]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/fbsd-nat.c
Change macro_source_fullname to return a std::string
[thirdparty/binutils-gdb.git] / gdb / fbsd-nat.c
1 /* Native-dependent code for FreeBSD.
2
3 Copyright (C) 2002-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "common/byte-vector.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbcmd.h"
27 #include "gdbthread.h"
28 #include "common/gdb_wait.h"
29 #include "inf-ptrace.h"
30 #include <sys/types.h>
31 #include <sys/procfs.h>
32 #include <sys/ptrace.h>
33 #include <sys/signal.h>
34 #include <sys/sysctl.h>
35 #include <sys/user.h>
36 #if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
37 #include <libutil.h>
38 #endif
39 #if !defined(HAVE_KINFO_GETVMMAP)
40 #include "common/filestuff.h"
41 #endif
42
43 #include "elf-bfd.h"
44 #include "fbsd-nat.h"
45 #include "fbsd-tdep.h"
46
47 #include <list>
48
49 /* Return the name of a file that can be opened to get the symbols for
50 the child process identified by PID. */
51
52 char *
53 fbsd_nat_target::pid_to_exec_file (int pid)
54 {
55 ssize_t len;
56 static char buf[PATH_MAX];
57 char name[PATH_MAX];
58
59 #ifdef KERN_PROC_PATHNAME
60 size_t buflen;
61 int mib[4];
62
63 mib[0] = CTL_KERN;
64 mib[1] = KERN_PROC;
65 mib[2] = KERN_PROC_PATHNAME;
66 mib[3] = pid;
67 buflen = sizeof buf;
68 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
69 /* The kern.proc.pathname.<pid> sysctl returns a length of zero
70 for processes without an associated executable such as kernel
71 processes. */
72 return buflen == 0 ? NULL : buf;
73 #endif
74
75 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
76 len = readlink (name, buf, PATH_MAX - 1);
77 if (len != -1)
78 {
79 buf[len] = '\0';
80 return buf;
81 }
82
83 return NULL;
84 }
85
86 #ifdef HAVE_KINFO_GETVMMAP
87 /* Iterate over all the memory regions in the current inferior,
88 calling FUNC for each memory region. OBFD is passed as the last
89 argument to FUNC. */
90
91 int
92 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
93 void *obfd)
94 {
95 pid_t pid = inferior_ptid.pid ();
96 struct kinfo_vmentry *kve;
97 uint64_t size;
98 int i, nitems;
99
100 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
101 vmentl (kinfo_getvmmap (pid, &nitems));
102 if (vmentl == NULL)
103 perror_with_name (_("Couldn't fetch VM map entries."));
104
105 for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
106 {
107 /* Skip unreadable segments and those where MAP_NOCORE has been set. */
108 if (!(kve->kve_protection & KVME_PROT_READ)
109 || kve->kve_flags & KVME_FLAG_NOCOREDUMP)
110 continue;
111
112 /* Skip segments with an invalid type. */
113 if (kve->kve_type != KVME_TYPE_DEFAULT
114 && kve->kve_type != KVME_TYPE_VNODE
115 && kve->kve_type != KVME_TYPE_SWAP
116 && kve->kve_type != KVME_TYPE_PHYS)
117 continue;
118
119 size = kve->kve_end - kve->kve_start;
120 if (info_verbose)
121 {
122 fprintf_filtered (gdb_stdout,
123 "Save segment, %ld bytes at %s (%c%c%c)\n",
124 (long) size,
125 paddress (target_gdbarch (), kve->kve_start),
126 kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
127 kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
128 kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
129 }
130
131 /* Invoke the callback function to create the corefile segment.
132 Pass MODIFIED as true, we do not know the real modification state. */
133 func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
134 kve->kve_protection & KVME_PROT_WRITE,
135 kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
136 }
137 return 0;
138 }
139 #else
140 static int
141 fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
142 char *protection)
143 {
144 /* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
145 char buf[256];
146 int resident, privateresident;
147 unsigned long obj;
148 int ret = EOF;
149
150 /* As of FreeBSD 5.0-RELEASE, the layout is described in
151 /usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
152 new column was added to the procfs map. Therefore we can't use
153 fscanf since we need to support older releases too. */
154 if (fgets (buf, sizeof buf, mapfile) != NULL)
155 ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
156 &resident, &privateresident, &obj, protection);
157
158 return (ret != 0 && ret != EOF);
159 }
160
161 /* Iterate over all the memory regions in the current inferior,
162 calling FUNC for each memory region. OBFD is passed as the last
163 argument to FUNC. */
164
165 int
166 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
167 void *obfd)
168 {
169 pid_t pid = inferior_ptid.pid ();
170 unsigned long start, end, size;
171 char protection[4];
172 int read, write, exec;
173
174 std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
175 gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
176 if (mapfile == NULL)
177 error (_("Couldn't open %s."), mapfilename.c_str ());
178
179 if (info_verbose)
180 fprintf_filtered (gdb_stdout,
181 "Reading memory regions from %s\n", mapfilename.c_str ());
182
183 /* Now iterate until end-of-file. */
184 while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
185 {
186 size = end - start;
187
188 read = (strchr (protection, 'r') != 0);
189 write = (strchr (protection, 'w') != 0);
190 exec = (strchr (protection, 'x') != 0);
191
192 if (info_verbose)
193 {
194 fprintf_filtered (gdb_stdout,
195 "Save segment, %ld bytes at %s (%c%c%c)\n",
196 size, paddress (target_gdbarch (), start),
197 read ? 'r' : '-',
198 write ? 'w' : '-',
199 exec ? 'x' : '-');
200 }
201
202 /* Invoke the callback function to create the corefile segment.
