]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
Code cleanup and refactoring
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54
55 /* Forward declarations. */
56 extern const struct sym_fns elf_sym_fns_gdb_index;
57 extern const struct sym_fns elf_sym_fns_debug_names;
58 extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
60 /* The struct elfinfo is available only during ELF symbol table and
61 psymtab reading. It is destroyed at the completion of psymtab-reading.
62 It's local to elf_symfile_read. */
63
64 struct elfinfo
65 {
66 asection *stabsect; /* Section pointer for .stab section */
67 asection *mdebugsect; /* Section pointer for .mdebug section */
68 asection *ctfsect; /* Section pointer for .ctf section */
69 };
70
71 /* Type for per-BFD data. */
72
73 typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
75 /* Per-BFD data for probe info. */
76
77 static const struct bfd_key<elfread_data> probe_key;
78
79 /* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
86 /* Locate the segments in ABFD. */
87
88 static symfile_segment_data_up
89 elf_symfile_segments (bfd *abfd)
90 {
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95
96 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97 if (phdrs_size == -1)
98 return NULL;
99
100 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
101 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102 if (num_phdrs == -1)
103 return NULL;
104
105 num_segments = 0;
106 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
107 for (i = 0; i < num_phdrs; i++)
108 if (phdrs[i].p_type == PT_LOAD)
109 segments[num_segments++] = &phdrs[i];
110
111 if (num_segments == 0)
112 return NULL;
113
114 symfile_segment_data_up data (new symfile_segment_data);
115 data->segments.reserve (num_segments);
116
117 for (i = 0; i < num_segments; i++)
118 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
119
120 num_sections = bfd_count_sections (abfd);
121
122 /* All elements are initialized to 0 (map to no segment). */
123 data->segment_info.resize (num_sections);
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
128
129 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
130 continue;
131
132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
133
134 for (j = 0; j < num_segments; j++)
135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_section_size (sect) > 0 && j == num_segments
151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (asection *sectp, struct elfinfo *ei)
180 {
181 if (strcmp (sectp->name, ".stab") == 0)
182 {
183 ei->stabsect = sectp;
184 }
185 else if (strcmp (sectp->name, ".mdebug") == 0)
186 {
187 ei->mdebugsect = sectp;
188 }
189 else if (strcmp (sectp->name, ".ctf") == 0)
190 {
191 ei->ctfsect = sectp;
192 }
193 }
194
195 static struct minimal_symbol *
196 record_minimal_symbol (minimal_symbol_reader &reader,
197 gdb::string_view name, bool copy_name,
198 CORE_ADDR address,
199 enum minimal_symbol_type ms_type,
200 asection *bfd_section, struct objfile *objfile)
201 {
202 struct gdbarch *gdbarch = objfile->arch ();
203
204 if (ms_type == mst_text || ms_type == mst_file_text
205 || ms_type == mst_text_gnu_ifunc)
206 address = gdbarch_addr_bits_remove (gdbarch, address);
207
208 /* We only setup section information for allocatable sections. Usually
209 we'd only expect to find msymbols for allocatable sections, but if the
210 ELF is malformed then this might not be the case. In that case don't
211 create an msymbol that references an uninitialised section object. */
212 int section_index = 0;
213 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
214 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
215
216 struct minimal_symbol *result
217 = reader.record_full (name, copy_name, address, ms_type, section_index);
218 if ((objfile->flags & OBJF_MAINLINE) == 0
219 && (ms_type == mst_data || ms_type == mst_bss))
220 result->maybe_copied = 1;
221
222 return result;
223 }
224
225 /* Read the symbol table of an ELF file.
226
227 Given an objfile, a symbol table, and a flag indicating whether the
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
230
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
235 in data structures hung off the objfile's private data. */
236
237 #define ST_REGULAR 0
238 #define ST_DYNAMIC 1
239 #define ST_SYNTHETIC 2
240
241 static void
242 elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
244 long number_of_symbols, asymbol **symbol_table,
245 bool copy_names)
246 {
247 struct gdbarch *gdbarch = objfile->arch ();
248 asymbol *sym;
249 long i;
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
254 const char *filesymname = "";
255 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
258
259 for (i = 0; i < number_of_symbols; i++)
260 {
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
263 {
264 /* Skip names that don't exist (shouldn't happen), or names
265 that are null strings (may happen). */
266 continue;
267 }
268
269 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
270 symbols which do not correspond to objects in the symbol table,
271 but have some other target-specific meaning. */
272 if (bfd_is_target_special_symbol (objfile->obfd, sym))
273 {
274 if (gdbarch_record_special_symbol_p (gdbarch))
275 gdbarch_record_special_symbol (gdbarch, objfile, sym);
276 continue;
277 }
278
279 if (type == ST_DYNAMIC
280 && sym->section == bfd_und_section_ptr
281 && (sym->flags & BSF_FUNCTION))
282 {
283 struct minimal_symbol *msym;
284 bfd *abfd = objfile->obfd;
285 asection *sect;
286
287 /* Symbol is a reference to a function defined in
288 a shared library.
289 If its value is non zero then it is usually the address
290 of the corresponding entry in the procedure linkage table,
291 plus the desired section offset.
