]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/eval.c
* c-exp.y (DOTDOTDOT): New token.
[thirdparty/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 if (num_types > 0 && param_types[num_types - 1] == NULL)
773 {
774 --num_types;
775 TYPE_VARARGS (type) = 1;
776 }
777 TYPE_NFIELDS (type) = num_types;
778 TYPE_FIELDS (type) = (struct field *)
779 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
780
781 while (num_types-- > 0)
782 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
783
784 return type;
785 }
786
787 struct value *
788 evaluate_subexp_standard (struct type *expect_type,
789 struct expression *exp, int *pos,
790 enum noside noside)
791 {
792 enum exp_opcode op;
793 int tem, tem2, tem3;
794 int pc, pc2 = 0, oldpos;
795 struct value *arg1 = NULL;
796 struct value *arg2 = NULL;
797 struct value *arg3;
798 struct type *type;
799 int nargs;
800 struct value **argvec;
801 int lower;
802 int code;
803 int ix;
804 long mem_offset;
805 struct type **arg_types;
806 int save_pos1;
807 struct symbol *function = NULL;
808 char *function_name = NULL;
809
810 pc = (*pos)++;
811 op = exp->elts[pc].opcode;
812
813 switch (op)
814 {
815 case OP_SCOPE:
816 tem = longest_to_int (exp->elts[pc + 2].longconst);
817 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
818 if (noside == EVAL_SKIP)
819 goto nosideret;
820 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
821 &exp->elts[pc + 3].string,
822 expect_type, 0, noside);
823 if (arg1 == NULL)
824 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
825 return arg1;
826
827 case OP_LONG:
828 (*pos) += 3;
829 return value_from_longest (exp->elts[pc + 1].type,
830 exp->elts[pc + 2].longconst);
831
832 case OP_DOUBLE:
833 (*pos) += 3;
834 return value_from_double (exp->elts[pc + 1].type,
835 exp->elts[pc + 2].doubleconst);
836
837 case OP_DECFLOAT:
838 (*pos) += 3;
839 return value_from_decfloat (exp->elts[pc + 1].type,
840 exp->elts[pc + 2].decfloatconst);
841
842 case OP_ADL_FUNC:
843 case OP_VAR_VALUE:
844 (*pos) += 3;
845 if (noside == EVAL_SKIP)
846 goto nosideret;
847
848 /* JYG: We used to just return value_zero of the symbol type
849 if we're asked to avoid side effects. Otherwise we return
850 value_of_variable (...). However I'm not sure if
851 value_of_variable () has any side effect.
852 We need a full value object returned here for whatis_exp ()
853 to call evaluate_type () and then pass the full value to
854 value_rtti_target_type () if we are dealing with a pointer
855 or reference to a base class and print object is on. */
856
857 {
858 volatile struct gdb_exception except;
859 struct value *ret = NULL;
860
861 TRY_CATCH (except, RETURN_MASK_ERROR)
862 {
863 ret = value_of_variable (exp->elts[pc + 2].symbol,
864 exp->elts[pc + 1].block);
865 }
866
867 if (except.reason < 0)
868 {
869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
870 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
871 not_lval);
872 else
873 throw_exception (except);
874 }
875
876 return ret;
877 }
878
879 case OP_VAR_ENTRY_VALUE:
880 (*pos) += 2;
881 if (noside == EVAL_SKIP)
882 goto nosideret;
883
884 {
885 struct symbol *sym = exp->elts[pc + 1].symbol;
886 struct frame_info *frame;
887
888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
889 return value_zero (SYMBOL_TYPE (sym), not_lval);
890
891 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
892 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
893 error (_("Symbol \"%s\" does not have any specific entry value"),
894 SYMBOL_PRINT_NAME (sym));
895
896 frame = get_selected_frame (NULL);
897 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
898 }
899
900 case OP_LAST:
901 (*pos) += 2;
902 return
903 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
904
905 case OP_REGISTER:
906 {
907 const char *name = &exp->elts[pc + 2].string;
908 int regno;
909 struct value *val;
910
911 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
912 regno = user_reg_map_name_to_regnum (exp->gdbarch,
913 name, strlen (name));
914 if (regno == -1)
915 error (_("Register $%s not available."), name);
916
917 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
918 a value with the appropriate register type. Unfortunately,
919 we don't have easy access to the type of user registers.
920 So for these registers, we fetch the register value regardless
921 of the evaluation mode. */
922 if (noside == EVAL_AVOID_SIDE_EFFECTS
923 && regno < gdbarch_num_regs (exp->gdbarch)
924 + gdbarch_num_pseudo_regs (exp->gdbarch))
925 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
926 else
927 val = value_of_register (regno, get_selected_frame (NULL));
928 if (val == NULL)
929 error (_("Value of register %s not available."), name);
930 else
931 return val;
932 }
933 case OP_BOOL:
934 (*pos) += 2;
935 type = language_bool_type (exp->language_defn, exp->gdbarch);
936 return value_from_longest (type, exp->elts[pc + 1].longconst);
937
938 case OP_INTERNALVAR:
939 (*pos) += 2;
940 return value_of_internalvar (exp->gdbarch,
941 exp->elts[pc + 1].internalvar);
942
943 case OP_STRING:
944 tem = longest_to_int (exp->elts[pc + 1].longconst);
945 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
946 if (noside == EVAL_SKIP)
947 goto nosideret;
948 type = language_string_char_type (exp->language_defn, exp->gdbarch);
949 return value_string (&exp->elts[pc + 2].string, tem, type);
950
951 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
952 NSString constant. */
953 tem = longest_to_int (exp->elts[pc + 1].longconst);
954 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
955 if (noside == EVAL_SKIP)
956 {
957 goto nosideret;
958 }
959 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
960
961 case OP_BITSTRING:
962 tem = longest_to_int (exp->elts[pc + 1].longconst);
963 (*pos)
964 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
965 if (noside == EVAL_SKIP)
966 goto nosideret;
967 return value_bitstring (&exp->elts[pc + 2].string, tem,
968 builtin_type (exp->gdbarch)->builtin_int);
969 break;
970
971 case OP_ARRAY:
972 (*pos) += 3;
973 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
974 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
975 nargs = tem3 - tem2 + 1;
976 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
977
978 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
979 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
980 {
981 struct value *rec = allocate_value (expect_type);
982
983 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
984 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
985 }
986
987 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
988 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
989 {
990 struct type *range_type = TYPE_INDEX_TYPE (type);
991 struct type *element_type = TYPE_TARGET_TYPE (type);
992 struct value *array = allocate_value (expect_type);
993 int element_size = TYPE_LENGTH (check_typedef (element_type));
994 LONGEST low_bound, high_bound, index;
995
996 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
997 {
998 low_bound = 0;
999 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1000 }
1001 index = low_bound;
1002 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1003 for (tem = nargs; --nargs >= 0;)
1004 {
1005 struct value *element;
1006 int index_pc = 0;
1007
1008 if (exp->elts[*pos].opcode == BINOP_RANGE)
1009 {
1010 index_pc = ++(*pos);
1011 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1012 }
1013 element = evaluate_subexp (element_type, exp, pos, noside);
1014 if (value_type (element) != element_type)
1015 element = value_cast (element_type, element);
1016 if (index_pc)
1017 {
1018 int continue_pc = *pos;
1019
1020 *pos = index_pc;
1021 index = init_array_element (array, element, exp, pos, noside,
1022 low_bound, high_bound);
1023 *pos = continue_pc;
1024 }
1025 else
1026 {
1027 if (index > high_bound)
1028 /* To avoid memory corruption. */
1029 error (_("Too many array elements"));
1030 memcpy (value_contents_raw (array)
1031 + (index - low_bound) * element_size,
1032 value_contents (element),
1033 element_size);
1034 }
1035 index++;
1036 }
1037 return array;
1038 }
1039
1040 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1041 && TYPE_CODE (type) == TYPE_CODE_SET)
1042 {
1043 struct value *set = allocate_value (expect_type);
1044 gdb_byte *valaddr = value_contents_raw (set);
1045 struct type *element_type = TYPE_INDEX_TYPE (type);
1046 struct type *check_type = element_type;
1047 LONGEST low_bound, high_bound;
1048
1049 /* Get targettype of elementtype. */
1050 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1051 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1052 check_type = TYPE_TARGET_TYPE (check_type);
1053
1054 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1055 error (_("(power)set type with unknown size"));
1056 memset (valaddr, '\0', TYPE_LENGTH (type));
1057 for (tem = 0; tem < nargs; tem++)
1058 {
1059 LONGEST range_low, range_high;
1060 struct type *range_low_type, *range_high_type;
1061 struct value *elem_val;
1062
1063 if (exp->elts[*pos].opcode == BINOP_RANGE)
1064 {
1065 (*pos)++;
1066 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1067 range_low_type = value_type (elem_val);
1068 range_low = value_as_long (elem_val);
1069 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1070 range_high_type = value_type (elem_val);
1071 range_high = value_as_long (elem_val);
1072 }
1073 else
1074 {
1075 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1076 range_low_type = range_high_type = value_type (elem_val);
1077 range_low = range_high = value_as_long (elem_val);
1078 }
1079 /* Check types of elements to avoid mixture of elements from
1080 different types. Also check if type of element is "compatible"
1081 with element type of powerset. */
