]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/eval.c
Include string.h in common-defs.h
[thirdparty/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "language.h" /* For CAST_IS_CONVERSION. */
28 #include "f-lang.h" /* For array bound stuff. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "exceptions.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include <ctype.h>
43
44 /* This is defined in valops.c */
45 extern int overload_resolution;
46
47 /* Prototypes for local functions. */
48
49 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
50 enum noside);
51
52 static struct value *evaluate_subexp_for_address (struct expression *,
53 int *, enum noside);
54
55 static struct value *evaluate_struct_tuple (struct value *,
56 struct expression *, int *,
57 enum noside, int);
58
59 static LONGEST init_array_element (struct value *, struct value *,
60 struct expression *, int *, enum noside,
61 LONGEST, LONGEST);
62
63 struct value *
64 evaluate_subexp (struct type *expect_type, struct expression *exp,
65 int *pos, enum noside noside)
66 {
67 return (*exp->language_defn->la_exp_desc->evaluate_exp)
68 (expect_type, exp, pos, noside);
69 }
70 \f
71 /* Parse the string EXP as a C expression, evaluate it,
72 and return the result as a number. */
73
74 CORE_ADDR
75 parse_and_eval_address (const char *exp)
76 {
77 struct expression *expr = parse_expression (exp);
78 CORE_ADDR addr;
79 struct cleanup *old_chain =
80 make_cleanup (free_current_contents, &expr);
81
82 addr = value_as_address (evaluate_expression (expr));
83 do_cleanups (old_chain);
84 return addr;
85 }
86
87 /* Like parse_and_eval_address, but treats the value of the expression
88 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
89 LONGEST
90 parse_and_eval_long (const char *exp)
91 {
92 struct expression *expr = parse_expression (exp);
93 LONGEST retval;
94 struct cleanup *old_chain =
95 make_cleanup (free_current_contents, &expr);
96
97 retval = value_as_long (evaluate_expression (expr));
98 do_cleanups (old_chain);
99 return (retval);
100 }
101
102 struct value *
103 parse_and_eval (const char *exp)
104 {
105 struct expression *expr = parse_expression (exp);
106 struct value *val;
107 struct cleanup *old_chain =
108 make_cleanup (free_current_contents, &expr);
109
110 val = evaluate_expression (expr);
111 do_cleanups (old_chain);
112 return val;
113 }
114
115 /* Parse up to a comma (or to a closeparen)
116 in the string EXPP as an expression, evaluate it, and return the value.
117 EXPP is advanced to point to the comma. */
118
119 struct value *
120 parse_to_comma_and_eval (const char **expp)
121 {
122 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
123 struct value *val;
124 struct cleanup *old_chain =
125 make_cleanup (free_current_contents, &expr);
126
127 val = evaluate_expression (expr);
128 do_cleanups (old_chain);
129 return val;
130 }
131 \f
132 /* Evaluate an expression in internal prefix form
133 such as is constructed by parse.y.
134
135 See expression.h for info on the format of an expression. */
136
137 struct value *
138 evaluate_expression (struct expression *exp)
139 {
140 int pc = 0;
141
142 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
143 }
144
145 /* Evaluate an expression, avoiding all memory references
146 and getting a value whose type alone is correct. */
147
148 struct value *
149 evaluate_type (struct expression *exp)
150 {
151 int pc = 0;
152
153 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
154 }
155
156 /* Evaluate a subexpression, avoiding all memory references and
157 getting a value whose type alone is correct. */
158
159 struct value *
160 evaluate_subexpression_type (struct expression *exp, int subexp)
161 {
162 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
163 }
164
165 /* Find the current value of a watchpoint on EXP. Return the value in
166 *VALP and *RESULTP and the chain of intermediate and final values
167 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
168 not need them.
169
170 If PRESERVE_ERRORS is true, then exceptions are passed through.
171 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
172 occurs while evaluating the expression, *RESULTP will be set to
173 NULL. *RESULTP may be a lazy value, if the result could not be
174 read from memory. It is used to determine whether a value is
175 user-specified (we should watch the whole value) or intermediate
176 (we should watch only the bit used to locate the final value).
177
178 If the final value, or any intermediate value, could not be read
179 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
180 set to any referenced values. *VALP will never be a lazy value.
181 This is the value which we store in struct breakpoint.
182
183 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
184 value chain. The caller must free the values individually. If
185 VAL_CHAIN is NULL, all generated values will be left on the value
186 chain. */
187
188 void
189 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
190 struct value **resultp, struct value **val_chain,
191 int preserve_errors)
192 {
193 struct value *mark, *new_mark, *result;
194 volatile struct gdb_exception ex;
195
196 *valp = NULL;
197 if (resultp)
198 *resultp = NULL;
199 if (val_chain)
200 *val_chain = NULL;
201
202 /* Evaluate the expression. */
203 mark = value_mark ();
204 result = NULL;
205
206 TRY_CATCH (ex, RETURN_MASK_ALL)
207 {
208 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
209 }
210 if (ex.reason < 0)
211 {
212 /* Ignore memory errors if we want watchpoints pointing at
213 inaccessible memory to still be created; otherwise, throw the
214 error to some higher catcher. */
215 switch (ex.error)
216 {
217 case MEMORY_ERROR:
218 if (!preserve_errors)
219 break;
220 default:
221 throw_exception (ex);
222 break;
223 }
224 }
225
226 new_mark = value_mark ();
227 if (mark == new_mark)
228 return;
229 if (resultp)
230 *resultp = result;
231
232 /* Make sure it's not lazy, so that after the target stops again we
233 have a non-lazy previous value to compare with. */
234 if (result != NULL)
235 {
236 if (!value_lazy (result))
237 *valp = result;
238 else
239 {
240 volatile struct gdb_exception except;
241
242 TRY_CATCH (except, RETURN_MASK_ERROR)
243 {
244 value_fetch_lazy (result);
245 *valp = result;
246 }
247 }
248 }
249
250 if (val_chain)
251 {
252 /* Return the chain of intermediate values. We use this to
253 decide which addresses to watch. */
254 *val_chain = new_mark;
255 value_release_to_mark (mark);
256 }
257 }
258
259 /* Extract a field operation from an expression. If the subexpression
260 of EXP starting at *SUBEXP is not a structure dereference
261 operation, return NULL. Otherwise, return the name of the
262 dereferenced field, and advance *SUBEXP to point to the
263 subexpression of the left-hand-side of the dereference. This is
264 used when completing field names. */
265
266 char *
267 extract_field_op (struct expression *exp, int *subexp)
268 {
269 int tem;
270 char *result;
271
272 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
273 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
274 return NULL;
275 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
276 result = &exp->elts[*subexp + 2].string;
277 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
278 return result;
279 }
280
281 /* This function evaluates brace-initializers (in C/C++) for
282 structure types. */
283
284 static struct value *
285 evaluate_struct_tuple (struct value *struct_val,
286 struct expression *exp,
287 int *pos, enum noside noside, int nargs)
288 {
289 struct type *struct_type = check_typedef (value_type (struct_val));
290 struct type *field_type;
291 int fieldno = -1;
292
293 while (--nargs >= 0)
294 {
295 struct value *val = NULL;
296 int bitpos, bitsize;
297 bfd_byte *addr;
298
299 fieldno++;
300 /* Skip static fields. */
301 while (fieldno < TYPE_NFIELDS (struct_type)
302 && field_is_static (&TYPE_FIELD (struct_type,
303 fieldno)))
304 fieldno++;
305 if (fieldno >= TYPE_NFIELDS (struct_type))
306 error (_("too many initializers"));
307 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
308 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
309 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
310 error (_("don't know which variant you want to set"));
311
312 /* Here, struct_type is the type of the inner struct,
313 while substruct_type is the type of the inner struct.
314 These are the same for normal structures, but a variant struct
315 contains anonymous union fields that contain substruct fields.
316 The value fieldno is the index of the top-level (normal or
317 anonymous union) field in struct_field, while the value
318 subfieldno is the index of the actual real (named inner) field
319 in substruct_type. */
320
321 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
322 if (val == 0)
323 val = evaluate_subexp (field_type, exp, pos, noside);
324
325 /* Now actually set the field in struct_val. */
326
327 /* Assign val to field fieldno. */
328 if (value_type (val) != field_type)
329 val = value_cast (field_type, val);
330
331 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
332 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
333 addr = value_contents_writeable (struct_val) + bitpos / 8;
334 if (bitsize)
335 modify_field (struct_type, addr,
336 value_as_long (val), bitpos % 8, bitsize);
337 else
338 memcpy (addr, value_contents (val),
339 TYPE_LENGTH (value_type (val)));
340
341 }
342 return struct_val;
343 }
344
345 /* Recursive helper function for setting elements of array tuples.
346 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
347 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
348 Evaluates index expresions and sets the specified element(s) of
349 ARRAY to ELEMENT. Returns last index value. */
350
351 static LONGEST
352 init_array_element (struct value *array, struct value *element,
353 struct expression *exp, int *pos,
354 enum noside noside, LONGEST low_bound, LONGEST high_bound)
355 {
356 LONGEST index;
357 int element_size = TYPE_LENGTH (value_type (element));
358
359 if (exp->elts[*pos].opcode == BINOP_COMMA)
360 {
361 (*pos)++;
362 init_array_element (array, element, exp, pos, noside,
363 low_bound, high_bound);
364 return init_array_element (array, element,
365 exp, pos, noside, low_bound, high_bound);
366 }
367 else
368 {
369 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
370 if (index < low_bound || index > high_bound)
371 error (_("tuple index out of range"));
372 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
373 value_contents (element), element_size);
374 }
375 return index;
376 }
377
378 static struct value *
379 value_f90_subarray (struct value *array,
380 struct expression *exp, int *pos, enum noside noside)
381 {
382 int pc = (*pos) + 1;
383 LONGEST low_bound, high_bound;
384 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
385 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
386
387 *pos += 3;
388
389 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
390 low_bound = TYPE_LOW_BOUND (range);
391 else
392 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
393
394 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
395 high_bound = TYPE_HIGH_BOUND (range);
396 else
397 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398
399 return value_slice (array, low_bound, high_bound - low_bound + 1);
400 }
401
402
403 /* Promote value ARG1 as appropriate before performing a unary operation
404 on this argument.
405 If the result is not appropriate for any particular language then it
406 needs to patch this function. */
407
408 void
409 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
410 struct value **arg1)
411 {
412 struct type *type1;
413
414 *arg1 = coerce_ref (*arg1);
415 type1 = check_typedef (value_type (*arg1));
416
417 if (is_integral_type (type1))
418 {
419 switch (language->la_language)
420 {
421 default:
422 /* Perform integral promotion for ANSI C/C++.
423 If not appropropriate for any particular language
424 it needs to modify this function. */
425 {
426 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
427
428 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
429 *arg1 = value_cast (builtin_int, *arg1);
430 }
431 break;
432 }
433 }
434 }
435
436 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
437 operation on those two operands.
