]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/event-loop.c
daily update
[thirdparty/binutils-gdb.git] / gdb / event-loop.c
1 /* Event loop machinery for GDB, the GNU debugger.
2 Copyright (C) 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2008, 2009, 2010,
3 2011 Free Software Foundation, Inc.
4 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "event-loop.h"
23 #include "event-top.h"
24
25 #ifdef HAVE_POLL
26 #if defined (HAVE_POLL_H)
27 #include <poll.h>
28 #elif defined (HAVE_SYS_POLL_H)
29 #include <sys/poll.h>
30 #endif
31 #endif
32
33 #include <sys/types.h>
34 #include "gdb_string.h"
35 #include <errno.h>
36 #include <sys/time.h>
37 #include "exceptions.h"
38 #include "gdb_assert.h"
39 #include "gdb_select.h"
40
41 /* Tell create_file_handler what events we are interested in.
42 This is used by the select version of the event loop. */
43
44 #define GDB_READABLE (1<<1)
45 #define GDB_WRITABLE (1<<2)
46 #define GDB_EXCEPTION (1<<3)
47
48 /* Data point to pass to the event handler. */
49 typedef union event_data
50 {
51 void *ptr;
52 int integer;
53 } event_data;
54
55 typedef struct gdb_event gdb_event;
56 typedef void (event_handler_func) (event_data);
57
58 /* Event for the GDB event system. Events are queued by calling
59 async_queue_event and serviced later on by gdb_do_one_event. An
60 event can be, for instance, a file descriptor becoming ready to be
61 read. Servicing an event simply means that the procedure PROC will
62 be called. We have 2 queues, one for file handlers that we listen
63 to in the event loop, and one for the file handlers+events that are
64 ready. The procedure PROC associated with each event is dependant
65 of the event source. In the case of monitored file descriptors, it
66 is always the same (handle_file_event). Its duty is to invoke the
67 handler associated with the file descriptor whose state change
68 generated the event, plus doing other cleanups and such. In the
69 case of async signal handlers, it is
70 invoke_async_signal_handler. */
71
72 struct gdb_event
73 {
74 /* Procedure to call to service this event. */
75 event_handler_func *proc;
76
77 /* Data to pass to the event handler. */
78 event_data data;
79
80 /* Next in list of events or NULL. */
81 struct gdb_event *next_event;
82 };
83
84 /* Information about each file descriptor we register with the event
85 loop. */
86
87 typedef struct file_handler
88 {
89 int fd; /* File descriptor. */
90 int mask; /* Events we want to monitor: POLLIN, etc. */
91 int ready_mask; /* Events that have been seen since
92 the last time. */
93 handler_func *proc; /* Procedure to call when fd is ready. */
94 gdb_client_data client_data; /* Argument to pass to proc. */
95 int error; /* Was an error detected on this fd? */
96 struct file_handler *next_file; /* Next registered file descriptor. */
97 }
98 file_handler;
99
100 /* PROC is a function to be invoked when the READY flag is set. This
101 happens when there has been a signal and the corresponding signal
102 handler has 'triggered' this async_signal_handler for execution.
103 The actual work to be done in response to a signal will be carried
104 out by PROC at a later time, within process_event. This provides a
105 deferred execution of signal handlers.
106
107 Async_init_signals takes care of setting up such an
108 async_signal_handler for each interesting signal. */
109
110 typedef struct async_signal_handler
111 {
112 int ready; /* If ready, call this handler
113 from the main event loop, using
114 invoke_async_handler. */
115 struct async_signal_handler *next_handler; /* Ptr to next handler. */
116 sig_handler_func *proc; /* Function to call to do the work. */
117 gdb_client_data client_data; /* Argument to async_handler_func. */
118 }
119 async_signal_handler;
120
121 /* PROC is a function to be invoked when the READY flag is set. This
122 happens when the event has been marked with
123 MARK_ASYNC_EVENT_HANDLER. The actual work to be done in response
124 to an event will be carried out by PROC at a later time, within
125 process_event. This provides a deferred execution of event
126 handlers. */
127 typedef struct async_event_handler
128 {
129 /* If ready, call this handler from the main event loop, using
130 invoke_event_handler. */
131 int ready;
132
133 /* Point to next handler. */
134 struct async_event_handler *next_handler;
135
136 /* Function to call to do the work. */
137 async_event_handler_func *proc;
138
139 /* Argument to PROC. */
140 gdb_client_data client_data;
141 }
142 async_event_handler;
143
144
145 /* Event queue:
146 - the first event in the queue is the head of the queue.
147 It will be the next to be serviced.
148 - the last event in the queue
149
150 Events can be inserted at the front of the queue or at the end of
151 the queue. Events will be extracted from the queue for processing
152 starting from the head. Therefore, events inserted at the head of
153 the queue will be processed in a last in first out fashion, while
154 those inserted at the tail of the queue will be processed in a first
155 in first out manner. All the fields are NULL if the queue is
156 empty. */
157
158 static struct
159 {
160 gdb_event *first_event; /* First pending event. */
161 gdb_event *last_event; /* Last pending event. */
162 }
163 event_queue;
164
165 /* Gdb_notifier is just a list of file descriptors gdb is interested in.
166 These are the input file descriptor, and the target file
167 descriptor. We have two flavors of the notifier, one for platforms
168 that have the POLL function, the other for those that don't, and
169 only support SELECT. Each of the elements in the gdb_notifier list is
170 basically a description of what kind of events gdb is interested
171 in, for each fd. */
172
173 /* As of 1999-04-30 only the input file descriptor is registered with the
174 event loop. */
175
176 /* Do we use poll or select ? */
177 #ifdef HAVE_POLL
178 #define USE_POLL 1
179 #else
180 #define USE_POLL 0
181 #endif /* HAVE_POLL */
182
183 static unsigned char use_poll = USE_POLL;
184
185 #ifdef USE_WIN32API
186 #include <windows.h>
187 #include <io.h>
188 #endif
189
190 static struct
191 {
192 /* Ptr to head of file handler list. */
193 file_handler *first_file_handler;
194
195 #ifdef HAVE_POLL
196 /* Ptr to array of pollfd structures. */
197 struct pollfd *poll_fds;
198
199 /* Timeout in milliseconds for calls to poll(). */
200 int poll_timeout;
201 #endif
202
203 /* Masks to be used in the next call to select.