203 Pass MODIFIED as true, we do not know the real modification state. */
204 func (start, size, read, write, exec, 1, obfd);
205 }
206
207 return 0;
208 }
209 #endif
210
211 /* Fetch the command line for a running process. */
212
213 static gdb::unique_xmalloc_ptr<char>
214 fbsd_fetch_cmdline (pid_t pid)
215 {
216 size_t len;
217 int mib[4];
218
219 len = 0;
220 mib[0] = CTL_KERN;
221 mib[1] = KERN_PROC;
222 mib[2] = KERN_PROC_ARGS;
223 mib[3] = pid;
224 if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
225 return nullptr;
226
227 if (len == 0)
228 return nullptr;
229
230 gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
231 if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
232 return nullptr;
233
234 /* Join the arguments with spaces to form a single string. */
235 char *cp = cmdline.get ();
236 for (size_t i = 0; i < len - 1; i++)
237 if (cp[i] == '\0')
238 cp[i] = ' ';
239 cp[len - 1] = '\0';
240
241 return cmdline;
242 }
243
244 /* Fetch the external variant of the kernel's internal process
245 structure for the process PID into KP. */
246
247 static bool
248 fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
249 {
250 size_t len;
251 int mib[4];
252
253 len = sizeof *kp;
254 mib[0] = CTL_KERN;
255 mib[1] = KERN_PROC;
256 mib[2] = KERN_PROC_PID;
257 mib[3] = pid;
258 return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
259 }
260
261 /* Implement the "info_proc" target_ops method. */
262
263 bool
264 fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
265 {
266 #ifdef HAVE_KINFO_GETFILE
267 gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
268 int nfd = 0;
269 #endif
270 struct kinfo_proc kp;
271 pid_t pid;
272 bool do_cmdline = false;
273 bool do_cwd = false;
274 bool do_exe = false;
275 #ifdef HAVE_KINFO_GETFILE
276 bool do_files = false;
277 #endif
278 #ifdef HAVE_KINFO_GETVMMAP
279 bool do_mappings = false;
280 #endif
281 bool do_status = false;
282
283 switch (what)
284 {
285 case IP_MINIMAL:
286 do_cmdline = true;
287 do_cwd = true;
288 do_exe = true;
289 break;
290 #ifdef HAVE_KINFO_GETVMMAP
291 case IP_MAPPINGS:
292 do_mappings = true;
293 break;
294 #endif
295 case IP_STATUS:
296 case IP_STAT:
297 do_status = true;
298 break;
299 case IP_CMDLINE:
300 do_cmdline = true;
301 break;
302 case IP_EXE:
303 do_exe = true;
304 break;
305 case IP_CWD:
306 do_cwd = true;
307 break;
308 #ifdef HAVE_KINFO_GETFILE
309 case IP_FILES:
310 do_files = true;
311 break;
312 #endif
313 case IP_ALL:
314 do_cmdline = true;
315 do_cwd = true;
316 do_exe = true;
317 #ifdef HAVE_KINFO_GETFILE
318 do_files = true;
319 #endif
320 #ifdef HAVE_KINFO_GETVMMAP
321 do_mappings = true;
322 #endif
323 do_status = true;
324 break;
325 default:
326 error (_("Not supported on this target."));
327 }
328
329 gdb_argv built_argv (args);
330 if (built_argv.count () == 0)
331 {
332 pid = inferior_ptid.pid ();
333 if (pid == 0)
334 error (_("No current process: you must name one."));
335 }
336 else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
337 pid = strtol (built_argv[0], NULL, 10);
338 else
339 error (_("Invalid arguments."));
340
341 printf_filtered (_("process %d\n"), pid);
342 #ifdef HAVE_KINFO_GETFILE
343 if (do_cwd || do_exe || do_files)
344 fdtbl.reset (kinfo_getfile (pid, &nfd));
345 #endif
346
347 if (do_cmdline)
348 {
349 gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
350 if (cmdline != nullptr)
351 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
352 else
353 warning (_("unable to fetch command line"));
354 }
355 if (do_cwd)
356 {
357 const char *cwd = NULL;
358 #ifdef HAVE_KINFO_GETFILE
359 struct kinfo_file *kf = fdtbl.get ();
360 for (int i = 0; i < nfd; i++, kf++)
361 {
362 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
363 {
364 cwd = kf->kf_path;
365 break;
366 }
367 }
368 #endif
369 if (cwd != NULL)
370 printf_filtered ("cwd = '%s'\n", cwd);
371 else
372 warning (_("unable to fetch current working directory"));
373 }
374 if (do_exe)
375 {
376 const char *exe = NULL;
377 #ifdef HAVE_KINFO_GETFILE
378 struct kinfo_file *kf = fdtbl.get ();
379 for (int i = 0; i < nfd; i++, kf++)
380 {
381 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
382 {
383 exe = kf->kf_path;
384 break;
385 }
386 }
387 #endif
388 if (exe == NULL)
389 exe = pid_to_exec_file (pid);
390 if (exe != NULL)
391 printf_filtered ("exe = '%s'\n", exe);
392 else
393 warning (_("unable to fetch executable path name"));
394 }
395 #ifdef HAVE_KINFO_GETFILE
396 if (do_files)
397 {
398 struct kinfo_file *kf = fdtbl.get ();
399
400 if (nfd > 0)
401 {
402 fbsd_info_proc_files_header ();
403 for (int i = 0; i < nfd; i++, kf++)
404 fbsd_info_proc_files_entry (kf->kf_type, kf->kf_fd, kf->kf_flags,
405 kf->kf_offset, kf->kf_vnode_type,
406 kf->kf_sock_domain, kf->kf_sock_type,
407 kf->kf_sock_protocol, &kf->kf_sa_local,
408 &kf->kf_sa_peer, kf->kf_path);
409 }
410 else
411 warning (_("unable to fetch list of open files"));
412 }
413 #endif
414 #ifdef HAVE_KINFO_GETVMMAP
415 if (do_mappings)
416 {
417 int nvment;
418 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
419 vmentl (kinfo_getvmmap (pid, &nvment));
420
421 if (vmentl != nullptr)
422 {
423 int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
424 fbsd_info_proc_mappings_header (addr_bit);
425
426 struct kinfo_vmentry *kve = vmentl.get ();
427 for (int i = 0; i < nvment; i++, kve++)
428 fbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
429 kve->kve_end, kve->kve_offset,
430 kve->kve_flags, kve->kve_protection,
431 kve->kve_path);
432 }
433 else
434 warning (_("unable to fetch virtual memory map"));
435 }
436 #endif
437 if (do_status)
438 {
439 if (!fbsd_fetch_kinfo_proc (pid, &kp))
440 warning (_("Failed to fetch process information"));
441 else
442 {
443 const char *state;
444 int pgtok;
445
446 printf_filtered ("Name: %s\n", kp.ki_comm);
447 switch (kp.ki_stat)
448 {
449 case SIDL:
450 state = "I (idle)";
451 break;
452 case SRUN:
453 state = "R (running)";
454 break;
455 case SSTOP:
456 state = "T (stopped)";