438 If the result is not appropriate for any particular language then it
439 needs to patch this function. */
440
441 void
442 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
443 struct value **arg1, struct value **arg2)
444 {
445 struct type *promoted_type = NULL;
446 struct type *type1;
447 struct type *type2;
448
449 *arg1 = coerce_ref (*arg1);
450 *arg2 = coerce_ref (*arg2);
451
452 type1 = check_typedef (value_type (*arg1));
453 type2 = check_typedef (value_type (*arg2));
454
455 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
456 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
457 && !is_integral_type (type1))
458 || (TYPE_CODE (type2) != TYPE_CODE_FLT
459 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
460 && !is_integral_type (type2)))
461 return;
462
463 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
464 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
465 {
466 /* No promotion required. */
467 }
468 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
469 || TYPE_CODE (type2) == TYPE_CODE_FLT)
470 {
471 switch (language->la_language)
472 {
473 case language_c:
474 case language_cplus:
475 case language_asm:
476 case language_objc:
477 case language_opencl:
478 /* No promotion required. */
479 break;
480
481 default:
482 /* For other languages the result type is unchanged from gdb
483 version 6.7 for backward compatibility.
484 If either arg was long double, make sure that value is also long
485 double. Otherwise use double. */
486 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
487 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
488 promoted_type = builtin_type (gdbarch)->builtin_long_double;
489 else
490 promoted_type = builtin_type (gdbarch)->builtin_double;
491 break;
492 }
493 }
494 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
495 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
496 {
497 /* No promotion required. */
498 }
499 else
500 /* Integral operations here. */
501 /* FIXME: Also mixed integral/booleans, with result an integer. */
502 {
503 const struct builtin_type *builtin = builtin_type (gdbarch);
504 unsigned int promoted_len1 = TYPE_LENGTH (type1);
505 unsigned int promoted_len2 = TYPE_LENGTH (type2);
506 int is_unsigned1 = TYPE_UNSIGNED (type1);
507 int is_unsigned2 = TYPE_UNSIGNED (type2);
508 unsigned int result_len;
509 int unsigned_operation;
510
511 /* Determine type length and signedness after promotion for
512 both operands. */
513 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
514 {
515 is_unsigned1 = 0;
516 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
517 }
518 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
519 {
520 is_unsigned2 = 0;
521 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
522 }
523
524 if (promoted_len1 > promoted_len2)
525 {
526 unsigned_operation = is_unsigned1;
527 result_len = promoted_len1;
528 }
529 else if (promoted_len2 > promoted_len1)
530 {
531 unsigned_operation = is_unsigned2;
532 result_len = promoted_len2;
533 }
534 else
535 {
536 unsigned_operation = is_unsigned1 || is_unsigned2;
537 result_len = promoted_len1;
538 }
539
540 switch (language->la_language)
541 {
542 case language_c:
543 case language_cplus:
544 case language_asm:
545 case language_objc:
546 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
547 {
548 promoted_type = (unsigned_operation
549 ? builtin->builtin_unsigned_int
550 : builtin->builtin_int);
551 }
552 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
553 {
554 promoted_type = (unsigned_operation
555 ? builtin->builtin_unsigned_long
556 : builtin->builtin_long);
557 }
558 else
559 {
560 promoted_type = (unsigned_operation
561 ? builtin->builtin_unsigned_long_long
562 : builtin->builtin_long_long);
563 }
564 break;
565 case language_opencl:
566 if (result_len <= TYPE_LENGTH (lookup_signed_typename
567 (language, gdbarch, "int")))
568 {
569 promoted_type =
570 (unsigned_operation
571 ? lookup_unsigned_typename (language, gdbarch, "int")
572 : lookup_signed_typename (language, gdbarch, "int"));
573 }
574 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
575 (language, gdbarch, "long")))
576 {
577 promoted_type =
578 (unsigned_operation
579 ? lookup_unsigned_typename (language, gdbarch, "long")
580 : lookup_signed_typename (language, gdbarch,"long"));
581 }
582 break;
583 default:
584 /* For other languages the result type is unchanged from gdb
585 version 6.7 for backward compatibility.
586 If either arg was long long, make sure that value is also long
587 long. Otherwise use long. */
588 if (unsigned_operation)
589 {
590 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
591 promoted_type = builtin->builtin_unsigned_long_long;
592 else
593 promoted_type = builtin->builtin_unsigned_long;
594 }
595 else
596 {
597 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
598 promoted_type = builtin->builtin_long_long;
599 else
600 promoted_type = builtin->builtin_long;
601 }
602 break;
603 }
604 }
605
606 if (promoted_type)
607 {
608 /* Promote both operands to common type. */
609 *arg1 = value_cast (promoted_type, *arg1);
610 *arg2 = value_cast (promoted_type, *arg2);
611 }
612 }
613
614 static int
615 ptrmath_type_p (const struct language_defn *lang, struct type *type)
616 {
617 type = check_typedef (type);
618 if (TYPE_CODE (type) == TYPE_CODE_REF)
619 type = TYPE_TARGET_TYPE (type);
620
621 switch (TYPE_CODE (type))
622 {
623 case TYPE_CODE_PTR:
624 case TYPE_CODE_FUNC:
625 return 1;
626
627 case TYPE_CODE_ARRAY:
628 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
629
630 default:
631 return 0;
632 }
633 }
634
635 /* Constructs a fake method with the given parameter types.
636 This function is used by the parser to construct an "expected"
637 type for method overload resolution. */
638
639 static struct type *
640 make_params (int num_types, struct type **param_types)
641 {
642 struct type *type = XCNEW (struct type);
643 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
644 TYPE_LENGTH (type) = 1;
645 TYPE_CODE (type) = TYPE_CODE_METHOD;
646 TYPE_VPTR_FIELDNO (type) = -1;
647 TYPE_CHAIN (type) = type;
648 if (num_types > 0)
649 {
650 if (param_types[num_types - 1] == NULL)
651 {
652 --num_types;
653 TYPE_VARARGS (type) = 1;
654 }
655 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
656 == TYPE_CODE_VOID)
657 {
658 --num_types;
659 /* Caller should have ensured this. */
660 gdb_assert (num_types == 0);
661 TYPE_PROTOTYPED (type) = 1;
662 }
663 }
664
665 TYPE_NFIELDS (type) = num_types;
666 TYPE_FIELDS (type) = (struct field *)
667 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
668
669 while (num_types-- > 0)
670 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
671
672 return type;
673 }
674
675 struct value *
676 evaluate_subexp_standard (struct type *expect_type,
677 struct expression *exp, int *pos,
678 enum noside noside)
679 {
680 enum exp_opcode op;
681 int tem, tem2, tem3;
682 int pc, pc2 = 0, oldpos;
683 struct value *arg1 = NULL;
684 struct value *arg2 = NULL;
685 struct value *arg3;
686 struct type *type;
687 int nargs;
688 struct value **argvec;
689 int code;
690 int ix;
691 long mem_offset;
692 struct type **arg_types;
693 int save_pos1;
694 struct symbol *function = NULL;
695 char *function_name = NULL;
696
697 pc = (*pos)++;
698 op = exp->elts[pc].opcode;
699
700 switch (op)
701 {
702 case OP_SCOPE:
703 tem = longest_to_int (exp->elts[pc + 2].longconst);
704 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
705 if (noside == EVAL_SKIP)
706 goto nosideret;
707 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
708 &exp->elts[pc + 3].string,
709 expect_type, 0, noside);
710 if (arg1 == NULL)
711 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
712 return arg1;
713
714 case OP_LONG:
715 (*pos) += 3;
716 return value_from_longest (exp->elts[pc + 1].type,
717 exp->elts[pc + 2].longconst);
718
719 case OP_DOUBLE:
720 (*pos) += 3;
721 return value_from_double (exp->elts[pc + 1].type,
722 exp->elts[pc + 2].doubleconst);
723
724 case OP_DECFLOAT:
725 (*pos) += 3;
726 return value_from_decfloat (exp->elts[pc + 1].type,
727 exp->elts[pc + 2].decfloatconst);
728
729 case OP_ADL_FUNC:
730 case OP_VAR_VALUE:
731 (*pos) += 3;
732 if (noside == EVAL_SKIP)
733 goto nosideret;
734
735 /* JYG: We used to just return value_zero of the symbol type
736 if we're asked to avoid side effects. Otherwise we return
737 value_of_variable (...). However I'm not sure if
738 value_of_variable () has any side effect.
739 We need a full value object returned here for whatis_exp ()
740 to call evaluate_type () and then pass the full value to
741 value_rtti_target_type () if we are dealing with a pointer
742 or reference to a base class and print object is on. */
743
744 {
745 volatile struct gdb_exception except;
746 struct value *ret = NULL;
747
748 TRY_CATCH (except, RETURN_MASK_ERROR)
749 {
750 ret = value_of_variable (exp->elts[pc + 2].symbol,
751 exp->elts[pc + 1].block);
752 }
753
754 if (except.reason < 0)
755 {
756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
757 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
758 not_lval);
759 else
760 throw_exception (except);
761 }
762
763 return ret;
764 }
765
766 case OP_VAR_ENTRY_VALUE:
767 (*pos) += 2;
768 if (noside == EVAL_SKIP)
769 goto nosideret;
770
771 {
772 struct symbol *sym = exp->elts[pc + 1].symbol;
773 struct frame_info *frame;
774
775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
776 return value_zero (SYMBOL_TYPE (sym), not_lval);
777
778 if (SYMBOL_COMPUTED_OPS (sym) == NULL
779 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
780 error (_("Symbol \"%s\" does not have any specific entry value"),
781 SYMBOL_PRINT_NAME (sym));
782
783 frame = get_selected_frame (NULL);
784 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
785 }
786
787 case OP_LAST:
788 (*pos) += 2;
789 return
790 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
791
792 case OP_REGISTER:
793 {
794 const char *name = &exp->elts[pc + 2].string;
795 int regno;
796 struct value *val;
797
798 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
799 regno = user_reg_map_name_to_regnum (exp->gdbarch,
800 name, strlen (name));
801 if (regno == -1)
802 error (_("Register $%s not available."), name);
803
804 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
805 a value with the appropriate register type. Unfortunately,
806 we don't have easy access to the type of user registers.