204 Bits are set in response to calls to create_file_handler. */
205 fd_set check_masks[3];
206
207 /* What file descriptors were found ready by select. */
208 fd_set ready_masks[3];
209
210 /* Number of file descriptors to monitor (for poll). */
211 /* Number of valid bits (highest fd value + 1) (for select). */
212 int num_fds;
213
214 /* Time structure for calls to select(). */
215 struct timeval select_timeout;
216
217 /* Flag to tell whether the timeout should be used. */
218 int timeout_valid;
219 }
220 gdb_notifier;
221
222 /* Structure associated with a timer. PROC will be executed at the
223 first occasion after WHEN. */
224 struct gdb_timer
225 {
226 struct timeval when;
227 int timer_id;
228 struct gdb_timer *next;
229 timer_handler_func *proc; /* Function to call to do the work. */
230 gdb_client_data client_data; /* Argument to async_handler_func. */
231 };
232
233 /* List of currently active timers. It is sorted in order of
234 increasing timers. */
235 static struct
236 {
237 /* Pointer to first in timer list. */
238 struct gdb_timer *first_timer;
239
240 /* Id of the last timer created. */
241 int num_timers;
242 }
243 timer_list;
244
245 /* All the async_signal_handlers gdb is interested in are kept onto
246 this list. */
247 static struct
248 {
249 /* Pointer to first in handler list. */
250 async_signal_handler *first_handler;
251
252 /* Pointer to last in handler list. */
253 async_signal_handler *last_handler;
254 }
255 sighandler_list;
256
257 /* All the async_event_handlers gdb is interested in are kept onto
258 this list. */
259 static struct
260 {
261 /* Pointer to first in handler list. */
262 async_event_handler *first_handler;
263
264 /* Pointer to last in handler list. */
265 async_event_handler *last_handler;
266 }
267 async_event_handler_list;
268
269 static int invoke_async_signal_handlers (void);
270 static void create_file_handler (int fd, int mask, handler_func *proc,
271 gdb_client_data client_data);
272 static void handle_file_event (event_data data);
273 static void check_async_event_handlers (void);
274 static int gdb_wait_for_event (int);
275 static void poll_timers (void);
276 \f
277
278 /* Insert an event object into the gdb event queue at
279 the specified position.
280 POSITION can be head or tail, with values TAIL, HEAD.
281 EVENT_PTR points to the event to be inserted into the queue.
282 The caller must allocate memory for the event. It is freed
283 after the event has ben handled.
284 Events in the queue will be processed head to tail, therefore,
285 events inserted at the head of the queue will be processed
286 as last in first out. Event appended at the tail of the queue
287 will be processed first in first out. */
288 static void
289 async_queue_event (gdb_event * event_ptr, queue_position position)
290 {
291 if (position == TAIL)
292 {
293 /* The event will become the new last_event. */
294
295 event_ptr->next_event = NULL;
296 if (event_queue.first_event == NULL)
297 event_queue.first_event = event_ptr;
298 else
299 event_queue.last_event->next_event = event_ptr;
300 event_queue.last_event = event_ptr;
301 }
302 else if (position == HEAD)
303 {
304 /* The event becomes the new first_event. */
305
306 event_ptr->next_event = event_queue.first_event;
307 if (event_queue.first_event == NULL)
308 event_queue.last_event = event_ptr;
309 event_queue.first_event = event_ptr;
310 }
311 }
312
313 /* Create a generic event, to be enqueued in the event queue for
314 processing. PROC is the procedure associated to the event. DATA
315 is passed to PROC upon PROC invocation. */
316
317 static gdb_event *
318 create_event (event_handler_func proc, event_data data)
319 {
320 gdb_event *event;
321
322 event = xmalloc (sizeof (*event));
323 event->proc = proc;
324 event->data = data;
325
326 return event;
327 }
328
329 /* Create a file event, to be enqueued in the event queue for
330 processing. The procedure associated to this event is always
331 handle_file_event, which will in turn invoke the one that was
332 associated to FD when it was registered with the event loop. */
333 static gdb_event *
334 create_file_event (int fd)
335 {
336 event_data data;
337
338 data.integer = fd;
339 return create_event (handle_file_event, data);
340 }
341
342 /* Process one event.
343 The event can be the next one to be serviced in the event queue,
344 or an asynchronous event handler can be invoked in response to
345 the reception of a signal.
346 If an event was processed (either way), 1 is returned otherwise
347 0 is returned.
