]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/event-top.c
Remove no-longer applicable maintainer entries
[thirdparty/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static std::string top_level_prompt ();
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef SIGTSTP
72 static void async_sigtstp_handler (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef SIGTSTP
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
163
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
166 {
167 struct gdb_exception gdb_expt = exception_none;
168
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
173 TRY_SJLJ
174 {
175 rl_callback_read_char ();
176 if (after_char_processing_hook)
177 (*after_char_processing_hook) ();
178 }
179 CATCH_SJLJ (ex, RETURN_MASK_ALL)
180 {
181 gdb_expt = ex;
182 }
183 END_CATCH_SJLJ
184
185 return gdb_expt;
186 }
187
188 static void
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
190 {
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
193
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt.reason < 0)
196 throw_exception (gdb_expt);
197 }
198
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
204
205 static void
206 gdb_rl_callback_handler (char *rl) noexcept
207 {
208 struct gdb_exception gdb_rl_expt = exception_none;
209 struct ui *ui = current_ui;
210
211 TRY
212 {
213 ui->input_handler (rl);
214 }
215 CATCH (ex, RETURN_MASK_ALL)
216 {
217 gdb_rl_expt = ex;
218 }
219 END_CATCH
220
221 /* If we caught a GDB exception, longjmp out of the readline
222 callback. There's no other way for the callback to signal to
223 readline that an error happened. A normal return would have
224 readline potentially continue processing further input, redisplay
225 the prompt, etc. (This is what GDB historically did when it was
226 a C program.) Note that since we're long jumping, local variable
227 dtors are NOT run automatically. */
228 if (gdb_rl_expt.reason < 0)
229 throw_exception_sjlj (gdb_rl_expt);
230 }
231
232 /* Change the function to be invoked every time there is a character
233 ready on stdin. This is used when the user sets the editing off,
234 therefore bypassing readline, and letting gdb handle the input
235 itself, via gdb_readline_no_editing_callback. Also it is used in
236 the opposite case in which the user sets editing on again, by
237 restoring readline handling of the input.
238
239 NOTE: this operates on input_fd, not instream. If we are reading
240 commands from a file, instream will point to the file. However, we
241 always read commands from a file with editing off. This means that
242 the 'set editing on/off' will have effect only on the interactive
243 session. */
244
245 void
246 change_line_handler (int editing)
247 {
248 struct ui *ui = current_ui;
249
250 /* We can only have one instance of readline, so we only allow
251 editing on the main UI. */
252 if (ui != main_ui)
253 return;
254
255 /* Don't try enabling editing if the interpreter doesn't support it
256 (e.g., MI). */
257 if (!interp_supports_command_editing (top_level_interpreter ())
258 || !interp_supports_command_editing (command_interp ()))
259 return;
260
261 if (editing)
262 {
263 gdb_assert (ui == main_ui);
264
265 /* Turn on editing by using readline. */
266 ui->call_readline = gdb_rl_callback_read_char_wrapper;
267 }
268 else
269 {
270 /* Turn off editing by using gdb_readline_no_editing_callback. */
271 if (ui->command_editing)
272 gdb_rl_callback_handler_remove ();
273 ui->call_readline = gdb_readline_no_editing_callback;
274 }
275 ui->command_editing = editing;
276 }
277
278 /* The functions below are wrappers for rl_callback_handler_remove and
279 rl_callback_handler_install that keep track of whether the callback
280 handler is installed in readline. This is necessary because after
281 handling a target event of a background execution command, we may
282 need to reinstall the callback handler if it was removed due to a
283 secondary prompt. See gdb_readline_wrapper_line. We don't
284 unconditionally install the handler for every target event because
285 that also clears the line buffer, thus installing it while the user
286 is typing would lose input. */
287
288 /* Whether we've registered a callback handler with readline. */
289 static int callback_handler_installed;
290
291 /* See event-top.h, and above. */
292
293 void
294 gdb_rl_callback_handler_remove (void)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 rl_callback_handler_remove ();
299 callback_handler_installed = 0;
300 }
301
302 /* See event-top.h, and above. Note this wrapper doesn't have an
303 actual callback parameter because we always install
304 INPUT_HANDLER. */
305
306 void
307 gdb_rl_callback_handler_install (const char *prompt)
308 {
309 gdb_assert (current_ui == main_ui);
310
311 /* Calling rl_callback_handler_install resets readline's input
312 buffer. Calling this when we were already processing input
313 therefore loses input. */
314 gdb_assert (!callback_handler_installed);
315
316 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
317 callback_handler_installed = 1;
318 }
319
320 /* See event-top.h, and above. */
321
322 void
323 gdb_rl_callback_handler_reinstall (void)
324 {
325 gdb_assert (current_ui == main_ui);
326
327 if (!callback_handler_installed)
328 {
329 /* Passing NULL as prompt argument tells readline to not display
330 a prompt. */
331 gdb_rl_callback_handler_install (NULL);
332 }
333 }
334
335 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
336 prompt that is displayed is the current top level prompt.