1082 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1083 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1084 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1085 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1086 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1087 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1088 && (range_low_type != range_high_type)))
1089 /* different element modes. */
1090 error (_("POWERSET tuple elements of different mode"));
1091 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1092 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1093 && range_low_type != check_type))
1094 error (_("incompatible POWERSET tuple elements"));
1095 if (range_low > range_high)
1096 {
1097 warning (_("empty POWERSET tuple range"));
1098 continue;
1099 }
1100 if (range_low < low_bound || range_high > high_bound)
1101 error (_("POWERSET tuple element out of range"));
1102 range_low -= low_bound;
1103 range_high -= low_bound;
1104 for (; range_low <= range_high; range_low++)
1105 {
1106 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1107
1108 if (gdbarch_bits_big_endian (exp->gdbarch))
1109 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1110 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1111 |= 1 << bit_index;
1112 }
1113 }
1114 return set;
1115 }
1116
1117 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1118 for (tem = 0; tem < nargs; tem++)
1119 {
1120 /* Ensure that array expressions are coerced into pointer
1121 objects. */
1122 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1123 }
1124 if (noside == EVAL_SKIP)
1125 goto nosideret;
1126 return value_array (tem2, tem3, argvec);
1127
1128 case TERNOP_SLICE:
1129 {
1130 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1131 int lowbound
1132 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1133 int upper
1134 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1135
1136 if (noside == EVAL_SKIP)
1137 goto nosideret;
1138 return value_slice (array, lowbound, upper - lowbound + 1);
1139 }
1140
1141 case TERNOP_SLICE_COUNT:
1142 {
1143 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1144 int lowbound
1145 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1146 int length
1147 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1148
1149 return value_slice (array, lowbound, length);
1150 }
1151
1152 case TERNOP_COND:
1153 /* Skip third and second args to evaluate the first one. */
1154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1155 if (value_logical_not (arg1))
1156 {
1157 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1158 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1159 }
1160 else
1161 {
1162 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1164 return arg2;
1165 }
1166
1167 case OP_OBJC_SELECTOR:
1168 { /* Objective C @selector operator. */
1169 char *sel = &exp->elts[pc + 2].string;
1170 int len = longest_to_int (exp->elts[pc + 1].longconst);
1171 struct type *selector_type;
1172
1173 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1174 if (noside == EVAL_SKIP)
1175 goto nosideret;
1176
1177 if (sel[len] != 0)
1178 sel[len] = 0; /* Make sure it's terminated. */
1179
1180 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1181 return value_from_longest (selector_type,
1182 lookup_child_selector (exp->gdbarch, sel));
1183 }
1184
1185 case OP_OBJC_MSGCALL:
1186 { /* Objective C message (method) call. */
1187
1188 CORE_ADDR responds_selector = 0;
1189 CORE_ADDR method_selector = 0;
1190
1191 CORE_ADDR selector = 0;
1192
1193 int struct_return = 0;
1194 int sub_no_side = 0;
1195
1196 struct value *msg_send = NULL;
1197 struct value *msg_send_stret = NULL;
1198 int gnu_runtime = 0;
1199
1200 struct value *target = NULL;
1201 struct value *method = NULL;
1202 struct value *called_method = NULL;
1203
1204 struct type *selector_type = NULL;
1205 struct type *long_type;
1206
1207 struct value *ret = NULL;
1208 CORE_ADDR addr = 0;
1209
1210 selector = exp->elts[pc + 1].longconst;
1211 nargs = exp->elts[pc + 2].longconst;
1212 argvec = (struct value **) alloca (sizeof (struct value *)
1213 * (nargs + 5));
1214
1215 (*pos) += 3;
1216
1217 long_type = builtin_type (exp->gdbarch)->builtin_long;
1218 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1219
1220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1221 sub_no_side = EVAL_NORMAL;
1222 else
1223 sub_no_side = noside;
1224
1225 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1226
1227 if (value_as_long (target) == 0)
1228 return value_from_longest (long_type, 0);
1229
1230 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1231 gnu_runtime = 1;
1232
1233 /* Find the method dispatch (Apple runtime) or method lookup
1234 (GNU runtime) function for Objective-C. These will be used
1235 to lookup the symbol information for the method. If we
1236 can't find any symbol information, then we'll use these to
1237 call the method, otherwise we can call the method
1238 directly. The msg_send_stret function is used in the special
1239 case of a method that returns a structure (Apple runtime
1240 only). */
1241 if (gnu_runtime)
1242 {
1243 struct type *type = selector_type;
1244
1245 type = lookup_function_type (type);
1246 type = lookup_pointer_type (type);
1247 type = lookup_function_type (type);
1248 type = lookup_pointer_type (type);
1249
1250 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1251 msg_send_stret
1252 = find_function_in_inferior ("objc_msg_lookup", NULL);
1253
1254 msg_send = value_from_pointer (type, value_as_address (msg_send));
1255 msg_send_stret = value_from_pointer (type,
1256 value_as_address (msg_send_stret));
1257 }
1258 else
1259 {
1260 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1261 /* Special dispatcher for methods returning structs. */
1262 msg_send_stret
1263 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1264 }
1265
1266 /* Verify the target object responds to this method. The
1267 standard top-level 'Object' class uses a different name for
1268 the verification method than the non-standard, but more
1269 often used, 'NSObject' class. Make sure we check for both. */
1270
1271 responds_selector
1272 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1273 if (responds_selector == 0)
1274 responds_selector
1275 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1276
1277 if (responds_selector == 0)
1278 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1279
1280 method_selector
1281 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1282 if (method_selector == 0)
1283 method_selector
1284 = lookup_child_selector (exp->gdbarch, "methodFor:");
1285
1286 if (method_selector == 0)
1287 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1288
1289 /* Call the verification method, to make sure that the target
1290 class implements the desired method. */
1291
1292 argvec[0] = msg_send;
1293 argvec[1] = target;
1294 argvec[2] = value_from_longest (long_type, responds_selector);
1295 argvec[3] = value_from_longest (long_type, selector);
1296 argvec[4] = 0;
1297
1298 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1299 if (gnu_runtime)
1300 {
1301 /* Function objc_msg_lookup returns a pointer. */
1302 argvec[0] = ret;
1303 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1304 }
1305 if (value_as_long (ret) == 0)
1306 error (_("Target does not respond to this message selector."));
1307
1308 /* Call "methodForSelector:" method, to get the address of a
1309 function method that implements this selector for this
1310 class. If we can find a symbol at that address, then we
1311 know the return type, parameter types etc. (that's a good
1312 thing). */
1313
1314 argvec[0] = msg_send;
1315 argvec[1] = target;
1316 argvec[2] = value_from_longest (long_type, method_selector);
1317 argvec[3] = value_from_longest (long_type, selector);
1318 argvec[4] = 0;
1319
1320 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1321 if (gnu_runtime)
1322 {
1323 argvec[0] = ret;
1324 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1325 }
1326
1327 /* ret should now be the selector. */
1328
1329 addr = value_as_long (ret);
1330 if (addr)
1331 {
1332 struct symbol *sym = NULL;
1333
1334 /* The address might point to a function descriptor;
1335 resolve it to the actual code address instead. */
1336 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1337 &current_target);
1338
1339 /* Is it a high_level symbol? */
1340 sym = find_pc_function (addr);
1341 if (sym != NULL)
1342 method = value_of_variable (sym, 0);
1343 }
1344
1345 /* If we found a method with symbol information, check to see
1346 if it returns a struct. Otherwise assume it doesn't. */
1347
1348 if (method)
1349 {
1350 CORE_ADDR funaddr;
1351 struct type *val_type;
1352
1353 funaddr = find_function_addr (method, &val_type);
1354
1355 block_for_pc (funaddr);
1356
1357 CHECK_TYPEDEF (val_type);
1358
1359 if ((val_type == NULL)
1360 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1361 {
1362 if (expect_type != NULL)
1363 val_type = expect_type;
1364 }
1365
1366 struct_return = using_struct_return (exp->gdbarch, method,
1367 val_type);
1368 }
1369 else if (expect_type != NULL)
1370 {
1371 struct_return = using_struct_return (exp->gdbarch, NULL,
1372 check_typedef (expect_type));
1373 }
1374
1375 /* Found a function symbol. Now we will substitute its
1376 value in place of the message dispatcher (obj_msgSend),
1377 so that we call the method directly instead of thru
1378 the dispatcher. The main reason for doing this is that
1379 we can now evaluate the return value and parameter values
1380 according to their known data types, in case we need to
1381 do things like promotion, dereferencing, special handling
1382 of structs and doubles, etc.