292 If its value is zero then the dynamic linker has to resolve
293 the symbol. We are unable to find any meaningful address
294 for this symbol in the executable file, so we skip it. */
295 symaddr = sym->value;
296 if (symaddr == 0)
297 continue;
298
299 /* sym->section is the undefined section. However, we want to
300 record the section where the PLT stub resides with the
301 minimal symbol. Search the section table for the one that
302 covers the stub's address. */
303 for (sect = abfd->sections; sect != NULL; sect = sect->next)
304 {
305 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
306 continue;
307
308 if (symaddr >= bfd_section_vma (sect)
309 && symaddr < bfd_section_vma (sect)
310 + bfd_section_size (sect))
311 break;
312 }
313 if (!sect)
314 continue;
315
316 /* On ia64-hpux, we have discovered that the system linker
317 adds undefined symbols with nonzero addresses that cannot
318 be right (their address points inside the code of another
319 function in the .text section). This creates problems
320 when trying to determine which symbol corresponds to
321 a given address.
322
323 We try to detect those buggy symbols by checking which
324 section we think they correspond to. Normally, PLT symbols
325 are stored inside their own section, and the typical name
326 for that section is ".plt". So, if there is a ".plt"
327 section, and yet the section name of our symbol does not
328 start with ".plt", we ignore that symbol. */
329 if (!startswith (sect->name, ".plt")
330 && bfd_get_section_by_name (abfd, ".plt") != NULL)
331 continue;
332
333 msym = record_minimal_symbol
334 (reader, sym->name, copy_names,
335 symaddr, mst_solib_trampoline, sect, objfile);
336 if (msym != NULL)
337 {
338 msym->filename = filesymname;
339 if (elf_make_msymbol_special_p)
340 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
341 }
342 continue;
343 }
344
345 /* If it is a nonstripped executable, do not enter dynamic
346 symbols, as the dynamic symbol table is usually a subset
347 of the main symbol table. */
348 if (type == ST_DYNAMIC && !stripped)
349 continue;
350 if (sym->flags & BSF_FILE)
351 filesymname = objfile->intern (sym->name);
352 else if (sym->flags & BSF_SECTION_SYM)
353 continue;
354 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
355 | BSF_GNU_UNIQUE))
356 {
357 struct minimal_symbol *msym;
358
359 /* Select global/local/weak symbols. Note that bfd puts abs
360 symbols in their own section, so all symbols we are
361 interested in will have a section. */
362 /* Bfd symbols are section relative. */
363 symaddr = sym->value + sym->section->vma;
364 /* For non-absolute symbols, use the type of the section
365 they are relative to, to intuit text/data. Bfd provides
366 no way of figuring this out for absolute symbols. */
367 if (sym->section == bfd_abs_section_ptr)
368 {
369 /* This is a hack to get the minimal symbol type
370 right for Irix 5, which has absolute addresses
371 with special section indices for dynamic symbols.
372
373 NOTE: uweigand-20071112: Synthetic symbols do not
374 have an ELF-private part, so do not touch those. */
375 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
376 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
377
378 switch (shndx)
379 {
380 case SHN_MIPS_TEXT:
381 ms_type = mst_text;
382 break;
383 case SHN_MIPS_DATA:
384 ms_type = mst_data;
385 break;
386 case SHN_MIPS_ACOMMON:
387 ms_type = mst_bss;
388 break;
389 default:
390 ms_type = mst_abs;
391 }
392
393 /* If it is an Irix dynamic symbol, skip section name
394 symbols, relocate all others by section offset. */
395 if (ms_type != mst_abs)
396 {
397 if (sym->name[0] == '.')
398 continue;
399 }
400 }
401 else if (sym->section->flags & SEC_CODE)
402 {
403 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
404 {
405 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
406 ms_type = mst_text_gnu_ifunc;
407 else
408 ms_type = mst_text;
409 }
410 /* The BSF_SYNTHETIC check is there to omit ppc64 function
411 descriptors mistaken for static functions starting with 'L'.
412 */
413 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
414 && (sym->flags & BSF_SYNTHETIC) == 0)
415 || ((sym->flags & BSF_LOCAL)
416 && sym->name[0] == '$'
417 && sym->name[1] == 'L'))
418 /* Looks like a compiler-generated label. Skip
419 it. The assembler should be skipping these (to
420 keep executables small), but apparently with
421 gcc on the (deleted) delta m88k SVR4, it loses.
