627 TYPE_STUB (type) = 1;
14628
14629 /* Finish the creation of this type by using the enum's children.
14630 We must call this even when the underlying type has been provided
14631 so that we can determine if we're looking at a "flag" enum. */
14632 update_enumeration_type_from_children (die, type, cu);
14633
14634 /* If this type has an underlying type that is not a stub, then we
14635 may use its attributes. We always use the "unsigned" attribute
14636 in this situation, because ordinarily we guess whether the type
14637 is unsigned -- but the guess can be wrong and the underlying type
14638 can tell us the reality. However, we defer to a local size
14639 attribute if one exists, because this lets the compiler override
14640 the underlying type if needed. */
14641 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14642 {
14643 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14644 if (TYPE_LENGTH (type) == 0)
14645 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14646 }
14647
14648 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14649
14650 return set_die_type (die, type, cu);
14651 }
14652
14653 /* Given a pointer to a die which begins an enumeration, process all
14654 the dies that define the members of the enumeration, and create the
14655 symbol for the enumeration type.
14656
14657 NOTE: We reverse the order of the element list. */
14658
14659 static void
14660 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14661 {
14662 struct type *this_type;
14663
14664 this_type = get_die_type (die, cu);
14665 if (this_type == NULL)
14666 this_type = read_enumeration_type (die, cu);
14667
14668 if (die->child != NULL)
14669 {
14670 struct die_info *child_die;
14671 struct symbol *sym;
14672 struct field *fields = NULL;
14673 int num_fields = 0;
14674 const char *name;
14675
14676 child_die = die->child;
14677 while (child_die && child_die->tag)
14678 {
14679 if (child_die->tag != DW_TAG_enumerator)
14680 {
14681 process_die (child_die, cu);
14682 }
14683 else
14684 {
14685 name = dwarf2_name (child_die, cu);
14686 if (name)
14687 {
14688 sym = new_symbol (child_die, this_type, cu);
14689
14690 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14691 {
14692 fields = (struct field *)
14693 xrealloc (fields,
14694 (num_fields + DW_FIELD_ALLOC_CHUNK)
14695 * sizeof (struct field));
14696 }
14697
14698 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14699 FIELD_TYPE (fields[num_fields]) = NULL;
14700 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14701 FIELD_BITSIZE (fields[num_fields]) = 0;
14702
14703 num_fields++;
14704 }
14705 }
14706
14707 child_die = sibling_die (child_die);
14708 }
14709
14710 if (num_fields)
14711 {
14712 TYPE_NFIELDS (this_type) = num_fields;
14713 TYPE_FIELDS (this_type) = (struct field *)
14714 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14715 memcpy (TYPE_FIELDS (this_type), fields,
14716 sizeof (struct field) * num_fields);
14717 xfree (fields);
14718 }
14719 }
14720
14721 /* If we are reading an enum from a .debug_types unit, and the enum
14722 is a declaration, and the enum is not the signatured type in the
14723 unit, then we do not want to add a symbol for it. Adding a
14724 symbol would in some cases obscure the true definition of the
14725 enum, giving users an incomplete type when the definition is
14726 actually available. Note that we do not want to do this for all
14727 enums which are just declarations, because C++0x allows forward
14728 enum declarations. */
14729 if (cu->per_cu->is_debug_types
14730 && die_is_declaration (die, cu))
14731 {
14732 struct signatured_type *sig_type;
14733
14734 sig_type = (struct signatured_type *) cu->per_cu;
14735 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14736 if (sig_type->type_offset_in_section != die->sect_off)
14737 return;
14738 }
14739
14740 new_symbol (die, this_type, cu);
14741 }
14742
14743 /* Extract all information from a DW_TAG_array_type DIE and put it in
14744 the DIE's type field. For now, this only handles one dimensional
14745 arrays. */
14746
14747 static struct type *
14748 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14749 {
14750 struct objfile *objfile = cu->objfile;
14751 struct die_info *child_die;
14752 struct type *type;
14753 struct type *element_type, *range_type, *index_type;
14754 struct attribute *attr;
14755 const char *name;
14756 unsigned int bit_stride = 0;
14757
14758 element_type = die_type (die, cu);
14759
14760 /* The die_type call above may have already set the type for this DIE. */
14761 type = get_die_type (die, cu);
14762 if (type)
14763 return type;
14764
14765 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14766 if (attr != NULL)
14767 bit_stride = DW_UNSND (attr) * 8;
14768
14769 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14770 if (attr != NULL)
14771 bit_stride = DW_UNSND (attr);
14772
14773 /* Irix 6.2 native cc creates array types without children for
14774 arrays with unspecified length. */
14775 if (die->child == NULL)
14776 {
14777 index_type = objfile_type (objfile)->builtin_int;
14778 range_type = create_static_range_type (NULL, index_type, 0, -1);
14779 type = create_array_type_with_stride (NULL, element_type, range_type,
14780 bit_stride);
14781 return set_die_type (die, type, cu);
14782 }
14783
14784 std::vector<struct type *> range_types;
14785 child_die = die->child;
14786 while (child_die && child_die->tag)
14787 {
14788 if (child_die->tag == DW_TAG_subrange_type)
14789 {
14790 struct type *child_type = read_type_die (child_die, cu);
14791
14792 if (child_type != NULL)
14793 {
14794 /* The range type was succesfully read. Save it for the
14795 array type creation. */
14796 range_types.push_back (child_type);
14797 }
14798 }
14799 child_die = sibling_die (child_die);
14800 }
14801
14802 /* Dwarf2 dimensions are output from left to right, create the
14803 necessary array types in backwards order. */
14804
14805 type = element_type;
14806
14807 if (read_array_order (die, cu) == DW_ORD_col_major)
14808 {
14809 int i = 0;
14810
14811 while (i < range_types.size ())
14812 type = create_array_type_with_stride (NULL, type, range_types[i++],
14813 bit_stride);
14814 }
14815 else
14816 {
14817 size_t ndim = range_types.size ();
14818 while (ndim-- > 0)
14819 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14820 bit_stride);
14821 }
14822
14823 /* Understand Dwarf2 support for vector types (like they occur on
14824 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14825 array type. This is not part of the Dwarf2/3 standard yet, but a
14826 custom vendor extension. The main difference between a regular
14827 array and the vector variant is that vectors are passed by value
14828 to functions. */
14829 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14830 if (attr)
14831 make_vector_type (type);
14832
14833 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14834 implementation may choose to implement triple vectors using this
14835 attribute. */
14836 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14837 if (attr)
14838 {
14839 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14840 TYPE_LENGTH (type) = DW_UNSND (attr);
14841 else
14842 complaint (&symfile_complaints,
14843 _("DW_AT_byte_size for array type smaller "
14844 "than the total size of elements"));
14845 }
14846
14847 name = dwarf2_name (die, cu);
14848 if (name)
14849 TYPE_NAME (type) = name;
14850
14851 /* Install the type in the die. */
14852 set_die_type (die, type, cu);
14853
14854 /* set_die_type should be already done. */
14855 set_descriptive_type (type, die, cu);
14856
14857 return type;
14858 }
14859
14860 static enum dwarf_array_dim_ordering
14861 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14862 {
14863 struct attribute *attr;
14864
14865 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14866
14867 if (attr)
14868 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14869
14870 /* GNU F77 is a special case, as at 08/2004 array type info is the
14871 opposite order to the dwarf2 specification, but data is still
14872 laid out as per normal fortran.
14873
14874 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14875 version checking. */
14876
14877 if (cu->language == language_fortran
14878 && cu->producer && strstr (cu->producer, "GNU F77"))
14879 {
14880 return DW_ORD_row_major;
14881 }
14882
14883 switch (cu->language_defn->la_array_ordering)
14884 {
14885 case array_column_major:
14886 return DW_ORD_col_major;
14887 case array_row_major:
14888 default:
14889 return DW_ORD_row_major;
14890 };
14891 }
14892
14893 /* Extract all information from a DW_TAG_set_type DIE and put it in
14894 the DIE's type field. */
14895
14896 static struct type *
14897 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14898 {
14899 struct type *domain_type, *set_type;
14900 struct attribute *attr;
14901
14902 domain_type = die_type (die, cu);
14903
14904 /* The die_type call above may have already set the type for this DIE. */
14905 set_type = get_die_type (die, cu);
14906 if (set_type)
14907 return set_type;
14908
14909 set_type = create_set_type (NULL, domain_type);
14910
14911 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14912 if (attr)
14913 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14914
14915 return set_die_type (die, set_type, cu);
14916 }
14917
14918 /* A helper for read_common_block that creates a locexpr baton.
14919 SYM is the symbol which we are marking as computed.
14920 COMMON_DIE is the DIE for the common block.
14921 COMMON_LOC is the location expression attribute for the common
14922 block itself.
14923 MEMBER_LOC is the location expression attribute for the particular
14924 member of the common block that we are processing.
14925 CU is the CU from which the above come. */
14926
14927 static void
14928 mark_common_block_symbol_computed (struct symbol *sym,
14929 struct die_info *common_die,
14930 struct attribute *common_loc,
14931 struct attribute *member_loc,
14932 struct dwarf2_cu *cu)
14933 {
14934 struct objfile *objfile = dwarf2_per_objfile->objfile;
14935 struct dwarf2_locexpr_baton *baton;
14936 gdb_byte *ptr;
14937 unsigned int cu_off;
14938 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14939 LONGEST offset = 0;
14940
14941 gdb_assert (common_loc && member_loc);
14942 gdb_assert (attr_form_is_block (common_loc));
14943 gdb_assert (attr_form_is_block (member_loc)
14944 || attr_form_is_constant (member_loc));
14945
14946 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14947 baton->per_cu = cu->per_cu;
14948 gdb_assert (baton->per_cu);
14949
14950 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14951
14952 if (attr_form_is_constant (member_loc))
14953 {
14954 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14955 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14956 }
14957 else
14958 baton->size += DW_BLOCK (member_loc)->size;
14959
14960 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14961 baton->data = ptr;
14962
14963 *ptr++ = DW_OP_call4;
14964 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14965 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14966 ptr += 4;
14967
14968 if (attr_form_is_constant (member_loc))
14969 {
14970 *ptr++ = DW_OP_addr;
14971 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14972 ptr += cu->header.addr_size;
14973 }
14974 else
14975 {
14976 /* We have to copy the data here, because DW_OP_call4 will only
14977 use a DW_AT_location attribute. */
14978 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14979 ptr += DW_BLOCK (member_loc)->size;
14980 }
14981
14982 *ptr++ = DW_OP_plus;
14983 gdb_assert (ptr - baton->data == baton->size);
14984
14985 SYMBOL_LOCATION_BATON (sym) = baton;
14986 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14987 }
14988
14989 /* Create appropriate locally-scoped variables for all the
14990 DW_TAG_common_block entries. Also create a struct common_block
14991 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14992 is used to sepate the common blocks name namespace from regular
14993 variable names. */
14994
14995 static void
14996 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14997 {
14998 struct attribute *attr;
14999
15000 attr = dwarf2_attr (die, DW_AT_location, cu);
15001 if (attr)
15002 {
15003 /* Support the .debug_loc offsets. */
15004 if (attr_form_is_block (attr))
15005 {
15006 /* Ok. */
15007 }
15008 else if (attr_form_is_section_offset (attr))
15009 {
15010 dwarf2_complex_location_expr_complaint ();
15011 attr = NULL;
15012 }
15013 else
15014 {
15015 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15016 "common block member");
15017 attr = NULL;
15018 }
15019 }
15020
15021 if (die->child != NULL)
15022 {
15023 struct objfile *objfile = cu->objfile;
15024 struct die_info *child_die;
15025 size_t n_entries = 0, size;
15026 struct common_block *common_block;
15027 struct symbol *sym;
15028
15029 for (child_die = die->child;
15030 child_die && child_die->tag;
15031 child_die = sibling_die (child_die))
15032 ++n_entries;
15033
15034 size = (sizeof (struct common_block)
15035 + (n_entries - 1) * sizeof (struct symbol *));
15036 common_block
15037 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
15038 size);
15039 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
15040 common_block->n_entries = 0;
15041
15042 for (child_die = die->child;
15043 child_die && child_die->tag;
15044 child_die = sibling_die (child_die))
15045 {
15046 /* Create the symbol in the DW_TAG_common_block block in the current
15047 symbol scope. */
15048 sym = new_symbol (child_die, NULL, cu);
15049 if (sym != NULL)
15050 {
15051 struct attribute *member_loc;
15052
15053 common_block->contents[common_block->n_entries++] = sym;
15054
15055 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
15056 cu);
15057 if (member_loc)
15058 {
15059 /* GDB has handled this for a long time, but it is
15060 not specified by DWARF. It seems to have been
15061 emitted by gfortran at least as recently as:
15062 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
15063 complaint (&symfile_complaints,
15064 _("Variable in common block has "
15065 "DW_AT_data_member_location "
15066 "- DIE at 0x%x [in module %s]"),
15067 to_underlying (child_die->sect_off),
15068 objfile_name (cu->objfile));
15069
15070 if (attr_form_is_section_offset (member_loc))
15071 dwarf2_complex_location_expr_complaint ();
15072 else if (attr_form_is_constant (member_loc)
15073 || attr_form_is_block (member_loc))
15074 {
15075 if (attr)
15076 mark_common_block_symbol_computed (sym, die, attr,
15077 member_loc, cu);
15078 }
15079 else
15080 dwarf2_complex_location_expr_complaint ();
15081 }
15082 }
15083 }
15084
15085 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
15086 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
15087 }
15088 }
15089
15090 /* Create a type for a C++ namespace. */
15091
15092 static struct type *
15093 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
15094 {
15095 struct objfile *objfile = cu->objfile;
15096 const char *previous_prefix, *name;
15097 int is_anonymous;
15098 struct type *type;
15099
15100 /* For extensions, reuse the type of the original namespace. */
15101 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
15102 {
15103 struct die_info *ext_die;
15104 struct dwarf2_cu *ext_cu = cu;
15105
15106 ext_die = dwarf2_extension (die, &ext_cu);
15107 type = read_type_die (ext_die, ext_cu);
15108
15109 /* EXT_CU may not be the same as CU.
15110 Ensure TYPE is recorded with CU in die_type_hash. */
15111 return set_die_type (die, type, cu);
15112 }
15113
15114 name = namespace_name (die, &is_anonymous, cu);
15115
15116 /* Now build the name of the current namespace. */
15117
15118 previous_prefix = determine_prefix (die, cu);
15119 if (previous_prefix[0] != '\0')
15120 name = typename_concat (&objfile->objfile_obstack,
15121 previous_prefix, name, 0, cu);
15122
15123 /* Create the type. */
15124 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
15125 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15126
15127 return set_die_type (die, type, cu);
15128 }
15129
15130 /* Read a namespace scope. */
15131
15132 static void
15133 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
15134 {
15135 struct objfile *objfile = cu->objfile;
15136 int is_anonymous;
15137
15138 /* Add a symbol associated to this if we haven't seen the namespace
15139 before. Also, add a using directive if it's an anonymous
15140 namespace. */
15141
15142 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
15143 {
15144 struct type *type;
15145
15146 type = read_type_die (die, cu);
15147 new_symbol (die, type, cu);
15148
15149 namespace_name (die, &is_anonymous, cu);
15150 if (is_anonymous)
15151 {
15152 const char *previous_prefix = determine_prefix (die, cu);
15153
15154 std::vector<const char *> excludes;
15155 add_using_directive (using_directives (cu->language),
15156 previous_prefix, TYPE_NAME (type), NULL,
15157 NULL, excludes, 0, &objfile->objfile_obstack);
15158 }
15159 }
15160
15161 if (die->child != NULL)
15162 {
15163 struct die_info *child_die = die->child;
15164
15165 while (child_die && child_die->tag)
15166 {
15167 process_die (child_die, cu);
15168 child_die = sibling_die (child_die);
15169 }
15170 }
15171 }
15172
15173 /* Read a Fortran module as type. This DIE can be only a declaration used for
15174 imported module. Still we need that type as local Fortran "use ... only"
15175 declaration imports depend on the created type in determine_prefix. */
15176
15177 static struct type *
15178 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
15179 {
15180 struct objfile *objfile = cu->objfile;
15181 const char *module_name;
15182 struct type *type;
15183
15184 module_name = dwarf2_name (die, cu);
15185 if (!module_name)
15186 complaint (&symfile_complaints,
15187 _("DW_TAG_module has no name, offset 0x%x"),
15188 to_underlying (die->sect_off));
15189 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
15190
15191 /* determine_prefix uses TYPE_TAG_NAME. */
15192 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15193
15194 return set_die_type (die, type, cu);
15195 }
15196
15197 /* Read a Fortran module. */
15198
15199 static void
15200 read_module (struct die_info *die, struct dwarf2_cu *cu)
15201 {
15202 struct die_info *child_die = die->child;
15203 struct type *type;
15204
15205 type = read_type_die (die, cu);
15206 new_symbol (die, type, cu);
15207
15208 while (child_die && child_die->tag)
15209 {
15210 process_die (child_die, cu);
15211 child_die = sibling_die (child_die);
15212 }
15213 }
15214
15215 /* Return the name of the namespace represented by DIE. Set
15216 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
15217 namespace. */
15218
15219 static const char *
15220 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
15221 {
15222 struct die_info *current_die;
15223 const char *name = NULL;
15224
15225 /* Loop through the extensions until we find a name. */
15226
15227 for (current_die = die;
15228 current_die != NULL;
15229 current_die = dwarf2_extension (die, &cu))
15230 {
15231 /* We don't use dwarf2_name here so that we can detect the absence
15232 of a name -> anonymous namespace. */
15233 name = dwarf2_string_attr (die, DW_AT_name, cu);
15234
15235 if (name != NULL)
15236 break;
15237 }
15238
15239 /* Is it an anonymous namespace? */
15240
15241 *is_anonymous = (name == NULL);
15242 if (*is_anonymous)
15243 name = CP_ANONYMOUS_NAMESPACE_STR;
15244
15245 return name;
15246 }
15247
15248 /* Extract all information from a DW_TAG_pointer_type DIE and add to
15249 the user defined type vector. */
15250
15251 static struct type *
15252 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
15253 {
15254 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
15255 struct comp_unit_head *cu_header = &cu->header;
15256 struct type *type;
15257 struct attribute *attr_byte_size;
15258 struct attribute *attr_address_class;
15259 int byte_size, addr_class;
15260 struct type *target_type;
15261
15262 target_type = die_type (die, cu);
15263
15264 /* The die_type call above may have already set the type for this DIE. */
15265 type = get_die_type (die, cu);
15266 if (type)
15267 return type;
15268
15269 type = lookup_pointer_type (target_type);
15270
15271 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
15272 if (attr_byte_size)
15273 byte_size = DW_UNSND (attr_byte_size);
15274 else
15275 byte_size = cu_header->addr_size;
15276
15277 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
15278 if (attr_address_class)
15279 addr_class = DW_UNSND (attr_address_class);
15280 else
15281 addr_class = DW_ADDR_none;
15282
15283 /* If the pointer size or address class is different than the
15284 default, create a type variant marked as such and set the
15285 length accordingly. */
15286 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
15287 {
15288 if (gdbarch_address_class_type_flags_p (gdbarch))
15289 {
15290 int type_flags;
15291
15292 type_flags = gdbarch_address_class_type_flags
15293 (gdbarch, byte_size, addr_class);
15294 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
15295 == 0);
15296 type = make_type_with_address_space (type, type_flags);
15297 }
15298 else if (TYPE_LENGTH (type) != byte_size)
15299 {
15300 complaint (&symfile_complaints,
15301 _("invalid pointer size %d"), byte_size);
15302 }
15303 else
15304 {
15305 /* Should we also complain about unhandled address classes? */
15306 }
15307 }
15308
15309 TYPE_LENGTH (type) = byte_size;
15310 return set_die_type (die, type, cu);
15311 }
15312
15313 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
15314 the user defined type vector. */
15315
15316 static struct type *
15317 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
15318 {
15319 struct type *type;
15320 struct type *to_type;
15321 struct type *domain;
15322
15323 to_type = die_type (die, cu);
15324 domain = die_containing_type (die, cu);
15325
15326 /* The calls above may have already set the type for this DIE. */
15327 type = get_die_type (die, cu);
15328 if (type)
15329 return type;
15330
15331 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
15332 type = lookup_methodptr_type (to_type);
15333 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
15334 {
15335 struct type *new_type = alloc_type (cu->objfile);
15336
15337 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
15338 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
15339 TYPE_VARARGS (to_type));
15340 type = lookup_methodptr_type (new_type);
15341 }
15342 else
15343 type = lookup_memberptr_type (to_type, domain);
15344
15345 return set_die_type (die, type, cu);
15346 }
15347
15348 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
15349 the user defined type vector. */
15350
15351 static struct type *
15352 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
15353 enum type_code refcode)
15354 {
15355 struct comp_unit_head *cu_header = &cu->header;
15356 struct type *type, *target_type;
15357 struct attribute *attr;
15358
15359 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
15360
15361 target_type = die_type (die, cu);
15362
15363 /* The die_type call above may have already set the type for this DIE. */
15364 type = get_die_type (die, cu);
15365 if (type)
15366 return type;
15367
15368 type = lookup_reference_type (target_type, refcode);
15369 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15370 if (attr)
15371 {
15372 TYPE_LENGTH (type) = DW_UNSND (attr);
15373 }
15374 else
15375 {
15376 TYPE_LENGTH (type) = cu_header->addr_size;
15377 }
15378 return set_die_type (die, type, cu);
15379 }
15380
15381 /* Add the given cv-qualifiers to the element type of the array. GCC
15382 outputs DWARF type qualifiers that apply to an array, not the
15383 element type. But GDB relies on the array element type to carry
15384 the cv-qualifiers. This mimics section 6.7.3 of the C99
15385 specification. */
15386
15387 static struct type *
15388 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
15389 struct type *base_type, int cnst, int voltl)
15390 {
15391 struct type *el_type, *inner_array;
15392
15393 base_type = copy_type (base_type);
15394 inner_array = base_type;
15395
15396 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
15397 {
15398 TYPE_TARGET_TYPE (inner_array) =
15399 copy_type (TYPE_TARGET_TYPE (inner_array));
15400 inner_array = TYPE_TARGET_TYPE (inner_array);
15401 }
15402
15403 el_type = TYPE_TARGET_TYPE (inner_array);
15404 cnst |= TYPE_CONST (el_type);
15405 voltl |= TYPE_VOLATILE (el_type);
15406 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
15407
15408 return set_die_type (die, base_type, cu);
15409 }
15410
15411 static struct type *
15412 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
15413 {
15414 struct type *base_type, *cv_type;
15415
15416 base_type = die_type (die, cu);
15417
15418 /* The die_type call above may have already set the type for this DIE. */
15419 cv_type = get_die_type (die, cu);
15420 if (cv_type)
15421 return cv_type;
15422
15423 /* In case the const qualifier is applied to an array type, the element type
15424 is so qualified, not the array type (section 6.7.3 of C99). */
15425 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15426 return add_array_cv_type (die, cu, base_type, 1, 0);
15427
15428 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
15429 return set_die_type (die, cv_type, cu);
15430 }
15431
15432 static struct type *
15433 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
15434 {
15435 struct type *base_type, *cv_type;
15436
15437 base_type = die_type (die, cu);
15438
15439 /* The die_type call above may have already set the type for this DIE. */
15440 cv_type = get_die_type (die, cu);
15441 if (cv_type)
15442 return cv_type;
15443
15444 /* In case the volatile qualifier is applied to an array type, the
15445 element type is so qualified, not the array type (section 6.7.3
15446 of C99). */
15447 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15448 return add_array_cv_type (die, cu, base_type, 0, 1);
15449
15450 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
15451 return set_die_type (die, cv_type, cu);
15452 }
15453
15454 /* Handle DW_TAG_restrict_type. */
15455
15456 static struct type *
15457 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
15458 {
15459 struct type *base_type, *cv_type;
15460
15461 base_type = die_type (die, cu);
15462
15463 /* The die_type call above may have already set the type for this DIE. */
15464 cv_type = get_die_type (die, cu);
15465 if (cv_type)
15466 return cv_type;
15467
15468 cv_type = make_restrict_type (base_type);
15469 return set_die_type (die, cv_type, cu);
15470 }
15471
15472 /* Handle DW_TAG_atomic_type. */
15473
15474 static struct type *
15475 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
15476 {
15477 struct type *base_type, *cv_type;
15478
15479 base_type = die_type (die, cu);
15480
15481 /* The die_type call above may have already set the type for this DIE. */
15482 cv_type = get_die_type (die, cu);
15483 if (cv_type)
15484 return cv_type;
15485
15486 cv_type = make_atomic_type (base_type);
15487 return set_die_type (die, cv_type, cu);
15488 }
15489
15490 /* Extract all information from a DW_TAG_string_type DIE and add to
15491 the user defined type vector. It isn't really a user defined type,
15492 but it behaves like one, with other DIE's using an AT_user_def_type
15493 attribute to reference it. */
15494
15495 static struct type *
15496 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
15497 {
15498 struct objfile *objfile = cu->objfile;
15499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15500 struct type *type, *range_type, *index_type, *char_type;
15501 struct attribute *attr;
15502 unsigned int length;
15503
15504 attr = dwarf2_attr (die, DW_AT_string_length, cu);
15505 if (attr)
15506 {
15507 length = DW_UNSND (attr);
15508 }
15509 else
15510 {
15511 /* Check for the DW_AT_byte_size attribute. */
15512 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15513 if (attr)
15514 {
15515 length = DW_UNSND (attr);
15516 }
15517 else
15518 {
15519 length = 1;
15520 }
15521 }
15522
15523 index_type = objfile_type (objfile)->builtin_int;
15524 range_type = create_static_range_type (NULL, index_type, 1, length);
15525 char_type = language_string_char_type (cu->language_defn, gdbarch);
15526 type = create_string_type (NULL, char_type, range_type);
15527
15528 return set_die_type (die, type, cu);
15529 }
15530
15531 /* Assuming that DIE corresponds to a function, returns nonzero
15532 if the function is prototyped. */
15533
15534 static int
15535 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15536 {
15537 struct attribute *attr;
15538
15539 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15540 if (attr && (DW_UNSND (attr) != 0))
15541 return 1;
15542
15543 /* The DWARF standard implies that the DW_AT_prototyped attribute
15544 is only meaninful for C, but the concept also extends to other
15545 languages that allow unprototyped functions (Eg: Objective C).
15546 For all other languages, assume that functions are always
15547 prototyped. */
15548 if (cu->language != language_c
15549 && cu->language != language_objc
15550 && cu->language != language_opencl)
15551 return 1;
15552
15553 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15554 prototyped and unprototyped functions; default to prototyped,
15555 since that is more common in modern code (and RealView warns
15556 about unprototyped functions). */
15557 if (producer_is_realview (cu->producer))
15558 return 1;
15559
15560 return 0;
15561 }
15562
15563 /* Handle DIES due to C code like:
15564
15565 struct foo
15566 {
15567 int (*funcp)(int a, long l);
15568 int b;
15569 };
15570
15571 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15572
15573 static struct type *
15574 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15575 {
15576 struct objfile *objfile = cu->objfile;
15577 struct type *type; /* Type that this function returns. */
15578 struct type *ftype; /* Function that returns above type. */
15579 struct attribute *attr;
15580
15581 type = die_type (die, cu);
15582
15583 /* The die_type call above may have already set the type for this DIE. */
15584 ftype = get_die_type (die, cu);
15585 if (ftype)
15586 return ftype;
15587
15588 ftype = lookup_function_type (type);
15589
15590 if (prototyped_function_p (die, cu))
15591 TYPE_PROTOTYPED (ftype) = 1;
15592
15593 /* Store the calling convention in the type if it's available in
15594 the subroutine die. Otherwise set the calling convention to
15595 the default value DW_CC_normal. */
15596 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15597 if (attr)
15598 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15599 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15600 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15601 else
15602 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15603
15604 /* Record whether the function returns normally to its caller or not
15605 if the DWARF producer set that information. */
15606 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15607 if (attr && (DW_UNSND (attr) != 0))
15608 TYPE_NO_RETURN (ftype) = 1;
15609
15610 /* We need to add the subroutine type to the die immediately so
15611 we don't infinitely recurse when dealing with parameters
15612 declared as the same subroutine type. */
15613 set_die_type (die, ftype, cu);
15614
15615 if (die->child != NULL)
15616 {
15617 struct type *void_type = objfile_type (objfile)->builtin_void;
15618 struct die_info *child_die;
15619 int nparams, iparams;
15620
15621 /* Count the number of parameters.
15622 FIXME: GDB currently ignores vararg functions, but knows about
15623 vararg member functions. */
15624 nparams = 0;
15625 child_die = die->child;
15626 while (child_die && child_die->tag)
15627 {
15628 if (child_die->tag == DW_TAG_formal_parameter)
15629 nparams++;
15630 else if (child_die->tag == DW_TAG_unspecified_parameters)
15631 TYPE_VARARGS (ftype) = 1;
15632 child_die = sibling_die (child_die);
15633 }
15634
15635 /* Allocate storage for parameters and fill them in. */
15636 TYPE_NFIELDS (ftype) = nparams;
15637 TYPE_FIELDS (ftype) = (struct field *)
15638 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15639
15640 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15641 even if we error out during the parameters reading below. */
15642 for (iparams = 0; iparams < nparams; iparams++)
15643 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15644
15645 iparams = 0;
15646 child_die = die->child;
15647 while (child_die && child_die->tag)
15648 {
15649 if (child_die->tag == DW_TAG_formal_parameter)
15650 {
15651 struct type *arg_type;
15652
15653 /* DWARF version 2 has no clean way to discern C++
15654 static and non-static member functions. G++ helps
15655 GDB by marking the first parameter for non-static
15656 member functions (which is the this pointer) as
15657 artificial. We pass this information to
15658 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15659
15660 DWARF version 3 added DW_AT_object_pointer, which GCC
15661 4.5 does not yet generate. */
15662 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15663 if (attr)
15664 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15665 else
15666 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15667 arg_type = die_type (child_die, cu);
15668
15669 /* RealView does not mark THIS as const, which the testsuite
15670 expects. GCC marks THIS as const in method definitions,
15671 but not in the class specifications (GCC PR 43053). */
15672 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15673 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15674 {
15675 int is_this = 0;
15676 struct dwarf2_cu *arg_cu = cu;
15677 const char *name = dwarf2_name (child_die, cu);
15678
15679 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15680 if (attr)
15681 {
15682 /* If the compiler emits this, use it. */
15683 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15684 is_this = 1;
15685 }
15686 else if (name && strcmp (name, "this") == 0)
15687 /* Function definitions will have the argument names. */
15688 is_this = 1;
15689 else if (name == NULL && iparams == 0)
15690 /* Declarations may not have the names, so like
15691 elsewhere in GDB, assume an artificial first
15692 argument is "this". */
15693 is_this = 1;
15694
15695 if (is_this)
15696 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15697 arg_type, 0);
15698 }
15699
15700 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15701 iparams++;
15702 }
15703 child_die = sibling_die (child_die);
15704 }
15705 }
15706
15707 return ftype;
15708 }
15709
15710 static struct type *
15711 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15712 {
15713 struct objfile *objfile = cu->objfile;
15714 const char *name = NULL;
15715 struct type *this_type, *target_type;
15716
15717 name = dwarf2_full_name (NULL, die, cu);
15718 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15719 TYPE_TARGET_STUB (this_type) = 1;
15720 set_die_type (die, this_type, cu);
15721 target_type = die_type (die, cu);
15722 if (target_type != this_type)
15723 TYPE_TARGET_TYPE (this_type) = target_type;
15724 else
15725 {
15726 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15727 spec and cause infinite loops in GDB. */
15728 complaint (&symfile_complaints,
15729 _("Self-referential DW_TAG_typedef "
15730 "- DIE at 0x%x [in module %s]"),
15731 to_underlying (die->sect_off), objfile_name (objfile));
15732 TYPE_TARGET_TYPE (this_type) = NULL;
15733 }
15734 return this_type;
15735 }
15736
15737 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15738 (which may be different from NAME) to the architecture back-end to allow
15739 it to guess the correct format if necessary. */
15740
15741 static struct type *
15742 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15743 const char *name_hint)
15744 {
15745 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15746 const struct floatformat **format;
15747 struct type *type;
15748
15749 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15750 if (format)
15751 type = init_float_type (objfile, bits, name, format);
15752 else
15753 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15754
15755 return type;
15756 }
15757
15758 /* Find a representation of a given base type and install
15759 it in the TYPE field of the die. */
15760
15761 static struct type *
15762 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15763 {
15764 struct objfile *objfile = cu->objfile;
15765 struct type *type;
15766 struct attribute *attr;
15767 int encoding = 0, bits = 0;
15768 const char *name;
15769
15770 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15771 if (attr)
15772 {
15773 encoding = DW_UNSND (attr);
15774 }
15775 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15776 if (attr)
15777 {
15778 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15779 }
15780 name = dwarf2_name (die, cu);
15781 if (!name)
15782 {
15783 complaint (&symfile_complaints,
15784 _("DW_AT_name missing from DW_TAG_base_type"));
15785 }
15786
15787 switch (encoding)
15788 {
15789 case DW_ATE_address:
15790 /* Turn DW_ATE_address into a void * pointer. */
15791 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15792 type = init_pointer_type (objfile, bits, name, type);
15793 break;
15794 case DW_ATE_boolean:
15795 type = init_boolean_type (objfile, bits, 1, name);
15796 break;
15797 case DW_ATE_complex_float:
15798 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15799 type = init_complex_type (objfile, name, type);
15800 break;
15801 case DW_ATE_decimal_float:
15802 type = init_decfloat_type (objfile, bits, name);
15803 break;
15804 case DW_ATE_float:
15805 type = dwarf2_init_float_type (objfile, bits, name, name);
15806 break;
15807 case DW_ATE_signed:
15808 type = init_integer_type (objfile, bits, 0, name);
15809 break;
15810 case DW_ATE_unsigned:
15811 if (cu->language == language_fortran
15812 && name
15813 && startswith (name, "character("))
15814 type = init_character_type (objfile, bits, 1, name);
15815 else
15816 type = init_integer_type (objfile, bits, 1, name);
15817 break;
15818 case DW_ATE_signed_char:
15819 if (cu->language == language_ada || cu->language == language_m2
15820 || cu->language == language_pascal
15821 || cu->language == language_fortran)
15822 type = init_character_type (objfile, bits, 0, name);
15823 else
15824 type = init_integer_type (objfile, bits, 0, name);
15825 break;
15826 case DW_ATE_unsigned_char:
15827 if (cu->language == language_ada || cu->language == language_m2
15828 || cu->language == language_pascal
15829 || cu->language == language_fortran
15830 || cu->language == language_rust)
15831 type = init_character_type (objfile, bits, 1, name);
15832 else
15833 type = init_integer_type (objfile, bits, 1, name);
15834 break;
15835 case DW_ATE_UTF:
15836 {
15837 gdbarch *arch = get_objfile_arch (objfile);
15838
15839 if (bits == 16)
15840 type = builtin_type (arch)->builtin_char16;
15841 else if (bits == 32)
15842 type = builtin_type (arch)->builtin_char32;
15843 else
15844 {
15845 complaint (&symfile_complaints,
15846 _("unsupported DW_ATE_UTF bit size: '%d'"),
15847 bits);
15848 type = init_integer_type (objfile, bits, 1, name);
15849 }
15850 return set_die_type (die, type, cu);
15851 }
15852 break;
15853
15854 default:
15855 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15856 dwarf_type_encoding_name (encoding));
15857 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15858 break;
15859 }
15860
15861 if (name && strcmp (name, "char") == 0)
15862 TYPE_NOSIGN (type) = 1;
15863
15864 return set_die_type (die, type, cu);
15865 }
15866
15867 /* Parse dwarf attribute if it's a block, reference or constant and put the
15868 resulting value of the attribute into struct bound_prop.