1383
1384 We want to use the type signature of 'method', but still
1385 jump to objc_msgSend() or objc_msgSend_stret() to better
1386 mimic the behavior of the runtime. */
1387
1388 if (method)
1389 {
1390 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1391 error (_("method address has symbol information "
1392 "with non-function type; skipping"));
1393
1394 /* Create a function pointer of the appropriate type, and
1395 replace its value with the value of msg_send or
1396 msg_send_stret. We must use a pointer here, as
1397 msg_send and msg_send_stret are of pointer type, and
1398 the representation may be different on systems that use
1399 function descriptors. */
1400 if (struct_return)
1401 called_method
1402 = value_from_pointer (lookup_pointer_type (value_type (method)),
1403 value_as_address (msg_send_stret));
1404 else
1405 called_method
1406 = value_from_pointer (lookup_pointer_type (value_type (method)),
1407 value_as_address (msg_send));
1408 }
1409 else
1410 {
1411 if (struct_return)
1412 called_method = msg_send_stret;
1413 else
1414 called_method = msg_send;
1415 }
1416
1417 if (noside == EVAL_SKIP)
1418 goto nosideret;
1419
1420 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1421 {
1422 /* If the return type doesn't look like a function type,
1423 call an error. This can happen if somebody tries to
1424 turn a variable into a function call. This is here
1425 because people often want to call, eg, strcmp, which
1426 gdb doesn't know is a function. If gdb isn't asked for
1427 it's opinion (ie. through "whatis"), it won't offer
1428 it. */
1429
1430 struct type *type = value_type (called_method);
1431
1432 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1433 type = TYPE_TARGET_TYPE (type);
1434 type = TYPE_TARGET_TYPE (type);
1435
1436 if (type)
1437 {
1438 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1439 return allocate_value (expect_type);
1440 else
1441 return allocate_value (type);
1442 }
1443 else
1444 error (_("Expression of type other than "
1445 "\"method returning ...\" used as a method"));
1446 }
1447
1448 /* Now depending on whether we found a symbol for the method,
1449 we will either call the runtime dispatcher or the method
1450 directly. */
1451
1452 argvec[0] = called_method;
1453 argvec[1] = target;
1454 argvec[2] = value_from_longest (long_type, selector);
1455 /* User-supplied arguments. */
1456 for (tem = 0; tem < nargs; tem++)
1457 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1458 argvec[tem + 3] = 0;
1459
1460 if (gnu_runtime && (method != NULL))
1461 {
1462 /* Function objc_msg_lookup returns a pointer. */
1463 deprecated_set_value_type (argvec[0],
1464 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1465 argvec[0]
1466 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1467 }
1468
1469 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1470 return ret;
1471 }
1472 break;
1473
1474 case OP_FUNCALL:
1475 (*pos) += 2;
1476 op = exp->elts[*pos].opcode;
1477 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1478 /* Allocate arg vector, including space for the function to be
1479 called in argvec[0] and a terminating NULL. */
1480 argvec = (struct value **)
1481 alloca (sizeof (struct value *) * (nargs + 3));
1482 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1483 {
1484 nargs++;
1485 /* First, evaluate the structure into arg2. */
1486 pc2 = (*pos)++;
1487
1488 if (noside == EVAL_SKIP)
1489 goto nosideret;
1490
1491 if (op == STRUCTOP_MEMBER)
1492 {
1493 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1494 }
1495 else
1496 {
1497 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1498 }
1499
1500 /* If the function is a virtual function, then the
1501 aggregate value (providing the structure) plays
1502 its part by providing the vtable. Otherwise,
1503 it is just along for the ride: call the function
1504 directly. */
1505
1506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1507
1508 if (TYPE_CODE (check_typedef (value_type (arg1)))
1509 != TYPE_CODE_METHODPTR)
1510 error (_("Non-pointer-to-member value used in pointer-to-member "
1511 "construct"));
1512
1513 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1514 {
1515 struct type *method_type = check_typedef (value_type (arg1));
1516
1517 arg1 = value_zero (method_type, not_lval);
1518 }
1519 else
1520 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1521
1522 /* Now, say which argument to start evaluating from. */
1523 tem = 2;
1524 }
1525 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1526 {
1527 /* Hair for method invocations. */
1528 int tem2;
1529
1530 nargs++;
1531 /* First, evaluate the structure into arg2. */
1532 pc2 = (*pos)++;
1533 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1534 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1535 if (noside == EVAL_SKIP)
1536 goto nosideret;
1537
1538 if (op == STRUCTOP_STRUCT)
1539 {
1540 /* If v is a variable in a register, and the user types
1541 v.method (), this will produce an error, because v has
1542 no address.
1543
1544 A possible way around this would be to allocate a
1545 copy of the variable on the stack, copy in the
1546 contents, call the function, and copy out the
1547 contents. I.e. convert this from call by reference
1548 to call by copy-return (or whatever it's called).
1549 However, this does not work because it is not the
1550 same: the method being called could stash a copy of
1551 the address, and then future uses through that address
1552 (after the method returns) would be expected to
1553 use the variable itself, not some copy of it. */
1554 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1555 }
1556 else
1557 {
1558 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1559
1560 /* Check to see if the operator '->' has been
1561 overloaded. If the operator has been overloaded
1562 replace arg2 with the value returned by the custom
1563 operator and continue evaluation. */
1564 while (unop_user_defined_p (op, arg2))
1565 {
1566 volatile struct gdb_exception except;
1567 struct value *value = NULL;
1568 TRY_CATCH (except, RETURN_MASK_ERROR)
1569 {
1570 value = value_x_unop (arg2, op, noside);
1571 }
1572
1573 if (except.reason < 0)
1574 {
1575 if (except.error == NOT_FOUND_ERROR)
1576 break;
1577 else
1578 throw_exception (except);
1579 }
1580 arg2 = value;
1581 }
1582 }
1583 /* Now, say which argument to start evaluating from. */
1584 tem = 2;
1585 }
1586 else if (op == OP_SCOPE
1587 && overload_resolution
1588 && (exp->language_defn->la_language == language_cplus))
1589 {
1590 /* Unpack it locally so we can properly handle overload
1591 resolution. */
1592 char *name;
1593 int local_tem;
1594
1595 pc2 = (*pos)++;
1596 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1597 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1598 type = exp->elts[pc2 + 1].type;
1599 name = &exp->elts[pc2 + 3].string;
1600
1601 function = NULL;
1602 function_name = NULL;
1603 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1604 {
1605 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1606 name,
1607 get_selected_block (0),
1608 VAR_DOMAIN);
1609 if (function == NULL)
1610 error (_("No symbol \"%s\" in namespace \"%s\"."),
1611 name, TYPE_TAG_NAME (type));
1612
1613 tem = 1;
1614 }
1615 else
1616 {
1617 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1618 || TYPE_CODE (type) == TYPE_CODE_UNION);
1619 function_name = name;
1620
1621 arg2 = value_zero (type, lval_memory);
1622 ++nargs;
1623 tem = 2;
1624 }
1625 }
1626 else if (op == OP_ADL_FUNC)
1627 {
1628 /* Save the function position and move pos so that the arguments
1629 can be evaluated. */
1630 int func_name_len;
1631
1632 save_pos1 = *pos;
1633 tem = 1;
1634
1635 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1636 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1637 }