422 So to have us check too should be harmless (but
423 I encourage people to fix this in the assembler
424 instead of adding checks here). */
425 continue;
426 else
427 {
428 ms_type = mst_file_text;
429 }
430 }
431 else if (sym->section->flags & SEC_ALLOC)
432 {
433 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
434 {
435 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
436 {
437 ms_type = mst_data_gnu_ifunc;
438 }
439 else if (sym->section->flags & SEC_LOAD)
440 {
441 ms_type = mst_data;
442 }
443 else
444 {
445 ms_type = mst_bss;
446 }
447 }
448 else if (sym->flags & BSF_LOCAL)
449 {
450 if (sym->section->flags & SEC_LOAD)
451 {
452 ms_type = mst_file_data;
453 }
454 else
455 {
456 ms_type = mst_file_bss;
457 }
458 }
459 else
460 {
461 ms_type = mst_unknown;
462 }
463 }
464 else
465 {
466 /* FIXME: Solaris2 shared libraries include lots of
467 odd "absolute" and "undefined" symbols, that play
468 hob with actions like finding what function the PC
469 is in. Ignore them if they aren't text, data, or bss. */
470 /* ms_type = mst_unknown; */
471 continue; /* Skip this symbol. */
472 }
473 msym = record_minimal_symbol
474 (reader, sym->name, copy_names, symaddr,
475 ms_type, sym->section, objfile);
476
477 if (msym)
478 {
479 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
480 ELF-private part. */
481 if (type != ST_SYNTHETIC)
482 {
483 /* Pass symbol size field in via BFD. FIXME!!! */
484 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
485 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
486 }
487
488 msym->filename = filesymname;
489 if (elf_make_msymbol_special_p)
490 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
491 }
492
493 /* If we see a default versioned symbol, install it under
494 its version-less name. */
495 if (msym != NULL)
496 {
497 const char *atsign = strchr (sym->name, '@');
498
499 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
500 {
501 int len = atsign - sym->name;
502
503 record_minimal_symbol (reader,
504 gdb::string_view (sym->name, len),
505 true, symaddr, ms_type, sym->section,
506 objfile);
507 }
508 }
509
510 /* For @plt symbols, also record a trampoline to the
511 destination symbol. The @plt symbol will be used in
512 disassembly, and the trampoline will be used when we are
513 trying to find the target. */
514 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
515 {
516 int len = strlen (sym->name);
517
518 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
519 {
520 struct minimal_symbol *mtramp;
521
522 mtramp = record_minimal_symbol
523 (reader, gdb::string_view (sym->name, len - 4), true,
524 symaddr, mst_solib_trampoline, sym->section, objfile);
525 if (mtramp)
526 {
527 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
528 mtramp->created_by_gdb = 1;
529 mtramp->filename = filesymname;
530 if (elf_make_msymbol_special_p)
531 gdbarch_elf_make_msymbol_special (gdbarch,
532 sym, mtramp);
533 }
534 }
535 }
536 }
537 }
538 }
539
540 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
541 for later look ups of which function to call when user requests
542 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
543 library defining `function' we cannot yet know while reading OBJFILE which
544 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
545 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
546
547 static void
548 elf_rel_plt_read (minimal_symbol_reader &reader,
549 struct objfile *objfile, asymbol **dyn_symbol_table)
550 {
551 bfd *obfd = objfile->obfd;
552 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
553 asection *relplt, *got_plt;
554 bfd_size_type reloc_count, reloc;
555 struct gdbarch *gdbarch = objfile->arch ();
556 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
557 size_t ptr_size = TYPE_LENGTH (ptr_type);
558
559 if (objfile->separate_debug_objfile_backlink)
560 return;
561
562 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
563 if (got_plt == NULL)
564 {
565 /* For platforms where there is no separate .got.plt. */
566 got_plt = bfd_get_section_by_name (obfd, ".got");
567 if (got_plt == NULL)
568 return;
569 }
570
571 /* Depending on system, we may find jump slots in a relocation
572 section for either .got.plt or .plt. */
573 asection *plt = bfd_get_section_by_name (obfd, ".plt");
574 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
575
576 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
577
578 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
579 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
580 {
581 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
582
583 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
584 {
585 if (this_hdr.sh_info == plt_elf_idx
586 || this_hdr.sh_info == got_plt_elf_idx)
587 break;
588 }
589 }
590 if (relplt == NULL)
591 return;
592
593 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
594 return;
595
596 std::string string_buffer;
597
598 /* Does ADDRESS reside in SECTION of OBFD? */
599 auto within_section = [obfd] (asection *section, CORE_ADDR address)
600 {
601 if (section == NULL)
602 return false;
603
604 return (bfd_section_vma (section) <= address
605 && (address < bfd_section_vma (section)
606 + bfd_section_size (section)));
607 };
608
609 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
610 for (reloc = 0; reloc < reloc_count; reloc++)
611 {
612 const char *name;
613 struct minimal_symbol *msym;
614 CORE_ADDR address;
615 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
616 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
617
618 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
619 address = relplt->relocation[reloc].address;
620
621 asection *msym_section;
622
623 /* Does the pointer reside in either the .got.plt or .plt
624 sections? */
625 if (within_section (got_plt, address))
626 msym_section = got_plt;
627 else if (within_section (plt, address))
628 msym_section = plt;
629 else
630 continue;
631
632 /* We cannot check if NAME is a reference to
633 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
634 symbol is undefined and the objfile having NAME defined may
635 not yet have been loaded. */
636
637 string_buffer.assign (name);
638 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
639
640 msym = record_minimal_symbol (reader, string_buffer,
641 true, address, mst_slot_got_plt,
642 msym_section, objfile);
643 if (msym)
644 SET_MSYMBOL_SIZE (msym, ptr_size);
645 }
646 }
647
648 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
649
650 static const struct objfile_key<htab, htab_deleter>
651 elf_objfile_gnu_ifunc_cache_data;
652
653 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
654
655 struct elf_gnu_ifunc_cache
656 {
657 /* This is always a function entry address, not a function descriptor. */
658 CORE_ADDR addr;
659
660 char name[1];
661 };
662
663 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
664
665 static hashval_t
666 elf_gnu_ifunc_cache_hash (const void *a_voidp)
667 {
668 const struct elf_gnu_ifunc_cache *a
669 = (const struct elf_gnu_ifunc_cache *) a_voidp;
670
671 return htab_hash_string (a->name);
672 }
673
674 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
675
676 static int
677 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
678 {
679 const struct elf_gnu_ifunc_cache *a
680 = (const struct elf_gnu_ifunc_cache *) a_voidp;
681 const struct elf_gnu_ifunc_cache *b
682 = (const struct elf_gnu_ifunc_cache *) b_voidp;
683
684 return strcmp (a->name, b->name) == 0;
685 }
686
687 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
688 function entry address ADDR. Return 1 if NAME and ADDR are considered as
689 valid and therefore they were successfully recorded, return 0 otherwise.