15869 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15870
15871 static int
15872 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15873 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15874 {
15875 struct dwarf2_property_baton *baton;
15876 struct obstack *obstack = &cu->objfile->objfile_obstack;
15877
15878 if (attr == NULL || prop == NULL)
15879 return 0;
15880
15881 if (attr_form_is_block (attr))
15882 {
15883 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15884 baton->referenced_type = NULL;
15885 baton->locexpr.per_cu = cu->per_cu;
15886 baton->locexpr.size = DW_BLOCK (attr)->size;
15887 baton->locexpr.data = DW_BLOCK (attr)->data;
15888 prop->data.baton = baton;
15889 prop->kind = PROP_LOCEXPR;
15890 gdb_assert (prop->data.baton != NULL);
15891 }
15892 else if (attr_form_is_ref (attr))
15893 {
15894 struct dwarf2_cu *target_cu = cu;
15895 struct die_info *target_die;
15896 struct attribute *target_attr;
15897
15898 target_die = follow_die_ref (die, attr, &target_cu);
15899 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15900 if (target_attr == NULL)
15901 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15902 target_cu);
15903 if (target_attr == NULL)
15904 return 0;
15905
15906 switch (target_attr->name)
15907 {
15908 case DW_AT_location:
15909 if (attr_form_is_section_offset (target_attr))
15910 {
15911 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15912 baton->referenced_type = die_type (target_die, target_cu);
15913 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15914 prop->data.baton = baton;
15915 prop->kind = PROP_LOCLIST;
15916 gdb_assert (prop->data.baton != NULL);
15917 }
15918 else if (attr_form_is_block (target_attr))
15919 {
15920 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15921 baton->referenced_type = die_type (target_die, target_cu);
15922 baton->locexpr.per_cu = cu->per_cu;
15923 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15924 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15925 prop->data.baton = baton;
15926 prop->kind = PROP_LOCEXPR;
15927 gdb_assert (prop->data.baton != NULL);
15928 }
15929 else
15930 {
15931 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15932 "dynamic property");
15933 return 0;
15934 }
15935 break;
15936 case DW_AT_data_member_location:
15937 {
15938 LONGEST offset;
15939
15940 if (!handle_data_member_location (target_die, target_cu,
15941 &offset))
15942 return 0;
15943
15944 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15945 baton->referenced_type = read_type_die (target_die->parent,
15946 target_cu);
15947 baton->offset_info.offset = offset;
15948 baton->offset_info.type = die_type (target_die, target_cu);
15949 prop->data.baton = baton;
15950 prop->kind = PROP_ADDR_OFFSET;
15951 break;
15952 }
15953 }
15954 }
15955 else if (attr_form_is_constant (attr))
15956 {
15957 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15958 prop->kind = PROP_CONST;
15959 }
15960 else
15961 {
15962 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15963 dwarf2_name (die, cu));
15964 return 0;
15965 }
15966
15967 return 1;
15968 }
15969
15970 /* Read the given DW_AT_subrange DIE. */
15971
15972 static struct type *
15973 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15974 {
15975 struct type *base_type, *orig_base_type;
15976 struct type *range_type;
15977 struct attribute *attr;
15978 struct dynamic_prop low, high;
15979 int low_default_is_valid;
15980 int high_bound_is_count = 0;
15981 const char *name;
15982 LONGEST negative_mask;
15983
15984 orig_base_type = die_type (die, cu);
15985 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15986 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15987 creating the range type, but we use the result of check_typedef
15988 when examining properties of the type. */
15989 base_type = check_typedef (orig_base_type);
15990
15991 /* The die_type call above may have already set the type for this DIE. */
15992 range_type = get_die_type (die, cu);
15993 if (range_type)
15994 return range_type;
15995
15996 low.kind = PROP_CONST;
15997 high.kind = PROP_CONST;
15998 high.data.const_val = 0;
15999
16000 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
16001 omitting DW_AT_lower_bound. */
16002 switch (cu->language)
16003 {
16004 case language_c:
16005 case language_cplus:
16006 low.data.const_val = 0;
16007 low_default_is_valid = 1;
16008 break;
16009 case language_fortran:
16010 low.data.const_val = 1;
16011 low_default_is_valid = 1;
16012 break;
16013 case language_d:
16014 case language_objc:
16015 case language_rust:
16016 low.data.const_val = 0;
16017 low_default_is_valid = (cu->header.version >= 4);
16018 break;
16019 case language_ada:
16020 case language_m2:
16021 case language_pascal:
16022 low.data.const_val = 1;
16023 low_default_is_valid = (cu->header.version >= 4);
16024 break;
16025 default:
16026 low.data.const_val = 0;
16027 low_default_is_valid = 0;
16028 break;
16029 }
16030
16031 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
16032 if (attr)
16033 attr_to_dynamic_prop (attr, die, cu, &low);
16034 else if (!low_default_is_valid)
16035 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
16036 "- DIE at 0x%x [in module %s]"),
16037 to_underlying (die->sect_off), objfile_name (cu->objfile));
16038
16039 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
16040 if (!attr_to_dynamic_prop (attr, die, cu, &high))
16041 {
16042 attr = dwarf2_attr (die, DW_AT_count, cu);
16043 if (attr_to_dynamic_prop (attr, die, cu, &high))
16044 {
16045 /* If bounds are constant do the final calculation here. */
16046 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
16047 high.data.const_val = low.data.const_val + high.data.const_val - 1;
16048 else
16049 high_bound_is_count = 1;
16050 }
16051 }
16052
16053 /* Dwarf-2 specifications explicitly allows to create subrange types
16054 without specifying a base type.
16055 In that case, the base type must be set to the type of
16056 the lower bound, upper bound or count, in that order, if any of these
16057 three attributes references an object that has a type.
16058 If no base type is found, the Dwarf-2 specifications say that
16059 a signed integer type of size equal to the size of an address should
16060 be used.
16061 For the following C code: `extern char gdb_int [];'
16062 GCC produces an empty range DIE.
16063 FIXME: muller/2010-05-28: Possible references to object for low bound,
16064 high bound or count are not yet handled by this code. */
16065 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
16066 {
16067 struct objfile *objfile = cu->objfile;
16068 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16069 int addr_size = gdbarch_addr_bit (gdbarch) /8;
16070 struct type *int_type = objfile_type (objfile)->builtin_int;
16071
16072 /* Test "int", "long int", and "long long int" objfile types,
16073 and select the first one having a size above or equal to the
16074 architecture address size. */
16075 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16076 base_type = int_type;
16077 else
16078 {
16079 int_type = objfile_type (objfile)->builtin_long;
16080 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16081 base_type = int_type;
16082 else
16083 {
16084 int_type = objfile_type (objfile)->builtin_long_long;
16085 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16086 base_type = int_type;
16087 }
16088 }
16089 }
16090
16091 /* Normally, the DWARF producers are expected to use a signed
16092 constant form (Eg. DW_FORM_sdata) to express negative bounds.
16093 But this is unfortunately not always the case, as witnessed
16094 with GCC, for instance, where the ambiguous DW_FORM_dataN form
16095 is used instead. To work around that ambiguity, we treat
16096 the bounds as signed, and thus sign-extend their values, when
16097 the base type is signed. */
16098 negative_mask =
16099 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
16100 if (low.kind == PROP_CONST
16101 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
16102 low.data.const_val |= negative_mask;
16103 if (high.kind == PROP_CONST
16104 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
16105 high.data.const_val |= negative_mask;
16106
16107 range_type = create_range_type (NULL, orig_base_type, &low, &high);
16108
16109 if (high_bound_is_count)
16110 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
16111
16112 /* Ada expects an empty array on no boundary attributes. */
16113 if (attr == NULL && cu->language != language_ada)
16114 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
16115
16116 name = dwarf2_name (die, cu);
16117 if (name)
16118 TYPE_NAME (range_type) = name;
16119
16120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16121 if (attr)
16122 TYPE_LENGTH (range_type) = DW_UNSND (attr);
16123
16124 set_die_type (die, range_type, cu);
16125
16126 /* set_die_type should be already done. */
16127 set_descriptive_type (range_type, die, cu);
16128
16129 return range_type;
16130 }
16131
16132 static struct type *
16133 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
16134 {
16135 struct type *type;
16136
16137 /* For now, we only support the C meaning of an unspecified type: void. */
16138
16139 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
16140 TYPE_NAME (type) = dwarf2_name (die, cu);
16141
16142 return set_die_type (die, type, cu);
16143 }
16144
16145 /* Read a single die and all its descendents. Set the die's sibling
16146 field to NULL; set other fields in the die correctly, and set all
16147 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
16148 location of the info_ptr after reading all of those dies. PARENT
16149 is the parent of the die in question. */
16150
16151 static struct die_info *
16152 read_die_and_children (const struct die_reader_specs *reader,
16153 const gdb_byte *info_ptr,
16154 const gdb_byte **new_info_ptr,
16155 struct die_info *parent)
16156 {
16157 struct die_info *die;
16158 const gdb_byte *cur_ptr;
16159 int has_children;
16160
16161 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
16162 if (die == NULL)
16163 {
16164 *new_info_ptr = cur_ptr;
16165 return NULL;
16166 }
16167 store_in_ref_table (die, reader->cu);
16168
16169 if (has_children)
16170 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
16171 else
16172 {
16173 die->child = NULL;
16174 *new_info_ptr = cur_ptr;
16175 }
16176
16177 die->sibling = NULL;
16178 die->parent = parent;
16179 return die;
16180 }
16181
16182 /* Read a die, all of its descendents, and all of its siblings; set
16183 all of the fields of all of the dies correctly. Arguments are as
16184 in read_die_and_children. */
16185
16186 static struct die_info *
16187 read_die_and_siblings_1 (const struct die_reader_specs *reader,
16188 const gdb_byte *info_ptr,
16189 const gdb_byte **new_info_ptr,
16190 struct die_info *parent)
16191 {
16192 struct die_info *first_die, *last_sibling;
16193 const gdb_byte *cur_ptr;
16194
16195 cur_ptr = info_ptr;
16196 first_die = last_sibling = NULL;
16197
16198 while (1)
16199 {
16200 struct die_info *die
16201 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
16202
16203 if (die == NULL)
16204 {
16205 *new_info_ptr = cur_ptr;
16206 return first_die;
16207 }
16208
16209 if (!first_die)
16210 first_die = die;
16211 else
16212 last_sibling->sibling = die;
16213
16214 last_sibling = die;
16215 }
16216 }
16217
16218 /* Read a die, all of its descendents, and all of its siblings; set
16219 all of the fields of all of the dies correctly. Arguments are as
16220 in read_die_and_children.
16221 This the main entry point for reading a DIE and all its children. */
16222
16223 static struct die_info *
16224 read_die_and_siblings (const struct die_reader_specs *reader,
16225 const gdb_byte *info_ptr,
16226 const gdb_byte **new_info_ptr,
16227 struct die_info *parent)
16228 {
16229 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
16230 new_info_ptr, parent);
16231
16232 if (dwarf_die_debug)
16233 {
16234 fprintf_unfiltered (gdb_stdlog,
16235 "Read die from %s@0x%x of %s:\n",
16236 get_section_name (reader->die_section),
16237 (unsigned) (info_ptr - reader->die_section->buffer),
16238 bfd_get_filename (reader->abfd));
16239 dump_die (die, dwarf_die_debug);
16240 }
16241
16242 return die;
16243 }
16244
16245 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
16246 attributes.
16247 The caller is responsible for filling in the extra attributes
16248 and updating (*DIEP)->num_attrs.
16249 Set DIEP to point to a newly allocated die with its information,
16250 except for its child, sibling, and parent fields.
16251 Set HAS_CHILDREN to tell whether the die has children or not. */
16252
16253 static const gdb_byte *
16254 read_full_die_1 (const struct die_reader_specs *reader,
16255 struct die_info **diep, const gdb_byte *info_ptr,
16256 int *has_children, int num_extra_attrs)
16257 {
16258 unsigned int abbrev_number, bytes_read, i;
16259 struct abbrev_info *abbrev;
16260 struct die_info *die;
16261 struct dwarf2_cu *cu = reader->cu;
16262 bfd *abfd = reader->abfd;
16263
16264 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
16265 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16266 info_ptr += bytes_read;
16267 if (!abbrev_number)
16268 {
16269 *diep = NULL;
16270 *has_children = 0;
16271 return info_ptr;
16272 }
16273
16274 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
16275 if (!abbrev)
16276 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
16277 abbrev_number,
16278 bfd_get_filename (abfd));
16279
16280 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
16281 die->sect_off = sect_off;
16282 die->tag = abbrev->tag;
16283 die->abbrev = abbrev_number;
16284
16285 /* Make the result usable.
16286 The caller needs to update num_attrs after adding the extra
16287 attributes. */
16288 die->num_attrs = abbrev->num_attrs;
16289
16290 for (i = 0; i < abbrev->num_attrs; ++i)
16291 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
16292 info_ptr);
16293
16294 *diep = die;
16295 *has_children = abbrev->has_children;
16296 return info_ptr;
16297 }
16298
16299 /* Read a die and all its attributes.
16300 Set DIEP to point to a newly allocated die with its information,
16301 except for its child, sibling, and parent fields.
16302 Set HAS_CHILDREN to tell whether the die has children or not. */
16303
16304 static const gdb_byte *
16305 read_full_die (const struct die_reader_specs *reader,
16306 struct die_info **diep, const gdb_byte *info_ptr,
16307 int *has_children)
16308 {
16309 const gdb_byte *result;
16310
16311 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
16312
16313 if (dwarf_die_debug)
16314 {
16315 fprintf_unfiltered (gdb_stdlog,
16316 "Read die from %s@0x%x of %s:\n",
16317 get_section_name (reader->die_section),
16318 (unsigned) (info_ptr - reader->die_section->buffer),
16319 bfd_get_filename (reader->abfd));
16320 dump_die (*diep, dwarf_die_debug);
16321 }
16322
16323 return result;
16324 }
16325 \f
16326 /* Abbreviation tables.
16327
16328 In DWARF version 2, the description of the debugging information is
16329 stored in a separate .debug_abbrev section. Before we read any
16330 dies from a section we read in all abbreviations and install them
16331 in a hash table. */
16332
16333 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
16334
16335 static struct abbrev_info *
16336 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
16337 {
16338 struct abbrev_info *abbrev;
16339
16340 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
16341 memset (abbrev, 0, sizeof (struct abbrev_info));
16342
16343 return abbrev;
16344 }
16345
16346 /* Add an abbreviation to the table. */
16347
16348 static void
16349 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
16350 unsigned int abbrev_number,
16351 struct abbrev_info *abbrev)
16352 {
16353 unsigned int hash_number;
16354
16355 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16356 abbrev->next = abbrev_table->abbrevs[hash_number];
16357 abbrev_table->abbrevs[hash_number] = abbrev;
16358 }
16359
16360 /* Look up an abbrev in the table.
16361 Returns NULL if the abbrev is not found. */
16362
16363 static struct abbrev_info *
16364 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
16365 unsigned int abbrev_number)
16366 {
16367 unsigned int hash_number;
16368 struct abbrev_info *abbrev;
16369
16370 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16371 abbrev = abbrev_table->abbrevs[hash_number];
16372
16373 while (abbrev)
16374 {
16375 if (abbrev->number == abbrev_number)
16376 return abbrev;
16377 abbrev = abbrev->next;
16378 }
16379 return NULL;
16380 }
16381
16382 /* Read in an abbrev table. */
16383
16384 static struct abbrev_table *
16385 abbrev_table_read_table (struct dwarf2_section_info *section,
16386 sect_offset sect_off)
16387 {
16388 struct objfile *objfile = dwarf2_per_objfile->objfile;
16389 bfd *abfd = get_section_bfd_owner (section);
16390 struct abbrev_table *abbrev_table;
16391 const gdb_byte *abbrev_ptr;
16392 struct abbrev_info *cur_abbrev;
16393 unsigned int abbrev_number, bytes_read, abbrev_name;
16394 unsigned int abbrev_form;
16395 struct attr_abbrev *cur_attrs;
16396 unsigned int allocated_attrs;
16397
16398 abbrev_table = XNEW (struct abbrev_table);
16399 abbrev_table->sect_off = sect_off;
16400 obstack_init (&abbrev_table->abbrev_obstack);
16401 abbrev_table->abbrevs =
16402 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
16403 ABBREV_HASH_SIZE);
16404 memset (abbrev_table->abbrevs, 0,
16405 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
16406
16407 dwarf2_read_section (objfile, section);
16408 abbrev_ptr = section->buffer + to_underlying (sect_off);
16409 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16410 abbrev_ptr += bytes_read;
16411
16412 allocated_attrs = ATTR_ALLOC_CHUNK;
16413 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
16414
16415 /* Loop until we reach an abbrev number of 0. */
16416 while (abbrev_number)
16417 {
16418 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
16419
16420 /* read in abbrev header */
16421 cur_abbrev->number = abbrev_number;
16422 cur_abbrev->tag
16423 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16424 abbrev_ptr += bytes_read;
16425 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
16426 abbrev_ptr += 1;
16427
16428 /* now read in declarations */
16429 for (;;)
16430 {
16431 LONGEST implicit_const;
16432
16433 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16434 abbrev_ptr += bytes_read;
16435 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16436 abbrev_ptr += bytes_read;
16437 if (abbrev_form == DW_FORM_implicit_const)
16438 {
16439 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
16440 &bytes_read);
16441 abbrev_ptr += bytes_read;
16442 }
16443 else
16444 {
16445 /* Initialize it due to a false compiler warning. */
16446 implicit_const = -1;
16447 }
16448
16449 if (abbrev_name == 0)
16450 break;
16451
16452 if (cur_abbrev->num_attrs == allocated_attrs)
16453 {
16454 allocated_attrs += ATTR_ALLOC_CHUNK;
16455 cur_attrs
16456 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
16457 }
16458
16459 cur_attrs[cur_abbrev->num_attrs].name
16460 = (enum dwarf_attribute) abbrev_name;
16461 cur_attrs[cur_abbrev->num_attrs].form
16462 = (enum dwarf_form) abbrev_form;
16463 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
16464 ++cur_abbrev->num_attrs;
16465 }
16466
16467 cur_abbrev->attrs =
16468 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
16469 cur_abbrev->num_attrs);
16470 memcpy (cur_abbrev->attrs, cur_attrs,
16471 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
16472
16473 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
16474
16475 /* Get next abbreviation.
16476 Under Irix6 the abbreviations for a compilation unit are not
16477 always properly terminated with an abbrev number of 0.
16478 Exit loop if we encounter an abbreviation which we have
16479 already read (which means we are about to read the abbreviations
16480 for the next compile unit) or if the end of the abbreviation
16481 table is reached. */
16482 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
16483 break;
16484 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16485 abbrev_ptr += bytes_read;
16486 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
16487 break;
16488 }
16489
16490 xfree (cur_attrs);
16491 return abbrev_table;
16492 }
16493
16494 /* Free the resources held by ABBREV_TABLE. */
16495
16496 static void
16497 abbrev_table_free (struct abbrev_table *abbrev_table)
16498 {
16499 obstack_free (&abbrev_table->abbrev_obstack, NULL);
16500 xfree (abbrev_table);
16501 }
16502
16503 /* Same as abbrev_table_free but as a cleanup.
16504 We pass in a pointer to the pointer to the table so that we can
16505 set the pointer to NULL when we're done. It also simplifies
16506 build_type_psymtabs_1. */
16507
16508 static void
16509 abbrev_table_free_cleanup (void *table_ptr)
16510 {
16511 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
16512
16513 if (*abbrev_table_ptr != NULL)
16514 abbrev_table_free (*abbrev_table_ptr);
16515 *abbrev_table_ptr = NULL;
16516 }
16517
16518 /* Read the abbrev table for CU from ABBREV_SECTION. */
16519
16520 static void
16521 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
16522 struct dwarf2_section_info *abbrev_section)
16523 {
16524 cu->abbrev_table =
16525 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
16526 }
16527
16528 /* Release the memory used by the abbrev table for a compilation unit. */
16529
16530 static void
16531 dwarf2_free_abbrev_table (void *ptr_to_cu)
16532 {
16533 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16534
16535 if (cu->abbrev_table != NULL)
16536 abbrev_table_free (cu->abbrev_table);
16537 /* Set this to NULL so that we SEGV if we try to read it later,
16538 and also because free_comp_unit verifies this is NULL. */
16539 cu->abbrev_table = NULL;
16540 }
16541 \f
16542 /* Returns nonzero if TAG represents a type that we might generate a partial
16543 symbol for. */
16544
16545 static int
16546 is_type_tag_for_partial (int tag)
16547 {
16548 switch (tag)
16549 {
16550 #if 0
16551 /* Some types that would be reasonable to generate partial symbols for,
16552 that we don't at present. */
16553 case DW_TAG_array_type:
16554 case DW_TAG_file_type:
16555 case DW_TAG_ptr_to_member_type:
16556 case DW_TAG_set_type:
16557 case DW_TAG_string_type:
16558 case DW_TAG_subroutine_type:
16559 #endif
16560 case DW_TAG_base_type:
16561 case DW_TAG_class_type:
16562 case DW_TAG_interface_type:
16563 case DW_TAG_enumeration_type:
16564 case DW_TAG_structure_type:
16565 case DW_TAG_subrange_type:
16566 case DW_TAG_typedef:
16567 case DW_TAG_union_type:
16568 return 1;
16569 default:
16570 return 0;
16571 }
16572 }
16573
16574 /* Load all DIEs that are interesting for partial symbols into memory. */
16575
16576 static struct partial_die_info *
16577 load_partial_dies (const struct die_reader_specs *reader,
16578 const gdb_byte *info_ptr, int building_psymtab)
16579 {
16580 struct dwarf2_cu *cu = reader->cu;
16581 struct objfile *objfile = cu->objfile;
16582 struct partial_die_info *part_die;
16583 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16584 struct abbrev_info *abbrev;
16585 unsigned int bytes_read;
16586 unsigned int load_all = 0;
16587 int nesting_level = 1;
16588
16589 parent_die = NULL;
16590 last_die = NULL;
16591
16592 gdb_assert (cu->per_cu != NULL);
16593 if (cu->per_cu->load_all_dies)
16594 load_all = 1;
16595
16596 cu->partial_dies
16597 = htab_create_alloc_ex (cu->header.length / 12,
16598 partial_die_hash,
16599 partial_die_eq,
16600 NULL,
16601 &cu->comp_unit_obstack,
16602 hashtab_obstack_allocate,
16603 dummy_obstack_deallocate);
16604
16605 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16606
16607 while (1)
16608 {
16609 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16610
16611 /* A NULL abbrev means the end of a series of children. */
16612 if (abbrev == NULL)
16613 {
16614 if (--nesting_level == 0)
16615 {
16616 /* PART_DIE was probably the last thing allocated on the
16617 comp_unit_obstack, so we could call obstack_free
16618 here. We don't do that because the waste is small,
16619 and will be cleaned up when we're done with this
16620 compilation unit. This way, we're also more robust
16621 against other users of the comp_unit_obstack. */
16622 return first_die;
16623 }
16624 info_ptr += bytes_read;
16625 last_die = parent_die;
16626 parent_die = parent_die->die_parent;
16627 continue;
16628 }
16629
16630 /* Check for template arguments. We never save these; if
16631 they're seen, we just mark the parent, and go on our way. */
16632 if (parent_die != NULL
16633 && cu->language == language_cplus
16634 && (abbrev->tag == DW_TAG_template_type_param
16635 || abbrev->tag == DW_TAG_template_value_param))
16636 {
16637 parent_die->has_template_arguments = 1;
16638
16639 if (!load_all)
16640 {
16641 /* We don't need a partial DIE for the template argument. */
16642 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16643 continue;
16644 }
16645 }
16646
16647 /* We only recurse into c++ subprograms looking for template arguments.
16648 Skip their other children. */
16649 if (!load_all
16650 && cu->language == language_cplus
16651 && parent_die != NULL
16652 && parent_die->tag == DW_TAG_subprogram)
16653 {
16654 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16655 continue;
16656 }
16657
16658 /* Check whether this DIE is interesting enough to save. Normally
16659 we would not be interested in members here, but there may be
16660 later variables referencing them via DW_AT_specification (for
16661 static members). */
16662 if (!load_all
16663 && !is_type_tag_for_partial (abbrev->tag)
16664 && abbrev->tag != DW_TAG_constant
16665 && abbrev->tag != DW_TAG_enumerator
16666 && abbrev->tag != DW_TAG_subprogram
16667 && abbrev->tag != DW_TAG_lexical_block
16668 && abbrev->tag != DW_TAG_variable
16669 && abbrev->tag != DW_TAG_namespace
16670 && abbrev->tag != DW_TAG_module
16671 && abbrev->tag != DW_TAG_member
16672 && abbrev->tag != DW_TAG_imported_unit
16673 && abbrev->tag != DW_TAG_imported_declaration)
16674 {
16675 /* Otherwise we skip to the next sibling, if any. */
16676 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16677 continue;
16678 }
16679
16680 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16681 info_ptr);
16682
16683 /* This two-pass algorithm for processing partial symbols has a
16684 high cost in cache pressure. Thus, handle some simple cases
16685 here which cover the majority of C partial symbols. DIEs
16686 which neither have specification tags in them, nor could have
16687 specification tags elsewhere pointing at them, can simply be
16688 processed and discarded.
16689
16690 This segment is also optional; scan_partial_symbols and
16691 add_partial_symbol will handle these DIEs if we chain
16692 them in normally. When compilers which do not emit large
16693 quantities of duplicate debug information are more common,
16694 this code can probably be removed. */
16695
16696 /* Any complete simple types at the top level (pretty much all
16697 of them, for a language without namespaces), can be processed
16698 directly. */
16699 if (parent_die == NULL
16700 && part_die->has_specification == 0
16701 && part_die->is_declaration == 0
16702 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16703 || part_die->tag == DW_TAG_base_type
16704 || part_die->tag == DW_TAG_subrange_type))
16705 {
16706 if (building_psymtab && part_die->name != NULL)
16707 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16708 VAR_DOMAIN, LOC_TYPEDEF,
16709 &objfile->static_psymbols,
16710 0, cu->language, objfile);
16711 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16712 continue;
16713 }
16714
16715 /* The exception for DW_TAG_typedef with has_children above is
16716 a workaround of GCC PR debug/47510. In the case of this complaint
16717 type_name_no_tag_or_error will error on such types later.
16718
16719 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16720 it could not find the child DIEs referenced later, this is checked
16721 above. In correct DWARF DW_TAG_typedef should have no children. */
16722
16723 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16724 complaint (&symfile_complaints,
16725 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16726 "- DIE at 0x%x [in module %s]"),
16727 to_underlying (part_die->sect_off), objfile_name (objfile));
16728
16729 /* If we're at the second level, and we're an enumerator, and
16730 our parent has no specification (meaning possibly lives in a
16731 namespace elsewhere), then we can add the partial symbol now
16732 instead of queueing it. */
16733 if (part_die->tag == DW_TAG_enumerator
16734 && parent_die != NULL
16735 && parent_die->die_parent == NULL
16736 && parent_die->tag == DW_TAG_enumeration_type
16737 && parent_die->has_specification == 0)
16738 {
16739 if (part_die->name == NULL)
16740 complaint (&symfile_complaints,
16741 _("malformed enumerator DIE ignored"));
16742 else if (building_psymtab)
16743 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16744 VAR_DOMAIN, LOC_CONST,
16745 cu->language == language_cplus
16746 ? &objfile->global_psymbols
16747 : &objfile->static_psymbols,
16748 0, cu->language, objfile);
16749
16750 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16751 continue;
16752 }
16753
16754 /* We'll save this DIE so link it in. */
16755 part_die->die_parent = parent_die;
16756 part_die->die_sibling = NULL;
16757 part_die->die_child = NULL;
16758
16759 if (last_die && last_die == parent_die)
16760 last_die->die_child = part_die;
16761 else if (last_die)
16762 last_die->die_sibling = part_die;
16763
16764 last_die = part_die;
16765
16766 if (first_die == NULL)
16767 first_die = part_die;
16768
16769 /* Maybe add the DIE to the hash table. Not all DIEs that we
16770 find interesting need to be in the hash table, because we
16771 also have the parent/sibling/child chains; only those that we
16772 might refer to by offset later during partial symbol reading.
16773
16774 For now this means things that might have be the target of a
16775 DW_AT_specification, DW_AT_abstract_origin, or
16776 DW_AT_extension. DW_AT_extension will refer only to
16777 namespaces; DW_AT_abstract_origin refers to functions (and
16778 many things under the function DIE, but we do not recurse
16779 into function DIEs during partial symbol reading) and
16780 possibly variables as well; DW_AT_specification refers to
16781 declarations. Declarations ought to have the DW_AT_declaration
16782 flag. It happens that GCC forgets to put it in sometimes, but
16783 only for functions, not for types.
16784
16785 Adding more things than necessary to the hash table is harmless
16786 except for the performance cost. Adding too few will result in
16787 wasted time in find_partial_die, when we reread the compilation
16788 unit with load_all_dies set. */
16789
16790 if (load_all
16791 || abbrev->tag == DW_TAG_constant
16792 || abbrev->tag == DW_TAG_subprogram
16793 || abbrev->tag == DW_TAG_variable
16794 || abbrev->tag == DW_TAG_namespace
16795 || part_die->is_declaration)
16796 {
16797 void **slot;
16798
16799 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16800 to_underlying (part_die->sect_off),
16801 INSERT);
16802 *slot = part_die;
16803 }
16804
16805 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16806
16807 /* For some DIEs we want to follow their children (if any). For C
16808 we have no reason to follow the children of structures; for other
16809 languages we have to, so that we can get at method physnames
16810 to infer fully qualified class names, for DW_AT_specification,
16811 and for C++ template arguments. For C++, we also look one level
16812 inside functions to find template arguments (if the name of the
16813 function does not already contain the template arguments).
16814
16815 For Ada, we need to scan the children of subprograms and lexical
16816 blocks as well because Ada allows the definition of nested
16817 entities that could be interesting for the debugger, such as
16818 nested subprograms for instance. */
16819 if (last_die->has_children
16820 && (load_all
16821 || last_die->tag == DW_TAG_namespace
16822 || last_die->tag == DW_TAG_module
16823 || last_die->tag == DW_TAG_enumeration_type
16824 || (cu->language == language_cplus
16825 && last_die->tag == DW_TAG_subprogram
16826 && (last_die->name == NULL
16827 || strchr (last_die->name, '<') == NULL))
16828 || (cu->language != language_c
16829 && (last_die->tag == DW_TAG_class_type
16830 || last_die->tag == DW_TAG_interface_type
16831 || last_die->tag == DW_TAG_structure_type
16832 || last_die->tag == DW_TAG_union_type))
16833 || (cu->language == language_ada
16834 && (last_die->tag == DW_TAG_subprogram
16835 || last_die->tag == DW_TAG_lexical_block))))
16836 {
16837 nesting_level++;
16838 parent_die = last_die;
16839 continue;
16840 }
16841
16842 /* Otherwise we skip to the next sibling, if any. */
16843 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16844
16845 /* Back to the top, do it again. */
16846 }
16847 }
16848
16849 /* Read a minimal amount of information into the minimal die structure. */
16850
16851 static const gdb_byte *
16852 read_partial_die (const struct die_reader_specs *reader,
16853 struct partial_die_info *part_die,
16854 struct abbrev_info *abbrev, unsigned int abbrev_len,
16855 const gdb_byte *info_ptr)
16856 {
16857 struct dwarf2_cu *cu = reader->cu;
16858 struct objfile *objfile = cu->objfile;
16859 const gdb_byte *buffer = reader->buffer;
16860 unsigned int i;
16861 struct attribute attr;
16862 int has_low_pc_attr = 0;
16863 int has_high_pc_attr = 0;
16864 int high_pc_relative = 0;
16865
16866 memset (part_die, 0, sizeof (struct partial_die_info));
16867
16868 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16869
16870 info_ptr += abbrev_len;
16871
16872 if (abbrev == NULL)
16873 return info_ptr;
16874
16875 part_die->tag = abbrev->tag;
16876 part_die->has_children = abbrev->has_children;
16877
16878 for (i = 0; i < abbrev->num_attrs; ++i)
16879 {
16880 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16881
16882 /* Store the data if it is of an attribute we want to keep in a
16883 partial symbol table. */
16884 switch (attr.name)
16885 {
16886 case DW_AT_name:
16887 switch (part_die->tag)
16888 {
16889 case DW_TAG_compile_unit:
16890 case DW_TAG_partial_unit:
16891 case DW_TAG_type_unit:
16892 /* Compilation units have a DW_AT_name that is a filename, not
16893 a source language identifier. */
16894 case DW_TAG_enumeration_type:
16895 case DW_TAG_enumerator:
16896 /* These tags always have simple identifiers already; no need
16897 to canonicalize them. */
16898 part_die->name = DW_STRING (&attr);
16899 break;
16900 default:
16901 part_die->name
16902 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16903 &objfile->per_bfd->storage_obstack);
16904 break;
16905 }
16906 break;
16907 case DW_AT_linkage_name:
16908 case DW_AT_MIPS_linkage_name:
16909 /* Note that both forms of linkage name might appear. We
16910 assume they will be the same, and we only store the last
16911 one we see. */
16912 if (cu->language == language_ada)
16913 part_die->name = DW_STRING (&attr);
16914 part_die->linkage_name = DW_STRING (&attr);
16915 break;
16916 case DW_AT_low_pc:
16917 has_low_pc_attr = 1;
16918 part_die->lowpc = attr_value_as_address (&attr);
16919 break;
16920 case DW_AT_high_pc:
16921 has_high_pc_attr = 1;
16922 part_die->highpc = attr_value_as_address (&attr);
16923 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16924 high_pc_relative = 1;
16925 break;
16926 case DW_AT_location:
16927 /* Support the .debug_loc offsets. */
16928 if (attr_form_is_block (&attr))
16929 {
16930 part_die->d.locdesc = DW_BLOCK (&attr);
16931 }
16932 else if (attr_form_is_section_offset (&attr))
16933 {
16934 dwarf2_complex_location_expr_complaint ();
16935 }
16936 else
16937 {
16938 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16939 "partial symbol information");
16940 }
16941 break;
16942 case DW_AT_external:
16943 part_die->is_external = DW_UNSND (&attr);
16944 break;
16945 case DW_AT_declaration:
16946 part_die->is_declaration = DW_UNSND (&attr);
16947 break;
16948 case DW_AT_type:
16949 part_die->has_type = 1;
16950 break;
16951 case DW_AT_abstract_origin:
16952 case DW_AT_specification:
16953 case DW_AT_extension:
16954 part_die->has_specification = 1;
16955 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16956 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16957 || cu->per_cu->is_dwz);
16958 break;
16959 case DW_AT_sibling:
16960 /* Ignore absolute siblings, they might point outside of
16961 the current compile unit. */
16962 if (attr.form == DW_FORM_ref_addr)
16963 complaint (&symfile_complaints,
16964 _("ignoring absolute DW_AT_sibling"));
16965 else
16966 {
16967 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16968 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16969
16970 if (sibling_ptr < info_ptr)
16971 complaint (&symfile_complaints,
16972 _("DW_AT_sibling points backwards"));
16973 else if (sibling_ptr > reader->buffer_end)
16974 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16975 else
16976 part_die->sibling = sibling_ptr;
16977 }
16978 break;
16979 case DW_AT_byte_size:
16980 part_die->has_byte_size = 1;
16981 break;
16982 case DW_AT_const_value:
16983 part_die->has_const_value = 1;
16984 break;
16985 case DW_AT_calling_convention:
16986 /* DWARF doesn't provide a way to identify a program's source-level
16987 entry point. DW_AT_calling_convention attributes are only meant
16988 to describe functions' calling conventions.
16989
16990 However, because it's a necessary piece of information in
16991 Fortran, and before DWARF 4 DW_CC_program was the only
16992 piece of debugging information whose definition refers to
16993 a 'main program' at all, several compilers marked Fortran
16994 main programs with DW_CC_program --- even when those
16995 functions use the standard calling conventions.
16996
16997 Although DWARF now specifies a way to provide this
16998 information, we support this practice for backward
16999 compatibility. */
17000 if (DW_UNSND (&attr) == DW_CC_program
17001 && cu->language == language_fortran)
17002 part_die->main_subprogram = 1;
17003 break;
17004 case DW_AT_inline:
17005 if (DW_UNSND (&attr) == DW_INL_inlined
17006 || DW_UNSND (&attr) == DW_INL_declared_inlined)
17007 part_die->may_be_inlined = 1;
17008 break;
17009
17010 case DW_AT_import:
17011 if (part_die->tag == DW_TAG_imported_unit)
17012 {
17013 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
17014 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17015 || cu->per_cu->is_dwz);
17016 }
17017 break;
17018
17019 case DW_AT_main_subprogram:
17020 part_die->main_subprogram = DW_UNSND (&attr);
17021 break;
17022
17023 default:
17024 break;
17025 }
17026 }
17027
17028 if (high_pc_relative)
17029 part_die->highpc += part_die->lowpc;
17030
17031 if (has_low_pc_attr && has_high_pc_attr)
17032 {
17033 /* When using the GNU linker, .gnu.linkonce. sections are used to
17034 eliminate duplicate copies of functions and vtables and such.
17035 The linker will arbitrarily choose one and discard the others.
17036 The AT_*_pc values for such functions refer to local labels in
17037 these sections. If the section from that file was discarded, the
17038 labels are not in the output, so the relocs get a value of 0.
17039 If this is a discarded function, mark the pc bounds as invalid,
17040 so that GDB will ignore it. */
17041 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
17042 {
17043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17044
17045 complaint (&symfile_complaints,
17046 _("DW_AT_low_pc %s is zero "
17047 "for DIE at 0x%x [in module %s]"),
17048 paddress (gdbarch, part_die->lowpc),
17049 to_underlying (part_die->sect_off), objfile_name (objfile));
17050 }
17051 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
17052 else if (part_die->lowpc >= part_die->highpc)
17053 {
17054 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17055
17056 complaint (&symfile_complaints,
17057 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
17058 "for DIE at 0x%x [in module %s]"),
17059 paddress (gdbarch, part_die->lowpc),
17060 paddress (gdbarch, part_die->highpc),
17061 to_underlying (part_die->sect_off),
17062 objfile_name (objfile));
17063 }
17064 else
17065 part_die->has_pc_info = 1;
17066 }
17067
17068 return info_ptr;
17069 }
17070
17071 /* Find a cached partial DIE at OFFSET in CU. */
17072
17073 static struct partial_die_info *
17074 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
17075 {
17076 struct partial_die_info *lookup_die = NULL;
17077 struct partial_die_info part_die;
17078
17079 part_die.sect_off = sect_off;
17080 lookup_die = ((struct partial_die_info *)
17081 htab_find_with_hash (cu->partial_dies, &part_die,
17082 to_underlying (sect_off)));
17083
17084 return lookup_die;
17085 }
17086
17087 /* Find a partial DIE at OFFSET, which may or may not be in CU,
17088 except in the case of .debug_types DIEs which do not reference
17089 outside their CU (they do however referencing other types via
17090 DW_FORM_ref_sig8). */
17091
17092 static struct partial_die_info *
17093 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
17094 {
17095 struct objfile *objfile = cu->objfile;
17096 struct dwarf2_per_cu_data *per_cu = NULL;
17097 struct partial_die_info *pd = NULL;
17098
17099 if (offset_in_dwz == cu->per_cu->is_dwz
17100 && offset_in_cu_p (&cu->header, sect_off))
17101 {
17102 pd = find_partial_die_in_comp_unit (sect_off, cu);
17103 if (pd != NULL)
17104 return pd;
17105 /* We missed recording what we needed.