457 break;
458 case SZOMB:
459 state = "Z (zombie)";
460 break;
461 case SSLEEP:
462 state = "S (sleeping)";
463 break;
464 case SWAIT:
465 state = "W (interrupt wait)";
466 break;
467 case SLOCK:
468 state = "L (blocked on lock)";
469 break;
470 default:
471 state = "? (unknown)";
472 break;
473 }
474 printf_filtered ("State: %s\n", state);
475 printf_filtered ("Parent process: %d\n", kp.ki_ppid);
476 printf_filtered ("Process group: %d\n", kp.ki_pgid);
477 printf_filtered ("Session id: %d\n", kp.ki_sid);
478 printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
479 printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
480 printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
481 kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
482 printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
483 kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
484 printf_filtered ("Groups: ");
485 for (int i = 0; i < kp.ki_ngroups; i++)
486 printf_filtered ("%d ", kp.ki_groups[i]);
487 printf_filtered ("\n");
488 printf_filtered ("Minor faults (no memory page): %ld\n",
489 kp.ki_rusage.ru_minflt);
490 printf_filtered ("Minor faults, children: %ld\n",
491 kp.ki_rusage_ch.ru_minflt);
492 printf_filtered ("Major faults (memory page faults): %ld\n",
493 kp.ki_rusage.ru_majflt);
494 printf_filtered ("Major faults, children: %ld\n",
495 kp.ki_rusage_ch.ru_majflt);
496 printf_filtered ("utime: %jd.%06ld\n",
497 (intmax_t) kp.ki_rusage.ru_utime.tv_sec,
498 kp.ki_rusage.ru_utime.tv_usec);
499 printf_filtered ("stime: %jd.%06ld\n",
500 (intmax_t) kp.ki_rusage.ru_stime.tv_sec,
501 kp.ki_rusage.ru_stime.tv_usec);
502 printf_filtered ("utime, children: %jd.%06ld\n",
503 (intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
504 kp.ki_rusage_ch.ru_utime.tv_usec);
505 printf_filtered ("stime, children: %jd.%06ld\n",
506 (intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
507 kp.ki_rusage_ch.ru_stime.tv_usec);
508 printf_filtered ("'nice' value: %d\n", kp.ki_nice);
509 printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
510 kp.ki_start.tv_usec);
511 pgtok = getpagesize () / 1024;
512 printf_filtered ("Virtual memory size: %ju kB\n",
513 (uintmax_t) kp.ki_size / 1024);
514 printf_filtered ("Data size: %ju kB\n",
515 (uintmax_t) kp.ki_dsize * pgtok);
516 printf_filtered ("Stack size: %ju kB\n",
517 (uintmax_t) kp.ki_ssize * pgtok);
518 printf_filtered ("Text size: %ju kB\n",
519 (uintmax_t) kp.ki_tsize * pgtok);
520 printf_filtered ("Resident set size: %ju kB\n",
521 (uintmax_t) kp.ki_rssize * pgtok);
522 printf_filtered ("Maximum RSS: %ju kB\n",
523 (uintmax_t) kp.ki_rusage.ru_maxrss);
524 printf_filtered ("Pending Signals: ");
525 for (int i = 0; i < _SIG_WORDS; i++)
526 printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
527 printf_filtered ("\n");
528 printf_filtered ("Ignored Signals: ");
529 for (int i = 0; i < _SIG_WORDS; i++)
530 printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
531 printf_filtered ("\n");
532 printf_filtered ("Caught Signals: ");
533 for (int i = 0; i < _SIG_WORDS; i++)
534 printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
535 printf_filtered ("\n");
536 }
537 }
538
539 return true;
540 }
541
542 /*
543 * The current layout of siginfo_t on FreeBSD was adopted in SVN
544 * revision 153154 which shipped in FreeBSD versions 7.0 and later.
545 * Don't bother supporting the older layout on older kernels. The
546 * older format was also never used in core dump notes.
547 */
548 #if __FreeBSD_version >= 700009
549 #define USE_SIGINFO
550 #endif
551
552 #ifdef USE_SIGINFO
553 /* Return the size of siginfo for the current inferior. */
554
555 #ifdef __LP64__
556 union sigval32 {
557 int sival_int;
558 uint32_t sival_ptr;
559 };
560
561 /* This structure matches the naming and layout of `siginfo_t' in
562 <sys/signal.h>. In particular, the `si_foo' macros defined in that
563 header can be used with both types to copy fields in the `_reason'
564 union. */
565
566 struct siginfo32
567 {
568 int si_signo;
569 int si_errno;
570 int si_code;
571 __pid_t si_pid;
572 __uid_t si_uid;
573 int si_status;
574 uint32_t si_addr;
575 union sigval32 si_value;
576 union
577 {
578 struct
579 {
580 int _trapno;
581 } _fault;
582 struct
583 {
584 int _timerid;
585 int _overrun;
586 } _timer;
587 struct
588 {
589 int _mqd;
590 } _mesgq;
591 struct
592 {
593 int32_t _band;
594 } _poll;
595 struct
596 {
597 int32_t __spare1__;
598 int __spare2__[7];
599 } __spare__;
600 } _reason;
601 };
602 #endif
603
604 static size_t
605 fbsd_siginfo_size ()
606 {
607 #ifdef __LP64__
608 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
609
610 /* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
611 if (gdbarch_long_bit (gdbarch) == 32)
612 return sizeof (struct siginfo32);
613 #endif
614 return sizeof (siginfo_t);
615 }
616
617 /* Convert a native 64-bit siginfo object to a 32-bit object. Note
618 that FreeBSD doesn't support writing to $_siginfo, so this only
619 needs to convert one way. */
620
621 static void
622 fbsd_convert_siginfo (siginfo_t *si)
623 {
624 #ifdef __LP64__
625 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
626
627 /* Is the inferior 32-bit? If not, nothing to do. */
628 if (gdbarch_long_bit (gdbarch) != 32)
629 return;
630
631 struct siginfo32 si32;
632
633 si32.si_signo = si->si_signo;
634 si32.si_errno = si->si_errno;
635 si32.si_code = si->si_code;
636 si32.si_pid = si->si_pid;
637 si32.si_uid = si->si_uid;
638 si32.si_status = si->si_status;
639 si32.si_addr = (uintptr_t) si->si_addr;
640
641 /* If sival_ptr is being used instead of sival_int on a big-endian
642 platform, then sival_int will be zero since it holds the upper
643 32-bits of the pointer value. */
644 #if _BYTE_ORDER == _BIG_ENDIAN
645 if (si->si_value.sival_int == 0)
646 si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
647 else
648 si32.si_value.sival_int = si->si_value.sival_int;
649 #else
650 si32.si_value.sival_int = si->si_value.sival_int;
651 #endif