690
691 Function does not expect a duplicate entry. Use
692 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
693 exists. */
694
695 static int
696 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
697 {
698 struct bound_minimal_symbol msym;
699 struct objfile *objfile;
700 htab_t htab;
701 struct elf_gnu_ifunc_cache entry_local, *entry_p;
702 void **slot;
703
704 msym = lookup_minimal_symbol_by_pc (addr);
705 if (msym.minsym == NULL)
706 return 0;
707 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
708 return 0;
709 objfile = msym.objfile;
710
711 /* If .plt jumps back to .plt the symbol is still deferred for later
712 resolution and it has no use for GDB. */
713 const char *target_name = msym.minsym->linkage_name ();
714 size_t len = strlen (target_name);
715
716 /* Note we check the symbol's name instead of checking whether the
717 symbol is in the .plt section because some systems have @plt
718 symbols in the .text section. */
719 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
720 return 0;
721
722 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
723 if (htab == NULL)
724 {
725 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
726 elf_gnu_ifunc_cache_eq,
727 NULL, xcalloc, xfree);
728 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
729 }
730
731 entry_local.addr = addr;
732 obstack_grow (&objfile->objfile_obstack, &entry_local,
733 offsetof (struct elf_gnu_ifunc_cache, name));
734 obstack_grow_str0 (&objfile->objfile_obstack, name);
735 entry_p
736 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
737
738 slot = htab_find_slot (htab, entry_p, INSERT);
739 if (*slot != NULL)
740 {
741 struct elf_gnu_ifunc_cache *entry_found_p
742 = (struct elf_gnu_ifunc_cache *) *slot;
743 struct gdbarch *gdbarch = objfile->arch ();
744
745 if (entry_found_p->addr != addr)
746 {
747 /* This case indicates buggy inferior program, the resolved address
748 should never change. */
749
750 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
751 "function_address from %s to %s"),
752 name, paddress (gdbarch, entry_found_p->addr),
753 paddress (gdbarch, addr));
754 }
755
756 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
757 }
758 *slot = entry_p;
759
760 return 1;
761 }
762
763 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
764 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
765 is not NULL) and the function returns 1. It returns 0 otherwise.
766
767 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
768 function. */
769
770 static int
771 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
772 {
773 for (objfile *objfile : current_program_space->objfiles ())
774 {
775 htab_t htab;
776 struct elf_gnu_ifunc_cache *entry_p;
777 void **slot;
778
779 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
780 if (htab == NULL)
781 continue;
782
783 entry_p = ((struct elf_gnu_ifunc_cache *)
784 alloca (sizeof (*entry_p) + strlen (name)));
785 strcpy (entry_p->name, name);
786
787 slot = htab_find_slot (htab, entry_p, NO_INSERT);
788 if (slot == NULL)
789 continue;
790 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
791 gdb_assert (entry_p != NULL);
792
793 if (addr_p)
794 *addr_p = entry_p->addr;
795 return 1;
796 }
797
798 return 0;
799 }
800
801 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
802 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
803 is not NULL) and the function returns 1. It returns 0 otherwise.
804
805 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
806 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
807 prevent cache entries duplicates. */
808
809 static int
810 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
811 {
812 char *name_got_plt;
813 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
814
815 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
816 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
817
818 for (objfile *objfile : current_program_space->objfiles ())
819 {
820 bfd *obfd = objfile->obfd;
821 struct gdbarch *gdbarch = objfile->arch ();
822 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
823 size_t ptr_size = TYPE_LENGTH (ptr_type);
824 CORE_ADDR pointer_address, addr;
825 asection *plt;
826 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
827 struct bound_minimal_symbol msym;
828
829 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
830 if (msym.minsym == NULL)
831 continue;
832 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
833 continue;
834 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
835
836 plt = bfd_get_section_by_name (obfd, ".plt");
837 if (plt == NULL)
838 continue;
839
840 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
841 continue;
842 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
843 continue;
844 addr = extract_typed_address (buf, ptr_type);
845 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
846 current_top_target ());
847 addr = gdbarch_addr_bits_remove (gdbarch, addr);
848
849 if (elf_gnu_ifunc_record_cache (name, addr))
850 {
851 if (addr_p != NULL)
852 *addr_p = addr;
853 return 1;
854 }
855 }
856
857 return 0;
858 }
859
860 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
861 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
862 is not NULL) and the function returns true. It returns false otherwise.