17106 Load all dies and try again. */
17107 per_cu = cu->per_cu;
17108 }
17109 else
17110 {
17111 /* TUs don't reference other CUs/TUs (except via type signatures). */
17112 if (cu->per_cu->is_debug_types)
17113 {
17114 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
17115 " external reference to offset 0x%x [in module %s].\n"),
17116 to_underlying (cu->header.sect_off), to_underlying (sect_off),
17117 bfd_get_filename (objfile->obfd));
17118 }
17119 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
17120 objfile);
17121
17122 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
17123 load_partial_comp_unit (per_cu);
17124
17125 per_cu->cu->last_used = 0;
17126 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17127 }
17128
17129 /* If we didn't find it, and not all dies have been loaded,
17130 load them all and try again. */
17131
17132 if (pd == NULL && per_cu->load_all_dies == 0)
17133 {
17134 per_cu->load_all_dies = 1;
17135
17136 /* This is nasty. When we reread the DIEs, somewhere up the call chain
17137 THIS_CU->cu may already be in use. So we can't just free it and
17138 replace its DIEs with the ones we read in. Instead, we leave those
17139 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
17140 and clobber THIS_CU->cu->partial_dies with the hash table for the new
17141 set. */
17142 load_partial_comp_unit (per_cu);
17143
17144 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17145 }
17146
17147 if (pd == NULL)
17148 internal_error (__FILE__, __LINE__,
17149 _("could not find partial DIE 0x%x "
17150 "in cache [from module %s]\n"),
17151 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
17152 return pd;
17153 }
17154
17155 /* See if we can figure out if the class lives in a namespace. We do
17156 this by looking for a member function; its demangled name will
17157 contain namespace info, if there is any. */
17158
17159 static void
17160 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
17161 struct dwarf2_cu *cu)
17162 {
17163 /* NOTE: carlton/2003-10-07: Getting the info this way changes
17164 what template types look like, because the demangler
17165 frequently doesn't give the same name as the debug info. We
17166 could fix this by only using the demangled name to get the
17167 prefix (but see comment in read_structure_type). */
17168
17169 struct partial_die_info *real_pdi;
17170 struct partial_die_info *child_pdi;
17171
17172 /* If this DIE (this DIE's specification, if any) has a parent, then
17173 we should not do this. We'll prepend the parent's fully qualified
17174 name when we create the partial symbol. */
17175
17176 real_pdi = struct_pdi;
17177 while (real_pdi->has_specification)
17178 real_pdi = find_partial_die (real_pdi->spec_offset,
17179 real_pdi->spec_is_dwz, cu);
17180
17181 if (real_pdi->die_parent != NULL)
17182 return;
17183
17184 for (child_pdi = struct_pdi->die_child;
17185 child_pdi != NULL;
17186 child_pdi = child_pdi->die_sibling)
17187 {
17188 if (child_pdi->tag == DW_TAG_subprogram
17189 && child_pdi->linkage_name != NULL)
17190 {
17191 char *actual_class_name
17192 = language_class_name_from_physname (cu->language_defn,
17193 child_pdi->linkage_name);
17194 if (actual_class_name != NULL)
17195 {
17196 struct_pdi->name
17197 = ((const char *)
17198 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17199 actual_class_name,
17200 strlen (actual_class_name)));
17201 xfree (actual_class_name);
17202 }
17203 break;
17204 }
17205 }
17206 }
17207
17208 /* Adjust PART_DIE before generating a symbol for it. This function
17209 may set the is_external flag or change the DIE's name. */
17210
17211 static void
17212 fixup_partial_die (struct partial_die_info *part_die,
17213 struct dwarf2_cu *cu)
17214 {
17215 /* Once we've fixed up a die, there's no point in doing so again.
17216 This also avoids a memory leak if we were to call
17217 guess_partial_die_structure_name multiple times. */
17218 if (part_die->fixup_called)
17219 return;
17220
17221 /* If we found a reference attribute and the DIE has no name, try
17222 to find a name in the referred to DIE. */
17223
17224 if (part_die->name == NULL && part_die->has_specification)
17225 {
17226 struct partial_die_info *spec_die;
17227
17228 spec_die = find_partial_die (part_die->spec_offset,
17229 part_die->spec_is_dwz, cu);
17230
17231 fixup_partial_die (spec_die, cu);
17232
17233 if (spec_die->name)
17234 {
17235 part_die->name = spec_die->name;
17236
17237 /* Copy DW_AT_external attribute if it is set. */
17238 if (spec_die->is_external)
17239 part_die->is_external = spec_die->is_external;
17240 }
17241 }
17242
17243 /* Set default names for some unnamed DIEs. */
17244
17245 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
17246 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
17247
17248 /* If there is no parent die to provide a namespace, and there are
17249 children, see if we can determine the namespace from their linkage
17250 name. */
17251 if (cu->language == language_cplus
17252 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17253 && part_die->die_parent == NULL
17254 && part_die->has_children
17255 && (part_die->tag == DW_TAG_class_type
17256 || part_die->tag == DW_TAG_structure_type
17257 || part_die->tag == DW_TAG_union_type))
17258 guess_partial_die_structure_name (part_die, cu);
17259
17260 /* GCC might emit a nameless struct or union that has a linkage
17261 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17262 if (part_die->name == NULL
17263 && (part_die->tag == DW_TAG_class_type
17264 || part_die->tag == DW_TAG_interface_type
17265 || part_die->tag == DW_TAG_structure_type
17266 || part_die->tag == DW_TAG_union_type)
17267 && part_die->linkage_name != NULL)
17268 {
17269 char *demangled;
17270
17271 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
17272 if (demangled)
17273 {
17274 const char *base;
17275
17276 /* Strip any leading namespaces/classes, keep only the base name.
17277 DW_AT_name for named DIEs does not contain the prefixes. */
17278 base = strrchr (demangled, ':');
17279 if (base && base > demangled && base[-1] == ':')
17280 base++;
17281 else
17282 base = demangled;
17283
17284 part_die->name
17285 = ((const char *)
17286 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17287 base, strlen (base)));
17288 xfree (demangled);
17289 }
17290 }
17291
17292 part_die->fixup_called = 1;
17293 }
17294
17295 /* Read an attribute value described by an attribute form. */
17296
17297 static const gdb_byte *
17298 read_attribute_value (const struct die_reader_specs *reader,
17299 struct attribute *attr, unsigned form,
17300 LONGEST implicit_const, const gdb_byte *info_ptr)
17301 {
17302 struct dwarf2_cu *cu = reader->cu;
17303 struct objfile *objfile = cu->objfile;
17304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17305 bfd *abfd = reader->abfd;
17306 struct comp_unit_head *cu_header = &cu->header;
17307 unsigned int bytes_read;
17308 struct dwarf_block *blk;
17309
17310 attr->form = (enum dwarf_form) form;
17311 switch (form)
17312 {
17313 case DW_FORM_ref_addr:
17314 if (cu->header.version == 2)
17315 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17316 else
17317 DW_UNSND (attr) = read_offset (abfd, info_ptr,
17318 &cu->header, &bytes_read);
17319 info_ptr += bytes_read;
17320 break;
17321 case DW_FORM_GNU_ref_alt:
17322 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17323 info_ptr += bytes_read;
17324 break;
17325 case DW_FORM_addr:
17326 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17327 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
17328 info_ptr += bytes_read;
17329 break;
17330 case DW_FORM_block2:
17331 blk = dwarf_alloc_block (cu);
17332 blk->size = read_2_bytes (abfd, info_ptr);
17333 info_ptr += 2;
17334 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17335 info_ptr += blk->size;
17336 DW_BLOCK (attr) = blk;
17337 break;
17338 case DW_FORM_block4:
17339 blk = dwarf_alloc_block (cu);
17340 blk->size = read_4_bytes (abfd, info_ptr);
17341 info_ptr += 4;
17342 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17343 info_ptr += blk->size;
17344 DW_BLOCK (attr) = blk;
17345 break;
17346 case DW_FORM_data2:
17347 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
17348 info_ptr += 2;
17349 break;
17350 case DW_FORM_data4:
17351 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
17352 info_ptr += 4;
17353 break;
17354 case DW_FORM_data8:
17355 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
17356 info_ptr += 8;
17357 break;
17358 case DW_FORM_data16:
17359 blk = dwarf_alloc_block (cu);
17360 blk->size = 16;
17361 blk->data = read_n_bytes (abfd, info_ptr, 16);
17362 info_ptr += 16;
17363 DW_BLOCK (attr) = blk;
17364 break;
17365 case DW_FORM_sec_offset:
17366 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17367 info_ptr += bytes_read;
17368 break;
17369 case DW_FORM_string:
17370 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
17371 DW_STRING_IS_CANONICAL (attr) = 0;
17372 info_ptr += bytes_read;
17373 break;
17374 case DW_FORM_strp:
17375 if (!cu->per_cu->is_dwz)
17376 {
17377 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
17378 &bytes_read);
17379 DW_STRING_IS_CANONICAL (attr) = 0;
17380 info_ptr += bytes_read;
17381 break;
17382 }
17383 /* FALLTHROUGH */
17384 case DW_FORM_line_strp:
17385 if (!cu->per_cu->is_dwz)
17386 {
17387 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
17388 cu_header, &bytes_read);
17389 DW_STRING_IS_CANONICAL (attr) = 0;
17390 info_ptr += bytes_read;
17391 break;
17392 }
17393 /* FALLTHROUGH */
17394 case DW_FORM_GNU_strp_alt:
17395 {
17396 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17397 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
17398 &bytes_read);
17399
17400 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
17401 DW_STRING_IS_CANONICAL (attr) = 0;
17402 info_ptr += bytes_read;
17403 }
17404 break;
17405 case DW_FORM_exprloc:
17406 case DW_FORM_block:
17407 blk = dwarf_alloc_block (cu);
17408 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17409 info_ptr += bytes_read;
17410 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17411 info_ptr += blk->size;
17412 DW_BLOCK (attr) = blk;
17413 break;
17414 case DW_FORM_block1:
17415 blk = dwarf_alloc_block (cu);
17416 blk->size = read_1_byte (abfd, info_ptr);
17417 info_ptr += 1;
17418 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17419 info_ptr += blk->size;
17420 DW_BLOCK (attr) = blk;
17421 break;
17422 case DW_FORM_data1:
17423 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17424 info_ptr += 1;
17425 break;
17426 case DW_FORM_flag:
17427 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17428 info_ptr += 1;
17429 break;
17430 case DW_FORM_flag_present:
17431 DW_UNSND (attr) = 1;
17432 break;
17433 case DW_FORM_sdata:
17434 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17435 info_ptr += bytes_read;
17436 break;
17437 case DW_FORM_udata:
17438 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17439 info_ptr += bytes_read;
17440 break;
17441 case DW_FORM_ref1:
17442 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17443 + read_1_byte (abfd, info_ptr));
17444 info_ptr += 1;
17445 break;
17446 case DW_FORM_ref2:
17447 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17448 + read_2_bytes (abfd, info_ptr));
17449 info_ptr += 2;
17450 break;
17451 case DW_FORM_ref4:
17452 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17453 + read_4_bytes (abfd, info_ptr));
17454 info_ptr += 4;
17455 break;
17456 case DW_FORM_ref8:
17457 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17458 + read_8_bytes (abfd, info_ptr));
17459 info_ptr += 8;
17460 break;
17461 case DW_FORM_ref_sig8:
17462 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
17463 info_ptr += 8;
17464 break;
17465 case DW_FORM_ref_udata:
17466 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17467 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
17468 info_ptr += bytes_read;
17469 break;
17470 case DW_FORM_indirect:
17471 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17472 info_ptr += bytes_read;
17473 if (form == DW_FORM_implicit_const)
17474 {
17475 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17476 info_ptr += bytes_read;
17477 }
17478 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
17479 info_ptr);
17480 break;
17481 case DW_FORM_implicit_const:
17482 DW_SND (attr) = implicit_const;
17483 break;
17484 case DW_FORM_GNU_addr_index:
17485 if (reader->dwo_file == NULL)
17486 {
17487 /* For now flag a hard error.
17488 Later we can turn this into a complaint. */
17489 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17490 dwarf_form_name (form),
17491 bfd_get_filename (abfd));
17492 }
17493 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
17494 info_ptr += bytes_read;
17495 break;
17496 case DW_FORM_GNU_str_index:
17497 if (reader->dwo_file == NULL)
17498 {
17499 /* For now flag a hard error.
17500 Later we can turn this into a complaint if warranted. */
17501 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17502 dwarf_form_name (form),
17503 bfd_get_filename (abfd));
17504 }
17505 {
17506 ULONGEST str_index =
17507 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17508
17509 DW_STRING (attr) = read_str_index (reader, str_index);
17510 DW_STRING_IS_CANONICAL (attr) = 0;
17511 info_ptr += bytes_read;
17512 }
17513 break;
17514 default:
17515 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
17516 dwarf_form_name (form),
17517 bfd_get_filename (abfd));
17518 }
17519
17520 /* Super hack. */
17521 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
17522 attr->form = DW_FORM_GNU_ref_alt;
17523
17524 /* We have seen instances where the compiler tried to emit a byte
17525 size attribute of -1 which ended up being encoded as an unsigned
17526 0xffffffff. Although 0xffffffff is technically a valid size value,
17527 an object of this size seems pretty unlikely so we can relatively
17528 safely treat these cases as if the size attribute was invalid and
17529 treat them as zero by default. */
17530 if (attr->name == DW_AT_byte_size
17531 && form == DW_FORM_data4
17532 && DW_UNSND (attr) >= 0xffffffff)
17533 {
17534 complaint
17535 (&symfile_complaints,
17536 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17537 hex_string (DW_UNSND (attr)));
17538 DW_UNSND (attr) = 0;
17539 }
17540
17541 return info_ptr;
17542 }
17543
17544 /* Read an attribute described by an abbreviated attribute. */
17545
17546 static const gdb_byte *
17547 read_attribute (const struct die_reader_specs *reader,
17548 struct attribute *attr, struct attr_abbrev *abbrev,
17549 const gdb_byte *info_ptr)
17550 {
17551 attr->name = abbrev->name;
17552 return read_attribute_value (reader, attr, abbrev->form,
17553 abbrev->implicit_const, info_ptr);
17554 }
17555
17556 /* Read dwarf information from a buffer. */
17557
17558 static unsigned int
17559 read_1_byte (bfd *abfd, const gdb_byte *buf)
17560 {
17561 return bfd_get_8 (abfd, buf);
17562 }
17563
17564 static int
17565 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17566 {
17567 return bfd_get_signed_8 (abfd, buf);
17568 }
17569
17570 static unsigned int
17571 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17572 {
17573 return bfd_get_16 (abfd, buf);
17574 }
17575
17576 static int
17577 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17578 {
17579 return bfd_get_signed_16 (abfd, buf);
17580 }
17581
17582 static unsigned int
17583 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17584 {
17585 return bfd_get_32 (abfd, buf);
17586 }
17587
17588 static int
17589 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17590 {
17591 return bfd_get_signed_32 (abfd, buf);
17592 }
17593
17594 static ULONGEST
17595 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17596 {
17597 return bfd_get_64 (abfd, buf);
17598 }
17599
17600 static CORE_ADDR
17601 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17602 unsigned int *bytes_read)
17603 {
17604 struct comp_unit_head *cu_header = &cu->header;
17605 CORE_ADDR retval = 0;
17606
17607 if (cu_header->signed_addr_p)
17608 {
17609 switch (cu_header->addr_size)
17610 {
17611 case 2:
17612 retval = bfd_get_signed_16 (abfd, buf);
17613 break;
17614 case 4:
17615 retval = bfd_get_signed_32 (abfd, buf);
17616 break;
17617 case 8:
17618 retval = bfd_get_signed_64 (abfd, buf);
17619 break;
17620 default:
17621 internal_error (__FILE__, __LINE__,
17622 _("read_address: bad switch, signed [in module %s]"),
17623 bfd_get_filename (abfd));
17624 }
17625 }
17626 else
17627 {
17628 switch (cu_header->addr_size)
17629 {
17630 case 2:
17631 retval = bfd_get_16 (abfd, buf);
17632 break;
17633 case 4:
17634 retval = bfd_get_32 (abfd, buf);
17635 break;
17636 case 8:
17637 retval = bfd_get_64 (abfd, buf);
17638 break;
17639 default:
17640 internal_error (__FILE__, __LINE__,
17641 _("read_address: bad switch, "
17642 "unsigned [in module %s]"),
17643 bfd_get_filename (abfd));
17644 }
17645 }
17646
17647 *bytes_read = cu_header->addr_size;
17648 return retval;
17649 }
17650
17651 /* Read the initial length from a section. The (draft) DWARF 3
17652 specification allows the initial length to take up either 4 bytes
17653 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17654 bytes describe the length and all offsets will be 8 bytes in length
17655 instead of 4.
17656
17657 An older, non-standard 64-bit format is also handled by this
17658 function. The older format in question stores the initial length
17659 as an 8-byte quantity without an escape value. Lengths greater
17660 than 2^32 aren't very common which means that the initial 4 bytes
17661 is almost always zero. Since a length value of zero doesn't make
17662 sense for the 32-bit format, this initial zero can be considered to
17663 be an escape value which indicates the presence of the older 64-bit
17664 format. As written, the code can't detect (old format) lengths
17665 greater than 4GB. If it becomes necessary to handle lengths
17666 somewhat larger than 4GB, we could allow other small values (such
17667 as the non-sensical values of 1, 2, and 3) to also be used as
17668 escape values indicating the presence of the old format.
17669
17670 The value returned via bytes_read should be used to increment the
17671 relevant pointer after calling read_initial_length().
17672
17673 [ Note: read_initial_length() and read_offset() are based on the
17674 document entitled "DWARF Debugging Information Format", revision
17675 3, draft 8, dated November 19, 2001. This document was obtained
17676 from:
17677
17678 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17679
17680 This document is only a draft and is subject to change. (So beware.)
17681
17682 Details regarding the older, non-standard 64-bit format were
17683 determined empirically by examining 64-bit ELF files produced by
17684 the SGI toolchain on an IRIX 6.5 machine.
17685
17686 - Kevin, July 16, 2002
17687 ] */
17688
17689 static LONGEST
17690 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17691 {
17692 LONGEST length = bfd_get_32 (abfd, buf);
17693
17694 if (length == 0xffffffff)
17695 {
17696 length = bfd_get_64 (abfd, buf + 4);
17697 *bytes_read = 12;
17698 }
17699 else if (length == 0)
17700 {
17701 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17702 length = bfd_get_64 (abfd, buf);
17703 *bytes_read = 8;
17704 }
17705 else
17706 {
17707 *bytes_read = 4;
17708 }
17709
17710 return length;
17711 }
17712
17713 /* Cover function for read_initial_length.
17714 Returns the length of the object at BUF, and stores the size of the
17715 initial length in *BYTES_READ and stores the size that offsets will be in
17716 *OFFSET_SIZE.
17717 If the initial length size is not equivalent to that specified in
17718 CU_HEADER then issue a complaint.
17719 This is useful when reading non-comp-unit headers. */
17720
17721 static LONGEST
17722 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17723 const struct comp_unit_head *cu_header,
17724 unsigned int *bytes_read,
17725 unsigned int *offset_size)
17726 {
17727 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17728
17729 gdb_assert (cu_header->initial_length_size == 4
17730 || cu_header->initial_length_size == 8
17731 || cu_header->initial_length_size == 12);
17732
17733 if (cu_header->initial_length_size != *bytes_read)
17734 complaint (&symfile_complaints,
17735 _("intermixed 32-bit and 64-bit DWARF sections"));
17736
17737 *offset_size = (*bytes_read == 4) ? 4 : 8;
17738 return length;
17739 }
17740
17741 /* Read an offset from the data stream. The size of the offset is
17742 given by cu_header->offset_size. */
17743
17744 static LONGEST
17745 read_offset (bfd *abfd, const gdb_byte *buf,
17746 const struct comp_unit_head *cu_header,
17747 unsigned int *bytes_read)
17748 {
17749 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17750
17751 *bytes_read = cu_header->offset_size;
17752 return offset;
17753 }
17754
17755 /* Read an offset from the data stream. */
17756
17757 static LONGEST
17758 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17759 {
17760 LONGEST retval = 0;
17761
17762 switch (offset_size)
17763 {
17764 case 4:
17765 retval = bfd_get_32 (abfd, buf);
17766 break;
17767 case 8:
17768 retval = bfd_get_64 (abfd, buf);
17769 break;
17770 default:
17771 internal_error (__FILE__, __LINE__,
17772 _("read_offset_1: bad switch [in module %s]"),
17773 bfd_get_filename (abfd));
17774 }
17775
17776 return retval;
17777 }
17778
17779 static const gdb_byte *
17780 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17781 {
17782 /* If the size of a host char is 8 bits, we can return a pointer
17783 to the buffer, otherwise we have to copy the data to a buffer
17784 allocated on the temporary obstack. */
17785 gdb_assert (HOST_CHAR_BIT == 8);
17786 return buf;
17787 }
17788
17789 static const char *
17790 read_direct_string (bfd *abfd, const gdb_byte *buf,
17791 unsigned int *bytes_read_ptr)
17792 {
17793 /* If the size of a host char is 8 bits, we can return a pointer
17794 to the string, otherwise we have to copy the string to a buffer
17795 allocated on the temporary obstack. */
17796 gdb_assert (HOST_CHAR_BIT == 8);
17797 if (*buf == '\0')
17798 {
17799 *bytes_read_ptr = 1;
17800 return NULL;
17801 }
17802 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17803 return (const char *) buf;
17804 }
17805
17806 /* Return pointer to string at section SECT offset STR_OFFSET with error
17807 reporting strings FORM_NAME and SECT_NAME. */
17808
17809 static const char *
17810 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17811 struct dwarf2_section_info *sect,
17812 const char *form_name,
17813 const char *sect_name)
17814 {
17815 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17816 if (sect->buffer == NULL)
17817 error (_("%s used without %s section [in module %s]"),
17818 form_name, sect_name, bfd_get_filename (abfd));
17819 if (str_offset >= sect->size)
17820 error (_("%s pointing outside of %s section [in module %s]"),
17821 form_name, sect_name, bfd_get_filename (abfd));
17822 gdb_assert (HOST_CHAR_BIT == 8);
17823 if (sect->buffer[str_offset] == '\0')
17824 return NULL;
17825 return (const char *) (sect->buffer + str_offset);
17826 }
17827
17828 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17829
17830 static const char *
17831 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17832 {
17833 return read_indirect_string_at_offset_from (abfd, str_offset,
17834 &dwarf2_per_objfile->str,
17835 "DW_FORM_strp", ".debug_str");
17836 }
17837
17838 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17839
17840 static const char *
17841 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17842 {
17843 return read_indirect_string_at_offset_from (abfd, str_offset,
17844 &dwarf2_per_objfile->line_str,
17845 "DW_FORM_line_strp",
17846 ".debug_line_str");
17847 }
17848
17849 /* Read a string at offset STR_OFFSET in the .debug_str section from
17850 the .dwz file DWZ. Throw an error if the offset is too large. If
17851 the string consists of a single NUL byte, return NULL; otherwise
17852 return a pointer to the string. */
17853
17854 static const char *
17855 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17856 {
17857 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17858
17859 if (dwz->str.buffer == NULL)
17860 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17861 "section [in module %s]"),
17862 bfd_get_filename (dwz->dwz_bfd));
17863 if (str_offset >= dwz->str.size)
17864 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17865 ".debug_str section [in module %s]"),
17866 bfd_get_filename (dwz->dwz_bfd));
17867 gdb_assert (HOST_CHAR_BIT == 8);
17868 if (dwz->str.buffer[str_offset] == '\0')
17869 return NULL;
17870 return (const char *) (dwz->str.buffer + str_offset);
17871 }
17872
17873 /* Return pointer to string at .debug_str offset as read from BUF.
17874 BUF is assumed to be in a compilation unit described by CU_HEADER.
17875 Return *BYTES_READ_PTR count of bytes read from BUF. */
17876
17877 static const char *
17878 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17879 const struct comp_unit_head *cu_header,
17880 unsigned int *bytes_read_ptr)
17881 {
17882 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17883
17884 return read_indirect_string_at_offset (abfd, str_offset);
17885 }
17886
17887 /* Return pointer to string at .debug_line_str offset as read from BUF.
17888 BUF is assumed to be in a compilation unit described by CU_HEADER.
17889 Return *BYTES_READ_PTR count of bytes read from BUF. */
17890
17891 static const char *
17892 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17893 const struct comp_unit_head *cu_header,
17894 unsigned int *bytes_read_ptr)
17895 {
17896 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17897
17898 return read_indirect_line_string_at_offset (abfd, str_offset);
17899 }
17900
17901 ULONGEST
17902 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17903 unsigned int *bytes_read_ptr)
17904 {
17905 ULONGEST result;
17906 unsigned int num_read;
17907 int shift;
17908 unsigned char byte;
17909
17910 result = 0;
17911 shift = 0;
17912 num_read = 0;
17913 while (1)
17914 {
17915 byte = bfd_get_8 (abfd, buf);
17916 buf++;
17917 num_read++;
17918 result |= ((ULONGEST) (byte & 127) << shift);
17919 if ((byte & 128) == 0)
17920 {
17921 break;
17922 }
17923 shift += 7;
17924 }
17925 *bytes_read_ptr = num_read;
17926 return result;
17927 }
17928
17929 static LONGEST
17930 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17931 unsigned int *bytes_read_ptr)
17932 {
17933 LONGEST result;
17934 int shift, num_read;
17935 unsigned char byte;
17936
17937 result = 0;
17938 shift = 0;
17939 num_read = 0;
17940 while (1)
17941 {
17942 byte = bfd_get_8 (abfd, buf);
17943 buf++;
17944 num_read++;
17945 result |= ((LONGEST) (byte & 127) << shift);
17946 shift += 7;
17947 if ((byte & 128) == 0)
17948 {
17949 break;
17950 }
17951 }
17952 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17953 result |= -(((LONGEST) 1) << shift);
17954 *bytes_read_ptr = num_read;
17955 return result;
17956 }
17957
17958 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17959 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17960 ADDR_SIZE is the size of addresses from the CU header. */
17961
17962 static CORE_ADDR
17963 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17964 {
17965 struct objfile *objfile = dwarf2_per_objfile->objfile;
17966 bfd *abfd = objfile->obfd;
17967 const gdb_byte *info_ptr;
17968
17969 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17970 if (dwarf2_per_objfile->addr.buffer == NULL)
17971 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17972 objfile_name (objfile));
17973 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17974 error (_("DW_FORM_addr_index pointing outside of "
17975 ".debug_addr section [in module %s]"),
17976 objfile_name (objfile));
17977 info_ptr = (dwarf2_per_objfile->addr.buffer
17978 + addr_base + addr_index * addr_size);
17979 if (addr_size == 4)
17980 return bfd_get_32 (abfd, info_ptr);
17981 else
17982 return bfd_get_64 (abfd, info_ptr);
17983 }
17984
17985 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17986
17987 static CORE_ADDR
17988 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17989 {
17990 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17991 }
17992
17993 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17994
17995 static CORE_ADDR
17996 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17997 unsigned int *bytes_read)
17998 {
17999 bfd *abfd = cu->objfile->obfd;
18000 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18001
18002 return read_addr_index (cu, addr_index);
18003 }
18004
18005 /* Data structure to pass results from dwarf2_read_addr_index_reader
18006 back to dwarf2_read_addr_index. */
18007
18008 struct dwarf2_read_addr_index_data
18009 {
18010 ULONGEST addr_base;
18011 int addr_size;
18012 };
18013
18014 /* die_reader_func for dwarf2_read_addr_index. */
18015
18016 static void
18017 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
18018 const gdb_byte *info_ptr,
18019 struct die_info *comp_unit_die,
18020 int has_children,
18021 void *data)
18022 {
18023 struct dwarf2_cu *cu = reader->cu;
18024 struct dwarf2_read_addr_index_data *aidata =
18025 (struct dwarf2_read_addr_index_data *) data;
18026
18027 aidata->addr_base = cu->addr_base;
18028 aidata->addr_size = cu->header.addr_size;
18029 }
18030
18031 /* Given an index in .debug_addr, fetch the value.
18032 NOTE: This can be called during dwarf expression evaluation,
18033 long after the debug information has been read, and thus per_cu->cu
18034 may no longer exist. */
18035
18036 CORE_ADDR
18037 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
18038 unsigned int addr_index)
18039 {
18040 struct objfile *objfile = per_cu->objfile;
18041 struct dwarf2_cu *cu = per_cu->cu;
18042 ULONGEST addr_base;
18043 int addr_size;
18044
18045 /* This is intended to be called from outside this file. */
18046 dw2_setup (objfile);
18047
18048 /* We need addr_base and addr_size.
18049 If we don't have PER_CU->cu, we have to get it.
18050 Nasty, but the alternative is storing the needed info in PER_CU,
18051 which at this point doesn't seem justified: it's not clear how frequently
18052 it would get used and it would increase the size of every PER_CU.
18053 Entry points like dwarf2_per_cu_addr_size do a similar thing
18054 so we're not in uncharted territory here.
18055 Alas we need to be a bit more complicated as addr_base is contained
18056 in the DIE.
18057
18058 We don't need to read the entire CU(/TU).
18059 We just need the header and top level die.
18060
18061 IWBN to use the aging mechanism to let us lazily later discard the CU.
18062 For now we skip this optimization. */
18063
18064 if (cu != NULL)
18065 {
18066 addr_base = cu->addr_base;
18067 addr_size = cu->header.addr_size;
18068 }
18069 else
18070 {
18071 struct dwarf2_read_addr_index_data aidata;
18072
18073 /* Note: We can't use init_cutu_and_read_dies_simple here,
18074 we need addr_base. */
18075 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
18076 dwarf2_read_addr_index_reader, &aidata);
18077 addr_base = aidata.addr_base;
18078 addr_size = aidata.addr_size;
18079 }
18080
18081 return read_addr_index_1 (addr_index, addr_base, addr_size);
18082 }
18083
18084 /* Given a DW_FORM_GNU_str_index, fetch the string.
18085 This is only used by the Fission support. */
18086
18087 static const char *
18088 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18089 {
18090 struct objfile *objfile = dwarf2_per_objfile->objfile;
18091 const char *objf_name = objfile_name (objfile);
18092 bfd *abfd = objfile->obfd;
18093 struct dwarf2_cu *cu = reader->cu;
18094 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
18095 struct dwarf2_section_info *str_offsets_section =
18096 &reader->dwo_file->sections.str_offsets;
18097 const gdb_byte *info_ptr;
18098 ULONGEST str_offset;
18099 static const char form_name[] = "DW_FORM_GNU_str_index";
18100
18101 dwarf2_read_section (objfile, str_section);
18102 dwarf2_read_section (objfile, str_offsets_section);
18103 if (str_section->buffer == NULL)
18104 error (_("%s used without .debug_str.dwo section"
18105 " in CU at offset 0x%x [in module %s]"),
18106 form_name, to_underlying (cu->header.sect_off), objf_name);
18107 if (str_offsets_section->buffer == NULL)
18108 error (_("%s used without .debug_str_offsets.dwo section"
18109 " in CU at offset 0x%x [in module %s]"),
18110 form_name, to_underlying (cu->header.sect_off), objf_name);
18111 if (str_index * cu->header.offset_size >= str_offsets_section->size)
18112 error (_("%s pointing outside of .debug_str_offsets.dwo"
18113 " section in CU at offset 0x%x [in module %s]"),
18114 form_name, to_underlying (cu->header.sect_off), objf_name);
18115 info_ptr = (str_offsets_section->buffer
18116 + str_index * cu->header.offset_size);
18117 if (cu->header.offset_size == 4)
18118 str_offset = bfd_get_32 (abfd, info_ptr);
18119 else
18120 str_offset = bfd_get_64 (abfd, info_ptr);
18121 if (str_offset >= str_section->size)
18122 error (_("Offset from %s pointing outside of"
18123 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
18124 form_name, to_underlying (cu->header.sect_off), objf_name);
18125 return (const char *) (str_section->buffer + str_offset);
18126 }
18127
18128 /* Return the length of an LEB128 number in BUF. */
18129
18130 static int
18131 leb128_size (const gdb_byte *buf)
18132 {
18133 const gdb_byte *begin = buf;
18134 gdb_byte byte;
18135
18136 while (1)
18137 {
18138 byte = *buf++;
18139 if ((byte & 128) == 0)
18140 return buf - begin;
18141 }
18142 }
18143
18144 static void
18145 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
18146 {
18147 switch (lang)
18148 {
18149 case DW_LANG_C89:
18150 case DW_LANG_C99:
18151 case DW_LANG_C11:
18152 case DW_LANG_C:
18153 case DW_LANG_UPC:
18154 cu->language = language_c;
18155 break;
18156 case DW_LANG_Java:
18157 case DW_LANG_C_plus_plus:
18158 case DW_LANG_C_plus_plus_11:
18159 case DW_LANG_C_plus_plus_14:
18160 cu->language = language_cplus;
18161 break;
18162 case DW_LANG_D:
18163 cu->language = language_d;
18164 break;
18165 case DW_LANG_Fortran77:
18166 case DW_LANG_Fortran90:
18167 case DW_LANG_Fortran95:
18168 case DW_LANG_Fortran03:
18169 case DW_LANG_Fortran08:
18170 cu->language = language_fortran;
18171 break;
18172 case DW_LANG_Go:
18173 cu->language = language_go;
18174 break;
18175 case DW_LANG_Mips_Assembler:
18176 cu->language = language_asm;
18177 break;
18178 case DW_LANG_Ada83:
18179 case DW_LANG_Ada95:
18180 cu->language = language_ada;
18181 break;
18182 case DW_LANG_Modula2:
18183 cu->language = language_m2;
18184 break;
18185 case DW_LANG_Pascal83:
18186 cu->language = language_pascal;
18187 break;
18188 case DW_LANG_ObjC:
18189 cu->language = language_objc;
18190 break;
18191 case DW_LANG_Rust:
18192 case DW_LANG_Rust_old:
18193 cu->language = language_rust;
18194 break;
18195 case DW_LANG_Cobol74:
18196 case DW_LANG_Cobol85:
18197 default:
18198 cu->language = language_minimal;
18199 break;
18200 }
18201 cu->language_defn = language_def (cu->language);
18202 }
18203
18204 /* Return the named attribute or NULL if not there. */
18205
18206 static struct attribute *
18207 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18208 {
18209 for (;;)
18210 {
18211 unsigned int i;
18212 struct attribute *spec = NULL;
18213
18214 for (i = 0; i < die->num_attrs; ++i)
18215 {
18216 if (die->attrs[i].name == name)
18217 return &die->attrs[i];
18218 if (die->attrs[i].name == DW_AT_specification
18219 || die->attrs[i].name == DW_AT_abstract_origin)
18220 spec = &die->attrs[i];
18221 }
18222
18223 if (!spec)
18224 break;
18225
18226 die = follow_die_ref (die, spec, &cu);
18227 }
18228
18229 return NULL;
18230 }
18231
18232 /* Return the named attribute or NULL if not there,
18233 but do not follow DW_AT_specification, etc.
18234 This is for use in contexts where we're reading .debug_types dies.
18235 Following DW_AT_specification, DW_AT_abstract_origin will take us
18236 back up the chain, and we want to go down. */
18237
18238 static struct attribute *
18239 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
18240 {
18241 unsigned int i;
18242
18243 for (i = 0; i < die->num_attrs; ++i)
18244 if (die->attrs[i].name == name)
18245 return &die->attrs[i];
18246
18247 return NULL;
18248 }
18249
18250 /* Return the string associated with a string-typed attribute, or NULL if it
18251 is either not found or is of an incorrect type. */
18252
18253 static const char *
18254 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18255 {
18256 struct attribute *attr;
18257 const char *str = NULL;
18258
18259 attr = dwarf2_attr (die, name, cu);
18260
18261 if (attr != NULL)
18262 {
18263 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
18264 || attr->form == DW_FORM_string
18265 || attr->form == DW_FORM_GNU_str_index
18266 || attr->form == DW_FORM_GNU_strp_alt)
18267 str = DW_STRING (attr);
18268 else
18269 complaint (&symfile_complaints,
18270 _("string type expected for attribute %s for "
18271 "DIE at 0x%x in module %s"),
18272 dwarf_attr_name (name), to_underlying (die->sect_off),
18273 objfile_name (cu->objfile));
18274 }
18275
18276 return str;
18277 }
18278
18279 /* Return non-zero iff the attribute NAME is defined for the given DIE,
18280 and holds a non-zero value. This function should only be used for
18281 DW_FORM_flag or DW_FORM_flag_present attributes. */
18282
18283 static int
18284 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
18285 {
18286 struct attribute *attr = dwarf2_attr (die, name, cu);
18287
18288 return (attr && DW_UNSND (attr));
18289 }
18290
18291 static int
18292 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
18293 {
18294 /* A DIE is a declaration if it has a DW_AT_declaration attribute
18295 which value is non-zero. However, we have to be careful with
18296 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
18297 (via dwarf2_flag_true_p) follows this attribute. So we may
18298 end up accidently finding a declaration attribute that belongs
18299 to a different DIE referenced by the specification attribute,
18300 even though the given DIE does not have a declaration attribute. */
18301 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
18302 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
18303 }
18304
18305 /* Return the die giving the specification for DIE, if there is
18306 one. *SPEC_CU is the CU containing DIE on input, and the CU
18307 containing the return value on output. If there is no
18308 specification, but there is an abstract origin, that is
18309 returned. */
18310
18311 static struct die_info *
18312 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
18313 {
18314 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
18315 *spec_cu);
18316
18317 if (spec_attr == NULL)
18318 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
18319
18320 if (spec_attr == NULL)
18321 return NULL;
18322 else
18323 return follow_die_ref (die, spec_attr, spec_cu);
18324 }
18325
18326 /* Stub for free_line_header to match void * callback types. */
18327
18328 static void
18329 free_line_header_voidp (void *arg)
18330 {
18331 struct line_header *lh = (struct line_header *) arg;
18332
18333 delete lh;
18334 }
18335
18336 void
18337 line_header::add_include_dir (const char *include_dir)
18338 {
18339 if (dwarf_line_debug >= 2)
18340 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
18341 include_dirs.size () + 1, include_dir);
18342
18343 include_dirs.push_back (include_dir);
18344 }
18345
18346 void
18347 line_header::add_file_name (const char *name,
18348 dir_index d_index,
18349 unsigned int mod_time,
18350 unsigned int length)
18351 {
18352 if (dwarf_line_debug >= 2)
18353 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
18354 (unsigned) file_names.size () + 1, name);
18355
18356 file_names.emplace_back (name, d_index, mod_time, length);
18357 }
18358
18359 /* A convenience function to find the proper .debug_line section for a CU. */
18360
18361 static struct dwarf2_section_info *
18362 get_debug_line_section (struct dwarf2_cu *cu)
18363 {
18364 struct dwarf2_section_info *section;
18365
18366 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
18367 DWO file. */
18368 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18369 section = &cu->dwo_unit->dwo_file->sections.line;
18370 else if (cu->per_cu->is_dwz)
18371 {
18372 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18373
18374 section = &dwz->line;
18375 }
18376 else
18377 section = &dwarf2_per_objfile->line;
18378
18379 return section;
18380 }
18381
18382 /* Read directory or file name entry format, starting with byte of
18383 format count entries, ULEB128 pairs of entry formats, ULEB128 of
18384 entries count and the entries themselves in the described entry
18385 format. */
18386
18387 static void
18388 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
18389 struct line_header *lh,
18390 const struct comp_unit_head *cu_header,
18391 void (*callback) (struct line_header *lh,
18392 const char *name,
18393 dir_index d_index,
18394 unsigned int mod_time,
18395 unsigned int length))
18396 {
18397 gdb_byte format_count, formati;
18398 ULONGEST data_count, datai;
18399 const gdb_byte *buf = *bufp;
18400 const gdb_byte *format_header_data;
18401 int i;
18402 unsigned int bytes_read;
18403
18404 format_count = read_1_byte (abfd, buf);
18405 buf += 1;
18406 format_header_data = buf;
18407 for (formati = 0; formati < format_count; formati++)
18408 {
18409 read_unsigned_leb128 (abfd, buf, &bytes_read);
18410 buf += bytes_read;
18411 read_unsigned_leb128 (abfd, buf, &bytes_read);
18412 buf += bytes_read;
18413 }
18414
18415 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
18416 buf += bytes_read;
18417 for (datai = 0; datai < data_count; datai++)
18418 {
18419 const gdb_byte *format = format_header_data;
18420 struct file_entry fe;
18421
18422 for (formati = 0; formati < format_count; formati++)
18423 {
18424 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
18425 format += bytes_read;
18426
18427 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
18428 format += bytes_read;
18429
18430 gdb::optional<const char *> string;
18431 gdb::optional<unsigned int> uint;
18432
18433 switch (form)
18434 {
18435 case DW_FORM_string:
18436 string.emplace (read_direct_string (abfd, buf, &bytes_read));
18437 buf += bytes_read;
18438 break;
18439
18440 case DW_FORM_line_strp:
18441 string.emplace (read_indirect_line_string (abfd, buf,
18442 cu_header,
18443 &bytes_read));
18444 buf += bytes_read;
18445 break;
18446
18447 case DW_FORM_data1:
18448 uint.emplace (read_1_byte (abfd, buf));
18449 buf += 1;
18450 break;
18451
18452 case DW_FORM_data2:
18453 uint.emplace (read_2_bytes (abfd, buf));
18454 buf += 2;
18455 break;
18456
18457 case DW_FORM_data4:
18458 uint.emplace (read_4_bytes (abfd, buf));
18459 buf += 4;
18460 break;
18461
18462 case DW_FORM_data8:
18463 uint.emplace (read_8_bytes (abfd, buf));
18464 buf += 8;
18465 break;
18466
18467 case DW_FORM_udata:
18468 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
18469 buf += bytes_read;
18470 break;
18471
18472 case DW_FORM_block:
18473 /* It is valid only for DW_LNCT_timestamp which is ignored by
18474 current GDB. */
18475 break;
18476 }
18477
18478 switch (content_type)
18479 {
18480 case DW_LNCT_path:
18481 if (string.has_value ())
18482 fe.name = *string;
18483 break;
18484 case DW_LNCT_directory_index:
18485 if (uint.has_value ())
18486 fe.d_index = (dir_index) *uint;
18487 break;
18488 case DW_LNCT_timestamp:
18489 if (uint.has_value ())
18490 fe.mod_time = *uint;
18491 break;
18492 case DW_LNCT_size:
18493 if (uint.has_value ())
18494 fe.length = *uint;
18495 break;
18496 case DW_LNCT_MD5:
18497 break;
18498 default:
18499 complaint (&symfile_complaints,
18500 _("Unknown format content type %s"),
18501 pulongest (content_type));
18502 }
18503 }
18504
18505 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
18506 }
18507
18508 *bufp = buf;
18509 }
18510
18511 /* Read the statement program header starting at OFFSET in
18512 .debug_line, or .debug_line.dwo. Return a pointer
18513 to a struct line_header, allocated using xmalloc.