807 So for these registers, we fetch the register value regardless
808 of the evaluation mode. */
809 if (noside == EVAL_AVOID_SIDE_EFFECTS
810 && regno < gdbarch_num_regs (exp->gdbarch)
811 + gdbarch_num_pseudo_regs (exp->gdbarch))
812 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
813 else
814 val = value_of_register (regno, get_selected_frame (NULL));
815 if (val == NULL)
816 error (_("Value of register %s not available."), name);
817 else
818 return val;
819 }
820 case OP_BOOL:
821 (*pos) += 2;
822 type = language_bool_type (exp->language_defn, exp->gdbarch);
823 return value_from_longest (type, exp->elts[pc + 1].longconst);
824
825 case OP_INTERNALVAR:
826 (*pos) += 2;
827 return value_of_internalvar (exp->gdbarch,
828 exp->elts[pc + 1].internalvar);
829
830 case OP_STRING:
831 tem = longest_to_int (exp->elts[pc + 1].longconst);
832 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
833 if (noside == EVAL_SKIP)
834 goto nosideret;
835 type = language_string_char_type (exp->language_defn, exp->gdbarch);
836 return value_string (&exp->elts[pc + 2].string, tem, type);
837
838 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
839 NSString constant. */
840 tem = longest_to_int (exp->elts[pc + 1].longconst);
841 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
842 if (noside == EVAL_SKIP)
843 {
844 goto nosideret;
845 }
846 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
847
848 case OP_ARRAY:
849 (*pos) += 3;
850 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
851 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
852 nargs = tem3 - tem2 + 1;
853 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
854
855 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
856 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
857 {
858 struct value *rec = allocate_value (expect_type);
859
860 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
861 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
862 }
863
864 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
865 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
866 {
867 struct type *range_type = TYPE_INDEX_TYPE (type);
868 struct type *element_type = TYPE_TARGET_TYPE (type);
869 struct value *array = allocate_value (expect_type);
870 int element_size = TYPE_LENGTH (check_typedef (element_type));
871 LONGEST low_bound, high_bound, index;
872
873 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
874 {
875 low_bound = 0;
876 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
877 }
878 index = low_bound;
879 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
880 for (tem = nargs; --nargs >= 0;)
881 {
882 struct value *element;
883 int index_pc = 0;
884
885 element = evaluate_subexp (element_type, exp, pos, noside);
886 if (value_type (element) != element_type)
887 element = value_cast (element_type, element);
888 if (index_pc)
889 {
890 int continue_pc = *pos;
891
892 *pos = index_pc;
893 index = init_array_element (array, element, exp, pos, noside,
894 low_bound, high_bound);
895 *pos = continue_pc;
896 }
897 else
898 {
899 if (index > high_bound)
900 /* To avoid memory corruption. */
901 error (_("Too many array elements"));
902 memcpy (value_contents_raw (array)
903 + (index - low_bound) * element_size,
904 value_contents (element),
905 element_size);
906 }
907 index++;
908 }
909 return array;
910 }
911
912 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
913 && TYPE_CODE (type) == TYPE_CODE_SET)
914 {
915 struct value *set = allocate_value (expect_type);
916 gdb_byte *valaddr = value_contents_raw (set);
917 struct type *element_type = TYPE_INDEX_TYPE (type);
918 struct type *check_type = element_type;
919 LONGEST low_bound, high_bound;
920
921 /* Get targettype of elementtype. */
922 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
923 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
924 check_type = TYPE_TARGET_TYPE (check_type);
925
926 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
927 error (_("(power)set type with unknown size"));
928 memset (valaddr, '\0', TYPE_LENGTH (type));
929 for (tem = 0; tem < nargs; tem++)
930 {
931 LONGEST range_low, range_high;
932 struct type *range_low_type, *range_high_type;
933 struct value *elem_val;
934
935 elem_val = evaluate_subexp (element_type, exp, pos, noside);
936 range_low_type = range_high_type = value_type (elem_val);
937 range_low = range_high = value_as_long (elem_val);
938
939 /* Check types of elements to avoid mixture of elements from
940 different types. Also check if type of element is "compatible"
941 with element type of powerset. */
942 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
943 range_low_type = TYPE_TARGET_TYPE (range_low_type);
944 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
945 range_high_type = TYPE_TARGET_TYPE (range_high_type);
946 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
947 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
948 && (range_low_type != range_high_type)))
949 /* different element modes. */
950 error (_("POWERSET tuple elements of different mode"));
951 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
952 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
953 && range_low_type != check_type))
954 error (_("incompatible POWERSET tuple elements"));
955 if (range_low > range_high)
956 {
957 warning (_("empty POWERSET tuple range"));
958 continue;
959 }
960 if (range_low < low_bound || range_high > high_bound)
961 error (_("POWERSET tuple element out of range"));
962 range_low -= low_bound;
963 range_high -= low_bound;
964 for (; range_low <= range_high; range_low++)
965 {
966 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
967
968 if (gdbarch_bits_big_endian (exp->gdbarch))
969 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
970 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
971 |= 1 << bit_index;
972 }
973 }
974 return set;
975 }
976
977 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
978 for (tem = 0; tem < nargs; tem++)
979 {
980 /* Ensure that array expressions are coerced into pointer
981 objects. */
982 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
983 }
984 if (noside == EVAL_SKIP)
985 goto nosideret;
986 return value_array (tem2, tem3, argvec);
987
988 case TERNOP_SLICE:
989 {
990 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
991 int lowbound
992 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
993 int upper
994 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
995
996 if (noside == EVAL_SKIP)
997 goto nosideret;
998 return value_slice (array, lowbound, upper - lowbound + 1);
999 }
1000
1001 case TERNOP_COND:
1002 /* Skip third and second args to evaluate the first one. */
1003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1004 if (value_logical_not (arg1))
1005 {
1006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1007 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1008 }
1009 else
1010 {
1011 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1012 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1013 return arg2;
1014 }
1015
1016 case OP_OBJC_SELECTOR:
1017 { /* Objective C @selector operator. */
1018 char *sel = &exp->elts[pc + 2].string;
1019 int len = longest_to_int (exp->elts[pc + 1].longconst);
1020 struct type *selector_type;
1021
1022 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1023 if (noside == EVAL_SKIP)
1024 goto nosideret;
1025
1026 if (sel[len] != 0)
1027 sel[len] = 0; /* Make sure it's terminated. */
1028
1029 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1030 return value_from_longest (selector_type,
1031 lookup_child_selector (exp->gdbarch, sel));
1032 }
1033
1034 case OP_OBJC_MSGCALL:
1035 { /* Objective C message (method) call. */
1036
1037 CORE_ADDR responds_selector = 0;
1038 CORE_ADDR method_selector = 0;
1039
1040 CORE_ADDR selector = 0;
1041
1042 int struct_return = 0;
1043 int sub_no_side = 0;
1044
1045 struct value *msg_send = NULL;
1046 struct value *msg_send_stret = NULL;
1047 int gnu_runtime = 0;
1048
1049 struct value *target = NULL;
1050 struct value *method = NULL;
1051 struct value *called_method = NULL;
1052
1053 struct type *selector_type = NULL;
1054 struct type *long_type;
1055
1056 struct value *ret = NULL;
1057 CORE_ADDR addr = 0;
1058
1059 selector = exp->elts[pc + 1].longconst;
1060 nargs = exp->elts[pc + 2].longconst;
1061 argvec = (struct value **) alloca (sizeof (struct value *)
1062 * (nargs + 5));
1063
1064 (*pos) += 3;
1065
1066 long_type = builtin_type (exp->gdbarch)->builtin_long;
1067 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1068
1069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1070 sub_no_side = EVAL_NORMAL;
1071 else
1072 sub_no_side = noside;
1073
1074 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1075
1076 if (value_as_long (target) == 0)
1077 return value_from_longest (long_type, 0);
1078
1079 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1080 gnu_runtime = 1;
1081
1082 /* Find the method dispatch (Apple runtime) or method lookup
1083 (GNU runtime) function for Objective-C. These will be used
1084 to lookup the symbol information for the method. If we
1085 can't find any symbol information, then we'll use these to
1086 call the method, otherwise we can call the method
1087 directly. The msg_send_stret function is used in the special
1088 case of a method that returns a structure (Apple runtime
1089 only). */
1090 if (gnu_runtime)
1091 {
1092 struct type *type = selector_type;
1093
1094 type = lookup_function_type (type);
1095 type = lookup_pointer_type (type);
1096 type = lookup_function_type (type);
1097 type = lookup_pointer_type (type);
1098
1099 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1100 msg_send_stret
1101 = find_function_in_inferior ("objc_msg_lookup", NULL);
1102
1103 msg_send = value_from_pointer (type, value_as_address (msg_send));
1104 msg_send_stret = value_from_pointer (type,
1105 value_as_address (msg_send_stret));
1106 }
1107 else
1108 {
1109 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1110 /* Special dispatcher for methods returning structs. */
1111 msg_send_stret
1112 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1113 }
1114
1115 /* Verify the target object responds to this method. The
1116 standard top-level 'Object' class uses a different name for
1117 the verification method than the non-standard, but more
1118 often used, 'NSObject' class. Make sure we check for both. */
1119
1120 responds_selector
1121 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1122 if (responds_selector == 0)
1123 responds_selector
1124 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1125
1126 if (responds_selector == 0)
1127 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1128
1129 method_selector
1130 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1131 if (method_selector == 0)
1132 method_selector
1133 = lookup_child_selector (exp->gdbarch, "methodFor:");
1134
1135 if (method_selector == 0)
1136 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1137
1138 /* Call the verification method, to make sure that the target
1139 class implements the desired method. */
1140
1141 argvec[0] = msg_send;
1142 argvec[1] = target;
1143 argvec[2] = value_from_longest (long_type, responds_selector);
1144 argvec[3] = value_from_longest (long_type, selector);
1145 argvec[4] = 0;
1146
1147 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1148 if (gnu_runtime)
1149 {
1150 /* Function objc_msg_lookup returns a pointer. */
1151 argvec[0] = ret;
1152 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1153 }
1154 if (value_as_long (ret) == 0)
1155 error (_("Target does not respond to this message selector."));
1156
1157 /* Call "methodForSelector:" method, to get the address of a
1158 function method that implements this selector for this
1159 class. If we can find a symbol at that address, then we
1160 know the return type, parameter types etc. (that's a good
1161 thing). */
1162
1163 argvec[0] = msg_send;
1164 argvec[1] = target;
1165 argvec[2] = value_from_longest (long_type, method_selector);
1166 argvec[3] = value_from_longest (long_type, selector);
1167 argvec[4] = 0;
1168
1169 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1170 if (gnu_runtime)
1171 {
1172 argvec[0] = ret;
1173 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1174 }
1175
1176 /* ret should now be the selector. */
1177
1178 addr = value_as_long (ret);
1179 if (addr)
1180 {
1181 struct symbol *sym = NULL;
1182
1183 /* The address might point to a function descriptor;
1184 resolve it to the actual code address instead. */
1185 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1186 &current_target);
1187
1188 /* Is it a high_level symbol? */
1189 sym = find_pc_function (addr);
1190 if (sym != NULL)
1191 method = value_of_variable (sym, 0);
1192 }
1193
1194 /* If we found a method with symbol information, check to see
1195 if it returns a struct. Otherwise assume it doesn't. */
1196
1197 if (method)
1198 {
1199 CORE_ADDR funaddr;
1200 struct type *val_type;
1201
1202 funaddr = find_function_addr (method, &val_type);
1203
1204 block_for_pc (funaddr);
1205
1206 CHECK_TYPEDEF (val_type);
1207
1208 if ((val_type == NULL)
1209 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1210 {
1211 if (expect_type != NULL)
1212 val_type = expect_type;
1213 }
1214
1215 struct_return = using_struct_return (exp->gdbarch, method,
1216 val_type);
1217 }
1218 else if (expect_type != NULL)
1219 {
1220 struct_return = using_struct_return (exp->gdbarch, NULL,
1221 check_typedef (expect_type));
1222 }
1223
1224 /* Found a function symbol. Now we will substitute its
1225 value in place of the message dispatcher (obj_msgSend),
1226 so that we call the method directly instead of thru
1227 the dispatcher. The main reason for doing this is that
1228 we can now evaluate the return value and parameter values
1229 according to their known data types, in case we need to
1230 do things like promotion, dereferencing, special handling
1231 of structs and doubles, etc.
