]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/eval.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION. */
31 #include "f-lang.h" /* For array bound stuff. */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46 #include "wrapper.h"
47
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* This is defined in valops.c */
53 extern int overload_resolution;
54
55 /* Prototypes for local functions. */
56
57 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
58
59 static struct value *evaluate_subexp_for_address (struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address, but treats the value of the expression
97 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
98 LONGEST
99 parse_and_eval_long (char *exp)
100 {
101 struct expression *expr = parse_expression (exp);
102 LONGEST retval;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 retval = value_as_long (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return (retval);
109 }
110
111 struct value *
112 parse_and_eval (char *exp)
113 {
114 struct expression *expr = parse_expression (exp);
115 struct value *val;
116 struct cleanup *old_chain =
117 make_cleanup (free_current_contents, &expr);
118
119 val = evaluate_expression (expr);
120 do_cleanups (old_chain);
121 return val;
122 }
123
124 /* Parse up to a comma (or to a closeparen)
125 in the string EXPP as an expression, evaluate it, and return the value.
126 EXPP is advanced to point to the comma. */
127
128 struct value *
129 parse_to_comma_and_eval (char **expp)
130 {
131 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
132 struct value *val;
133 struct cleanup *old_chain =
134 make_cleanup (free_current_contents, &expr);
135
136 val = evaluate_expression (expr);
137 do_cleanups (old_chain);
138 return val;
139 }
140 \f
141 /* Evaluate an expression in internal prefix form
142 such as is constructed by parse.y.
143
144 See expression.h for info on the format of an expression. */
145
146 struct value *
147 evaluate_expression (struct expression *exp)
148 {
149 int pc = 0;
150
151 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
152 }
153
154 /* Evaluate an expression, avoiding all memory references
155 and getting a value whose type alone is correct. */
156
157 struct value *
158 evaluate_type (struct expression *exp)
159 {
160 int pc = 0;
161
162 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
163 }
164
165 /* Evaluate a subexpression, avoiding all memory references and
166 getting a value whose type alone is correct. */
167
168 struct value *
169 evaluate_subexpression_type (struct expression *exp, int subexp)
170 {
171 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
172 }
173
174 /* Find the current value of a watchpoint on EXP. Return the value in
175 *VALP and *RESULTP and the chain of intermediate and final values
176 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
177 not need them.
178
179 If a memory error occurs while evaluating the expression, *RESULTP will
180 be set to NULL. *RESULTP may be a lazy value, if the result could
181 not be read from memory. It is used to determine whether a value
182 is user-specified (we should watch the whole value) or intermediate
183 (we should watch only the bit used to locate the final value).
184
185 If the final value, or any intermediate value, could not be read
186 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
187 set to any referenced values. *VALP will never be a lazy value.
188 This is the value which we store in struct breakpoint.
189
190 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
191 value chain. The caller must free the values individually. If
192 VAL_CHAIN is NULL, all generated values will be left on the value
193 chain. */
194
195 void
196 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
197 struct value **resultp, struct value **val_chain)
198 {
199 struct value *mark, *new_mark, *result;
200 volatile struct gdb_exception ex;
201
202 *valp = NULL;
203 if (resultp)
204 *resultp = NULL;
205 if (val_chain)
206 *val_chain = NULL;
207
208 /* Evaluate the expression. */
209 mark = value_mark ();
210 result = NULL;
211
212 TRY_CATCH (ex, RETURN_MASK_ALL)
213 {
214 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
215 }
216 if (ex.reason < 0)
217 {
218 /* Ignore memory errors, we want watchpoints pointing at
219 inaccessible memory to still be created; otherwise, throw the
220 error to some higher catcher. */
221 switch (ex.error)
222 {
223 case MEMORY_ERROR:
224 break;
225 default:
226 throw_exception (ex);
227 break;
228 }
229 }
230
231 new_mark = value_mark ();
232 if (mark == new_mark)
233 return;
234 if (resultp)
235 *resultp = result;
236
237 /* Make sure it's not lazy, so that after the target stops again we
238 have a non-lazy previous value to compare with. */
239 if (result != NULL
240 && (!value_lazy (result) || gdb_value_fetch_lazy (result)))
241 *valp = result;
242
243 if (val_chain)
244 {
245 /* Return the chain of intermediate values. We use this to
246 decide which addresses to watch. */
247 *val_chain = new_mark;
248 value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* If the next expression is an OP_LABELED, skips past it,
275 returning the label. Otherwise, does nothing and returns NULL. */
276
277 static char *
278 get_label (struct expression *exp, int *pos)
279 {
280 if (exp->elts[*pos].opcode == OP_LABELED)
281 {
282 int pc = (*pos)++;
283 char *name = &exp->elts[pc + 2].string;
284 int tem = longest_to_int (exp->elts[pc + 1].longconst);
285
286 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return name;
288 }
289 else
290 return NULL;
291 }
292
293 /* This function evaluates tuples (in (the deleted) Chill) or
294 brace-initializers (in C/C++) for structure types. */
295
296 static struct value *
297 evaluate_struct_tuple (struct value *struct_val,
298 struct expression *exp,
299 int *pos, enum noside noside, int nargs)
300 {
301 struct type *struct_type = check_typedef (value_type (struct_val));
302 struct type *substruct_type = struct_type;
303 struct type *field_type;
304 int fieldno = -1;
305 int variantno = -1;
306 int subfieldno = -1;
307
308 while (--nargs >= 0)
309 {
310 int pc = *pos;
311 struct value *val = NULL;
312 int nlabels = 0;
313 int bitpos, bitsize;
314 bfd_byte *addr;
315
316 /* Skip past the labels, and count them. */
317 while (get_label (exp, pos) != NULL)
318 nlabels++;
319
320 do
321 {
322 char *label = get_label (exp, &pc);
323
324 if (label)
325 {
326 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
327 fieldno++)
328 {
329 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
330
331 if (field_name != NULL && strcmp (field_name, label) == 0)
332 {
333 variantno = -1;
334 subfieldno = fieldno;
335 substruct_type = struct_type;
336 goto found;
337 }
338 }
339 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
340 fieldno++)
341 {
342 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
343
344 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
345 if ((field_name == 0 || *field_name == '\0')
346 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
347 {
348 variantno = 0;
349 for (; variantno < TYPE_NFIELDS (field_type);
350 variantno++)
351 {
352 substruct_type
353 = TYPE_FIELD_TYPE (field_type, variantno);
354 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
355 {
356 for (subfieldno = 0;
357 subfieldno < TYPE_NFIELDS (substruct_type);
358 subfieldno++)
359 {
360 if (strcmp(TYPE_FIELD_NAME (substruct_type,
361 subfieldno),
362 label) == 0)
363 {
364 goto found;
365 }
366 }
367 }
368 }
369 }
370 }
371 error (_("there is no field named %s"), label);
372 found:
373 ;
374 }
375 else
376 {
377 /* Unlabelled tuple element - go to next field. */
378 if (variantno >= 0)
379 {
380 subfieldno++;
381 if (subfieldno >= TYPE_NFIELDS (substruct_type))
382 {
383 variantno = -1;
384 substruct_type = struct_type;
385 }
386 }
387 if (variantno < 0)
388 {
389 fieldno++;
390 /* Skip static fields. */
391 while (fieldno < TYPE_NFIELDS (struct_type)
392 && field_is_static (&TYPE_FIELD (struct_type,
393 fieldno)))
394 fieldno++;
395 subfieldno = fieldno;
396 if (fieldno >= TYPE_NFIELDS (struct_type))
397 error (_("too many initializers"));
398 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
399 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
400 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
401 error (_("don't know which variant you want to set"));
402 }
403 }
404
405 /* Here, struct_type is the type of the inner struct,
406 while substruct_type is the type of the inner struct.
407 These are the same for normal structures, but a variant struct
408 contains anonymous union fields that contain substruct fields.
409 The value fieldno is the index of the top-level (normal or
410 anonymous union) field in struct_field, while the value
411 subfieldno is the index of the actual real (named inner) field
412 in substruct_type. */
413
414 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
415 if (val == 0)
416 val = evaluate_subexp (field_type, exp, pos, noside);
417
418 /* Now actually set the field in struct_val. */
419
420 /* Assign val to field fieldno. */
421 if (value_type (val) != field_type)
422 val = value_cast (field_type, val);
423
424 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
425 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
426 if (variantno >= 0)
427 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
428 addr = value_contents_writeable (struct_val) + bitpos / 8;
429 if (bitsize)
430 modify_field (struct_type, addr,
431 value_as_long (val), bitpos % 8, bitsize);
432 else
433 memcpy (addr, value_contents (val),
434 TYPE_LENGTH (value_type (val)));
435 }
436 while (--nlabels > 0);
437 }
438 return struct_val;
439 }
440
441 /* Recursive helper function for setting elements of array tuples for
442 (the deleted) Chill. The target is ARRAY (which has bounds
443 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
444 and NOSIDE are as usual. Evaluates index expresions and sets the
445 specified element(s) of ARRAY to ELEMENT. Returns last index
446 value. */
447
448 static LONGEST
449 init_array_element (struct value *array, struct value *element,
450 struct expression *exp, int *pos,
451 enum noside noside, LONGEST low_bound, LONGEST high_bound)
452 {
453 LONGEST index;
454 int element_size = TYPE_LENGTH (value_type (element));
455
456 if (exp->elts[*pos].opcode == BINOP_COMMA)
457 {
458 (*pos)++;
459 init_array_element (array, element, exp, pos, noside,
460 low_bound, high_bound);
461 return init_array_element (array, element,
462 exp, pos, noside, low_bound, high_bound);
463 }
464 else if (exp->elts[*pos].opcode == BINOP_RANGE)
465 {
466 LONGEST low, high;
467
468 (*pos)++;
469 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
470 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
471 if (low < low_bound || high > high_bound)
472 error (_("tuple range index out of range"));
473 for (index = low; index <= high; index++)
474 {
475 memcpy (value_contents_raw (array)
476 + (index - low_bound) * element_size,
477 value_contents (element), element_size);
478 }
479 }
480 else
481 {
482 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
483 if (index < low_bound || index > high_bound)
484 error (_("tuple index out of range"));
485 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
486 value_contents (element), element_size);
487 }
488 return index;
489 }
490
491 static struct value *
492 value_f90_subarray (struct value *array,
493 struct expression *exp, int *pos, enum noside noside)
494 {
495 int pc = (*pos) + 1;
496 LONGEST low_bound, high_bound;
497 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
498 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
499
500 *pos += 3;
501
502 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
503 low_bound = TYPE_LOW_BOUND (range);
504 else
505 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
506
507 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
508 high_bound = TYPE_HIGH_BOUND (range);
509 else
510 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
511
512 return value_slice (array, low_bound, high_bound - low_bound + 1);
513 }
514
515
516 /* Promote value ARG1 as appropriate before performing a unary operation
517 on this argument.