1638 else
1639 {
1640 /* Non-method function call. */
1641 save_pos1 = *pos;
1642 tem = 1;
1643
1644 /* If this is a C++ function wait until overload resolution. */
1645 if (op == OP_VAR_VALUE
1646 && overload_resolution
1647 && (exp->language_defn->la_language == language_cplus))
1648 {
1649 (*pos) += 4; /* Skip the evaluation of the symbol. */
1650 argvec[0] = NULL;
1651 }
1652 else
1653 {
1654 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1655 type = value_type (argvec[0]);
1656 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1657 type = TYPE_TARGET_TYPE (type);
1658 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1659 {
1660 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1661 {
1662 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1663 tem - 1),
1664 exp, pos, noside);
1665 }
1666 }
1667 }
1668 }
1669
1670 /* Evaluate arguments. */
1671 for (; tem <= nargs; tem++)
1672 {
1673 /* Ensure that array expressions are coerced into pointer
1674 objects. */
1675 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1676 }
1677
1678 /* Signal end of arglist. */
1679 argvec[tem] = 0;
1680 if (op == OP_ADL_FUNC)
1681 {
1682 struct symbol *symp;
1683 char *func_name;
1684 int name_len;
1685 int string_pc = save_pos1 + 3;
1686
1687 /* Extract the function name. */
1688 name_len = longest_to_int (exp->elts[string_pc].longconst);
1689 func_name = (char *) alloca (name_len + 1);
1690 strcpy (func_name, &exp->elts[string_pc + 1].string);
1691
1692 find_overload_match (&argvec[1], nargs, func_name,
1693 NON_METHOD, /* not method */
1694 0, /* strict match */
1695 NULL, NULL, /* pass NULL symbol since
1696 symbol is unknown */
1697 NULL, &symp, NULL, 0);
1698
1699 /* Now fix the expression being evaluated. */
1700 exp->elts[save_pos1 + 2].symbol = symp;
1701 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1702 }
1703
1704 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1705 || (op == OP_SCOPE && function_name != NULL))
1706 {
1707 int static_memfuncp;
1708 char *tstr;
1709
1710 /* Method invocation : stuff "this" as first parameter. */
1711 argvec[1] = arg2;
1712
1713 if (op != OP_SCOPE)
1714 {
1715 /* Name of method from expression. */
1716 tstr = &exp->elts[pc2 + 2].string;
1717 }
1718 else
1719 tstr = function_name;
1720
1721 if (overload_resolution && (exp->language_defn->la_language
1722 == language_cplus))
1723 {
1724 /* Language is C++, do some overload resolution before
1725 evaluation. */
1726 struct value *valp = NULL;
1727
1728 (void) find_overload_match (&argvec[1], nargs, tstr,
1729 METHOD, /* method */
1730 0, /* strict match */
1731 &arg2, /* the object */
1732 NULL, &valp, NULL,
1733 &static_memfuncp, 0);
1734
1735 if (op == OP_SCOPE && !static_memfuncp)
1736 {
1737 /* For the time being, we don't handle this. */
1738 error (_("Call to overloaded function %s requires "
1739 "`this' pointer"),
1740 function_name);
1741 }
1742 argvec[1] = arg2; /* the ``this'' pointer */
1743 argvec[0] = valp; /* Use the method found after overload
1744 resolution. */
1745 }
1746 else
1747 /* Non-C++ case -- or no overload resolution. */
1748 {
1749 struct value *temp = arg2;
1750
1751 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1752 &static_memfuncp,
1753 op == STRUCTOP_STRUCT
1754 ? "structure" : "structure pointer");
1755 /* value_struct_elt updates temp with the correct value
1756 of the ``this'' pointer if necessary, so modify argvec[1] to
1757 reflect any ``this'' changes. */
1758 arg2
1759 = value_from_longest (lookup_pointer_type(value_type (temp)),
1760 value_address (temp)
1761 + value_embedded_offset (temp));
1762 argvec[1] = arg2; /* the ``this'' pointer */
1763 }
1764
1765 if (static_memfuncp)
1766 {
1767 argvec[1] = argvec[0];
1768 nargs--;
1769 argvec++;
1770 }
1771 }
1772 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1773 {
1774 argvec[1] = arg2;
1775 argvec[0] = arg1;
1776 }
1777 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1778 {
1779 /* Non-member function being called. */
1780 /* fn: This can only be done for C++ functions. A C-style function
1781 in a C++ program, for instance, does not have the fields that
1782 are expected here. */
1783
1784 if (overload_resolution && (exp->language_defn->la_language
1785 == language_cplus))
1786 {
1787 /* Language is C++, do some overload resolution before
1788 evaluation. */
1789 struct symbol *symp;
1790 int no_adl = 0;
1791
1792 /* If a scope has been specified disable ADL. */
1793 if (op == OP_SCOPE)
1794 no_adl = 1;
1795
1796 if (op == OP_VAR_VALUE)
1797 function = exp->elts[save_pos1+2].symbol;
1798
1799 (void) find_overload_match (&argvec[1], nargs,
1800 NULL, /* no need for name */
1801 NON_METHOD, /* not method */
1802 0, /* strict match */
1803 NULL, function, /* the function */
1804 NULL, &symp, NULL, no_adl);
1805
1806 if (op == OP_VAR_VALUE)
1807 {
1808 /* Now fix the expression being evaluated. */
1809 exp->elts[save_pos1+2].symbol = symp;
1810 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1811 noside);
1812 }
1813 else
1814 argvec[0] = value_of_variable (symp, get_selected_block (0));
1815 }
1816 else
1817 {
1818 /* Not C++, or no overload resolution allowed. */
1819 /* Nothing to be done; argvec already correctly set up. */
1820 }
1821 }
1822 else
1823 {
1824 /* It is probably a C-style function. */
1825 /* Nothing to be done; argvec already correctly set up. */
1826 }
1827
1828 do_call_it:
1829
1830 if (noside == EVAL_SKIP)
1831 goto nosideret;
1832 if (argvec[0] == NULL)
1833 error (_("Cannot evaluate function -- may be inlined"));
1834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1835 {
1836 /* If the return type doesn't look like a function type, call an
1837 error. This can happen if somebody tries to turn a variable into
1838 a function call. This is here because people often want to
1839 call, eg, strcmp, which gdb doesn't know is a function. If
1840 gdb isn't asked for it's opinion (ie. through "whatis"),
1841 it won't offer it. */
1842
1843 struct type *ftype = value_type (argvec[0]);
1844
1845 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1846 {
1847 /* We don't know anything about what the internal
1848 function might return, but we have to return
1849 something. */
1850 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1851 not_lval);
1852 }
1853 else if (TYPE_GNU_IFUNC (ftype))
1854 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1855 else if (TYPE_TARGET_TYPE (ftype))
1856 return allocate_value (TYPE_TARGET_TYPE (ftype));
1857 else
1858 error (_("Expression of type other than "
1859 "\"Function returning ...\" used as function"));
1860 }
1861 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1862 return call_internal_function (exp->gdbarch, exp->language_defn,
1863 argvec[0], nargs, argvec + 1);
1864
1865 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1866 /* pai: FIXME save value from call_function_by_hand, then adjust
1867 pc by adjust_fn_pc if +ve. */
1868
1869 case OP_F77_UNDETERMINED_ARGLIST:
1870
1871 /* Remember that in F77, functions, substring ops and
1872 array subscript operations cannot be disambiguated
1873 at parse time. We have made all array subscript operations,
1874 substring operations as well as function calls come here
1875 and we now have to discover what the heck this thing actually was.
1876 If it is a function, we process just as if we got an OP_FUNCALL. */
1877
1878 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1879 (*pos) += 2;
1880
1881 /* First determine the type code we are dealing with. */
1882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1883 type = check_typedef (value_type (arg1));
1884 code = TYPE_CODE (type);
1885
1886 if (code == TYPE_CODE_PTR)
1887 {
1888 /* Fortran always passes variable to subroutines as pointer.