652
653 /* Always copy the spare fields and then possibly overwrite them for
654 signal-specific or code-specific fields. */
655 si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
656 for (int i = 0; i < 7; i++)
657 si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
658 switch (si->si_signo) {
659 case SIGILL:
660 case SIGFPE:
661 case SIGSEGV:
662 case SIGBUS:
663 si32.si_trapno = si->si_trapno;
664 break;
665 }
666 switch (si->si_code) {
667 case SI_TIMER:
668 si32.si_timerid = si->si_timerid;
669 si32.si_overrun = si->si_overrun;
670 break;
671 case SI_MESGQ:
672 si32.si_mqd = si->si_mqd;
673 break;
674 }
675
676 memcpy(si, &si32, sizeof (si32));
677 #endif
678 }
679 #endif
680
681 /* Implement the "xfer_partial" target_ops method. */
682
683 enum target_xfer_status
684 fbsd_nat_target::xfer_partial (enum target_object object,
685 const char *annex, gdb_byte *readbuf,
686 const gdb_byte *writebuf,
687 ULONGEST offset, ULONGEST len,
688 ULONGEST *xfered_len)
689 {
690 pid_t pid = inferior_ptid.pid ();
691
692 switch (object)
693 {
694 #ifdef USE_SIGINFO
695 case TARGET_OBJECT_SIGNAL_INFO:
696 {
697 struct ptrace_lwpinfo pl;
698 size_t siginfo_size;
699
700 /* FreeBSD doesn't support writing to $_siginfo. */
701 if (writebuf != NULL)
702 return TARGET_XFER_E_IO;
703
704 if (inferior_ptid.lwp_p ())
705 pid = inferior_ptid.lwp ();
706
707 siginfo_size = fbsd_siginfo_size ();
708 if (offset > siginfo_size)
709 return TARGET_XFER_E_IO;
710
711 if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
712 return TARGET_XFER_E_IO;
713
714 if (!(pl.pl_flags & PL_FLAG_SI))
715 return TARGET_XFER_E_IO;
716
717 fbsd_convert_siginfo (&pl.pl_siginfo);
718 if (offset + len > siginfo_size)
719 len = siginfo_size - offset;
720
721 memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
722 *xfered_len = len;
723 return TARGET_XFER_OK;
724 }
725 #endif
726 #ifdef KERN_PROC_AUXV
727 case TARGET_OBJECT_AUXV:
728 {
729 gdb::byte_vector buf_storage;
730 gdb_byte *buf;
731 size_t buflen;
732 int mib[4];
733
734 if (writebuf != NULL)
735 return TARGET_XFER_E_IO;
736 mib[0] = CTL_KERN;
737 mib[1] = KERN_PROC;
738 mib[2] = KERN_PROC_AUXV;
739 mib[3] = pid;
740 if (offset == 0)
741 {
742 buf = readbuf;
743 buflen = len;
744 }
745 else
746 {
747 buflen = offset + len;
748 buf_storage.resize (buflen);
749 buf = buf_storage.data ();
750 }
751 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
752 {
753 if (offset != 0)
754 {
755 if (buflen > offset)
756 {
757 buflen -= offset;
758 memcpy (readbuf, buf + offset, buflen);
759 }
760 else
761 buflen = 0;
762 }
763 *xfered_len = buflen;
764 return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
765 }
766 return TARGET_XFER_E_IO;
767 }
768 #endif
769 #if defined(KERN_PROC_VMMAP) && defined(KERN_PROC_PS_STRINGS)
770 case TARGET_OBJECT_FREEBSD_VMMAP:
771 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
772 {
773 gdb::byte_vector buf_storage;
774 gdb_byte *buf;
775 size_t buflen;
776 int mib[4];
777
778 int proc_target;
779 uint32_t struct_size;
780 switch (object)
781 {
782 case TARGET_OBJECT_FREEBSD_VMMAP:
783 proc_target = KERN_PROC_VMMAP;
784 struct_size = sizeof (struct kinfo_vmentry);
785 break;
786 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
787 proc_target = KERN_PROC_PS_STRINGS;
788 struct_size = sizeof (void *);
789 break;
790 }
791
792 if (writebuf != NULL)
793 return TARGET_XFER_E_IO;
794
795 mib[0] = CTL_KERN;
796 mib[1] = KERN_PROC;
797 mib[2] = proc_target;
798 mib[3] = pid;
799
800 if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
801 return TARGET_XFER_E_IO;
802 buflen += sizeof (struct_size);
803
804 if (offset >= buflen)
805 {
806 *xfered_len = 0;
807 return TARGET_XFER_EOF;
808 }
809
810 buf_storage.resize (buflen);
811 buf = buf_storage.data ();
812
813 memcpy (buf, &struct_size, sizeof (struct_size));
814 buflen -= sizeof (struct_size);
815 if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
816 return TARGET_XFER_E_IO;
817 buflen += sizeof (struct_size);
818
819 if (buflen - offset < len)
820 len = buflen - offset;
821 memcpy (readbuf, buf + offset, len);
822 *xfered_len = len;
823 return TARGET_XFER_OK;
824 }
825 #endif
826 default:
827 return inf_ptrace_target::xfer_partial (object, annex,
828 readbuf, writebuf, offset,
829 len, xfered_len);
830 }
831 }
832
833 #ifdef PT_LWPINFO
834 static int debug_fbsd_lwp;
835 static int debug_fbsd_nat;
836
837 static void
838 show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
839 struct cmd_list_element *c, const char *value)
840 {
841 fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
842 }
843
844 static void
845 show_fbsd_nat_debug (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c, const char *value)
847 {
848 fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
849 value);
850 }
851
852 /*
853 FreeBSD's first thread support was via a "reentrant" version of libc
854 (libc_r) that first shipped in 2.2.7. This library multiplexed all
855 of the threads in a process onto a single kernel thread. This
856 library was supported via the bsd-uthread target.
857
858 FreeBSD 5.1 introduced two new threading libraries that made use of
859 multiple kernel threads. The first (libkse) scheduled M user
860 threads onto N (<= M) kernel threads (LWPs). The second (libthr)
861 bound each user thread to a dedicated kernel thread. libkse shipped
862 as the default threading library (libpthread).
863
864 FreeBSD 5.3 added a libthread_db to abstract the interface across
865 the various thread libraries (libc_r, libkse, and libthr).
866
867 FreeBSD 7.0 switched the default threading library from from libkse
868 to libpthread and removed libc_r.
869
870 FreeBSD 8.0 removed libkse and the in-kernel support for it. The
871 only threading library supported by 8.0 and later is libthr which
872 ties each user thread directly to an LWP. To simplify the
873 implementation, this target only supports LWP-backed threads using
874 ptrace directly rather than libthread_db.