518 If the result is not appropriate for any particular language then it
519 needs to patch this function. */
520
521 void
522 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
523 struct value **arg1)
524 {
525 struct type *type1;
526
527 *arg1 = coerce_ref (*arg1);
528 type1 = check_typedef (value_type (*arg1));
529
530 if (is_integral_type (type1))
531 {
532 switch (language->la_language)
533 {
534 default:
535 /* Perform integral promotion for ANSI C/C++.
536 If not appropropriate for any particular language
537 it needs to modify this function. */
538 {
539 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
540
541 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
542 *arg1 = value_cast (builtin_int, *arg1);
543 }
544 break;
545 }
546 }
547 }
548
549 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
550 operation on those two operands.
551 If the result is not appropriate for any particular language then it
552 needs to patch this function. */
553
554 void
555 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
556 struct value **arg1, struct value **arg2)
557 {
558 struct type *promoted_type = NULL;
559 struct type *type1;
560 struct type *type2;
561
562 *arg1 = coerce_ref (*arg1);
563 *arg2 = coerce_ref (*arg2);
564
565 type1 = check_typedef (value_type (*arg1));
566 type2 = check_typedef (value_type (*arg2));
567
568 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
569 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
570 && !is_integral_type (type1))
571 || (TYPE_CODE (type2) != TYPE_CODE_FLT
572 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
573 && !is_integral_type (type2)))
574 return;
575
576 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
577 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
578 {
579 /* No promotion required. */
580 }
581 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
582 || TYPE_CODE (type2) == TYPE_CODE_FLT)
583 {
584 switch (language->la_language)
585 {
586 case language_c:
587 case language_cplus:
588 case language_asm:
589 case language_objc:
590 case language_opencl:
591 /* No promotion required. */
592 break;
593
594 default:
595 /* For other languages the result type is unchanged from gdb
596 version 6.7 for backward compatibility.
597 If either arg was long double, make sure that value is also long
598 double. Otherwise use double. */
599 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
600 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
601 promoted_type = builtin_type (gdbarch)->builtin_long_double;
602 else
603 promoted_type = builtin_type (gdbarch)->builtin_double;
604 break;
605 }
606 }
607 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
608 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
609 {
610 /* No promotion required. */
611 }
612 else
613 /* Integral operations here. */
614 /* FIXME: Also mixed integral/booleans, with result an integer. */
615 {
616 const struct builtin_type *builtin = builtin_type (gdbarch);
617 unsigned int promoted_len1 = TYPE_LENGTH (type1);
618 unsigned int promoted_len2 = TYPE_LENGTH (type2);
619 int is_unsigned1 = TYPE_UNSIGNED (type1);
620 int is_unsigned2 = TYPE_UNSIGNED (type2);
621 unsigned int result_len;
622 int unsigned_operation;
623
624 /* Determine type length and signedness after promotion for
625 both operands. */
626 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
627 {
628 is_unsigned1 = 0;
629 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
630 }
631 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
632 {
633 is_unsigned2 = 0;
634 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
635 }
636
637 if (promoted_len1 > promoted_len2)
638 {
639 unsigned_operation = is_unsigned1;
640 result_len = promoted_len1;
641 }
642 else if (promoted_len2 > promoted_len1)
643 {
644 unsigned_operation = is_unsigned2;
645 result_len = promoted_len2;
646 }
647 else
648 {
649 unsigned_operation = is_unsigned1 || is_unsigned2;
650 result_len = promoted_len1;
651 }
652
653 switch (language->la_language)
654 {
655 case language_c:
656 case language_cplus:
657 case language_asm:
658 case language_objc:
659 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
660 {
661 promoted_type = (unsigned_operation
662 ? builtin->builtin_unsigned_int
663 : builtin->builtin_int);
664 }
665 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
666 {
667 promoted_type = (unsigned_operation
668 ? builtin->builtin_unsigned_long
669 : builtin->builtin_long);
670 }
671 else
672 {
673 promoted_type = (unsigned_operation
674 ? builtin->builtin_unsigned_long_long
675 : builtin->builtin_long_long);
676 }
677 break;
678 case language_opencl:
679 if (result_len <= TYPE_LENGTH (lookup_signed_typename
680 (language, gdbarch, "int")))
681 {
682 promoted_type =
683 (unsigned_operation
684 ? lookup_unsigned_typename (language, gdbarch, "int")
685 : lookup_signed_typename (language, gdbarch, "int"));
686 }
687 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
688 (language, gdbarch, "long")))
689 {
690 promoted_type =
691 (unsigned_operation
692 ? lookup_unsigned_typename (language, gdbarch, "long")
693 : lookup_signed_typename (language, gdbarch,"long"));
694 }
695 break;
696 default:
697 /* For other languages the result type is unchanged from gdb
698 version 6.7 for backward compatibility.
699 If either arg was long long, make sure that value is also long
700 long. Otherwise use long. */
701 if (unsigned_operation)
702 {
703 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
704 promoted_type = builtin->builtin_unsigned_long_long;
705 else
706 promoted_type = builtin->builtin_unsigned_long;
707 }
708 else
709 {
710 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
711 promoted_type = builtin->builtin_long_long;
712 else
713 promoted_type = builtin->builtin_long;
714 }
715 break;
716 }
717 }
718
719 if (promoted_type)
720 {
721 /* Promote both operands to common type. */
722 *arg1 = value_cast (promoted_type, *arg1);
723 *arg2 = value_cast (promoted_type, *arg2);
724 }
725 }
726
727 static int
728 ptrmath_type_p (const struct language_defn *lang, struct type *type)
729 {
730 type = check_typedef (type);
731 if (TYPE_CODE (type) == TYPE_CODE_REF)
732 type = TYPE_TARGET_TYPE (type);
733
734 switch (TYPE_CODE (type))
735 {
736 case TYPE_CODE_PTR:
737 case TYPE_CODE_FUNC:
738 return 1;
739
740 case TYPE_CODE_ARRAY:
741 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
742
743 default:
744 return 0;
745 }
746 }
747
748 /* Constructs a fake method with the given parameter types.
749 This function is used by the parser to construct an "expected"
750 type for method overload resolution. */
751
752 static struct type *
753 make_params (int num_types, struct type **param_types)
754 {
755 struct type *type = XZALLOC (struct type);
756 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
757 TYPE_LENGTH (type) = 1;
758 TYPE_CODE (type) = TYPE_CODE_METHOD;
759 TYPE_VPTR_FIELDNO (type) = -1;
760 TYPE_CHAIN (type) = type;
761 TYPE_NFIELDS (type) = num_types;
762 TYPE_FIELDS (type) = (struct field *)
763 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
764
765 while (num_types-- > 0)
766 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
767
768 return type;
769 }
770
771 struct value *
772 evaluate_subexp_standard (struct type *expect_type,
773 struct expression *exp, int *pos,
774 enum noside noside)
775 {
776 enum exp_opcode op;
777 int tem, tem2, tem3;
778 int pc, pc2 = 0, oldpos;
779 struct value *arg1 = NULL;
780 struct value *arg2 = NULL;
781 struct value *arg3;
782 struct type *type;
783 int nargs;
784 struct value **argvec;
785 int upper, lower;
786 int code;
787 int ix;
788 long mem_offset;
789 struct type **arg_types;
790 int save_pos1;
791 struct symbol *function = NULL;
792 char *function_name = NULL;
793
794 pc = (*pos)++;
795 op = exp->elts[pc].opcode;
796
797 switch (op)
798 {
799 case OP_SCOPE:
800 tem = longest_to_int (exp->elts[pc + 2].longconst);
801 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
802 if (noside == EVAL_SKIP)
803 goto nosideret;
804 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
805 &exp->elts[pc + 3].string,
806 expect_type, 0, noside);
807 if (arg1 == NULL)
808 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
809 return arg1;
810
811 case OP_LONG:
812 (*pos) += 3;
813 return value_from_longest (exp->elts[pc + 1].type,
814 exp->elts[pc + 2].longconst);
815
816 case OP_DOUBLE:
817 (*pos) += 3;
818 return value_from_double (exp->elts[pc + 1].type,
819 exp->elts[pc + 2].doubleconst);
820
821 case OP_DECFLOAT:
822 (*pos) += 3;
823 return value_from_decfloat (exp->elts[pc + 1].type,
824 exp->elts[pc + 2].decfloatconst);
825
826 case OP_ADL_FUNC:
827 case OP_VAR_VALUE:
828 (*pos) += 3;
829 if (noside == EVAL_SKIP)
830 goto nosideret;
831
832 /* JYG: We used to just return value_zero of the symbol type
833 if we're asked to avoid side effects. Otherwise we return
834 value_of_variable (...). However I'm not sure if
835 value_of_variable () has any side effect.
836 We need a full value object returned here for whatis_exp ()
837 to call evaluate_type () and then pass the full value to
838 value_rtti_target_type () if we are dealing with a pointer
839 or reference to a base class and print object is on. */
840
841 {
842 volatile struct gdb_exception except;
843 struct value *ret = NULL;
844
845 TRY_CATCH (except, RETURN_MASK_ERROR)
846 {
847 ret = value_of_variable (exp->elts[pc + 2].symbol,
848 exp->elts[pc + 1].block);
849 }
850
851 if (except.reason < 0)
852 {
853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
854 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
855 not_lval);
856 else
857 throw_exception (except);
858 }
859
860 return ret;
861 }
862
863 case OP_VAR_ENTRY_VALUE:
864 (*pos) += 2;
865 if (noside == EVAL_SKIP)
866 goto nosideret;
867
868 {
869 struct symbol *sym = exp->elts[pc + 1].symbol;
870 struct frame_info *frame;
871
872 if (noside == EVAL_AVOID_SIDE_EFFECTS)
873 return value_zero (SYMBOL_TYPE (sym), not_lval);
874
875 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
876 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
877 error (_("Symbol \"%s\" does not have any specific entry value"),
878 SYMBOL_PRINT_NAME (sym));
879
880 frame = get_selected_frame (NULL);
881 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
882 }
883
884 case OP_LAST:
885 (*pos) += 2;
886 return
887 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
888
889 case OP_REGISTER:
890 {
891 const char *name = &exp->elts[pc + 2].string;
892 int regno;
893 struct value *val;
894
895 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
896 regno = user_reg_map_name_to_regnum (exp->gdbarch,
897 name, strlen (name));
898 if (regno == -1)
899 error (_("Register $%s not available."), name);
900
901 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
902 a value with the appropriate register type. Unfortunately,
903 we don't have easy access to the type of user registers.