863
864 Both the elf_objfile_gnu_ifunc_cache_data hash table and
865 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
866
867 static bool
868 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
869 {
870 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
871 return true;
872
873 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
874 return true;
875
876 return false;
877 }
878
879 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
880 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
881 is the entry point of the resolved STT_GNU_IFUNC target function to call.
882 */
883
884 static CORE_ADDR
885 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
886 {
887 const char *name_at_pc;
888 CORE_ADDR start_at_pc, address;
889 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
890 struct value *function, *address_val;
891 CORE_ADDR hwcap = 0;
892 struct value *hwcap_val;
893
894 /* Try first any non-intrusive methods without an inferior call. */
895
896 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
897 && start_at_pc == pc)
898 {
899 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
900 return address;
901 }
902 else
903 name_at_pc = NULL;
904
905 function = allocate_value (func_func_type);
906 VALUE_LVAL (function) = lval_memory;
907 set_value_address (function, pc);
908
909 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
910 parameter. FUNCTION is the function entry address. ADDRESS may be a
911 function descriptor. */
912
913 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
914 hwcap_val = value_from_longest (builtin_type (gdbarch)
915 ->builtin_unsigned_long, hwcap);
916 address_val = call_function_by_hand (function, NULL, hwcap_val);
917 address = value_as_address (address_val);
918 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
919 address = gdbarch_addr_bits_remove (gdbarch, address);
920
921 if (name_at_pc)
922 elf_gnu_ifunc_record_cache (name_at_pc, address);
923
924 return address;
925 }
926
927 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
928
929 static void
930 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
931 {
932 struct breakpoint *b_return;
933 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
934 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
935 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
936 int thread_id = inferior_thread ()->global_num;
937
938 gdb_assert (b->type == bp_gnu_ifunc_resolver);
939
940 for (b_return = b->related_breakpoint; b_return != b;
941 b_return = b_return->related_breakpoint)
942 {
943 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
944 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
945 gdb_assert (frame_id_p (b_return->frame_id));
946
947 if (b_return->thread == thread_id
948 && b_return->loc->requested_address == prev_pc
949 && frame_id_eq (b_return->frame_id, prev_frame_id))
950 break;
951 }
952
953 if (b_return == b)
954 {
955 /* No need to call find_pc_line for symbols resolving as this is only
956 a helper breakpointer never shown to the user. */
957
958 symtab_and_line sal;
959 sal.pspace = current_inferior ()->pspace;
960 sal.pc = prev_pc;
961 sal.section = find_pc_overlay (sal.pc);
962 sal.explicit_pc = 1;
963 b_return
964 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
965 prev_frame_id,
966 bp_gnu_ifunc_resolver_return).release ();
967
968 /* set_momentary_breakpoint invalidates PREV_FRAME. */
969 prev_frame = NULL;
970
971 /* Add new b_return to the ring list b->related_breakpoint. */
972 gdb_assert (b_return->related_breakpoint == b_return);
973 b_return->related_breakpoint = b->related_breakpoint;
974 b->related_breakpoint = b_return;
975 }
976 }
977
978 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
979
980 static void
981 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
982 {
983 thread_info *thread = inferior_thread ();
984 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
985 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
986 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
987 struct regcache *regcache = get_thread_regcache (thread);
988 struct value *func_func;
989 struct value *value;
990 CORE_ADDR resolved_address, resolved_pc;
991
992 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
993
994 while (b->related_breakpoint != b)
995 {
996 struct breakpoint *b_next = b->related_breakpoint;
997
998 switch (b->type)
999 {
1000 case bp_gnu_ifunc_resolver:
1001 break;
1002 case bp_gnu_ifunc_resolver_return:
1003 delete_breakpoint (b);
1004 break;
1005 default:
1006 internal_error (__FILE__, __LINE__,
1007 _("handle_inferior_event: Invalid "
1008 "gnu-indirect-function breakpoint type %d"),
1009 (int) b->type);
1010 }
1011 b = b_next;
1012 }
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1014 gdb_assert (b->loc->next == NULL);
1015
1016 func_func = allocate_value (func_func_type);
1017 VALUE_LVAL (func_func) = lval_memory;
1018 set_value_address (func_func, b->loc->related_address);
1019
1020 value = allocate_value (value_type);
1021 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1022 value, value_contents_raw (value), NULL);
1023 resolved_address = value_as_address (value);
1024 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1025 resolved_address,
1026 current_top_target ());
1027 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1028
1029 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1030 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1031 resolved_pc);
1032
1033 b->type = bp_breakpoint;
1034 update_breakpoint_locations (b, current_program_space,
1035 find_function_start_sal (resolved_pc, NULL, true),
1036 {});
1037 }
1038
1039 /* A helper function for elf_symfile_read that reads the minimal
1040 symbols. */
1041
1042 static void
1043 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1044 const struct elfinfo *ei)
1045 {
1046 bfd *synth_abfd, *abfd = objfile->obfd;
1047 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1048 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1049 asymbol *synthsyms;
1050
1051 if (symtab_create_debug)
1052 {
1053 fprintf_unfiltered (gdb_stdlog,
1054 "Reading minimal symbols of objfile %s ...\n",
1055 objfile_name (objfile));
1056 }
1057
1058 /* If we already have minsyms, then we can skip some work here.