348 Scan the queue from head to tail, processing therefore the high
349 priority events first, by invoking the associated event handler
350 procedure. */
351 static int
352 process_event (void)
353 {
354 gdb_event *event_ptr, *prev_ptr;
355 event_handler_func *proc;
356 event_data data;
357
358 /* First let's see if there are any asynchronous event handlers that
359 are ready. These would be the result of invoking any of the
360 signal handlers. */
361
362 if (invoke_async_signal_handlers ())
363 return 1;
364
365 /* Look in the event queue to find an event that is ready
366 to be processed. */
367
368 for (event_ptr = event_queue.first_event; event_ptr != NULL;
369 event_ptr = event_ptr->next_event)
370 {
371 /* Call the handler for the event. */
372
373 proc = event_ptr->proc;
374 data = event_ptr->data;
375
376 /* Let's get rid of the event from the event queue. We need to
377 do this now because while processing the event, the proc
378 function could end up calling 'error' and therefore jump out
379 to the caller of this function, gdb_do_one_event. In that
380 case, we would have on the event queue an event wich has been
381 processed, but not deleted. */
382
383 if (event_queue.first_event == event_ptr)
384 {
385 event_queue.first_event = event_ptr->next_event;
386 if (event_ptr->next_event == NULL)
387 event_queue.last_event = NULL;
388 }
389 else
390 {
391 prev_ptr = event_queue.first_event;
392 while (prev_ptr->next_event != event_ptr)
393 prev_ptr = prev_ptr->next_event;
394
395 prev_ptr->next_event = event_ptr->next_event;
396 if (event_ptr->next_event == NULL)
397 event_queue.last_event = prev_ptr;
398 }
399 xfree (event_ptr);
400
401 /* Now call the procedure associated with the event. */
402 (*proc) (data);
403 return 1;
404 }
405
406 /* This is the case if there are no event on the event queue. */
407 return 0;
408 }
409
410 /* Process one high level event. If nothing is ready at this time,
411 wait for something to happen (via gdb_wait_for_event), then process
412 it. Returns >0 if something was done otherwise returns <0 (this
413 can happen if there are no event sources to wait for). If an error
414 occurs catch_errors() which calls this function returns zero. */
415
416 int
417 gdb_do_one_event (void *data)
418 {
419 static int event_source_head = 0;
420 const int number_of_sources = 3;
421 int current = 0;
422
423 /* Any events already waiting in the queue? */
424 if (process_event ())
425 return 1;
426
427 /* To level the fairness across event sources, we poll them in a
428 round-robin fashion. */
429 for (current = 0; current < number_of_sources; current++)
430 {
431 switch (event_source_head)
432 {
433 case 0:
434 /* Are any timers that are ready? If so, put an event on the
435 queue. */
436 poll_timers ();
437 break;
438 case 1:
439 /* Are there events already waiting to be collected on the
440 monitored file descriptors? */
441 gdb_wait_for_event (0);
442 break;
443 case 2:
444 /* Are there any asynchronous event handlers ready? */
445 check_async_event_handlers ();
446 break;
447 }
448
449 event_source_head++;
450 if (event_source_head == number_of_sources)
451 event_source_head = 0;
452 }
453
454 /* Handle any new events collected. */
455 if (process_event ())
456 return 1;
457
458 /* Block waiting for a new event. If gdb_wait_for_event returns -1,
459 we should get out because this means that there are no event
460 sources left. This will make the event loop stop, and the
461 application exit. */
462
463 if (gdb_wait_for_event (1) < 0)
464 return -1;
465
466 /* Handle any new events occurred while waiting. */
467 if (process_event ())
468 return 1;
469
470 /* If gdb_wait_for_event has returned 1, it means that one event has
471 been handled. We break out of the loop. */
472 return 1;
473 }
474
475 /* Start up the event loop. This is the entry point to the event loop
476 from the command loop. */
477
478 void
479 start_event_loop (void)
480 {
481 /* Loop until there is nothing to do. This is the entry point to the
482 event loop engine. gdb_do_one_event, called via catch_errors()
483 will process one event for each invocation. It blocks waits for
484 an event and then processes it. >0 when an event is processed, 0
485 when catch_errors() caught an error and <0 when there are no
486 longer any event sources registered. */
487 while (1)
488 {
489 int gdb_result;
490
491 gdb_result = catch_errors (gdb_do_one_event, 0, "", RETURN_MASK_ALL);
492 if (gdb_result < 0)
493 break;
494
495 /* If we long-jumped out of do_one_event, we probably
496 didn't get around to resetting the prompt, which leaves
497 readline in a messed-up state. Reset it here. */
498
499 if (gdb_result == 0)
500 {
501 /* If any exception escaped to here, we better enable
502 stdin. Otherwise, any command that calls async_disable_stdin,
503 and then throws, will leave stdin inoperable. */
504 async_enable_stdin ();
505 /* FIXME: this should really be a call to a hook that is
506 interface specific, because interfaces can display the
507 prompt in their own way. */
508 display_gdb_prompt (0);
509 /* This call looks bizarre, but it is required. If the user
510 entered a command that caused an error,
511 after_char_processing_hook won't be called from
512 rl_callback_read_char_wrapper. Using a cleanup there
513 won't work, since we want this function to be called
514 after a new prompt is printed. */
515 if (after_char_processing_hook)
516 (*after_char_processing_hook) ();
517 /* Maybe better to set a flag to be checked somewhere as to
518 whether display the prompt or not. */
519 }
520 }
521
522 /* We are done with the event loop. There are no more event sources
523 to listen to. So we exit GDB. */
524 return;
525 }
526 \f
527
528 /* Wrapper function for create_file_handler, so that the caller
529 doesn't have to know implementation details about the use of poll
530 vs. select. */
531 void
532 add_file_handler (int fd, handler_func * proc, gdb_client_data client_data)
533 {
534 #ifdef HAVE_POLL
535 struct pollfd fds;
536 #endif
537
538 if (use_poll)
539 {
540 #ifdef HAVE_POLL
541 /* Check to see if poll () is usable. If not, we'll switch to
542 use select. This can happen on systems like
543 m68k-motorola-sys, `poll' cannot be used to wait for `stdin'.