1232
1233 We want to use the type signature of 'method', but still
1234 jump to objc_msgSend() or objc_msgSend_stret() to better
1235 mimic the behavior of the runtime. */
1236
1237 if (method)
1238 {
1239 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1240 error (_("method address has symbol information "
1241 "with non-function type; skipping"));
1242
1243 /* Create a function pointer of the appropriate type, and
1244 replace its value with the value of msg_send or
1245 msg_send_stret. We must use a pointer here, as
1246 msg_send and msg_send_stret are of pointer type, and
1247 the representation may be different on systems that use
1248 function descriptors. */
1249 if (struct_return)
1250 called_method
1251 = value_from_pointer (lookup_pointer_type (value_type (method)),
1252 value_as_address (msg_send_stret));
1253 else
1254 called_method
1255 = value_from_pointer (lookup_pointer_type (value_type (method)),
1256 value_as_address (msg_send));
1257 }
1258 else
1259 {
1260 if (struct_return)
1261 called_method = msg_send_stret;
1262 else
1263 called_method = msg_send;
1264 }
1265
1266 if (noside == EVAL_SKIP)
1267 goto nosideret;
1268
1269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1270 {
1271 /* If the return type doesn't look like a function type,
1272 call an error. This can happen if somebody tries to
1273 turn a variable into a function call. This is here
1274 because people often want to call, eg, strcmp, which
1275 gdb doesn't know is a function. If gdb isn't asked for
1276 it's opinion (ie. through "whatis"), it won't offer
1277 it. */
1278
1279 struct type *type = value_type (called_method);
1280
1281 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1282 type = TYPE_TARGET_TYPE (type);
1283 type = TYPE_TARGET_TYPE (type);
1284
1285 if (type)
1286 {
1287 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1288 return allocate_value (expect_type);
1289 else
1290 return allocate_value (type);
1291 }
1292 else
1293 error (_("Expression of type other than "
1294 "\"method returning ...\" used as a method"));
1295 }
1296
1297 /* Now depending on whether we found a symbol for the method,
1298 we will either call the runtime dispatcher or the method
1299 directly. */
1300
1301 argvec[0] = called_method;
1302 argvec[1] = target;
1303 argvec[2] = value_from_longest (long_type, selector);
1304 /* User-supplied arguments. */
1305 for (tem = 0; tem < nargs; tem++)
1306 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1307 argvec[tem + 3] = 0;
1308
1309 if (gnu_runtime && (method != NULL))
1310 {
1311 /* Function objc_msg_lookup returns a pointer. */
1312 deprecated_set_value_type (argvec[0],
1313 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1314 argvec[0]
1315 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1316 }
1317
1318 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1319 return ret;
1320 }
1321 break;
1322
1323 case OP_FUNCALL:
1324 (*pos) += 2;
1325 op = exp->elts[*pos].opcode;
1326 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1327 /* Allocate arg vector, including space for the function to be
1328 called in argvec[0], a potential `this', and a terminating NULL. */
1329 argvec = (struct value **)
1330 alloca (sizeof (struct value *) * (nargs + 3));
1331 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1332 {
1333 /* First, evaluate the structure into arg2. */
1334 pc2 = (*pos)++;
1335
1336 if (noside == EVAL_SKIP)
1337 goto nosideret;
1338
1339 if (op == STRUCTOP_MEMBER)
1340 {
1341 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1342 }
1343 else
1344 {
1345 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1346 }
1347
1348 /* If the function is a virtual function, then the
1349 aggregate value (providing the structure) plays
1350 its part by providing the vtable. Otherwise,
1351 it is just along for the ride: call the function
1352 directly. */
1353
1354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1355
1356 type = check_typedef (value_type (arg1));
1357 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR)
1358 {
1359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1360 arg1 = value_zero (TYPE_TARGET_TYPE (type), not_lval);
1361 else
1362 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1363
1364 /* Now, say which argument to start evaluating from. */
1365 nargs++;
1366 tem = 2;
1367 argvec[1] = arg2;
1368 }
1369 else if (TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1370 {
1371 struct type *type_ptr
1372 = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
1373 struct type *target_type_ptr
1374 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1375
1376 /* Now, convert these values to an address. */
1377 arg2 = value_cast (type_ptr, arg2);
1378
1379 mem_offset = value_as_long (arg1);
1380
1381 arg1 = value_from_pointer (target_type_ptr,
1382 value_as_long (arg2) + mem_offset);
1383 arg1 = value_ind (arg1);
1384 tem = 1;
1385 }
1386 else
1387 error (_("Non-pointer-to-member value used in pointer-to-member "
1388 "construct"));
1389 }
1390 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1391 {
1392 /* Hair for method invocations. */
1393 int tem2;
1394
1395 nargs++;
1396 /* First, evaluate the structure into arg2. */
1397 pc2 = (*pos)++;
1398 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1399 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1400 if (noside == EVAL_SKIP)
1401 goto nosideret;
1402
1403 if (op == STRUCTOP_STRUCT)
1404 {
1405 /* If v is a variable in a register, and the user types
1406 v.method (), this will produce an error, because v has
1407 no address.
1408
1409 A possible way around this would be to allocate a
1410 copy of the variable on the stack, copy in the
1411 contents, call the function, and copy out the
1412 contents. I.e. convert this from call by reference
1413 to call by copy-return (or whatever it's called).
1414 However, this does not work because it is not the
1415 same: the method being called could stash a copy of
1416 the address, and then future uses through that address
1417 (after the method returns) would be expected to
1418 use the variable itself, not some copy of it. */
1419 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1420 }
1421 else
1422 {
1423 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1424
1425 /* Check to see if the operator '->' has been
1426 overloaded. If the operator has been overloaded
1427 replace arg2 with the value returned by the custom
1428 operator and continue evaluation. */
1429 while (unop_user_defined_p (op, arg2))
1430 {
1431 volatile struct gdb_exception except;
1432 struct value *value = NULL;
1433 TRY_CATCH (except, RETURN_MASK_ERROR)
1434 {
1435 value = value_x_unop (arg2, op, noside);
1436 }
1437
1438 if (except.reason < 0)
1439 {
1440 if (except.error == NOT_FOUND_ERROR)
1441 break;
1442 else
1443 throw_exception (except);
1444 }
1445 arg2 = value;
1446 }
1447 }
1448 /* Now, say which argument to start evaluating from. */
1449 tem = 2;
1450 }
1451 else if (op == OP_SCOPE
1452 && overload_resolution
1453 && (exp->language_defn->la_language == language_cplus))
1454 {
1455 /* Unpack it locally so we can properly handle overload
1456 resolution. */
1457 char *name;
1458 int local_tem;
1459
1460 pc2 = (*pos)++;
1461 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1462 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1463 type = exp->elts[pc2 + 1].type;
1464 name = &exp->elts[pc2 + 3].string;
1465
1466 function = NULL;
1467 function_name = NULL;
1468 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1469 {
1470 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1471 name,
1472 get_selected_block (0),
1473 VAR_DOMAIN);
1474 if (function == NULL)
1475 error (_("No symbol \"%s\" in namespace \"%s\"."),
1476 name, TYPE_TAG_NAME (type));
1477
1478 tem = 1;
1479 /* arg2 is left as NULL on purpose. */
1480 }
1481 else
1482 {
1483 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1484 || TYPE_CODE (type) == TYPE_CODE_UNION);
1485 function_name = name;
1486
1487 /* We need a properly typed value for method lookup. For
1488 static methods arg2 is otherwise unused. */
1489 arg2 = value_zero (type, lval_memory);
1490 ++nargs;
1491 tem = 2;
1492 }
1493 }
1494 else if (op == OP_ADL_FUNC)
1495 {
1496 /* Save the function position and move pos so that the arguments
1497 can be evaluated. */
1498 int func_name_len;
1499
1500 save_pos1 = *pos;
1501 tem = 1;
1502
1503 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1504 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1505 }
1506 else
1507 {
1508 /* Non-method function call. */
1509 save_pos1 = *pos;
1510 tem = 1;
1511
1512 /* If this is a C++ function wait until overload resolution. */
1513 if (op == OP_VAR_VALUE
1514 && overload_resolution
1515 && (exp->language_defn->la_language == language_cplus))
1516 {
1517 (*pos) += 4; /* Skip the evaluation of the symbol. */
1518 argvec[0] = NULL;
1519 }
1520 else
1521 {
1522 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1523 type = value_type (argvec[0]);
1524 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1525 type = TYPE_TARGET_TYPE (type);
1526 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1527 {
1528 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1529 {
1530 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1531 tem - 1),
1532 exp, pos, noside);
1533 }
1534 }
1535 }
1536 }
1537
1538 /* Evaluate arguments (if not already done, e.g., namespace::func()
1539 and overload-resolution is off). */
1540 for (; tem <= nargs; tem++)
1541 {
1542 /* Ensure that array expressions are coerced into pointer
1543 objects. */
1544 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1545 }
1546
1547 /* Signal end of arglist. */
1548 argvec[tem] = 0;
1549
1550 if (op == OP_ADL_FUNC)
1551 {
1552 struct symbol *symp;
1553 char *func_name;
1554 int name_len;
1555 int string_pc = save_pos1 + 3;
1556
1557 /* Extract the function name. */
1558 name_len = longest_to_int (exp->elts[string_pc].longconst);
1559 func_name = (char *) alloca (name_len + 1);
1560 strcpy (func_name, &exp->elts[string_pc + 1].string);
1561
1562 find_overload_match (&argvec[1], nargs, func_name,
1563 NON_METHOD, /* not method */
1564 NULL, NULL, /* pass NULL symbol since
1565 symbol is unknown */
1566 NULL, &symp, NULL, 0);
1567
1568 /* Now fix the expression being evaluated. */
1569 exp->elts[save_pos1 + 2].symbol = symp;
1570 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1571 }
1572
1573 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1574 || (op == OP_SCOPE && function_name != NULL))
1575 {
1576 int static_memfuncp;
1577 char *tstr;
1578
1579 /* Method invocation: stuff "this" as first parameter.