18514 Returns NULL if there is a problem reading the header, e.g., if it
18515 has a version we don't understand.
18516
18517 NOTE: the strings in the include directory and file name tables of
18518 the returned object point into the dwarf line section buffer,
18519 and must not be freed. */
18520
18521 static line_header_up
18522 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
18523 {
18524 const gdb_byte *line_ptr;
18525 unsigned int bytes_read, offset_size;
18526 int i;
18527 const char *cur_dir, *cur_file;
18528 struct dwarf2_section_info *section;
18529 bfd *abfd;
18530
18531 section = get_debug_line_section (cu);
18532 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18533 if (section->buffer == NULL)
18534 {
18535 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18536 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18537 else
18538 complaint (&symfile_complaints, _("missing .debug_line section"));
18539 return 0;
18540 }
18541
18542 /* We can't do this until we know the section is non-empty.
18543 Only then do we know we have such a section. */
18544 abfd = get_section_bfd_owner (section);
18545
18546 /* Make sure that at least there's room for the total_length field.
18547 That could be 12 bytes long, but we're just going to fudge that. */
18548 if (to_underlying (sect_off) + 4 >= section->size)
18549 {
18550 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18551 return 0;
18552 }
18553
18554 line_header_up lh (new line_header ());
18555
18556 lh->sect_off = sect_off;
18557 lh->offset_in_dwz = cu->per_cu->is_dwz;
18558
18559 line_ptr = section->buffer + to_underlying (sect_off);
18560
18561 /* Read in the header. */
18562 lh->total_length =
18563 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18564 &bytes_read, &offset_size);
18565 line_ptr += bytes_read;
18566 if (line_ptr + lh->total_length > (section->buffer + section->size))
18567 {
18568 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18569 return 0;
18570 }
18571 lh->statement_program_end = line_ptr + lh->total_length;
18572 lh->version = read_2_bytes (abfd, line_ptr);
18573 line_ptr += 2;
18574 if (lh->version > 5)
18575 {
18576 /* This is a version we don't understand. The format could have
18577 changed in ways we don't handle properly so just punt. */
18578 complaint (&symfile_complaints,
18579 _("unsupported version in .debug_line section"));
18580 return NULL;
18581 }
18582 if (lh->version >= 5)
18583 {
18584 gdb_byte segment_selector_size;
18585
18586 /* Skip address size. */
18587 read_1_byte (abfd, line_ptr);
18588 line_ptr += 1;
18589
18590 segment_selector_size = read_1_byte (abfd, line_ptr);
18591 line_ptr += 1;
18592 if (segment_selector_size != 0)
18593 {
18594 complaint (&symfile_complaints,
18595 _("unsupported segment selector size %u "
18596 "in .debug_line section"),
18597 segment_selector_size);
18598 return NULL;
18599 }
18600 }
18601 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18602 line_ptr += offset_size;
18603 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18604 line_ptr += 1;
18605 if (lh->version >= 4)
18606 {
18607 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18608 line_ptr += 1;
18609 }
18610 else
18611 lh->maximum_ops_per_instruction = 1;
18612
18613 if (lh->maximum_ops_per_instruction == 0)
18614 {
18615 lh->maximum_ops_per_instruction = 1;
18616 complaint (&symfile_complaints,
18617 _("invalid maximum_ops_per_instruction "
18618 "in `.debug_line' section"));
18619 }
18620
18621 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18622 line_ptr += 1;
18623 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18624 line_ptr += 1;
18625 lh->line_range = read_1_byte (abfd, line_ptr);
18626 line_ptr += 1;
18627 lh->opcode_base = read_1_byte (abfd, line_ptr);
18628 line_ptr += 1;
18629 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18630
18631 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18632 for (i = 1; i < lh->opcode_base; ++i)
18633 {
18634 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18635 line_ptr += 1;
18636 }
18637
18638 if (lh->version >= 5)
18639 {
18640 /* Read directory table. */
18641 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18642 [] (struct line_header *lh, const char *name,
18643 dir_index d_index, unsigned int mod_time,
18644 unsigned int length)
18645 {
18646 lh->add_include_dir (name);
18647 });
18648
18649 /* Read file name table. */
18650 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18651 [] (struct line_header *lh, const char *name,
18652 dir_index d_index, unsigned int mod_time,
18653 unsigned int length)
18654 {
18655 lh->add_file_name (name, d_index, mod_time, length);
18656 });
18657 }
18658 else
18659 {
18660 /* Read directory table. */
18661 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18662 {
18663 line_ptr += bytes_read;
18664 lh->add_include_dir (cur_dir);
18665 }
18666 line_ptr += bytes_read;
18667
18668 /* Read file name table. */
18669 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18670 {
18671 unsigned int mod_time, length;
18672 dir_index d_index;
18673
18674 line_ptr += bytes_read;
18675 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18676 line_ptr += bytes_read;
18677 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18678 line_ptr += bytes_read;
18679 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18680 line_ptr += bytes_read;
18681
18682 lh->add_file_name (cur_file, d_index, mod_time, length);
18683 }
18684 line_ptr += bytes_read;
18685 }
18686 lh->statement_program_start = line_ptr;
18687
18688 if (line_ptr > (section->buffer + section->size))
18689 complaint (&symfile_complaints,
18690 _("line number info header doesn't "
18691 "fit in `.debug_line' section"));
18692
18693 return lh;
18694 }
18695
18696 /* Subroutine of dwarf_decode_lines to simplify it.
18697 Return the file name of the psymtab for included file FILE_INDEX
18698 in line header LH of PST.
18699 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18700 If space for the result is malloc'd, it will be freed by a cleanup.
18701 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18702
18703 The function creates dangling cleanup registration. */
18704
18705 static const char *
18706 psymtab_include_file_name (const struct line_header *lh, int file_index,
18707 const struct partial_symtab *pst,
18708 const char *comp_dir)
18709 {
18710 const file_entry &fe = lh->file_names[file_index];
18711 const char *include_name = fe.name;
18712 const char *include_name_to_compare = include_name;
18713 const char *pst_filename;
18714 char *copied_name = NULL;
18715 int file_is_pst;
18716
18717 const char *dir_name = fe.include_dir (lh);
18718
18719 if (!IS_ABSOLUTE_PATH (include_name)
18720 && (dir_name != NULL || comp_dir != NULL))
18721 {
18722 /* Avoid creating a duplicate psymtab for PST.
18723 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18724 Before we do the comparison, however, we need to account
18725 for DIR_NAME and COMP_DIR.
18726 First prepend dir_name (if non-NULL). If we still don't
18727 have an absolute path prepend comp_dir (if non-NULL).
18728 However, the directory we record in the include-file's
18729 psymtab does not contain COMP_DIR (to match the
18730 corresponding symtab(s)).
18731
18732 Example:
18733
18734 bash$ cd /tmp
18735 bash$ gcc -g ./hello.c
18736 include_name = "hello.c"
18737 dir_name = "."
18738 DW_AT_comp_dir = comp_dir = "/tmp"
18739 DW_AT_name = "./hello.c"
18740
18741 */
18742
18743 if (dir_name != NULL)
18744 {
18745 char *tem = concat (dir_name, SLASH_STRING,
18746 include_name, (char *)NULL);
18747
18748 make_cleanup (xfree, tem);
18749 include_name = tem;
18750 include_name_to_compare = include_name;
18751 }
18752 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18753 {
18754 char *tem = concat (comp_dir, SLASH_STRING,
18755 include_name, (char *)NULL);
18756
18757 make_cleanup (xfree, tem);
18758 include_name_to_compare = tem;
18759 }
18760 }
18761
18762 pst_filename = pst->filename;
18763 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18764 {
18765 copied_name = concat (pst->dirname, SLASH_STRING,
18766 pst_filename, (char *)NULL);
18767 pst_filename = copied_name;
18768 }
18769
18770 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18771
18772 if (copied_name != NULL)
18773 xfree (copied_name);
18774
18775 if (file_is_pst)
18776 return NULL;
18777 return include_name;
18778 }
18779
18780 /* State machine to track the state of the line number program. */
18781
18782 class lnp_state_machine
18783 {
18784 public:
18785 /* Initialize a machine state for the start of a line number
18786 program. */
18787 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18788
18789 file_entry *current_file ()
18790 {
18791 /* lh->file_names is 0-based, but the file name numbers in the
18792 statement program are 1-based. */
18793 return m_line_header->file_name_at (m_file);
18794 }
18795
18796 /* Record the line in the state machine. END_SEQUENCE is true if
18797 we're processing the end of a sequence. */
18798 void record_line (bool end_sequence);
18799
18800 /* Check address and if invalid nop-out the rest of the lines in this
18801 sequence. */
18802 void check_line_address (struct dwarf2_cu *cu,
18803 const gdb_byte *line_ptr,
18804 CORE_ADDR lowpc, CORE_ADDR address);
18805
18806 void handle_set_discriminator (unsigned int discriminator)
18807 {
18808 m_discriminator = discriminator;
18809 m_line_has_non_zero_discriminator |= discriminator != 0;
18810 }
18811
18812 /* Handle DW_LNE_set_address. */
18813 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18814 {
18815 m_op_index = 0;
18816 address += baseaddr;
18817 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18818 }
18819
18820 /* Handle DW_LNS_advance_pc. */
18821 void handle_advance_pc (CORE_ADDR adjust);
18822
18823 /* Handle a special opcode. */
18824 void handle_special_opcode (unsigned char op_code);
18825
18826 /* Handle DW_LNS_advance_line. */
18827 void handle_advance_line (int line_delta)
18828 {
18829 advance_line (line_delta);
18830 }
18831
18832 /* Handle DW_LNS_set_file. */
18833 void handle_set_file (file_name_index file);
18834
18835 /* Handle DW_LNS_negate_stmt. */
18836 void handle_negate_stmt ()
18837 {
18838 m_is_stmt = !m_is_stmt;
18839 }
18840
18841 /* Handle DW_LNS_const_add_pc. */
18842 void handle_const_add_pc ();
18843
18844 /* Handle DW_LNS_fixed_advance_pc. */
18845 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18846 {
18847 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18848 m_op_index = 0;
18849 }
18850
18851 /* Handle DW_LNS_copy. */
18852 void handle_copy ()
18853 {
18854 record_line (false);
18855 m_discriminator = 0;
18856 }
18857
18858 /* Handle DW_LNE_end_sequence. */
18859 void handle_end_sequence ()
18860 {
18861 m_record_line_callback = ::record_line;
18862 }
18863
18864 private:
18865 /* Advance the line by LINE_DELTA. */
18866 void advance_line (int line_delta)
18867 {
18868 m_line += line_delta;
18869
18870 if (line_delta != 0)
18871 m_line_has_non_zero_discriminator = m_discriminator != 0;
18872 }
18873
18874 gdbarch *m_gdbarch;
18875
18876 /* True if we're recording lines.
18877 Otherwise we're building partial symtabs and are just interested in
18878 finding include files mentioned by the line number program. */
18879 bool m_record_lines_p;
18880
18881 /* The line number header. */
18882 line_header *m_line_header;
18883
18884 /* These are part of the standard DWARF line number state machine,
18885 and initialized according to the DWARF spec. */
18886
18887 unsigned char m_op_index = 0;
18888 /* The line table index (1-based) of the current file. */
18889 file_name_index m_file = (file_name_index) 1;
18890 unsigned int m_line = 1;
18891
18892 /* These are initialized in the constructor. */
18893
18894 CORE_ADDR m_address;
18895 bool m_is_stmt;
18896 unsigned int m_discriminator;
18897
18898 /* Additional bits of state we need to track. */
18899
18900 /* The last file that we called dwarf2_start_subfile for.
18901 This is only used for TLLs. */
18902 unsigned int m_last_file = 0;
18903 /* The last file a line number was recorded for. */
18904 struct subfile *m_last_subfile = NULL;
18905
18906 /* The function to call to record a line. */
18907 record_line_ftype *m_record_line_callback = NULL;
18908
18909 /* The last line number that was recorded, used to coalesce
18910 consecutive entries for the same line. This can happen, for
18911 example, when discriminators are present. PR 17276. */
18912 unsigned int m_last_line = 0;
18913 bool m_line_has_non_zero_discriminator = false;
18914 };
18915
18916 void
18917 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18918 {
18919 CORE_ADDR addr_adj = (((m_op_index + adjust)
18920 / m_line_header->maximum_ops_per_instruction)
18921 * m_line_header->minimum_instruction_length);
18922 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18923 m_op_index = ((m_op_index + adjust)
18924 % m_line_header->maximum_ops_per_instruction);
18925 }
18926
18927 void
18928 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18929 {
18930 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18931 CORE_ADDR addr_adj = (((m_op_index
18932 + (adj_opcode / m_line_header->line_range))
18933 / m_line_header->maximum_ops_per_instruction)
18934 * m_line_header->minimum_instruction_length);
18935 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18936 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18937 % m_line_header->maximum_ops_per_instruction);
18938
18939 int line_delta = (m_line_header->line_base
18940 + (adj_opcode % m_line_header->line_range));
18941 advance_line (line_delta);
18942 record_line (false);
18943 m_discriminator = 0;
18944 }
18945
18946 void
18947 lnp_state_machine::handle_set_file (file_name_index file)
18948 {
18949 m_file = file;
18950
18951 const file_entry *fe = current_file ();
18952 if (fe == NULL)
18953 dwarf2_debug_line_missing_file_complaint ();
18954 else if (m_record_lines_p)
18955 {
18956 const char *dir = fe->include_dir (m_line_header);
18957
18958 m_last_subfile = current_subfile;
18959 m_line_has_non_zero_discriminator = m_discriminator != 0;
18960 dwarf2_start_subfile (fe->name, dir);
18961 }
18962 }
18963
18964 void
18965 lnp_state_machine::handle_const_add_pc ()
18966 {
18967 CORE_ADDR adjust
18968 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18969
18970 CORE_ADDR addr_adj
18971 = (((m_op_index + adjust)
18972 / m_line_header->maximum_ops_per_instruction)
18973 * m_line_header->minimum_instruction_length);
18974
18975 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18976 m_op_index = ((m_op_index + adjust)
18977 % m_line_header->maximum_ops_per_instruction);
18978 }
18979
18980 /* Ignore this record_line request. */
18981
18982 static void
18983 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18984 {
18985 return;
18986 }
18987
18988 /* Return non-zero if we should add LINE to the line number table.
18989 LINE is the line to add, LAST_LINE is the last line that was added,
18990 LAST_SUBFILE is the subfile for LAST_LINE.
18991 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18992 had a non-zero discriminator.
18993
18994 We have to be careful in the presence of discriminators.
18995 E.g., for this line:
18996
18997 for (i = 0; i < 100000; i++);
18998
18999 clang can emit four line number entries for that one line,
19000 each with a different discriminator.
19001 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19002
19003 However, we want gdb to coalesce all four entries into one.
19004 Otherwise the user could stepi into the middle of the line and
19005 gdb would get confused about whether the pc really was in the
19006 middle of the line.
19007
19008 Things are further complicated by the fact that two consecutive
19009 line number entries for the same line is a heuristic used by gcc
19010 to denote the end of the prologue. So we can't just discard duplicate
19011 entries, we have to be selective about it. The heuristic we use is
19012 that we only collapse consecutive entries for the same line if at least
19013 one of those entries has a non-zero discriminator. PR 17276.
19014
19015 Note: Addresses in the line number state machine can never go backwards
19016 within one sequence, thus this coalescing is ok. */
19017
19018 static int
19019 dwarf_record_line_p (unsigned int line, unsigned int last_line,
19020 int line_has_non_zero_discriminator,
19021 struct subfile *last_subfile)
19022 {
19023 if (current_subfile != last_subfile)
19024 return 1;
19025 if (line != last_line)
19026 return 1;
19027 /* Same line for the same file that we've seen already.
19028 As a last check, for pr 17276, only record the line if the line
19029 has never had a non-zero discriminator. */
19030 if (!line_has_non_zero_discriminator)
19031 return 1;
19032 return 0;
19033 }
19034
19035 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
19036 in the line table of subfile SUBFILE. */
19037
19038 static void
19039 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19040 unsigned int line, CORE_ADDR address,
19041 record_line_ftype p_record_line)
19042 {
19043 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19044
19045 if (dwarf_line_debug)
19046 {
19047 fprintf_unfiltered (gdb_stdlog,
19048 "Recording line %u, file %s, address %s\n",
19049 line, lbasename (subfile->name),
19050 paddress (gdbarch, address));
19051 }
19052
19053 (*p_record_line) (subfile, line, addr);
19054 }
19055
19056 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19057 Mark the end of a set of line number records.
19058 The arguments are the same as for dwarf_record_line_1.
19059 If SUBFILE is NULL the request is ignored. */
19060
19061 static void
19062 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19063 CORE_ADDR address, record_line_ftype p_record_line)
19064 {
19065 if (subfile == NULL)
19066 return;
19067
19068 if (dwarf_line_debug)
19069 {
19070 fprintf_unfiltered (gdb_stdlog,
19071 "Finishing current line, file %s, address %s\n",
19072 lbasename (subfile->name),
19073 paddress (gdbarch, address));
19074 }
19075
19076 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
19077 }
19078
19079 void
19080 lnp_state_machine::record_line (bool end_sequence)
19081 {
19082 if (dwarf_line_debug)
19083 {
19084 fprintf_unfiltered (gdb_stdlog,
19085 "Processing actual line %u: file %u,"
19086 " address %s, is_stmt %u, discrim %u\n",
19087 m_line, to_underlying (m_file),
19088 paddress (m_gdbarch, m_address),
19089 m_is_stmt, m_discriminator);
19090 }
19091
19092 file_entry *fe = current_file ();
19093
19094 if (fe == NULL)
19095 dwarf2_debug_line_missing_file_complaint ();
19096 /* For now we ignore lines not starting on an instruction boundary.
19097 But not when processing end_sequence for compatibility with the
19098 previous version of the code. */
19099 else if (m_op_index == 0 || end_sequence)
19100 {
19101 fe->included_p = 1;
19102 if (m_record_lines_p && m_is_stmt)
19103 {
19104 if (m_last_subfile != current_subfile || end_sequence)
19105 {
19106 dwarf_finish_line (m_gdbarch, m_last_subfile,
19107 m_address, m_record_line_callback);
19108 }
19109
19110 if (!end_sequence)
19111 {
19112 if (dwarf_record_line_p (m_line, m_last_line,
19113 m_line_has_non_zero_discriminator,
19114 m_last_subfile))
19115 {
19116 dwarf_record_line_1 (m_gdbarch, current_subfile,
19117 m_line, m_address,
19118 m_record_line_callback);
19119 }
19120 m_last_subfile = current_subfile;
19121 m_last_line = m_line;
19122 }
19123 }
19124 }
19125 }
19126
19127 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
19128 bool record_lines_p)
19129 {
19130 m_gdbarch = arch;
19131 m_record_lines_p = record_lines_p;
19132 m_line_header = lh;
19133
19134 m_record_line_callback = ::record_line;
19135
19136 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
19137 was a line entry for it so that the backend has a chance to adjust it
19138 and also record it in case it needs it. This is currently used by MIPS
19139 code, cf. `mips_adjust_dwarf2_line'. */
19140 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
19141 m_is_stmt = lh->default_is_stmt;
19142 m_discriminator = 0;
19143 }
19144
19145 void
19146 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
19147 const gdb_byte *line_ptr,
19148 CORE_ADDR lowpc, CORE_ADDR address)
19149 {
19150 /* If address < lowpc then it's not a usable value, it's outside the
19151 pc range of the CU. However, we restrict the test to only address
19152 values of zero to preserve GDB's previous behaviour which is to
19153 handle the specific case of a function being GC'd by the linker. */
19154
19155 if (address == 0 && address < lowpc)
19156 {
19157 /* This line table is for a function which has been
19158 GCd by the linker. Ignore it. PR gdb/12528 */
19159
19160 struct objfile *objfile = cu->objfile;
19161 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
19162
19163 complaint (&symfile_complaints,
19164 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
19165 line_offset, objfile_name (objfile));
19166 m_record_line_callback = noop_record_line;
19167 /* Note: record_line_callback is left as noop_record_line until
19168 we see DW_LNE_end_sequence. */
19169 }
19170 }
19171
19172 /* Subroutine of dwarf_decode_lines to simplify it.
19173 Process the line number information in LH.
19174 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
19175 program in order to set included_p for every referenced header. */
19176
19177 static void
19178 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
19179 const int decode_for_pst_p, CORE_ADDR lowpc)
19180 {
19181 const gdb_byte *line_ptr, *extended_end;
19182 const gdb_byte *line_end;
19183 unsigned int bytes_read, extended_len;
19184 unsigned char op_code, extended_op;
19185 CORE_ADDR baseaddr;
19186 struct objfile *objfile = cu->objfile;
19187 bfd *abfd = objfile->obfd;
19188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19189 /* True if we're recording line info (as opposed to building partial
19190 symtabs and just interested in finding include files mentioned by
19191 the line number program). */
19192 bool record_lines_p = !decode_for_pst_p;
19193
19194 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19195
19196 line_ptr = lh->statement_program_start;
19197 line_end = lh->statement_program_end;
19198
19199 /* Read the statement sequences until there's nothing left. */
19200 while (line_ptr < line_end)
19201 {
19202 /* The DWARF line number program state machine. Reset the state
19203 machine at the start of each sequence. */
19204 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
19205 bool end_sequence = false;
19206
19207 if (record_lines_p)
19208 {
19209 /* Start a subfile for the current file of the state
19210 machine. */
19211 const file_entry *fe = state_machine.current_file ();
19212
19213 if (fe != NULL)
19214 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
19215 }
19216
19217 /* Decode the table. */
19218 while (line_ptr < line_end && !end_sequence)
19219 {
19220 op_code = read_1_byte (abfd, line_ptr);
19221 line_ptr += 1;
19222
19223 if (op_code >= lh->opcode_base)
19224 {
19225 /* Special opcode. */
19226 state_machine.handle_special_opcode (op_code);
19227 }
19228 else switch (op_code)
19229 {
19230 case DW_LNS_extended_op:
19231 extended_len = read_unsigned_leb128 (abfd, line_ptr,
19232 &bytes_read);
19233 line_ptr += bytes_read;
19234 extended_end = line_ptr + extended_len;
19235 extended_op = read_1_byte (abfd, line_ptr);
19236 line_ptr += 1;
19237 switch (extended_op)
19238 {
19239 case DW_LNE_end_sequence:
19240 state_machine.handle_end_sequence ();
19241 end_sequence = true;
19242 break;
19243 case DW_LNE_set_address:
19244 {
19245 CORE_ADDR address
19246 = read_address (abfd, line_ptr, cu, &bytes_read);
19247 line_ptr += bytes_read;
19248
19249 state_machine.check_line_address (cu, line_ptr,
19250 lowpc, address);
19251 state_machine.handle_set_address (baseaddr, address);
19252 }
19253 break;
19254 case DW_LNE_define_file:
19255 {
19256 const char *cur_file;
19257 unsigned int mod_time, length;
19258 dir_index dindex;
19259
19260 cur_file = read_direct_string (abfd, line_ptr,
19261 &bytes_read);
19262 line_ptr += bytes_read;
19263 dindex = (dir_index)
19264 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19265 line_ptr += bytes_read;
19266 mod_time =
19267 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19268 line_ptr += bytes_read;
19269 length =
19270 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19271 line_ptr += bytes_read;
19272 lh->add_file_name (cur_file, dindex, mod_time, length);
19273 }
19274 break;
19275 case DW_LNE_set_discriminator:
19276 {
19277 /* The discriminator is not interesting to the
19278 debugger; just ignore it. We still need to
19279 check its value though:
19280 if there are consecutive entries for the same
19281 (non-prologue) line we want to coalesce them.
19282 PR 17276. */
19283 unsigned int discr
19284 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19285 line_ptr += bytes_read;
19286
19287 state_machine.handle_set_discriminator (discr);
19288 }
19289 break;
19290 default:
19291 complaint (&symfile_complaints,
19292 _("mangled .debug_line section"));
19293 return;
19294 }
19295 /* Make sure that we parsed the extended op correctly. If e.g.
19296 we expected a different address size than the producer used,
19297 we may have read the wrong number of bytes. */
19298 if (line_ptr != extended_end)
19299 {
19300 complaint (&symfile_complaints,
19301 _("mangled .debug_line section"));
19302 return;
19303 }
19304 break;
19305 case DW_LNS_copy:
19306 state_machine.handle_copy ();
19307 break;
19308 case DW_LNS_advance_pc:
19309 {
19310 CORE_ADDR adjust
19311 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19312 line_ptr += bytes_read;
19313
19314 state_machine.handle_advance_pc (adjust);
19315 }
19316 break;
19317 case DW_LNS_advance_line:
19318 {
19319 int line_delta
19320 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19321 line_ptr += bytes_read;
19322
19323 state_machine.handle_advance_line (line_delta);
19324 }
19325 break;
19326 case DW_LNS_set_file:
19327 {
19328 file_name_index file
19329 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19330 &bytes_read);
19331 line_ptr += bytes_read;
19332
19333 state_machine.handle_set_file (file);
19334 }
19335 break;
19336 case DW_LNS_set_column:
19337 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19338 line_ptr += bytes_read;
19339 break;
19340 case DW_LNS_negate_stmt:
19341 state_machine.handle_negate_stmt ();
19342 break;
19343 case DW_LNS_set_basic_block:
19344 break;
19345 /* Add to the address register of the state machine the
19346 address increment value corresponding to special opcode
19347 255. I.e., this value is scaled by the minimum
19348 instruction length since special opcode 255 would have
19349 scaled the increment. */
19350 case DW_LNS_const_add_pc:
19351 state_machine.handle_const_add_pc ();
19352 break;
19353 case DW_LNS_fixed_advance_pc:
19354 {
19355 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
19356 line_ptr += 2;
19357
19358 state_machine.handle_fixed_advance_pc (addr_adj);
19359 }
19360 break;
19361 default:
19362 {
19363 /* Unknown standard opcode, ignore it. */
19364 int i;
19365
19366 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
19367 {
19368 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19369 line_ptr += bytes_read;
19370 }
19371 }
19372 }
19373 }
19374
19375 if (!end_sequence)
19376 dwarf2_debug_line_missing_end_sequence_complaint ();
19377
19378 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
19379 in which case we still finish recording the last line). */
19380 state_machine.record_line (true);
19381 }
19382 }
19383
19384 /* Decode the Line Number Program (LNP) for the given line_header
19385 structure and CU. The actual information extracted and the type
19386 of structures created from the LNP depends on the value of PST.
19387
19388 1. If PST is NULL, then this procedure uses the data from the program
19389 to create all necessary symbol tables, and their linetables.
19390
19391 2. If PST is not NULL, this procedure reads the program to determine
19392 the list of files included by the unit represented by PST, and
19393 builds all the associated partial symbol tables.
19394
19395 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19396 It is used for relative paths in the line table.
19397 NOTE: When processing partial symtabs (pst != NULL),
19398 comp_dir == pst->dirname.
19399
19400 NOTE: It is important that psymtabs have the same file name (via strcmp)
19401 as the corresponding symtab. Since COMP_DIR is not used in the name of the
19402 symtab we don't use it in the name of the psymtabs we create.
19403 E.g. expand_line_sal requires this when finding psymtabs to expand.
19404 A good testcase for this is mb-inline.exp.
19405
19406 LOWPC is the lowest address in CU (or 0 if not known).
19407
19408 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
19409 for its PC<->lines mapping information. Otherwise only the filename
19410 table is read in. */
19411
19412 static void
19413 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
19414 struct dwarf2_cu *cu, struct partial_symtab *pst,
19415 CORE_ADDR lowpc, int decode_mapping)
19416 {
19417 struct objfile *objfile = cu->objfile;
19418 const int decode_for_pst_p = (pst != NULL);
19419
19420 if (decode_mapping)
19421 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
19422
19423 if (decode_for_pst_p)
19424 {
19425 int file_index;
19426
19427 /* Now that we're done scanning the Line Header Program, we can
19428 create the psymtab of each included file. */
19429 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
19430 if (lh->file_names[file_index].included_p == 1)
19431 {
19432 const char *include_name =
19433 psymtab_include_file_name (lh, file_index, pst, comp_dir);
19434 if (include_name != NULL)
19435 dwarf2_create_include_psymtab (include_name, pst, objfile);
19436 }
19437 }
19438 else
19439 {
19440 /* Make sure a symtab is created for every file, even files
19441 which contain only variables (i.e. no code with associated
19442 line numbers). */
19443 struct compunit_symtab *cust = buildsym_compunit_symtab ();
19444 int i;
19445
19446 for (i = 0; i < lh->file_names.size (); i++)
19447 {
19448 file_entry &fe = lh->file_names[i];
19449
19450 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
19451
19452 if (current_subfile->symtab == NULL)
19453 {
19454 current_subfile->symtab
19455 = allocate_symtab (cust, current_subfile->name);
19456 }
19457 fe.symtab = current_subfile->symtab;
19458 }
19459 }
19460 }
19461
19462 /* Start a subfile for DWARF. FILENAME is the name of the file and
19463 DIRNAME the name of the source directory which contains FILENAME
19464 or NULL if not known.
19465 This routine tries to keep line numbers from identical absolute and
19466 relative file names in a common subfile.
19467
19468 Using the `list' example from the GDB testsuite, which resides in
19469 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
19470 of /srcdir/list0.c yields the following debugging information for list0.c:
19471
19472 DW_AT_name: /srcdir/list0.c
19473 DW_AT_comp_dir: /compdir
19474 files.files[0].name: list0.h
19475 files.files[0].dir: /srcdir
19476 files.files[1].name: list0.c
19477 files.files[1].dir: /srcdir
19478
19479 The line number information for list0.c has to end up in a single
19480 subfile, so that `break /srcdir/list0.c:1' works as expected.
19481 start_subfile will ensure that this happens provided that we pass the
19482 concatenation of files.files[1].dir and files.files[1].name as the
19483 subfile's name. */
19484
19485 static void
19486 dwarf2_start_subfile (const char *filename, const char *dirname)
19487 {
19488 char *copy = NULL;
19489
19490 /* In order not to lose the line information directory,
19491 we concatenate it to the filename when it makes sense.
19492 Note that the Dwarf3 standard says (speaking of filenames in line
19493 information): ``The directory index is ignored for file names
19494 that represent full path names''. Thus ignoring dirname in the
19495 `else' branch below isn't an issue. */
19496
19497 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
19498 {
19499 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
19500 filename = copy;
19501 }
19502
19503 start_subfile (filename);
19504
19505 if (copy != NULL)
19506 xfree (copy);
19507 }
19508
19509 /* Start a symtab for DWARF.
19510 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
19511
19512 static struct compunit_symtab *
19513 dwarf2_start_symtab (struct dwarf2_cu *cu,
19514 const char *name, const char *comp_dir, CORE_ADDR low_pc)
19515 {
19516 struct compunit_symtab *cust
19517 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
19518
19519 record_debugformat ("DWARF 2");
19520 record_producer (cu->producer);
19521
19522 /* We assume that we're processing GCC output. */
19523 processing_gcc_compilation = 2;
19524
19525 cu->processing_has_namespace_info = 0;
19526
19527 return cust;
19528 }
19529
19530 static void
19531 var_decode_location (struct attribute *attr, struct symbol *sym,
19532 struct dwarf2_cu *cu)
19533 {
19534 struct objfile *objfile = cu->objfile;
19535 struct comp_unit_head *cu_header = &cu->header;
19536
19537 /* NOTE drow/2003-01-30: There used to be a comment and some special
19538 code here to turn a symbol with DW_AT_external and a
19539 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19540 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19541 with some versions of binutils) where shared libraries could have
19542 relocations against symbols in their debug information - the
19543 minimal symbol would have the right address, but the debug info
19544 would not. It's no longer necessary, because we will explicitly
19545 apply relocations when we read in the debug information now. */
19546
19547 /* A DW_AT_location attribute with no contents indicates that a
19548 variable has been optimized away. */
19549 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19550 {
19551 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19552 return;
19553 }
19554
19555 /* Handle one degenerate form of location expression specially, to
19556 preserve GDB's previous behavior when section offsets are
19557 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19558 then mark this symbol as LOC_STATIC. */
19559
19560 if (attr_form_is_block (attr)
19561 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19562 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19563 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19564 && (DW_BLOCK (attr)->size
19565 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19566 {
19567 unsigned int dummy;
19568
19569 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19570 SYMBOL_VALUE_ADDRESS (sym) =
19571 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19572 else
19573 SYMBOL_VALUE_ADDRESS (sym) =
19574 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19575 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19576 fixup_symbol_section (sym, objfile);
19577 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19578 SYMBOL_SECTION (sym));
19579 return;
19580 }
19581
19582 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19583 expression evaluator, and use LOC_COMPUTED only when necessary
19584 (i.e. when the value of a register or memory location is
19585 referenced, or a thread-local block, etc.). Then again, it might
19586 not be worthwhile. I'm assuming that it isn't unless performance
19587 or memory numbers show me otherwise. */
19588
19589 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19590
19591 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19592 cu->has_loclist = 1;
19593 }
19594
19595 /* Given a pointer to a DWARF information entry, figure out if we need
19596 to make a symbol table entry for it, and if so, create a new entry
19597 and return a pointer to it.
19598 If TYPE is NULL, determine symbol type from the die, otherwise
19599 used the passed type.
19600 If SPACE is not NULL, use it to hold the new symbol. If it is
19601 NULL, allocate a new symbol on the objfile's obstack. */
19602
19603 static struct symbol *
19604 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19605 struct symbol *space)
19606 {
19607 struct objfile *objfile = cu->objfile;
19608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19609 struct symbol *sym = NULL;
19610 const char *name;
19611 struct attribute *attr = NULL;
19612 struct attribute *attr2 = NULL;
19613 CORE_ADDR baseaddr;
19614 struct pending **list_to_add = NULL;
19615
19616 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19617
19618 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19619
19620 name = dwarf2_name (die, cu);
19621 if (name)
19622 {
19623 const char *linkagename;
19624 int suppress_add = 0;
19625
19626 if (space)
19627 sym = space;
19628 else
19629 sym = allocate_symbol (objfile);
19630 OBJSTAT (objfile, n_syms++);
19631
19632 /* Cache this symbol's name and the name's demangled form (if any). */
19633 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19634 linkagename = dwarf2_physname (name, die, cu);
19635 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19636
19637 /* Fortran does not have mangling standard and the mangling does differ
19638 between gfortran, iFort etc. */
19639 if (cu->language == language_fortran
19640 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19641 symbol_set_demangled_name (&(sym->ginfo),
19642 dwarf2_full_name (name, die, cu),
19643 NULL);
19644
19645 /* Default assumptions.