1889 So we need to look into its target type to see if it is
1890 array, string or function. If it is, we need to switch
1891 to the target value the original one points to. */
1892 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1893
1894 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1895 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1896 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1897 {
1898 arg1 = value_ind (arg1);
1899 type = check_typedef (value_type (arg1));
1900 code = TYPE_CODE (type);
1901 }
1902 }
1903
1904 switch (code)
1905 {
1906 case TYPE_CODE_ARRAY:
1907 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1908 return value_f90_subarray (arg1, exp, pos, noside);
1909 else
1910 goto multi_f77_subscript;
1911
1912 case TYPE_CODE_STRING:
1913 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1914 return value_f90_subarray (arg1, exp, pos, noside);
1915 else
1916 {
1917 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1918 return value_subscript (arg1, value_as_long (arg2));
1919 }
1920
1921 case TYPE_CODE_PTR:
1922 case TYPE_CODE_FUNC:
1923 /* It's a function call. */
1924 /* Allocate arg vector, including space for the function to be
1925 called in argvec[0] and a terminating NULL. */
1926 argvec = (struct value **)
1927 alloca (sizeof (struct value *) * (nargs + 2));
1928 argvec[0] = arg1;
1929 tem = 1;
1930 for (; tem <= nargs; tem++)
1931 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1932 argvec[tem] = 0; /* signal end of arglist */
1933 goto do_call_it;
1934
1935 default:
1936 error (_("Cannot perform substring on this type"));
1937 }
1938
1939 case OP_COMPLEX:
1940 /* We have a complex number, There should be 2 floating
1941 point numbers that compose it. */
1942 (*pos) += 2;
1943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1944 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1945
1946 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1947
1948 case STRUCTOP_STRUCT:
1949 tem = longest_to_int (exp->elts[pc + 1].longconst);
1950 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1951 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1952 if (noside == EVAL_SKIP)
1953 goto nosideret;
1954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1955 return value_zero (lookup_struct_elt_type (value_type (arg1),
1956 &exp->elts[pc + 2].string,
1957 0),
1958 lval_memory);
1959 else
1960 {
1961 struct value *temp = arg1;
1962
1963 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1964 NULL, "structure");
1965 }
1966
1967 case STRUCTOP_PTR:
1968 tem = longest_to_int (exp->elts[pc + 1].longconst);
1969 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1971 if (noside == EVAL_SKIP)
1972 goto nosideret;
1973
1974 /* Check to see if operator '->' has been overloaded. If so replace
1975 arg1 with the value returned by evaluating operator->(). */
1976 while (unop_user_defined_p (op, arg1))
1977 {
1978 volatile struct gdb_exception except;
1979 struct value *value = NULL;
1980 TRY_CATCH (except, RETURN_MASK_ERROR)
1981 {
1982 value = value_x_unop (arg1, op, noside);
1983 }
1984
1985 if (except.reason < 0)
1986 {
1987 if (except.error == NOT_FOUND_ERROR)
1988 break;
1989 else
1990 throw_exception (except);
1991 }
1992 arg1 = value;
1993 }
1994
1995 /* JYG: if print object is on we need to replace the base type
1996 with rtti type in order to continue on with successful
1997 lookup of member / method only available in the rtti type. */
1998 {
1999 struct type *type = value_type (arg1);
2000 struct type *real_type;
2001 int full, top, using_enc;
2002 struct value_print_options opts;
2003
2004 get_user_print_options (&opts);
2005 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2006 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2007 {
2008 real_type = value_rtti_indirect_type (arg1, &full, &top,
2009 &using_enc);
2010 if (real_type)
2011 arg1 = value_cast (real_type, arg1);
2012 }
2013 }
2014
2015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2016 return value_zero (lookup_struct_elt_type (value_type (arg1),
2017 &exp->elts[pc + 2].string,
2018 0),
2019 lval_memory);
2020 else
2021 {
2022 struct value *temp = arg1;
2023
2024 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2025 NULL, "structure pointer");
2026 }
2027
2028 case STRUCTOP_MEMBER:
2029 case STRUCTOP_MPTR:
2030 if (op == STRUCTOP_MEMBER)
2031 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2032 else
2033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2034
2035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2036
2037 if (noside == EVAL_SKIP)
2038 goto nosideret;
2039
2040 type = check_typedef (value_type (arg2));
2041 switch (TYPE_CODE (type))
2042 {
2043 case TYPE_CODE_METHODPTR:
2044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2045 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2046 else
2047 {
2048 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2049 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2050 return value_ind (arg2);
2051 }
2052
2053 case TYPE_CODE_MEMBERPTR:
2054 /* Now, convert these values to an address. */
2055 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2056 arg1, 1);
2057
2058 mem_offset = value_as_long (arg2);
2059
2060 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2061 value_as_long (arg1) + mem_offset);
2062 return value_ind (arg3);
2063
2064 default:
2065 error (_("non-pointer-to-member value used "
2066 "in pointer-to-member construct"));
2067 }
2068
2069 case TYPE_INSTANCE:
2070 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2071 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2072 for (ix = 0; ix < nargs; ++ix)
2073 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2074
2075 expect_type = make_params (nargs, arg_types);
2076 *(pos) += 3 + nargs;
2077 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2078 xfree (TYPE_FIELDS (expect_type));
2079 xfree (TYPE_MAIN_TYPE (expect_type));
2080 xfree (expect_type);
2081 return arg1;
2082
2083 case BINOP_CONCAT:
2084 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2085 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2086 if (noside == EVAL_SKIP)
2087 goto nosideret;
2088 if (binop_user_defined_p (op, arg1, arg2))
2089 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2090 else
2091 return value_concat (arg1, arg2);
2092
2093 case BINOP_ASSIGN:
2094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2095 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2096
2097 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2098 return arg1;
2099 if (binop_user_defined_p (op, arg1, arg2))
2100 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2101 else
2102 return value_assign (arg1, arg2);
2103
2104 case BINOP_ASSIGN_MODIFY:
2105 (*pos) += 2;
2106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2107 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2108 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2109 return arg1;
2110 op = exp->elts[pc + 1].opcode;
2111 if (binop_user_defined_p (op, arg1, arg2))
2112 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2113 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2114 value_type (arg1))
2115 && is_integral_type (value_type (arg2)))
2116 arg2 = value_ptradd (arg1, value_as_long (arg2));
2117 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2118 value_type (arg1))
2119 && is_integral_type (value_type (arg2)))
2120 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2121 else
2122 {
2123 struct value *tmp = arg1;
2124
2125 /* For shift and integer exponentiation operations,
2126 only promote the first argument. */
2127 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2128 && is_integral_type (value_type (arg2)))
2129 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2130 else
2131 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2132
2133 arg2 = value_binop (tmp, arg2, op);
2134 }
2135 return value_assign (arg1, arg2);
2136
2137 case BINOP_ADD:
2138 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2139 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2140 if (noside == EVAL_SKIP)
2141 goto nosideret;
2142 if (binop_user_defined_p (op, arg1, arg2))
2143 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2144 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2145 && is_integral_type (value_type (arg2)))
2146 return value_ptradd (arg1, value_as_long (arg2));
2147 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2148 && is_integral_type (value_type (arg1)))
2149 return value_ptradd (arg2, value_as_long (arg1));
2150 else
2151 {
2152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2153 return value_binop (arg1, arg2, BINOP_ADD);
2154 }
2155
2156 case BINOP_SUB:
2157 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2158 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2159 if (noside == EVAL_SKIP)
2160 goto nosideret;
2161 if (binop_user_defined_p (op, arg1, arg2))
2162 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2163 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2164 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2165 {
2166 /* FIXME -- should be ptrdiff_t */
2167 type = builtin_type (exp->gdbarch)->builtin_long;
2168 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2169 }
2170 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2171 && is_integral_type (value_type (arg2)))
2172 return value_ptradd (arg1, - value_as_long (arg2));
2173 else
2174 {
2175 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2176 return value_binop (arg1, arg2, BINOP_SUB);
2177 }
2178
2179 case BINOP_EXP:
2180 case BINOP_MUL:
2181 case BINOP_DIV:
2182 case BINOP_INTDIV:
2183 case BINOP_REM:
2184 case BINOP_MOD:
2185 case BINOP_LSH:
2186 case BINOP_RSH:
2187 case BINOP_BITWISE_AND:
2188 case BINOP_BITWISE_IOR:
2189 case BINOP_BITWISE_XOR:
2190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2191 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2192 if (noside == EVAL_SKIP)
2193 goto nosideret;
2194 if (binop_user_defined_p (op, arg1, arg2))
2195 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2196 else
2197 {
2198 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2199 fudge arg2 to avoid division-by-zero, the caller is
2200 (theoretically) only looking for the type of the result. */
2201 if (noside == EVAL_AVOID_SIDE_EFFECTS
2202 /* ??? Do we really want to test for BINOP_MOD here?