875
876 FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
877 */
878
879 /* Return true if PTID is still active in the inferior. */
880
881 bool
882 fbsd_nat_target::thread_alive (ptid_t ptid)
883 {
884 if (ptid.lwp_p ())
885 {
886 struct ptrace_lwpinfo pl;
887
888 if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
889 == -1)
890 return false;
891 #ifdef PL_FLAG_EXITED
892 if (pl.pl_flags & PL_FLAG_EXITED)
893 return false;
894 #endif
895 }
896
897 return true;
898 }
899
900 /* Convert PTID to a string. Returns the string in a static
901 buffer. */
902
903 const char *
904 fbsd_nat_target::pid_to_str (ptid_t ptid)
905 {
906 lwpid_t lwp;
907
908 lwp = ptid.lwp ();
909 if (lwp != 0)
910 {
911 static char buf[64];
912 int pid = ptid.pid ();
913
914 xsnprintf (buf, sizeof buf, "LWP %d of process %d", lwp, pid);
915 return buf;
916 }
917
918 return normal_pid_to_str (ptid);
919 }
920
921 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
922 /* Return the name assigned to a thread by an application. Returns
923 the string in a static buffer. */
924
925 const char *
926 fbsd_nat_target::thread_name (struct thread_info *thr)
927 {
928 struct ptrace_lwpinfo pl;
929 struct kinfo_proc kp;
930 int pid = thr->ptid.pid ();
931 long lwp = thr->ptid.lwp ();
932 static char buf[sizeof pl.pl_tdname + 1];
933
934 /* Note that ptrace_lwpinfo returns the process command in pl_tdname
935 if a name has not been set explicitly. Return a NULL name in
936 that case. */
937 if (!fbsd_fetch_kinfo_proc (pid, &kp))
938 perror_with_name (_("Failed to fetch process information"));
939 if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
940 perror_with_name (("ptrace"));
941 if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
942 return NULL;
943 xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
944 return buf;
945 }
946 #endif
947
948 /* Enable additional event reporting on new processes.
949
950 To catch fork events, PTRACE_FORK is set on every traced process
951 to enable stops on returns from fork or vfork. Note that both the
952 parent and child will always stop, even if system call stops are
953 not enabled.
954
955 To catch LWP events, PTRACE_EVENTS is set on every traced process.
956 This enables stops on the birth for new LWPs (excluding the "main" LWP)
957 and the death of LWPs (excluding the last LWP in a process). Note
958 that unlike fork events, the LWP that creates a new LWP does not
959 report an event. */
960
961 static void
962 fbsd_enable_proc_events (pid_t pid)
963 {
964 #ifdef PT_GET_EVENT_MASK
965 int events;
966
967 if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
968 sizeof (events)) == -1)
969 perror_with_name (("ptrace"));
970 events |= PTRACE_FORK | PTRACE_LWP;
971 #ifdef PTRACE_VFORK
972 events |= PTRACE_VFORK;
973 #endif
974 if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
975 sizeof (events)) == -1)
976 perror_with_name (("ptrace"));
977 #else
978 #ifdef TDP_RFPPWAIT
979 if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
980 perror_with_name (("ptrace"));
981 #endif
982 #ifdef PT_LWP_EVENTS
983 if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
984 perror_with_name (("ptrace"));
985 #endif
986 #endif
987 }
988
989 /* Add threads for any new LWPs in a process.
990
991 When LWP events are used, this function is only used to detect existing
992 threads when attaching to a process. On older systems, this function is
993 called to discover new threads each time the thread list is updated. */
994
995 static void
996 fbsd_add_threads (pid_t pid)
997 {
998 int i, nlwps;
999
1000 gdb_assert (!in_thread_list (ptid_t (pid)));
1001 nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
1002 if (nlwps == -1)
1003 perror_with_name (("ptrace"));
1004
1005 gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
1006
1007 nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
1008 if (nlwps == -1)
1009 perror_with_name (("ptrace"));
1010
1011 for (i = 0; i < nlwps; i++)
1012 {
1013 ptid_t ptid = ptid_t (pid, lwps[i], 0);
1014
1015 if (!in_thread_list (ptid))
1016 {
1017 #ifdef PT_LWP_EVENTS
1018 struct ptrace_lwpinfo pl;
1019
1020 /* Don't add exited threads. Note that this is only called
1021 when attaching to a multi-threaded process. */
1022 if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
1023 perror_with_name (("ptrace"));
1024 if (pl.pl_flags & PL_FLAG_EXITED)
1025 continue;
1026 #endif
1027 if (debug_fbsd_lwp)
1028 fprintf_unfiltered (gdb_stdlog,
1029 "FLWP: adding thread for LWP %u\n",
1030 lwps[i]);
1031 add_thread (ptid);
1032 }
1033 }
1034 }
1035
1036 /* Implement the "update_thread_list" target_ops method. */
1037
1038 void
1039 fbsd_nat_target::update_thread_list ()
1040 {
1041 #ifdef PT_LWP_EVENTS
1042 /* With support for thread events, threads are added/deleted from the
1043 list as events are reported, so just try deleting exited threads. */
1044 delete_exited_threads ();
1045 #else
1046 prune_threads ();
1047
1048 fbsd_add_threads (inferior_ptid.pid ());
1049 #endif
1050 }
1051
1052 #ifdef TDP_RFPPWAIT
1053 /*
1054 To catch fork events, PT_FOLLOW_FORK is set on every traced process
1055 to enable stops on returns from fork or vfork. Note that both the
1056 parent and child will always stop, even if system call stops are not
1057 enabled.
1058
1059 After a fork, both the child and parent process will stop and report
1060 an event. However, there is no guarantee of order. If the parent
1061 reports its stop first, then fbsd_wait explicitly waits for the new
1062 child before returning. If the child reports its stop first, then
1063 the event is saved on a list and ignored until the parent's stop is
1064 reported. fbsd_wait could have been changed to fetch the parent PID
1065 of the new child and used that to wait for the parent explicitly.
1066 However, if two threads in the parent fork at the same time, then
1067 the wait on the parent might return the "wrong" fork event.
1068
1069 The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
1070 the new child process. This flag could be inferred by treating any
1071 events for an unknown pid as a new child.
1072
1073 In addition, the initial version of PT_FOLLOW_FORK did not report a
1074 stop event for the parent process of a vfork until after the child
1075 process executed a new program or exited. The kernel was changed to
1076 defer the wait for exit or exec of the child until after posting the
1077 stop event shortly after the change to introduce PL_FLAG_CHILD.
1078 This could be worked around by reporting a vfork event when the
1079 child event posted and ignoring the subsequent event from the
1080 parent.
1081
1082 This implementation requires both of these fixes for simplicity's
1083 sake. FreeBSD versions newer than 9.1 contain both fixes.