19646 Use the passed type or decode it from the die. */
19647 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19648 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19649 if (type != NULL)
19650 SYMBOL_TYPE (sym) = type;
19651 else
19652 SYMBOL_TYPE (sym) = die_type (die, cu);
19653 attr = dwarf2_attr (die,
19654 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19655 cu);
19656 if (attr)
19657 {
19658 SYMBOL_LINE (sym) = DW_UNSND (attr);
19659 }
19660
19661 attr = dwarf2_attr (die,
19662 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19663 cu);
19664 if (attr)
19665 {
19666 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19667 struct file_entry *fe;
19668
19669 if (cu->line_header != NULL)
19670 fe = cu->line_header->file_name_at (file_index);
19671 else
19672 fe = NULL;
19673
19674 if (fe == NULL)
19675 complaint (&symfile_complaints,
19676 _("file index out of range"));
19677 else
19678 symbol_set_symtab (sym, fe->symtab);
19679 }
19680
19681 switch (die->tag)
19682 {
19683 case DW_TAG_label:
19684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19685 if (attr)
19686 {
19687 CORE_ADDR addr;
19688
19689 addr = attr_value_as_address (attr);
19690 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19691 SYMBOL_VALUE_ADDRESS (sym) = addr;
19692 }
19693 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19694 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19695 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19696 add_symbol_to_list (sym, cu->list_in_scope);
19697 break;
19698 case DW_TAG_subprogram:
19699 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19700 finish_block. */
19701 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19702 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19703 if ((attr2 && (DW_UNSND (attr2) != 0))
19704 || cu->language == language_ada)
19705 {
19706 /* Subprograms marked external are stored as a global symbol.
19707 Ada subprograms, whether marked external or not, are always
19708 stored as a global symbol, because we want to be able to
19709 access them globally. For instance, we want to be able
19710 to break on a nested subprogram without having to
19711 specify the context. */
19712 list_to_add = &global_symbols;
19713 }
19714 else
19715 {
19716 list_to_add = cu->list_in_scope;
19717 }
19718 break;
19719 case DW_TAG_inlined_subroutine:
19720 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19721 finish_block. */
19722 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19723 SYMBOL_INLINED (sym) = 1;
19724 list_to_add = cu->list_in_scope;
19725 break;
19726 case DW_TAG_template_value_param:
19727 suppress_add = 1;
19728 /* Fall through. */
19729 case DW_TAG_constant:
19730 case DW_TAG_variable:
19731 case DW_TAG_member:
19732 /* Compilation with minimal debug info may result in
19733 variables with missing type entries. Change the
19734 misleading `void' type to something sensible. */
19735 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19736 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19737
19738 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19739 /* In the case of DW_TAG_member, we should only be called for
19740 static const members. */
19741 if (die->tag == DW_TAG_member)
19742 {
19743 /* dwarf2_add_field uses die_is_declaration,
19744 so we do the same. */
19745 gdb_assert (die_is_declaration (die, cu));
19746 gdb_assert (attr);
19747 }
19748 if (attr)
19749 {
19750 dwarf2_const_value (attr, sym, cu);
19751 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19752 if (!suppress_add)
19753 {
19754 if (attr2 && (DW_UNSND (attr2) != 0))
19755 list_to_add = &global_symbols;
19756 else
19757 list_to_add = cu->list_in_scope;
19758 }
19759 break;
19760 }
19761 attr = dwarf2_attr (die, DW_AT_location, cu);
19762 if (attr)
19763 {
19764 var_decode_location (attr, sym, cu);
19765 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19766
19767 /* Fortran explicitly imports any global symbols to the local
19768 scope by DW_TAG_common_block. */
19769 if (cu->language == language_fortran && die->parent
19770 && die->parent->tag == DW_TAG_common_block)
19771 attr2 = NULL;
19772
19773 if (SYMBOL_CLASS (sym) == LOC_STATIC
19774 && SYMBOL_VALUE_ADDRESS (sym) == 0
19775 && !dwarf2_per_objfile->has_section_at_zero)
19776 {
19777 /* When a static variable is eliminated by the linker,
19778 the corresponding debug information is not stripped
19779 out, but the variable address is set to null;
19780 do not add such variables into symbol table. */
19781 }
19782 else if (attr2 && (DW_UNSND (attr2) != 0))
19783 {
19784 /* Workaround gfortran PR debug/40040 - it uses
19785 DW_AT_location for variables in -fPIC libraries which may
19786 get overriden by other libraries/executable and get
19787 a different address. Resolve it by the minimal symbol
19788 which may come from inferior's executable using copy
19789 relocation. Make this workaround only for gfortran as for
19790 other compilers GDB cannot guess the minimal symbol
19791 Fortran mangling kind. */
19792 if (cu->language == language_fortran && die->parent
19793 && die->parent->tag == DW_TAG_module
19794 && cu->producer
19795 && startswith (cu->producer, "GNU Fortran"))
19796 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19797
19798 /* A variable with DW_AT_external is never static,
19799 but it may be block-scoped. */
19800 list_to_add = (cu->list_in_scope == &file_symbols
19801 ? &global_symbols : cu->list_in_scope);
19802 }
19803 else
19804 list_to_add = cu->list_in_scope;
19805 }
19806 else
19807 {
19808 /* We do not know the address of this symbol.
19809 If it is an external symbol and we have type information
19810 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19811 The address of the variable will then be determined from
19812 the minimal symbol table whenever the variable is
19813 referenced. */
19814 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19815
19816 /* Fortran explicitly imports any global symbols to the local
19817 scope by DW_TAG_common_block. */
19818 if (cu->language == language_fortran && die->parent
19819 && die->parent->tag == DW_TAG_common_block)
19820 {
19821 /* SYMBOL_CLASS doesn't matter here because
19822 read_common_block is going to reset it. */
19823 if (!suppress_add)
19824 list_to_add = cu->list_in_scope;
19825 }
19826 else if (attr2 && (DW_UNSND (attr2) != 0)
19827 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19828 {
19829 /* A variable with DW_AT_external is never static, but it
19830 may be block-scoped. */
19831 list_to_add = (cu->list_in_scope == &file_symbols
19832 ? &global_symbols : cu->list_in_scope);
19833
19834 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19835 }
19836 else if (!die_is_declaration (die, cu))
19837 {
19838 /* Use the default LOC_OPTIMIZED_OUT class. */
19839 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19840 if (!suppress_add)
19841 list_to_add = cu->list_in_scope;
19842 }
19843 }
19844 break;
19845 case DW_TAG_formal_parameter:
19846 /* If we are inside a function, mark this as an argument. If
19847 not, we might be looking at an argument to an inlined function
19848 when we do not have enough information to show inlined frames;
19849 pretend it's a local variable in that case so that the user can
19850 still see it. */
19851 if (context_stack_depth > 0
19852 && context_stack[context_stack_depth - 1].name != NULL)
19853 SYMBOL_IS_ARGUMENT (sym) = 1;
19854 attr = dwarf2_attr (die, DW_AT_location, cu);
19855 if (attr)
19856 {
19857 var_decode_location (attr, sym, cu);
19858 }
19859 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19860 if (attr)
19861 {
19862 dwarf2_const_value (attr, sym, cu);
19863 }
19864
19865 list_to_add = cu->list_in_scope;
19866 break;
19867 case DW_TAG_unspecified_parameters:
19868 /* From varargs functions; gdb doesn't seem to have any
19869 interest in this information, so just ignore it for now.
19870 (FIXME?) */
19871 break;
19872 case DW_TAG_template_type_param:
19873 suppress_add = 1;
19874 /* Fall through. */
19875 case DW_TAG_class_type:
19876 case DW_TAG_interface_type:
19877 case DW_TAG_structure_type:
19878 case DW_TAG_union_type:
19879 case DW_TAG_set_type:
19880 case DW_TAG_enumeration_type:
19881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19882 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19883
19884 {
19885 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19886 really ever be static objects: otherwise, if you try
19887 to, say, break of a class's method and you're in a file
19888 which doesn't mention that class, it won't work unless
19889 the check for all static symbols in lookup_symbol_aux
19890 saves you. See the OtherFileClass tests in
19891 gdb.c++/namespace.exp. */
19892
19893 if (!suppress_add)
19894 {
19895 list_to_add = (cu->list_in_scope == &file_symbols
19896 && cu->language == language_cplus
19897 ? &global_symbols : cu->list_in_scope);
19898
19899 /* The semantics of C++ state that "struct foo {
19900 ... }" also defines a typedef for "foo". */
19901 if (cu->language == language_cplus
19902 || cu->language == language_ada
19903 || cu->language == language_d
19904 || cu->language == language_rust)
19905 {
19906 /* The symbol's name is already allocated along
19907 with this objfile, so we don't need to
19908 duplicate it for the type. */
19909 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19910 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19911 }
19912 }
19913 }
19914 break;
19915 case DW_TAG_typedef:
19916 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19917 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19918 list_to_add = cu->list_in_scope;
19919 break;
19920 case DW_TAG_base_type:
19921 case DW_TAG_subrange_type:
19922 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19923 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19924 list_to_add = cu->list_in_scope;
19925 break;
19926 case DW_TAG_enumerator:
19927 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19928 if (attr)
19929 {
19930 dwarf2_const_value (attr, sym, cu);
19931 }
19932 {
19933 /* NOTE: carlton/2003-11-10: See comment above in the
19934 DW_TAG_class_type, etc. block. */
19935
19936 list_to_add = (cu->list_in_scope == &file_symbols
19937 && cu->language == language_cplus
19938 ? &global_symbols : cu->list_in_scope);
19939 }
19940 break;
19941 case DW_TAG_imported_declaration:
19942 case DW_TAG_namespace:
19943 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19944 list_to_add = &global_symbols;
19945 break;
19946 case DW_TAG_module:
19947 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19948 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19949 list_to_add = &global_symbols;
19950 break;
19951 case DW_TAG_common_block:
19952 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19953 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19954 add_symbol_to_list (sym, cu->list_in_scope);
19955 break;
19956 default:
19957 /* Not a tag we recognize. Hopefully we aren't processing
19958 trash data, but since we must specifically ignore things
19959 we don't recognize, there is nothing else we should do at
19960 this point. */
19961 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19962 dwarf_tag_name (die->tag));
19963 break;
19964 }
19965
19966 if (suppress_add)
19967 {
19968 sym->hash_next = objfile->template_symbols;
19969 objfile->template_symbols = sym;
19970 list_to_add = NULL;
19971 }
19972
19973 if (list_to_add != NULL)
19974 add_symbol_to_list (sym, list_to_add);
19975
19976 /* For the benefit of old versions of GCC, check for anonymous
19977 namespaces based on the demangled name. */
19978 if (!cu->processing_has_namespace_info
19979 && cu->language == language_cplus)
19980 cp_scan_for_anonymous_namespaces (sym, objfile);
19981 }
19982 return (sym);
19983 }
19984
19985 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19986
19987 static struct symbol *
19988 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19989 {
19990 return new_symbol_full (die, type, cu, NULL);
19991 }
19992
19993 /* Given an attr with a DW_FORM_dataN value in host byte order,
19994 zero-extend it as appropriate for the symbol's type. The DWARF
19995 standard (v4) is not entirely clear about the meaning of using
19996 DW_FORM_dataN for a constant with a signed type, where the type is
19997 wider than the data. The conclusion of a discussion on the DWARF
19998 list was that this is unspecified. We choose to always zero-extend
19999 because that is the interpretation long in use by GCC. */
20000
20001 static gdb_byte *
20002 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20003 struct dwarf2_cu *cu, LONGEST *value, int bits)
20004 {
20005 struct objfile *objfile = cu->objfile;
20006 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20007 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20008 LONGEST l = DW_UNSND (attr);
20009
20010 if (bits < sizeof (*value) * 8)
20011 {
20012 l &= ((LONGEST) 1 << bits) - 1;
20013 *value = l;
20014 }
20015 else if (bits == sizeof (*value) * 8)
20016 *value = l;
20017 else
20018 {
20019 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20020 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20021 return bytes;
20022 }
20023
20024 return NULL;
20025 }
20026
20027 /* Read a constant value from an attribute. Either set *VALUE, or if
20028 the value does not fit in *VALUE, set *BYTES - either already
20029 allocated on the objfile obstack, or newly allocated on OBSTACK,
20030 or, set *BATON, if we translated the constant to a location
20031 expression. */
20032
20033 static void
20034 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20035 const char *name, struct obstack *obstack,
20036 struct dwarf2_cu *cu,
20037 LONGEST *value, const gdb_byte **bytes,
20038 struct dwarf2_locexpr_baton **baton)
20039 {
20040 struct objfile *objfile = cu->objfile;
20041 struct comp_unit_head *cu_header = &cu->header;
20042 struct dwarf_block *blk;
20043 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20044 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20045
20046 *value = 0;
20047 *bytes = NULL;
20048 *baton = NULL;
20049
20050 switch (attr->form)
20051 {
20052 case DW_FORM_addr:
20053 case DW_FORM_GNU_addr_index:
20054 {
20055 gdb_byte *data;
20056
20057 if (TYPE_LENGTH (type) != cu_header->addr_size)
20058 dwarf2_const_value_length_mismatch_complaint (name,
20059 cu_header->addr_size,
20060 TYPE_LENGTH (type));
20061 /* Symbols of this form are reasonably rare, so we just
20062 piggyback on the existing location code rather than writing
20063 a new implementation of symbol_computed_ops. */
20064 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20065 (*baton)->per_cu = cu->per_cu;
20066 gdb_assert ((*baton)->per_cu);
20067
20068 (*baton)->size = 2 + cu_header->addr_size;
20069 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20070 (*baton)->data = data;
20071
20072 data[0] = DW_OP_addr;
20073 store_unsigned_integer (&data[1], cu_header->addr_size,
20074 byte_order, DW_ADDR (attr));
20075 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20076 }
20077 break;
20078 case DW_FORM_string:
20079 case DW_FORM_strp:
20080 case DW_FORM_GNU_str_index:
20081 case DW_FORM_GNU_strp_alt:
20082 /* DW_STRING is already allocated on the objfile obstack, point
20083 directly to it. */
20084 *bytes = (const gdb_byte *) DW_STRING (attr);
20085 break;
20086 case DW_FORM_block1:
20087 case DW_FORM_block2:
20088 case DW_FORM_block4:
20089 case DW_FORM_block:
20090 case DW_FORM_exprloc:
20091 case DW_FORM_data16:
20092 blk = DW_BLOCK (attr);
20093 if (TYPE_LENGTH (type) != blk->size)
20094 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20095 TYPE_LENGTH (type));
20096 *bytes = blk->data;
20097 break;
20098
20099 /* The DW_AT_const_value attributes are supposed to carry the
20100 symbol's value "represented as it would be on the target
20101 architecture." By the time we get here, it's already been
20102 converted to host endianness, so we just need to sign- or
20103 zero-extend it as appropriate. */
20104 case DW_FORM_data1:
20105 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20106 break;
20107 case DW_FORM_data2:
20108 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20109 break;
20110 case DW_FORM_data4:
20111 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20112 break;
20113 case DW_FORM_data8:
20114 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20115 break;
20116
20117 case DW_FORM_sdata:
20118 case DW_FORM_implicit_const:
20119 *value = DW_SND (attr);
20120 break;
20121
20122 case DW_FORM_udata:
20123 *value = DW_UNSND (attr);
20124 break;
20125
20126 default:
20127 complaint (&symfile_complaints,
20128 _("unsupported const value attribute form: '%s'"),
20129 dwarf_form_name (attr->form));
20130 *value = 0;
20131 break;
20132 }
20133 }
20134
20135
20136 /* Copy constant value from an attribute to a symbol. */
20137
20138 static void
20139 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
20140 struct dwarf2_cu *cu)
20141 {
20142 struct objfile *objfile = cu->objfile;
20143 LONGEST value;
20144 const gdb_byte *bytes;
20145 struct dwarf2_locexpr_baton *baton;
20146
20147 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
20148 SYMBOL_PRINT_NAME (sym),
20149 &objfile->objfile_obstack, cu,
20150 &value, &bytes, &baton);
20151
20152 if (baton != NULL)
20153 {
20154 SYMBOL_LOCATION_BATON (sym) = baton;
20155 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
20156 }
20157 else if (bytes != NULL)
20158 {
20159 SYMBOL_VALUE_BYTES (sym) = bytes;
20160 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
20161 }
20162 else
20163 {
20164 SYMBOL_VALUE (sym) = value;
20165 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
20166 }
20167 }
20168
20169 /* Return the type of the die in question using its DW_AT_type attribute. */
20170
20171 static struct type *
20172 die_type (struct die_info *die, struct dwarf2_cu *cu)
20173 {
20174 struct attribute *type_attr;
20175
20176 type_attr = dwarf2_attr (die, DW_AT_type, cu);
20177 if (!type_attr)
20178 {
20179 /* A missing DW_AT_type represents a void type. */
20180 return objfile_type (cu->objfile)->builtin_void;
20181 }
20182
20183 return lookup_die_type (die, type_attr, cu);
20184 }
20185
20186 /* True iff CU's producer generates GNAT Ada auxiliary information
20187 that allows to find parallel types through that information instead
20188 of having to do expensive parallel lookups by type name. */
20189
20190 static int
20191 need_gnat_info (struct dwarf2_cu *cu)
20192 {
20193 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
20194 of GNAT produces this auxiliary information, without any indication
20195 that it is produced. Part of enhancing the FSF version of GNAT
20196 to produce that information will be to put in place an indicator
20197 that we can use in order to determine whether the descriptive type
20198 info is available or not. One suggestion that has been made is
20199 to use a new attribute, attached to the CU die. For now, assume
20200 that the descriptive type info is not available. */
20201 return 0;
20202 }
20203
20204 /* Return the auxiliary type of the die in question using its
20205 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
20206 attribute is not present. */
20207
20208 static struct type *
20209 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
20210 {
20211 struct attribute *type_attr;
20212
20213 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
20214 if (!type_attr)
20215 return NULL;
20216
20217 return lookup_die_type (die, type_attr, cu);
20218 }
20219
20220 /* If DIE has a descriptive_type attribute, then set the TYPE's
20221 descriptive type accordingly. */
20222
20223 static void
20224 set_descriptive_type (struct type *type, struct die_info *die,
20225 struct dwarf2_cu *cu)
20226 {
20227 struct type *descriptive_type = die_descriptive_type (die, cu);
20228
20229 if (descriptive_type)
20230 {
20231 ALLOCATE_GNAT_AUX_TYPE (type);
20232 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
20233 }
20234 }
20235
20236 /* Return the containing type of the die in question using its
20237 DW_AT_containing_type attribute. */
20238
20239 static struct type *
20240 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
20241 {
20242 struct attribute *type_attr;
20243
20244 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
20245 if (!type_attr)
20246 error (_("Dwarf Error: Problem turning containing type into gdb type "
20247 "[in module %s]"), objfile_name (cu->objfile));
20248
20249 return lookup_die_type (die, type_attr, cu);
20250 }
20251
20252 /* Return an error marker type to use for the ill formed type in DIE/CU. */
20253
20254 static struct type *
20255 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
20256 {
20257 struct objfile *objfile = dwarf2_per_objfile->objfile;
20258 char *message, *saved;
20259
20260 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
20261 objfile_name (objfile),
20262 to_underlying (cu->header.sect_off),
20263 to_underlying (die->sect_off));
20264 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
20265 message, strlen (message));
20266 xfree (message);
20267
20268 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20269 }
20270
20271 /* Look up the type of DIE in CU using its type attribute ATTR.
20272 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20273 DW_AT_containing_type.
20274 If there is no type substitute an error marker. */
20275
20276 static struct type *
20277 lookup_die_type (struct die_info *die, const struct attribute *attr,
20278 struct dwarf2_cu *cu)
20279 {
20280 struct objfile *objfile = cu->objfile;
20281 struct type *this_type;
20282
20283 gdb_assert (attr->name == DW_AT_type
20284 || attr->name == DW_AT_GNAT_descriptive_type
20285 || attr->name == DW_AT_containing_type);
20286
20287 /* First see if we have it cached. */
20288
20289 if (attr->form == DW_FORM_GNU_ref_alt)
20290 {
20291 struct dwarf2_per_cu_data *per_cu;
20292 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20293
20294 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
20295 this_type = get_die_type_at_offset (sect_off, per_cu);
20296 }
20297 else if (attr_form_is_ref (attr))
20298 {
20299 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20300
20301 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20302 }
20303 else if (attr->form == DW_FORM_ref_sig8)
20304 {
20305 ULONGEST signature = DW_SIGNATURE (attr);
20306
20307 return get_signatured_type (die, signature, cu);
20308 }
20309 else
20310 {
20311 complaint (&symfile_complaints,
20312 _("Dwarf Error: Bad type attribute %s in DIE"
20313 " at 0x%x [in module %s]"),
20314 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
20315 objfile_name (objfile));
20316 return build_error_marker_type (cu, die);
20317 }
20318
20319 /* If not cached we need to read it in. */
20320
20321 if (this_type == NULL)
20322 {
20323 struct die_info *type_die = NULL;
20324 struct dwarf2_cu *type_cu = cu;
20325
20326 if (attr_form_is_ref (attr))
20327 type_die = follow_die_ref (die, attr, &type_cu);
20328 if (type_die == NULL)
20329 return build_error_marker_type (cu, die);
20330 /* If we find the type now, it's probably because the type came
20331 from an inter-CU reference and the type's CU got expanded before
20332 ours. */
20333 this_type = read_type_die (type_die, type_cu);
20334 }
20335
20336 /* If we still don't have a type use an error marker. */
20337
20338 if (this_type == NULL)
20339 return build_error_marker_type (cu, die);
20340
20341 return this_type;
20342 }
20343
20344 /* Return the type in DIE, CU.
20345 Returns NULL for invalid types.
20346
20347 This first does a lookup in die_type_hash,
20348 and only reads the die in if necessary.
20349
20350 NOTE: This can be called when reading in partial or full symbols. */
20351
20352 static struct type *
20353 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
20354 {
20355 struct type *this_type;
20356
20357 this_type = get_die_type (die, cu);
20358 if (this_type)
20359 return this_type;
20360
20361 return read_type_die_1 (die, cu);
20362 }
20363
20364 /* Read the type in DIE, CU.
20365 Returns NULL for invalid types. */
20366
20367 static struct type *
20368 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
20369 {
20370 struct type *this_type = NULL;
20371
20372 switch (die->tag)
20373 {
20374 case DW_TAG_class_type:
20375 case DW_TAG_interface_type:
20376 case DW_TAG_structure_type:
20377 case DW_TAG_union_type:
20378 this_type = read_structure_type (die, cu);
20379 break;
20380 case DW_TAG_enumeration_type:
20381 this_type = read_enumeration_type (die, cu);
20382 break;
20383 case DW_TAG_subprogram:
20384 case DW_TAG_subroutine_type:
20385 case DW_TAG_inlined_subroutine:
20386 this_type = read_subroutine_type (die, cu);
20387 break;
20388 case DW_TAG_array_type:
20389 this_type = read_array_type (die, cu);
20390 break;
20391 case DW_TAG_set_type:
20392 this_type = read_set_type (die, cu);
20393 break;
20394 case DW_TAG_pointer_type:
20395 this_type = read_tag_pointer_type (die, cu);
20396 break;
20397 case DW_TAG_ptr_to_member_type:
20398 this_type = read_tag_ptr_to_member_type (die, cu);
20399 break;
20400 case DW_TAG_reference_type:
20401 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
20402 break;
20403 case DW_TAG_rvalue_reference_type:
20404 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
20405 break;
20406 case DW_TAG_const_type:
20407 this_type = read_tag_const_type (die, cu);
20408 break;
20409 case DW_TAG_volatile_type:
20410 this_type = read_tag_volatile_type (die, cu);
20411 break;
20412 case DW_TAG_restrict_type:
20413 this_type = read_tag_restrict_type (die, cu);
20414 break;
20415 case DW_TAG_string_type:
20416 this_type = read_tag_string_type (die, cu);
20417 break;
20418 case DW_TAG_typedef:
20419 this_type = read_typedef (die, cu);
20420 break;
20421 case DW_TAG_subrange_type:
20422 this_type = read_subrange_type (die, cu);
20423 break;
20424 case DW_TAG_base_type:
20425 this_type = read_base_type (die, cu);
20426 break;
20427 case DW_TAG_unspecified_type:
20428 this_type = read_unspecified_type (die, cu);
20429 break;
20430 case DW_TAG_namespace:
20431 this_type = read_namespace_type (die, cu);
20432 break;
20433 case DW_TAG_module:
20434 this_type = read_module_type (die, cu);
20435 break;
20436 case DW_TAG_atomic_type:
20437 this_type = read_tag_atomic_type (die, cu);
20438 break;
20439 default:
20440 complaint (&symfile_complaints,
20441 _("unexpected tag in read_type_die: '%s'"),
20442 dwarf_tag_name (die->tag));
20443 break;
20444 }
20445
20446 return this_type;
20447 }
20448
20449 /* See if we can figure out if the class lives in a namespace. We do
20450 this by looking for a member function; its demangled name will
20451 contain namespace info, if there is any.
20452 Return the computed name or NULL.
20453 Space for the result is allocated on the objfile's obstack.
20454 This is the full-die version of guess_partial_die_structure_name.
20455 In this case we know DIE has no useful parent. */
20456
20457 static char *
20458 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
20459 {
20460 struct die_info *spec_die;
20461 struct dwarf2_cu *spec_cu;
20462 struct die_info *child;
20463
20464 spec_cu = cu;
20465 spec_die = die_specification (die, &spec_cu);
20466 if (spec_die != NULL)
20467 {
20468 die = spec_die;
20469 cu = spec_cu;
20470 }
20471
20472 for (child = die->child;
20473 child != NULL;
20474 child = child->sibling)
20475 {
20476 if (child->tag == DW_TAG_subprogram)
20477 {
20478 const char *linkage_name = dw2_linkage_name (child, cu);
20479
20480 if (linkage_name != NULL)
20481 {
20482 char *actual_name
20483 = language_class_name_from_physname (cu->language_defn,
20484 linkage_name);
20485 char *name = NULL;
20486
20487 if (actual_name != NULL)
20488 {
20489 const char *die_name = dwarf2_name (die, cu);
20490
20491 if (die_name != NULL
20492 && strcmp (die_name, actual_name) != 0)
20493 {
20494 /* Strip off the class name from the full name.
20495 We want the prefix. */
20496 int die_name_len = strlen (die_name);
20497 int actual_name_len = strlen (actual_name);
20498
20499 /* Test for '::' as a sanity check. */
20500 if (actual_name_len > die_name_len + 2
20501 && actual_name[actual_name_len
20502 - die_name_len - 1] == ':')
20503 name = (char *) obstack_copy0 (
20504 &cu->objfile->per_bfd->storage_obstack,
20505 actual_name, actual_name_len - die_name_len - 2);
20506 }
20507 }
20508 xfree (actual_name);
20509 return name;
20510 }
20511 }
20512 }
20513
20514 return NULL;
20515 }
20516
20517 /* GCC might emit a nameless typedef that has a linkage name. Determine the
20518 prefix part in such case. See
20519 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20520
20521 static const char *
20522 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
20523 {
20524 struct attribute *attr;
20525 const char *base;
20526
20527 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
20528 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
20529 return NULL;
20530
20531 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
20532 return NULL;
20533
20534 attr = dw2_linkage_name_attr (die, cu);
20535 if (attr == NULL || DW_STRING (attr) == NULL)
20536 return NULL;
20537
20538 /* dwarf2_name had to be already called. */
20539 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20540
20541 /* Strip the base name, keep any leading namespaces/classes. */
20542 base = strrchr (DW_STRING (attr), ':');
20543 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20544 return "";
20545
20546 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20547 DW_STRING (attr),
20548 &base[-1] - DW_STRING (attr));
20549 }
20550
20551 /* Return the name of the namespace/class that DIE is defined within,
20552 or "" if we can't tell. The caller should not xfree the result.
20553
20554 For example, if we're within the method foo() in the following
20555 code:
20556
20557 namespace N {
20558 class C {
20559 void foo () {
20560 }
20561 };
20562 }
20563
20564 then determine_prefix on foo's die will return "N::C". */
20565
20566 static const char *
20567 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20568 {
20569 struct die_info *parent, *spec_die;
20570 struct dwarf2_cu *spec_cu;
20571 struct type *parent_type;
20572 const char *retval;
20573
20574 if (cu->language != language_cplus
20575 && cu->language != language_fortran && cu->language != language_d
20576 && cu->language != language_rust)
20577 return "";
20578
20579 retval = anonymous_struct_prefix (die, cu);
20580 if (retval)
20581 return retval;
20582
20583 /* We have to be careful in the presence of DW_AT_specification.
20584 For example, with GCC 3.4, given the code
20585
20586 namespace N {
20587 void foo() {
20588 // Definition of N::foo.
20589 }
20590 }
20591
20592 then we'll have a tree of DIEs like this:
20593
20594 1: DW_TAG_compile_unit
20595 2: DW_TAG_namespace // N
20596 3: DW_TAG_subprogram // declaration of N::foo
20597 4: DW_TAG_subprogram // definition of N::foo
20598 DW_AT_specification // refers to die #3
20599
20600 Thus, when processing die #4, we have to pretend that we're in
20601 the context of its DW_AT_specification, namely the contex of die
20602 #3. */
20603 spec_cu = cu;
20604 spec_die = die_specification (die, &spec_cu);
20605 if (spec_die == NULL)
20606 parent = die->parent;
20607 else
20608 {
20609 parent = spec_die->parent;
20610 cu = spec_cu;
20611 }
20612
20613 if (parent == NULL)
20614 return "";
20615 else if (parent->building_fullname)
20616 {
20617 const char *name;
20618 const char *parent_name;
20619
20620 /* It has been seen on RealView 2.2 built binaries,
20621 DW_TAG_template_type_param types actually _defined_ as
20622 children of the parent class:
20623
20624 enum E {};
20625 template class <class Enum> Class{};
20626 Class<enum E> class_e;
20627
20628 1: DW_TAG_class_type (Class)
20629 2: DW_TAG_enumeration_type (E)
20630 3: DW_TAG_enumerator (enum1:0)
20631 3: DW_TAG_enumerator (enum2:1)
20632 ...
20633 2: DW_TAG_template_type_param
20634 DW_AT_type DW_FORM_ref_udata (E)
20635
20636 Besides being broken debug info, it can put GDB into an
20637 infinite loop. Consider:
20638
20639 When we're building the full name for Class<E>, we'll start
20640 at Class, and go look over its template type parameters,
20641 finding E. We'll then try to build the full name of E, and
20642 reach here. We're now trying to build the full name of E,
20643 and look over the parent DIE for containing scope. In the
20644 broken case, if we followed the parent DIE of E, we'd again
20645 find Class, and once again go look at its template type
20646 arguments, etc., etc. Simply don't consider such parent die
20647 as source-level parent of this die (it can't be, the language
20648 doesn't allow it), and break the loop here. */
20649 name = dwarf2_name (die, cu);
20650 parent_name = dwarf2_name (parent, cu);
20651 complaint (&symfile_complaints,
20652 _("template param type '%s' defined within parent '%s'"),
20653 name ? name : "<unknown>",
20654 parent_name ? parent_name : "<unknown>");
20655 return "";
20656 }
20657 else
20658 switch (parent->tag)
20659 {
20660 case DW_TAG_namespace:
20661 parent_type = read_type_die (parent, cu);
20662 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20663 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20664 Work around this problem here. */
20665 if (cu->language == language_cplus
20666 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20667 return "";
20668 /* We give a name to even anonymous namespaces. */
20669 return TYPE_TAG_NAME (parent_type);
20670 case DW_TAG_class_type:
20671 case DW_TAG_interface_type:
20672 case DW_TAG_structure_type:
20673 case DW_TAG_union_type:
20674 case DW_TAG_module:
20675 parent_type = read_type_die (parent, cu);
20676 if (TYPE_TAG_NAME (parent_type) != NULL)
20677 return TYPE_TAG_NAME (parent_type);
20678 else
20679 /* An anonymous structure is only allowed non-static data
20680 members; no typedefs, no member functions, et cetera.
20681 So it does not need a prefix. */
20682 return "";
20683 case DW_TAG_compile_unit:
20684 case DW_TAG_partial_unit:
20685 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20686 if (cu->language == language_cplus
20687 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20688 && die->child != NULL
20689 && (die->tag == DW_TAG_class_type
20690 || die->tag == DW_TAG_structure_type
20691 || die->tag == DW_TAG_union_type))
20692 {
20693 char *name = guess_full_die_structure_name (die, cu);
20694 if (name != NULL)
20695 return name;
20696 }
20697 return "";
20698 case DW_TAG_enumeration_type:
20699 parent_type = read_type_die (parent, cu);
20700 if (TYPE_DECLARED_CLASS (parent_type))
20701 {
20702 if (TYPE_TAG_NAME (parent_type) != NULL)
20703 return TYPE_TAG_NAME (parent_type);
20704 return "";
20705 }
20706 /* Fall through. */
20707 default:
20708 return determine_prefix (parent, cu);
20709 }
20710 }
20711
20712 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20713 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20714 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20715 an obconcat, otherwise allocate storage for the result. The CU argument is
20716 used to determine the language and hence, the appropriate separator. */
20717
20718 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20719
20720 static char *
20721 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20722 int physname, struct dwarf2_cu *cu)
20723 {
20724 const char *lead = "";
20725 const char *sep;
20726
20727 if (suffix == NULL || suffix[0] == '\0'
20728 || prefix == NULL || prefix[0] == '\0')
20729 sep = "";
20730 else if (cu->language == language_d)
20731 {
20732 /* For D, the 'main' function could be defined in any module, but it
20733 should never be prefixed. */
20734 if (strcmp (suffix, "D main") == 0)
20735 {
20736 prefix = "";
20737 sep = "";
20738 }
20739 else
20740 sep = ".";
20741 }
20742 else if (cu->language == language_fortran && physname)
20743 {
20744 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20745 DW_AT_MIPS_linkage_name is preferred and used instead. */
20746
20747 lead = "__";
20748 sep = "_MOD_";
20749 }
20750 else
20751 sep = "::";
20752
20753 if (prefix == NULL)
20754 prefix = "";
20755 if (suffix == NULL)
20756 suffix = "";
20757
20758 if (obs == NULL)
20759 {
20760 char *retval
20761 = ((char *)
20762 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20763
20764 strcpy (retval, lead);
20765 strcat (retval, prefix);
20766 strcat (retval, sep);
20767 strcat (retval, suffix);
20768 return retval;
20769 }
20770 else
20771 {
20772 /* We have an obstack. */
20773 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20774 }
20775 }
20776
20777 /* Return sibling of die, NULL if no sibling. */
20778
20779 static struct die_info *
20780 sibling_die (struct die_info *die)
20781 {
20782 return die->sibling;
20783 }
20784
20785 /* Get name of a die, return NULL if not found. */
20786
20787 static const char *
20788 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20789 struct obstack *obstack)
20790 {
20791 if (name && cu->language == language_cplus)
20792 {
20793 std::string canon_name = cp_canonicalize_string (name);
20794
20795 if (!canon_name.empty ())
20796 {
20797 if (canon_name != name)
20798 name = (const char *) obstack_copy0 (obstack,
20799 canon_name.c_str (),
20800 canon_name.length ());
20801 }
20802 }
20803
20804 return name;
20805 }
20806
20807 /* Get name of a die, return NULL if not found.
20808 Anonymous namespaces are converted to their magic string. */
20809
20810 static const char *
20811 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20812 {
20813 struct attribute *attr;
20814
20815 attr = dwarf2_attr (die, DW_AT_name, cu);
20816 if ((!attr || !DW_STRING (attr))
20817 && die->tag != DW_TAG_namespace
20818 && die->tag != DW_TAG_class_type
20819 && die->tag != DW_TAG_interface_type
20820 && die->tag != DW_TAG_structure_type
20821 && die->tag != DW_TAG_union_type)
20822 return NULL;
20823
20824 switch (die->tag)
20825 {
20826 case DW_TAG_compile_unit:
20827 case DW_TAG_partial_unit:
20828 /* Compilation units have a DW_AT_name that is a filename, not
20829 a source language identifier. */
20830 case DW_TAG_enumeration_type:
20831 case DW_TAG_enumerator:
20832 /* These tags always have simple identifiers already; no need
20833 to canonicalize them. */
20834 return DW_STRING (attr);
20835
20836 case DW_TAG_namespace:
20837 if (attr != NULL && DW_STRING (attr) != NULL)
20838 return DW_STRING (attr);
20839 return CP_ANONYMOUS_NAMESPACE_STR;
20840
20841 case DW_TAG_class_type:
20842 case DW_TAG_interface_type:
20843 case DW_TAG_structure_type:
20844 case DW_TAG_union_type:
20845 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20846 structures or unions. These were of the form "._%d" in GCC 4.1,
20847 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20848 and GCC 4.4. We work around this problem by ignoring these. */
20849 if (attr && DW_STRING (attr)
20850 && (startswith (DW_STRING (attr), "._")
20851 || startswith (DW_STRING (attr), "<anonymous")))
20852 return NULL;
20853
20854 /* GCC might emit a nameless typedef that has a linkage name. See
20855 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20856 if (!attr || DW_STRING (attr) == NULL)
20857 {
20858 char *demangled = NULL;
20859
20860 attr = dw2_linkage_name_attr (die, cu);
20861 if (attr == NULL || DW_STRING (attr) == NULL)
20862 return NULL;
20863
20864 /* Avoid demangling DW_STRING (attr) the second time on a second
20865 call for the same DIE. */
20866 if (!DW_STRING_IS_CANONICAL (attr))
20867 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20868
20869 if (demangled)
20870 {
20871 const char *base;
20872
20873 /* FIXME: we already did this for the partial symbol... */
20874 DW_STRING (attr)
20875 = ((const char *)
20876 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20877 demangled, strlen (demangled)));
20878 DW_STRING_IS_CANONICAL (attr) = 1;
20879 xfree (demangled);
20880
20881 /* Strip any leading namespaces/classes, keep only the base name.