904 So for these registers, we fetch the register value regardless
905 of the evaluation mode. */
906 if (noside == EVAL_AVOID_SIDE_EFFECTS
907 && regno < gdbarch_num_regs (exp->gdbarch)
908 + gdbarch_num_pseudo_regs (exp->gdbarch))
909 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
910 else
911 val = value_of_register (regno, get_selected_frame (NULL));
912 if (val == NULL)
913 error (_("Value of register %s not available."), name);
914 else
915 return val;
916 }
917 case OP_BOOL:
918 (*pos) += 2;
919 type = language_bool_type (exp->language_defn, exp->gdbarch);
920 return value_from_longest (type, exp->elts[pc + 1].longconst);
921
922 case OP_INTERNALVAR:
923 (*pos) += 2;
924 return value_of_internalvar (exp->gdbarch,
925 exp->elts[pc + 1].internalvar);
926
927 case OP_STRING:
928 tem = longest_to_int (exp->elts[pc + 1].longconst);
929 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
930 if (noside == EVAL_SKIP)
931 goto nosideret;
932 type = language_string_char_type (exp->language_defn, exp->gdbarch);
933 return value_string (&exp->elts[pc + 2].string, tem, type);
934
935 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
936 NSString constant. */
937 tem = longest_to_int (exp->elts[pc + 1].longconst);
938 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
939 if (noside == EVAL_SKIP)
940 {
941 goto nosideret;
942 }
943 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
944
945 case OP_BITSTRING:
946 tem = longest_to_int (exp->elts[pc + 1].longconst);
947 (*pos)
948 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
949 if (noside == EVAL_SKIP)
950 goto nosideret;
951 return value_bitstring (&exp->elts[pc + 2].string, tem,
952 builtin_type (exp->gdbarch)->builtin_int);
953 break;
954
955 case OP_ARRAY:
956 (*pos) += 3;
957 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
958 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
959 nargs = tem3 - tem2 + 1;
960 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
961
962 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
963 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
964 {
965 struct value *rec = allocate_value (expect_type);
966
967 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
968 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
969 }
970
971 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
972 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
973 {
974 struct type *range_type = TYPE_INDEX_TYPE (type);
975 struct type *element_type = TYPE_TARGET_TYPE (type);
976 struct value *array = allocate_value (expect_type);
977 int element_size = TYPE_LENGTH (check_typedef (element_type));
978 LONGEST low_bound, high_bound, index;
979
980 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
981 {
982 low_bound = 0;
983 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
984 }
985 index = low_bound;
986 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
987 for (tem = nargs; --nargs >= 0;)
988 {
989 struct value *element;
990 int index_pc = 0;
991
992 if (exp->elts[*pos].opcode == BINOP_RANGE)
993 {
994 index_pc = ++(*pos);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 }
997 element = evaluate_subexp (element_type, exp, pos, noside);
998 if (value_type (element) != element_type)
999 element = value_cast (element_type, element);
1000 if (index_pc)
1001 {
1002 int continue_pc = *pos;
1003
1004 *pos = index_pc;
1005 index = init_array_element (array, element, exp, pos, noside,
1006 low_bound, high_bound);
1007 *pos = continue_pc;
1008 }
1009 else
1010 {
1011 if (index > high_bound)
1012 /* To avoid memory corruption. */
1013 error (_("Too many array elements"));
1014 memcpy (value_contents_raw (array)
1015 + (index - low_bound) * element_size,
1016 value_contents (element),
1017 element_size);
1018 }
1019 index++;
1020 }
1021 return array;
1022 }
1023
1024 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1025 && TYPE_CODE (type) == TYPE_CODE_SET)
1026 {
1027 struct value *set = allocate_value (expect_type);
1028 gdb_byte *valaddr = value_contents_raw (set);
1029 struct type *element_type = TYPE_INDEX_TYPE (type);
1030 struct type *check_type = element_type;
1031 LONGEST low_bound, high_bound;
1032
1033 /* Get targettype of elementtype. */
1034 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1035 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1036 check_type = TYPE_TARGET_TYPE (check_type);
1037
1038 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1039 error (_("(power)set type with unknown size"));
1040 memset (valaddr, '\0', TYPE_LENGTH (type));
1041 for (tem = 0; tem < nargs; tem++)
1042 {
1043 LONGEST range_low, range_high;
1044 struct type *range_low_type, *range_high_type;
1045 struct value *elem_val;
1046
1047 if (exp->elts[*pos].opcode == BINOP_RANGE)
1048 {
1049 (*pos)++;
1050 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1051 range_low_type = value_type (elem_val);
1052 range_low = value_as_long (elem_val);
1053 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1054 range_high_type = value_type (elem_val);
1055 range_high = value_as_long (elem_val);
1056 }
1057 else
1058 {
1059 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1060 range_low_type = range_high_type = value_type (elem_val);
1061 range_low = range_high = value_as_long (elem_val);
1062 }
1063 /* Check types of elements to avoid mixture of elements from
1064 different types. Also check if type of element is "compatible"
1065 with element type of powerset. */
1066 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1067 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1068 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1069 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1070 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1071 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1072 && (range_low_type != range_high_type)))
1073 /* different element modes. */
1074 error (_("POWERSET tuple elements of different mode"));
1075 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1076 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1077 && range_low_type != check_type))
1078 error (_("incompatible POWERSET tuple elements"));
1079 if (range_low > range_high)
1080 {
1081 warning (_("empty POWERSET tuple range"));
1082 continue;
1083 }
1084 if (range_low < low_bound || range_high > high_bound)
1085 error (_("POWERSET tuple element out of range"));
1086 range_low -= low_bound;
1087 range_high -= low_bound;
1088 for (; range_low <= range_high; range_low++)
1089 {
1090 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1091
1092 if (gdbarch_bits_big_endian (exp->gdbarch))
1093 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1094 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1095 |= 1 << bit_index;
1096 }
1097 }
1098 return set;
1099 }
1100
1101 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1102 for (tem = 0; tem < nargs; tem++)
1103 {
1104 /* Ensure that array expressions are coerced into pointer
1105 objects. */
1106 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1107 }
1108 if (noside == EVAL_SKIP)
1109 goto nosideret;
1110 return value_array (tem2, tem3, argvec);
1111
1112 case TERNOP_SLICE:
1113 {
1114 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1115 int lowbound
1116 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1117 int upper
1118 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1119
1120 if (noside == EVAL_SKIP)
1121 goto nosideret;
1122 return value_slice (array, lowbound, upper - lowbound + 1);
1123 }
1124
1125 case TERNOP_SLICE_COUNT:
1126 {
1127 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1128 int lowbound
1129 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1130 int length
1131 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1132
1133 return value_slice (array, lowbound, length);
1134 }
1135
1136 case TERNOP_COND:
1137 /* Skip third and second args to evaluate the first one. */
1138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1139 if (value_logical_not (arg1))
1140 {
1141 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1142 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1143 }
1144 else
1145 {
1146 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1147 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1148 return arg2;
1149 }
1150
1151 case OP_OBJC_SELECTOR:
1152 { /* Objective C @selector operator. */
1153 char *sel = &exp->elts[pc + 2].string;
1154 int len = longest_to_int (exp->elts[pc + 1].longconst);
1155 struct type *selector_type;
1156
1157 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1158 if (noside == EVAL_SKIP)
1159 goto nosideret;
1160
1161 if (sel[len] != 0)
1162 sel[len] = 0; /* Make sure it's terminated. */
1163
1164 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1165 return value_from_longest (selector_type,
1166 lookup_child_selector (exp->gdbarch, sel));
1167 }
1168
1169 case OP_OBJC_MSGCALL:
1170 { /* Objective C message (method) call. */
1171
1172 CORE_ADDR responds_selector = 0;
1173 CORE_ADDR method_selector = 0;
1174
1175 CORE_ADDR selector = 0;
1176
1177 int struct_return = 0;
1178 int sub_no_side = 0;
1179
1180 struct value *msg_send = NULL;
1181 struct value *msg_send_stret = NULL;
1182 int gnu_runtime = 0;
1183
1184 struct value *target = NULL;
1185 struct value *method = NULL;
1186 struct value *called_method = NULL;
1187
1188 struct type *selector_type = NULL;
1189 struct type *long_type;
1190
1191 struct value *ret = NULL;
1192 CORE_ADDR addr = 0;
1193
1194 selector = exp->elts[pc + 1].longconst;
1195 nargs = exp->elts[pc + 2].longconst;
1196 argvec = (struct value **) alloca (sizeof (struct value *)
1197 * (nargs + 5));
1198
1199 (*pos) += 3;
1200
1201 long_type = builtin_type (exp->gdbarch)->builtin_long;
1202 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1203
1204 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1205 sub_no_side = EVAL_NORMAL;
1206 else
1207 sub_no_side = noside;
1208
1209 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1210
1211 if (value_as_long (target) == 0)
1212 return value_from_longest (long_type, 0);
1213
1214 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1215 gnu_runtime = 1;
1216
1217 /* Find the method dispatch (Apple runtime) or method lookup
1218 (GNU runtime) function for Objective-C. These will be used
1219 to lookup the symbol information for the method. If we
1220 can't find any symbol information, then we'll use these to
1221 call the method, otherwise we can call the method
1222 directly. The msg_send_stret function is used in the special
1223 case of a method that returns a structure (Apple runtime
1224 only). */
1225 if (gnu_runtime)
1226 {
1227 struct type *type = selector_type;
1228
1229 type = lookup_function_type (type);
1230 type = lookup_pointer_type (type);
1231 type = lookup_function_type (type);
1232 type = lookup_pointer_type (type);
1233
1234 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1235 msg_send_stret
1236 = find_function_in_inferior ("objc_msg_lookup", NULL);
1237
1238 msg_send = value_from_pointer (type, value_as_address (msg_send));
1239 msg_send_stret = value_from_pointer (type,
1240 value_as_address (msg_send_stret));
1241 }
1242 else
1243 {
1244 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1245 /* Special dispatcher for methods returning structs. */
1246 msg_send_stret
1247 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1248 }
1249
1250 /* Verify the target object responds to this method. The
1251 standard top-level 'Object' class uses a different name for
1252 the verification method than the non-standard, but more
1253 often used, 'NSObject' class. Make sure we check for both. */
1254
1255 responds_selector
1256 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1257 if (responds_selector == 0)
1258 responds_selector
1259 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1260
1261 if (responds_selector == 0)
1262 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1263
1264 method_selector
1265 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1266 if (method_selector == 0)
1267 method_selector
1268 = lookup_child_selector (exp->gdbarch, "methodFor:");
1269
1270 if (method_selector == 0)
1271 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1272
1273 /* Call the verification method, to make sure that the target
1274 class implements the desired method. */
1275
1276 argvec[0] = msg_send;
1277 argvec[1] = target;
1278 argvec[2] = value_from_longest (long_type, responds_selector);
1279 argvec[3] = value_from_longest (long_type, selector);
1280 argvec[4] = 0;
1281
1282 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1283 if (gnu_runtime)
1284 {
1285 /* Function objc_msg_lookup returns a pointer. */
1286 argvec[0] = ret;
1287 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1288 }
1289 if (value_as_long (ret) == 0)
1290 error (_("Target does not respond to this message selector."));
1291
1292 /* Call "methodForSelector:" method, to get the address of a
1293 function method that implements this selector for this
1294 class. If we can find a symbol at that address, then we
1295 know the return type, parameter types etc. (that's a good
1296 thing). */
1297
1298 argvec[0] = msg_send;
1299 argvec[1] = target;
1300 argvec[2] = value_from_longest (long_type, method_selector);
1301 argvec[3] = value_from_longest (long_type, selector);
1302 argvec[4] = 0;
1303
1304 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1305 if (gnu_runtime)
1306 {
1307 argvec[0] = ret;
1308 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1309 }
1310
1311 /* ret should now be the selector. */
1312
1313 addr = value_as_long (ret);
1314 if (addr)
1315 {
1316 struct symbol *sym = NULL;
1317
1318 /* The address might point to a function descriptor;
1319 resolve it to the actual code address instead. */
1320 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1321 &current_target);
1322
1323 /* Is it a high_level symbol? */
1324 sym = find_pc_function (addr);
1325 if (sym != NULL)
1326 method = value_of_variable (sym, 0);
1327 }
1328
1329 /* If we found a method with symbol information, check to see
1330 if it returns a struct. Otherwise assume it doesn't. */
1331
1332 if (method)
1333 {
1334 CORE_ADDR funaddr;
1335 struct type *val_type;
1336
1337 funaddr = find_function_addr (method, &val_type);
1338
1339 block_for_pc (funaddr);
1340
1341 CHECK_TYPEDEF (val_type);
1342
1343 if ((val_type == NULL)
1344 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1345 {
1346 if (expect_type != NULL)
1347 val_type = expect_type;
1348 }
1349
1350 struct_return = using_struct_return (exp->gdbarch,
1351 value_type (method),
1352 val_type);
1353 }
1354 else if (expect_type != NULL)
1355 {
1356 struct_return = using_struct_return (exp->gdbarch, NULL,
1357 check_typedef (expect_type));
1358 }
1359
1360 /* Found a function symbol. Now we will substitute its
1361 value in place of the message dispatcher (obj_msgSend),
1362 so that we call the method directly instead of thru
1363 the dispatcher. The main reason for doing this is that
1364 we can now evaluate the return value and parameter values
1365 according to their known data types, in case we need to
1366 do things like promotion, dereferencing, special handling
1367 of structs and doubles, etc.