1084 */
1085
1086 static std::list<ptid_t> fbsd_pending_children;
1087
1088 /* Record a new child process event that is reported before the
1089 corresponding fork event in the parent. */
1090
1091 static void
1092 fbsd_remember_child (ptid_t pid)
1093 {
1094 fbsd_pending_children.push_front (pid);
1095 }
1096
1097 /* Check for a previously-recorded new child process event for PID.
1098 If one is found, remove it from the list and return the PTID. */
1099
1100 static ptid_t
1101 fbsd_is_child_pending (pid_t pid)
1102 {
1103 for (auto it = fbsd_pending_children.begin ();
1104 it != fbsd_pending_children.end (); it++)
1105 if (it->pid () == pid)
1106 {
1107 ptid_t ptid = *it;
1108 fbsd_pending_children.erase (it);
1109 return ptid;
1110 }
1111 return null_ptid;
1112 }
1113
1114 #ifndef PTRACE_VFORK
1115 static std::forward_list<ptid_t> fbsd_pending_vfork_done;
1116
1117 /* Record a pending vfork done event. */
1118
1119 static void
1120 fbsd_add_vfork_done (ptid_t pid)
1121 {
1122 fbsd_pending_vfork_done.push_front (pid);
1123 }
1124
1125 /* Check for a pending vfork done event for a specific PID. */
1126
1127 static int
1128 fbsd_is_vfork_done_pending (pid_t pid)
1129 {
1130 for (auto it = fbsd_pending_vfork_done.begin ();
1131 it != fbsd_pending_vfork_done.end (); it++)
1132 if (it->pid () == pid)
1133 return 1;
1134 return 0;
1135 }
1136
1137 /* Check for a pending vfork done event. If one is found, remove it
1138 from the list and return the PTID. */
1139
1140 static ptid_t
1141 fbsd_next_vfork_done (void)
1142 {
1143 if (!fbsd_pending_vfork_done.empty ())
1144 {
1145 ptid_t ptid = fbsd_pending_vfork_done.front ();
1146 fbsd_pending_vfork_done.pop_front ();
1147 return ptid;
1148 }
1149 return null_ptid;
1150 }
1151 #endif
1152 #endif
1153
1154 /* Implement the "resume" target_ops method. */
1155
1156 void
1157 fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1158 {
1159 #if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
1160 pid_t pid;
1161
1162 /* Don't PT_CONTINUE a process which has a pending vfork done event. */
1163 if (minus_one_ptid == ptid)
1164 pid = inferior_ptid.pid ();
1165 else
1166 pid = ptid.pid ();
1167 if (fbsd_is_vfork_done_pending (pid))
1168 return;
1169 #endif
1170
1171 if (debug_fbsd_lwp)
1172 fprintf_unfiltered (gdb_stdlog,
1173 "FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
1174 ptid.pid (), ptid.lwp (),
1175 ptid.tid ());
1176 if (ptid.lwp_p ())
1177 {
1178 /* If ptid is a specific LWP, suspend all other LWPs in the process. */
1179 inferior *inf = find_inferior_ptid (ptid);
1180
1181 for (thread_info *tp : inf->non_exited_threads ())
1182 {
1183 int request;
1184
1185 if (tp->ptid.lwp () == ptid.lwp ())
1186 request = PT_RESUME;
1187 else
1188 request = PT_SUSPEND;
1189
1190 if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
1191 perror_with_name (("ptrace"));
1192 }
1193 }
1194 else
1195 {
1196 /* If ptid is a wildcard, resume all matching threads (they won't run
1197 until the process is continued however). */
1198 for (thread_info *tp : all_non_exited_threads (ptid))
1199 if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
1200 perror_with_name (("ptrace"));
1201 ptid = inferior_ptid;
1202 }
1203
1204 #if __FreeBSD_version < 1200052
1205 /* When multiple threads within a process wish to report STOPPED
1206 events from wait(), the kernel picks one thread event as the
1207 thread event to report. The chosen thread event is retrieved via
1208 PT_LWPINFO by passing the process ID as the request pid. If
1209 multiple events are pending, then the subsequent wait() after
1210 resuming a process will report another STOPPED event after
1211 resuming the process to handle the next thread event and so on.
1212
1213 A single thread event is cleared as a side effect of resuming the
1214 process with PT_CONTINUE, PT_STEP, etc. In older kernels,
1215 however, the request pid was used to select which thread's event
1216 was cleared rather than always clearing the event that was just
1217 reported. To avoid clearing the event of the wrong LWP, always
1218 pass the process ID instead of an LWP ID to PT_CONTINUE or
1219 PT_SYSCALL.
1220
1221 In the case of stepping, the process ID cannot be used with
1222 PT_STEP since it would step the thread that reported an event
1223 which may not be the thread indicated by PTID. For stepping, use
1224 PT_SETSTEP to enable stepping on the desired thread before
1225 resuming the process via PT_CONTINUE instead of using
1226 PT_STEP. */
1227 if (step)
1228 {
1229 if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
1230 perror_with_name (("ptrace"));
1231 step = 0;
1232 }
1233 ptid = ptid_t (ptid.pid ());
1234 #endif
1235 inf_ptrace_target::resume (ptid, step, signo);
1236 }
1237
1238 #ifdef USE_SIGTRAP_SIGINFO
1239 /* Handle breakpoint and trace traps reported via SIGTRAP. If the
1240 trap was a breakpoint or trace trap that should be reported to the
1241 core, return true. */
1242
1243 static bool
1244 fbsd_handle_debug_trap (ptid_t ptid, const struct ptrace_lwpinfo &pl)