1059 However, if there were stabs or mdebug sections, we go ahead and
1060 redo all the work anyway, because the psym readers for those
1061 kinds of debuginfo need extra information found here. This can
1062 go away once all types of symbols are in the per-BFD object. */
1063 if (objfile->per_bfd->minsyms_read
1064 && ei->stabsect == NULL
1065 && ei->mdebugsect == NULL
1066 && ei->ctfsect == NULL)
1067 {
1068 if (symtab_create_debug)
1069 fprintf_unfiltered (gdb_stdlog,
1070 "... minimal symbols previously read\n");
1071 return;
1072 }
1073
1074 minimal_symbol_reader reader (objfile);
1075
1076 /* Process the normal ELF symbol table first. */
1077
1078 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1079 if (storage_needed < 0)
1080 error (_("Can't read symbols from %s: %s"),
1081 bfd_get_filename (objfile->obfd),
1082 bfd_errmsg (bfd_get_error ()));
1083
1084 if (storage_needed > 0)
1085 {
1086 /* Memory gets permanently referenced from ABFD after
1087 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1088
1089 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1090 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1091
1092 if (symcount < 0)
1093 error (_("Can't read symbols from %s: %s"),
1094 bfd_get_filename (objfile->obfd),
1095 bfd_errmsg (bfd_get_error ()));
1096
1097 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1098 false);
1099 }
1100
1101 /* Add the dynamic symbols. */
1102
1103 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1104
1105 if (storage_needed > 0)
1106 {
1107 /* Memory gets permanently referenced from ABFD after
1108 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1109 It happens only in the case when elf_slurp_reloc_table sees
1110 asection->relocation NULL. Determining which section is asection is
1111 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1112 implementation detail, though. */
1113
1114 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1115 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1116 dyn_symbol_table);
1117
1118 if (dynsymcount < 0)
1119 error (_("Can't read symbols from %s: %s"),
1120 bfd_get_filename (objfile->obfd),
1121 bfd_errmsg (bfd_get_error ()));
1122
1123 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1124 dyn_symbol_table, false);
1125
1126 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1127 }
1128
1129 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1130 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1131
1132 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1133 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1134 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1135 read the code address from .opd while it reads the .symtab section from
1136 a separate debug info file as the .opd section is SHT_NOBITS there.
1137
1138 With SYNTH_ABFD the .opd section will be read from the original
1139 backlinked binary where it is valid. */
1140
1141 if (objfile->separate_debug_objfile_backlink)
1142 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1143 else
1144 synth_abfd = abfd;
1145
1146 /* Add synthetic symbols - for instance, names for any PLT entries. */
1147
1148 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1149 dynsymcount, dyn_symbol_table,
1150 &synthsyms);
1151 if (synthcount > 0)
1152 {
1153 long i;
1154
1155 std::unique_ptr<asymbol *[]>
1156 synth_symbol_table (new asymbol *[synthcount]);
1157 for (i = 0; i < synthcount; i++)
1158 synth_symbol_table[i] = synthsyms + i;
1159 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1160 synth_symbol_table.get (), true);
1161
1162 xfree (synthsyms);
1163 synthsyms = NULL;
1164 }
1165
1166 /* Install any minimal symbols that have been collected as the current
1167 minimal symbols for this objfile. The debug readers below this point
1168 should not generate new minimal symbols; if they do it's their
1169 responsibility to install them. "mdebug" appears to be the only one
1170 which will do this. */
1171
1172 reader.install ();
1173
1174 if (symtab_create_debug)
1175 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1176 }
1177
1178 /* Scan and build partial symbols for a symbol file.
1179 We have been initialized by a call to elf_symfile_init, which
1180 currently does nothing.
1181
1182 This function only does the minimum work necessary for letting the
1183 user "name" things symbolically; it does not read the entire symtab.
1184 Instead, it reads the external and static symbols and puts them in partial
1185 symbol tables. When more extensive information is requested of a
1186 file, the corresponding partial symbol table is mutated into a full
1187 fledged symbol table by going back and reading the symbols
1188 for real.
1189
1190 We look for sections with specific names, to tell us what debug
1191 format to look for: FIXME!!!
1192
1193 elfstab_build_psymtabs() handles STABS symbols;
1194 mdebug_build_psymtabs() handles ECOFF debugging information.