20882 DW_AT_name for named DIEs does not contain the prefixes. */
20883 base = strrchr (DW_STRING (attr), ':');
20884 if (base && base > DW_STRING (attr) && base[-1] == ':')
20885 return &base[1];
20886 else
20887 return DW_STRING (attr);
20888 }
20889 }
20890 break;
20891
20892 default:
20893 break;
20894 }
20895
20896 if (!DW_STRING_IS_CANONICAL (attr))
20897 {
20898 DW_STRING (attr)
20899 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20900 &cu->objfile->per_bfd->storage_obstack);
20901 DW_STRING_IS_CANONICAL (attr) = 1;
20902 }
20903 return DW_STRING (attr);
20904 }
20905
20906 /* Return the die that this die in an extension of, or NULL if there
20907 is none. *EXT_CU is the CU containing DIE on input, and the CU
20908 containing the return value on output. */
20909
20910 static struct die_info *
20911 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20912 {
20913 struct attribute *attr;
20914
20915 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20916 if (attr == NULL)
20917 return NULL;
20918
20919 return follow_die_ref (die, attr, ext_cu);
20920 }
20921
20922 /* Convert a DIE tag into its string name. */
20923
20924 static const char *
20925 dwarf_tag_name (unsigned tag)
20926 {
20927 const char *name = get_DW_TAG_name (tag);
20928
20929 if (name == NULL)
20930 return "DW_TAG_<unknown>";
20931
20932 return name;
20933 }
20934
20935 /* Convert a DWARF attribute code into its string name. */
20936
20937 static const char *
20938 dwarf_attr_name (unsigned attr)
20939 {
20940 const char *name;
20941
20942 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20943 if (attr == DW_AT_MIPS_fde)
20944 return "DW_AT_MIPS_fde";
20945 #else
20946 if (attr == DW_AT_HP_block_index)
20947 return "DW_AT_HP_block_index";
20948 #endif
20949
20950 name = get_DW_AT_name (attr);
20951
20952 if (name == NULL)
20953 return "DW_AT_<unknown>";
20954
20955 return name;
20956 }
20957
20958 /* Convert a DWARF value form code into its string name. */
20959
20960 static const char *
20961 dwarf_form_name (unsigned form)
20962 {
20963 const char *name = get_DW_FORM_name (form);
20964
20965 if (name == NULL)
20966 return "DW_FORM_<unknown>";
20967
20968 return name;
20969 }
20970
20971 static const char *
20972 dwarf_bool_name (unsigned mybool)
20973 {
20974 if (mybool)
20975 return "TRUE";
20976 else
20977 return "FALSE";
20978 }
20979
20980 /* Convert a DWARF type code into its string name. */
20981
20982 static const char *
20983 dwarf_type_encoding_name (unsigned enc)
20984 {
20985 const char *name = get_DW_ATE_name (enc);
20986
20987 if (name == NULL)
20988 return "DW_ATE_<unknown>";
20989
20990 return name;
20991 }
20992
20993 static void
20994 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20995 {
20996 unsigned int i;
20997
20998 print_spaces (indent, f);
20999 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
21000 dwarf_tag_name (die->tag), die->abbrev,
21001 to_underlying (die->sect_off));
21002
21003 if (die->parent != NULL)
21004 {
21005 print_spaces (indent, f);
21006 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
21007 to_underlying (die->parent->sect_off));
21008 }
21009
21010 print_spaces (indent, f);
21011 fprintf_unfiltered (f, " has children: %s\n",
21012 dwarf_bool_name (die->child != NULL));
21013
21014 print_spaces (indent, f);
21015 fprintf_unfiltered (f, " attributes:\n");
21016
21017 for (i = 0; i < die->num_attrs; ++i)
21018 {
21019 print_spaces (indent, f);
21020 fprintf_unfiltered (f, " %s (%s) ",
21021 dwarf_attr_name (die->attrs[i].name),
21022 dwarf_form_name (die->attrs[i].form));
21023
21024 switch (die->attrs[i].form)
21025 {
21026 case DW_FORM_addr:
21027 case DW_FORM_GNU_addr_index:
21028 fprintf_unfiltered (f, "address: ");
21029 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21030 break;
21031 case DW_FORM_block2:
21032 case DW_FORM_block4:
21033 case DW_FORM_block:
21034 case DW_FORM_block1:
21035 fprintf_unfiltered (f, "block: size %s",
21036 pulongest (DW_BLOCK (&die->attrs[i])->size));
21037 break;
21038 case DW_FORM_exprloc:
21039 fprintf_unfiltered (f, "expression: size %s",
21040 pulongest (DW_BLOCK (&die->attrs[i])->size));
21041 break;
21042 case DW_FORM_data16:
21043 fprintf_unfiltered (f, "constant of 16 bytes");
21044 break;
21045 case DW_FORM_ref_addr:
21046 fprintf_unfiltered (f, "ref address: ");
21047 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21048 break;
21049 case DW_FORM_GNU_ref_alt:
21050 fprintf_unfiltered (f, "alt ref address: ");
21051 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21052 break;
21053 case DW_FORM_ref1:
21054 case DW_FORM_ref2:
21055 case DW_FORM_ref4:
21056 case DW_FORM_ref8:
21057 case DW_FORM_ref_udata:
21058 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21059 (long) (DW_UNSND (&die->attrs[i])));
21060 break;
21061 case DW_FORM_data1:
21062 case DW_FORM_data2:
21063 case DW_FORM_data4:
21064 case DW_FORM_data8:
21065 case DW_FORM_udata:
21066 case DW_FORM_sdata:
21067 fprintf_unfiltered (f, "constant: %s",
21068 pulongest (DW_UNSND (&die->attrs[i])));
21069 break;
21070 case DW_FORM_sec_offset:
21071 fprintf_unfiltered (f, "section offset: %s",
21072 pulongest (DW_UNSND (&die->attrs[i])));
21073 break;
21074 case DW_FORM_ref_sig8:
21075 fprintf_unfiltered (f, "signature: %s",
21076 hex_string (DW_SIGNATURE (&die->attrs[i])));
21077 break;
21078 case DW_FORM_string:
21079 case DW_FORM_strp:
21080 case DW_FORM_line_strp:
21081 case DW_FORM_GNU_str_index:
21082 case DW_FORM_GNU_strp_alt:
21083 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21084 DW_STRING (&die->attrs[i])
21085 ? DW_STRING (&die->attrs[i]) : "",
21086 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21087 break;
21088 case DW_FORM_flag:
21089 if (DW_UNSND (&die->attrs[i]))
21090 fprintf_unfiltered (f, "flag: TRUE");
21091 else
21092 fprintf_unfiltered (f, "flag: FALSE");
21093 break;
21094 case DW_FORM_flag_present:
21095 fprintf_unfiltered (f, "flag: TRUE");
21096 break;
21097 case DW_FORM_indirect:
21098 /* The reader will have reduced the indirect form to
21099 the "base form" so this form should not occur. */
21100 fprintf_unfiltered (f,
21101 "unexpected attribute form: DW_FORM_indirect");
21102 break;
21103 case DW_FORM_implicit_const:
21104 fprintf_unfiltered (f, "constant: %s",
21105 plongest (DW_SND (&die->attrs[i])));
21106 break;
21107 default:
21108 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21109 die->attrs[i].form);
21110 break;
21111 }
21112 fprintf_unfiltered (f, "\n");
21113 }
21114 }
21115
21116 static void
21117 dump_die_for_error (struct die_info *die)
21118 {
21119 dump_die_shallow (gdb_stderr, 0, die);
21120 }
21121
21122 static void
21123 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21124 {
21125 int indent = level * 4;
21126
21127 gdb_assert (die != NULL);
21128
21129 if (level >= max_level)
21130 return;
21131
21132 dump_die_shallow (f, indent, die);
21133
21134 if (die->child != NULL)
21135 {
21136 print_spaces (indent, f);
21137 fprintf_unfiltered (f, " Children:");
21138 if (level + 1 < max_level)
21139 {
21140 fprintf_unfiltered (f, "\n");
21141 dump_die_1 (f, level + 1, max_level, die->child);
21142 }
21143 else
21144 {
21145 fprintf_unfiltered (f,
21146 " [not printed, max nesting level reached]\n");
21147 }
21148 }
21149
21150 if (die->sibling != NULL && level > 0)
21151 {
21152 dump_die_1 (f, level, max_level, die->sibling);
21153 }
21154 }
21155
21156 /* This is called from the pdie macro in gdbinit.in.
21157 It's not static so gcc will keep a copy callable from gdb. */
21158
21159 void
21160 dump_die (struct die_info *die, int max_level)
21161 {
21162 dump_die_1 (gdb_stdlog, 0, max_level, die);
21163 }
21164
21165 static void
21166 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
21167 {
21168 void **slot;
21169
21170 slot = htab_find_slot_with_hash (cu->die_hash, die,
21171 to_underlying (die->sect_off),
21172 INSERT);
21173
21174 *slot = die;
21175 }
21176
21177 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
21178 required kind. */
21179
21180 static sect_offset
21181 dwarf2_get_ref_die_offset (const struct attribute *attr)
21182 {
21183 if (attr_form_is_ref (attr))
21184 return (sect_offset) DW_UNSND (attr);
21185
21186 complaint (&symfile_complaints,
21187 _("unsupported die ref attribute form: '%s'"),
21188 dwarf_form_name (attr->form));
21189 return {};
21190 }
21191
21192 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
21193 * the value held by the attribute is not constant. */
21194
21195 static LONGEST
21196 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
21197 {
21198 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
21199 return DW_SND (attr);
21200 else if (attr->form == DW_FORM_udata
21201 || attr->form == DW_FORM_data1
21202 || attr->form == DW_FORM_data2
21203 || attr->form == DW_FORM_data4
21204 || attr->form == DW_FORM_data8)
21205 return DW_UNSND (attr);
21206 else
21207 {
21208 /* For DW_FORM_data16 see attr_form_is_constant. */
21209 complaint (&symfile_complaints,
21210 _("Attribute value is not a constant (%s)"),
21211 dwarf_form_name (attr->form));
21212 return default_value;
21213 }
21214 }
21215
21216 /* Follow reference or signature attribute ATTR of SRC_DIE.
21217 On entry *REF_CU is the CU of SRC_DIE.
21218 On exit *REF_CU is the CU of the result. */
21219
21220 static struct die_info *
21221 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
21222 struct dwarf2_cu **ref_cu)
21223 {
21224 struct die_info *die;
21225
21226 if (attr_form_is_ref (attr))
21227 die = follow_die_ref (src_die, attr, ref_cu);
21228 else if (attr->form == DW_FORM_ref_sig8)
21229 die = follow_die_sig (src_die, attr, ref_cu);
21230 else
21231 {
21232 dump_die_for_error (src_die);
21233 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
21234 objfile_name ((*ref_cu)->objfile));
21235 }
21236
21237 return die;
21238 }
21239
21240 /* Follow reference OFFSET.
21241 On entry *REF_CU is the CU of the source die referencing OFFSET.
21242 On exit *REF_CU is the CU of the result.
21243 Returns NULL if OFFSET is invalid. */
21244
21245 static struct die_info *
21246 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
21247 struct dwarf2_cu **ref_cu)
21248 {
21249 struct die_info temp_die;
21250 struct dwarf2_cu *target_cu, *cu = *ref_cu;
21251
21252 gdb_assert (cu->per_cu != NULL);
21253
21254 target_cu = cu;
21255
21256 if (cu->per_cu->is_debug_types)
21257 {
21258 /* .debug_types CUs cannot reference anything outside their CU.
21259 If they need to, they have to reference a signatured type via
21260 DW_FORM_ref_sig8. */
21261 if (!offset_in_cu_p (&cu->header, sect_off))
21262 return NULL;
21263 }
21264 else if (offset_in_dwz != cu->per_cu->is_dwz
21265 || !offset_in_cu_p (&cu->header, sect_off))
21266 {
21267 struct dwarf2_per_cu_data *per_cu;
21268
21269 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21270 cu->objfile);
21271
21272 /* If necessary, add it to the queue and load its DIEs. */
21273 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21274 load_full_comp_unit (per_cu, cu->language);
21275
21276 target_cu = per_cu->cu;
21277 }
21278 else if (cu->dies == NULL)
21279 {
21280 /* We're loading full DIEs during partial symbol reading. */
21281 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21282 load_full_comp_unit (cu->per_cu, language_minimal);
21283 }
21284
21285 *ref_cu = target_cu;
21286 temp_die.sect_off = sect_off;
21287 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21288 &temp_die,
21289 to_underlying (sect_off));
21290 }
21291
21292 /* Follow reference attribute ATTR of SRC_DIE.
21293 On entry *REF_CU is the CU of SRC_DIE.
21294 On exit *REF_CU is the CU of the result. */
21295
21296 static struct die_info *
21297 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21298 struct dwarf2_cu **ref_cu)
21299 {
21300 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21301 struct dwarf2_cu *cu = *ref_cu;
21302 struct die_info *die;
21303
21304 die = follow_die_offset (sect_off,
21305 (attr->form == DW_FORM_GNU_ref_alt
21306 || cu->per_cu->is_dwz),
21307 ref_cu);
21308 if (!die)
21309 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
21310 "at 0x%x [in module %s]"),
21311 to_underlying (sect_off), to_underlying (src_die->sect_off),
21312 objfile_name (cu->objfile));
21313
21314 return die;
21315 }
21316
21317 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
21318 Returned value is intended for DW_OP_call*. Returned
21319 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
21320
21321 struct dwarf2_locexpr_baton
21322 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21323 struct dwarf2_per_cu_data *per_cu,
21324 CORE_ADDR (*get_frame_pc) (void *baton),
21325 void *baton)
21326 {
21327 struct dwarf2_cu *cu;
21328 struct die_info *die;
21329 struct attribute *attr;
21330 struct dwarf2_locexpr_baton retval;
21331
21332 dw2_setup (per_cu->objfile);
21333
21334 if (per_cu->cu == NULL)
21335 load_cu (per_cu);
21336 cu = per_cu->cu;
21337 if (cu == NULL)
21338 {
21339 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21340 Instead just throw an error, not much else we can do. */
21341 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21342 to_underlying (sect_off), objfile_name (per_cu->objfile));
21343 }
21344
21345 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21346 if (!die)
21347 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21348 to_underlying (sect_off), objfile_name (per_cu->objfile));
21349
21350 attr = dwarf2_attr (die, DW_AT_location, cu);
21351 if (!attr)
21352 {
21353 /* DWARF: "If there is no such attribute, then there is no effect.".
21354 DATA is ignored if SIZE is 0. */
21355
21356 retval.data = NULL;
21357 retval.size = 0;
21358 }
21359 else if (attr_form_is_section_offset (attr))
21360 {
21361 struct dwarf2_loclist_baton loclist_baton;
21362 CORE_ADDR pc = (*get_frame_pc) (baton);
21363 size_t size;
21364
21365 fill_in_loclist_baton (cu, &loclist_baton, attr);
21366
21367 retval.data = dwarf2_find_location_expression (&loclist_baton,
21368 &size, pc);
21369 retval.size = size;
21370 }
21371 else
21372 {
21373 if (!attr_form_is_block (attr))
21374 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
21375 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21376 to_underlying (sect_off), objfile_name (per_cu->objfile));
21377
21378 retval.data = DW_BLOCK (attr)->data;
21379 retval.size = DW_BLOCK (attr)->size;
21380 }
21381 retval.per_cu = cu->per_cu;
21382
21383 age_cached_comp_units ();
21384
21385 return retval;
21386 }
21387
21388 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
21389 offset. */
21390
21391 struct dwarf2_locexpr_baton
21392 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21393 struct dwarf2_per_cu_data *per_cu,
21394 CORE_ADDR (*get_frame_pc) (void *baton),
21395 void *baton)
21396 {
21397 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21398
21399 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21400 }
21401
21402 /* Write a constant of a given type as target-ordered bytes into
21403 OBSTACK. */
21404
21405 static const gdb_byte *
21406 write_constant_as_bytes (struct obstack *obstack,
21407 enum bfd_endian byte_order,
21408 struct type *type,
21409 ULONGEST value,
21410 LONGEST *len)
21411 {
21412 gdb_byte *result;
21413
21414 *len = TYPE_LENGTH (type);
21415 result = (gdb_byte *) obstack_alloc (obstack, *len);
21416 store_unsigned_integer (result, *len, byte_order, value);
21417
21418 return result;
21419 }
21420
21421 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
21422 pointer to the constant bytes and set LEN to the length of the
21423 data. If memory is needed, allocate it on OBSTACK. If the DIE
21424 does not have a DW_AT_const_value, return NULL. */
21425
21426 const gdb_byte *
21427 dwarf2_fetch_constant_bytes (sect_offset sect_off,
21428 struct dwarf2_per_cu_data *per_cu,
21429 struct obstack *obstack,
21430 LONGEST *len)
21431 {
21432 struct dwarf2_cu *cu;
21433 struct die_info *die;
21434 struct attribute *attr;
21435 const gdb_byte *result = NULL;
21436 struct type *type;
21437 LONGEST value;
21438 enum bfd_endian byte_order;
21439
21440 dw2_setup (per_cu->objfile);
21441
21442 if (per_cu->cu == NULL)
21443 load_cu (per_cu);
21444 cu = per_cu->cu;
21445 if (cu == NULL)
21446 {
21447 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21448 Instead just throw an error, not much else we can do. */
21449 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21450 to_underlying (sect_off), objfile_name (per_cu->objfile));
21451 }
21452
21453 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21454 if (!die)
21455 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21456 to_underlying (sect_off), objfile_name (per_cu->objfile));
21457
21458
21459 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21460 if (attr == NULL)
21461 return NULL;
21462
21463 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
21464 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21465
21466 switch (attr->form)
21467 {
21468 case DW_FORM_addr:
21469 case DW_FORM_GNU_addr_index:
21470 {
21471 gdb_byte *tem;
21472
21473 *len = cu->header.addr_size;
21474 tem = (gdb_byte *) obstack_alloc (obstack, *len);
21475 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
21476 result = tem;
21477 }
21478 break;
21479 case DW_FORM_string:
21480 case DW_FORM_strp:
21481 case DW_FORM_GNU_str_index:
21482 case DW_FORM_GNU_strp_alt:
21483 /* DW_STRING is already allocated on the objfile obstack, point
21484 directly to it. */
21485 result = (const gdb_byte *) DW_STRING (attr);
21486 *len = strlen (DW_STRING (attr));
21487 break;
21488 case DW_FORM_block1:
21489 case DW_FORM_block2:
21490 case DW_FORM_block4:
21491 case DW_FORM_block:
21492 case DW_FORM_exprloc:
21493 case DW_FORM_data16:
21494 result = DW_BLOCK (attr)->data;
21495 *len = DW_BLOCK (attr)->size;
21496 break;
21497
21498 /* The DW_AT_const_value attributes are supposed to carry the
21499 symbol's value "represented as it would be on the target
21500 architecture." By the time we get here, it's already been
21501 converted to host endianness, so we just need to sign- or
21502 zero-extend it as appropriate. */
21503 case DW_FORM_data1:
21504 type = die_type (die, cu);
21505 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
21506 if (result == NULL)
21507 result = write_constant_as_bytes (obstack, byte_order,
21508 type, value, len);
21509 break;
21510 case DW_FORM_data2:
21511 type = die_type (die, cu);
21512 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
21513 if (result == NULL)
21514 result = write_constant_as_bytes (obstack, byte_order,
21515 type, value, len);
21516 break;
21517 case DW_FORM_data4:
21518 type = die_type (die, cu);
21519 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
21520 if (result == NULL)
21521 result = write_constant_as_bytes (obstack, byte_order,
21522 type, value, len);
21523 break;
21524 case DW_FORM_data8:
21525 type = die_type (die, cu);
21526 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
21527 if (result == NULL)
21528 result = write_constant_as_bytes (obstack, byte_order,
21529 type, value, len);
21530 break;
21531
21532 case DW_FORM_sdata:
21533 case DW_FORM_implicit_const:
21534 type = die_type (die, cu);
21535 result = write_constant_as_bytes (obstack, byte_order,
21536 type, DW_SND (attr), len);
21537 break;
21538
21539 case DW_FORM_udata:
21540 type = die_type (die, cu);
21541 result = write_constant_as_bytes (obstack, byte_order,
21542 type, DW_UNSND (attr), len);
21543 break;
21544
21545 default:
21546 complaint (&symfile_complaints,
21547 _("unsupported const value attribute form: '%s'"),
21548 dwarf_form_name (attr->form));
21549 break;
21550 }
21551
21552 return result;
21553 }
21554
21555 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21556 valid type for this die is found. */
21557
21558 struct type *
21559 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21560 struct dwarf2_per_cu_data *per_cu)
21561 {
21562 struct dwarf2_cu *cu;
21563 struct die_info *die;
21564
21565 dw2_setup (per_cu->objfile);
21566
21567 if (per_cu->cu == NULL)
21568 load_cu (per_cu);
21569 cu = per_cu->cu;
21570 if (!cu)
21571 return NULL;
21572
21573 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21574 if (!die)
21575 return NULL;
21576
21577 return die_type (die, cu);
21578 }
21579
21580 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21581 PER_CU. */
21582
21583 struct type *
21584 dwarf2_get_die_type (cu_offset die_offset,
21585 struct dwarf2_per_cu_data *per_cu)
21586 {
21587 dw2_setup (per_cu->objfile);
21588
21589 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21590 return get_die_type_at_offset (die_offset_sect, per_cu);
21591 }
21592
21593 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21594 On entry *REF_CU is the CU of SRC_DIE.
21595 On exit *REF_CU is the CU of the result.
21596 Returns NULL if the referenced DIE isn't found. */
21597
21598 static struct die_info *
21599 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21600 struct dwarf2_cu **ref_cu)
21601 {
21602 struct die_info temp_die;
21603 struct dwarf2_cu *sig_cu;
21604 struct die_info *die;
21605
21606 /* While it might be nice to assert sig_type->type == NULL here,
21607 we can get here for DW_AT_imported_declaration where we need
21608 the DIE not the type. */
21609
21610 /* If necessary, add it to the queue and load its DIEs. */
21611
21612 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21613 read_signatured_type (sig_type);
21614
21615 sig_cu = sig_type->per_cu.cu;
21616 gdb_assert (sig_cu != NULL);
21617 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21618 temp_die.sect_off = sig_type->type_offset_in_section;
21619 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21620 to_underlying (temp_die.sect_off));
21621 if (die)
21622 {
21623 /* For .gdb_index version 7 keep track of included TUs.
21624 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21625 if (dwarf2_per_objfile->index_table != NULL
21626 && dwarf2_per_objfile->index_table->version <= 7)
21627 {
21628 VEC_safe_push (dwarf2_per_cu_ptr,
21629 (*ref_cu)->per_cu->imported_symtabs,
21630 sig_cu->per_cu);
21631 }
21632
21633 *ref_cu = sig_cu;
21634 return die;
21635 }
21636
21637 return NULL;
21638 }
21639
21640 /* Follow signatured type referenced by ATTR in SRC_DIE.
21641 On entry *REF_CU is the CU of SRC_DIE.
21642 On exit *REF_CU is the CU of the result.
21643 The result is the DIE of the type.
21644 If the referenced type cannot be found an error is thrown. */
21645
21646 static struct die_info *
21647 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21648 struct dwarf2_cu **ref_cu)
21649 {
21650 ULONGEST signature = DW_SIGNATURE (attr);
21651 struct signatured_type *sig_type;
21652 struct die_info *die;
21653
21654 gdb_assert (attr->form == DW_FORM_ref_sig8);
21655
21656 sig_type = lookup_signatured_type (*ref_cu, signature);
21657 /* sig_type will be NULL if the signatured type is missing from
21658 the debug info. */
21659 if (sig_type == NULL)
21660 {
21661 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21662 " from DIE at 0x%x [in module %s]"),
21663 hex_string (signature), to_underlying (src_die->sect_off),
21664 objfile_name ((*ref_cu)->objfile));
21665 }
21666
21667 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21668 if (die == NULL)
21669 {
21670 dump_die_for_error (src_die);
21671 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21672 " from DIE at 0x%x [in module %s]"),
21673 hex_string (signature), to_underlying (src_die->sect_off),
21674 objfile_name ((*ref_cu)->objfile));
21675 }
21676
21677 return die;
21678 }
21679
21680 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21681 reading in and processing the type unit if necessary. */
21682
21683 static struct type *
21684 get_signatured_type (struct die_info *die, ULONGEST signature,
21685 struct dwarf2_cu *cu)
21686 {
21687 struct signatured_type *sig_type;
21688 struct dwarf2_cu *type_cu;
21689 struct die_info *type_die;
21690 struct type *type;
21691
21692 sig_type = lookup_signatured_type (cu, signature);
21693 /* sig_type will be NULL if the signatured type is missing from
21694 the debug info. */
21695 if (sig_type == NULL)
21696 {
21697 complaint (&symfile_complaints,
21698 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21699 " from DIE at 0x%x [in module %s]"),
21700 hex_string (signature), to_underlying (die->sect_off),
21701 objfile_name (dwarf2_per_objfile->objfile));
21702 return build_error_marker_type (cu, die);
21703 }
21704
21705 /* If we already know the type we're done. */
21706 if (sig_type->type != NULL)
21707 return sig_type->type;
21708
21709 type_cu = cu;
21710 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21711 if (type_die != NULL)
21712 {
21713 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21714 is created. This is important, for example, because for c++ classes
21715 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21716 type = read_type_die (type_die, type_cu);
21717 if (type == NULL)
21718 {
21719 complaint (&symfile_complaints,
21720 _("Dwarf Error: Cannot build signatured type %s"
21721 " referenced from DIE at 0x%x [in module %s]"),
21722 hex_string (signature), to_underlying (die->sect_off),
21723 objfile_name (dwarf2_per_objfile->objfile));
21724 type = build_error_marker_type (cu, die);
21725 }
21726 }
21727 else
21728 {
21729 complaint (&symfile_complaints,
21730 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21731 " from DIE at 0x%x [in module %s]"),
21732 hex_string (signature), to_underlying (die->sect_off),
21733 objfile_name (dwarf2_per_objfile->objfile));
21734 type = build_error_marker_type (cu, die);
21735 }
21736 sig_type->type = type;
21737
21738 return type;
21739 }
21740
21741 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21742 reading in and processing the type unit if necessary. */
21743
21744 static struct type *
21745 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21746 struct dwarf2_cu *cu) /* ARI: editCase function */
21747 {
21748 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21749 if (attr_form_is_ref (attr))
21750 {
21751 struct dwarf2_cu *type_cu = cu;
21752 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21753
21754 return read_type_die (type_die, type_cu);
21755 }
21756 else if (attr->form == DW_FORM_ref_sig8)
21757 {
21758 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21759 }
21760 else
21761 {
21762 complaint (&symfile_complaints,
21763 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21764 " at 0x%x [in module %s]"),
21765 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21766 objfile_name (dwarf2_per_objfile->objfile));
21767 return build_error_marker_type (cu, die);
21768 }
21769 }
21770
21771 /* Load the DIEs associated with type unit PER_CU into memory. */
21772
21773 static void
21774 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21775 {
21776 struct signatured_type *sig_type;
21777
21778 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21779 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21780
21781 /* We have the per_cu, but we need the signatured_type.
21782 Fortunately this is an easy translation. */
21783 gdb_assert (per_cu->is_debug_types);
21784 sig_type = (struct signatured_type *) per_cu;
21785
21786 gdb_assert (per_cu->cu == NULL);
21787
21788 read_signatured_type (sig_type);
21789
21790 gdb_assert (per_cu->cu != NULL);
21791 }
21792
21793 /* die_reader_func for read_signatured_type.
21794 This is identical to load_full_comp_unit_reader,
21795 but is kept separate for now. */
21796
21797 static void
21798 read_signatured_type_reader (const struct die_reader_specs *reader,
21799 const gdb_byte *info_ptr,
21800 struct die_info *comp_unit_die,
21801 int has_children,
21802 void *data)
21803 {
21804 struct dwarf2_cu *cu = reader->cu;
21805
21806 gdb_assert (cu->die_hash == NULL);
21807 cu->die_hash =
21808 htab_create_alloc_ex (cu->header.length / 12,
21809 die_hash,
21810 die_eq,
21811 NULL,
21812 &cu->comp_unit_obstack,
21813 hashtab_obstack_allocate,
21814 dummy_obstack_deallocate);
21815
21816 if (has_children)
21817 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21818 &info_ptr, comp_unit_die);
21819 cu->dies = comp_unit_die;
21820 /* comp_unit_die is not stored in die_hash, no need. */
21821
21822 /* We try not to read any attributes in this function, because not
21823 all CUs needed for references have been loaded yet, and symbol
21824 table processing isn't initialized. But we have to set the CU language,
21825 or we won't be able to build types correctly.
21826 Similarly, if we do not read the producer, we can not apply
21827 producer-specific interpretation. */
21828 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21829 }
21830
21831 /* Read in a signatured type and build its CU and DIEs.
21832 If the type is a stub for the real type in a DWO file,
21833 read in the real type from the DWO file as well. */
21834
21835 static void
21836 read_signatured_type (struct signatured_type *sig_type)
21837 {
21838 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21839
21840 gdb_assert (per_cu->is_debug_types);
21841 gdb_assert (per_cu->cu == NULL);
21842
21843 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21844 read_signatured_type_reader, NULL);
21845 sig_type->per_cu.tu_read = 1;
21846 }
21847
21848 /* Decode simple location descriptions.
21849 Given a pointer to a dwarf block that defines a location, compute
21850 the location and return the value.
21851
21852 NOTE drow/2003-11-18: This function is called in two situations
21853 now: for the address of static or global variables (partial symbols
21854 only) and for offsets into structures which are expected to be
21855 (more or less) constant. The partial symbol case should go away,
21856 and only the constant case should remain. That will let this
21857 function complain more accurately. A few special modes are allowed
21858 without complaint for global variables (for instance, global
21859 register values and thread-local values).
21860
21861 A location description containing no operations indicates that the
21862 object is optimized out. The return value is 0 for that case.
21863 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21864 callers will only want a very basic result and this can become a
21865 complaint.
21866
21867 Note that stack[0] is unused except as a default error return. */
21868
21869 static CORE_ADDR
21870 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21871 {
21872 struct objfile *objfile = cu->objfile;
21873 size_t i;
21874 size_t size = blk->size;
21875 const gdb_byte *data = blk->data;
21876 CORE_ADDR stack[64];
21877 int stacki;
21878 unsigned int bytes_read, unsnd;
21879 gdb_byte op;
21880
21881 i = 0;
21882 stacki = 0;
21883 stack[stacki] = 0;
21884 stack[++stacki] = 0;
21885
21886 while (i < size)
21887 {
21888 op = data[i++];
21889 switch (op)
21890 {
21891 case DW_OP_lit0:
21892 case DW_OP_lit1:
21893 case DW_OP_lit2:
21894 case DW_OP_lit3:
21895 case DW_OP_lit4:
21896 case DW_OP_lit5:
21897 case DW_OP_lit6:
21898 case DW_OP_lit7:
21899 case DW_OP_lit8:
21900 case DW_OP_lit9:
21901 case DW_OP_lit10:
21902 case DW_OP_lit11:
21903 case DW_OP_lit12:
21904 case DW_OP_lit13:
21905 case DW_OP_lit14:
21906 case DW_OP_lit15:
21907 case DW_OP_lit16:
21908 case DW_OP_lit17:
21909 case DW_OP_lit18:
21910 case DW_OP_lit19:
21911 case DW_OP_lit20:
21912 case DW_OP_lit21:
21913 case DW_OP_lit22:
21914 case DW_OP_lit23:
21915 case DW_OP_lit24:
21916 case DW_OP_lit25:
21917 case DW_OP_lit26:
21918 case DW_OP_lit27:
21919 case DW_OP_lit28:
21920 case DW_OP_lit29:
21921 case DW_OP_lit30:
21922 case DW_OP_lit31:
21923 stack[++stacki] = op - DW_OP_lit0;
21924 break;
21925
21926 case DW_OP_reg0:
21927 case DW_OP_reg1:
21928 case DW_OP_reg2:
21929 case DW_OP_reg3:
21930 case DW_OP_reg4:
21931 case DW_OP_reg5:
21932 case DW_OP_reg6:
21933 case DW_OP_reg7:
21934 case DW_OP_reg8:
21935 case DW_OP_reg9:
21936 case DW_OP_reg10:
21937 case DW_OP_reg11:
21938 case DW_OP_reg12:
21939 case DW_OP_reg13:
21940 case DW_OP_reg14:
21941 case DW_OP_reg15:
21942 case DW_OP_reg16:
21943 case DW_OP_reg17:
21944 case DW_OP_reg18:
21945 case DW_OP_reg19:
21946 case DW_OP_reg20:
21947 case DW_OP_reg21:
21948 case DW_OP_reg22:
21949 case DW_OP_reg23:
21950 case DW_OP_reg24:
21951 case DW_OP_reg25:
21952 case DW_OP_reg26:
21953 case DW_OP_reg27:
21954 case DW_OP_reg28:
21955 case DW_OP_reg29:
21956 case DW_OP_reg30:
21957 case DW_OP_reg31:
21958 stack[++stacki] = op - DW_OP_reg0;
21959 if (i < size)
21960 dwarf2_complex_location_expr_complaint ();
21961 break;
21962
21963 case DW_OP_regx:
21964 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21965 i += bytes_read;
21966 stack[++stacki] = unsnd;
21967 if (i < size)
21968 dwarf2_complex_location_expr_complaint ();
21969 break;
21970
21971 case DW_OP_addr:
21972 stack[++stacki] = read_address (objfile->obfd, &data[i],
21973 cu, &bytes_read);
21974 i += bytes_read;
21975 break;
21976
21977 case DW_OP_const1u:
21978 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21979 i += 1;
21980 break;
21981
21982 case DW_OP_const1s:
21983 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21984 i += 1;
21985 break;
21986
21987 case DW_OP_const2u:
21988 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21989 i += 2;
21990 break;
21991
21992 case DW_OP_const2s:
21993 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21994 i += 2;
21995 break;
21996
21997 case DW_OP_const4u:
21998 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21999 i += 4;
22000 break;
22001
22002 case DW_OP_const4s:
22003 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22004 i += 4;
22005 break;
22006
22007 case DW_OP_const8u:
22008 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22009 i += 8;
22010 break;
22011
22012 case DW_OP_constu:
22013 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22014 &bytes_read);
22015 i += bytes_read;
22016 break;
22017
22018 case DW_OP_consts:
22019 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22020 i += bytes_read;
22021 break;
22022
22023 case DW_OP_dup:
22024 stack[stacki + 1] = stack[stacki];
22025 stacki++;
22026 break;
22027
22028 case DW_OP_plus:
22029 stack[stacki - 1] += stack[stacki];
22030 stacki--;
22031 break;
22032
22033 case DW_OP_plus_uconst:
22034 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22035 &bytes_read);
22036 i += bytes_read;
22037 break;
22038
22039 case DW_OP_minus:
22040 stack[stacki - 1] -= stack[stacki];
22041 stacki--;
22042 break;
22043
22044 case DW_OP_deref:
22045 /* If we're not the last op, then we definitely can't encode
22046 this using GDB's address_class enum. This is valid for partial
22047 global symbols, although the variable's address will be bogus
22048 in the psymtab. */
22049 if (i < size)
22050 dwarf2_complex_location_expr_complaint ();
22051 break;
22052
22053 case DW_OP_GNU_push_tls_address:
22054 case DW_OP_form_tls_address:
22055 /* The top of the stack has the offset from the beginning
22056 of the thread control block at which the variable is located. */
22057 /* Nothing should follow this operator, so the top of stack would
22058 be returned. */
22059 /* This is valid for partial global symbols, but the variable's
22060 address will be bogus in the psymtab. Make it always at least
22061 non-zero to not look as a variable garbage collected by linker
22062 which have DW_OP_addr 0. */
22063 if (i < size)
22064 dwarf2_complex_location_expr_complaint ();
22065 stack[stacki]++;
22066 break;
22067
22068 case DW_OP_GNU_uninit:
22069 break;
22070
22071 case DW_OP_GNU_addr_index:
22072 case DW_OP_GNU_const_index:
22073 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22074 &bytes_read);
22075 i += bytes_read;
22076 break;
22077
22078 default:
22079 {
22080 const char *name = get_DW_OP_name (op);
22081
22082 if (name)
22083 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
22084 name);
22085 else
22086 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
22087 op);
22088 }
22089
22090 return (stack[stacki]);
22091 }
22092
22093 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22094 outside of the allocated space. Also enforce minimum>0. */
22095 if (stacki >= ARRAY_SIZE (stack) - 1)
22096 {
22097 complaint (&symfile_complaints,
22098 _("location description stack overflow"));
22099 return 0;
22100 }
22101
22102 if (stacki <= 0)
22103 {
22104 complaint (&symfile_complaints,
22105 _("location description stack underflow"));
22106 return 0;
22107 }
22108 }
22109 return (stack[stacki]);
22110 }
22111
22112 /* memory allocation interface */
22113
22114 static struct dwarf_block *
22115 dwarf_alloc_block (struct dwarf2_cu *cu)
22116 {
22117 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22118 }
22119
22120 static struct die_info *
22121 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22122 {
22123 struct die_info *die;
22124 size_t size = sizeof (struct die_info);
22125
22126 if (num_attrs > 1)
22127 size += (num_attrs - 1) * sizeof (struct attribute);
22128
22129 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
22130 memset (die, 0, sizeof (struct die_info));
22131 return (die);
22132 }
22133
22134 \f
22135 /* Macro support. */
22136
22137 /* Return file name relative to the compilation directory of file number I in
22138 *LH's file name table. The result is allocated using xmalloc; the caller is
22139 responsible for freeing it. */
22140
22141 static char *
22142 file_file_name (int file, struct line_header *lh)
22143 {
22144 /* Is the file number a valid index into the line header's file name
22145 table? Remember that file numbers start with one, not zero. */
22146 if (1 <= file && file <= lh->file_names.size ())
22147 {
22148 const file_entry &fe = lh->file_names[file - 1];
22149
22150 if (!IS_ABSOLUTE_PATH (fe.name))
22151 {
22152 const char *dir = fe.include_dir (lh);
22153 if (dir != NULL)
22154 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
22155 }
22156 return xstrdup (fe.name);
22157 }
22158 else
22159 {
22160 /* The compiler produced a bogus file number. We can at least
22161 record the macro definitions made in the file, even if we
22162 won't be able to find the file by name. */
22163 char fake_name[80];
22164
22165 xsnprintf (fake_name, sizeof (fake_name),
22166 "<bad macro file number %d>", file);
22167
22168 complaint (&symfile_complaints,
22169 _("bad file number in macro information (%d)"),
22170 file);
22171
22172 return xstrdup (fake_name);
22173 }
22174 }
22175
22176 /* Return the full name of file number I in *LH's file name table.