1368
1369 We want to use the type signature of 'method', but still
1370 jump to objc_msgSend() or objc_msgSend_stret() to better
1371 mimic the behavior of the runtime. */
1372
1373 if (method)
1374 {
1375 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1376 error (_("method address has symbol information "
1377 "with non-function type; skipping"));
1378
1379 /* Create a function pointer of the appropriate type, and
1380 replace its value with the value of msg_send or
1381 msg_send_stret. We must use a pointer here, as
1382 msg_send and msg_send_stret are of pointer type, and
1383 the representation may be different on systems that use
1384 function descriptors. */
1385 if (struct_return)
1386 called_method
1387 = value_from_pointer (lookup_pointer_type (value_type (method)),
1388 value_as_address (msg_send_stret));
1389 else
1390 called_method
1391 = value_from_pointer (lookup_pointer_type (value_type (method)),
1392 value_as_address (msg_send));
1393 }
1394 else
1395 {
1396 if (struct_return)
1397 called_method = msg_send_stret;
1398 else
1399 called_method = msg_send;
1400 }
1401
1402 if (noside == EVAL_SKIP)
1403 goto nosideret;
1404
1405 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1406 {
1407 /* If the return type doesn't look like a function type,
1408 call an error. This can happen if somebody tries to
1409 turn a variable into a function call. This is here
1410 because people often want to call, eg, strcmp, which
1411 gdb doesn't know is a function. If gdb isn't asked for
1412 it's opinion (ie. through "whatis"), it won't offer
1413 it. */
1414
1415 struct type *type = value_type (called_method);
1416
1417 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1418 type = TYPE_TARGET_TYPE (type);
1419 type = TYPE_TARGET_TYPE (type);
1420
1421 if (type)
1422 {
1423 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1424 return allocate_value (expect_type);
1425 else
1426 return allocate_value (type);
1427 }
1428 else
1429 error (_("Expression of type other than "
1430 "\"method returning ...\" used as a method"));
1431 }
1432
1433 /* Now depending on whether we found a symbol for the method,
1434 we will either call the runtime dispatcher or the method
1435 directly. */
1436
1437 argvec[0] = called_method;
1438 argvec[1] = target;
1439 argvec[2] = value_from_longest (long_type, selector);
1440 /* User-supplied arguments. */
1441 for (tem = 0; tem < nargs; tem++)
1442 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1443 argvec[tem + 3] = 0;
1444
1445 if (gnu_runtime && (method != NULL))
1446 {
1447 /* Function objc_msg_lookup returns a pointer. */
1448 deprecated_set_value_type (argvec[0],
1449 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1450 argvec[0]
1451 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1452 }
1453
1454 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1455 return ret;
1456 }
1457 break;
1458
1459 case OP_FUNCALL:
1460 (*pos) += 2;
1461 op = exp->elts[*pos].opcode;
1462 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1463 /* Allocate arg vector, including space for the function to be
1464 called in argvec[0] and a terminating NULL. */
1465 argvec = (struct value **)
1466 alloca (sizeof (struct value *) * (nargs + 3));
1467 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1468 {
1469 nargs++;
1470 /* First, evaluate the structure into arg2. */
1471 pc2 = (*pos)++;
1472
1473 if (noside == EVAL_SKIP)
1474 goto nosideret;
1475
1476 if (op == STRUCTOP_MEMBER)
1477 {
1478 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1479 }
1480 else
1481 {
1482 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1483 }
1484
1485 /* If the function is a virtual function, then the
1486 aggregate value (providing the structure) plays
1487 its part by providing the vtable. Otherwise,
1488 it is just along for the ride: call the function
1489 directly. */
1490
1491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1492
1493 if (TYPE_CODE (check_typedef (value_type (arg1)))
1494 != TYPE_CODE_METHODPTR)
1495 error (_("Non-pointer-to-member value used in pointer-to-member "
1496 "construct"));
1497
1498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1499 {
1500 struct type *method_type = check_typedef (value_type (arg1));
1501
1502 arg1 = value_zero (method_type, not_lval);
1503 }
1504 else
1505 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1506
1507 /* Now, say which argument to start evaluating from. */
1508 tem = 2;
1509 }
1510 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1511 {
1512 /* Hair for method invocations. */
1513 int tem2;
1514
1515 nargs++;
1516 /* First, evaluate the structure into arg2. */
1517 pc2 = (*pos)++;
1518 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1519 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1520 if (noside == EVAL_SKIP)
1521 goto nosideret;
1522
1523 if (op == STRUCTOP_STRUCT)
1524 {
1525 /* If v is a variable in a register, and the user types
1526 v.method (), this will produce an error, because v has
1527 no address.
1528
1529 A possible way around this would be to allocate a
1530 copy of the variable on the stack, copy in the
1531 contents, call the function, and copy out the
1532 contents. I.e. convert this from call by reference
1533 to call by copy-return (or whatever it's called).