1195
1196 Note that ELF files have a "minimal" symbol table, which looks a lot
1197 like a COFF symbol table, but has only the minimal information necessary
1198 for linking. We process this also, and use the information to
1199 build gdb's minimal symbol table. This gives us some minimal debugging
1200 capability even for files compiled without -g. */
1201
1202 static void
1203 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1204 {
1205 bfd *abfd = objfile->obfd;
1206 struct elfinfo ei;
1207 bool has_dwarf2 = true;
1208
1209 memset ((char *) &ei, 0, sizeof (ei));
1210 if (!(objfile->flags & OBJF_READNEVER))
1211 {
1212 for (asection *sect : gdb_bfd_sections (abfd))
1213 elf_locate_sections (sect, &ei);
1214 }
1215
1216 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1217
1218 /* ELF debugging information is inserted into the psymtab in the
1219 order of least informative first - most informative last. Since
1220 the psymtab table is searched `most recent insertion first' this
1221 increases the probability that more detailed debug information
1222 for a section is found.
1223
1224 For instance, an object file might contain both .mdebug (XCOFF)
1225 and .debug_info (DWARF2) sections then .mdebug is inserted first
1226 (searched last) and DWARF2 is inserted last (searched first). If
1227 we don't do this then the XCOFF info is found first - for code in
1228 an included file XCOFF info is useless. */
1229
1230 if (ei.mdebugsect)
1231 {
1232 const struct ecoff_debug_swap *swap;
1233
1234 /* .mdebug section, presumably holding ECOFF debugging
1235 information. */
1236 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1237 if (swap)
1238 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1239 }
1240 if (ei.stabsect)
1241 {
1242 asection *str_sect;
1243
1244 /* Stab sections have an associated string table that looks like
1245 a separate section. */
1246 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1247
1248 /* FIXME should probably warn about a stab section without a stabstr. */
1249 if (str_sect)
1250 elfstab_build_psymtabs (objfile,
1251 ei.stabsect,
1252 str_sect->filepos,
1253 bfd_section_size (str_sect));
1254 }
1255
1256 if (dwarf2_has_info (objfile, NULL, true))
1257 {
1258 dw_index_kind index_kind;
1259
1260 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1261 debug information present in OBJFILE. If there is such debug
1262 info present never use an index. */
1263 if (!objfile_has_partial_symbols (objfile)
1264 && dwarf2_initialize_objfile (objfile, &index_kind))
1265 {
1266 switch (index_kind)
1267 {
1268 case dw_index_kind::GDB_INDEX:
1269 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1270 break;
1271 case dw_index_kind::DEBUG_NAMES:
1272 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1273 break;
1274 }
1275 }
1276 else
1277 {
1278 /* It is ok to do this even if the stabs reader made some
1279 partial symbols, because OBJF_PSYMTABS_READ has not been
1280 set, and so our lazy reader function will still be called
1281 when needed. */
1282 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1283 }
1284 }
1285 /* If the file has its own symbol tables it has no separate debug
1286 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1287 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1288 `.note.gnu.build-id'.
1289
1290 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1291 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1292 an objfile via find_separate_debug_file_in_section there was no separate
1293 debug info available. Therefore do not attempt to search for another one,
1294 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1295 be NULL and we would possibly violate it. */
1296
1297 else if (!objfile_has_partial_symbols (objfile)
1298 && objfile->separate_debug_objfile == NULL
1299 && objfile->separate_debug_objfile_backlink == NULL)
1300 {
1301 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1302
1303 if (debugfile.empty ())
1304 debugfile = find_separate_debug_file_by_debuglink (objfile);
1305
1306 if (!debugfile.empty ())
1307 {
1308 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1309
1310 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1311 symfile_flags, objfile);
1312 }
1313 else
1314 {
1315 has_dwarf2 = false;
1316 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1317
1318 if (build_id != nullptr)
1319 {
1320 gdb::unique_xmalloc_ptr<char> symfile_path;
1321 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1322 build_id->size,
1323 objfile->original_name,
1324 &symfile_path));
1325
1326 if (fd.get () >= 0)
1327 {
1328 /* File successfully retrieved from server. */
1329 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1330
1331 if (debug_bfd == nullptr)
1332 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1333 objfile->original_name);
1334 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1335 {
1336 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1337 symfile_flags, objfile);
1338 has_dwarf2 = true;
1339 }
1340 }
1341 }
1342 }
1343 }
1344
1345 /* Read the CTF section only if there is no DWARF info. */
1346 if (!has_dwarf2 && ei.ctfsect)
1347 {
1348 elfctf_build_psymtabs (objfile);
1349 }
1350 }
1351
1352 /* Callback to lazily read psymtabs. */
1353
1354 static void
1355 read_psyms (struct objfile *objfile)
1356 {