1245 {
1246
1247 /* Ignore traps without valid siginfo or for signals other than
1248 SIGTRAP.
1249
1250 FreeBSD kernels prior to r341800 can return stale siginfo for at
1251 least some events, but those events can be identified by
1252 additional flags set in pl_flags. True breakpoint and
1253 single-step traps should not have other flags set in
1254 pl_flags. */
1255 if (pl.pl_flags != PL_FLAG_SI || pl.pl_siginfo.si_signo != SIGTRAP)
1256 return false;
1257
1258 /* Trace traps are either a single step or a hardware watchpoint or
1259 breakpoint. */
1260 if (pl.pl_siginfo.si_code == TRAP_TRACE)
1261 {
1262 if (debug_fbsd_nat)
1263 fprintf_unfiltered (gdb_stdlog,
1264 "FNAT: trace trap for LWP %ld\n", ptid.lwp ());
1265 return true;
1266 }
1267
1268 if (pl.pl_siginfo.si_code == TRAP_BRKPT)
1269 {
1270 /* Fixup PC for the software breakpoint. */
1271 struct regcache *regcache = get_thread_regcache (ptid);
1272 struct gdbarch *gdbarch = regcache->arch ();
1273 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1274
1275 if (debug_fbsd_nat)
1276 fprintf_unfiltered (gdb_stdlog,
1277 "FNAT: sw breakpoint trap for LWP %ld\n",
1278 ptid.lwp ());
1279 if (decr_pc != 0)
1280 {
1281 CORE_ADDR pc;
1282
1283 pc = regcache_read_pc (regcache);
1284 regcache_write_pc (regcache, pc - decr_pc);
1285 }
1286 return true;
1287 }
1288
1289 return false;
1290 }
1291 #endif
1292
1293 /* Wait for the child specified by PTID to do something. Return the
1294 process ID of the child, or MINUS_ONE_PTID in case of error; store
1295 the status in *OURSTATUS. */
1296
1297 ptid_t
1298 fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
1299 int target_options)
1300 {
1301 ptid_t wptid;
1302
1303 while (1)
1304 {
1305 #ifndef PTRACE_VFORK
1306 wptid = fbsd_next_vfork_done ();
1307 if (wptid != null_ptid)
1308 {
1309 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1310 return wptid;
1311 }
1312 #endif
1313 wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
1314 if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
1315 {
1316 struct ptrace_lwpinfo pl;
1317 pid_t pid;
1318 int status;
1319
1320 pid = wptid.pid ();
1321 if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
1322 perror_with_name (("ptrace"));
1323
1324 wptid = ptid_t (pid, pl.pl_lwpid, 0);
1325
1326 if (debug_fbsd_nat)
1327 {
1328 fprintf_unfiltered (gdb_stdlog,
1329 "FNAT: stop for LWP %u event %d flags %#x\n",
1330 pl.pl_lwpid, pl.pl_event, pl.pl_flags);
1331 if (pl.pl_flags & PL_FLAG_SI)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "FNAT: si_signo %u si_code %u\n",
1334 pl.pl_siginfo.si_signo,
1335 pl.pl_siginfo.si_code);
1336 }
1337
1338 #ifdef PT_LWP_EVENTS
1339 if (pl.pl_flags & PL_FLAG_EXITED)
1340 {
1341 /* If GDB attaches to a multi-threaded process, exiting
1342 threads might be skipped during post_attach that
1343 have not yet reported their PL_FLAG_EXITED event.
1344 Ignore EXITED events for an unknown LWP. */
1345 thread_info *thr = find_thread_ptid (wptid);
1346 if (thr != nullptr)
1347 {
1348 if (debug_fbsd_lwp)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "FLWP: deleting thread for LWP %u\n",
1351 pl.pl_lwpid);
1352 if (print_thread_events)
1353 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str
1354 (wptid));
1355 delete_thread (thr);
1356 }
1357 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1358 perror_with_name (("ptrace"));
1359 continue;
1360 }
1361 #endif
1362
1363 /* Switch to an LWP PTID on the first stop in a new process.
1364 This is done after handling PL_FLAG_EXITED to avoid
1365 switching to an exited LWP. It is done before checking
1366 PL_FLAG_BORN in case the first stop reported after
1367 attaching to an existing process is a PL_FLAG_BORN
1368 event. */
1369 if (in_thread_list (ptid_t (pid)))
1370 {
1371 if (debug_fbsd_lwp)
1372 fprintf_unfiltered (gdb_stdlog,
1373 "FLWP: using LWP %u for first thread\n",
1374 pl.pl_lwpid);
1375 thread_change_ptid (ptid_t (pid), wptid);
1376 }
1377
1378 #ifdef PT_LWP_EVENTS
1379 if (pl.pl_flags & PL_FLAG_BORN)
1380 {
1381 /* If GDB attaches to a multi-threaded process, newborn
1382 threads might be added by fbsd_add_threads that have
1383 not yet reported their PL_FLAG_BORN event. Ignore
1384 BORN events for an already-known LWP. */
1385 if (!in_thread_list (wptid))
1386 {
1387 if (debug_fbsd_lwp)
1388 fprintf_unfiltered (gdb_stdlog,
1389 "FLWP: adding thread for LWP %u\n",
1390 pl.pl_lwpid);
1391 add_thread (wptid);
1392 }
1393 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1394 return wptid;
1395 }
1396 #endif
1397
1398 #ifdef TDP_RFPPWAIT
1399 if (pl.pl_flags & PL_FLAG_FORKED)
1400 {
1401 #ifndef PTRACE_VFORK
1402 struct kinfo_proc kp;
1403 #endif
1404 ptid_t child_ptid;
1405 pid_t child;
1406
1407 child = pl.pl_child_pid;
1408 ourstatus->kind = TARGET_WAITKIND_FORKED;
1409 #ifdef PTRACE_VFORK
1410 if (pl.pl_flags & PL_FLAG_VFORKED)
1411 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1412 #endif
1413
1414 /* Make sure the other end of the fork is stopped too. */
1415 child_ptid = fbsd_is_child_pending (child);
1416 if (child_ptid == null_ptid)
1417 {
1418 pid = waitpid (child, &status, 0);
1419 if (pid == -1)
1420 perror_with_name (("waitpid"));
1421
1422 gdb_assert (pid == child);
1423
1424 if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
1425 perror_with_name (("ptrace"));
1426
1427 gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
1428 child_ptid = ptid_t (child, pl.pl_lwpid, 0);
1429 }
1430
1431 /* Enable additional events on the child process. */
1432 fbsd_enable_proc_events (child_ptid.pid ());
1433
1434 #ifndef PTRACE_VFORK
1435 /* For vfork, the child process will have the P_PPWAIT
1436 flag set. */
1437 if (fbsd_fetch_kinfo_proc (child, &kp))
1438 {
1439 if (kp.ki_flag & P_PPWAIT)
1440 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1441 }
1442 else
1443 warning (_("Failed to fetch process information"));
1444 #endif
1445 ourstatus->value.related_pid = child_ptid;
1446
1447 return wptid;
1448 }
1449
1450 if (pl.pl_flags & PL_FLAG_CHILD)
1451 {
1452 /* Remember that this child forked, but do not report it
1453 until the parent reports its corresponding fork
1454 event. */
1455 fbsd_remember_child (wptid);
1456 continue;
1457 }
1458
1459 #ifdef PTRACE_VFORK
1460 if (pl.pl_flags & PL_FLAG_VFORK_DONE)
1461 {
1462 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1463 return wptid;
1464 }
1465 #endif
1466 #endif