544 On m68k-motorola-sysv, tty's are not stream-based and not
545 `poll'able. */
546 fds.fd = fd;
547 fds.events = POLLIN;
548 if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL))
549 use_poll = 0;
550 #else
551 internal_error (__FILE__, __LINE__,
552 _("use_poll without HAVE_POLL"));
553 #endif /* HAVE_POLL */
554 }
555 if (use_poll)
556 {
557 #ifdef HAVE_POLL
558 create_file_handler (fd, POLLIN, proc, client_data);
559 #else
560 internal_error (__FILE__, __LINE__,
561 _("use_poll without HAVE_POLL"));
562 #endif
563 }
564 else
565 create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION,
566 proc, client_data);
567 }
568
569 /* Add a file handler/descriptor to the list of descriptors we are
570 interested in.
571
572 FD is the file descriptor for the file/stream to be listened to.
573
574 For the poll case, MASK is a combination (OR) of POLLIN,
575 POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND:
576 these are the events we are interested in. If any of them occurs,
577 proc should be called.
578
579 For the select case, MASK is a combination of READABLE, WRITABLE,
580 EXCEPTION. PROC is the procedure that will be called when an event
581 occurs for FD. CLIENT_DATA is the argument to pass to PROC. */
582
583 static void
584 create_file_handler (int fd, int mask, handler_func * proc,
585 gdb_client_data client_data)
586 {
587 file_handler *file_ptr;
588
589 /* Do we already have a file handler for this file? (We may be
590 changing its associated procedure). */
591 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
592 file_ptr = file_ptr->next_file)
593 {
594 if (file_ptr->fd == fd)
595 break;
596 }
597
598 /* It is a new file descriptor. Add it to the list. Otherwise, just
599 change the data associated with it. */
600 if (file_ptr == NULL)
601 {
602 file_ptr = (file_handler *) xmalloc (sizeof (file_handler));
603 file_ptr->fd = fd;
604 file_ptr->ready_mask = 0;
605 file_ptr->next_file = gdb_notifier.first_file_handler;
606 gdb_notifier.first_file_handler = file_ptr;
607
608 if (use_poll)
609 {
610 #ifdef HAVE_POLL
611 gdb_notifier.num_fds++;
612 if (gdb_notifier.poll_fds)
613 gdb_notifier.poll_fds =
614 (struct pollfd *) xrealloc (gdb_notifier.poll_fds,
615 (gdb_notifier.num_fds
616 * sizeof (struct pollfd)));
617 else
618 gdb_notifier.poll_fds =
619 (struct pollfd *) xmalloc (sizeof (struct pollfd));
620 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd;
621 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask;
622 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0;
623 #else
624 internal_error (__FILE__, __LINE__,
625 _("use_poll without HAVE_POLL"));
626 #endif /* HAVE_POLL */
627 }
628 else
629 {
630 if (mask & GDB_READABLE)
631 FD_SET (fd, &gdb_notifier.check_masks[0]);
632 else
633 FD_CLR (fd, &gdb_notifier.check_masks[0]);
634
635 if (mask & GDB_WRITABLE)
636 FD_SET (fd, &gdb_notifier.check_masks[1]);
637 else
638 FD_CLR (fd, &gdb_notifier.check_masks[1]);
639
640 if (mask & GDB_EXCEPTION)
641 FD_SET (fd, &gdb_notifier.check_masks[2]);
642 else
643 FD_CLR (fd, &gdb_notifier.check_masks[2]);
644
645 if (gdb_notifier.num_fds <= fd)
646 gdb_notifier.num_fds = fd + 1;
647 }
648 }
649
650 file_ptr->proc = proc;
651 file_ptr->client_data = client_data;
652 file_ptr->mask = mask;
653 }
654
655 /* Remove the file descriptor FD from the list of monitored fd's:
656 i.e. we don't care anymore about events on the FD. */
657 void
658 delete_file_handler (int fd)
659 {
660 file_handler *file_ptr, *prev_ptr = NULL;
661 int i;
662 #ifdef HAVE_POLL
663 int j;
664 struct pollfd *new_poll_fds;
665 #endif
666
667 /* Find the entry for the given file. */
668
669 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
670 file_ptr = file_ptr->next_file)
671 {
672 if (file_ptr->fd == fd)
673 break;
674 }
675
676 if (file_ptr == NULL)
677 return;
678
679 if (use_poll)
680 {
681 #ifdef HAVE_POLL
682 /* Create a new poll_fds array by copying every fd's information
683 but the one we want to get rid of. */
684
685 new_poll_fds = (struct pollfd *)
686 xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd));
687
688 for (i = 0, j = 0; i < gdb_notifier.num_fds; i++)
689 {
690 if ((gdb_notifier.poll_fds + i)->fd != fd)
691 {
692 (new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd;
693 (new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events;
694 (new_poll_fds + j)->revents
695 = (gdb_notifier.poll_fds + i)->revents;
696 j++;
697 }
698 }
699 xfree (gdb_notifier.poll_fds);
700 gdb_notifier.poll_fds = new_poll_fds;
701 gdb_notifier.num_fds--;
702 #else
703 internal_error (__FILE__, __LINE__,
704 _("use_poll without HAVE_POLL"));
705 #endif /* HAVE_POLL */
706 }
707 else
708 {
709 if (file_ptr->mask & GDB_READABLE)
710 FD_CLR (fd, &gdb_notifier.check_masks[0]);
711 if (file_ptr->mask & GDB_WRITABLE)
712 FD_CLR (fd, &gdb_notifier.check_masks[1]);
713 if (file_ptr->mask & GDB_EXCEPTION)
714 FD_CLR (fd, &gdb_notifier.check_masks[2]);
715
716 /* Find current max fd. */
717
718 if ((fd + 1) == gdb_notifier.num_fds)
719 {
720 gdb_notifier.num_fds--;
721 for (i = gdb_notifier.num_fds; i; i--)
722 {
723 if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0])
724 || FD_ISSET (i - 1, &gdb_notifier.check_masks[1])