337 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
338 prompt.
339
340 This is used after each gdb command has completed, and in the
341 following cases:
342
343 1. When the user enters a command line which is ended by '\'
344 indicating that the command will continue on the next line. In
345 that case the prompt that is displayed is the empty string.
346
347 2. When the user is entering 'commands' for a breakpoint, or
348 actions for a tracepoint. In this case the prompt will be '>'
349
350 3. On prompting for pagination. */
351
352 void
353 display_gdb_prompt (const char *new_prompt)
354 {
355 std::string actual_gdb_prompt;
356
357 annotate_display_prompt ();
358
359 /* Reset the nesting depth used when trace-commands is set. */
360 reset_command_nest_depth ();
361
362 /* Do not call the python hook on an explicit prompt change as
363 passed to this function, as this forms a secondary/local prompt,
364 IE, displayed but not set. */
365 if (! new_prompt)
366 {
367 struct ui *ui = current_ui;
368
369 if (ui->prompt_state == PROMPTED)
370 internal_error (__FILE__, __LINE__, _("double prompt"));
371 else if (ui->prompt_state == PROMPT_BLOCKED)
372 {
373 /* This is to trick readline into not trying to display the
374 prompt. Even though we display the prompt using this
375 function, readline still tries to do its own display if
376 we don't call rl_callback_handler_install and
377 rl_callback_handler_remove (which readline detects
378 because a global variable is not set). If readline did
379 that, it could mess up gdb signal handlers for SIGINT.
380 Readline assumes that between calls to rl_set_signals and
381 rl_clear_signals gdb doesn't do anything with the signal
382 handlers. Well, that's not the case, because when the
383 target executes we change the SIGINT signal handler. If
384 we allowed readline to display the prompt, the signal
385 handler change would happen exactly between the calls to
386 the above two functions. Calling
387 rl_callback_handler_remove(), does the job. */
388
389 if (current_ui->command_editing)
390 gdb_rl_callback_handler_remove ();
391 return;
392 }
393 else if (ui->prompt_state == PROMPT_NEEDED)
394 {
395 /* Display the top level prompt. */
396 actual_gdb_prompt = top_level_prompt ();
397 ui->prompt_state = PROMPTED;
398 }
399 }
400 else
401 actual_gdb_prompt = new_prompt;
402
403 if (current_ui->command_editing)
404 {
405 gdb_rl_callback_handler_remove ();
406 gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ());
407 }
408 /* new_prompt at this point can be the top of the stack or the one
409 passed in. It can't be NULL. */
410 else
411 {
412 /* Don't use a _filtered function here. It causes the assumed
413 character position to be off, since the newline we read from
414 the user is not accounted for. */
415 fputs_unfiltered (actual_gdb_prompt.c_str (), gdb_stdout);
416 gdb_flush (gdb_stdout);
417 }
418 }
419
420 /* Return the top level prompt, as specified by "set prompt", possibly
421 overriden by the python gdb.prompt_hook hook, and then composed
422 with the prompt prefix and suffix (annotations). */
423
424 static std::string
425 top_level_prompt (void)
426 {
427 char *prompt;
428
429 /* Give observers a chance of changing the prompt. E.g., the python
430 `gdb.prompt_hook' is installed as an observer. */
431 observer_notify_before_prompt (get_prompt ());
432
433 prompt = get_prompt ();
434
435 if (annotation_level >= 2)
436 {
437 /* Prefix needs to have new line at end. */
438 const char prefix[] = "\n\032\032pre-prompt\n";
439
440 /* Suffix needs to have a new line at end and \032 \032 at
441 beginning. */
442 const char suffix[] = "\n\032\032prompt\n";
443
444 return std::string (prefix) + prompt + suffix;
445 }
446
447 return prompt;
448 }
449
450 /* See top.h. */
451
452 struct ui *main_ui;
453 struct ui *current_ui;
454 struct ui *ui_list;
455
456 /* Get a pointer to the current UI's line buffer. This is used to
457 construct a whole line of input from partial input. */
458