2203 The implementation of value_binop gives it a well-defined
2204 value. */
2205 && (op == BINOP_DIV
2206 || op == BINOP_INTDIV
2207 || op == BINOP_REM
2208 || op == BINOP_MOD)
2209 && value_logical_not (arg2))
2210 {
2211 struct value *v_one, *retval;
2212
2213 v_one = value_one (value_type (arg2));
2214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2215 retval = value_binop (arg1, v_one, op);
2216 return retval;
2217 }
2218 else
2219 {
2220 /* For shift and integer exponentiation operations,
2221 only promote the first argument. */
2222 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2223 && is_integral_type (value_type (arg2)))
2224 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2225 else
2226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2227
2228 return value_binop (arg1, arg2, op);
2229 }
2230 }
2231
2232 case BINOP_RANGE:
2233 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2234 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2235 if (noside == EVAL_SKIP)
2236 goto nosideret;
2237 error (_("':' operator used in invalid context"));
2238
2239 case BINOP_SUBSCRIPT:
2240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2241 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2242 if (noside == EVAL_SKIP)
2243 goto nosideret;
2244 if (binop_user_defined_p (op, arg1, arg2))
2245 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2246 else
2247 {
2248 /* If the user attempts to subscript something that is not an
2249 array or pointer type (like a plain int variable for example),
2250 then report this as an error. */
2251
2252 arg1 = coerce_ref (arg1);
2253 type = check_typedef (value_type (arg1));
2254 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2255 && TYPE_CODE (type) != TYPE_CODE_PTR)
2256 {
2257 if (TYPE_NAME (type))
2258 error (_("cannot subscript something of type `%s'"),
2259 TYPE_NAME (type));
2260 else
2261 error (_("cannot subscript requested type"));
2262 }
2263
2264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2265 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2266 else
2267 return value_subscript (arg1, value_as_long (arg2));
2268 }
2269
2270 case BINOP_IN:
2271 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2272 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2273 if (noside == EVAL_SKIP)
2274 goto nosideret;
2275 type = language_bool_type (exp->language_defn, exp->gdbarch);
2276 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2277
2278 case MULTI_SUBSCRIPT:
2279 (*pos) += 2;
2280 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2281 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2282 while (nargs-- > 0)
2283 {
2284 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2285 /* FIXME: EVAL_SKIP handling may not be correct. */
2286 if (noside == EVAL_SKIP)
2287 {
2288 if (nargs > 0)
2289 {
2290 continue;
2291 }
2292 else
2293 {
2294 goto nosideret;
2295 }
2296 }
2297 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2299 {
2300 /* If the user attempts to subscript something that has no target
2301 type (like a plain int variable for example), then report this
2302 as an error. */
2303
2304 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2305 if (type != NULL)
2306 {
2307 arg1 = value_zero (type, VALUE_LVAL (arg1));
2308 noside = EVAL_SKIP;
2309 continue;
2310 }
2311 else
2312 {
2313 error (_("cannot subscript something of type `%s'"),
2314 TYPE_NAME (value_type (arg1)));
2315 }
2316 }
2317
2318 if (binop_user_defined_p (op, arg1, arg2))
2319 {
2320 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2321 }
2322 else
2323 {
2324 arg1 = coerce_ref (arg1);
2325 type = check_typedef (value_type (arg1));
2326
2327 switch (TYPE_CODE (type))
2328 {
2329 case TYPE_CODE_PTR:
2330 case TYPE_CODE_ARRAY:
2331 case TYPE_CODE_STRING:
2332 arg1 = value_subscript (arg1, value_as_long (arg2));
2333 break;
2334
2335 case TYPE_CODE_BITSTRING:
2336 type = language_bool_type (exp->language_defn, exp->gdbarch);
2337 arg1 = value_bitstring_subscript (type, arg1,
2338 value_as_long (arg2));
2339 break;
2340
2341 default:
2342 if (TYPE_NAME (type))
2343 error (_("cannot subscript something of type `%s'"),
2344 TYPE_NAME (type));
2345 else
2346 error (_("cannot subscript requested type"));
2347 }
2348 }
2349 }
2350 return (arg1);
2351
2352 multi_f77_subscript:
2353 {
2354 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2355 int ndimensions = 1, i;
2356 struct value *array = arg1;
2357
2358 if (nargs > MAX_FORTRAN_DIMS)
2359 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2360
2361 ndimensions = calc_f77_array_dims (type);
2362
2363 if (nargs != ndimensions)
2364 error (_("Wrong number of subscripts"));
2365
2366 gdb_assert (nargs > 0);
2367
2368 /* Now that we know we have a legal array subscript expression
2369 let us actually find out where this element exists in the array. */
2370
2371 /* Take array indices left to right. */
2372 for (i = 0; i < nargs; i++)
2373 {
2374 /* Evaluate each subscript; it must be a legal integer in F77. */
2375 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2376
2377 /* Fill in the subscript array. */
2378
2379 subscript_array[i] = value_as_long (arg2);
2380 }
2381
2382 /* Internal type of array is arranged right to left. */
2383 for (i = nargs; i > 0; i--)
2384 {
2385 struct type *array_type = check_typedef (value_type (array));
2386 LONGEST index = subscript_array[i - 1];
2387
2388 lower = f77_get_lowerbound (array_type);
2389 array = value_subscripted_rvalue (array, index, lower);
2390 }
2391
2392 return array;
2393 }
2394
2395 case BINOP_LOGICAL_AND:
2396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2397 if (noside == EVAL_SKIP)
2398 {
2399 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2400 goto nosideret;
2401 }
2402
2403 oldpos = *pos;
2404 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2405 *pos = oldpos;
2406
2407 if (binop_user_defined_p (op, arg1, arg2))
2408 {
2409 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2410 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2411 }
2412 else
2413 {
2414 tem = value_logical_not (arg1);
2415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2416 (tem ? EVAL_SKIP : noside));
2417 type = language_bool_type (exp->language_defn, exp->gdbarch);
2418 return value_from_longest (type,
2419 (LONGEST) (!tem && !value_logical_not (arg2)));
2420 }
2421
2422 case BINOP_LOGICAL_OR:
2423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2424 if (noside == EVAL_SKIP)
2425 {
2426 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2427 goto nosideret;
2428 }
2429
2430 oldpos = *pos;
2431 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2432 *pos = oldpos;
2433
2434 if (binop_user_defined_p (op, arg1, arg2))
2435 {
2436 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2437 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2438 }
2439 else
2440 {
2441 tem = value_logical_not (arg1);
2442 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2443 (!tem ? EVAL_SKIP : noside));
2444 type = language_bool_type (exp->language_defn, exp->gdbarch);
2445 return value_from_longest (type,
2446 (LONGEST) (!tem || !value_logical_not (arg2)));
2447 }
2448
2449 case BINOP_EQUAL:
2450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2451 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2452 if (noside == EVAL_SKIP)
2453 goto nosideret;
2454 if (binop_user_defined_p (op, arg1, arg2))
2455 {
2456 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2457 }
2458 else
2459 {
2460 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2461 tem = value_equal (arg1, arg2);
2462 type = language_bool_type (exp->language_defn, exp->gdbarch);
2463 return value_from_longest (type, (LONGEST) tem);
2464 }
2465
2466 case BINOP_NOTEQUAL:
2467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2468 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2469 if (noside == EVAL_SKIP)
2470 goto nosideret;
2471 if (binop_user_defined_p (op, arg1, arg2))
2472 {
2473 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2474 }
2475 else
2476 {
2477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2478 tem = value_equal (arg1, arg2);
2479 type = language_bool_type (exp->language_defn, exp->gdbarch);
2480 return value_from_longest (type, (LONGEST) ! tem);
2481 }
2482
2483 case BINOP_LESS:
2484 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2485 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2486 if (noside == EVAL_SKIP)
2487 goto nosideret;
2488 if (binop_user_defined_p (op, arg1, arg2))
2489 {
2490 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2491 }
2492 else
2493 {
2494 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2495 tem = value_less (arg1, arg2);
2496 type = language_bool_type (exp->language_defn, exp->gdbarch);
2497 return value_from_longest (type, (LONGEST) tem);
2498 }
2499
2500 case BINOP_GTR:
2501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2502 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2503 if (noside == EVAL_SKIP)
2504 goto nosideret;
2505 if (binop_user_defined_p (op, arg1, arg2))
2506 {
2507 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2508 }
2509 else
2510 {
2511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2512 tem = value_less (arg2, arg1);
2513 type = language_bool_type (exp->language_defn, exp->gdbarch);
2514 return value_from_longest (type, (LONGEST) tem);
2515 }
2516
2517 case BINOP_GEQ:
2518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2519 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2520 if (noside == EVAL_SKIP)
2521 goto nosideret;
2522 if (binop_user_defined_p (op, arg1, arg2))
2523 {
2524 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2525 }
2526 else
2527 {
2528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2529 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2530 type = language_bool_type (exp->language_defn, exp->gdbarch);
2531 return value_from_longest (type, (LONGEST) tem);
2532 }
2533
2534 case BINOP_LEQ:
2535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2536 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2537 if (noside == EVAL_SKIP)
2538 goto nosideret;
2539 if (binop_user_defined_p (op, arg1, arg2))
2540 {
2541 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2542 }