725 || FD_ISSET (i - 1, &gdb_notifier.check_masks[2]))
726 break;
727 }
728 gdb_notifier.num_fds = i;
729 }
730 }
731
732 /* Deactivate the file descriptor, by clearing its mask,
733 so that it will not fire again. */
734
735 file_ptr->mask = 0;
736
737 /* Get rid of the file handler in the file handler list. */
738 if (file_ptr == gdb_notifier.first_file_handler)
739 gdb_notifier.first_file_handler = file_ptr->next_file;
740 else
741 {
742 for (prev_ptr = gdb_notifier.first_file_handler;
743 prev_ptr->next_file != file_ptr;
744 prev_ptr = prev_ptr->next_file)
745 ;
746 prev_ptr->next_file = file_ptr->next_file;
747 }
748 xfree (file_ptr);
749 }
750
751 /* Handle the given event by calling the procedure associated to the
752 corresponding file handler. Called by process_event indirectly,
753 through event_ptr->proc. EVENT_FILE_DESC is file descriptor of the
754 event in the front of the event queue. */
755 static void
756 handle_file_event (event_data data)
757 {
758 file_handler *file_ptr;
759 int mask;
760 #ifdef HAVE_POLL
761 int error_mask;
762 #endif
763 int event_file_desc = data.integer;
764
765 /* Search the file handler list to find one that matches the fd in
766 the event. */
767 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
768 file_ptr = file_ptr->next_file)
769 {
770 if (file_ptr->fd == event_file_desc)
771 {
772 /* With poll, the ready_mask could have any of three events
773 set to 1: POLLHUP, POLLERR, POLLNVAL. These events
774 cannot be used in the requested event mask (events), but
775 they can be returned in the return mask (revents). We
776 need to check for those event too, and add them to the
777 mask which will be passed to the handler. */
778
779 /* See if the desired events (mask) match the received
780 events (ready_mask). */
781
782 if (use_poll)
783 {
784 #ifdef HAVE_POLL
785 /* POLLHUP means EOF, but can be combined with POLLIN to
786 signal more data to read. */
787 error_mask = POLLHUP | POLLERR | POLLNVAL;
788 mask = file_ptr->ready_mask & (file_ptr->mask | error_mask);
789
790 if ((mask & (POLLERR | POLLNVAL)) != 0)
791 {
792 /* Work in progress. We may need to tell somebody
793 what kind of error we had. */
794 if (mask & POLLERR)
795 printf_unfiltered (_("Error detected on fd %d\n"),
796 file_ptr->fd);
797 if (mask & POLLNVAL)
798 printf_unfiltered (_("Invalid or non-`poll'able fd %d\n"),
799 file_ptr->fd);
800 file_ptr->error = 1;
801 }
802 else
803 file_ptr->error = 0;
804 #else
805 internal_error (__FILE__, __LINE__,
806 _("use_poll without HAVE_POLL"));
807 #endif /* HAVE_POLL */
808 }
809 else
810 {
811 if (file_ptr->ready_mask & GDB_EXCEPTION)
812 {
813 printf_unfiltered (_("Exception condition detected "
814 "on fd %d\n"), file_ptr->fd);
815 file_ptr->error = 1;
816 }
817 else
818 file_ptr->error = 0;
819 mask = file_ptr->ready_mask & file_ptr->mask;
820 }
821
822 /* Clear the received events for next time around. */
823 file_ptr->ready_mask = 0;
824
825 /* If there was a match, then call the handler. */
826 if (mask != 0)
827 (*file_ptr->proc) (file_ptr->error, file_ptr->client_data);
828 break;
829 }
830 }
831 }
832
833 /* Called by gdb_do_one_event to wait for new events on the monitored
834 file descriptors. Queue file events as they are detected by the
835 poll. If BLOCK and if there are no events, this function will
836 block in the call to poll. Return -1 if there are no file
837 descriptors to monitor, otherwise return 0. */
838 static int
839 gdb_wait_for_event (int block)
840 {
841 file_handler *file_ptr;
842 gdb_event *file_event_ptr;
843 int num_found = 0;
844 int i;
845
846 /* Make sure all output is done before getting another event. */
847 gdb_flush (gdb_stdout);
848 gdb_flush (gdb_stderr);
849
850 if (gdb_notifier.num_fds == 0)
851 return -1;
852
853 if (use_poll)
854 {
855 #ifdef HAVE_POLL
856 int timeout;
857
858 if (block)
859 timeout = gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1;
860 else
861 timeout = 0;
862
863 num_found = poll (gdb_notifier.poll_fds,
864 (unsigned long) gdb_notifier.num_fds, timeout);
865
866 /* Don't print anything if we get out of poll because of a
867 signal. */
868 if (num_found == -1 && errno != EINTR)
869 perror_with_name (("poll"));
870 #else
871 internal_error (__FILE__, __LINE__,
872 _("use_poll without HAVE_POLL"));
873 #endif /* HAVE_POLL */
874 }
875 else
876 {
877 struct timeval select_timeout;
878 struct timeval *timeout_p;
879
880 if (block)
881 timeout_p = gdb_notifier.timeout_valid
882 ? &gdb_notifier.select_timeout : NULL;
883 else
884 {
885 memset (&select_timeout, 0, sizeof (select_timeout));
886 timeout_p = &select_timeout;
887 }
888
889 gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0];
890 gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1];
891 gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2];
892 num_found = gdb_select (gdb_notifier.num_fds,
893 &gdb_notifier.ready_masks[0],
894 &gdb_notifier.ready_masks[1],
895 &gdb_notifier.ready_masks[2],
896 timeout_p);
897
898 /* Clear the masks after an error from select. */
899 if (num_found == -1)
900 {
901 FD_ZERO (&gdb_notifier.ready_masks[0]);
902 FD_ZERO (&gdb_notifier.ready_masks[1]);
903 FD_ZERO (&gdb_notifier.ready_masks[2]);
904
905 /* Dont print anything if we got a signal, let gdb handle