459 static struct buffer *
460 get_command_line_buffer (void)
461 {
462 return &current_ui->line_buffer;
463 }
464
465 /* When there is an event ready on the stdin file descriptor, instead
466 of calling readline directly throught the callback function, or
467 instead of calling gdb_readline_no_editing_callback, give gdb a
468 chance to detect errors and do something. */
469
470 void
471 stdin_event_handler (int error, gdb_client_data client_data)
472 {
473 struct ui *ui = (struct ui *) client_data;
474
475 if (error)
476 {
477 /* Switch to the main UI, so diagnostics always go there. */
478 current_ui = main_ui;
479
480 delete_file_handler (ui->input_fd);
481 if (main_ui == ui)
482 {
483 /* If stdin died, we may as well kill gdb. */
484 printf_unfiltered (_("error detected on stdin\n"));
485 quit_command ((char *) 0, 0);
486 }
487 else
488 {
489 /* Simply delete the UI. */
490 delete ui;
491 }
492 }
493 else
494 {
495 /* Switch to the UI whose input descriptor woke up the event
496 loop. */
497 current_ui = ui;
498
499 /* This makes sure a ^C immediately followed by further input is
500 always processed in that order. E.g,. with input like
501 "^Cprint 1\n", the SIGINT handler runs, marks the async
502 signal handler, and then select/poll may return with stdin
503 ready, instead of -1/EINTR. The
504 gdb.base/double-prompt-target-event-error.exp test exercises
505 this. */
506 QUIT;
507
508 do
509 {
510 call_stdin_event_handler_again_p = 0;
511 ui->call_readline (client_data);
512 }
513 while (call_stdin_event_handler_again_p != 0);
514 }
515 }
516
517 /* See top.h. */
518
519 void
520 ui_register_input_event_handler (struct ui *ui)
521 {
522 add_file_handler (ui->input_fd, stdin_event_handler, ui);
523 }
524
525 /* See top.h. */
526
527 void
528 ui_unregister_input_event_handler (struct ui *ui)
529 {
530 delete_file_handler (ui->input_fd);
531 }
532
533 /* Re-enable stdin after the end of an execution command in
534 synchronous mode, or after an error from the target, and we aborted
535 the exec operation. */
536
537 void
538 async_enable_stdin (void)
539 {
540 struct ui *ui = current_ui;
541
542 if (ui->prompt_state == PROMPT_BLOCKED)
543 {
544 target_terminal::ours ();
545 ui_register_input_event_handler (ui);
546 ui->prompt_state = PROMPT_NEEDED;
547 }
548 }
549
550 /* Disable reads from stdin (the console) marking the command as
551 synchronous. */
552
553 void
554 async_disable_stdin (void)
555 {
556 struct ui *ui = current_ui;
557
558 ui->prompt_state = PROMPT_BLOCKED;
559 delete_file_handler (ui->input_fd);
560 }
561 \f
562
563 /* Handle a gdb command line. This function is called when
564 handle_line_of_input has concatenated one or more input lines into
565 a whole command. */
566
567 void
568 command_handler (const char *command)
569 {
570 struct ui *ui = current_ui;
571 const char *c;
572
573 if (ui->instream == ui->stdin_stream)
574 reinitialize_more_filter ();
575
576 scoped_command_stats stat_reporter (true);
577
578 /* Do not execute commented lines. */
579 for (c = command; *c == ' ' || *c == '\t'; c++)
580 ;
581 if (c[0] != '#')
582 {
583 execute_command (command, ui->instream == ui->stdin_stream);
584
585 /* Do any commands attached to breakpoint we stopped at. */
586 bpstat_do_actions ();
587 }
588 }
589
590 /* Append RL, an input line returned by readline or one of its
591 emulations, to CMD_LINE_BUFFER. Returns the command line if we
592 have a whole command line ready to be processed by the command
593 interpreter or NULL if the command line isn't complete yet (input
594 line ends in a backslash). Takes ownership of RL. */
595
596 static char *
597 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
598 {
599 char *cmd;
600 size_t len;
601
602 len = strlen (rl);
603
604 if (len > 0 && rl[len - 1] == '\\')
605 {
606 /* Don't copy the backslash and wait for more. */
607 buffer_grow (cmd_line_buffer, rl, len - 1);
608 cmd = NULL;
609 }
610 else
611 {
612 /* Copy whole line including terminating null, and we're