1534 However, this does not work because it is not the
1535 same: the method being called could stash a copy of
1536 the address, and then future uses through that address
1537 (after the method returns) would be expected to
1538 use the variable itself, not some copy of it. */
1539 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1540 }
1541 else
1542 {
1543 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1544
1545 /* Check to see if the operator '->' has been
1546 overloaded. If the operator has been overloaded
1547 replace arg2 with the value returned by the custom
1548 operator and continue evaluation. */
1549 while (unop_user_defined_p (op, arg2))
1550 {
1551 volatile struct gdb_exception except;
1552 struct value *value = NULL;
1553 TRY_CATCH (except, RETURN_MASK_ERROR)
1554 {
1555 value = value_x_unop (arg2, op, noside);
1556 }
1557
1558 if (except.reason < 0)
1559 {
1560 if (except.error == NOT_FOUND_ERROR)
1561 break;
1562 else
1563 throw_exception (except);
1564 }
1565 arg2 = value;
1566 }
1567 }
1568 /* Now, say which argument to start evaluating from. */
1569 tem = 2;
1570 }
1571 else if (op == OP_SCOPE
1572 && overload_resolution
1573 && (exp->language_defn->la_language == language_cplus))
1574 {
1575 /* Unpack it locally so we can properly handle overload
1576 resolution. */
1577 char *name;
1578 int local_tem;
1579
1580 pc2 = (*pos)++;
1581 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1582 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1583 type = exp->elts[pc2 + 1].type;
1584 name = &exp->elts[pc2 + 3].string;
1585
1586 function = NULL;
1587 function_name = NULL;
1588 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1589 {
1590 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1591 name,
1592 get_selected_block (0),
1593 VAR_DOMAIN);
1594 if (function == NULL)
1595 error (_("No symbol \"%s\" in namespace \"%s\"."),
1596 name, TYPE_TAG_NAME (type));
1597
1598 tem = 1;
1599 }
1600 else
1601 {
1602 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1603 || TYPE_CODE (type) == TYPE_CODE_UNION);
1604 function_name = name;
1605
1606 arg2 = value_zero (type, lval_memory);
1607 ++nargs;
1608 tem = 2;
1609 }
1610 }
1611 else if (op == OP_ADL_FUNC)
1612 {
1613 /* Save the function position and move pos so that the arguments
1614 can be evaluated. */
1615 int func_name_len;
1616
1617 save_pos1 = *pos;
1618 tem = 1;
1619
1620 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1621 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1622 }
1623 else
1624 {
1625 /* Non-method function call. */
1626 save_pos1 = *pos;
1627 tem = 1;
1628
1629 /* If this is a C++ function wait until overload resolution. */
1630 if (op == OP_VAR_VALUE
1631 && overload_resolution
1632 && (exp->language_defn->la_language == language_cplus))
1633 {
1634 (*pos) += 4; /* Skip the evaluation of the symbol. */
1635 argvec[0] = NULL;
1636 }
1637 else
1638 {
1639 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1640 type = value_type (argvec[0]);
1641 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1642 type = TYPE_TARGET_TYPE (type);
1643 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1644 {
1645 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1646 {
1647 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1648 tem - 1),
1649 exp, pos, noside);
1650 }
1651 }
1652 }
1653 }
1654
1655 /* Evaluate arguments. */
1656 for (; tem <= nargs; tem++)
1657 {
1658 /* Ensure that array expressions are coerced into pointer
1659 objects. */
1660 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1661 }
1662
1663 /* Signal end of arglist. */
1664 argvec[tem] = 0;
1665 if (op == OP_ADL_FUNC)
1666 {
1667 struct symbol *symp;
1668 char *func_name;
1669 int name_len;
1670 int string_pc = save_pos1 + 3;
1671
1672 /* Extract the function name. */
1673 name_len = longest_to_int (exp->elts[string_pc].longconst);
1674 func_name = (char *) alloca (name_len + 1);
1675 strcpy (func_name, &exp->elts[string_pc + 1].string);
1676
1677 /* Prepare list of argument types for overload resolution. */
1678 arg_types = (struct type **)
1679 alloca (nargs * (sizeof (struct type *)));
1680 for (ix = 1; ix <= nargs; ix++)
1681 arg_types[ix - 1] = value_type (argvec[ix]);
1682
1683 find_overload_match (arg_types, nargs, func_name,
1684 NON_METHOD, /* not method */
1685 0, /* strict match */
1686 NULL, NULL, /* pass NULL symbol since
1687 symbol is unknown */
1688 NULL, &symp, NULL, 0);
1689
1690 /* Now fix the expression being evaluated. */
1691 exp->elts[save_pos1 + 2].symbol = symp;
1692 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1693 }
1694
1695 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1696 || (op == OP_SCOPE && function_name != NULL))
1697 {
1698 int static_memfuncp;
1699 char *tstr;
1700
1701 /* Method invocation : stuff "this" as first parameter. */
1702 argvec[1] = arg2;
1703
1704 if (op != OP_SCOPE)
1705 {
1706 /* Name of method from expression. */
1707 tstr = &exp->elts[pc2 + 2].string;
1708 }
1709 else
1710 tstr = function_name;
1711
1712 if (overload_resolution && (exp->language_defn->la_language
1713 == language_cplus))
1714 {
1715 /* Language is C++, do some overload resolution before
1716 evaluation. */
1717 struct value *valp = NULL;
1718
1719 /* Prepare list of argument types for overload resolution. */
1720 arg_types = (struct type **)
1721 alloca (nargs * (sizeof (struct type *)));
1722 for (ix = 1; ix <= nargs; ix++)
1723 arg_types[ix - 1] = value_type (argvec[ix]);
1724
1725 (void) find_overload_match (arg_types, nargs, tstr,
1726 METHOD, /* method */
1727 0, /* strict match */
1728 &arg2, /* the object */
1729 NULL, &valp, NULL,
1730 &static_memfuncp, 0);
1731
1732 if (op == OP_SCOPE && !static_memfuncp)
1733 {
1734 /* For the time being, we don't handle this. */
1735 error (_("Call to overloaded function %s requires "
1736 "`this' pointer"),
1737 function_name);
1738 }
1739 argvec[1] = arg2; /* the ``this'' pointer */
1740 argvec[0] = valp; /* Use the method found after overload
1741 resolution. */
1742 }
1743 else
1744 /* Non-C++ case -- or no overload resolution. */
1745 {
1746 struct value *temp = arg2;
1747
1748 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1749 &static_memfuncp,
1750 op == STRUCTOP_STRUCT
1751 ? "structure" : "structure pointer");
1752 /* value_struct_elt updates temp with the correct value
1753 of the ``this'' pointer if necessary, so modify argvec[1] to
1754 reflect any ``this'' changes. */
1755 arg2
1756 = value_from_longest (lookup_pointer_type(value_type (temp)),
1757 value_address (temp)
1758 + value_embedded_offset (temp));
1759 argvec[1] = arg2; /* the ``this'' pointer */
1760 }
1761
1762 if (static_memfuncp)
1763 {
1764 argvec[1] = argvec[0];
1765 nargs--;
1766 argvec++;
1767 }
1768 }
1769 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1770 {
1771 argvec[1] = arg2;
1772 argvec[0] = arg1;
1773 }
1774 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1775 {
1776 /* Non-member function being called. */
1777 /* fn: This can only be done for C++ functions. A C-style function
1778 in a C++ program, for instance, does not have the fields that
1779 are expected here. */
1780
1781 if (overload_resolution && (exp->language_defn->la_language
1782 == language_cplus))
1783 {
1784 /* Language is C++, do some overload resolution before
1785 evaluation. */
1786 struct symbol *symp;
1787 int no_adl = 0;
1788
1789 /* If a scope has been specified disable ADL. */
1790 if (op == OP_SCOPE)
1791 no_adl = 1;
1792
1793 if (op == OP_VAR_VALUE)
1794 function = exp->elts[save_pos1+2].symbol;
1795
1796 /* Prepare list of argument types for overload resolution. */
1797 arg_types = (struct type **)
1798 alloca (nargs * (sizeof (struct type *)));
1799 for (ix = 1; ix <= nargs; ix++)
1800 arg_types[ix - 1] = value_type (argvec[ix]);
1801
1802 (void) find_overload_match (arg_types, nargs,
1803 NULL, /* no need for name */
1804 NON_METHOD, /* not method */
1805 0, /* strict match */
1806 NULL, function, /* the function */
1807 NULL, &symp, NULL, no_adl);
1808
1809 if (op == OP_VAR_VALUE)
1810 {
1811 /* Now fix the expression being evaluated. */
1812 exp->elts[save_pos1+2].symbol = symp;
1813 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1814 noside);
1815 }
1816 else
1817 argvec[0] = value_of_variable (symp, get_selected_block (0));
1818 }
1819 else
1820 {
1821 /* Not C++, or no overload resolution allowed. */
1822 /* Nothing to be done; argvec already correctly set up. */
1823 }
1824 }
1825 else
1826 {
1827 /* It is probably a C-style function. */
1828 /* Nothing to be done; argvec already correctly set up. */
1829 }
1830
1831 do_call_it:
1832
1833 if (noside == EVAL_SKIP)
1834 goto nosideret;
1835 if (argvec[0] == NULL)
1836 error (_("Cannot evaluate function -- may be inlined"));
1837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1838 {
1839 /* If the return type doesn't look like a function type, call an
1840 error. This can happen if somebody tries to turn a variable into
1841 a function call. This is here because people often want to
1842 call, eg, strcmp, which gdb doesn't know is a function. If
1843 gdb isn't asked for it's opinion (ie. through "whatis"),
1844 it won't offer it. */
1845
1846 struct type *ftype = value_type (argvec[0]);
1847
1848 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1849 {
1850 /* We don't know anything about what the internal
1851 function might return, but we have to return
1852 something. */
1853 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1854 not_lval);
1855 }
1856 else if (TYPE_GNU_IFUNC (ftype))
1857 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1858 else if (TYPE_TARGET_TYPE (ftype))
1859 return allocate_value (TYPE_TARGET_TYPE (ftype));
1860 else
1861 error (_("Expression of type other than "
1862 "\"Function returning ...\" used as function"));
1863 }
1864 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1865 return call_internal_function (exp->gdbarch, exp->language_defn,
1866 argvec[0], nargs, argvec + 1);
1867
1868 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1869 /* pai: FIXME save value from call_function_by_hand, then adjust
1870 pc by adjust_fn_pc if +ve. */
1871
1872 case OP_F77_UNDETERMINED_ARGLIST:
1873
1874 /* Remember that in F77, functions, substring ops and
1875 array subscript operations cannot be disambiguated
1876 at parse time. We have made all array subscript operations,
1877 substring operations as well as function calls come here
1878 and we now have to discover what the heck this thing actually was.
1879 If it is a function, we process just as if we got an OP_FUNCALL. */
1880
1881 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1882 (*pos) += 2;
1883
1884 /* First determine the type code we are dealing with. */
1885 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1886 type = check_typedef (value_type (arg1));
1887 code = TYPE_CODE (type);
1888
1889 if (code == TYPE_CODE_PTR)
1890 {
1891 /* Fortran always passes variable to subroutines as pointer.