906 it. */
907 if (errno != EINTR)
908 perror_with_name (("select"));
909 }
910 }
911
912 /* Enqueue all detected file events. */
913
914 if (use_poll)
915 {
916 #ifdef HAVE_POLL
917 for (i = 0; (i < gdb_notifier.num_fds) && (num_found > 0); i++)
918 {
919 if ((gdb_notifier.poll_fds + i)->revents)
920 num_found--;
921 else
922 continue;
923
924 for (file_ptr = gdb_notifier.first_file_handler;
925 file_ptr != NULL;
926 file_ptr = file_ptr->next_file)
927 {
928 if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd)
929 break;
930 }
931
932 if (file_ptr)
933 {
934 /* Enqueue an event only if this is still a new event for
935 this fd. */
936 if (file_ptr->ready_mask == 0)
937 {
938 file_event_ptr = create_file_event (file_ptr->fd);
939 async_queue_event (file_event_ptr, TAIL);
940 }
941 file_ptr->ready_mask = (gdb_notifier.poll_fds + i)->revents;
942 }
943 }
944 #else
945 internal_error (__FILE__, __LINE__,
946 _("use_poll without HAVE_POLL"));
947 #endif /* HAVE_POLL */
948 }
949 else
950 {
951 for (file_ptr = gdb_notifier.first_file_handler;
952 (file_ptr != NULL) && (num_found > 0);
953 file_ptr = file_ptr->next_file)
954 {
955 int mask = 0;
956
957 if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0]))
958 mask |= GDB_READABLE;
959 if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1]))
960 mask |= GDB_WRITABLE;
961 if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2]))
962 mask |= GDB_EXCEPTION;
963
964 if (!mask)
965 continue;
966 else
967 num_found--;
968
969 /* Enqueue an event only if this is still a new event for
970 this fd. */
971
972 if (file_ptr->ready_mask == 0)
973 {
974 file_event_ptr = create_file_event (file_ptr->fd);
975 async_queue_event (file_event_ptr, TAIL);
976 }
977 file_ptr->ready_mask = mask;
978 }
979 }
980 return 0;
981 }
982 \f
983
984 /* Create an asynchronous handler, allocating memory for it.
985 Return a pointer to the newly created handler.
986 This pointer will be used to invoke the handler by
987 invoke_async_signal_handler.
988 PROC is the function to call with CLIENT_DATA argument
989 whenever the handler is invoked. */
990 async_signal_handler *
991 create_async_signal_handler (sig_handler_func * proc,
992 gdb_client_data client_data)
993 {
994 async_signal_handler *async_handler_ptr;
995
996 async_handler_ptr =
997 (async_signal_handler *) xmalloc (sizeof (async_signal_handler));
998 async_handler_ptr->ready = 0;
999 async_handler_ptr->next_handler = NULL;
1000 async_handler_ptr->proc = proc;
1001 async_handler_ptr->client_data = client_data;
1002 if (sighandler_list.first_handler == NULL)
1003 sighandler_list.first_handler = async_handler_ptr;
1004 else
1005 sighandler_list.last_handler->next_handler = async_handler_ptr;
1006 sighandler_list.last_handler = async_handler_ptr;
1007 return async_handler_ptr;
1008 }
1009
1010 /* Call the handler from HANDLER immediately. This function runs
1011 signal handlers when returning to the event loop would be too
1012 slow. */
1013 void
1014 call_async_signal_handler (struct async_signal_handler *handler)
1015 {
1016 (*handler->proc) (handler->client_data);
1017 }
1018
1019 /* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information
1020 will be used when the handlers are invoked, after we have waited
1021 for some event. The caller of this function is the interrupt
1022 handler associated with a signal. */
1023 void
1024 mark_async_signal_handler (async_signal_handler * async_handler_ptr)
1025 {
1026 async_handler_ptr->ready = 1;
1027 }
1028
1029 /* Call all the handlers that are ready. Returns true if any was
1030 indeed ready. */
1031 static int
1032 invoke_async_signal_handlers (void)
1033 {
1034 async_signal_handler *async_handler_ptr;
1035 int any_ready = 0;
1036
1037 /* Invoke ready handlers. */
1038
1039 while (1)
1040 {
1041 for (async_handler_ptr = sighandler_list.first_handler;
1042 async_handler_ptr != NULL;
1043 async_handler_ptr = async_handler_ptr->next_handler)
1044 {
1045 if (async_handler_ptr->ready)
1046 break;
1047 }
1048 if (async_handler_ptr == NULL)
1049 break;
1050 any_ready = 1;
1051 async_handler_ptr->ready = 0;
1052 (*async_handler_ptr->proc) (async_handler_ptr->client_data);
1053 }
1054
1055 return any_ready;
1056 }
1057
1058 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
1059 Free the space allocated for it. */
1060 void
1061 delete_async_signal_handler (async_signal_handler ** async_handler_ptr)
1062 {
1063 async_signal_handler *prev_ptr;
1064
1065 if (sighandler_list.first_handler == (*async_handler_ptr))
1066 {
1067 sighandler_list.first_handler = (*async_handler_ptr)->next_handler;
1068 if (sighandler_list.first_handler == NULL)
1069 sighandler_list.last_handler = NULL;
1070 }
1071 else
1072 {
1073 prev_ptr = sighandler_list.first_handler;
1074 while (prev_ptr && prev_ptr->next_handler != (*async_handler_ptr))
1075 prev_ptr = prev_ptr->next_handler;
1076 gdb_assert (prev_ptr);
1077 prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
1078 if (sighandler_list.last_handler == (*async_handler_ptr))
1079 sighandler_list.last_handler = prev_ptr;
1080 }
1081 xfree ((*async_handler_ptr));
1082 (*async_handler_ptr) = NULL;
1083 }
1084
1085 /* Create an asynchronous event handler, allocating memory for it.