613 done. */
614 buffer_grow (cmd_line_buffer, rl, len + 1);
615 cmd = cmd_line_buffer->buffer;
616 }
617
618 /* Allocated in readline. */
619 xfree (rl);
620
621 return cmd;
622 }
623
624 /* Handle a line of input coming from readline.
625
626 If the read line ends with a continuation character (backslash),
627 save the partial input in CMD_LINE_BUFFER (except the backslash),
628 and return NULL. Otherwise, save the partial input and return a
629 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
630 whole command line is ready to be executed.
631
632 Returns EOF on end of file.
633
634 If REPEAT, handle command repetitions:
635
636 - If the input command line is NOT empty, the command returned is
637 copied into the global 'saved_command_line' var so that it can
638 be repeated later.
639
640 - OTOH, if the input command line IS empty, return the previously
641 saved command instead of the empty input line.
642 */
643
644 char *
645 handle_line_of_input (struct buffer *cmd_line_buffer,
646 char *rl, int repeat, const char *annotation_suffix)
647 {
648 struct ui *ui = current_ui;
649 int from_tty = ui->instream == ui->stdin_stream;
650 char *p1;
651 char *cmd;
652
653 if (rl == NULL)
654 return (char *) EOF;
655
656 cmd = command_line_append_input_line (cmd_line_buffer, rl);
657 if (cmd == NULL)
658 return NULL;
659
660 /* We have a complete command line now. Prepare for the next
661 command, but leave ownership of memory to the buffer . */
662 cmd_line_buffer->used_size = 0;
663
664 if (from_tty && annotation_level > 1)
665 {
666 printf_unfiltered (("\n\032\032post-"));
667 puts_unfiltered (annotation_suffix);
668 printf_unfiltered (("\n"));
669 }
670
671 #define SERVER_COMMAND_PREFIX "server "
672 if (startswith (cmd, SERVER_COMMAND_PREFIX))
673 {
674 /* Note that we don't set `saved_command_line'. Between this
675 and the check in dont_repeat, this insures that repeating
676 will still do the right thing. */
677 return cmd + strlen (SERVER_COMMAND_PREFIX);
678 }
679
680 /* Do history expansion if that is wished. */
681 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
682 {
683 char *history_value;
684 int expanded;
685
686 expanded = history_expand (cmd, &history_value);
687 if (expanded)
688 {
689 size_t len;
690
691 /* Print the changes. */
692 printf_unfiltered ("%s\n", history_value);
693
694 /* If there was an error, call this function again. */
695 if (expanded < 0)
696 {
697 xfree (history_value);
698 return cmd;
699 }
700
701 /* history_expand returns an allocated string. Just replace
702 our buffer with it. */
703 len = strlen (history_value);
704 xfree (buffer_finish (cmd_line_buffer));
705 cmd_line_buffer->buffer = history_value;
706 cmd_line_buffer->buffer_size = len + 1;
707 cmd = history_value;
708 }
709 }
710
711 /* If we just got an empty line, and that is supposed to repeat the
712 previous command, return the previously saved command. */
713 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
714 ;
715 if (repeat && *p1 == '\0')
716 return saved_command_line;
717
718 /* Add command to history if appropriate. Note: lines consisting
719 solely of comments are also added to the command history. This
720 is useful when you type a command, and then realize you don't
721 want to execute it quite yet. You can comment out the command
722 and then later fetch it from the value history and remove the
723 '#'. The kill ring is probably better, but some people are in
724 the habit of commenting things out. */
725 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
726 gdb_add_history (cmd);
727
728 /* Save into global buffer if appropriate. */
729 if (repeat)
730 {
731 xfree (saved_command_line);
732 saved_command_line = xstrdup (cmd);
733 return saved_command_line;
734 }
735 else
736 return cmd;
737 }
738
739 /* Handle a complete line of input. This is called by the callback
740 mechanism within the readline library. Deal with incomplete
741 commands as well, by saving the partial input in a global
742 buffer.