2543 else
2544 {
2545 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2546 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2547 type = language_bool_type (exp->language_defn, exp->gdbarch);
2548 return value_from_longest (type, (LONGEST) tem);
2549 }
2550
2551 case BINOP_REPEAT:
2552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2553 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2554 if (noside == EVAL_SKIP)
2555 goto nosideret;
2556 type = check_typedef (value_type (arg2));
2557 if (TYPE_CODE (type) != TYPE_CODE_INT)
2558 error (_("Non-integral right operand for \"@\" operator."));
2559 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2560 {
2561 return allocate_repeat_value (value_type (arg1),
2562 longest_to_int (value_as_long (arg2)));
2563 }
2564 else
2565 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2566
2567 case BINOP_COMMA:
2568 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2569 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2570
2571 case UNOP_PLUS:
2572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2573 if (noside == EVAL_SKIP)
2574 goto nosideret;
2575 if (unop_user_defined_p (op, arg1))
2576 return value_x_unop (arg1, op, noside);
2577 else
2578 {
2579 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2580 return value_pos (arg1);
2581 }
2582
2583 case UNOP_NEG:
2584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2585 if (noside == EVAL_SKIP)
2586 goto nosideret;
2587 if (unop_user_defined_p (op, arg1))
2588 return value_x_unop (arg1, op, noside);
2589 else
2590 {
2591 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2592 return value_neg (arg1);
2593 }
2594
2595 case UNOP_COMPLEMENT:
2596 /* C++: check for and handle destructor names. */
2597 op = exp->elts[*pos].opcode;
2598
2599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2600 if (noside == EVAL_SKIP)
2601 goto nosideret;
2602 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2603 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2604 else
2605 {
2606 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2607 return value_complement (arg1);
2608 }
2609
2610 case UNOP_LOGICAL_NOT:
2611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2612 if (noside == EVAL_SKIP)
2613 goto nosideret;
2614 if (unop_user_defined_p (op, arg1))
2615 return value_x_unop (arg1, op, noside);
2616 else
2617 {
2618 type = language_bool_type (exp->language_defn, exp->gdbarch);
2619 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2620 }
2621
2622 case UNOP_IND:
2623 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2624 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2625 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2626 type = check_typedef (value_type (arg1));
2627 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2628 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2629 error (_("Attempt to dereference pointer "
2630 "to member without an object"));
2631 if (noside == EVAL_SKIP)
2632 goto nosideret;
2633 if (unop_user_defined_p (op, arg1))
2634 return value_x_unop (arg1, op, noside);
2635 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2636 {
2637 type = check_typedef (value_type (arg1));
2638 if (TYPE_CODE (type) == TYPE_CODE_PTR
2639 || TYPE_CODE (type) == TYPE_CODE_REF
2640 /* In C you can dereference an array to get the 1st elt. */
2641 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2642 )
2643 return value_zero (TYPE_TARGET_TYPE (type),
2644 lval_memory);
2645 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2646 /* GDB allows dereferencing an int. */
2647 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2648 lval_memory);
2649 else
2650 error (_("Attempt to take contents of a non-pointer value."));
2651 }
2652
2653 /* Allow * on an integer so we can cast it to whatever we want.
2654 This returns an int, which seems like the most C-like thing to
2655 do. "long long" variables are rare enough that
2656 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2657 if (TYPE_CODE (type) == TYPE_CODE_INT)
2658 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2659 (CORE_ADDR) value_as_address (arg1));
2660 return value_ind (arg1);
2661
2662 case UNOP_ADDR:
2663 /* C++: check for and handle pointer to members. */
2664
2665 op = exp->elts[*pos].opcode;
2666
2667 if (noside == EVAL_SKIP)
2668 {
2669 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2670 goto nosideret;
2671 }
2672 else
2673 {
2674 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2675 noside);
2676
2677 return retvalp;
2678 }
2679
2680 case UNOP_SIZEOF:
2681 if (noside == EVAL_SKIP)
2682 {
2683 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2684 goto nosideret;
2685 }
2686 return evaluate_subexp_for_sizeof (exp, pos);
2687
2688 case UNOP_CAST:
2689 (*pos) += 2;
2690 type = exp->elts[pc + 1].type;
2691 arg1 = evaluate_subexp (type, exp, pos, noside);
2692 if (noside == EVAL_SKIP)
2693 goto nosideret;
2694 if (type != value_type (arg1))
2695 arg1 = value_cast (type, arg1);
2696 return arg1;
2697
2698 case UNOP_DYNAMIC_CAST:
2699 (*pos) += 2;
2700 type = exp->elts[pc + 1].type;
2701 arg1 = evaluate_subexp (type, exp, pos, noside);
2702 if (noside == EVAL_SKIP)
2703 goto nosideret;
2704 return value_dynamic_cast (type, arg1);
2705
2706 case UNOP_REINTERPRET_CAST:
2707 (*pos) += 2;
2708 type = exp->elts[pc + 1].type;
2709 arg1 = evaluate_subexp (type, exp, pos, noside);
2710 if (noside == EVAL_SKIP)
2711 goto nosideret;
2712 return value_reinterpret_cast (type, arg1);
2713
2714 case UNOP_MEMVAL:
2715 (*pos) += 2;
2716 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2717 if (noside == EVAL_SKIP)
2718 goto nosideret;
2719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2720 return value_zero (exp->elts[pc + 1].type, lval_memory);
2721 else
2722 return value_at_lazy (exp->elts[pc + 1].type,
2723 value_as_address (arg1));
2724
2725 case UNOP_MEMVAL_TLS:
2726 (*pos) += 3;
2727 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2728 if (noside == EVAL_SKIP)
2729 goto nosideret;
2730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2731 return value_zero (exp->elts[pc + 2].type, lval_memory);
2732 else
2733 {
2734 CORE_ADDR tls_addr;
2735
2736 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2737 value_as_address (arg1));
2738 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2739 }
2740
2741 case UNOP_PREINCREMENT:
2742 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2743 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2744 return arg1;
2745 else if (unop_user_defined_p (op, arg1))
2746 {
2747 return value_x_unop (arg1, op, noside);
2748 }
2749 else
2750 {
2751 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2752 arg2 = value_ptradd (arg1, 1);
2753 else
2754 {
2755 struct value *tmp = arg1;
2756
2757 arg2 = value_one (value_type (arg1));
2758 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2759 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2760 }
2761
2762 return value_assign (arg1, arg2);
2763 }
2764
2765 case UNOP_PREDECREMENT:
2766 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2767 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2768 return arg1;
2769 else if (unop_user_defined_p (op, arg1))
2770 {
2771 return value_x_unop (arg1, op, noside);
2772 }
2773 else
2774 {
2775 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2776 arg2 = value_ptradd (arg1, -1);
2777 else
2778 {
2779 struct value *tmp = arg1;
2780
2781 arg2 = value_one (value_type (arg1));
2782 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2783 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2784 }
2785
2786 return value_assign (arg1, arg2);
2787 }
2788
2789 case UNOP_POSTINCREMENT:
2790 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2791 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2792 return arg1;
2793 else if (unop_user_defined_p (op, arg1))
2794 {
2795 return value_x_unop (arg1, op, noside);
2796 }
2797 else
2798 {
2799 arg3 = value_non_lval (arg1);
2800
2801 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2802 arg2 = value_ptradd (arg1, 1);
2803 else
2804 {
2805 struct value *tmp = arg1;
2806
2807 arg2 = value_one (value_type (arg1));
2808 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2809 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2810 }
2811
2812 value_assign (arg1, arg2);
2813 return arg3;
2814 }
2815
2816 case UNOP_POSTDECREMENT:
2817 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2818 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2819 return arg1;
2820 else if (unop_user_defined_p (op, arg1))
2821 {
2822 return value_x_unop (arg1, op, noside);
2823 }
2824 else
2825 {
2826 arg3 = value_non_lval (arg1);
2827
2828 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2829 arg2 = value_ptradd (arg1, -1);
2830 else
2831 {
2832 struct value *tmp = arg1;
2833
2834 arg2 = value_one (value_type (arg1));
2835 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2836 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2837 }
2838
2839 value_assign (arg1, arg2);
2840 return arg3;
2841 }
2842
2843 case OP_THIS:
2844 (*pos) += 1;
2845 return value_of_this (exp->language_defn);
2846
2847 case OP_TYPE:
2848 /* The value is not supposed to be used. This is here to make it
2849 easier to accommodate expressions that contain types. */
2850 (*pos) += 2;
2851 if (noside == EVAL_SKIP)
2852 goto nosideret;
2853 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2854 {
2855 struct type *type = exp->elts[pc + 1].type;
2856
2857 /* If this is a typedef, then find its immediate target. We
2858 use check_typedef to resolve stubs, but we ignore its
2859 result because we do not want to dig past all
2860 typedefs. */
2861 check_typedef (type);
2862 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2863 type = TYPE_TARGET_TYPE (type);
2864 return allocate_value (type);
2865 }
2866 else
2867 error (_("Attempt to use a type name as an expression"));
2868
2869 default:
2870 /* Removing this case and compiling with gcc -Wall reveals that
2871 a lot of cases are hitting this case. Some of these should
2872 probably be removed from expression.h; others are legitimate
2873 expressions which are (apparently) not fully implemented.