1892 So we need to look into its target type to see if it is
1893 array, string or function. If it is, we need to switch
1894 to the target value the original one points to. */
1895 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1896
1897 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1898 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1899 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1900 {
1901 arg1 = value_ind (arg1);
1902 type = check_typedef (value_type (arg1));
1903 code = TYPE_CODE (type);
1904 }
1905 }
1906
1907 switch (code)
1908 {
1909 case TYPE_CODE_ARRAY:
1910 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1911 return value_f90_subarray (arg1, exp, pos, noside);
1912 else
1913 goto multi_f77_subscript;
1914
1915 case TYPE_CODE_STRING:
1916 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1917 return value_f90_subarray (arg1, exp, pos, noside);
1918 else
1919 {
1920 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1921 return value_subscript (arg1, value_as_long (arg2));
1922 }
1923
1924 case TYPE_CODE_PTR:
1925 case TYPE_CODE_FUNC:
1926 /* It's a function call. */
1927 /* Allocate arg vector, including space for the function to be
1928 called in argvec[0] and a terminating NULL. */
1929 argvec = (struct value **)
1930 alloca (sizeof (struct value *) * (nargs + 2));
1931 argvec[0] = arg1;
1932 tem = 1;
1933 for (; tem <= nargs; tem++)
1934 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1935 argvec[tem] = 0; /* signal end of arglist */
1936 goto do_call_it;
1937
1938 default:
1939 error (_("Cannot perform substring on this type"));
1940 }
1941
1942 case OP_COMPLEX:
1943 /* We have a complex number, There should be 2 floating
1944 point numbers that compose it. */
1945 (*pos) += 2;
1946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1947 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1948
1949 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1950
1951 case STRUCTOP_STRUCT:
1952 tem = longest_to_int (exp->elts[pc + 1].longconst);
1953 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1955 if (noside == EVAL_SKIP)
1956 goto nosideret;
1957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1958 return value_zero (lookup_struct_elt_type (value_type (arg1),
1959 &exp->elts[pc + 2].string,
1960 0),
1961 lval_memory);
1962 else
1963 {
1964 struct value *temp = arg1;
1965
1966 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1967 NULL, "structure");
1968 }
1969
1970 case STRUCTOP_PTR:
1971 tem = longest_to_int (exp->elts[pc + 1].longconst);
1972 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1974 if (noside == EVAL_SKIP)
1975 goto nosideret;
1976
1977 /* Check to see if operator '->' has been overloaded. If so replace
1978 arg1 with the value returned by evaluating operator->(). */
1979 while (unop_user_defined_p (op, arg1))
1980 {
1981 volatile struct gdb_exception except;
1982 struct value *value = NULL;
1983 TRY_CATCH (except, RETURN_MASK_ERROR)
1984 {
1985 value = value_x_unop (arg1, op, noside);
1986 }
1987
1988 if (except.reason < 0)
1989 {
1990 if (except.error == NOT_FOUND_ERROR)
1991 break;
1992 else
1993 throw_exception (except);
1994 }
1995 arg1 = value;
1996 }
1997
1998 /* JYG: if print object is on we need to replace the base type
1999 with rtti type in order to continue on with successful
2000 lookup of member / method only available in the rtti type. */
2001 {
2002 struct type *type = value_type (arg1);
2003 struct type *real_type;
2004 int full, top, using_enc;
2005 struct value_print_options opts;
2006
2007 get_user_print_options (&opts);
2008 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2009 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2010 {
2011 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
2012 if (real_type)
2013 {
2014 if (TYPE_CODE (type) == TYPE_CODE_PTR)
2015 real_type = lookup_pointer_type (real_type);
2016 else
2017 real_type = lookup_reference_type (real_type);
2018
2019 arg1 = value_cast (real_type, arg1);
2020 }
2021 }
2022 }
2023
2024 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2025 return value_zero (lookup_struct_elt_type (value_type (arg1),
2026 &exp->elts[pc + 2].string,
2027 0),
2028 lval_memory);
2029 else
2030 {
2031 struct value *temp = arg1;
2032
2033 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2034 NULL, "structure pointer");
2035 }
2036
2037 case STRUCTOP_MEMBER:
2038 case STRUCTOP_MPTR:
2039 if (op == STRUCTOP_MEMBER)
2040 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2041 else
2042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2043
2044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2045
2046 if (noside == EVAL_SKIP)
2047 goto nosideret;
2048
2049 type = check_typedef (value_type (arg2));
2050 switch (TYPE_CODE (type))
2051 {
2052 case TYPE_CODE_METHODPTR:
2053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2054 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2055 else
2056 {
2057 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2058 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2059 return value_ind (arg2);
2060 }
2061
2062 case TYPE_CODE_MEMBERPTR:
2063 /* Now, convert these values to an address. */
2064 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2065 arg1);
2066
2067 mem_offset = value_as_long (arg2);
2068
2069 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2070 value_as_long (arg1) + mem_offset);
2071 return value_ind (arg3);
2072
2073 default:
2074 error (_("non-pointer-to-member value used "
2075 "in pointer-to-member construct"));
2076 }
2077
2078 case TYPE_INSTANCE:
2079 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2080 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2081 for (ix = 0; ix < nargs; ++ix)
2082 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2083
2084 expect_type = make_params (nargs, arg_types);
2085 *(pos) += 3 + nargs;
2086 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2087 xfree (TYPE_FIELDS (expect_type));
2088 xfree (TYPE_MAIN_TYPE (expect_type));
2089 xfree (expect_type);
2090 return arg1;
2091
2092 case BINOP_CONCAT:
2093 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2094 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2095 if (noside == EVAL_SKIP)
2096 goto nosideret;
2097 if (binop_user_defined_p (op, arg1, arg2))
2098 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2099 else
2100 return value_concat (arg1, arg2);
2101
2102 case BINOP_ASSIGN:
2103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2104 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2105
2106 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2107 return arg1;
2108 if (binop_user_defined_p (op, arg1, arg2))
2109 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2110 else
2111 return value_assign (arg1, arg2);
2112
2113 case BINOP_ASSIGN_MODIFY:
2114 (*pos) += 2;
2115 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2116 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2117 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2118 return arg1;
2119 op = exp->elts[pc + 1].opcode;
2120 if (binop_user_defined_p (op, arg1, arg2))
2121 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2122 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2123 value_type (arg1))
2124 && is_integral_type (value_type (arg2)))
2125 arg2 = value_ptradd (arg1, value_as_long (arg2));
2126 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2127 value_type (arg1))
2128 && is_integral_type (value_type (arg2)))
2129 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2130 else
2131 {
2132 struct value *tmp = arg1;
2133
2134 /* For shift and integer exponentiation operations,
2135 only promote the first argument. */
2136 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2137 && is_integral_type (value_type (arg2)))
2138 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2139 else
2140 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2141
2142 arg2 = value_binop (tmp, arg2, op);
2143 }
2144 return value_assign (arg1, arg2);
2145
2146 case BINOP_ADD:
2147 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2148 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2149 if (noside == EVAL_SKIP)
2150 goto nosideret;
2151 if (binop_user_defined_p (op, arg1, arg2))
2152 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2153 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2154 && is_integral_type (value_type (arg2)))
2155 return value_ptradd (arg1, value_as_long (arg2));
2156 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2157 && is_integral_type (value_type (arg1)))
2158 return value_ptradd (arg2, value_as_long (arg1));
2159 else
2160 {
2161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2162 return value_binop (arg1, arg2, BINOP_ADD);
2163 }
2164
2165 case BINOP_SUB:
2166 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2167 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2168 if (noside == EVAL_SKIP)
2169 goto nosideret;
2170 if (binop_user_defined_p (op, arg1, arg2))
2171 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2172 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2173 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2174 {
2175 /* FIXME -- should be ptrdiff_t */
2176 type = builtin_type (exp->gdbarch)->builtin_long;
2177 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2178 }
2179 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2180 && is_integral_type (value_type (arg2)))
2181 return value_ptradd (arg1, - value_as_long (arg2));
2182 else
2183 {
2184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2185 return value_binop (arg1, arg2, BINOP_SUB);
2186 }
2187
2188 case BINOP_EXP:
2189 case BINOP_MUL:
2190 case BINOP_DIV:
2191 case BINOP_INTDIV:
2192 case BINOP_REM:
2193 case BINOP_MOD:
2194 case BINOP_LSH:
2195 case BINOP_RSH:
2196 case BINOP_BITWISE_AND:
2197 case BINOP_BITWISE_IOR:
2198 case BINOP_BITWISE_XOR:
2199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2200 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2201 if (noside == EVAL_SKIP)
2202 goto nosideret;
2203 if (binop_user_defined_p (op, arg1, arg2))
2204 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2205 else
2206 {
2207 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2208 fudge arg2 to avoid division-by-zero, the caller is
2209 (theoretically) only looking for the type of the result. */
2210 if (noside == EVAL_AVOID_SIDE_EFFECTS
2211 /* ??? Do we really want to test for BINOP_MOD here?
2212 The implementation of value_binop gives it a well-defined
2213 value. */
2214 && (op == BINOP_DIV
2215 || op == BINOP_INTDIV
2216 || op == BINOP_REM
2217 || op == BINOP_MOD)
2218 && value_logical_not (arg2))
2219 {
2220 struct value *v_one, *retval;
2221
2222 v_one = value_one (value_type (arg2));
2223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2224 retval = value_binop (arg1, v_one, op);
2225 return retval;
2226 }
2227 else
2228 {
2229 /* For shift and integer exponentiation operations,
2230 only promote the first argument. */
2231 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2232 && is_integral_type (value_type (arg2)))
2233 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2234 else
2235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2236
2237 return value_binop (arg1, arg2, op);
2238 }
2239 }
2240
2241 case BINOP_RANGE:
2242 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2243 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2244 if (noside == EVAL_SKIP)
2245 goto nosideret;
2246 error (_("':' operator used in invalid context"));
2247
2248 case BINOP_SUBSCRIPT:
2249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2250 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2251 if (noside == EVAL_SKIP)
2252 goto nosideret;
2253 if (binop_user_defined_p (op, arg1, arg2))
2254 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2255 else
2256 {
2257 /* If the user attempts to subscript something that is not an
2258 array or pointer type (like a plain int variable for example),
2259 then report this as an error. */
2260
2261 arg1 = coerce_ref (arg1);
2262 type = check_typedef (value_type (arg1));
2263 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2264 && TYPE_CODE (type) != TYPE_CODE_PTR)
2265 {
2266 if (TYPE_NAME (type))
2267 error (_("cannot subscript something of type `%s'"),