1467
1468 #ifdef PL_FLAG_EXEC
1469 if (pl.pl_flags & PL_FLAG_EXEC)
1470 {
1471 ourstatus->kind = TARGET_WAITKIND_EXECD;
1472 ourstatus->value.execd_pathname
1473 = xstrdup (pid_to_exec_file (pid));
1474 return wptid;
1475 }
1476 #endif
1477
1478 #ifdef USE_SIGTRAP_SIGINFO
1479 if (fbsd_handle_debug_trap (wptid, pl))
1480 return wptid;
1481 #endif
1482
1483 /* Note that PL_FLAG_SCE is set for any event reported while
1484 a thread is executing a system call in the kernel. In
1485 particular, signals that interrupt a sleep in a system
1486 call will report this flag as part of their event. Stops
1487 explicitly for system call entry and exit always use
1488 SIGTRAP, so only treat SIGTRAP events as system call
1489 entry/exit events. */
1490 if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
1491 && ourstatus->value.sig == SIGTRAP)
1492 {
1493 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1494 if (catch_syscall_enabled ())
1495 {
1496 if (catching_syscall_number (pl.pl_syscall_code))
1497 {
1498 if (pl.pl_flags & PL_FLAG_SCE)
1499 ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
1500 else
1501 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
1502 ourstatus->value.syscall_number = pl.pl_syscall_code;
1503 return wptid;
1504 }
1505 }
1506 #endif
1507 /* If the core isn't interested in this event, just
1508 continue the process explicitly and wait for another
1509 event. Note that PT_SYSCALL is "sticky" on FreeBSD
1510 and once system call stops are enabled on a process
1511 it stops for all system call entries and exits. */
1512 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1513 perror_with_name (("ptrace"));
1514 continue;
1515 }
1516 }
1517 return wptid;
1518 }
1519 }
1520
1521 #ifdef USE_SIGTRAP_SIGINFO
1522 /* Implement the "stopped_by_sw_breakpoint" target_ops method. */
1523
1524 bool
1525 fbsd_nat_target::stopped_by_sw_breakpoint ()
1526 {
1527 struct ptrace_lwpinfo pl;
1528
1529 if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
1530 sizeof pl) == -1)
1531 return false;
1532
1533 return (pl.pl_flags == PL_FLAG_SI
1534 && pl.pl_siginfo.si_signo == SIGTRAP
1535 && pl.pl_siginfo.si_code == TRAP_BRKPT);
1536 }
1537
1538 /* Implement the "supports_stopped_by_sw_breakpoint" target_ops
1539 method. */
1540
1541 bool
1542 fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
1543 {
1544 return true;
1545 }
1546 #endif
1547
1548 #ifdef TDP_RFPPWAIT
1549 /* Target hook for follow_fork. On entry and at return inferior_ptid is
1550 the ptid of the followed inferior. */
1551
1552 int
1553 fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
1554 {
1555 if (!follow_child && detach_fork)
1556 {
1557 struct thread_info *tp = inferior_thread ();
1558 pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
1559
1560 /* Breakpoints have already been detached from the child by
1561 infrun.c. */
1562
1563 if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
1564 perror_with_name (("ptrace"));
1565
1566 #ifndef PTRACE_VFORK
1567 if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
1568 {
1569 /* We can't insert breakpoints until the child process has
1570 finished with the shared memory region. The parent
1571 process doesn't wait for the child process to exit or
1572 exec until after it has been resumed from the ptrace stop
1573 to report the fork. Once it has been resumed it doesn't
1574 stop again before returning to userland, so there is no
1575 reliable way to wait on the parent.
1576
1577 We can't stay attached to the child to wait for an exec
1578 or exit because it may invoke ptrace(PT_TRACE_ME)
1579 (e.g. if the parent process is a debugger forking a new
1580 child process).
1581
1582 In the end, the best we can do is to make sure it runs
1583 for a little while. Hopefully it will be out of range of
1584 any breakpoints we reinsert. Usually this is only the
1585 single-step breakpoint at vfork's return point. */
1586
1587 usleep (10000);
1588
1589 /* Schedule a fake VFORK_DONE event to report on the next
1590 wait. */
1591 fbsd_add_vfork_done (inferior_ptid);
1592 }
1593 #endif
1594 }
1595
1596 return 0;
1597 }
1598
1599 int
1600 fbsd_nat_target::insert_fork_catchpoint (int pid)
1601 {
1602 return 0;
1603 }
1604
1605 int
1606 fbsd_nat_target::remove_fork_catchpoint (int pid)
1607 {
1608 return 0;
1609 }
1610
1611 int
1612 fbsd_nat_target::insert_vfork_catchpoint (int pid)
1613 {
1614 return 0;
1615 }
1616
1617 int
1618 fbsd_nat_target::remove_vfork_catchpoint (int pid)
1619 {
1620 return 0;
1621 }
1622 #endif
1623
1624 /* Implement the "post_startup_inferior" target_ops method. */
1625
1626 void
1627 fbsd_nat_target::post_startup_inferior (ptid_t pid)
1628 {
1629 fbsd_enable_proc_events (pid.pid ());
1630 }
1631
1632 /* Implement the "post_attach" target_ops method. */
1633
1634 void
1635 fbsd_nat_target::post_attach (int pid)
1636 {
1637 fbsd_enable_proc_events (pid);
1638 fbsd_add_threads (pid);
1639 }
1640
1641 #ifdef PL_FLAG_EXEC
1642 /* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
1643 will always stop after exec. */
1644
1645 int
1646 fbsd_nat_target::insert_exec_catchpoint (int pid)
1647 {
1648 return 0;
1649 }
1650
1651 int
1652 fbsd_nat_target::remove_exec_catchpoint (int pid)
1653 {
1654 return 0;
1655 }
1656 #endif
1657
1658 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1659 int
1660 fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
1661 int any_count,
1662 gdb::array_view<const int> syscall_counts)
1663 {
1664
1665 /* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
1666 will catch all system call entries and exits. The system calls
1667 are filtered by GDB rather than the kernel. */
1668 return 0;
1669 }
1670 #endif
1671 #endif
1672
1673 void
1674 _initialize_fbsd_nat (void)
1675 {
1676 #ifdef PT_LWPINFO
1677 add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
1678 &debug_fbsd_lwp, _("\
1679 Set debugging of FreeBSD lwp module."), _("\
1680 Show debugging of FreeBSD lwp module."), _("\
1681 Enables printf debugging output."),
1682 NULL,
1683 &show_fbsd_lwp_debug,
1684 &setdebuglist, &showdebuglist);
1685 add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
1686 &debug_fbsd_nat, _("\
1687 Set debugging of FreeBSD native target."), _("\
1688 Show debugging of FreeBSD native target."), _("\
1689 Enables printf debugging output."),
1690 NULL,
1691 &show_fbsd_nat_debug,
1692 &setdebuglist, &showdebuglist);
1693 #endif
1694 }