22177 Use COMP_DIR as the name of the current directory of the
22178 compilation. The result is allocated using xmalloc; the caller is
22179 responsible for freeing it. */
22180 static char *
22181 file_full_name (int file, struct line_header *lh, const char *comp_dir)
22182 {
22183 /* Is the file number a valid index into the line header's file name
22184 table? Remember that file numbers start with one, not zero. */
22185 if (1 <= file && file <= lh->file_names.size ())
22186 {
22187 char *relative = file_file_name (file, lh);
22188
22189 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
22190 return relative;
22191 return reconcat (relative, comp_dir, SLASH_STRING,
22192 relative, (char *) NULL);
22193 }
22194 else
22195 return file_file_name (file, lh);
22196 }
22197
22198
22199 static struct macro_source_file *
22200 macro_start_file (int file, int line,
22201 struct macro_source_file *current_file,
22202 struct line_header *lh)
22203 {
22204 /* File name relative to the compilation directory of this source file. */
22205 char *file_name = file_file_name (file, lh);
22206
22207 if (! current_file)
22208 {
22209 /* Note: We don't create a macro table for this compilation unit
22210 at all until we actually get a filename. */
22211 struct macro_table *macro_table = get_macro_table ();
22212
22213 /* If we have no current file, then this must be the start_file
22214 directive for the compilation unit's main source file. */
22215 current_file = macro_set_main (macro_table, file_name);
22216 macro_define_special (macro_table);
22217 }
22218 else
22219 current_file = macro_include (current_file, line, file_name);
22220
22221 xfree (file_name);
22222
22223 return current_file;
22224 }
22225
22226 static const char *
22227 consume_improper_spaces (const char *p, const char *body)
22228 {
22229 if (*p == ' ')
22230 {
22231 complaint (&symfile_complaints,
22232 _("macro definition contains spaces "
22233 "in formal argument list:\n`%s'"),
22234 body);
22235
22236 while (*p == ' ')
22237 p++;
22238 }
22239
22240 return p;
22241 }
22242
22243
22244 static void
22245 parse_macro_definition (struct macro_source_file *file, int line,
22246 const char *body)
22247 {
22248 const char *p;
22249
22250 /* The body string takes one of two forms. For object-like macro
22251 definitions, it should be:
22252
22253 <macro name> " " <definition>
22254
22255 For function-like macro definitions, it should be:
22256
22257 <macro name> "() " <definition>
22258 or
22259 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
22260
22261 Spaces may appear only where explicitly indicated, and in the
22262 <definition>.
22263
22264 The Dwarf 2 spec says that an object-like macro's name is always
22265 followed by a space, but versions of GCC around March 2002 omit
22266 the space when the macro's definition is the empty string.
22267
22268 The Dwarf 2 spec says that there should be no spaces between the
22269 formal arguments in a function-like macro's formal argument list,
22270 but versions of GCC around March 2002 include spaces after the
22271 commas. */
22272
22273
22274 /* Find the extent of the macro name. The macro name is terminated
22275 by either a space or null character (for an object-like macro) or
22276 an opening paren (for a function-like macro). */
22277 for (p = body; *p; p++)
22278 if (*p == ' ' || *p == '(')
22279 break;
22280
22281 if (*p == ' ' || *p == '\0')
22282 {
22283 /* It's an object-like macro. */
22284 int name_len = p - body;
22285 char *name = savestring (body, name_len);
22286 const char *replacement;
22287
22288 if (*p == ' ')
22289 replacement = body + name_len + 1;
22290 else
22291 {
22292 dwarf2_macro_malformed_definition_complaint (body);
22293 replacement = body + name_len;
22294 }
22295
22296 macro_define_object (file, line, name, replacement);
22297
22298 xfree (name);
22299 }
22300 else if (*p == '(')
22301 {
22302 /* It's a function-like macro. */
22303 char *name = savestring (body, p - body);
22304 int argc = 0;
22305 int argv_size = 1;
22306 char **argv = XNEWVEC (char *, argv_size);
22307
22308 p++;
22309
22310 p = consume_improper_spaces (p, body);
22311
22312 /* Parse the formal argument list. */
22313 while (*p && *p != ')')
22314 {
22315 /* Find the extent of the current argument name. */
22316 const char *arg_start = p;
22317
22318 while (*p && *p != ',' && *p != ')' && *p != ' ')
22319 p++;
22320
22321 if (! *p || p == arg_start)
22322 dwarf2_macro_malformed_definition_complaint (body);
22323 else
22324 {
22325 /* Make sure argv has room for the new argument. */
22326 if (argc >= argv_size)
22327 {
22328 argv_size *= 2;
22329 argv = XRESIZEVEC (char *, argv, argv_size);
22330 }
22331
22332 argv[argc++] = savestring (arg_start, p - arg_start);
22333 }
22334
22335 p = consume_improper_spaces (p, body);
22336
22337 /* Consume the comma, if present. */
22338 if (*p == ',')
22339 {
22340 p++;
22341
22342 p = consume_improper_spaces (p, body);
22343 }
22344 }
22345
22346 if (*p == ')')
22347 {
22348 p++;
22349
22350 if (*p == ' ')
22351 /* Perfectly formed definition, no complaints. */
22352 macro_define_function (file, line, name,
22353 argc, (const char **) argv,
22354 p + 1);
22355 else if (*p == '\0')
22356 {
22357 /* Complain, but do define it. */
22358 dwarf2_macro_malformed_definition_complaint (body);
22359 macro_define_function (file, line, name,
22360 argc, (const char **) argv,
22361 p);
22362 }
22363 else
22364 /* Just complain. */
22365 dwarf2_macro_malformed_definition_complaint (body);
22366 }
22367 else
22368 /* Just complain. */
22369 dwarf2_macro_malformed_definition_complaint (body);
22370
22371 xfree (name);
22372 {
22373 int i;
22374
22375 for (i = 0; i < argc; i++)
22376 xfree (argv[i]);
22377 }
22378 xfree (argv);
22379 }
22380 else
22381 dwarf2_macro_malformed_definition_complaint (body);
22382 }
22383
22384 /* Skip some bytes from BYTES according to the form given in FORM.
22385 Returns the new pointer. */
22386
22387 static const gdb_byte *
22388 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
22389 enum dwarf_form form,
22390 unsigned int offset_size,
22391 struct dwarf2_section_info *section)
22392 {
22393 unsigned int bytes_read;
22394
22395 switch (form)
22396 {
22397 case DW_FORM_data1:
22398 case DW_FORM_flag:
22399 ++bytes;
22400 break;
22401
22402 case DW_FORM_data2:
22403 bytes += 2;
22404 break;
22405
22406 case DW_FORM_data4:
22407 bytes += 4;
22408 break;
22409
22410 case DW_FORM_data8:
22411 bytes += 8;
22412 break;
22413
22414 case DW_FORM_data16:
22415 bytes += 16;
22416 break;
22417
22418 case DW_FORM_string:
22419 read_direct_string (abfd, bytes, &bytes_read);
22420 bytes += bytes_read;
22421 break;
22422
22423 case DW_FORM_sec_offset:
22424 case DW_FORM_strp:
22425 case DW_FORM_GNU_strp_alt:
22426 bytes += offset_size;
22427 break;
22428
22429 case DW_FORM_block:
22430 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
22431 bytes += bytes_read;
22432 break;
22433
22434 case DW_FORM_block1:
22435 bytes += 1 + read_1_byte (abfd, bytes);
22436 break;
22437 case DW_FORM_block2:
22438 bytes += 2 + read_2_bytes (abfd, bytes);
22439 break;
22440 case DW_FORM_block4:
22441 bytes += 4 + read_4_bytes (abfd, bytes);
22442 break;
22443
22444 case DW_FORM_sdata:
22445 case DW_FORM_udata:
22446 case DW_FORM_GNU_addr_index:
22447 case DW_FORM_GNU_str_index:
22448 bytes = gdb_skip_leb128 (bytes, buffer_end);
22449 if (bytes == NULL)
22450 {
22451 dwarf2_section_buffer_overflow_complaint (section);
22452 return NULL;
22453 }
22454 break;
22455
22456 case DW_FORM_implicit_const:
22457 break;
22458
22459 default:
22460 {
22461 complain:
22462 complaint (&symfile_complaints,
22463 _("invalid form 0x%x in `%s'"),
22464 form, get_section_name (section));
22465 return NULL;
22466 }
22467 }
22468
22469 return bytes;
22470 }
22471
22472 /* A helper for dwarf_decode_macros that handles skipping an unknown
22473 opcode. Returns an updated pointer to the macro data buffer; or,
22474 on error, issues a complaint and returns NULL. */
22475
22476 static const gdb_byte *
22477 skip_unknown_opcode (unsigned int opcode,
22478 const gdb_byte **opcode_definitions,
22479 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22480 bfd *abfd,
22481 unsigned int offset_size,
22482 struct dwarf2_section_info *section)
22483 {
22484 unsigned int bytes_read, i;
22485 unsigned long arg;
22486 const gdb_byte *defn;
22487
22488 if (opcode_definitions[opcode] == NULL)
22489 {
22490 complaint (&symfile_complaints,
22491 _("unrecognized DW_MACFINO opcode 0x%x"),
22492 opcode);
22493 return NULL;
22494 }
22495
22496 defn = opcode_definitions[opcode];
22497 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
22498 defn += bytes_read;
22499
22500 for (i = 0; i < arg; ++i)
22501 {
22502 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
22503 (enum dwarf_form) defn[i], offset_size,
22504 section);
22505 if (mac_ptr == NULL)
22506 {
22507 /* skip_form_bytes already issued the complaint. */
22508 return NULL;
22509 }
22510 }
22511
22512 return mac_ptr;
22513 }
22514
22515 /* A helper function which parses the header of a macro section.
22516 If the macro section is the extended (for now called "GNU") type,
22517 then this updates *OFFSET_SIZE. Returns a pointer to just after
22518 the header, or issues a complaint and returns NULL on error. */
22519
22520 static const gdb_byte *
22521 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22522 bfd *abfd,
22523 const gdb_byte *mac_ptr,
22524 unsigned int *offset_size,
22525 int section_is_gnu)
22526 {
22527 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22528
22529 if (section_is_gnu)
22530 {
22531 unsigned int version, flags;
22532
22533 version = read_2_bytes (abfd, mac_ptr);
22534 if (version != 4 && version != 5)
22535 {
22536 complaint (&symfile_complaints,
22537 _("unrecognized version `%d' in .debug_macro section"),
22538 version);
22539 return NULL;
22540 }
22541 mac_ptr += 2;
22542
22543 flags = read_1_byte (abfd, mac_ptr);
22544 ++mac_ptr;
22545 *offset_size = (flags & 1) ? 8 : 4;
22546
22547 if ((flags & 2) != 0)
22548 /* We don't need the line table offset. */
22549 mac_ptr += *offset_size;
22550
22551 /* Vendor opcode descriptions. */
22552 if ((flags & 4) != 0)
22553 {
22554 unsigned int i, count;
22555
22556 count = read_1_byte (abfd, mac_ptr);
22557 ++mac_ptr;
22558 for (i = 0; i < count; ++i)
22559 {
22560 unsigned int opcode, bytes_read;
22561 unsigned long arg;
22562
22563 opcode = read_1_byte (abfd, mac_ptr);
22564 ++mac_ptr;
22565 opcode_definitions[opcode] = mac_ptr;
22566 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22567 mac_ptr += bytes_read;
22568 mac_ptr += arg;
22569 }
22570 }
22571 }
22572
22573 return mac_ptr;
22574 }
22575
22576 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22577 including DW_MACRO_import. */
22578
22579 static void
22580 dwarf_decode_macro_bytes (bfd *abfd,
22581 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22582 struct macro_source_file *current_file,
22583 struct line_header *lh,
22584 struct dwarf2_section_info *section,
22585 int section_is_gnu, int section_is_dwz,
22586 unsigned int offset_size,
22587 htab_t include_hash)
22588 {
22589 struct objfile *objfile = dwarf2_per_objfile->objfile;
22590 enum dwarf_macro_record_type macinfo_type;
22591 int at_commandline;
22592 const gdb_byte *opcode_definitions[256];
22593
22594 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22595 &offset_size, section_is_gnu);
22596 if (mac_ptr == NULL)
22597 {
22598 /* We already issued a complaint. */
22599 return;
22600 }
22601
22602 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22603 GDB is still reading the definitions from command line. First
22604 DW_MACINFO_start_file will need to be ignored as it was already executed
22605 to create CURRENT_FILE for the main source holding also the command line
22606 definitions. On first met DW_MACINFO_start_file this flag is reset to
22607 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22608
22609 at_commandline = 1;
22610
22611 do
22612 {
22613 /* Do we at least have room for a macinfo type byte? */
22614 if (mac_ptr >= mac_end)
22615 {
22616 dwarf2_section_buffer_overflow_complaint (section);
22617 break;
22618 }
22619
22620 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22621 mac_ptr++;
22622
22623 /* Note that we rely on the fact that the corresponding GNU and
22624 DWARF constants are the same. */
22625 switch (macinfo_type)
22626 {
22627 /* A zero macinfo type indicates the end of the macro
22628 information. */
22629 case 0:
22630 break;
22631
22632 case DW_MACRO_define:
22633 case DW_MACRO_undef:
22634 case DW_MACRO_define_strp:
22635 case DW_MACRO_undef_strp:
22636 case DW_MACRO_define_sup:
22637 case DW_MACRO_undef_sup:
22638 {
22639 unsigned int bytes_read;
22640 int line;
22641 const char *body;
22642 int is_define;
22643
22644 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22645 mac_ptr += bytes_read;
22646
22647 if (macinfo_type == DW_MACRO_define
22648 || macinfo_type == DW_MACRO_undef)
22649 {
22650 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22651 mac_ptr += bytes_read;
22652 }
22653 else
22654 {
22655 LONGEST str_offset;
22656
22657 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22658 mac_ptr += offset_size;
22659
22660 if (macinfo_type == DW_MACRO_define_sup
22661 || macinfo_type == DW_MACRO_undef_sup
22662 || section_is_dwz)
22663 {
22664 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22665
22666 body = read_indirect_string_from_dwz (dwz, str_offset);
22667 }
22668 else
22669 body = read_indirect_string_at_offset (abfd, str_offset);
22670 }
22671
22672 is_define = (macinfo_type == DW_MACRO_define
22673 || macinfo_type == DW_MACRO_define_strp
22674 || macinfo_type == DW_MACRO_define_sup);
22675 if (! current_file)
22676 {
22677 /* DWARF violation as no main source is present. */
22678 complaint (&symfile_complaints,
22679 _("debug info with no main source gives macro %s "
22680 "on line %d: %s"),
22681 is_define ? _("definition") : _("undefinition"),
22682 line, body);
22683 break;
22684 }
22685 if ((line == 0 && !at_commandline)
22686 || (line != 0 && at_commandline))
22687 complaint (&symfile_complaints,
22688 _("debug info gives %s macro %s with %s line %d: %s"),
22689 at_commandline ? _("command-line") : _("in-file"),
22690 is_define ? _("definition") : _("undefinition"),
22691 line == 0 ? _("zero") : _("non-zero"), line, body);
22692
22693 if (is_define)
22694 parse_macro_definition (current_file, line, body);
22695 else
22696 {
22697 gdb_assert (macinfo_type == DW_MACRO_undef
22698 || macinfo_type == DW_MACRO_undef_strp
22699 || macinfo_type == DW_MACRO_undef_sup);
22700 macro_undef (current_file, line, body);
22701 }
22702 }
22703 break;
22704
22705 case DW_MACRO_start_file:
22706 {
22707 unsigned int bytes_read;
22708 int line, file;
22709
22710 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22711 mac_ptr += bytes_read;
22712 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22713 mac_ptr += bytes_read;
22714
22715 if ((line == 0 && !at_commandline)
22716 || (line != 0 && at_commandline))
22717 complaint (&symfile_complaints,
22718 _("debug info gives source %d included "
22719 "from %s at %s line %d"),
22720 file, at_commandline ? _("command-line") : _("file"),
22721 line == 0 ? _("zero") : _("non-zero"), line);
22722
22723 if (at_commandline)
22724 {
22725 /* This DW_MACRO_start_file was executed in the
22726 pass one. */
22727 at_commandline = 0;
22728 }
22729 else
22730 current_file = macro_start_file (file, line, current_file, lh);
22731 }
22732 break;
22733
22734 case DW_MACRO_end_file:
22735 if (! current_file)
22736 complaint (&symfile_complaints,
22737 _("macro debug info has an unmatched "
22738 "`close_file' directive"));
22739 else
22740 {
22741 current_file = current_file->included_by;
22742 if (! current_file)
22743 {
22744 enum dwarf_macro_record_type next_type;
22745
22746 /* GCC circa March 2002 doesn't produce the zero
22747 type byte marking the end of the compilation
22748 unit. Complain if it's not there, but exit no
22749 matter what. */
22750
22751 /* Do we at least have room for a macinfo type byte? */
22752 if (mac_ptr >= mac_end)
22753 {
22754 dwarf2_section_buffer_overflow_complaint (section);
22755 return;
22756 }
22757
22758 /* We don't increment mac_ptr here, so this is just
22759 a look-ahead. */
22760 next_type
22761 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22762 mac_ptr);
22763 if (next_type != 0)
22764 complaint (&symfile_complaints,
22765 _("no terminating 0-type entry for "
22766 "macros in `.debug_macinfo' section"));
22767
22768 return;
22769 }
22770 }
22771 break;
22772
22773 case DW_MACRO_import:
22774 case DW_MACRO_import_sup:
22775 {
22776 LONGEST offset;
22777 void **slot;
22778 bfd *include_bfd = abfd;
22779 struct dwarf2_section_info *include_section = section;
22780 const gdb_byte *include_mac_end = mac_end;
22781 int is_dwz = section_is_dwz;
22782 const gdb_byte *new_mac_ptr;
22783
22784 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22785 mac_ptr += offset_size;
22786
22787 if (macinfo_type == DW_MACRO_import_sup)
22788 {
22789 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22790
22791 dwarf2_read_section (objfile, &dwz->macro);
22792
22793 include_section = &dwz->macro;
22794 include_bfd = get_section_bfd_owner (include_section);
22795 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22796 is_dwz = 1;
22797 }
22798
22799 new_mac_ptr = include_section->buffer + offset;
22800 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22801
22802 if (*slot != NULL)
22803 {
22804 /* This has actually happened; see
22805 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22806 complaint (&symfile_complaints,
22807 _("recursive DW_MACRO_import in "
22808 ".debug_macro section"));
22809 }
22810 else
22811 {
22812 *slot = (void *) new_mac_ptr;
22813
22814 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22815 include_mac_end, current_file, lh,
22816 section, section_is_gnu, is_dwz,
22817 offset_size, include_hash);
22818
22819 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22820 }
22821 }
22822 break;
22823
22824 case DW_MACINFO_vendor_ext:
22825 if (!section_is_gnu)
22826 {
22827 unsigned int bytes_read;
22828
22829 /* This reads the constant, but since we don't recognize
22830 any vendor extensions, we ignore it. */
22831 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22832 mac_ptr += bytes_read;
22833 read_direct_string (abfd, mac_ptr, &bytes_read);
22834 mac_ptr += bytes_read;
22835
22836 /* We don't recognize any vendor extensions. */
22837 break;
22838 }
22839 /* FALLTHROUGH */
22840
22841 default:
22842 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22843 mac_ptr, mac_end, abfd, offset_size,
22844 section);
22845 if (mac_ptr == NULL)
22846 return;
22847 break;
22848 }
22849 } while (macinfo_type != 0);
22850 }
22851
22852 static void
22853 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22854 int section_is_gnu)
22855 {
22856 struct objfile *objfile = dwarf2_per_objfile->objfile;
22857 struct line_header *lh = cu->line_header;
22858 bfd *abfd;
22859 const gdb_byte *mac_ptr, *mac_end;
22860 struct macro_source_file *current_file = 0;
22861 enum dwarf_macro_record_type macinfo_type;
22862 unsigned int offset_size = cu->header.offset_size;
22863 const gdb_byte *opcode_definitions[256];
22864 void **slot;
22865 struct dwarf2_section_info *section;
22866 const char *section_name;
22867
22868 if (cu->dwo_unit != NULL)
22869 {
22870 if (section_is_gnu)
22871 {
22872 section = &cu->dwo_unit->dwo_file->sections.macro;
22873 section_name = ".debug_macro.dwo";
22874 }
22875 else
22876 {
22877 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22878 section_name = ".debug_macinfo.dwo";
22879 }
22880 }
22881 else
22882 {
22883 if (section_is_gnu)
22884 {
22885 section = &dwarf2_per_objfile->macro;
22886 section_name = ".debug_macro";
22887 }
22888 else
22889 {
22890 section = &dwarf2_per_objfile->macinfo;
22891 section_name = ".debug_macinfo";
22892 }
22893 }
22894
22895 dwarf2_read_section (objfile, section);
22896 if (section->buffer == NULL)
22897 {
22898 complaint (&symfile_complaints, _("missing %s section"), section_name);
22899 return;
22900 }
22901 abfd = get_section_bfd_owner (section);
22902
22903 /* First pass: Find the name of the base filename.
22904 This filename is needed in order to process all macros whose definition
22905 (or undefinition) comes from the command line. These macros are defined
22906 before the first DW_MACINFO_start_file entry, and yet still need to be
22907 associated to the base file.
22908
22909 To determine the base file name, we scan the macro definitions until we
22910 reach the first DW_MACINFO_start_file entry. We then initialize
22911 CURRENT_FILE accordingly so that any macro definition found before the
22912 first DW_MACINFO_start_file can still be associated to the base file. */
22913
22914 mac_ptr = section->buffer + offset;
22915 mac_end = section->buffer + section->size;
22916
22917 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22918 &offset_size, section_is_gnu);
22919 if (mac_ptr == NULL)
22920 {
22921 /* We already issued a complaint. */
22922 return;
22923 }
22924
22925 do
22926 {
22927 /* Do we at least have room for a macinfo type byte? */
22928 if (mac_ptr >= mac_end)
22929 {
22930 /* Complaint is printed during the second pass as GDB will probably
22931 stop the first pass earlier upon finding
22932 DW_MACINFO_start_file. */
22933 break;
22934 }
22935
22936 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22937 mac_ptr++;
22938
22939 /* Note that we rely on the fact that the corresponding GNU and
22940 DWARF constants are the same. */
22941 switch (macinfo_type)
22942 {
22943 /* A zero macinfo type indicates the end of the macro
22944 information. */
22945 case 0:
22946 break;
22947
22948 case DW_MACRO_define:
22949 case DW_MACRO_undef:
22950 /* Only skip the data by MAC_PTR. */
22951 {
22952 unsigned int bytes_read;
22953
22954 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22955 mac_ptr += bytes_read;
22956 read_direct_string (abfd, mac_ptr, &bytes_read);
22957 mac_ptr += bytes_read;
22958 }
22959 break;
22960
22961 case DW_MACRO_start_file:
22962 {
22963 unsigned int bytes_read;
22964 int line, file;
22965
22966 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22967 mac_ptr += bytes_read;
22968 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22969 mac_ptr += bytes_read;
22970
22971 current_file = macro_start_file (file, line, current_file, lh);
22972 }
22973 break;
22974
22975 case DW_MACRO_end_file:
22976 /* No data to skip by MAC_PTR. */
22977 break;
22978
22979 case DW_MACRO_define_strp:
22980 case DW_MACRO_undef_strp:
22981 case DW_MACRO_define_sup:
22982 case DW_MACRO_undef_sup:
22983 {
22984 unsigned int bytes_read;
22985
22986 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22987 mac_ptr += bytes_read;
22988 mac_ptr += offset_size;
22989 }
22990 break;
22991
22992 case DW_MACRO_import:
22993 case DW_MACRO_import_sup:
22994 /* Note that, according to the spec, a transparent include
22995 chain cannot call DW_MACRO_start_file. So, we can just
22996 skip this opcode. */
22997 mac_ptr += offset_size;
22998 break;
22999
23000 case DW_MACINFO_vendor_ext:
23001 /* Only skip the data by MAC_PTR. */
23002 if (!section_is_gnu)
23003 {
23004 unsigned int bytes_read;
23005
23006 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23007 mac_ptr += bytes_read;
23008 read_direct_string (abfd, mac_ptr, &bytes_read);
23009 mac_ptr += bytes_read;
23010 }
23011 /* FALLTHROUGH */
23012
23013 default:
23014 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23015 mac_ptr, mac_end, abfd, offset_size,
23016 section);
23017 if (mac_ptr == NULL)
23018 return;
23019 break;
23020 }
23021 } while (macinfo_type != 0 && current_file == NULL);
23022
23023 /* Second pass: Process all entries.
23024
23025 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23026 command-line macro definitions/undefinitions. This flag is unset when we
23027 reach the first DW_MACINFO_start_file entry. */
23028
23029 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23030 htab_eq_pointer,
23031 NULL, xcalloc, xfree));
23032 mac_ptr = section->buffer + offset;
23033 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23034 *slot = (void *) mac_ptr;
23035 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
23036 current_file, lh, section,
23037 section_is_gnu, 0, offset_size,
23038 include_hash.get ());
23039 }
23040
23041 /* Check if the attribute's form is a DW_FORM_block*
23042 if so return true else false. */
23043
23044 static int
23045 attr_form_is_block (const struct attribute *attr)
23046 {
23047 return (attr == NULL ? 0 :
23048 attr->form == DW_FORM_block1
23049 || attr->form == DW_FORM_block2
23050 || attr->form == DW_FORM_block4
23051 || attr->form == DW_FORM_block
23052 || attr->form == DW_FORM_exprloc);
23053 }
23054
23055 /* Return non-zero if ATTR's value is a section offset --- classes
23056 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
23057 You may use DW_UNSND (attr) to retrieve such offsets.
23058
23059 Section 7.5.4, "Attribute Encodings", explains that no attribute
23060 may have a value that belongs to more than one of these classes; it
23061 would be ambiguous if we did, because we use the same forms for all
23062 of them. */
23063
23064 static int
23065 attr_form_is_section_offset (const struct attribute *attr)
23066 {
23067 return (attr->form == DW_FORM_data4
23068 || attr->form == DW_FORM_data8
23069 || attr->form == DW_FORM_sec_offset);
23070 }
23071
23072 /* Return non-zero if ATTR's value falls in the 'constant' class, or
23073 zero otherwise. When this function returns true, you can apply
23074 dwarf2_get_attr_constant_value to it.
23075
23076 However, note that for some attributes you must check
23077 attr_form_is_section_offset before using this test. DW_FORM_data4
23078 and DW_FORM_data8 are members of both the constant class, and of
23079 the classes that contain offsets into other debug sections
23080 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
23081 that, if an attribute's can be either a constant or one of the
23082 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
23083 taken as section offsets, not constants.
23084
23085 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
23086 cannot handle that. */
23087
23088 static int
23089 attr_form_is_constant (const struct attribute *attr)
23090 {
23091 switch (attr->form)
23092 {
23093 case DW_FORM_sdata:
23094 case DW_FORM_udata:
23095 case DW_FORM_data1:
23096 case DW_FORM_data2:
23097 case DW_FORM_data4:
23098 case DW_FORM_data8:
23099 case DW_FORM_implicit_const:
23100 return 1;
23101 default:
23102 return 0;
23103 }
23104 }
23105
23106
23107 /* DW_ADDR is always stored already as sect_offset; despite for the forms
23108 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
23109
23110 static int
23111 attr_form_is_ref (const struct attribute *attr)
23112 {
23113 switch (attr->form)
23114 {
23115 case DW_FORM_ref_addr:
23116 case DW_FORM_ref1:
23117 case DW_FORM_ref2:
23118 case DW_FORM_ref4:
23119 case DW_FORM_ref8:
23120 case DW_FORM_ref_udata:
23121 case DW_FORM_GNU_ref_alt:
23122 return 1;
23123 default:
23124 return 0;
23125 }
23126 }
23127
23128 /* Return the .debug_loc section to use for CU.
23129 For DWO files use .debug_loc.dwo. */
23130
23131 static struct dwarf2_section_info *
23132 cu_debug_loc_section (struct dwarf2_cu *cu)
23133 {
23134 if (cu->dwo_unit)
23135 {
23136 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23137
23138 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23139 }
23140 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23141 : &dwarf2_per_objfile->loc);
23142 }
23143
23144 /* A helper function that fills in a dwarf2_loclist_baton. */
23145
23146 static void
23147 fill_in_loclist_baton (struct dwarf2_cu *cu,
23148 struct dwarf2_loclist_baton *baton,
23149 const struct attribute *attr)
23150 {
23151 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23152
23153 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
23154
23155 baton->per_cu = cu->per_cu;
23156 gdb_assert (baton->per_cu);
23157 /* We don't know how long the location list is, but make sure we
23158 don't run off the edge of the section. */
23159 baton->size = section->size - DW_UNSND (attr);
23160 baton->data = section->buffer + DW_UNSND (attr);
23161 baton->base_address = cu->base_address;
23162 baton->from_dwo = cu->dwo_unit != NULL;
23163 }
23164
23165 static void
23166 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23167 struct dwarf2_cu *cu, int is_block)
23168 {
23169 struct objfile *objfile = dwarf2_per_objfile->objfile;
23170 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23171
23172 if (attr_form_is_section_offset (attr)
23173 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23174 the section. If so, fall through to the complaint in the
23175 other branch. */
23176 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
23177 {
23178 struct dwarf2_loclist_baton *baton;
23179
23180 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23181
23182 fill_in_loclist_baton (cu, baton, attr);
23183
23184 if (cu->base_known == 0)
23185 complaint (&symfile_complaints,
23186 _("Location list used without "
23187 "specifying the CU base address."));
23188
23189 SYMBOL_ACLASS_INDEX (sym) = (is_block
23190 ? dwarf2_loclist_block_index
23191 : dwarf2_loclist_index);
23192 SYMBOL_LOCATION_BATON (sym) = baton;
23193 }
23194 else
23195 {
23196 struct dwarf2_locexpr_baton *baton;
23197
23198 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23199 baton->per_cu = cu->per_cu;
23200 gdb_assert (baton->per_cu);
23201
23202 if (attr_form_is_block (attr))
23203 {
23204 /* Note that we're just copying the block's data pointer
23205 here, not the actual data. We're still pointing into the
23206 info_buffer for SYM's objfile; right now we never release
23207 that buffer, but when we do clean up properly this may
23208 need to change. */
23209 baton->size = DW_BLOCK (attr)->size;
23210 baton->data = DW_BLOCK (attr)->data;
23211 }
23212 else
23213 {
23214 dwarf2_invalid_attrib_class_complaint ("location description",
23215 SYMBOL_NATURAL_NAME (sym));
23216 baton->size = 0;
23217 }
23218
23219 SYMBOL_ACLASS_INDEX (sym) = (is_block
23220 ? dwarf2_locexpr_block_index
23221 : dwarf2_locexpr_index);
23222 SYMBOL_LOCATION_BATON (sym) = baton;
23223 }
23224 }
23225
23226 /* Return the OBJFILE associated with the compilation unit CU. If CU
23227 came from a separate debuginfo file, then the master objfile is
23228 returned. */
23229
23230 struct objfile *
23231 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
23232 {
23233 struct objfile *objfile = per_cu->objfile;
23234
23235 /* Return the master objfile, so that we can report and look up the
23236 correct file containing this variable. */
23237 if (objfile->separate_debug_objfile_backlink)
23238 objfile = objfile->separate_debug_objfile_backlink;
23239
23240 return objfile;
23241 }
23242
23243 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23244 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23245 CU_HEADERP first. */
23246
23247 static const struct comp_unit_head *
23248 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23249 struct dwarf2_per_cu_data *per_cu)
23250 {
23251 const gdb_byte *info_ptr;
23252
23253 if (per_cu->cu)
23254 return &per_cu->cu->header;
23255
23256 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23257
23258 memset (cu_headerp, 0, sizeof (*cu_headerp));
23259 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23260 rcuh_kind::COMPILE);
23261
23262 return cu_headerp;
23263 }
23264
23265 /* Return the address size given in the compilation unit header for CU. */
23266
23267 int
23268 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
23269 {
23270 struct comp_unit_head cu_header_local;
23271 const struct comp_unit_head *cu_headerp;
23272
23273 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23274
23275 return cu_headerp->addr_size;
23276 }
23277
23278 /* Return the offset size given in the compilation unit header for CU. */
23279
23280 int
23281 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
23282 {
23283 struct comp_unit_head cu_header_local;
23284 const struct comp_unit_head *cu_headerp;
23285
23286 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23287
23288 return cu_headerp->offset_size;
23289 }
23290
23291 /* See its dwarf2loc.h declaration. */
23292
23293 int
23294 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
23295 {
23296 struct comp_unit_head cu_header_local;
23297 const struct comp_unit_head *cu_headerp;
23298
23299 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23300
23301 if (cu_headerp->version == 2)
23302 return cu_headerp->addr_size;
23303 else
23304 return cu_headerp->offset_size;
23305 }
23306
23307 /* Return the text offset of the CU. The returned offset comes from
23308 this CU's objfile. If this objfile came from a separate debuginfo
23309 file, then the offset may be different from the corresponding
23310 offset in the parent objfile. */
23311
23312 CORE_ADDR
23313 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
23314 {
23315 struct objfile *objfile = per_cu->objfile;
23316
23317 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23318 }
23319
23320 /* Return DWARF version number of PER_CU. */
23321
23322 short
23323 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
23324 {
23325 return per_cu->dwarf_version;
23326 }
23327
23328 /* Locate the .debug_info compilation unit from CU's objfile which contains
23329 the DIE at OFFSET. Raises an error on failure. */
23330
23331 static struct dwarf2_per_cu_data *
23332 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23333 unsigned int offset_in_dwz,
23334 struct objfile *objfile)
23335 {
23336 struct dwarf2_per_cu_data *this_cu;
23337 int low, high;
23338 const sect_offset *cu_off;
23339
23340 low = 0;
23341 high = dwarf2_per_objfile->n_comp_units - 1;
23342 while (high > low)
23343 {
23344 struct dwarf2_per_cu_data *mid_cu;
23345 int mid = low + (high - low) / 2;
23346
23347 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
23348 cu_off = &mid_cu->sect_off;
23349 if (mid_cu->is_dwz > offset_in_dwz
23350 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
23351 high = mid;
23352 else
23353 low = mid + 1;
23354 }
23355 gdb_assert (low == high);
23356 this_cu = dwarf2_per_objfile->all_comp_units[low];
23357 cu_off = &this_cu->sect_off;
23358 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
23359 {
23360 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23361 error (_("Dwarf Error: could not find partial DIE containing "
23362 "offset 0x%x [in module %s]"),
23363 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
23364
23365 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23366 <= sect_off);
23367 return dwarf2_per_objfile->all_comp_units[low-1];
23368 }
23369 else
23370 {
23371 this_cu = dwarf2_per_objfile->all_comp_units[low];
23372 if (low == dwarf2_per_objfile->n_comp_units - 1
23373 && sect_off >= this_cu->sect_off + this_cu->length)
23374 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
23375 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23376 return this_cu;
23377 }
23378 }
23379
23380 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23381
23382 static void
23383 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
23384 {
23385 memset (cu, 0, sizeof (*cu));
23386 per_cu->cu = cu;
23387 cu->per_cu = per_cu;
23388 cu->objfile = per_cu->objfile;
23389 obstack_init (&cu->comp_unit_obstack);
23390 }
23391
23392 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23393
23394 static void
23395 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23396 enum language pretend_language)
23397 {
23398 struct attribute *attr;
23399
23400 /* Set the language we're debugging. */
23401 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23402 if (attr)
23403 set_cu_language (DW_UNSND (attr), cu);
23404 else
23405 {
23406 cu->language = pretend_language;
23407 cu->language_defn = language_def (cu->language);
23408 }
23409
23410 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23411 }
23412
23413 /* Release one cached compilation unit, CU. We unlink it from the tree
23414 of compilation units, but we don't remove it from the read_in_chain;
23415 the caller is responsible for that.
23416 NOTE: DATA is a void * because this function is also used as a
23417 cleanup routine. */
23418
23419 static void
23420 free_heap_comp_unit (void *data)
23421 {
23422 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23423
23424 gdb_assert (cu->per_cu != NULL);
23425 cu->per_cu->cu = NULL;
23426 cu->per_cu = NULL;
23427
23428 obstack_free (&cu->comp_unit_obstack, NULL);
23429
23430 xfree (cu);
23431 }
23432
23433 /* This cleanup function is passed the address of a dwarf2_cu on the stack
23434 when we're finished with it. We can't free the pointer itself, but be
23435 sure to unlink it from the cache. Also release any associated storage. */
23436
23437 static void
23438 free_stack_comp_unit (void *data)
23439 {
23440 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23441
23442 gdb_assert (cu->per_cu != NULL);
23443 cu->per_cu->cu = NULL;
23444 cu->per_cu = NULL;
23445
23446 obstack_free (&cu->comp_unit_obstack, NULL);
23447 cu->partial_dies = NULL;
23448 }
23449
23450 /* Free all cached compilation units. */
23451
23452 static void
23453 free_cached_comp_units (void *data)
23454 {
23455 dwarf2_per_objfile->free_cached_comp_units ();
23456 }
23457
23458 /* Increase the age counter on each cached compilation unit, and free
23459 any that are too old. */
23460
23461 static void
23462 age_cached_comp_units (void)
23463 {
23464 struct dwarf2_per_cu_data *per_cu, **last_chain;
23465
23466 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23467 per_cu = dwarf2_per_objfile->read_in_chain;
23468 while (per_cu != NULL)
23469 {
23470 per_cu->cu->last_used ++;
23471 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23472 dwarf2_mark (per_cu->cu);
23473 per_cu = per_cu->cu->read_in_chain;
23474 }
23475
23476 per_cu = dwarf2_per_objfile->read_in_chain;
23477 last_chain = &dwarf2_per_objfile->read_in_chain;
23478 while (per_cu != NULL)
23479 {
23480 struct dwarf2_per_cu_data *next_cu;
23481
23482 next_cu = per_cu->cu->read_in_chain;
23483
23484 if (!per_cu->cu->mark)
23485 {
23486 free_heap_comp_unit (per_cu->cu);
23487 *last_chain = next_cu;
23488 }
23489 else
23490 last_chain = &per_cu->cu->read_in_chain;
23491
23492 per_cu = next_cu;
23493 }
23494 }
23495
23496 /* Remove a single compilation unit from the cache. */
23497
23498 static void
23499 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23500 {
23501 struct dwarf2_per_cu_data *per_cu, **last_chain;
23502
23503 per_cu = dwarf2_per_objfile->read_in_chain;
23504 last_chain = &dwarf2_per_objfile->read_in_chain;
23505 while (per_cu != NULL)
23506 {
23507 struct dwarf2_per_cu_data *next_cu;
23508
23509 next_cu = per_cu->cu->read_in_chain;
23510
23511 if (per_cu == target_per_cu)
23512 {
23513 free_heap_comp_unit (per_cu->cu);
23514 per_cu->cu = NULL;
23515 *last_chain = next_cu;
23516 break;
23517 }
23518 else
23519 last_chain = &per_cu->cu->read_in_chain;
23520
23521 per_cu = next_cu;
23522 }
23523 }
23524
23525 /* Release all extra memory associated with OBJFILE. */
23526
23527 void
23528 dwarf2_free_objfile (struct objfile *objfile)
23529 {
23530 dwarf2_per_objfile
23531 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23532 dwarf2_objfile_data_key);
23533
23534 if (dwarf2_per_objfile == NULL)
23535 return;
23536
23537 dwarf2_per_objfile->~dwarf2_per_objfile ();
23538 }
23539
23540 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23541 We store these in a hash table separate from the DIEs, and preserve them
23542 when the DIEs are flushed out of cache.