1086 Return a pointer to the newly created handler. PROC is the
1087 function to call with CLIENT_DATA argument whenever the handler is
1088 invoked. */
1089 async_event_handler *
1090 create_async_event_handler (async_event_handler_func *proc,
1091 gdb_client_data client_data)
1092 {
1093 async_event_handler *h;
1094
1095 h = xmalloc (sizeof (*h));
1096 h->ready = 0;
1097 h->next_handler = NULL;
1098 h->proc = proc;
1099 h->client_data = client_data;
1100 if (async_event_handler_list.first_handler == NULL)
1101 async_event_handler_list.first_handler = h;
1102 else
1103 async_event_handler_list.last_handler->next_handler = h;
1104 async_event_handler_list.last_handler = h;
1105 return h;
1106 }
1107
1108 /* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information
1109 will be used by gdb_do_one_event. The caller will be whoever
1110 created the event source, and wants to signal that the event is
1111 ready to be handled. */
1112 void
1113 mark_async_event_handler (async_event_handler *async_handler_ptr)
1114 {
1115 async_handler_ptr->ready = 1;
1116 }
1117
1118 struct async_event_handler_data
1119 {
1120 async_event_handler_func* proc;
1121 gdb_client_data client_data;
1122 };
1123
1124 static void
1125 invoke_async_event_handler (event_data data)
1126 {
1127 struct async_event_handler_data *hdata = data.ptr;
1128 async_event_handler_func* proc = hdata->proc;
1129 gdb_client_data client_data = hdata->client_data;
1130
1131 xfree (hdata);
1132 (*proc) (client_data);
1133 }
1134
1135 /* Check if any asynchronous event handlers are ready, and queue
1136 events in the ready queue for any that are. */
1137 static void
1138 check_async_event_handlers (void)
1139 {
1140 async_event_handler *async_handler_ptr;
1141 struct async_event_handler_data *hdata;
1142 struct gdb_event *event_ptr;
1143 event_data data;
1144
1145 for (async_handler_ptr = async_event_handler_list.first_handler;
1146 async_handler_ptr != NULL;
1147 async_handler_ptr = async_handler_ptr->next_handler)
1148 {
1149 if (async_handler_ptr->ready)
1150 {
1151 async_handler_ptr->ready = 0;
1152
1153 hdata = xmalloc (sizeof (*hdata));
1154
1155 hdata->proc = async_handler_ptr->proc;
1156 hdata->client_data = async_handler_ptr->client_data;
1157
1158 data.ptr = hdata;
1159
1160 event_ptr = create_event (invoke_async_event_handler, data);
1161 async_queue_event (event_ptr, TAIL);
1162 }
1163 }
1164 }
1165
1166 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
1167 Free the space allocated for it. */
1168 void
1169 delete_async_event_handler (async_event_handler **async_handler_ptr)
1170 {
1171 async_event_handler *prev_ptr;
1172
1173 if (async_event_handler_list.first_handler == *async_handler_ptr)
1174 {
1175 async_event_handler_list.first_handler
1176 = (*async_handler_ptr)->next_handler;
1177 if (async_event_handler_list.first_handler == NULL)
1178 async_event_handler_list.last_handler = NULL;
1179 }
1180 else
1181 {
1182 prev_ptr = async_event_handler_list.first_handler;
1183 while (prev_ptr && prev_ptr->next_handler != *async_handler_ptr)
1184 prev_ptr = prev_ptr->next_handler;
1185 gdb_assert (prev_ptr);
1186 prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
1187 if (async_event_handler_list.last_handler == (*async_handler_ptr))
1188 async_event_handler_list.last_handler = prev_ptr;
1189 }
1190 xfree (*async_handler_ptr);
1191 *async_handler_ptr = NULL;
1192 }
1193
1194 /* Create a timer that will expire in MILLISECONDS from now. When the
1195 timer is ready, PROC will be executed. At creation, the timer is
1196 aded to the timers queue. This queue is kept sorted in order of
1197 increasing timers. Return a handle to the timer struct. */
1198 int
1199 create_timer (int milliseconds, timer_handler_func * proc,
1200 gdb_client_data client_data)
1201 {
1202 struct gdb_timer *timer_ptr, *timer_index, *prev_timer;
1203 struct timeval time_now, delta;
1204
1205 /* Compute seconds. */
1206 delta.tv_sec = milliseconds / 1000;
1207 /* Compute microseconds. */
1208 delta.tv_usec = (milliseconds % 1000) * 1000;
1209
1210 gettimeofday (&time_now, NULL);
1211
1212 timer_ptr = (struct gdb_timer *) xmalloc (sizeof (*timer_ptr));
1213 timer_ptr->when.tv_sec = time_now.tv_sec + delta.tv_sec;
1214 timer_ptr->when.tv_usec = time_now.tv_usec + delta.tv_usec;
1215 /* Carry? */
1216 if (timer_ptr->when.tv_usec >= 1000000)
1217 {
1218 timer_ptr->when.tv_sec += 1;
1219 timer_ptr->when.tv_usec -= 1000000;
1220 }
1221 timer_ptr->proc = proc;
1222 timer_ptr->client_data = client_data;
1223 timer_list.num_timers++;
1224 timer_ptr->timer_id = timer_list.num_timers;
1225
1226 /* Now add the timer to the timer queue, making sure it is sorted in
1227 increasing order of expiration. */
1228
1229 for (timer_index = timer_list.first_timer;
1230 timer_index != NULL;
1231 timer_index = timer_index->next)
1232 {
1233 /* If the seconds field is greater or if it is the same, but the