1357 if (dwarf2_has_info (objfile, NULL))
1358 dwarf2_build_psymtabs (objfile);
1359 }
1360
1361 /* Initialize anything that needs initializing when a completely new symbol
1362 file is specified (not just adding some symbols from another file, e.g. a
1363 shared library). */
1364
1365 static void
1366 elf_new_init (struct objfile *ignore)
1367 {
1368 }
1369
1370 /* Perform any local cleanups required when we are done with a particular
1371 objfile. I.E, we are in the process of discarding all symbol information
1372 for an objfile, freeing up all memory held for it, and unlinking the
1373 objfile struct from the global list of known objfiles. */
1374
1375 static void
1376 elf_symfile_finish (struct objfile *objfile)
1377 {
1378 }
1379
1380 /* ELF specific initialization routine for reading symbols. */
1381
1382 static void
1383 elf_symfile_init (struct objfile *objfile)
1384 {
1385 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1386 find this causes a significant slowdown in gdb then we could
1387 set it in the debug symbol readers only when necessary. */
1388 objfile->flags |= OBJF_REORDERED;
1389 }
1390
1391 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1392
1393 static const elfread_data &
1394 elf_get_probes (struct objfile *objfile)
1395 {
1396 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1397
1398 if (probes_per_bfd == NULL)
1399 {
1400 probes_per_bfd = probe_key.emplace (objfile->obfd);
1401
1402 /* Here we try to gather information about all types of probes from the
1403 objfile. */
1404 for (const static_probe_ops *ops : all_static_probe_ops)
1405 ops->get_probes (probes_per_bfd, objfile);
1406 }
1407
1408 return *probes_per_bfd;
1409 }
1410
1411 \f
1412
1413 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1414
1415 static const struct sym_probe_fns elf_probe_fns =
1416 {
1417 elf_get_probes, /* sym_get_probes */
1418 };
1419
1420 /* Register that we are able to handle ELF object file formats. */
1421
1422 static const struct sym_fns elf_sym_fns =
1423 {
1424 elf_new_init, /* init anything gbl to entire symtab */
1425 elf_symfile_init, /* read initial info, setup for sym_read() */
1426 elf_symfile_read, /* read a symbol file into symtab */
1427 NULL, /* sym_read_psymbols */
1428 elf_symfile_finish, /* finished with file, cleanup */
1429 default_symfile_offsets, /* Translate ext. to int. relocation */
1430 elf_symfile_segments, /* Get segment information from a file. */
1431 NULL,
1432 default_symfile_relocate, /* Relocate a debug section. */
1433 &elf_probe_fns, /* sym_probe_fns */
1434 &psym_functions
1435 };
1436
1437 /* The same as elf_sym_fns, but not registered and lazily reads
1438 psymbols. */
1439
1440 const struct sym_fns elf_sym_fns_lazy_psyms =
1441 {
1442 elf_new_init, /* init anything gbl to entire symtab */
1443 elf_symfile_init, /* read initial info, setup for sym_read() */
1444 elf_symfile_read, /* read a symbol file into symtab */
1445 read_psyms, /* sym_read_psymbols */
1446 elf_symfile_finish, /* finished with file, cleanup */
1447 default_symfile_offsets, /* Translate ext. to int. relocation */
1448 elf_symfile_segments, /* Get segment information from a file. */
1449 NULL,
1450 default_symfile_relocate, /* Relocate a debug section. */
1451 &elf_probe_fns, /* sym_probe_fns */
1452 &psym_functions
1453 };
1454
1455 /* The same as elf_sym_fns, but not registered and uses the
1456 DWARF-specific GNU index rather than psymtab. */
1457 const struct sym_fns elf_sym_fns_gdb_index =
1458 {
1459 elf_new_init, /* init anything gbl to entire symab */
1460 elf_symfile_init, /* read initial info, setup for sym_red() */
1461 elf_symfile_read, /* read a symbol file into symtab */
1462 NULL, /* sym_read_psymbols */
1463 elf_symfile_finish, /* finished with file, cleanup */
1464 default_symfile_offsets, /* Translate ext. to int. relocation */
1465 elf_symfile_segments, /* Get segment information from a file. */
1466 NULL,
1467 default_symfile_relocate, /* Relocate a debug section. */
1468 &elf_probe_fns, /* sym_probe_fns */
1469 &dwarf2_gdb_index_functions
1470 };
1471
1472 /* The same as elf_sym_fns, but not registered and uses the
1473 DWARF-specific .debug_names index rather than psymtab. */
1474 const struct sym_fns elf_sym_fns_debug_names =
1475 {
1476 elf_new_init, /* init anything gbl to entire symab */
1477 elf_symfile_init, /* read initial info, setup for sym_red() */
1478 elf_symfile_read, /* read a symbol file into symtab */
1479 NULL, /* sym_read_psymbols */
1480 elf_symfile_finish, /* finished with file, cleanup */
1481 default_symfile_offsets, /* Translate ext. to int. relocation */
1482 elf_symfile_segments, /* Get segment information from a file. */
1483 NULL,
1484 default_symfile_relocate, /* Relocate a debug section. */
1485 &elf_probe_fns, /* sym_probe_fns */
1486 &dwarf2_debug_names_functions
1487 };
1488
1489 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1490
1491 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1492 {
1493 elf_gnu_ifunc_resolve_addr,
1494 elf_gnu_ifunc_resolve_name,
1495 elf_gnu_ifunc_resolver_stop,
1496 elf_gnu_ifunc_resolver_return_stop
1497 };
1498
1499 void _initialize_elfread ();
1500 void
1501 _initialize_elfread ()
1502 {
1503 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1504
1505 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1506 }