1580 If the method turns out to be static we undo this below. */
1581 argvec[1] = arg2;
1582
1583 if (op != OP_SCOPE)
1584 {
1585 /* Name of method from expression. */
1586 tstr = &exp->elts[pc2 + 2].string;
1587 }
1588 else
1589 tstr = function_name;
1590
1591 if (overload_resolution && (exp->language_defn->la_language
1592 == language_cplus))
1593 {
1594 /* Language is C++, do some overload resolution before
1595 evaluation. */
1596 struct value *valp = NULL;
1597
1598 (void) find_overload_match (&argvec[1], nargs, tstr,
1599 METHOD, /* method */
1600 &arg2, /* the object */
1601 NULL, &valp, NULL,
1602 &static_memfuncp, 0);
1603
1604 if (op == OP_SCOPE && !static_memfuncp)
1605 {
1606 /* For the time being, we don't handle this. */
1607 error (_("Call to overloaded function %s requires "
1608 "`this' pointer"),
1609 function_name);
1610 }
1611 argvec[1] = arg2; /* the ``this'' pointer */
1612 argvec[0] = valp; /* Use the method found after overload
1613 resolution. */
1614 }
1615 else
1616 /* Non-C++ case -- or no overload resolution. */
1617 {
1618 struct value *temp = arg2;
1619
1620 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1621 &static_memfuncp,
1622 op == STRUCTOP_STRUCT
1623 ? "structure" : "structure pointer");
1624 /* value_struct_elt updates temp with the correct value
1625 of the ``this'' pointer if necessary, so modify argvec[1] to
1626 reflect any ``this'' changes. */
1627 arg2
1628 = value_from_longest (lookup_pointer_type(value_type (temp)),
1629 value_address (temp)
1630 + value_embedded_offset (temp));
1631 argvec[1] = arg2; /* the ``this'' pointer */
1632 }
1633
1634 /* Take out `this' if needed. */
1635 if (static_memfuncp)
1636 {
1637 argvec[1] = argvec[0];
1638 nargs--;
1639 argvec++;
1640 }
1641 }
1642 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1643 {
1644 /* Pointer to member. argvec[1] is already set up. */
1645 argvec[0] = arg1;
1646 }
1647 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1648 {
1649 /* Non-member function being called. */
1650 /* fn: This can only be done for C++ functions. A C-style function
1651 in a C++ program, for instance, does not have the fields that
1652 are expected here. */
1653
1654 if (overload_resolution && (exp->language_defn->la_language
1655 == language_cplus))
1656 {
1657 /* Language is C++, do some overload resolution before
1658 evaluation. */
1659 struct symbol *symp;
1660 int no_adl = 0;
1661
1662 /* If a scope has been specified disable ADL. */
1663 if (op == OP_SCOPE)
1664 no_adl = 1;
1665
1666 if (op == OP_VAR_VALUE)
1667 function = exp->elts[save_pos1+2].symbol;
1668
1669 (void) find_overload_match (&argvec[1], nargs,
1670 NULL, /* no need for name */
1671 NON_METHOD, /* not method */
1672 NULL, function, /* the function */
1673 NULL, &symp, NULL, no_adl);
1674
1675 if (op == OP_VAR_VALUE)
1676 {
1677 /* Now fix the expression being evaluated. */
1678 exp->elts[save_pos1+2].symbol = symp;
1679 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1680 noside);
1681 }
1682 else
1683 argvec[0] = value_of_variable (symp, get_selected_block (0));
1684 }
1685 else
1686 {
1687 /* Not C++, or no overload resolution allowed. */
1688 /* Nothing to be done; argvec already correctly set up. */
1689 }
1690 }
1691 else
1692 {
1693 /* It is probably a C-style function. */
1694 /* Nothing to be done; argvec already correctly set up. */
1695 }
1696
1697 do_call_it:
1698
1699 if (noside == EVAL_SKIP)
1700 goto nosideret;
1701 if (argvec[0] == NULL)
1702 error (_("Cannot evaluate function -- may be inlined"));
1703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1704 {
1705 /* If the return type doesn't look like a function type, call an
1706 error. This can happen if somebody tries to turn a variable into
1707 a function call. This is here because people often want to
1708 call, eg, strcmp, which gdb doesn't know is a function. If
1709 gdb isn't asked for it's opinion (ie. through "whatis"),
1710 it won't offer it. */
1711
1712 struct type *ftype = value_type (argvec[0]);
1713
1714 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1715 {
1716 /* We don't know anything about what the internal
1717 function might return, but we have to return
1718 something. */
1719 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1720 not_lval);
1721 }
1722 else if (TYPE_GNU_IFUNC (ftype))
1723 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1724 else if (TYPE_TARGET_TYPE (ftype))
1725 return allocate_value (TYPE_TARGET_TYPE (ftype));
1726 else
1727 error (_("Expression of type other than "
1728 "\"Function returning ...\" used as function"));
1729 }
1730 switch (TYPE_CODE (value_type (argvec[0])))
1731 {
1732 case TYPE_CODE_INTERNAL_FUNCTION:
1733 return call_internal_function (exp->gdbarch, exp->language_defn,
1734 argvec[0], nargs, argvec + 1);
1735 case TYPE_CODE_XMETHOD:
1736 return call_xmethod (argvec[0], nargs, argvec + 1);
1737 default:
1738 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1739 }
1740 /* pai: FIXME save value from call_function_by_hand, then adjust
1741 pc by adjust_fn_pc if +ve. */
1742
1743 case OP_F77_UNDETERMINED_ARGLIST:
1744
1745 /* Remember that in F77, functions, substring ops and
1746 array subscript operations cannot be disambiguated
1747 at parse time. We have made all array subscript operations,
1748 substring operations as well as function calls come here
1749 and we now have to discover what the heck this thing actually was.
1750 If it is a function, we process just as if we got an OP_FUNCALL. */
1751
1752 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1753 (*pos) += 2;
1754
1755 /* First determine the type code we are dealing with. */
1756 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1757 type = check_typedef (value_type (arg1));
1758 code = TYPE_CODE (type);
1759
1760 if (code == TYPE_CODE_PTR)
1761 {
1762 /* Fortran always passes variable to subroutines as pointer.
1763 So we need to look into its target type to see if it is
1764 array, string or function. If it is, we need to switch
1765 to the target value the original one points to. */
1766 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1767
1768 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1769 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1770 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1771 {
1772 arg1 = value_ind (arg1);
1773 type = check_typedef (value_type (arg1));
1774 code = TYPE_CODE (type);
1775 }
1776 }
1777
1778 switch (code)
1779 {
1780 case TYPE_CODE_ARRAY:
1781 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1782 return value_f90_subarray (arg1, exp, pos, noside);
1783 else
1784 goto multi_f77_subscript;
1785
1786 case TYPE_CODE_STRING:
1787 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1788 return value_f90_subarray (arg1, exp, pos, noside);
1789 else
1790 {
1791 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1792 return value_subscript (arg1, value_as_long (arg2));
1793 }
1794
1795 case TYPE_CODE_PTR:
1796 case TYPE_CODE_FUNC:
1797 /* It's a function call. */
1798 /* Allocate arg vector, including space for the function to be
1799 called in argvec[0] and a terminating NULL. */
1800 argvec = (struct value **)
1801 alloca (sizeof (struct value *) * (nargs + 2));
1802 argvec[0] = arg1;
1803 tem = 1;
1804 for (; tem <= nargs; tem++)
1805 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1806 argvec[tem] = 0; /* signal end of arglist */
1807 goto do_call_it;
1808
1809 default:
1810 error (_("Cannot perform substring on this type"));
1811 }
1812
1813 case OP_COMPLEX:
1814 /* We have a complex number, There should be 2 floating
1815 point numbers that compose it. */
1816 (*pos) += 2;
1817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1819
1820 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1821
1822 case STRUCTOP_STRUCT:
1823 tem = longest_to_int (exp->elts[pc + 1].longconst);
1824 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1826 if (noside == EVAL_SKIP)
1827 goto nosideret;
1828 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1829 NULL, "structure");
1830 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1831 arg3 = value_zero (value_type (arg3), not_lval);
1832 return arg3;
1833
1834 case STRUCTOP_PTR:
1835 tem = longest_to_int (exp->elts[pc + 1].longconst);
1836 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1838 if (noside == EVAL_SKIP)
1839 goto nosideret;
1840
1841 /* Check to see if operator '->' has been overloaded. If so replace
1842 arg1 with the value returned by evaluating operator->(). */
1843 while (unop_user_defined_p (op, arg1))
1844 {
1845 volatile struct gdb_exception except;
1846 struct value *value = NULL;
1847 TRY_CATCH (except, RETURN_MASK_ERROR)
1848 {
1849 value = value_x_unop (arg1, op, noside);
1850 }
1851
1852 if (except.reason < 0)
1853 {
1854 if (except.error == NOT_FOUND_ERROR)
1855 break;
1856 else
1857 throw_exception (except);
1858 }
1859 arg1 = value;
1860 }
1861
1862 /* JYG: if print object is on we need to replace the base type
1863 with rtti type in order to continue on with successful
1864 lookup of member / method only available in the rtti type. */
1865 {
1866 struct type *type = value_type (arg1);
1867 struct type *real_type;
1868 int full, top, using_enc;
1869 struct value_print_options opts;
1870
1871 get_user_print_options (&opts);
1872 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1873 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1874 {
1875 real_type = value_rtti_indirect_type (arg1, &full, &top,
1876 &using_enc);
1877 if (real_type)
1878 arg1 = value_cast (real_type, arg1);
1879 }
1880 }
1881
1882 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1883 NULL, "structure pointer");
1884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1885 arg3 = value_zero (value_type (arg3), not_lval);
1886 return arg3;
1887
1888 case STRUCTOP_MEMBER:
1889 case STRUCTOP_MPTR:
1890 if (op == STRUCTOP_MEMBER)
1891 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1892 else
1893 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1894
1895 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1896
1897 if (noside == EVAL_SKIP)
1898 goto nosideret;
1899
1900 type = check_typedef (value_type (arg2));
1901 switch (TYPE_CODE (type))
1902 {
1903 case TYPE_CODE_METHODPTR:
1904 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1905 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1906 else
1907 {
1908 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1909 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1910 return value_ind (arg2);
1911 }
1912
1913 case TYPE_CODE_MEMBERPTR:
1914 /* Now, convert these values to an address. */
1915 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1916 arg1, 1);
1917
1918 mem_offset = value_as_long (arg2);
1919
1920 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1921 value_as_long (arg1) + mem_offset);
1922 return value_ind (arg3);
1923
1924 default:
1925 error (_("non-pointer-to-member value used "
1926 "in pointer-to-member construct"));
1927 }
1928
1929 case TYPE_INSTANCE:
1930 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1931 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1932 for (ix = 0; ix < nargs; ++ix)
1933 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1934
1935 expect_type = make_params (nargs, arg_types);
1936 *(pos) += 3 + nargs;
1937 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1938 xfree (TYPE_FIELDS (expect_type));
1939 xfree (TYPE_MAIN_TYPE (expect_type));
1940 xfree (expect_type);
1941 return arg1;
1942
1943 case BINOP_CONCAT:
1944 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1945 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1946 if (noside == EVAL_SKIP)
1947 goto nosideret;
1948 if (binop_user_defined_p (op, arg1, arg2))
1949 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1950 else
1951 return value_concat (arg1, arg2);
1952
1953 case BINOP_ASSIGN:
1954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1955 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1956
1957 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1958 return arg1;
1959 if (binop_user_defined_p (op, arg1, arg2))
1960 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1961 else
1962 return value_assign (arg1, arg2);
1963
1964 case BINOP_ASSIGN_MODIFY:
1965 (*pos) += 2;
1966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1967 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1968 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1969 return arg1;
1970 op = exp->elts[pc + 1].opcode;
1971 if (binop_user_defined_p (op, arg1, arg2))
1972 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1973 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