2268 TYPE_NAME (type));
2269 else
2270 error (_("cannot subscript requested type"));
2271 }
2272
2273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2274 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2275 else
2276 return value_subscript (arg1, value_as_long (arg2));
2277 }
2278
2279 case BINOP_IN:
2280 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2281 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2282 if (noside == EVAL_SKIP)
2283 goto nosideret;
2284 type = language_bool_type (exp->language_defn, exp->gdbarch);
2285 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2286
2287 case MULTI_SUBSCRIPT:
2288 (*pos) += 2;
2289 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2290 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2291 while (nargs-- > 0)
2292 {
2293 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2294 /* FIXME: EVAL_SKIP handling may not be correct. */
2295 if (noside == EVAL_SKIP)
2296 {
2297 if (nargs > 0)
2298 {
2299 continue;
2300 }
2301 else
2302 {
2303 goto nosideret;
2304 }
2305 }
2306 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2307 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2308 {
2309 /* If the user attempts to subscript something that has no target
2310 type (like a plain int variable for example), then report this
2311 as an error. */
2312
2313 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2314 if (type != NULL)
2315 {
2316 arg1 = value_zero (type, VALUE_LVAL (arg1));
2317 noside = EVAL_SKIP;
2318 continue;
2319 }
2320 else
2321 {
2322 error (_("cannot subscript something of type `%s'"),
2323 TYPE_NAME (value_type (arg1)));
2324 }
2325 }
2326
2327 if (binop_user_defined_p (op, arg1, arg2))
2328 {
2329 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2330 }
2331 else
2332 {
2333 arg1 = coerce_ref (arg1);
2334 type = check_typedef (value_type (arg1));
2335
2336 switch (TYPE_CODE (type))
2337 {
2338 case TYPE_CODE_PTR:
2339 case TYPE_CODE_ARRAY:
2340 case TYPE_CODE_STRING:
2341 arg1 = value_subscript (arg1, value_as_long (arg2));
2342 break;
2343
2344 case TYPE_CODE_BITSTRING:
2345 type = language_bool_type (exp->language_defn, exp->gdbarch);
2346 arg1 = value_bitstring_subscript (type, arg1,
2347 value_as_long (arg2));
2348 break;
2349
2350 default:
2351 if (TYPE_NAME (type))
2352 error (_("cannot subscript something of type `%s'"),
2353 TYPE_NAME (type));
2354 else
2355 error (_("cannot subscript requested type"));
2356 }
2357 }
2358 }
2359 return (arg1);
2360
2361 multi_f77_subscript:
2362 {
2363 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2364 int ndimensions = 1, i;
2365 struct value *array = arg1;
2366
2367 if (nargs > MAX_FORTRAN_DIMS)
2368 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2369
2370 ndimensions = calc_f77_array_dims (type);
2371
2372 if (nargs != ndimensions)
2373 error (_("Wrong number of subscripts"));
2374
2375 gdb_assert (nargs > 0);
2376
2377 /* Now that we know we have a legal array subscript expression
2378 let us actually find out where this element exists in the array. */
2379
2380 /* Take array indices left to right. */
2381 for (i = 0; i < nargs; i++)
2382 {
2383 /* Evaluate each subscript; it must be a legal integer in F77. */
2384 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2385
2386 /* Fill in the subscript array. */
2387
2388 subscript_array[i] = value_as_long (arg2);
2389 }
2390
2391 /* Internal type of array is arranged right to left. */
2392 for (i = nargs; i > 0; i--)
2393 {
2394 struct type *array_type = check_typedef (value_type (array));
2395 LONGEST index = subscript_array[i - 1];
2396
2397 lower = f77_get_lowerbound (array_type);
2398 array = value_subscripted_rvalue (array, index, lower);
2399 }
2400
2401 return array;
2402 }
2403
2404 case BINOP_LOGICAL_AND:
2405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2406 if (noside == EVAL_SKIP)
2407 {
2408 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2409 goto nosideret;
2410 }
2411
2412 oldpos = *pos;
2413 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2414 *pos = oldpos;
2415
2416 if (binop_user_defined_p (op, arg1, arg2))
2417 {
2418 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2419 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2420 }
2421 else
2422 {
2423 tem = value_logical_not (arg1);
2424 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2425 (tem ? EVAL_SKIP : noside));
2426 type = language_bool_type (exp->language_defn, exp->gdbarch);
2427 return value_from_longest (type,
2428 (LONGEST) (!tem && !value_logical_not (arg2)));
2429 }
2430
2431 case BINOP_LOGICAL_OR:
2432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2433 if (noside == EVAL_SKIP)
2434 {
2435 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2436 goto nosideret;
2437 }
2438
2439 oldpos = *pos;
2440 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2441 *pos = oldpos;
2442
2443 if (binop_user_defined_p (op, arg1, arg2))
2444 {
2445 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2446 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2447 }
2448 else
2449 {
2450 tem = value_logical_not (arg1);
2451 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2452 (!tem ? EVAL_SKIP : noside));
2453 type = language_bool_type (exp->language_defn, exp->gdbarch);
2454 return value_from_longest (type,
2455 (LONGEST) (!tem || !value_logical_not (arg2)));
2456 }
2457
2458 case BINOP_EQUAL:
2459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2460 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2461 if (noside == EVAL_SKIP)
2462 goto nosideret;
2463 if (binop_user_defined_p (op, arg1, arg2))
2464 {
2465 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2466 }
2467 else
2468 {
2469 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2470 tem = value_equal (arg1, arg2);
2471 type = language_bool_type (exp->language_defn, exp->gdbarch);
2472 return value_from_longest (type, (LONGEST) tem);
2473 }
2474
2475 case BINOP_NOTEQUAL:
2476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2477 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2478 if (noside == EVAL_SKIP)
2479 goto nosideret;
2480 if (binop_user_defined_p (op, arg1, arg2))
2481 {
2482 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2483 }
2484 else
2485 {
2486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2487 tem = value_equal (arg1, arg2);
2488 type = language_bool_type (exp->language_defn, exp->gdbarch);
2489 return value_from_longest (type, (LONGEST) ! tem);
2490 }
2491
2492 case BINOP_LESS:
2493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2494 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2495 if (noside == EVAL_SKIP)
2496 goto nosideret;
2497 if (binop_user_defined_p (op, arg1, arg2))
2498 {
2499 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2500 }
2501 else
2502 {
2503 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2504 tem = value_less (arg1, arg2);
2505 type = language_bool_type (exp->language_defn, exp->gdbarch);
2506 return value_from_longest (type, (LONGEST) tem);
2507 }
2508
2509 case BINOP_GTR:
2510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2511 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2512 if (noside == EVAL_SKIP)
2513 goto nosideret;
2514 if (binop_user_defined_p (op, arg1, arg2))
2515 {
2516 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2517 }
2518 else
2519 {
2520 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2521 tem = value_less (arg2, arg1);
2522 type = language_bool_type (exp->language_defn, exp->gdbarch);
2523 return value_from_longest (type, (LONGEST) tem);
2524 }
2525
2526 case BINOP_GEQ:
2527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2528 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2529 if (noside == EVAL_SKIP)
2530 goto nosideret;
2531 if (binop_user_defined_p (op, arg1, arg2))
2532 {
2533 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2534 }
2535 else
2536 {
2537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2538 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2539 type = language_bool_type (exp->language_defn, exp->gdbarch);
2540 return value_from_longest (type, (LONGEST) tem);
2541 }
2542
2543 case BINOP_LEQ:
2544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2545 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2546 if (noside == EVAL_SKIP)
2547 goto nosideret;
2548 if (binop_user_defined_p (op, arg1, arg2))
2549 {
2550 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2551 }
2552 else
2553 {
2554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2555 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2556 type = language_bool_type (exp->language_defn, exp->gdbarch);
2557 return value_from_longest (type, (LONGEST) tem);
2558 }
2559
2560 case BINOP_REPEAT:
2561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2562 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2563 if (noside == EVAL_SKIP)
2564 goto nosideret;
2565 type = check_typedef (value_type (arg2));
2566 if (TYPE_CODE (type) != TYPE_CODE_INT)
2567 error (_("Non-integral right operand for \"@\" operator."));
2568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2569 {
2570 return allocate_repeat_value (value_type (arg1),
2571 longest_to_int (value_as_long (arg2)));
2572 }
2573 else
2574 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2575
2576 case BINOP_COMMA:
2577 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2578 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2579
2580 case UNOP_PLUS:
2581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2582 if (noside == EVAL_SKIP)
2583 goto nosideret;
2584 if (unop_user_defined_p (op, arg1))
2585 return value_x_unop (arg1, op, noside);
2586 else
2587 {
2588 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2589 return value_pos (arg1);
2590 }
2591
2592 case UNOP_NEG:
2593 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2594 if (noside == EVAL_SKIP)
2595 goto nosideret;
2596 if (unop_user_defined_p (op, arg1))
2597 return value_x_unop (arg1, op, noside);
2598 else
2599 {
2600 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2601 return value_neg (arg1);
2602 }
2603
2604 case UNOP_COMPLEMENT:
2605 /* C++: check for and handle destructor names. */
2606 op = exp->elts[*pos].opcode;
2607
2608 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2609 if (noside == EVAL_SKIP)
2610 goto nosideret;
2611 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2612 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2613 else
2614 {
2615 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2616 return value_complement (arg1);
2617 }
2618
2619 case UNOP_LOGICAL_NOT:
2620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2621 if (noside == EVAL_SKIP)
2622 goto nosideret;
2623 if (unop_user_defined_p (op, arg1))
2624 return value_x_unop (arg1, op, noside);
2625 else
2626 {
2627 type = language_bool_type (exp->language_defn, exp->gdbarch);
2628 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2629 }
2630
2631 case UNOP_IND:
2632 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2633 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2634 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2635 type = check_typedef (value_type (arg1));
2636 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2637 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2638 error (_("Attempt to dereference pointer "
2639 "to member without an object"));
2640 if (noside == EVAL_SKIP)
2641 goto nosideret;
2642 if (unop_user_defined_p (op, arg1))
2643 return value_x_unop (arg1, op, noside);
2644 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2645 {
2646 type = check_typedef (value_type (arg1));
2647 if (TYPE_CODE (type) == TYPE_CODE_PTR
2648 || TYPE_CODE (type) == TYPE_CODE_REF
2649 /* In C you can dereference an array to get the 1st elt. */
2650 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2651 )
2652 return value_zero (TYPE_TARGET_TYPE (type),
2653 lval_memory);
2654 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2655 /* GDB allows dereferencing an int. */
2656 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2657 lval_memory);
2658 else
2659 error (_("Attempt to take contents of a non-pointer value."));
2660 }
2661
2662 /* Allow * on an integer so we can cast it to whatever we want.