743
744 NOTE: This is the asynchronous version of the command_line_input
745 function. */
746
747 void
748 command_line_handler (char *rl)
749 {
750 struct buffer *line_buffer = get_command_line_buffer ();
751 struct ui *ui = current_ui;
752 char *cmd;
753
754 cmd = handle_line_of_input (line_buffer, rl, 1, "prompt");
755 if (cmd == (char *) EOF)
756 {
757 /* stdin closed. The connection with the terminal is gone.
758 This happens at the end of a testsuite run, after Expect has
759 hung up but GDB is still alive. In such a case, we just quit
760 gdb killing the inferior program too. */
761 printf_unfiltered ("quit\n");
762 execute_command ("quit", 1);
763 }
764 else if (cmd == NULL)
765 {
766 /* We don't have a full line yet. Print an empty prompt. */
767 display_gdb_prompt ("");
768 }
769 else
770 {
771 ui->prompt_state = PROMPT_NEEDED;
772
773 command_handler (cmd);
774
775 if (ui->prompt_state != PROMPTED)
776 display_gdb_prompt (0);
777 }
778 }
779
780 /* Does reading of input from terminal w/o the editing features
781 provided by the readline library. Calls the line input handler
782 once we have a whole input line. */
783
784 void
785 gdb_readline_no_editing_callback (gdb_client_data client_data)
786 {
787 int c;
788 char *result;
789 struct buffer line_buffer;
790 static int done_once = 0;
791 struct ui *ui = current_ui;
792
793 buffer_init (&line_buffer);
794
795 /* Unbuffer the input stream, so that, later on, the calls to fgetc
796 fetch only one char at the time from the stream. The fgetc's will
797 get up to the first newline, but there may be more chars in the
798 stream after '\n'. If we buffer the input and fgetc drains the
799 stream, getting stuff beyond the newline as well, a select, done
800 afterwards will not trigger. */
801 if (!done_once && !ISATTY (ui->instream))
802 {
803 setbuf (ui->instream, NULL);
804 done_once = 1;
805 }
806
807 /* We still need the while loop here, even though it would seem
808 obvious to invoke gdb_readline_no_editing_callback at every
809 character entered. If not using the readline library, the
810 terminal is in cooked mode, which sends the characters all at
811 once. Poll will notice that the input fd has changed state only
812 after enter is pressed. At this point we still need to fetch all
813 the chars entered. */
814
815 while (1)
816 {
817 /* Read from stdin if we are executing a user defined command.