1974 value_type (arg1))
1975 && is_integral_type (value_type (arg2)))
1976 arg2 = value_ptradd (arg1, value_as_long (arg2));
1977 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
1978 value_type (arg1))
1979 && is_integral_type (value_type (arg2)))
1980 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1981 else
1982 {
1983 struct value *tmp = arg1;
1984
1985 /* For shift and integer exponentiation operations,
1986 only promote the first argument. */
1987 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1988 && is_integral_type (value_type (arg2)))
1989 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1990 else
1991 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1992
1993 arg2 = value_binop (tmp, arg2, op);
1994 }
1995 return value_assign (arg1, arg2);
1996
1997 case BINOP_ADD:
1998 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1999 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2000 if (noside == EVAL_SKIP)
2001 goto nosideret;
2002 if (binop_user_defined_p (op, arg1, arg2))
2003 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2004 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2005 && is_integral_type (value_type (arg2)))
2006 return value_ptradd (arg1, value_as_long (arg2));
2007 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2008 && is_integral_type (value_type (arg1)))
2009 return value_ptradd (arg2, value_as_long (arg1));
2010 else
2011 {
2012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2013 return value_binop (arg1, arg2, BINOP_ADD);
2014 }
2015
2016 case BINOP_SUB:
2017 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2018 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2019 if (noside == EVAL_SKIP)
2020 goto nosideret;
2021 if (binop_user_defined_p (op, arg1, arg2))
2022 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2023 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2024 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2025 {
2026 /* FIXME -- should be ptrdiff_t */
2027 type = builtin_type (exp->gdbarch)->builtin_long;
2028 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2029 }
2030 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2031 && is_integral_type (value_type (arg2)))
2032 return value_ptradd (arg1, - value_as_long (arg2));
2033 else
2034 {
2035 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2036 return value_binop (arg1, arg2, BINOP_SUB);
2037 }
2038
2039 case BINOP_EXP:
2040 case BINOP_MUL:
2041 case BINOP_DIV:
2042 case BINOP_INTDIV:
2043 case BINOP_REM:
2044 case BINOP_MOD:
2045 case BINOP_LSH:
2046 case BINOP_RSH:
2047 case BINOP_BITWISE_AND:
2048 case BINOP_BITWISE_IOR:
2049 case BINOP_BITWISE_XOR:
2050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2051 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2052 if (noside == EVAL_SKIP)
2053 goto nosideret;
2054 if (binop_user_defined_p (op, arg1, arg2))
2055 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2056 else
2057 {
2058 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2059 fudge arg2 to avoid division-by-zero, the caller is
2060 (theoretically) only looking for the type of the result. */
2061 if (noside == EVAL_AVOID_SIDE_EFFECTS
2062 /* ??? Do we really want to test for BINOP_MOD here?
2063 The implementation of value_binop gives it a well-defined
2064 value. */
2065 && (op == BINOP_DIV
2066 || op == BINOP_INTDIV
2067 || op == BINOP_REM
2068 || op == BINOP_MOD)
2069 && value_logical_not (arg2))
2070 {
2071 struct value *v_one, *retval;
2072
2073 v_one = value_one (value_type (arg2));
2074 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2075 retval = value_binop (arg1, v_one, op);
2076 return retval;
2077 }
2078 else
2079 {
2080 /* For shift and integer exponentiation operations,
2081 only promote the first argument. */
2082 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2083 && is_integral_type (value_type (arg2)))
2084 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2085 else
2086 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2087
2088 return value_binop (arg1, arg2, op);
2089 }
2090 }
2091
2092 case BINOP_SUBSCRIPT:
2093 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2094 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2095 if (noside == EVAL_SKIP)
2096 goto nosideret;
2097 if (binop_user_defined_p (op, arg1, arg2))
2098 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2099 else
2100 {
2101 /* If the user attempts to subscript something that is not an
2102 array or pointer type (like a plain int variable for example),
2103 then report this as an error. */
2104
2105 arg1 = coerce_ref (arg1);
2106 type = check_typedef (value_type (arg1));
2107 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2108 && TYPE_CODE (type) != TYPE_CODE_PTR)
2109 {
2110 if (TYPE_NAME (type))
2111 error (_("cannot subscript something of type `%s'"),
2112 TYPE_NAME (type));
2113 else
2114 error (_("cannot subscript requested type"));
2115 }
2116
2117 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2118 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2119 else
2120 return value_subscript (arg1, value_as_long (arg2));
2121 }
2122 case MULTI_SUBSCRIPT:
2123 (*pos) += 2;
2124 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2125 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2126 while (nargs-- > 0)
2127 {
2128 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2129 /* FIXME: EVAL_SKIP handling may not be correct. */
2130 if (noside == EVAL_SKIP)
2131 {
2132 if (nargs > 0)
2133 {
2134 continue;
2135 }
2136 else
2137 {
2138 goto nosideret;
2139 }
2140 }
2141 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2142 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2143 {
2144 /* If the user attempts to subscript something that has no target
2145 type (like a plain int variable for example), then report this
2146 as an error. */
2147
2148 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2149 if (type != NULL)
2150 {
2151 arg1 = value_zero (type, VALUE_LVAL (arg1));
2152 noside = EVAL_SKIP;
2153 continue;
2154 }
2155 else
2156 {
2157 error (_("cannot subscript something of type `%s'"),
2158 TYPE_NAME (value_type (arg1)));
2159 }
2160 }
2161
2162 if (binop_user_defined_p (op, arg1, arg2))
2163 {
2164 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2165 }
2166 else
2167 {
2168 arg1 = coerce_ref (arg1);
2169 type = check_typedef (value_type (arg1));
2170
2171 switch (TYPE_CODE (type))
2172 {
2173 case TYPE_CODE_PTR:
2174 case TYPE_CODE_ARRAY:
2175 case TYPE_CODE_STRING:
2176 arg1 = value_subscript (arg1, value_as_long (arg2));
2177 break;
2178
2179 default:
2180 if (TYPE_NAME (type))
2181 error (_("cannot subscript something of type `%s'"),
2182 TYPE_NAME (type));
2183 else
2184 error (_("cannot subscript requested type"));
2185 }
2186 }
2187 }
2188 return (arg1);
2189
2190 multi_f77_subscript:
2191 {
2192 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2193 int ndimensions = 1, i;
2194 struct value *array = arg1;
2195
2196 if (nargs > MAX_FORTRAN_DIMS)
2197 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2198
2199 ndimensions = calc_f77_array_dims (type);
2200
2201 if (nargs != ndimensions)
2202 error (_("Wrong number of subscripts"));
2203
2204 gdb_assert (nargs > 0);
2205
2206 /* Now that we know we have a legal array subscript expression
2207 let us actually find out where this element exists in the array. */
2208
2209 /* Take array indices left to right. */
2210 for (i = 0; i < nargs; i++)
2211 {
2212 /* Evaluate each subscript; it must be a legal integer in F77. */
2213 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2214
2215 /* Fill in the subscript array. */
2216
2217 subscript_array[i] = value_as_long (arg2);
2218 }
2219
2220 /* Internal type of array is arranged right to left. */
2221 for (i = nargs; i > 0; i--)
2222 {
2223 struct type *array_type = check_typedef (value_type (array));
2224 LONGEST index = subscript_array[i - 1];
2225
2226 array = value_subscripted_rvalue (array, index,
2227 f77_get_lowerbound (array_type));
2228 }
2229
2230 return array;
2231 }
2232
2233 case BINOP_LOGICAL_AND:
2234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2235 if (noside == EVAL_SKIP)
2236 {
2237 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2238 goto nosideret;
2239 }
2240
2241 oldpos = *pos;
2242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2243 *pos = oldpos;
2244
2245 if (binop_user_defined_p (op, arg1, arg2))
2246 {
2247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2248 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2249 }
2250 else
2251 {
2252 tem = value_logical_not (arg1);
2253 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2254 (tem ? EVAL_SKIP : noside));
2255 type = language_bool_type (exp->language_defn, exp->gdbarch);
2256 return value_from_longest (type,
2257 (LONGEST) (!tem && !value_logical_not (arg2)));
2258 }
2259
2260 case BINOP_LOGICAL_OR:
2261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2262 if (noside == EVAL_SKIP)
2263 {
2264 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2265 goto nosideret;
2266 }
2267
2268 oldpos = *pos;
2269 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2270 *pos = oldpos;
2271
2272 if (binop_user_defined_p (op, arg1, arg2))
2273 {
2274 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2275 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2276 }
2277 else
2278 {
2279 tem = value_logical_not (arg1);
2280 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2281 (!tem ? EVAL_SKIP : noside));
2282 type = language_bool_type (exp->language_defn, exp->gdbarch);
2283 return value_from_longest (type,
2284 (LONGEST) (!tem || !value_logical_not (arg2)));
2285 }
2286
2287 case BINOP_EQUAL:
2288 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2289 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2290 if (noside == EVAL_SKIP)
2291 goto nosideret;
2292 if (binop_user_defined_p (op, arg1, arg2))
2293 {
2294 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2295 }
2296 else
2297 {
2298 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2299 tem = value_equal (arg1, arg2);
2300 type = language_bool_type (exp->language_defn, exp->gdbarch);
2301 return value_from_longest (type, (LONGEST) tem);
2302 }
2303
2304 case BINOP_NOTEQUAL:
2305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2306 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2307 if (noside == EVAL_SKIP)
2308 goto nosideret;
2309 if (binop_user_defined_p (op, arg1, arg2))
2310 {
2311 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2312 }
2313 else
2314 {
2315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2316 tem = value_equal (arg1, arg2);
2317 type = language_bool_type (exp->language_defn, exp->gdbarch);
2318 return value_from_longest (type, (LONGEST) ! tem);
2319 }
2320
2321 case BINOP_LESS:
2322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2323 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2324 if (noside == EVAL_SKIP)
2325 goto nosideret;
2326 if (binop_user_defined_p (op, arg1, arg2))
2327 {
2328 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2329 }
2330 else
2331 {
2332 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2333 tem = value_less (arg1, arg2);
2334 type = language_bool_type (exp->language_defn, exp->gdbarch);
2335 return value_from_longest (type, (LONGEST) tem);
2336 }
2337
2338 case BINOP_GTR:
2339 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2340 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2341 if (noside == EVAL_SKIP)
2342 goto nosideret;
2343 if (binop_user_defined_p (op, arg1, arg2))
2344 {
2345 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2346 }
2347 else
2348 {
2349 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2350 tem = value_less (arg2, arg1);
2351 type = language_bool_type (exp->language_defn, exp->gdbarch);
2352 return value_from_longest (type, (LONGEST) tem);
2353 }
2354
2355 case BINOP_GEQ:
2356 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2357 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2358 if (noside == EVAL_SKIP)
2359 goto nosideret;
2360 if (binop_user_defined_p (op, arg1, arg2))
2361 {
2362 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2363 }
2364 else
2365 {
2366 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2367 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2368 type = language_bool_type (exp->language_defn, exp->gdbarch);
2369 return value_from_longest (type, (LONGEST) tem);
2370 }
2371
2372 case BINOP_LEQ:
2373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2374 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2375 if (noside == EVAL_SKIP)