2663 This returns an int, which seems like the most C-like thing to
2664 do. "long long" variables are rare enough that
2665 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2666 if (TYPE_CODE (type) == TYPE_CODE_INT)
2667 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2668 (CORE_ADDR) value_as_address (arg1));
2669 return value_ind (arg1);
2670
2671 case UNOP_ADDR:
2672 /* C++: check for and handle pointer to members. */
2673
2674 op = exp->elts[*pos].opcode;
2675
2676 if (noside == EVAL_SKIP)
2677 {
2678 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2679 goto nosideret;
2680 }
2681 else
2682 {
2683 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2684 noside);
2685
2686 return retvalp;
2687 }
2688
2689 case UNOP_SIZEOF:
2690 if (noside == EVAL_SKIP)
2691 {
2692 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2693 goto nosideret;
2694 }
2695 return evaluate_subexp_for_sizeof (exp, pos);
2696
2697 case UNOP_CAST:
2698 (*pos) += 2;
2699 type = exp->elts[pc + 1].type;
2700 arg1 = evaluate_subexp (type, exp, pos, noside);
2701 if (noside == EVAL_SKIP)
2702 goto nosideret;
2703 if (type != value_type (arg1))
2704 arg1 = value_cast (type, arg1);
2705 return arg1;
2706
2707 case UNOP_DYNAMIC_CAST:
2708 (*pos) += 2;
2709 type = exp->elts[pc + 1].type;
2710 arg1 = evaluate_subexp (type, exp, pos, noside);
2711 if (noside == EVAL_SKIP)
2712 goto nosideret;
2713 return value_dynamic_cast (type, arg1);
2714
2715 case UNOP_REINTERPRET_CAST:
2716 (*pos) += 2;
2717 type = exp->elts[pc + 1].type;
2718 arg1 = evaluate_subexp (type, exp, pos, noside);
2719 if (noside == EVAL_SKIP)
2720 goto nosideret;
2721 return value_reinterpret_cast (type, arg1);
2722
2723 case UNOP_MEMVAL:
2724 (*pos) += 2;
2725 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2726 if (noside == EVAL_SKIP)
2727 goto nosideret;
2728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2729 return value_zero (exp->elts[pc + 1].type, lval_memory);
2730 else
2731 return value_at_lazy (exp->elts[pc + 1].type,
2732 value_as_address (arg1));
2733
2734 case UNOP_MEMVAL_TLS:
2735 (*pos) += 3;
2736 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2737 if (noside == EVAL_SKIP)
2738 goto nosideret;
2739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2740 return value_zero (exp->elts[pc + 2].type, lval_memory);
2741 else
2742 {
2743 CORE_ADDR tls_addr;
2744
2745 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2746 value_as_address (arg1));
2747 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2748 }
2749
2750 case UNOP_PREINCREMENT:
2751 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2752 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2753 return arg1;
2754 else if (unop_user_defined_p (op, arg1))
2755 {
2756 return value_x_unop (arg1, op, noside);
2757 }
2758 else
2759 {
2760 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2761 arg2 = value_ptradd (arg1, 1);
2762 else
2763 {
2764 struct value *tmp = arg1;
2765
2766 arg2 = value_one (value_type (arg1));
2767 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2768 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2769 }
2770
2771 return value_assign (arg1, arg2);
2772 }
2773
2774 case UNOP_PREDECREMENT:
2775 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2776 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2777 return arg1;
2778 else if (unop_user_defined_p (op, arg1))
2779 {
2780 return value_x_unop (arg1, op, noside);
2781 }
2782 else
2783 {
2784 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2785 arg2 = value_ptradd (arg1, -1);
2786 else
2787 {
2788 struct value *tmp = arg1;
2789
2790 arg2 = value_one (value_type (arg1));
2791 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2792 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2793 }
2794
2795 return value_assign (arg1, arg2);
2796 }
2797
2798 case UNOP_POSTINCREMENT:
2799 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2800 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2801 return arg1;
2802 else if (unop_user_defined_p (op, arg1))
2803 {
2804 return value_x_unop (arg1, op, noside);
2805 }
2806 else
2807 {
2808 arg3 = value_non_lval (arg1);
2809
2810 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2811 arg2 = value_ptradd (arg1, 1);
2812 else
2813 {
2814 struct value *tmp = arg1;
2815
2816 arg2 = value_one (value_type (arg1));
2817 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2818 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2819 }
2820
2821 value_assign (arg1, arg2);
2822 return arg3;
2823 }
2824
2825 case UNOP_POSTDECREMENT:
2826 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2827 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2828 return arg1;
2829 else if (unop_user_defined_p (op, arg1))
2830 {
2831 return value_x_unop (arg1, op, noside);
2832 }
2833 else
2834 {
2835 arg3 = value_non_lval (arg1);
2836
2837 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2838 arg2 = value_ptradd (arg1, -1);
2839 else
2840 {
2841 struct value *tmp = arg1;
2842
2843 arg2 = value_one (value_type (arg1));
2844 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2845 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2846 }
2847
2848 value_assign (arg1, arg2);
2849 return arg3;
2850 }
2851
2852 case OP_THIS:
2853 (*pos) += 1;
2854 return value_of_this (exp->language_defn);
2855
2856 case OP_TYPE:
2857 /* The value is not supposed to be used. This is here to make it
2858 easier to accommodate expressions that contain types. */
2859 (*pos) += 2;
2860 if (noside == EVAL_SKIP)
2861 goto nosideret;
2862 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2863 {
2864 struct type *type = exp->elts[pc + 1].type;
2865
2866 /* If this is a typedef, then find its immediate target. We
2867 use check_typedef to resolve stubs, but we ignore its
2868 result because we do not want to dig past all
2869 typedefs. */
2870 check_typedef (type);
2871 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2872 type = TYPE_TARGET_TYPE (type);
2873 return allocate_value (type);
2874 }
2875 else
2876 error (_("Attempt to use a type name as an expression"));
2877
2878 default:
2879 /* Removing this case and compiling with gcc -Wall reveals that
2880 a lot of cases are hitting this case. Some of these should
2881 probably be removed from expression.h; others are legitimate
2882 expressions which are (apparently) not fully implemented.
2883
2884 If there are any cases landing here which mean a user error,
2885 then they should be separate cases, with more descriptive
2886 error messages. */
2887
2888 error (_("GDB does not (yet) know how to "
2889 "evaluate that kind of expression"));
2890 }
2891
2892 nosideret:
2893 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2894 }
2895 \f
2896 /* Evaluate a subexpression of EXP, at index *POS,
2897 and return the address of that subexpression.
2898 Advance *POS over the subexpression.
2899 If the subexpression isn't an lvalue, get an error.
2900 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2901 then only the type of the result need be correct. */
2902
2903 static struct value *
2904 evaluate_subexp_for_address (struct expression *exp, int *pos,
2905 enum noside noside)
2906 {
2907 enum exp_opcode op;
2908 int pc;
2909 struct symbol *var;
2910 struct value *x;
2911 int tem;
2912
2913 pc = (*pos);
2914 op = exp->elts[pc].opcode;
2915
2916 switch (op)
2917 {
2918 case UNOP_IND:
2919 (*pos)++;
2920 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2921
2922 /* We can't optimize out "&*" if there's a user-defined operator*. */
2923 if (unop_user_defined_p (op, x))
2924 {
2925 x = value_x_unop (x, op, noside);
2926 goto default_case_after_eval;
2927 }
2928
2929 return coerce_array (x);
2930
2931 case UNOP_MEMVAL:
2932 (*pos) += 3;
2933 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2934 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2935
2936 case OP_VAR_VALUE:
2937 var = exp->elts[pc + 2].symbol;
2938
2939 /* C++: The "address" of a reference should yield the address
2940 * of the object pointed to. Let value_addr() deal with it. */
2941 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2942 goto default_case;
2943
2944 (*pos) += 4;
2945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2946 {
2947 struct type *type =
2948 lookup_pointer_type (SYMBOL_TYPE (var));
2949 enum address_class sym_class = SYMBOL_CLASS (var);
2950
2951 if (sym_class == LOC_CONST
2952 || sym_class == LOC_CONST_BYTES
2953 || sym_class == LOC_REGISTER)
2954 error (_("Attempt to take address of register or constant."));
2955
2956 return
2957 value_zero (type, not_lval);
2958 }
2959 else
2960 return address_of_variable (var, exp->elts[pc + 1].block);
2961
2962 case OP_SCOPE:
2963 tem = longest_to_int (exp->elts[pc + 2].longconst);
2964 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2965 x = value_aggregate_elt (exp->elts[pc + 1].type,
2966 &exp->elts[pc + 3].string,
2967 NULL, 1, noside);
2968 if (x == NULL)
2969 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2970 return x;
2971
2972 default:
2973 default_case:
2974 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2975 default_case_after_eval:
2976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2977 {
2978 struct type *type = check_typedef (value_type (x));
2979
2980 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2981 return value_zero (lookup_pointer_type (value_type (x)),
2982 not_lval);
2983 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2984 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2985 not_lval);
2986 else
2987 error (_("Attempt to take address of "
2988 "value not located in memory."));
2989 }
2990 return value_addr (x);
2991 }
2992 }
2993
2994 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2995 When used in contexts where arrays will be coerced anyway, this is
2996 equivalent to `evaluate_subexp' but much faster because it avoids
2997 actually fetching array contents (perhaps obsolete now that we have
2998 value_lazy()).
2999
3000 Note that we currently only do the coercion for C expressions, where
3001 arrays are zero based and the coercion is correct. For other languages,
3002 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3003 to decide if coercion is appropriate. */
3004
3005 struct value *
3006 evaluate_subexp_with_coercion (struct expression *exp,
3007 int *pos, enum noside noside)
3008 {
3009 enum exp_opcode op;
3010 int pc;
3011 struct value *val;
3012 struct symbol *var;
3013 struct type *type;
3014
3015 pc = (*pos);
3016 op = exp->elts[pc].opcode;
3017
3018 switch (op)
3019 {
3020 case OP_VAR_VALUE:
3021 var = exp->elts[pc + 2].symbol;
3022 type = check_typedef (SYMBOL_TYPE (var));
3023 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3024 && !TYPE_VECTOR (type)
3025 && CAST_IS_CONVERSION (exp->language_defn))
3026 {
3027 (*pos) += 4;
3028 val = address_of_variable (var, exp->elts[pc + 1].block);
3029 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3030 val);
3031 }
3032 /* FALLTHROUGH */
3033
3034 default:
3035 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3036 }
3037 }
3038
3039 /* Evaluate a subexpression of EXP, at index *POS,
3040 and return a value for the size of that subexpression.
3041 Advance *POS over the subexpression. */
3042
3043 static struct value *
3044 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3045 {
3046 /* FIXME: This should be size_t. */
3047 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3048 enum exp_opcode op;
3049 int pc;
3050 struct type *type;
3051 struct value *val;
3052
3053 pc = (*pos);
3054 op = exp->elts[pc].opcode;
3055
3056 switch (op)
3057 {
3058 /* This case is handled specially
3059 so that we avoid creating a value for the result type.
3060 If the result type is very big, it's desirable not to
3061 create a value unnecessarily. */
3062 case UNOP_IND:
3063 (*pos)++;
3064 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3065 type = check_typedef (value_type (val));
3066 if (TYPE_CODE (type) != TYPE_CODE_PTR
3067 && TYPE_CODE (type) != TYPE_CODE_REF
3068 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3069 error (_("Attempt to take contents of a non-pointer value."));
3070 type = check_typedef (TYPE_TARGET_TYPE (type));
3071 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3072
3073 case UNOP_MEMVAL:
3074 (*pos) += 3;
3075 type = check_typedef (exp->elts[pc + 1].type);
3076 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3077
3078 case OP_VAR_VALUE:
3079 (*pos) += 4;
3080 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3081 return
3082 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3083
3084 default:
3085 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3086 return value_from_longest (size_type,
3087 (LONGEST) TYPE_LENGTH (value_type (val)));
3088 }
3089 }
3090
3091 /* Parse a type expression in the string [P..P+LENGTH). */
3092
3093 struct type *
3094 parse_and_eval_type (char *p, int length)
3095 {
3096 char *tmp = (char *) alloca (length + 4);
3097 struct expression *expr;
3098
3099 tmp[0] = '(';
3100 memcpy (tmp + 1, p, length);
3101 tmp[length + 1] = ')';
3102 tmp[length + 2] = '0';
3103 tmp[length + 3] = '\0';
3104 expr = parse_expression (tmp);
3105 if (expr->elts[0].opcode != UNOP_CAST)
3106 error (_("Internal error in eval_type."));
3107 return expr->elts[1].type;
3108 }
3109
3110 int
3111 calc_f77_array_dims (struct type *array_type)
3112 {
3113 int ndimen = 1;
3114 struct type *tmp_type;
3115
3116 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3117 error (_("Can't get dimensions for a non-array type"));
3118
3119 tmp_type = array_type;
3120
3121 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3122 {
3123 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3124 ++ndimen;
3125 }
3126 return ndimen;
3127 }