818 This is the right thing for prompt_for_continue, at least. */
819 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
820
821 if (c == EOF)
822 {
823 if (line_buffer.used_size > 0)
824 {
825 /* The last line does not end with a newline. Return it, and
826 if we are called again fgetc will still return EOF and
827 we'll return NULL then. */
828 break;
829 }
830 xfree (buffer_finish (&line_buffer));
831 ui->input_handler (NULL);
832 return;
833 }
834
835 if (c == '\n')
836 {
837 if (line_buffer.used_size > 0
838 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
839 line_buffer.used_size--;
840 break;
841 }
842
843 buffer_grow_char (&line_buffer, c);
844 }
845
846 buffer_grow_char (&line_buffer, '\0');
847 result = buffer_finish (&line_buffer);
848 ui->input_handler (result);
849 }
850 \f
851
852 /* The serial event associated with the QUIT flag. set_quit_flag sets
853 this, and check_quit_flag clears it. Used by interruptible_select
854 to be able to do interruptible I/O with no race with the SIGINT
855 handler. */
856 static struct serial_event *quit_serial_event;
857
858 /* Initialization of signal handlers and tokens. There is a function
859 handle_sig* for each of the signals GDB cares about. Specifically:
860 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
861 functions are the actual signal handlers associated to the signals
862 via calls to signal(). The only job for these functions is to
863 enqueue the appropriate event/procedure with the event loop. Such
864 procedures are the old signal handlers. The event loop will take
865 care of invoking the queued procedures to perform the usual tasks
866 associated with the reception of the signal. */
867 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
868 init_signals will become obsolete as we move to have to event loop
869 as the default for gdb. */
870 void
871 async_init_signals (void)
872 {
873 initialize_async_signal_handlers ();
874
875 quit_serial_event = make_serial_event ();
876
877 signal (SIGINT, handle_sigint);
878 sigint_token =
879 create_async_signal_handler (async_request_quit, NULL);
880 signal (SIGTERM, handle_sigterm);
881 async_sigterm_token
882 = create_async_signal_handler (async_sigterm_handler, NULL);
883
884 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
885 to the inferior and breakpoints will be ignored. */
886 #ifdef SIGTRAP
887 signal (SIGTRAP, SIG_DFL);
888 #endif
889
890 #ifdef SIGQUIT
891 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
892 passed to the inferior, which we don't want. It would be
893 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
894 on BSD4.3 systems using vfork, that can affect the
895 GDB process as well as the inferior (the signal handling tables
896 might be in memory, shared between the two). Since we establish
897 a handler for SIGQUIT, when we call exec it will set the signal
898 to SIG_DFL for us. */
899 signal (SIGQUIT, handle_sigquit);
900 sigquit_token =
901 create_async_signal_handler (async_do_nothing, NULL);
902 #endif
903 #ifdef SIGHUP
904 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
905 sighup_token =
906 create_async_signal_handler (async_disconnect, NULL);
907 else
908 sighup_token =
909 create_async_signal_handler (async_do_nothing, NULL);
910 #endif
911 signal (SIGFPE, handle_sigfpe);
912 sigfpe_token =
913 create_async_signal_handler (async_float_handler, NULL);
914
915 #ifdef SIGTSTP
916 sigtstp_token =
917 create_async_signal_handler (async_sigtstp_handler, NULL);
918 #endif
919 }
920
921 /* See defs.h. */
922
923 void
924 quit_serial_event_set (void)
925 {
926 serial_event_set (quit_serial_event);
927 }
928
929 /* See defs.h. */
930
931 void
932 quit_serial_event_clear (void)
933 {
934 serial_event_clear (quit_serial_event);
935 }
936
937 /* Return the selectable file descriptor of the serial event
938 associated with the quit flag. */
939
940 static int
941 quit_serial_event_fd (void)
942 {
943 return serial_event_fd (quit_serial_event);
944 }
945
946 /* See defs.h. */
947
948 void
949 default_quit_handler (void)
950 {
951 if (check_quit_flag ())
952 {
953 if (target_terminal::is_ours ())
954 quit ();
955 else
956 target_pass_ctrlc ();
957 }
958 }
959
960 /* See defs.h. */
961 quit_handler_ftype *quit_handler = default_quit_handler;
962
963 /* Handle a SIGINT. */
964
965 void
966 handle_sigint (int sig)
967 {
968 signal (sig, handle_sigint);
969
970 /* We could be running in a loop reading in symfiles or something so
971 it may be quite a while before we get back to the event loop. So
972 set quit_flag to 1 here. Then if QUIT is called before we get to
973 the event loop, we will unwind as expected. */
974 set_quit_flag ();
975
976 /* In case nothing calls QUIT before the event loop is reached, the
977 event loop handles it. */
978 mark_async_signal_handler (sigint_token);
979 }
980
981 /* See gdb_select.h. */
982
983 int
984 interruptible_select (int n,
985 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
986 struct timeval *timeout)
987 {
988 fd_set my_readfds;
989 int fd;
990 int res;
991
992 if (readfds == NULL)
993 {
994 readfds = &my_readfds;
995 FD_ZERO (&my_readfds);
996 }
997
998 fd = quit_serial_event_fd ();
999 FD_SET (fd, readfds);
1000 if (n <= fd)
1001 n = fd + 1;
1002
1003 do
1004 {
1005 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1006 }
1007 while (res == -1 && errno == EINTR);
1008
1009 if (res == 1 && FD_ISSET (fd, readfds))
1010 {
1011 errno = EINTR;
1012 return -1;
1013 }
1014 return res;
1015 }
1016
1017 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1018
1019 static void
1020 async_sigterm_handler (gdb_client_data arg)
1021 {
1022 quit_force (NULL, 0);
1023 }
1024
1025 /* See defs.h. */
1026 volatile int sync_quit_force_run;
1027
1028 /* Quit GDB if SIGTERM is received.