1234 microsecond field is greater. */
1235 if ((timer_index->when.tv_sec > timer_ptr->when.tv_sec)
1236 || ((timer_index->when.tv_sec == timer_ptr->when.tv_sec)
1237 && (timer_index->when.tv_usec > timer_ptr->when.tv_usec)))
1238 break;
1239 }
1240
1241 if (timer_index == timer_list.first_timer)
1242 {
1243 timer_ptr->next = timer_list.first_timer;
1244 timer_list.first_timer = timer_ptr;
1245
1246 }
1247 else
1248 {
1249 for (prev_timer = timer_list.first_timer;
1250 prev_timer->next != timer_index;
1251 prev_timer = prev_timer->next)
1252 ;
1253
1254 prev_timer->next = timer_ptr;
1255 timer_ptr->next = timer_index;
1256 }
1257
1258 gdb_notifier.timeout_valid = 0;
1259 return timer_ptr->timer_id;
1260 }
1261
1262 /* There is a chance that the creator of the timer wants to get rid of
1263 it before it expires. */
1264 void
1265 delete_timer (int id)
1266 {
1267 struct gdb_timer *timer_ptr, *prev_timer = NULL;
1268
1269 /* Find the entry for the given timer. */
1270
1271 for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
1272 timer_ptr = timer_ptr->next)
1273 {
1274 if (timer_ptr->timer_id == id)
1275 break;
1276 }
1277
1278 if (timer_ptr == NULL)
1279 return;
1280 /* Get rid of the timer in the timer list. */
1281 if (timer_ptr == timer_list.first_timer)
1282 timer_list.first_timer = timer_ptr->next;
1283 else
1284 {
1285 for (prev_timer = timer_list.first_timer;
1286 prev_timer->next != timer_ptr;
1287 prev_timer = prev_timer->next)
1288 ;
1289 prev_timer->next = timer_ptr->next;
1290 }
1291 xfree (timer_ptr);
1292
1293 gdb_notifier.timeout_valid = 0;
1294 }
1295
1296 /* When a timer event is put on the event queue, it will be handled by
1297 this function. Just call the associated procedure and delete the
1298 timer event from the event queue. Repeat this for each timer that
1299 has expired. */
1300 static void
1301 handle_timer_event (event_data dummy)
1302 {
1303 struct timeval time_now;
1304 struct gdb_timer *timer_ptr, *saved_timer;
1305
1306 gettimeofday (&time_now, NULL);
1307 timer_ptr = timer_list.first_timer;
1308
1309 while (timer_ptr != NULL)
1310 {
1311 if ((timer_ptr->when.tv_sec > time_now.tv_sec)
1312 || ((timer_ptr->when.tv_sec == time_now.tv_sec)
1313 && (timer_ptr->when.tv_usec > time_now.tv_usec)))
1314 break;
1315
1316 /* Get rid of the timer from the beginning of the list. */
1317 timer_list.first_timer = timer_ptr->next;
1318 saved_timer = timer_ptr;
1319 timer_ptr = timer_ptr->next;
1320 /* Call the procedure associated with that timer. */
1321 (*saved_timer->proc) (saved_timer->client_data);
1322 xfree (saved_timer);
1323 }
1324
1325 gdb_notifier.timeout_valid = 0;
1326 }
1327
1328 /* Check whether any timers in the timers queue are ready. If at least
1329 one timer is ready, stick an event onto the event queue. Even in
1330 case more than one timer is ready, one event is enough, because the
1331 handle_timer_event() will go through the timers list and call the
1332 procedures associated with all that have expired.l Update the
1333 timeout for the select() or poll() as well. */
1334 static void
1335 poll_timers (void)
1336 {
1337 struct timeval time_now, delta;
1338 gdb_event *event_ptr;
1339
1340 if (timer_list.first_timer != NULL)
1341 {
1342 gettimeofday (&time_now, NULL);
1343 delta.tv_sec = timer_list.first_timer->when.tv_sec - time_now.tv_sec;
1344 delta.tv_usec = timer_list.first_timer->when.tv_usec - time_now.tv_usec;
1345 /* Borrow? */
1346 if (delta.tv_usec < 0)
1347 {
1348 delta.tv_sec -= 1;
1349 delta.tv_usec += 1000000;
1350 }
1351
1352 /* Oops it expired already. Tell select / poll to return
1353 immediately. (Cannot simply test if delta.tv_sec is negative
1354 because time_t might be unsigned.) */
1355 if (timer_list.first_timer->when.tv_sec < time_now.tv_sec
1356 || (timer_list.first_timer->when.tv_sec == time_now.tv_sec
1357 && timer_list.first_timer->when.tv_usec < time_now.tv_usec))
1358 {
1359 delta.tv_sec = 0;
1360 delta.tv_usec = 0;
1361 }
1362
1363 if (delta.tv_sec == 0 && delta.tv_usec == 0)
1364 {
1365 event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
1366 event_ptr->proc = handle_timer_event;
1367 event_ptr->data.integer = timer_list.first_timer->timer_id;
1368 async_queue_event (event_ptr, TAIL);
1369 }
1370
1371 /* Now we need to update the timeout for select/ poll, because
1372 we don't want to sit there while this timer is expiring. */
1373 if (use_poll)
1374 {
1375 #ifdef HAVE_POLL
1376 gdb_notifier.poll_timeout = delta.tv_sec * 1000;
1377 #else
1378 internal_error (__FILE__, __LINE__,
1379 _("use_poll without HAVE_POLL"));
1380 #endif /* HAVE_POLL */
1381 }
1382 else
1383 {
1384 gdb_notifier.select_timeout.tv_sec = delta.tv_sec;
1385 gdb_notifier.select_timeout.tv_usec = delta.tv_usec;
1386 }
1387 gdb_notifier.timeout_valid = 1;
1388 }
1389 else
1390 gdb_notifier.timeout_valid = 0;
1391 }