23543
23544 The CU "per_cu" pointer is needed because offset alone is not enough to
23545 uniquely identify the type. A file may have multiple .debug_types sections,
23546 or the type may come from a DWO file. Furthermore, while it's more logical
23547 to use per_cu->section+offset, with Fission the section with the data is in
23548 the DWO file but we don't know that section at the point we need it.
23549 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23550 because we can enter the lookup routine, get_die_type_at_offset, from
23551 outside this file, and thus won't necessarily have PER_CU->cu.
23552 Fortunately, PER_CU is stable for the life of the objfile. */
23553
23554 struct dwarf2_per_cu_offset_and_type
23555 {
23556 const struct dwarf2_per_cu_data *per_cu;
23557 sect_offset sect_off;
23558 struct type *type;
23559 };
23560
23561 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23562
23563 static hashval_t
23564 per_cu_offset_and_type_hash (const void *item)
23565 {
23566 const struct dwarf2_per_cu_offset_and_type *ofs
23567 = (const struct dwarf2_per_cu_offset_and_type *) item;
23568
23569 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23570 }
23571
23572 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23573
23574 static int
23575 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23576 {
23577 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23578 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23579 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23580 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23581
23582 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23583 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23584 }
23585
23586 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23587 table if necessary. For convenience, return TYPE.
23588
23589 The DIEs reading must have careful ordering to:
23590 * Not cause infite loops trying to read in DIEs as a prerequisite for
23591 reading current DIE.
23592 * Not trying to dereference contents of still incompletely read in types
23593 while reading in other DIEs.
23594 * Enable referencing still incompletely read in types just by a pointer to
23595 the type without accessing its fields.
23596
23597 Therefore caller should follow these rules:
23598 * Try to fetch any prerequisite types we may need to build this DIE type
23599 before building the type and calling set_die_type.
23600 * After building type call set_die_type for current DIE as soon as
23601 possible before fetching more types to complete the current type.
23602 * Make the type as complete as possible before fetching more types. */
23603
23604 static struct type *
23605 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23606 {
23607 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23608 struct objfile *objfile = cu->objfile;
23609 struct attribute *attr;
23610 struct dynamic_prop prop;
23611
23612 /* For Ada types, make sure that the gnat-specific data is always
23613 initialized (if not already set). There are a few types where
23614 we should not be doing so, because the type-specific area is
23615 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23616 where the type-specific area is used to store the floatformat).
23617 But this is not a problem, because the gnat-specific information
23618 is actually not needed for these types. */
23619 if (need_gnat_info (cu)
23620 && TYPE_CODE (type) != TYPE_CODE_FUNC
23621 && TYPE_CODE (type) != TYPE_CODE_FLT
23622 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23623 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23624 && TYPE_CODE (type) != TYPE_CODE_METHOD
23625 && !HAVE_GNAT_AUX_INFO (type))
23626 INIT_GNAT_SPECIFIC (type);
23627
23628 /* Read DW_AT_allocated and set in type. */
23629 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23630 if (attr_form_is_block (attr))
23631 {
23632 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23633 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23634 }
23635 else if (attr != NULL)
23636 {
23637 complaint (&symfile_complaints,
23638 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23639 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23640 to_underlying (die->sect_off));
23641 }
23642
23643 /* Read DW_AT_associated and set in type. */
23644 attr = dwarf2_attr (die, DW_AT_associated, cu);
23645 if (attr_form_is_block (attr))
23646 {
23647 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23648 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23649 }
23650 else if (attr != NULL)
23651 {
23652 complaint (&symfile_complaints,
23653 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23654 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23655 to_underlying (die->sect_off));
23656 }
23657
23658 /* Read DW_AT_data_location and set in type. */
23659 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23660 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23661 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23662
23663 if (dwarf2_per_objfile->die_type_hash == NULL)
23664 {
23665 dwarf2_per_objfile->die_type_hash =
23666 htab_create_alloc_ex (127,
23667 per_cu_offset_and_type_hash,
23668 per_cu_offset_and_type_eq,
23669 NULL,
23670 &objfile->objfile_obstack,
23671 hashtab_obstack_allocate,
23672 dummy_obstack_deallocate);
23673 }
23674
23675 ofs.per_cu = cu->per_cu;
23676 ofs.sect_off = die->sect_off;
23677 ofs.type = type;
23678 slot = (struct dwarf2_per_cu_offset_and_type **)
23679 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23680 if (*slot)
23681 complaint (&symfile_complaints,
23682 _("A problem internal to GDB: DIE 0x%x has type already set"),
23683 to_underlying (die->sect_off));
23684 *slot = XOBNEW (&objfile->objfile_obstack,
23685 struct dwarf2_per_cu_offset_and_type);
23686 **slot = ofs;
23687 return type;
23688 }
23689
23690 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23691 or return NULL if the die does not have a saved type. */
23692
23693 static struct type *
23694 get_die_type_at_offset (sect_offset sect_off,
23695 struct dwarf2_per_cu_data *per_cu)
23696 {
23697 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23698
23699 if (dwarf2_per_objfile->die_type_hash == NULL)
23700 return NULL;
23701
23702 ofs.per_cu = per_cu;
23703 ofs.sect_off = sect_off;
23704 slot = ((struct dwarf2_per_cu_offset_and_type *)
23705 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23706 if (slot)
23707 return slot->type;
23708 else
23709 return NULL;
23710 }
23711
23712 /* Look up the type for DIE in CU in die_type_hash,
23713 or return NULL if DIE does not have a saved type. */
23714
23715 static struct type *
23716 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23717 {
23718 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23719 }
23720
23721 /* Add a dependence relationship from CU to REF_PER_CU. */
23722
23723 static void
23724 dwarf2_add_dependence (struct dwarf2_cu *cu,
23725 struct dwarf2_per_cu_data *ref_per_cu)
23726 {
23727 void **slot;
23728
23729 if (cu->dependencies == NULL)
23730 cu->dependencies
23731 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23732 NULL, &cu->comp_unit_obstack,
23733 hashtab_obstack_allocate,
23734 dummy_obstack_deallocate);
23735
23736 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23737 if (*slot == NULL)
23738 *slot = ref_per_cu;
23739 }
23740
23741 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23742 Set the mark field in every compilation unit in the
23743 cache that we must keep because we are keeping CU. */
23744
23745 static int
23746 dwarf2_mark_helper (void **slot, void *data)
23747 {
23748 struct dwarf2_per_cu_data *per_cu;
23749
23750 per_cu = (struct dwarf2_per_cu_data *) *slot;
23751
23752 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23753 reading of the chain. As such dependencies remain valid it is not much
23754 useful to track and undo them during QUIT cleanups. */
23755 if (per_cu->cu == NULL)
23756 return 1;
23757
23758 if (per_cu->cu->mark)
23759 return 1;
23760 per_cu->cu->mark = 1;
23761
23762 if (per_cu->cu->dependencies != NULL)
23763 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23764
23765 return 1;
23766 }
23767
23768 /* Set the mark field in CU and in every other compilation unit in the
23769 cache that we must keep because we are keeping CU. */
23770
23771 static void
23772 dwarf2_mark (struct dwarf2_cu *cu)
23773 {
23774 if (cu->mark)
23775 return;
23776 cu->mark = 1;
23777 if (cu->dependencies != NULL)
23778 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23779 }
23780
23781 static void
23782 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23783 {
23784 while (per_cu)
23785 {
23786 per_cu->cu->mark = 0;
23787 per_cu = per_cu->cu->read_in_chain;
23788 }
23789 }
23790
23791 /* Trivial hash function for partial_die_info: the hash value of a DIE
23792 is its offset in .debug_info for this objfile. */
23793
23794 static hashval_t
23795 partial_die_hash (const void *item)
23796 {
23797 const struct partial_die_info *part_die
23798 = (const struct partial_die_info *) item;
23799
23800 return to_underlying (part_die->sect_off);
23801 }
23802
23803 /* Trivial comparison function for partial_die_info structures: two DIEs
23804 are equal if they have the same offset. */
23805
23806 static int
23807 partial_die_eq (const void *item_lhs, const void *item_rhs)
23808 {
23809 const struct partial_die_info *part_die_lhs
23810 = (const struct partial_die_info *) item_lhs;
23811 const struct partial_die_info *part_die_rhs
23812 = (const struct partial_die_info *) item_rhs;
23813
23814 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23815 }
23816
23817 static struct cmd_list_element *set_dwarf_cmdlist;
23818 static struct cmd_list_element *show_dwarf_cmdlist;
23819
23820 static void
23821 set_dwarf_cmd (const char *args, int from_tty)
23822 {
23823 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23824 gdb_stdout);
23825 }
23826
23827 static void
23828 show_dwarf_cmd (const char *args, int from_tty)
23829 {
23830 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23831 }
23832
23833 /* Free data associated with OBJFILE, if necessary. */
23834
23835 static void
23836 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23837 {
23838 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23839 int ix;
23840
23841 /* Make sure we don't accidentally use dwarf2_per_objfile while
23842 cleaning up. */
23843 dwarf2_per_objfile = NULL;
23844
23845 for (ix = 0; ix < data->n_comp_units; ++ix)
23846 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23847
23848 for (ix = 0; ix < data->n_type_units; ++ix)
23849 VEC_free (dwarf2_per_cu_ptr,
23850 data->all_type_units[ix]->per_cu.imported_symtabs);
23851 xfree (data->all_type_units);
23852
23853 VEC_free (dwarf2_section_info_def, data->types);
23854
23855 if (data->dwo_files)
23856 free_dwo_files (data->dwo_files, objfile);
23857 if (data->dwp_file)
23858 gdb_bfd_unref (data->dwp_file->dbfd);
23859
23860 if (data->dwz_file && data->dwz_file->dwz_bfd)
23861 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23862
23863 if (data->index_table != NULL)
23864 data->index_table->~mapped_index ();
23865 }
23866
23867 \f
23868 /* The "save gdb-index" command. */
23869
23870 /* In-memory buffer to prepare data to be written later to a file. */
23871 class data_buf
23872 {
23873 public:
23874 /* Copy DATA to the end of the buffer. */
23875 template<typename T>
23876 void append_data (const T &data)
23877 {
23878 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23879 reinterpret_cast<const gdb_byte *> (&data + 1),
23880 grow (sizeof (data)));
23881 }
23882
23883 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23884 terminating zero is appended too. */
23885 void append_cstr0 (const char *cstr)
23886 {
23887 const size_t size = strlen (cstr) + 1;
23888 std::copy (cstr, cstr + size, grow (size));
23889 }
23890
23891 /* Accept a host-format integer in VAL and append it to the buffer
23892 as a target-format integer which is LEN bytes long. */
23893 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23894 {
23895 ::store_unsigned_integer (grow (len), len, byte_order, val);
23896 }
23897
23898 /* Return the size of the buffer. */
23899 size_t size () const
23900 {
23901 return m_vec.size ();
23902 }
23903
23904 /* Write the buffer to FILE. */
23905 void file_write (FILE *file) const
23906 {
23907 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23908 error (_("couldn't write data to file"));
23909 }
23910
23911 private:
23912 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23913 the start of the new block. */
23914 gdb_byte *grow (size_t size)
23915 {
23916 m_vec.resize (m_vec.size () + size);
23917 return &*m_vec.end () - size;
23918 }
23919
23920 gdb::byte_vector m_vec;
23921 };
23922
23923 /* An entry in the symbol table. */
23924 struct symtab_index_entry
23925 {
23926 /* The name of the symbol. */
23927 const char *name;
23928 /* The offset of the name in the constant pool. */
23929 offset_type index_offset;
23930 /* A sorted vector of the indices of all the CUs that hold an object
23931 of this name. */
23932 std::vector<offset_type> cu_indices;
23933 };
23934
23935 /* The symbol table. This is a power-of-2-sized hash table. */
23936 struct mapped_symtab
23937 {
23938 mapped_symtab ()
23939 {
23940 data.resize (1024);
23941 }
23942
23943 offset_type n_elements = 0;
23944 std::vector<symtab_index_entry> data;
23945 };
23946
23947 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23948 the slot.
23949
23950 Function is used only during write_hash_table so no index format backward
23951 compatibility is needed. */
23952
23953 static symtab_index_entry &
23954 find_slot (struct mapped_symtab *symtab, const char *name)
23955 {
23956 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23957
23958 index = hash & (symtab->data.size () - 1);
23959 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23960
23961 for (;;)
23962 {
23963 if (symtab->data[index].name == NULL
23964 || strcmp (name, symtab->data[index].name) == 0)
23965 return symtab->data[index];
23966 index = (index + step) & (symtab->data.size () - 1);
23967 }
23968 }
23969
23970 /* Expand SYMTAB's hash table. */
23971
23972 static void
23973 hash_expand (struct mapped_symtab *symtab)
23974 {
23975 auto old_entries = std::move (symtab->data);
23976
23977 symtab->data.clear ();
23978 symtab->data.resize (old_entries.size () * 2);
23979
23980 for (auto &it : old_entries)
23981 if (it.name != NULL)
23982 {
23983 auto &ref = find_slot (symtab, it.name);
23984 ref = std::move (it);
23985 }
23986 }
23987
23988 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23989 CU_INDEX is the index of the CU in which the symbol appears.
23990 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23991
23992 static void
23993 add_index_entry (struct mapped_symtab *symtab, const char *name,
23994 int is_static, gdb_index_symbol_kind kind,
23995 offset_type cu_index)
23996 {
23997 offset_type cu_index_and_attrs;
23998
23999 ++symtab->n_elements;
24000 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
24001 hash_expand (symtab);
24002
24003 symtab_index_entry &slot = find_slot (symtab, name);
24004 if (slot.name == NULL)
24005 {
24006 slot.name = name;
24007 /* index_offset is set later. */
24008 }
24009
24010 cu_index_and_attrs = 0;
24011 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
24012 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
24013 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
24014
24015 /* We don't want to record an index value twice as we want to avoid the
24016 duplication.
24017 We process all global symbols and then all static symbols
24018 (which would allow us to avoid the duplication by only having to check
24019 the last entry pushed), but a symbol could have multiple kinds in one CU.
24020 To keep things simple we don't worry about the duplication here and
24021 sort and uniqufy the list after we've processed all symbols. */
24022 slot.cu_indices.push_back (cu_index_and_attrs);
24023 }
24024
24025 /* Sort and remove duplicates of all symbols' cu_indices lists. */
24026
24027 static void
24028 uniquify_cu_indices (struct mapped_symtab *symtab)
24029 {
24030 for (auto &entry : symtab->data)
24031 {
24032 if (entry.name != NULL && !entry.cu_indices.empty ())
24033 {
24034 auto &cu_indices = entry.cu_indices;
24035 std::sort (cu_indices.begin (), cu_indices.end ());
24036 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
24037 cu_indices.erase (from, cu_indices.end ());
24038 }
24039 }
24040 }
24041
24042 /* A form of 'const char *' suitable for container keys. Only the
24043 pointer is stored. The strings themselves are compared, not the
24044 pointers. */
24045 class c_str_view
24046 {
24047 public:
24048 c_str_view (const char *cstr)
24049 : m_cstr (cstr)
24050 {}
24051
24052 bool operator== (const c_str_view &other) const
24053 {
24054 return strcmp (m_cstr, other.m_cstr) == 0;
24055 }
24056
24057 private:
24058 friend class c_str_view_hasher;
24059 const char *const m_cstr;
24060 };
24061
24062 /* A std::unordered_map::hasher for c_str_view that uses the right
24063 hash function for strings in a mapped index. */
24064 class c_str_view_hasher
24065 {
24066 public:
24067 size_t operator () (const c_str_view &x) const
24068 {
24069 return mapped_index_string_hash (INT_MAX, x.m_cstr);
24070 }
24071 };
24072
24073 /* A std::unordered_map::hasher for std::vector<>. */
24074 template<typename T>
24075 class vector_hasher
24076 {
24077 public:
24078 size_t operator () (const std::vector<T> &key) const
24079 {
24080 return iterative_hash (key.data (),
24081 sizeof (key.front ()) * key.size (), 0);
24082 }
24083 };
24084
24085 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
24086 constant pool entries going into the data buffer CPOOL. */
24087
24088 static void
24089 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
24090 {
24091 {
24092 /* Elements are sorted vectors of the indices of all the CUs that
24093 hold an object of this name. */
24094 std::unordered_map<std::vector<offset_type>, offset_type,
24095 vector_hasher<offset_type>>
24096 symbol_hash_table;
24097
24098 /* We add all the index vectors to the constant pool first, to
24099 ensure alignment is ok. */
24100 for (symtab_index_entry &entry : symtab->data)
24101 {
24102 if (entry.name == NULL)
24103 continue;
24104 gdb_assert (entry.index_offset == 0);
24105
24106 /* Finding before inserting is faster than always trying to
24107 insert, because inserting always allocates a node, does the
24108 lookup, and then destroys the new node if another node
24109 already had the same key. C++17 try_emplace will avoid
24110 this. */
24111 const auto found
24112 = symbol_hash_table.find (entry.cu_indices);
24113 if (found != symbol_hash_table.end ())
24114 {
24115 entry.index_offset = found->second;
24116 continue;
24117 }
24118
24119 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
24120 entry.index_offset = cpool.size ();
24121 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
24122 for (const auto index : entry.cu_indices)
24123 cpool.append_data (MAYBE_SWAP (index));
24124 }
24125 }
24126
24127 /* Now write out the hash table. */
24128 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
24129 for (const auto &entry : symtab->data)
24130 {
24131 offset_type str_off, vec_off;
24132
24133 if (entry.name != NULL)
24134 {
24135 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
24136 if (insertpair.second)
24137 cpool.append_cstr0 (entry.name);
24138 str_off = insertpair.first->second;
24139 vec_off = entry.index_offset;
24140 }
24141 else
24142 {
24143 /* While 0 is a valid constant pool index, it is not valid
24144 to have 0 for both offsets. */
24145 str_off = 0;
24146 vec_off = 0;
24147 }
24148
24149 output.append_data (MAYBE_SWAP (str_off));
24150 output.append_data (MAYBE_SWAP (vec_off));
24151 }
24152 }
24153
24154 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
24155
24156 /* Helper struct for building the address table. */
24157 struct addrmap_index_data
24158 {
24159 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
24160 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
24161 {}
24162
24163 struct objfile *objfile;
24164 data_buf &addr_vec;
24165 psym_index_map &cu_index_htab;
24166
24167 /* Non-zero if the previous_* fields are valid.
24168 We can't write an entry until we see the next entry (since it is only then
24169 that we know the end of the entry). */
24170 int previous_valid;
24171 /* Index of the CU in the table of all CUs in the index file. */
24172 unsigned int previous_cu_index;
24173 /* Start address of the CU. */
24174 CORE_ADDR previous_cu_start;
24175 };
24176
24177 /* Write an address entry to ADDR_VEC. */
24178
24179 static void
24180 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
24181 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
24182 {
24183 CORE_ADDR baseaddr;
24184
24185 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24186
24187 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
24188 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
24189 addr_vec.append_data (MAYBE_SWAP (cu_index));
24190 }
24191
24192 /* Worker function for traversing an addrmap to build the address table. */
24193
24194 static int
24195 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
24196 {
24197 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
24198 struct partial_symtab *pst = (struct partial_symtab *) obj;
24199
24200 if (data->previous_valid)
24201 add_address_entry (data->objfile, data->addr_vec,
24202 data->previous_cu_start, start_addr,
24203 data->previous_cu_index);
24204
24205 data->previous_cu_start = start_addr;
24206 if (pst != NULL)
24207 {
24208 const auto it = data->cu_index_htab.find (pst);
24209 gdb_assert (it != data->cu_index_htab.cend ());
24210 data->previous_cu_index = it->second;
24211 data->previous_valid = 1;
24212 }
24213 else
24214 data->previous_valid = 0;
24215
24216 return 0;
24217 }
24218
24219 /* Write OBJFILE's address map to ADDR_VEC.
24220 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
24221 in the index file. */
24222
24223 static void
24224 write_address_map (struct objfile *objfile, data_buf &addr_vec,
24225 psym_index_map &cu_index_htab)
24226 {
24227 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
24228
24229 /* When writing the address table, we have to cope with the fact that
24230 the addrmap iterator only provides the start of a region; we have to
24231 wait until the next invocation to get the start of the next region. */
24232
24233 addrmap_index_data.objfile = objfile;
24234 addrmap_index_data.previous_valid = 0;
24235
24236 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
24237 &addrmap_index_data);
24238
24239 /* It's highly unlikely the last entry (end address = 0xff...ff)
24240 is valid, but we should still handle it.
24241 The end address is recorded as the start of the next region, but that
24242 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
24243 anyway. */
24244 if (addrmap_index_data.previous_valid)
24245 add_address_entry (objfile, addr_vec,
24246 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
24247 addrmap_index_data.previous_cu_index);
24248 }
24249
24250 /* Return the symbol kind of PSYM. */
24251
24252 static gdb_index_symbol_kind
24253 symbol_kind (struct partial_symbol *psym)
24254 {
24255 domain_enum domain = PSYMBOL_DOMAIN (psym);
24256 enum address_class aclass = PSYMBOL_CLASS (psym);
24257
24258 switch (domain)
24259 {
24260 case VAR_DOMAIN:
24261 switch (aclass)
24262 {
24263 case LOC_BLOCK:
24264 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
24265 case LOC_TYPEDEF:
24266 return GDB_INDEX_SYMBOL_KIND_TYPE;
24267 case LOC_COMPUTED:
24268 case LOC_CONST_BYTES:
24269 case LOC_OPTIMIZED_OUT:
24270 case LOC_STATIC:
24271 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24272 case LOC_CONST:
24273 /* Note: It's currently impossible to recognize psyms as enum values
24274 short of reading the type info. For now punt. */
24275 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24276 default:
24277 /* There are other LOC_FOO values that one might want to classify
24278 as variables, but dwarf2read.c doesn't currently use them. */
24279 return GDB_INDEX_SYMBOL_KIND_OTHER;
24280 }
24281 case STRUCT_DOMAIN:
24282 return GDB_INDEX_SYMBOL_KIND_TYPE;
24283 default:
24284 return GDB_INDEX_SYMBOL_KIND_OTHER;
24285 }
24286 }
24287
24288 /* Add a list of partial symbols to SYMTAB. */
24289
24290 static void
24291 write_psymbols (struct mapped_symtab *symtab,
24292 std::unordered_set<partial_symbol *> &psyms_seen,
24293 struct partial_symbol **psymp,
24294 int count,
24295 offset_type cu_index,
24296 int is_static)
24297 {
24298 for (; count-- > 0; ++psymp)
24299 {
24300 struct partial_symbol *psym = *psymp;
24301
24302 if (SYMBOL_LANGUAGE (psym) == language_ada)
24303 error (_("Ada is not currently supported by the index"));
24304
24305 /* Only add a given psymbol once. */
24306 if (psyms_seen.insert (psym).second)
24307 {
24308 gdb_index_symbol_kind kind = symbol_kind (psym);
24309
24310 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
24311 is_static, kind, cu_index);
24312 }
24313 }
24314 }
24315
24316 /* A helper struct used when iterating over debug_types. */
24317 struct signatured_type_index_data
24318 {
24319 signatured_type_index_data (data_buf &types_list_,
24320 std::unordered_set<partial_symbol *> &psyms_seen_)
24321 : types_list (types_list_), psyms_seen (psyms_seen_)
24322 {}
24323
24324 struct objfile *objfile;
24325 struct mapped_symtab *symtab;
24326 data_buf &types_list;
24327 std::unordered_set<partial_symbol *> &psyms_seen;
24328 int cu_index;
24329 };
24330
24331 /* A helper function that writes a single signatured_type to an
24332 obstack. */
24333
24334 static int
24335 write_one_signatured_type (void **slot, void *d)
24336 {
24337 struct signatured_type_index_data *info
24338 = (struct signatured_type_index_data *) d;
24339 struct signatured_type *entry = (struct signatured_type *) *slot;
24340 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
24341
24342 write_psymbols (info->symtab,
24343 info->psyms_seen,
24344 &info->objfile->global_psymbols[psymtab->globals_offset],
24345 psymtab->n_global_syms, info->cu_index,
24346 0);
24347 write_psymbols (info->symtab,
24348 info->psyms_seen,
24349 &info->objfile->static_psymbols[psymtab->statics_offset],
24350 psymtab->n_static_syms, info->cu_index,
24351 1);
24352
24353 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24354 to_underlying (entry->per_cu.sect_off));
24355 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24356 to_underlying (entry->type_offset_in_tu));
24357 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
24358
24359 ++info->cu_index;
24360
24361 return 1;
24362 }
24363
24364 /* Recurse into all "included" dependencies and count their symbols as
24365 if they appeared in this psymtab. */
24366
24367 static void
24368 recursively_count_psymbols (struct partial_symtab *psymtab,
24369 size_t &psyms_seen)
24370 {
24371 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
24372 if (psymtab->dependencies[i]->user != NULL)
24373 recursively_count_psymbols (psymtab->dependencies[i],
24374 psyms_seen);
24375
24376 psyms_seen += psymtab->n_global_syms;
24377 psyms_seen += psymtab->n_static_syms;
24378 }
24379
24380 /* Recurse into all "included" dependencies and write their symbols as
24381 if they appeared in this psymtab. */
24382
24383 static void
24384 recursively_write_psymbols (struct objfile *objfile,
24385 struct partial_symtab *psymtab,
24386 struct mapped_symtab *symtab,
24387 std::unordered_set<partial_symbol *> &psyms_seen,
24388 offset_type cu_index)
24389 {
24390 int i;
24391
24392 for (i = 0; i < psymtab->number_of_dependencies; ++i)
24393 if (psymtab->dependencies[i]->user != NULL)
24394 recursively_write_psymbols (objfile, psymtab->dependencies[i],
24395 symtab, psyms_seen, cu_index);
24396
24397 write_psymbols (symtab,
24398 psyms_seen,
24399 &objfile->global_psymbols[psymtab->globals_offset],
24400 psymtab->n_global_syms, cu_index,
24401 0);
24402 write_psymbols (symtab,
24403 psyms_seen,
24404 &objfile->static_psymbols[psymtab->statics_offset],
24405 psymtab->n_static_syms, cu_index,
24406 1);
24407 }
24408
24409 /* Create an index file for OBJFILE in the directory DIR. */
24410
24411 static void
24412 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
24413 {
24414 if (dwarf2_per_objfile->using_index)
24415 error (_("Cannot use an index to create the index"));
24416
24417 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
24418 error (_("Cannot make an index when the file has multiple .debug_types sections"));
24419
24420 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
24421 return;
24422
24423 struct stat st;
24424 if (stat (objfile_name (objfile), &st) < 0)
24425 perror_with_name (objfile_name (objfile));
24426
24427 std::string filename (std::string (dir) + SLASH_STRING
24428 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
24429
24430 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
24431 if (!out_file)
24432 error (_("Can't open `%s' for writing"), filename.c_str ());
24433
24434 /* Order matters here; we want FILE to be closed before FILENAME is
24435 unlinked, because on MS-Windows one cannot delete a file that is
24436 still open. (Don't call anything here that might throw until
24437 file_closer is created.) */
24438 gdb::unlinker unlink_file (filename.c_str ());
24439 gdb_file_up close_out_file (out_file);
24440
24441 mapped_symtab symtab;
24442 data_buf cu_list;
24443
24444 /* While we're scanning CU's create a table that maps a psymtab pointer
24445 (which is what addrmap records) to its index (which is what is recorded
24446 in the index file). This will later be needed to write the address
24447 table. */
24448 psym_index_map cu_index_htab;
24449 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
24450
24451 /* The CU list is already sorted, so we don't need to do additional
24452 work here. Also, the debug_types entries do not appear in
24453 all_comp_units, but only in their own hash table. */
24454
24455 /* The psyms_seen set is potentially going to be largish (~40k
24456 elements when indexing a -g3 build of GDB itself). Estimate the
24457 number of elements in order to avoid too many rehashes, which
24458 require rebuilding buckets and thus many trips to
24459 malloc/free. */
24460 size_t psyms_count = 0;
24461 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24462 {
24463 struct dwarf2_per_cu_data *per_cu
24464 = dwarf2_per_objfile->all_comp_units[i];
24465 struct partial_symtab *psymtab = per_cu->v.psymtab;
24466
24467 if (psymtab != NULL && psymtab->user == NULL)
24468 recursively_count_psymbols (psymtab, psyms_count);
24469 }
24470 /* Generating an index for gdb itself shows a ratio of
24471 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
24472 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
24473 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24474 {
24475 struct dwarf2_per_cu_data *per_cu
24476 = dwarf2_per_objfile->all_comp_units[i];
24477 struct partial_symtab *psymtab = per_cu->v.psymtab;
24478
24479 /* CU of a shared file from 'dwz -m' may be unused by this main file.
24480 It may be referenced from a local scope but in such case it does not
24481 need to be present in .gdb_index. */
24482 if (psymtab == NULL)
24483 continue;
24484
24485 if (psymtab->user == NULL)
24486 recursively_write_psymbols (objfile, psymtab, &symtab,
24487 psyms_seen, i);
24488
24489 const auto insertpair = cu_index_htab.emplace (psymtab, i);
24490 gdb_assert (insertpair.second);
24491
24492 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
24493 to_underlying (per_cu->sect_off));
24494 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
24495 }
24496
24497 /* Dump the address map. */
24498 data_buf addr_vec;
24499 write_address_map (objfile, addr_vec, cu_index_htab);
24500
24501 /* Write out the .debug_type entries, if any. */
24502 data_buf types_cu_list;
24503 if (dwarf2_per_objfile->signatured_types)
24504 {
24505 signatured_type_index_data sig_data (types_cu_list,
24506 psyms_seen);
24507
24508 sig_data.objfile = objfile;
24509 sig_data.symtab = &symtab;
24510 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
24511 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
24512 write_one_signatured_type, &sig_data);
24513 }
24514
24515 /* Now that we've processed all symbols we can shrink their cu_indices
24516 lists. */
24517 uniquify_cu_indices (&symtab);
24518
24519 data_buf symtab_vec, constant_pool;
24520 write_hash_table (&symtab, symtab_vec, constant_pool);
24521
24522 data_buf contents;
24523 const offset_type size_of_contents = 6 * sizeof (offset_type);
24524 offset_type total_len = size_of_contents;
24525
24526 /* The version number. */
24527 contents.append_data (MAYBE_SWAP (8));
24528
24529 /* The offset of the CU list from the start of the file. */
24530 contents.append_data (MAYBE_SWAP (total_len));
24531 total_len += cu_list.size ();
24532
24533 /* The offset of the types CU list from the start of the file. */
24534 contents.append_data (MAYBE_SWAP (total_len));
24535 total_len += types_cu_list.size ();
24536
24537 /* The offset of the address table from the start of the file. */
24538 contents.append_data (MAYBE_SWAP (total_len));
24539 total_len += addr_vec.size ();
24540
24541 /* The offset of the symbol table from the start of the file. */
24542 contents.append_data (MAYBE_SWAP (total_len));
24543 total_len += symtab_vec.size ();
24544
24545 /* The offset of the constant pool from the start of the file. */
24546 contents.append_data (MAYBE_SWAP (total_len));
24547 total_len += constant_pool.size ();
24548
24549 gdb_assert (contents.size () == size_of_contents);
24550
24551 contents.file_write (out_file);
24552 cu_list.file_write (out_file);
24553 types_cu_list.file_write (out_file);
24554 addr_vec.file_write (out_file);
24555 symtab_vec.file_write (out_file);
24556 constant_pool.file_write (out_file);
24557
24558 /* We want to keep the file. */
24559 unlink_file.keep ();
24560 }
24561
24562 /* Implementation of the `save gdb-index' command.
24563
24564 Note that the file format used by this command is documented in the
24565 GDB manual. Any changes here must be documented there. */
24566
24567 static void
24568 save_gdb_index_command (const char *arg, int from_tty)
24569 {
24570 struct objfile *objfile;
24571
24572 if (!arg || !*arg)
24573 error (_("usage: save gdb-index DIRECTORY"));
24574
24575 ALL_OBJFILES (objfile)
24576 {
24577 struct stat st;
24578
24579 /* If the objfile does not correspond to an actual file, skip it. */
24580 if (stat (objfile_name (objfile), &st) < 0)
24581 continue;
24582
24583 dwarf2_per_objfile
24584 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24585 dwarf2_objfile_data_key);
24586 if (dwarf2_per_objfile)
24587 {
24588
24589 TRY
24590 {
24591 write_psymtabs_to_index (objfile, arg);
24592 }
24593 CATCH (except, RETURN_MASK_ERROR)
24594 {
24595 exception_fprintf (gdb_stderr, except,
24596 _("Error while writing index for `%s': "),
24597 objfile_name (objfile));
24598 }
24599 END_CATCH
24600 }
24601 }
24602 }
24603
24604 \f
24605
24606 int dwarf_always_disassemble;
24607
24608 static void
24609 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24610 struct cmd_list_element *c, const char *value)
24611 {
24612 fprintf_filtered (file,
24613 _("Whether to always disassemble "
24614 "DWARF expressions is %s.\n"),
24615 value);
24616 }
24617
24618 static void
24619 show_check_physname (struct ui_file *file, int from_tty,
24620 struct cmd_list_element *c, const char *value)
24621 {
24622 fprintf_filtered (file,
24623 _("Whether to check \"physname\" is %s.\n"),
24624 value);
24625 }
24626
24627 void
24628 _initialize_dwarf2_read (void)
24629 {
24630 struct cmd_list_element *c;
24631
24632 dwarf2_objfile_data_key
24633 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24634
24635 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24636 Set DWARF specific variables.\n\
24637 Configure DWARF variables such as the cache size"),
24638 &set_dwarf_cmdlist, "maintenance set dwarf ",
24639 0/*allow-unknown*/, &maintenance_set_cmdlist);
24640
24641 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24642 Show DWARF specific variables\n\
24643 Show DWARF variables such as the cache size"),
24644 &show_dwarf_cmdlist, "maintenance show dwarf ",
24645 0/*allow-unknown*/, &maintenance_show_cmdlist);
24646
24647 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24648 &dwarf_max_cache_age, _("\
24649 Set the upper bound on the age of cached DWARF compilation units."), _("\
24650 Show the upper bound on the age of cached DWARF compilation units."), _("\
24651 A higher limit means that cached compilation units will be stored\n\
24652 in memory longer, and more total memory will be used. Zero disables\n\
24653 caching, which can slow down startup."),
24654 NULL,
24655 show_dwarf_max_cache_age,
24656 &set_dwarf_cmdlist,
24657 &show_dwarf_cmdlist);
24658
24659 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24660 &dwarf_always_disassemble, _("\
24661 Set whether `info address' always disassembles DWARF expressions."), _("\
24662 Show whether `info address' always disassembles DWARF expressions."), _("\
24663 When enabled, DWARF expressions are always printed in an assembly-like\n\
24664 syntax. When disabled, expressions will be printed in a more\n\
24665 conversational style, when possible."),
24666 NULL,
24667 show_dwarf_always_disassemble,
24668 &set_dwarf_cmdlist,
24669 &show_dwarf_cmdlist);
24670
24671 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24672 Set debugging of the DWARF reader."), _("\
24673 Show debugging of the DWARF reader."), _("\
24674 When enabled (non-zero), debugging messages are printed during DWARF\n\
24675 reading and symtab expansion. A value of 1 (one) provides basic\n\
24676 information. A value greater than 1 provides more verbose information."),
24677 NULL,
24678 NULL,
24679 &setdebuglist, &showdebuglist);
24680
24681 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24682 Set debugging of the DWARF DIE reader."), _("\
24683 Show debugging of the DWARF DIE reader."), _("\
24684 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24685 The value is the maximum depth to print."),
24686 NULL,
24687 NULL,
24688 &setdebuglist, &showdebuglist);
24689
24690 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24691 Set debugging of the dwarf line reader."), _("\
24692 Show debugging of the dwarf line reader."), _("\
24693 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24694 A value of 1 (one) provides basic information.\n\
24695 A value greater than 1 provides more verbose information."),
24696 NULL,
24697 NULL,
24698 &setdebuglist, &showdebuglist);
24699
24700 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24701 Set cross-checking of \"physname\" code against demangler."), _("\
24702 Show cross-checking of \"physname\" code against demangler."), _("\
24703 When enabled, GDB's internal \"physname\" code is checked against\n\
24704 the demangler."),
24705 NULL, show_check_physname,
24706 &setdebuglist, &showdebuglist);
24707
24708 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24709 no_class, &use_deprecated_index_sections, _("\
24710 Set whether to use deprecated gdb_index sections."), _("\
24711 Show whether to use deprecated gdb_index sections."), _("\
24712 When enabled, deprecated .gdb_index sections are used anyway.\n\
24713 Normally they are ignored either because of a missing feature or\n\
24714 performance issue.\n\
24715 Warning: This option must be enabled before gdb reads the file."),
24716 NULL,
24717 NULL,
24718 &setlist, &showlist);
24719
24720 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24721 _("\
24722 Save a gdb-index file.\n\
24723 Usage: save gdb-index DIRECTORY"),
24724 &save_cmdlist);
24725 set_cmd_completer (c, filename_completer);
24726
24727 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24728 &dwarf2_locexpr_funcs);
24729 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24730 &dwarf2_loclist_funcs);
24731
24732 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24733 &dwarf2_block_frame_base_locexpr_funcs);
24734 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24735 &dwarf2_block_frame_base_loclist_funcs);
24736
24737 #if GDB_SELF_TEST
24738 selftests::register_test ("dw2_expand_symtabs_matching",
24739 selftests::dw2_expand_symtabs_matching::run_test);
24740 #endif
24741 }