1029 GDB would quit anyway, but this way it will clean up properly. */
1030 void
1031 handle_sigterm (int sig)
1032 {
1033 signal (sig, handle_sigterm);
1034
1035 sync_quit_force_run = 1;
1036 set_quit_flag ();
1037
1038 mark_async_signal_handler (async_sigterm_token);
1039 }
1040
1041 /* Do the quit. All the checks have been done by the caller. */
1042 void
1043 async_request_quit (gdb_client_data arg)
1044 {
1045 /* If the quit_flag has gotten reset back to 0 by the time we get
1046 back here, that means that an exception was thrown to unwind the
1047 current command before we got back to the event loop. So there
1048 is no reason to call quit again here. */
1049 QUIT;
1050 }
1051
1052 #ifdef SIGQUIT
1053 /* Tell the event loop what to do if SIGQUIT is received.
1054 See event-signal.c. */
1055 static void
1056 handle_sigquit (int sig)
1057 {
1058 mark_async_signal_handler (sigquit_token);
1059 signal (sig, handle_sigquit);
1060 }
1061 #endif
1062
1063 #if defined (SIGQUIT) || defined (SIGHUP)
1064 /* Called by the event loop in response to a SIGQUIT or an
1065 ignored SIGHUP. */
1066 static void
1067 async_do_nothing (gdb_client_data arg)
1068 {
1069 /* Empty function body. */
1070 }
1071 #endif
1072
1073 #ifdef SIGHUP
1074 /* Tell the event loop what to do if SIGHUP is received.
1075 See event-signal.c. */
1076 static void
1077 handle_sighup (int sig)
1078 {
1079 mark_async_signal_handler (sighup_token);
1080 signal (sig, handle_sighup);
1081 }
1082
1083 /* Called by the event loop to process a SIGHUP. */
1084 static void
1085 async_disconnect (gdb_client_data arg)
1086 {
1087
1088 TRY
1089 {
1090 quit_cover ();
1091 }
1092
1093 CATCH (exception, RETURN_MASK_ALL)
1094 {
1095 fputs_filtered ("Could not kill the program being debugged",
1096 gdb_stderr);
1097 exception_print (gdb_stderr, exception);
1098 }
1099 END_CATCH
1100
1101 TRY
1102 {
1103 pop_all_targets ();
1104 }
1105 CATCH (exception, RETURN_MASK_ALL)
1106 {
1107 }
1108 END_CATCH
1109
1110 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1111 raise (SIGHUP);
1112 }
1113 #endif
1114
1115 #ifdef SIGTSTP
1116 void
1117 handle_sigtstp (int sig)
1118 {
1119 mark_async_signal_handler (sigtstp_token);
1120 signal (sig, handle_sigtstp);
1121 }
1122
1123 static void
1124 async_sigtstp_handler (gdb_client_data arg)
1125 {
1126 char *prompt = get_prompt ();
1127
1128 signal (SIGTSTP, SIG_DFL);
1129 #if HAVE_SIGPROCMASK
1130 {
1131 sigset_t zero;
1132
1133 sigemptyset (&zero);
1134 sigprocmask (SIG_SETMASK, &zero, 0);
1135 }
1136 #elif HAVE_SIGSETMASK
1137 sigsetmask (0);
1138 #endif
1139 raise (SIGTSTP);
1140 signal (SIGTSTP, handle_sigtstp);
1141 printf_unfiltered ("%s", prompt);
1142 gdb_flush (gdb_stdout);
1143
1144 /* Forget about any previous command -- null line now will do
1145 nothing. */
1146 dont_repeat ();
1147 }
1148 #endif /* SIGTSTP */
1149
1150 /* Tell the event loop what to do if SIGFPE is received.