2874
2875 If there are any cases landing here which mean a user error,
2876 then they should be separate cases, with more descriptive
2877 error messages. */
2878
2879 error (_("GDB does not (yet) know how to "
2880 "evaluate that kind of expression"));
2881 }
2882
2883 nosideret:
2884 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2885 }
2886 \f
2887 /* Evaluate a subexpression of EXP, at index *POS,
2888 and return the address of that subexpression.
2889 Advance *POS over the subexpression.
2890 If the subexpression isn't an lvalue, get an error.
2891 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2892 then only the type of the result need be correct. */
2893
2894 static struct value *
2895 evaluate_subexp_for_address (struct expression *exp, int *pos,
2896 enum noside noside)
2897 {
2898 enum exp_opcode op;
2899 int pc;
2900 struct symbol *var;
2901 struct value *x;
2902 int tem;
2903
2904 pc = (*pos);
2905 op = exp->elts[pc].opcode;
2906
2907 switch (op)
2908 {
2909 case UNOP_IND:
2910 (*pos)++;
2911 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2912
2913 /* We can't optimize out "&*" if there's a user-defined operator*. */
2914 if (unop_user_defined_p (op, x))
2915 {
2916 x = value_x_unop (x, op, noside);
2917 goto default_case_after_eval;
2918 }
2919
2920 return coerce_array (x);
2921
2922 case UNOP_MEMVAL:
2923 (*pos) += 3;
2924 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2925 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2926
2927 case OP_VAR_VALUE:
2928 var = exp->elts[pc + 2].symbol;
2929
2930 /* C++: The "address" of a reference should yield the address
2931 * of the object pointed to. Let value_addr() deal with it. */
2932 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2933 goto default_case;
2934
2935 (*pos) += 4;
2936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2937 {
2938 struct type *type =
2939 lookup_pointer_type (SYMBOL_TYPE (var));
2940 enum address_class sym_class = SYMBOL_CLASS (var);
2941
2942 if (sym_class == LOC_CONST
2943 || sym_class == LOC_CONST_BYTES
2944 || sym_class == LOC_REGISTER)
2945 error (_("Attempt to take address of register or constant."));
2946
2947 return
2948 value_zero (type, not_lval);
2949 }
2950 else
2951 return address_of_variable (var, exp->elts[pc + 1].block);
2952
2953 case OP_SCOPE:
2954 tem = longest_to_int (exp->elts[pc + 2].longconst);
2955 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2956 x = value_aggregate_elt (exp->elts[pc + 1].type,
2957 &exp->elts[pc + 3].string,
2958 NULL, 1, noside);
2959 if (x == NULL)
2960 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2961 return x;
2962
2963 default:
2964 default_case:
2965 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2966 default_case_after_eval:
2967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2968 {
2969 struct type *type = check_typedef (value_type (x));
2970
2971 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2972 return value_zero (lookup_pointer_type (value_type (x)),
2973 not_lval);
2974 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2975 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2976 not_lval);
2977 else
2978 error (_("Attempt to take address of "
2979 "value not located in memory."));
2980 }
2981 return value_addr (x);
2982 }
2983 }
2984
2985 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2986 When used in contexts where arrays will be coerced anyway, this is
2987 equivalent to `evaluate_subexp' but much faster because it avoids
2988 actually fetching array contents (perhaps obsolete now that we have
2989 value_lazy()).
2990
2991 Note that we currently only do the coercion for C expressions, where
2992 arrays are zero based and the coercion is correct. For other languages,
2993 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2994 to decide if coercion is appropriate. */
2995
2996 struct value *
2997 evaluate_subexp_with_coercion (struct expression *exp,
2998 int *pos, enum noside noside)
2999 {
3000 enum exp_opcode op;
3001 int pc;
3002 struct value *val;
3003 struct symbol *var;
3004 struct type *type;
3005
3006 pc = (*pos);
3007 op = exp->elts[pc].opcode;
3008
3009 switch (op)
3010 {
3011 case OP_VAR_VALUE:
3012 var = exp->elts[pc + 2].symbol;
3013 type = check_typedef (SYMBOL_TYPE (var));
3014 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3015 && !TYPE_VECTOR (type)
3016 && CAST_IS_CONVERSION (exp->language_defn))
3017 {
3018 (*pos) += 4;
3019 val = address_of_variable (var, exp->elts[pc + 1].block);
3020 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3021 val);
3022 }
3023 /* FALLTHROUGH */
3024
3025 default:
3026 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3027 }
3028 }
3029
3030 /* Evaluate a subexpression of EXP, at index *POS,
3031 and return a value for the size of that subexpression.
3032 Advance *POS over the subexpression. */
3033
3034 static struct value *
3035 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3036 {
3037 /* FIXME: This should be size_t. */
3038 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3039 enum exp_opcode op;
3040 int pc;
3041 struct type *type;
3042 struct value *val;
3043
3044 pc = (*pos);
3045 op = exp->elts[pc].opcode;
3046
3047 switch (op)
3048 {
3049 /* This case is handled specially
3050 so that we avoid creating a value for the result type.
3051 If the result type is very big, it's desirable not to
3052 create a value unnecessarily. */
3053 case UNOP_IND:
3054 (*pos)++;
3055 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3056 type = check_typedef (value_type (val));
3057 if (TYPE_CODE (type) != TYPE_CODE_PTR
3058 && TYPE_CODE (type) != TYPE_CODE_REF
3059 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3060 error (_("Attempt to take contents of a non-pointer value."));
3061 type = check_typedef (TYPE_TARGET_TYPE (type));
3062 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3063
3064 case UNOP_MEMVAL:
3065 (*pos) += 3;
3066 type = check_typedef (exp->elts[pc + 1].type);
3067 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3068
3069 case OP_VAR_VALUE:
3070 (*pos) += 4;
3071 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3072 return
3073 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3074
3075 default:
3076 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3077 return value_from_longest (size_type,
3078 (LONGEST) TYPE_LENGTH (value_type (val)));
3079 }
3080 }
3081
3082 /* Parse a type expression in the string [P..P+LENGTH). */
3083
3084 struct type *
3085 parse_and_eval_type (char *p, int length)
3086 {
3087 char *tmp = (char *) alloca (length + 4);
3088 struct expression *expr;
3089
3090 tmp[0] = '(';
3091 memcpy (tmp + 1, p, length);
3092 tmp[length + 1] = ')';
3093 tmp[length + 2] = '0';
3094 tmp[length + 3] = '\0';
3095 expr = parse_expression (tmp);
3096 if (expr->elts[0].opcode != UNOP_CAST)
3097 error (_("Internal error in eval_type."));
3098 return expr->elts[1].type;
3099 }
3100
3101 int
3102 calc_f77_array_dims (struct type *array_type)
3103 {
3104 int ndimen = 1;
3105 struct type *tmp_type;
3106
3107 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3108 error (_("Can't get dimensions for a non-array type"));
3109
3110 tmp_type = array_type;
3111
3112 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3113 {
3114 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3115 ++ndimen;
3116 }
3117 return ndimen;
3118 }