2376 goto nosideret;
2377 if (binop_user_defined_p (op, arg1, arg2))
2378 {
2379 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2380 }
2381 else
2382 {
2383 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2384 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2385 type = language_bool_type (exp->language_defn, exp->gdbarch);
2386 return value_from_longest (type, (LONGEST) tem);
2387 }
2388
2389 case BINOP_REPEAT:
2390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2391 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2392 if (noside == EVAL_SKIP)
2393 goto nosideret;
2394 type = check_typedef (value_type (arg2));
2395 if (TYPE_CODE (type) != TYPE_CODE_INT)
2396 error (_("Non-integral right operand for \"@\" operator."));
2397 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2398 {
2399 return allocate_repeat_value (value_type (arg1),
2400 longest_to_int (value_as_long (arg2)));
2401 }
2402 else
2403 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2404
2405 case BINOP_COMMA:
2406 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2407 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2408
2409 case UNOP_PLUS:
2410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2411 if (noside == EVAL_SKIP)
2412 goto nosideret;
2413 if (unop_user_defined_p (op, arg1))
2414 return value_x_unop (arg1, op, noside);
2415 else
2416 {
2417 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2418 return value_pos (arg1);
2419 }
2420
2421 case UNOP_NEG:
2422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2423 if (noside == EVAL_SKIP)
2424 goto nosideret;
2425 if (unop_user_defined_p (op, arg1))
2426 return value_x_unop (arg1, op, noside);
2427 else
2428 {
2429 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2430 return value_neg (arg1);
2431 }
2432
2433 case UNOP_COMPLEMENT:
2434 /* C++: check for and handle destructor names. */
2435 op = exp->elts[*pos].opcode;
2436
2437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2438 if (noside == EVAL_SKIP)
2439 goto nosideret;
2440 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2441 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2442 else
2443 {
2444 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2445 return value_complement (arg1);
2446 }
2447
2448 case UNOP_LOGICAL_NOT:
2449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2450 if (noside == EVAL_SKIP)
2451 goto nosideret;
2452 if (unop_user_defined_p (op, arg1))
2453 return value_x_unop (arg1, op, noside);
2454 else
2455 {
2456 type = language_bool_type (exp->language_defn, exp->gdbarch);
2457 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2458 }
2459
2460 case UNOP_IND:
2461 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2462 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2463 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2464 type = check_typedef (value_type (arg1));
2465 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2466 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2467 error (_("Attempt to dereference pointer "
2468 "to member without an object"));
2469 if (noside == EVAL_SKIP)
2470 goto nosideret;
2471 if (unop_user_defined_p (op, arg1))
2472 return value_x_unop (arg1, op, noside);
2473 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2474 {
2475 type = check_typedef (value_type (arg1));
2476 if (TYPE_CODE (type) == TYPE_CODE_PTR
2477 || TYPE_CODE (type) == TYPE_CODE_REF
2478 /* In C you can dereference an array to get the 1st elt. */
2479 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2480 )
2481 return value_zero (TYPE_TARGET_TYPE (type),
2482 lval_memory);
2483 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2484 /* GDB allows dereferencing an int. */
2485 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2486 lval_memory);
2487 else
2488 error (_("Attempt to take contents of a non-pointer value."));
2489 }
2490
2491 /* Allow * on an integer so we can cast it to whatever we want.
2492 This returns an int, which seems like the most C-like thing to
2493 do. "long long" variables are rare enough that
2494 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2495 if (TYPE_CODE (type) == TYPE_CODE_INT)
2496 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2497 (CORE_ADDR) value_as_address (arg1));
2498 return value_ind (arg1);
2499
2500 case UNOP_ADDR:
2501 /* C++: check for and handle pointer to members. */
2502
2503 op = exp->elts[*pos].opcode;
2504
2505 if (noside == EVAL_SKIP)
2506 {
2507 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2508 goto nosideret;
2509 }
2510 else
2511 {
2512 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2513 noside);
2514
2515 return retvalp;
2516 }
2517
2518 case UNOP_SIZEOF:
2519 if (noside == EVAL_SKIP)
2520 {
2521 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2522 goto nosideret;
2523 }
2524 return evaluate_subexp_for_sizeof (exp, pos, noside);
2525
2526 case UNOP_CAST:
2527 (*pos) += 2;
2528 type = exp->elts[pc + 1].type;
2529 arg1 = evaluate_subexp (type, exp, pos, noside);
2530 if (noside == EVAL_SKIP)
2531 goto nosideret;
2532 if (type != value_type (arg1))
2533 arg1 = value_cast (type, arg1);
2534 return arg1;
2535
2536 case UNOP_CAST_TYPE:
2537 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2538 type = value_type (arg1);
2539 arg1 = evaluate_subexp (type, exp, pos, noside);
2540 if (noside == EVAL_SKIP)
2541 goto nosideret;
2542 if (type != value_type (arg1))
2543 arg1 = value_cast (type, arg1);
2544 return arg1;
2545
2546 case UNOP_DYNAMIC_CAST:
2547 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2548 type = value_type (arg1);
2549 arg1 = evaluate_subexp (type, exp, pos, noside);
2550 if (noside == EVAL_SKIP)
2551 goto nosideret;
2552 return value_dynamic_cast (type, arg1);
2553
2554 case UNOP_REINTERPRET_CAST:
2555 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2556 type = value_type (arg1);
2557 arg1 = evaluate_subexp (type, exp, pos, noside);
2558 if (noside == EVAL_SKIP)
2559 goto nosideret;
2560 return value_reinterpret_cast (type, arg1);
2561
2562 case UNOP_MEMVAL:
2563 (*pos) += 2;
2564 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2565 if (noside == EVAL_SKIP)
2566 goto nosideret;
2567 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2568 return value_zero (exp->elts[pc + 1].type, lval_memory);
2569 else
2570 return value_at_lazy (exp->elts[pc + 1].type,
2571 value_as_address (arg1));
2572
2573 case UNOP_MEMVAL_TYPE:
2574 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2575 type = value_type (arg1);
2576 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2577 if (noside == EVAL_SKIP)
2578 goto nosideret;
2579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2580 return value_zero (type, lval_memory);
2581 else
2582 return value_at_lazy (type, value_as_address (arg1));
2583
2584 case UNOP_MEMVAL_TLS:
2585 (*pos) += 3;
2586 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2587 if (noside == EVAL_SKIP)
2588 goto nosideret;
2589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2590 return value_zero (exp->elts[pc + 2].type, lval_memory);
2591 else
2592 {
2593 CORE_ADDR tls_addr;
2594
2595 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2596 value_as_address (arg1));
2597 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2598 }
2599
2600 case UNOP_PREINCREMENT:
2601 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2602 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2603 return arg1;
2604 else if (unop_user_defined_p (op, arg1))
2605 {
2606 return value_x_unop (arg1, op, noside);
2607 }
2608 else
2609 {
2610 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2611 arg2 = value_ptradd (arg1, 1);
2612 else
2613 {
2614 struct value *tmp = arg1;
2615
2616 arg2 = value_one (value_type (arg1));
2617 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2618 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2619 }
2620
2621 return value_assign (arg1, arg2);
2622 }
2623
2624 case UNOP_PREDECREMENT:
2625 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2626 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2627 return arg1;
2628 else if (unop_user_defined_p (op, arg1))
2629 {
2630 return value_x_unop (arg1, op, noside);
2631 }
2632 else
2633 {
2634 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2635 arg2 = value_ptradd (arg1, -1);
2636 else
2637 {
2638 struct value *tmp = arg1;
2639
2640 arg2 = value_one (value_type (arg1));
2641 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2642 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2643 }
2644
2645 return value_assign (arg1, arg2);
2646 }
2647
2648 case UNOP_POSTINCREMENT:
2649 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2650 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2651 return arg1;
2652 else if (unop_user_defined_p (op, arg1))
2653 {
2654 return value_x_unop (arg1, op, noside);
2655 }
2656 else
2657 {
2658 arg3 = value_non_lval (arg1);
2659
2660 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2661 arg2 = value_ptradd (arg1, 1);
2662 else
2663 {
2664 struct value *tmp = arg1;
2665
2666 arg2 = value_one (value_type (arg1));
2667 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2668 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2669 }
2670
2671 value_assign (arg1, arg2);
2672 return arg3;
2673 }
2674
2675 case UNOP_POSTDECREMENT:
2676 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2677 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2678 return arg1;
2679 else if (unop_user_defined_p (op, arg1))
2680 {
2681 return value_x_unop (arg1, op, noside);
2682 }
2683 else
2684 {
2685 arg3 = value_non_lval (arg1);
2686
2687 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2688 arg2 = value_ptradd (arg1, -1);
2689 else
2690 {
2691 struct value *tmp = arg1;
2692
2693 arg2 = value_one (value_type (arg1));
2694 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2695 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2696 }
2697
2698 value_assign (arg1, arg2);
2699 return arg3;
2700 }
2701
2702 case OP_THIS:
2703 (*pos) += 1;
2704 return value_of_this (exp->language_defn);
2705
2706 case OP_TYPE:
2707 /* The value is not supposed to be used. This is here to make it
2708 easier to accommodate expressions that contain types. */
2709 (*pos) += 2;
2710 if (noside == EVAL_SKIP)
2711 goto nosideret;
2712 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2713 {
2714 struct type *type = exp->elts[pc + 1].type;
2715
2716 /* If this is a typedef, then find its immediate target. We
2717 use check_typedef to resolve stubs, but we ignore its
2718 result because we do not want to dig past all
2719 typedefs. */
2720 check_typedef (type);
2721 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2722 type = TYPE_TARGET_TYPE (type);
2723 return allocate_value (type);
2724 }
2725 else
2726 error (_("Attempt to use a type name as an expression"));
2727
2728 case OP_TYPEOF:
2729 case OP_DECLTYPE:
2730 if (noside == EVAL_SKIP)
2731 {
2732 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2733 goto nosideret;
2734 }
2735 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2736 {
2737 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2738 struct value *result;
2739
2740 result = evaluate_subexp (NULL_TYPE, exp, pos,
2741 EVAL_AVOID_SIDE_EFFECTS);
2742
2743 /* 'decltype' has special semantics for lvalues. */
2744 if (op == OP_DECLTYPE
2745 && (sub_op == BINOP_SUBSCRIPT
2746 || sub_op == STRUCTOP_MEMBER
2747 || sub_op == STRUCTOP_MPTR
2748 || sub_op == UNOP_IND
2749 || sub_op == STRUCTOP_STRUCT
2750 || sub_op == STRUCTOP_PTR
2751 || sub_op == OP_SCOPE))
2752 {
2753 struct type *type = value_type (result);
2754
2755 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2756 {
2757 type = lookup_reference_type (type);
2758 result = allocate_value (type);
2759 }
2760 }
2761
2762 return result;
2763 }
2764 else
2765 error (_("Attempt to use a type as an expression"));
2766
2767 case OP_TYPEID:
2768 {
2769 struct value *result;
2770 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2771
2772 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2773 result = evaluate_subexp (NULL_TYPE, exp, pos,
2774 EVAL_AVOID_SIDE_EFFECTS);
2775 else
2776 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2777
2778 if (noside != EVAL_NORMAL)
2779 return allocate_value (cplus_typeid_type (exp->gdbarch));
2780
2781 return cplus_typeid (result);
2782 }
2783
2784 default:
2785 /* Removing this case and compiling with gcc -Wall reveals that
2786 a lot of cases are hitting this case. Some of these should
2787 probably be removed from expression.h; others are legitimate
2788 expressions which are (apparently) not fully implemented.