1151 See event-signal.c. */
1152 static void
1153 handle_sigfpe (int sig)
1154 {
1155 mark_async_signal_handler (sigfpe_token);
1156 signal (sig, handle_sigfpe);
1157 }
1158
1159 /* Event loop will call this functin to process a SIGFPE. */
1160 static void
1161 async_float_handler (gdb_client_data arg)
1162 {
1163 /* This message is based on ANSI C, section 4.7. Note that integer
1164 divide by zero causes this, so "float" is a misnomer. */
1165 error (_("Erroneous arithmetic operation."));
1166 }
1167 \f
1168
1169 /* Set things up for readline to be invoked via the alternate
1170 interface, i.e. via a callback function
1171 (gdb_rl_callback_read_char), and hook up instream to the event
1172 loop. */
1173
1174 void
1175 gdb_setup_readline (int editing)
1176 {
1177 struct ui *ui = current_ui;
1178
1179 /* This function is a noop for the sync case. The assumption is
1180 that the sync setup is ALL done in gdb_init, and we would only
1181 mess it up here. The sync stuff should really go away over
1182 time. */
1183 if (!batch_silent)
1184 gdb_stdout = new stdio_file (ui->outstream);
1185 gdb_stderr = new stderr_file (ui->errstream);
1186 gdb_stdlog = gdb_stderr; /* for moment */
1187 gdb_stdtarg = gdb_stderr; /* for moment */
1188 gdb_stdtargerr = gdb_stderr; /* for moment */
1189
1190 /* If the input stream is connected to a terminal, turn on editing.
1191 However, that is only allowed on the main UI, as we can only have
1192 one instance of readline. */
1193 if (ISATTY (ui->instream) && editing && ui == main_ui)
1194 {
1195 /* Tell gdb that we will be using the readline library. This
1196 could be overwritten by a command in .gdbinit like 'set
1197 editing on' or 'off'. */
1198 ui->command_editing = 1;
1199
1200 /* When a character is detected on instream by select or poll,
1201 readline will be invoked via this callback function. */
1202 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1203
1204 /* Tell readline to use the same input stream that gdb uses. */
1205 rl_instream = ui->instream;
1206 }
1207 else
1208 {
1209 ui->command_editing = 0;
1210 ui->call_readline = gdb_readline_no_editing_callback;
1211 }
1212
1213 /* Now create the event source for this UI's input file descriptor.
1214 Another source is going to be the target program (inferior), but
1215 that must be registered only when it actually exists (I.e. after
1216 we say 'run' or after we connect to a remote target. */
1217 ui_register_input_event_handler (ui);
1218 }
1219
1220 /* Disable command input through the standard CLI channels. Used in
1221 the suspend proc for interpreters that use the standard gdb readline
1222 interface, like the cli & the mi. */
1223
1224 void
1225 gdb_disable_readline (void)
1226 {
1227 struct ui *ui = current_ui;
1228
1229 /* FIXME - It is too heavyweight to delete and remake these every
1230 time you run an interpreter that needs readline. It is probably
1231 better to have the interpreters cache these, which in turn means
1232 that this needs to be moved into interpreter specific code. */
1233
1234 #if 0
1235 ui_file_delete (gdb_stdout);
1236 ui_file_delete (gdb_stderr);
1237 gdb_stdlog = NULL;
1238 gdb_stdtarg = NULL;
1239 gdb_stdtargerr = NULL;
1240 #endif
1241
1242 if (ui->command_editing)
1243 gdb_rl_callback_handler_remove ();
1244 delete_file_handler (ui->input_fd);
1245 }