2789
2790 If there are any cases landing here which mean a user error,
2791 then they should be separate cases, with more descriptive
2792 error messages. */
2793
2794 error (_("GDB does not (yet) know how to "
2795 "evaluate that kind of expression"));
2796 }
2797
2798 nosideret:
2799 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2800 }
2801 \f
2802 /* Evaluate a subexpression of EXP, at index *POS,
2803 and return the address of that subexpression.
2804 Advance *POS over the subexpression.
2805 If the subexpression isn't an lvalue, get an error.
2806 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2807 then only the type of the result need be correct. */
2808
2809 static struct value *
2810 evaluate_subexp_for_address (struct expression *exp, int *pos,
2811 enum noside noside)
2812 {
2813 enum exp_opcode op;
2814 int pc;
2815 struct symbol *var;
2816 struct value *x;
2817 int tem;
2818
2819 pc = (*pos);
2820 op = exp->elts[pc].opcode;
2821
2822 switch (op)
2823 {
2824 case UNOP_IND:
2825 (*pos)++;
2826 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2827
2828 /* We can't optimize out "&*" if there's a user-defined operator*. */
2829 if (unop_user_defined_p (op, x))
2830 {
2831 x = value_x_unop (x, op, noside);
2832 goto default_case_after_eval;
2833 }
2834
2835 return coerce_array (x);
2836
2837 case UNOP_MEMVAL:
2838 (*pos) += 3;
2839 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2840 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2841
2842 case UNOP_MEMVAL_TYPE:
2843 {
2844 struct type *type;
2845
2846 (*pos) += 1;
2847 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2848 type = value_type (x);
2849 return value_cast (lookup_pointer_type (type),
2850 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2851 }
2852
2853 case OP_VAR_VALUE:
2854 var = exp->elts[pc + 2].symbol;
2855
2856 /* C++: The "address" of a reference should yield the address
2857 * of the object pointed to. Let value_addr() deal with it. */
2858 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2859 goto default_case;
2860
2861 (*pos) += 4;
2862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2863 {
2864 struct type *type =
2865 lookup_pointer_type (SYMBOL_TYPE (var));
2866 enum address_class sym_class = SYMBOL_CLASS (var);
2867
2868 if (sym_class == LOC_CONST
2869 || sym_class == LOC_CONST_BYTES
2870 || sym_class == LOC_REGISTER)
2871 error (_("Attempt to take address of register or constant."));
2872
2873 return
2874 value_zero (type, not_lval);
2875 }
2876 else
2877 return address_of_variable (var, exp->elts[pc + 1].block);
2878
2879 case OP_SCOPE:
2880 tem = longest_to_int (exp->elts[pc + 2].longconst);
2881 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2882 x = value_aggregate_elt (exp->elts[pc + 1].type,
2883 &exp->elts[pc + 3].string,
2884 NULL, 1, noside);
2885 if (x == NULL)
2886 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2887 return x;
2888
2889 default:
2890 default_case:
2891 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2892 default_case_after_eval:
2893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2894 {
2895 struct type *type = check_typedef (value_type (x));
2896
2897 if (TYPE_CODE (type) == TYPE_CODE_REF)
2898 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2899 not_lval);
2900 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2901 return value_zero (lookup_pointer_type (value_type (x)),
2902 not_lval);
2903 else
2904 error (_("Attempt to take address of "
2905 "value not located in memory."));
2906 }
2907 return value_addr (x);
2908 }
2909 }
2910
2911 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2912 When used in contexts where arrays will be coerced anyway, this is
2913 equivalent to `evaluate_subexp' but much faster because it avoids
2914 actually fetching array contents (perhaps obsolete now that we have
2915 value_lazy()).
2916
2917 Note that we currently only do the coercion for C expressions, where
2918 arrays are zero based and the coercion is correct. For other languages,
2919 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2920 to decide if coercion is appropriate. */
2921
2922 struct value *
2923 evaluate_subexp_with_coercion (struct expression *exp,
2924 int *pos, enum noside noside)
2925 {
2926 enum exp_opcode op;
2927 int pc;
2928 struct value *val;
2929 struct symbol *var;
2930 struct type *type;
2931
2932 pc = (*pos);
2933 op = exp->elts[pc].opcode;
2934
2935 switch (op)
2936 {
2937 case OP_VAR_VALUE:
2938 var = exp->elts[pc + 2].symbol;
2939 type = check_typedef (SYMBOL_TYPE (var));
2940 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2941 && !TYPE_VECTOR (type)
2942 && CAST_IS_CONVERSION (exp->language_defn))
2943 {
2944 (*pos) += 4;
2945 val = address_of_variable (var, exp->elts[pc + 1].block);
2946 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2947 val);
2948 }
2949 /* FALLTHROUGH */
2950
2951 default:
2952 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2953 }
2954 }
2955
2956 /* Evaluate a subexpression of EXP, at index *POS,
2957 and return a value for the size of that subexpression.
2958 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
2959 we allow side-effects on the operand if its type is a variable
2960 length array. */
2961
2962 static struct value *
2963 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
2964 enum noside noside)
2965 {
2966 /* FIXME: This should be size_t. */
2967 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2968 enum exp_opcode op;
2969 int pc;
2970 struct type *type;
2971 struct value *val;
2972
2973 pc = (*pos);
2974 op = exp->elts[pc].opcode;
2975
2976 switch (op)
2977 {
2978 /* This case is handled specially
2979 so that we avoid creating a value for the result type.
2980 If the result type is very big, it's desirable not to
2981 create a value unnecessarily. */
2982 case UNOP_IND:
2983 (*pos)++;
2984 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2985 type = check_typedef (value_type (val));
2986 if (TYPE_CODE (type) != TYPE_CODE_PTR
2987 && TYPE_CODE (type) != TYPE_CODE_REF
2988 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2989 error (_("Attempt to take contents of a non-pointer value."));
2990 type = TYPE_TARGET_TYPE (type);
2991 if (is_dynamic_type (type))
2992 type = value_type (value_ind (val));
2993 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2994
2995 case UNOP_MEMVAL:
2996 (*pos) += 3;
2997 type = exp->elts[pc + 1].type;
2998 break;
2999
3000 case UNOP_MEMVAL_TYPE:
3001 (*pos) += 1;
3002 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3003 type = value_type (val);
3004 break;
3005
3006 case OP_VAR_VALUE:
3007 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3008 if (is_dynamic_type (type))
3009 {
3010 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3011 type = value_type (val);
3012 }
3013 else
3014 (*pos) += 4;
3015 break;
3016
3017 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3018 type of the subscript is a variable length array type. In this case we
3019 must re-evaluate the right hand side of the subcription to allow
3020 side-effects. */
3021 case BINOP_SUBSCRIPT:
3022 if (noside == EVAL_NORMAL)
3023 {
3024 int pc = (*pos) + 1;
3025
3026 val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3027 type = check_typedef (value_type (val));
3028 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3029 {
3030 type = check_typedef (TYPE_TARGET_TYPE (type));
3031 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3032 {
3033 type = TYPE_INDEX_TYPE (type);
3034 /* Only re-evaluate the right hand side if the resulting type
3035 is a variable length type. */
3036 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3037 {
3038 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3039 return value_from_longest
3040 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3041 }
3042 }
3043 }
3044 }
3045
3046 /* Fall through. */
3047
3048 default:
3049 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3050 type = value_type (val);
3051 break;
3052 }
3053
3054 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3055 "When applied to a reference or a reference type, the result is
3056 the size of the referenced type." */
3057 CHECK_TYPEDEF (type);
3058 if (exp->language_defn->la_language == language_cplus
3059 && TYPE_CODE (type) == TYPE_CODE_REF)
3060 type = check_typedef (TYPE_TARGET_TYPE (type));
3061 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3062 }
3063
3064 /* Parse a type expression in the string [P..P+LENGTH). */
3065
3066 struct type *
3067 parse_and_eval_type (char *p, int length)
3068 {
3069 char *tmp = (char *) alloca (length + 4);
3070 struct expression *expr;
3071
3072 tmp[0] = '(';
3073 memcpy (tmp + 1, p, length);
3074 tmp[length + 1] = ')';
3075 tmp[length + 2] = '0';
3076 tmp[length + 3] = '\0';
3077 expr = parse_expression (tmp);
3078 if (expr->elts[0].opcode != UNOP_CAST)
3079 error (_("Internal error in eval_type."));
3080 return expr->elts[1].type;
3081 }
3082
3083 int
3084 calc_f77_array_dims (struct type *array_type)
3085 {
3086 int ndimen = 1;
3087 struct type *tmp_type;
3088
3089 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3090 error (_("Can't get dimensions for a non-array type"));
3091
3092 tmp_type = array_type;
3093
3094 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3095 {
3096 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3097 ++ndimen;
3098 }
3099 return ndimen;
3100 }